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Abstract

Extracellular pH is an important parameter influencing cell function and fate. Microenviron-

mental acidosis accompanies different pathological situations, including inflammation, hyp-

oxia and ischemia. Research focussed mainly on acidification of the tumour micromilieu and

the possible consequences on proliferation, migration and drug resistance. Much less is

known regarding the impact of microenvironmental acidosis on the transcriptome of non-

tumour cells, which are exposed to local acidosis during inflammation, hypoxia, ischemia or

metabolic derailment. In the present hypothesis-generating study, we investigated the tran-

scriptional impact of extracellular acidosis on five non-tumour cell types of human and rat

origin, combining RNA-Sequencing and extensive bioinformatics analyses. For this pur-

pose, cell type-dependent acidosis resiliences and acidosis-induced transcriptional changes

within these resilience ranges were determined, using 56 biological samples. The RNA-

Sequencing results were used for dual differential-expression analysis (DESeq and edgeR)

and, after appropriate homology mapping, Gene Ontology enrichment analysis (g:Profiler),

Ingenuity Pathway Analysis (IPA®), as well as functional enrichment analysis for predicted

upstream regulators, were performed. Extracellular acidosis led to substantial, yet different,

quantitative transcriptional alterations in all five cell types. Our results identify the regulator

of the transcriptional activity NCOA5 as the only general acidosis-responsive gene.

Although we observed a species- and cell type-dominated response regarding gene expres-

sion regulation, Gene Ontology enrichment analysis and upstream regulator analysis pre-

dicted a general acidosis response pattern. Indeed, they suggested the regulation of four

general acidosis-responsive cellular networks, which comprised the integrated stress

response (ISR), TGF-β signalling, NFE2L2 and TP53. Future studies will have to extend the
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results of our bioinformatics analyses to cell biological and cell physiological validation

experiments, in order to test the refined working hypothesis here.

Introduction

Under physiological conditions, arterial pH is maintained within a narrow range (between pH

7.35 and 7.45). As for the interstitial fluid (i.e. the cellular microenvironment), its physiological

pH-values range between pH 7.0 and 7.4, depending on the type of tissue and the actual physi-

cal condition (rest or exercise) [1–3]. The interstitial pH-value is unstable compared with the

value in arterial blood and it may deviate from physiological values even when the arterial

blood pH is unaffected [4]. Systemic metabolic acidosis, defined as a reduced serum bicarbon-

ate [HCO3
-] concentration in a person with physiological respiratory function, reflects a

decrease in non-volatile acid removal that leads to net acid accumulation and subsequently to

a general pH decrease. Prolonged systemic metabolic acidosis is accompanied by several con-

sequences, including bone demineralization, skeletal muscle protein catabolism, reduced

hepatic albumin synthesis, and increased systemic inflammation that results in an enhanced

risk of cardiovascular and renal diseases [3].

Non-volatile acids derive from metabolism of endogenous or exogenous components, like

amino acids, phospholipids or nucleic acids. In addition, glycolysis, ketone body synthesis

(and incomplete oxidation fatty acids) contribute to acid accumulation [3]. The daily load of

non-volatile acids in healthy adults on a Western style diet amounts to approximately 70

mmol/d, but can increase significantly in the event of pathological lipolysis or glycolysis (fast-

ing?). Individuals with normal kidney and liver functions quantitatively match acid excretion

to production, avoiding acid accumulation. In contrast, impaired kidney function can lead to

acid accumulation, resulting in systemic metabolic acidosis even without any enhancement of

acid production.

Locally, extracellular acidification with pH-values below 7.0 (in extreme situations down to

6.0) [3, 5–12] is one of the pathological hallmarks of many diseases. These include cerebral and

cardiac ischaemia, cancer, infection, inflammation or tissue hypoxia. The development of local

metabolic acidosis is the result of an imbalance in the production/release of acids by the cells

and the removal of acids via the circulation. Extracellular acidosis acts on all cells of the

affected tissue and may therefore lead to diverse cellular responses, resulting in the activation

or aggravation of distinct pathophysiological processes.

