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Abstract

Functional materials are one of the foundations of modern technology. However, often

they contain toxic and unsustainable elements. Searching for more efficient, cheaper,

and eco-friendly alternatives is one of the most urgent tasks of solid-state physics.

Luckily, the vast majority of the chemical space is unknown, which provides enormous

opportunities for finding new materials. However, sadly, the total number of possible

compositions and structures in the chemical space exceeds the capability of brute force

experimental or theoretical searches.

In this cumulative thesis, we perform prototype-based high-throughput searches in the

chemical space of inorganic materials, i.e., we confine our exploration of the structural

subspace to prototype structures and only scan the compositional subspace.

We use the density functional theory (DFT) calculations to optimize the crystal

structures of the candidates and evaluate their thermodynamic stability according

to their distances to the convex hull.

We first show that for one specific prototype, simply applying intuition from domain

knowledge to pre-select compositions with non-negligible chances to be stable will

achieve successful search outcomes. Then, we use a less-human-intervened pre-

selection strategy based on a data-mining scale of similarities between elements. We

generate new candidates by replacing elements with similar ones in known crystals.

In this way, we are able to perform high-throughput searches for all of the prototypes

simultaneously, rather than just on a few ones. The resulting stable compounds

amount to about 19,000, more than 50% of the theoretically known stable compounds

at the time. Moreover, the success rate, i.e., the percentage of stable compounds

among all computed ones, is almost 10%, which is one or two orders of magnitude

higher than the usual systematic brute force high-throughput search.

We push the limits of high-throughput even further by using the trained machine

learning models in the pre-selection phase. It should be noted that training such

models also benefited from the large datasets we obtained in previous high-throughput

searches. We exhaustively and systematically generate possible two-dimensional motifs

(prototypes), and with the help of the models, we filter out around 6,500 new 2D

systems, more than doubling the known amount of (meta-)stable 2D systems. We also

show that using machine learning models in pre-filtering can dramatically increase the

success rate of the high-throughput search.
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Abstract

Funktionswerkstoffe bilden die Grundlage vieler moderner Technologien. Allerdings

enthalten sie oft giftige und nicht nachhaltige Elemente. Die Suche nach effizienteren,

billigeren und umweltfreundlicheren Alternativen ist eine der dringendsten Aufgaben

der Materialwissenschaften. Glücklicherweise, ist der größte Teil des chemischen

Raums noch unbekannt, was enorme Möglichkeiten für die Suche nach neuen

Materialien bietet. Leider übersteigt jedoch die Gesamtzahl der möglichen

Zusammensetzungen und Strukturen im chemischen Raum die Möglichkeiten der

experimentellen oder theoretischen brute-force Hochdurchsatzstudien.

In dieser kumulativen Arbeit führen wir eine prototypbasierte Hochdurchsatzsuche

im chemischen Raum anorganischer Materialien durch, d.h. wir beschränken unsere

Erkundung des strukturellen Unterraums auf Prototypstrukturen und scannen alle

möglichen chemischen Zusammensetzungen.

Mit Hilfe der Dichtefunktionaltheorie (DFT) optimierten wir die Kristallstrukturen

der Materialskandidaten und bewerteten ihre thermodynamische Stabilität anhand

ihrer Abstände zur konvexen Hülle.

Wir zeigen zunächst, dass bei einem bestimmten Prototypen die Anwendung der

chemischen Intuition zur Vorauswahl von Zusammensetzungen, zu erfolgreichen

Suchergebnissen führt. Anschließend verwenden wir eine Vorauswahlstrategie, die

auf einer Data-Mining-Skala für Ähnlichkeiten zwischen Elementen basiert und

weniger auf menschliches Wissen setzt. Wir generieren neue Kandidaten, indem

wir Elemente durch ähnliche Elemente in bekannten Kristallen ersetzten. Auf diese

Weise sind wir in der Lage, eine Hochdurchsatzsuche für alle Prototypen gleichzeitig

durchzuführen, anstatt nur für einige wenige. Als Resultat wurde die Anzahl

theoretisch bekannter stabiler Verbindungen um 19.000 Materialien oder etwa 50%

erhöht. Darüber hinaus liegt die Erfolgsquote, d. h. der Prozentsatz der stabilen

Verbindungen unter allen berechneten Verbindungen, bei fast 10% und damit um eine

oder zwei Größenordnungen höher als bei den üblichen systematischen brute-force

Hochdurchsatzsuche.

In der letzten Studie schieben wir die Grenzen von Hochdurchsatzstudien noch weiter

hinaus, indem wir maschinellen Lernmodelle in der Vorselektionsphase eingesetzt

haben. Es ist anzumerken, dass das Training solcher Modelle massiv von den großen

Datensätzen profitiert, die wir bei den vorherigen Hochdurchsatzsuche produziert
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haben. Wir haben alle mögliche zweidimensionale Motive (Prototypen) systematisch

generiert und mit Hilfe der Modelle rund 6.500 neue 2D-Systeme herausgefiltert, was

mehr als eine Verdoppelung der bekannten Menge an (meta-)stabilen 2D-Systemen

bedeutet. Wir zeigen ebenfalls, dass maschinelles Lernen bei der Vorfilterung die

Erfolgsrate der Hochdurchsatzsuche drastisch erhöhen kann.
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Introduction

One of modern technology’s most essential and urgent tasks is to design new functional

materials that improve existing applications or even unlock new ones. In the past

century, pursuing this goal has indeed brought humankind numerous breakthroughs,

such as the giant magneto resistance [1, 2], blue light-emitting diode [3, 4], the

lithium-ion battery [5–7], semiconductor hetero-structures [8], optical fibers [9], etc.

Nearly all of these achievements are dominantly done through experiments, which, to

a large extent, are mainly based on human ingenuity, or in other words, intuition from

chemistry and physics. Moreover, one successful and pioneering experimental attempt

is the tip of the iceberg formed by randomized try-and-error fails. Limited by efficiency,

the experimental exploration is unfortunately confined. For decades, the synthesis

focused on islands of known stable compounds and their vicinity in the chemical space.

The total amount of inorganic crystal structures known experimentally is around tens

of thousands. For example, the Inorganic Crystal Structure Database (ICSD) contains

272,260 entries of information on about 40 thousand crystal structures [10]. On the

other hand, the chemical space for one ternary structure prototype, e.g., the perovskite

ABC3, contains around 500 thousand systems, On top of that, the number of ternary

prototypes is at the level of hundreds. The vast majority of the chemical space for

inorganic materials remains unexplored. However, we often lack a sketch map for

the unknown part, searching for new materials is more like finding a route through a

labyrinth.

In the past decades, exponential improvements in the performance of the central

processing unit (CPU) have enabled powerful computational approaches to explore

this labyrinth. Applying the long-established and wide-utilized methods, for example,

density functional theory (DFT), we can get the extrapolated energy surface in

ternary chemical coordinates nowadays [WPhD12]. With more than a decade of

theoretical high-throughput searches, the size of modern computational inorganic

material databases is one or two orders of magnitude larger than experimental ones,

e.g., the AFLOW database [11] contains 3,528,653 entries on 188,343 systems. More

importantly, compatible and transferable computational data allows for convenient

and efficient high-throughput filtering of new functional materials [WPhD1, 12–17].

The work of this Thesis tries to humbly contribute to this topic. Firstly, we performed

a high-throughput search on double perovskites for promising p-type transparent
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semiconductors [WPhD1]. In Chapter 3, we aim to find wide band gaps with high

hole mobilities (small hole effective masses), two components unlikely to co-exist from

the prediction of k · p theory and the band edge characters of current popular oxides

candidates. As a result, we find 17 halide double perovskites with promising properties.

These halides are chemically and structurally compatible with the inorganic-organic

hybrid perovskites widely experimented with in photovoltaics. Furthermore, 10 of

them do not contain toxic or rare chemical elements.

We further searched stable mixed anion perovskites for optoelectronic

applications [WPhD2]. In Chapter 4, we consider the stoichiometry ABX2Y

for the mixed anion (X, Y = N, F, O) perovskites. Our results are consistent with

the experimental literature on synthesized systems. Moreover, we predicted a series

of novel oxynitrides and oxyfluorides. The nitrofluorides, on the other hand, could

only stabilize in the LaMgF2N composition. We also show that the disorder of anions

thermodynamically stabilizes the structure, even without considering the entropy

effect. Moreover, many of our predicted systems are semiconducting or insulating,

with electronic band gaps going from less than 1 eV to several eV, confirming that

anion alloying is an effective way of bandgap engineering.

Although these high-throughput searches based on ab initio methods accelerate the

exploration of the labyrinth, it is still too computationally expensive to scan it “inch

by inch” by performing a brute force systematic search. One alternative is to avoid

wasting computational resources on highly unstable areas. Unfortunately, we lack

enough knowledge to avoid them a priori without scanning the majority of the

labyrinth. To solve this, we borrow the intuition from experimental chemistry, where

the similarity of elements has been extensively discussed. The similarity between a pair

of elements A–B correlates with the probability of obtaining a stable compound of B

( Comp(B) ) from a known compound of A ( Comp(A) ) via substituting A with B.

Such a similarity scale is available from data-mining the experimental results [18]. In

Chapter 5, by using this scale, we rule out replacements between non-similar elements

which should have a negligible chance of giving stable compounds. In this way, we

can sketch a map of the labyrinth a priori, and our “guided” high-throughput search

has a significantly higher success rate (the ratio of finding stable materials out of all

calculations) than usual systematic scans [WPhD3].

Furthermore, machine learning techniques are used to pre-explore the labyrinth.

Within the past several years, the development of machine learning models has
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allowed extraordinarily efficient and successful predictions for the stability of inorganic

materials [19, 20]. In the last part of this Thesis (Chapter 6), we apply a pre-trained

model [21] for three-dimensional (3D) structures to accelerate the high-throughput

search for novel two-dimensional (2D) materials [WPhD4]. By starting with an

exhaustive systematic approach to generate candidate structures, we tried to go

beyond the available 2D prototypes from the exfoliation of 3D systems. We applied

the machine model on thermodynamic stability [21] to pre-filter out stable structures.

Additionally, we used a machine learning force field [22] to pre-optimize the geometry

to speed up the DFT validation procedure. The DFT results are then used to re-train

the model during the process. As a result, this work discovers thousands of unexpected

2D phases with no layered three-dimensional counterpart. Moreover, utilizing machine

learning is self-accelerating because the accumulation of DFT validation data gradually

improves the accuracy of models. This virtuous cycle will pave the way for a complete

exploration of the two-dimensional part of the labyrinth in the near future.
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Density Functional Theory

The first-principles, also known as the ab initio, refers to the method of obtaining

the electronic structures, atomic interactions, and other characteristics of the object

of study through self-consistent calculations without relying on any experimental

parameters or fitting manners. Its core and basis is the solution of the time

independent Schrödinger equation for a many-body system

Ĥ(r,R)Ψ(r,R) = EΨ(r,R), (1)

Ĥ = T̂ + V̂ . (2)

The kinetic operator contains both nuclei and electron parts

T̂ = T̂N + T̂e = − 1

2mI

M∑
I=1

∇2
I + −1

2

N∑
i=1

∇2
i (3)

The potential operator contains the nuclei-nuclei, nuclei-electron, and electron-electron

interactions

V̂ = V̂NN + V̂Ne + V̂ee =
M∑
I<J

ZIZJ

|RI −RJ |
−

N,M∑
i,I=1

ZI

|ri −RI |
+

N∑
i<j

1

|ri − rj|
. (4)

The (ground state) structure of any system and its properties can be deduced from the

solution of the above Schrödinger equation. However, the interaction potentials inside

the many-body system are extremely complex, and the number of particles in the real

system is so large that it is impossible to solve analytically. Since the twentieth century,

technological advances and development of algorithms have provided the conditions

for numerically approach. However, the process still requires expensive computational

resources, thus is still unfeasible for most cases. Therefore, a series of approximations

are necessary. Of course, the reliability and practicality of approximations are always

tested in practice.

Adiabatic Approximation

The mass of the nucleus is much higher than the mass of the electron, the former

being at least 103 times larger than the latter, which means the motion of electrons is

significantly faster than that of the nuclei, the electron would “instantaneous” adjust
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their positions after the nuclei moved so that the nuclei and electron motions can be

separated. This is the basis for the adiabatic or Bonn-Oppenheimer approximation.

Now, the nuclei are independent of the electron motion and the nuclear wavefunction

χ
i(R) is only associated with the following nuclei Shrödinger equation

[T̂N(R) + V̂NN(R)]χi(R) = Eχi(R) (5)

And the Schrödinger equation for the electrons takes the nuclear coordinates R as

parameters

[T̂e(r) + V̂Ne(r,R) + V̂ee(r)]Ψi(r : R) = EiΨi(r : R) (6)

The overall wavefunction of the many-body system is just

Ψ(r,R) =
∑
i

χ
i(R)Ψi(r : R). (7)

Single-Electron Approximation

Even with the adiabatic approximation, the total number of electrons in the general

system is so large that the description of the interaction between electrons and

electrons becomes extremely complicated as the number of electrons increases.

Nevertheless, the direct solution is still very difficult and time-consuming. Hartree–

Fock single-electron approximation (H–F approximation) can simplify the electron-

electron interaction further. In Hartree–Fock the potential for each electron is split

into two parts: the Coulomb potential from all nuclei and the total Coulomb potential

from all electrons except the electron under consideration. In this way, the Hamiltonian

can be formulated as the sum of one electron (Fock) operators F̂ [{ϕj}](1), and

F̂ [{ϕj}](1) = Ĥcore(1) +

N/2∑
j=1

[2Ĵj(1) − K̂j(1)] (8)

Ĥcore(1) = −1

2
∇2

1 −
∑
α

Zα

r1α
(9)

Ĥcore(1) is the one-electron core Hamiltonian, Ĵj(1) is the Coulomb operator defining

the electron–electron repulsion in the j-th orbital ϕj, and K̂j(1) is the exchange

operator describing the electron exchange energy due to the antisymmetry of the

total N -electron wavefunction. Such a single-electron treatment obviously reduces the

calculation of a large number of electron interactions, but the Hartree–Fock method

still scales poorly with the number of electrons.

9



Hohenberg–Kohn Theorem and Kohn–Sham Method

Thomas [23] and Fermi [24] proposed the Thomas-Fermi model for the electron

distribution in the many-body system based on statistical mechanics in the 1920s.

Although this model is semi-classical, it provides an alternative, “density functional”

perspective to solve the many-body Schrödinger equation.

From quantum mechanics, the expectation value of the electronic kinetic energy

operator in 3-dimensional Euclidean space can be approximated by

T = Ck

∫
[n(r)]5/3 dr, (10)

where Ck = 3
10

(3π2)
2
3 . Then assuming electrons are classical particles moving in the

external field V (r), then the total energy is

E[n] = T + UeN + Uee (11)

= Ck

∫
[n(r)]5/3 dr +

∫
n(r)VN(r)dr +

1

2

∫
n(r) n(r ′)

|r− r ′| dr dr′ (12)

where Ck = 3
10

(3π2)
2
3 . Solving for a density n(r) minimizing the total energy gives the

ground state electron density.

The Thomas–Fermi model connects the total energy as an electronic density functional.

This reduces the many-body problem of N electrons with 3N spatial coordinates

to three spatial coordinates of the density, which is the basic motivation of the

development of density functional theory (DFT). But, of course, since the Thomas–

Fermi model applied the uniform electronic density approximation in the kinetic energy

term as well as the neglect of exchange and correlation in the potential term, Thomas–

Fermi approximation is very inaccurate and the calculation results usually deviate

significantly from the real system.

To obtain a better formalism about the energy functional of the electron density,

Hohenberg and Kohn proposed two theorems[25, 26]: First, the external potential is

the unique functional of the ground state electron density apart from a trivial additive

constant, i.e., for a given density the potential is fixed and vice visa, in other words,

that the mapping between density and the external potential is bijective. Further, the

Hamiltonian and the wavefunctions are fully determined by giving the knowledge of

the ground-state density, so the expectation value of any observable as functionals of

the ground-state density

O0 = O[n0] = ⟨Ψ0[n0]| Ô |Ψ0[n0]⟩ . (13)
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Second, there exists a universal functional of the density F [n(r)] for any number of

particles and external potential. Given the external potential v(r), minimizing the

energy as functional of density

E[n] =

∫
v(r)n(r)dr + F [n] (14)

with respect to the constraint of the total electron number∫
n(r)dr = N (15)

gives the ground state energy. This is the variational principle widely used in DFT.

Hohenberg and Kohn overlook two problems. Firstly, it is not clear a priori that

every well-behaved density is derivable from a well-behaved wavefunction, this is

the so-called n-representability problem, which has been solved by Gilbert [27] and

Harriman [28].

The second problem is called the v-representability problem, i.e., it is not clear a

priori that every well-behaved density can be derived from a wavefunction which is

the properly ground-state wavefunction for a many-body system under given external

potential V . Unfortunately, there exists well-behaved n(r) which fail to be ground-

state densities for any many-body system in an external potential[25, 29–31]. To

circumvent this problem Levy [32, 33] and Lieb [34] proposed a definition of the

universal functional as

F [n] = min
Ψ→n(r)

⟨Ψ| T̂ + V̂ |Ψ⟩ , (16)

with the minimization taken over all well-behaved wavefunctions giving the same

density.

The Hohenberg–Kohn theorems guarantee the existence of a universal functional.

However, they did not provide the explicit form of this unknown universal functional.

Following the spirit of Hohenberg–Kohn theorem, Kohn and Sham provided a powerful

method which has been applied with great success, the Kohn–Sham formalism. The

key idea in Kohn–Sham is to use an auxiliary non-interacting system whose ground-

state density represents the ground-state density of the considered interacting system.

The wavefunction of the auxiliary non-interacting N electrons can be easily written

down as the Slater determinant of single-particle orbitals

ψ(x1,x2...,xN) =
1√
N !

det(φ1, φ2, ..., φN). (17)
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And the energy functional of this system is

Es[n] = Ts[n] +

∫
vs(r)n(r)dr. (18)

Now for the interacting system, one can re-write Eq. 14 in terms of the auxiliary

systems and obtain

E[n] = T [n] + V [n] +

∫
v(r)n(r)dr

= T [n] − Ts[n] + Ts[n] + V [n] − EH[n] + EH[n] +

∫
v(r)n(r)dr

= Ts[n] + EH[n] + Exc[n] +

∫
v(r)n(r)dr.

(19)

Here EH is the Hartree (or Coulomb) energy

EH[n] =
1

2

∫
dr

∫
n(r)n(r′)

|r− r′| dr, (20)

and Exc the exchange and correlation energy functional

Exc[n] = T [n] − Ts[n] + V [n] − EH[n]. (21)

Applying the variational principle to the energy functional (Eq. 19) with respect to

the density of the auxiliary system, we get the well-known Kohn and Sham equation[
− ∇2

2
+ v(r) + vH[n](r) + vxc [n] (r)

]
ψi(r) = εiψi(r) (22)

where v is the external potential, vH is the Hartree potential, and ψi(r) are the Kohn–

Sham orbitals. The exchange-correlation potential vxc is the the functional derivative

of Exc

vxc [n] (r) =
δExc [n]

δn(r)
. (23)

Eq 22 is the backbone of DFT calculations, in which this equation can be solved

self-consistently if the exchange-correlation potential is known, which is, again,

unfortunately, not the case.

Finding a proper approximation of the exchange-correlation potential is indeed one

of the most important tasks the DFT community faces. One may follow a pure

mathematical path, starting from an exploration of the abstract properties that

the universal functional F [n] must have. This path provides practical guidance

on explicitly constructing better approximations. However, it requires fundamental
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progress in the mathematical understanding of the Hohenberg-Kohn theorems.

Moreover, the true universal functional is most likely transcendental, i.e., might be

unable to write down exactly in closed form.

Another option to construct functionals relies or numerical algorithms, one often

starts at defining an ansatz form of vxc with some flexible parameters. Then the

parameters are fitted to either experimental data or exact solutions of simple systems

(e.g., homogeneous electron gas). Due to the usage of experimental data, some would

argue that the fitted functional is not ab initio anymore. Of course, even those holding

the most restrict standard would agree that a functional only fitted to quantum Monte

Carlo (QMC) simulations is “first principle”. However sadly, nowadays computational

resource is barely enough to produce the required amount of QMC data in a limited

time scale.

