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Abstract

Scalable software composition by reusing software assets is one of the major chal-
lenges in software engineering since many years. The goal of software product line
engineering is to provide a systematic approach for reuse for a set of similar pro-
grams, called a software product line (SPL). The programs of an SPL can be distin-
guished in terms of features, which describe commonalities and differences between
the programs. This allows SPL engineers to describe a program by listing its fea-
tures. There are several SPL development techniques that support composition of
assets to derive a tailor-made program according to a selection of required features.
A main difference between existing techniques is their support for different feature
binding times, i.e., the time at which a feature is included in a program. We can
distinguish between static and dynamic binding. While static binding occurs before
runtime (e.g., at compile-time), dynamic binding occurs during program start or in
a running program.

Both binding times have benefits and drawbacks. Static binding is used to gen-
erate tailor-made programs according to the requirements that are known at build-
time. By contrast, dynamic binding allows stakeholders to choose required func-
tionality at runtime. This provides high flexibility to tailor a program with respect
to available resources and user preferences on demand. For example, for a mobile
device we can decide at runtime of a program, which features are actually required
according to the location of the device. This reduces resource consumption since
only required features have to be loaded. Unfortunately, dynamic binding also has
a negative effect on resource consumption due to an overhead to support dynamic
changes. Static binding, on the other hand, avoids this overhead and enables opti-
mizations at the source code level (e.g., function inlining). However, this results in
limited flexibility because needed features have to be known before runtime. Hence,
different binding times are better suited for different application scenarios.

With current approaches for SPL development, a developer is forced to choose
between static and dynamic binding at development time. As a result, source code
developed for static binding cannot be easily reused for dynamic binding and vice
versa. Furthermore, in order to support different binding times for different features
of an SPL, programmers must use a mixture of several approaches. For example,
dynamically bound components can be statically customized by using a preprocessor-
based approach. This combines benefits of both approaches but still hinders reuse of
individual features for different binding times. Consequently, binding time flexibility,
i.e., the ability to flexibly choose the binding time after development is getting
increasing attention in research.

In this thesis, we present a combined approach that closely integrates static and



dynamic binding. Our approach is based on feature-oriented programming (FOP),
which enables developers to implement the features of an SPL in individual feature
modules. Based on FOP, we provide means to statically generate tailor-made pro-
grams or dynamically compose binary feature modules. However, exclusive use of
static or dynamic binding is not sufficient for every application scenario and limits
reuse of SPLs. To overcome this limitation, we enable SPL engineers to choose the
binding time per feature after SPL implementation. We achieve this with a flexi-
ble feature composition mechanism that generates dynamic binding units according
to the requirements of an application scenario. In contrast to existing solutions
that support different binding times, a binding unit integrates multiple dynamically
bound features that are always used in combination. At program startup or at run-
time, the binding units are composed according to the requirements of the user and
the dynamic context. We thus achieve high flexibility by using dynamic binding but
also support fine-grained customizations and optimizations by statically generating
binding units from a set of features. By using feature models for composing binding
units, we achieve composition safety at runtime and abstract from the actually used
binding units.
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Zusammenfassung

Ziel der Entwicklung von Softwareproduktlinien ist die systematische Wiederver-
wendung von Software innerhalb einer Menge ähnlicher Programme, einer sogenann-
ten Softwareproduktlinie. Die Programme einer Softwareproduktlinie unterscheiden
sich in ihren Merkmalen (engl. Feature). Ein Feature beschreibt eine Eigenschaft
eines Programms, die relevant für dessen Nutzer oder Entwickler ist. Mit Hilfe
von Features können Gemeinsamkeiten und Unterschiede der Programme einer Pro-
duktlinie systematisch erfasst werden. Ein Programm kann daher mit Hilfe einer
Liste seiner Features beschrieben werden. Es existiert eine Vielzahl von Techniken
zur Entwicklung von Softwareproduktlinien. Einige dieser Techniken erlauben es,
ein maßgeschneidertes Programm durch Komposition wiederverwendbarer Einheiten
entsprechend der benötigten Features zu erstellen. Ein wesentlicher Unterschied
zwischen verschiedenen Ansätzen zur Produktlinienentwicklung ist der Zeitpunkt,
zu dem die benötigten Features einer Produktlinie in einem konkreten Programm
gebunden werden, die sogenannte Bindungszeit (engl. Bindingtime) eines Features.
Bezüglich der Bindingtime kann zwischen statischem und dynamischem Binding un-
terschieden werden. Während statisches Binding vor der Programmlaufzeit erfolgt
(z. B. zur Übersetzungszeit), findet dynamisches Binding während des Programm-
starts oder während der Laufzeit statt.

Für den Nutzer eines Programms ergeben sich je nach verwendeter Bindingtime
verschiedene Vor- und Nachteile. Statisches Binding erlaubt es, maßgeschneiderte
Programme entsprechend der Anforderungen eines Nutzers oder eines Anwendungs-
szenarios vor der Laufzeit zu erstellen. Dies bedeutet aber auch, dass die notwendi-
gen Features bereits bei der Erstellung des Programms bekannt sein müssen. Im
Gegensatz dazu ist es mit Hilfe des dynamischen Bindings möglich, auch während
oder nach dem Programmstart zu entscheiden, welche Features in einem Programm
Verwendung finden. Dies erhöht die Flexibilität in Bezug auf die Maßschneiderung,
da auch Anforderungen berücksichtigt werden können, die erst zum Programmstart
oder zur Laufzeit bekannt sind. So kann etwa auf einem mobilen Gerät entsprechend
des Aufenthaltsorts entschieden werden, welche Features zu verwenden sind. Dies
wirkt sich zudem positiv auf den Ressourcenbedarf aus, da nur tatsächlich benötigte
Features geladen werden müssen. Dennoch wirkt sich dynamisches Binding teilweise
nachteilig auf den Speicherbedarf und die Ausführungsgeschwindigkeit von Program-
men aus. Dies hat verschiedene Ursachen. Zum Einen ergibt sich ein Overhead für
die Realisierung des dynamischen Ladens und Bindings von Features. Zum Anderen
verhindert dynamisches Binding statische Optimierungen des gesamten Programms
über mehrere Module hinweg. Statisches Binding hingegen vermeidet diesen Over-
head und ermöglicht beliebige statische Optimierungen, wie etwa das Funktion-



sinlining durch den Compiler. Aufgrund dieser Unterschiede wird statisches oder
dynamisches Binding je nach Anwendungsfall bevorzugt.

Bei Verwendung aktueller Ansätze zur Entwicklung von Produktlinien sind Ent-
wickler gezwungen, sich zwischen statischem und dynamischem Binding zu entschei-
den. Das Resultat ist eine eingeschränkte Wiederverwendbarkeit, da Programm-
code der für statisches Binding entwickelt wurde, nicht für dynamisches Binding
wiederverwendet werden kann. Ebenso kann Programmcode der für dynamisches
Binding entwickelt wurde nicht für statisches Binding verwendet werden. Zudem
erfordert die gleichzeitige Verwendung beider Bindingtimes die Verwendung unter-
schiedlicher Technologien zur Softwareentwicklung. So werden beispielsweise Kom-
ponentenansätze verwendet, wenn dynamisches Binding notwendig ist und diese mit
Präprozessoren kombiniert, um eine statische Maßschneiderung der Komponenten
zu erreichen. Dies vereint zwar einige Vorteile beider Ansätze, löst jedoch nicht
das Problem der Wiederverwendbarkeit und erhöht die Komplexität des Softwa-
reentwicklungsprozesses. Ziel neuerer Forschungsansätze ist daher die Verwendung
flexibler Bindingtimes, um Entwicklern das Festlegen der Bindingtime auch nach
der Entwicklung zu ermöglichen.

In dieser Arbeit wird unter Verwendung des Paradigmas der featureorientierten
Programmierung (FOP) ein Ansatz zur Integration statischen und dynamischen
Bindings präsentiert. FOP erlaubt es Entwicklern einer Produktlinie einzelne Fea-
tures in separaten Featuremodulen zu implementieren. Basierend auf einer solchen
Implementierung werden im Rahmen dieser Arbeit Ansätze zur statischen Gene-
rierung maßgeschneiderter Programme mit Ansätzen zur dynamischen Komposition
vereint. Die Integration beider Ansätze erlaubt es Softwareentwicklern nach der
Implementierung einer Produktlinie je Feature zu entscheiden, ob statisches oder
dynamisches Binding zu verwenden ist. Dies wird durch einen flexiblen Kompo-
sitionsprozess erreicht, der es ermöglicht, dynamische Bindingunits entsprechend
der Anforderungen des jeweiligen Anwendungsszenarios zu generieren. Im Gegen-
satz zu existierenden Ansätzen integriert eine Bindingunit mehrere dynamisch
gebundene Features, die zur selben Zeit verwendet werden. Zum Programmstart
oder zur Laufzeit wird eine Bindingunit als Ganzes entsprechend den Nutzeran-
forderungen und des aktuellen Kontext dynamisch gebunden. Durch die dynamische
Komposition von Bindingunits wird die vom Anwendungsszenario benötigte Flexi-
bilität erreicht, wohingegen die statische Generierung der Bindingunits feingranulare
Maßschneiderung und statische Optimierungen erlaubt. Durch die Verwendung von
Featuremodellen während der Komposition wird von verwendeten Bindingunits ab-
strahiert und eine gültige Komposition zur Laufzeit sichergestellt.
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1 Introduction

Building large software systems by composing independently developed modules
is one of the major challenges in software engineering [Big98]. Scalable composition
of software requires highly reusable software assets. Unfortunately, it is hard to
achieve a high degree of reuse combined with appropriate effort for composing the
assets. Due to an ever increasing complexity of software systems, insufficient reuse
leads to inadequate scalability of software development. Solving this scalability
issue is one of the challenges of software engineering research since decades [NR69].
Software product line (SPL) engineering aims at improving reuse by deriving a set
of similar programs from a common code base [CE00]. It tries to overcome limited
reuse and scalability issues by providing a systematic approach to reuse and by
automating composition of reusable assets. In this thesis, we aim at improving SPL
development techniques by increasing the flexibility of the automated composition
process. We provide a mechanism for feature composition that supports different
binding times. That is, we can compose reusable assets statically, before program
execution, dynamically, at runtime, or using a combination of both mechanisms.

1.1 Overview

Feature-oriented software development (FOSD) subsumes a number of software de-
velopment techniques that aim at improving reuse by using features to model, design,
and implement software [AK09]. Features often correspond to user requirements and
describe commonalities and variability of the programs of an SPL. Domain engineers
describe a concrete program by listing its features. An entire SPL (i.e., the set of
valid programs) can be described with a feature model [KCH+90]. A feature model
structures the features of an SPL and explicitly described dependencies between
features to avoid invalid feature combinations.

There are several different software implementation techniques that support
feature-oriented development of SPLs. Well known methods include compo-
nents [Sam97], preprocessors [KAK08], collaboration-based approaches [VN96a],
aspect-oriented programming (AOP) [KLM+97], generative programming [CE00],
and feature-oriented programming (FOP) [Pre97, BSR04]. In contrast to many other
approaches, FOP enables programmers to modularize the features of an SPL into
feature modules and to derive different programs by composing these modules. This
allows software engineers to generate a software system according to the actually
required features. In contrast to a component, a feature module implements a single
feature. It is composed with other feature modules to derive a concrete program.
The point in time at which a feature is bound (i.e., included in a program) is called
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binding time [CE00]. Depending on the underlying implementation technique, fea-
tures can be bound at all phases of the software life cycle [ABE+97]. Examples
are binding at compile-time or at runtime. We can group the binding times into
static binding before program execution (as in most FOP approaches) and dynamic
binding at load-time or in a running program (as in component-based approaches).

The decision whether to use static or dynamic feature binding, influences flexibil-
ity and resource consumption of a program. Static binding requires to know which
features are used already before deployment, but it enables optimizations at the
source code level (e.g., function inlining) [HC02, CRE08]. By contrast, dynamic
binding improves a program’s flexibility because users can choose required function-
ality after deployment. This enables composition depending on user requirements
at program startup or even according to the dynamic context at runtime. Further-
more, dynamic binding is needed in long-running systems that cannot be stopped
but have to adapt to changing requirements [HHPS08b]. However, dynamic binding
often increases resource consumption because it introduces an overhead to enable
program modifications at load-time or in a running program.

Components and the C preprocessor are frequently used SPL implementation tech-
niques that support dynamic and static feature binding respectively. As a result,
both approaches are favored in different domains and application scenarios. For
example, the C preprocessor is often used in the embedded domain since it does not
introduce any overhead at runtime. Combined with static code optimizations and
generative techniques, static binding enables optimizations across feature bound-
aries. It is thus appropriate for composing many small features, which is important
to achieve high customizability. By contrast, components are often too heavy weight
for small devices and are only used if resources are not highly restricted. As proposed
by Biggerstaff, dynamic binding should only be used at the level of subsystems, i.e.,
to compose large components [Big98]. This reduces the overhead of dynamic binding
and reduces the complexity of composition at runtime at the cost of customizability.

Consequently, programmers seek for approaches to combine different binding
times. For example, if a component approach is used for dynamic binding, the
C preprocessor can be used for static customization of the components. Unfortu-
nately, this mixture of different approaches forces SPL developers to choose the
binding of a feature already before development. Using different binding times for
a feature in different program variants is thus not possible. Moreover, source code
developed for static binding cannot be reused for dynamic binding and vice versa.
To avoid such problems, SPL development techniques should abstract from the used
binding time and the binding mechanism [Aßm03]. Hence, binding time flexibility,
i.e., the ability to choose the binding time after development, is getting increas-
ing attention [ASB+09, CRE08] and is already addressed by a number of scientific
approaches [CRE08, EC00, GS05, SE08b].

Besides flexibility, the binding time also influences development and maintenance
of SPLs. For example, component approaches force developers to modularize a soft-
ware system according to the units used for dynamic binding, i.e., the components.
That is, the binding mechanism dictates how a system must be decomposed into
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modules. This does not necessarily result in the best possible SPL design. For exam-
ple, small features cannot be modularized because this would degrade performance
inappropriately. Hence, a component-based decomposition sometimes contradicts
other important concerns of software development, such as implementation effort,
software evolution, program comprehension, etc. Moreover, decomposition into com-
ponents usually conflicts with the features of an SPL, which often cut across many
components [Gri00]. To overcome these limitations, we argue that programmers
should be able to modularize software independently of the code units used for
dynamic binding.

1.2 Contribution

The goal of this thesis is to provide a scalable approach for SPL development that
seamlessly integrates static and dynamic feature binding. By using FOP, we allow
developers to implement the features of an SPL once and use code transformations
to support static binding, dynamic binding, or a combination of both. We thus fill
the gap between approaches that support either static or dynamic binding and avoid
a mixture of different implementation techniques. We integrate static and dynamic
binding by generating dynamic binding units. Similar to components a dynamic
binding unit contains multiple features and is bound dynamically as a whole. In
contrast to components, a binding unit is generated on demand by statically com-
posing a set of features. This allows us to customize and optimize binding units
during product derivation. Compared to other approaches that combine static and
dynamic binding, we smoothly integrate both binding times: The features of a dy-
namic binding unit are statically bound with respect to other features of the same
binding unit but are dynamically bound with respect to the SPL (i.e., with respect
to the features of other binding units). We support the whole spectrum of binding
times from static binding of all features to purely dynamic binding by gradually
increasing the number of dynamically bound features. Overall, we provide means to
improve several aspects of SPL development:

Implementation: We simplify SPL development by providing a single implementa-
tion mechanism for features that abstracts from binding details.

Flexibility: We enable programmers to flexibly decide per application scenario which
binding time to use. With static binding, we achieve fine-grained customiz-
ability; with dynamic binding we provide flexibility at runtime.

Resources: We optimize resource consumption (e.g., CPU utilization and memory
consumption) by enabling programmers to define binding units per application
scenario and by dynamically composing binding units according to require-
ments at runtime.

Reuse: We improve reuse of features by enabling a fine-grained decomposition and
by supporting different binding times for the same feature.

3
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Safety: We support safe composition of features statically and dynamically by using
feature models for validating configurations. We reduce the probability of
runtime errors by using static binding within dynamic binding units.

Scalability: We achieve scalability of static and dynamic binding by applying our
approach to generate tailor-made components that can be used to build larger
software systems.

In the following, we provide a detailed overview of our contributions.

Static Feature Binding. Resource consumption and high customizability are es-
pecially important for the domain of embedded systems, in which resources such as
working memory, power supply, and computing power are limited. Applying FOP
to such domains means that we have to support fine-grained customization and that
we must not introduce any overhead with respect to resource consumption. How-
ever, there is less known about customizability and resource consumption of FOP,
e.g., compared to a preprocessor-based implementation of an SPL. We thus provide
an optimized composition mechanism for FOP that does not degrade performance
or memory consumption. In a case study, we evaluate the approach and compare
it to an SPL implementation with the C preprocessor. We show that decomposing
software into feature modules does not introduce any overhead with respect to per-
formance or application footprint. This allows us to apply FOP to a wide range of
application domains from embedded devices to large scale systems.

Dynamic Feature Binding. Based on FOP and static feature binding, we present
an extended approach that allows us to bind the features of an SPL dynamically. In
contrast to a mixture of different implementation techniques, we support static and
dynamic binding for the same implementation of a feature, i.e., for the same code
base of an SPL. Because the SPL configuration process is a complex task, a valid
configuration of statically bound features is usually enforced by tools [Bat05, pur04,
Kru08]. These tools consider configuration constraints, feature interactions, and
crosscutting concerns when deriving a concrete configuration. When dynamically
composing features, these feature dependencies have to be considered as well. Hence,
we have to derive a configuration at runtime that corresponds to the SPL’s feature
model. Because external tools are often inappropriate for this task, we provide a
generative approach for creating an SPL-specific infrastructure for instantiation and
validation of products at runtime.

Dynamic Binding Units. Existing approaches that support binding time flexibility
allow a feature to be bound either statically or dynamically. We go one step further
and compose a set of dynamically bound features statically into a single dynamic
binding unit. We generate a dynamic binding unit according to the requirements of
a user or an application scenario: Features that are always used in combination are
merged into a binding unit before compilation and can be statically optimized. In
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a running program, the generated binding units are composed according to the re-
quirements at runtime. Our approach provides the needed flexibility due to dynamic
binding and achieves high customizability and resource efficiency by statically gener-
ating binding units from smaller features. We integrate static and dynamic binding
also at a conceptual level by transforming the SPL’s feature model according to
generated binding units. The resulting model contains only dynamic variability and
we use it to achieve safe composition of dynamic binding units. We evaluate the
combined approach regarding resource consumption and flexibility to demonstrate
the benefits of dynamic binding units. We show that there is room for optimiza-
tions by allowing programmers to choose the optimal trade-off between static and
dynamic binding per application scenario.

Runtime Adaptation with Binding Units. Finally, we demonstrate the practical
relevance of our approach by the example of dynamic SPLs (DSPLs) [HHPS08a]. In
contrast to a traditional SPL, a DSPL adapts to dynamically changing requirements
by reconfiguring itself. We show that dynamic binding units allow us to integrate
both approaches by generating a DSPL from the features of an SPL. That is, we are
able to (1) statically select the functionality required for a DSPL, (2) choose which
features are bound statically and which dynamically, (3) define binding units for
dynamically bound features, and (4) compose and reconfigure a concrete program
at runtime. For autonomous reconfiguration, we present a feature-based approach
for (self-)configuration. Our approach not only smoothly integrates traditional and
dynamic SPLs but also improves runtime adaptation in DSPLs by reducing the
compositional complexity.

Scalability of Static and Dynamic Feature Binding. To achieve scalability of the
static and dynamic approaches, we analyze the applicability of FOP to develop com-
ponent SPLs. A component SPL is used to generate tailor-made components that
are composed to derive larger software systems. Using FOP for component develop-
ment, results in components with a variable interface. When using static binding,
clients have to handle reconfiguration of components and have to be able to use
multiple differently configured components at the same time. When using dynamic
binding, clients have to be able to use components that are reconfigured during
runtime. We thus introduce the notion of semantic and programming interfaces of
SPLs and suggest how to handle component variability in clients when using static
and dynamic binding.

1.3 Outline

We evaluate the concepts presented in this thesis with FeatureC++1, an extension
of the C++ programming language that supports FOP [ALRS05]. The following
chapters are structured as follows:

1http://fosd.de/fcc
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Chapter 2. In the next chapter, we provide background on SPL engineering and
feature binding. We focus only on domain and application engineering processes
that are addressed by the concepts we introduce in this thesis. Furthermore, we
provide an overview of binding times important for SPL development.

Chapter 3. We analyze the requirements for binding time flexibility in Chapter 3.
We review existing approaches for SPL development with respect to supported bind-
ing times and customizability. Finally, we derive detailed goals for this thesis.

Chapter 4. In Chapter 4, we describe optimizations for the static code generation
process in FeatureC++ to avoid any overhead for feature composition. By means of
a case study, we evaluate static binding in FeatureC++ and compare it to the C pre-
processor. We introduce SPL interfaces and propose solutions to handle variability
of statically generated components.

Chapter 5. For dynamic binding of feature modules, we present code transforma-
tions for FeatureC++ in Chapter 5. We support dynamic binding of the features
of an SPL for the same code base that is used for static binding. Furthermore,
we provide a mechanism for validating configurations in a running program by us-
ing feature models. Finally, we describe how client programs can handle dynamic
variability of component SPLs.

Chapter 6. We present an approach that integrates static and dynamic binding
in Chapter 6. We introduce a flexible composition mechanism that allows us to
generate tailor-made dynamic binding units. To preserve safe composition using
feature models, we transform an SPL’s feature model according to the statically
generated binding units. We evaluate the approach with two case studies.

Chapter 7. In Chapter 7, we provide an extension of the presented approach
that allows us to generate tailor-made DSPLs. With an approach for feature-based
(self-)configuration we propose a mechanism for reconfiguration of DSPLs that is
independent of the used binding units. In a case study, we demonstrate that dynamic
binding units can improve runtime adaptation in DSPLs.

Chapter 8. In the last chapter, we conclude and describe challenges to further
improve feature binding in SPLs and to closely integrate the presented work with
component-based software development.
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2 Software Product Lines and Feature
Binding Time

In this chapter, we provide background information with respect to software product
lines. We describe mechanisms and terminology of software product line engineering
and feature binding that are important for the concepts we introduce in this thesis.

2.1 Software Product Line Engineering

According to product lines in other industries, a set of similar software products
is called a software product line (SPL). Consequently, also the software industry
aims at a reduction of production costs by reusing software assets when building
the products of an SPL. This seems to be natural because the products of an SPL
share commonalities that offer reuse opportunities. However, reuse is not achieved
automatically; it requires a reuse-centric software development process, which is the
aim of software product line engineering [CE00].

2.1.1 Software Product Lines

Withey defines a product line as ”a group of products sharing a common, managed set
of features that satisfy the specific needs of a selected market” [Wit96]. The programs
of an SPL are thus distinguished in terms of features, which are (functional or non-
functional) properties that are relevant to some stakeholder [CE00]1. For example, a
product line of database management systems (DBMS) may consist of a full-fledged
DBMS for online transaction processing, a medium size DBMS for web databases,
and a small DBMS for mobile devices. We can distinguish the different systems
by listing their features, such as a feature for transaction management and a query
processor. Large features of an SPL can be described in terms of smaller features
such as the lock protocols used to implement a transaction management system.
This allows us to provide an arbitrary detailed description of the functionality and
the non-functional properties of an SPL.

In contrast to an SPL, a program family [Dij72b] (or more generally a product
family) is a set of programs that is built from a common code base. Withey defines
a product family as ”a group of products that can be built from a common set of
assets” [Wit96]. This definition does not apply to product lines whose products are
developed independently. However, it is possible to develop an SPL as a program

1See Section 2.1.4 for a definition of features as we use it throughout this thesis.
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family [CE00], which provides high reuse opportunities. For example, we can develop
the products of a DBMS SPL independently or by composing a set of software
components [DG01a]. In literature, the terms product line and product family are
often used interchangeably. In this thesis, we use the term software product line
(SPL) and assume that an SPL is developed as a family of programs. When it is
important to distinguish between SPL and program family we will make this explicit.

In contrast to the development process for single software products, the SPL devel-
opment process is highly focused on reuse of software assets to reduce development
costs. Parnas already recognized the importance of analyzing the commonalities
of a whole program family before focusing on individual family members [Par76].
Similarly, the SPL development process is usually split into domain engineering and
application engineering [CE00]. The aim of domain engineering is to analyze and
develop reusable assets for a particular application domain. These assets are used
to build concrete software products in the application engineering phase. In the
following, we introduce the basic concepts of domain and application engineering.
For a more detailed description we refer to [CE00] and [PBvdL05].

2.1.2 Domain Engineering

The domain engineering process can be split into analysis, design, and implementa-
tion [CE00].

Domain Analysis. The goal of domain analysis is to find commonalities and dif-
ferences of possible products of an application domain. While commonalities
among different products are the basis for reuse, the differences provide means
to distinguish the products from each other. In feature-oriented domain anal-
ysis (FODA) [KCH+90], a special form of domain analysis, commonalities and
variability of an application domain are described in terms of features. Fea-
ture modeling refers to the process of structuring an application domain by
describing relations between the features of a domain.

Domain Design. After defining commonalities and variability of the application do-
main, a domain engineer defines the architecture of an SPL [CE00]. In contrast
to the usual software design process, the variability of the product line has to
be considered because not a single product but a set of products has to be
derived from a common code base. Hence, the domain engineer has to define
how variability can be realized (e.g., using components). This also means that
the architecture itself may be variable and that different products of an SPL
may have a different architecture.

Domain Implementation. In the domain implementation process, an SPL engineer
implements reusable assets according to the developed SPL design. There are
several implementation techniques that can be used to implement the vari-
ability required for an SPL. Examples are the C preprocessor, components, or
feature-oriented programming, which is in the focus of this thesis.

8
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At all stages of domain engineering, different kinds of software artifacts are devel-
oped. This includes documentation, components, test cases, etc. In this thesis, we
address all phases of domain engineering but focus on domain implementation, i.e.,
the development of reusable software assets. We analyze different implementation
techniques, we show how feature-oriented programming can be used to implement
an SPL, and we provide flexible mechanisms for product derivation, which is part
of application engineering.

2.1.3 Application Engineering

The application engineering process is based on the software artifacts developed dur-
ing domain engineering. It starts with requirements analysis which maps customer
requirements to the features of an SPL, e.g., defined in a feature model [CE00]. The
resulting set of features defines the characteristics of the product to derive. In the
product configuration phase, the features are mapped to reusable assets developed
during domain engineering. Finally, an SPL instance (i.e., a concrete product) is
generated or composed from the selected assets. A product has to be customized
during application engineering if required features are not part of the SPL or if
there are no reusable assets that implement the required features. For example, new
assets may be developed for a customer of a DBMS who requires a special index
structure for fast data access. The new features and the corresponding assets may
be integrated in the code base of the SPL to reuse them in future products.

In the following, we focus on the product configuration and code generation phases
of the application engineering process. We present different code transformation
mechanisms that are based on the same code base but provide flexibility during
product derivation.

2.1.4 Feature-oriented Software Development

In this thesis, we focus on feature-oriented software development (FOSD) [AK09] to
develop SPLs. FOSD considers features as units for modeling and composition of
software. For SPL development this means that features are considered in all phases
of domain and application engineering. For example, FODA aims at analyzing the
features of a domain and feature-oriented programming (FOP) aims at implementing
these features in distinct feature modules [Pre97, BSR04]. In application engineering,
features are used for configuration and feature modules are composed when deriving
a concrete product from feature-oriented source code.

Features and Variation Points

Features and variation points are central parts of FODA but often defined differently.
In the following, we define both as we understand the terms in the context of this
thesis.

9



2 Software Product Lines and Feature Binding Time

Features. The term feature is used in many different ways in SPL engineering. In
this thesis, we use the definition of Czarnecki et al. [CE00]:

A feature is a distinguishable characteristic of a concept that is relevant
to some stakeholder of the concept.

This definition is based on the meaning of the term feature in Organization Do-
main Modeling (ODM) [SCK+96]. It goes beyond the definition of a feature by
Kang et al., who limit the scope of a feature to a user-visible characteristic of a
system [KCH+90]. According to the definition of Czarnecki et al., a feature is not
necessarily user-visible. It may thus include internal variability of a system such as
design decisions [PBvdL05].

The definition of a feature as a characteristic of a concept means that a feature
may describe functionality of a system such as the transaction management of a
DBMS, but it may also describe a non-functional property such as performance or
quality of service. In the context of FOP, a feature usually describes a unit of func-
tionality [AK09]. The distinction between functional features and non-functional
properties is important since we cannot implement every non-functional property
(and thus not every feature) in a modular unit. The reason is that some non-
functional properties only emerge due to the interplay of several software assets in
a concrete program and sometimes only during runtime [SRK+08]. They are also
called emergent properties of a system and are mostly not implemented as separate
modules in FOP.

Variation Points. In FODA, domain engineers analyze commonalities and vari-
ability of the products of an SPL. While commonalities are included in many or all
products, variable parts are only included in selected products. Hence, a product is
usually distinguished from other products in terms of the variable parts. For this
reason, variation points are used to document the variability of an SPL in variability
models [PBvdL05]. Pohl et al. define a variation point as follows [PBvdL05]:

A variation point is a representation of a variability subject within do-
main artefacts by contextual information.

Variation point and feature thus mean different things. Griss et al. distinguish be-
tween mandatory features, optional features, and variant features [GFdA98]. Vari-
ant features represent variation points; they describe alternative ways to configure
mandatory and optional features. Mandatory features are the same for a number of
products and optional features are not required for every product.

Feature binding. Feature binding defines when and how variant and optional fea-
tures are selected during the SPL life cycle [SCK+96]. The time at which a feature
is bound is called feature binding time [KCH+90]. We analyze the binding time in
detail in Section 2.3. Selecting the features of an SPL that are used in a concrete
program is also called product configuration and may be done manually or automat-
ically [CE00]. A concrete product can thus be described by a list of features.

10
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Figure 2.1: Feature model of a DBMS.

Feature Modeling

A feature model describes variability and commonalities of an SPL using features and
constraints between them [CE00]. A feature model can be visualized in a feature
diagram, which is a hierarchical representation of its features. An example of a
feature diagram for a DBMS is shown in Figure 2.1. Mandatory and optional features
are denoted by filled and empty dots. A mandatory feature must be included in a
configuration whenever its parent feature is included. Relations between features
and cross-tree constraints limit the variability of a feature model to ensure that only
valid configuration can be derived. An or -constraint defines that at least one of a
set of features must be selected, an alternative relation between a set of features
means that exactly one of them must be selected. Requires (a feature requires
another feature) and mutual-exclusion (two features cannot be used in combination)
constraints often suffice to describe cross-tree dependencies. However, arbitrary
propositional formulas may be used as constraints [Bat05]. Since the features of an
SPL can be bound at different points in time, a feature’s binding time is sometimes
annotated in the feature model [vGBS01].

Feature Interactions

The features of a program are often not independent, which may result in feature
interactions [BDC+89]. That is, two features that properly work when used inde-
pendently may exhibit unexpected behavior when used in combination. If possible,
interactions should already be recognized and documented at the modeling level to
be able to handle them at implementation level. There are several ways to handle
feature interactions in SPL development [LBL06a, AK09] and we provide a more
detailed overview about implementation of feature interactions in the next section.

2.2 Product Line Implementation

The reusable assets of an SPL are developed in the domain implementation phase of
domain engineering. Well known concepts for implementing SPLs are annotation-
based approaches such as preprocessors [Käs10], components [KCH+90, HC01],

11
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collaboration-based designs [VN96a], C++ templates [CE00], aspect-oriented pro-
gramming (AOP) [KLM+97], and feature-oriented programming (FOP) [Pre97,
BSR04]. In the following, we describe selected implementation techniques important
for this thesis.

2.2.1 Separation of Concerns

Separation of concerns is a principle important for software development and espe-
cially for implementing SPLs. It means to separate different concerns from each other
to be able to focus on selected concerns only, e.g., to be not disturbed by a particular
concern [Dij82]. In software development, a concern can be any important aspect
such as a feature of an SPL or a class in OOP. Dijkstra already recognized that sep-
aration of concerns is not always possible for all kinds of concerns at the same time.
This is also known as the tyranny of the dominant decomposition [TOHSMS99]. It
means that one usually has to decide which concern to separate, such as a class
in OOP, because different concerns are not independent. Parnas furthermore no-
ticed that when decomposing a system into modules (a.k.a. modularization) there
is usually a criterion that results in a more efficient decomposition than other cri-
teria [Par72]. Multi-dimensional separation of concerns (MDSoC) tries to separate
multiple concerns at the same time by describing the concerns as different views on
the system [TOHSMS99].

A feature of an SPL can also be seen as a concern that can be separated from
other features (i.e., other concerns), which is the aim of FOSD. This is sometimes
hard to achieve because individual features often crosscut the entire implementation
of a program. For example, a feature usually crosscuts multiple classes in OOP.
In general, a concern that cuts across other concerns is called a crosscutting con-
cern [KLM+97]. This also applies to a feature of a program that crosscuts other
concerns such as several classes or even other features. For example, a feature
TransactionManagement of a DBMS often crosscuts large parts of the source
code of a DBMS because it cannot be aligned with other concerns of the software
such as the classes used to implement it.

2.2.2 Annotative and Compositional Approaches

Source code annotations are used to implement SPLs by annotating the code that
implements a particular functionality of an SPL. It is called annotative approach
for implementing variability [Käs10]. Examples for annotative approaches are the
C preprocessor [LAL+10] and the CIDE approach of using colors to annotate code
fragments [Käs10]. In contrast to annotative approaches, component-based software
engineering (CBSE) [KCH+90, HC01] and FOP aim at modularizing functionality
in reusable entities that are composed to yield a tailor-made program. They are
called compositional approaches for SPL development.

Modularization is understood as an important factor for improving program com-
prehension [Dij76, Par79], reuse [Big98], and other aspects of software development.
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In SPL development, modularization of functionality is important for composing
different programs from a common code base. First, when we are able to implement
an SPL in separate modules, product derivation means composition of these mod-
ules. Furthermore, when a module implements exactly one feature, composition of
the modules corresponds to composition of features (which is the aim of FOP) and
we have direct control of the features in a program.

With respect to modularization, the C preprocessor and components mark two
ends of the spectrum of implementation mechanisms for SPLs. While annotative ap-
proaches do not aim at modularization of functionality, components are stand-alone
units of reuse. CBSE thus allows for developing SPLs by separating functionality
of a system in reusable modular components [HC01]. A component usually en-
capsulates multiple features [LK06]. By contrast, annotative approaches allow for
implementing an SPL by annotating the features of an SPL. In the following, we
describe the general concepts of annotational and compositional approaches with
the example of the C preprocessor and CBSE. We finally describe how FOP is used
for SPL development.

2.2.3 The C Preprocessor

Berkeley DB2 and SQLite3 are two examples for DBMS that provide customizability
of application functionality using the C preprocessor. A preprocessor operates on
the source code of a program in a preprocessing step of the build process. The C
preprocessor is a text-based preprocessor and enables transformations of a program
such as removing annotated parts of the code or replacing code fragments with more
specialized variants.

The C preprocessor adds preprocessing functionality to the C programming lan-
guage [KR88]. Since it is integral part of every C/C++ compiler it can be easily
used for software development with C or C++. It is commonly used to customize a
program with respect to the underlying operating system, compiler, and hardware,
i.e., to different execution environments [Fav96]. Such programs can also be seen
as SPLs that implement external variability of the environment. Customizations
with respect to external variability are even important for platform independent
languages. For example, development of Java applications for embedded systems is
not possible without considering restricted resources and very heterogeneous hard-
ware. This often means that code has to be customized for different platforms (e.g.,
using the Antenna preprocessor4).

Preprocessors are especially used for SPL development in the embedded domain
because they provide a simple mechanism for implementing variability without any
overhead at runtime. That is, annotations are used to mark code that implements
functionality important for a specific variant of the SPL [Käs10, LAL+10]. Especially
for the C preprocessor this is an error-prone process. Syntactic correctness and type

2http://www.oracle.com/technetwork/database/berkeleydb/
3http://www.sqlite.org/
4http://antenna.sourceforge.net/wtkpreprocess.php
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1 #ifdef DEBUG

2 #define DEBUG_LOG(args) printf(args)

3 #define PRECOND(exp) i f (!exp) {\

4 DebugBreak (); return fa l se ; };

5 #else
6 #define DEBUG_LOG(args)

7 #define PRECOND(exp) i f (!exp) return fa l se ;

8 #endif

9 class DB {

10 bool Put(Key* key , Value* val) {

11 PRECOND(key!=NULL);

12 DEBUG_LOG("DB.Put",key);

13
14 #ifdef TRANSACTION // f ea tu r e Transaction
15 Txn* txn = BeginTransaction ();

16 #endif
17
18 ... // data s to rage o f key va lue pa i r s
19 }

20
21 #ifdef TRANSACTION // f ea tu r e Transaction
22 Txn* BeginTransaction () { ... }

23 #endif
24 };

Figure 2.2: C++ source code of class DB of a DBMS with preprocessor-based anno-
tation of feature Transaction.

safety can be enforced with a special preprocessor that supports only disciplined
annotations and provides a type system [Käs10].

Preprocessors thus provide means for a feature-oriented implementation of an SPL
by annotating the features in the source code. During product configuration, the
feature selection is mapped to a set of annotated code fragments that remain in the
code. Code fragments that are annotated but have not been selected are not included
in the generated program (a.k.a. conditional compilation). An excerpt of a DBMS
product line implemented with the C preprocessor is depicted in Figure 2.2. Shown is
a class DB that is annotated with #ifdef preprocessor statements. Code surrounded
by annotations is only included in a concrete program when the according variable
(e.g., TRANSACTION) has been defined. We can thus derive variants of our DBMS with
or without the Transaction feature. Such annotations can be used to annotate
arbitrary code fragments such as single statements (Lines 14–16), whole methods
(Lines 21–23), or classes.

