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BSTRACT 

everal studies suggested that transcription factor 
TF) binding to DNA may be impaired or enhanced by 

NA methylation. We present MEDEMO , a toolbox for 
F motif analysis that combines information about 
NA methylation with models capturing intra-motif 
ependencies. In a lar ge-scale stud y using ChIP-seq 

ata for 335 TFs, we identify novel TFs that show a 

inding behaviour associated with DNA methylation. 
verall, we find that the presence of CpG methyla- 

ion decreases the likelihood of binding for the ma- 
ority of methylation-associated TFs. For a consid- 
rable subset of TFs, we show that intra-motif de- 
endencies are pivotal for accurately modelling the 

mpact of DNA methylation on TF binding. We illus- 
rate that the novel methylation-aware TF binding 

odels allow to predict differential ChIP-seq peaks 

nd impr o ve the genome-wide analysis of TF bind- 
ng. Our work indicates that simplistic models that 
eglect the effect of DNA methylation on DNA bind- 

ng may lead to systematic underperformance for 
ethylation-associated TFs. 
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RAPHICAL ABSTRACT 
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NTRODUCTION 

ranscription Factors (TFs) are essential regulatory pro- 
eins with di v erse roles in transcriptional regulation, such 

s chromatin remodelling or the initiation of transcription 

 1 ). Hence, a key step to improve our understanding of 
he function of TFs is to identify the genomic location of 
F binding sites (TFBS). It was shown that TFs usually 

ind to accessible chromatin ( 2 ) and ther efor e a variety of
omputational methods ( 3 ) has been de v eloped to combine 
hromatin accessibility data (e.g. DNase1-seq, ATAC-seq, 
OMe-seq) with TF motif information as encoded in Posi- 

ion Weight Matrices (PWMs) ( 4–7 ) to elucidate the tissue- 
pecific binding profiles of TFs. Recently, LSLIM -models, 
 hich ca pture intra-motif dependencies, have been success- 

ull y a pplied to overcome the nucleotide independence as- 
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sumption of PWMs ( 8 ). Further approaches that allow for
intra-motif dependencies include improved energy models
( 9 ), transcription factor fle xib le models ( 10 ), parsimonious
Markov models ( 11 ) and Bayesian Markov models ( 12 ). 

To provide the community with a systematic compari-
son of the plethora of TFBS prediction approaches, the
ENCODE-DREAM in vivo T r anscription F actor binding site
pr ediction challeng e ( https://www.syna pse.org/#!Syna pse:
syn6131484/wiki/402034 ) was conducted in 2016. The com-
peting methods considered, aside from epigenomics data,
also DN A sha pe, sequence conservation, and / or sequence
composition. Inter estingly, the median ar ea under the pr eci-
sion recall curve (AUC-PR) for one of the winning methods
across all classifiers is only 0.4 ( 5 ), suggesting that important
molecular signatures influencing TF binding are not incor-
por ated y et. 

One of those signatures is DNA methylation in a CpG
context. The analysis of DNA methylation has been a ma-
jor focus of epigenomics r esear ch and se v eral e xperimen-
tal approaches have been proposed to characterize DNA
methylation in vivo ( 13 ): while early methods used methy-
lation sensiti v e restriction enzymes in PCR and gel-based
approaches ( 14 ), the usage of microarrays allowed a scale-
up of CpG methylation analysis ( 15 ). Array-based meth-
ods are nowadays used to characterize the methylation lev-
els of pre-selected CpGs, e.g. for diagnostic purposes ( 16 ).
With the advancements of next-generation sequencing, sev-
eral sequencing based approaches to characterize DNA
methylation on a genome-wide scale have been proposed
( 17 , 18 ). Most techniques used curr ently r equir e bisulfite-
treated DNA as input. Bisulfite treatment causes unmethy-
lated cytosines to be converted to uracils, whereas methy-
lated cytosines remain unchanged ( 19 ). 

Large-scale bisulfite sequencing studies have been per-
formed by se v eral international consortia such as Blueprint,
Roadmap and ENCODE, to generate DNA methylation
data for se v eral tissue and primary cell types. 

DNA methylation in a CpG context has been reported
pre viously to hav e a r epr essi v e effect on TF binding ( 20 ).
Additional studies using protein binding microarrays ( 21 ),
DAP-seq ( 22 ) or methylation-sensiti v e systematic evolution
of ligands by exponential enrichment (SELEX) ( 23 ) indi-
ca ted tha t DNA methyla tion can also promote TF binding.

Functionally, the addition of a methyl group to cytosines
influences their steric and hydrophobic environment and
renders it similar to that of a thymine ( 24 ). This is known as
thymine mimicry ( 25 ). Specifically, CpG methylation leads
to a widening of the major groove and narrows the minor
groove ( 26 , 27 ). It also affects roll and propeller twist and
results in an increase of helix stiffness ( 27 ). 

As summarized in ( 24 ), there are two modes how TFs
can recognize DNA methylation: i) the 5 methyl-cytosine-
arginine-guanine triad detection and ii) the presence of van
der Waals interactions between the methyl group of the cy-
tosine and methyl groups of hydrophobic amino acids or
methylene groups of polarized amino acids. 

Methylation dependence has been studied in depth for
se v eral TFs such as KLF4 ( 28 ), P53 ( 29 ), CEBP complexes
( 23 ), NRF1 ( 30 ) and ZFP57 ( 31 ). 

The MeDReaders database catalogues TF binding motifs
that were learned on TF ChIP-seq peaks separated by low
or high average methylation level in the peak region using
MEME ( 32 ). While this constitutes a straight-forward ap-
proach, methods specifically designed to include informa-
tion about DNA methylation directly into the de novo dis-
covery of binding motifs ar e rar e. The MEPIGRAM ( 33 ) soft-
ware is an extension of the EPIGRAM algorithm for motif
detection ( 34 ). MEPIGRAM deri v es motifs by constructing
PWMs considering a sequence set deri v ed from TF ChIP-
seq data. Specifically, MEPIGRAM computes the most en-
riched k-mers within the ChIP-seq peak regions compared
to a randomly shuffled set of sequences. These k-mers are
treated as ‘seeds’ and subsequently extended both up and
downstream. To incorporate DNA methylation in this pro-
cess, the alphabet considered in PWM construction has
been extended with a separate symbol for methylated cy-
tosines. Viner et al. ( 35 ) use an alphabet with additional
symbols for differently methylated cytosines and further
symbols for the corresponding guanines on the opposite
strand. De novo motif discovery is then performed by an en-
hanced version of the MEME suite. To analyse data gener-
ated by the Methyl-Spec-seq assay, Zuo et al. ( 31 ) use a sim-
ilar extended 6-letter alphabet for PWM construction with
separate symbols for methylated cytosines and guanines op-
posite of methylated cytosines. 

Recently, the METHMOTIF database, which combines TF
motifs with associated DNA methylation profiles, has been
made available ( 36 ). In METHMOTIF , occurrences of known
TF motifs are detected with CENTRIMO in ChIP-seq data
from ENCODE. Subsequently, the genomic loci that are en-
riched for the tested motifs are over lay ed with CpG methy-
la tion da ta from GEO. The found motifs and the CpG
methyla tion signa tur es ar e visualized in so called MethMo-
tif logos. A possible demerit of the approach pursued in
METHMOTIF , compared with those mentioned previously,
is that the methylation dependence has not been incorpo-
rated into the discovery of the TF motif. In addition, neither
METHMOTIF nor MEPIGRAM provide the user with means
to perform methylation-aware genome wide TFBS predic-
tions. 

Although the aforementioned methods demonstrated
significant advantages in the characterization of TF bind-
ing sites by including DNA methylation, they do suffer from
the simplifying independence of nucleotide assumption made
in PWM models. Even without considering DNA methy-
lation, se v eral recent studies demonstrated that including
intra-motif dependencies improves the accuracy of mo-
tif models. The models employed for this purpose include
variab le-or der Bayesian networ ks ( 37 ), Bayesian Mar kov
models ( 12 ), transcription factor fle xib le models ( 10 ), par-
simonious Markov models ( 11 , 38 ) and sparse local inho-
mogeneous mixture (Slim) models ( 8 ). Considering DNA
methylation, the independence assumption is obviously vi-
olated in a CpG methylation context. 

Her e, we pr esent MEDEMO (Methylation and Depen-
dencies in Motifs), a toolbox using an extension of SLIM
models capturing intra-motif dependencies, which accounts
for the presence of DNA methylation. The DIMONT frame-
work for de novo motif discovery employed by MEDEMO
learns PWM models or more complex motif models from
input sequences, for instance, sequences under ChIP-seq
peaks. The PWM models learned by DIMONT have been

https://www.synapse.org/#!Synapse:syn6131484/wiki/402034
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enchmarked on ChIP-seq data against those generated by 

he alternati v e approaches POSMO ( 39 ), CHIPMUNK ( 40 ), 
EME ( 41 ), DME ( 42 ), DREME ( 43 ) and HMS ( 44 ) pre-

iously ( 45 ), and DIMONT showed to yield the largest num- 
er of correct motifs. Likewise, SLIM / LSLIM models have 
een shown to perform better than other dependency mod- 
ls, also when learned from ChIP-seq data within the DI- 
ONT frame wor k ( 8 ). Here, we focus on the influence of
sing dependency models, considering DNA methylation 

n TF binding sites, and the combination of both. Since 
ll modelling variants (PWM models and LSlim models 
ith and without methylation information, respecti v ely) are 

earned in the common DIMONT frame wor k, we eliminate 
dditional influence of algorithmic differences between mo- 
if discovery approaches in this analysis. Howe v er, since 
EPIGRAM ( 34 ) has been de v eloped for the same purpose 

s MEDEMO , namely the discovery of methylation-aware 
otif variants based on ChIP-seq data, we perform bench- 
ark analyses comparing MEDEMO and MEPIGRAM . 
We illustra te tha t the combina tion of methyla tion in- 

ormation and intra-motif dependencies considered by 

EDEMO typically yields an improved prediction perfor- 
ance compared with a standard PWM-based approach. 

o this end, we analysed the DNA methylation depen- 
ence of hundreds of TFs in cell-lines and primary cells 
sing DEEP and ENCODE data. MEDEMO is avail- 
ble as a stand-alone tool allowing both the inference of 
ethylation-aware TF motifs and to obtain genome-wide 
FBS predictions. 