Exchange-Correlation Functionals

The first and yet the still being commonly used ansatz is the local density

approximation (LDA), where the exchange-correlation energy is approximated to the

exchange-correlation energy εxc (per electron) of homogeneous electrons gas

ELDA
xc [n] =

∫
εxc[n(r)]n(r)dr. (24)

The exchange part of is

ELDA
x [n] = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3 dr (25)

The correlation part is accurately known from Ceperley and Alder’s quantum Monte

Carlo calculation [35]. The LDA functional works well (by design) for systems with

slow varying (more homogeneous) densities, but poorly for finite systems with abrupt

density gradients. To correct this behaviour, it is natural to consider not only the

density but also the density gradient (or even higher order of derivatives) in the

exchange-correlation functional, and reach the generalized gradient approximation

(GGA) ansatz

EGGA
xc [n] =

∫
εxc(n,∇n)n(r)dr. (26)

Benefiting from the inclusion of gradient, GGA functionals are semi-local and work

fairly in the majority of the real systems. Moreover, to include more of the non-locality
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nature of the exchange-correlation, one can also include the derivative of the Kohn–

Sham orbitals and construct the meta-GGA functionals depending on the Laplacian

of the density (∇2n) and kinetic density (τ)

Emeta-GGA
xc [n] =

∫
εxc(n,∇n, τ,∇2n)n(r)dr

τ(r) =
1

2

occ∑
i

|∇ψi(r)|2 .
(27)

Although the (meta-)GGA functionals provide a practical route to correct the LDA

and produce better results, the physics underlying these gradient corrections is not

yet fully understood, the consequence is the lack of a systematic procedure for

improving. The progress of (meta-)GGAs relies heavily on physical intuition, choice of

constraining relationships, and simple trial and error. To partially solve this problem,

one of the ideas is to treat exchange exactly, due to the fact that exchange is the

dominant part of the exchange-correlation energy. The small correlation part could

then be approximated. This idea leads to the so-called hybrid functionals, in which

the total exchange energy is expressed as a linear combination of exact Hartree–Fock

exchange and exchange of other (semi-)local DFT functionals

Ehyb
xc = αEHF

x + (1 − α)EDFT
x [n] + EDFT

c [n]

EHF
x = −1

2

∫ ∫
ψ∗
i (r1)ψ

∗
j (r2)

1

r12
ψj(r1)ψi(r2) dr1 dr2,

(28)

where α determines the relative amount of Hartree–Fock and semi-local exchange, for

example, the PBE0 [36] functional use 1/4 of the exact and 3/4 of the Perdew–Burke-

Ernzerhof (PBE) GGA exchange. Furthermore, one can also define different α

according to the range (called screened or range-separated hybrids)

Ehyb
xc = αEHF,SR

x [µ] + (1 − α)EDFT,SR
x [µ, n]

+EDFT,LR
x [µ, n] + EDFT

c [n]

EHF,SR
x [µ] = −1

2

∫ ∫
ψ∗
i (r1)ψ

∗
j (r2)

erfc(µr12)

r12
ψj(r1)ψi(r2) dr1 dr2,

(29)

where erfc is the complementary error function, and µ is the parameter that defines

the range separation

1

r
= Sµ(r) + Lµ(r) =

erfc(µr)

r
+

erf(µr)

r
. (30)
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The hybrid functionals give more accurate results than density-only semi-local

functionals. However, there is a trade off for this improvement to computational costs,

because the HF exchange integral scales very poorly with the system sizes. Further

improvement can be achieved by including perturbative second-order (PT2) correction

to the correlation, leading to even more accurate double-hybrid functionals

Ehybrid
xc = αxE

HF
x + (1 − αx)E

DFT
x + αcE

PT2
c + (1 − αc)E

DFT
c . (31)

Choice of Functionals

The majority of the DFT calculations in this Thesis use the

Perdew–Burke–Ernzerhof [37], a GGA functional, with the exchange part as

EPBE
x [n↑, n↓] =

1

2

(
EPBE

x [2n↑] + EPBE
x [2n↓]

)
EPBE

x [n] =

∫
nεHEG

x (n)Fx(s)dr

Fx(s) = 1 + κ(1 − 1

1 + µs2/κ
),

(32)

where εHEG
x (n) is the exchange energy for the homogeneous electron gas (HEG) with

density n

εHEG
x (n) = −3kF

4π

kF = (3π2n)1/3

s =
|∇n|
2kFn

.

(33)

The parameters κ = 0.804 and µ = 0.2195 are determined by ensuring 1) exchange

gradient correction cancels correlation in low gradient limit s → 0 and 2) the local

Lieb-Oxford bound[38]

1) Fx → 1 + µs2, as s→ 0

2) Ex ≥ −1.679

∫
drn(r)4/3.

(34)
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And the correlation part is

EPBE
c [n] =

∫
n(r){εHEG

c (rs, ζ) +H(t, rs, ζ)}dr

H(t, rs, ζ) = γϕ3ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
A =

β

γ

[
e−εHEG

c /(γϕ3) − 1
]−1

(35)

where

rs = (
3

4πn
)1/3

ζ =
(n↑ − n↓)

n

t =
|∇n|

2ksϕn

ϕ =
1

2
[(1 + ζ)2/3 + (1 − ζ)2/3]

ks = (
4kF
π

)1/2,

(36)

with the parameters γ = 0.031 091 and β = 0.066 725. The gradient correlation

part H fulfill the bounding conditions: 1) in the slowly varying limit H is given by its

second-order gradient expansion [39], 2) in rapid varying limit correlation vanishes [37],

and 3) under uniform scaling to high-density limit the correlation energy scale to a

constant [40]

1) H → βϕ3t2, as t→ 0

2) H → −εHEG
c , as t→ ∞

3) Ec → const, with n(r) = λ3n(λr) as λ→ ∞.

(37)

The construction and parameterization of PBE functional do not depend on fitting to

experimental data, which makes PBE ab initio, and the computational cost is relatively

cheap. Unfortunately, the PBE errors in formation enthalpy are usually around

200 meV/atom [41], comparatively larger than the chemical accuracy in formation

enthalpy (40 meV/atom). The PBE, as a GGA functional, also suffers from the failure

of exact cancellation of self-interaction and not properly describing the derivative

discontinuity [42], so the calculated band gaps, one of the most important properties

of materials, are around 60 % of the experiment values [43, 44].

Hybrid functionals can give better results on the gaps [44]. We chose the

Heyd–Scuseria–Ernzerhof–06 (HSE06) version, which belongs to the range-separated

hybrid functionals (Eq. 29). The range separation parameter µ for HSE06 is 0.2 [45],

16



and the portion of HF exact exchange (α) is 1/4 [45], the same as PBE0 [36].

The HSE06 functional gives excellent results on the band gaps, with mean absolute

percentage error (MAPE) around 29 %, improved from 40 % for PBE. However, the

calculation cost is too high for HT screen (quartic scaling with electron number), so

it is only selectively used to produce better band structures in this Thesis.

Another similar accurate functional to calculate band gaps is the modified-Becke-

Johnson (mBJ) functional [46, 47]. The mBJ belongs to the meta-GGA family, so is

much cheaper than the hybrid functionals. However, unlike PBE and HSE06, mBJ

is a potential-only functional, i.e., the functional is constructed from defining the

exchange-correlation potential

vMBJ
x (r) = cvBR

x (r) + (3c− 2)
1

π

√
5

6

√
τ(r)

n(r)

vBR
x (r) = − 1

b(r)

(
1 − e−x(r) − 1

2
x(r)e−x(r)

)
,

(38)

where n(r) is electron density and τ(r) is the kinetic density as defined in Eq. 27, and

b(r) =

[
x(r)3e−x(r)

8πn(r)

]1/3
c = α + β

(
1

Vcell

∫
cell

|∇n(r′)|
n(r′)

dr′
)1/2

.

(39)

The parameters α = −0.012 and β = 1.023 bohr1/2 are determined by fitting to band

gaps of a set of solids [47]. The x(r) in the above equation satisfies the following

equation [48]
xe−2x/3

x− 2
=

2π2/3

3

n5/3

Q

Q =
1

6
(∇2n− 2γD)

D = τ − 1

4

(∇n)2

n
,

(40)

where γ is a parameter having a value of one from the Taylor expansion of exact

spherically averaged LDA exchange hole potential. However, a value of 0.8 is better

to recover the LDA [48].

Plane Wave Basis Set and Pseudopotentials

The Kohn–Sham equations are nonlinear eigenvalue problems, which are usually solved

by the self-consistent method, in which it is convenient to expand the wavefunctions
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in Eq. 22 in a basis set:

ψi(r) =
∑
α

cαφα(r). (41)

For finite systems, it is natural to choose an atomic orbital basis set origin from the

chemical intuition that molecular orbitals could be seen as linear combinations of

atomic orbitals. The atomic orbitals take the form of

φα(r) = φα(r)Ylm(Θ, ϕ), (42)

where φα(r) could either be Gaussian type e−αr2 or Slater type e−αr functions. A

relatively small atomic orbital basis set is able to provide fairly good results, but it

is non-orthogonal and suffers from the basis set superposition error (BSSE) [49]. For

solids with the periodic boundary condition, we have the Bloch’s theorem for the

periodic wave functions

φnk(r + R) = φnk(r)eikR, (43)

where n denotes the n-th one-electron band, k is the so-called Bloch wave vector, and

R represents translational vectors keeps the Hamiltonian invariant. We can expand

the periodic function φnk in plane waves

φnk(r) =
1√
Ω

∑
G

CGnke
i(G+k)·r, (44)

where G is the reciprocal lattice vector. Plane waves are naturally orthonormal and

can efficiently transform into real space with fast Fourier transforms. In practice,

the plane wave basis set is finite by setting cutoff energy and truncating the plane

wave expansion to only include those having |G + k|2 < 2Ecutoff. This also provides a

convenient way for convergence test on the basis size, i.e., simply via systematically

increasing Ecutoff. However, as the wavefunctions of the electrons in the core region of

atoms oscillate rapidly, their expansion requires an enormous amount of plane waves.

This substantially increases the computational cost and hinders the application of

plane wave basis sets. One way to solve this problem is to expand the core electrons

in atomic basis sets and the valence ones in plane waves. This is the general idea

of the full-potential linearized augmented-plane-wave method (FLAPW). A further

step is to replace the Coulomb potential between nuclei and core electrons with an

effective pseudopotential. Then smoother core electron wavefunctions without nodes

will require fewer plane waves to describe.

Vanderbilt pioneered the development of the ultrasoft pseudopotential in 1990[50],

which has great advantages when dealing with 3d transition metals and rare earth
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metals. The drawback of the method is that all information on the full wavefunction

close to the nuclei is lost. The development of the projective augmented wave

(PAW) method [51, 52] combines the idea of the pseudopotential approximation

and the full-potential linearized augmented-plane-wave method. In PAW the one

electron wavefunctions ψnk are derived from the pseudo wavefunction ψ̃nk by linear

transformation
ψnk = ψ̃nk +

∑
i

∑
a

(ϕa
i − ϕ̃a

i )⟨p̃ai |ψ̃nk⟩

= ψ̃nk +
∑
a

(
ψa
nk(r−Ra) − ψ̃a

nk(r−Ra)
) (45)

The summation index i is the contracted index label containing the atomic site R,

the angular momentum numbers l, m, and an additional index k referring to the

reference energy ϵkl, and the a is the index for atoms. The true partial waves ϕi are

solutions of the radial Schrödinger equation for a non-spinpolarized reference atom at

reference energy ϵkl for a specific angular momentum l. The pseudo partial waves ϕ̃i

are equivalent to the true partial waves outside a cutoff radius rlc while continuously

matching onto it in side rlc and expanded to plane waves

⟨r|ψ̃nk⟩ =
1√
Ω

∑
G

CnkGe
i(G+k)·r. (46)

The p̃i is the projector dual to partial waves ⟨p̃i|ϕ̃j⟩ = δij. Eq. 45 separates the true

wavefunction into two parts, the first part is the smooth pseudo waves, and the second

part is the rapid osculating part centered at each atom within a certain cutoff radius

(PAW sphere). The two parts can be treated individually. The smooth pseudo wave

can be easily treated using plane wave basis set (Eq. 46) and for the PAW sphere part

of an atom-centered radial grid can be efficiently applied.

In practice, the PAW method can further be combined with the frozen core (FC)

approximation. FC supposes that the core electrons do not participate in the bonding

between atoms. Therefore, only the valence electrons are included in Eq 45, and the

core electrons are fixed during calculations. Any expectation value of operator Ô is

then

⟨Ô⟩ =
val∑
n

fn ⟨ψn| Ô |ψn⟩ +
∑
a

core∑
α

⟨ϕa,core
α | Ô |ϕa,core

α ⟩ , (47)
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The second term is trivial, and for the first term for each index n using Eq 45, we have

⟨ψ| Ô |ψ⟩ = ⟨ψ̃ +
∑
a

(ψa − ψ̃a)| Ô |ψ̃ +
∑
a

(ψa − ψ̃a)⟩

= ⟨ψ̃| Ô |ψ̃⟩ +
∑
a

(
⟨ψa| Ô |ψa⟩ − ⟨ψ̃a| Ô |ψ̃a⟩

)
+
∑
a

(
⟨ψa − ψ̃a| Ô |ψ̃ − ψ̃a⟩ + ⟨ψ̃ − ψ̃a| Ô |ψa − ψ̃a⟩

)
+

∑
a̸=a′

⟨ψa − ψ̃a| Ô |ψa′ − ψ̃a′⟩ .

(48)

For local operators, the last summation is zero because the PAW spheres do not

overlap for atoms on different sites, and the second last summation is also zero because

|ψ̃ − ψ̃a⟩ is only non-zero outside the PAW sphere while ⟨ψa − ψ̃a| is only non-zero

inside. From the above equation, it is possible to define the pseudo operator for a

local operator

Ôps = Ô +
∑
i,j

|p̃i⟩
(
⟨ϕi| Ô |ϕj⟩ − ⟨ϕ̃i| Ô |ϕ̃j⟩

)
⟨p̃j| , (49)

so that the expectation value can be evaluated as ⟨ψ| Ô |ψ⟩ = ⟨ψ̃| Ôps |ψ̃⟩. For example,

the pseudo density operator gives the density

⟨ψ|r⟩ ⟨r|ψ⟩ = |ψ̃|2 +
∑
i,j

⟨ψ̃|p̃i⟩
(
⟨ϕi|r⟩ ⟨r|ϕj⟩ − ⟨ϕ̃i|r⟩ ⟨r|ϕ̃j⟩

)
⟨p̃j|ψ̃⟩ (50)

We can define the on-site density matrix Da
ij = ⟨ψ̃|p̃i⟩ ⟨p̃j|ψ̃⟩, then

⟨ψ|r⟩ ⟨r|ψ⟩ = ñ(r) − ña(r) + na(r), (51)

where
ñ(r) = ⟨ψ̃|r⟩ ⟨r|ψ̃⟩ = |ψ̃|2

ña(r) =
∑
i,j

Da
ijϕ̃

a
i (r)ϕ̃

a
j (r)

na(r) =
∑
i,j

Da
ijϕ

a
i (r)ϕ

a
j (r)

(52)

Here ñ is the pseudo density, ña is the on-site charge density, and na is the true on-site

density. The superscription a notes that the on-site density is only evaluated on radial

grids centered at each atom.

Similarly, for kinetic energy operator, which is semi-local, we have the kinetic energy

⟨ψ| − ∇2

2
|ψ⟩ = Ẽkin − Ẽa

kin + Ea
kin, (53)
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where

Ẽkin = ⟨ψ̃| − ∇2

2
|ψ̃⟩

Ẽa
kin =

∑
i,j

Da
ij ⟨ϕ̃a

i | −
∇2

2
|ϕ̃a

j ⟩

Ea
kin =

∑
i,j

Da
ij ⟨ϕa

i | −
∇2

2
|ϕa

j ⟩ .

(54)

However, the pseudo-wavefunctions do not have the same norm as the true all electron

wavefunctions inside the spheres, so for a non-local operator, it is necessary to

introduce a compensation charge density (so-called augmentation density) n̂. The

augmentation density corrects the moments of the pseudo electron density within the

paw sphere centered at atom position Ra to the true all electron density na. Thus

the electrostatic potential from na is identical to that from ña + n̂ outside the PAW

sphere. With the compensation density included, one can finally write the total energy

functional as

E = Ẽ +
∑
a

∆Ea, (55)

where

Ẽ = T̂ ps[{ψ̃n}] + VH [ñ+
∑
a

n̂] + Exc[ñ], (56)

is the smooth part. And ∆Ea is the correction term computed inside each PAW sphere

using a radial grid instead of a plane wave grid. This is the key reason that the PAW

speeds up the calculations.
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Chapter 2 High-Throughput and Machine Learning

The idea of high-throughput (HT) originated in the 1950s when experimental

biologists attempted to automatize micro titration. Such technology eventually allows

scientists to systematically perform thousands of hemagglutination inhibition tests in

vaccination research[53]. HT experiments have become standard practice in biology

laboratories worldwide, but in chemistry and material science, the experimental

establishment and implementation of HT methods are still at the early stage [54–56].

On the other hand, the computational power of modern CPUs, robust computational

codes, and efficient quantum-mechanical methods continuously improved, allowing

researchers to calculate the thermodynamic and electronic structures of many systems

at a reasonable efficiency-accuracy balance. Furthermore, with the parameters for

these calculations chosen based on unified standards and convergence criteria, all

calculations made by the research community can be accumulated to construct

large computational databases. These databases often include not only existing

experimental structures but also hypothetical systems. Moreover, we can filter out

promising candidates for desired functionalities by mining from these databases. Such

a process based on large datasets of theoretical calculations, i.e., the so-called high-

throughput computational search, has gradually become one of the most efficient and

fruitful schemes of discovering new functional materials [WPhD1, WPhD12, 12–17,

57, 58].

High-Throughput Strategies

Ideally, one should sample the structural and compositional spaces in a single high-

throughput search. Although experimental realizations of this vision already exist [59],

theoretically (or computationally), it is still impractical. Given the number of elements

(Ne) and atomsNa, for the structural space, the degree of freedom is 3Na−3. Moreover,

in the compositional space, the number of possible stoichiometries scales factorially

with Ne. Therefore, the number of possible candidate crystal structures explodes

combinatorially with increasing Ne and Na. One feasible way to avoid the explosion

is to “decouple” the search into structural and compositional parts.

The search in the former is mainly called (global) structure prediction, where one

searches for energy minima for given compositions. The energy surface can be sampled

by molecular dynamics (MD) (e.g., simulated annealing). Nowadays, modern CPUs
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can afford ab initio MD simulation for small systems. However, one composition

might require millions of MD steps to locate the global minimum finally. Therefore,

applying MD to every composition is too expensive to find optimal candidates for real

applications. Using an empirical force field for MD simulations would vastly accelerate

the search, trading off the accuracy. Machine learning (ML) techniques can be applied

to generate a force field nearly as efficiently as empirical force fields and as accurately

as first-principle methods. However, a large amount of energy surface sampling is

necessary to train the machine learning force field. Of course, to avoid the usage of a

force field, one could also apply Monte Carlo (MC) statistic instead of MD to guide the

sampling of the energy landscape. Unfortunately, no matter in MC or MD prediction

algorithms, due to the Boltzmann distribution of energies, most samples are confined

around local minima, and walking across high barriers to reach another minimum is

very time intensive. To solve this problem, one could use sample algorithms that

do not include the Boltzmann factor but do depend on the local structure of the

energy landscape. Those algorithms are often called hopping methods (e.g., minimal

hoping [60]). Furthermore, the efficiency of structure prediction can be improved

by an evolutionary algorithm (e.g., genetic algorithm) which could simultaneously

explore the compositional space. Although structure predictions are still a highly

active field in recent years, and has been proven successful[12, 61, 62], this approach

of fixing the composition and searching the structural space is intrinsically not efficient

for a task dealing with a large number of compositions. For example, there will be

78 × 77 × 76 ≈ 456, 000 total possible stoichiometries for a simple ternary formula

ABC3, when putting 78 chemical elements (from hydrogen to bismuth excluding noble

gases) into A, B, and C sites. Searching the structural space for each of them will

eventually provide a complete energy landscape for any ABC3 ternary systems if the

computational cost is not approaching infinite.

On the other hand, searching the entire structural space for all 456k combinations

of the formula ABC3 is unnecessary. Because “heuristically”, we know many ABC3

compositions crystalize in the perovskite structure (Fig. 1). Therefore, it is reasonable

to prioritize the exploration of the perovskite structural sub-space, i.e. the perovskite

prototype, for ABC3 compositions. By limiting structural space in this way, one

can scan the compositional space for each prototype. This method is known as the

component prediction or prototype search [63]. Prototype search takes advantage

of the results of a structural search from nature. One might argue that this

method confines the exploration away from the unknown part of the structural space.
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Figure 1: Crystal structure of perovskite prototype ABC3, teal spheres are the A atoms, the

BC6 groups are shown as blue octahedra where the golden spheres on the corners

of the octahedra are C atoms.

However, the limited structural space is still enormously large, considering that the

number of available prototypes is at a magnitude of 103 [11], 104 [64], or even

2×104 [WPhD12] based on different classification standards. Although to the author’s

best knowledge, the most exhaustive prototype search has searched 2500 binary and

ternary prototypes [WPhD12], exploration of the rest remains a challenge.

Pre-Filtering

Following the basic ideas from prototype search, i.e., taking advantage of the

experimental (or natural) results, we can improve the efficiency of high-throughput

searches.

The early attempts used well-known chemistry and physics intuitions to pre-select the

more stable compositions. For example, one can consider the Goldschmidt tolerance

factor for the perovskite (ABO3) (Eq 57) [65].

t =
rA + rO√
2(rB + rO)

(57)

However, studies have found that t is not a good descriptor for perovskite stability [66,

67]. Other empirical rules, such as Pauling’s for ionic crystals [68] and the 18-electron

rule for ABX compounds [69], could also be used. Another intuition is the oxidation

state neutrality or charge neutrality, i.e., the summation of the oxidation state of the

ions in a crystal should be zero to avoid an infinite electrostatic potential. With the

possible oxidation state for a given element known from experiments and the octet rule
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of the electron configuration, one can apply these criteria to reduce the number of total

candidates. For example, the total number of compositions can be shrunk by at least

an order of magnitude, increasing the efficiency of prototype-based high-throughput

search [58].

There should also be a fundamental constraint, even if the oxidation states fulfill

the charge neutrality rule, i.e., the electronegativity (χ) balance rule. The χ scale

of an element represents the attraction of its atoms for electrons, so the order

of oxidation states (from most negative to most positive) for the elements in the

stoichiometry should follow the same of χ from largest to smallest. In the work of

Davies et al. [58], using the Pauling χ scale, this constraint could significantly reduce

the workload of DFT calculations, with only a fourth to a tenth of the compositions

being electronegativity balanced.

Searching which composition could be potentially stable for a prototype is equivalent to

searching the thermodynamically allowed replacements for elements in this prototype

structure. This substitutional question is well investigated in metallurgy and leads

to the heuristic Hume-Rothery rule [70]. Besides explicit chemistry and physics

principles, one could also try to make a scatter point plot for all known crystal

structures in all compositions. For example, the coordinates of the points for all

composition AB crystallizing in a specific structural prototype (e.g., NaCl-type) are

calculated from some physical properties of A and B supposed to crucially decide the

stability of NaCl-structured-AB. Such a plot is called a structure map. In an ideal

structure map, the region of each prototype is separated from the rest, leaving no

overlap between distributions. The substitution of A by C would shift the coordinates

of the hypothesis A1−xCxB system in the AB structure map. By tracing which

prototype region it lands in, one could predict the structures for a series of substitution

concentrations x. From this point of view, we can also describe such structure maps

as the empirical approach to the structure prediction mentioned above. Of course,

the separation of prototypes highly depends on the choice of physical factors. One of

the most sophisticated choices [71–74] is done by Villars [74], where a three-dimension

map is plotted on axes of electronegativity difference (∆χ), the atomic radius difference

(∆R), and the number of valence electrons per atom Ne. However, high-dimensional

structure maps are difficult to visualize, and the separation is somehow dissatisfying.

