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ABSTRACT

Several studies suggested that transcription factor
(TF) binding to DNA may be impaired or enhanced by
DNA methylation. We present MEDEMo, a toolbox for
TF motif analysis that combines information about
DNA methylation with models capturing intra-motif
dependencies. In a large-scale study using ChIP-seq
data for 335 TFs, we identify novel TFs that show a
binding behaviour associated with DNA methylation.
Overall, we find that the presence of CpG methyla-
tion decreases the likelihood of binding for the ma-
jority of methylation-associated TFs. For a consid-
erable subset of TFs, we show that intra-motif de-
pendencies are pivotal for accurately modelling the
impact of DNA methylation on TF binding. We illus-
trate that the novel methylation-aware TF binding
models allow to predict differential ChlP-seq peaks
and improve the genome-wide analysis of TF bind-
ing. Our work indicates that simplistic models that
neglect the effect of DNA methylation on DNA bind-
ing may lead to systematic underperformance for
methylation-associated TFs.
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INTRODUCTION

Transcription Factors (TFs) are essential regulatory pro-
teins with diverse roles in transcriptional regulation, such
as chromatin remodelling or the initiation of transcription
(1). Hence, a key step to improve our understanding of
the function of TFs is to identify the genomic location of
TF binding sites (TFBS). It was shown that TFs usually
bind to accessible chromatin (2) and therefore a variety of
computational methods (3) has been developed to combine
chromatin accessibility data (e.g. DNasel-seq, ATAC-seq,
NOMe-seq) with TF motif information as encoded in Posi-
tion Weight Matrices (PWMs) (4-7) to elucidate the tissue-
specific binding profiles of TFs. Recently, LSLIM-models,
which capture intra-motif dependencies, have been success-
fully applied to overcome the nucleotide independence as-
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sumption of PWMs (8). Further approaches that allow for
intra-motif dependencies include improved energy models
(9), transcription factor flexible models (10), parsimonious
Markov models (11) and Bayesian Markov models (12).

To provide the community with a systematic compari-
son of the plethora of TFBS prediction approaches, the
ENCODE-DREAM invivo Transcription Factor binding site
prediction challenge (https://www.synapse.org/#!Synapse:
syn6131484/wiki/402034) was conducted in 2016. The com-
peting methods considered, aside from epigenomics data,
also DNA shape, sequence conservation, and/or sequence
composition. Interestingly, the median area under the preci-
sion recall curve (AUC-PR) for one of the winning methods
across all classifiers is only 0.4 (5), suggesting that important
molecular signatures influencing TF binding are not incor-
porated yet.

One of those signatures is DNA methylation in a CpG
context. The analysis of DNA methylation has been a ma-
jor focus of epigenomics research and several experimen-
tal approaches have been proposed to characterize DNA
methylation in vivo (13): while early methods used methy-
lation sensitive restriction enzymes in PCR and gel-based
approaches (14), the usage of microarrays allowed a scale-
up of CpG methylation analysis (15). Array-based meth-
ods are nowadays used to characterize the methylation lev-
els of pre-selected CpGs, e.g. for diagnostic purposes (16).
With the advancements of next-generation sequencing, sev-
eral sequencing based approaches to characterize DNA
methylation on a genome-wide scale have been proposed
(17,18). Most techniques used currently require bisulfite-
treated DNA as input. Bisulfite treatment causes unmethy-
lated cytosines to be converted to uracils, whereas methy-
lated cytosines remain unchanged (19).

Large-scale bisulfite sequencing studies have been per-
formed by several international consortia such as Blueprint,
Roadmap and ENCODE, to generate DNA methylation
data for several tissue and primary cell types.

DNA methylation in a CpG context has been reported
previously to have a repressive effect on TF binding (20).
Additional studies using protein binding microarrays (21),
DAP-seq (22) or methylation-sensitive systematic evolution
of ligands by exponential enrichment (SELEX) (23) indi-
cated that DNA methylation can also promote TF binding.

Functionally, the addition of a methyl group to cytosines
influences their steric and hydrophobic environment and
renders it similar to that of a thymine (24). This is known as
thymine mimicry (25). Specifically, CpG methylation leads
to a widening of the major groove and narrows the minor
groove (26,27). It also affects roll and propeller twist and
results in an increase of helix stiffness (27).

As summarized in (24), there are two modes how TFs
can recognize DNA methylation: 1) the 5 methyl-cytosine-
arginine-guanine triad detection and ii) the presence of van
der Waals interactions between the methyl group of the cy-
tosine and methyl groups of hydrophobic amino acids or
methylene groups of polarized amino acids.

Methylation dependence has been studied in depth for
several TFs such as KLF4 (28), P53 (29), CEBP complexes
(23), NRF1 (30) and ZFP57 (31).

The MeDReaders database catalogues TF binding motifs
that were learned on TF ChIP-seq peaks separated by low
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or high average methylation level in the peak region using
MEME (32). While this constitutes a straight-forward ap-
proach, methods specifically designed to include informa-
tion about DNA methylation directly into the de novo dis-
covery of binding motifs are rare. The MEPIGRAM (33) soft-
ware is an extension of the EPIGRAM algorithm for motif
detection (34). MEPIGRAM derives motifs by constructing
PWMs considering a sequence set derived from TF ChIP-
seq data. Specifically, MEPIGRAM computes the most en-
riched k-mers within the ChIP-seq peak regions compared
to a randomly shuffled set of sequences. These k-mers are
treated as ‘seeds’ and subsequently extended both up and
downstream. To incorporate DNA methylation in this pro-
cess, the alphabet considered in PWM construction has
been extended with a separate symbol for methylated cy-
tosines. Viner et al. (35) use an alphabet with additional
symbols for differently methylated cytosines and further
symbols for the corresponding guanines on the opposite
strand. De novo motif discovery is then performed by an en-
hanced version of the MEME suite. To analyse data gener-
ated by the Methyl-Spec-seq assay, Zuo et al. (31) use a sim-
ilar extended 6-letter alphabet for PWM construction with
separate symbols for methylated cytosines and guanines op-
posite of methylated cytosines.

Recently, the METHMOTIF database, which combines TF
motifs with associated DNA methylation profiles, has been
made available (36). In METHMOTIF, occurrences of known
TF motifs are detected with CENTRIMO in ChIP-seq data
from ENCODE. Subsequently, the genomic loci that are en-
riched for the tested motifs are overlayed with CpG methy-
lation data from GEO. The found motifs and the CpG
methylation signatures are visualized in so called MethMo-
tif logos. A possible demerit of the approach pursued in
METHMOTIF, compared with those mentioned previously,
is that the methylation dependence has not been incorpo-
rated into the discovery of the TF motif. In addition, neither
METHMOTIF nor MEPIGRAM provide the user with means
to perform methylation-aware genome wide TFBS predic-
tions.

Although the aforementioned methods demonstrated
significant advantages in the characterization of TF bind-
ing sites by including DNA methylation, they do suffer from
the simplifying independence of nucleotide assumption made
in PWM models. Even without considering DNA methy-
lation, several recent studies demonstrated that including
intra-motif dependencies improves the accuracy of mo-
tif models. The models employed for this purpose include
variable-order Bayesian networks (37), Bayesian Markov
models (12), transcription factor flexible models (10), par-
simonious Markov models (11,38) and sparse local inho-
mogeneous mixture (Slim) models (8). Considering DNA
methylation, the independence assumption is obviously vi-
olated in a CpG methylation context.

Here, we present MEDEMO (Methylation and Depen-
dencies in Motifs), a toolbox using an extension of SLIM
models capturing intra-motif dependencies, which accounts
for the presence of DNA methylation. The DIMONT frame-
work for de novo motif discovery employed by MEDEMO
learns PWM models or more complex motif models from
input sequences, for instance, sequences under ChIP-seq
peaks. The PWM models learned by DIMONT have been
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benchmarked on ChIP-seq data against those generated by
the alternative approaches POSMO (39), CHIPMUNK (40),
MEME (41), DME (42), DREME (43) and HMS (44) pre-
viously (45), and DIMONT showed to yield the largest num-
ber of correct motifs. Likewise, SLIM/LSLIM models have
been shown to perform better than other dependency mod-
els, also when learned from ChIP-seq data within the DI-
MONT framework (8). Here, we focus on the influence of
using dependency models, considering DNA methylation
in TF binding sites, and the combination of both. Since
all modelling variants (PWM models and LSlim models
with and without methylation information, respectively) are
learned in the common DIMONT framework, we eliminate
additional influence of algorithmic differences between mo-
tif discovery approaches in this analysis. However, since
MEPIGRAM (34) has been developed for the same purpose
as MEDEMO, namely the discovery of methylation-aware
motif variants based on ChIP-seq data, we perform bench-
mark analyses comparing MEDEMO and MEPIGRAM.

We illustrate that the combination of methylation in-
formation and intra-motif dependencies considered by
MEDEMO typically yields an improved prediction perfor-
mance compared with a standard PWM-based approach.
To this end, we analysed the DNA methylation depen-
dence of hundreds of TFs in cell-lines and primary cells
using DEEP and ENCODE data. MEDEMO is avail-
able as a stand-alone tool allowing both the inference of
methylation-aware TF motifs and to obtain genome-wide
TFBS predictions.