ATERIALS AND METHODS 

ata 

e downloaded whole genome bisulfite sequencing data for 
hree cell-lines (K562 (ENCFF867JRG, ENCFF721JMB), 
epG2 (ENCFF064GJQ, ENCFF369YQW), GM12878 

ENCFF79HCL, E2NCFF835NTC)) from ENCODE as 
ell as for two replicates of primary human hepatocytes 

DEEP (41 Hf01 LiHe Ct, 41 Hf03 LiHe Ct (available via 

GA, https://ega-archi v e.org , EGAD00001002527)). The 
NCODE data has been processed following the uniform 

NCODE-Processing pipeline, the DEEP data has been 

rocessed following the DEEP MCSv3 pipeline ( https: 
/github.molgen.mpg.de/DEEP/comp-metadata , 
oi:10.17617 / 1.2W). Furthermore, we downloaded 

F-ChIP seq peak calls (IDR thresholded peaks) from 

NCODE for 336 experiments in K562, 145 in HepG2, 129 

n GM12878 and 25 in primary human hepatocytes (li v er). 
ata accession IDs for TF-ChIP-seq data are provided in 

upplementary Table S1. 

eneration of methylation-aware genomes 

o generate a methylation-aware genome sequence, where 
 methylated C is replaced by ‘M’ and a G opposite of a 

ethylated C is replaced by ‘H’, we discretized the methy- 
ation calls from whole genome bisulfite data using BE- 
AMIX ( 46 ) and the parameter - - components unimodal uni- 
odal , which refers to a mixture model of two unimodal 

istributions. q
 r aining procedur e 

otif models, i.e. PWMs and LSlim models, are learned 

rom ChIP-seq data by the discriminati v e maximum super- 
ised posterior principle within the DIMONT / SLIMDIMONT 

rame wor k ( 8 , 45 ). To this end, we use as positi v e training
ets genomic regions under all ChIP-seq positi v e peaks (op- 
imal IDR thresholded peaks) as downloaded from the EN- 
ODE project and extract the sequence of length 1000 bp 

round the peak center. Here, we do not explicitly check 

or overlaps between peaks, and, hence, positi v e sequences 
n the training set may be partiall y overla pping. In addi- 
ion, we use two different sets of negati v e training sets. 
irst, we r andomly dr aw 10 000 regions uniformly from 

he complete genome excluding any ChIP-seq positi v e re- 
ion of the TFs studied (random) and again extract the 
equence of length 1000 bp around the center of each re- 
ion. Second, we consider dinucleotide shuffled versions of 
ach positi v e sequence in the training set (shuffled). To bal- 
nce the influence of positi v e and negati v e sequences, we 
ssign each negati v e training sequence a weight that is con- 
idered when evaluating the objective function. Specifically, 
f the training data contain N positi v e sequences and M 

egati v e sequences, each negati v e training sequence is as- 
igned a weight of N / M , such that the total weight of all
egati v e sequences is M · N / M = N . In either case, we ex-
ract sequences from the original hg38 genome with stan- 
ard DNA nucleotides and, alternatively, sequences from 

he genomes including methylation calls (Section Gener- 
tion of methylation-aware genomes). As the methylated 

enomes are cell type-specific we always use those matching 

he cell type of the corresponding ChIP-seq experiment. Se- 
uences from the negati v e sets are also extracted from the 
atching genome versions. Models that are discovered de 

ovo from these data sets are (i) standard position weight 
atrices and (ii) LSLIM models ( 8 ) with a maximum dis- 

ance of 5bp between putati v ely dependent positions. In 

eneral, motif discovery within the DIMONT / SLIMDIMONT 

rame wor k ( 8 , 45 ) may report multiple motifs per input data
et. For the remainder of the analyses described here, we 
nly consider the first reported motif according to the rank- 

ng by the value of the maximum supervised posterior objec- 
i v e function used internally in the DIMONT / SLIMDIMONT 

rame wor k as proposed previously ( 45 ). 

r ediction procedur e 

i v en a trained motif model and an input set of sequences, 
e compute for each sequence the log-likelihood of all over- 

apping sub-sequences on both strands matching the mo- 
if length. We then chose as predicted value for that se- 
uence the maximum over all these log-likelihood values. In 

ontrast to alternati v e scores, like the sum occupancy score 
 47 ) integrating over all log-likelihood values, this proce- 
ur e makes sur e that the scor e of a sequence can be at-
ributed to one specific sub-sequence with its methylation 

attern. 

ross validation procedure 

or benchmarking the different models learned from se- 
uence with and without methylation information, we 

https://ega-archive.org
https://github.molgen.mpg.de/DEEP/comp-metadata
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f ollow a 10-f old cr oss validation pr ocedure. Specifically, we
partition ChIP-seq positi v e regions and (for the first train-
ing variant) drawn negati v e regions into 10 equally sized
sets, where in each cross validation fold, the union of 9 of
these sets is used for training and the remaining set is used
for testing. The partitioning into training and test sets for
the individual folds is already performed on the le v el of peak
files. Afterwards, the corresponding partitions of peaks are
considered when extracting sequences under the peaks from
the methylation-aware or the original hg38 genome variant.
Hence, training and test sets in the different cross validation
folds are identical (aside from methyla tion informa tion) be-
tween the different genome variants. 

Ev aluating perf ormance 

For evaluating performance of a model trained on and ap-
plied to sequences from a specific genome version, we con-
sider a classification problem discriminating ChIP-seq pos-
iti v e from negati v e sequences. The positi v e set comprises all
sequences extracted under ChIP-seq positive regions from
the corresponding test partition. The negati v e set, in turn,
comprises sequences from genomic regions that are again
r andomly dr awn uniformly from the complete genome, in
this case excluding all ChIP-seq positive regions for all TFs
studied and also excluding the negative regions used for
training. In total, this negati v e set contains 100 000 regions,
which are again partitioned into 10 test sets to capture vari-
ability among different choices of negati v es. Gi v en a model,
scores for all sequences in positi v e and negati v e sets are
computed as described in section Prediction procedure. The
ability of these scores to distinguish positi v es from nega-
ti v es is then evaluated by the area under the precision recall
curve (AUC-PR) as determined by the PRROC R package
( 48 ). Models trained on the training partition of one EN-
CODE data set for one specific TF are evaluated (i) on the
test partition of the same data set, (ii) on the correspond-
ing test partition of other data sets for the same TF and cell
type and (iii) on the corresponding test partition of other
data sets for the same TF in other cell types. We refer to
the first two cases as within cell type , and to the latter case
as across cell type . As one baseline, we consider a random
classifier, i.e., a classifier that randomly assigns positi v e and
negati v e labels with equal probability. The random classifier
generates a true positi v e with probability 

N 

N+ M 

and a false
positi v e with probability 

M 

N+ M 

, where N and M are the num-
ber of positi v e and negati v e sequences, respecti v ely. Hence,
the AUC-PR of the random classifier can be deri v ed ana-
l yticall y as N 

N+ M 

( 49 ). 

T r aining and evaluating mEpigram models 

In order to compare the motif discovery of MEPIGRAM
and MEDEMO on common ground, we use the same
methylation-aware genomes and deri v ed sequences for both
a pproaches. Technicall y, our methylation-aware M / H al-
phabet needs to be converted to an E / F alphabet to serve
as input of the MEPIGRAM routines. For training MEPI-
GRAM models, we follow the procedure proposed by the
authors. First, we extr act tr aining sequences based on the
ChIP-seq peak files and the corresponding methylation-
aware genome variants using the bedToFasta.py script
provided with MEPIGRAM . We further generate the k -mer
background model using the bgModel.py script with pa-
rameter -k 7 from the methylation-aware genome vari-
ants. We chose 7-mers instead of 8-mers, because for the
‘typeEF’ variant of MEPIGRAM not limited to fully methy-
lated CpGs, only the (r equir ed) 7-mer graph is available.
We then learn motifs using the mepigram wrapper.py
script using the sequences extracted from the peak file,
the 7-mer graph, the background file for the training
genome, and parameter typeEF . Aside from a motif file
in MEME format, this script outputs a file enrich-
ments.tsv , which lists the per-motif enrichment on the
positi v e training examples compared with shuffled nega-
ti v es. For e valuating performance, we chose the motif with
the largest enrichment value, since ranking by enrichment
value has been suggested in the original publication ( 33 ).
We then a ppl y the selected motif to the test sequences
using the provided quickPssmScanBestMatchLite-
TypeEF.jl script reporting the best motif score for each
input sequence, which matches the prediction schema ap-
plied for the MEDEMO models. 

Model visualization 

Since parameters of models learned by discriminati v e learn-
ing principles may be skewed to optimize prediction accu-
racy, a direct visualization of these parameters may lead to
un-intuiti v e results. Hence, we follow the approach of ( 8 )
and visualize models based on their predicted binding sites
on the training data r epr esented by traditional sequence
logos and dependency logos generated by the DEPLOGO R
package ( 50 ). 

Meth ylation sensiti vity of binding models 

We investigate the methylation sensitivity of a trained model
again based on predicted binding sites. To this end, we con-
sider models learned from sequences using the extended,
methylation-aware alphabet and binding sites predicted
from the corresponding training data set. Each of these
binding sites is first converted to the standard DNA alpha-
bet replacing occurrences of M with C and of H with G. We
use this modified sequence to compute a base score with-
out methylation. We then consider each CpG dinucleotide
within the sequence (regardless if it was methylated in the
original sequence) and change both the C to M and the G
to H (MH). We compute the score of the modified sequence
according to the model and determine its difference rela-
ti v e to the base score. If this score is larger than the base
score, we consider the influence of methylation on such a
nucleotide (in this sequence context) as beneficial , and as
detrimental otherwise. For each binding site position, we
also compute the relati v e abundance of CpGs in the pre-
dicted binding sites and the average of the score differences
of the MH case relati v e to the base score. We further assess
if the binding motif of a TF contains a prominent CpG in
its cor e. Her e, we define the cor e of the motif as all positions
between the first and the last position with an information
content above 0.5 and we consider a CpG is prominent if
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he relati v e frequency of CpG di-nucleotides at a motif po- 
ition is above 0.25, which is four times mor e fr equent than 

ould be expected by chance for a uniform distribution over 
he nucleotides. We also record the maximum methylation 

ensitivity within the motif core and outside the motif core. 

ifferential binding 

or analyzing the association between scores of predicted 

inding sites and differential binding, we consider pairs of 
ell types, A and B, with ChIP-seq data available for the 
ame TF. In this analysis, we distinguish common peaks 
hat overlap between the two cell types, and unique peaks 
resent in only one of the cell types. We further predict 
ne binding site per ChIP-seq peak at the position yield- 

ng the maximum score as described in Section Prediction 

rocedure. 
For the common peaks, we only compare (scores of) bind- 

ng sites that are predicted at exactly the same genomic lo- 
ation in the methylation-aware genomes of both cell types, 
s this allows for a direct comparison of prediction scores. 
his r equir ement is r easonable as , in principle , the position
f a predicted binding site could change due to differences 

n the methylation states of the two cell types. Since only 

uch common binding sites are considered, we identify com- 
on peaks by the presence of predictions at identical ge- 

omic locations within the two methylation-aware genomes. 
redicted binding sites in both cell types are recorded to- 
ether with the corresponding prediction scores and the 
eak heights (column 7 of the narrowPeak format) of the 
urrounding peaks. 