Another mechanism used for SPL development are macros, which are expanded
by the C preprocessor with code defined at a different place. For example, macro
DEBUG LOG in Line 12 of Figure 2.2 refers to a macro that is expanded according
to its definition in a different file (Lines 2 and 6). By combining macros and with
conditional compilation, a programmer can provide different definitions of a macro
that depend on conditional preprocessor statements. Actually, this is the way pre-
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1 bool Precond(bool condition) {

2 #ifdef DEBUG

3 i f (! condition)

4 DebugBreak ();

5 #endif
6 return condition;

7 };

8 class DB {

9 bool Put(Key* key , Value* val) {

10 i f (! Precond(key!=NULL))

11 return fa l se ;

12 ... // ac tua l data s to rage
13 }

14 };

Figure 2.3: C++ source code of class DB when replacing macros with method calls.

processor statements should be used in practice to increase readability of the source
code [SC92]. In our example, the macro expands to a method for logging informa-
tion in a debug variant of the program. In a release variant it expands to an empty
statement, which removes the code from the program completely. In contrast to a
method, C preprocessor macros do not provide their own scope of execution and can
introduce statements that modify existing variables or change the control flow.5 For
example, macro PRECOND in Line 11 aborts execution of the method by introducing
a return statement when the given condition is not satisfied (Lines 3 and 7). When
replacing the macro with a method (as shown in Figure 2.3), we have to introduce
the conditional and the return statement around the method call (Line 10). That
is, we have to repeat the same code (if (...) return ...) at every place we want
to achieve this behavior, which is error-prone and degrades maintainability of the
code.

Code Reuse. Annotations are especially important for SPL development because
they can be used to remove source code that is scattered across the whole program
depending on a configuration option. This enables a programmer to write source
code that can be configured with respect to crosscutting concerns by enclosing all
code of that concern with the same annotation. One of the drawbacks of this solution
is that the annotated code is scattered all over the program. This negatively affects
software development in general [Fav96] and especially SPL development [Käs10].
We will analyze this in more detail in Chapter 3. At this point, note that annotations
decrease reuse possibilities because the annotated code can only be used in the
context of the code it is embedded in.

Macros, on the other hand, provide better reuse capabilities. They can be defined

5A macro may unintentionally modify existing variables, which can be avoided with hygienic
macros [KFFD86]. Here we do not consider this issue and only focus on modifications of the
control flow that can be useful in several situations.
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in separate files and reused in any place in the source code. The reuse mechanism
is similar to a function call but it does not result in additional code for the call
itself because the expanded macro is inserted in-place. This does not introduce an
overhead for macro execution but may increase the code size because the macro
code is copied to all places where it is used. Macro expansion may also reduce the
code size when the macro is empty or when the expanded code is used only once.
Hence, macro expansion is similar to method inlining accomplished by compilers.
We provide a comparison of macros to other mechanisms for SPL development in
Chapter 3. For a more detailed comparison of annotation based approaches and
compositional approaches we refer to the work of Kästner [Käs10].

2.2.4 Component-Based Software Engineering

In contrast to a set of source code fragments annotated with the C preprocessor, a
component is a self-contained software artifact [Sam97]. Szyperski defines a compo-
nent as follows [Szy02]:

A software component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to composition by
third parties.

According to this definition, a component can be deployed independently, which is
a main difference to a feature implemented with the C preprocessor. Hence, com-
ponents are physically separated code units and thus comply with the principle of
separation of concerns. The components are connected via interfaces [PBvdL05]. A
component defines a required interface and a provided interface to describe which
functionality the component uses and which functionality the component offers to
other components. There are a number of different kinds of components that com-
ply with the component definition above. It ranges from very large to very small
components. For example, a DBMS can be seen as a component that is executed as
a separate process and accessed via SQL. The DBMS is composed with other large
components, e.g., to build an even larger banking software system. But a compo-
nent may also be a single class that provides an interface and can be composed with
other classes, a.k.a. code-level components [MDK96]. In this thesis, we focus on
components that are implemented as a single class or a cluster of classes.

The component concept is often associated with a component model such as
Common Object Request Broker Architecture (CORBA), Component Object Model
(COM), Enterprise Java Beans (EJB), which manages composition of compo-
nents [Sam97]. In the following, we do not limit the term component to components
that are used with an object model, which is only a special case. When we do
not mention a particular composition mechanism, any mechanism including existing
component models may be used.
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Class DB

1 class DB {

2 virtual bool Put(Key* key , Value* val) {...}

3 };

Class DB TXN

4 // f ea tu r e Transaction
5 class DB_TXN : public DB {

6 Txn* BeginTransaction () { ... }

7
8 virtual bool Put(Key* key , Value* val) {

9 // t ransac t i on s p e c i f i c code
10 Txn* txn = BeginTransaction ();

11 bool res = DB::Put(key ,val);

12
13 i f (res)

14 txn ->Commit ();

15 else
16 txn ->Abort ();

17 return res;

18 };

19 };

Figure 2.4: C++ source code of extension of a class DB of a DBMS via inheritance
and virtual methods.

Component Implementation with OOP. There are several ways to implement a
component. In the following, we describe how components can be implemented with
OOP. As an example, we use a DBMS component and a component for transaction
processing, i.e., a component that implements feature Transaction of Figure 2.1.
Implementing a single feature with a component is only one way to develop an SPL
with a component-based approach. There are more possibilities for mapping features
to components [KCH+90, TRCP07].

Our example DBMS provides core functionality such as a method Put for storing
data as shown in Line 2 of Figure 2.4. We omit any interface description and only
provide the implementation of a class DB, which implements the DBMS core. In
Lines 4–19, we depict the transaction component, implemented by extending class
DB of the DBMS component.

In our example, the transaction component encapsulates data storage with a trans-
action. It extends method Put (Line 8) and adds transaction specific code before
and after the original method. A client can call the virtual method of class DB and
the correct implementation will be chosen according to the actual type of the object
(i.e., method DB::Put or method DB TXN::Put).

The implementation of the transaction component in Figure 2.4 is achieved via
subclassing DB and overriding its virtual method Put. Whenever a client needs a
DBMS with transaction management it thus has to use an instance of class DB TXN

instead of an instance of class DB. However, this means that the client has to create
the corresponding instance when needed. This can be achieved with a component
approach by using the abstract factory design pattern to instantiate every class that
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may be extended by another component [GHJV95]. An extending component can
override the factory methods to create the correct class instance. However, it can
be laborious and error-prone to achieve consistency of class instantiations.

Subclassing has to be avoided when the extended classes are unknown (i.e., when
only a set of class interfaces are provided). This can be achieved with the decorator
design pattern [GHJV95], which uses delegation to connect independently developed
class fragments. In combination with factory methods component implementation
can get very complex.

In our example, the extension mechanism is based on late binding of virtual meth-
ods. Depending on the programming language and runtime environment, the correct
method implementation will be determined at method execution time (e.g., in Java)
or during class instantiation (e.g., in C++ stored in virtual function tables) [Lip96].
However, it is also possible to use static binding for component composition (e.g.,
binding at link time). We present details about the binding time in Section 2.3.

Hook Methods. When using OOP to implement a component, the points at which
a component can extend an existing class are the public and protected methods of
that class. Using only public and protected methods as extension points reduces the
complexity of a component’s interface but is sometimes too restrictive. For example,
it is not possible to introduce statements into an existing method as it is possible
with the C preprocessor. To provide a more fine-grained extension mechanism,
programmers use empty hook methods to define additional extension points, e.g.,
using the template method design pattern [GHJV95, HK00]. In Figure 2.5, we depict
an example of a hook method BeginPut defined in class DB. By calling a hook, the
programmer of a class allows others to introduce code into the methods that call the
hook (Line 6 in Fig. 2.5); by overriding the hook method in a subclass (Line 13), a
component defines additional code that is executed when the hook is called.

Implementing Crosscutting Concerns. A component usually implements one or
more features [KCH+90, LK06] and a feature may be scattered across many com-
ponents [KLM+97]. Consequently, there is an m-to-n mapping of features to com-
ponents. Nevertheless, it is often possible to implement a single feature with a
component, as in our DBMS example. This is trivial when the separation of other
features is not required, but it can get complicated when we have to modularize
crosscutting features.

When two features cut across each other, it is hard to implement both in distinct
components that can be deployed independently. The reason is that features may
interact and special interaction code is needed to ensure proper behavior of both
features in combination. This additional glue code or derivative code [LBN05] must
be executed only when both features are deployed. A solution is to include the
interaction code in one of the components and execute the code only when both
components (i.e., both features) are active. This, however, does not comply with the
principle of separation of concerns. Another solution is to implement the derivative
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Class DB

1 class DB {

2 //empty hook method
3 virtual void BeginPut(Key* key , Value* val) { }

4
5 virtual bool Put(Key* key , Value* val) {

6 BeginBut(key ,val); // c a l l hook
7 ... // ac tua l method impl .
8 }

9 };

Class DB TXN

12 class DB_TXN : public DB {

13 virtual void BeginPut(Key* key , Value* val) {

14 ... // t ransac t i on s p e c i f i c code
15 };

16 };

Figure 2.5: C++ source code of class DB that defines a hook method and class DB TXN

that overrides the hook.

code in a separate component. Either solution causes a high implementation effort
to realize component composition. Furthermore, the solutions are error prone since
the programmer has to ensure that the code is executed whenever the corresponding
components are used. In Section 2.2.5, we show how composition of interaction code
is automated in FOP and in Chapter 6, we demonstrate how we can automatically
apply interaction code also when using dynamic binding.

2.2.5 Feature-oriented Programming

Feature-oriented programming (FOP) is a programming paradigm that aims at mod-
ularizing the features of a program [BSR04, Pre97]. As component-based develop-
ment, FOP is also a compositional approach. In contrast to other SPL implementa-
tion mechanisms, its goal is to generate programs by selecting the required features.
That is, there is ideally a one-to-one mapping of features in a domain model and
corresponding feature modules (i.e., the implementation units). This not only sim-
plifies the product derivation process but also improves the traceability of a feature
to its implementation, maintenance, etc. [AMGS05, AK09].

Feature Modules

A feature module implements a feature as an increment in program functional-
ity [BSR04]. That is, a feature module extends a base program with additional
code similar to what Parnas proposed for program family development [Par76]. In
FOP, feature modules are developed and maintained separate from each other to
comply with the principle of separation of concerns [Dij82]. When composing a
program, selected feature modules are usually applied in a step-wise manner using a
program generator. The generator composes a feature module with a base program
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Figure 2.6: Generating two different DBMS by composing feature modules with
FOP.

which results in a modified program that is the input for the next composition step.

FOP also supports implementing alternative features to generate programs spe-
cialized for an application scenario and a user’s requirements. To generate a tailor-
made program a user selects a subset of the available features. In contrast to
inheritance-based extension of OOP, feature modules can be freely composed (ac-
cording to domain and implementation dependencies) to derive different programs,
which is the reason for the scalability of the approach. While inheritance requires
defining the class that is extended already at development time, a feature module
may be composed with other modules that are not known during development (as
also supported by mixin-based inheritance).

A simple example of a feature-oriented DBMS design is given in the left part of
Figure 2.6. It shows a base program and two features QueryEngine and Transac-
tion. Basic database functionality is implemented in module Core and is extended
by modules QueryEngine and Transaction that implement a query processor
and a transaction management system of a DBMS. Based on the modular imple-
mentation of features, different variants of concrete DBMS (right part of Figure 2.6)
can be generated automatically by composing the required feature modules. In our
example, we can generate a simple DBMS only consisting of the Core implemen-
tation, variants that include either QueryEngine (DBQe) or Transaction and a
variant that includes all features (DBQeTxn).

Decomposition of Classes

In object-oriented program code, classes and methods are the primary concerns for
decomposing a system. However, a feature usually crosscuts several classes. Con-
sequently, the classes have to be decomposed with respect to the features of the
software when applying FOP on top of OOP. In Figure 2.7, we depict a decom-
position of three DBMS classes DB, Txn, and QueryProcessor with regard to the
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Figure 2.7: Decomposition of classes (dashed rectangles) along features (horizon-
tal layers). Resulting base classes and refinements shown as white
rectangles.

features of Figure 2.6. That is, for every class, basic functionality is separated
from feature-specific functionality. Classes in module Base are refined in features
QueryEngine and Transaction, which we denote with an arrow. In this ex-
ample, the basic implementation of class QueryProcessor is refined to implement
feature Transaction. By contrast, class DB is refined in two features. Feature
Transaction cuts across the entire source code of the DBMS.

Implementing Feature Modules

There are several approaches to implement an SPL with respect to features. As a
precursor of FOP, the language P++ (an extension of C++) [BDG+94] is based
on the GenVoca idea of composing layers to build large software systems [BO92].
Composition of roles with C++ templates and mixin-based inheritance [BC90] was
proposed by VanHilst and Notkin [VN96b] and builds on collaboration-based or role-
based designs [RAB+92]. Mixin-based inheritance is similar to multiple inheritance
but avoids some of its problems by linearizing the inherited base classes. Mixin
layers combine large scale composition of GenVoca layers with mixin-based inheri-
tance for the classes within a layer [SB98, SB02]. This enables composition of entire
collaborations (i.e., layers) including the contained roles. A mixin layer is imple-
mented as an OO class that extends another layer using mixin-based inheritance.
The inner classes of a mixin layer correspond to FOP’s class refinements or the roles
in collaboration-based designs. An inner class of a mixin layer is composed with
an inner class of the base layer using inheritance of nested classes. In current FOP
approaches (e.g., in AHEAD [BSR04]), the implementation of a feature has been
simplified by removing the enclosing classes that represent features. One reason is
that a feature not only contains program code but also several other software ar-
tifacts such as documentation, test cases, etc. This concept is implemented in the
AHEAD tool suite (ATS)6, FeatureC++7, and FeatureHouse8. These implementa-

6http://www.cs.utexas.edu/users/schwartz/ATS.html
7http://fosd.de/fcc
8http://fosd.de/featurehouse
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Feature Core

1 class DB {

2 bool Put(Key& key , Value& val) { ... }

3 };

Feature QueryEngine

4 refines class DB {

5 QueryProcessor queryProc;

6 bool ProcessQuery(String& query) {

7 return queryProc.Execute(String& query);

8 }

9 };

Feature Transaction

10 refines class DB {

11 Txn* BeginTransaction () { ... }

12
13 bool Put(Key& key , Value& val) {

14 ... // t ransac t i on s p e c i f i c code
15 return super::Put(key ,val);
16 };

17 };

Figure 2.8: FeatureC++ source code of class DB of a DBMS.

tions support composition of different kinds of software artifacts and use a folder
of the operating system to aggregate all artifacts of a feature. In the following, we
use FeatureC++ to explain the concepts of feature composition for object-oriented
classes.

FeatureC++

With FeatureC++ [ALRS05], we developed an FOP language extension for the C++
programming language [ALRS05, Ros05, ALS06]. An excerpt of the FeatureC++
source code of class DB is shown in Figure 2.8. The basic implementation (Lines 1–3)
includes functionality needed for every DBMS variant. It is extended by refinements
in features QueryEngine and Transaction (Lines 4–17), declared by keyword
refines. In FeatureC++, refinements can introduce new methods (Lines 6 and 11)
and extend existing methods (Line 13). In method extensions the refined method is
invoked using the keyword super (Line 15). Based on this decomposition of classes
and a user’s selection of features, classes are composed to include only functionality
necessary for a specific DBMS. Code that is not needed is not included in a composed
program. For example, the code in Lines 4–9 is not present in a DBMS if feature
QueryEngine is not selected. As a result of the feature selection process, the code
size of class DB is reduced.

FeatureC++ source code is processed by the FeatureC++ precompiler. It uses
a source-to-source transformation from FeatureC++ code into C++ code which is
then compiled by an ordinary C++ compiler. In Figure 2.9, we show an example for
the code transformation of class DB (cf. Fig. 2.8) using UML. Depending on the fea-
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(a) FeatureC++ code of class DB

(c) C++ code of class DB in a DBMS
with query processing and transactions

(b) C++ code of class DB in a simple
DBMS

QUERY

ENGINE

BASE

TRANSACTION

+Put(key : Key&, val : Value&) : bool
+ProcessQuery(String& query) : bool
+BeginTransaction() : TXN*

DB

+Put(key : Key&, val : Value&) : bool

DB

+Put(key : Key&, val : Value&) : bool
+BeginTransaction() : Txn*

DB

+Put(key : Key&, val : Value&) : bool

DB

DB

+ProcessQuery(String& query) : bool

-queryProc : QueryProcessor

-queryProc : QueryProcessor

Figure 2.9: FeatureC++ code transformation: UML representation of class DB in
FeatureC++ (a) and two different variants of the composed class DB in
C++ (b and c).

ture selection, different variants of class DB can be generated. For example, a simple
variant (Figure 2.9 b) is derived by using only the implementation defined in module
Base and a full variant, including features QueryEngine and Transaction, is
derived by composing all refinements into a single class (Figure 2.9 c).

Virtual Classes

Virtual classes [MMP89] can also be used to implement the features of an SPL.
As supported by CaesarJ9 [AGMO06], the implementation of an SPL with virtual
classes is based on nested classes and mixin composition according to the mixin
layers approach. A virtual class is a nested class whose type depends on the type of
an object of its enclosing class. As in approaches for static mixin layer composition,
the enclosing class represents a feature and inner classes represent base classes or
refinements of an SPL. With mixin-based inheritance, an enclosing CaesarJ class
composes multiple base classes including their inner virtual classes. The inner classes
inherit from the inner classes of the parent layers as in static mixin composition.
Similar to FeatureC++, CaesarJ allows a programmer to implement the inner virtual
classes in separate files. The corresponding enclosing class (which corresponds to
a feature) only has to be referenced similar to a Java package in the beginning of
the file. This simplifies implementation of large features that contain many classes.
Other approaches that support virtual classes are Delegation Layers [Ost02] and
Object Teams [Her02].

9http://caesarj.org
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Implementing Feature Interactions with FOP

Features often depend on the functionality provided by other features. They may
also interact with each other, which can result in unexpected behavior of a pro-
gram [CKMRM03]. These feature interactions can often not be avoided but have to
be handled in some way at the implementation level.

As an example for interaction of two features, consider the DBMS from Figure 2.7.
Features QueryEngine and Transaction can be used independently, but they in-
teract if using both: the query engine has to parse transaction queries and prepare
creation of a transaction. Obviously, this interaction is required to support pro-
cessing of transaction queries. When both features are used separately, the code
for processing transaction queries is not needed. When the features are used in
combination special interaction code, also called a derivative between the features,
is needed [LBL06a]. Hence, a developer may create a special module to implement
the derivative code in the same way as a usual feature module. When composing
a program, the derivative is only included in the program when both features are
included as well.

The example above illustrates interaction between two features. However, there
may also be interactions between more than two features which results in higher
order derivatives [LBL06a]. That is, the derivative is only required when three or
more features are used at the same time.

2.3 Feature Binding Time

In this section, we provide an overview of feature binding times important for SPL
development. We define static and dynamic binding as we use them in the context
of this thesis and present mechanisms to implement different binding times.

2.3.1 Binding Time

The term binding time is used in programming languages and SPL engineering in a
similar way. In object-oriented programming, we distinguish between early binding
and late binding of methods. Late binding is used when the compiler cannot derive
the exact type of an object, which results in binding of method calls at load-time
or runtime. Similarly, a feature can be bound at different points in time. When
it is known before program start, which features are required in a program, static
binding can be used. Dynamic binding must be used when this is not known.

There are different possibilities to categorize the binding time of features in SPLs.
For example, Kang et al. distinguish between binding at compile-time, load-time,
and runtime [KCH+90]. According to their definition, load-time binding means that
the feature binding does not change after binding, whereas it may change afterwards
when using runtime binding.

As shown in Figure 2.10, we can distinguish even more binding times. For ex-
ample, we can differentiate between binding in a preprocessing step (i.e., before
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program
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linking

dynamic
linking
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Figure 2.10: Binding times of selected mechanism used in software development.

compilation), binding at link-time (i.e., after compilation but before load-time), or
at other phases of the software life cycle [ABE+97]. The different binding times
may be important to a particular SPL, application scenario, or user requirements.
Simos et al. generalized these different possibilities for feature binding using the
term binding site [SCK+96]. A binding site represents the point in the life cycle of
an SPL at which a feature is bound plus additional binding context.

Similar to Lee et al. [LM06], we distinguish between static and dynamic fea-
ture binding. The distinction between static and dynamic binding has the most
far-reaching consequences, e.g., with respect to resource consumption. Further-
more, different kinds of optimizations are possible when static or dynamic binding
is used [ABE+97]. We thus use the following definitions:

Static Feature Binding: Static binding means that features are bound before pro-
gram execution (e.g., in a preprocessing step).

Dynamic Feature Binding: Dynamic binding means binding in a starting (load-
time) or a running program (runtime) and can depend on the dynamic context.

In Chapter 5 and 6, we provide basic mechanisms to support dynamic binding in
general. However, we focus on binding at load-time, which requires a subset of the
needed binding techniques. In Chapter 7, we present extensions required for feature
binding at runtime.

2.3.2 Implementing Different Binding Times

Concepts of the underlying SPL development techniques and software composition
techniques (e.g., the C preprocessor or components) are used to realize static and
dynamic binding of features (cf. Figure 2.10). These concepts also have an influence
on non-functional properties like runtime behavior or memory consumption of an
SPL. In the following, we describe how to realize different binding times with the
C preprocessor, procedural programming, and object-oriented programming. We
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focus on compiled programming languages and do not consider dynamic languages
that usually support dynamic binding only.

In Figure 2.10, we summarize the implementation mechanisms and the binding
times they support. We selected binding times that are important for the imple-
mentation techniques and SPL development. In practice, there may be even more
binding times and the actually supported binding time depends on several factors,
such as the programming language and the execution environment. Everything
shown on the left of program start in Figure 2.10 is static binding; dynamic binding
is shown on the right side of the figure. In the following, we describe binding details
specific to the mechanisms that can be used for implementing SPLs.

The C Preprocessor

The C preprocessor supports static binding by removing annotated code fragments
(cf. Sec. 2.2.2). In contrast to approaches that support dynamic binding, prepro-
cessing, and thus the feature binding, occurs before compilation and does not hinder
further optimizations by the compiler and the linker. The C preprocessor supports
static customization with #ifdef statements and macros:

• Macros allow a programmer to define code that is directly inlined (called macro
expansion) instead of calling a regular method. It allows to avoid repeating the
implementation of all kinds of code elements in different places (e.g., defining
the same variables multiple times) and thus allows to reduce code replication.

• Code annotated with #ifdef statements is only included in a program if ac-
tually needed.

Both concepts can be combined by annotating different macro definitions with #ifdef
statements, as described in Section 2.2.3.

Since preprocessing occurs before compilation, the C preprocessor enables a pro-
grammer to implement variability without loss of performance. This even applies to
crosscutting features like a transaction management system of a DBMS. However,
macro expansion may also result in code replication: macros that are expanded in
several places may result in a copy of the same code fragment. For large amounts
of repeated code there may be a significant increase in binary size. In contrast,
inlining of a compiler is usually based on heuristics to decide whether to inline a
code fragment or not. Repeated inlining does not only increase the binary size of
a program. If the size of the executable code is too large to fit into the cache of a
CPU, it may degrade performance because the code has to be frequently loaded from
working memory. Hence, macro expansion may also increase memory consumption
and degrade performance.

Procedural Programming

Procedural programming aims at structuring the source code into procedures or
functions that perform a particular task such as an algorithm [Str94]. In com-
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piled programming languages, function calls are bound at different stages either
at compile-time (by the compiler), at link-time (by the linker), or at runtime (by
the runtime environment; cf. Fig. 2.10). In the following, we describe binding
mechanism available in compiled programming languages that support procedural
programming such as C/C++ and Pascal.

Compilation. After preprocessing steps, a program is compiled and statically linked
to combine binary code units. At compile-time, the compiler resolves function calls
within a compilation unit. That is, all function calls that refer to a function definition
in the same compilation unit are either inlined or a function call in binary code is
generated. For functions that are defined in a different compilation unit, the compiler
generates placeholders for function invocations that are filled by the linker.

Static Linking. After compilation, a linker combines the object files generated by
the compiler. At this time, function calls across object files are resolved. For func-
tions that are defined in dynamically linked libraries (DLLs), the linker generates a
table of imported functions. At runtime, the table stores the addresses of dynami-
cally imported functions. Function calls that refer to such a function are statically
bound to the corresponding entry in dynamic function table.

Dynamic Linking. The table that stores dynamically imported functions is filled
when loading a DLL. Due to the indirection of the import address table, calls to
functions imported from a dynamically linked library are usually more expensive
than a direct function call.

Function pointers. Procedural programming, as supported by the C and C++
languages, provides means to store the address of methods in function pointers. This
allows a programmer to define and change the binding of a method at load-time and
runtime (cf. Fig. 2.10). A function pointer stores the address of a method and can
be changed at any time a program is running. Calling a function via a function
pointer means to load the address stored in the pointer and continue execution at
this address. Hence, it is more expensive than a usual function call, which does not
require loading the address separately. Binding function pointers at load-time as
shown in Figure 2.10 means that function pointers may be initialized when loading
a module and do not change later.

Generic Programming

Generic programming allows programmers to abstract from a concrete type used in a
computation by providing a generic type (or value), e.g., as parameter of a method
or a class [CE00]. An example is the C++ template mechanism. The generic
parameters may also be complex types or functions, which allow programmers to
use generic programming for component composition of single classes [VN96b] or
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sets of classes [SB98]. In C++, the generic parameter of a template is replaced
with a concrete type (in case of type parameters) or a concrete value (in case of
integral parameters) during template instantiation at compile-time. This enables
static binding of methods and data.

Object-oriented Programming

OOP is often used to implement components and is important for the binding time
that can be achieved when composing components. In object-oriented languages,
objects interact via messages. In compiled object-oriented languages the exact type
of a message receiver may already be known during compilation or may only be
available runtime. This requires using early binding or late binding respectively.
These different binding types are important for developing SPL with components
and have benefits and drawbacks [AG01].

Early Binding. Early binding relies on the static type of an object that can be
determined at compile-time. However, in languages such as C++, the concrete
implementation of an object’s method does not have to be available during compi-
lation. It can also be provided later during linking. Hence, early binding uses the
same mechanisms we described for binding at compile-time and link-time in proce-
dural programming. In C++, it depends on the location where a method is defined,
whether the actual binding is done at compile-time (when stored in the same binding
unit) or at link-time (when stored in a different compilation unit or in a DLL; cf.
static and dynamic linking above). In Java, linking always occurs dynamically and
starts when loading a class file. Early bound methods that are never used may still
be contained in a program and thus increase the binary size. This is avoided by
optimizations during compilation and static linking. When using late binding, this
optimization is usually not possible because the compiler cannot statically decide
whether the method will be used or not.

Late Binding. Late binding relies on an object’s dynamic type. It is used if the
actual type of a message receiver is not known statically and is determined at run-
time. This is usually done at object creation time (e.g., in C++) or at method
invocation time (e.g., in Java). Binding via name at runtime, as in Java, means
that the binding may change afterwards. Programming languages, like C++, that
support receiver identification at object creation time store the result until method
invocation. In C++, this is done by storing a pointer to a virtual function table
(containing all virtual methods of a class) within the created object [Lip96]. This
results in additional memory that is needed to store the type of the object implic-
itly as pointer to the virtual function table. Nevertheless, it increases flexibility by
resolving the method that is called depending on the dynamic type of a message
receiver.
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Delegation. Similar to the use of function pointers, delegation [Lie86] can be used
to decide at runtime which object a particular message should be delegated to. By
changing the delegate, a different implementation of the method can be selected. For
example, in the decorator design pattern the receiver of a method can be changed
at runtime by using delegation [GHJV95]. We will use the decorator pattern to
implement dynamic binding of features and dynamic composition of classes.

Aspect-oriented Programming

Advice defined via AOP can be bound at any point in time and depends on the
programming language and runtime environment. For example, AspectJ supports
weaving at compile-time, after compilation, or at load-time [Asp10]. AspectC++
supports weaving before compilation or at runtime [GS05].

2.3.3 Static and Dynamic Binding of Features

The presented mechanisms support different binding times for data and methods in
software development in general. They are used to realize different binding times
in SPL development. Since different features may require different binding times
multiple mechanisms are combined in practice [vGBS01]. For example, early and
late binding can be used to implement static and dynamic binding of features re-
spectively. Similarly, other mechanisms can be used as well. For example, if the C
preprocessor is used to implement features, the features are statically bound in a
preprocessing step. Hence, the features of a single SPL may be bound at different
points in times. This not only means static and dynamic binding. In general it is
possible to bind parts of variability at arbitrary points in the deployment phase of
an SPL (e.g., all using static binding). This is called staged configuration [CHE04].

Using a particular mechanism to implement feature binding does not mean that a
program of the SPL has to use only this mechanism. For example, the C preprocessor
can be used to implement static feature binding while late binding is still needed to
support polymorphic use of classes within a concrete program of the SPL.

Hiding the Binding Time

When implementing a component, the actually required binding time may be un-
known until deployment time. Hence, it is important to hide the binding time from
a components implementation [Aßm03]. This allows the composition process to
choose the required binding time. There are techniques for software development
that directly hide the binding time by allowing the programmer to choose the bind-
ing time at compile-time [CE00, CRE08] (cf. Sec. 3.2). This can also be achieved by
non-invasive modifications of a components implementation. For example, C/C++
developers use binding-time-specific macros to define how methods of a library are
linked. This allows for changing the binding time of a library from static to dynamic
linking by choosing the appropriate macro definition at compile-time.
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Figure 2.11: Specialization hierarchy of Fame-DBMS.

2.3.4 Staged Configuration

Product configuration (and thus feature binding) can occur in a step-wise manner,
which is called staged configuration or SPL specialization [CHE04]. Staged configu-
ration eliminates configuration choices and thus reduces the variability of an SPL.
Hence, a specialization does not specify an SPL instance completely; it is only a
partial configuration that still provides some variability. A specialization step does
not necessarily bind features of an SPL. For example, it may explicitly exclude a
feature. In general, arbitrary constraints can be used to create a specialized SPL by
reducing the number of valid configurations [CHH09, RS10].

A fully specialized SPL represents a single configuration only [CHE04]. It is the
result of one or more specialization steps. We can use a fully specialized SPL di-
rectly to derive an SPL instance (e.g., by composing components that correspond
to the configuration). In contrast, when creating an instance from an incompletely
specialized SPL, we have to bind remaining variability in a final configuration step.
That is, we have to fully specialize the SPL first. This can be done in an interac-
tive configuration process or by discarding all features that are not included in the
specialization. Discarding remaining features is only possible when it results in a
valid configuration. For example, deriving a product from a DBMS specialization
that includes a variant feature with alternative children requires choosing one of the
alternatives.

Staged configuration means that variability is bound at different points in time
and often also at different binding sites but finally results in a complete configu-
ration that defines which features are required for product generation. However,
even the final product may be reconfigured which results in an infinite configuration
process [CHH09].

SPL Specialization Hierarchies

As we described in [RSK10], we can represent SPL specialization steps as inheritance
between SPL specializations. As a simple example, consider the specializations of
Fame-DBMS shown in Figure 2.11. Each specialization is a partial configuration
that inherits from a less specialized SPL. Specialization of Fame-DBMS thus re-
sults in a specialization hierarchy. Each child in the hierarchy is a specialization of
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its parent (i.e., it represents less products), which we express by adding arbitrary
configuration constraints [RSTS11]. For example, QueryDB is a specialization of
FameDbms including a feature for query processing. We can represent the feature
selection by adding a requires constraint for the feature. As a result, the feature is
included in all products that can be derived from QueryDB. StreamDB and Per-
sistentDB further specialize QueryDB. A specialization step does not necessarily
add features to a configuration. For example, it may also explicitly exclude a feature.
In general, arbitrary constraints can be used to create a specialized SPL by reduc-
ing the number of valid configurations. We can also define subtype relationships
between SPLs according to the defined hierarchy, as we describe in Section 4.3.1.

In the context of static and dynamic binding, a specialization hierarchy may repre-
sent static or dynamic configuration steps. For example, QueryDB may be derived
by statically selecting feature QueryEngine. The concrete DBMS StreamDB
and PersistentDB may be configured dynamically by adding features Stream
and Persistent at load-time.
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Binding time flexibility means that we are able to choose the binding time of a
feature per application scenario. Since FOP considers features as elements for com-
position, it provides a proper foundation to support binding different binding times
for individual features. We thus use FOP and apply a flexible feature composition
process to abstract from details specific to the binding time.

In the following, we analyze properties of static and dynamic binding such as
resource consumption and flexibility. We review existing approaches to implement
variability with respect to supported binding times. We especially focus on support
for static and dynamic binding of entire features, which is important for applicability
of the techniques for SPL development. Based on this analysis, we formulate the
goals for the thesis.

3.1 A Comparison of Static and Dynamic Binding

Static and dynamic binding are opposite approaches with respect to several aspects
of software development (e.g., implementation effort) and properties of program
execution (e.g., flexibility and non-functional properties of a program). In the fol-
lowing, we analyze the properties of static and dynamic binding in more detail and
show that a combination of both approaches is beneficial for several reasons and
sometimes even required.

3.1.1 Binding Time Flexibility

Most SPL development approaches require programmers to choose between static
and dynamic binding. However, both binding times provide benefits and it is not
always possible to use a single binding time only.

Static binding (e.g., using the C preprocessor) enables optimizations of program
code that are hard to achieve at runtime [ABE+97]. Examples are program trans-
formations (e.g., in the Boost library1), code generation, or compiler and linker
optimizations [CE00]. Applying arbitrary transformations to a running program
requires code replacements at runtime. That is, program code is replaced while it is
executed, which is usually a difficult task.2 Hence, static binding provides high flex-

1http://www.boost.org/
2 In general, it is also possible to transform code during runtime, but achieving consistency of

transformations (e.g., consistent adaptation of state) is not always possible because the trans-
formation may require information that is already lost during program execution. For example,
we cannot correctly initialize an introduced variable that stores the uptime of a program when
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ibility with respect to the transformations that can be applied to a program. How-
ever, static binding does not allow us to include information in the transformation
process that depends on the context at runtime, which in turn reduces optimization
opportunities [ABE+97].

Dynamic binding, on the other hand, does usually not support arbitrary program
changes but provides flexibility after program start and allows a user or a program
to select the needed functionality at load-time or runtime [ASB+09]. For example,
loading only required functionality on a mobile device from a network according to
the underlying hardware or user preferences can reduce network load. This kind of
flexibility cannot be achieved with static binding.

Using static or dynamic binding exclusively is not feasible, because different fea-
tures may require different binding times [vGBS01]. Static binding can often not be
used if required features are not known at deployment time or if they are developed
independently, as it is the case for third-party extensions. It is also not feasible to
use dynamic binding only. Platform- and compiler-specific features for instance have
to be selected before compilation of a program and some devices (e.g., deeply em-
bedded systems) do not support dynamic binding when it requires to load new code
at runtime. Consequently, it is sometimes required to support static and dynamic
binding at the same time. For example, when a dynamically bound feature is cross-
cut by a platform-specific feature, we have to statically bind the platform-specific
feature, which customizes the dynamically bound feature. Additionally, dynamic
binding may increase the resource consumption and it usually means a higher im-
plementation effort to support dynamic binding of features. It is thus often not
desirable to bind a feature dynamically [Sim95]. Furthermore, there may be de-
pendencies between features with respect to their binding time. For example, when
a dynamically bound feature requires another feature of an alternative group, the
group must be bound dynamically as well. Finally, flexible binding times improve
reuse of features when different application scenarios or runtime environments re-
quire different binding times [ASB+09]. For example, the same feature of a DBMS
may be bound dynamically on an embedded device with very limited resources and
statically on an embedded device with less resource restrictions.

3.1.2 Compositional and Functional Overhead

A main difference between programs that use static and dynamic binding is the
resulting resource consumption of a program (e.g., binary program size, consumed
working memory consumption, execution time). Both binding times may increase
the resource consumption of a program for different reasons. We distinguish between
functional and compositional overhead:

Functional overhead: Static binding causes a functional overhead due to features
that are not used but present in a variant.

this information is only available at program start. The result may be an inconsistent state of
the whole program. It furthermore requires a high effort to achieve consistency, which can make
highly invasive dynamic modifications impractical.
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Compositional overhead: Dynamic binding introduces a compositional overhead
due to additional code for binding features at runtime.

We observe a functional overhead when only a subset of the features of a program is
used. Remaining features may only be used for a short period or they are not used
at all, which depends on the context at runtime. This results in increased binary
size and working memory (due to unused code) but also in increased execution time,
e.g., due to execution of initialization code. For example, the required functionality
of a DBMS, deployed on a smartphone or PDA, depends on the requirements of the
applications that use the DBMS. A Web browser that stores encrypted passwords
in a database requires a DBMS with a data encryption feature. If the Web browser
is never used, the encryption feature of the DBMS is also never used. Hence, the
functional overhead depends on the actually used features; it may even change when
we run the same program several times, which makes it hard to predict.

We observe a high compositional overhead with respect to performance and foot-
print when functionality is dynamically bound [Big98, Gri00, CE00, HC02, CRE08].
For example, when a method is implemented in several features, the correct imple-
mentation has to be chosen at runtime, which requires execution of additional code
(e.g., using a conditional statement). This additional code increases the binary size
and the execution time of a method because it is executed every time the method
is called. Depending on the chosen implementation mechanism (e.g., using function
pointers), dynamic binding may also hinder method inlining and increase memory
consumption. This is usually needed when the dynamically bound code is loaded at
runtime.

Hence, there is a trade-off between static and dynamic binding with respect to
performance, memory consumption, availability of bound modules, etc. Current
development techniques force developers to choose the lesser evil or she may mix
both binding times. The latter results in different implementation mechanisms for
different features within an SPL (e.g., preprocessors, design patterns, etc.), which
hinders reuse of a feature. Usually, the developer has to choose the binding time per
feature before development [LK06]. This decision is crucial since it cannot be easily
changed once the feature has been implemented.

3.1.3 Benefits and Drawbacks Summarized

We summarize benefits and drawbacks of static and dynamic binding in Table 3.1.
The table provides a relative comparison of both binding times with respect to
several properties important for SPL development and does not show absolute values.
In the following, we describe the results in more detail.