MATERIALS AND METHODS
Data

We downloaded whole genome bisulfite sequencing data for
three cell-lines (K562 (ENCFF867JRG, ENCFF721JMB),
HepG2 (ENCFF064GJQ, ENCFF369YQW), GM12878
(ENCFF79HCL, E2NCFF835NTC)) from ENCODE as
well as for two replicates of primary human hepatocytes
(DEEP (41_Hf01_LiHe_Ct, 41 _Hf03_LiHe_Ct (available via
EGA, https://ega-archive.org, EGAD00001002527)). The
ENCODE data has been processed following the uniform
ENCODE-Processing pipeline, the DEEP data has been
processed following the DEEP MCSv3 pipeline (https:
/Igithub.molgen.mpg.de/DEEP/comp-metadata,
doi:10.17617/1.2W).  Furthermore, we downloaded
TF-ChIP seq peak calls (IDR thresholded peaks) from
ENCODE for 336 experiments in K562, 145 in HepG2, 129
in GM12878 and 25 in primary human hepatocytes (liver).
Data accession IDs for TF-ChIP-seq data are provided in
Supplementary Table S1.

Generation of methylation-aware genomes

To generate a methylation-aware genome sequence, where
a methylated C is replaced by ‘M’ and a G opposite of a
methylated C is replaced by ‘H’, we discretized the methy-
lation calls from whole genome bisulfite data using BE-
TAMIX (46) and the parameter - -components unimodal uni-
modal, which refers to a mixture model of two unimodal
distributions.
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Training procedure

Motif models, i.e. PWMs and LSlim models, are learned
from ChIP-seq data by the discriminative maximum super-
vised posterior principle within the DIMONT/SLIMDIMONT
framework (8,45). To this end, we use as positive training
sets genomic regions under all ChIP-seq positive peaks (op-
timal IDR thresholded peaks) as downloaded from the EN-
CODE project and extract the sequence of length 1000 bp
around the peak center. Here, we do not explicitly check
for overlaps between peaks, and, hence, positive sequences
in the training set may be partially overlapping. In addi-
tion, we use two different sets of negative training sets.
First, we randomly draw 10 000 regions uniformly from
the complete genome excluding any ChIP-seq positive re-
gion of the TFs studied (random) and again extract the
sequence of length 1000 bp around the center of each re-
gion. Second, we consider dinucleotide shuffled versions of
each positive sequence in the training set (shuffled). To bal-
ance the influence of positive and negative sequences, we
assign each negative training sequence a weight that is con-
sidered when evaluating the objective function. Specifically,
if the training data contain N positive sequences and M
negative sequences, each negative training sequence is as-
signed a weight of N/M, such that the total weight of all
negative sequences is M - N/M = N. In either case, we ex-
tract sequences from the original 4#g38 genome with stan-
dard DNA nucleotides and, alternatively, sequences from
the genomes including methylation calls (Section Gener-
ation of methylation-aware genomes). As the methylated
genomes are cell type-specific we always use those matching
the cell type of the corresponding ChIP-seq experiment. Se-
quences from the negative sets are also extracted from the
matching genome versions. Models that are discovered de
novo from these data sets are (i) standard position weight
matrices and (i) LSLIM models (8) with a maximum dis-
tance of Sbp between putatively dependent positions. In
general, motif discovery within the DIMONT/SLIMDIMONT
framework (8,45) may report multiple motifs per input data
set. For the remainder of the analyses described here, we
only consider the first reported motif according to the rank-
ing by the value of the maximum supervised posterior objec-
tive function used internally in the DIMONT/SLIMDIMONT
framework as proposed previously (45).

Prediction procedure

Given a trained motif model and an input set of sequences,
we compute for each sequence the log-likelihood of all over-
lapping sub-sequences on both strands matching the mo-
tif length. We then chose as predicted value for that se-
quence the maximum over all these log-likelihood values. In
contrast to alternative scores, like the sum occupancy score
(47) integrating over all log-likelihood values, this proce-
dure makes sure that the score of a sequence can be at-
tributed to one specific sub-sequence with its methylation
pattern.

Cross validation procedure

For benchmarking the different models learned from se-
quence with and without methylation information, we
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follow a 10-fold cross validation procedure. Specifically, we
partition ChIP-seq positive regions and (for the first train-
ing variant) drawn negative regions into 10 equally sized
sets, where in each cross validation fold, the union of 9 of
these sets is used for training and the remaining set is used
for testing. The partitioning into training and test sets for
the individual folds is already performed on the level of peak
files. Afterwards, the corresponding partitions of peaks are
considered when extracting sequences under the peaks from
the methylation-aware or the original hg38 genome variant.
Hence, training and test sets in the different cross validation
folds are identical (aside from methylation information) be-
tween the different genome variants.

Evaluating performance

For evaluating performance of a model trained on and ap-
plied to sequences from a specific genome version, we con-
sider a classification problem discriminating ChIP-seq pos-
itive from negative sequences. The positive set comprises all
sequences extracted under ChIP-seq positive regions from
the corresponding test partition. The negative set, in turn,
comprises sequences from genomic regions that are again
randomly drawn uniformly from the complete genome, in
this case excluding all ChIP-seq positive regions for all TFs
studied and also excluding the negative regions used for
training. In total, this negative set contains 100 000 regions,
which are again partitioned into 10 test sets to capture vari-
ability among different choices of negatives. Given a model,
scores for all sequences in positive and negative sets are
computed as described in section Prediction procedure. The
ability of these scores to distinguish positives from nega-
tives is then evaluated by the area under the precision recall
curve (AUC-PR) as determined by the PRROCR package
(48). Models trained on the training partition of one EN-
CODE data set for one specific TF are evaluated (i) on the
test partition of the same data set, (ii) on the correspond-
ing test partition of other data sets for the same TF and cell
type and (iii) on the corresponding test partition of other
data sets for the same TF in other cell types. We refer to
the first two cases as within cell type, and to the latter case
as across cell type. As one baseline, we consider a random
classifier, i.e., a classifier that randomly assigns positive and
negative labels with equal probability. The random classifier
generates a true positive with probability %4 and a false
positive with probability ﬁ/[’ where N and M are the num-
ber of positive and negative sequences, respectively. Hence,
the AUC-PR of the random classifier can be derived ana-
lytically as NJFLM (49).

Training and evaluating mEpigram models

In order to compare the motif discovery of MEPIGRAM
and MEDEMO on common ground, we use the same
methylation-aware genomes and derived sequences for both
approaches. Technically, our methylation-aware M/H al-
phabet needs to be converted to an E/F alphabet to serve
as input of the MEPIGRAM routines. For training MEPI-
GRAM models, we follow the procedure proposed by the
authors. First, we extract training sequences based on the
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ChIP-seq peak files and the corresponding methylation-
aware genome variants using the bedToFasta . py script
provided with MEPIGRAM. We further generate the k-mer
background model using the bgModel . py script with pa-
rameter -k 7 from the methylation-aware genome vari-
ants. We chose 7-mers instead of 8-mers, because for the
‘typeEF’ variant of MEPIGRAM not limited to fully methy-
lated CpGs, only the (required) 7-mer graph is available.
We then learn motifs using the mepigram wrapper.py
script using the sequences extracted from the peak file,
the 7-mer graph, the background file for the training
genome, and parameter typeEF. Aside from a motif file
in MEME format, this script outputs a file enrich-
ments . tsv, which lists the per-motif enrichment on the
positive training examples compared with shuffled nega-
tives. For evaluating performance, we chose the motif with
the largest enrichment value, since ranking by enrichment
value has been suggested in the original publication (33).
We then apply the selected motif to the test sequences
using the provided quickPssmScanBestMatchLite-
TypeEF . j1 script reporting the best motif score for each
input sequence, which matches the prediction schema ap-
plied for the MEDEMO models.

Model visualization

Since parameters of models learned by discriminative learn-
ing principles may be skewed to optimize prediction accu-
racy, a direct visualization of these parameters may lead to
un-intuitive results. Hence, we follow the approach of (8)
and visualize models based on their predicted binding sites
on the training data represented by traditional sequence
logos and dependency logos generated by the DEPLOGOR
package (50).

Methylation sensitivity of binding models

We investigate the methylation sensitivity of a trained model
again based on predicted binding sites. To this end, we con-
sider models learned from sequences using the extended,
methylation-aware alphabet and binding sites predicted
from the corresponding training data set. Each of these
binding sites is first converted to the standard DNA alpha-
bet replacing occurrences of M with C and of H with G. We
use this modified sequence to compute a base score with-
out methylation. We then consider each CpG dinucleotide
within the sequence (regardless if it was methylated in the
original sequence) and change both the C to M and the G
to H (MH). We compute the score of the modified sequence
according to the model and determine its difference rela-
tive to the base score. If this score is larger than the base
score, we consider the influence of methylation on such a
nucleotide (in this sequence context) as beneficial, and as
detrimental otherwise. For each binding site position, we
also compute the relative abundance of CpGs in the pre-
dicted binding sites and the average of the score differences
of the MH case relative to the base score. We further assess
if the binding motif of a TF contains a prominent CpG in
its core. Here, we define the core of the motif as all positions
between the first and the last position with an information
content above 0.5 and we consider a CpG is prominent if
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the relative frequency of CpG di-nucleotides at a motif po-
sition is above 0.25, which is four times more frequent than
could be expected by chance for a uniform distribution over
the nucleotides. We also record the maximum methylation
sensitivity within the motif core and outside the motif core.

Differential binding

For analyzing the association between scores of predicted
binding sites and differential binding, we consider pairs of
cell types, A and B, with ChIP-seq data available for the
same TF. In this analysis, we distinguish common peaks
that overlap between the two cell types, and unique peaks
present in only one of the cell types. We further predict
one binding site per ChIP-seq peak at the position yield-
ing the maximum score as described in Section Prediction
procedure.

For the common peaks, we only compare (scores of) bind-
ing sites that are predicted at exactly the same genomic lo-
cation in the methylation-aware genomes of both cell types,
as this allows for a direct comparison of prediction scores.
This requirement is reasonable as, in principle, the position
of a predicted binding site could change due to differences
in the methylation states of the two cell types. Since only
such common binding sites are considered, we identify com-
mon peaks by the presence of predictions at identical ge-
nomic locations within the two methylation-aware genomes.
Predicted binding sites in both cell types are recorded to-
gether with the corresponding prediction scores and the
peak heights (column 7 of the narrowPeak format) of the
surrounding peaks.