In the past, research focussed mainly on tumour microenvironment acidosis as key parame-

ter for cell fate and disease progression. However, prolonged acidification of the micromilieu

also leads to inflammatory and fibrotic homeostatic imbalance in non-tumour tissues, charac-

terized by the abnormal accumulation of immune cells, the appearance of myofibroblasts and

interstitial fibrosis [3], from what a vicious cycle may result. Up to now, the molecular mecha-

nisms of acidosis-associated inflammation and fibrosis are only partially understood. How-

ever, they seem to include both innate and adaptive inflammatory processes, as well as an

imbalanced matrix homeostasis, resulting from dysregulated intra- and intercellular commu-

nications. Local acidosis can induce oxidative stress that can stimulate further inflammation

and fibrosis, extending the damage to tissue function failure. In renal tissue for example, acido-

sis can induce an upregulation of angiotensin II, accompanied by leukocyte infiltration, prolif-

eration and activation of fibroblasts and abnormal accumulation of extracellular matrix. In

vascular walls, pH can drop significantly e.g. during severe sepsis but also—to a lesser extend–

in atherosclerotic lesions, exposing smooth muscles to acidic conditions [10].
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In addition, local acidosis can interfere with the function and differentiation state of paren-

chymal cells, in what transcriptomic changes, most probably, play a major role [13]. Indeed,

extracellular acidosis can be sensed at the cell membrane, what almost certainly leads to a

decrease of cytosolic pH [14–16], thereby acting on a number of cellular processes, including

signaling pathways, metabolic processes but also transcription regulation [3]. Recently, we

described the impact of metabolic acidosis on cell signaling pathways and the expression of

inflammation-related genes in fibroblasts and tumour cells [14, 15]. The results showed that

an acidic microenvironment can trigger a differential transcriptional program of pathological

relevant genes, generating an inflammatory status that leads to cellular loss of function. How-

ever, it remains unclear whether there is a common global transcriptional “acidosis response”

or whether individual responses for each cell type prevail.

In the present study, we performed a comparative investigation regarding the impact of

non-damaging acidotic pH-values on the transcriptome of five non-cancerous cell types, com-

prising epithelial and mesenchymal cells of human and rat origin. Because these cell-types are

confronted with different acidotic challenges in their original environment, it is conceivable

that they developed and exhibit different acidosis resiliences, i.e. the acidic pH-range that will

not result in non-specific cell damage leading to cell death by necrosis or apoptosis. Therefore,

it would not have been appropriate to expose the cells to a uniform acidic pH-value. Rather the

cells had to be exposed to their individually determined maximum non-damaging acidotic pH

values. Thus, we first assessed pH-resilience and subsequently exposed the cells to their respec-

tive non-damaging pH-values for 48 h, followed by RNA-sequencing and bioinformatics anal-

ysis (Fig 1).

Materials and methods

Cell culture

HAoSMC (male, caucasian) were cultivated in PromoCell Smooth Muscle Cell Growth

Medium 2 containing 5% FCS (Fetal Calf Serum), epidermal growth factor (0.5 ng/ml), basic

fibroblast growth factor (2 ng/ml) and insulin (5 μg/ml) at 37 ˚C in a humidified atmosphere

with 5% CO2. Normal rat kidney fibroblasts (NRK-49F, ATCC1 CRL-1570), normal rat kid-

ney epithelial cells (NRK-52E, ATCC1 CRL-1571), normal human kidney epithelial cells

(HK-2, CRL-2190™) and normal human fibroblasts (CCD1092Sk, ATCC1 CRL-2114™) were

grown in DMEM medium supplemented with 10% FCS and 2 g/l NaHCO3 at 37 ˚C and under

a humidified 5% CO2 atmosphere, and subcultivated once per week before confluence.

Before all experiments, cells were synchronized by incubation in serum- and supplement-

free DMEM media (5.5 mM glucose, 24 mM NaHCO3, 25 mM HEPES) for 24 h. Subse-

quently, cells were treated in DMEM medium under following conditions for 48 h: control pH

7.4 or acidic pH as indicated. Acidic pH-values were obtained by titration with hydrochloric

acid.

Caspase-3 activity assay

Protein fractions of all cell types were obtained after 30 min incubation on ice with 100 μL cell

lysis buffer (10 mM TRIS, 100 mM NaCl, 1 mM EDTA, 0.01% triton X-100 (v/v), pH 7.5) and

used to determine caspase-3 activity. 60 μl of sample were incubated with 60 μl of Caspase-

reaction buffer (20 mM piperazine-N,N0-bis(2-ethanesulfonic acid), 4 mM EDTA, 0.2% 3-

[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (w/v), 10 mM dithiothreitol,

pH 7.4) and 42 μM DEVD-AFC (end concentration) for 90 min at 37 ˚C. Fluorescence of the

cleaved product AFC was measured with a plate reader (Infinite M200, Tecan) at a 400 nm

excitation and 505 nm emission wavelengths. Cleaved AFC was quantified using a calibration
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curve with known AFC concentrations and normalized to the total protein amount of the sam-

ple (determined by BCA assay, as described below).