Safety: Static type checking is possible for a whole SPL independent of the binding
time [AKGL10, KATS11]. However, semantic errors may occur for a par-
ticular feature combination in a dynamically composed variant. Such errors
can be detected by testing a fixed statically generated program that does not
change. It is also possible to test dynamically composed program variants but
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Property Static Dynamic
Binding Binding

Safety static type safety and testing
avoid runtime errors due to composition

Development less complex implementation
simple debugging

Flexibility arbitrary transformations
separate deployment
loading on demand (e.g., from network)
simple reconfiguration

Resources static optimization
dynamic optimization
avoid compositional overhead
avoid functional overhead

Table 3.1: Comparison of static and dynamic binding with respect to properties
important in software engineering. We denote support for a property
with (good support), (partial support), or (poor/no support)

an exponential large number of configurations dramatically increases the test
effort and may result in execution of untested combinations of modules. Fur-
thermore, dynamic binding may fail, e.g., because of missing or incompatible
modules (a.k.a. DLL hell [And00]).

Development: When using dynamic binding at runtime, a programmer has to con-
sider consistency of updates, which complicates design and implementation of
a feature. This is usually not a problem when using binding before runtime
(i.e., dynamic binding at load-time or static binding). The overhead for dy-
namic binding may also force a developer to change the design of an SPL (e.g.,
to reduce dynamic extensions). Finally, dynamic binding complicates debug-
ging if the configuration of a program is determined during program start or
even during runtime.

Flexibility: As already discussed, static binding supports arbitrary code transforma-
tions after composition, whereas dynamic binding improves flexibility because
code units can be deployed separately (e.g., also by a third party), can be
retrieved when needed, and can be easily exchanged (even at runtime).

Resources: Static binding not only avoids a compositional overhead but may also
reduce resource consumption due to static optimizations (e.g., domain specific
transformations; cf. flexibility). Similarly, dynamic binding avoids a func-
tional overhead and allows for optimizations at runtime (e.g., by replacing a
component with one that consumes less energy [SRA10]).
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Binding Feature
Timea Composition

P C L I R Static Dynamic

A Static binding
A.1 C Preprocessor n/a
A.2 FeatureC++ n/a
A.3 Jak n/a
A.4 C++ Mixin Layers n/a

B Dynamic binding
B.1 Delegation Layers n/a
B.2 Object Teams n/a

C Combined approaches
C.1 AspectC++
C.2 AspectJ
C.3 AspectJ & HotWave
C.4 Components
C.5 C++ Templates & Delegation
C.6 Edicts
C.7 Jak & JavAdaptor

D Mixed approaches
D.1 CaesarJ
D.2 C Preprocessor & Components

aAbbreviations for binding times: P: pre-compile-time, C: compile-time, L: link-time/post-
compilation (including bytecode weaving), I: initialization-time / load-time, R: runtime

Table 3.2: Comparison of approaches for software customization with respect to
binding time and support for composition of features. Supported, par-
tially supported, unsupported properties shown as , , .

Obviously, both binding times have several benefits and drawbacks. This results in
different approaches for software development that support either a single binding
time or combine both binding times.

3.2 Approaches for Static and Dynamic Binding

In Table 3.2, we give an overview of implementation mechanisms that support either
static or dynamic binding of code units, support different binding times for the same
code unit (combined approaches), or support a mixture of both binding times (mixed
approaches). In the following, we describe all approaches.
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A: Static Binding

There are several approaches that support static binding and can be used for SPL de-
velopment. In the following, we have chosen a selection of representative approaches
to illustrate the underlying concepts.

A.1: C Preprocessor. Preprocessors show us how to achieve customizability and
performance at the same time. In contrast to many other approaches, the C
preprocessor supports customization even within methods by annotating single
statements or even parts thereof. Features can be implemented using code
annotations. Dependencies between features may be encoded as propositional
formulas at the level of conditional preprocessor statements.

A.2: FeatureC++, A.3: Jak. Both languages support FOP and use static binding
in a preprocessing step before compilation. Similar to the C Preprocessor, it
is thus possible to generate and deploy the source code of a program vari-
ant. However, independent development and compilation of single features is
problematic because the whole program is required for compilation.

A.4: C++ Mixin Layers. The C++ mixin layers approach [SB98] uses mixin com-
position of layers (using C++ templates) and their inner classes (cf. Sec. 2.2.5).
The configuration takes place at template instantiation time (i.e., at compile-
time). In contrast to FeatureC++, CaesarJ, and other FOP approaches, it is
complicated and error-prone to implement features with this approach. For ex-
ample, to solve the self-problem [Lie86] (e.g., to consistently instantiate classes
with the new operator), not only the parent layer has to be parameterized but
also the final layer that refers to the actual SPL instance [Ost02]. The layer
must be used to specify the type of a class for instantiation; otherwise it results
in inconsistencies.

B: Dynamic Binding

In the following, we list approaches that support dynamic binding only. There
are also approaches that support static binding as well, which we list as combined
approaches below.

B.1: Delegation Layers. The Delegation Layers approach allows for composition of
layers at runtime [Ost02]. It combines virtual classes (cf. Section 2.2.5) with
delegation-based composition. A layer is implemented as a class and can be
used to represent a feature. Nested virtual classes correspond to FOP’s class
refinements and are composed at runtime by composing their enclosing layers.
The approach does not explicitly support removal or deactivation of features
at runtime but it could be implemented on top of it. Currently, there is no
implementation of the approach.

B.2: Object Teams. Object Teams is very similar to the Delegation Layers ap-
proach [Her02]. It supports virtual classes and dynamic composition of teams
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at load-time or runtime. A team can be used to implement a feature of an SPL,
which encapsulates multiple classes [HMPS07]. Furthermore, Object Teams
provides AOP concepts using callin bindings, which can be used to implement
crosscutting features.

C: Combined Approaches

There are some approaches that hide the binding time from the programmer and
allow her to choose it after development. That is, they support static as well as
dynamic binding of the same code unit.

C.1: AspectC++. AspectC++ is based on aspect-oriented programming (AOP),
which aims at modularizing crosscutting concerns in aspects [KLM+97]. As-
pectC++ supports static and dynamic weaving of aspects [GS05, TLSS10].
Static binding is achieved by a source code transformation before compilation.
Dynamic binding at runtime requires preparation of the join points before
compilation. AspectC++ allows a programmer to implement an aspect once
and decide later whether static or dynamic binding should be used.

C.2: AspectJ. AspectJ is an AOP approach for Java that supports static bytecode
weaving at compile-time, after compilation (post-compile-time; corresponds to
link-time in Table 3.2) and dynamic weaving at load-time [HH04, Asp10].

C.3: AspectJ & HotWave. AspectJ can be combined with HotWave, one of the
most advanced AOP approaches for dynamic weaving of aspects [VBAM09,
WBA+10]. The combination enables weaving of the same aspect before run-
time (using AspectJ) or into a running program (using HotWave). Other AOP
approaches that can be combined with AspectJ and support dynamic weaving
are SteamLoom [BHMO04] and PROSE [NAR08].

C.4: Components. The binding time in component-based approaches highly de-
pends on the implementation mechanism. Components implemented with
C++ support dynamic binding using dynamic linking and late binding of
OOP [Str94]. Furthermore, programmers can use the C preprocessor to switch
between static and dynamic linking by replacing the import and export decla-
rations of a component.3 However, statically linking a C++ component does
not mean that late binding is replaced by early binding because calls to virtual
methods cannot be replaced by usual method calls. Hence, a statically bound
component still introduces a compositional overhead when implemented with
late binding.

C.5: C++ Templates & Delegation. An approach by Eisenecker at al. imple-
ments features according to the GenVoca approach (cf. Sec. 2.2.5) using static
binding of C++ mixins and delegation-based dynamic binding [EC00]. By

3This has to be distinguished from a mixed approach (cf. approach C Preprocessor & Compo-
nents), which extends components by using the C preprocessor to customize a component before
compilation.
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combining C++ templates with delegation it is possible to switch the binding
time of a feature before compilation. A C++ template metaprogram provides
a composition mechanism that allows for checking validity of a static feature
selection. The approach may be combined with C++ Mixin Layers [SB98] to
enable static composition of entire features.

C.6: Edicts. The Edicts approach uses aspects to support static and dynamic bind-
ing by weaving different design patterns using AOP [CRE08]. By switching
the aspects, the binding time of a code module can be changed.

C.7: Jak and JavAdaptor. JavAdaptor aims at runtime adaptation with the focus
on reducing the compositional overhead and enabling arbitrary changes at run-
time [PKG+09, PKS08]. It supports modifications at runtime by deploying the
changes of a modified program. JavAdaptor can be combined with any ap-
proach that generates Java bytecode. The combination of Jak and JavAdaptor
allows for reconfiguring a running program with respect to features [PSC09].
In contrast to other dynamic approaches, this can be used to support bind-
ing of whole features at runtime. Reconfiguration with JavAdaptor means to
compile a new program before applying the changes and does not support to
freely compose precompiled features.

D: Mixed Approaches

Approaches for static and dynamic binding are already combined in practice. Ex-
amples are Mozilla [vGBS01], the Apache Web server4, or Berkeley DB. In Mozilla
and Apache, components are used for dynamic binding (e.g., to support different
mail protocols) and the C Preprocessor for static binding. In Berkeley DB, static
binding with the C Preprocessor is used for all features but the distributed transac-
tion management feature is bound dynamically using function pointers. All mixed
approaches require programmers to decide already before development which binding
time to use for which code fragments. This is required because they have to imple-
ment a code fragment with the technique that corresponds to the chosen binding
time.

D.1: CaesarJ. The Java-based language CaesarJ supports mixin-based composition
of virtual classes [AGMO06] (cf. Sec. 2.2.5). A CaesarJ class can be used to
implement a feature that is statically bound at compile-time. A programmer
can spread a virtual base class and its extensions over several files (one per
feature), which is very similar to FOP with Jak or FeatureC++. Furthermore,
CaesarJ supports dynamic weaving of aspects.

D.2: C Preprocessor & Components. The combination of the C preprocessor and
components is interesting because both are mainstream approaches and are
already combined in practice. The C preprocessor is usually used for fine-
grained customizations of dynamically bound components. In case of many

4http://httpd.apache.org/
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small extensions, the C preprocessor avoids any compositional overhead. It
also supports customization of crosscutting features, which often affect several
components [Gri00].

Other Approaches

There are further approaches that allow a programmer to implement an SPL with re-
spect to features such as Aspectual Collaborations [LLO03], CIDE [Käs10], Context-
oriented Programming [CHdM06, HCN08], FeatureJ [SP10], Hyper/J [OT00], Java
Layers [CL01], Jiazzi [MFH01], Scala [OZ05], and Traits [DNS+06]. These ap-
proaches use similar mechanisms to implement variability as the approaches de-
scribed above. rbFeatures is an annotative approach that supports dynamic feature
binding for the dynamic language Ruby [GS11]. In this thesis, we focus only on
compiled languages that support static binding.

Support for Feature Composition

Only some of the presented approaches explicitly support feature composition, i.e.,
composing a set of code fragments that correspond to a feature, which is important
for SPL development.

Static Feature Composition. Composition of features to derive a concrete product
of an SPL is directly supported by static approaches that are aware of features such
as Jak [BSR04] and FeatureC++ [ALRS05]. Similarly, mixin-based composition
(e.g., using C++ mixin layers [SB98]) and CaesarJ can also be used to implement
the features of an SPL as layers and provide means for feature composition using
mechanisms of the host-language (i.e., using mixin-based inheritance). The C pre-
processor, can be used to annotate features and to encode feature dependencies in
conditional statements. All other approaches provide a way to implement features
(e.g., using an aspect in AspectJ) but do not explicitly support feature composi-
tion with respect to a feature model. However, tools for SPL development, such as
pure::variants [pur04] and Gears [Kru08], can be used to add feature-based config-
uration to most approaches that support static feature binding. Some of the static
approaches provide only limited support for feature development. For example, us-
ing an aspect or a mixin layer with nested classes to implement a feature means to
implement the whole feature in a single file. Avoiding this, e.g., by using multiple
aspects and classes to implement a feature, complicates composition of entire fea-
tures. The combination of C++ templates and delegation proposed by Eisenecker et
al. supports validation of the correctness of a static configuration using a template
metaprogram [EC00]. For composition of entire features it could be combined with
the mixin layers approach.

Dynamic Feature Composition. Dynamic binding of features requires that the
dynamic composition mechanism is aware of features. Such a composition mecha-

41



3 Towards Flexible Binding Times

nism has to consider crosscutting features, feature interactions, and the validation
of correct SPL instantiation. For example, with a dynamic AOP approach we have
to manually deploy the classes and aspects a feature consists of and have to han-
dle feature dependencies. The dynamic approaches Object Teams and Delegation
Layers provide a dynamic feature composition mechanism. Object Teams provides
a Dependent Activation pattern that can be used to handle dependencies between
features. Delegation Layers support instantiation of whole features but there is no
mechanism to handle feature dependencies. Using components, dynamic composi-
tion of features may be realized by a component that handles composition of other
components according to a feature model. Similarly, JavAdaptor does not directly
support feature composition. In combination with Jak and additional tool support
it is possible to compose features as well but without support for independent de-
ployment [PSC09]. Mixed approaches, such as CaesarJ and the combination of the
C preprocessor with components, require developers to choose the binding time per
feature before development. This does not allow for changing the binding time of
an already implemented feature.

All approaches that provide binding time flexibility (i.e., C.1-C.7 in Table 3.2)
support dynamic binding of single features. That is, all dynamically bound features
are bound separately. To avoid this, multiple features may be implemented in a
single module (e.g., in a component). This enables dynamic binding of all contained
features at the same time, which in turn enables static optimizations of the dynamic
modules. It also reduces the runtime overhead and simplifies dynamic binding.
However, this method does not support configuration of single features. Hence,
programmers have to choose at SPL development-time between high customizability
and improved performance.

Summary

Our analysis shows that an integration of static and dynamic binding is needed
and already used in software development. Static binding avoids a compositional
overhead and enables optimizations at the level of the source code (e.g., function
inlining). However, a static approach is not as flexible as a dynamic approach since
the functionality of a software product has to be known before deployment. By
contrast, dynamic composition introduces a compositional overhead and can be used
to reduce the functional overhead. Hence, both approaches are useful for different
application scenarios but the concrete application scenario may not be known until
deployment or even until runtime. We thus conclude that a programmer should be
able to choose the composition technique and binding time after SPL development.

Only static and dynamic approaches fully support composition of features and
provide a feature composition mechanism. There are several reasons for that. First,
feature-oriented SPL development requires a mechanism to implement features in-
cluding code to resolve features interactions. Second, dynamic feature binding re-
quires a metaprogram that manages feature composition, handles dependencies, and
decides which modules to compose at runtime. Third, combining both binding times
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means that different composition mechanisms have to be integrated, which has to
be considered when dynamically composing features.

Implementation techniques that support static and dynamic binding for different
features achieve limited reuse, because source code developed for static composition
cannot be easily reused for dynamic composition and vice versa. For example, we
can use dynamic composition of features as provided by Delegation Layers and apply
a preprocessor, e.g., to support fine-grained static composition of the layers.

Approaches that support static and dynamic binding, support only dynamic bind-
ing of individual features when developed as separate modules. Hence, the compo-
sitional overhead for binding many features dynamically is very high. In CBSE the
overhead is commonly reduced by combining multiple features into a single compo-
nent; however, this limits customizability and reuse of components because several
features always have to be used in combination.

3.3 Perspective and Goals

The use of current SPL implementation techniques shows that different binding
times are required for SPL development. We argue that an approach for SPL de-
velopment should support binding time flexibility to abstract from different binding
times and also from the used binding mechanisms. We propose to use FOP for SPL
development across application domains including resource constrained embedded
systems. FOP languages explicitly support modularization of features and do not re-
quire a particular binding time. With a generative approach for feature composition
we demonstrate that FOP is a proper candidate to support binding time flexibility.
In contrast to other approaches that support binding time flexibility, we argue that
dynamic binding should not mean to bind individual features separately. Compo-
nent approaches demonstrate that a set of dynamically bound features should be
bound at the same time [LK06].

In the next chapters, we show that FOP is a viable solution for SPL development
that supports different binding times and also binding time flexibility:

1. We provide an approach for static feature composition that can compete with
annotation-based approaches such as the C preprocessor. We evaluate the
approach in a case study (Chapter 4).

2. We provide a mechanism that allows us to support also dynamic feature bind-
ing based on the same feature-oriented code that is used for static binding
(Chapter 5).

3. We present a seamless integration of static and dynamic binding of features
that overcomes the limitation of existing approaches (Chapter 6).

4. We combine static binding and reconfiguration at runtime (Chapter 7).

In all chapters, we demonstrate the applicability of the approaches with FeatureC++
and show how an FOP language can be used to support different binding times. In
the following, we describe the goals in more detail.
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3.3.1 Static Binding of Features

Using static binding, we demonstrate that FOP can also be used in application do-
mains where resource consumption plays an important role. FeatureC++ already
supports static binding of feature modules. However, the implementation is not opti-
mized for resource consumption and makes use of late binding to implement method
refinements. Furthermore, there is no analysis of the overhead of static binding with
FeatureC++ (and FOP in general). Hence, we aim at improving the FeatureC++
code transformation process and analyze the compositional and functional overhead
caused by static binding. We compare FeatureC++ with customization with the C
preprocessor, which is the default tool for customization in the embedded domain.
Static feature composition results in a variable interface of the generated program.
Hence, we have to ask how a client program can use a statically generated compo-
nent. We thus have to analyze problems due to interface variability caused by static
binding.

Envisioned results:

• Optimization of the static code transformation process of FeatureC++.
• Comparison of customizability and resource consumption of FeatureC++ with

the C Preprocessor.
• Analysis of the functional overhead.
• Analysis of interface variability: How to reuse programs (or components) with

a variable interface.

3.3.2 Dynamic Binding of Features

Dynamic binding is currently not supported in FeatureC++. We thus extend the
code transformation process to support dynamic feature binding at load-time. We
choose binding at load-time because it provides high flexibility but avoids the com-
plexity of feature initialization due to binding at runtime. However, the approach is
based on delegation and can be extended to support binding at runtime as we show
in Chapter 7. We also provide mechanisms to automate SPL instantiation according
to a feature model and to verify correctness of a configuration before creating an
instance.

Envisioned results:

• Analysis of requirements on the FeatureC++ language for dynamic feature
binding.
• A code transformation process that supports dynamic binding of feature mod-

ules implemented with FOP.
• An approach for automated SPL instantiation including validation of configu-

rations.
• Analysis of the compositional overhead of dynamic binding.
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3.3.3 Integrating Static and Dynamic Binding

To overcome the limitations of using a single binding time, we statically combine
multiple features into larger units for dynamic binding. This allows us to (1) exclude
program code that is not required and (2) reduces dynamic binding. To adjust an
SPL’s feature model to the statically generated binding units with reduced variabil-
ity, we provide a corresponding feature model transformation. We use the resulting
dynamic feature model to ensure correctness of dynamic composition of binding
units. That is, we abstract from the binding time also at the model level.

Envisioned results:
• An approach for improved flexibility of feature composition by deciding at

deployment time which binding time to use for individual features.
• A code transformation mechanism for statically merging sets of dynamically

bound features into dynamic binding units.
• An approach for transforming feature models according to the generation of

dynamic binding units.
• Evaluation of the presented approach.

3.3.4 Combining Static Binding and Configuration at Runtime

Based on an integration of static and dynamic binding, we demonstrate the applica-
bility of the approach for binding and reconfiguration at runtime. First, we present
concepts for feature-based (self-)configuration, and second, we analyze how static
binding can reduce the effort for dynamic reconfiguration.

Envisioned results:
• An approach for reconfiguration at runtime (unload features, apply features

to a running program).
• Support for (self-)configuration of SPLs at runtime based on features.
• Evaluation of the approach and analysis of the impact of static binding on the

runtime configuration process.
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This chapter shares material with the DKE’09 paper ”Tailor-made
Data Management for Embedded Systems: A Case Study on Berkeley
DB” [RALS09] and the FOSD’10 paper ”Improving Reuse of Component
Families by Generating Component Hierarchies” [RSK10].

In this chapter, we evaluate FeatureC++ with respect to its applicability for SPL
development. We argue that FeatureC++ (and FOP in general) is appropriate to
achieve high customizability without a negative impact on performance. This also
means that FOP can be applied to application domains with scarce resources such
as embedded systems. To demonstrate the applicability of FOP to such domains we
compare FeatureC++ and the C preprocessor with respect to resource consumption
and customizability.

We first analyze the FeatureC++ composition mechanism and present optimiza-
tions that avoid any compositional overhead. We evaluate static binding by refactor-
ing Berkeley DB (which is implemented with the C preprocessor) into a FeatureC++
product line. We demonstrate that we can use FOP to derive programs that are
equivalent to a C preprocessor-based implementation with respect to resource con-
sumption. Since Berkeley DB is a DBMS component, we finally analyze the conse-
quences on clients that use variable components developed with FOP.

4.1 Static Binding of Feature Modules

The FeatureC++ compiler uses a source-to-source transformation to support static
composition of feature modules. However, the generated code is not optimized with
respect to resource consumption. In the following, we present optimizations that are
needed to achieve the same performance and memory consumption as it is possible
with the C preprocessor, which is the state of the art for SPL development in the
domain of embedded systems.

4.1.1 Optimizing Static Composition of Classes

Statically composing the features of an SPL means that the classes of a generated
program only have to consist of code of the features selected in the configuration pro-
cess. That is, each class in a concrete product has to contain only those methods and
variables that belong to selected features. First implementations of the FeatureC++
compiler transformed the code of several refinements of a feature-oriented class into
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Feature Core

1 class DB {

2 bool Put(Key& key , Value& val) { ... }

3 };

Feature QueryEngine

4 refines class DB {

5 QueryProcessor queryProc;

6 bool ProcessQuery(String& query) { ... }

7 };

Feature Transaction

8 refines class DB {

9 Txn* BeginTransaction () { ... }

10
11 bool Put(Key& key , Value& val) {

12 ... // t ransac t i on s p e c i f i c code
13 return super::Put(key ,val);
14 };

15 };

Figure 4.1: FeatureC++ source code of class DB of a DBMS. The class is decomposed
along feature modules Core, QueryEngine, and Transaction.

an inheritance chain [Ros05] as it is also supported by the Jak language [BSR04].
However, this introduces problems with respect to performance and memory con-
sumption. For example, virtual methods have to be used to allow class refinements
(implemented as subclasses) to override refined methods. This introduces additional
indirections for the method call and may increase the size of objects (for storing a
pointer to the virtual function table). To optimize resource consumption, we changed
the composition mechanism and compose the code of all refinements from the se-
lected features of a class into a single compound C++ class, also supported by the
jampack composition tool of the AHEAD tool suite [BSR04]. We thus compose the
entire code of the base implementation of a FeatureC++ class and their refinements
into one compound C++ class. This class consists of:

• the union of all member variables,
• one method for each method refinement,
• one constructor and destructor for each different constructor / destructor def-

inition, and
• one method for each constructor / destructor refinement.

As an example, consider the source code of our DBMS in Figure 4.1 (cf. Sec. 2.2.5).
In Figure 4.2, we depict the generated C++ code that corresponds to the
FeatureC++ code of class DB when composing the Core implementation with fea-
ture Transaction. This generated code is shown only for illustration and does
not have to be read by a programmer that uses FeatureC++. All methods and
member variables except the code of feature QueryEngine are composed into one
C++ class. The base implementation of method Put (feature Core) was renamed
to Put_Core (Line 3) to provide a unique name for every transformed method. It
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1 //Core implementation
2 class DB {

3 bool Put_Core(Key& key , Value& val) { ... }

4
5 Txn* BeginTransaction () { ... }

6
7 bool Put(Key& key , Value& val) {

8 ... //Transaction s p e c i f i c code
9 return Put_Core(key ,val);

10 };

11 };

Figure 4.2: Generated C++ source code of class DB using static binding of Core
functionality and feature Transaction.

is called from its refinement in Line 9. Using this kind of transformation, a C++
compiler can easily inline method refinements since they are composed into the same
file. For example, method Put_Core is inlined by most compilers in method Put and
does not introduce any overhead for method calls. For the GCC and Microsoft Vi-
sual C++ compilers we ensure inlining of methods by generating compiler-specific
directives1. For other compilers we provide a hint that the method should be inlined.
For compilers that do not support inlining and for other programming languages,
inlining must be performed by the FOP compiler [KAL07].

Debugging. Jampack composition was initially not the preferred code transforma-
tion when generating a program from Jak code [BSR04]. The reason is that it mixes
the code of several refinements into a single Java file. When a programmer changes
the generated Java files during debugging it is hard to map these changes back to Jak
files. This problem does not occur in FeatureC++ because the programmer directly
debugs FeatureC++ code and can be even unaware of the intermediate code. This
is possible by using the C++ #line directive in the code transformation process to
tell the compiler and debugger the FeatureC++ source code position (file and line
number) that corresponds to a line of generated C++ code.

4.1.2 Case Studies

We used FeatureC++ to develop SPLs and also for refactoring existing code into a
feature-oriented SPL. In Table 4.1, we provide an overview of analyzed case studies.
In all case studies, we applied the FOP refinement mechanism to decompose object-
oriented classes along features. We found that the required variability can mostly
be implemented with FOP but sometimes the implementation effort is quite high
compared to an annotative approach. We especially observed this when refactoring
Berkeley DB from C code into FeatureC++, as we describe in the next Section.

1We use attribute ((always inline)) for the GCC and forceinline for the Microsoft Vi-
sual C++ compiler. See also http://gcc.gnu.org/onlinedocs/gcc/Inline.html
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SPL Description KLOC Features

Berkeley DB database management system 87.3 35
Fame-DBMS database management system 14.2 81
FeatureC++ FeatureC++ compiler 20.6 23
NanoMail e-mail client 6.2 25
SensorNetwork sensor network simulation 7.3 26

Table 4.1: Size and number of features of software product lines implemented in
FeatureC++.

In Fame-DBMS and FeatureC++, we used FOP also to implement variability
at the level of languages. That is, we used FOP to implement a family of SQL
dialects [SKS+08, RKS+09] for Fame-DBMS and the variability in the FeatureC++
language. In Fame-DBMS, we decomposed the SQL grammar into features and
generated a tailor-made grammar according to the features selected for a particular
SQL dialect. This requires a special static composition mechanism that merges the
rules of a BNF grammar [BLS98, Sun07]. Next, we present a detailed analysis of
our Berkeley DB refactoring.

4.2 A Case Study on Berkeley DB

We use Berkeley DB to compare static binding with the C preprocessor with a
feature-oriented implementation in FeatureC++. We evaluate benefits and draw-
backs of both approaches with respect to resource consumption and aspects of the
SPL development process.

4.2.1 Static Binding in Berkeley DB

In Berkeley DB, programmers use the C preprocessor for static configuration. Fur-
thermore, build tools are used to select the files of the code base that have to be
preprocessed. This avoids preprocessor-based annotation of whole files. Hence, the
used mechanism is actually a combination of a compositional approach (selecting
files via build tools such as GNU Make2) and an annotative approach (using the C
preprocessor).

Besides missing type checking and other drawbacks, some studies point out that
the C preprocessor has a negative affect on maintenance of software [SC92]. Because
of missing modularization also the evolution of software and even the elimination of
dead features is problematic [BM01]. We will only contrast the different concepts
to implement variability with the C preprocessor and FOP. A detailed analysis of
readability and maintainability is hard to accomplish and is outside the scope of

2http://www.gnu.org/software/make/
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1 __rep_queue_filedone (...) {

2 #ifndef HAVE_QUEUE

3 COMPQUIET(rep , NULL);

4 COMPQUIET(rfp , NULL);

5 return (...);

6 #else
7 db_pgno_t first , last;

8 u_int32_t flags;

9 int empty , ret , t_ret;

10 #ifdef DIAGNOSTIC

11 DB_MSGBUF mb;

12 #endif
13 ... //92 Lines o f Code
14 #endif
15 }

Figure 4.3: Static configuration in Berkeley DB with nested preprocessor statements.

this thesis. In Figure 4.3, we depict an example of annotations in Berkeley DB
code that illustrates why preprocessor statements (especially nesting) may degrade
readability, comprehensibility, and maintainability of the source code. Very long
code sections between #ifdefs (> 100 LOC) do often not allow a programmer to
easily decide if a part of the source code belongs to a particular feature or another.
The preprocessor statements are nested and enclose code that belongs to different
features. The intermingled functionality and the size of the functions make local
behavior hard to understand.

The customizability achieved in Berkeley DB is limited: some features cannot be
removed and others can only be removed partially if code is not entangled with the
remaining source code. This is not a general limitation of the C preprocessor. It
is caused by crosscutting features which increase the number of nested preprocessor
statements when a programmer strives for a complete decomposition of the source
code. Separating all features completely and increasing customizability may thus
further degrade readability of the source code.

4.2.2 Refactoring Berkeley DB

Most contemporary data management systems are written in the C++ programming
language. Because implementations of DBMS are usually highly tuned, they cannot
be reimplemented from scratch using a novel programming paradigm like FOP with-
out a huge amount of work and the risk of degrading performance or introducing
errors. By refactoring the C version of Berkeley DB3 into a FeatureC++ product
line, we demonstrate that a refactoring approach is appropriate for decomposing
legacy DBMS. In a second step, we further decomposed the refactored Berkeley DB
version to extract more features, which is also known as Feature-oriented Refactor-
ing [LBL06a].

3We used the C version 4.4.20 of Berkeley DB.
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Figure 4.4: Excerpt of the feature diagram of Berkeley DB after refactoring. Only
optional and alternative features are shown.

From C to FeatureC++. We used a two step refactoring process: (a) the conver-
sion from C to C++ and (b) the conversion from C++ to FeatureC++. To avoid
errors and to preserve the behavior of the software, we used minimal invasive code
transformations that do not change the design [Fow99]. By partially automating
this process, we are able to transform also large applications into a FeatureC++
product line.

Feature-oriented Refactoring. After transformation to FeatureC++, we extracted
further features. This process required manual transformation of the source code to
completely modularize the features. For example, crosscutting features often affect
large parts of the source code and besides the base program also other features. In
Berkeley DB, the transaction management system crosscuts many classes and fea-
tures of the DBMS (more than 30 classes and 11 features). The B-Tree classes are
extended to introduce code for transaction management. Due to the absence of ap-
propriate tool support, we extracted the features manually. That is, we decomposed
the classes into base implementation and refinements according to crosscutting fea-
tures. This means that code encapsulated by #ifdef statements is refactored into a
class refinement of the according feature, e.g., moving a method into a refinement.

Results. In its original version 11 features are optional and can be individually
disabled when generating a concrete instance of Berkeley DB. This results in about
one thousand different variants. In Figure 4.4, we depict an extract of the feature
diagram of Berkeley DB after refactoring; mainly optional and alternative features.
Overall, we extracted 35 (cf. Fig 4.4) features with 24 of them being optional (11 op-
tional features in the original version). The remaining 11 features are mandatory for
each variant of Berkeley DB and thus cannot be removed in a concrete configuration.
However, we found it still useful to separate these features to increase comprehen-
sibility and to allow for alternative implementations of such features. Based on all
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existing constraints between features, there are more than 400,000 valid configura-
tions.

Modularization of Features

Many features that we modularized in Berkeley DB cut across large parts of the base
program. These crosscutting features also affect other features, e.g., the transaction
management interacts with 11 other features. When extracting such features in
Berkeley DB, we made some observations regarding structure and modularity of the
source code.

Static Binding. The C version of Berkeley DB already supports static binding of
some features using C preprocessor directives. The programmers of Berkeley DB
use function pointers to support object-based programming and to exchange the
implementation of a method depending on the configuration, i.e., depending on the
feature selection. In order to provide this customizability, function pointers are
initialized when running Berkeley DB. The according initialization code has to be
written manually by the programmer.

When using FeatureC++, object-oriented concepts, i.e., classes with methods,
eliminate the need for using function pointers as a mechanism for object-based pro-
gramming. Furthermore, FOP’s composition mechanism replaces the configuration
mechanisms used in Berkeley DB: (1) dynamic assignment of functions to function
pointers in C is replaced by static selection of the required methods implemented in
different features in FeatureC++ and (2) static composition based on the C prepro-
cessor is replaced by different FOP mechanisms, as we describe in the next section.
The tool-supported composition mechanisms of FOP thus reduce implementation
effort and are less error-prone than a manual setup of function pointers or using
the C preprocessor. Hence, FOP introduces safety for composition of variants: a
method is always correctly initialized, avoiding runtime errors like accessing a null
function pointer, and consistent configuration of all classes is achieved automatically.
Furthermore, a type system can assure static type safety of all possible variants of
an SPL [AKGL10]. This can in general also be achieved with annotative approaches
but requires disciplined annotations [KATS11]. Technical aspects like memory con-
sumption and performance also benefit from using FeatureC++. The reason is that
function pointers do not have to be stored in objects and the compiler can inline
method refinements, which is not possible for functions referenced by pointers.

Decomposition of Large Methods. Many methods in Berkeley DB are quite large
and contain entangled functionality of different features. Reasons for this lack of
modularization at the function level are performance optimizations, which can also
be achieved by inlining capabilities of modern compilers. For those methods, we
created up to seven methods each by using the extract method refactoring [Fow99].
In some cases, we used hook methods to decompose large methods. This requires
additional effort for decomposing such methods, but tool support could significantly
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ease the refactoring of large applications [LAMS05, KTS+09]. Decomposing methods
into smaller methods and method extensions, including the use of hook methods,
does not have a negative effect on performance due to method inlining.

The effort to modularize a feature depends strongly on its crosscutting nature.
Thus when deciding to extract a feature, the effort and the resulting benefit have
to be taken into account. In our case study, we did not remove all preprocessor
statements because of their high number and the required effort. Hence, tool support
on top of FOP is necessary to reduce the refactoring effort especially for extraction of
small features [KAK08]. First attempts aim at semi-automated transition of single
systems into feature-oriented SPLs [KKB07, Dre10].

4.2.3 A Comparison of C and FeatureC++

Based on the refactoring of Berkeley DB, we compare the variability mechanisms of
the C and FeatureC++ implementations with respect to properties important for
SPL development.

Variability Mechanisms

In the original Berkeley DB version, several mechanisms are mixed to implement
variability:

Code annotations: With conditional statements of the C preprocessor (i.e., #if,
#ifdef), the programmers define optional or alternative code fragments.

Macros: Macros are combined with #ifdef statements to define optional code and
alternative code fragments.

Build system: The build system (e.g., GNU Make) is used to select files and libraries
that have to be compiled for a particular program variant.

Function pointers: Function pointers are used to support dynamic binding and are
combined with the C preprocessor to support static binding as well.

In our refactoring, we replaced these mechanisms by FOP concepts. For variability
implementation, we use a single concept: FOP’s feature modules. We summarized
the concepts found in Berkeley DB and their FeatureC++ replacement in Table 4.2.
In the following, we compare the concepts and analyze the properties of the vari-
ability mechanisms.

Conditional Compilation and the Build System. In Berkeley DB, conditional
compilation is used to annotate whole methods or statements within methods (cf.
Sec. 2.2.3). Since an entire source file may be part of a single feature, conditional
compilation is combined with the build system (Microsoft Visual Studio, GNU
Make), which supports compilation of selected files only. That is, the number of
code annotations is reduced by compiling a varying set of source files. We could
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Variability mechanism FeatureC++ replacement

annotated method method + refinements
annotated statements hook method + refinements
alternative type declaration alternative typedef in features

macro – executable code hook method + refinements
macro – struct declaration class refinement

optional & alternative files files stored in feature modules

function pointers alternative method implementations

Table 4.2: Replacements for variability mechanisms used in Berkeley DB with
FeatureC++ language constructs.

replace both mechanism with FOP using classes and class refinements: annotated
methods and statements are modularized into methods and hook methods (described
separately below) with refinements; variability encoded in build scripts is replaced
by moving source files into the folder of the corresponding feature module. Code
that does not correspond to a class (e.g., global variables) is moved into header files
without a class that are also composed according to a feature selection.

Macros. C macros are also used to implement variability in Berkeley DB. By defin-
ing a macro in a conditional preprocessor block, a programmer can define function-
ality that is only available if a particular feature is present in a program variant
(cf. Sec. 2.2.3). Many macros in Berkeley DB define variables and executable code,
which can be replaced by hook methods as we describe below. Furthermore, alterna-
tive macro definitions are used to define types that depend on the target operating
system. This can be replaced by C++ typedefs in the corresponding features of the
FeatureC++ code. Macros are also used to compose C structs according to a feature
selection. By defining parts of the body of a struct in a macro, the programmers can
include this macro into a struct definition. Combining multiple macros in a struct
is very similar to composition of classes using refinements and can thus be replaced
by FOP.

Macros vs. Hook Methods. Macros that define executable code can be replaced
by hook methods. If there are alternative implementations of a macro (i.e., depend-
ing on the feature selection), alternative hook methods have to be defined in different
features. In our Berkeley DB refactoring, we also had to create hook methods to
decompose methods with #ifdef-statements to modularize the code of multiple fea-
tures. Hook methods are often used in frameworks to introduce extension points
into a method (cf. Sec. 2.2.4). In FOP, hooks can be used similarly. They enable
subsequent features to introduce specific code into the middle of a method via refin-
ing a hook method. For example, in order to provide an extension point for cursor
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initialization, we use a hook method InitNewCursor that can be overridden by sub-
sequent features to provide initialization code. This hook method is called when
creating new cursors objects. Its base implementation is empty and is overridden in
features such as B-Tree to execute feature-specific initialization.