We further identify unique peaks for cell type A us-
ing the bedtools (51) command ‘bedtools intersect -v -
a peaksA.bed -b peaksB.bed > onlyA.bed’. For binding
sites predicted from the methylation-aware genomes of cell
type A, we extract the corresponding sequence from the
methylation-aware genome of cell type B, and record pre-
diction scores for these two predicted sites. We proceed in
complete analogy to identify unique peaks for cell type B.

For these analyses, we aim at using the same models that
have also been considered for classification-based bench-
marks. However, as these benchmarks are based on 10-fold
cross validation experiments, we also obtain a set of 10 mod-
els per TF and training data set. For this reason, we perform
the above-mentioned procedure for each of the 10 models,
and average prediction scores per ChIP-seq peak before pro-
ceeding with statistical analysis and visualization.

As a reference, we also consider a simple baseline, which
measures methylation levels of the sequences under ChIP-
seq peaks. Specifically, we extract sequences of length
1000 bp and determine, on either strand of the DNA se-
quence, the fraction of cytosines that are methylated accord-
ing to the methylation-aware genome of a cell type. We cen-
ter the extracted sequences at the position of the predicted
target site instead of the (cell type-specific) peak center or
peak summit to ensure that methylation levels in different
cell types are measured for the same genomic region.

Genome-wide predictions within the Catchitt framework

Catchitt is a framework for predicting in vivio TF binding
sites based on motif models and cell type-specific chromatin
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accessibility data, and is a streamlined version of the ap-
proach winning the ‘ENCODE-DREAM in vivo Transcrip-
tion Factor Binding Site Prediction Challenge’ (5). Here, we
use Catchitt to compare the performance of methylation-
agnostic and methylation-aware motif models when used
for genome-wide predictions of TF binding sites. Specif-
ically, we obtain ATAC-seq data from ENCODE (Sup-
plementary Table S2) as BigWig files containing the fold
change over control for the four cell types considered. These
serve as input of the ‘access’ tool of Catchitt to obtain
chromatin features. In addition, we train PWM and LSlim
models using TF-specific ChIP-seq data from all chromo-
somes except the test chromosomes chrl, chr8 and chr21
as described in Section Training procedure. Trained mod-
els are then used to compute motif-based features using the
‘motif” tools of Catchitt based on the respective original
or methylation-aware genome variants. Labels (bound, un-
bound) of 200 bp genomic regions shifted by 50 bp along
each chromosome are generated from the corresponding
ChIP-seq data using the ‘labels’ tool of Catchitt. Catchitt
models using the chromatin features and motif-based fea-
tures of individual motif models are then trained on the
training chromosomes using the ‘itrain’ tool of Catchitt
with default parameters and using chromosomes chrl0,
chrll, chr12, chr13 and chrl4 for the iterative training pro-
cedure (cf. (5)). Finally, predictions for the test chromo-
somes chrl, chr§ and chr21 are generated using the ‘pre-
dict’ tool of Catchitt for the training cell type (within cell
type) and for the remaining cell types (across cell type) with
ChIP-seq data available for the TF of interest. AUC-PR of
bound vs. unbound regions is computed using the PRROC
R package (48).

Method implementation

We implement the model, training procedure and predic-
tion procedure based on the existing implementation of the
SLIMDIMONT approach (8). The basic modification com-
pared with the version published previously is the extension
of the alphabet to A, C, G, T, M and H, where M is comple-
mentary to H. This extension allows us to include informa-
tion about methylation while preserving the possibility to
compute reverse complements of input sequences, which is
necessary because in ChIP-seq data binding sites may be lo-
cated on either DNA strand. We provide this methylation-
aware toolbox termed MEDEMO for motif discovery as i)
stand-alone binary versions with graphical user interface
and command line interface (cf. ‘Data Availability’).

RESULTS AND DISCUSSION

To test whether the inclusion of cell type-specific methy-
lation information and explicitly modelling dependencies
within DNA-binding sites is beneficial for a specific TF, we
follow the procedure illustrated in Figure 1. We start from
whole-genome bisulfite sequencing data for the cell type
at hand, discretize methylation calls by the betamix (46)
approach, and use these binary methylation calls to con-
vert the original hg38 genome sequence into a methylation-
aware genome version. Specifically, we convert methylated
‘C’to ‘M’ and ‘G’ opposite of a methylated ‘C’ to ‘H’, yield-
ing an extended 6-letter alphabet.
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Figure 1. Overview of the MeDeMo workflow: (1) DNA methylation is assessed using whole genome bisulfite sequencing. (2) DNA methylation is quanti-
fied using B-values. (3) Methylation calls (B-values) are discretised using the BETAMIX approach resulting in a binary methylation state for each Cytosine in
a CpG context. (4) A novel reference genome is generated by denoting occurrences of methylated cytosines with the letter M and occurrences of guanines
opposite of a methylated cytosine with the letter H. (5) In vivo transcription factor binding site information are obtained using peak calls from TF -ChIP-seq
data. (6) TF binding data is used for motif discovery with LSLIM models on the methylation aware reference genomes; (7) resulting in methylation aware

TF motif representations.

Table 1. Overview of the combinations of genome variants and motif
models considered in this study

Genome variant

Original hg38 Methylation-aware
Model PWM PWM.hg38 PWM.methyl
LSlim(5) LSIlim.hg38 LSlim.methyl

Based on the ChIP-seq peaks downloaded from EN-
CODE, we extract sequences under the peaks, which serve
as input to the de novo motif discovery. As statistical
binding site models, we use either Position Weight Ma-
trix (PWM) (52,53) assuming independence of nucleotides,
or LSim(5) models capturing dependencies between nu-
cleotides over a distance of at most five nucleotides (8).
Both types of models are applied to sequences under peaks
extracted from the original hg38 genome, or to sequences
under peaks extracted from the methylation-aware genome
version for the cell type of the ChIP-seq experiment. This
results in four modelling alternatives (Table 1), namely (i)
PWM applied to original hg38, (ii)) PWM applied to the
methylation-aware genome, (iii) LSlim applied to origi-
nal hg38 and (iv) LSlim applied to the methylation-aware
genome. The binding site models of all four modelling alter-
natives are determined within the common Dimont frame-
work. As a method published previously for the same pur-
pose, we include PWMs learned by the MEPIGRAM ap-
proach (34) from the methylation-aware genome into the
comparison.

In the remainder of this section, we first investigate for
which TFs the introduction of a methylation-aware genome
and the inclusion of dependencies yield an improvement in

classification performance discriminating bound from un-
bound sequences. We then consider specific examples of
TFs that show such an improvement, discuss their bind-
ing motifs in relationship to methylation, and study gen-
eral trends in sensitivity of binding models to methylation
in binding sites. We finally present prototypical examples
of TFs for which the combination of methylation infor-
mation and modelling dependencies is pivotal to optimal
performance.

Investigating the impact of DNA methylation on binding

For benchmarking MEPIGRAM and the different modelling
alternatives of MEDEMO, we follow a classification-based
approach. Here, motif models are tested for their capabil-
ity of distinguishing bound from unbound sequences. We
consider as sequences bound by a specific TF those un-
der a ChIP-seq peak, whereas unbound sequences sampled
uniformly across the genome (cf. Materials and Methods).
Since for the majority of TFs, this is a highly imbalanced
classification problem, we use the area under the precision-
recall curve (48) as a performance measure. For each TF,
we collect all data sets that are available from ENCODE
for the cell types under study (GM12878, HepG2, K562,
liver), which might include replicate experiments for the
same combination of cell type and TF, e.g., performed in
different labs.

We further follow a 10-fold cross validation strategy to
be able to also assess classification performance on the data
from the same experiment. For each partition of the 10-fold
cross validation, we consider the motif reported on rank 1
by the SLIMDIMONT framework during training (cf. section
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Training procedure) for evaluating model performance on
test data.

In the following, we distinguish within cell type (i.e. train-
ing and test cell types match) and across cell type (i.c. train-
ing and test cell types are different) classification perfor-
mance. For each of these sub-sets of classification prob-
lems, we collect all AUC-PR values and perform a one-sided
Prentice rank sum test (54,55) (using prentice.test
from R-package muStat) between each pair of modelling
alternatives considering cross-validation folds as replicates
of the same experiment (replicated block design) and us-
ing a significance level of o = 0.05. In addition, we count
the number of data sets, for which one alternative yielded a
higher classification performance than the second one. Fi-
nally, we visualize the differences of AUC-PR values in vi-
olin plots as shown in Figure 2.

Analysis of binding models for ATF3 (across cell type
setting) is presented as an example in Figure 2A. We show
the corresponding results for all six pairwise comparisons of
the four modelling alternatives. For instance, from the left-
most panel of Figure 2A, we observe that the difference be-
tween the AUC-PR values of LSlim.methyl and LSlim.hg38
are mostly positive indicating an improved performance of
LSlim models on the methylation-aware genome compared
with standard hg38. This difference is statistically signifi-
cant with a p-value of 5.78 x 10~!3, where for 123 cases
(data sets x cross validation folds) LSlim.methyl performs
better than LSlim.hg38, whereas the opposite holds for
only 37 cases. Similarly, we find a significant improvement
of LSlim.methyl over PWM.methyl (indicating that depen-
dencies are beneficial), of LSlim.methyl over PWM.hg38,
of LSlim.hg38 over PWM.hg38 and of PWM.methyl over
PWM.hg38. For the comparison of LSlim.hg38 (only de-
pendencies) with PWM.methyl (only methylation informa-
tion), we do not observe a significant difference, which in-
dicates that both aspects of the novel approach contribute
to a similar degree to the final classification performance
of LSlim.methyl. Together, these results make ATF3 a pro-
totypical example of a TF for which the combination of
methylation information and modelling dependencies is
important for yielding the best classification performance
among the considered classification approaches.