In 1984 Pettifor [75] proposed an elegant solution to those problems. His solution

does not come from theoretical consideration of the physics properties of the elements
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but is entirely phenomenological. Pettifor’s idea is that the elements crystallizing

into similar structures are also chemically similar, so they should be grouped. The

Pettifor’s scale (χP) is constructed by reordering the periodic table one-dimensionally,

only considering this similarity. Plotting the AxBy structure maps on axes of χP
A and

χP
B, Pettifor achieved near-perfect separation [76, 77].

The Pettifor scale is based on structures of hundreds of binary systems, and the

similarity governing the formation of these crystals is extracted manually. It is possible,

though, to construct mathematically such a scale [78]. Generally, for a set of M

prototype structures {S0, S1, . . . SM} and a set of N compositions {c0, c1, . . . , cN},

one can define the probability density of compositions crystallizing into prototypes

{X = Si
cα |i ∈M ;α ∈ N} [78]

p(X) =
1

Z

N∏
i=1

p(Si)
∏

α<β;j<k

f(Sj
α, S

k
β)

=
1

Z

N∏
i=1

p(Si)
∏

α<β;j<k

p(Sj
cα , S

k
cβ

)

p(Sj
cα)p(Sk

cβ
)

(58)

The single probability p(Si) captures variations in p(X) due to the independence

of probability for prototype i appearing in a database, and the f(Sj
α, S

k
β) terms

reproduce the correlation between pairs of composition (cα, cβ) crystallizing into a pair

of prototypes (j, k). Using an existing database to calculate p(X) allows the prediction

of the probability of the structure of hypothesis composition X′. Furthermore, if we

only consider two compositions α and β representing the stoichiometries before and

after some substitution of element A by B, the probability for α and β being stable in

all possible prototypes can be calculated from p(X). This probability represents how

likely this substitution can happen, i.e., how similar elements A and B are similar.

However, the similarity (Eq 58) is not straightforward because the probability density

is based on prototype-wise vectors, not element-wise ones.

A more intuitive approach [18] to compute the similarity between elements could start

from considering directly the likelihood of the substitution between elements A and

B preserving the crystal structure. Often elements of similar chemistry and physics

properties can dope and replace each other in the host lattice. The doping, which

usually substitutes a fraction of one specie with another, can sometimes be extended

to completely replacing one with another. Consequently, we can define replaceability

as analog to dopability. The replaceability can be seen approximated by the reaction
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energy for A replacing B in the host lattice (labeled as L) under consideration,

RA→B
L := E[Comp(A)]−E[Comp(B)]+E[Elementary(B)]−E[Elementary(A)], (59)

and a probability distribution can be drawn,

PA↔B(E) :=
∑
L

δ(E −RA→B
L ), (60)

if provided complete thermodynamic pictures for all L. We can then calculate the

probability that a reaction can happen in infinite time to a threshold (t) to represent

the similarity of elements A and B,

S(A ↔ B) :=

∫ t

−∞ PA→B(E)dE∫ +∞
−∞ PA→B(E)dE

. (61)

The numerator can count thermodynamically feasible reactions under threshold

condition t. Nature has done a perfect job with t around room temperature. However,

the experimental data is far less than complete but highly biased towards the more

abundant elements and prefer some lattices over others due to research interests. Even

so, if we still think the information is statistically significant, proper normalization can

be introduced to solve this problem,

S(A ↔ B) =

√
S(A ↔ B)2

(
∑

A′ S(A′ ↔ B)(
∑

B′ S(A ↔ B′)
, (62)

The obtained probability matrix S[A : B] can be further reordered to maximize the

diagonal character, and the order of the elements (i.e., rows or columns) can be seen

as an analog to the Pettifor scale to group the similar elements together [18].

If the structural information in the database is complete, the probability is then

the actual similarity between elements. However, we must again emphasize that the

sampling across the chemical space is biased. Unfortunately, the extent of bias is

still unknown because of lacking systematic experimental high-throughput benchmark.

Nevertheless, we can see the well-known chemistry knowledge in such a data-mining

Pettifor scale [18]. For example, similarities within each periodic table group, within

the lanthanides, and between the diagonal pairs(Be/Al, B/Si, etc.) are presented [18].

Therefore, the S(A ↔ B) deviates from the actual probability but is still a reasonable

estimation if we assume the information is statistically significant. In Chapter 5, we

will show that applying the similarity scale to pre-filtering the hypothesis systems

could primarily increase the success rate of high-throughput search.
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Machine Learning

Even with the help of these pre-filtering methods mentioned above, performing millions

of DFT calculations to search for promising candidates is still akin to finding a needle

in a haystack. Therefore we need more efficient pre-filtering methods, and one of the

most successful tools to tackle this challenge is machine learning (ML).

The history of ML could be traced back to 1943 when logician Walter Pitts and

neuroscientist Warren McCulloch published their mathematical model of neural

networks responsible for the cognition of human brains [79]. After decades of

development, with the advent of big data and high-performance computing, modern

ML algorithms have achieved astonishing performance in numerous fields[19, 80, 81].

The general goal of ML is to train the model to recognize “patterns” in vast amounts of

data and use the learned patterns to make predictions or decisions. An ideal machine

that learned enough solid-state physics is expected to answer several questions, such

as, what is the composition-pressure-temperature phase diagram of a multi-component

system? What is the (free) energy of given crystal under given environmental

conditions? Or, how about the universal density functional? Unfortunately and

also fortunately, there is no such a machine yet. ML models may already achieve

similar accuracy in prediction as physics theories. However, in many cases, ML models

(especially neural networks) are often referred to as black box, being opaque to human

understanding and unable to explain themselves. Nevertheless, with sufficient training,

ML models perform surprisingly well. Speaking about solid-state physics, ML has been

proven successful in many cases, including but not limited to: phase transition [82,

83], band topology [84, 85], ML density functionals [86, 87], free energy surface of

reactions [88, 89], interatomic force fields [90–93], atomistic feature engineering [19,

94], etc. Among them, the last two are especially related to this Thesis.

Depending on whether the properties or labels of data are included for input, machine

learning can be divided into unsupervised (un-labeled), supervised (labeled), and

semi-/self-supervised learning. Based on the learning task, unsupervised learning can

further be divided into subcategories including but not limited to: clustering models

that are used to group input data that are closely related; dimension-reduction models

that reduce the dimension of feature vectors; generative models that generate new data

compatible with the input or optimal in a certain parameter space. These models

(especially the first two) could be trained to separate and extract the similarities
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between elements, i.e., acting like an ML version of Pettifor.

With properties as labels provided to training, the supervised models can accomplish

tasks such as: Classifying input data into subsets according to their properties;

predicting the properties from new input data; inversely generating input data with

desired properties; etc. Connecting desired properties to the input data makes the

supervised models popular for data-driven functional material design.

The self/semi-supervised learning could be seen as the mix or intermediate form of the

above two. In semi-supervised learning, only a tiny portion of the input is labeled. For

self-supervised learning, instead of using explicit labels, the correlations, metadata, or

domain knowledge embedded in the data are implicitly and autonomously learned and

extracted by the model.

There are three key ingredients to train a “intelligent” machine: first, the training

data; second, the learning algorithm; and third, the representation of input data

transforming the raw data into features. As discussed above, the HT results are a

reliable and valuable data source.

Learning Algorithms

The second essential part, the algorithm, is the part on which most computer scientists

focus. We have witnessed a rapid development of machine learning algorithms during

the last decade, with breakthroughs and progress constantly made.

For classification or regression problems on smaller tabular datasets, decision tree-

based algorithms like random forests [95], gradient boosting trees [96], and extremely

randomized trees [97] perform well. The decision tree can be seen as a graph in tree

form in which the nodes are logic conditions that divide input data into branches

(classes). The decision tree tends to overfit, which can be avoided by combining

an ensemble of randomized trees into, e.g., a random forest. Other classification

algorithms like support vector classification and k-nearest neighbors can also be used.

For clustering the popular algorithms include k-means clustering, hierarchical

clustering, and hidden Markov model, etc. k-means clustering partition n data points

into k clusters with minimal in-cluster variances, the cluster center (mean for each

cluster) is the cluster prototype. Hierarchical clustering builds a hierarchy of clusters.

Hierarchy construction can be repetitively dividing upper-level clusters into sub-level
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clusters or merging sub-clusters into higher-level ones. The hidden Markov model

contains an unobservable Markov process (“hidden” X). The state of X is, however,

influencing another observable process Y . By observing Y , the model deduces the

probability distribution for X.

For regression, popular algorithms in material science are ridge regression , support

vector regression, symbolic regression, and artificial neural networks. The ridge

regression is a multi-dimensional least square linear fitting with regularization.

However, in most cases, one must first transform the problem to proceed to linear

fitting. The usual choice is to transform the original input into a high-dimensional

feature vector, the transforming function is called the kernel function, and the

corresponding regression is called kernel rigid regression. Support vector regression

allows the least square linear fit to have an error tolerance (ϵ), i.e., errors less than ϵ

are ignored, and instead of minimizing the residual, coefficients are minimized.

Neural networks (NNs) are probably the most widely applied algorithms, and based on

the architecture, NNs can be divided further into subcategories. In the feed-forward

NNs, the data pass through the networks without back-flow. The name ”feed-forward”

came from this character. Architectures that allow the data to loop backward, e.g.,

the recurrent NN, fall out of this Thesis’s scope. Therefore, in the discussion below,

we only focus on feed-forward NN and drop the ”feed-forward” for simplicity.

Following the direction of data flowing, a NN is a layered structure that starts with

an input layer, continues with several hidden ones, and ends with an output layer.

A layer is formed by several nodes (neurons), and for example, the k-th layer, with

N neurons, can be seen as a length N real vector z(k). The neurons are connected

between adjacent layers. If all neurons of every layer (except the output layer) are

connected to all nodes on the next layer, the network is a fully connected NN (FCNN).

The data flow from layer k to the layer k + 1 can be done by a linear transformation:

z
(k+1)
i = W(k)z

(k)
i , (63)

where W is the weight matrix that needs to be optimized. The nonlinearity is

introduced by applying a non-linear activation function f

z
(k+1)
i = f(W(k)z

(k)
i + B(k)). (64)

Here, B is the bias that shifts the activation functions and provides additional degrees

of freedom.
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The weight matrices W are usually randomly initialized. The training can be seen as

an optimization procedure of W minimizing a suitable differentiable loss function L.

Typically a mean-squared error loss function can be applied

L(xi, yi, θ) =
∑
i

(FCNNθ(xi) − yi)
2, (65)

where θ is the parameters (weights and bias), (xi, yi) is the i-th input–label pair and

θ are the parameters in W and B, the optimization is nearly always performed by

gradient descent.

θnew = θ − r
∂L

∂θ
, (66)

where r is the step size or the so-called learning rate, more complex models, such as

convolutional or graph neural networks, can be developed based on this concept of

NNs.

Generally speaking, the choice of the machine learning algorithm is entirely problem

dependent. For example, tree-based algorithms are more transparent and thus allow

explanations for the predictions but are often less accurate. The other extreme is the

neural networks which can be very accurate after adequately trained (usually costing

significant amounts of data and computational resources). Although NNs are often

described as a black box. the interpretatability can be improved to provide physics

insights and understandings [19].

Representation of input

The third key ingredient, the representation, transforms human-interpretable data

into machine-readable vectorized features, which may sound trivial. However, it is

completely the contrary. Similar to the situation in building structure maps mentioned

above, in ML solid state science, the early stage of representation relies on physics

and chemistry intuition. Atomic property features, such as radius, electronegativities,

number of valence electrons, etc., are naturally chosen and combined to represent a

chemical system. A pure composition-based representation can be used to reduce

human bias. For example, representation can be a vector X = [c0, .., ci, ...cN ] where ci

is the normalized ratio of an element i in the composition [98]. This kind of composition

vector can also be ”folded” into a periodic table shape [99, 100], somehow implicitly

including Mendeleev’s periodic laws.
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Despite the ignorance of structural information, when the problem is limited to a fixed

prototype, these kinds of prototype-wise models can be quite helpful, for example,

in searching stable perovskites[101], full Heuslers [99], and elpasolites [100, 102],

etc. However, lacking structural information will inevitably introduce flaws in the

model because the knowledge of the local chemistry environment, which fundamentally

affects the crystal’s properties, is lost in the representation. Also, without structure

information, the machine will have a problem recognizing the difference between

permutations of the same composition. For example, in the perovskite prototype

ABC3, the A and B elements occupy nonequivalent sites, but these models are

often unable to distinguish ABC3 from BAC3. Moreover, the most natural structural

representation, the atomic coordinates, cannot be used in machine learning for crystals

because the choice of the lattice is not unique. Making ML models aware of different

atomic and crystal environments and retaining invariance to symmetry operations is

thus much more challenging than it seems.

Generally speaking, there are several requirements for an ideal representation of crystal

structure: First, it should be invariant to the translation and rotational operations of

the coordinate system as well as under the permutation of atomic indices. Second, it

should be a continuous function of the structure input. Moreover, it should be bijective

to crystal structures. One of the choices is to use a pair-wise, two-body matrix in the

form of Coulomb potential to encode the element and the distances [103]

MC
nm =


1
2Z

2.4
n n = m

ZnZm

|Rn −Rm| n ̸= m,
(67)

where Z is the atomic number, R is the atomic position and MC
nm is the so called

Coulomb matrix. In periodic systems, the matrix elements become

ϕnm =
∑
T

ZnZm

|Rn −Rm + T|

T = ha + kb + lc,

(68)

where summation runs for all lattice vectors T. The summation goes to infinity if the

system is not charge neutral, but a neutralizing background charge can be applied to

force the convergence [104]. The resulting matrix is called Ewald sum matrix [105],

which correctly captures the periodicity (translation invariant). However, the matrix

is not unique under the atom index permutation [106]. To further encode the distance
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(bond length) and the bond angles, one can use other geometry functions (gk), which

transform structural information into a scalar value. For example the atomic number

and distance functions, respectively g1(Zn) and g2(Rn,Rm) as in equation 67 above,

furthermore the bond angle function g3(Rn,Rm,Rl). The scalar output of these

functions discretized on atomic positions are then broadened to distribution functions

pk through a density estimation kernel, e.g., a Gaussian

pk =
1√

2πσk
e
−

(x− gk)2

2σ2
k (69)

Then a sum of each distribution pk is made for each possible combination of k elements

to give the so-called many-body tensor representation (MBTR) [107] of the structure,

for example, for k = 3

MBTRZ1Z2Z3
3 (x) =

∑
n

Z1
∑
m

Z2
∑
l

Z3wnml
3 pnml

3 (x), (70)

where the sums for n, m, and l run over all atoms with the respectively the atomic

number Z1, Z2, and Z3 and w3 is a weighting function. For the periodic system,

the summation extends to the periodic copies of atoms in neighboring cells, and an

exponentially decaying wk can be used to converge the summation. Other than using

the straightforward geometry functions combined with probability density kernel to

describe the “distribution” of structural information, one can adopt the atom-centered

symmetry functions (ACSFs) Gk defined as follow [108]

Gn,Z1

1 =
∑
m

n,Z1fc(Rnm)

Gn,Z1

2 =
∑
m

n,Z1e−η(Rnm−Rs)2fc(Rnm)

Gn,Z1

3 =
∑
m

n,Z1cos(κRnmfc(Rnm)

fc(r) =
1

2

[
cos

(
π
r

rcut

)]
,

(71)

where summation runs through atoms n with atomic number Z1; η, Rs, and κ are

control parameters; fc is the smooth cutoff function and rcut is the cutoff radius. Note

here that all Gk are pair-wise functions, but three-body functions can also be defined

in similar ways.[108] Furthermore, the atomic neighbor density ρZ(r) which represents

the local environment centered on atom n at position Rn, can be expanded in spherical
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harmonics Ylm and radial basis functions gn [109]

ρZ(r) =
Z∑
n

e
− 1

2σ2 |r−Rn|2

=
∑
nml

cZnmlgn(r)Ylm(θ, φ)

cZnml =

∫ ∫ ∫ 3

R

dV gn(r)Ylm(θ, φ)ρZ(r).

(72)

The key part of structural information is the change in the local environments across

the crystal. The similarity of the two local environments around atom n and m can

be defined as the overlapping of ρn and ρm

S(ρn, ρm) =

∫
ρn(r)ρm(r)dr

k(ρn, ρm) =

∫
|S(ρn, R̂ρm)|NdR̂

=

∫
dR̂

∣∣ ∫ ρn(r)ρm(R̂r)dr
∣∣N

K(ρn, ρm) =
k(ρn, ρm)√

(k(ρn, ρn)k(ρm, ρm))
.

(73)

Here R̂ is the rotation, and the integral is over all N possible rotations. Thus the

representation is rotational invariant. The normalized overlapping kernel K(n,m) is

the so-called smooth overlap of atomic positions (SOAP) kernel [109].

The above representations are closely related and can be derived as projections

of the atomic neighbor density onto variously chosen basis functions [110, 111].

Furthermore, several works have been devoted to optimizing the basis functions and/or

the parameters to deliver better machine models [112–115].

However, these representations do not fulfill the requirement of being bijective.

Generally, they cannot distinguish the structures having degenerate n-body

correlations (distances, bond angles, dihedral angles, etc.) [116]. In practice, this issue

can be mitigated by writing global properties as a sum of atom-centered contributions,

but improving the performance of models to higher accuracy is hindered fundamentally

by the incompleteness of representations [116].

Another route of extracting structural information is the graph-based

representations [21, 94, 117–120], which, unlike previous representations that
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are based on physical intuition, follow the principles of deep learning [121] and let the

model learn the representation by itself.

These representations simplify the crystal structure into a graph, where the vertices

(nodes) of the graph represent the atoms and the graph’s edge represents the bonds.

The crystal graph is undirected, so it is permutational invariant. It allows multiple

edges between the same pair of vertices to represent bonding to periodic images of

atoms. Thus it is translational invariant. To ensure the rotational invariance, one

can use the Euclidean distance between atoms (nodes) to feature the edge [118, 119],

corresponding neural network is called (real-)distance graph NNs (dGNN). The atomic

information can be encoded (embedded) into the nodes feature vectors vi and bond

information between atom i and j can be coded as edge embedding uij, the initial

feature vectors are not the optimal representation, but during training, the nodes and

edges information are passed and updated from time step t to t + 1 by convolution

(Conv)

v
(t+1)
i = Conv(v

(t)
i ,v

(t)
j ,u

(t)
ij ), (74)

and makes the model gradually “learn” the local atomic environments through

training. Of course, the design of the convolution function is as essential and non-

trivial as the feature extraction [19].

One limitation of the dGNNs is the absence of information about the bond angles,

which makes the graph representation also incomplete [122]. As mentioned above,

the completeness (bijection) of the representation could crucially affect the predictive

power of the model [122–124]. Increasing the cutoff radius for bonds works in specific

cases, but does not guarantee bijective graph representation [122].

To solve this issue, one could include higher-order correlations (e.g., bond angles,

dihedral angles, etc.) in the graph. However, it is unclear whether a higher order of

correlation is sufficient to construct a bijective graph representation [122].

Nevertheless, higher-order correlations can be easily incorporated, benefiting from

the high flexibility of graph representations. For example, using angles between

dipoles of the surface and the absorbed molecule can improve the performance of

predicting surface-molecule interactions [125]. The goal of achieving bijective graph-

based representation is of great research interest and attention, and the family of
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better representations is rapidly growing. New architectures, e.g the E(3) equivariant

networks have been continuously developed during the recent years [126–131].

It is also worth noting that the bijection is not the only factor affecting the model’s

predictive power. Another issue of dGNNs or any GNNs requiring precise values for

higher order correlations is that the actual positions of atoms are unknown for the

hypothetical candidates a priori. Replacing the Euclidean n-body correlations with

their graph counterparts could circumvent this problem [21, 120].

CGAT and M3GNET

The crystal graph attention networks (Cgat) architecture [21] used by one of the works

of this Thesis [WPhD4] is an example of extending the above graph representation.

Instead of using Euclidean distances between atoms as edge embedding, Cgat uses

graph distance, i.e., first neighbor, second, third, etc. In Cgat, the convolution is first

through fully connected neural networks (FCNN), which output the message vectors

(mij) and the attention coefficients (an
ij) [21]

mij = FCNNn
m(v

(t)
i ⊕ v

(t)
j ⊕ u

(t)
ij )

snij = FCNNn
a(v

(t)
i ⊕ v

(t)
j ⊕ u

(t)
ij )

an
ij =

es
n
ij∑

j e
snij
,

(75)

where ⊕ is the concatenation. The vertices are then updated with a hyper-FCNN

(FCNNs that output FCNN) [21]

v
(t+1)
i = v

(t)
i + HFCNNt(⊕n

∑
j

an
ijm

n
ij). (76)

A similar attention-based pooling layer and a fully connected network with residual

connections (FCNNRS) give the final graph embedding [21].

sni = FCNNn
a(v

(t)
i ⊕C)

an
i =

es
n
i∑

i e
sni

mn
i = FCNNn

m(v
(t)
i )

Output = FCNNRS(⊕n

∑
i,n

an
i m

n
i ).

(77)
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The Cgat architecture is trained for predicting the thermodynamic stability

(explained later in this Chapter). However, if dynamic properties are needed, graph-

based models can also be adapted to fit the DFT data into an interatomic force field.

As an example, such a neural-network force field, named M3gnet [22], was applied

in Chapter 6 [WPhD4]. In M3gnet, in order to train the model to predict the

forces and stresses, information of atomic coordinates xj and lattice matrix M are

added in the features. Similarly, the updating is through the convolution function.