Hook methods and their refinements are similar to a combination of macros with
conditional preprocessor statements. Both define functionality that depends on the
configured features. Comparing hook methods and macros with respect to readabil-
ity, there is no general difference. The use of hook methods can be complicated if
local variables are involved. These variables have to be passed as arguments to hook
methods to allow their use in method extensions [KAB07]. In contrast to macros,
hook methods can be extended by multiple features when using FeatureC++. Fur-
thermore, hook methods are part of the programming language and the type system.
They support type safety and overloading, and are encapsulated in the correspond-
ing class. Additionally, complex #ifdef constructs, e.g., nesting, cannot be avoided
when using macros since they are still needed for macro definitions. In case of
Berkeley DB, 66 % of the source code are part of optional or alternative features
and are accessed via #ifdef constructs or macros obfuscating most of the source
code. Using FeatureC++, we are able to properly modularize such code into feature
modules and separate it from other features.

In contrast to hook methods, macros do not have an own scope of execution, which
means that a macro is executed as part of the function that contains the macro call.
For example, a macro may contain a return statement. Calling the macro thus
ends the execution of the calling method. This cannot always be replaced by a
hook method and the return statement has to reside outside the hook. Hence, a
combination of both concepts may be beneficial in particular situations.

Function Pointers. In Berkeley DB, function pointers are used to achieve an object-
based programming style but also for configuration purposes in combination with
the C preprocessor and to achieve dynamic variability. The function pointers are
initialized depending on a static feature selection. For example, when distributed
transactions are used, function pointers for transactions refer to the functions for
distributed transactions instead of the regular transactional functions. The use of
function pointers for implementing static variability suggests that developers strive
for simpler mechanisms for customizability that provide some level of abstraction,
i.e., function pointers that can be easily exchanged.

Configuration with function pointers in combination with conditional preprocessor
statements is semantically equivalent to method refinements in FOP. For example,
code for distributed transactions in Berkeley DB can also be implemented in a
method refinement that overrides the original implementation and is only available if
distributed transactions are used. Replacing such function pointers with refinements
of FOP means an automation of the manual configuration process, i.e., replacing
manual pointer initialization by FOP code transformation. A difference between
function pointers and FOP is the supported binding time. A function pointer is

56



4.2 A Case Study on Berkeley DB

usually bound at load-time and may even be rebound at runtime. In Berkeley DB,
function pointers are used for static and dynamic binding. Until now, we only
considered static binding of FeatureC++. In the next chapter, we present support
for dynamic binding.

SPL Development

Fine-grained Customization. FOP supports fine-grained customization by decom-
posing a method into several method refinements. This, however, sometimes re-
quires to use hook methods when code of a feature has to be introduced into the
middle of a method. By contrast, the C preprocessor allows a developer to pro-
vide fine-grained customizability by modularizing even single statements. This also
means that annotated code remains in the context of the surrounding statements
and is not moved to a separate refinement. Especially for fine-grained extensions,
annotations may improve comprehensibility of source code by avoiding heavy frag-
mentation. We also observed this effect in SPLs that we implemented from scratch
(e.g., in Fame-DBMS).

Modularization and Reuse. The C preprocessor allows us to achieve high reuse
within an SPL without physically separating the features. While modularization
often means a higher development effort, it also means better reuse within and also
across SPLs. For example, annotated code fragments can only be reused in the
context of the surrounding code, i.e, at a specific point within a single SPL. We
cannot combine an annotated code fragment with other code that requires the same
functionality. By contrast, a feature module can be freely composed with other
features (e.g., alternative implementations of a transaction management system).
Hence, when adding a new feature to an SPL, it may use functionality of existing
features or extend them. This improves reuse within the same SPL. In C and C++
programmers achieve modularization of features by combining the lower level mod-
ularization mechanisms that work on files such as #include statements, alternative
includes, and selection of files by the build system. This also requires additional
effort for decomposition of the source code as in FOP. Hence, when modularity and
reuse is not required, annotation with the C preprocessor may be preferred over
decomposition into feature modules using FOP or the modularization mechanisms
of C/C++.

In contrast to these C/C++ mechanisms, an FOP feature module can extend
the methods of another feature module (i.e., using method refinements), which is
not possible with macros or functions in C/C++. A feature module may even be
reused in other SPLs that provide the same extension points, i.e., the points in code
required for defining extensions such as method signatures. Hence, the base program
that is extended by a feature module must provide the classes with the methods and
variables that are extended and used by the feature module. This limits reuse of
feature modules between SPLs.
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Safe Composition. Using FOP, a programmer can ensure that every generated
variant is correct with respect to syntax and semantics of the used programming
language, which is known as safe composition [AKL08, AKGL10]. This is only
possible with an appropriate type system that is aware of SPLs, which is beyond the
scope of this thesis. Modularization of features can improve the comprehensibility
of large software systems because not the whole source code has to be inspected
to understand a particular feature [KLM+97]. Nevertheless, FOP may also have
a negative impact on code comprehensibility, e.g., when hook methods have to be
used. For that reason we think that tool support, similar to a virtual separation
of concerns in CIDE [KAK08], can further improve the comprehensibility of FOP
code.

Feature Interactions. Using the C preprocessor, derivative code (i.e., code that
must be available only when two or more features are selected) is usually imple-
mented with nested #ifdefs. It is thus automatically included in a program when
the corresponding features are included. In our FOP refactoring, we transformed this
code into a separate derivative module that is included only when the corresponding
features have been selected. Similar to the effort for modularizing a feature, it also
means a higher effort for extracting a derivative module than annotating the code.
However, comprehensibility of the source code may be improved by using FOP as
we describe below.

While extracting more features in Berkeley DB, we observed that the number
of derivatives increases more than linearly [KAuR+09]. This high increase may be
caused by the fact that we refactored an existing application and we did not design
it with the aim of reuse. However, the high increase may also be natural for feature
interactions and has to be further analyzed. For more details on feature interactions
we refer to [KAuR+09, Käs10].

Comprehensibility of Source Code. The comprehensibility and readability of
source code depends on several properties and is hard to analyze. For exam-
ple, separation of concerns is expected to improve the comprehensibility of source
code [Dij72a]. Since we cannot directly analyze the impact of the different implemen-
tation mechanisms on comprehensibility of the source code, we analyze their impact
on separation of concerns and illustrate how this may affect comprehensibility of the
source code.

In contrast to components or FOP, the C preprocessor does not directly support
separation of concerns in source code. This is partially possible using separately
defined macros instead of scattered #ifdef statements. The lack of separation of
concerns is also the reason for reduced maintainability and comprehensibility of the
source code [BM01]. The result is code of features that is entangled with other
code and scattered all over the program. Consequently, local behavior can only
be understood by inspecting large parts of the code. Comprehensibility is further
degraded by nested #ifdefs [SC92]. This effect can be reduced by using macros but
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cannot be completely avoided because it often results in nesting for macro definitions.

Using FOP, features are modularized and separated from each other. Parts of
classes and methods can be related easily to their functionality (i.e., their feature)
and can usually be understood without considering code of other features. One of
the major features that crosscuts large parts of the source code is the transaction
management system (4,208 LOC). In Berkeley DB, we extracted the transaction
management system, as other features, and separated it from the remaining func-
tionality. This decomposition decreases the code size of other features. For exam-
ple, feature B-tree consists of core functionality and other crosscutting features
(cf. Figure 4.6). As a result, one has to inspect only about 50 % of the complete
feature to understand the B-tree. Furthermore, features that crosscut the B-tree
implementation can be easily inspected by browsing the according separated im-
plementations. On the other hand, to understand a particular feature sometimes
also the code of other features has to be considered. Nevertheless, there are usually
still features that can be ignored. For example, to understand the recovery imple-
mentation of the B-tree, a programmer has to understand the features B-tree and
Recovery but can ignore all other features that crosscut the B-tree, which make
up about 25 % of the code (cf. Fig. 4.6).

FOP can also have a negative effect on readability of the source code when com-
paring it to techniques that do not support customization. For example, if we use
FOP and hook methods to introduce extension points into methods, we may de-
grade the comprehensibility and do not completely follow the principle of separation
of concerns (the method call remains in the original feature). Hence, interactions
between features cannot be completely modularized if they occur at the level of
statements within methods. In this case, the decomposed source code may be dif-
ficult to understand since the program flow switches between a number of methods
and refinements. Finally, the degradation of readability is a result of increasing
customizability and can also be found in other approaches for SPL development.

Replacing the C Preprocessor

Macros and fine-grained customization capabilities of the C preprocessor demon-
strate that it is often hard to replace annotations with FOP. Hence, a combination
of annotative approaches with FOP can be beneficial in this case [KA08]. We argue
that such a combination is useful for special situations only. Our experience with the
Berkeley DB refactoring and development of other SPLs with FeatureC++ shows
that there are situations in which we do not want to replace the C preprocessor
with FeatureC++ even though it would be possible. For illustration, we give two
examples:

• Preconditions, postconditions, invariants: Programmers use the C pre-
processor to define macros that allow them to check at runtime whether pre-
and postconditions and also invariants are satisfied. In some situations, this
requires to execute special code when the conditions are not satisfied. Since the
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Configuration Featuresa Binary Size [KB]
C FeatureC++

(1) B-Tree, TXN, Others, Queue, Rep, Hash, Crypto 664 636
(2) B-Tree, TXN, Others, Queue, Rep, Hash 644 620
(3) B-Tree, TXN, Others, Queue, Rep 580 552
(4) B-Tree, TXN, Others, Queue 528 484
(5) B-Tree, TXN, Others 492 452
(6) B-Tree, TXN 416 376
(7) B-Tree N/A 224
(8) Queue N/A 184

Table 4.3: Analyzed variants of benchmark applications with Berkeley DB embedded
into the program. Shown are the used features and the binary size for C
and FeatureC++ variants of the application.

aTXN: Transactions (includes Logging and Recovery), Others: other small features, Rep: Repli-
cation.

code often includes a return statement, it is not possible to replace the code
by a method, because the return statement must reside outside the method.
In some cases this can be replaced by throwing exceptions.

• Debugging: It is often required to execute code only for debugging purposes.
For example, code for logging and analysis during debug sessions can be com-
plex and is usually highly entangled with other code of a method. The code
is often only a method call (e.g., for logging) and a hook method can be used
to avoid execution of additional code when building non-debug variants. It
may be inappropriate to extract such code into a hook method when the code
is highly entangled with the surrounding code and cannot be reused at other
places (i.e., it is only used for a single method). Furthermore, a compiler
cannot always optimize away the arguments of empty hook methods, which
means that code required for debugging may also be executed when debugging
is disabled.

The pre- and postcondition example can be seen as a way to extend the capabilities of
the programming language using the C preprocessor. We could avoid the macros by
extending the programming language with user-defined syntax and semantics (e.g.,
adding pre- and postconditions with particular actions for methods). However, the
example can be generalized to features that change the control flow within a method.
The debugging example shows that modularization sometimes requires too much
implementation effort and may degrade code comprehensibility. This example is a
special case of feature code that is specific to a method and whose modularization
does not provide a benefit.

4.2.4 Resource Consumption

We analyze the feature-refactored version of Berkeley DB with respect to customiz-
ability and resource consumption. We compare several variants with the original C
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Figure 4.5: Binary size of different C and FeatureC++ variants of Berkeley DB. See
Table 4.3 for a description of shown configurations.

version of Berkeley DB.4 As FeatureC++ uses a code transformation to C++, we
want to point out that the use of C++ is sometimes refused because poor perfor-
mance and high resource consumption is assumed. According to Stroustrup there is
no evidence for this argument [Str02], which our evaluation confirms.

For our analysis we use eight different variants of Berkeley DB embedded into
a small benchmark application, as shown in Table 4.3. The size of the generated
program is decreasing from configuration one to eight. In configurations 1–6, we use
the same features in the C and FeatureC++ variants. Configuration 6 is the smallest
possible C variant using the index structure B-tree. Configurations 7–8 are minimal
variants using B-tree (7) and Queue (8) as index structures. Both variants are not
available in the C versions of Berkeley DB because features like Transaction have
been removed in these variants, which is not possible in the original version.

Binary Size. The binary size (footprint) of an application depends on the size of
executable code and static data. Comparing our feature-refactored version of Berke-
ley DB with the original version, we observe roughly equal binary sizes for equivalent
configurations (i.e., the same set of configured features). Table 4.3 and Figure 4.5
summarize the measured binary sizes of different configurations of the benchmark
application. Reasons for a reduction of the footprint in FeatureC++ variants (e.g.,
from about 664 KB to 636 KB in Configuration 1) are mainly differences in the pro-
gramming paradigm and code for customization. For example, in the C version of
Berkeley DB function pointers are used to mimic object-based programming; these
have to be manually initialized when instantiating objects and thus increase the
binary size. These differences are negligible compared to the overall size of the
application.

4The used C and FeatureC++ source code of Berkeley DB is available under http://wwwiti.cs.uni-
magdeburg.de/iti db/BerkeleyDB/
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Figure 4.6: Lines of code of feature B-tree consisting of the basic implementation
(Base) and portions of other crosscutting features.

The binary size of applications that use Berkeley DB can be further decreased by
removing features that are not needed (i.e., reducing the functional overhead). When
comparing the smallest variants of the feature-oriented refactoring of Berkeley DB
(7 and 8) to the smallest C variant (6), we see significant differences (code reduction
of about 50 %).

Crosscutting Features. Due to crosscutting features (e.g., Recovery), the size of
a feature decreases when we extract crosscutting features. For example, the source
code of feature B-tree, as shown in configuration (1), is about 7 KLOC larger when
compared to configuration (7), which is caused by removing all features that crosscut
the B-tree. In Figure 4.6, we show the crosscutting features in detail. For example,
feature Recovery makes up a large part of the B-tree implementation which is
needed for recovery of the index. By omitting feature Recovery the size of the
B-tree source code decreases by 3186 LOC.

Performance. As mentioned above, C++ has to be used carefully to avoid per-
formance penalties. We considered this when imposing an object-oriented design
on Berkeley DB. For example, we did not use virtual methods. In Figure 4.7, we
depict performance comparisons between the C and FeatureC++ variants of Berke-
ley DB using a reading benchmark.5 We use the same configurations as used for
comparison of the binary size. For configurations 1–6, the performance is roughly
equivalent when comparing C with FeatureC++ variants. Configuration 7 is the
smallest FeatureC++ configuration using the B-tree index structure.6 Among oth-
ers, feature Transaction was removed in this FeatureC++ variant (cf. Table 4.3).

5For benchmarking, we used an Intel Core 2 system with 2.4 GHz and operating system Win-
dows XP. For compilation, we used the Microsoft C/C++ compiler v13.10.3077 and Incre-
mental Linker v7.10.3077 (Visual C++ 2003). The used benchmark is a reading benchmark
for Berkeley DB available from Oracle: http://www.oracle.com/technology/products/berkeley-
db/pdf/berkeley-db-perf.pdf.

6Configuration 8 (as shown in Figure 4.5) was omitted since a comparison is not meaningful due
to the use of the Queue index structure instead of a B-tree.
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Figure 4.7: Performance comparison (Oracle benchmark) of C and FeatureC++ vari-
ants for different feature selections. Higher values mean better perfor-
mance. See Table 4.3 for a description of shown configurations.

It results in a performance improvement of about 16 % compared to the minimal
C version even though the feature is inactive in all variants. This is caused by the
removal of dynamic checks that are evaluated even when features like Transaction
are not used. Especially for transactions, numerous of such tests are utilized, which
explains the better results for configuration 7 in Figure 4.7. These checks are im-
plemented with conditional statements that have to be executed on every database
access for some features.

4.2.5 Functional Overhead

In Figure 4.8, we summarize the maximal functional overhead of Berkeley DB vari-
ants for an increasing number of features. We depict the relative binary size and the
relative execution time of the reading benchmark used in the previous section. The
relative overhead means the additional binary size or execution time due to features
in a program that are not used, i.e., compared to the smallest configuration. For
example, in a full configuration, the binary of the program has a size of 636 KB
compared to a binary size of 224 KB for the configuration with 14 features, which
means an overhead of 184 %.

The increasing binary size is not surprising; it is caused by the executable code
of added features. The increasing execution time, however, is not caused by func-
tionality of added features since we used only basic functionality in all variants
when executing the benchmark. For example, even though we added the trans-
action management feature, we did not use transactions. By contrast, executing
additional functionality would heavily degrade performance. For example, using
transactions would result in performance below 1 % compared to execution without
transactions. This degradation can also be seen as a functional overhead. In case of
Berkeley DB, however, the user does not have to use this functionality due to more
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Figure 4.8: Relative functional overhead of Berkeley DB variants with an increasing
number of features.

fine-grained possibilities for activation and deactivation of transactions on the basis
of single queries. Nevertheless, we observe a slightly increasing execution time when
adding more features. The reason is additionally executed code that checks whether
a particular functionality is active or not.

4.3 Component Product Lines

Berkeley DB is an embedded DBMS, which means that it is embedded into a pro-
gram and accessed via an API. A concrete Berkeley DB variant can be seen as a
component that is used to build larger software systems (e.g., a stream processing
system). The result is component variability [vdS04] and we thus call Berkeley DB a
component SPL. A developer of a client application that uses an instance of Berke-
ley DB can thus derive a variant that satisfies the needs of a particular application
scenario. However, when the requirements change, the generated Berkeley DB has
to be reconfigured and rebuilt accordingly. This may result in a varying interface,
which complicates client development as we observed it in Berkeley DB.

4.3.1 Product Line Interfaces

In Section 2.2.4, we have seen that components are connected via an interface.
This interface is considered to be stable [PBvdL05], which is important for inter-
operability of components [Par79, Par07]. By contrast, when a component itself is
developed as an SPL, the interface may depend on the configuration of the compo-
nent. In the following, we analyze component variability. We describe reasons for
interface variability and define a semantic SPL interface and an SPL programming
interface [RSK10].
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Feature Core

1 class DB {

2 bool Put(Key& key , Value& val , TXN& txn) { ... }

3 };

Feature Transaction

4 refines class DB {

5 bool Put(Key& key , Value& val , TXN& txn) {

6 ... // t ransac t i on s p e c i f i c code
7 return super::Put(key ,val ,txn);
8 };

9 };

Figure 4.9: FeatureC++ source code of class DB with method put. The method
refinement in feature Transaction requires argument txn.

Interface Variability and Substitutability of Components

The variability of a component’s interface causes problems for client development in
two situations: first, when changing the configuration of the used component and,
second, when polymorphic use of components is required.

Component Reconfiguration. When a component is reconfigured (e.g., adding fea-
ture Transaction to Berkeley DB), methods are added to and removed from the
component and it is possible that the changes invalidate existing client code. Hence,
the component cannot be substituted with a different variant. This kind of com-
ponent variability can be handled with a variable client implementation (e.g., using
FOP as well). However, this increases complexity of client code and introduces
dependencies between client configuration and component variant. To avoid this
additional complexity, we argue that variability in the interface of an SPL has to be
limited.

A special kind of interface variability occurs when a feature extends a method and
thus changes the method’s signature (e.g., by adding a parameter that is required for
executing the method). In Berkeley DB, we observed that method signatures of a
component may change due to reconfiguration, e.g., after extracting code of feature
Transaction into a separate feature module [RKSS07]. The feature introduces
arguments into several methods. For example, there is a method put in Berkeley
DB similar to the method we depict in Figure 4.9. In order to support transactions,
a parameter of type TXN is required (Lines 2 and 5) for feature Transaction. In the
base implementation without any transaction code, the parameter is not needed and
should not be part of the method signature (Line 2). This would cause variability of
the signature of 94 methods between different configurations, i.e., with or without
transactions.

Extensions of method signatures are not supported by FOP languages. The result
is a fixed method signature that includes all arguments required in refining features,
as shown in Figure 4.9. This is not an implementation issue but a general limitation

65



4 Scalable Static Feature Binding

of the approach. If it would be possible for feature Transaction to add argument
txn to method Put, all existing method calls (calls in client code but also calls in
SPL code) that do not expect the argument would still refer to a method without the
argument. When we try to actually implement this variable signature, (1) we would
have to overload the method or (2) we would have to replace the method with the
extended method. Both possibilities do not solve the problem. When overloading
the method, the existing method calls would refer to the unextended method. This
would cause semantic errors because the extended method must be invoked. When
replacing the method, the existing method calls are invalid because the unextended
method does not exist in variants without the optional feature. Hence, we would
also have to implement variability at the caller side (i.e., for every method call),
which is generally possible with the C preprocessor (i.e., using #ifdefs).

In previous work, we analyzed different approaches to handle extensions of method
signatures [RKSS07]. We found that the C preprocessor is also inappropriate for
two reasons. First, it complicates SPL development (we have to provide variability
at method invocations) and, second, the variable signature hinders interaction with
other software that uses the SPL. Hence, we argue that such extensions must be
avoided because they complicate SPL development and hamper use of SPL compo-
nents. In our decomposition of Berkeley DB, we avoided variable method signatures
by providing empty classes that are used as argument types. However, this means
that we do not completely separate the features from each other. Furthermore, such
extensions are hard to achieve if new features have to add arguments during SPL
evolution. Variable argument lists as provided by C++ can also not be used to solve
the problem because the order of the arguments matters and may change due to the
feature composition order. In languages that support order independent argument
lists, this could be a viable solution. For FeatureC++ and similar languages, we thus
suggest changing the design of an SPL instead of using variable method signatures.

Avoiding variability of method signatures does not mean that a feature cannot
overload an existing method. Overloading means that a new method is added and
the existing method is still valid. For example, a feature Transaction may overload
a method Put by adding a method with an additional argument txn. In this case,
however, the new feature has to ensure that the existing method Put still works.
For example, the existing method may be refined to automatically create a new
transaction on every method call. By contrast, extending the method means that
the old method is not valid and cannot be used.

Component Polymorphism. The second problem caused by a variable component
interface occurs when multiple components of an SPL must be used polymorphi-
cally. For example, when a client application uses different variants of a component,
programmers face two major problems. First, they have to be able to distinguish
component variants from each other and, second, they may want to write generic
code that can be used with different variants. Both problems cannot be solved with
FeatureC++ or the C preprocessor because the generated components are similar
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but the interfaces are not subtypes of a more general interface. In Java, C++,
and many other programming languages it is thus not possible to reference different
component variants (generated from FOP code or with the C preprocessor) from the
same source file. The reason is that generated component variants cannot be distin-
guished from each other. For example, a class DB of Berkeley DB has the same name
in different variants. It is thus not possible for the programmer and the compiler to
decide which of multiple variants to use.

Separating the component from its interface (as usual in CBSE) does not solve
the problem because the component’s interface is variable. That is, we are faced
with the same problem of missing substitutability of component variants discussed
above for component reconfiguration. We can solve the problem by providing sub-
type polymorphism of components or of their interfaces (i.e., subtyping between
their interfaces). Before we describe possible solutions, we introduce the notion of
semantic and programming interfaces for SPLs.

Semantic SPL Interface

We define the interface of a (specialized) SPL depending on the features that are
included in all products [RSK10]. A specialized SPL is derived during staged con-
figuration by deciding which features must be included in the variants of this spe-
cialization (i.e., selecting features; cf. Sec. 2.3.4).

We define the semantic interface of a (specialized) SPL as the set of features
that are present in all valid instances of the SPL (i.e., the minimal set of included
features). These are mandatory features, features selected via specialization, and
features required due to constraints. The semantic interface thus defines the feature
common to all products of the SPL. By adding features in specialization steps we
extend the interface. For example, the semantic interface of the Berkeley DB SPL
is the set of mandatory features. A specialization BerkeleyDBTXN that includes
feature Transaction has an extended semantic interface that includes this feature
as well as features required due to constraints, such as feature Logging. However,
not every specialization step extends an SPL’s interface. For example, the interface
does usually not change when we add a constraint that excludes a feature.

Subtyping. We define subtyping between SPLs at a conceptual level based on their
semantic interface: When the semantic interface of an SPL Derived (i.e., the set of
included features) is a superset of the interface of an SPL Base then Derived is
a subtype of Base. Whether an SPL is a specialization of another SPL, and thus
a subtype, can be checked with a SAT solver [TBK09]. Subtyping between SPLs
allows us to use them polymorphically. For example, a client can use two different
instances of Berkeley DB by accessing their common supertype. For a more detailed
description of subtyping, we refer to [RSK10].

The expected and required semantic interfaces (i.e., the set of expected and re-
quired features) can be used to check whether a component provides the functional-
ity required by another component. For example, we can check whether a concrete
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Berkeley DB variant provides all the features required by an e-mail client that uses
Berkeley DB. We only have to check whether the provided variant is a subtype of
the required variant. This is a kind of semantic compatibility which is in contrast
to the syntactic compatibility that is guaranteed by programming interfaces.

SPL Programming Interfaces

We define the programming interface of a (specialized) SPL according to its semantic
interface. The programming interface is the union of the programming interfaces of
the implementation classes that are defined in the features of the semantic interface.
For example, the programming interface of Berkeley DB consists of the interfaces
of all classes defined in mandatory features of the SPL. It does not include classes
or methods introduced by optional features such as Transaction because these
features are not present in all instances. In specialization steps, we extend an SPL’s
programming interface up to a complete interface for a concrete component.

Subtyping. The semantic subtype relationship between specialized SPLs also ap-
plies to the interfaces of implementation classes [RSK10]. Hence, when SPL Derived
is a specialization (and a subtype) of SPL Base then the interface IDerived of an
implementation class CDerived defined in Derived is also a subtype of interface IBase

of the corresponding class CBase defined in SPL Base. Consequently, a feature can
modify the interface of a class only in a way that can be expressed with interface
inheritance. For FOP this means that the refinement mechanism must correspond
to subclassing. For example, a method refinement cannot change the signature of a
method because this cannot be expressed with inheritance as we observed it when
extracting feature Transaction in Berkeley DB. Hence, an SPL should ideally fol-
low our definition of the SPL programming interface to avoid problems with respect
to client development but also with respect to SPL development. This could be
part of an extended type system for SPLs. In combination with correspondence
to the semantic SPL interface we provide a limited form of semantic substitutabil-
ity [LW94]: A component variant can only be substituted with a different variant
that has a compatible programming interface if it also provides a superset of the
actually required features. That is, the new variant must also be a subtype of the
required semantic interface. Hence, there can be components that have the same
programming interface but are not in a subtype relationship with respect to their
semantic interface. On the contrary, if a component is a semantic subtype of another
component it is also a subtype with respect to the programming interface if the SPL
satisfies our requirements on SPL interfaces.

4.3.2 Using Multiple Component Variants

When the implementation of an SPL adheres to our definition of semantic and
programming interfaces, we can add features to a component variant without inval-
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idating client code.7 However, when using multiple variants, we have to provide a
way to distinguish these variants from each other. For Berkeley DB, we observed
this problem in client applications that use different variants.

Separating Component Variants. In C++, it is possible to use different variants
of a component by referencing the variants in different source files of a client. This
is possible because the files of the variants can be distinguished via their storage
location using an #include directive. For example, it is possible to use two different
variants of Berkeley DB by storing both variants in different folders and by including
only one of the variants in each source file. This is not possible within a single source
file. To overcome this limitation, we extended FeatureC++ to generate a distinct
C++ namespace for each derived component variant [RSK10]. The namespace is
used to access the classes of different component variants. For Java-based languages,
such as Jak, the corresponding solution would be to use Java packages.

Avoiding Shared State. When using two different component variants, state
should not be shared between the components. For example, the Singleton de-
sign pattern can be implemented with a static member variable [GHJV95]. The
variable is used to store a single object of a class. When several SPL instances are
used at the same time each instance requires its own object of the singleton class.
Hence, the objects, and static member variables in general, must not be shared be-
tween different SPL instances to avoid inconsistencies. When two components are
executed in separated processes this is automatically achieved. Using different com-
ponents within the same client application, however, requires separating the state
of the components. In FeatureC++, this is also achieved by generating namespaces.

Static Component Substitution. Using namespaces or packages to separate dif-
ferent component variants is sufficient when a client uses a single component that is
reconfigured, i.e., statically substituted with a different variant. In this case, the old
and the new component variants must have a common supertype that is implicitly
defined via the methods the client accesses. This required programming interface
should be made explicit by the client as it is usual in CBSE. However, this may still
result in semantic incompatibility of the new component if it is not a subtype of the
actually required semantic interface. Hence, the client should additionally define
the required semantic interface (i.e., the minimal set of required features), which
partially ensures semantic compatibility.

Support for Polymorphism and Subtyping. When using multiple component vari-
ants at the same time, it is a complex task to write generic client code that works
with different variants. A possible solution is to use generics (e.g., C++ templates)

7This means that the client code will be syntactically correct and semantically correct with respect
to the required features; but there may be semantic errors since we only ensure a limited form
of semantic correctness.
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in client development or to create an inheritance hierarchy of classes that wrap
the different variants. Unfortunately, both solutions highly complicate client devel-
opment. Another solution is to support polymorphism of the classes of different
component variants according to the subtype relationship between the components
as defined above. In this case, the different variants of the implementation classes
of the component variants have to provide the subtype relationship of the com-
ponents. In [RSK10], we proposed two solutions that address this problem using
special code transformations to generate component hierarchies. The solutions are
based on the concept of family polymorphism [Ern01] which is also supported by
CaesarJ [AGMO06]. A detailed description of these approaches is outside the scope
of this thesis. However, we want to note that we have to impose the restrictions
on the implementation of a feature as described for subtyping with respect to the
programming interface described above.

4.3.3 SPL Interface Design

We close this section with a proposal for designing SPL interfaces. If we aim at
achieving polymorphism between component variants or if a client has to support
reconfiguration of components, it is important to avoid interface variability that does
not conform to interface inheritance such as variable method signatures. In general,
variability of the interface of a class (adding a method) may also complicate client
development. It is thus important to minimize the variability of the interface of an
SPL. This can usually be achieved by implementing a feature’s functionality in a set
of classes with a fixed interface. Method refinements and delegation can then be used
to connect a feature module (i.e., the set of classes) with a base program without
changing the interface of the base program invasively (only classes are added). This
also reduces the number of method extensions per method, which we often recognized
to be a hindrance for readability and comprehensibility of FOP code. Hence, a
feature ideally adds only classes to a base program and extends as few methods as
possible. It should avoid to modify the interface of existing classes; if it modifies the
interface, it should adhere to our definition of programming interfaces.

4.4 Related Work

Software development based on features was applied successfully in different do-
mains [BO92, BCGS95, BJMvH02, GSC+03, XMEH04, LAS05, TBD06, LB06,
ALS08]. However, there is less known about the impact on resource consumption
and the applicability to embedded systems. We have analyzed resource consump-
tion of static feature binding with FeatureC++ and could show that it can also be
applied to develop SPLs for embedded systems. In the following, we present related
approaches that aim at a similar goal using different implementation mechanisms.

Feature-oriented Programming. There are a few case studies on refactoring a pro-
gram into an SPL with FOP. Trujillo et al. refactored the AHEAD Tool Suite into a
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feature-oriented SPL and recognized a need for automation [TBD06]. They did not
analyze resource consumption of FOP nor did they compare the variability mecha-
nisms of FOP with the C preprocessor. During feature-refactoring Berkeley DB we
also found that tool support is needed to provide a scalable approach. Kästner et al.
proposed techniques to automate feature refactoring [KKB07]. Dreiling describes
a semi-automatic approach for refactoring a program into an SPL using annota-
tions [Dre10]. We semi-automatically translated C code annotated with the C pre-
processor into FeatureC++ code but did not focus on automating feature refactoring
(i.e., extraction of features), which was the second step in our case study.

Aspect-oriented Programming. There is a large amount of work on using AOP
for developing customizable software systems. For example, AOP has been applied
to DBMS [Ras03, NTN+04, TSH04], operating systems [CKFS01, CK03, LST+06],
and middleware [ZJ03, ZJ04, CC04]. These studies show that AOP is also an ap-
propriate technique to decompose software with respect to features. Evaluations
of these solutions furthermore show that AOP can be used with negligible impact
on performance and resource consumption, as long as no dynamic mechanisms are
employed [GS05]. Our work is similar to these approaches and shows that FOP
can be used to separate crosscutting concerns without impact on performance.
Tešanović et al. examined AOP for DBMS customization [TSH04]. They evalu-
ated their approach using Berkeley DB but have shown only customizability for
small parts and not the whole system. Kästner et al. showed how the Java version
of Berkeley DB can be refactored into an SPL with AOP [KAB07]. The approaches
above did not compare variability mechanisms with the mechanisms provided by
the C preprocessor. Some studies show that the comprehensibility of source code
may be degraded when using aspects as it is suggested by studies that analyzed
AOP [Ste06, KAB07, KK07]. We found that FOP may also degrade readability
when compared to other variability mechanisms. Some studies propose that collab-
oration based designs like FOP should be preferred when developing software with
respect to features [OZ05, LLO03, MO04, ALS06, AB06]. However, currently there
is too less known about the comprehensibility of AOP and FOP code for a detailed
evaluation.

Component-based Development. Development of customizable software has been
in the focus of research since many years. Component-based approaches are also get-
ting attention for DBMS development [GSD97, CW00, NTN+04, DG01b]. However,
components have to deal with several difficulties: For example, when decreasing
the size of components the communication overhead increases [CW00]. This can be
avoided with a static configuration approach such as provided by FeatureC++. Fur-
thermore, modularization of features into components is a complex task and some-
times not possible if the features are entangled with other features. Similarly, Griss
et al. [Gri00] and Rashid [Ras03] argue that new techniques such as AOP should be
combined with component technology to develop highly customizable software.
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Components and AOP. In order to overcome the limitations of component ap-
proaches, component systems are combined with approaches that provide fine-
grained customizability like AOP [KLM+97]. AOP allows for modularization of
crosscutting functionality that is hard to encapsulate in a component. With
COMET, Nyström et al. provide a component-based approach that uses AOP
to tailor components by weaving customization code into a component if it is re-
quired [NTN+04]. The result is improved separation of concerns and fine-grained
customizability without negative impact on performance and footprint. We intro-
duced a definition for variable SPL interfaces that enable polymorphism of compo-
nent hierarchies. Our definition of SPL interfaces can also be applied to a combina-
tion of components and AOP. In this case, an aspect would only be allowed to apply
transformations that conform to subclassing.

Feature Annotation vs. Feature Composition. Kästner classifies SPL devel-
opment approaches into annotative and compositional approaches [Käs10]. He
compares annotation-based SPL development with compositional approaches and
could show that disciplined annotations can also be used to achieve safe composi-
tion [KATS11]. However, also disciplined annotations require to either annotate all
source files of a feature (which can be several files) or to use additional variability
mechanisms such as provided by build systems. To achieve fine-grained extensions
and modularity Kästner et al. propose to combine annotative and compositional ap-
proaches [KA08, Käs10]. This is in line with our findings when refactoring Berkeley
DB.

Staged Configuration and Component Variability. Czarnecki et al. define staged
configuration as a process that eliminates configuration choices [CHE05]. We addi-
tionally define a subtype relationship that corresponds to the product specialization
hierarchy; it is the foundation for polymorphism and substitutability of component
variants.

Component variability is handled by van Ommering using diversity inter-
faces [vO02]. A diversity interface defines not only required functions but also
required properties needed for configuration of internal variability. Subtyping be-
tween interfaces is based on a subset relation of the elements of the respective inter-
faces [vO04]. This can also include diversity properties, which can be used to check
whether the properties a component requires are provided by the system that con-
tains the component. However, it does not define whether a component is a subtype
of another component with respect to the features included. Variability of compo-
nents was also expressed by van der Storm using the component description language
(CDL) [vdS04]. CDL is based on the feature description language (FDL) [DK02]
but additionally allows for describing dependencies between variable components
using requires relations. Fries et al. present an approach to model compositions of
multiple SPLs [FSSP07]. They use feature configurations, a selection of features, to
describe a group of SPL instances that share these features. Feature configurations
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are similar to SPL specializations but do not allow a user to describe multiple con-
figuration steps. We use a specialization hierarchy to describe the commonalities of
a set of specialized SPLs and reuse configuration decisions. All approaches above do
neither define subtyping between component variants based on a feature selection
nor a variable programming interface that depends on the feature selection.

Mixin Layers and Virtual Classes. Layered designs can be implemented with sev-
eral techniques. Examples that support static binding are P++, a precursor of
FOP [BDG+94] and virtual classes as supported by CaesarJ [AGMO06]. In con-
trast to AHEAD and FeatureC++, P++ explicitly defines layer interfaces. Static
mixin composition with P++ and also mixin composition with virtual classes allow
programmers to create different instances of a component at compile-time. However,
both approaches require programmers to define a component in the host language.
To derive different configurations of the same component, an additional composition
mechanism has to be used (e.g., using the build system). CaesarJ can furthermore be
used to achieve subtyping between different component variants of an SPL. However,
as we analyzed in previous work [RSK10], the mixin composition process imposes
a feature composition order, which makes it sometimes impossible to achieve the
desired type hierarchy and a correct composition order at the same time.

Nested Intersection. The language J& supports composition of multiple compo-
nents using nested intersection [NQM06]. It is based on composition of classes and
packages with their inner classes similar to virtual classes. J& may be better suited
for implementing component hierarchies than virtual classes because it defines static
virtual types, which are attributes of packages or classes and not of objects. How-
ever, the composition mechanism of J& does not linearize class extensions, which
complicates development of independently composable features.

4.5 Summary

In this chapter, we presented optimizations for FeatureC++ that allow us to stat-
ically bind features without any impact on resource consumption. In a case study,
we have shown that FOP can replace the mechanisms to implement variability in
Berkeley DB. These are conditional compilation, build scripts (GNU Make), macros,
and function pointers. However, we have also shown that macros provide implemen-
tation mechanisms, not related to variability, that we cannot easily replace by OOP
or FOP mechanisms. Furthermore, function pointers are used to implement static
and dynamic variability which can be replaced by FeatureC++ refinements. Until
now, we only considered static binding but we introduce dynamic binding of fea-
ture modules in the next chapter. Qualities of the source code like separation of
concerns and comprehensibility are important with respect to maintainability and
extensibility of software. We cannot easily compare annotations and FOP without
extensive experiments [FKAL09], but we could show that we can replace multiple
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variability mechanisms with a single approach, namely feature modules. Compared
to the C preprocessor, FOP improves reuse possibilities because a feature module
can be combined with other independently developed feature modules that provide
the same interface. Furthermore, with FOP we can avoid syntactic and some kinds
of semantic errors by using an SPL-aware type system [AKGL10]. It is important
to note that type safety can also be achieved with an annotative approach and ap-
propriate tool support [Käs10], but this is not supported by the C preprocessor.
We have also shown that, similar to the C preprocessor, static composition of fea-
ture modules avoids any negative impact on performance or footprint. Our analysis
shows that static binding may cause a high functional overhead with respect to bi-
nary size. With respect to performance, we observed only a small overhead because
most features of Berkeley DB can be configured at runtime are thus only used when
needed.