In Figure 2B, we present further examples of TFs for
which the combination of methylation information and
modelling dependencies is beneficial. These cases also illus-
trate the varying quantity of combinations of training and
test data sets from different cell types available for different
TFs (each split into 10 cross validation folds). Here, these
span from 2 (USF2, one ChIP-seq data set for each of two
cell types) to 18 (JUND and MAX). In all cases, the im-
provement of LSlim.methyl over PWM.hg38 is statistically
significant, although the magnitude of the improvement in
classification performance (y-axis) as well as the proportion
of cases where one model performs better than the other dif-
fer among these TFs.

Finally, Figure 2C shows examples of TFs for which
the improvement of PWM.methyl over PWM.hg38 is
significant but the improvement of LSlim.methyl over
PWM.methyl is not, i.e. TFs for which inclusion of methy-
lation information is beneficial but modelling dependencies
does not lead to further improvements.

Nucleic Acids Research, 2023, Vol. 51, No. 18 e95

While we refer to differences of AUC-PR values for
comparing modelling alternatives in Figure 2 for a com-
pressed representation, we show scatter plots of absolute
performance of the modelling alternatives in Supplemen-
tary Figures S1-S3. In addition, we include a comparison
of PWM.methyl and LSlim.methyl models, respectively, to
a random classifier in Supplementary Figures S4-S6. In
general, we observe that prediction performance is highly
dataset dependent. Partly, this can be explained by differ-
ing numbers of peaks in different ChIP-seq data sets, which
affects the class ratio between positives and negatives. This
also becomes apparent in the comparisons to the random
baseline classifier, which obtains AUC-PR values according
to the class ratio. However, the difference in absolute perfor-
mance may also be a result of cell type-specific differences
if predictions are made on the same test dataset using mod-
els trained on different training cell types (e.g., HepG2 for
MNT, K562 for TBLIXR1).

Comparing scatter plots against the PWM.hg38 model
(Supplementary Figures S1-S3) with the scatter plots
against the random baseline classifier (Supplementary Fig-
ures S4-S6), we observe that in some cases (especially
prominent for ARID3A, ARNT and NONO in the across
cell type setting) the PWM.methyl model even performs
worse than the random baseline classifier. However, the
corresponding combinations of training and test cell types
are identical to those where performance is low in gen-
eral (low number of peaks) and where we do not observe
a clear improvement of the PWM.methyl model over the
PWM.hg38 model. Hence, this observation does not impair
our general comparison of the PWM.methyl/LSlim.methyl
and PWM.hg38 models.

Supplementary Figures S7-S10 include a detailed
comparison of the performance of MEPIGRAM with the
corresponding  MEDEMO models (PWM.methyl and
LSlim.methyl, respectively) for all TFs considered in
Figure 2. In summary, MEDEMO performs similarly to
MEPIGRAM for some TFs but yields an improved prediction
performance consistently across the two training methods
for the majority of examples, and we compare the two
methods on all datasets in the following section.

Benchmarking of modelling alternatives

We compile an overview of pairwise comparisons of mod-
elling alternatives within MEDEMO as well as MEPIGRAM
in Figure 3. Here, we apply stringent criteria for counting
one modelling alternative to perform better than a second
one for the TF at hand. Specifically, we require the improve-
ment to be significant i) in the within cell type and across cell
type settings consistently for both training variants (shuf-
fled and randomly drawn negatives, cf. Materials and Meth-
ods). For the comparison to MEPIGRAM, we require consis-
tent results for within and across cell type comparisons as
well.

Of the 335 TFs considered in total, ChIP-seq data sets
for at least two cell types are available for 144 TFs, while all
remaining cannot meet the stringent criteria by definition.

Among 144 TFs, we observe a significant improvement
of the methylation-aware MEDEMO modelling alterna-
tives over the methylation-aware MEPIGRAM motifs for 66
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Figure 2. Examples of TFs with significantly improved classification performance (AUC-PR) in across cell type predictions using a methylation-aware
genome. Each panel shows a pairwise comparison of models as indicated by the y-labels above and below the zero line. Each dot represents a case (data
sets x cross validation folds) with different colours for positive (i.e., top model performs best) and negative (i.e., bottom model performs best) differences
of AUC-PR values. Total number of cases where one model performs better than the other are shown as boldface, grey numbers. In addition, points are
summarised by a violin plot and corrected p-values for the Hj that both models perform identical (Prentice test) are given in the header. (A) Pairwise
comparison of different modelling variants for ATF3. We find that all methylation-aware models perform better than their counterparts learned on the
original hg38 genome and that dependency models (LSlim) perform better than PWM models on the same genome variant. For instance, LSlim.methyl
performs better than LSlim.hg38 in 123 cases, whereas the opposite is true for only 37 cases, leading to a P-value of 5.78 x 10713, (B) Comparison
of methylation-aware dependency models (LSlim.methyl) with PWM models using standard hg38 (PWM.hg38) for TFs with a clear advantage of the
combination of methylation information and modelling dependencies. (C) Comparison of PWM models learned from the methylation-aware genome with

those learned from the standard hg38 genome.

(PWM.methyl) and 75 (LSlim.methyl) TFs. Notably, even
the training variants of MEDEMO using the original hg38
genomes often outperform MEPIGRAM. By contrast, MEPI-
GRAM performs significantly and consistently better than
the MEDEMO models only for 3-6 TFs. These TFS are
ASH2L, BRD4, TBP, MAZ, SMADI1 and ZBTB7A, where
MEPIGRAM performs better than the LSlim.methyl vari-
ant of MEDEMO only for MAZ, SMADI1 and ZBTB7A.
We provide a detailed comparison on the level of indi-
vidual data sets and binding motifs between MEPIGRAM
and MEDEMO in Supplementary Figures S11-S16. In sum-
mary, we find that MEPIGRAM often discovers GC-rich mo-
tifs, which in multiple cases resemble the known SP1 mo-
tif, whereas MEDEMO generates more diverse motifs which,
however, are less capable of distinguishing positive from
negative sequences and, hence, yield lower AUC-PR values.

Among PWM and LSlim models trained by MEDEMO,
we observe the largest number of TFs (51) with significant
and consistent improvement comparing LSlim.methyl
(methylation information and dependencies) against
PWM.hg38 (neither of the two). We also find improve-
ments for a substantial number of TFs when considering
intra-motif dependencies in addition to methylation infor-

mation (i.e. LSlim.methyl compared with PWM.methyl,
27 TFs), or when considering methylation information in
addition to intra-motif dependencies (i.e. LSlim.methyl
compared with LSlim.hg38, 18 TFs). Modeling only de-
pendencies (LSlim.hg38 vs. PWM.hg38) or including only
methylation information (PWM.methyl vs. PWM.hg38)
yields an improvement for 33 and 23 TFs, respectively. For
the direct comparison of either including only dependencies
(LSlim.hg38) or only using a methylation-aware genome
(PWM.methyl), we find balanced numbers of TFs with
an improvement in either direction (16 and 13 TFs). The
opposite comparisons yield a significant improvement
only for a minority of at most one TF. Considering the
traditionally used PWM model using the standard hg38
genome, we find a better performance for PWM.hg38
compared with LSlim.hg38, LSlim.methyl or PWM.methyl
for none of the TFs studied. We find one TF (HDAC?2) for
which the PWM model yields a better performance than
the LSIlim model on the methylation-aware genome. In this
case, the PWM.methyl model significantly outperforms
all other modelling alternatives and adding dependencies
appears to be rather detrimental. Further, we find one TF
(CTCF) for which the LSlim model works better on the
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Figure 3. Pairwise comparison of different modelling variants. For MEPI-
GRAM, and each of the MEDEMO models (PWM, LSlim) and each genome
variant (original: hg38, methylation aware: methyl), we determine the num-
ber of TFs for which the model listed in the row performs significantly bet-
ter than the model listed in the column i) within and across cell types, and
ii) consistently using randomly drawn and shuffled negatives.

original than on the methylation-aware genome. Converse
to HDAC?2, intra-motif dependencies seem to be of greater
importance for CTCF than methylation information,
and the LSlim.hg38 outperforms any other modelling
alternative.

The examples previously shown in Figure 2A and B are
in the intersection of all three sets for which LSlim.methyl
performs better than any of the other three modelling al-
ternatives within the MEDEMO framework (second row
of Figure 3), whereas those shown in Figure 2C are from
the union of LSlim.methyl vs. LSlim.hg38, LSlim.methyl
vs. PWM.hg38 and PWM.methyl vs. PWM.hg38, exclud-
ing TFs where one model on the original hg38 genome per-
forms better than its methylation-aware counterpart.

We present a list of those TFS for which methyla-
tion information was beneficial for prediction performance
in Table 2. Here, we exclude TFs without direct and
sequence-specific DNA binding (as discussed for BRCA1
below), while we provide a complete list of TFs in Sup-
plementary Table S3. For all motifs listed in Table 2, we
also provide a comparison of the motifs discovered us-
ing the PWM.methyl model with those learned using the
PWM.hg38 and corresponding motifs from the databases
Jaspar (56), Hocomoco (57), Factorbook (58) and CIS-BP
(59) in Supplementary Figures S17-S21.