We further identify unique peaks for cell type A us- 
ng the bedtools ( 51 ) command ‘bedtools intersect -v - 
 peaksA.bed -b peaksB.bed > onlyA.bed’. For binding 

ites predicted from the methylation-aware genomes of cell 
ype A, we extract the corresponding sequence from the 
ethylation-aware genome of cell type B, and r ecord pr e- 

iction scores for these two predicted sites. We proceed in 

omplete analogy to identify unique peaks for cell type B. 
For these analyses, we aim at using the same models that 

ave also been considered for classification-based bench- 
ar ks. Howe v er, as these benchmar ks are based on 10-fold 

ross validation experiments, we also obtain a set of 10 mod- 
ls per TF and training data set. For this reason, we perform 

he above-mentioned procedure for each of the 10 models, 
nd average prediction scores per ChIP-seq peak before pro- 
eeding with statistical analysis and visualization. 

As a r efer ence, we also consider a simple baseline, which 

easures methylation le v els of the sequences under ChIP- 
eq peaks. Specifically, we extract sequences of length 

000 bp and determine, on either strand of the DNA se- 
uence, the fraction of cytosines that are methylated accord- 

ng to the methylation-aware genome of a cell type. We cen- 
er the extracted sequences at the position of the predicted 

arget site instead of the (cell type-specific) peak center or 
eak summit to ensure tha t methyla tion le v els in different
ell types are measured for the same genomic region. 

enome-wide predictions within the Catchitt framework 

atchitt is a frame wor k for predicting in vivio TF binding 

ites based on motif models and cell type-specific chromatin 
ccessibility data, and is a streamlined version of the ap- 
roach winning the ‘ENCODE-DREAM in vivo Transcrip- 
ion Factor Binding Site Prediction Challenge’ ( 5 ). Here, we 
se Catchitt to compare the performance of methylation- 
gnostic and methylation-aware motif models when used 

or genome-wide predictions of TF binding sites. Specif- 
cally, we obtain ATAC-seq data from ENCODE (Sup- 
lementary Table S2) as BigWig files containing the fold 

hange over control for the four cell types considered. These 
erve as input of the ‘access’ tool of Catchitt to obtain 

hroma tin fea tures. In addition, we train PWM and LSlim 

odels using TF-specific ChIP-seq data from all chromo- 
omes except the test chromosomes chr1, chr8 and chr21 

s described in Section Training procedure. Trained mod- 
ls are then used to compute motif-based features using the 
motif’ tools of Catchitt based on the respecti v e original 
r methylation-aware genome variants. Labels (bound, un- 
ound) of 200 bp genomic regions shifted by 50 bp along 

ach chromosome are generated from the corresponding 

hIP-seq data using the ‘labels’ tool of Catchitt. Catchitt 
odels using the chromatin features and motif-based fea- 

ures of individual motif models are then trained on the 
raining chromosomes using the ‘itrain’ tool of Catchitt 
ith default parameters and using chromosomes chr10, 

hr11, chr12, chr13 and chr14 for the iterati v e training pro- 
edure (cf. ( 5 )). Finally, predictions for the test chromo- 
omes chr1, chr8 and chr21 are generated using the ‘pre- 
ict’ tool of Catchitt for the training cell type (within cell 
ype) and for the remaining cell types (across cell type) with 

hIP-seq data available for the TF of interest. AUC-PR of 
ound vs. unbound regions is computed using the PRROC 

 package ( 48 ). 

ethod implementation 

e implement the model, training procedure and predic- 
ion procedure based on the existing implementation of the 
LIMDIMONT approach ( 8 ). The basic modification com- 
ared with the v ersion pub lished pre viously is the extension 

f the alphabet to A, C, G, T, M and H, where M is comple-
entary to H. This extension allows us to include informa- 

ion about methylation while preserving the possibility to 

ompute re v erse complements of input sequences, which is 
ecessary because in ChIP-seq data binding sites may be lo- 
ated on either DNA strand. We provide this methylation- 
ware toolbox termed MEDEMO for motif discovery as i) 
tand-alone binary versions with graphical user interface 
nd command line interface (cf. ‘Data Availability’). 

ESULTS AND DISCUSSION 

o test whether the inclusion of cell type-specific methy- 
a tion informa tion and explicitly modelling dependencies 
ithin DNA-binding sites is beneficial for a specific TF, we 

ollow the procedure illustrated in Figure 1 . We start from 

hole-genome bisulfite sequencing data for the cell type 
 t hand, discretize methyla tion calls by the betamix ( 46 ) 
pproach, and use these binary methylation calls to con- 
ert the original hg38 genome sequence into a methylation- 
ware genome version. Specifically, we convert methylated 

C’ to ‘M’ and ‘G’ opposite of a methylated ‘C’ to ‘H’, yield- 
ng an extended 6-letter alphabet. 
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Figure 1. Ov ervie w of the MeDeMo workflow: (1) DNA methylation is assessed using whole genome bisulfite sequencing. (2) DNA methylation is quanti- 
fied using �-values. (3) Methylation calls ( �-values) are discretised using the BETAMIX approach resulting in a binary methylation state for each Cytosine in 
a CpG context. (4) A novel r efer ence genome is generated by denoting occurrences of methylated cytosines with the letter M and occurrences of guanines 
opposite of a methylated cytosine with the letter H. (5) In vi vo tr anscription factor binding site information are obtained using peak calls from TF -ChIP-seq 
da ta. (6) TF binding da ta is used for motif discovery with LSLIM models on the methylation awar e r efer ence genomes; (7) resulting in methylation aware 
TF motif r epr esentations. 

Table 1. Ov ervie w of the combinations of genome variants and motif 
models considered in this study 

Genome variant 

Original hg38 Methylation-aware 

Model PWM PWM.hg38 PWM.methyl 
LSlim(5) LSlim.hg38 LSlim.methyl 
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Based on the ChIP-seq peaks downloaded from EN-
CODE, we extract sequences under the peaks, which serve
as input to the de novo motif discovery. As statistical
binding site models, we use either Position Weight Ma-
trix (PWM) ( 52 , 53 ) assuming independence of nucleotides,
or LSim(5) models capturing dependencies between nu-
cleotides over a distance of at most fiv e nucleotides ( 8 ).
Both types of models are applied to sequences under peaks
extracted from the original hg38 genome, or to sequences
under peaks extracted from the methylation-aware genome
version for the cell type of the ChIP-seq experiment. This
results in four modelling alternati v es (Tab le 1 ), namely (i)
PWM applied to original hg38, (ii) PWM applied to the
methylation-aware genome, (iii) LSlim applied to origi-
nal hg38 and (iv) LSlim applied to the methylation-aware
genome. The binding site models of all four modelling alter-
nati v es are determined within the common Dimont frame-
work. As a method published previously for the same pur-
pose, we include PWMs learned by the MEPIGRAM ap-
proach ( 34 ) from the methylation-aware genome into the
comparison. 

In the remainder of this section, we first investigate for
which TFs the introduction of a methylation-aware genome
and the inclusion of dependencies yield an improvement in
classification performance discriminating bound from un-
bound sequences. We then consider specific examples of
TFs that show such an improvement, discuss their bind-
ing motifs in relationship to methylation, and study gen-
eral trends in sensitivity of binding models to methylation
in binding sites. We finally present prototypical examples
of TFs for which the combination of methylation infor-
mation and modelling dependencies is pivotal to optimal
performance. 

Investigating the impact of DNA methylation on binding 

For benchmarking MEPIGRAM and the different modelling
alternati v es of MEDEMO , we follow a classification-based
approach. Here, motif models are tested for their capabil-
ity of distinguishing bound from unbound sequences. We
consider as sequences bound by a specific TF those un-
der a ChIP-seq peak, whereas unbound sequences sampled
uniformly across the genome (cf. Materials and Methods).
Since for the majority of TFs, this is a highly imbalanced
classification problem, we use the area under the precision-
recall curve ( 48 ) as a performance measure. For each TF,
we collect all data sets that are available from ENCODE
for the cell types under study (GM12878, HepG2, K562,
li v er), which might include replicate experiments for the
same combination of cell type and TF, e.g., performed in
different labs. 

We further follow a 10-fold cross validation strategy to
be able to also assess classification performance on the data
from the same experiment. For each partition of the 10-fold
cross validation, we consider the motif reported on rank 1
by the SLIMDIMONT frame wor k during training (cf. section
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raining procedure) for evaluating model performance on 

est data. 
In the following, we distinguish within cell type (i.e. train- 

ng and test cell types match) and across cell type (i.e. train- 
ng and test cell types are dif ferent) classifica tion perfor- 

ance. For each of these sub-sets of classification prob- 
ems, we collect all AUC-PR values and perform a one-sided 

rentice rank sum test ( 54 , 55 ) (using prentice.test 

rom R-package muStat ) between each pair of modelling 

lternati v es considering cross-validation folds as replicates 
f the same experiment (replicated block design) and us- 

ng a significance le v el of � = 0.05. In addition, we count
he number of data sets, for which one alternati v e yielded a 

igher classification performance than the second one. Fi- 
ally, we visualize the differences of AUC-PR values in vi- 
lin plots as shown in Figure 2 . 
Analysis of binding models for ATF3 (across cell type 

etting) is presented as an example in Figure 2 A. We show 

he corr esponding r esults for all six pairwise comparisons of 
he four modelling alternati v es. For instance, from the left- 
ost panel of Figure 2 A, we observe that the difference be- 

ween the AUC-PR values of LSlim.methyl and LSlim.hg38 

re mostly positi v e indicating an improv ed performance of 
Slim models on the methylation-aware genome compared 

ith standard hg38. This difference is statistically signifi- 
ant with a p-value of 5.78 × 10 

−13 , where for 123 cases 
data sets × cross validation folds) LSlim.methyl performs 
etter than LSlim.hg38, whereas the opposite holds for 
nl y 37 cases. Similarl y, we find a significant improvement 
f LSlim.methyl over PWM.methyl (indica ting tha t depen- 
encies are beneficial), of LSlim.methyl over PWM.hg38, 
f LSlim.hg38 over PWM.hg38 and of PWM.methyl over 
WM.hg38. For the comparison of LSlim.hg38 (only de- 
endencies) with PWM.methyl (only methylation informa- 
ion), we do not observe a significant difference, which in- 
ica tes tha t both aspects of the novel approach contribute 
o a similar degree to the final classification performance 
f LSlim.methyl. Together, these results make ATF3 a pro- 
otypical example of a TF for which the combination of 
ethyla tion informa tion and modelling dependencies is 

mportant for yielding the best classification performance 
mong the considered classification approaches. 