Our comparison does not mean that FOP is better suited for developing SPLs.
For example, it may be better for a company to stay with a preprocessor-based
approach to avoid the effort for a migration to FOP (e.g., to FeatureC++) [KA08].
Hence, it has to be analyzed for each concrete scenario which approach should be
applied. Our comparison provides a basic guideline for such decisions. Furthermore,
we argue that a combination of FeatureC++ and the C preprocessor can be useful.
Especially some uses of macros and annotation of single statements that are not
reused may be beneficial to simplify SPL development.

We have shown that current FOP approaches and also other SPL implementa-
tion techniques lack appropriate support for implementation of component SPLs.
Variable method signatures and, more generally, a variable interface complicate de-
velopment and use of component SPLs. We thus introduced a variable SPL interface
consisting of a semantic and a programming interface. We argue that an SPL should
adhere to the extensibility limitations imposed by our interface definition to min-
imize interface variability and thus reduce the complexity of developing and using
SPLs. Consequently, tools for SPL implementation (i.e., preprocessors, compilers)
have to check whether a component SPL satisfies requirements of a variable interface.

In Berkeley DB, we applied static composition on top of dynamic binding of some
features. Thus we achieve both, flexibility due to dynamic binding and improved
performance when dynamic binding is not needed. However, this approach does not
integrate static and dynamic binding very well and increases the development effort:
Programmers have to encapsulate a feature in a feature module and, at the same
time, they have to implement dynamic binding, e.g., using conditional statements.
In the next chapter, we present an extension of FeatureC++ to support also dynamic
binding for feature modules.
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This chapter shares material with the GPCE’08 paper ”Code Genera-
tion to Support Static and Dynamic Composition of Software Product
Lines” [RSAS08].

FOP provides means to modularize the features of an SPL already at the language
level. It provides a mechanism for class extensions which is independent of the
binding time. This allows us to bind features not only in a preprocessing step but
also at runtime. In contrast to static binding of feature modules, dynamic binding
requires to compose the classes of a program according to a feature selection at
runtime. This composition process can be realized by compiling the variant at
runtime and applying the changes to the running program [PKG+09]. We avoid
compilation at runtime by generating binary feature modules that are dynamically
composed with each other similar to components. This has several benefits. First,
composition is much faster because the feature modules do not have to be compiled;
the binary modules are loaded on demand (or already at program startup) and
are connected with other feature modules. Second, composition of binary feature
modules allows us to reconfigure an SPL at runtime. For example, we can load
additional feature modules without regenerating the whole SPL. In a first step,
we focus on composition of features before executing the SPL code. The binding
may occur during runtime of a program (e.g., a client program that uses a DBMS
SPL) but it does not change after execution of the SPL code has started. Hence, it is
binding at load-time with respect to the SPL [KCH+90]. To support reconfiguration
of an already running SPL instance, existing classes have to be extended with new
code when a feature is activated and existing objects have to be extended with new
data. Hence, it is important to distinguish between binding at SPL load-time and
at runtime (i.e., runtime adaptation).

In this and the next chapter, we focus on dynamic composition. However, the
presented code transformations can also be applied for binding at runtime, which
we discuss in Chapter 7. Based on the concept of feature modules we now analyze
requirements on a language that supports both, static and dynamic binding. We
then present code transformations to generate binary feature modules that can be
bound dynamically.



5 Dynamic Binding of Feature Modules

5.1 Language Support for Dynamic Feature Binding

While static binding is well supported by Jak and FeatureC++, there are language
constructs that cannot be used when dynamic binding is applied. An example
is the C++ compiler construct sizeof, which calculates the size of an object at
compile-time. This is not possible when the size of an object changes at runtime
due to a reconfiguration. Such language features also exist in other programming
languages such as Java (e.g., enumerations). In the following, we we analyze how
C++ constructs can also be supported when dynamically binding feature modules
of FeatureC++.

5.1.1 Compile-Time Constructs

Compiler constructs are frequently used because they can be evaluated by the com-
piler and the compiler can optimize the program code according to the evaluation
result. Hence, such constructs should also be available in a language that supports
both, static and dynamic feature binding. A solution is to support the constructs
only when they are applied to statically composed language elements. In general,
such constructs can also be evaluated at runtime (e.g., calculating the current size
of an object), but the result of the evaluation is usually already required at compile-
time. Furthermore, the result of the evaluation (e.g., the size of an object) may
change when additional features are bound at runtime.

Calculating the Object Size with sizeof

In C++, the size of an object can be determined with sizeof at compile-time.
In FeatureC++, the sizeof construct can only be applied to statically composed
classes and the programmer gets a compiler error otherwise. This results in imple-
mentation constraints that limit the variability of an SPL. We depict an example
in Figure 5.1 for a class Page of a DBMS which has a variable size. The class is
extended in feature Crypto, which adds variable bIsEncrypted. Class DbInfo in
feature Info uses sizeof to calculate the size of the class. Using static binding, the
size depends on the feature selection but can be computed by the compiler because
configured features are already known at compile-time. Using dynamic binding,
the size of class Page may change at runtime and sizeof is not applicable. Hence,
when feature Info is used, feature Crypto cannot be configured dynamically. That
is, when binding all features dynamically, features Info and Crypto are mutually
exclusive. This is problematic when both features are required and can only be
avoided with a different implementation. We do not support evaluation of sizeof

at runtime because the programmer would expect that the computed size will be
correct and does not assume that it may change.
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BUFFER

INFO

CRYPTO

DbInfoPage

«sizeof»

Feature Buffer

1 class Page { ... };

Feature Crypto

2 refinex class Page {

3 bool bIsEncrypted;

4 };

Feature Info

5 class DbInfo {

6 void ShowInfo(Page* p) {

7 size_t size = s izeof (Page);
8 ...

9 }

10 };

Figure 5.1: Using the sizeof operator with composed classes. The size of an object
of class Page depends on the feature selection.

Type Declarations

In C++, a type alias can be declared with keyword typedef. In FeatureC++ an
alias can also be declared within a feature. Hence, the alias depends on the feature
selection. It may be undefined if the feature is not present or it may be defined
differently in different features. When using the alias in another feature the type
has to be known at compile-time (e.g., for static type checking). For example, to
support different string encodings, the character type of a string could be defined as
an 8 bit value in one feature (e.g., to support UTF-8 encoding) and as a 16 bit value
in another feature (e.g., to support UTF-16 encoding). Such varying definitions can
be easily handled with static binding. With dynamic binding, however, a variable
typedef causes an error when used by another feature because it depends on the
SPL’s configuration which is not known at compile-time. Hence, typedefs that cause
a binding error (1) must be defined outside of dynamically bound features as separate
types, (2) must be used local to a feature, or (3) must be avoided (e.g., using a class
to wrap all possible types).

Templates

C++ templates are statically instantiated at compile-time. When using dynamic
binding in FeatureC++, a template may be defined with a dynamic type as an
argument. For example, template <class Dynamic> is a valid template defini-
tion even though class Dynamic is composed dynamically. In FeatureC++, the
template specification of a template class must be declared in the base class,
not in a class refinement. Consequently, the template arguments of a class do
not change depending on the feature selection. This allows us to support dy-
namic binding for template classes. For example, it is possible to compose a class
template <typename T> class Dynamic {...} dynamically. In our prototype im-
plementation we do not support dynamic binding for template arguments or tem-
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plate classes.

Enumerations

In C++, enumerations define constants that support static type checking [Str94].
An enumeration is implemented as an integer and each defined constant of an enu-
meration corresponds to a value of the integer at runtime. Static type checking
ensures that only valid constants are assigned to a variable of an enumeration type.
In FeatureC++, an enumeration can be extended in the same way a class is ex-
tended. New features can add constants to an enumeration which can be checked
by the compiler if using static binding. As long as there are no conflicting constant
definitions between features (i.e., two mutually exclusive features define the same
constant with different values), extension of enumerations can also be supported for
dynamically bound SPLs. In this case, enumerations in all features that are selected
for dynamic binding are composed statically independent of the dynamic feature
selection. This results in a single enumeration with distinct constants for all dynam-
ically bound features. When using an enumeration that is extended in dynamically
composed features, the compiler can statically check if a given enumeration value
exists (i.e., if it is defined in one of the dynamically bound features). However, the
compiler cannot decide whether an expression with an enumeration value is valid
with respect to the dynamically bound features. That is, a given enumeration value
is invalid at runtime if the corresponding feature is not available at runtime. This
could be statically checked for SPL code using an SPL-aware type system. For
client code that uses an enumeration type of a dynamically bound SPL, this can be
checked at runtime.

5.1.2 Static Class Members

As already discussed for static binding, static data members of a class should not
be shared between different SPL instances (cf. 4.3.2). This also applies to dynamic
binding and allows programmers to create multiple SPL instances (e.g., different
instances of a component) in the same program at runtime. Hence, a static member
that is defined in a feature should not be shared between all instances that use this
feature. Static variables thus have to be treated as members of an SPL instance to
avoid interaction with other instances.

Furthermore, the implementation of static methods can vary between different
SPL instances. For example, in FeatureC++ we can refine a static method, as
shown in Figure 5.2. Method CreateIndex returns an index data structure that
corresponds to the feature selection of the SPL. It returns a B-Tree index when
feature BTree is active and a hash index when feature Hash is active. The result
of a call to Index::CreateIndex() thus depends on the currently active feature
selection. With static composition this is automatically achieved because only one
of the implementations is available in a concrete product and products are sepa-
rated from each other (e.g., via namespaces). With dynamic composition, however,
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BTREE

ACCESS

HASH

Feature BTree

1 refines class Index {

2 stat ic Index* CreateIndex () {

3 return new BTreeIndex ();

4 }

5 };

Feature Hash

6 refines class Index {

7 stat ic Index* CreateIndex () {

8 return new HashIndex ();

9 }

10 };

Figure 5.2: Refining static methods in FeatureC++.

a static method has to be static with respect to an SPL instance, which is defined
at runtime. The implementation of the method can be different for differently con-
figured instances and may even change when an SPL is reconfigured at runtime.
Hence, the correct implementation has to be chosen at runtime similar to virtual
methods. Since the type of the class is variable (it depends on the enclosing SPL
instance) virtual types can be used to solve this problem as described in the previous
Chapter (cf. Sec. 4.3.2). We use an emulation of virtual types, as we describe in
Section 5.3.1.

5.1.3 Object Allocation on the Stack

There are different ways to create an object in C++. Additionally to using the new

operator, an object can be created on the stack. Allocation on the stack simplifies
instantiation of local objects because the object is destroyed after leaving the scope
of the block it was allocated in. For example, an object allocated on the stack is
automatically released when an exception is thrown without the need to delete it
manually. This not only avoids memory leaks but can also be used to allocate other
resources when it is important to release them after use (e.g., locking concurrently
accessed data). Furthermore, allocation on the stack usually performs much better
than allocation on the heap because no memory has to be reserved.1

To allocate the memory of an object on the stack the compiler needs to know
the object size. This is not possible in case of dynamic binding because the size
cannot be determined before load-time. To avoid different semantics between static
and dynamic binding, object allocation on the stack has to be emulated when using
dynamic binding. We achieve this by using a proxy [GHJV95] that is allocated on the
stack. The proxy refers to the actual dynamically composed object and deallocates
the object when leaving the scope.

1When allocating memory on the stack, only the stack pointer has to be changed, which usually
does not result in a memory allocation via the execution environment.

79



5 Dynamic Binding of Feature Modules

Feature Core

1 class DB {

2 bool Put(Key& key , Value& val) { ... }

3 };

Feature QueryEngine

5 refines class DB {

6 QueryProcessor queryProc;

7 bool ProcessQuery(String& query) {

8 return queryProc.Execute(String& query);

9 }

10 };

Feature Transaction

12 refines class DB {

13 Txn* BeginTransaction () { ... }

14 bool Put(Key& key , Value& val) {

15 ... // t ransac t i on s p e c i f i c code
16 return super::Put(key ,val);
17 }

18 };

Figure 5.3: FeatureC++ code of class DB decomposed along the three features Core,
QueryEngine, and Transaction.

5.1.4 Summary: Limitations of Dynamic Binding

We have shown that dynamic binding cannot directly be applied to all C++ language
constructs that are intended for static composition. Similar limitations exist for
other languages. We presented solutions for some constructs (e.g., object allocation
on the stack), but we have to forbid application of some constructs in case of dynamic
binding (e.g., using sizeof). In this case, programmers have to change the design
of an SPL to avoid such low-level constructs or they may use only static binding for
such features, as we present in the next Chapter.

5.2 Dynamic Binding of Feature Modules

In order to support dynamic binding of features implemented with FOP, the classes
of an application have to be composed according to the active features at runtime.
As an example, reconsider class DB (cf. Fig. 5.3) of a DBMS SPL. The base class has
to be extended dynamically with code of feature Transaction when activating the
transaction management. To support this, we generate a binary feature module for
each feature. The module contains all classes and class refinements of the feature
and can be dynamically composed with other binary feature modules. In the fol-
lowing, we present the required code transformations, which are based on message
forwarding between the feature modules.
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+Put()

DB_Core
+ProcessQuery()

DB_QueryEngine

+Put()
+ProcessQuery()
+BeginTransaction()

DB

-super

+Put()
+ProcessQuery()
+BeginTransaction()

DB_Decorator

DB

+Put()
+BeginTransaction()

DB_Transaction

Core QueryEngine Transaction

Figure 5.4: Class diagram of the generated decorator hierarchy for dynamic binding
of class DB using features QueryEngine and Transaction.

5.2.1 Dynamic Binding with Decorators

We support dynamic binding of feature modules in FeatureC++ using a code trans-
formation that transforms the feature modules into dynamically composable frag-
ments. Hence, the classes that are crosscut by several feature modules have to be
composed at runtime. We thus transform the refinement chain of a class into a
chain of objects that are connected via the decorator design pattern [GHJV95]. At
the same time, each class fragment is part of a feature module. Hence, a class
fragment corresponds to a role in role-based approaches and a feature module corre-
sponds to a collaboration that contains roles of different classes. In the following, we
first describe the transformation required to generate dynamically composable class
fragments. We then describe how we enable dynamic composition of entire feature
modules.

Dynamic Composition of Classes

Similar to the Delegation Layers approach [Ost02], we use the decorator pattern to
compose classes dynamically. Each dynamically composable class (i.e., classes that
are crosscut by multiple feature modules) consists of a decorator for each refinement
and an object is composed dynamically by combining instances of the decorators.

For illustration, we depict the class diagram of the transformed class DB in Fig-
ure 5.4. The class is composed from its refinements, which have been transformed
into decorators (DB_Core, DB_QueryEngine, DB_Transaction), each belonging to a
separate feature. The generated decorator interface (class DB) is used to reference
dynamically composed classes within the transformed code and also from external
client code. The abstract decorator class DB_Decorator maintains a reference to
the predecessor refinement (super reference) and forwards operations that are not
implemented by a concrete decorator. The implementation of methods and their re-
finements are located in the concrete decorators. For example, method Put (Line 2
in Figure 5.3) and its refinement in feature Transaction (Line 14) are transformed
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CORE

QUERYENGINE

TRANSACTION

DBMS_Feature

DB_Core

DB_QueryEngine

DB_Transaction

DB

«new»Core

QueryEngine

Transaction

«new»

«new»

Figure 5.5: Implementing features (left side) and an implementation class (right side)
in dynamically composable SPLs as a chain of decorators.

into methods of concrete decorators DB_Core and DB_Transaction respectively (cf.
Fig. 5.4). Method refinements invoke refined methods by using the super reference
of the decorator class.

Feature Classes

When dynamically creating an SPL instance, we instantiate and compose a set of
features at runtime. We support feature instantiation and composition at the code
level by representing features as classes. In the following, we call the classes that
represent features feature classes to distinguish them from implementation classes,
i.e., the classes that implement an SPL. A feature class is only responsible for in-
stantiation and composition of the refinements of the corresponding feature.

Feature classes correspond to the enclosing classes in the Delegation Layers ap-
proach but are generated by the FeatureC++ compiler. Much like dynamic composi-
tion of implementation classes, we combine multiple feature classes using the decora-
tor pattern, as shown in Figure 5.5. For each feature module (Core, QueryEngine,
and Transaction) we thus generate a feature decorator. All decorators inherit
from an abstract decorator, which represents an arbitrary feature of the product
line (DBMS Feature in Fig. 5.5). Each feature instance, i.e., an instance of a feature
class, maintains a super reference to the predecessor feature in a composed pro-
gram. All feature modules are compiled separately. The resulting binary modules
are merged into the binary of the program or are deployed as separate binaries, one
for each feature module (e.g., as Windows DLLs).

Static Preselection of Features

We reduce the number of features for dynamic composition by statically preselecting
only required features. That is, a user selects the features that have to be included
in the generated dynamic SPL. By selecting only required features, we reduce the
binary code size, the size of objects, and the number of methods in the dynamic
interface of a class. This simplifies client development because only the actually
needed classes and methods are presented to the client developer. Furthermore,
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super : DB
 : DB_Core

super : DB
 : DB_Transaction

super : DB
 : DB_Core

super : DB
 : DB_QueryEngine

super : DB
 : DB_Transaction

obj1

obj2

Figure 5.6: Object diagrams of instances of class DB for two different feature
selections.

static preselection is required to exclude features that cannot be compiled due to
platform limitations. For example, we have to decide which operating system and
compiler should be used before compilation.

Feature Interactions

When two features interact, it may be needed to modularize the interaction code in a
derivative as described in Section 2.2.5. Using static binding, all required interaction
code is statically composed into a single program. This is more complicated when
using dynamic binding. In this case, interaction code is also bound dynamically.
Hence, we generate a single binary interaction module for each derivative, which is
only bound when the corresponding features are bound. For example, transaction
specific code of the query engine of our DBMS example in Figure 5.5 is only needed
when features QueryEngine and Transaction are used at the same time. Hence,
we generate a corresponding feature interaction module that is loaded only when
both features are loaded. The generated module is not different from a regular
feature module.

5.2.2 Using Dynamically Composed Classes

Class Instantiation. Instantiation of dynamically composed implementation classes
means to create objects of the generated concrete decorator classes according to the
selected features. In Figure 5.6, we show two different instances of class DB using
the Core implementation as well as features QueryEngine and Transaction.
Each instantiated refinement contains a super reference that points to the next
refinement in the chain. A dynamically composed object can be used in the same
way as an instance of a regular class and can be modified at runtime by adding
or removing instances of decorators. The refinement chain thus corresponds to a
linked list of object fragments (i.e., roles). Changing the configuration of an object
corresponds to insertion, exchange, and deletion of elements of this refinement list.

For class instantiation, a feature decorator provides a factory method for each
class refinement of the feature. Each factory method is responsible for creating
objects of the corresponding decorator (cf. new in Figure 5.5). It combines created
decorator instances with objects created by parent features (i.e., the features above
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DB_Transaction

- super
- this

DB_Core

- super = null
- this

DB_Proxy

- super

Figure 5.7: Layout of class DB including a proxy that forwards data to the first
refinement.

it in the stack of features of an SPL instance). For example, to create object obj1 of
Figure 5.6, feature class Core creates an instance of DB Core; QueryEngine combines
the new object with an object of DB QueryEngine. Feature class Transaction

combines the compound object with an instance of DB Transaction resulting in the
final object. If there is no instance of feature class QueryEngine, then no instance
of DB QueryEngine is created, which results in obj2 (cf. Fig. 5.6).

Method Invocations and the Self-problem. Each object is wrapped by a proxy
that forwards method calls to the outermost refinement. As an example consider
obj2 from Figure 5.6 including its proxy as shown in Figure 5.7. Calls to method
Put invoke the proxy which forwards operations to decorator DB Transaction. We
use the proxy for object allocation on the stack (cf. Sec. 5.1.3) and for binding at
runtime. In case of binding at runtime, the proxy is required because the object may
be extended with additional decorators. For that reason, each decorator stores the
object’s this pointer that refers to the proxy instead of itself. This solves the self-
problem, which occurs when an object is spread over several smaller parts [Lie86]:
When a dynamically composed object invokes a non-private method of itself it in-
vokes the method of the proxy object because subsequent decorators may override
the method. Private methods cannot be overridden in refinements and are always
implemented in the decorator itself. If runtime adaptation is not required, we omit
the proxy to reduce the object size. For allocation on the stack and for method
invocations we then use the first decorator of an object.

5.3 Feature Instantiation and Composition

An SPL instance is composed from code at a meta-level that must be statically bound
before SPL instantiation. For example, a client application may create an instance
of a DBMS SPL at runtime. As illustrated in Figure 5.8, we distinguish between two
scenarios: (a) a component, a library, or a framework is developed as a component
SPL and is composed and initialized from an external client application and (b)
an SPL application (i.e., a stand-alone program) manages feature composition and
initialization by itself. We describe both scenarios in the following.
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Client

SPL

SPL Base
Program

Dynamic 
SPL Features

a) Client using a
component SPL

b) SPL application

«instantiate» «instantiate»

Figure 5.8: Instantiation of an SPL developed as a component (a) and as a stand-
alone application (b). Instantiation code at the meta-level is shown in
gray; instantiation is depicted with an arrow.

Component SPLs. In Chapter 4, we analyzed how clients should use a compo-
nent that is developed as an SPL. Due to dynamic binding of the component with
FeatureC++, a client can create the required instances at runtime (cf. Fig. 5.8 a).
For this purpose, the client itself can be implemented with FeatureC++ or with
plain C++. This is possible because FeatureC++ generates C++ code that a can
be directly accessed from C++ code. A client can create instances of the feature
classes manually or may use semi-automatic feature composition supported by gen-
erated code. Using the semi-automatic approach, the client calls a generated SPL
method that returns an SPL instance according to a list of selected features. In the
next section, we describe manual and automatic composition in detail.

SPL Applications. When a stand-alone application is developed as an SPL there
has to be initialization code that can be executed at application startup. In C++ or
Java, a global main function is invoked at program startup and acts as the entry point
for program execution. In FeatureC++, this main function can be defined in any
feature outside of a class and is automatically invoked by the runtime environment
when using static composition. Using dynamic feature binding, one of the features
(usually the base program) has to provide this method such that it can act as the
application’s entry point (cf. Fig. 5.8 b). Similar to a client application that uses
an SPL component, the main method can be used by the programmer to compose
the application features manually or the main method is generated by FeatureC++
to support automated composition. Hence, an SPL application corresponds to a
component SPL that is embedded into a generated client application which provides
initialization code only.

Safe Composition. Independent of the used SPL type (component or stand-alone
application), we have to ensure safe composition at runtime. We achieve composi-
tion safety by composing the feature modules according to the variability restrictions
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1 bool Store(DBMS& dbms , DB& db , string strKey , string strVal) {

2 Key* key = new (dbms) Key(strKey );

3 Value* val = new (dbms) Value(strVal );

4 return db.Put(key ,val);

5 }

6 int main() {

7 // crea t e d i f f e r e n t l y con f i gured DBMS
8 DBMS dbmsPersist = Persistent(Core());

9 DBMS dbmsInMem = InMem(Core());

10
11 // crea t e d i f f e r e n t da tabases
12 DB* persStorage = new(dbmsPersist) DB();

13 DB* inmemStorage = new(dbmsInMem) DB();

14
15 Store(persStorage ,"key","value");

16 Store(inmemStorage ,"key","value");

17 }

Figure 5.9: Source code of a client application using dynamic composition of different
DBMS and emulation of virtual classes.

defined in the feature model. We describe details about the safe composition mecha-
nisms in Section 5.3.3. The mechanism is used for manual and for automated feature
composition.

5.3.1 Manual Feature Composition

Manual feature composition means to create instances of feature classes and to
compose the created objects (i.e., the feature instances). In Figure 5.9, we show an
example for dynamic composition of the DBMS SPL in a client application. When
the SPL is a stand-alone application, the same code can be implemented as part of
the SPL itself. In this case, the code has to be defined in the base program.

In the main method in Figure 5.9, we create a DBMS for persistent storage by
instantiating feature Core of the SPL (Line 8) and feature Persistent that im-
plements persistent data storage. An in-memory variant is composed from features
Core and InMem (Line 9). Implementation classes of the SPL must be instantiated
by providing an SPL instance object and cause a compile-time error otherwise. This
is done by using the overloaded new operator, which receives an instance of the SPL
that is to be used for object creation (Lines 12, 13). The new operator invokes the
factory method of the corresponding SPL instance. Since the type of a class depends
on an SPL instance, this is an emulation of virtual classes with C++. In our ex-
ample, the type of class DB depends on the type of an instance of the DBMS SPL.
However, since there is no representation of virtual types in C++, we use interface
DB to refer to all variants of the class.
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1 bool Store(DB& db , string strKey , string strVal) {

2 Key* key = new (db.GetInstance ()) Key(strKey );

3 Value* val = new (db.GetInstance ()) Value(strVal );

4 return db.Put(key ,val);

5 }

Figure 5.10: Creating objects that correspond to the SPL instance of another object.

Polymorphism of SPL Instances. In client code, the feature classes, and thus
different components, can be used polymorphically as shown for argument dbms

in method Store (Figure 5.9, Line 1). The DBMS interface represents any possible
SPL instance that can be dynamically created. SPL classes can be instantiated via
objects of the abstract SPL type without specifying the concrete type of a DBMS
instance. This is shown for classes Key and Value in method Store (Lines 2–3). The
created objects key and val correspond to the dynamic type of dbms. Thus, storing
data in Lines 15 and 16 results in different instances of classes Key and Value for a
persistent and an in-memory DBMS.

In contrast to virtual type support by a compiler, this solution provides reduced
static type-safety because the implementation is based on C++. For example, we
cannot completely type check the call to method Put in Line 4. The compiler ensures
that the arguments key and val have the correct type with respect to classes Key

and Value but it does not ensure that these are the correct variants of the class
with respect to the receiver of the method (object db). In this example, we cannot
ensure that argument db is also an object of SPL instance dbms. This is a problem
if object db expects methods that are not defined in the concrete variants of classes
Key or Value. Invocation of method Put thus causes a runtime error if objects
key or value are not objects of the same SPL instance as db. In Figure 5.10, we
show a different implementation of method Store that avoids this problem. We
use method GetInstance() of object db, which returns the SPL instance of an
object. This ensures that the created objects key and val are compatible with db.
Nevertheless, the call to method put stays unchecked by the compiler. This can
only be avoided with a programming language that supports virtual types such as
Object Teams [Her02].

Note that type-safety is only a problem in client code that uses multiple instances
of the same SPL. In clients that use a single instance only the problem does not occur
because there is only one variant of each class. The problem also does not occur
inside an SPL (i.e., in method calls within the SPL code) even when using multiple
instances. Method calls within the SPL are type safe because all method invocations
refer to the same instance. This is ensured by FeatureC++ when generating a
dynamic SPL.

The provided polymorphism of feature classes does not completely satisfy the
requirements we defined in the previous chapter to handle component variability
using polymorphism of component variants. In contrast to the solution we proposed
in Chapter 4, there is no subtyping between components according to a hierarchy
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but only between a general SPL interface (which is a union of the interfaces of all
features) and the concrete components. Support for a complete hierarchy requires
support for virtual classes.

Since the generated SPL interface is a union of the feature interfaces (the pub-
lic and protected methods of each class are merged into a single interface), a class
refinement cannot modify the signature of an existing method as required by our
interface definition. However, this general interface hinders some SPL implemen-
tation patterns that would be valid when using virtual classes. The reason is that
all variants of a dynamically composed class have to conform to the same interface.
That is, also mutually exclusive features cannot introduce incompatible methods.
Two method signatures are incompatible when they cause a type error, i.e., when
the method cannot be overloaded due to incompatible arguments or return types.2

This limitation may force developers to change the SPL design to avoid this kind
of variability (e.g., using a separate class to encapsulate the variable element). To
solve this problem, FeatureC++ has to generate code in a language that supports
virtual classes instead of plain C++ code. Consequently, the client must also be
implemented in a language that supports virtual classes, such as an extension of
FeatureC++, as we proposed in [RSK10].

Our approach for safe composition can be combined with static type checking of
the entire SPL [AKGL10], which allows us to ensure type-safe dynamic composition.
Compared to a type system for virtual classes (e.g., as in CaesarJ), static type
checking of an SPL ensures type-safety for the entire SPL and not for created SPL
instances.

5.3.2 Automated Feature Composition

Static composition of SPLs is usually provided by tools that allow programmers
to select features and validate a feature selection based on the description of an
SPL [Bat05, pur04, Kru08]. This is usually not the case if dynamic composition is
used, even if a feature model is available. Hence, the developer of a client application
is responsible for validating the consistency of an SPL instance, which is tedious and
error-prone.

To ease SPL instantiation we developed FeatureAce (Feature Adaptation and
Composition framEwork), a customizable framework that supports composition of
features at runtime. FeatureAce itself is developed as an SPL and can be tailored to
the requirements of the application scenario. Besides basic mechanisms to compose
features it supports adaptation of SPLs at runtime and provides advanced capabil-
ities for self-configuration as we present in Chapter 7.

When composing feature modules at runtime, the configuration process has to
consider the constraints defined in an SPL’s feature model. We thus integrate the
feature model in the form of meta-data into the running SPL to validate configura-
tions before applying them. FeatureAce provides functionality to automate creation

2This applies only to protected and public methods that are part of the SPL’s interface.
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AUTOINST

FEATUREACE
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SELF-CONFIG

CMDLINE CONFIGFILE

Figure 5.11: The feature model of FeatureAce. Customization of dynamic product
instantiation and runtime adaptation capabilities is achieved by select-
ing the required features.

of SPL instances within a running program, to validate a feature selection according
to the feature model before instantiation, and to modify a running SPL instance,
which is subject of Chapter 7.

Dynamic Composition with FeatureAce

FeatureAce supports automated instantiation of SPLs using a core implementation
and an SPL-specific code generation process at compile-time. The generated code
is similar to the instantiation code presented in Figure 5.9. FeatureAce creates SPL
instances by composing instances of feature classes according to a configuration pro-
vided in the form of a list of features. It validates a feature selection with respect
to the feature model, derives the correct feature composition order, selects corre-
sponding feature modules, and creates an SPL instance by composing the feature
modules. To support a set of different instantiation scenarios, we have developed
FeatureAce as a product line itself. This allows us to generate the appropriate code
for composition and validation tailored to the needs of an SPL or an application sce-
nario. For example, FeatureAce supports different ways for dynamic instantiation
implemented as distinct features. This flexible composition mechanism allows us to
generate a tailor-made dynamic composition infrastructure for the SPL by selecting
the desired features of FeatureAce.

In Figure 5.11, we show the feature diagram of FeatureAce. Feature AutoInst
encapsulates the functionality required for automated SPL instantiation using com-
mand line arguments (feature CommandLine) or a configuration file (feature Con-
figFile) to provide an initial feature selection. Features Adaptation and Self-
Config provide functionality for runtime adaptation, as we describe later. Feature
Validation provides functionality to check validity of a configuration at runtime
before composing the feature modules. The feature modules of FeatureAce consist
of code implemented with FeatureC++ and transformation rules that modify the
FeatureC++ code transformation process.

We connect SPL implementation and the compositional meta-level of FeatureAce
by providing metaprogramming support for feature modules. This means that a
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Figure 5.12: Generating a dynamic SPL from FeatureAce (a framework for feature-
based composition and adaptation), user-defined extensions of Fea-
tureAce, and an SPL.

feature can be accessed at runtime using a reflection API (e.g., for retrieving infor-
mation about the feature or modifying an active SPL instance). In Figure 5.12, we
depict the code generation process for deriving a runtime adaptable SPL. It is gener-
ated by the FeatureC++ compiler from an SPL’s implementation and FeatureAce.
In the resulting binary SPL, a metaprogram is responsible for composition at run-
time. Its source code is part of FeatureAce and it is generated as a subsystem of the
whole program. The metaprogram is bound to the SPL via generated SPL-specific
code. To support arbitrary scenarios (e.g., loading a configuration from network),
a programmer can create user-defined extensions of FeatureAce (shown on the left
side of Figure 5.12). The extensions are implemented as additional feature modules
without the need for invasive modifications of FeatureAce.

Reconfiguration at Runtime

So far, we only addressed composition of features at load-time (i.e., before executing
their code). Dynamic binding can also mean to change the configuration of an
already instantiated SPL. This is also known as runtime adaptation and is subject
of dynamic SPL research [HHPS08a]. We can apply the presented approach also
to runtime adaptation because the required operations on the level of features and
class instances are addition, removal, and exchange of decorators. At the level of
features it means to exchange feature instances (implemented as decorators); at the
level of implementation classes it means to modify existing objects (instances of
implementation classes) that are composed from a set of decorator instances. Both,
feature instances and instances of implementation classes, are thus linked lists (cf.
Fig. 5.6) that can be easily modified. In Chapter 7, we describe an extension of
FeatureAce with support for adding, removing, and exchanging features of running
SPL instances.
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5.3.3 Composition Safety

Verifying a composition of features at runtime is not different from static verification.
Based on an SPL’s feature model, FeatureAce validates program configurations at
runtime. It detects violations of constraints such as invalid feature combinations
and thus achieves composition safety with respect to the model constraints. As the
feature model and additional boolean constraints (e.g., FeatureX requires Fea-
tureY) can be transformed into a propositional formula [Bat05], we use a SAT3

solver to test whether a valid variant can be derived from a feature selection or not.
Even though the SAT problem is NP-complete, satisfiability checking can be done
efficiently for feature models [MWC09].

Domain constraints, do not avoid feature combinations that are invalid because
of an SPL’s implementation. We currently achieve limited composition safety at
the level of the implementation language because all features are compiled before
runtime and syntax errors are avoided. Furthermore, we avoid errors due to imple-
mentation dependencies with additional implementation constraints. For example,
when a feature’s implementation references another feature, we can enforce a valid
configuration with an according implementation constraint (which is technically not
different from a domain constraint). In FeatureAce, we use an extended product
line model that integrates domain and implementation constraints [SKR+08]. In
combination with a type system that is aware of the feature model [AKGL10] we
can ensure type-safety for dynamic binding without defining the feature selection at
compile-time.

5.4 Compositional Overhead

We analyze the presented concept for dynamic feature composition with respect to
resource consumption. We focus on binary size (footprint), consumption of working
memory, and performance. To provide insights in the resulting compositional over-
head we compare dynamic feature binding with static binding. We provide a brief
analysis only to demonstrate the importance of the compositional overhead and to
motivate the extension of the presented concepts in the next chapter. For evalua-
tion, we use the Graph Product Line (GPL), a small SPL that implements graph
data structures. The SPL supports colors, weights, and names of edges in individual
features (features Color, Weight, Name). Class Edge implements edges between
graph nodes.

5.4.1 Memory Consumption

In our current implementation, dynamic binding increases the size of an object to
store pointers to the predecessor refinement of the refinement chain (i.e., the super

pointer) and a pointer to the last refinement (i.e., the object’s this pointer), as
shown in Figure 5.13. To enable dynamic binding via the decorator pattern, all

3Boolean satisfiability problem.
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Figure 5.13: An object of class Edge consisting of two decorators for base implemen-
tation and feature Color.
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Figure 5.14: Size of an object of class Edge of different variants of the graph product
line.

decorator objects have a virtual function table (VfTbl in Fig. 5.13). In a 32-bit
environment each pointer increases the size of an object by 4 bytes per refinement.
A proxy object (cf. Sec. 5.2.2) is optional for runtime adaptation and we do not
include it in the following evaluation.

Hence, there is a linearly increasing compositional overhead of 12 bytes per re-
finement in case of dynamic composition. Dynamically composed objects are thus
larger than their statically composed counterparts. In Figure 5.14, we depict the ob-
ject size for class Edge of the GraphPL using dynamic binding (cross-hatched bars).
The size of an object of class Edge increases linearly with an increasing number of
features. For comparison, we also depict the size of the object when using static
binding (white solid bars). If the actually needed features are not known at compile-
time, more features have to be included when using static binding. This results in a
constant object size of 24 bytes if we include all features in a static variant (dashed
line in Figure 5.14). It causes a functional overhead when the features are not used.
By contrast, we observe a variable object size of 20–72 bytes for dynamic binding.
This causes a compositional overhead compared to the static variants (solid line).

Hence, the functional overhead may outweigh the compositional overhead: Edges
of a minimal dynamically composed simple graph (configuration 1; only using mod-
ule Base) are 17 % smaller than the edges of a statically composed graph with all
features. This is important in case of a high number of edges. The differences in ob-
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Figure 5.15: Binary size of different variants of the graph product line.

ject size highly depend on the actual size of the refinements. It results in quite worse
memory consumption for our example in case of dynamic composition since we used
small objects. The effect decreases with an increasing object size. When considering
large refinements (with respect to the data size) and statically not known features,
dynamic binding can achieve much better memory consumption than static binding
(as demonstrated with configuration 1). This emphasizes the scenario-dependent
differences in memory consumption for static and dynamic binding.

5.4.2 Binary Size

In Figure 5.15, we show the footprint of an application that uses different statically
and dynamically composed variants of the graph SPL. The observed binary size of
a statically composed variant is always smaller compared to dynamic composition.
We observe a basic compositional overhead of about 4 KB which increases with an
increasing number of features. The functional overhead for a statically composed
full configuration is small compared to this (about 1 KB when only the base imple-
mentation is used). It cannot outweigh the compositional overhead as we observed
it for memory consumption. However, the functional overhead increases when we
add more features to the SPL.

5.4.3 Performance

Static binding may provide better performance than dynamic binding with decora-
tors if a dynamically composed method consists of several fragments, one for each
method refinement. Calling the method means an indirection for every method
extension. When using static binding, the same method is not decomposed into
different fragments and it may be inlined at the position where it is called. The
overhead for dynamic binding thus highly depends on compiler optimizations and
the hardware.
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a) Frequently called methods.
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b) Single method execution.

Figure 5.16: Execution time of dynamically and statically composed methods for
an increasing number of method extensions a) with and b) without
caching.