For 10 TFs, we find that the combination of methyla-
tion information and modelling intra-motif dependencies
(i.e. LSlim.methyl) yields a better prediction performance
than either using methylation information (PWM.methyl)
or modelling dependencies alone. For three of these
(NONO, RADS51, USF2) we find that modelling dependen-
cies alone does not improve prediction performance over
the standard PWM model on the hg38 genome, but only
in combination with methylation information. For the re-
maining 7 TFs, our results are compatible with independent

Nucleic Acids Research, 2023, Vol. 51, No. 18 e95

contributions from including methylation information and
modelling intra-motif dependencies.

The motifs of 18 out of 28 TFs (64%) listed in Table 2
show a prominent CpG in their core motif, whereas this
is true for only 53% (76 out of 144) of the motifs of all
TFs in the collection. We further examine the remaining
76 — 18 = 58 TFs that contain a prominent CpG in their
core motif and find inconclusive results (improvement only
for one training variant) for 32 TFs. For these, our strin-
gent filtering aiming at a low number of false positives does
not allow for giving a final assessment of the influence of
DNA methylation. The complementary set of 26 TFs con-
tains many non sequence-specific binders according to Fac-
torbook (58). However, there are 8 TFs (CEBPB, CTCEF,
EGR1, MXII1, NR2Cl1, ZBTB33, ZNF143 and ZNF592)
that specifically bind DNA and contain a prominent CpG
in their core motif but still, prediction performance does not
profit from including methylation information in our eval-
uation.

For four of these (MXI1, NR2CI1, ZNF143 and
ZNF592), our data contain only one experiment in each
of two cell types, which complicates statistical assessment
of the improvement, while for ZBTB33, we obtain discor-
dant results for the within cell type and the across cell type
setting (Supplementary Figure S22). For CEBPB (Supple-
mentary Figure S23), the improvement is only significant
in the within cell type setting, although the discovered mo-
tif is highly similar to the Jaspar (56) motif and we find the
corresponding PWM model to be methylation sensitive. For
CTCEF, we find an improvement of prediction performance
in neither setting, but also the CTCF motif resembles the
Jaspar motif and two positions of the model are methyla-
tion sensitive (Supplementary Figure S24). Finally, we find
an improvement for EGR1 only in the across cell type set-
ting, although the discovered motif is similar to the Jaspar
motif and two positions of the model are methylation sen-
sitive (Supplementary Figure S25).

In the literature, CEBPB (25,60-62) and CTCF (30,63—
65) have been found to be methylation sensitive TFs.
Hence, these TFs may represent potential false negatives
of our classification-based search strategy for methylation-
associated TFs.

For all TFs listed in Table 2, we further compare the
performance of PWM models learned by MEPIGRAM with
the different models learned by MEDEMO in Supplemen-
tary Figures S7-S10, which further illustrate our findings
summarized in Figure 3. Of the 10 TFs that show an im-
provement for the combination of methylation information
and modelling dependencies, MEDEMO using LSlim mod-
els performs better than PWMs from MEPIGRAM for § TFs,
while for MAX we only find an improvement when the
LSlim model is learned using randomly sampled negatives,
and for SP1, the MEPIGRAM PWM works better than the
LSlim model learned using shuffled negatives.

Methylation sensitivity of binding models

Having established a set of TFs for which the inclusion
of methylation information leads to an improvement in
the benchmark study, we further investigate binding pref-
erences of TFs in the context of their binding motifs. To
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Table 2. Summary of TFs that profit from considering DNA methylation in the motif models. For each TF, we list the availability of ChIP-seq data sets
for the four cell types studied. Columns ‘Methylation’ and ‘Methyl. & Deps.’ indicate a significant and consistent improvement (y: yes, n: no) by including
information about methylation in general and/or in combination with modelling intra-motif dependencies, respectively. We also note if a binding motif
contains a prominent CpG in its core (CpG) and if methylation sensitivity in the core is larger than outside the core (Core). In the last column, we note
references to the literature for TFs that have already been reported to be methylation sensitive, where -, “+’ and ‘s’ indicate negative or positive influence
of methylation or general methylation sensitivity according to the referenced publications, respectively

TF GM12878 HepG2 K562 liver Methylation Methyl. & Deps. CpG Core Literature
ARID3A X X X y n n y new
ARNT X X X y n y y - (30)
ATF3 X X X y y y y -(23)
ATF7 X X X y n y y -(23)
BHLHEA40 X X X y n y y -(23)
CREM X X X y n y y -(23)
ELF1 X X X y n y y -(23,60)
FOXA1 X X X y n n n - (85)
FOXA2 X X y y n n new
FOXK2 X X X y n n y new
GABPA X X X X y n y y -(23)
HNF4A X X y y n y new
HNF4G X X y y n y new
JUND X X X X y y n y -(23)
MAX X X X X y y y y s/-(23,30)
MNT X X y n y y s/-(30)
NFATC3 X X y n n y +(23)
NONO X X y y y y - (86)
NR2C2 X X y n y y new
NRF1 X X X y n y y - (30)
PKNOX1 X X y n n y new
RADSI1 X X X y y y y new
SIXS5 X X y n y y new
SP1 X X X y y y y +/-(23,70,71-71)
TBL1XR1 X X X y n n y new
USF2 X X y y y y -(23)
YY1 X X X X y n y y different motif (68)
ZBTB40 X X y n y y new

this end, we compute a position-specific profile of methy-
lation sensitivity by altering CpG dinucleotides within pu-
tative binding sites to their fully methylated variant MpH
and recording the resulting differences in the correspond-
ing binding scores according to the motif model. By this
means, we may decode the information about methylation
preference captured by the motif model. If the difference of
binding scores is positive, this corresponds to MpH dinu-
cleotides (i.e. methylated DNA) being preferred over CpG
dinucleotides by the model at a given position, and vice
versa. By referring to the level of predicted binding sites,
this measure of methylation sensitivity is easily transferred
to LSIim models, where methylation sensitivity may depend
on the sequence context.

In Figure 4, we present six examples of such profiles
of methylation sensitivity according to the corresponding
PWM models, plotted below the sequence logo of their pre-
dicted binding sites. As might be expected, all these exam-
ples have in common that their motifs contain prominent
CpG dinucleotides, although with different frequencies and
in different contexts. For ELF1, CREM and MAX, we ob-
serve one prominent CpG dinucleotide as part of their mo-
tifs, where CpG content varies between 0.57 (ELF1) and
0.85 (CREM). In all three cases, methylation of this CpG
dinucleotide according to the model leads to a decrease in
the prediction score, indicating that methylation is detri-
mental for binding affinity or that TF binding has a neg-
ative influence on DNA methylation. Similar patterns also

occur for YY1 with one prominent and several less frequent
CpG positions, and for BRCA1 and NRF1 exhibiting two
prominent CpG dinucleotides each.

For the NRF1 model, it appears as if methylation affects
one of the CpGs (position 8/9) to a lesser degree than the
other (position 14/15). However, ChIP-seq does not pro-
vide strand information and the strand model encapsulat-
ing the PWM allows for switching the strand orientation of
the binding site. For these reasons, and because the motif of
NRF1 is clearly palindromic, this phenomenon needs to be
interpreted with care. An alternative explanation might be
that once one of the CpGs present in NRF1 binding sites is
methylated, additional methylation of the other CpG does
not lead to a substantial further effect. Notably, the binding
motif discovered for BRCA1 does not match the canonical
motif present in HOCOMOCO (57). BRCA1 has been re-
ported to bind DNA directly but without sequence speci-
ficity (66). The ZBTB33-like motif discovered by our ap-
proach could possibly be due to indirect binding, and a sim-
ilar motif has been reported for BRCA1 before (67).

Strikingly, the influence of methylation on the prediction
score at high-CpG positions is negative in all examples pre-
sented in Figure 4, suggesting that DNA methylation may
lead to reduced binding affinity or binding negatively in-
fluences DNA methylation for many TFs. In order to in-
vestigate if this observation constitutes a general tendency
among the studied TFs, we consider all TFs with a signifi-
cant and consistent improvement in prediction performance
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Figure 4. Methylation sensitivity of binding models with improved performance using a methylation-aware genome. In each panel, the top part show
a sequence logo of the discovered motif using the extended alphabet. However, since the model learned to penalize methylated DNA in all six cases,
additional symbols are only visible in case of BRCAI. In the bottom part of the plot, we visualize position-specific CpG content (top row with grey
scale) and methylation sensitivity (bottom row with colour scale) within predicted binding sites. Positive values of methylation sensitivity indicate preferred
binding of methylated DNA, whereas negative values indicate methylated DNA being disfavored. For all six TFs, we observe a detrimental effect of DNA

methylation at frequent CpG positions.

when including methylation information (cf. Table 2). For
each of these TFs, we compute the corresponding profiles of
methylation sensitivity of their binding model per data set
and record the range of values (i.e. minimum value to max-
imum value) present in the profile. Strong deviations from
0 of the maximum or minimum value indicate a clear pref-
erence for methylated or unmethylated DNA according to
the model, respectively. From Figure 5, we observe that the
maximum value is only slightly above 0 for the wide ma-
jority of TFs, whereas for many TFs, the minimum value is
clearly below 0. This indicates that for most TFs, the pro-
files of methylation sensitivity indeed are similar to those
presented in Figure 4. There are a few examples of TFs
(FOXAT1, FOXA2, HNF4A, HNF4G, RAD21), for which
neither the maximum nor the minimum of methylation sen-
sitivity shows a strong amplitude. These TFs do not have a
prominent CpG in their binding motifs. Nonetheless, inclu-
sion of methylation information leads to an improvement in
prediction performance. We discuss possible explanations
of this observation for two examples below (FOXA1 and
FOXAZ2, Figure 6).