Lactate dehydrogenase (LDH) assay and cellular protein

LDH was determined after a standard protocol according to Bergmeyer et al. [17]. Cell media

and cell lysates were incubated with LDH substrate buffer and the turnover of LDH substrates

was measured at 334 nm (NADH) for 30 minutes. Relative LDH release was calculated as the

LDH activity in the media divided by the total LDH activity (= media + lysate). Protein content

was determined using a bicinchoninic acid assay (BCA—Thermo Scientific) with bovine

serum albumin as standard [18].

Determination of cytosolic pH and transporters

Cytosolic pH of single cells was determined using the pH-sensitive dye BCECF (2’,7’-bis-

(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester—Invitrogen, Paisley, UK)

as described before [19, 20]. In brief, cells were incubated with media containing 5 μM BCEC-

F-AM for 15 min. Excitation light source was a 100 W mercury lamp. The excitation wave-

lengths were 450 nm/490 nm. The emitted light was filtered through a bandpass-filter (515–

565 nm). After background subtraction, fluorescence intensity ratios were calculated. pH

Fig 1. Analysis workflow. Analysis strategy for comparisons and identification of the acidosis-responsive genes,

regulators and pathways, based on the output of the differentially expression (DE) analysis, which served to identify

up- (DE = 1) and down- (DE = -1) regulated genes.

https://doi.org/10.1371/journal.pone.0290373.g001
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calibration was performed after each experiment by the nigericin (Sigma, St. Louis, USA) tech-

nique [21, 22], using a two-point calibration (pH 6.8 and 7.5). The calibration solutions con-

tained 132 mM KCl and 1 mM CaCl2, 1 mM MgCl2, 10 mM HEPES and 10 μM nigericin.

RNA sample preparation

Total RNA were isolated after 48h treatment with BlueZol Reagent as described in the user

manual. The RNA samples were treated with “Turbo DNAse-free kit” (following the “rigorous

DNAse treatment” protocol from the manufacturer) to remove eventual genomic DNA con-

taminations and were cleaned by ethanol precipitation (with 3M sodium acetate, glycogen and

100% ethanol). The RNA concentration was determined by NanoDrop (Biochrom, Germany).

The quality of the to-be-sequenced RNA samples was assessed using a 2100 Bioanalyzer system

(Agilent Technologies, Germany) and all samples had a RNA Integrity Number (RIN) above 7

(with 10 as maximal possible value).

RNA-sequencing

Novogene Co., Ltd (Cambridge, United-Kingdom) carried out the sequencing libraries prepa-

ration (poly(A) enrichment) and the paired-end sequencing (2 x 150 bp) runs on a Nova-

Seq6000 Illumina system. Adaptor clipping and data quality control was provided by the

service company as well.

HISAT2 (v. 2.1.0) [23] served for read mapping to the human genome hg38 for human cells

(HK2, CCD1092Sk and HAoSMC) and to the rat genome rn7 for rat cells (NRK-52E, NRK-

49F). Counting of the mapped reads was performed with featureCounts 2.0 (-p–M–t exon)

[24] and gene annotation was done using BiomaRt (v.2.44.4) [25] to access Ensembl archive

v105. Raw RNA sequencing data and annotated counts are publicly available on Gene Expres-

sion Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo). GEO accession numbers:

Human data GSE220788, rat data GSE220789.

Differential expression analysis

edgeR (3.30.3) [26] and DESeq2 (1.28.1) [27] were used to identified acidosis-regulated genes

in each cell-types (Fig 1). Because not all cell types were from a single organism type, the differ-

ential expression analysis was divided in two parts, considering either human or rat cells. For

each analysis round, genes with sufficient counts to be considered in the statistical analysis

were filtered using the filterByExpr edgeR function and the independent filtering parameter (α
= 0.05) of the DESeq2 results function. Normalization factors were calculated with the

“trimmed mean of M value” (TMM) method in the edgeR analysis. Significantly “differentially

expressed genes” (DEG) were defined as genes with a false discover rate (FDR) below 0.05 in

both DESeq2 and edgeR outputs (overlap of the respective results).

Homology mapping

The function getLDS from the BiomaRt (v 2.44.4) R package [25] was used for homology map-

ping between the human and rat genome annotations (Ensembl 105). Although the homology

system is originally asymmetrical, a strategy to obtain an index with 1 human gene ID:1 rat

gene ID had to be developed in order to be able to compare the acidosis-regulated genes in

between all cell types (Fig 2).
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Comparison of gene expression regulation and visualization

UpSetR (1.4.0) [28] was used to display the results of the comparison of these homolog-anno-

tated lists of regulated genes. Clustering of the samples was performed with the MORPHEUS

tool (https://software.broadinstitute.org/morpheus; metric: one minus pearson correlation,

linkage: average; accessed on 16 February, 2023). For clustering according to the FPM values, a

FPM-threshold > 5 for at least one sample was applied, resulting in 16126 genes to be

included. For clustering according to the logFC values, a threshold of |logFC |> 1 for at least

one cell type was applied, resulting in 6743 genes to be included.