In Figure 5.16, we show the number of CPU cycles required to execute different
variants of a tiny method4 with an increasing number of empty refinements using
static and dynamic binding. In part a) of the Figure, we depict the execution time
when the different method variants are frequently called in a running program. That
is, most of the data (such as accessed member variables and pointers to decorators) is
already loaded into the CPU cache. This is important for hotspot methods of a long-
running software that are repeatedly called. In part b) we depict execution of the
same methods without caching. This is important for software that is often restarted
(e.g., a compiler) and methods that are less frequently called. For static binding, we
depict execution time with and without inlining of method extensions. Execution
of the base implementation takes between 5 (Figure 5.16 a) and 54 (Figure 5.16 b)
CPU cycles with and without caching respectively. Execution time of the base
implementation is depicted as inlined - static binding. Method extensions are empty
and do not increase the execution time when using static binding and inlining; the
execution time slightly increases when inlining is disabled.

In case of dynamic binding, the object is decomposed into decorators (one for
each refinement). The resulting overhead for dynamic binding is at least 38 CPU
cycles for frequently called methods. For methods that are only called once it is
higher than 63 CPU cycles. In the diagrams, these are the differences between
dynamic and static binding with inlining. In a real system, the average overhead
will be between both extremes. For an increasing number of method extensions,
the overhead increases by about 4 and 18 CPU cycles per method extension with
and without caching respectively. For large methods that require thousands of CPU
cycles the observed overhead can be ignored. However, small methods may degrade
the performance of a program significantly as also observed for virtual methods in

4The method manipulates a member variable of a class (addition and multiplication of an integer).
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C++ programs [AH96]. Furthermore, the increasing code size may also increase the
number of cache misses due to an increased size of executable code and data (e.g.,
to store pointers for decorators). Hence, the practical relevance of the performance
loss due to dynamic binding can only be estimated with a real case study, as we
show in the next chapter.

5.4.4 Conclusion

Our evaluation shows that the chosen binding time influences the resource con-
sumption of an SPL. The more we know about the functionality that is required at
runtime the better we can optimize an SPL instance. That is, we can optimize an
SPL instance by removing unneeded features and by choosing the correct binding
time. The presented approach allows a programmer to do this at deployment-time
per SPL instance without the need to modify the implementation manually.

The actual compositional overhead depends on the used programming language
and the execution environment. Even though our implementation is not optimized
with respect to resource consumption, we cannot completely avoid the overhead for
dynamic binding and thus have to reduce it to an acceptable minimum. This is
especially important in case of many small class refinements. In the next chapter,
we extend the approach to integrate both binding times for a single SPL.

5.5 Related Work

In the following, we discuss related approaches that support dynamic binding with
respect to aspects not discussed in Chapter 3. We present related work with respect
to a combination of static and dynamic binding in the next chapter.

Our approach for dynamic binding is partially based on Delegation Layers [Ost02]
which supports dynamic composition of features but currently lacks an implementa-
tion. Similarly, Object Teams support dynamic binding of teams, which can be used
to represent features of an SPL [HMPS07]. We extend Delegation Layers by gener-
ating the enclosing classes that represent layers and thus reduce the complexity of
an SPL’s implementation. Furthermore, when clients use a single SPL instance only,
we avoid the implementation overhead required for virtual types. In contrast to Del-
egation Layers and other approaches that support dynamic binding (cf. Sec. 3.2), we
support safe composition of features by including the feature model into the running
program. When combining this with static type checking, we can achieve type-safe
composition at runtime.

Kegel et al. have shown how inheritance can often automatically be refactored
into delegation [KS08]. They demonstrated that both approaches are quite similar
and there is no major benefit when using one or the other, but delegation sometimes
fails to replace inheritance. We use the decorator pattern and method forwarding to
replace linear refinement chains which can also be implemented with inheritance as
presented by Batory et al. [BLS98]. Since we do not replace inheritance in general, we
do not observe the problems found by Kegel et al., e.g., when using abstract classes.
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Instantiation of incomplete class refinements including abstract methods is possible
because we generate methods that forward method calls to the next refinement in the
refinement chain. If no refinement of a class implements the method an exception is
thrown if it is invoked. Currently, we do not statically check if an abstract method
is actually implemented by a concrete class instance. This can be enforced with a
static type system for product lines [AKGL10].

5.6 Summary

We presented an approach that supports static and dynamic binding of features
based on a single extension mechanism, i.e., class and method refinements. This
allows a programmer:

• to reduce development effort when different binding times for an SPL are
required because only a single implementation is needed,

• to simplify SPL development, because only a single implementation mechanism
(i.e., method refinements) has to be learned and used,

• to improve reuse between different SPLs, because features can be reused in
SPLs that require static or dynamic binding,

• to choose the binding time of an SPL later in the development process (e.g.,
per application scenario) without changing an SPLs implementation.

We have shown how client programs developed in FeatureC++ or in plain C++ can
create SPL instances at runtime. When using multiple SPL instances, we support an
emulation of virtual classes for generated C++ code. Finally, we support automated
composition and composition safety by including the feature model in a generated
dynamic SPL. Combined with static type checking the entire SPL, we can achieve
type-safety for dynamic binding even for unanticipated configurations, which is in
contrast to existing approaches for dynamic binding.

Due to FeatureAce, our customizable composition framework, we can choose at
deployment time which composition capabilities are needed (e.g., which configu-
ration mechanism). This increases the flexibility of feature binding and abstracts
from details of the binding mechanism. However, the presented approach allows a
programmer to choose the binding time only for the whole SPL and not for single
features. This results in two major shortcomings of the approach:

Limited Flexibility: For some SPLs and application scenarios it is not possible to
freely choose between static and dynamic binding. For example, static binding
has to be used for features that are specific for a build or execution environ-
ment (e.g., choosing between two alternative implementations of a type) and
when some language features of C++ are used (e.g., sizeof). There are also
scenarios that do not allow us to use static binding. For example, we have to
use dynamic binding when we do not know at deployment time which of two
mutual exclusive features to use.
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Increased Resource Consumption: The resource consumption of an SPL is not op-
timal when we have to use static or dynamic binding exclusively. This is
caused by a functional or compositional overhead depending on the chosen
binding time: Static binding results in a functional overhead when features
are included in a program variant but are not used. By contrast, dynamic
binding causes a compositional overhead and enables changes or extensions of
a program after deployment.

We address both shortcomings in the next chapter with an approach that seamlessly
integrates static and dynamic binding by choosing the binding time per feature.
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Binding Times

This chapter shares material with the ASE Journal paper ”Flexible Feature
Binding in Software Product Lines” [RSAS11] and the VaMoS’11 paper
”Multi-Dimensional Variability Modeling” [RSTS11].

The approaches we presented in the previous chapters allow programmers to choose
between static and dynamic binding for an entire SPL only and not for single fea-
tures. This is too inflexible for certain application scenarios and results in a func-
tional or compositional overhead. Especially the compositional overhead limits ap-
plicability of purely dynamic binding. To overcome this limitation, we reduce the
compositional overhead by combining static and dynamic binding.

In Figure 6.1, we illustrate scenarios for static and dynamic binding that are
supported by different approaches for software composition. Features are shown as
letters and generated binary code units are shown as ellipses. In the upper half of
the figure, we show purely static (left side) and purely dynamic (right side) binding
of features. Both mark the two ends of compositional approaches with respect to
the supported binding time. For static binding, all features are composed into a
single program (upper left) and for dynamic binding each feature module is trans-
formed into a separate binary code unit. In the lower half of the figure, we show
combined approaches. On the right side, we depict one way to combine both binding
times as supported by most existing approaches. It allows a feature to be bound
statically (features A, B, and C) or to be bound dynamically in a separate module
(features D–I). The drawback of this solution is that a highly dynamic application
requires many dynamically bound modules, one for each feature. When binding
all features dynamically, this even results in purely dynamic binding with the same
compositional overhead as discussed in the last chapter. On the lower left part of
the figure, we depict the solution we propose to closely integrate both binding times:
we combine multiple dynamically bound features into a single module if the features
are always bound at the same time (e.g., D, E, F). The resulting dynamic binding
units reduce the compositional overhead because communication within a binding
unit does not require dynamic binding (e.g., using virtual methods or conditional
statements). Hence, a single feature, such as feature E, is statically bound with
respect to features D and F but dynamically bound with respect to the whole pro-
gram. This solution is also achieved when manually developing components [LK06]
but it requires that the components are planned before development.
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Figure 6.1: Approaches for purely static and purely dynamic feature binding (upper
part) and two possibilities to combine both approaches (lower part).
Features are shown as letters; binary code units are shown as ellipses.

Next, we present an approach for generating dynamic binding units from a set of
user-defined features based on purely static and purely dynamic binding described
in the previous chapters. We first introduce dynamic binding units and explain the
general concept. We then formalize feature composition and present an extension
of feature modeling approaches. Finally, we have a closer look at the code transfor-
mations that are needed to integrate static and dynamic binding.

6.1 An Overview: Dynamic Binding Units

We integrate static and dynamic binding by composing features with the same bind-
ing time into a single module: When multiple features are always bound together
we merge these features at compile-time into a dynamic binding unit. Lee and Kang
propose to develop dynamically bound components that correspond to a set of fea-
tures, i.e., feature binding units [LK06]. This requires domain engineers to choose
the features of a binding unit before development. Instead of manually developing
binding units, we automate this process and generate them on demand at deploy-
ment time. That is, a programmer implements an SPL once and chooses the binding
time per feature later. This means a two step composition process: First, we use
static composition for features within a binding unit and, second, we compose dy-
namic binding units in the running program similar to component composition. The
static composition process results in a prebound SPL consisting of a set of dynami-
cally composable binding units, each of which consists of possibly multiple statically
composed features. As a binding unit may correspond to a single feature or may
include all features, purely dynamic and purely static binding are special cases of
the presented approach. Binding units reduce the complexity and the overhead of
dynamic binding since multiple features are bound simultaneously.
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Figure 6.2: Two examples for static transformations ( ) of a DBMS product line
resulting in prebound product lines DB ′ and DB ′′ and subsequent dy-
namic composition ( ) resulting in running programs DB1–DB4 . Fea-
ture Hash was not selected and is not included in any binding unit.

Generating Binding Units. In Figure 6.2, we show a possible scenario for gen-
erating dynamic binding units for a DBMS. DB ′ and DB ′′ denote two prebound
product lines (i.e., not concrete products) after static composition. The prebound
SPLs provide less variability than DB because the features of a binding unit can
only be selected in combination. In DB ′, we assume that feature B-Tree is always
required and we combine it with feature Core into a single binding unit Base. Sim-
ilarly, Transaction and Logging are composed into binding unit Txn. Feature
QueryEngine is assigned to another distinct binding unit QE. This is different
in DB ′′, in which feature QueryEngine is not assigned to its own binding unit
but added to binding unit Base. Feature Hash is not required and is thus not as-
signed to any of the binding units. From each prebound DBMS SPL we can create
a number of different concrete DBMS instances (examples DB1–DB4 ) by dynami-
cally composing the binding units according to a given configuration (i.e., a list of
required binding units). Comparing DB2 and DB3, we see that both provide the
same functionality but feature QueryEngine is bound dynamically in DB2 and
statically in DB3, which leads to differences in flexibility and resource consumption.

Product Derivation. The product derivation process of our integrated approach
can be divided into three steps: (1) configuration, (2) static transformation, and
(3) dynamic composition. In the first step (filled arrow in Figure 6.2), a user se-
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lects the potentially required features and assigns each feature to a binding unit.
In the subsequent static transformation process, the compiler selects the required
feature modules and generates dynamic binding units. The compiler also generates
code for composing the binding units at runtime. There are two extremes: first, a
single binding unit contains all selected features which results in a purely statically
composed program without any code for dynamic binding. Second, each binding
unit may contain only a single feature resulting in a purely dynamically composable
SPL. Between these extremes (which mark the current state of the art) our extended
approach supports any combination of static and dynamic binding.

After static transformation, the dynamic binding units are composed as described
for the purely dynamic approach. This includes validation of the configuration before
composing the binding units at runtime. This is done in the same way as we have
shown for purely dynamic composition using a feature model (cf. Sec. 5.3.3). Since
a feature of an SPL maps to multiple binding units, this is not possible by using
the original feature model. In the next section, we present a way to transform a
feature model according to the generated binding units. This allows us to use the
transformed model for validating the composition also for the combined approach.

The described process consists of two configuration steps for static and dynamic
binding. In general, we can have more composition steps and we may also use other
binding times, such as binding at link time. In the following, we generalize the com-
position process and demonstrate how it can be included in a staged configuration
process.

6.2 Staged Feature Composition

In FOP, a feature is implemented in a feature module (cf. Sec. 2.2.5). A dynamic
binding unit can be seen as a compound feature module that is composed from many
smaller feature modules. We call the process of stepwise feature composition staged
composition. It corresponds to staged configuration of feature models described by
Czarnecki [CHE04]. In the following, we first introduce compound features, which we
use to represent compound feature modules. Second, we extend staged configuration
to model staged composition.

6.2.1 Compound Features

We formalize feature composition by treating features as functions that modify other
features or a base program [LBL06b, ALMK10]. Composition of a feature with an-
other feature results in a compound feature, which is the source for a next composi-
tion step. In our case, a dynamic binding unit is a compound feature module that
is bound in a dynamic composition process. We denote static feature composition
with operator • and dynamic feature composition with operator ◦. This way, we
can describe composition of programs DB1 and DB2 (cf. Fig. 6.2) as follows:
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Base = BTree • Core (6.1)

QE = QueryEngine (6.2)

TXN = Logging • Transaction (6.3)

DB1 = TXN ◦Base (6.4)

= (Logging • Transaction) ◦ (BTree • Core) (6.5)

DB2 = QE ◦ Base (6.6)

= (QueryEngine) ◦ (BTree • Core) (6.7)

In this example, equations 6.1–6.3 represent static compositions resulting in com-
pound features (i.e., dynamic binding units) Base, QE , and TXN . Equations 6.4
and 6.6 represent dynamic compositions of compound features. Hence, a feature
such as Transaction is statically bound with respect to its binding unit TXN but
it is dynamically bound with respect to the whole program.

Note, when using multiple composition steps we have to consider the order in
which features are composed. The reason is that composition of feature modules is
not necessarily commutative [ALMK10]. For example, when features Transaction
and Btree extend the same method, it is usually important which method refine-
ment is executed first. Hence, when changing the two dynamic units from Equations
(6.1) and (6.3) to Base = Transaction •Core and Log = Logging •Btree, dynamic
composition results in a different program:

DB1 ′ = (Logging • Btree) ◦ (Transaction • Core). (6.8)

DB1 ′ differs in its behavior from DB1 if composition of Btree and Transaction is not
commutative, which is the usual case. We consider this when combining static and
dynamic binding using special code transformations as we describe in Section 6.3.

6.2.2 Staged Product Derivation

Staged composition and staged configuration are closely related. Staged configura-
tion is a configuration process on a conceptual level that results in a set of (partial)
SPL configurations with reduced variability, as shown in the upper part of Fig-
ure 6.3. The configuration steps usually do not correspond to composition steps.
For example, a DBMS expert could decide which index to use in a DBMS (configura-
tion step 1 in Figure 6.3) and another expert could decide whether transactions are
needed or not (step 2). After applying these configuration steps, we can use a single
code generation process to derive a product directly from the final configuration
(step c). This process of staged configuration does not require staged composition.
Alternatively, we can use several composition steps that correspond to the partial
configurations (lower part of Figure 6.3) or use a combination of both. For example,
we can use staged configuration step 1, generate the corresponding modules (b), and
finally compose the modules (step 2’). However, staged composition is always used
in combination with staged configuration. For example, for composition step 2’ we
need the corresponding configuration step 2.
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Figure 6.3: Staged product derivation using staged configuration at the model level
and staged composition at the implementation level.

Staged composition can mean to merge multiple feature modules into compound
feature modules. For example, we compose modules Index and Btree in composition
step 1’ of Figure 6.3. When we combine static and dynamic binding, composition
step 1’ may represent static composition and step 2’ dynamic composition. The
resulting compound module is a dynamically composed program. It is a large feature
module dynamically composed from smaller feature modules. Compared to purely
static composition, the program provides the same functionality but is composed
from dynamic binding units. In general, we can have several composition steps
with different binding times. For example, step one could be split into two static
composition steps.

6.2.3 Staged Configuration and Compound Features

We represent multiple composition steps at the model level using staged configura-
tion. This allows us to validate the composition process and to use the preconfig-
ured feature model for subsequent configuration steps, such as dynamic composition
at runtime. We transform the feature model according to the generated binding
units, which results in feature model that includes only variability and commonal-
ities among products that can be derived dynamically. To support arbitrary con-
figuration steps we extend the steps described by Czarnecki et al. [CHE04] with
configuration constraints (i.e., arbitrary propositional formulas) that are added to
the feature model [RSTS11]. This allows us to represent the merge operation that
yields compound features with an equivalence constraint between the merged fea-
tures.

In the upper part of Figure 6.4, we depict an example for the model transformation
of DB into DB ′ (cf. Fig. 6.2). We add constraints Core, Txn, Qe to represent the
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to represent the merge operation. Compound features are added in (c)
and a refactoring is used to remove the equivalence constraints. Manda-
tory features have been removed for simplicity in (d).

compound features. Furthermore, we remove feature Hash, which was not selected
for composition. The resulting feature model correctly represents only dynamic
variability. It forces a user to either select all merged features of a compound feature
or to select none of them. For example, features Transaction and Log can only
be selected in combination due to constraint Txn.

We use the feature model transformation to validate the composition process:
After transformation, we can check whether the resulting feature model is satisfiable,
i.e., if there are valid variants. It also allows us to find invalid transformation steps by
applying the transformations in a step-wise manner. For example, when we merge
features BTree and Hash the model transformation results in an unsatisfiable
feature model because the created constraint Btree ⇔ Hash conflicts with the
XOR constraint between the features. Using a SAT solver, this can be checked
efficiently for each configuration step [MWC09].

Feature Model Refactoring. The feature model shown in Figure 6.4 b is rather
complex compared to the actual variability. Furthermore, it does not explicitly
show the new compound features that are used for dynamic composition. To reduce
the complexity, we can automatically refactor the feature model, which results in a
simplified model, as shown in Figure 6.4 c. In the following overview, we describe
the required refactoring steps. The whole process results in an equivalent feature
model because each step is a refactoring that maintains the variability. We derived
the refactoring steps by applying the refactorings described in [AGM+06].

1. In a first step, we remove dead features that cannot be selected. In our exam-
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ple, this means that feature Hash is removed as it is an alternative to BTree
and cannot be selected. When removing a dead feature we also remove it from
existing constraints to other features (e.g., replacing it with false in boolean
constraints).

2. We remove a feature from the equivalence constraint of a compound feature
when it is the ancestor of one of the other features. In turn, we have to mark
the features on the path between both in the feature model as mandatory.
For example, we mark features Index and BTree as mandatory and remove
the equivalence constraint for compound feature Core. Mandatory features
that have been part of an alternative group must always be selected. Hence,
remaining features of the group cannot be selected, but these have already
been removed in step 1.

3. In steps 3–5, we add the compound features and restructure the feature di-
agram. First, we create a new feature for each generated compound feature
(e.g., feature Qe in Figure 6.4 c). Each compound feature replaces one of the
merged features. Usually, the compound feature should replace the feature
that is nearest to the root. The replaced feature is added as a mandatory
child since both have to be selected at the same time. For example, we insert
compound feature Qe above Query. If one of the merged features is the root
of the tree the compound feature may also be added as a child of the root to
avoid a different name for the root (cf. feature Core in Figure 6.4 c).

4. Other merged features including their whole subtrees are moved to the corre-
sponding compound feature as mandatory child features (e.g., feature Log in
Figure 6.4 c). Additional constraints are added to maintain the relationships
between the moved features and their former parent features and siblings. In
our example, we create the constraint Log ⇒ DB’ because feature Txn was
added as a parent of Transaction.

5. Finally, we remove constraints that are not needed. Since the merged features
are mandatory children of their compound feature we remove the remaining
equivalence constraints that have been used to represent merged features as
described in step 2. Furthermore, we can remove some constraints that have
been added in step 4. For example, we remove constraint Log⇒ DB’ because
DB’ is an ancestor of Log.

After refactoring the feature model the remaining variability is easier to recognize
because it is not hidden in constraints. The merged features can be removed from
the feature model or tool support can be used to suppress visualization of mandatory
features. When removing the inner features of a compound feature, the constraints
have to be updated by replacing the removed features with their compound feature.
However, the original merged features may still be needed for further operations
on the feature model. For example, rules for adaptations of a feature model at
runtime or constraints defined independently (e.g., by a third party) may reference
the original features.
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In general, merging features corresponds to adding equivalence constraints to the
feature model. The variants of the feature model shown in Figures 6.4 b and c
are equivalent and both can be used for further compositions or reasoning about
the feature model. The difficulty of the described refactoring comes from finding a
representation in the notation of feature diagrams that is easier to understand for
a user than propositional formulas as in Figure 6.4 b. Hence, there may be more
possible simplifications that depend on the structure of the feature tree.

6.2.4 Composition Safety

We use the transformed feature model to achieve safety for composition of binding
units. By statically type checking the entire SPL [AKGL10], we could even provide a
type-safe composition mechanism for binding units. By contrast, customizable com-
ponents that implement multiple features (e.g., implemented with the C preprocessor
or AOP) do not support type-safety with respect to all possible configurations.

For clients that use an instance of an SPL, we support a limited form of virtual
types as described in Section 5.3.1. However, a client has to use the binding units
for manual SPL instantiation. For automatic instantiation, it is also possible to use
the SPL features, which are mapped to the required binding units.

6.3 Using Code Transformations to Support Different
Binding Times

For a proof of concept, we integrated the presented combination of static and dy-
namic binding into the FeatureC++ compiler. In the following, we give an overview
of the code transformations that we use to combine both types of composition at
the level of object-oriented classes.

6.3.1 Generating Binding Units

When generating dynamic binding units, the FeatureC++ compiler transforms a
class (defined as several class refinements) of an SPL into dynamically composable
class fragments. The generated fragments correspond to the defined binding units.1

They are generated from the refinements of a class in two steps: First, we merge
refinements belonging to features of the same binding unit into a single class (static
composition) and, second, we generate code for dynamic binding of composed classes
using the decorator pattern as described for dynamic composition in Section 5.2.1.
In Figure 6.5, we show an example for the generated classes corresponding to the
binding units of DB ′ (cf. Fig. 6.2). The dynamically composable class DB consists
of an interface (DB), an abstract decorator (DB_Decorator), and three concrete dec-
orators (DB_Base, DB_QE, and DB_TXN). Code of multiple refinements is statically

1Dynamic binding units are stored in the binary of an application or in extension libraries. Cur-
rently, we support Windows DLLs.
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Figure 6.5: Compound class DB (dashed box) after static composition and transfor-
mations to enable dynamic binding. Generated decorators are shown
as white boxes within light-gray binding units. Code of refinements is
shown as gray boxes in decorators.

composed into the concrete decorators. For example, we merge refinements defined
in modules Core and B-Tree of class DB into decorator DB_Base. The decora-
tors are combined at runtime according to the selected dynamic binding units. For
example, we compose DB_Base and DB_TXN to yield DB1 as shown in Figure 6.2.

The code transformations are basically a combination of the transformations de-
scribed for purely static and purely dynamic binding. However, they differ in several
ways and we describe important differences next.

Storing SPL Context. Class instantiation in a dynamically composed program
requires to create an object that corresponds to the configuration of an SPL in-
stance. In FeatureC++, we use objects of dynamically composed feature classes (cf.
Sec. 5.2.1) to represent SPL instances. For example, instance DB1 (cf. Fig. 6.2)
includes binding units Base and Txn of DB′. It is dynamically composed from
objects of two feature classes (one for each binding unit). When a class instance is
created, the configuration of the SPL instance defines which decorators to use for
the newly created object. Because there may be more than one active SPL instance
within a program, we need to know which SPL instance to use when creating an
object. For that reason, we store a reference to the corresponding SPL instance
within each object. For example, when creating an instance of class DB (cf. Fig 6.5),
the SPL instance DB1 defines the required binding units (Base and Txn) and thus
the configuration of class DB.

For statically composed classes, this information is not needed because the type
of a class is determined statically and does not change according to a dynamically
changing SPL instance. For example, the type of a class does not change if it is
only refined in features that are part of the same binding unit. There is no runtime
variability for such a class and we thus do not need to know which SPL instance to
use for creating objects of the class.

When combining static and dynamic binding, we have to evaluate whether an
object (directly or indirectly) creates instances of dynamically composed classes or
not. This also applies to objects of statically composed classes that create instances
of dynamically composed classes. For example, a class QueryEngine, which is stat-
ically composed because it is only part of binding unit QE, has to store a reference
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to its SPL instance if it creates objects of dynamically composed classes.

Optimizing Resource Consumption. Our approach and its current implementation
do not provide an optimized solution for every application scenario. There are
several possible optimizations of the code transformation process to decrease the
compositional overhead caused by dynamic binding. As a first step for optimization,
we distinguish between using a single SPL instance and using multiple instances at
the same time. For example, we may use differently configured instances of a DBMS.
The FeatureC++ compiler optimizes the generated code when using only a single
SPL instance. In this case, the compiler does not use SPL context variables in each
refinement but uses a global reference for accessing the SPL instance. This reduces
memory consumption and execution time.

There are further possible optimizations but we often observe a tradeoff between
reducing memory consumption and increasing performance, which has to be further
analyzed. For example, the code generated by FeatureC++ is not optimized with
respect to memory allocation. We could allocate a single block of memory for all dec-
orators when creating an object of a dynamically composed class instead of multiple
blocks, one for each decorator. This allows us to reduce the object size by removing
the super and self pointers. Instead, we can compute the memory addresses of
the super object and the compound object for each compound class at instantia-
tion time, as it is also done for inheritance by C++ compilers [Lip96]. Hence, the
memory consumption of small dynamically composed objects could be reduced to
about one third. However, this solution is only better suited for SPL configuration
at load-time. Using this approach for reconfiguration at runtime (e.g., adding a new
refinement to an already existing object) means that we have to reallocate the whole
object when its size increases (i.e., when a new feature is loaded). This may highly
increase the time required for adaptation. Hence, such optimizations are usually
well suited for a particular application scenario only.

Commutativity of Method Refinements. Since application of method refinements
is usually not commutative, we have to ensure that the execution order of method
refinements does not change due to the combination of static and dynamic binding.
We depict an example in Figure 6.6. Method Put of class DB is refined in fea-
tures Logging and Transaction. Both method refinements have to be executed
bottom-up: first the transaction code has to be executed (Line 12) and afterwards
the logging code (Line 6). When we statically compose the Core implementation
and feature Transaction into a single binding unit (Lines 1–12 in the generated
code in Figure 6.7) and feature Logging into a different binding unit (Lines 13–18),
then dynamic composition of the binding units results in an invalid program because
the execution order of the method refinements changes.

To avoid this, we generate hook methods [AKB08]. For example, we generate
method Put_hook as shown in Lines 4–6 in Figure 6.7. The hook is called in Line 10
instead of method Put_Core. It is overridden by feature Logging to execute the
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Feature Core

1 class DB {

2 bool Put(Key& key , Value& val) { ... }

3 };

Feature Logging

4 refines class DB {

5 bool Put(Key& key , Value& val) {

6 ... // l o g g i n g s p e c i f i c code
7 return super::Put(key ,val);
8 };

9 };

Feature Transaction

10 refines class DB {

11 bool Put(Key& key , Value& val) {

12 ... // t ransac t i on s p e c i f i c code
13 return super::Put(key ,val);
14 };

15 };

Figure 6.6: FeatureC++ source code of class DB with method Put extended in two
features.

logging specific code before executing the extended method (Line 16).

Feature Interactions. Feature interaction code (a.k.a., derivatives) is only needed
when a set of features is used in combination. When using static feature binding, the
interaction code is composed with other feature modules into a single program. By
contrast, the same code must be bound as a separate module when using dynamic
binding (cf. Sec. 5.2.1). Hence, when combining both binding times, we must
also ensure that existing interaction code is only executed when the corresponding
features are active. This results in two possible scenarios:

1. All features of an interaction module are part of the same binding unit. In
this case the interaction code is statically composed into this binding unit.

2. The interacting features are spread across different binding units. In this case,
we generate a dynamic interaction module for each combination of binding
units that interact. For example, we generate an interaction module when a
feature of binding unit A interacts with a feature of a binding unit B. This
interaction module includes all interaction code of binding units A and B (i.e.,
possibly code of multiple feature interactions). When there are higher order
interactions (i.e., between more than two features) that are spread across more
than two dynamic binding units, then this results in higher order dynamic
interaction modules between these binding units.

Compared to purely dynamic binding, this also means a reduction of the number
of interaction modules. When assuming a quadratic increase of interaction modules
for an increasing number of modules then the use of dynamic binding units instead
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Binding UnitBase

1 class DB_Base {

2 bool Put_Core(Key& key , Value& val) { ... }

3
4 bool Put_hook(Key& key , Value& val) {

5 return Put_Core(key ,val);

6 }

7
8 bool Put(Key& key , Value& val) {

9 ... // t ransac t i on s p e c i f i c code
10 return Put_hook(key ,val);

11 };

12 };

Binding UnitTXN

13 class DB_Logging {

14 bool Put_hook(Key& key , Value& val) {

15 ... // l o g g i n g s p e c i f i c code
16 return super->Put_hook(key ,val);
17 };

18 };

Figure 6.7: Generated C++ code of class DB with a hook for method refinement.

of purely dynamic binding means a quadratic reduction of the number of dynamic
interaction modules.

Crosscutting Features. Feature interaction code is often needed for crosscutting
features: When an optional feature cuts across other optional features we have to
decompose the crosscutting feature into one interaction module for each feature
interaction. For example, the transaction management of Berkeley DB cuts across
many other features which results in several interaction modules. When binding a
crosscutting feature dynamically, we have to create a dynamically bound module for
each interaction. However, when binding the crosscutting feature statically, the code
of all individual feature interactions is composed with the corresponding features into
their binding units. Hence, we reduce the number of interaction modules and also
the overhead for dynamic binding.

Due to the generated interaction modules, a compound feature maps to multiple
binding units. Since multiple SPL features map to a single compound feature, there
is an m-to-n mapping of SPL features to binding units. This is much the same as
implementing an SPL with components: a component implements multiple features
and crosscutting features are spread across multiple components resulting in an m-
to-n mapping of features to components.

6.4 An Evaluation of Dynamic Binding Units

By means of two case studies we demonstrate the applicability of our approach.
We evaluate the influence of different sizes and different numbers of dynamic
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Figure 6.8: Feature diagram of Fame-DBMS with binding units Base, TXN, Btree,
QE, and Crypto. Binding unit Crypto consists either of feature Aes or
Des. In our evaluation, we use feature Aes.

binding units on resource consumption when using dynamic binding at load-time.
For our evaluation, we use two product lines developed with FeatureC++. The
first SPL is Fame-DBMS, a DBMS product line for resource-constrained environ-
ments [RALS09]. The second SPL is NanoMail, a customizable e-mail client. The
source code of both product lines is available on the web.2 We present the results
for both SPLs and discuss the reasons for the characteristics we observed.

6.4.1 Defining Binding Units

FAME-DBMS. Fame-DBMS is an embedded DBMS (i.e., it is embedded into an
application as a library). It was developed for devices with limited resources using
static feature binding. In our case study, we use dynamic binding to achieve exten-
sibility and optimized resource consumption. In Figure 6.8, we depict an extract of
the feature model of Fame-DBMS and binding units used in our evaluation. We
show only features that are relevant for our case study and omit features that are
always statically bound such as operating-system-related features. In its current
version, Fame-DBMS consists of 81 features with 14 200 lines of code (LOC).

For analyzing the influence of dynamic binding on resource consumption, we com-
pare different variants of Fame-DBMS that use the same 44 features but we orga-
nized the features in different binding units. The selection of features per binding
unit is shown in Figure 6.8. It corresponds to configuration 5 in the following anal-
ysis. We describe the rationale behind the definition of the sample binding units in

2http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/dynamic/
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the following overview:

• Binding unit Base represents a basic DBMS that consists of an API for storing
and retrieving data. It can be used without additional binding units and
provides high performance due to purely static binding.

• Binding unit Txn provides transactional access to the database. Since features
Transaction and Recovery require feature Logging, we merge all three
features into a single binding unit.

• QE is a customizable query engine that supports a subset of SQL by statically
composing only the required SQL features. In our implementation, dynamic
composition of SQL features is hard to achieve. The reason is that we statically
compose the SQL grammar from multiple features. We then generate the
SQL parser from this composed grammar at compile-time. This demonstrates
that purely dynamic binding is not always possible without increasing the
development effort significantly.

• Crypto is a binding unit for data encryption and decryption. Customization
of the encryption algorithms (e.g., Aes or Des) is done statically. This means
that we can exchange the encryption algorithm within the binding unit without
modifying the remaining DBMS. We may also provide two different Crypto
binding units, one with feature AES and one with DES. Moreover, a customer
may provide an own encryption algorithm. Defining one binding unit for the
DES and AES features would also be possible but in our case the Encryption
feature abstracts from implementation details of the algorithm resulting in a
small and uniform interface.

• Finally, binding unit Btree provides efficient data access via a B+tree index
structure. In large DBMS there may be a number of different alternative index
structures. Using a single binding unit per index structure allows us to activate
only those that are needed for efficiently accessing the data.

NanoMail. NanoMail is an e-mail client SPL with 25 features and 6 200 LOC. It
comprises different e-mail applications, from a simple MailNotify application that
only notifies a user if there is unread mail, up to a full mail client with mail storage in
a database. Similarly to Fame-DBMS, we compare variants with equal functionality
(using 23 features) and varying binding units. For dynamic binding, we defined
the binding units DB and ClamAV, which provide mail storage in a database
and virus filtering. Furthermore, for analyzing the impact of fine-grained dynamic
customization, we provide e-mail filters that are used like plugins. Each filter is
loaded as a single binding unit and users can add as many filters as needed. To
analyze the influence of a large number of binding units, we generate several mail
filters and measure the effect on the program’s startup time.
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Figure 6.9: Binary size (base program and dynamic binding units) of five Fame-
DBMS variants with an equal feature selection and an increasing number
of binding units.

6.4.2 Resource Consumption

In the following, we analyze the resource consumption of different Fame-Dbms and
NanoMail variants depending on the binding units used. We compare binary size,
working memory usage, and performance of a varying number of binding units but
we use always the same features.3 Our aim is to identify how to combine static and
dynamic binding to optimize a program with respect to functional and compositional
overhead.

In Figures 6.9–6.14, we depict the results of our analysis for five configurations of
Fame-Dbms and three configurations of NanoMail. In configuration 1, all features
are statically bound and compiled as a single binary. In each of the configurations
2–5 an additional binding unit (e.g., QE, Txn, Crypto, Btree for Fame-Dbms) is
extracted from the base binding unit and compiled as a distinct dynamically linked
library (DLL). In the following, we analyze binary size, memory consumption, and
performance of both SPLs. We distinguish between compositional and functional
overhead (cf. Sec. 3.1.2) for each analyzed property.

Binary Size

Using the binary size of Fame-DBMS, we first describe how we calculate the func-
tional and compositional overhead. Since the functional overhead depends on the
features actually used, we provide numbers for the maximal possible functional over-

3For our evaluation, we used an Intel Core 2 system with 2.4 GHz and Windows XP. For
compilation and linking, we used the Microsoft C/C++ compiler v13.10.3077 and Incremen-
tal Linker v7.10.3077 (Visual C++ 2003). We used compiler optimization flag /O2 (i.e.,
/Og/Oi/Ot/Oy/Ob2/GS/GF/Gy). We linked dynamically against Microsoft’s C++ runtime
library and removed unreferenced functions and data with linker flag /OPT:REF.
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Figure 6.10: Binary size for three different variants of NanoMail with varying sets
of binding units.

head. That is, we compare a static variant including all features with the minimal
dynamic variant without additional binding units. The binary sizes of the configura-
tions 1–5 of Fame-DBMS are shown in Figure 6.9. The values represent executable
code and static data stored in the binary files. They do not include other libraries.
For configuration 1, we generated a single binding unit including all features and
five binding units for configuration 5. From configuration 1, we can only derive a
single variant with a binary size of about 50 KB. Comparing configurations 1 and 5,
we observe the following compositional and functional overhead:

• Comparing a complete variant of configuration 5 (83 KB) with configuration 1
(49 KB), we observe a compositional overhead of about 40 % (83 KB - 49 KB =
34 KB). That is, 40 % of the code from configuration 5 is overhead for dynamic
binding.

• Comparing configuration 1 (49 KB) and the smallest variant of configuration 5
(18 KB), we observe a maximal possible functional overhead of about 64 % for
configuration 1 (49 KB - 18 KB = 31 KB). That is, up to 64 % of the code of
configuration 1 may not be used for a particular task (e.g., basic data storage
and retrieval without using SQL queries and other features). The overhead
depends on the number of features that are actually used at a particular point
in time. It is zero when all features are really in use. This underlines that a
configuration highly depends on the application scenario. To reduce the binary
size, we have to avoid any features that are not used and reduce dynamic
binding to a minimum.

In our case studies, we observe an increasing compositional overhead for an increas-
ing number of binding units. Especially when a binding unit extends many classes
the effect is very strong. It is quite strong for Fame-Dbms (up to 40 %, cf. Fig-
ure 6.9) and very weak for NanoMail (< 4 %).
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The high relative overhead of 40 % for Fame-Dbms is mainly caused by its small
binary size; the absolute overhead is 33.2 KB. The code of the composition infras-
tructure makes up 21 KB (25 % of the program size): About 5 KB generic code for
dynamic binding (i.e., for loading and composing binding units; base program - com-
position code in Figure 6.9) and additionally between 3 KB and 5 KB overhead per
binding unit (i.e., binding unit specific composition code). The remaining overhead
of 12 KB (15 % of the program size) is caused by the binding units Crypto (9 KB)
and BTree (3 KB). Reasons are missing compiler and linker optimizations when
dynamic binding is used. In Figure 6.9, we depict this unused code as binding units
- unreferenced code. For example, a method for calculating a hash sum with a bi-
nary size of 7.5 KB is not used in our Fame-Dbms benchmark application. The
linker removes the method from the statically composed variant because it is never
called. The same method cannot be removed from binding unit Crypto because
the compiler does not know whether it is required by another binding unit or not.
Hence, dynamic binding may cause a functional overhead as well. This overhead is
not caused by entire unused features but by unreferenced methods.