For several of the TFs shown in Figure 5, a negative influ-
ence of methylation on their binding has been reported be-
fore. This includes ARNT (30), ATF3/7 (23), CREM (23),
ELF1 (23,60), GABPA (23), JUND (23), MAX (23,30),
MNT (30), NRF1 (30), USF2 (23) and YY1 (68). For
NFATC3, a previous study based on HT-SELEX experi-
ments (23) found preferred binding of NFATC3 to methy-
lated DNA, whereas our results suggest a negative associ-
ation with DNA methylation. Notably, the motif detected
by MEDEMO is highly similar to the motif reported in fac-
torbook (cf. Supplementary Figure S19) but considerably
different to the motif reported by Yin et al (23). One rea-
son for this observation might be the difference between

the in vitro setting considered by Yin et al. and the in vivo
ChIP-seq data considered in this study, for instance due to
effects of co-binding with other TFs that are not present in
the in vitro setting. SP1 shows a generally negative associ-
ation with methylation of its binding sites in our data, al-
though with cell type-specific strength. Previous results for
SP1 have been contradictory, as some studies suggested a
positive influence of binding site methylation (23), whereas
others indicated no decisive influence (69), negative effects
(70), or the prevention of methylation by SP1 binding (71).
In general, preference for de-methylated DNA may be ob-
served either due to the direct binding preference of the TF
at hand, or due to a de-methylation of the bound region as
an effect of TF binding. Based on our data, these two cases
could not be distinguished.

The reasons for the mostly detrimental influence of
methylation for the TFs in our study could be manifold.
First, this could be a bias introduced by the specific se-
lection of TFs under study, although no such bias has
been introduced intentionally, since we consider all TFs
with ENCODE data sets in at least two of the selected
cell types. Specifically, CEBPB (25,61,62), SMADS (23) and
ZBTB33 (23,72,73) have been reported to prefer methy-
lated DNA, but we did not observe a significant and consis-
tent improvement of prediction performance in our study.
For GATA1/2/4 (60,62), IRF2 (23), KLF16 (23), NFATC1
(23), STAT1/5A (60) and ZNF274 (23), we had only data
for one of the cell types studied, which prevented us from
studying performance across cell types. Second, this result
might be an artifact of our method. While we cannot rule
out this possibility in general, we do observe clearly pos-
itive methylation sensitivity values for a few TFs. Exam-
ples (ZBTB33 with inconsistent results across cell types, and
NFATCI1 and ZNF274 with ChIP-seq data available only
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Figure 5. Methylation within binding motifs is mostly detrimental in models with significantly and consistently improved prediction performance (cf.
Figures 2 and 3). For each TF and each data set, we record the profiles of methylation sensitivity as shown in Figure 4. We aggregate this profile to two
values per data set by computing the minimum and maximum value of methylation sensitivity, which captures the range of values observed in the profile.
Here, we plot these maximum and minimum values of methylation sensitivity across all training data sets. We observe a large amplitude of negative values for
the minimum (i.e., methylated DNA being disfavored) but only slightly positive values for the maximum, indicating that—according to the models—DNA
methylation is detrimental for the majority of TFs. Methylation sensitivity of TFs according to the literature is given in parentheses (if present), and the

corresponding references are given in Table 2.

FOXA1

~ o

R L

o o
CpG CpG
MH MH

FOXA2

e .
m

FOXK2

_fAIA¥AQA .
-

o

CpG
MH

0.000 0.005 0.010 0.015 -0.025 -0.015 -0.005 0.000 0.005 0.010 0.015
CpG Methylation sensitivity (MH) CpG

S e e e e e e J N
TNOTOLON®OO-ADTOLOND DO

Methylation sensitivity (MH) CpG

TR e

-0.005 0.00 0.04 0.08 -0.15 -0.05
Methylation sensitivity (MH)

-0.015

Figure 6. Methylation sensitivity may differ between members of a TF family. While methylation sensitivity of the binding models for FOXA1 and FOXA2
is highly similar in HepG2 cells, that of FOXK2 is noticeably different, although all three motifs appear to be highly similar. This behaviour is consistent

between different cell types (Supplementary Figure S27).

for one cell type) are provided in Supplementary Figure S26.
Hence, we may at least conclude that our method is capa-
ble of capturing such patterns in general. Third, there might
also be a bias of methylation on the ChIP-seq experiment
that constitute the basis of our approach, although we did
not find this to be reported before. For instance, methylation
might influence the amplification step in the ChIP-seq pro-
tocol, which could lead to an under-representation of reads
from methylated peak regions.

Methylation sensitivity may vary within a TF family

As we had ChIP-seq data from TFs with the same binding
domain (family) and similar consensus sites we wondered,
whether there could be differences in the sensitivity to DNA
methylation for individual family members. For example,
the models for FOXA1 and FOXA2 showed a low ampli-
tude in methylation sensitivity in Figure 5, whereas FOXK?2
binding appears to be more strongly associated with DNA
methylation. Although all three TFs are members of the
forkhead box family, they play different roles related to de-
velopment and disease (74,75). In Figure 6, we present the

binding motifs and profiles of methylation sensitivity dis-
covered by our approach for FOXA1, FOXA2 and FOXK?2
in HepG?2 cells. In general, all three motifs follow the con-
sensus GTAAAYA with slight deviations. The major differ-
ence between FOXA1/FOXA2 and FOXK2 motifs is an
additional A/T-rich stretch directly preceding this canon-
ical motif. With regard to methylation sensitivity, we find
more prominent difference between the three TFs. Specifi-
cally, the models for FOXA1 and FOXA2 exhibit a mildly
negative effect of methylation at positions bordering their
core motif. While the influence on the binding score of any
of these positions individually is rather low, the combina-
tion of multiple methylated CpGs at bordering positions
might still have an effect on binding site prediction. By con-
trast, FOXK?2 shows two, still rather infrequent, CpG din-
ucleotides at positions 6/7 and 12/13 of the core motif,
which are not present in the FOXA1/FOXA2 motifs. Both
of these positions show a stronger sensitivity to methyla-
tion than any position of FOXA1/FOXA2. This general
picture is consistently observed in other cell types (Supple-
mentary Figure S27). Biologically, this observation might
be linked to the mechanism of FOXA1 and FOXA2 acting
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as pioneering factors (74,76), although pioneering activity
has been shown for FOXK2 as well (75).

DNA methylation sensitivity depends on sequence context

In this study, we identified a substantial number of TFs,
for which the combination of methylation information and
modelling intra-motif dependencies yields an improvement
in classification performance compared with the base model
(PWM on original hg38) but also relative to the individual
contributions of methylation information and/or modelling
dependencies (cf. Figures 2B and 3). Here, we discuss three
of those TFs in more detail that illustrate the breadth of
the binding landscapes observed and how these are linked
to specific profiles of methylation sensitivity. In Figure 7,
we present dependency logos (8,50) of the predicted bind-
ing sites of JUND (K562 cells), USF2 (K562) and ATF3
(HepG2), which are enriched with partition-specific profiles
of methylation sensitivity.

JUND binds DNA as a dimer with a variable 1-2bp
spacer (77) which may be captured by dependency models
like the LSlim model employed in this study (8) and more
specialized models like TFFMs (10), but not (adequately)
by standard PWM models. In the dependency logo, this
variable spacer is visible as two distinct blocks, the upper
block starting with consensus TGA at positions 3-5 and
the lower, smaller block starting with the same consensus
(TGA) but already at positions 2-4. Both variants share
the consensus TCA at positions 7-9. For the short-spacer
variant (upper block), only a small subset of binding sites
deviating from the standard consensus (TGYGTCA, 4th
partition from top) has a substantial fraction of CpG din-
ucleotides at positions 5/6, which are moderately methy-
lation sensitive. By contrast, about a quarter of the long-
spacer variant (lower block, 6th partition from top) with
consensus TGACGTCA exhibits a CpG dinucleotide at
positions 5/6, which are strongly affected by methylation.
Both, the variable spacer and the specific profiles of methy-
lation sensitivity within both variants, explain why the com-
bination of methylation information and modelling intra-
motif dependencies yields a particular advantage for JUND
binding sites. Notably, the JUND motif for K562 present
in the MethMotif database (36) only represents the short-
spacer variant and no specific methylation profile within the
core motif, which is likely an effect of the database’s limita-
tion to PWM models. By contrast, our results suggest that
both spacer variants and the associated patterns of methyla-
tion sensitivity are present across cell types (Supplementary
Figure S28).

For USF2, we observe a canonical E-box motif with con-
sensus CACGTG for the majority of binding sites, and con-
sensus CACATG for a minority of binding sites displayed
as the bottom partition of the dependency logo. Intra-motif
dependencies are especially prominent between positions 6
and 10, but also several positions flanking the core mo-
tif. The dependency between positions 6 and 10 can be at-
tributed to the consensus CACATG always being preceded
by a T at position 6, whereas the canonical E-box motif may
also be preceded by C or G. Only those binding sites follow-
ing the consensus CAYGTG frequently (approx. 80%) ex-
hibit a CpG at positions 9/10, which is then moderately (1st

Nucleic Acids Research, 2023, Vol. 51, No. 18 e95

and 2nd partition from top) or strongly (3rd partition from
top) affected by methylation. For the partition with consen-
sus CACATG, we find an almost flat profile of methylation
sensitivity. Again, this dependency structure and associated
varying methylation sensitivity may adequately be captured
by dependency models but not by standard PWM models.