Gene Ontology enrichment

Gene Ontology (GO) term enrichment analysis was performed with the web server g:profiler2

(https://biit.cs.ut.ee/gprofiler/orth) [29]. A multiple query was performed to compare all cell

types. For each considered cell type, a list of acidosis-regulated genes with at least one homolog

in the other organism served as input. Only GO terms comprising less than 5000 genes were

considered and those were simultaneously filtered for an adjusted p-value below 0.05 for all

datasets. The enrichment score E of the filtered GO terms was calculated, with E = (intersec-

tion size/query size) / (term size/effective domain size).

Ingenuity Pathway Analysis

The application QIAGEN Ingenuity Pathway Analysis (IPA—https://digitalinsights.qiagen.

com/IPA) was used to compare the putative effect of acidosis-induced transcriptomic changes

in the different cells types. The Ensembl identifiers of the regulated genes were mapped to

Fig 2. Analysis workflow. Strategy applied in order to obtain a symmetrical homology system between human and rat

annotations used for further comparisons of the acidosis-regulated genes.

https://doi.org/10.1371/journal.pone.0290373.g002
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networks incorporated into the software database. The featured “Comparison Analysis” tool

was used to match the different results of the “Upstream Regulator” (predicts potential regula-

tors involved in the observed gene expression variations—includes e.g., transcription or trans-

lation regulator, growth factor, kinase, chemicals) and the “Canonical Pathways” (predicts

potentially affected pathways downstream of the observed gene expression variations) analy-

ses. Only the category “Genes, RNAs and Proteins” was considered for “Upstream Regulators”

(exclude e.g., described chemicals). The latter were further filtered for “Transcriptions Regula-

tors” before heatmap visualization. All results were filtered for |Z-score|� 2 and adjusted

(Benjamini–Hochberg) p-value� 0.01 for at least one dataset.

Functional enrichment analysis for predicted upstream regulators

The functional enrichment analysis of predicted upstream regulators (output of IPA analysis,

filtered for adjusted p-value� 0.05 for all datasets) was performed with the web server g:pro-

filer2 (https://biit.cs.ut.ee/gprofiler/orth) [29]. Only biological pathways-related databases

were considered (KEGG, Reactome, WikiPathways). The results were filtered for adjusted p-

values� 0.001 and enrichment score E> 10 (see “Gene Ontology Enrichment” section for E

calculation method).

Results

Determination of cellular acidosis resilience

Because the cell types used in this study are confronted with different acidotic challenges in

their original environment, they most probably developed different acidosis resilience, i.e. are

able to cope with different acidic pH-ranges that will not result in non-specific cell damage

leading to cell death by necrosis or apoptosis. As it would not have been appropriate to expose

the cells to a uniform acidic pH-value rather than to expose them to their individual maximum

non-damaging acidotic pH values, we first determined cell type-specific acidosis resilience.

Fig 3 shows the effect of exposure to acidic media on caspase-3-activity (biomarker for apo-

tosis), release of cytosolic proteins (LDH or caspase-3; biomarker for necrosis, i.e. membrane

leakage) and cell protein per petri dish (biomarker for cell loss) for the different cell types.

Obviously, the cells differ in acidosis resilience. As already described before, NRK-52E and

NRK-49F cells show a high acidosis resilience down to pH 6.0 [15]. HK-2 and CCD1092Sk

cells showed signs of cell damage (necrosis) beyond pH 6.4 and HAoSMC beyond pH 6.8.

Thus, NRK-52E and NRK-49F cells were exposed to pH 6.0, HK-2 and CCD1092Sk cells to

pH 6.4 and HAoSMC to pH 6.8.