The possible functional overhead in static variants of both SPLs is very high
(64 %–94 %). The reason is that a large fraction of the binary code belongs to
optional features. Increasing the use of dynamic binding usually reduces this over-
head. However, also insufficient customizability due to large binding units can cause
a functional overhead when not all features of a binding unit are used.

Both kinds of overhead can be reduced by adjusting the binding units. That is,
an application engineer has to analyze the functional and compositional overhead
per application scenario to find the optimal tradeoff. When always using many of
the binding units, the benefit of dynamic binding with respect to resource consump-
tion decreases. For example, the binding units Txn and Btree in Fame-Dbms
cannot significantly reduce the functional overhead but they increase the composi-
tional overhead significantly. The size of the base program is nearly the same in
the configurations 4 and 5, but the additional binding unit Btree increases the
overall size by 12 %. That is, if we bind the features of the binding units Txn and
Btree statically (i.e., removing configurations 3 and 5), we do not cause a major
functional overhead but can reduce the compositional overhead significantly. Hence,
the application engineer has to decide whether this flexibility is really needed by
taking the resulting compositional overhead into account.

Memory Usage

The memory usage of a program depends on allocated memory but also on the size
of the binary program code that is loaded into memory. For Fame-Dbms, we could
not measure any functional overhead of allocated memory because the memory is
needed mainly for the data buffer of the DBMS, which is independent of the feature
selection. Further features do not allocate a significant amount of additional memory.
The functional overhead thus only depends on the binary program size and dynamic
binding cannot reduce the memory consumption (cf. Figure 6.11). In NanoMail,
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Figure 6.11: Comparison of working memory usage of five Fame-DBMS variants
with an equal feature selection and an increasing number of binding
units. Full program variants include all dynamic binding units. Base
program variants only use the base program without loading additional
binding units.

there is a functional overhead of about 28 % (cf. Figure 6.12), which is mainly
caused by the virus filter. Comparing the mail-notify application (1.3 MB memory
consumption; not shown in Figure 6.12) and a full mail client (9.8 MB), we observe
a large functional overhead. This overhead is caused by including all features in the
full mail client, which are not needed for a simple mail notification program (e.g.,
loading e-mails).

The compositional overhead of allocated memory especially increases if a program
creates a large number of small objects that are dynamically composed. The reason
is that the size of a class instance increases for each binding unit that crosscuts the
class. This overhead is very high for small objects. The size Sdyn and the overhead
Odyn of a dynamically bound object can be calculated with the following formula:

Sdyn = Sdata + Odyn (6.9)

Odyn = 12(nBU + 1) (6.10)

Sdata is the size of the object with static binding. nBU is the number of loaded
binding units that crosscut the class. The constant 12 represents the number of bytes
a binding unit requires to store a self pointer, a super pointer, and a pointer to its
virtual function table (each pointer has a size of 4 byte). The constant 1 represents
the additional proxy that we use to enable reconfiguration at runtime. The proxy
could be removed for SPLs that are not reconfigured once they are instantiated.
Overall, the size of an object increases by 12 byte to enable dynamic binding and
linearly increases by 12 byte for each additional binding unit.

In Fame-DBMS, the compositional overhead of 288 KB (38 %, cf. Figure 6.11)
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Figure 6.12: Consumed working memory in NanoMail for variants with different
binding units.

is mainly caused by the binary program code and the overhead for loading binding
units because there are only a few objects that are dynamically composed. The
compositional overhead in NanoMail is 528 KB (9 %, cf. Figure 6.12).

Large binding units increase the functional overhead if some of their features are
not used. The compositional overhead in Fame-Dbms is more important than the
functional overhead; the opposite is true for NanoMail. The differences between the
SPLs show that there is no general solution and there is space for domain-specific
optimizations.

A binding unit also increases memory consumption due to the compositional over-
head of its binary size (cf. Sec. 6.4.2) because the executable code is loaded into
memory. We analyzed the overhead for loading a large number of binding units
by adding several e-mail filters to NanoMail (up to 60 mail filters).4 The results
are shown in Figure 6.13. Besides a general overhead for dynamic binding (transi-
tion from 0 to 1 filters), we observe a linear increase of 21 KB per filter (i.e., per
binding unit). For binding units that consume a small amount of memory, this is
a large overhead. By generating one binding unit for multiple filters (i.e., merging
the filters), this overhead can be avoided. For binding units that consume a large
amount of memory, such as the virus filter in NanoMail, dynamic binding causes an
acceptable overhead of only about 4 % compared to the memory consumption of the
binding unit.

4We generated empty filter stubs to measure only the overhead for dynamic binding.
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Figure 6.13: Consumed working memory of NanoMail with an increasing number of
mail filters with static composition, dynamic composition with a single
binding unit for all filters, and purely dynamic composition (i.e., one
binding unit for each filter).

Performance

We measured the performance of Fame-Dbms using a benchmark for reading and
writing data.5 As shown in Figure 6.14, the performance decreases with an increasing
number of binding units. Comparing dynamic variants with purely static binding, we
observe a performance reduction between 5 % (2 binding units) and 28 % (5 binding
units). The reason for this increasing compositional overhead is missing inlining of
methods and more indirections for method calls compared to static variants. Both
are caused by generated code for dynamic binding: composition of classes at runtime
is achieved with virtual methods in decorators, which add an indirection and hinder
inlining of method extensions.

In Fame-Dbms, 100 % of method refinements are inlined when using static bind-
ing. This decreases to about 95 % for configuration 2 and further to 86 % for con-
figuration 5. Each method refinement that is not inlined is replaced by a virtual
method and thus decreases performance. Binding unit Btree substantially increases
the overhead (cf. configuration 5 in Figure 6.14). The reason is that it refines meth-
ods that are invoked multiple times for a single read or write operation. Hence, we
should create only a distinct binding unit for the Btree if this flexibility is really
needed (e.g., when we have to decide at runtime which kind of index to use).

Static and dynamic binding may also affect the startup time of a program for load-
ing binary code from DLLs and for initialization of unused code. Due to the fairly
small binary size of binding units, we observe only a slightly increased startup time.
The compositional overhead for loading binding units is about 30 ms per additional

5We used random key-value-pairs for reading and writing 10.000 records of type string via the
B-Tree index.
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Figure 6.14: Comparison of benchmarks for reading and writing of different variants
of Fame-DBMS. The relative performance is shown. 100 % means
about 3.0 Mio queries / s for reading and 0.8 Mio queries / s for writing.

binding unit. We observe a functional overhead (intitialization code of features)
of about 2 s for the largest binding unit in NanoMail (the ClamAV virus filter).
Hence, the compositional overhead with respect to program startup is very small
and can be ignored in many application scenarios. By contrast, the functional over-
head for initialization of a binding unit may be important for application scenarios
that require restarting a program frequently.

To summarize, the influence of dynamic binding is quite high when a feature
refines frequently called methods. The performance degradation can be caused by
a high number of method extensions (e.g., in many binding units), but also by a
few refinements of performance critical methods as shown for the Btree feature
in Fame-DBMS. Again, the best size for a binding unit has to be determined per
SPL and application scenario. Merging binding units can remove dynamic method
refinements. The load-time of a program can only be reduced significantly if the
execution of complex initialization code can be avoided or if large parts of a program
do not have to be loaded at startup. The number of binding units is usually not
important. For example, 30 binding units result in an overhead of about one second
for starting the programs of our case study.

6.5 Discussion

In the following, we discuss the results of our evaluation and analyze how customiz-
ability and SPL development is influenced by our approach. Finally, we derive a
guideline for building SPLs that support static and dynamic binding.
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Figure 6.15: Relative size of three objects with a data size of 4, 16, and 64 bytes for
an increasing number of dynamic extensions (i.e., crosscutting binding
units).

6.5.1 Resource Consumption

Our evaluation has shown that, depending on the binding time, a compositional
and functional overhead occurs in a running program with regard to binary size,
memory consumption, and performance. The compositional overhead caused by a
binding unit depends on its entanglement with other binding units. That is, method
calls across the boundary of a binding unit (i.e., via its interface) introduce an ex-
ecution time overhead. The interface of a binding unit consists of virtual methods
to enable dynamic binding. This hinders method inlining, introduces indirections,
and increases the size of generated code as well as the size of objects in a running
program. Hence, a binding unit should contain feature sets that are used in combi-
nation. For example, the effect on memory consumption is very high when allocating
a large number of small objects. In Figure 6.15, we depict the computed relative
size (cf. Equation 6.9) of three different objects with 4, 16, and 64 bytes user data
with an increasing number of dynamic extensions (i.e., dynamic binding units that
crosscut the object). For an object with 4 byte user data, two dynamic extensions
increase the object size by a factor of 10. If such objects are the main cause of
memory consumption of a program then the memory consumption also increases by
a factor of 10. For larger objects, this effect is much smaller. Combining static and
dynamic binding reduces the number of dynamic binding units and can thus highly
decrease the memory consumption. By merging dynamic binding units the overhead
can be reduced. For example, merging all dynamic binding units of Figure 6.15 into
a single binding unit reduces the memory consumption from 64 to 28 bytes for an
object with 4 bytes user data.

However, large binding units introduce a potential functional overhead due to fea-
tures that are not used. Splitting binding units can reduce the functional overhead,
but we have shown that this effect can be smaller than the introduced compositional
overhead. Furthermore, we have shown that dynamic binding may also introduce
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Figure 6.16: Combining static and dynamic binding to support a varying number
and varying size of binding units. Possible configurations of dynamic
binding units are shown as a triangle.

an overhead due to unused methods that can be removed by the linker when using
static binding. An advantage of our approach is that it allows a programmer to find
a balance between compositional and functional overhead that is suitable for her
needs.

As illustrated in Figure 6.16, our approach provides purely static and purely
dynamic binding (upper left and lower right corners) as well as all combinations
with varying sets of binding units (shown as triangle). When creating binding units,
the compositional overhead can be reduced for a constant number of dynamically
bound features by increasing the number of features per binding unit (arrow in
lower part of Figure 6.16). The functional overhead can be reduced in two ways: On
the one hand, increasing the number of dynamically bound features for a constant
number of binding units (i.e., moving features from the base program into a binding
unit) reduces the size of the base program (arrow (1) in Figure 6.16). On the other
hand, increasing the number of dynamic binding units for a constant number of
dynamically bound features (i.e., splitting the binding units) reduces the size of
each binding unit (arrow (2) in Figure 6.16).

6.5.2 Customizability and SPL Development

Generating binding units from FOP code has an effect on customizability of an SPL
and improves several aspects of SPL development.
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Granularity and Flexibility. The dynamic binding capabilities of FeatureC++ en-
able developers to achieve extensibility of a program after deployment. Additionally,
features can be bound statically, which supports fine-grained extensions without in-
creasing the execution time. For example, the B-Tree in Fame-Dbms is built from
many small features (e.g., features for write support) that can be statically config-
ured. For binding units, we thus achieve performance and memory consumption
comparable to static binding with the C preprocessor (cf. Chapter 4). Fine-grained
extensions and dynamic binding are opposite optimization goals with respect to
performance and memory consumption. The more fine-grained the extensions are,
the more memory and computing power is required for dynamic binding (cf. Fig-
ure 6.15). Our approach allows a programmer to combine both binding times as
needed per application scenario.

Reuse. The combination of both binding times increases reuse possibilities in dif-
ferent application scenarios. For example, we can statically bind all features of
Fame-Dbms for deeply embedded devices and support dynamic binding for other
platforms. Furthermore, binding time flexibility enables reuse of features across
different SPLs that use different binding times. For example, we can reuse a fea-
ture that implements a communication protocol in an e-mail client SPL that uses
dynamic binding and also in an e-mail server that uses static binding.

Crosscutting Features. With our approach, static binding can also be used
for crosscutting features that are spread across multiple dynamic binding units.
These features are usually implemented with preprocessors [Gri00] or design pat-
terns [MSL00, Zdu04]. Adding or removing such features is possible by rebuilding
the affected binding units. For example, in Fame-Dbms, WriteSupport is a cross-
cutting feature that affects several binding units such as the query engine, indexes,
etc. Using FeatureC++, we can add or remove this feature and have to rebuild only
the affected binding units.

Development and Maintenance. Using a single mechanism for implementing fea-
tures (i.e., feature modules) also simplifies SPL development. A programmer may
combine FeatureC++ with other variability mechanisms (design patterns, macros,
#ifdefs, etc.) or may replace other mechanisms by using feature modules exclu-
sively. Binding time flexibility can simplify maintenance of an SPL. For example,
dynamic binding can be replaced temporarily by static binding for debugging pur-
poses to avoid the complexity of dynamic binding. Finally, the presented approach
provides means for step-wise transition from static to dynamic binding and thus
reduces the adoption barrier for dynamic binding.

6.5.3 A Guideline for Defining Binding Units

When configuring an SPL for static and dynamic binding, we have to answer two
questions: Which features have to be bound dynamically? Which dynamically
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6 A Generative Approach to Flexible Binding Times

bound features should be composed into the same binding unit? With our ap-
proach, a domain expert can decide this per application scenario. Static binding
does not exhibit any compositional overhead. It is usually the best choice if exten-
sibility after deployment or at runtime is not required. The remaining challenge for
a domain expert is to find proper binding units for dynamically bound features to
provide the required flexibility while minimizing the overhead. Therefore, resource
consumption of different feature combinations has to be analyzed, which means a
high effort and may be impractical. The following rules can be used to find good
feature combinations for binding units more easily:

1. As a simple rule, a large number as well as a large size of binding units should
be avoided because the first increases the compositional overhead and the latter
increases the functional overhead. However, as depicted in Figure 6.16, this
cannot be a fixed rule because reducing one overhead may increase the other.

2. Analyzing the feature model helps to find features that should be combined
in a binding unit. For example, atomic feature sets (i.e., features that cannot
be configured independently [ZZM04]) have to be part of the same binding
unit. Similarly, a requires-constraint between two features indicates that the
features are used in combination and may also be combined into the same
binding unit.

3. Furthermore, we can analyze the source code of features. A high degree of
coupling between features indicates which features are commonly used to-
gether [AB11]. Hence, it can be beneficial to merge them into a single binding
unit. Crosscutting features should be bound statically if possible. An auto-
mated analysis of coupling and cohesion could be used to provide an initial
assignment of dynamically bound features to binding units.

4. Implementation knowledge can be used to find features and methods that
are important with respect to performance and memory consumption. For
example, frequently called hot spot methods should ideally be bound statically.
If this is not possible, they should be defined in a single binding unit only. This
causes the method to be bound dynamically but avoids a decomposition of the
method into multiple fragments. Similarly, when allocating a large number of
small objects (such as list elements), the corresponding class should be defined
in a single binding unit.

To further reduce the overhead of a program, different optimizations of binding
units are possible. For example, overlapping binding units (i.e., binding units that
use an overlapping set of features) can be created to provide binding units with a
small interface or to reduce the number of binding units. Another optimization is to
split or merge binding units when the requirements have changed over time or when
an analysis at runtime has identified how the binding units are actually used. For
example, binding units that are often or always used in combination can be merged
into a single binding unit without changing the source code.
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6.6 Related Work

We aim at combining static and dynamic binding of features using a generative ap-
proach that allows us to use the same code base for different binding times. There are
several collaboration-based and feature-based approaches that support either static
or dynamic binding as described in Chapter 3. In contrast to these approaches, our
solution supports both, static and dynamic composition, and assists the developer
in dynamically composing SPLs and validation of SPL configurations according to
a feature model before SPL instantiation. In the following, we compare our solution
to other approaches that support static and dynamic binding.

Support for Different Binding Times. There are approaches for software compo-
sition that employ different techniques or paradigms to support different binding
times. For example, CaesarJ [AGMO06] supports static composition based on vir-
tual classes and dynamic deployment of aspects. Object Teams [Her02] support
dynamic composition of teams, which can be used to implement features. The ap-
proach also supports static composition by declaring a team as static. This has
to be done in the source code at development time. Components and the C pre-
processor are also combined to support different binding times in practice. Both
approaches require to know the binding time of an implementation unit at design
time. By contrast, we can choose the binding time at deployment time to enable
reuse of source code even when using different binding times.

JavAdaptor allows to reconfigure a running program and can be combined with
Jak [PSC09]. This can be used to support binding of whole features at runtime
and supports static optimization of the whole program before applying the changes.
Reconfiguration with JavAdaptor means to compile a new program and to apply
the changes, which is time consuming and thus inappropriate for frequent updates.
Furthermore, the approach does not allow to use multiple instances of an SPL at
the same time or to manipulate an SPL instance from client code.

Zdun et al. introduce transitive mixins to generalize composition of classes and
objects [ZSN07]. The implementation provided in [ZSN07] is built on top of a
dynamic approach that does not support static composition. Chakravarthy et al.
provide with Edicts an approach that supports different binding times using design
patterns that are applied to a program by means of aspects [CRE08]. Configuration
is done by switching between Edicts. Schmid et al. support different binding times
for the same code fragment by combining AspectJ with conditional compilation us-
ing if-statements in Java [SE08b]. Czarnecki et al. describe how to parameterize
the binding time using C++ templates [CE00]. They provide a configurable bind-
ing time (e.g., for class extensions) with a template-based program generator. The
OSGi6 standard also supports static and dynamic composition of components, called
bundles. It is a component-based approach that does not aim at implementing (po-
tentially crosscutting) features. It thus does not provide means to flexibly generate

6http://www.osgi.org

125



6 A Generative Approach to Flexible Binding Times

larger bundles on demand by statically merging a set of features when they are
implemented as bundles. Other approaches support static and dynamic binding of
aspects. AspectC++ supports weaving at runtime and compile-time for the same as-
pect [GS05]. AspectJ supports weaving advice at compile-time, after compile-time,
and at load-time.7 PROSE [NAR08], Steamloom [BHMO04], Hotwave [VBAM09],
and other AspectJ-based approaches support weaving at runtime and may be com-
bined with AspectJ’s static weaving. These AOP approaches can be used to support
multiple class extensions at the same time as in FOP.

In contrast to FeatureC++, the approaches above do not provide a mechanism
for feature composition according to a feature model. Nevertheless, the approaches
can be combined with tools that support configuration and static composition of
SPLs such as pure::variants [pur04]. However, this is not possible for validating
configurations at runtime. By using FOP and an SPL-aware type system, we can
ensure type-safety for a whole SPL. Using a static feature model transformation, we
can even ensure type safety for dynamic composition of binding units.

Similar to our approach, the mechanisms above combine static and dynamic bind-
ing. Approaches such as Edicts and AspectC++ can be used to bind a feature
statically or dynamically with the base program without changing the implemen-
tation. However, they do not provide means to statically merge an arbitrary set
of dynamically bound features into a single binding unit and compose the binding
units dynamically. One reason is that these approaches do not preserve the execu-
tion order of method extensions when mixing both binding times in this way (e.g.,
aspect ordering in AspectC++ [TLSS10]). Applying static binding first and dy-
namic binding afterwards changes the feature composition order (all static features
are bound before dynamic features). This in turn may change the behavior of meth-
ods that are refined by statically and dynamically bound features (e.g., statically
and dynamically weaved aspects that have the same join point). We solve this by
generating hook methods, as described in Section 6.3.

Binding Units. Lee et al. suggest to decide before SPL development which fea-
tures to implement in one component and to combine the resulting components at
runtime [LK06]. Griss argues that components and novel approaches to software
composition should be combined to develop SPLs [Gri00]. He discusses different
approaches that may be used to customize components when the feature selection
changes. Our approach goes into the same direction. However, we use only a single
implementation technique that supports static and dynamic binding. We also think
that components have to be planned before SPL development, but the selection of
concrete features and component customization has to happen at deployment time.

Staged Configuration. Czarnecki et al. [CHE05] and Classen et al. [CHH09] de-
fine staged configuration as a process that has to eliminate configuration choices.
We do not adhere to this strict definition and define a configuration step as a set

7http://eclipse.org/aspectj
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of constraints over the features of an SPL. This was also described by Classen et
al. [CHH09] and it can be easily checked whether a configuration step reduces the
variability by using a SAT solver [TBK09]. In contrast to the specialization steps
defined by Czarnecki et al. [CHE05], we support arbitrary configuration constraints.
For generating dynamic binding units, we improve visualization of specialized feature
models using a refactoring similar to the refactorings for staged configuration de-
scribed by Czarnecki et al. For these refactorings, we use the atomic steps described
by Alves et al. [AGM+06].

Our approach for stepwise program composition can be compared to model-driven
software development (MDD) [SV06], which aims at step-wise specialization of mod-
els. In MDD, variability is also encoded in the transformation system. For example,
platform-specific variability is usually realized via transformations of a platform-
independent model into a platform-specific model [DSGB03]. We describe parts of
the variability of the transformation system (in our case FeatureAce) using a fea-
ture model. Users can thus tailor the product derivation process in the same way
as they configure the functional features of the SPL. This is similar to the approach
by Heidenreich et al., who use FeatureMapper [HKW08] to map features to model
transformations to achieve safety of transformations in MDD [HKA10].

6.7 Summary

With the presented approach, we unify static and dynamic feature binding, which
are currently used for software development in several domains. Our approach is
based on FOP and allows a programmer to develop all features of an SPL with the
same implementation technique, namely feature modules. After development, the
used binding time can be chosen per feature. This flexibility allows an application
engineer to choose the binding time depending on the requirements of each applica-
tion scenario. Furthermore, it enables reuse of features between SPLs that require
different binding times.

In contrast to other approaches that support static and dynamic binding of the
same code unit, we provide an extended solution:

• We support feature-based configuration, which means to compose whole feature
modules. This is required because (1) a feature usually contains several classes
and class fragments that have to be composed as a whole and (2) we achieve
composition safety by using an SPL’s feature model to validate configurations
before dynamic composition.

• We generate dynamic binding units to statically compose all features that
are bound at the same time. This optimizes resource consumption even for
dynamically bound features.

By extending staged configuration, we provide the foundation for validating static
and dynamic composition steps. The presented extensions are independent of the
concrete binding time and support a general process of staged composition of feature
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modules. By using a transformed feature model that corresponds to the composed
binding units we achieve safe composition independent of the binding time and the
used binding units. With a type system for SPLs, we could furthermore achieve
type safety. This is also the basis for feature-based runtime adaptation of binding
units, which we present in the next chapter.

We provide a prototypical implementation of the approach on top of FeatureC++.
By extending the FeatureC++ compiler we were able to apply the approach to non-
trivial case studies. In an evaluation, we could show that generated binding units
provide both, flexibility due to dynamic binding and resource optimization due to
static composition. We could show that the approach can be used instead of a
mixture of different approaches as it is currently done in practice. For example,
it can be used as an implementation mechanism for plugins while replacing the C
preprocessor for static binding of other features.

Finally, the approach scales from purely static to purely dynamic composition.
When using purely static composition, the approach avoids any compositional over-
head and generates code that is optimized with respect to resource consumption.
It thus provides the same performance as the C preprocessor. On the other end of
the spectrum, we provide highest flexibility due to dynamic binding. In between,
our approach enables application engineers to find the optimal balance between the
different binding times.
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7 Runtime Adaptation with Dynamic
Binding Units

This chapter shares material with the GPCE’11 paper ”Tailoring Dynamic
Software Product Lines” [RSPA11].

The approach presented so far and SPLs in general, usually support static binding
or dynamic binding at load-time (e.g., by composing components). By contrast,
dynamic software product lines (DSPLs) aim at variability at runtime to cope with
changing requirements during program execution. DSPLs often implement variabil-
ity with components and use the high-level software architecture to describe pro-
gram adaptations [OGT+99]. They allow a programmer to specify adaptation rules
for reconfiguring components and thereby abstract from the concrete implementa-
tion [GCH+04, FHS+06, HZP+07]. Consequently, an adaptive system can also be
considered as a DSPL [BSBG08]. Besides approaches that use architectural mod-
els to describe program adaptations, there are also DSPL approaches that support
feature-based runtime adaptation. For example, some approaches use feature models
to describe dependencies between features and to reason about runtime variability
of DSPLs and adaptive systems [CGFP09, HSSF06, LK06, TRCP07]. Describing
also program adaptations in terms of features abstracts from implementation de-
tails, simplifies reconfiguration of running programs, and allows for checking consis-
tency of adaptations [CGFP09]. Such feature-based approaches use a mapping of
DSPL features to components that are used for implementation [LK06, TRCP07].
However, components are usually coarse-grained to minimize complexity and the
compositional overhead at runtime. This limits customizability and applicability of
a DSPL.

In this chapter, we present an approach for feature-based runtime adaptation and
self-configuration that is based on tailor-made binding units. We generate a DSPL
from a feature-oriented implementation of an SPL by generating binding units (cf.
Chapter 6) and integrating generated code for runtime adaptation into the DSPL.
We achieve this by extending FeatureAce (cf. Sec. 5.3.2) with adaptation and self-
configuration capabilities. In a generated DSPL, multiple features of the original
SPL map to a compound feature of the DSPL (i.e., to a dynamic binding unit).
While we use the compound features for adaptation at runtime, we are able to
describe and validate program adaptations in terms of the SPL features that are
independent of the actually used binding units. This allows us to bridge the gap
between feature-based variability modeling and runtime adaptation with coarse-
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Figure 7.1: Generating a DSPL from FeatureAce, user-defined extensions of Fea-
tureAce, and an SPL’s implementation.

grained modules. With the presented approach, we are able to generate DSPLs with
minimal resource requirements. We furthermore reduce the effort for calculating a
configuration of a DSPL by minimizing the number of dynamically bound modules.
To demonstrate applicability of our approach we evaluate it with a case study.

7.1 Feature-based Runtime Adaptation

We support feature-based runtime adaptation in DSPLs by describing configuration
changes in terms of features and by applying these changes to the feature model
before composing the corresponding binding units. In the following, we call the
compound features, which represent binding units, the features of the DSPL and
use a feature model to describe their dependencies. Since the features of an SPL
often represent requirements, there is a direct mapping of changing requirements
to changes of an SPL’s configuration. Due to the use of binding units, there is an
n-to-1 mapping of SPL features to DSPL features. For simplifying the description of
the adaptation mechanisms, we assume a 1-to-1 mapping of SPL features to DSPL
features in the following. However, as we describe in the next section, we support
an n-to-1 mapping by transforming the SPL feature model (cf. Sec. 6.2.3) and the
adaptation rules according to the generated binding units. To support autonomous
configuration of DSPLs, we extended FeatureAce with runtime adaptation and self-
configuration capabilities. Next, we introduce the FeatureAce extensions required
for runtime adaptation.

7.1.1 A Customizable Adaptation Framework

The FeatureC++ compiler generates a DSPL from an SPL’s implementation, mon-
itoring code, adaptation rules, and the code of FeatureAce, as illustrated in Fig-
ure 7.1. In the resulting executable DSPL, a metaprogram is responsible for au-
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Figure 7.2: Architecture of a DSPL: Domain code is at the base-level and adaptation
code is at the meta-level.

tonomous composition and self-adaptation at runtime. The generic metaprogram
has access to the base-level (i.e., the binding units) via generated SPL-specific adap-
tation code.

As shown in Figure 7.2, FeatureAce provides a decision engine that uses the feature
model of the DSPL to reason about validity of changes in the running program.
Monitoring code for analyzing the context at runtime is located at the base-level.
It is developed as part of the SPL since it is usually highly domain specific. For
example, code for monitoring DBMS queries can be used to trigger an event for
loading a feature that implements a special search index when a particular kind
of query is detected. The events triggered by the monitoring code are captured
by an event handler that activates the decision engine. Based on adaptation rules,
the decision engine calculates a new configuration. The adaptation engine applies
configuration changes by loading and unloading binding units.

To seamlessly integrate static and dynamic binding, we provide means to statically
customize the adaptation infrastructure:

• Monitoring code of the DSPL that triggers adaptation events is implemented
in distinct features. Hence, it is possible to use only required monitoring code
and to choose between alternative implementations.

• Adaptation rules are also stored in separate feature modules to allow the pro-
grammer to choose only required adaptation rules at deployment time.

• Since we developed FeatureAce as an SPL, a user can customize it to choose
between manual and autonomous adaptation and to enable validation of adap-
tations only if required.

Customization of the adaptation infrastructure allows us to cope with changing
requirements with respect to the adaptation process (e.g., due to changes in the
execution environment). In the following, we use static binding for customization
of the adaptation infrastructure. In general, parts of this variability may also be re-
quired at runtime, which requires dynamic binding of selected features of FeatureAce
and adaptation code. This is beyond the scope of this thesis but it illustrates that
there are further challanges for improving the flexibility of feature composition.

131



7 Runtime Adaptation with Dynamic Binding Units
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Figure 7.3: The feature model of FeatureAce. Customization of dynamic product
instantiation and runtime adaptation capabilities is achieved by selecting
the corresponding features.

In Figure 7.3, we show the feature diagram of FeatureAce from Chapter 5. Feature
AutoInst encapsulates the functionality required for automated SPL instantiation
using command line arguments or a configuration file to provide an initial feature
selection. Feature Adaptation enables modification of a running SPL instance and
feature Self-Config supports rule-based self-configuration. Feature Validation
provides functionality to check validity of an SPL variant before composing the
binding units. For customization, a user defines the required adaptation facilities
of FeatureAce or may add user-defined extensions. FeatureAce extensions (e.g.,
monitoring code) are implemented as additional feature modules without the need
for invasive modifications of FeatureAce. According to the feature selection, the code
of FeatureAce extensions and adaptation rules is also statically composed. Hence,
only selected adaptation rules and adaptation code are included in a DSPL.

7.1.2 DSPL Adaptation

FeatureAce supports a set of operations for instantiation and adaptation of a DSPL
at runtime:

DSPL Instantiation: A DSPL instance is composed from multiple feature instances.
The result is a stack of feature instances that represents a DSPL instance (cf.
Chapter 5).

DSPL Adaptation: An already running DSPL instance can be modified by adding
and removing features as well as activating and deactivating already loaded
features.

Note that not every feature that can be bound at load-time can also be bound at
runtime without further modification. For example, runtime adaptation requires to
support consistent changes with respect to the state of features (e.g., initialization of
objects). Data for initialization that is available at load-time is not always available
at runtime, which may render runtime adaptation impossible. There are further
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issues such as concurrency control and state transfer that have to be considered for
transition from an SPL to a DSPL [SE08a]. As a solution, developers may provide
special code for binding at runtime. Using FOP, this code can be separated in
feature modules that are only included in a program when runtime adaptation is
used. However, such special requirements on runtime adaptation are beyond the
scope of this thesis and we only provide the foundation for generating tailor-made
DSPLs.

We have already described the instantiation capabilities of FeatureAce in Chap-
ter 5. In the following overview, we describe the supported adaptation mechanisms:

Add and remove features: A feature instance can be applied to or removed from a
running SPL instance. A feature that is not part of any running SPL instance
can be deleted and unloaded.

Activate and deactivate features: A feature instance can be deactivated if it is
temporarily not needed and can be reactivated later. This maintains the state
of a feature while disabling its functionality.

Exchange features: Compatible feature instances (features that provide the same
data layout) can be exchanged in a single operation to reuse the state of a
running feature module in a new feature module. In contrast to removing
the feature and adding a new feature, this operation works without changing
the data and is thus much faster. This way, alternative algorithms can be
exchanged with a minimal runtime overhead.

The described operations are internally used by FeatureAce for runtime adaptation
but can also be accessed from an external program or from the base-level. We
support access for external programs via the network interface of FeatureAce. The
base-level can access the adaptation API of FeatureAce via a reflection mechanism.

Self-Adaptation via Reflection

We provide a reflection mechanism that allows the base-level of a DSPL to access
the adaptation meta-level for observing or modifying the current configuration. For
example, objects can access their DSPL instance for querying information and also
for modifying the configuration. The reflection mechanism is sufficient for adapta-
tions that do not require complex adaptation rules, i.e., when events can be directly
mapped to a configuration change. For example, a programmer can write adaptation
code to activate a feature when the user selects a particular menu entry in the run-
ning program. In Figure 7.4, we depict an example for activating an already loaded
feature (a feature for database access in a query analyzer client) by accessing the
meta-level. This mechanism simplifies application development since no additional
code for a metaprogram for runtime modifications has to be written. However, the
adaptation code at the base-level entangles runtime adaptation and DSPL imple-
mentation, which may complicate evolution of the DSPL. For example, renaming a
feature requires to rename it also in the implementation.
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1 void OnDbActivate(string dbType) {

2 // a c t i v a t e the s e l e c t e d db type
3 FeatureConfig :: ActivateFeature(dbType);

4 };

Figure 7.4: FeatureC++ source code for activating a feature from the base-level.

Hence, it is often more appropriate to separate domain implementation and meta-
level. This can be done by separating adaptation code in distinct feature modules.
A more flexible mechanism that is independent of the implementation of an SPL is
to use adaptation rules, as we describe in the next section.

Runtime Validation of Feature Compositions

FeatureAce uses the feature model of the DSPL to validate a feature selection at run-
time. To provide only the required variability at runtime, we transform the original
SPL feature model according to the generated DSPL, as described in Section 6.2.3.
FeatureAce uses the transformed feature model for calculating a new configuration
at runtime and for validation of configuration changes. Combining this with static
type checking of the SPL, we achieve type-safe adaptation at runtime.

7.2 Rule-based Adaptation

FeatureAce provides a rule-based mechanism for self-adaptation that allows us to
separate application logic from runtime adaptation mechanisms. In contrast to most
existing approaches, an adaptation rule is described in terms of features, which re-
quires a special mechanism for computing a configuration using configuration con-
straints.

7.2.1 Configuration Constraints

Our approach for runtime adaptation is based on adaptation rules that describe how
a configuration of an SPL must be changed when an event is triggered. A config-
uration C of a program P of a DSPL is the set of features that is included in P .
During adaptation, we derive a configuration C from a set of requirements R that
define which features of the DSPL must be included in a valid program. In the
simplest case, the requirements are a set of required features (e.g., a user-defined
feature selection). In general, however, a requirement may be an arbitrary configu-
ration constraint (i.e., a propositional formula over the set of available features) that
restricts the set of valid configurations [RSTS11]. A configuration constraint is not
different from a domain constraint of a feature model but it is added and removed
during configuration. For example, to express that a feature must be included in a
program we can define a requires-constraint for that feature.
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Figure 7.5: Feature model of a simple DBMS.

As an example consider the feature diagram of Figure 7.5 with an initial set of
requirements R (e.g., defined by a user):

R = {QueryEngine, Index} (7.1)

R defines that features QueryEngine and Index must be included in a valid con-
figuration. We can thus derive a configuration C that satisfies R:

C = {QueryEngine, Index,Hash}. (7.2)

Because C must also satisfy the constraints defined in the feature model, such as
the XOR-constraint between Hash and Btree (cf. Fig. 7.5), it must include one of
the two features. In our example, we have chosen feature Hash. While C represents
a single program, R defines a specialization S of our DSPL that represents multi-
ple configurations, as illustrated in Figure 7.6. DSPL D has two specializations S1

and S2 , which we denote with inheritance [RSTS11]. Each specialization represents
multiple configurations (illustrated with a cone). For example, C1 and C2 are con-
figurations of S1. Each specialization represents a subset of the configurations of the
unspecialized DSPL.

We can represent a set of requirements R as a single propositional formula using
a conjunction of all requirements. For example, R from equation (7.1) corresponds
to the boolean constraint QueryEngine ∧ Index. Since a feature model can also
be translated into a propositional formula [Bat05], we can check if a configuration
C satisfies the requirements R for a feature model FM : If FM ∧ R is true for
configuration C then C is valid with respect to R. Furthermore, we can use a SAT
solver to test if R is a valid set of requirements with respect to FM . This can be done
by checking if we can derive at least a single valid configuration, i.e., FM ∧R must
be satisfiable [TBK09]. This allows us to check at runtime whether a specialization
Si has a valid configuration (cf. Figure 7.6).

7.2.2 Adaptation Rules

The current configuration C of a running DSPL is modified by a configuration change
∆C (i.e., a reconfiguration) that defines which features are added to C and which
features are removed from C during adaptation. However, as we explain below, it is
usually too restrictive to directly define configuration changes in an adaptation rule.
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Figure 7.6: DSPL D with specializations S1 and S2 and configurations C1 -C3 .

Instead, an adaptation rule describes changes with respect to the active requirements
R of a DSPL. We thus define an adaptation rule A as a pair (E,∆R) where E is
the event that triggers rule A and ∆R are modifications that must be applied to R
when E is triggered. ∆R is a pair (∆R⊕,∆R	) of added and removed requirements.
We use operator • to denote adaptations (i.e., application of ∆R to R):

R′ := ∆R •R (7.3)

:= (R \∆R	) ∪∆R⊕. (7.4)

R′ must be satisfied after applying rule A to a configuration C. That is, ∆R does
not directly modify the configuration of a DSPL but it modifies a set of requirements
R that describe a specialization of the DSPL. As illustrated in Figure 7.6, applying
∆R to S1 results in a different specialization S2.

From a modified set of requirements R′, we derive a modified configuration C ′. In
Figure 7.6, we can derive two valid configurations C2 or C3 from S2. For runtime
adaptation, we have to choose one of these configurations. For example, we may
choose a configuration with the smallest number of features. Finally, we derive the
corresponding configuration change ∆C, which is a pair (∆C⊕,∆C	). It defines the
set of features that must be added (∆C⊕) and removed (∆C	) for adaptation. We
compute it from the current configuration C and the target configuration C ′:

∆C := (∆C⊕,∆C	) (7.5)

∆C⊕ := C ′ \ C (7.6)

∆C	 := C \ C ′ (7.7)

∆C⊕ is the set of features that are added to C and ∆C	 are removed from C during
adaptation. As a complete example, consider the DBMS from equations (7.1) and
(7.2) with an adaptation rule A that is triggered on event ERange, meaning that
range queries are frequently used:

A = (ERange, ({Btree}, ∅)) (7.8)
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1 //Load t ransac t i on management
2 BeginTxn : OnTxn => addConstraint(TX: Transaction)

3
4 //Process range que r i e s
5 BeginRQ : OnRangeQuery => addConstraint(RQ: Btree)

6
7 //Remove cons t r a in t RQ
8 EndRQ : OnRangeQueryEnd => removeConstraint(RQ)

Figure 7.7: Two adaptation rules that add named constraints TX
and RQ (Lines 2 and 5) and a rule that removes con-
straint RQ (Line 8).