In Figure 2 B, we present further examples of TFs for 
hich the combination of methylation information and 

odelling dependencies is beneficial. These cases also illus- 
rate the varying quantity of combinations of training and 

est data sets from different cell types available for different 
Fs (each split into 10 cross validation folds). Here, these 

pan from 2 (USF2, one ChIP-seq data set for each of two 

ell types) to 18 (JUND and MAX). In all cases, the im- 
rovement of LSlim.methyl over PWM.hg38 is statistically 

ignificant, although the magnitude of the improvement in 

lassification performance (y-axis) as well as the proportion 

f cases where one model performs better than the other dif- 
er among these TFs. 

Finally, Figure 2 C shows examples of TFs for which 

he improvement of PWM.methyl over PWM.hg38 is 
ignificant but the improvement of LSlim.methyl over 
WM.methyl is not, i.e. TFs for which inclusion of methy- 

a tion informa tion is beneficial but modelling dependencies 
oes not lead to further improvements. 
While we refer to differences of AUC-PR values for 
omparing modelling alternati v es in Figure 2 for a com- 
r essed r epr esenta tion, we show sca tter plots of absolute 
erformance of the modelling alternati v es in Supplemen- 
ary Figures S1–S3. In addition, we include a comparison 

f PWM.methyl and LSlim.methyl models, respecti v ely, to 

 random classifier in Supplementary Figures S4–S6. In 

eneral, we observe that prediction performance is highly 

ataset dependent. Partly, this can be explained by differ- 
ng numbers of peaks in different ChIP-seq data sets, which 

ffects the class ratio between positi v es and negati v es. This 
lso becomes apparent in the comparisons to the random 

aseline classifier, which obtains AUC-PR values according 

o the class ratio. Howe v er, the difference in absolute perfor- 
ance may also be a result of cell type-specific differences 

f predictions are made on the same test dataset using mod- 
ls trained on different training cell types (e.g., HepG2 for 

NT, K562 for TBL1XR1). 
Comparing scatter plots against the PWM.hg38 model 

Supplementary Figures S1–S3) with the scatter plots 
gainst the random baseline classifier (Supplementary Fig- 
res S4–S6), we observe that in some cases (especially 

rominent for ARID3A, ARNT and NONO in the across 
ell type setting) the PWM.methyl model e v en performs 
orse than the random baseline classifier. Howe v er, the 
orresponding combinations of training and test cell types 
re identical to those where performance is low in gen- 
ral (low number of peaks) and where we do not observe 
 clear improvement of the PWM.methyl model over the 
WM.hg38 model. Hence, this observation does not impair 
ur general comparison of the PWM.meth yl / LSlim.meth yl 
nd PWM.hg38 models. 

Supplementary Figures S7–S10 include a detailed 

omparison of the performance of MEPIGRAM with the 
orresponding MEDEMO models (PWM.methyl and 

Slim.methyl, respecti v ely) for all TFs considered in 

igure 2 . In summary, MEDEMO performs similarly to 

EPIGRAM for some TFs but yields an improved prediction 

erformance consistently across the two training methods 
or the majority of examples, and we compare the two 

ethods on all datasets in the following section. 

enchmarking of modelling alternatives 

e compile an ov ervie w of pairwise comparisons of mod- 
lling alternati v es within MEDEMO as well as MEPIGRAM 

n Figur e 3 . Her e, we a ppl y stringent criteria for counting
ne modelling alternati v e to perform better than a second 

ne for the TF at hand. Specifically, we r equir e the improve- 
ent to be significant i) in the within cell type and across cell 

ype settings consistently for both training variants (shuf- 
ed and randomly drawn negati v es, cf. Materials and Meth- 
ds). For the comparison to MEPIGRAM , we r equir e consis- 
ent results for within and across cell type comparisons as 
ell. 
Of the 335 TFs considered in total, ChIP-seq data sets 

or at least two cell types are available for 144 TFs, while all 
emaining cannot meet the stringent criteria by definition. 

Among 144 TFs, we observe a significant improvement 
f the methylation-aware MEDEMO modelling alterna- 
i v es ov er the methylation-aware MEPIGRAM motifs for 66 
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A

B

C

Figure 2. Examples of TFs with significantly improved classification performance (AUC-PR) in across cell type predictions using a methylation-aware 
genome. Each panel shows a pairwise comparison of models as indicated by the y-labels above and below the zero line. Each dot r epr esents a case (data 
sets × cross validation folds) with different colours for positi v e (i.e., top model performs best) and negati v e (i.e., bottom model performs best) differences 
of AUC-PR values. Total number of cases where one model performs better than the other are shown as boldface, grey numbers. In addition, points are 
summarised by a violin plot and corrected p-values for the H 0 that both models perform identical (Prentice test) are gi v en in the header. ( A ) Pairwise 
comparison of different modelling variants for ATF3. We find that all methylation-aware models perform better than their counterparts learned on the 
original hg38 genome and that dependency models (LSlim) perform better than PWM models on the same genome variant. For instance, LSlim.methyl 
performs better than LSlim.hg38 in 123 cases, whereas the opposite is true for only 37 cases, leading to a P -value of 5.78 × 10 −13 . ( B ) Comparison 
of methylation-aware dependency models (LSlim.methyl) with PWM models using standard hg38 (PWM.hg38) for TFs with a clear advantage of the 
combina tion of methyla tion informa tion and modelling dependencies. ( C ) Comparison of PWM models learned from the methylation-aware genome with 
those learned from the standard hg38 genome. 
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(PWM.methyl) and 75 (LSlim.methyl) TFs. Notab ly, e v en
the training variants of MEDEMO using the original hg38
genomes often outperform MEPIGR AM . By contr ast, MEPI-
GRAM performs significantly and consistently better than
the MEDEMO models only for 3–6 TFs. These TFS are
ASH2L, BRD4, TBP, MAZ, SMAD1 and ZBTB7A, where
MEPIGRAM performs better than the LSlim.methyl vari-
ant of MEDEMO only for MAZ, SMAD1 and ZBTB7A.
We provide a detailed comparison on the le v el of indi-
vidual data sets and binding motifs between MEPIGRAM
and MEDEMO in Supplementary Figures S11–S16. In sum-
mary, we find that MEPIGRAM often discovers GC-rich mo-
tifs, which in multiple cases resemble the known SP1 mo-
tif, whereas MEDEMO generates more di v erse motifs which,
howe v er, are less capable of distinguishing positive from
negati v e sequences and, hence, yield lower AUC-PR values.

Among PWM and LSlim models trained by MEDEMO ,
we observe the largest number of TFs (51) with significant
and consistent improvement comparing LSlim.methyl
(methyla tion informa tion and dependencies) against
PWM.hg38 (neither of the two). We also find improve-
ments for a substantial number of TFs when considering
intra-motif dependencies in addition to methylation infor-
mation (i.e. LSlim.methyl compared with PWM.methyl,
27 TFs), or when considering methyla tion informa tion in
addition to intra-motif dependencies (i.e. LSlim.methyl
compared with LSlim.hg38, 18 TFs). Modeling only de-
pendencies (LSlim.hg38 vs. PWM.hg38) or including only
methyla tion informa tion (PWM.methyl vs. PWM.hg38)
yields an improvement for 33 and 23 TFs, respecti v ely. For
the direct comparison of either including only dependencies
(LSlim.hg38) or only using a methylation-aware genome
(PWM.methyl), we find balanced numbers of TFs with
an improvement in either direction (16 and 13 TFs). The
opposite comparisons yield a significant improvement
only for a minority of at most one TF. Considering the
traditionally used PWM model using the standard hg38
genome, we find a better perf ormance f or PWM.hg38
compared with LSlim.hg38, LSlim.methyl or PWM.methyl
for none of the TFs studied. We find one TF (HDAC2) for
which the PWM model yields a better performance than
the LSlim model on the methylation-aware genome. In this
case, the PWM.methyl model significantly outperforms
all other modelling alternati v es and adding dependencies
appears to be rather detrimental. Further, we find one TF
(CTCF) for which the LSlim model works better on the
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Figure 3. Pairwise comparison of different modelling variants. For MEPI- 
GRAM , and each of the MEDEMO models (PWM, LSlim) and each genome 
variant (original: hg38, methylation aware: methyl), we determine the num- 
ber of TFs for which the model listed in the row performs significantly bet- 
ter than the model listed in the column i) within and across cell types, and 
ii) consistently using randomly drawn and shuffled negati v es. 
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riginal than on the methylation-aware genome. Converse 
o HDAC2, intra-motif dependencies seem to be of greater 
mportance for CTCF than methyla tion informa tion, 
nd the LSlim.hg38 outperforms any other modelling 

lternati v e. 
The e xamples pre viously shown in Figure 2 A and B are 

n the intersection of all three sets for which LSlim.methyl 
erforms better than any of the other three modelling al- 
ernati v es within the MEDEMO frame wor k (second row 

f Figure 3 ), whereas those shown in Figure 2 C are from 

he union of LSlim.methyl vs. LSlim.hg38, LSlim.methyl 
s. PWM.hg38 and PWM.methyl vs. PWM.hg38, exclud- 
ng TFs where one model on the original hg38 genome per- 
orms better than its methylation-aware counterpart. 

We present a list of those TFS for which methyla- 
ion information was beneficial for prediction performance 
n Table 2 . Here, we exclude TFs without direct and 

equence-specific DNA binding (as discussed for BRCA1 

elow), while we provide a complete list of TFs in Sup- 
lementary Table S3. For all motifs listed in Table 2 , we 
lso provide a comparison of the motifs discovered us- 
ng the PWM.methyl model with those learned using the 
WM.hg38 and corresponding motifs from the databases 
aspar ( 56 ), Hocomoco ( 57 ), Factorbook ( 58 ) and CIS-BP
 59 ) in Supplementary Figures S17–S21. 