Acidic-milieu triggers gene expression regulation with organism- and cell

type-specific patterns

The incubation with acidic media led to gene expression changes in all considered cells types

(Fig 4a, left; see also the summaries in the S1 File and S1 Fig), with a visible higher disposition

for rat cells (S1 Table). The higher number of affected genes in NRK-49F and NRK-52E cells

could in part result from the lower extracellular pH (pHe). However, this seems unlikely

(Fig 4g) considering the fact that (i) there was a rather large difference in the number of regu-

lated genes between these two rat cells types exposed to the same acidic stress and (ii) in view

of the higher number of affected genes in HAoSMC (pH 6.8) compared to HK-2 or

CCD1092Sk cells (pH 6.4). Furthermore, there seems to be no correlation of intracellular pH

values with the number of genes affected (Fig 4g). We assume that the differences result from a

predominant cell-type driven rather than a pH-value-driven transcriptional response.
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Fig 3. Determination of acidosis resilience for the five cell types. Cell protein per dish (left), caspase-3-activity as

apoptosis marker (middle) and relative release of cytosolic proteins (LDH or caspase-3; right) as necrosis marker.

N = 6–10. * = p<0.05 versus pH = 7.4 (Mann-Whitney Rank Sum Test).

https://doi.org/10.1371/journal.pone.0290373.g003

PLOS ONE Acidosis-induced transcriptome alterations

PLOS ONE | https://doi.org/10.1371/journal.pone.0290373 August 25, 2023 8 / 19

https://doi.org/10.1371/journal.pone.0290373.g003
https://doi.org/10.1371/journal.pone.0290373


Fig 4. Acidic milieu mostly induces organism- and cell type-specific gene expression regulations. (a) Numbers of

regulated genes (FDR 0.05) per cell type before and after filtering for genes having at least one homolog in the other

considered organism. (b) Numbers of annotated genes for each genome and the proportion of these genes having at

least one homolog in the other considered organism, according to Ensembl homology annotation. (c) The overlaps of

the different lists of regulated genes are displayed in an UpSet plot, in which each row corresponds to a set of regulated

genes and each column to one segment of a hypothetical Venn diagram. A black/coloured or grey dot indicates that

genes from the corresponding dataset are included or not in this intersection, respectively. (d) The visualization of the

log2 fold changes of the genes regulated in both rat cell types (second intersection of the UpSet plot) shows that not all
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All genes annotated for the human and rat genomes were filtered for genes having at least

one homolog in the other species (Fig 4b). These lists of homolog-associated genes were then

used to screen the acidosis-regulated genes. This induced a slight reduction of the considered

numbers of regulated genes only (Fig 4a, right), showing that most of the acidosis-regulated

genes have at least one homolog in the other considered species. The homology system between

human and rat is nonetheless asymmetrical as more than one rat gene ID can be associated

with more than one human gene ID, and vice versa. Aiming to compare the acidosis-regulated

genes throughout all the considered cell types, we developed a strategy to overcome this asym-

metrical distribution of the homolog genes (Fig 2) and obtained a 1 human gene ID:1 rat gene

ID homology. Based to this approach, the lists of acidosis-regulated genes in each cell type were

compared, indifferently to which the organism the data were linked (Fig 4c). This suggested

that acidosis partly induced organism-specific gene expression patterns (“rat- or human-spe-

cific” intersections). Cell type specific regulation patterns were also observed, either for genes

regulated exclusively in one cell type (“cell type specific” intersections) or for genes whose regu-

lation direction depended on the cell type (as an example Fig 4d shows the comparison of

NRK-52E and NRK-49F cells). Clustering of all samples according to their FPM values (see

Methods section for details) also highlighted species- and cell type-specificities (Fig 5a). Cells

clustered first according to the species, then according to the cell type (including embryological

origin—epithelial versus mesenchymal for human cells) and only then according to acidotic

stress. Clustering of all samples according to their logFC values (see Methods section for

details) also highlighted species- and cell type- as well as cell origin- specificities (Fig 5b and

5c). Finally, four genes were regulated throughout all datasets (“general effect” intersection in

Fig 4c), highlighting a reduced but yet substantial global effect of acidosis on gene expression.

Out of these, two genes were regulated concordantly in all five cell types, MYOM1 and

NCOA5. As the abundance of myocyte-specific MYOM1 was very low (< 3 FPM) in four cell

types, the general biological relevance of this acidosis response is most probably neglectable.

Whether it is relevant for myocytes cannot be decided from our data. By contrast, the abun-

dance of NCOA5, an ubiquitous transcription co-regulator, was substantial in all five cell types,

indicating that the expression of this gene represents a general pH-sensor mechanism (Fig 4f).

Functional enrichment analysis by g:Profiler

We compared the five data sets for common enriched GO terms (S2 Table). Only 21 GO terms

passed our significance thresholds for all datasets. The enrichment score of these GO terms

was below 2.5, with the highest mean enrichment for GO term GO:0045859 (regulation of pro-

tein kinase activity). Thus, there seem to be no directlyacidosis-related GO terms strongly

enriched by transcriptional regulation. Nevertheless, closer inspection of these 21 GO terms

revealed that they refer to cellular phosphorus metabolism, protein phosphorylation and cyto-

skeleton organisation, biological processes known to be pH-sensitive.