For example, the edge updating can be written as

ũij =
∑
k

jl(zln
rik
rc

)Yl0(θijk) ⊙ σ(Wvvk + bv)fc(rij)fc(rik)

u
(t+1)
ij = u

(t)
ij + g(W̃2ũij + b̃2) ⊙ σ(W̃1ũij + b̃1)

fc(r) = 1 − 6(r/rc)
5 + 15(r/rc)

4 − 10(r/rc)
3,

(78)

where W and b are weights from the network, jl is the spherical Bessel function with

the roots at zln and with rc the cutoff radius, Yl0 is the spherical harmonics function

with m = 0, θ is the j–i–k bond angle, ⊙ denotes element-wise product, σ is the

sigmoid activation function, and g(x) = xσ(x) is the nonlinear activation function, f

is the smooth decaying cutoff function. The output of the network is the energy E,

and through auto-differentiation the forces f = −∂E/∂xi and stresses σ = V −1∂E/∂ϵ

are obtained.

Thermodynamic Stability

The total energy of a single system calculated through DFT (or predicted by ML) is

not enough when we discuss the thermodynamic stability of the candidates. The

most intuitive indicator of thermodynamic stability is the (standard) formation

energy (∆G◦
f ). Unfortunately, several errors must be examined and corrected before

extrapolating DFT results to ambient condition formation energies.

Firstly, the straightforward DFT calculations results are at zero temperature and

pressure. The zero-temperature DFT enthalpies (∆HDFT
f ) can be partially corrected

by considering phonon contributions, which are, however, too expensive for most of

the systems. Luckily the zero-point vibrational and thermal phonon contributions

to the formation energies are relatively small [132]. Moreover, with different signs,

they often cancel each other, leaving the neglect of both a fair approximation when

calculating formation energies.
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A second error arises from the approximation of the exchange-correlation functional,

as discussed in the last Chapter. This can be improved by applying more accurate

while still affordable functional, e.g., SCAN functional [133], to get better DFT

total energies on top of the geometries obtained via applying cheaper semi-local

functionals [WPhD10]. However, fully applying expensive and accurate functionals

in HT search, i.e., including geometric optimization, is still impractical, due to the

poor scaling or numerical stability of high accuracy functionals.

Thirdly, stability could be underestimated for anti-ferromagnetic systems because

most calculations only consider the ferromagnetic ordering. The systematic correction

scheme of ∆HDFT
f relies on exhaust search in the magnetic configuration space for

every (magnetic) system, which could scale very rapidly with the system size. The

effect of magnetism is estimated from a few to hundreds meV/atom [134], highly

depending on the system under discussion.

Moreover, for systems including heavy atoms, neglecting relativistic effects may lead

to erroneous total energies, but in most cases, the error is again systematic.

Although many types of error sources are systematic, error cancellation in calculating

∆HDFT
f from DFT total energies is usually incomplete. The deviation of DFT from

experimental data is often beyond the required chemical accuracy (∼ 40 meV/atom)

[135–138].

Numerous attempts have been devoted to systematically correcting DFT formation

enthalpies while avoiding applying more expensive schemes. For example, to correct

the error from the exchange-correlation, one can try to optimize the semi-local

functional to give better formation energies [139]. A more expensive alternative

is to combine non-self-consistent exact Hartree–Fock exchange with random phase

approximation (RPA) correlation [140, 141].

Instead of improving the exchange-correlation functional, empirical corrections on

formation energies are also explored, where usually, the correction is made by fitting

the DFT formation energies of a chemical family to experimental ones and extracting

corrections on the most strong-correlated system(s) in this family. Wang et al. [142]

suggested a correction to O2 for evaluating the formation energies of oxides. Similar

approaches were then proposed to correct more diatomic gaseous systems for different

functionals[137, 138, 143]. Due to the popularity and practicality of using the DFT

+ U scheme to correct the error of semi-local exchange-correlation functionals for
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transition metals, Jain et al. [144] proposed an empirical correction scheme for mixing

GGA and GGA + U calculations to compute ∆HDFT
f . Furthermore, fitting to many

dissimilar chemical families instead of one family (so-called elemental-phase reference

energies, FERE, method [145]) could generate a general element-specific correction. A

further step can be made by considering the coordination number (number of bonds

forming) and extracting correction per specific type of bond (e.g., per metal-oxygen

bond) instead of per atom of a specific element. This bond-wise correction is the

so-called coordination correction [136].

However, the corrected formation energies alone cannot describe the compound’s

stability in reality. The stability of stoichiometries AxByCz · · · should be decided

by comparing its formation energy with all other possible combinations of competing

compositions and polymorphs, {Ax′By′Cz′ · · · }, instead of comparing with the pure

constituent elements A, B, C, · · · . It is then necessary to construct the energy

surface in the compositional space for all competing phases, and we can draw the

lowest convex envelope of all the points. This envelope is called the convex hull (CH).

A sketch for binary and ternary CHs is illustrated in Fig 2. It can be seen that any

system located above the convex hull will have a positive reaction energy to the closet

vertices

∆Hr = ∆Hf −
∑
v

∆Hv
f > 0, (79)

which means it will spontaneously decompose to the systems on those vertices. This

reaction energy ∆rH is also called the distance to the convex hull, usually denoted as

Ehull, which serves as the indicator of the thermodynamic stability of a compound.

From Eq 79, the systematic error of formation energy would further cancel because the

summation is mainly confined in the vicinity of the evaluated system, where the error in

DFT is systematic. In practice, empirical corrections on the DFT energies are sufficient

to produce a reasonable estimation of Ehull even from inaccurate semi-local (GGA)

functionals [146, 147]. Of course, one has to beware of the error in calculated Ehull,

and usually, a “tolerance” is applied when using Ehull to estimate the thermodynamic

stability of a compound. Commonly accepted tolerance is around 50 meV/atom

for three-dimensional systems considering the error of DFT formation energy can be

around 100 meV/atom [148, 149]. However, for two-dimensional systems, it can be as

high as 250 meV/atom [150–152].
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Figure 2: Sketch of a (left) binary and a (right) ternary convex hull.

Databases

The calculation of Ehull first needs a robust and reliable hull as reference. As

the DFT calculations result heavily depends on the parameters setups (functional,

pseudopotential, cutoff, k-grid densities, etc.), a standardized setup is required to

allow researchers to share and co-contribute to the hull construction. This is also one

of the initial motivations for building computational databases.

In Table 1 we listed several of the most relevant databases by their aliases for simplicity,

their capacity, and the mainly utilized code, i.e., Vasp [153, 154], Quantum

Espresso (QE) [155], or Gpaw [156, 157]. Note the experimental inorganic crystal

structure database (ICSD) [10], which has around 260,000 entries (with duplicated

entries on the same structures).

The MP contains all experimental known solid-state materials and thousands more

unknown materials. Their newest hull contains around 30,000 structures. For part

of the systems, other properties, including elastic tensor, surface energy, electron

properties, phonon, dielectric constant, etc., are also calculated. The MP convex

hull construction has several systematic corrections on the errors of GGA functional,

and the same correction scheme is also applied to all the works related to this Thesis.

The OQMD also contains all the experimental structures (with less than 34 atoms

in the unit cell, ≈ 32,000) and exhaustive searches on several typical prototypes.

A statistic calculated for the database shows that the mean absolute error between
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Table 1: Some examples of large online computational databases.

Database Alias Entries (103) Software

Materials Project [146] MP 146 Vasp

Open Quantum Materials Database [148, 149] OQMD 1,022 Vasp

Automatic-Flow for Materials Discovery [11] AFLOW 3,528 Vasp

Materials Cloud [158] MC 38 Qe

Dataset Cgat[WPhD12] DCGAT 2,200 Vasp

SCAN and PBEsol convex hull[WPhD10] SCANHULL 250 Vasp

Computational 2D Materials Database [150–152] C2DB 5 Gpaw

2D Materials Encyclopedia [159] 2DMatpedia 6.3 Vasp

Computational 1D Materials Database C1DB < 3 Gpaw

Exhaustive 2D Dataset[WPhD4] EX2D 68 Vasp

experimental formation energies and their DFT calculations is 96 meV/atom. In

contrast, the mean absolute error among experimental results is 82 meV/atom.

Therefore, the experimental uncertainties, besides the error from approximation in

functionals, could be one primary source of the deviation of calculated formation

energies from experimental results.

The AFLOW contains the phase diagrams for about 1.7k binary, 30k ternary, and 150k

quaternary alloy systems. For now, it is possibly the largest database on calculated

(formation) energies of inorganic crystals. It also contains nearly twice the amount

of electronic structure entries ( 370k). One advantage of AFLOW is that it includes

a few million bcc-/fcc-derived and a similar number of hcp-derived superstructures,

which enables further study of chemical, spin, and defect (dis-)ordering.

The MC seems dwarfed in capacities compared with the three databases introduced

above. However, this is merely because the tabulated number counts the entries in

the Material Cloud 3D and 2D sets. At the same time, there are more than 11 million

(although no check for duplicates has been performed) structures in the entire MC

archive system contributed by researchers worldwide. For example, our group has
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several large ones (in total around 2 million), including the Dcgat [WPhD12, 160]

set, the recalculated hull using SCAN and PBEsol functional [WPhD10, 161], as well

as the datasets obtained in Chapter 5 [WPhD3, 162] and 6 [WPhD4, 163]. The

integration of different datasets on MC could be beneficial, but checking compatibility

and removing duplicates across datasets can be technically complicated [21].

The above databases are mainly focused on bulk structures, and the rest are

mainly about low-dimensional materials (LDM). These LDM databases are much

smaller than the 3D ones, mainly because fewer experimental prototypes are

proposed in experimental LDM databases. The LDM computational databases are

intuitively constructed by examining the (thermodynamic) possibility of exfoliating

corresponding 3D crystals. This bias inherited from experiments can be partially

compensated through a systematic search on all possible species and Wycoff position

combinations within each specific two-dimensional space group, which we will discuss

further in Chapter 6 [WPhD4].

As shown in the table, unfortunately, there is no unique standard of the parameters

among databases, not just because of the variety of computational codes favored

but also the slight difference in the choice of some crucial parameters, for example,

regarding the choice of U values for the GGA + U schemes. This reality sabotages the

compatibility of the hull between databases. For example, different correction schemes

when mixing GGA with GGA + U data are required. However, the bright side is that

repeating calculations on the same set of structures, especially those that originate

from experiments and thus should locate near the hull, could confirm the accuracy

across all databases. More importantly, it enables exploration of how minor changes

in crucial parameters affect systematic errors [149].

It is also possible to alleviate incompatibility by combining all the proposed hulls

in all databases (or even rerunning them with the same parameters). For example,

a recent attempt tried to provide a hull uniting several databases/sets (mainly MP,

AFLOW, and datasets accumulated within our group [WPhD1–WPhD3, 101, 164])

and calculated with more accurate SCAN and PBEsol functionals [WPhD10]. Of

course, an ideal but expensive approach is to scan the combinatorial space and

get a complete hull exhaustively. Fortunately, by using powerful machine learning

models [21, 22] to pre-exclude the majority of very unstable systems, the number of

DFT validation calculations can become manageable, as shown in recent achievements

on large datasets and a more complete convex hull [WPhD4, WPhD12].
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Chapter 3 Searching New Double Perovskites as

Transparent Semiconductors

In the following publication “Double perovskites as p-type conducting

transparent semiconductors: a high-throughput search” [WPhD1]1, we

perform a systematic search of the family of quaternary halide perovskites having

general formula A2B
(1)B(2)C6 in order to find promising candidates for transparent

p-type conduction.

On the other hand, the halides could be seen as an alternative route to design TCM,

for example, in CuI, as Cu1+ causes the valence band edge to develop hybrid character

between the localized O 2p and dispersive Cu 3d-orbitals[165], the m∗
h can be largely

lowered (0.2–0.25 m0) [166]. Previous works in our group [167] show that there are

several low effective hole masses halide perovskites, although the gap is usually not

wide enough.

Therefore we take a step further to perform a high-throughput search of double

perovskites. We scanned all stoichiometries of the form A2B
(1)B(2)C6, where A is

either Rb or Cs, C is a halogen (F, Cl, Br, or I), and B is from hydrogen to bismuth,

excluding the rare gases and the lanthanides (except La, which is included). The total

number of candidates is 16384. We first filter the ones with a threshold of distance to

the convex hull less than 25 meV/atom. This gives us a list of 1699 candidates, roughly

around 10%. The reason to achieve such a rather high success rate (for stability) is that

we confine the search around the compositional space. For A = Rb or Cs, numerous

experimentally synthesized double halide perovskites exist [168–170]. We further filter

the candidates with a gap (at the PBE level) EPBE
gap ≥ 1.8 eV, which leads to a list of

633 (37%). Further, only 17 double perovskites and a ternary perovskite (CsPbF3)

fulfill the third threshold m∗
h < 1 me. Fortunately, 10 out of 17 do not include toxic

or rare chemical elements.

Wide bandgap and low m∗
h are necessary for p-type TCM. However, these two

conditions are not sufficient for good performance of the material. Another condition

that has to be taken into consideration is the possibility of creating holes in the valence

band, i.e., the p-type dopability. The dopability is usually checked by calculating the

formation energies of the point defects. References on TM oxides show that the p-

1Reproduced with permission from the Royal Society of Chemistry.
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type dopability is generally poor [171–173] because of the formation of energetically

favoured hole killers such as the oxygen vacancy. The defect calculation for CsPbCl3

shows that under the Pb-poor condition, the formation energies of shallow acceptor

defects (e.g., the intrinsic V−
Cs), extrinsic K−

Pb, etc.) are lower than that of donor

defects [174].

Note that the defect formation energies depend on not only the enthalpy differences

between defected and pristine supercells but also the chemical potentials of elements.

For quaternary systems, based on the synthesis condition, the investigating system is

under equilibrium with stable ternary, binary, or elementary systems, and the chemical

potential of each element can change drastically under different conditions. Therefore,

the number of all possible equilibrium conditions can be large enough to prevent

exhaustive calculations. Partially because of this reason, we did not perform the

check on dopability. However, compared to ternary perovskites (e.g., CsPbCl3 [174]),

one could adjust the chemical potential of the two B-sites elements, which provides

additional degree of freedom to tune the defect formation energies. Therefore, the

formation of shallow acceptor defects in double perovskites should be easier to control,

although further calculations or experiments are needed to validate this.
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Double perovskites as p-type conducting
transparent semiconductors: a high-throughput
search†

Hai-Chen Wang, a Paul Pistor, a Miguel A. L. Marques *a and Silvana Botti b

We perform a systematic study of the family of quaternary halide perovskites in order to find good

candidates for transparent p-type conduction. This is achieved by using high-throughput techniques

based on density-functional theory, and by screening the materials with regard to their stability,

electronic band gap, and hole effective masses. We find a total of 17 double perovskites with promising

properties, 10 of which not including toxic or rare chemical elements. Furthermore, in most of these

systems, doping might be achieved by adjusting the chemical potential of the two cations during the

growth process. Due to chemical similarity, we expect that these materials are compatible with current

photovoltaic technology based on organic halide perovskites.

1 Introduction

Transparent conducting semiconductors (TCSs) form a large
family of materials that combine both high conductivity and
transparency. Researchers have found many n-type TCSs,
including In2O3, ZnO, and SnO2, which are by now routinely
used as transparent electrodes and thin lms transistors in
solar cell devices, infrared reective coatings, and electro-
chromic displays, to name a few examples.1,2 Unfortunately,
good p-type TCSs, which are fundamental for the development
of new electronic architectures such as transparent p–n junc-
tions, are much rarer.2 Since the rst report on a p-type TCS
made of NiO,3 a class of promising p-type TCSs was identied at
the end of the 90s in the family of Cu oxides with the delafossite
structure. CuAlO2 was rst investigated by Hosono et al. in
1997,4 leading to an extensive research effort of the whole family
of CuMO2 delafossite compounds.5 During the past two
decades, a large effort, both experimental and theoretical, has
been made to explore potential p-type TCSs in other crystal
families, and potential candidates have been found in the Sn–O
system,6,7 in spinel oxides8–10 or in chalcogenides.11–13 Unfortu-
nately, due to the low valence band dispersion of localized O-2p
orbitals in these candidates, existing p-type TCSs still do not
have a performance comparable to their n-type counterparts2,7,11

and new solutions for p-type transparent conductivity are under
active research.

There are a series of conditions that are required for a good
p-type TCS. First of all, the energy gap should be large in order
to avoid absorption in the visible range.2,7,11 Then one usually
searches for holes with small effective masses at the top of the
valence band, in order to ensure the mobility of charge carriers.
Unfortunately, from k$p theory we know that effective masses
are usually inversely proportional to the band gap, which
complicates considerably the nding of materials with large
gaps and small masses.2,7,11 Finally, we must be able to generate
a large density of carriers, which oen means a large concen-
tration of p-type defects. Unfortunately, several materials
exhibit native n-type defects, which may compensate any p-type
doping.2,7,11 This is evident, for example, in many oxides where
oxygen vacancies typically have low formation energies and n-
type character.2,7,11

A material that was recently found to have excellent p-type
conduction properties is CuI.14 This compound exhibits a very
dispersive valence band, leading to light holes with a mass of
around 0.2–0.3me.15,16 Furthermore, the low energy defects are
in this case copper vacancies (with a formation energy esti-
mated to be around 0.5 eV), which are naturally p-type.14 Finally,
the gap above 3 eV makes this material transparent in the
optical regime.14 These remarkable ndings suggest that
perhaps the holy grail material for transparent conduction is
not an oxide.

Copper(I) iodide is not the only halide material that has
recently been in the spotlight for opto-electronic applications.
In fact, it was recently shown that halide perovskites have
extraordinary properties as absorbers for photovoltaic devices,
achieving efficiencies of more than 20%.17–19 Perovskites form
a large family of materials with a wide variety of chemical
compositions and material properties. Besides the applications
in the eld of photovoltaics, it has been shown that, within the
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perovskite family, one can nd materials with a wealth of
interesting physical properties, relevant for instance for high-k
dielectrics, superconductivity, piezoelectricity, magneto-
electricity, etc.20–23

In view of the above, we asked ourselves if it is also possible
to nd perovskite systems relevant for transparent p-type
conduction. Here, we will try to answer this question by per-
forming a computational high-throughput study based on
density-functional theory (DFT). Our objective is to nd perov-
skites which are (i) thermodynamically stable, (ii) have a wide
band gap, and (iii) have low effective hole mass. Of course, there
have been quite a few high-throughput studies published in the
recent literature trying to nd either new p-type transparent
conductors13,24–27 or novel perovskites for a wealth of applica-
tions.20,21,23,28–31 In this context, some of us already looked in ref.
21 at p-type conduction in ternary inorganic perovskites,
nding a few promising systems. Here we go a step further and
look at quaternary halide double perovskites. This class of
materials has been recently considered32,33 as promising
absorber layers in an attempt to solve the two main problems in
the eld of perovskite photovoltaics: stability and the use of Pb.

Double perovskites have a number of advantages with regard
to their ternary counterparts. First of all, the phase space of
possible compounds is substantially larger, which increases
considerably the probability of nding promising candidates
with the desired properties. Furthermore, double perovskites
most oen crystallize in a cubic lattice, avoiding the compli-
cated distortions that are oen present in ternary perovskites.34

Finally, if the double perovskite includes cations in different
oxidation states it may be possible to dope it either n or p by
simply changing the relative chemical potentials during growth.

Another advantage of double perovskites is that they are
more stable to moisture in comparison with hybrid perov-
skites.35,36 For this reason they were at the beginning proposed
to replace hybrid perovskites as absorbers. However, their band
gaps turned out to be all too large for use in single-junction
solar cells.37,38

As an example, we can report that Slavney et al. found that 30
days-exposure in 55% relative humidity caused no material
decomposition in double perovskite Cs2AgBiBr6.39 Moreover,
solar cells using inorganic-only transport materials are more
stable against moisture.36 We can therefore expect that inor-
ganic double perovskites working as TCS layers will also
improve the performance of hybrid solar cell devices under
humid conditions.

On the negative side, it might be more complicated to
synthesize quaternary perovskites, not only due to the large
number of possible secondary phases, but also due to the
difficulty of avoiding exchange of the two cations.

To screen the composition space searching for p-type
perovskite A2B

(1)B(2)C6 compounds, we decided to use high-
throughput density-functional theory. In the rst step, we
study the thermodynamic stability of quaternary double
perovskites in a large set of compositions. Compounds that are
stable or close to thermodynamic stability are ltered out for
further theoretical characterization using state-of-the-art ab
initio methods. The remainder of this article is structured as

follows: in Section 2 we describe our computational workow
and give the numerical parameters of the calculations. The
results for thermodynamic stability and electronic properties
are analysed in Section 3. Finally, we draw some conclusions in
Section 4. More details on the results are included as ESI.†

2 Computational methods

We scanned all stoichiometries of the form A2B
(1)B(2)C6, where A

is either Rb or Cs, and C is a halide (F, Cl, Br, or I). For the B
atoms we took all combinations of elements from hydrogen to
bismuth, excluding the rare gases and the lanthanides (with the
exception of La, which was included). This amounts to 64
chemical elements, leading to 2048 combinations for each
choice of alkali metal and halide, and a total number of more
than 16 000 possible compounds. In the choice of the compo-
sition space, we focused on Rb and Cs compounds, for which
stable systems with interesting properties are already
reported.33,38,40,41

A priori we can expect to nd in the B positions either two
divalent metals or one monovalent metal and one trivalent
metal. Therefore, we could have restricted our search to only
elements exhibiting those oxidation states. However, we
decided not to bias our search by these considerations, and to
allow for the possibility of having elements in less common
oxidation states. We should nevertheless note that, for practical
applications, the presence of two divalent metals is probably
undesired due to the difficulty of avoiding cationic exchange
and consequential disorder. Having two B cations in different
oxidation states, thereby creating two different chemical envi-
ronments, is therefore preferred.

We used the standard face-centered double perovskite
prototype shown in Fig. 1, with 10 atoms in the primitive unit
cell. We then optimized the lattice constant and calculated the
total energy, which can be done very efficiently due to the high-
symmetry of the cubic structure. To this end we applied ab initio

Fig. 1 The double perovskite structure (A2B
(1)B(2)C6) used in this work.