For 10 TFs, we find that the combination of methyla- 
ion information and modelling intra-motif dependencies 
i.e. LSlim.methyl) yields a better prediction performance 
han either using methylation information (PWM.methyl) 
r modelling dependencies alone. For three of these 
NONO, RAD51, USF2) we find that modelling dependen- 
ies alone does not improve prediction performance over 
he standard PWM model on the hg38 genome, but only 

n combination with methylation information. For the re- 
aining 7 TFs, our results are compatible with independent 
ontributions from including methylation information and 

odelling intra-motif dependencies. 
The motifs of 18 out of 28 TFs ( 64% ) listed in Table 2

how a prominent CpG in their core motif, whereas this 
s true for only 53% (76 out of 144) of the motifs of all
Fs in the collection. We further examine the remaining 

6 − 18 = 58 TFs that contain a prominent CpG in their 
ore motif and find inconclusi v e results (improv ement only 

or one training variant) for 32 TFs. For these, our strin- 
ent filtering aiming at a low number of false positi v es does 
ot allow for giving a final assessment of the influence of 
NA methylation. The complementary set of 26 TFs con- 

ains many non sequence-specific binders according to Fac- 
orbook ( 58 ). Howe v er, ther e ar e 8 TFs (CEBPB, CTCF,
GR1, MXI1, NR2C1, ZBTB33, ZNF143 and ZNF592) 

hat specifically bind DNA and contain a prominent CpG 

n their core motif but still, prediction performance does not 
r ofit fr om including methyla tion informa tion in our eval- 
ation. 
For four of these (MXI1, NR2C1, ZNF143 and 

NF592), our data contain only one experiment in each 

f two cell types, which complica tes sta tistical assessment 
f the improvement, while for ZBTB33, we obtain discor- 
ant results for the within cell type and the across cell type 
etting (Supplementary Figure S22). For CEBPB (Supple- 
entary Figure S23), the improvement is only significant 

n the within cell type setting, although the discovered mo- 
if is highly similar to the Jaspar ( 56 ) motif and we find the
orresponding PWM model to be methylation sensiti v e. For 
TCF, we find an improvement of prediction performance 

n neither setting, but also the CTCF motif resembles the 
aspar motif and two positions of the model are methyla- 
ion sensiti v e (Supplementary Figure S24). Finally, we find 

n improvement for EGR1 only in the across cell type set- 
ing, although the discovered motif is similar to the Jaspar 
otif and two positions of the model are methylation sen- 

iti v e (Supplementary Figure S25). 
In the literature, CEBPB ( 25 , 60–62 ) and CTCF ( 30 , 63–

5 ) have been found to be methylation sensiti v e TFs. 
ence, these TFs may r epr esent potential false negati v es 

f our classification-based search strategy for methylation- 
ssociated TFs. 

For all TFs listed in Table 2 , we further compare the 
erformance of PWM models learned by MEPIGRAM with 

he different models learned by MEDEMO in Supplemen- 
ary Figures S7–S10, which further illustrate our findings 
ummarized in Figure 3 . Of the 10 TFs that show an im- 
rovement for the combination of methylation information 

nd modelling dependencies, MEDEMO using LSlim mod- 
ls performs better than PWMs from MEPIGRAM for 8 TFs, 
hile for MAX we only find an improvement when the 
Slim model is learned using randomly sampled negati v es, 
nd for SP1, the MEPIGRAM PWM works better than the 
Slim model learned using shuffled negati v es. 

eth ylation sensiti vity of binding models 

aving established a set of TFs for which the inclusion 

f methylation information leads to an improvement in 

he benchmark study, we further investigate binding pref- 
rences of TFs in the context of their binding motifs. To 
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Table 2. Summary of TFs that pr ofit fr om considering DNA methylation in the motif models. For each TF, we list the availability of ChIP-seq data sets 
for the four cell types studied. Columns ‘Methylation’ and ‘Methyl. & Deps.’ indicate a significant and consistent improvement (y: yes, n: no) by including 
information about methylation in general and / or in combination with modelling intra-motif dependencies, respecti v ely. We also note if a binding motif 
contains a prominent CpG in its core (CpG) and if methylation sensitivity in the core is larger than outside the cor e (Cor e). In the last column, we note 
r efer ences to the literature for TFs that have already been reported to be methylation sensiti v e, where ‘–’, ‘+’ and ‘s’ indicate negati v e or positi v e influence 
of methylation or general methylation sensitivity according to the r efer enced publications, respectively 

TF GM12878 HepG2 K562 li v er Methylation Methyl. & Deps. CpG Core Literature 

ARID3A x x x y n n y new 

ARNT x x x y n y y - ( 30 ) 
ATF3 x x x y y y y - ( 23 ) 
ATF7 x x x y n y y - ( 23 ) 
BHLHE40 x x x y n y y - ( 23 ) 
CREM x x x y n y y - ( 23 ) 
ELF1 x x x y n y y - ( 23 , 60 ) 
FOXA1 x x x y n n n - ( 85 ) 
FOXA2 x x y y n n new 

FOXK2 x x x y n n y new 

GABPA x x x x y n y y - ( 23 ) 
HNF4A x x y y n y new 

HNF4G x x y y n y new 

JUND x x x x y y n y - ( 23 ) 
MAX x x x x y y y y s / - ( 23 , 30 ) 
MNT x x y n y y s / - ( 30 ) 
NFATC3 x x y n n y + ( 23 ) 
NONO x x y y y y - ( 86 ) 
NR2C2 x x y n y y new 

NRF1 x x x y n y y - ( 30 ) 
PKNOX1 x x y n n y new 

RAD51 x x x y y y y new 

SIX5 x x y n y y new 

SP1 x x x y y y y + / – ( 23 , 70 , 71–71 ) 
TBL1XR1 x x x y n n y new 

USF2 x x y y y y - ( 23 ) 
YY1 x x x x y n y y different motif ( 68 ) 
ZBTB40 x x y n y y new 
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this end, we compute a position-specific profile of methy-
lation sensitivity by altering CpG dinucleotides within pu-
tati v e binding sites to their fully methylated variant MpH
and recording the resulting differences in the correspond-
ing binding scores according to the motif model. By this
means, we may decode the information about methylation
pr efer ence captur ed by the motif model. If the difference of
binding scores is positi v e, this corresponds to MpH dinu-
cleotides (i.e. methylated DNA) being pr eferr ed over CpG
dinucleotides by the model at a gi v en position, and vice
versa. By referring to the level of predicted binding sites,
this measure of methylation sensitivity is easily transferred
to LSlim models, where methylation sensitivity may depend
on the sequence context. 

In Figure 4 , we present six examples of such profiles
of methylation sensiti vity accor ding to the corresponding
PWM models, plotted below the sequence logo of their pre-
dicted binding sites. As might be expected, all these exam-
ples have in common that their motifs contain prominent
CpG dinucleotides, although with differ ent fr equencies and
in different contexts. For ELF1, CREM and MAX, we ob-
serve one prominent CpG dinucleotide as part of their mo-
tifs, where CpG content varies between 0.57 (ELF1) and
0.85 (CREM). In all three cases, methylation of this CpG
dinucleotide according to the model leads to a decrease in
the pr ediction scor e, indica ting tha t methyla tion is detri-
mental for binding affinity or that TF binding has a neg-
ati v e influence on DNA methylation. Similar patterns also
occur for YY1 with one prominent and se v eral less frequent
CpG positions, and for BRCA1 and NRF1 exhibiting two
prominent CpG dinucleotides each. 

For the NRF1 model, it appears as if methylation affects
one of the CpGs (position 8 / 9) to a lesser degree than the
other (position 14 / 15). Howe v er, ChIP-seq does not pro-
vide strand information and the strand model encapsulat-
ing the PWM allows for switching the strand orientation of
the binding site. For these reasons, and because the motif of
NRF1 is clearly palindromic, this phenomenon needs to be
interpr eted with car e. An alternati v e e xplanation might be
that once one of the CpGs present in NRF1 binding sites is
meth ylated, additional meth ylation of the other CpG does
not lead to a substantial further effect. Notably, the binding
motif discovered for BRCA1 does not match the canonical
motif present in HOCOMOCO ( 57 ). BRCA1 has been re-
ported to bind DN A directl y but without sequence speci-
ficity ( 66 ). The ZBTB33-like motif discovered by our ap-
proach could possibly be due to indirect binding, and a sim-
ilar motif has been reported for BRCA1 before ( 67 ). 

Strikingly, the influence of methylation on the prediction
score at high-CpG positions is negati v e in all examples pre-
sented in Figure 4 , suggesting that DNA methylation may
lead to reduced binding affinity or binding negati v ely in-
fluences DNA methylation for many TFs. In order to in-
vestigate if this observation constitutes a general tendency
among the studied TFs, we consider all TFs with a signifi-
cant and consistent improvement in prediction performance
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Figure 4. Methylation sensitivity of binding models with improved performance using a methylation-aware genome. In each panel, the top part show 

a sequence logo of the discovered motif using the e xtended alphabet. Howe v er, since the model learned to penalize methylated DNA in all six cases, 
additional symbols are only visible in case of BRCA1. In the bottom part of the plot, we visualize position-specific CpG content (top row with grey 
scale) and methylation sensitivity (bottom row with colour scale) within predicted binding sites. Positi v e values of methylation sensitivity indicate pr eferr ed 
binding of methylated DNA, whereas negati v e values indicate methylated DNA being disfavored. For all six TFs, we observe a detrimental effect of DNA 

methyla tion a t frequent CpG positions. 
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hen including methyla tion informa tion (cf. Table 2 ). For 
ach of these TFs, we compute the corresponding profiles of 
ethylation sensitivity of their binding model per data set 

nd record the range of values (i.e. minimum value to max- 
mum value) present in the pr ofile. Str ong deviations from 

 of the maximum or minimum value indicate a clear pref- 
rence for methylated or unmethylated DNA according to 

he model, respecti v ely. From Figure 5 , we observe that the
aximum value is only slightly above 0 for the wide ma- 

ority of TFs, whereas for many TFs, the minimum value is 
learly below 0. This indica tes tha t for most TFs, the pro- 
les of methylation sensitivity indeed are similar to those 
resented in Figure 4 . There are a few examples of TFs 
FO XA1, FO XA2, HNF4A, HNF4G, RAD21), for which 

either the maximum nor the minimum of methylation sen- 
itivity shows a strong amplitude. These TFs do not have a 

rominent CpG in their binding motifs. Nonetheless, inclu- 
ion of methylation information leads to an improvement in 

rediction performance. We discuss possible explanations 
f this observation for two examples below (FOXA1 and 