Comparative upstream analysis of the transcriptional changes

Fig 6a gives an overview of the “Upstream Regulator Analysis” output after filtering for pre-

dicted upstream regulators annotated as “transcription regulators”. The heatmap format gives

of them are regulated in the same direction, highlighting a cell type specificity. (e) log2 fold changes for the genes

found regulated through all datasets annotation (“general effect” intersection of the UpSet plot). The error bars

corresponds to the log2 fold change standard error calculated by DESeq2. (f) Expression of NCOA5 under control and

acidosis conditions in the five cell types. (g) Number of regulated genes does not correlate with the degree of intra- or

extracellular acidosis (values for HK2 and CCD were derived from the literature [30–33]).

https://doi.org/10.1371/journal.pone.0290373.g004
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the opportunity to visualize eventual regulation patterns throughout the datasets. It thus

showed that no transcription regulator was predicted to be regulated identically in all cell

types. But it also highlighted that they may be activated (or inhibited) in a species-specific

manner, as several clusters of transcription regulators were specifically predicted for rat data-

sets. The hierarchical clustering supported this observation as human and rat datasets clustered

Fig 5. Acidosis induces organism- and cell type-specific gene expression patterns. The heatmaps show the FPM (a)

and the normalized log2 fold changes (b, c) for all genes regulated in at least one cell type, with each row

corresponding to one gene. The column clustering resulted in a species- and cell-specific clustering.

https://doi.org/10.1371/journal.pone.0290373.g005
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Fig 6. Upstream and downstream analyses for acidosis-induced gene expression regulation. The present heatmaps

(generated by IPA) aim to give an overview of the results (detailed values are available in S3 Table). Each row

corresponds to a transcriptional regulator (a) or to a canonical pathway (b) predicted as significantly activated/

inhibited for at least one dataset. The colour scales are related to the calculated Z-scores (with a positive Z-score

corresponding to a putative activation and a negative Z-score to a putative inhibition). A dot indicates that an upstream

regulator or a canonical pathway did not reach the threshold |Z-score|� 2 for the corresponding dataset. The

hierarchical clustering used Euclidean distance metric.

https://doi.org/10.1371/journal.pone.0290373.g006
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separately. Additionally, the heatmap in Fig 6a featured upstream regulators predicted specifi-

cally for epithelial cell or fibroblasts datasets, independently of the species, therefore highlight-

ing a putative cell type-specific gene expression regulation.

Table 1 illustrates these different patterns by showing detailed values for four selected pre-

dicted upstream regulators, which all displayed high absolute Z-scores (all detailed values asso-

ciated with Fig 6a are available in S3 Table). ATF4, a transcription factor, was predicted as

activated for rat datasets but as inhibited for two out of three human datasets, showing there-

fore a species-specific pattern of potential regulation. On the other hand, the transcriptional

coactivator NUPR1 displayed a cell type-specific regulation, with a putative activation in epi-

thelial cells but an inhibition in fibroblasts. Conversely, the transcription factor CEBPB is pre-

dicted to be inhibited in epithelial cells and activated in (rat) fibroblasts. Finally, the

transcription factor NFE2L2, which has been suggested to play a role cell response to acidosis

[13], is the only one putatively activated throughout four out of five the cell types. Thus,

NFE2L2 may represent a more general principle regarding cellular responses to acidosis.

NUPR1, ATF4, NFE2L2 and CEBPB are well known transcriptional regulators that act in

response to cell stress, mainly oxidative and endoplasmic reticulum stress, and regulate cell

survival [34–38]. Thus, a general response to acidosis may be the induction of the integrated

stress response, a cytoprotective pathway initiated in response to exposure to various environ-

mental stimuli [39, 40], with ATF4 as central player [41].

We then considered all predicted upstream regulators belonging to the category “transcrip-

tion regulators” and we filtered for those with adjusted p-values below 0.05 for each cell type.

This resulted in a list of 32 predicted upstream regulators. However, these had Z-scores with

non-coherent directionality and, in part, values well below 2 (S3 Table). Functional enrichment

analysis by g:Profiler for this set of upstream regulators indicates an impact on processes related

to cellular stress (“integrated stress response”), carcinogenesis and ageing (S4 Table), besides

the expected RNA-polymerase II transcription process. In line with the IPA analysis above, the

terms “TGF-beta signaling pathway” and “TP53 network” were also predicted (Table 1).