The A (C) atoms of the original perovskite structures are in pink
(brown), and two different species B(1) and B(2) are positioned at the
center of the green and brown octahedra, respectively.
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density functional theory as implemented in the computer code
VASP.42,43 All parameters were set to guarantee compatibility
with the data available in the materials project database44 and
open quantum materials database.45 We used the PAW46 data-
sets of version 5.2 with a cutoff of 520 eV and G-centered k-point
grids, as dense as required to ensure an accuracy of 2 meV per
atom in the total energy. All forces were converged to better than
0.005 eV Å�1. All geometry optimizations were performed with
spin-polarization using the Perdew–Burke–Ernzerhof47 (PBE)
exchange–correlation functional, with the exception of uorides
containing Co, Cr, Fe, Mn, Mo, Ni, V, and W, where an on-site
Coulomb repulsive interaction U with a value of 3.32, 3.7, 5.3,
3.9, 4.38, 6.2, 3.25, and 6.2 eV, respectively, was added to correct
the position of d-states.

To determine the thermodynamic stability of a compound,
we calculated the distance of its formation enthalpy from the
convex hull of stability, i.e. we compared its formation enthalpy
to that of all other known competing phases and phase
mixtures, including decomposition into elemental, binary,
ternary, and other quaternary phases. We chose to use the
materials project database for our reference energies, and to
determine the distances to the convex hull of stability with
PYMATGEN.48 The materials project database includes most of
the experimentally known inorganic crystals that are present in
the ICSD database49,50 and an increasing number of theoreti-
cally predicted phases.

Our goal is to propose double perovskites that (i) are stable,
(ii) yield large band gaps to ensure transparency, and (iii)
possess small effective masses.

Starting from the initial set of 16 000 compounds, we rst
screened out all systems with a distance to the convex hull
larger than 25 meV. The threshold was not set strictly to zero as
we should keep in mind that there is an error inherent to our
theoretical approach and to the numerical modeling (the PBE
approximation, neglect of zero point motion and temperature
effects, neglect of disorder, neglect of defects, etc.). Further-
more, thermodynamically unstable phases under ambient
conditions can be sometimes stabilized by temperature, pres-
sure, strain, etc. and therefore synthesizable.

Aer applying this rst lter, we calculated band gaps and
effective masses for a remaining set of compounds, always
using the PBE exchange–correlation potential.47 It is well known
that a Kohn–Sham PBE band structure systematically underes-
timates the gap, oen by about 50%. As our objective is to
guarantee the transparency of our candidate materials, we set
therefore a threshold of 1.8 eV for the PBE gap. This threshold
value is equal to the PBE band gap of CuAlO2. A successive
comparison with band gaps calculated with the hybrid func-
tional proposed by Heyd–Scuseria–Ernzerhof51 (HSE06)
conrms the validity of this choice.

The nal descriptor that we use to lter our results is the
hole effective mass. In this case, a semi-local approximation
such as PBE already yields reliable values, but unfortunately the
calculations are rather sensitive to the number of k-points. To
circumvent this problem, we used a dense grid consisting of
8000 k-points per atom. The Kohn–Sham eigenvalues were then
Fourier interpolated with the BoltzTrap52 soware, following

the same approach as ref. 24. We calculated the average hole
effective mass tensor for a carrier concentration of 1018 cm�3

and a temperature of 300 K. We then used the higher limit
estimation for m*

h (see ESI of ref. 24). We used the threshold
value of m*

h\1me to further lter the number of candidate
structures.

Finally, accurate band structures of selected compounds
were evaluated with the Heyd–Scuseria–Ernzerhof HSE06 (ref.
51) hybrid functional. The results are discussed in the following
section.

3 Results and discussion

The distance to the convex hull of thermodynamic stability gives
us a strong constraint on the systems that are possible to
synthesize.45,53 As such, the rst step of our procedure is the
calculation of the convex hull of stability for all the initial set of
double perovskites.

As an example, we plot, in Fig. 2, the distance to the convex
hull (in meV per atom) for the Cs2B

(1)B(2)Cl6 system. Analogous
plots for the other halides can be found in the ESI.† The
chemical elements are ordered according to a modied Pettifor
scale,54 a one-dimensional representation of the periodic table
where chemically similar elements are placed in neighboring
positions. Furthermore, only the lower triangle is shown due to
the equivalence of the B(1) and B(2) atoms. The diagonal corre-
sponds, evidently, to the standard ternary perovskites.

To calculate the distance to the hull for each system in Fig. 2,
we excluded it from the hull itself. In this way we obtain nega-
tive distances for stable materials. Of course, the magnitude of
this value is the energy gained by forming the quaternary
perovskite. We then used a color scale for visualization: green
dots correspond to theoretically stable structures, while red
denotes (very) unstable phases. As discussed above, one should
not entirely disregard systems that are slightly unstable (orange
points).

Fig. 2 Distance to the convex hull for the Cs2B
(1)B(2)Cl6 double

perovskites in meV per atom. Green corresponds to theoretically
stable compounds.

This journal is © The Royal Society of Chemistry 2019 J. Mater. Chem. A, 2019, 7, 14705–14711 | 14707
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In general, we see an increase of stability going from iodides
to uorides. Furthermore, for each choice of A and C there is
a very large number of stable or nearly stable A2B

(1)B(2)C6

systems (see gures in the ESI†), testifying the remarkable
exibility of the perovskite crystal structure. From Fig. 2 we can
clearly see that alkali metals (with oxidation state +1) have the
ability to form stable quaternary perovskites by combining with
a large number of +3 elements. Other cations with propensity to
form stable systems are Ag, Hg, group 13 (Ga, In, Tl), and group

15 (As, Sb, Bi) elements. We also nd that other halogens can
also occupy the B positions, but this alters signicantly the
chemistry, so it is very unlikely that these systems can retain the
perovskite structure.

We have imposed perfect cubic symmetry to our crystal
structures to keep the number of atoms per unit cell as small as
possible. However, deviations from the ideal cubic structure,
caused by tilting and rotation of the BO6 octahedra, have been
reported in many double perovskite systems.55 To check the

Table 1 Candidate double perovskite systems compared with CuI, CuAlO2, and CuInO2: calculated lattice constant a, ionic radii of B(1) (rB(1)) and
B(2) (rB(2)), effective electron ðm*

eÞ and hole ðm*
hÞmasses, band gaps calculated at the PBE level (GapPBE), with the HSE06 functional (GapHSE), and

with the HSE06 functional considering spin–orbit coupling (GapSOC
HSE )

Formula Eh (meV) a (Å) rB(1) (Å) rB(2) (Å) GapPBE (eV) GapHSE (eV) GapSOCHSE (eV) m*
e (me) m*

h (me)

CuI 0 — 0.96 — 1.21 2.60 2.38 0.17 0.99
CuAlO2 0 — — — 1.83 3.36 3.35 0.77 2.59
CuInO2 0 — — — 0.28 1.52 1.51 0.33 0.78
Cs2AgBiCl6 0 10.948 1.15 1.03 1.86 3.14 2.78 0.38 0.52
Cs2AsTlF6 4 9.558 0.58 1.50 2.68 3.68 3.20 0.55 0.42
Cs2GaLaBr6 0 11.962 0.62 1.03 2.89 4.12 4.08 295 0.60
Cs2GaLaI6 0 12.742 0.62 1.03 2.50 3.50 3.39 160 0.56
Cs2InBiF6 0 9.844 0.80 1.03 2.26 3.09 2.26 0.59 0.40
Cs2InLaBr6 0 12.234 0.80 1.03 2.68 3.78 3.74 312 0.59
Cs2InLaI6 9 13.024 0.80 1.03 2.31 3.23 3.13 193 0.52
CsPbF3 0 4.897 1.19 — 2.91 3.97 3.03 0.78 0.39
Cs2SbTlF6 0 9.819 0.76 1.50 2.47 3.41 2.88 0.59 0.40
Cs2SnPbF6 26 9.693 0.69 1.19 2.22 3.14 2.47 0.53 0.34
Cs2TlBiF6 0 9.937 1.50 1.03 3.08 4.11 3.14 0.60 0.44
Cs2YInI6 1 12.764 0.90 0.80 2.47 3.31 3.21 0.74 0.60
Rb2AgBiCl6 0 10.867 1.15 1.03 1.83 3.10 2.75 0.38 0.49
Rb2AsTlF6 0 9.434 0.58 1.50 2.71 3.70 3.20 0.55 0.39
Rb2GaLaBr6 26 11.899 0.62 1.03 2.81 3.83 3.81 201 0.59
Rb2SbTlF6 16 9.714 0.76 1.50 2.54 3.48 2.92 0.68 0.39
Rb2TlBiF6 0 9.845 1.50 1.03 3.09 4.15 3.13 0.73 0.43
Rb2YInBr6 17 11.912 0.90 0.80 2.82 3.73 3.70 0.69 0.60

Fig. 3 The band gap versus effective hole mass of double perovskite p-type TCS candidates. Candidates being friendly to the environment and
including toxic elements are plotted as filled and empty turquoise circles, respectively. For comparison, CuI, CuAlO2, CuInO2, and other p-type
TCS candidates from ref. 13, 24 and 27 are marked with magenta squares. Please note the different scales in the y-axis.
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effects of such distortions, we randomly rattled the structures of
Cs2InLaBr6 and Rb2AgBiCl6. Aer re-optimization, small
distortions of the octahedra are indeed observed in both
systems. However, we nd that the variations of the structural
parameters are very small (below 3%). Moreover, these octa-
hedra distortions have only a minor effect on the electronic
structure of Cs2InLaBr6 and Rb2AgBiCl6, in agreement with the
general ndings that octahedral distortions do not signicantly
alter the electronic structure of perovskites.56,57 We therefore
consider only cubic structures in the following. We should
however keep in mind that the nal structures are likely to be
further stabilized by small distortions of the octahedra.

At this point we lter our candidates by removing all struc-
tures that have a distance to the convex hull larger than 25 meV
per atom. We obtained a list of 1699 candidates, which is
around 10% of the whole set. The next step is the calculation of
the electronic structure at the PBE level. At this step, the average
gap value of almost 1700 systems is 2.32 eV and about 37% of
them (633) have a gap above 1.8 eV. The nal descriptor that we
use to lter our results is the hole effective mass: m*

h\1me. For
all 633 compounds, the average m*

h is 6.47me, implying that
systems with low effective hole mass are indeed rare among
them. Indeed, there are only 17 double perovskites, and
a ternary perovskite (CsPbF3), that remain aer our nal
ltering.

Most of these systems involve heavy atoms like Pb, Bi, or Tl,
but there are other compounds with lighter and non-toxic
elements. Table 1 displays the candidate structures together
with the calculated values of the distance to the convex hull of
stability, PBE band gap and electron and hole masses. The
maximum PBE gaps we found were 3.09 eV for Rb2TlBiF6 and
3.08 eV for Cs2TlBiF6. Furthermore, to obtain a better prediction
of the band gaps, we re-calculated these by applying the more
accurate hybrid HSE06 functional. Considering that heavy
elements are involved, we also performed HSE06 calculations
including spin–orbit coupling. In Table 1, we included for
comparison CuI, as well as the delafossites CuAlO2 and CuInO2.
We note that HSE06 still underestimates considerably the gap
of CuI, and for which the value for the hole mass is here an
average over its three valence bands.58

Few of the materials listed in Table 1 had already been
proposed for photovoltaic applications. This is the case of
Cs2BiAgCl6 (ref. 32 and 59) or more generally the Cs2{Sb,Bi}
{Cu,Ag,Au}{Cl,Br,I}6 family.33 The rst system was experimen-
tally found to have an indirect gap of 2.2 eV,32 unfortunately too
large for photovoltaics and too small for p-type transparent
conduction.

There are several systems with a large band gap and low m*
h

formed by toxic elements Tl and Pb. However, we nd also more
interesting double perovskites such as Cs2InLaBr6, Rb2AgBiCl6,
and Cs2InBiF6 which are more friendly to the environment. As
shown in Fig. 3, our candidates have much lower effective hole
masses and wider band gaps than CuI, CuAlO2, and CuInO2.
Furthermore, compared with previous results of searching p-
type TCSs,13,24,27 most candidates screened out in this work,
especially those without Pb and Tl, are located closer to the
lower right corner of Fig. 3.

We can also divide the candidate double perovskites into two
categories based on their effective electron masses: one with
both light electrons and holes, for example Rb2AgBiCl6, and the
other having light holes but much heavier electrons such as
Cs2InLaBr6. The band structures of Cs2InLaBr6 and Rb2AgBiCl6,
calculated at the level of HSE06 including spin–orbit coupling,
are shown in Fig. 4. Cs2InLaBr6 has a direct gap at the L point,
while in Rb2AgBiCl6 the band gap is indirect from the top of the
valence band at X to the bottom of the conduction band at the L
point. The dispersive valence bands are formed from the
hybridization of In-s and Br-p states, or Bi-s and Cl-p states near
the Fermi level. This is consistent with the small effective hole
mass calculated for these double perovskites. Furthermore, the
bottom of the conduction band is more localized in Cs2InLaBr6
than in Rb2AgBiCl6, giving a much higher m*

e in the former.
Similar dispersive valence bands also exist in other candidate
systems (see gures in the ESI†).

4 Conclusions

In this work we applied a high-throughput DFT calculation
scheme to scan the periodic table for transparent conducting
semiconductors (TCSs) with the double perovskite structure.

Fig. 4 The band structures of Cs2InLaBr6 (top) and Rb2AgBiCl6
(bottom) calculated within the HSE06 approximation including spin–
orbit coupling.

This journal is © The Royal Society of Chemistry 2019 J. Mater. Chem. A, 2019, 7, 14705–14711 | 14709
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We studied stoichiometries of the form A2B
(1)B(2)C6, where B

ranges from hydrogen to bismuth (excluding rare gases and
lanthanides except La), A is Rb or Cs, and C is a halogen
element. In this phase space containing more than 16 000
possible compounds we spotted 633 structures sufficiently close
to the convex hull of thermodynamic stability, and thus stable
enough for an easy experimental synthesis.

These systems were then ltered with respect to their elec-
tronic band gap and hole effective mass values. We selected at
the end 18 candidates, ten of them free of toxic elements such
as Pb, As, and Tl. The best compounds have small effective hole
masses due to a strong hybridization between the s-states of the
B-site element and the p-states of the halogen near the Fermi
energy.

We remind that nding a large band gap and low hole
effective masses is not a sufficient condition for a good p-type
TCS. In fact, another essential condition, much harder to
translate into the minimization/maximization of a simple
material property, is the p-type dopability of the system.
However, in these quaternary systems dopability may be ach-
ieved by adjusting the chemical potential of the two cations
during the growth process.

Moreover, due to the similarity between these materials and
the halide perovskites used as absorbers in photovoltaics, we
believe that it should be possible to easily integrate these p-type
TCSs in current technology, in a step towards completely
transparent photovoltaic modules.

These results are meant to provide experimentalists with
essential information on the stability and electronic properties
of double perovskites for application as transparent semi-
conductors. The crystal structures of these compounds are
available for more accurate theoretical characterization, hoping
that some other interesting properties that have not been
screened in this rst study can come on the scene and motivate
experimentalists to try to synthesize some of these compounds.
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Chapter 4 Discovery of New Mixed Anion Perovskites

In the following publication “A high-throughput study of oxynitride,

oxyfluoride and nitrofluoride perovskites” [WPhD2]2, we aim to search stable

mix anion perovskites for photovoltaic applications.

The ternary inorganic perovskites ABC3 are one of the most extensively studied

families. As we have discussed in the preceding Chapters, in this prototype, there are

an enormous amount of combinations of elements, offering an excellent opportunity

to tune the properties, such as thermodynamic stability, lattice constant, band gap,

etc., by varying the compositions. Several strategies can be used to go beyond ternary

compositions and explore related materials for potential applications. For example,

the A site could be occupied by organic molecules, leading to the hybrid perovskites.

The hybrid perovskites’ efficiency surpasses CdTe or CIGS (copper indium gallium

selenide), and is comparable to top values achieved with single-crystalline silicon [175].

Moreover, the B sites can be occupied by two different cations to form the double

perovskites, as we have shown in the last Chapter. In this Chapter, we focus on

mixing two anions in the C sites. The ratio between the two anions X and Y can

be controlled in experiments, but for the sake of simplicity and representation, we

consider here the ABX2Y-type of compositions.

The choice of A and B elements runs over the periodic table up to bismuth (excluding

the noble gases and the lanthanides other than La). The anions X and Y are N, O, and

F, thus in total six possible combinations. The total number of compositions is 6×3906

different stoichiometries. We manage to recover most of the experimentally known

mixing anion perovskites with a 250 meV/atom threshold for distance to the convex

hull (Ehull) and a lot more new compositions that have Ehull less than 100 meV/atom.

The relatively large values of Ehull originate in the fact that we only consider the 5-

atoms unit-cell of perovskite (the anions are fully ordered), which is usually not the

case in experiments [176].

To study the effect of disorder, we construct supercells using the cluster expansion

method implemented in Atat package [177]. We restrict the size of the supercell

to containing a maximum of 20 atoms. We explore all possible symmetrized

configurations of X and Y atoms filling C sites (Wyckoff 3d position) with a 2:1

ratio. The number of configurations can be huge depending on the symmetry of the

2Reproduced with permission from the Royal Society of Chemistry.
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optimized 5-atoms cell, so we select only SrTaO2N, LaTaN2O, RbPbF2O, RbBiO2F,

KFeF2O, BaVO2F, and LaMgF2N as representatives. The different ordering of the

anions leads to a spread of stabilization compared to fully ordered 5-atoms cell from

15 meV/atom (for RbPbF2O) to 128 meV/atom (for LaMgF2N). Note here we do

not consider any entropy effect from disorder, which could further stabilize the mixed

anion system at ambient conditions.

However, the disorder of anion is not the only effect that could affect the stability of

mix-anion systems. For some compositions, it is certainly possible for them to prefer

another structure. If the convex hull we used to evaluate the stability is complete,

this should not become an issue. But for the quaternary with O-F, F-N, and O-

N mixing anions, only limited hull information is known a priori. As discussed

in Chapter 2, global structural prediction techniques should be able to predict the

ground-state structure for a given composition but are too expensive for a high-

throughput search. Therefore, we choose an alternative procedure by including as

many competing structure prototypes with composition ABX2Y. We get a list of 20

prototype systems with X and Y as non-metals from ICSD [10]. We firstly restrict the

search for the seven systems discussed above on disorder effect, but we include both

the cases of ABX2Y and BAX2Y. Other than perovskites, two new prototypes PtCOI2

(ICSD#68098) and CaBiO2Cl (ICSD#84635) turn to be the ground state of KFeF2O

and LaMgF2N, respectively. We further use these two prototypes as well as the three

most stable anion-configuration predicted above for LaTaN2O, SrTaO2N, RbBiO2F,

and RbPbF2O, to re-evaluate the stability of all the (meta-)stable candidates selected

based on the Ehull of 5-atoms cell. The results again show stabilization effects on the

mix-anion systems varying from 0 to 250 meV/atom.

We have to note that we only consider five competing prototypes. Thus the Ehull could

be changed drastically if more data on mix-anion systems are available. Unfortunately,

at the time of this work, there was no systematic scan of all (ternary/quaternary)

prototypes available. Recently, another work in the group managed to make significant

progress on this issue, and we can revisit the stability by using a much more

complete hull based on millions of DFT calculations guided by ML model pre-filtering

results [WPhD12].

We also calculate the band structures for several selected candidates, and we find that

the conduction bands are highly dispersive, leading to rather small electron-effective

masses. However, unfortunately, the hole bands are considerably flatter. Although
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those mix-anion perovskites are not expected to be suitable p-type semiconductors,

mix-anion perovskites still have quite a variety on the width of band gaps. The PBE

level gaps range from 0 to nearly 5 eV, confirming there is a potential ground for

further band engineering via anion alloying.
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A high-throughput study of oxynitride, oxyfluoride
and nitrofluoride perovskites†

Hai-Chen Wang, a Jonathan Schmidt,a Silvana Botti b

and Miguel A. L. Marques *a

Perovskite solar devices are nowadays the fastest advancing photovoltaic technology. Their large-scale

application is however restrained by instability and toxicity issues. Alloying is a promising way to stabilize

perovskites, optimizing at the same time their absorption and charge-transport properties. We perform

an extensive computational study of the thermodynamic stability and electronic properties of oxynitride,

oxyfluoride and nitrofluoride perovskites. We consider quaternary stoichiometries of the type ABX2Y,

where A and B are any elements of the periodic table and X and Y are nitrogen, oxygen, or fluorine. As

a starting point we explore the composition space using a simple five-atom perovskite unit cell. We then

filter the candidate compositions according to their distance to the convex hull of thermodynamic

stability. For the most stable systems, we then investigate other prototype structures, including more

complex perovskite phases that allow for octahedral distortions, and a few non-perovskite geometries.

Furthermore, for some paradigmatic cases, we study the effect of disorder by exhaustive enumeration of

all possible disordered stoichiometric phases with up to 20 atoms in the unit cell. Our calculations are in

very good agreement with data for experimentally known mixed anionic compounds, and predict

a series of novel stable (perovskite and non-perovskite) oxynitride and oxyfluoride phases, including

some with unexpected chemical composition, and one single nitrofluoride compound. Finally, we

calculate and discuss the electronic properties of these compounds and their potential for application as

photovoltaic absorbers.