OXA2, Figure 6 ). 
For se v eral of the TFs shown in Figure 5 , a negati v e influ-

nce of methylation on their binding has been reported be- 
ore. This includes ARNT ( 30 ), ATF3 / 7 ( 23 ), CREM ( 23 ),
LF1 ( 23 , 60 ), GABPA ( 23 ), JUND ( 23 ), MAX ( 23 , 30 ),
NT ( 30 ), NRF1 ( 30 ), USF2 ( 23 ) and YY1 ( 68 ). For
FAT C3, a pr e vious study based on HT-SELEX e xperi- 
ents ( 23 ) found pr eferr ed binding of NFAT C3 to methy-

ated DNA, whereas our results suggest a negati v e associ- 
tion with DN A methylation. Notabl y, the motif detected 

y MEDEMO is highly similar to the motif reported in fac- 
orbook (cf. Supplementary Figure S19) but considerably 

ifferent to the motif reported by Yin et al. ( 23 ). One rea-
on for this observation might be the difference between 
he in vitro setting considered by Yin et al. and the in vivo 

hIP-seq data considered in this study, for instance due to 

ffects of co-binding with other TFs that are not present in 

he in vitro setting. SP1 shows a generally negati v e associ- 
tion with methylation of its binding sites in our data, al- 
hough with cell type-specific str ength. Pr evious r esults for 
P1 have been contradictory, as some studies suggested a 

ositi v e influence of binding site methylation ( 23 ), whereas 
thers indicated no decisi v e influence ( 69 ), negati v e effects
 70 ), or the pre v ention of methylation by SP1 binding ( 71 ).
n general, pr efer ence f or de-methylated DNA ma y be ob- 
erved either due to the direct binding pr efer ence of the TF 

t hand, or due to a de-methylation of the bound region as 
n effect of TF binding. Based on our data, these two cases 
ould not be distinguished. 

The reasons for the mostly detrimental influence of 
ethylation for the TFs in our study could be manifold. 
irst, this could be a bias introduced by the specific se- 

ection of TFs under study, although no such bias has 
een introduced intentionally, since we consider all TFs 
ith ENCODE data sets in at least two of the selected 

ell types. Specifically, CEBPB ( 25 , 61 , 62 ), SMAD5 ( 23 ) and
BTB33 ( 23 , 72 , 73 ) have been reported to prefer methy-

ated DNA, but we did not observe a significant and consis- 
ent improvement of prediction performance in our study. 
or GATA1 / 2 / 4 ( 60 , 62 ), IRF2 ( 23 ), KLF16 ( 23 ), NFATC1
 23 ), STAT1 / 5A ( 60 ) and ZNF274 ( 23 ), we had only data
or one of the cell types studied, which pre v ented us from 

tudying performance across cell types. Second, this result 
ight be an artifact of our method. While we cannot rule 

ut this possibility in general, we do observe clearly pos- 
ti v e methylation sensitivity values for a few TFs. Exam- 
les (ZBTB33 with inconsistent results across cell types, and 

FATC1 and ZNF274 with ChIP-seq data available only 
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Figure 5. Methylation within binding motifs is mostly detrimental in models with significantly and consistently improved prediction performance (cf. 
Figures 2 and 3 ). For each TF and each data set, we record the profiles of methylation sensitivity as shown in Figure 4 . We aggregate this profile to two 
values per data set by computing the minimum and maximum value of methylation sensitivity, which captures the range of values observed in the profile. 
Here, we plot these maximum and minimum values of methylation sensitivity across all training data sets. We observe a large amplitude of negati v e values for 
the minimum (i.e., methylated DNA being disfavored) but only slightly positi v e values for the maximum, indica ting tha t –– according to the models –– DNA 

methylation is detrimental for the majority of TFs. Methylation sensitivity of TFs according to the literature is given in parentheses (if present), and the 
corr esponding r efer ences ar e gi v en in Tab le 2 . 

Figure 6. Methylation sensitivity may differ between members of a TF family. While methylation sensitivity of the binding models for FOXA1 and FOXA2 
is highly similar in HepG2 cells, that of FOXK2 is noticeably different, although all three motifs appear to be highly similar. This behaviour is consistent 
between different cell types (Supplementary Figure S27). 
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for one cell type) are provided in Supplementary Figure S26.
Hence, we may at least conclude that our method is capa-
ble of capturing such patterns in general. Third, there might
also be a bias of methylation on the ChIP-seq experiment
that constitute the basis of our approach, although we did
not find this to be reported before. For instance, methylation
might influence the amplification step in the ChIP-seq pro-
tocol, which could lead to an under-r epr esentation of reads
from methylated peak regions. 

Meth ylation sensiti vity may vary within a TF family 

As we had ChIP-seq data from TFs with the same binding
domain (family) and similar consensus sites we wondered,
whether there could be differences in the sensitivity to DNA
methylation for individual family members. For example,
the models for FOXA1 and FOXA2 showed a low ampli-
tude in methylation sensitivity in Figure 5 , whereas FOXK2
binding appears to be more strongly associated with DNA
methylation. Although all three TFs are members of the
forkhead box family, they play different roles related to de-
velopment and disease ( 74 , 75 ). In Figure 6 , we present the
binding motifs and profiles of methylation sensitivity dis-
covered by our approach for FO XA1, FO XA2 and FO XK2
in HepG2 cells. In general, all three motifs follow the con-
sensus GTAAAYA with slight deviations. The major differ-
ence between FO XA1 / FO XA2 and FO XK2 motifs is an
additional A / T-rich stretch directly preceding this canon-
ical motif. With regard to methylation sensitivity, we find
mor e prominent differ ence between the thr ee TFs. Specifi-
cally, the models for FOXA1 and FOXA2 exhibit a mildly
negati v e effect of methylation at positions bordering their
core motif. While the influence on the binding score of any
of these positions individually is rather low, the combina-
tion of multiple methylated CpGs at bordering positions
might still have an effect on binding site prediction. By con-
trast, FOXK2 shows two, still rather infrequent, CpG din-
ucleotides at positions 6 / 7 and 12 / 13 of the core motif,
which are not present in the FO XA1 / FO XA2 motifs. Both
of these positions show a stronger sensitivity to methyla-
tion than any position of FO XA1 / FO XA2. This general
picture is consistently observed in other cell types (Supple-
mentary Figure S27). Biolo gicall y, this observation might
be linked to the mechanism of FOXA1 and FOXA2 acting
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s pioneering factors ( 74 , 76 ), although pioneering activity 

as been shown for FOXK2 as well ( 75 ). 

NA methylation sensitivity depends on sequence context 

n this study, we identified a substantial number of TFs, 
or which the combination of methyla tion informa tion and 

odelling intra-motif dependencies yields an improvement 
n classification performance compared with the base model 
PWM on original hg38) but also relati v e to the individual 
ontributions of methyla tion informa tion and / or modelling 

ependencies (cf. Figures 2 B and 3 ). Here, we discuss three 
f those TFs in more detail that illustrate the breadth of 
he binding landscapes observed and how these are linked 

o specific profiles of methylation sensitivity. In Figure 7 , 
e present dependency logos ( 8 , 50 ) of the predicted bind- 

ng sites of JUND (K562 cells), USF2 (K562) and ATF3 

HepG2), which are enriched with partition-specific profiles 
f methylation sensitivity. 
JUND binds DNA as a dimer with a variable 1–2 bp 

pacer ( 77 ) which may be captured by dependency models 
ike the LSlim model employed in this study ( 8 ) and more 
pecialized models like TFFMs ( 10 ), but not (adequately) 
y standard PWM models. In the dependency logo, this 
ariable spacer is visible as two distinct blocks, the upper 
lock starting with consensus TGA at positions 3–5 and 

he lower, smaller block starting with the same consensus 
TGA) but already at positions 2-4. Both variants share 
he consensus TCA at positions 7–9. For the short-spacer 
ariant (upper block), only a small subset of binding sites 
eviating from the standard consensus (TGYGTCA, 4th 

artition from top) has a substantial fraction of CpG din- 
cleotides at positions 5 / 6, which are moderately methy- 

ation sensiti v e. By contrast, about a quarter of the long- 
pacer variant (lower block, 6th partition from top) with 

onsensus TGACGTCA exhibits a CpG dinucleotide at 
ositions 5 / 6, which are strongly affected by methylation. 
oth, the variable spacer and the specific profiles of methy- 

ation sensitivity within both variants, explain why the com- 
ina tion of methyla tion informa tion and modelling intra- 
otif dependencies yields a particular advantage for JUND 

inding sites. Notably, the JUND motif for K562 present 
n the MethMotif database ( 36 ) only r epr esents the short- 
pacer variant and no specific methylation profile within the 
ore motif, which is likely an effect of the database’s limita- 
ion to PWM models. By contrast, our results suggest that 
oth spacer variants and the associated patterns of methyla- 
ion sensitivity are present across cell types (Supplementary 

igure S28). 
For USF2, we observe a canonical E-box motif with con- 

ensus CACGTG for the majority of binding sites, and con- 
ensus CACATG for a minority of binding sites displayed 

s the bottom partition of the dependency logo. Intra-motif 
ependencies are especially prominent between positions 6 

nd 10, but also se v eral positions flanking the core mo- 
if. The dependency between positions 6 and 10 can be at- 
ributed to the consensus CACATG always being preceded 

y a T at position 6, whereas the canonical E-box motif may 

lso be preceded by C or G. Only those binding sites follow- 
ng the consensus CAYGTG frequentl y (a pprox. 80%) ex- 
ibit a CpG at positions 9 / 10, which is then moderately (1st 
nd 2nd partition from top) or strongly (3rd partition from 

op) affected by methylation. For the partition with consen- 
us CA CATG , we find an almost flat profile of methylation 

ensitivity. Again, this dependency structure and associated 

arying methylation sensitivity may adequately be captured 

y dependency models but not by standard PWM models. 
Finally, we observe substantial heterogeneity among the 

inding sites of ATF3, which have been reported before 
 8 ). Starting from the top of the dependency logo, we find 

 partition with consensus TTTACGRC (positions 5–12), 
ollowed by a large partition with consensus YCACRTG 

positions 6–12), a small partition with consensus TRAC- 
YR (positions 6–12), a partition with consensus TGACG- 
CA (positions 6–13) and finally a partition with consen- 

us TGAYGYAA (positions 6-13). The di v ersity of the pre- 
icted ATF3 binding sites manifests as strong intra-motif 
ependencies between positions 7 and 12, 7 and 11, 5 and 

, and 11 and 12. Howe v er, all partitions show a con- 
ider able fr action of CpG dinucleotides at positions 9 / 10, 
hich are methylation sensiti v e to different degrees. Par- 

ition 3 (counted from top) exhibits an additional CpG at 
ositions 11 / 12 with moderate frequency and methylation 

ensitivity. While each of these partitions could be mod- 
lled decently by its individual (methylation-aware) PWM 

odel, only dependency models as proposed in this study 

re capable of capturing such highly heterogeneous bind- 
ng landscapes without prior knowledge about their specific 
tructure. 