Finally, we observe substantial heterogeneity among the
binding sites of ATF3, which have been reported before
(8). Starting from the top of the dependency logo, we find
a partition with consensus TTTACGRC (positions 5-12),
followed by a large partition with consensus YCACRTG
(positions 6-12), a small partition with consensus TRAC-
GYR (positions 6-12), a partition with consensus TGACG-
BCA (positions 6-13) and finally a partition with consen-
sus TGAYGYAA (positions 6-13). The diversity of the pre-
dicted ATF3 binding sites manifests as strong intra-motif
dependencies between positions 7 and 12, 7 and 11, 5 and
7, and 11 and 12. However, all partitions show a con-
siderable fraction of CpG dinucleotides at positions 9/10,
which are methylation sensitive to different degrees. Par-
tition 3 (counted from top) exhibits an additional CpG at
positions 11/12 with moderate frequency and methylation
sensitivity. While each of these partitions could be mod-
elled decently by its individual (methylation-aware) PWM
model, only dependency models as proposed in this study
are capable of capturing such highly heterogeneous bind-
ing landscapes without prior knowledge about their specific
structure.

Dependency logos of the remaining seven TFs for which
we observed an improvement by the combination of methy-
lation information and modelling intra-motif dependencies
are given in Supplementary Figure S29. As described in the
previous section, we find methylation sensitive model posi-
tions flanking the core motif for FoxA2, which show mu-
tual dependencies. For HNF4A and HNG4G, we observe
methylation sensitivity for two motif positions with widely
independent contributions in different partitions of bind-
ing sites, whereas dependencies are present only between
directly adjacent binding site positions. For MAX, the cen-
tral CpG of the CACGTG core motif shows the strongest
signal of methylation sensitivity, but one specific partition
of binding sites with pattern C[AG]C[AG]TGCG in addi-
tion shows methylation at two additional model positions.
For NONO, we find different GC-rich sub-motifs with vari-
able patterns of methylation sensitivity, which might explain
why for NONO, the combination of methylation informa-
tion and modelling dependencies is of special utility. For
RADSI, we find two main sub-types of motifs with con-
sensus CACGTGA and CATGTGA, of which only the for-
mer shows methylation sensitivity. For SP1, we find depen-
dencies within the canonical motif with a clear signal of
methylation sensitivity at the central CpG di-nucleotide. In
addition, we find a sub-motif that, according to TomTom
(78) is similar to a ZBTB33 motif from Jaspar (MA0527.1)
and might, hence, rather represent the motif of an SP1
co-binding TF.

Methylation-aware models may explain differential binding

Having established that incorporating methylation-
aware genomes and/or intra-motif dependencies is often
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Figure 7. For JUND, USF2 and ATF3, the advantage of combining dependency models with a methylation-aware genome can be attributed to specific
properties of the corresponding binding landscapes. For each TF, we visualize predicted binding sites by Dependency Logos that partition binding sites by
nucleotides at the most inter-dependent positions and represent each partition using the same colors that are also used in sequence logos (provided below;
A=green, C=Dblue, G=orange, T=red). If a partition contains a mixture of nucleotides at a certain position, colors are mixed as well. For JUND, we find
the known variable spacer between the two 3 bp half motif (TGA, TCA), where only the longer spacer frequently contains a CpG. For USF2, the prevalent
CpG at positions 9 and 10 shows dependencies to other binding site positions, and is not present in one specific subset (TCACATG) of binding sites. For
ATF3, we find broad heterogeneity, where each sub-motif contains CpG at positions 9 and 10 in different proportions.

beneficial for modeling TF binding sites, we further
investigate to which extent these models are capable of
explaining differential binding across cell types as outlined
in Figure 8A.

We consider TFs for which ChIP-seq data are available
for two cell types. The idea is to compare whether differ-
ences in peak occurrence or ChIP-seq signal in both cell
lines can be related to a change in binding scores accord-
ing to our models. In addition to our models, we consider a
simple baseline model, which considers average methylation
levels of larger genomic regions (cf. Materials and Meth-
ods) instead of scores of individual binding sites. To asso-
ciate binding scores with ChIP-seq peaks, we consider the
binding sites under ChIP-seq peaks as predicted by the same
model, which may have been trained on data from one of
the cell types considered or from another cell type. We par-
tition the peaks into ‘common peaks’, i.e. peaks that are
overlapping between the two cell types, and ‘unique peaks’,
i.e. peaks that are present only in one of the cell types.

For the common peaks, and associated binding sites and
prediction scores, we separate peaks into those without dif-
ferential methylation in the binding site and, accordingly,
identical prediction scores (‘equal’), those with a greater
score in cell type A than in cell type B (‘greater’) and vice
versa (‘less’). In addition, we compute the difference in log
peak height (‘signal’) for each pair of overlapping peaks. If
the model could explain differential binding, we would ex-
pect these differences to be lower than 0 for the ‘less’ group,
around 0 for the ‘equal’ group and above 0 for the ‘greater’
group, and we test pairwise differences in the distribution of
log signal values accordingly by a one-sided Wilcoxon rank
sum test.

Boxplots representing this analysis for TF CREM in
K562 and GM 12878 cell types using a PWM model trained
from K562 data (cf. Supplementary Table S4) are shown
in the left panel of Figure 8B. We find significant differ-
ences in log signal between all pairs of groups. The differ-
ence between the median values for the ‘less’ and ‘greater’
group is 0.6436, which corresponds to a 1.9-fold increase
in the ratio of the cell type-specific signal values. Hence,
the model appears to be capable of predicting if a peak is
larger in cell type A than in cell type B, although the large
number of confounding factors, including chromatin acces-
sibility, leads to pronounced variation within each of the
groups.

In addition, we plot the differences in log signal against
the differences in associated prediction scores and compute
the Pearson correlation coefficient between both quantities
as shown in the middle panel of Figure §B. Here, we exclude
peaks without differential methylation in the binding site,
since these would obtain a fixed score difference of 0. In case
of CREM, we find a substantial correlation between both
quantities, although only a small subset of common CREM
peaks (473 peaks) participates in the analysis. This may in-
dicate that the model is not only capable of predicting the
direction of the change in peak height, but that the differ-
ence in prediction scores is associated with the magnitude
of this change.

For the unique peaks present only in cell type A, we com-
plement the predicted binding site in the methylation-aware
genome of cell type A with the corresponding site in the
methylation-aware genome of cell type B, and compute the
model scores for both site variants. If DNA methylation
as captured by the model could explain the presence and
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Figure 8. Association of differential model scores and differential binding according to ChIP-seq data. (A) Evaluation schema. For common peaks of two
cell types, we consider predicted binding sites at the same location that may show differential methylation and, consequently, different model scores in
the methylation-aware genomes. For the peaks containing such binding sites, we record the difference of model scores and the difference in peak height
(signal). For unique peaks present in only one of the cell types, we record the scores of the binding sites predicted in the two methylation-aware genomes.
(B) Evaluation of cell type-specific binding for CREM in K562 and GM 12878 cell types. Left: Comparison of the difference in log signal for binding sites
with an equal score in the methylation-aware genomes of K562 and GM 12878, with a larger score in K562 than in GM 12878, and vice versa. Number of
peaks in each group are given above the boxes, p-values from a one-sided Wilcoxon rank sum test are above the boxplots, and the difference of median
values between the ‘greater” and ‘less’ group is indicated. Middle: For those sites with a prediction score differing between K562 and GM 12878, we find a
correlation of 0.461 between the difference of the log signals and the difference of the prediction scores in those two cell types. Right: Hexbin representation
of the scatter plot of scores determined from binding sites in the two methylation-aware genomes for peaks that are present only in K562. Hexbin colours
in log scale. (C) Same as (B), but for MAX in K562 and GM 12878 cell types. (D) Same as (B), but for JUND in liver and HepG2 cell types. (E) Same as
(B), but for ATF3 in liver and K562 cell types using a PWM model (left group) or an LSlim model (right group).

absence of a peak, respectively, we would expect the score
for cell type A to be larger than for cell type B. In the
right panel of Figure 8B, we show a hexbin representa-
tion of the scatter plot of such pairs of prediction scores
for CREM in K562 and GM12878 cell types. Indeed, we
find a larger score for K562 than GM 12878 for 10 021 sites,
whereas the opposite is true only for 1 533 sites. For the ma-
jority of 15901 sites, prediction scores in the methylation-
aware genomes of both cell types are identical. Still, the
pairwise difference in scores is significantly different from
0 in a Wilcoxon signed rank test (P = 1.1 x 1072%7),

In complete analogy, we present results for TF MAX in
K562 and GM 12878 cell types in Figure 8C. Here, we con-
sider an LSlim model trained on data for cell type HepG2,
i.e. in this case the training cell type is different from the two
cell types considered in this analysis. Again, we find signif-
icant differences between the three groups of peaks divided
by the difference in prediction scores. However, the differ-
ence of median values between the ‘less’ and ‘greater’ groups
is only 0.3536 in this case. Here, the correlation analysis

shows a slightly lower Pearson correlation than for CREM
as well with a visible enrichment of score differences around
0. Considering unique peaks, we find approximately 4-fold
as many peaks with larger prediction scores in K562 than
in GM 12878 for peaks that are present only in K562.

Similar tendencies may be observed for JUND in liver
and HepG2 cell types using a LSlim model trained from
K562 data (Figure 8D). However, the results for the unique
peaks are less pronounced in this case with only 2-fold dif-
ference in the number of peaks with greater and lower scores
in liver than in HepG2, respectively.

Finally, we illustrate the impact of modelling intra-motif
dependencies, i.e., the comparison of PWM and LSlim
models, for ATF3 binding sites in liver and K562 cell types
in Figure 8E. While we observe a clear advantage of the
LSlim model over the PWM model for all three analyses,
this advantage is less pronounced than it had been for the
classification-based benchmarks in previous sections.