Introduction

Perovskites are one of the best known and more extensively
studied families of compounds. They possess the general
formula ABX3, where X is a halide, a chalcogen, or even
nitrogen, and A and B are two cations. Despite numerous
applications of perovskites in the most diverse elds of physics
and materials science,1–4 only a restricted number of experi-
mentally accessible ternary systems5 exist. There are several
possibilities to go beyond this limitation, and open the way to
new materials with improved properties. For example, one can
ll the A sites with organic molecules, leading to organic–
inorganic hybrid perovskites such as CH3NH3PbI3. Hybrid
perovskites have attracted enormous interest in the past few
years, in particular due to their application as absorbers in high-
efficiency photovoltaic devices.6–8 This is due to their unique
properties, such as their high tolerance to defects,9 the origin of
which is still under debate among sp antibonding coupling,8

polarons,10 and lattice soness.11 Alternatively, one can ll the B
site with two different cations, leading to the so-called double
perovskites.12–14 These have, for instance, been proposed as
absorbing layers for photovoltaics or as p-type transparent
conductive oxides.15–18 Another possibility to obtain quaternary
perovskites, that we address in this article, is to mix more than
one anion in the X position, leading to compositions of the type
ABX2Y.19

Mixed anion inorganic compounds are a versatile family of
materials that contain more than one anionic species in a single
phase.20 The different radii and oxidation states of the two
anions offer extra degrees of freedom with respect to the single-
anion phase, enabling further control and tuning of electronic
properties. In the context of perovskites, the most interesting
and also the most studied systems are oxynitride and oxy-
uoride compounds.

Several quaternary oxynitrides and oxyuorides have already
been synthesized and characterized in the literature. The most
common methods for synthesis are solid-state reactions, low-
temperature uorination or high-pressure synthesis.21,22 In
solid-state reaction methods a mixture of metal oxides and
nitrides or uorides is simply heated in a furnace. One expects
that high pressure stabilizes quaternary perovskites, as it
suppresses the decomposition to oxides and nitrogen gas, and
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allows the reactions to be carried out at higher temperature.21

Experimentally synthesized compounds are presented in bold
in Tables 1–5.

The interest in oxynitride perovskites comes from the
numerous possible applications of these compounds. The
smaller electronegativity of nitrogen with respect to oxygen
leads to band gaps in the visible range, opening the way to
a wealth of opto-electronic applications.23 In fact, and in

contrast to oxide perovskites that are usually colourless, these
quaternary systems display bright coloring in a diverse color
spectrum, enabling their use as, for example, pigments or
phosphors24–26 and photocatalysts.22,23

Initially, investigation into oxyuoride perovskites was
motivated by the discovery of superconductivity at 46 K in the
cuprate Sr2CuO2F2+x.27–29 Oxiuoride systems can also possess
interesting magnetic properties. For example, due to the inter-
action between the Fe3+ ions, BaFeO2F, SrFeO2F, and PbFeO2F
exhibit magnetic (antiferromagnetic) ordering until a tempera-
ture of around 645 K,30 685 K,31 and >500 K,32 respectively. Iron-
based oxyuoride perovskites were also shown to exhibit mul-
tiferroic behavior.33

In this article, we provide a comprehensive computational
study of oxynitride, oxyuoride, and nitrouoride perovskites.
Our objective is threefold: (i) to provide a list of novel compo-
sitions that could be likely experimentally synthesized in the
perovskite phase; (ii) to provide physical insight into the
problem of disorder in these systems; and (iii) to study their
electronic properties. We follow a systematic approach to unveil
interesting materials that are not simple, evident substitutions
of well-studied systems. This is particularly important for
nitrouorides, as no such perovskites are experimentally known
at the moment. Our computational tool of choice is density-
functional theory (DFT), a quantum approach to calculate the
structural and electronic properties of materials which has
demonstrated over the years unparalleled accuracy combined
with reasonable computational costs.

Clearly, performing a study of the complete chemical space
for oxynitride, oxyuoride, and nitrouoride perovskites
including the effects of distortion, disorder, pressure, temper-
ature, etc. is way beyond current computational possibilities.
Therefore, we will follow a stepwise procedure conceived to be
at the same time predictive and affordable. We start by looking

Table 1 Calculated properties for ABN2O materials. We list the
composition, the Goldschmidt tolerance factor t, the s factor, the
energy distance to the convex hull of the simple five-atom cell (E(5)hull in
meV per atom), the most stable phase we found (according to the
labels defined in Fig. 4), the band gap calculated with the PBE
approximation (in eV), the total magnetization of the unit cell per atom
(in Bohr magnetons), and the experimental bibliographic reference
when available. We only show values of t and s for materials where the
oxidation states of the cations were clearly defined, and for which we
had values for the ionic radii. The oxidation states were obtained with
PYMATGEN.41 The values of the band gap in parentheses are experi-
mental results. Note that the PBE approximation underestimates the
band gaps, but as we can see from comparison with the experimental
numbers the error is systematic. This table includes only the most
relevant materials. For more data, please refer to the ESI

Material t s E(5)hull Str. Ehull Egap Mag. Ref.

BaReN2O 0.99 3.49 125 c �11 0 0
CaReN2O 0.87 4.47 146 a �5 0 0
KReN2O 1.01 3.71 248 f 7 1.94 0
LaNbN2O 0.84 3.74 127 a �32 1.12 0 44
LaReN2O 0.87 2.83 128 a 22 0 0
LaTaN2O 0.84 3.74 80 a �45 1.29

(1.9, 2.1)
0 44–49

LaTcN2O 0.86 3.09 170 a 47 0 0
NaReN2O 0.88 4.09 213 f 46 1.89 0
SrReN2O 0.93 3.78 81 c �53 0 0

Table 2 Calculated properties for ABO2N materials. Legend as in Table 1

Material t s E(5)hull Str. Ehull Egap Mag. Ref.

BaNbO2N 0.95 3.54 65 a �22 1.25 (1.8) 0 46 and 47
BaReO2N 0.98 3.47 94 c �41 0 0
BaTaO2N 0.95 3.54 33 b �44 1.43 (1.8) 0 46 and 47
BaTcO2N 0.97 3.48 82 c �54 0 0
CaNbO2N 0.83 5.34 193 a 22 1.81 (2.1) 0 46 and 47
CaReO2N 0.86 4.67 164 b �5 0.41 0
CaTaO2N 0.83 5.34 146 a 13 1.67 (2.4) 0 46–48 and 50
CaTcO2N 0.85 4.86 176 b �7 0.44 0
KReO2N 1.01 3.64 124 b 25 0 0
LaHfO2N 0.81 5.38 177 a 20 2.53 0
LaTaO2N 0.83 4.57 220 b 140 0 0
LaTiO2N 0.86 3.13 121 a 30 1.64 (1.9) 0 44, 49 and 51
LaZrO2N 0.81 5.70 260 a 45 2.53 0 51
LiReO2N 0.78 5.76 223 a 40 0 0
NaReO2N 0.88 4.09 92 b �7 0 0
PbReO2N 0.92 3.80 171 c 34 0 0
SrNbO2N 0.89 4.07 72 a �21 1.37 (1.9) 0 46 and 47
SrReO2N 0.92 3.83 87 c �47 0 0
SrTaO2N 0.89 4.07 65 b �14 1.68 (2.1) 0 46–48
SrTcO2N 0.91 3.89 95 c �47 0 0

8502 | J. Mater. Chem. A, 2021, 9, 8501–8513 This journal is © The Royal Society of Chemistry 2021

Journal of Materials Chemistry A Paper

Pu
bl

is
he

d 
on

 1
8 

Fe
br

ua
ry

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

2/
20

22
 1

0:
15

:2
2 

A
M

. 

View Article Online



at the simple, ve-atom perovskite unit cell. The most inter-
esting systems, from the point of view of thermodynamic
stability, are then selected by comparison with the experimental
data. We then take into account possible distortions by using
more complex prototype structures. Disorder is studied by using
exhaustive enumeration methods. Finally, we calculate and
discuss the physical properties of some selected compounds.

Methods

We performed DFT calculations using the VASP code,34,35 where
all parameters were set to guarantee compatibility with the data
available in the materials project database.36 We used the PAW37

datasets of version 5.2 with a cutoff of 520 eV. The Brillouin
zone was sampled by G-centered k-point grids with a uniform
density calculated to yield 1000 k-points per atom (except where
explicitly stated). All forces were converged to better than
0.005 eV Å�1. All calculations were performed with spin-
polarization using the Perdew–Burke–Ernzerhof38 (PBE)
exchange–correlation functional, with the exception of oxides
and uorides containing Co, Cr, Fe, Mn, Mo, Ni, V, and W,
where an on-site Coulomb repulsive interaction U with a value
of 3.32, 3.7, 5.3, 3.9, 4,38, 6.2, 3.25, and 6.2 eV, respectively, was
added to correct the d-states. Band structures were also calcu-
lated with the HSE06 functional.39

We prepared all possible compositions of type ABX2Y, where
A and B run over the periodic table up to bismuth (with the
exception of the noble gases, including La but removing the
other lanthanides), and X and Y are N, O, and F. We used in
a rst instance the simple ve-atom unit cell shown in Fig. 1.
Considering the 6 possible combinations of X and Y, this leads
to 6 � 3906 different stoichiometries. We optimized the
geometry of each one of these structures and calculated their
formation energy and used them to build the convex hull of
thermodynamic stability using PYMATGEN.41 This robust open-
source Python library for materials analysis is widely used in

computational studies for a variety of tasks, including the
visualization of calculations and the generation of standardized
input les. In our case, we use PYMATGEN to query the mate-
rials project database and to calculate the energy distance to the
convex hull. The construction of the convex hull considers all
possible decomposition channels (in elementary, binary,
ternary, and quaternary phases) present in the materials project
database,36 complemented with the compounds found in ref.
42. Specically, this means that the formation energy of each
ABX2Y perovskite is compared to the formation energy of all
stable crystalline phases of the A–B–X–Y phase diagram.

To study the effect of disorder, we systematically constructed
supercells using the soware included in ATAT.43 We restricted
the unit cells to a maximum of 20 atoms (4 formula units), and
explored all possible ways to ll the Wyckoff 3d position with
the X and Y atoms that respected the X2Y stoichiometry.
Equivalent unit cells that were mapped by a symmetry operation
were automatically discarded by ATAT.

Exploration of the chemical space

It is instructive to analyze the distance to the convex hull of
stability (Ehull) for all chemical compositions when we use the
ve-atom perovskite unit cell. A histogram with this informa-
tion can be found in Fig. 2. Although this plot does not give us
information on specic materials, it does give us invaluable
insights into the chemistry of inorganic perovskites. Interest-
ingly, the curves for the different anion compositions exhibit
different behaviors. For ABO2N and ABN2O the histograms are
less asymmetric and are centered at around 1.5 eV. There is also
a clear difference between ABO2N and ABN2O, with the former
yielding more stable compounds than the latter. The histo-
grams for the oxyuorides rise very steeply until around 1 eV
and then decay slowly until �4 eV. No noticeable difference in
stability can be seen for ABO2F and ABF2O. The nitrouorides
display very few systems with a small distance to the hull, and
show a large difference between ABN2F and ABF2N, with the
latter yielding considerably more stable structures. The reduced
stability of the ABN2Y crystal phases can be understood by
noticing that the �3 standard oxidation state of nitrogen
implies that cations A and B together have to compensate for at
least a �7 valence. While this is certainly possible, the number
of such combinations of A and B is considerably smaller than in
the case of anions with lower charge states. Furthermore, the
larger difference of ionic radii between N and F (with respect to
the N–O and O–F pairs) can also lead to geometrical instabil-
ities, thereby increasing the formation energy of nitrouoride
systems.

Themost important information that we can obtain from the
distance of the formation energy to the convex hull is which
materials are predicted by theory to be stable. It is true that
experimentally one can synthesize crystal phases that are not
thermodynamically stable (i.e., not on the convex hull of
stability), but the difficulty in realizing such phases increases
considerably with their energy distance to the hull. We will
therefore turn our attention to the materials contained in the
le extreme of the distributions in Fig. 2. The selected

Fig. 1 The crystal structure of the ABX2Y perovskite used for the high-
throughput search. The orange ball denotes the A atom, while cyan
balls are B atoms, green balls X atoms and pink balls Y atoms. The unit
cell is tetragonal with space group P4/m2/m2/m (#123). Image
produced with VESTA.40
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compounds are listed, together with information on the
experimentally realized phases, in Tables 1–5 and in the ESI.†

Lowest-energy compositions

Before we start discussing our results, we have to dene the
criteria for ltering in low-energy compositions for further
analysis. Typically, this is done by setting a reasonable
threshold in the distance to the convex hull. However, several
considerations have to be taken into account in our case. First,
the ve-atom structure we used in the high-throughput search
can be further stabilized by distortion (tilting or rotation of the
octahedra as common in many perovskites, for example) or by
rearranging the atomic positions of the X and Y atoms. As we
will see in the following, this can sometimes lead to a decrease
of the formation energy of about hundred meV per atom. Then,
we can expect a reasonable degree of disorder in the occupation
of the X and Y sites, leading to a further decrease of the free
energy due to congurational entropy. This term is typically of
the order of tens of meV per atom at room temperature.64 Note
that there are still other (de)stabilization mechanisms, such as
defects, temperature, pressure, etc., that also lead to corrections
to the free-energy. Finally, we should consider the error of the
PBE approximation in the estimation of formation energies,65–68

and hence in the determination of distances to the convex hull.
This means that materials with a small positive distance to the
hull might still be stable in the experiment.

In order to alleviate these issues, we decided to use a prag-
matic approach. We considered our calculations for the few
oxynitride and oxyuoride phases that were synthesized exper-
imentally and observed that all these systems have formation
energies close to the convex hull of thermodynamic stability.
This fact validates on the one hand our approach to nd new
materials, and on the other hand it provides us a valid way to set
a stability threshold. The experimentally known stable compo-
sition with the highest distance to the hull in our ve-atom unit
cell is LaZrO2N at 260 meV per atom above the convex hull
(although most other experimental compounds lie well below
150 meV per atom). This number is considerably higher than

the usual criterion for metastability,69,70 but one should keep in
mind that we are ltering out compounds before having
included stabilizing energy contributions coming from octa-
hedral distortions and entropic effects. We will therefore take
260 meV per atom as the maximum distance to the convex hull
of stability and pass on for further analysis only compounds
that satisfy this condition.

In Tables 1–5 we summarize the most relevant results. The
remainder of the data can be found in the ESI.† All structures
and a summary of the calculations can be downloaded from our
website.‡ At a rst glance we nd a variety of compositions
below the 260 meV per atom stability threshold. The stability of
perovskites is oen discussed based on the Goldschmidt
tolerance factor71

t ¼ rA þ ranionffiffiffi
2

p ðrB þ ranionÞ
; (1)

where rA, rB, and ranion are the ionic radii of the A and B cations,
and of the anion. More recently,72 a novel data analytics
approach has led to the proposition of a new factor

s ¼ ranion

rB
nA

�
nA � rA=rB

logðrA=rBÞ
�
; (2)

where nA is the oxidation state of A. For an experimental dataset
of 576 ABX3 materials, it was found that 0.825 < t < 1.059 gives
a classication accuracy of 74%, while s < 4.18 has an accuracy
of 92%.

To use any of these formulae for mixed anions, we must
decide on which value of ranion to use. In line with the sugges-
tion of ref. 72 we decided to use the arithmetic average ranion ¼
(2rX + rY)/3. Note that, however, it has been pointed out that the
Goldschmidt factor using ranion can fail to capture the stability
trends in mixed anionic perovskites53,73 and pyrochlores.74 The
geometric mean has also been used to approximate the radius
of a site with two ions,75 and more complicated factors that
involve, e.g., octahedral factors and atomic packing fractions,

Fig. 2 Distribution of the distances to the convex hull of all oxynitride (left), oxyfluoride (center), and nitrofluoride (right) perovskites. The bins
have a size of 40 meV per atom.

‡ https://tdd.org/bmg/data.php
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have also been proposed.75,76 For simplicity, however, we
decided to build our analysis in the traditional t and on s.

All the considered materials have values of Goldschmidt
tolerance factor between 1.09 (for CsCoF2O) and 0.78 (for
LiReO2N and NaInF2O). All in all, this range of [0.78, 1.09] is
perfectly consistent with the usual range reported for perov-
skites.72 Concerning s we nd that 79% of our low-energy pha-
ses have s < 4.18 and should therefore be stable perovskites
according to ref. 72. This percentage of true positives is
reasonable, but considerably smaller than the stated accuracy of
92%. In view of this analysis, and considering that it is nowa-
days possible to perform efficient high-throughput DFT calcu-
lations and apply sophisticated machine learning models,77 it is
unclear what is the benet of using oversimplied empirical
models for the prediction of novel stable materials.78

One last note concerning materials containing lanthanide
atoms: as we removed these elements from our high-
throughput search they do not appear in our results. However,
one can reasonably expect that materials predicted to be low
energy with La are also close to the hull aer substitution of La
by other lanthanides due to their chemical similarity.79,80

Oxynitrides

In what concerns oxynitride compounds of the ABN2O type, we
nd 16 systems that satisfy our ltering conditions. Interest-
ingly, they exhibit combinations of cations with diverse oxida-
tion states. For example, I–VII as in KReN2O, II–VI as in
CaReN2O, or III–V as in LaReN2O. The lowest of this (at 69 meV
per atom above the hull) is LaTaN2O, that has already been
experimentally synthesized.44–49 At the B site, we nd mostly
a group V (Sr or Ba) or a group VII (Tc or Re) element. Perhaps
surprisingly, the chemical element that yields more stable
compounds is Re, which can combine with Na, K, Ca, Sr, Ba, La,
and Pb. In view of the fact that there are, at the moment, no
known Re-based oxynitrides, this nding can open the door to
a completely new family of materials. We note that many of
these compounds, although having low energy, require cations
in less common oxidation states. Therefore, we can probably
expect that, if synthesized, they will be off-stoichiometric, either
due to the variation in the O–N ratio, or due to the creation of
vacancies.

The other stoichiometric oxynitride family, ABNO2, has
considerably lower formation energies, so we nd many more
systems (35) within our energy threshold. In this list, we nd
cations in the oxidation states I–VI (as in KReO2N), II–V (as in
BaTaO2N), and III–IV (as in LaTiO2N). The most likely element
that we nd at the B-site is again Re, that can be combined with
(in ascending order of formation energy) Sr, Na, Ba, K, Ca, Pb,
Li, and Rb. Interestingly, this list includes almost all alkali
metals, although Li and Rb show clearly decreased stability, but
not La, as LaReNO2 appears at 324 meV per atom above the hull.
We nd a similar situation with Tc at the B-site, yielding stable
systems for A¼ Sr, Ba, Na, Ca, Pb, K, and La. Also many systems
with Nb (A ¼ Ba, Sr, Ca, La) and Ta (A ¼ Sr, Ba, Ca, La, Pb, Sn)
have small distances to the convex hull. When La is at the B-site,
we nd stable systems with the A-site being a group IV element

(Ti, Zr, or Hf). Finally, we also nd systems such as {Sr, Ba}{Mo,
Ru}O2N and {Sr, Ba, Na}OsO2N.

Oxyuorides

We now turn our attention to candidate oxyuoride perovskites.
At a glance these systems appear to be considerably more stable
than oxynitrides, with 124 compositions of ABFO2 and 134
compositions of ABF2O below our stability threshold.

For ABFO2 the most common oxidation state of the cations is
I–III, although a few rare compounds with II–II (such as
BaMgF2O) or III–I (such as LaLiF2O) do appear. The most likely
elements occupying the A-site are Sr, Ba or an alkali-metal (in
particular K and Rb, and to a lesser extent Na and Cs). The
alkali-earths form low-energy oxyuoride perovskites with a set
of mostly rst-row metals at the B-site. Particularly interesting
are compounds with Mn, Fe, Co, Ni, etc. that should lead to
materials with magnetic order. When Cs, Rb, and K are found at
the A-site, one encounters at the B-site a transition metal. The
ones leading to more stable compositions are the heavy
elements Bi and Pb or group IV elements (Ti, Zr, or Hf). For Na,
on the other hand, the B-site should contain lighter elements
such as Ti, V, or Al. We nd furthermore several compositions
with Pb, Tl, and Ag at the A-site.

The materials that have already been synthesized (see Tables
3 and 4) are consistent with our predictions. We should note,
however, that ref. 53 attempted the high pressure synthesis of

Table 3 Calculated properties for ABF2Omaterials. Legend as in Table
1

Material t s E(5)hull Str. Ehull Egap Mag. Ref.

AgCuF2O 0.93 3.75 176 f 33 0 0
AgFeF2O 0.89 3.85 152 e 64 1.18 1.00 52
AgGaF2O 0.90 3.80 161 f 42 1.16 0
BaLiF2O 247 d 34 3.38 0
CsBiF2O 0.90 3.58 120 b 3 2.60 0
CsCaF2O 218 e 40 3.01 0
CsHgF2O 176 e �20 0.55 0.20
CsPbF2O 64 d 50 1.12 0
CsSbF2O 1.01 3.23 230 b 30 3.83 0
CsSrF2O 242 d 44 2.83 0
KAgF2O 0.92 3.55 198 e 13 0.75 0.20
KAlF2O 1.02 3.57 218 f 43 4.51 0
KAsF2O 1.00 3.51 255 e 24 4.32 0
KBiF2O 0.81 5.00 181 f �2 3.18 0
KSbF2O 0.91 3.57 245 b 21 4.19 0
NaAlF2O 0.89 3.97 190 f 26 4.84 0
NaFeF2O 0.84 4.33 165 f 44 2.31 1.00
NaGaF2O 0.85 4.21 202 f 25 3.65 0
NaMnF2O 0.84 4.33 162 e 44 0.24 0.80
RbAgF2O 0.97 3.36 189 e 1 0.46 0.20
RbAsF2O 1.05 3.45 256 a 22 3.55 0
RbBiF2O 0.85 4.09 133 f �17 3.24 0
RbCuF2O 1.07 3.52 170 e 46 0.99 0
RbHgF2O 167 e �31 0.89 0.20
RbSbF2O 0.96 3.36 209 b 17 3.73 0
RbTcF2O 201 e �24 0.03 0
TlBiF2O 0.85 4.19 165 f 21 2.87 0
TlGaF2O 1.02 3.40 214 f 40 3.24 0
TlSbF2O 0.95 3.38 222 e 18 3.08 0
TlYF2O 0.90 3.63 137 f 50 2.39 0

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A, 2021, 9, 8501–8513 | 8505

Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 1
8 

Fe
br

ua
ry

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

2/
20

22
 1

0:
15

:2
2 

A
M

. 