Dependency logos of the remaining se v en TFs for which 

e observed an improvement by the combination of methy- 
a tion informa tion and modelling intra-motif dependencies 
re gi v en in Supplementary Figure S29. As described in the 
revious section, we find methylation sensitive model posi- 
ions flanking the core motif for Fo xA2, which sho w mu- 
ual dependencies. For HNF4A and HNG4G, we observe 
ethylation sensitivity for two motif positions with widely 

ndependent contributions in different partitions of bind- 
ng sites, whereas dependencies are present only between 

irectly adjacent binding site positions. For MAX, the cen- 
ral CpG of the CACGTG core motif shows the strongest 
ignal of methylation sensitivity, but one specific partition 

f binding sites with pattern C[A G]C[A G]TGCG in addi- 
ion shows methylation at two additional model positions. 
or NONO, we find different GC-rich sub-motifs with vari- 
ble patterns of methylation sensitivity, which might explain 

hy for NONO, the combination of methylation informa- 
ion and modelling dependencies is of special utility. For 
AD51, we find two main sub-types of motifs with con- 

ensus CACGTGA and CATGTGA, of which only the for- 
er shows methylation sensitivity. For SP1, we find depen- 

encies within the canonical motif with a clear signal of 
ethylation sensitivity at the central CpG di-nucleotide. In 

ddition, we find a sub-motif that, according to T omT om 

 78 ) is similar to a ZBTB33 motif from Jaspar (MA0527.1) 
nd might, hence, rather r epr esent the motif of an SP1 

o-binding TF. 

ethylation-a w ar e models may explain differential binding 

aving established tha t incorpora ting methyla tion- 
ware genomes and / or intra-motif dependencies is often 
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Figure 7. For JUND, USF2 and ATF3, the advantage of combining dependency models with a methylation-aware genome can be attributed to specific 
properties of the corresponding binding landscapes. For each TF, we visualize predicted binding sites by Dependency Logos that partition binding sites by 
nucleotides at the most inter-dependent positions and r epr esent each partition using the same colors that are also used in sequence logos (provided below; 
A = green, C = blue, G = orange, T = red). If a partition contains a mixture of nucleotides at a certain position, colors are mixed as well. For JUND, we find 
the known variable spacer between the two 3 bp half motif (TGA, TCA), where only the longer spacer frequently contains a CpG. For USF2, the prevalent 
CpG at positions 9 and 10 shows dependencies to other binding site positions, and is not present in one specific subset (TCACATG) of binding sites. For 
ATF3, we find broad heterogeneity, where each sub-motif contains CpG at positions 9 and 10 in different proportions. 
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beneficial for modeling TF binding sites, we further
investigate to which extent these models are capable of
explaining differential binding across cell types as outlined
in Figure 8 A. 

We consider TFs for which ChIP-seq data are available
for two cell types. The idea is to compare whether differ-
ences in peak occurrence or ChIP-seq signal in both cell
lines can be related to a change in binding scores accord-
ing to our models. In addition to our models, we consider a
simple baseline model, which considers average methylation
le v els of larger genomic regions (cf. Materials and Meth-
ods) instead of scores of individual binding sites. To asso-
ciate binding scores with ChIP-seq peaks, we consider the
binding sites under ChIP-seq peaks as predicted by the same
model, which may have been trained on data from one of
the cell types considered or from another cell type. We par-
tition the peaks into ‘common peaks’, i.e. peaks that are
overlapping between the two cell types, and ‘unique peaks’,
i.e. peaks that are present only in one of the cell types. 

For the common peaks, and associated binding sites and
pr ediction scor es, we separate peaks into those without dif-
ferential methylation in the binding site and, accordingly,
identical pr ediction scor es (‘equal’), those with a gr eater
score in cell type A than in cell type B (‘greater’) and vice
versa (‘less’). In addition, we compute the difference in log
peak height (‘signal’) for each pair of overlapping peaks. If
the model could explain differential binding, we would ex-
pect these differences to be lower than 0 for the ‘less’ group,
around 0 for the ‘equal’ group and above 0 for the ‘greater’
group, and we test pairwise differences in the distribution of
log signal values accordingly by a one-sided Wilco x on rank
sum test. 
Boxplots r epr esenting this analysis for TF CREM in
K562 and GM12878 cell types using a PWM model trained
from K562 data (cf. Supplementary Table S4) are shown
in the left panel of Figure 8 B. We find significant differ-
ences in log signal between all pairs of groups. The differ-
ence between the median values for the ‘less’ and ‘greater’
group is 0.6436, which corresponds to a 1.9-fold increase
in the ratio of the cell type-specific signal values. Hence,
the model appears to be capable of predicting if a peak is
larger in cell type A than in cell type B, although the large
number of confounding factors, including chromatin acces-
sibility, leads to pronounced variation within each of the
groups. 

In addition, we plot the differences in log signal against
the differences in associated prediction scores and compute
the Pearson correlation coefficient between both quantities
as shown in the middle panel of Figure 8 B. Here, we exclude
peaks without differential methylation in the binding site,
since these would obtain a fix ed scor e differ ence of 0. In case
of CREM, we find a substantial correlation between both
quantities, although only a small subset of common CREM
peaks (473 peaks) participates in the analysis. This may in-
dica te tha t the model is not onl y ca pable of predicting the
direction of the change in peak height, but that the differ-
ence in prediction scores is associated with the magnitude
of this change. 

For the unique peaks present only in cell type A, we com-
plement the predicted binding site in the methylation-aware
genome of cell type A with the corresponding site in the
methylation-aware genome of cell type B, and compute the
model scores for both site variants. If DNA methylation
as captured by the model could explain the presence and
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Figure 8. Association of differential model scores and differential binding according to ChIP-seq da ta. ( A ) Evalua tion schema. For common peaks of two 
cell types, we consider predicted binding sites at the same loca tion tha t may show differential methylation and, consequently, different model scores in 
the methylation-aware genomes. For the peaks containing such binding sites, we record the difference of model scores and the difference in peak height 
(signal). For unique peaks present in only one of the cell types, we record the scores of the binding sites predicted in the two methylation-aware genomes. 
( B ) Evaluation of cell type-specific binding for CREM in K562 and GM12878 cell types. Left: Comparison of the difference in log signal for binding sites 
with an equal score in the methylation-aware genomes of K562 and GM12878, with a larger score in K562 than in GM12878, and vice versa. Number of 
peaks in each group are gi v en abov e the boxes, p-values from a one-sided Wilco x on rank sum test are above the boxplots, and the difference of median 
values between the ‘greater’ and ‘less’ group is indicated. Middle: For those sites with a pr ediction scor e differing between K562 and GM12878, we find a 
correlation of 0.461 between the difference of the log signals and the difference of the prediction scores in those two cell types. Right: Hexbin representation 
of the scatter plot of scores determined from binding sites in the two methylation-aware genomes for peaks that ar e pr esent only in K562. Hexbin colours 
in log scale. ( C ) Same as (B), but for MAX in K562 and GM12878 cell types. ( D ) Same as (B), but for JUND in li v er and HepG2 cell types. ( E ) Same as 
(B), but for ATF3 in li v er and K562 cell types using a PWM model (left group) or an LSlim model (right group). 
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bsence of a peak, respecti v ely, we would e xpect the score 
or cell type A to be larger than for cell type B. In the
ight panel of Figure 8 B, we show a hexbin representa- 
ion of the scatter plot of such pairs of prediction scores 
or CREM in K562 and GM12878 cell types. Indeed, we 
nd a larger score for K562 than GM12878 for 10 021 sites, 
hereas the opposite is true only for 1 533 sites. For the ma- 

ority of 15 901 sites, pr ediction scor es in the methylation- 
ware genomes of both cell types are identical. Still, the 
airwise difference in scores is significantly different from 

 in a Wilco x on signed rank test ( P = 1.1 × 10 

−207 ). 
In complete analogy, we pr esent r esults for TF MAX in 

562 and GM12878 cell types in Figure 8 C. Here, we con- 
ider an LSlim model trained on data for cell type HepG2, 
.e. in this case the training cell type is different from the two 

ell types considered in this analysis. Again, we find signif- 
cant differences between the three groups of peaks divided 

y the difference in prediction scores. Howe v er, the differ- 
nce of median values between the ‘less’ and ‘greater’ groups 
s only 0.3536 in this case. Her e, the corr elation analysis 
hows a slightly lower Pearson correlation than for CREM 

s well with a visible enrichment of scor e differ ences around 

. Considering unique peaks, we find a pproximatel y 4-fold 

s many peaks with larger prediction scores in K562 than 

n GM12878 for peaks that are present only in K562. 
Similar tendencies may be observed for JUND in li v er 

nd HepG2 cell types using a LSlim model trained from 

562 data (Figure 8 D). Howe v er, the results for the unique 
eaks are less pronounced in this case with only 2-fold dif- 
erence in the number of peaks with greater and lower scores 
n li v er than in HepG2, respecti v ely. 

Finally, we illustrate the impact of modelling intra-motif 
ependencies, i.e., the comparison of PWM and LSlim 

odels, for ATF3 binding sites in li v er and K562 cell types 
n Figure 8 E. While we observe a clear advantage of the 
Slim model over the PWM model for all three analyses, 

his advantage is less pronounced than it had been for the 
lassification-based benchmarks in previous sections. 

In Supplementary Figures S30–S39, we provide results 
or these and further TFs, and compare these against the 
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baseline model that considers average methylation le v els
in the regions under the ChIP-seq peaks. It is well known
tha t methyla tion le v els in broader regions, especially in en-
hancers, are highly informati v e of TF binding ( 79 ). In addi-
tion, binding models consider only 20 bp of DNA, which
makes the presence of differential methylation less likely
than for the simple model. Hence, we expect this to be a
strong baseline model. For the common peaks, we indeed
find that the differences between the ‘equal’, ‘greater’ and
‘less’ groups often obtain lower p-values for the baseline
than for the methylation-aware binding models, partly due
to the larger number of regions with differences in methy-
lation le v els. Notab ly, the binding models often surpass
the baseline models for the correlation analysis. Regarding
unique peaks, binding models often more clearly show an
enrichment of larger scores for the cell type with a peak be-
ing present. 