Applying the same process without restriction of the predicted upstream regulators to the

category “transcription regulators”, 83 upstream regulators (S3 Table) were identified. Func-

tional enrichment analysis by g:Profiler with this set of regulators yielded similar results, i.e.

impact on processes related to cell stress, carcinogenesis and ageing. In addition, an impact on

ErbB signalling pathways is predicted that overlap with processes related to carcinogenesis.

Table 1. Selected predicted upstream regulators for acidosis-induced gene expression changes (from Fig 6a and S3 Table). IPA calculated the Z-scores (positive and

negative Z-scores reflect predicted activation and inhibition, respectively) and p-values. “n/a” stands for undetermined Z-scores.

Heatmap in Fig 6a Further functional

enrichment analysis

Upstream Regulators ATF4 CEBPB NFE2L2 NUPR1 TGFB1 TP53

Human HK2 Z-score n/a -4.68 n/a 5.81 1.81 3.77

-log(BHpvalue) - 18.50 - 14.15 9.53 18.61

CCD1092Sk Z-score -2.46 -0.97 2.10 -2.70 -0.42 0.51

-log(BHpvalue) 5.47 1.67 2.92 5.27 21.18 10.39

HAoSMC Z-score -4.12 0.49 1.96 0.29 2.76 1.14

-log(BHpvalue) 18.65 4.33 4.44 8.03 25.60 15.48

Rat NRK-52E Z-score 4.07 -3.54 3.93 3.74 -4.62 -0.83

-log(BHpvalue) 9.09 9.39 12.46 24.67 30.63 59.61

NRK-49F Z-score 2.64 3.90 3.49 -2.78 -2.69 -4.86

-log(BHpvalue) 9.02 10.10 4.47 19.01 28.14 48.81

https://doi.org/10.1371/journal.pone.0290373.t001
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Comparative downstream analysis of the transcriptional changes

While the “Upstream Regulator Analysis” predicted potential regulators responsible of the

acidosis-regulated genes, the “Canonical Pathways” analysis predicted pathways putatively

affected by the observed gene expression changes. An overview of the results is also available

as heatmap (Fig 6b, detailed values available in S3 Table) and bubble charts (S2 Fig). No

pathway was predicted as identically regulated in all cell types. However, a clear species-

specific effect was visible, as pathways appeared putatively activated or inhibited in only one

organism (Fig 6b), or even predicted in the opposite direction in the two organisms

(Table 2). Furthermore, there was a predominance of metabolic pathways in human cells as

compared to signalling pathways in rat cells (S2 Fig) that might result from a more robust

wiring of metabolism in rats.

Discussion

Extracellular pH is an important parameter with influence on cell function and fate. Microen-

vironmental acidosis accompanies different pathological situations, including tumours,

inflammation, hypoxia, ischemia and fibrosis. Research focussed mainly on acidification of the

tumour micromilieu e and the possible consequences on proliferation, migration and drug

resistance. Hereby, the impact of extracellular acidosis on the transcriptome of tumour cells

has been investigated [42–44]. Much less is known regarding the impact of local acidosis on

the transcriptome of non-tumour cells, which can be exposed to these conditions during

inflammation, hypoxia, ischemia, fibrosis or metabolic derailment.

In the present study, we investigated the impact of metabolic acidosis on the transcriptome,

within the cell type-individual resilience range, on five non-tumour cell types of human and

rat origin. As our data show, there was no universal “acidosis-transcriptome”, i.e. a strong uni-

form pattern of transcriptional changes observed in all five cell types with their individual aci-

dosis resilience range. We could identify only four genes whose expression was sensitive to

acidosis in all cell types. Out of these four genes, only two responded concordantly.

The relevance of these two “acidosis” genes is most probably different. MYOM1 is a myo-

cyte specific protein and could be involved in myocyte responses to prolonged local acidosis,

e.g. during ischemia or inflammation. However, we could detect reasonable expression levels

(> 5 FPM) only in CCD1092Sk cells. Therefore, MYOM1 cannot be considered a prominent

acidosis response gene. By contrast, nuclear receptor coactivator 5 (NCOA5) is an ubiquitous

protein and is expressed as well as downregulated in all five investigated cell types. NCOA5

Table 2. Selected predicted canonical pathways for acidosis-induced gene expression changes (from Fig 6b). IPA calculated the Z-scores (positive and negative Z-

scores reflect predicted activation and inhibition, respectively) and p-values. “n/a” stands for undetermined Z-scores.