View Article Online



NaTiO2F, which has essentially the same distance to the hull as
KTiO2F, without success (it resulted in a mixture of NaF and
TiO2). This emphasizes that the synthesis of an oxyuoride
material is a complex dynamical process whose success cannot
be determined by the simple distance to the convex hull.

Concerning ABF2O compositions, we could nd information
on the synthesis of AgFeF2O52 and of the ternary charge-
disproportionate TlITlIIIOF2 compound.81 However, our calcu-
lations indicate that this family should be at least as common as
ABO2F. For this composition we observe either the I–IV or II–III
combination of cations. In particular, we nd that the alkalis
Cs, Rb, and K can form low-energy compounds with a variety of
metals (such as Pb, Bi, Co, Ti, Sc, etc.). We also report several
materials with Na, but only combined with lighter, rst-row
cations (Co, Ti, Fe, Al, etc.). Finally, there are a series of
systems with Ta at the A-site, and with In, Sc, Y, Fe, Co, etc. at
the B site, and with Ag at the A-site and Fe, Ga, Co, Cu, etc. at the
B-site.

Nitrouorides

We also looked into the possibility of obtaining nitrouoride
perovskites. To our knowledge, no such system has been

synthesized experimentally. From our results, we can conclude
that only one system, specically LaMgF2N, has chances of
being synthesized. The ve-atom unit cell is 155 meV per atom
above the hull, which is a sizeable but not insurmountable
energy distance. All other compositions have an energy distance
of more than 300 meV per atom from the hull.

Effects of disorder

Having selected the compositions that possess the smallest
formation energies in the perovskite structure, we now investi-
gate how the energy depends on the specic arrangement of the
anions. To that end, we pick a few interesting systems (namely
SrTaO2N, LaTaN2O, RbPbF2O, RbBiO2F, KFeF2O, BaVO2F, and
LaMgF2N) and construct all possible unit-cells with up to 20
atoms by considering the different congurations that we
obtain by lling the 3d Wyckoff anionic site with the two
different elements. We found 285 non-equivalent structures, for
which we performed a further geometry optimization (using
2000 k-points per atom for increased precision). We note that
many of these supercells are consistent with the typical defor-
mations present in perovskites, such as tilting or rotation of the
octahedra. Therefore, the resulting variations in the formation
energy account for contributions coming from the different
anion arrangements and the structural deformation upon
relaxation.

We found that the different ordering of the anions leads to
a spread of energy of 100–150 meV per atom, and to a stabili-
zation that can be as low as 15 meV per atom (for RbPbF2O) to
128 meV per atom (for LaMgF2N) with respect to the ve-atom
unit cell. We would like to note that these numbers are for
the internal energy at T ¼ 0 and not for the free energy.
Therefore, they do not account for the term that stems from the
congurational entropy that further stabilizes disordered
phases.

Three examples are shown in Fig. 3, namely LaTaN2O,
SrTaO2N, and RbBiO2F. We can see three different behaviors.

In LaTaN2O the relaxation of the anions leads to a large
stabilization (of 124 meV per atom) with respect to the total

Fig. 3 Distribution of the energy of the disordered cell with respect to
the energy of the five-atom unit cell. The width of the bins is 5 meV per
atom.

Table 4 Calculated properties for ABO2F materials. Legend as in Table
1

Material t s E(5)hull Str. Ehull Egap Mag. Ref.

AgFeO2F 0.81 6.20 269 e 117 0 0.82
AgTiO2F 0.90 3.81 141 f 26 2.17 (2.8) 0 53
AgZrO2F 0.85 4.14 204 a 69 1.97 0
BaAgO2F 0.91 3.89 233 f 140 0 0.03
BaFeO2F 0.95 3.50 130 b 56 1.52 1.00 30 and 54
BaGaO2F 0.97 3.45 248 e 110 3.52 0
BaInO2F 0.89 4.20 146 b 82 2.05 0 21
BaMnO2F 0.95 3.50 92 b 64 0 0.80
BaScO2F 0.91 3.86 90 b 13 4.11 0 55
BaTlO2F 0.85 4.98 222 f 75 1.98 0
CsTeO2F 0.92 3.45 254 a 40 2.41 0
KGaO2F 255 a 14 1.06 0.10
KHfO2F 0.93 3.53 141 b 36 4.40 0
KNbO2F 0.95 3.51 124 c 28 0 0 56
KTeO2F 0.83 4.47 216 e 42 3.01 0
KTiO2F 0.98 3.52 148 f 11 3.61 (3.2) 0 57 and 58
KZrO2F 0.93 3.54 140 b 38 3.78 0
NaNbO2F 0.82 4.59 207 a 108 0 0 56
NaTiO2F 0.86 4.18 158 f 31 3.52 0 59
NaVO2F 0.87 4.10 149 f �2 2.40 0.20
PbFeO2F 0.90 4.00 195 f 81 2.04 1.00 32 and 60
PbMnO2F 0.90 4.00 155 f 70 0.52 0.80 61
PbScO2F 0.86 4.78 173 f 54 2.82 0.00 62
RbBiO2F 83 c 50 0 0
RbIO2F 231 a 15 2.07 0
RbNbO2F 1.00 3.38 144 c 44 0 0
RbTeO2F 0.87 3.83 182 a 10 2.38 0
RbTiO2F 1.03 3.44 205 f 2 3.59 0
RbVO2F 1.05 3.48 229 f 16 2.40 0.20
SrCuO2F 0.94 3.67 178 e 42 0.84 0
SrFeO2F 0.89 4.05 171 b 90 1.57 1.00 63
TlIO2F 241 a 15 2.00 0
TlTeO2F 0.87 3.90 222 a 44 2.64 0
TlTiO2F 1.03 3.45 228 f 12 3.09 0
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energy of the simple ve-atom unit cell. The lowest-energy
structure we found (shown in Fig. 4) is a low-symmetry 20-
atom cell, but we found 13 different anionic arrangements
within 10 meV per atom from this phase. In this case the ve-
atom cell yields the highest energy structure. From the gure
we can see the large alternating tilting of the octahedra and the
distortions caused by the local mixed-anionic environment. The
large distortion can also be assessed from the distributions of
the atomic distances that read 3.39–3.69 for La–Ta (the half
diagonal of the cube), 2.11–2.30 Å for Ta–O, and 1.92–2.20 Å for
the Ta–N distance.

The compound SrTaO2N is an intermediate case. The relax-
ation of the anion positions in a larger supercell rearrangement
leads to an energy decrease of 79 meV per atom, but we can also
nd supercells with energy higher by 25 meV per atom than the
energy of the ve-atom unit-cell. The minimum energy cong-
uration that we found, shown in Fig. 4, has 15 atoms in the unit
cell and belongs to the space group P3221 (#154). Interestingly,
also the lowest-energy structures of BaVO2F and KFeF2O show
the same anionic arrangement. In the gure we can observe the
tilting of the octahedra, which is however less pronounced than
for LaTaN2O. The smaller distortion is also evident from the
inspection of the interatomic distances: the Sr–Ta distance is
now in the range between 3.47 and 3.59 Å, the Ta–O distance is
2.00–2.15 Å, and the Ta–N distance is 1.98 Å.

Finally, the total energy of RbBiO2F assumes values essen-
tially centered around the energy of the ve-atom cell, with the
lowest-energy structure 33 meV per atom below this energy. The
most stable phase turns out to be a tetragonal cell with 20 atoms
(space group I4/mmm #139). From the small stabilization energy
we can expect a small deformation of the lattice, as can be
conrmed by visually inspecting Fig. 4. The Rb–Bi bond length
ranges between 3.80 and 3.98 Å, the Bi–O distance is in the

range 2.14–2.16 Å, and the Bi–F distance is 2.45 Å. In fact, in this
structure the F atoms form perfect square motifs.

We observe that in all considered systems except RbPbF2O
the minority anion is never present in opposite vertices of the
octahedra, i.e. preferring adjacent positions.

Effects of lattice distortion: prototype
search

In the previous section we considered nonequivalent congu-
rations due to different occupation of sublattice sites and
distortion of the ideal perovskite structure. However, it is
certainly possible that some of the considered systems choose
to crystallize in other crystallographic arrangements. Ideally,
one could use global structural prediction techniques82 that are
capable of predicting the ground-state structure based solely on
the chemical composition of the unit cell. Such techniques have
already been used, for example, to investigate Cu, Ag, and Au
ternary oxides83 or half-Heusler compounds,84 or nitride perov-
skites.85 However, the large number of systems and the large
size of the unit cells required make this approach unaffordable.
Therefore, we decided for an alternative procedure that consists
in trying out experimental prototype ABX2Y crystal structures.

To this effect, we searched for stoichiometric compounds
(without partial occupancy of the Wyckoff positions) within the
Inorganic Crystal Structure Database (ICSD)86 with compatible
chemical compositions. We restricted the search to entries
where X and Y are non-metals, but we imposed no further rules
to match oxidation states, ionic radii, etc. The few systems
found are listed in Table 6, and for many of them both X and Y
are chalcogens. This again conrms that not so much is
experimentally known about mixed anionic systems.

Fig. 4 Crystal structures of the lowest energy phases of (a) LaTaN2O (space group P1, #1), (b) SrTaO2N (space group P3221, #154), (c) RbBiO2F
(space group I4/mmm#139), (d) RbPbF2O (space group Pmma, #51), (e) KFeF2O (space groupCmcm#63), and (f) LaMgF2N (space group P21/m,
#11). K and Bi atoms are in purple, Rb in dark pink, La and Sr in green, Ta in brown, Fe in yellow, Mg in orange, Pb in black, O in red, and F in gray
and N in blue. Images produced with VESTA.40

This journal is © The Royal Society of Chemistry 2021 J. Mater. Chem. A, 2021, 9, 8501–8513 | 8507

Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 1
8 

Fe
br

ua
ry

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

2/
20

22
 1

0:
15

:2
2 

A
M

. 

View Article Online



We performed geometry optimization runs for each one of
these 20 prototypes, including the two cases ABX2Y and BAX2Y,
considering again the 7 compositions included earlier in Sec. 4.
We observed that several of these prototypes relaxed towards
structures already studied in Sec. 4, while others resulted in very
high energy phases. A couple of structures, however, turned out
to be the ground state for some compositions, namely the
crystal structures with ICSD references #68098 and #84635. The

structure optimization of the former for KFeF2O leads to a very
different geometry, depicted in Fig. 4, with space group Cmcm
#63. This structure does not exhibit the traditional octahedral
coordination of perovskites, and is 44 meV per atom lower in
energy than the P3221 perovskite structure. For LaMgF2N the
ICSD structure #84635 led to the geometry represented in Fig. 4.
This phase has the space group P121/m1 (#11) and is also not
a perovskite-like structure. It is only 21 meV per atom more

Fig. 5 The band structures and density of electronic states (DOS) of the lowest energy perovskite structures were calculated with the HSE06
functional for (a) SrTaO2N, (b) CaReO2N, (c) BaScO2F, (d) NaAlF2O, (e) CsPbF2O, and (f) LaMgF2N.
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stable than the lowest-energy perovskite phase. Interestingly,
this structure has clear similarities to the geometry of KFeF2O,
as can be seen in the gure.

Having identied the ve structures of Fig. 4 as relevant for
the low-energy phases of ABX2Y compounds, we used them for
all other compositions within the imposed energy threshold. A
plot of the stabilization energy, that we dene as the energy of
the most stable prototype minus the energy of the ve-atom cell,
is depicted in Fig. 1. As for the cases discussed above, this
energy can vary considerably from essentially zero to 250 meV
per atom. We expected to see a correlation between the devia-
tion of the Goldschmidt tolerance factor t from 1 and the
stabilization energy. In fact, for values of t < 0.9 we expected the
perovskite to distort from its cubic form, leading to a consider-
able decrease of the energy. However, we could only nd a very
weak correlation in the data, i.e. only compounds with very
small values of t lowered considerably their energy by distor-
tion. In any case, we should recall that (i) we only used 5
prototypes that clearly do not allow for all possible ortho-
rhombic and rhombohedral distortions that may be favorable
for some systems, and (ii) our energies contain two distinct
contributions that unfortunately are difficult to disentangle,
namely geometrical distortions and effects of disorder.

The most stable structures found for each composition can
be found in Tables 1–5. We also present the distance to the
convex hull of the lowest energy phase, and its electronic band
gap and magnetization (per atom). We should recall that the
PBE approximation tends to underestimate the band gaps by
nearly a factor of two,87,88 so real samples will have a gap larger
than the one indicated in the table. Comparing with the
experimental band gaps indicated in parentheses in the tables,
we can see that the error is quite systematic.

Oxynitrides

We want to analyze more in detail the data in Tables 1–5. Most
of the experimentally known compounds are on the convex hull
of thermodynamic stability, or very close to it. This in our
opinion validates the use of the distance to the convex hull as
a direct measure of the probability that a certain mixed anionic
perovskite can be experimentally realized.

We can also see that most systems seem to indeed crystallize
in a perovskite structure, with the exception of NaReN2O,
KReN2O, SrTaN2O, KTcO2N, and SnTaO2N. From these non-
perovskite systems, the most likely one to be realized in exper-
iments is KReN2O which appears merely 7 meV per atom above
the hull. This is a non-magnetic semiconductor, with a PBE gap
of almost 2 eV.

There are a number of systems that appear listed with an
ABO2N composition, but not with an ABN2O composition (or
vice versa). These are, for example, the cases of CaNbO2N,
CaTaO2N, CaTcO2N, LaHfO2N, LaReN2O, etc. Sometimes both
compositions appear in Tables 1–5, but one of the variants has
a considerably larger distance to the hull compared to the other.
Examples are BaNbO2N, BaTaO2N, LaNbN2O, LaTaN2O, etc. We
see these results as indicating that such systems can be
synthesized in the specied stoichiometries, but there is only

a limited exibility for the anion composition range. On the
other hand, systems that appear with both compositions should
be stable with respect to larger variations of the O/N ratio. These
are particularly interesting, as they present the largest potential
for the engineering of electronic (or other) properties by
adjusting the anionic ratio. The best examples are CaReO2N,
SrReO2N, BaReO2N, and KReO2N, although some systems with
Tc in the B position or SrTaO2N are also promising. Note that
this last compound is experimentally known46–48 but not the
others in this list.

Finally we notice in the list a few materials with a nite
magnetic moment (BaMoO2N, KTcO2N, SrMoO2N, BaNbN2O,
BaTaN2O, and SrNbN2O). However, none of these latter is
particularly close to the hull, so we will not discuss them in
more detail.

In Fig. 5 we present, as an example, the electronic band
structure and density of states for SrTaO2N and CaReO2N. The
rst crystallizes in the perovskite structure shown in Fig. 4b and
presents a rather isotropic band structure with a direct band
gap at G of 2.70 eV in the HSE06 functional. The lowest
conduction bands are highly dispersive, with an effective mass
of m*

e � 0.8 m0. The upper valence bands are much less
dispersive, which is reected in the heavier hole mass ofm*

h � 5
m0. This signicant difference between electron and hole
masses is present in many of our systems, and has already been
discussed in ref. 89. The valence states are mostly composed by
p states of N and O with a small contribution coming from Ta
d states, while the conduction bands have mainly Ta d character
with a small O p character. The reduced hybridization between
the anionic p-states and the B-metal states is probably the cause
of the heavy holes. Finally, we see very few states associated with
Sr in the [�6, 6] eV energy windows, which is compatible with
the interpretation that the A atom is fully ionized in the
perovskite structure (Fig. 6).

The band structure of CaReO2N is rather different from that
of SrTaO2N, even if they share the same crystal structure. The
band gap of 0.87 eV is indirect, with the bottom of the
conduction band at A and the top of the valence band along the
line connecting H and A. Both electron and hole bands are

Fig. 6 Distribution of the stabilization energy, defined as the lowest
energy of all prototypes used minus the energy of the five-atom cell
depicted in Fig. 1. The width of the bins is 20 meV per atom.
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mainly composed of Re d states hybridized with p states of O
(valence band) or O and N (conduction band). The valence states
are split into two manifolds, with the lowest group (starting at
around 2.5 eV below the Fermi surface) mostly composed of the
anionic p states with a small contribution from Re. The Ca
states are found only in the conduction band above 5 eV, again
indicating that this atom is ionized in this structure.

Oxyuorides

From Tables 3 and 4 we can see that there are considerably
more oxyuoride systems, within our formation-energy cutoff,
than oxynitrates. However, the lowest energy phases of many of
these systems turn out to be a non-perovskite, i.e. one of the
structures depicted in Fig. 4e and f. Furthermore, some of the
experimentally known systems have slightly large distances to
the convex hull (>50 meV per atom). Unfortunately, with the
available data it is difficult to discern if this is due to the diffi-
culty of describing uorinated materials with the PBE approxi-
mation, or if disorder, defects or alloying have a greater
stabilization role in these systems. Furthermore, we note that
several of the experimentally known materials are magnetic. It
is well known that the vast majority of magnetic semi-
conductors are indeed anti-ferromagnetic; however, all our
calculations are performed for the ferromagnetic phase. This
can also lead to an overestimation of the theoretical formation
energy of typically a few tens of meV per atom.

With Ag in the A position, we nd stable compositions for B
¼ Cu, Fe, Ga, Ti, and Zr. The most stable seems to be AgTiO2F,
while AgZrO2F is the only one that the PBE predicts to crystallize
in a perovskite structure. Filling the A site with Ba leads to the
stabilization of a series of ABO2F compositions. Most of these
systems have considerable band gaps, with the largest gap of
4.11 eV found for BaScO2F. One band structure of this kind is
depicted in Fig. 5c. We can see that the HSE band gap of 5.82 eV
between A and G is indirect, with the curvature of the conduc-
tion bands considerably larger than that of the valence bands.
The top of the valence is mainly composed of O p-states with
a smaller contribution of Sc states, while the bottom conduction
has Sc d-character with a smaller component coming from Ba
d and O p levels. The valence bands are split, with the top
composed mainly of O p states and the bottom bands exhibiting
mainly F p-character. Between the two manifolds there is a gap.
These characteristics are shared by many of the oxynitride and
nitrouoride systems, ultimately due to the larger electronega-
tivity of F and of the stronger ionic character of the cation–F
bond when compared to the cation–O bond.

Some of the Ba containing materials are magnetic when the
B site is occupied by a 3d metal such as Cr, Mn, Fe, or Ni. On the
other hand, the only system with a perovskite structure that
appears in our list is BaLiF2O, with a rather large PBE band gap
of 3.38 eV. As such, we do not expect that the F/O ratio can be
considerably increased for Ba-based systems.

Most of the systems in Tables 3 and 4 have an alkali metal in
the A position (Na, K, Rb, or Cs). At the B site we nd a rather
diverse set of metals, ranging from the alkali earths Ca and Sr,
passing through the magnetic metals Mn and Fe, a series of

transition metals, and even the semi-metal atoms As, Te, and I.
Many of these materials retain the perovskite structure, but
some relax into the structures of Fig. 4e and f. They are mostly
insulators with considerably large band gaps that can reach
4.51 eV for KAlF2O and 4.84 eV for NaAlF2O. In Fig. 5d we plot
the band structure calculated with the HSE06 functional of this
latter compound. We can see that the band gap is indirect, and
the band structure is anisotropic, as can be expected from the
crystal structure depicted in Fig. 4f. We again see a splitting of
the valence bands with states with considerable F character in
the lower valence band. The effective mass of the electrons is
also clearly smaller than that of the holes. Note that the only AB
combinations of cations that we can nd in both short lists are
CsSb and RbBi, so we expect that these systems are particularly
resistant to variations of the F/O ratio.

Finally, interestingly, we nd in the list the system CsPbF2O
with a perovskite structure at 50 meV per atom above the hull.
The counterpart composition, CsPbO2F, appears at 103 meV per
atom above the hull, but with the structure of Fig. 4f. The
interest in this structure comes from the fact that the perovskite
CsPbI3 is the parent inorganic compound90 for the famous
halide perovskites used for photovoltaic applications.6

Furthermore, the PBE electronic band gap of these systems is
quite stable in what regards the composition, going from
1.12 eV for CsPbF2O to 1.18 eV for CsPbO2F, a value perfectly
suitable for absorbers in photovoltaic modules.91 We should in
fact consider that the PBE calculation underestimates the band
gap, but we are also neglecting spin–orbit corrections that are
sizable for heavy-element compounds and reduce the size of the
gap. The HSE band structure of CsPbF2O is depicted in Fig. 5e.
The band gap is indirect, with the top of the valence and bottom
of the conduction bands composed of hybridized F p, O p, and
Pb states. In this case the separation of the valence into two
manifolds is not complete, leading to some overlap between the
two sets of bands. The bottom of the conduction band, on the
other hand, is separated by more than 1 eV from the rest of the
conduction band.

Nitrouorides

The calculated properties for LaMgF2N are shown in Table 5.
We can see that this system is considerably stabilized by relax-
ing into the structure of Fig. 4f, which lies just 19 meV per atom
above the hull. This is a large band gap semiconductor, with
a PBE band gap of 2.26 eV. The HSE band structure of this
material is presented in Fig. 5f. The highly dispersive lowest
conduction band is mainly constructed from La d states, while
the top valence has mostly N p character with smaller La
d character. In the case of this nitrouoride system we also see
a clear splitting of the valence bands. However, due to the

Table 5 Calculated properties for ABF2N materials. Legend as in Table
1

Material t s E(5)hull Str. Ehull Egap Mag. Ref.

LaMgF2N 0.81 5.64 155 f 19 2.26 0
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strongest electronegativity difference of N and F, the gap
between the two manifolds is considerably larger than for the
oxyuoride systems.

Although LaMgF2N is the only nitrouoride system that we
predict to have possibilities to be realized experimentally, we
recall that La is oen easily substituted by other lanthanides (or
actinides),80 giving us hope that such nitrouoride systems can
be discovered in the future.