In summary, our results indicate that models of TF bind-
ing sites learned from methylation-aware genomes and in-
corpor ating intr a-motif dependencies may indeed be indica-
ti v e of presence or absence of a ChIP-seq peak and its
peak height, despite the many confounding factors that are
not related to DNA methylation but strongly influence TF
binding. 

Methylation-a w ar e models capturing intra-motif dependen-
cies impr ov e genome-wide binding site predictions 

The analyses in previous sections showed that the com-
bina tion of informa tion about DNA methyla tion and
modelling intra-motif dependencies has the potential to
improve classification performance on ChIP-seq data
in a cross-validation setting. Howe v er, performance of
genome-wide predictions of binding sites may be con-
sider ed mor e r elevant for practical applications. To in-
vestigate prediction performance in genome-wide predic-
tions for the 10 TFs that showed a consistent improve-
ment of LSlim.methyl models pre viously (Tab le 2 ), we
adopt the general setting of the ‘ENCODE-DREAM in
vivo Transcription Factor Binding Site Prediction Chal-
lenge’ combining motif-based features with chromatin ac-
cessibility data within the Catchitt frame wor k ( 5 ). The
Catchitt frame wor k combines assays of chromatin acces-
sibility (DNase-seq, ATAC-seq) with genome-wide predic-
tions of arbitrary motif models r epr esented by aggr egated
score profiles over fixed-size genomic windows. Hence, all
types of MEDEMO models can be directly used within
the Catchitt frame wor k and their prediction performance
compared. 

Interestingly, it was shown that enzymes such as DNase1
and the Tn5 transposase, the two most often used enzymes
for the measurement of open-chromatin, show differences
in DNA cutting or insertion with respect to CpG methy-
lation ( 7 , 80 ). Thus in genome-wide analysis of such data,
neglecting the status of DNA methylation may be harmful
in two ways. Binding may be impaired due to TFs that show
reduced binding of methylation and abundance of open-
chromatin reads may also be affected. 

Here, we obtain ATAC-seq data for GM12878, HepG2,
K562 and li v er from ENCODE, and combine chromatin-
based features with motif-based features of individual motif
models when training Catchitt models on training chromo-
somes for a specific TF and cell type. These models are then
used for predicting binding regions of TFs on test chromo-
somes in the training cell type and all remaining cell types
with ChIP-seq data available for the TF at hand, and com-
pute respecti v e AUC-PR values. 

In Figure 9 , we compare the prediction performance of
LSlim.methyl and PWM.hg38 models for all 10 TFs in
genome-wide predictions on the test chromosomes chr1,
chr8 and chr21. It has been observed before that the in-
fluence of chromatin accessibility data on the final predic-
tion performance is substantially greater than the influ-
ence of the specific choice of motif models ( 5 ). Nonethe-
less, we find an improved prediction performance achieved
by methylation-aware models capturing intra-motif depen-
dencies for the majority of TF-cell type combinations in
the within cell type setting (Figure 9 A). Similar improve-
ments can also be observed in the across cell type set-
ting (Figure 9 B). Turning to the performance for individ-
ual TFs in Figure 9 C, we find a few notable and / or sys-
tematic cases, where PWM models considering the original
hg38 genome sequence (PWM.hg38) perform better than
LSlim.methyl models, namely FOXA2 trained on li v er and
tested on HepG2, JUND trained on GM12878 on all test
data sets except liver, and MAX trained and tested on li v er.
In contrast to the remaining cell types, li v er is a primary cell
type, and the methylation data and chromatin accessibility
data have not been obtained from identical donors in the
available data sets, which might partly explain the special
behaviour of li v er in this and the following comparisons. 

For se v eral TFs, namely ATF3, HNF4A, HNF4G,
RAD51 and USF2, we observe a consistent improvement
of LSlim.methyl models over PWM.hg38 models across
the different cell types. Comparing PWM.methyl versus
PWM.hg38 (Supplementary Figure S40), we observe a sim-
ilar picture for FOXA2 and MAX, but also a more bal-
anced performance between both modelling alternati v es
for other TFs (JUND, NONO). Finding an improvement
of methylation-awar e compar ed with methylation-agnostic
PWM models for the majority of TFs indicates that methy-
la tion informa tion contributes to the improved prediction
performance and is not fully redundant to chromatin ac-
cessibility, which was avaiable to both models within the
Catchitt frame wor k. For LSlim.methyl v ersus LSlim.hg38
(Supplementary Figure S41), a few additional cases occur
with better performance of the methylation-agnostic mod-
els, especially for LSlim models trained for JUND on li v er,
whereas we find an improvement of LSlim.methyl com-
pared with PWM.methyl (Supplementary Figure S42) for
the majority of TFs. 

In summary, we find that the combination of methylation
information and models capturing intra-motif dependen-
cies yields an improved prediction performance compared
with traditional PWM models trained on the original hg38
genome for the TFs considered. As these TFs have been
selected based on the previous benchmark in cross valida-
tion experiments, our results indicate that the observed im-
pr ovement in cr oss validation can be largely transferred to
more practical applications like genome-wide binding pre-
dictions. Based on further model comparisons, we assume
that the contribution of intra-motif dependencies is larger
than the contribution of methylation information in this
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A

B

C

Figure 9. Comparison of the genome-wide prediction performance of PWM models learned on the original hg38 genome (PWM.hg38) and methylation- 
aware LSlim models (LSlim.methyl) within the Catchitt frame wor k. ( A ) Pairwise comparison of models across all 10 TFs in the within cell type setting. 
LSlim.methyl performs better than PWM.hg38 for 45 test data sets, while PWM.hg38 performs better than LSlim.methyl for 6 test data sets. ( B ) Pairwise 
comparison of models across all 10 TFs in the across cell type setting. LSlim.methyl performs better than PWM.hg38 for 69 test data sets, while PWM.hg38 
performs better than LSlim.methyl for 13 test data sets. ( C ) Comparison of performance per TF, where the training cell type is encoded by colour and the 
test cell type is encoded by shape. If multiple data sets are present per TF and cell type, all combinations of data sets are considered. 
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onclusions 

n this paper, we present MEDEMO , a nov el frame wor k for
F motif discovery and TFBS prediction that combines in- 

orma tion about DNA methyla tion with models capturing 

ntra-motif dependencies. Similar to previous approaches 
 31 , 35 ), MEDEMO uses an extended 6-letter alphabet with 

eparate symbols for methylated cytosines and the corre- 
ponding guanosines on the opposite strand. In contrast 
o the MEPIGRAM pipeline ( 33 ), MEDEMO does not use a 

eta value cut-off of 0.5 to obtain a discrete methylation 

alue. Instead, we model the distribution of all beta val- 
es using the BETAMIX ( 46 ) software to select the cut-off 

n an informed way. Mor e r esear ch is necessary to study the
ffects of differ ent discr etization schemes for methylation- 
ware models with customized alphabets. 

The previous approach of MEPIGRAM is PWM-based, 
eglecting intra-motif dependencies. Ther efor e, MEDEMO 

sing PWM models can be seen as an improved instan- 
iation of MEPIGRAM , as we find that models learned by 

EDEMO typically outperform PWMs learned by MEPI- 
RAM . The MEME suite was also extended to predict 
WMs in a similar way ( 35 ), but we do not expect a direct
omparison to offer any additional value as there is no con- 
eptual impro vement o ver the MEPIGRAM approach or the 
WM models learned within MEDEMO . 
In addition, MEDEMO allows for including intra-motif 

ependencies w hen a ppl ying LSlim models to methylation- 
ware input data. Here, we find that the combination of 
ethyla tion informa tion and intra-motif dependencies im- 

roves the performance of binding site predictions for sev- 
ral methyla tion-associa ted TFs in cross valida tion exper- 
s
ments but also in genome-wide predictions. Model visu- 
lization provided by MEDEMO further facilitates the in- 
erpreta tion of methyla tion pa tterns in puta ti v e TF bind-
ng sites. In general, there is a smooth transition from per- 
ei v ed dependencies to percei v ed heterogeneity ( 8 ) of bind-
ng landscapes, and the latter could alternati v ely be mod- 
lled by (mixture models of) multiple PWM models. As 
oth can be r epr esented well by LSlim models, we consider 
he modelling approach pursued in this study a useful gen- 
ralization of previous PWM-based approaches. 

Further, MEDEMO allows the r esear ch community to 

e v erage the vast amounts of TF ChIP-seq and DNA methy- 
a tion da tasets available to elucida te the methyla tion depen- 
ence of hundreds of TFs in vivo , without the need of per- 

orming additional experiments such as Methyl-Spec-seq 

 31 ). Howe v er, as these analyses are based on in vivo ChIP-
eq data, the effects of DNA methylation on direct and co- 
 indirect binding may be harder to distinguish than in in 

itro settings. 
Apart fr om impr oving TF binding predictions, 
EDEMO could also improve the interpretation of 
ethylation QTLs (meQTLs). Methylation QTLs have 

een r eported befor e to be associated to changes in TF 

inding, histone modification and gene expression ( 81 ). 
sing MEDEMO , those associations could be understood 

t more detail, and our analyses r egarding differ ential 
inding might be a first step towards this goal. Similarly, 
ur tool could provide valuable additional insights into 

he vast amount of epigenome-wide association studies 
EWAS) ( 82 ). 

Especially in light of upcoming single cell applications as 
ingle-cell methylation ( 83 ) and single-cell chromatin acces- 
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sibility assays become available ( 84 ), the need of methyla-
tion aware TFBS prediction approaches will rise e v en fur-
ther in the near future. MEDEMO will help to fulfill these
data analysis needs. 

DA T A A V AILABILITY 

All ChIP-seq data sets analyzed in this study are avail-
able from ENCODE. ENCODE IDs of the correspond-
ing narrowPeak files are listed in Supplementary Table
S1 and can be accessed via the URL schema https:
//www.encodeproject.org/sear ch/?sear chTerm= < ID > . The
methylation-aware genome variants and the models gen-
erated during the current study are available as a Zen-
odo archi v e from https://doi.org/10.5281/zenodo.3723984 .
The MEDEMO software is available as stand-alone binary
versions with graphical user interface and command line
interface at http://www.jstacs.de/index.php/MeDeMo . The
source code of the software is available from github at
https://github.com/Jstacs/Jstacs (permanent DOI: https://
doi.org/10.5281/zenodo.8210619 ). Classes specifically im-
plemented for this project are provided in package
projects.methyl . 
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