In Supplementary Figures S30-S39, we provide results
for these and further TFs, and compare these against the
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baseline model that considers average methylation levels
in the regions under the ChIP-seq peaks. It is well known
that methylation levels in broader regions, especially in en-
hancers, are highly informative of TF binding (79). In addi-
tion, binding models consider only 20 bp of DNA, which
makes the presence of differential methylation less likely
than for the simple model. Hence, we expect this to be a
strong baseline model. For the common peaks, we indeed
find that the differences between the ‘equal’, ‘greater’ and
‘less’ groups often obtain lower p-values for the baseline
than for the methylation-aware binding models, partly due
to the larger number of regions with differences in methy-
lation levels. Notably, the binding models often surpass
the baseline models for the correlation analysis. Regarding
unique peaks, binding models often more clearly show an
enrichment of larger scores for the cell type with a peak be-
ing present.

In summary, our results indicate that models of TF bind-
ing sites learned from methylation-aware genomes and in-
corporating intra-motif dependencies may indeed be indica-
tive of presence or absence of a ChIP-seq peak and its
peak height, despite the many confounding factors that are
not related to DNA methylation but strongly influence TF
binding.

Methylation-aware models capturing intra-motif dependen-
cies improve genome-wide binding site predictions

The analyses in previous sections showed that the com-
bination of information about DNA methylation and
modelling intra-motif dependencies has the potential to
improve classification performance on ChIP-seq data
in a cross-validation setting. However, performance of
genome-wide predictions of binding sites may be con-
sidered more relevant for practical applications. To in-
vestigate prediction performance in genome-wide predic-
tions for the 10 TFs that showed a consistent improve-
ment of LSlim.methyl models previously (Table 2), we
adopt the general setting of the ‘ENCODE-DREAM in
vivo Transcription Factor Binding Site Prediction Chal-
lenge’ combining motif-based features with chromatin ac-
cessibility data within the Catchitt framework (5). The
Catchitt framework combines assays of chromatin acces-
sibility (DNase-seq, ATAC-seq) with genome-wide predic-
tions of arbitrary motif models represented by aggregated
score profiles over fixed-size genomic windows. Hence, all
types of MEDEMO models can be directly used within
the Catchitt framework and their prediction performance
compared.

Interestingly, it was shown that enzymes such as DNasel
and the Tn5 transposase, the two most often used enzymes
for the measurement of open-chromatin, show differences
in DNA cutting or insertion with respect to CpG methy-
lation (7,80). Thus in genome-wide analysis of such data,
neglecting the status of DNA methylation may be harmful
in two ways. Binding may be impaired due to TFs that show
reduced binding of methylation and abundance of open-
chromatin reads may also be affected.

Here, we obtain ATAC-seq data for GM 12878, HepG?2,
K562 and liver from ENCODE, and combine chromatin-
based features with motif-based features of individual motif
models when training Catchitt models on training chromo-

PAGE 16 OF 20

somes for a specific TF and cell type. These models are then
used for predicting binding regions of TFs on test chromo-
somes in the training cell type and all remaining cell types
with ChIP-seq data available for the TF at hand, and com-
pute respective AUC-PR values.

In Figure 9, we compare the prediction performance of
LSlim.methyl and PWM.hg38 models for all 10 TFs in
genome-wide predictions on the test chromosomes chrl,
chr8 and chr21. It has been observed before that the in-
fluence of chromatin accessibility data on the final predic-
tion performance is substantially greater than the influ-
ence of the specific choice of motif models (5). Nonethe-
less, we find an improved prediction performance achieved
by methylation-aware models capturing intra-motif depen-
dencies for the majority of TF-cell type combinations in
the within cell type setting (Figure 9A). Similar improve-
ments can also be observed in the across cell type set-
ting (Figure 9B). Turning to the performance for individ-
ual TFs in Figure 9C, we find a few notable and/or sys-
tematic cases, where PWM models considering the original
hg38 genome sequence (PWM.hg38) perform better than
LSlim.methyl models, namely FOXA?2 trained on liver and
tested on HepG2, JUND trained on GM 12878 on all test
data sets except liver, and MAX trained and tested on liver.
In contrast to the remaining cell types, liver is a primary cell
type, and the methylation data and chromatin accessibility
data have not been obtained from identical donors in the
available data sets, which might partly explain the special
behaviour of liver in this and the following comparisons.

For several TFs, namely ATF3, HNF4A, HNF4G,
RADSI1 and USF2, we observe a consistent improvement
of LSlim.methyl models over PWM.hg38 models across
the different cell types. Comparing PWM.methyl versus
PWM.hg38 (Supplementary Figure S40), we observe a sim-
ilar picture for FOXA2 and MAX, but also a more bal-
anced performance between both modelling alternatives
for other TFs (JUND, NONO). Finding an improvement
of methylation-aware compared with methylation-agnostic
PWM models for the majority of TFs indicates that methy-
lation information contributes to the improved prediction
performance and is not fully redundant to chromatin ac-
cessibility, which was avaiable to both models within the
Catchitt framework. For LSlim.methyl versus LSlim.hg38
(Supplementary Figure S41), a few additional cases occur
with better performance of the methylation-agnostic mod-
els, especially for LSlim models trained for JUND on liver,
whereas we find an improvement of LSlim.methyl com-
pared with PWM.methyl (Supplementary Figure S42) for
the majority of TFs.

In summary, we find that the combination of methylation
information and models capturing intra-motif dependen-
cies yields an improved prediction performance compared
with traditional PWM models trained on the original hg38
genome for the TFs considered. As these TFs have been
selected based on the previous benchmark in cross valida-
tion experiments, our results indicate that the observed im-
provement in cross validation can be largely transferred to
more practical applications like genome-wide binding pre-
dictions. Based on further model comparisons, we assume
that the contribution of intra-motif dependencies is larger
than the contribution of methylation information in this
scenario.
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Figure 9. Comparison of the genome-wide prediction performance of PWM models learned on the original hg38 genome (PWM.hg38) and methylation-
aware LSlim models (LSlim.methyl) within the Catchitt framework. (A) Pairwise comparison of models across all 10 TFs in the within cell type setting.
LSlim.methyl performs better than PWM.hg38 for 45 test data sets, while PWM.hg38 performs better than LSlim.methyl for 6 test data sets. (B) Pairwise
comparison of models across all 10 TFs in the across cell type setting. LSlim.methyl performs better than PWM.hg38 for 69 test data sets, while PWM.hg38
performs better than LSlim.methyl for 13 test data sets. (C) Comparison of performance per TF, where the training cell type is encoded by colour and the
test cell type is encoded by shape. If multiple data sets are present per TF and cell type, all combinations of data sets are considered.

Conclusions

In this paper, we present MEDEMO, a novel framework for
TF motif discovery and TFBS prediction that combines in-
formation about DNA methylation with models capturing
intra-motif dependencies. Similar to previous approaches
(31,35), MEDEMO uses an extended 6-letter alphabet with
separate symbols for methylated cytosines and the corre-
sponding guanosines on the opposite strand. In contrast
to the MEPIGRAM pipeline (33), MEDEMO does not use a
beta value cut-off of 0.5 to obtain a discrete methylation
value. Instead, we model the distribution of all beta val-
ues using the BETAMIX (46) software to select the cut-off
in an informed way. More research is necessary to study the
effects of different discretization schemes for methylation-
aware models with customized alphabets.

The previous approach of MEPIGRAM is PWM-based,
neglecting intra-motif dependencies. Therefore, MEDEMO
using PWM models can be seen as an improved instan-
tiation of MEPIGRAM, as we find that models learned by
MEDEMO typically outperform PWMs learned by MEPI-
GRAM. The MEME suite was also extended to predict
PWMs in a similar way (35), but we do not expect a direct
comparison to offer any additional value as there is no con-
ceptual improvement over the MEPIGRAM approach or the
PWM models learned within MEDEMO.

In addition, MEDEMO allows for including intra-motif
dependencies when applying LSlim models to methylation-
aware input data. Here, we find that the combination of
methylation information and intra-motif dependencies im-
proves the performance of binding site predictions for sev-
eral methylation-associated TFs in cross validation exper-

iments but also in genome-wide predictions. Model visu-
alization provided by MEDEMO further facilitates the in-
terpretation of methylation patterns in putative TF bind-
ing sites. In general, there is a smooth transition from per-
ceived dependencies to perceived heterogeneity (8) of bind-
ing landscapes, and the latter could alternatively be mod-
elled by (mixture models of) multiple PWM models. As
both can be represented well by LSlim models, we consider
the modelling approach pursued in this study a useful gen-
eralization of previous PWM-based approaches.

Further, MEDEMO allows the research community to
leverage the vast amounts of TF ChIP-seq and DNA methy-
lation datasets available to elucidate the methylation depen-
dence of hundreds of TFs in vivo, without the need of per-
forming additional experiments such as Methyl-Spec-seq
(31). However, as these analyses are based on in vivo ChIP-
seq data, the effects of DNA methylation on direct and co-
/indirect binding may be harder to distinguish than in in
vitro settings.

Apart from improving TF binding predictions,
MEDEMO could also improve the interpretation of
methylation QTLs (meQTLs). Methylation QTLs have
been reported before to be associated to changes in TF
binding, histone modification and gene expression (81).
Using MEDEMO, those associations could be understood
at more detail, and our analyses regarding differential
binding might be a first step towards this goal. Similarly,
our tool could provide valuable additional insights into
the vast amount of epigenome-wide association studies
(EWAS) (82).

Especially in light of upcoming single cell applications as
single-cell methylation (83) and single-cell chromatin acces-
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sibility assays become available (84), the need of methyla-
tion aware TFBS prediction approaches will rise even fur-
ther in the near future. MEDEMO will help to fulfill these
data analysis needs.

DATA AVAILABILITY

All ChIP-seq data sets analyzed in this study are avail-
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ing narrowPeak files are listed in Supplementary Table
S1 and can be accessed via the URL schema https:
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