Canonical pathway Integrin signaling Paxillin Signaling

Human HK2 Z-score n/a n/a

-log(BHpvalue) - -

CCD1092Sk Z-score 2.00 2.11

-log(BHpvalue) 2.75 4.04

HAoSMC Z-score 2.40 1.27

-log(BHpvalue) 1.05 1.35

Rat NRK-52E Z-score -3.07 -1.21

-log(BHpvalue) 6.08 4.13

NRK-49F Z-score -3.22 -2.27

-log(BHpvalue) 3.75 3.51

https://doi.org/10.1371/journal.pone.0290373.t002
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acts as regulator of the transcriptional activity of e.g. the nuclear estrogen receptors alpha and

beta, and the retinoic acid-related orphan receptor-alpha [30, 45–47]. Thus, NCOA5 could be

a general transducer of acidic stress to the transcription regulation machinery. Reduced

expression of NCOA5 has been associated with carcinogenesis, glucose intolerance (T2D),

stem cell function as well as proinflammatory and profibrotic alterations of the micromilieu

[30, 48, 49]. Thus, it is conceivable that acidosis-induced downregulation of NCOA5 contrib-

utes to the pathological alterations during local extracellular acidosis.

Because the number of affected genes in the five cell types did not correlate with the degree

of acidosis, we exclude the possibility that the differences result from different pH-values

(which were all at the lower edge of the resilience range). The number of affected genes in

NRK-52E cells differs substantially from the one in NRK-49F cells, and the number in

HAoSMC from the ones in HK-2 and CCD1092Sk cells. Rather, the results of our quantitative

analysis support the hypothesis that there is no uniform acidosis-transcriptome but that the

responses to acidotic stress are species- and cell type-specific, in quantitative and qualitative

terms. This knowledge regarding species specificity is of relevance for translation efforts of

data from animal studies to humans and vice versa. With respect to acidosis stress in non-

tumour cells, transferability seems unfortunately to be limited.

The qualitative assessments of acidosis-induced transcriptome changes made by functional

enrichment analysis (g:Profiler) and upstream analysis (IPA) confirm the strong impact of cell

type and species on the acidosis responses. NUPR1, ATF4, NFE2L2 and CEBPB are part of the

prominent potential acidosis-effect regulators we identified. They are all well-known tran-

scriptional regulators that act in response to cell stress, mainly oxidative and endoplasmic

reticulum stress, and regulate cell survival by a mechanism called integrated stress response

[34–38]. Thus, a general response to acidosis may be the modulation of this integrated stress

response, a cytoprotective pathway initiated in response to exposure to various environmental

stimuli [39, 40], with ATF4 as central player [41]. The core event in this pathway is the phos-

phorylation of the eukaryotic translation initiation factor 2 alpha, eIF2α, which can lead to a

decrease in global protein synthesis and the induction of certain genes, including the transcrip-

tion factor ATF4. The induced transcriptome optimizes the response to stress as a function of

the cellular context as well as the nature and intensity of the stress. Furthermore, the TGF-beta

signalling and TP53 networks are predicted for all cell types with high adjusted p-values,

although Z-scores varied. By contrast, NFE2L2 was regulated significantly and concordant in

four cells types. The NFE2L2 signaling network acts cytoprotectively in a variety of stress situa-

tions and prevents damage from enhanced reactive oxygen formation. For example, NFE2L2

prevents damage progression after ischemia/reperfusion due to the upregulation of genes that

regulate redox balance and the supply of NADPH and other cellular fuels [50–53]. Further-

more, it has been shown to be acidosis-responsive [13]. NFE2L2 regulates genes that coordi-

nate homeostatic processes to prevent tissue damage, including protective enzymes such as

peroxidases, reductases and transferases [54]. Taken together, these analysis results indicate

that there possibly exists a small general set of acidosis-responsive cellular networks.

Although we have performed a comprehensive and in-depth analysis in five cells types

from human and rat, comprising epithelial and mesenchymal cells, it still represents a bioin-

formatic-derived, hypothesis-generating prediction. However, due to the large amount of data

included, it is a prediction with high evidence and therefore represents a robust basis for the

development of advanced working hypotheses. The next step will be the functional and biolog-

ical validation of the acidosis-responsive cellular networks, in parallel to the biochemical

assessment of NCOA5.

In summary, we provide strong evidences for a predominant cell type- and species-

specific acidosis response. Nevertheless, we still identified the integrated stress response
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(ISR), TGF-beta signalling, NFE2L2 and TP53 as four general acidosis-responsive cellular

networks. In addition, the regulator of the transcriptional activity, NCOA5, is a promising

candidate for a general acidosis-responsive gene. Future studies will have to extend our bio-

informatics analysis to cell biological validation experiments, to test the refined working

hypothesis.
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