R′ = ({Btree}, ∅)) •R (7.9)

= {QueryEngine, Index,Btree} (7.10)

C ′ = {QueryEngine, Index,Btree} (7.11)

∆C = ({Btree}, {Hash}). (7.12)

Rule A adds feature Btree to R (i.e., Btree has to occur in a valid configuration),
which results in the modified requirement R′. From R′ we derive a new configuration
C ′. The required configuration change ∆C (adding feature Btree and removing
feature Hash) is derived from C and C ′ according to equation (7.5).

In contrast to modifying the set of requirements, a direct configuration change is
too restrictive. For example, an adaptation rule that adds feature Btree directly
to configuration C violates the XOR constraint of the feature model (either Btree
or Hash must be selected). Furthermore, direct configuration changes do not allow
us to define rules that remove features because a removed feature may be required
by other constraints.

Specifying Adaptation Rules. We specify adaptation rules in a declarative lan-
guage, as shown in the example in Figure 7.7. The corresponding grammar is shown
in Figure 7.8. A rule consists of a name, a named adaptation event E (e.g., OnTxn
in Line 2) that triggers execution of a set of actions ∆R, which modify the cur-
rent configuration of a DSPL. An action can add or remove a named configuration
constraint using keywords addConstraint and removeConstraint followed by a
constraint definition (Line 5) or a constraint name respectively (Line 8). Each con-
straint has a name to be able to remove it from the requirements of a DSPL, as
shown in Line 8.

Currently, we define adaptation events in monitoring code using the host language.
It would also be possible to use a declarative specification as it is done in related
approaches [GCH+04].
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1 AdaptScript: Rule+ ;

2 Rule: RuleName ":" EventName "=>" Action+ ";" ;

3 RuleName: ID ;

4 EventName: ID ;

5 Action: AddReq | RemoveReq ;

6 AddReq: "addReq" "(" ReqName ":" Constraint ")" ;

7 RemoveReq: "removeReq" "(" ReqName ")" ;

8 ReqName: ID ;

9 Constraint: FeatureName | "!" Constraint | "(" Constraint ")"

10 | Constraint ConstraintOp Constraint ;

11 ConstraintOp: "&&" | "||" | "->" | "<->" ;

12 FeatureName: ID ;

Figure 7.8: Grammar of FeatureAce’s adaptation rule specification
language.

Applying Adaptations

Before computing a new configuration when applying an adaptation rule, FeatureAce
checks whether an adaptation is really needed: If a set of requirements Ri represent
a specialized DSPL Si (e.g., S1 in Figure 7.6) then Ri+1 = ∆R•Ri corresponds to a
new specialization Si+1 (e.g., S2 in Figure 7.6). If Si and Si+1 are overlapping then
there are configurations that can be derived from both specializations (e.g., C2 in
Figure 7.6). Hence, if the current configuration of the DSPL is also a valid configu-
ration of the new specialization, we do not have to adapt the running program. For
example, adaptation of S1 to S2 in Figure 7.6 for configuration C2 does not require a
program adaptation. Hence, the decision engine of FeatureAce first checks whether
the current configuration Ci satisfies the new requirements Ri+1.

If this is not the case, we have to find a new configuration Ci+1 that satisfies
Ri+1. To test if there is any valid configuration that satisfies Ri+1, the decision
engine checks satisfiability of the feature model including the changed requirements.
If there are multiple valid configurations, the decision algorithm has to choose the
best one. Which configuration is the best depends on several requirements and is a
challenging task in current research [FHS+06, WDS09]. For example, we may choose
the configuration with the smallest number of features or the smallest number of re-
quired adaptations. Other optimization goals are non-functional requirements such
as memory consumption, performance, or quality of service. We currently choose
the configuration with the smallest number of configuration changes to reduce the
number of required adaptations. For that reason, FeatureAce tries to keep already
configured features to minimize changes. Features are removed from a configuration
when they violate a constraint. Hence, when an adaptation rule removes a con-
straint from the requirements R, this does not always cause a configuration change.
Furthermore, we remove features that are not required for a configurable time span
to provide a simple mechanism for reducing resource consumption due to features
that are not used.

To reduce consumed resources, a configuration can also be explicitly minimized
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BTREE

LOGTRANSACTION

DB

INDEX

HASH

QUERYENGINE TXNQE

DB'

addConstraint(TX: Transaction)

addConstraint(RQ: Btree)

removeConstraint(RQ)

addConstraint(TX: Txn)

addConstraint(RQ: DB’)

removeConstraint(RQ)

Figure 7.9: Transformation of a feature model (cf. Fig. 6.4) and the correspond-
ing transformation of actions of adaptation rules (lower part) according
to the defined binding units. Transformations in adaptation rules are
underlined.

by rules, e.g., triggered by low working memory. In future work, we plan to use more
sophisticated mechanisms to trigger unloading of features based on non-functional
requirements. For example, we may remove unused features based on statistics
and the workload of the system or we may optimize a configuration using CSP1

solvers [BRCT05, WDS09].

Adaptation Rules for Binding Units

Above we assumed that there is a 1-to-1 mapping of SPL features to the features of
the DSPL (i.e., the binding units). In practice, however, there is an n-to-1 mapping
of SPL features to DSPL features because multiple features of the SPL are merged
into a single binding unit of the DSPL. As described in Section 6.2.3, we transform
the SPL’s feature model according to the chosen binding units and thus derive the
feature model of the generated DSPL. In the upper part of Figure 7.9, we show
an example of a feature model transformation when generating a DSPL. According
to this transformation, we apply a corresponding transformation to the adaptation
rules that have been defined with respect to the original SPL features (lower part
of Figure 7.9). This transformation is easy to achieve by replacing each feature
in adaptation rules with the binding unit of the feature in the generated DSPL.
For example, we have to replace all occurrences of feature Transaction with its
corresponding binding unit Txn. After transformation, requirement RQ is always
valid (second action in Figure 7.9) because DB’ is the root of the feature tree and
included in every configuration. Hence, we can remove all actions that add or remove
requirement RQ such as the last two actions in Figure 7.9. This does not affect rules
which require that feature Btree must not be included in a concrete variant (e.g.,
using an action that adds a requirement ¬Btree), which results in an invalid rule
as discussed next.

After transformation, we can check if all adaptation rules can be applied to the
DSPL feature model by using a SAT solver. For example, an adaptation rule that

1Constraint satisfaction problem
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Figure 7.10: Feature diagram of an SPL for sensor network nodes.

adds requirement ¬Btree is transformed into a rule with requirement ¬DB’, which is
not satisfiably since DB’ is the root of the feature model and is thus always true. In
such a case, the rule is invalid with respect to the generated DSPL (i.e., with respect
to the chosen binding units). As another example consider features Transaction
and Log in Figure 7.9. Both features are part of the binding unit Txn. Hence, both
features are always present at the same time in the generated DSPL. Consequently,
an adaptation rule that requires either Transaction or Log cannot be used with
this DSPL. Using a SAT solver, we can detect such invalid rules already before
runtime.

7.3 Case Study and Discussion

By means of a case study, we demonstrate the flexibility of our approach and show
that binding units can reduce the time needed for runtime adaptation. We use a
prototypical implementation of FeatureAce for FeatureC++. However, the concept
can be applied to other languages as well. As application scenario, we use a sensor
network simulation.

7.3.1 An SPL for Sensor Network Nodes

A sensor network (SN) is a network of interconnected embedded devices (e.g., via ra-
dio communication), which sense different kinds of information (temperature, light,
etc.) [MI06]. There are different types of nodes in a sensor network. Sensor nodes
measure data, store it locally, and send it to other nodes. Aggregation nodes aggre-
gate data (e.g., computing the mean value) from other nodes. Access nodes provide
access to clients that connect to the network from the outside.

By using an SPL of node software, we can generate different program variants
tailored to the different kinds of SN nodes. In Figure 7.10, we depict an excerpt of
the feature diagram of an SN-Node product line we implemented in FeatureC++.
Subfeatures of Data are used for aggregation in data nodes (Aggregation) and
streaming in access nodes (Streaming). A node can not only play a single role
(e.g., being a sensor node) but multiple roles at the same time. For example, a
node may aggregate data but may also be responsible for accessing the network. To
compensate node failures and for efficiency, the role may change over the lifetime

140



7.3 Case Study and Discussion

Hardware Role Binding Units

Simple Sensor StaticSense
Advanced Positioning Core, Positioning

Sensor Core, Sense
DataAggregator Core, QueryProc, Aggregation
AccessNode Core, QueryProc, Streaming

Table 7.1: Examples of different roles and their binding units for two kinds of devices.

of a node. For example, if the access node fails due to exhausted battery power,
a different node can reconfigure itself to provide this service. Due to hardware
constraints, not all physical nodes can play every role. For example, only a node
with sufficient storage capacity can be used for data aggregation. Such limitations
influence the configuration process when defining binding units at deployment time:

1. Dynamic Binding: For embedded devices that do not allow dynamic changes
to loaded program code (because the executable code is stored in ROM), we
do not support runtime adaptation and statically generate program variants.

2. Runtime adaptation: For all other nodes we generate a DSPL using a subset
of all features. We deploy only the features that are required for the used
operating system, the hardware, special needs of a customer, and the roles a
node can play.

3. Binding units: To avoid a high overhead at runtime and to reduce the number
of possible variants for reconfiguration, we merge features into binding units
when they are always used in combination.

7.3.2 Defining Binding Units

In Table 7.1, we show a sample assignment of roles for two types of node hardware
and the corresponding binding units, which demonstrates the flexibility of our ap-
proach. The binding units are composed from the features of Figure 7.10. We depict
sample configurations in Table 7.2. In our example, simple node hardware (Simple
in Table 7.1) with highly constrained resources does not support runtime adaptation
and can only be used for sensor nodes. We use a statically composed variant for
these nodes (binding unit StaticSense in Table 7.1).

Hardware with less resource constraints (Advanced in Table 7.1) that supports
reconfiguration at runtime is used for different roles. An advanced node is deployed
with role Positioning, for computing the relative position of the node. A node
unloads the feature when the position has been determined. If a Sensor, a DataAg-
gregator, or an AccessNode is needed, an advanced node loads the required binding
units. The node may also play different roles at the same time. For example, to
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Binding Unit Features

StaticSense Positioning, Routing, Sensor, Radio, ST
Core Routing, Radio, Wi-Fi, MT
Positioning Positioning
Sense Sensor
QueryProc Access, SQL, Data, Storage
Aggregation Aggregation, SQLite
Streaming Streaming, BerkeleyDB

Table 7.2: Sample configuration of different binding units.

process a streaming query, a DataAggregator additionally loads the Streaming
binding unit.

We observe that our approach provides high flexibility with respect to possible
deployment scenarios. We can define different feature configurations according to
the used hardware at deployment time and according to required functionality at
runtime. For example, a Sensor node uses different binding units but a similar set
of features depending on the used hardware (Simple or Advanced). We can also
define completely different binding units and feature selections according to used
hardware, application scenarios, etc.

The feature selection highly influences the binary size of the generated node soft-
ware. A variant that uses only static binding does not include any code for runtime
adaptation. It has a binary size of 48 KB, which is only half of the size of a runtime-
adaptable variant with the same features and a size of 104 KB. This overhead mostly
comes from code of the infrastructure for runtime adaptation, which is independent
of the number of features. The overhead is quite small compared to larger programs
such as a node with stream processing, which has a binary size of 576 KB. Hence,
our approach allows us to apply self-configuration also on resource constrained en-
vironments. Nevertheless, the resource requirements for runtime adaptation still
limit its applicability and may require static binding when storage capacity is highly
limited. With our approach, a user can choose at deployment time whether to use
static binding or to support runtime adaptation.

7.3.3 Self-Adaptation

Adaptation Rules. For self-adaptation of a sensor node, we define adaptation rules
within dedicated feature modules of the sensor network. For example, we place rules
for activating and deactivating stream processing in feature Streaming. The rules
are thus included in a running program only if the corresponding feature is selected
for dynamic binding. Based on the defined rules, a DSPL autonomously reconfigures
itself according to the required features at runtime. In our scenario, a node loads
the streaming binding unit when it receives a streaming query.

Reconfiguration of nodes is triggered by events spawned in monitoring code of the
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DSPL. We implement the monitorings in distinct feature modules that extend classes
of the application SPL to separate adaptation code from the SPL’s implementation.
For example, to activate stream processing, the monitoring code captures incoming
queries and triggers the adaptation event when a streaming query is found. The
corresponding rule adds a constraint for feature Streaming (i.e., the feature must
be included in a valid configuration). Another rule removes the constraint after
all streaming queries have been processed. We do not directly remove the feature
which would result in an unneeded reconfiguration when the feature is used again.
A feature is only removed when it is excluded by other constraints or when other
requirements such as limited working memory force to remove unneeded features.
For example, we use a rule to unload the positioning feature when the position of
the sensor has been calculated.

Reconfiguration. In Figure 7.11, we depict evaluation results for the adaptation
process.2 We analyzed the time needed for calculating whether an adaptation is
needed and the time for reconfiguration. To show the benefits of statically optimizing
the feature model, we compared reconfiguration of the same sensor node (1) using
the original feature model of the SPL including all 55 features and (2) using the
transformed feature model of the DSPL with 6 features (i.e., one feature per binding
unit; cf. Sec. 7.1). In the diagram, we depict the time a node requires to process
queries that are sent every 300 ms.

Begin of stream processing is triggered by streaming queries (denoted with b in
Fig. 7.11), which results in a runtime adaptation to load binding unit Streaming.
The adaptation must be finished before the query processing can continue. The first
streaming query is detected after 5 s. Loading the Streaming feature takes 20–
60 ms (note that we use a logarithmic scale) and increases the response time because
the execution is continued after reconfiguration. Calculating the new configuration
takes less than 1 ms. Assuming a minimal adaptation time of 20 ms, a node cannot
reconfigure itself more than 50 times per second.

End of stream processing is denoted with (e). Instead of unloading the Streaming
feature, a rule removes the constraint added before. Hence, all following adaptation
events do not cause a reconfiguration. Nevertheless, the adaptation events increase
the response time by about 0.3 ms when using the complete feature model with 55
features and 0.05 ms for the DSPL model with 6 features. This computation time
is required for checking whether the node has to be reconfigured due to the context
change. We use a SAT solver for this purpose. Compared to a reconfiguration
that takes 20-50 ms, 0.3 ms is a very small overhead. However, it means that the
node cannot handle more than about 3000 changes of the adaptation context per
second even though no adaptation is needed. On an embedded device this would
be much less due to limited computing power. By contrast, the node with the
simplified feature model with 6 features requires only 0.05 ms for checking whether an
adaptation is needed. This demonstrates the importance of reducing the variability

2For evaluation, we used an AMD 2.0 GHz CPU and Windows XP.
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Figure 7.11: Response time (logarithmic scale) during reconfiguration of a query pro-
cessing sensor network node using a feature model with 55 features and
a simplified model with 6 features. Begin and end of stream processing
are denoted with (b) and (e).

for runtime adaptation by optimizing the feature model.

7.3.4 Conclusion

In our case study, we combined static feature binding with support for feature-based
runtime adaptation. We have shown that we can achieve autonomous reconfiguration
by including the adaptation mechanism and the feature model into the running
DSPL. By generating binding units, we further optimize runtime adaptations, as we
discuss next.

Implementation-independent Adaptations. Using features to describe adapta-
tions, we provide an adaptation mechanism that abstracts from the modules ac-
tually used for dynamic binding. Hence, we can generate binding units that fit to an
application scenario and the execution environment while being able to reuse adap-
tation rules. When generating binding units, we transform the feature model and
adaptation rules accordingly. We thus avoid a mapping of SPL features to binding
units during adaptation at runtime.

Composition Safety. Using a feature model, we ensure that adaptations are correct
with respect to domain constraints. As we have shown, this can be efficiently done
at runtime before creating a variant by using a SAT solver. Furthermore, we can
check if an adaptation rule is valid with respect to the feature model of the DSPL
before runtime. With static type checking, we can even provide type safe runtime
adaptations.
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Resource Consumption. We provide an adaptation mechanism with low resource
requirements (e.g., binary size, computing power) due to (1) customization of the
adaptation infrastructure and (2) customization of binding units by removing unused
code. The flexible size of binding units minimizes dynamic binding and enables static
optimizations, as we have analyzed in Chapter 6.

Computational Complexity. We have shown that we can reduce computations for
reconfiguration at runtime in two ways: (1) by avoiding unneeded adaptations and
(2) by simplifying the computations for checking satisfiability by transforming the
feature model according to actually available variability. The time required for
computing a valid configuration is small compared to an actual reconfiguration even
when using a feature model with 55 features. However, frequently checking whether
a reconfiguration is needed can easily require more computing power than available.
Hence, it is important to reduce the computation time by optimizing the feature
model.

Including also non-functional requirements in these computations is a challenging
task with respect to computational complexity [FHS+06]. Since the computation
time to solve constraint satisfaction problems increases exponentially with the num-
ber of features [BRCT05, WDS09], it is even more important to reduce the number
of binding units as far as possible. Our approach reduces the overall complexity
and can be combined with CSP solvers to consider also numerical constraints (e.g.,
limited memory consumption) when computing an optimal configuration at run-
time [SRK+08]. Further simplification is possible by caching the results of a SAT
or CSP solver.

Constraint-based Adaptations. Directly modifying the configuration or an archi-
tectural model can result in unneeded reconfigurations and may cause configuration
conflicts. Instead, we compute a new configuration based on the current configu-
ration of a program and a set of requirements the new configuration has to fulfill.
This avoids configuration conflicts and frequent reconfigurations, as we have shown
in our evaluation.

7.4 Related Work

There are several approaches that use components and an architecture-based run-
time adaptation as proposed by Oreizy et al. [OGT+99]. We further abstract from
implementation details and use features for configuring a program at runtime. This
allows us to reason about configuration changes at runtime at a conceptual level
and to describe adaptation rules in a declarative way without taking the high-level
architecture into account.

There are approaches that apply SPL concepts to develop adaptive systems and
approaches that use feature-oriented concepts for modeling dynamic variability in
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SPLs [FHS+06, HSSF06, LK06, TRCP07, CGFP09]. We aim at building a founda-
tion for integrating them using features for SPL configuration and runtime adapta-
tion. In the following, we compare our approach with respect to the most prominent
approaches.

Some approaches describe dynamic variability in terms of features [LK06,
TRCP07, CGFP09]. Lee et al. use a feature model to describe the variability (static
and dynamic) of an SPL and they suggest to manually develop components (i.e.,
feature binding units) for implementing dynamic variability [LK06]. We decide at
build-time which binding time to use and use features (i.e., not implementation units)
for specifying dynamic configuration changes and for program validation. Further-
more, a component-based approach requires mapping features to components. We
resolve the mapping before deployment by transforming the feature model and the
adaptation rules accordingly.

Floch and Hallsteinsen et al. present with MADAM an approach for runtime adap-
tation that uses SPL techniques as well as architectural models [FHS+06, HSSF06].
They propose to model variability using component-based SPL techniques [HSSF06].
We use features for modeling variability and runtime adaptation to further abstract
from the underlying implementation.

Cetina et al. use feature models to describe variability of an adaptive sys-
tem [CGFP09]. To adapt a system, they modify a configuration by adding or remov-
ing features. This results in the problems discussed in Section 7.3.4, which we solve
by using constraints to describe current requirements on a system. Furthermore, we
seamlessly integrate SPL engineering and runtime adaptation by applying SPL con-
cepts to adaptation code (e.g., adaptation rules) and by supporting static binding
of features and merging of features into binding units. The result is a transformed
feature model for runtime adaptation that represents only the required variability.

Morin et al. describe variability with a feature model and realize variability
of the component model of an adaptive system with aspect-oriented modeling
(AOM) [MBJ+09]. They use aspects to describe model adaptations and reconfigure
a program based on changes of the model. By contrast, we operate on features that
are not only implementation independent but also independent of the component
model of a system. Hence, our approach can be combined with an approach for
model adaptation. This allows us to validate a configuration before adapting the
component model.

Safe composition is also important for component-based software development.
For example, the Treaty framework combines verification of component assemblies
using contracts and event-condition-action rules [CW10]. In contrast to these ap-
proaches, we aim at using feature models for validating configurations at runtime.
Furthermore, FOP allows to check type-safety for an entire SPL before deployment.
However, we do currently not provide any means for verifying compositions based on
contracts, but we think that approaches for verification are orthogonal to a feature-
oriented approach for composition.

We use feature modules for implementing adaptive systems, but our approach for
feature-based adaptation may also be used with other implementation units such as
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components or aspects [MBJ+09, CGFP09, LK06, TRCP07]. In this case, features
are still used to describe adaptation changes. After a new configuration has been de-
rived and validated, a corresponding set of components has to be determined. Some
of the approaches above provide advanced capabilities for runtime adaptation not
considered here (e.g., adaptation planning, state transfer, etc.). We argue that such
advanced mechanisms are complementary to a feature-based solution and features
can be used to improve these mechanisms.

7.5 Summary

Dynamic software product lines (DSPLs) combine concepts of adaptive systems and
software product lines (SPLs) to provide dynamic variability. However, current
DSPL approaches commonly use coarse-grained components to implement vari-
ability. This reduces customizability and thus limits applicability of a DSPL. We
presented an approach that integrates traditional SPLs and DSPLs more closely.
Based on a feature-oriented implementation of an SPL and a customizable adapta-
tion framework, we generate DSPLs by statically composing features. As in tradi-
tional SPLs, we support fine-grained static customization for efficiency reasons; as
in DSPLs, we provide adaptability at runtime by generating coarse-grained dynamic
binding units. A dynamic binding unit is tailored to an application scenario by in-
cluding only user-defined features. For runtime adaptation, we propose to describe
adaptation rules in terms of features. We integrate this feature-based adaptation
mechanism with our approach for generating DSPLs by transforming the feature
model of an SPL according to the binding units of the generated DSPL.

By using features to define adaptation rules and configuration changes, our ap-
proach is independent of an SPL’s implementation. Using a feature model, we effi-
ciently validate program adaptations before modifying a configuration at runtime.
Our integration of static binding and DSPLs reduces the overhead for dynamic bind-
ing. Furthermore, it avoids unneeded dynamic variability, which simplifies compu-
tations at runtime.
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Product line engineering aims at providing a scalable approach for software com-
position by reusing assets across different programs. Feature modules are the units
of reuse when implementing an SPL with FOP. However, current FOP approaches
provide limited reuse because the binding time of a feature module depends on the
implementation mechanism. To overcome this limitation, we presented extensions
for FOP that allow programmers to implement an SPL with FOP and to choose
the binding time per feature after development. We achieve this with code transfor-
mations for static and dynamic binding and with a mechanism that integrates both
binding times. This allows us to abstract from the binding time and to apply FOP
to several kinds of operating environments and application scenarios. We evaluated
our approach with FeatureC++, a language extension for C++ that supports FOP.
In the following, we provide a detailed summary and conclusions for the presented
approach. Based on the introduced concepts, we suggest possible future work.

8.1 Summary

Chapter 2. We provided foundations on SPL engineering and feature binding in
Chapter 2. After an overview about SPL engineering, we introduced SPL imple-
mentation techniques, described techniques to realize different binding times, and
introduced the concept of staged configuration.

Chapter 3. In Chapter 3, we analyzed the benefits and drawbacks of different
binding times. We reviewed approaches for SPL development with respect to their
binding mechanisms. A combination of static and dynamic binding is often achieved
by mixing different approaches for SPL development (e.g., the C preprocessor and
components). This does not provide binding time flexibility for single features and
thus limits reuse. This is solved by approaches that support static and dynamic
binding for the same code fragments. However, most of these approaches do not
aim at SPL development and they do not support safe composition with respect to
a feature model. Furthermore, when binding features dynamically, each feature is
usually bound as a separate unit, which increases the overhead for dynamic binding
and the complexity of the dynamic composition process.

Chapter 4. We have presented extensions for the FeatureC++ code transformation
process to avoid any overhead for feature composition. We evaluated FeatureC++
by refactoring Berkeley DB into an FOP implementation. We compared variability
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implementation techniques of the C preprocessor and FeatureC++ with respect
to customizability and resource consumption. We have shown that FeatureC++
can replace variability mechanisms used in Berkeley DB and allows us to generate
programs with similar resource consumption. Nevertheless, both approaches exhibit
a functional overhead if there are more features included in a program than actually
required. This overhead is inherent to static binding and can only be reduced with
dynamic binding. To achieve scalable static binding, we analyzed how clients can
handle variability of generated components such as Berkeley DB. We introduced the
notion of a variable SPL interface as the basis for subtyping in component families.
Moreover, we presented mechanisms to handle component variability that we partly
implemented in FeatureC++.

Chapter 5. In Chapter 5, we introduced a mechanism to transform the feature
modules of FOP into modules that can be dynamically composed. This allows a
programmer to implement the features of an SPL once and to decide which binding
time to use after development. To achieve safe composition of features at runtime,
we developed FeatureAce, a framework for automated dynamic feature composition.
FeatureAce is included in a running program and supports dynamic binding accord-
ing to an SPL’s feature model. It thus avoids instantiation of invalid programs.
In combination with static type checking [AKGL10], this allows us to achieve type
safety for dynamic feature binding. Finally, we analyzed the compositional overhead
caused by dynamic binding.

Chapter 6. To overcome the limitations of purely static and purely dynamic bind-
ing, we presented an extended approach that seamlessly integrates both binding
times at the implementation and at the modeling level. Our integrated approach
allows developers to statically generate dynamic binding units from a set of dynam-
ically bound features. The binding units can be statically tailored and optimized
and are bound as a whole at load-time or runtime of a program. By transforming
an SPL’s feature model according to the generated binding units, we achieve safety
for composition of dynamic binding units. With two case studies, we evaluated the
approach with respect to flexibility and resource consumption.

Chapter 7. In Chapter 7, we demonstrated applicability of our approach in the
area of dynamic software product lines (DSPLs). Using binding units and an ex-
tended composition mechanism of FeatureAce, we are able to generate tailor-made
DSPLs from an SPL. A generated DSPL supports rule-based runtime adaptation
and self-configuration. We could show that dynamic binding units are appropriate
to abstract also from complex binding mechanisms such as reconfiguration at run-
time: programmers can describe adaptations in terms of features without the need
to consider the actually used binding units. Compared to dynamic binding of in-
dividual features, our evaluation has shown that dynamic binding units reduce the
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complexity of computing valid configurations and also of applying a new configura-
tion at runtime.

8.2 Conclusion

We have shown that FOP is indeed appropriate to build highly customizable ap-
plications for use in different kinds of environments and application scenarios. In
resource-constrained environments, the requirements on resource consumption and
customizability are highly important and can be satisfied by FOP. Nevertheless,
we have also shown that FOP may increase the effort for implementing variability.
Compared to the C preprocessor, FOP may complicate variability implementation
especially when fine-grained extensions below the granularity of methods (e.g., sin-
gle statements) are required. In general, the effort for separating feature code into
a feature module is higher than annotating the code fragment. Our observations
are in line with other research in this area [Käs10]. We argue that this is the price
that has to be paid for physical separation of features. In turn, the developer gets
improved reuse because feature modules can be used in different contexts. However,
this improved reuse is not always needed and an annotative approach may be bet-
ter suited for SPL development than FOP. Consequently, FOP and annotations are
complementary approaches for SPL development. Their combination is promising
for further improvements of the SPL engineering process.

To overcome the flexibility problems of static binding, we provided an approach for
generating binary feature modules that can be bound dynamically. Using FOP, we
allow a programmer to decide after development whether static or dynamic binding
should be used. To achieve safety also at runtime, we use an SPL’s feature model
to ensure instantiation of programs that are correct with respect to the feature
model. While dynamic binding avoids the functional overhead of static binding, it
introduces a compositional overhead. This often makes it intractable to apply purely
dynamic binding when an SPL is decomposed into many small features.

Flexible Binding Times. Based on static and dynamic binding, we provided an
approach that seamlessly integrates both binding times and combines their benefits.
In summary, our approach provides means:

• to develop the features of an SPL using a single implementation mechanism
that is independent of the binding time,

• to choose the binding time per feature after development,

• to generate dynamic binding units by composing multiple features to optimize
resource consumption.

Our approach provides high flexibility when needed and still allows for fine-grained
static customizations. Since it is a generalization of purely static and purely dynamic
binding, it may replace such approaches. Compared to alternative solutions for
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implementing static and dynamic feature binding, a dynamically bound feature is
statically bound with respect to its binding unit. Our approach simplifies several
aspects of SPL development by abstracting from the used binding time. For example,
programmers can decompose an SPL with respect to units for reuse (i.e., the features
of an SPL) and not with respect to the composition mechanism. At deployment time,
they can decide which features to bind dynamically, which of these to bind at the
same time via a single binding unit, and even whether to use dynamic binding at
all.

With respect to resource consumption, we found a tradeoff between functional
overhead caused by static binding and compositional overhead caused by dynamic
binding. Finding the optimal binding time for the features of an SPL is a difficult
task. Varying requirements on flexibility between different application scenarios
further complicate the decision. Our proposal of generating dynamic binding units,
allows an SPL developer to choose the binding time per feature even after devel-
opment and for each application scenario individually. By combining a set of user-
defined dynamically bound features in a binding unit we minimize the compositional
overhead, which in turn reduces the adoption barrier for dynamic binding.

Towards Flexible Feature Composition. Flexible binding times are only a first
step towards a flexible feature composition process. The flexibility can be increased
by providing further binding times and other binding mechanisms. For example,
FeatureC++ also supports dynamic binding by generating conditional expressions
(i.e., if-statements; not discussed in this thesis), which reduces the compositional
overhead but does not support independent deployment. Furthermore, we integrated
static and dynamic binding at the level of the dynamic composition infrastructure:
We developed FeatureAce itself as an SPL, which allows us to statically customize the
binding mechanism as required per application scenario. By using FOP, FeatureAce
supports static customization of adaptation rules, e.g., to choose between different
runtime adaptation strategies. In summary, we propose several ways to improve the
flexibility of feature binding:

• Binding time flexibility: pre-compile-time, compile-time, post-compile-
time (e.g., link-time), load-time, runtime

• Flexible binding mechanism: code transformation, delegation, conditional
statements

• Flexible product instantiation: manual vs. automated instantiation, con-
figuration validation

• Advanced mechanisms: rebinding, self-configuration

In this thesis, we focused on selected binding times: static binding before compilation
and dynamic binding at load-time or at runtime. These provide best optimization
possibilities (static binding) and highest flexibility (dynamic binding). However,
other binding times are interesting as well. For example, binding at link-time pro-
vides higher flexibility than static binding and may introduce a lower compositional
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overhead than dynamic binding. Furthermore, other code transformations can be
used (e.g., byte code transformation as supported by AspectJ), to reduce the compo-
sitional overhead of dynamic binding. Hence, there are many possibilities to further
improve the flexibility of the feature composition process.

8.3 Future Work

There are several ways to integrate FOP with existing SPL technology. This is espe-
cially promising for improving scalability of software development, because features
seem to be appropriate for describing large software systems using a high-level ab-
straction. As already indicated, future research may address several areas such as
providing other binding times, improving consistency and safety of runtime adapta-
tion, or optimizing non-functional properties of generated programs (e.g., in DSPLs).
In the following, we focus on two challenges for further improving the integration
of FOP and SPL engineering that are based on the presented ideas: (1) an inte-
gration of FOP with annotations and CBSE and (2) the application of FOP to the
development of interdependent SPLs (a.k.a. multi product lines (MPLs) [RS10]).

8.3.1 From Annotative Approaches to Components

We observed that annotative approaches provide less reuse opportunities than FOP
because annotations can only be reused in the context of the same surrounding code.
However, also the feature modules of FOP provide limited reuse when compared to
the concept of components with interfaces. Similarly, the effort for modularizing
features with FOP is higher than annotating the feature code; but the effort is
lower than developing components with an explicit interface. To summarize, the
development effort and the reuse potential increases from annotations over feature
modules to components. In the following, we describe how these three solutions can
be further integrated to optimize the SPL development process.

Annotations and Feature Modules. Annotative approaches are well suited to im-
plement variability for fine-grained extensions and when reuse across different SPLs
is not needed. The reason is that the effort for separating feature code, especially
single statements, into a feature module is higher than annotating a code fragment.
As we could already show, some mechanism provided by the C preprocessor can
be replaced by using FOP mechanisms. For example, we can use hook methods
and method refinements to replace most macros. However, not all kinds of macros
and uses of #ifdef statements can be replaced without significantly increasing the
implementation effort.

A solution to solve these problems is to allow mixing annotations and code com-
position based on feature modules. That is, annotations (e.g., using disciplined
annotations [Käs10]) may be used to customize feature modules if fine-grained ex-
tensions are needed and if modularization of features does not pay off:
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• the annotated code is not intended to be reused in different contexts,

• separate development, deployment, etc. are not required, and

• when modularization effort, code complexity, maintenance, etc. are inappro-
priately high.

However, the decision whether to use annotations or feature modules has to be
decided per code fragment. Hence, it must be further analyzed when to use an
annotative or a compositional approach to avoid an inappropriate mixture of both
approaches that degrades maintainability of an SPL.

Towards an Integration of CBSE and FOP. Components promise to improve reuse
and to help solving the scalability problems of software development. However,
CBSE also exhibits fundamental problems. As Biggerstaff pointed out, the scalabil-
ity problem can be traced back to the vertical/horizontal scaling dilemma [Big98]:
Increasing the functionality of a software component (i.e., vertical scaling) limits its
applicability to a diminishing number of use-cases. The results are missing func-
tionality, incompatibility, and unacceptable performance. Horizontal scaling can be
used to overcome the limitations of vertical scaling by introducing component vari-
ants that satisfy requirements of different application scenarios. This in turn causes
a combinatorial explosion of component variants and thus increases development
and maintenance effort. Finally, it is hard to achieve both, vertical and horizontal
scaling, with current programming paradigms.

We argue that combining components and FOP can reduce the scalability prob-
lems. To achieve this, we may either implement a component as a compound feature
(i.e., composing it from several smaller features) or as an SPL itself (i.e., a compo-
nent SPL). In contrast to developing monolithic components, this allows us to (1)
customize a component by selecting the required functionality in terms of features
and (2) to bind components statically or dynamically, e.g., to optimize resource
consumption. This requires that:

• feature modules must support explicit (but optional) interface definitions,

• components are generated from a set of feature modules, and

• component generation supports arbitrary composition mechanisms.

In this thesis, we have shown that it is possible to generate dynamic binding units
by composing feature modules, which is a first step to integrate CBSE and FOP.
To fully integrate the approaches, we have to support generation of components
with an explicit interface from a set of features. Hence, the relation between feature
modules and components is similar to the relation between annotations and feature
modules: we use annotations to customize feature modules and use feature modules
to customize components. However, it has to be clarified when a component should
be developed as an SPL and when it should be generated on demand, as we described
for binding units.
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In either case, we can provide a flexible mechanism for component composition
using a generative approach. For example, we can switch between static and dy-
namic binding of components or can generate code to support different component
models such as CORBA or EJB. Hence, components should not be developed for a
predefined component model that is chosen before component development. Instead,
we choose the required composition mechanism at deployment time.

Such an extension of FOP has to be accompanied by appropriate support at the
conceptual level by representing components as compound features with an explicit
interface and by transforming the feature model accordingly (cf. Sec. 6.2.3). This
allows for checking consistency of compositions as we described for binding units.
However, there are many more challenges on this way such as variability of compo-
nent interfaces. To reduce the complexity due to variable component interfaces, a
family of generated components must provide subtype relations and polymorphism
between family members. This results in component hierarchies that improve reuse
of components, as we described in [RSK10].

8.3.2 From Component SPLs to Multi Product Lines

Large software systems, such as distributed systems, often consist of several smaller
subsystems or components that depend on each other. Developing the individual
subsystems of a more complex system as SPLs results in a set of interdependent
SPLs, which we call a multi product line (MPL) [RS10].

In this thesis, we provided a way to flexibly combine different composition mech-
anisms within a single SPL. For MPLs that are composed from multiple smaller
SPLs, this approach must be extended to support different composition mechanisms
across the SPLs. For example, some components may be statically composed to
derive subsystems that are dynamically composed. FOSD and feature models allow
us to describe and compose all SPLs in the same way and to handle dependencies
among the SPLs. Features are especially promising for this task because they can
be decomposed hierarchically and can be used to describe functionality that cuts
across several SPLs. By generating the required composition mechanisms as we pro-
posed for components above, we can furthermore implement an SPL independent of
the finally used composition mechanism. This allows us to tailor the composition
mechanism of a single SPL according to the requirements of the surrounding MPL
and also with respect to a particular application scenario.

For further research this means several challenges at different levels. At the con-
ceptual level, there have to be mechanisms to handle dependencies between SPLs.
For example, feature modeling may be further extended with new concepts to sup-
port MPLs [RSKuR08, RS10, RSTS11]. At the implementation level, this means
that developers have to consider constraints between SPLs to achieve safe compo-
sition and interoperability of an entire MPL [RSK10]. In the end, we face several
composition stages: We compose components from multiple features, we use the
components to build subsystems, and we build more complex systems from mul-
tiple subsystems. At every stage, we may use different composition mechanisms
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and must support composition safety. Ideally, all the different mechanisms can be
realized with a single flexible composition mechanism that is based on FOSD and
feature models.
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[Käs10] C. Kästner. Virtual Separation of Concerns: Toward Preproces-
sors 2.0. PhD thesis, Fakultät für Informatik, Otto-von-Guericke-
Universität Magdeburg, 2010.
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