Conclusions

From our extensive computational study of quaternary oxy-
nitride, oxyuoride, and nitrouoride perovskites it is clear
that there are many more compounds that are experimen-
tally accessible than the few systems that have been discov-
ered to date. Some of them can be obtained by simple
chemical substitutions of known compounds, such as
LaHfO2N or AgTiO2F that can be obtained by substituting Zr
in LaZrO2N or in AgZrO2F. However, many of the predicted
materials do not have an experimentally known counterpart,
such as the many Re-based oxynitride systems that we found.
We note that although many of the low-energy compositions
seem to crystallize in a perovskite phase, some systems
prefer other atomic arrangements that do not exhibit the
famous octahedra. Furthermore, we show that changing the
arrangement of the anions and allowing for geometrical
distortions can stabilize the structure of the perovskites by
up to 150 meV per atom, although this number is highly
dependent on the composition. This stabilization is in many
cases fundamental, as it makes the composition thermody-
namically stable, even without the need to resort to entropic
arguments.

Many of our systems turn out to be semiconducting or
insulating, with electronic band gaps going from a fraction of
an eV to several eV. Oen the electron bands are highly
dispersive, leading to rather small electron effective masses,
while the hole bands are considerably atter. This can be
understood from the reduced hybridization between the
cationic states and the anionic p levels. Furthermore, for the
uorine compounds we nd that the valence states are oen
split, with the top of the valence characterized by a strong p-
character from O or N atoms, and the lower manifold of
states stemming from the F states. The splitting is considerably
larger for the nitrouoride systems than for the oxiuorides
indicating that this is due to the larger electronegativity of F
leading to a cation–F bond with a stronger ionic character.
However, and in spite of these common features, we nd
a multitude of behaviors that illustrate the diversity and
importance of these mixed ionic systems.

Our results conrm that alloying on the anion sublattice is
a promising strategy to improve the stability and engineer the
band gap of perovskite absorbers.
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E. A. Moore, P. R. Slater, A. J. Wright and M. F. Thomas, J.
Solid State Chem., 2011, 184, 1361–1366.

55 R. Needs and M. Weller, J. Solid State Chem., 1998, 139, 422–
423.
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Chapter 5 High-Throughput Exploration of Prototype

Space

In the following publication “Predicting stable crystalline compounds using

chemical similarity” [WPhD3], we systematically scan the chemical space around

all the experimental known prototypes.

A systematic scan of all compositions for one prototype is manageable, as proven by

the last two Chapters, but it is too expensive for all prototypes. Therefore, in this

Chapter, we borrow intuition from experiments and perform “hypothetical” feasible

substitution synthesis. The feasibility is approximated from the similarity between

elements studied in Ref [18] and discussed in Chapter 2.

However, choosing the threshold of similarity to consider a substitution feasible is

somehow arbitrary. In Table 2 and Fig. 3 below, we show the number and the

percentage of stable compounds as a function of the threshold of the similarity. Note

that the table is generated after the publication submission, and the convex hull in

the Materials Project database [146] has changed so that the number could be slightly

different to those in the paper. Furthermore, we do not have data for a threshold

below 5%, as we did not perform those runs. The results for replaceability larger than

20% are statistically less significant. In our substitution workflow the first iteration

we start from stable compounds in the materials project database, the next iteration

is based on the stable substituted structures in the previous iteration.

We can deduce from the table that the optimum threshold is around 20%, as it

maximizes the probability of finding a stable compound. However, if we had chosen

20% as the threshold value, we would have missed a considerable amount of stable

compounds. On the other hand, a threshold value of 5% gives at the end of the

iterations nearly three times the number of stable structures we would have obtained

with a threshold of 20%. Therefore, we choose to set the threshold value to around

5% to obtain better balance between computational costs and success rate.

We start from 713 different prototypes of 9524 compounds from the Materials Project

database. The first generation of substitution led to 73,375 candidates, with 59,853

not included in online databases. The most common one is the cubic full-Heusler

compound, comprising 10,653 systems. Heusler compounds remain the most common

prototype in the second generation with 4238 systems. In the third generation, the
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Table 2: The total number of substitution pairs (A replaced by B) and percentage of stable

structures at the second and third iteration of substitution at different replaceability

thresholds.

threshold iter 1 → iter 2 iter 2 → iter 3

(%) stable percentage (%) stable percentage (%)

5.0 7423 14.4 4608 8.0

7.5 6363 18.5 3997 10.5

10.0 5206 21.0 3339 11.9

12.5 4357 21.7 2909 12.6

15.0 3540 24.0 2431 13.6

20.0 2333 25.0 1628 14.3

30.0 414 14.7 452 10.7

40.0 181 12.3 264 15.2

50.0 90 15.5 141 19.6

60.0 9 5.6 24 15.5

70.0 1 0.8 8 8.0

most common prototype becomes the hexagonal ZrNiAl–Fe2P structure, with 5009

compounds. The total number of candidates not included in any database is 189,981.

Among them, 18,479 are on the convex hull (Ehull = 0). Note that the recent amount

of stable systems in the Materials Project was around 35,000, at the time of this

publication, our results increased the number of theoretically synthesizable materials

known by mankind by more than 50%. Moreover, the success rate is 9.72% which is one

to two orders of magnitude higher than systematic searches without pre-filtering[164].

In Fig 4, we further show that the distribution of stable structures and the success

rate vary across the periodic table. It can be seen that the distribution of new

compounds follows, to some extent, the distribution of the initial structures. For

example, there are many oxides in both sets, and the number of new stable systems

(Nnew) is approximately proportional to the number of initial systems (Nini) for most

3d transition metals. However, there are multiple exceptions, e.g., for Al, Si, K, Ga,

As, Rb, Cs, lanthanides, and actinides. In some of these cases, there are many more

new compounds than expected. In contrast, for Mo and W, there are much fewer.

This shows that the distribution is not completely biased by the initial database.

Furthermore, there is some variation of the success rate through the periodic table,
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Figure 3: The total number of substitution pairs (A replaced by B) considered and the

percentage of stable structures as functions of the threshold of similarity applied.

The vertical orange dash shows the 5% threshold used in the present work. The

green horizontal dash shows the number of pairs considering only substitution

among elements in the same group of the periodic table.

but most elements have a success rate of around 10%. However, there are indeed some

exceptions with very high success rates, especially for lanthanides or actinides like Pm

or Pa, probably due to that most high-throughput searches overlooked them.

We also perform an analysis of the physical properties of the stable structures. On

the PBE level, there are 4840 semiconductors/insulators. Most of them are oxides

and fluorides, along with other halides, chalcogenides, and pnictogenides. We also

find 4187 magnetic systems with magnetizations extending up to 0.2 µB/Å3. We then

filter out 884 structures with non-zero values for both gap and magnetic moments, i.e.,

potentially ferromagnetic semiconductors. However, further screening on the possible

anti- or ferrimagnetic ordering is needed to validate this point. We also evaluate the

hardness of our materials, and a few possible super-hard materials are filtered out,

which could be interesting for further investigations. Other than these properties, we

can look at the hydrostatic deformation potentials, which is the band gap variation

with respect to hydrostatic pressure, with a model [WPhD12] trained on the dataset

of Ref [WPhD5]. We also want to note that the large dataset in this publication is

further used to train machine learning models based on neural networks, e.g., Ref [21]

and Ref [120]. Especially the former [21], known as Cgat, are then applied to speed
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up the high-throughput screening in the following chapter.
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Predicting stable crystalline compounds using chemical
similarity
Hai-Chen Wang1, Silvana Botti 2 and Miguel A. L. Marques 1✉

We propose an efficient high-throughput scheme for the discovery of stable crystalline phases. Our approach is based on the
transmutation of known compounds, through the substitution of atoms in the crystal structure with chemically similar ones. The
concept of similarity is defined quantitatively using a measure of chemical replaceability, extracted by data-mining experimental
databases. In this way we build 189,981 possible crystal phases, including 18,479 that are on the convex hull of stability. The
resulting success rate of 9.72% is at least one order of magnitude better than the usual success rate of systematic high-throughput
calculations for a specific family of materials, and comparable with speed-up factors of machine learning filtering procedures. As a
characterization of the set of 18,479 stable compounds, we calculate their electronic band gaps, magnetic moments, and hardness.
Our approach, that can be used as a filter on top of any high-throughput scheme, enables us to efficiently extract stable
compounds from tremendously large initial sets, without any initial assumption on their crystal structures or chemical
compositions.

npj Computational Materials            (2021) 7:12 ; https://doi.org/10.1038/s41524-020-00481-6

INTRODUCTION
The quest for new materials is one of the most important
endeavors of materials science1,2. The discovery of materials with
tailored properties hold the promise of improving existing
technologies, but also of enabling new disruptive applications3.
Unfortunately, there exist many examples of technologies that
remain in the realm of science fiction due to the unavailability of
adequate materials4,5. This may happen because known com-
pounds are toxic, rare, or too expensive for industrial, large scale
use, or simply because no material is known with good enough
properties6–8.
It is clear that the number of imaginable materials is extremely

large, as it derives from the combinatorial problem of arranging
chemical elements of the periodic table in all possible stoichio-
metries and dynamically stable crystal structures9. This number is,
however, reduced as most combinations are not prone to
experimental synthesis2. There are several reasons for this: the
crystal structure may describe a high-energy polymorph that can
not be stabilized, the stoichiometry itself may be highly unstable
to decomposition to other compounds, or it may simply be that
there is no easy thermodynamically favored reaction path for
experimental synthesis. In spite of these problems, there remains a
very large number of experimentally reachable materials, of which
we know only a small fraction10.
For the past decades, we have witnessed spectacular advances

in computational materials science. One of the main reasons for
this was the progression of density functional theory (DFT)11,12

that, thanks to its excellent accuracy combined with remarkable
computational efficiency, has become the workhorse method for
the theoretical study of materials13. Favored by the advent of
faster supercomputers and better software, DFT opened the way
for extensive numerical studies of large datasets of compounds14.
These so-called high-throughput studies15, whose results are
conveniently stored in online databases, have greatly extended

our knowledge of materials and have already lead to the discovery
of a variety of compounds with improved properties15–18.
There are several strategies that can be used for the theoretical

search of materials18,19. One of the most prominent approaches
for inorganic solids is "component prediction”, following the
definition of ref. 19, meaning that one scans the composition space
of a prototype structure searching for stable materials, instead of
scanning the space of possible crystal structures for a given
composition19–21.
In this context, we use the word "stable” to denote thermo-

dynamical stability, i.e., compounds that do not transform or
decompose (even in infinite time) to other different phases or
stoichiometrically compatible compounds9. It is true that meta-
stable materials, like diamond, are also synthesizable and
advances in chemistry have made them more accessible22,23.
Nevertheless, thermodynamically stable compounds are in gen-
eral easier to produce and handle. The usual criterion for
thermodynamic stability is based on the energetic distance to
the convex hull24: the energy distance of a compound to the
convex hull is hence a measure of its instability.
Using high-throughput approaches, the whole periodic table

has already been scanned for a series of prototypes of relevant
crystal structures. The most extensive studies of this kind can be
found in the aflowlib database25 that, at present, includes more
than 2 million compounds. Unfortunately, this number is dwarfed
by the total number of possibilities. Just for ternary intermetallics,
there are 1391 structure-types known experimentally26 and there
are ~500,000 possibilities of combining three metallic elements for
each of these prototypes. Moreover, ternary structures can be
rather complex: the average number of atoms in the unit cell turns
out to be 14, but the majority of intermetallic ternary prototypes is
considerably larger26. The situation is obviously even worse for
quaternary or multinary systems. Considering that a DFT calcula-
tion scales with the cube of the number of atoms in the unit cell,
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we are quickly led to conclude that an exhaustive search of the
composition space will be out of reach for the foreseeable future.
To mitigate the combinatorial curse, chemical constrains have

been successfully applied to filter out compounds that are unlikely
to be formed27. Alternatively, machine learning can be used to
predict compounds and their properties14,28–31. In view of the
scarcity of experimental data, the machine is usually trained on
DFT calculations and then used to predict which compositions
and/or crystal structures are more likely to be stable14,19,28,29.
Already in 2010, in the seminal work by Hautier et al.32, machine
learning was used to predict the probability that a chemical
substitution of an existing compound can give another stable
compound. Predictions are then validated a posteriori performing
DFT calculations of the candidate systems.
In this article, we propose an approach to scan efficiently the

space of all possible stable materials that relies on data mining
rather than empirical rules or chemical intuition, inspired from
ref. 32. We borrow the idea of component prediction19–21 and
combine it with the concept of chemical similarity. This means
that the compositions to be tested are selected using a measure of
the likelihood that a chemical element A can be replaced by
another B in a given structure. Such a scale of similarity was
obtained by statistical analysis through data mining in ref. 33. To
some extent, the concept of similarity can be intuitively under-
stood from the graphical representation of the periodic table.
Elements that are neighbors in the periodic table are known to be
similar chemically, a fact has been used by chemists to create
materials for more than 100 years. However, statistical analysis
goes beyond pure chemical intuition and can identify unexpected
correspondences.
Any approach based on chemical similarity can be applied

immediately to any crystal structure, and even to systems of
reduced dimensionality, such as two-dimensional materials and
nano-structures.

RESULTS
Thermodynamic stability
The number of substituted materials in each iteration that were
not in the database, and hence were calculated is shown in Table 1.
Our initial set was composed by elemental, binary, ternary,
quaternary, and quintenary compounds. The first iteration is
strongly biased by the distribution of materials in the database,
which is mainly composed of binary and ternary compounds.
Before discussing in detail the results, we can better motivate

the choice to set the threshold value of the element replaceabilty
at 5%. We verified that higher values of the threshold would lead
to a higher percentage of stable materials. In particular, our results
indicate that a threshold of around 20% would maximize the
fraction of stable compounds found in each iteration. However,
the total number of stable compounds would be reduced by a
factor of three. We believe therefore that setting the threshold
value to around 5% is a more convenient compromise.
There are a total of 713 different prototypes in the first

generation, and the most common one is the cubic full-Heusler

compound, with a total of 10,653 systems. These are very simple
ternary cubic compounds (from the crystallographic point of view)
with composition ABC2, and that can be stable for a large variety
of elements in the periodic table. This family has already been
subject to extensive and systematic studies using either high-
throughput or machine learning techniques, and the optimized
crystal structures for most compounds can be found, e.g., in the
Aflowlib database25. In the second generation, Heusler com-
pounds remain the most common prototype, but with only
4238 systems. The situation changes in the third generation,
where the most common prototype becomes the hexagonal
ZrNiAl–Fe2P structure, with 5009 compounds.
It is interesting to analyze the distance to the convex hull (Ehull)

of stability for all 189,981 materials. A histogram with this
information can be found in Fig. 1. Note that we plot Ehull with
respect to the hull composed of compounds in the materials
database solely. This means that stable structures not included in
the database will appear with negative Ehull. Of course, in this case,
the hull has to be redefined to include these compounds. This will
be further discussed in the following.
The first impression we get from the figure is that the

distribution of Ehull is very different from a skewed Gaussian we
know for DFT calculations of families of materials (e.g., perovs-
kites30 or tI10 materials31). In fact, we believe that the distribution
displayed in Fig. 1 is a demonstration of the validity of our
approach. In comparison with the distributions shown in refs. 30,31,
obtained by performing systematic substitutions, we observe an
enhanced percentage of materials with a negative distance to the
hull, while the histogram decays rapidly for positive distances. The
large peak at zero is due to substitutions leading to materials
already present in the database. We did check whether the
transmuted material is already in the database, i.e., if an entry with
the same composition and space group exists before running
the calculation. However, often the geometry optimization
procedure relaxes structures into other space groups (usually to
more symmetric ones), and these final structures can sometimes
be found in the database.

Table 1. The number of new structures (not in the database) at each iteration.

Loop Structure Elementary Binary Ternary Quaternary Quinternary

1 59,853 370 (0.62%) 14,309 (23.9%) 40,455 (67.6%) 4432 (7.4%) 287 (0.48%)

2 50,917 44 (0.09%) 5708 (11.2%) 38,959 (76.5%) 6077 (11.9%) 129 (0.25%)

3 79,211 45 (0.06%) 6554 (8.3%) 60,136 (75.9%) 12,216 (15.4%) 260 (0.33%)

Total 189,981 459 (0.24%) 26571 (14.0%) 139,550 (73.5%) 22,725 (12.0%) 676 (0.36%)

Compounds for which the calculations failed to converge were excluded.
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Fig. 1 Thermodynamic stability. Distribution of the distances to
the convex hull of all 189,981 compounds.
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There are a total of 31,602 structures with a negative distance to
the convex hull, but not all of these can be counted as stable
structures. Firstly, the procedure we follow could find more than
one structures with negative Ehull with the same composition. And
secondly, we have to redefine the convex hull including all our
structures. After taking these two points into consideration,
we found a total of 18,479 systems on the redefined convex hull.
The structures of these materials are available in our website (see
Section "Data Availability"). We crosschecked our list against the
Aflowlib database25, and found that only 417 out of 18,479 (2.3%)
stable structures are overlapping with entries of this database.
Thus, almost all stable compounds reported in the present work
are not included in materials databases.
We have to stress that our calculations are approximate (after

all, we are using DFT with the PBE approximation to the exchange-
correlation functional), and that we are working at zero
temperature, neglecting entropy effects. Systematic analysis
reported that the error in DFT estimated stabilities are around
several tens meV per atom, e.g. 24meV per atom34, and 70meV
per atom35. Therefore, one can still expect that a large majority of
these 18,479 structures may indeed be stable thermodynamically,
and are therefore promising candidates for experimental
synthesis.
In this work we decided not to take into account all systems

that are "technically” unstable (having positive Ehull). In our
opinion those structures that have a small positive distance to the
theoretical convex hull should however not be completely
discarded for two reasons: (i) Some might actually be
stable, and only appear above the hull due to the
Perdew–Burke–Ernzerhof (PBE) approximation; (ii) Some might
be stabilized by temperature, pressure, defects, etc. and thus
could be experimentally synthesizable. Nevertheless, due to the
large number of structures, we decided, for the time being, to
concentrate only on the theoretically stable materials and leave
the rest for future investigations.
Comparing the number of stable structures (18,479) with the

total amount of systems tried (189,981), we find a success rate of
9.72%. This result is encouraging if we compare it with the success
rates of systematic high-throughput and machine learning studies.
With a threshold set at 25meV above the convex hull, Sarmiento-
Perez et al.36 have a success rate of 1%, while Körbel et al. in ref. 37

consider a much larger set of compositions and achieve only
0.25% unreported stable compounds. We should also consider
that the success rate of a random search is already biased by
restricting calculations to a specific family of compounds. In fact,
one usually selects a family of systems that looks intuitively
promising to start a materials search. In ref. 30, the success rate of
systematic calculations of the whole dataset of around 250,000
perovskites is 0.25%, while the proposed machine learning
procedure allows to increase the rate by a factor of 4–5.

Indeed, by combining chemistry intuition with a high-
throughput approach, our method provides a remarkably efficient
overview of large portions of the phase space of stable
compounds, at a strongly reduced computational effort. Further-
more, we should not forget that most of the "unstable”
transmuted compounds are rather close to the hull, and might
therefore be interesting for further research.
To further characterize our set of stable systems, we plot, in Fig. 2,

the number of materials that contain one specific chemical
element. We see that most stable materials include oxygen. One
reason is probably the large number of oxides in our starting set,
although other elements are also present in large numbers. We
would also like to emphasize the abundance of predicted
materials with lanthanide and actinide atoms. These elements
are often overlooked in systematic studies, but of great
importance in many areas of science. For example, they are often
components of permanent magnets38, or are relevant to under-
stand which materials are formed upon nuclear decay of
radioactive waste39. In our work, we found 8970 and 2437 stable
compounds including lanthanides and actinides, respectively, and
the corresponding success rates were 11.6% and 12.2%, respec-
tively. If we exclude entirely these chemical elements, we have
96,543 transmuted structures and a total of 7421 stable com-
pounds. This gives a success rate of 7.7% for compounds that do
not contain either lanthanides or actinides. Thus, replacements
involving lanthanides and actinides are more likely to yield stable
compounds, but 7.7% is still a rather high success rate. In contrast,
we note the relatively small number of stable materials containing
Be, and transition metals of the groups IVB–VIIB. These elements
seem therefore to be harder to combine and form stable
compounds.
Now we turn to how the distribution of stable structures and

how the success rate changes across the periodic table. The
number of stable (Nnew) and initial structures (Nini) that contain a
certain chemical element are showed in Supplementary Fig. 1. We
also show in that figure the success rates for substitutions that
involved that element.
It can be seen that the distribution of compounds follows to

some extent the distribution of the initial structures. For example,
there are many oxides in both sets, and Nnew is approximately
proportional to Nini for most 3d transition metals. However, there
are several exceptions, e.g. for Al, Si, K, Ga, As, Rb, Cs, lanthanides,
and actinides. In some of these cases, there are many more
compounds than expected. In contrast, for Mo and W, there are
much fewer than expected. This shows that the distribution is not
completely biased by the initial database. Furthermore, there is
some variation of the success rate through the periodic table, but
most elements have a success rate around 10%. However, there
are indeed some elements that yield very high success rates,
especially some lanthanides or actinides like Pm or Pa.

Fig. 2 Distribution of stable materials. The number of stable materials containing a given element through the periodic table.
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Band gap
The electronic band-gap is certainly one of the most important
properties of materials, and it can be used to determine the
suitability of a given compound for opto-electronic applications.
We plot a histogram of the electronic (indirect) band-gap in Fig. 3
for our stable materials. These were calculated with the PBE
approximation to the exchange-correlation functional and are,
therefore, underestimated by around 45% on average40. We find a
total of 4840 systems with a gap larger than 0.1 eV, which is 26.1%
of the total number of our stable systems. We should also expect a
number of false negatives of around 5–10%, i.e., around
250–500 systems are likely misidentified as metals due to the
PBE approximation.
Not surprisingly, the histogram decays with a fat tail as a function

of the band-gap. We also show the distribution of semiconductors
and insulators through the periodic table in Fig. 4. The most
common non-metallic elements in the list of stable semiconductors
and insulators is O and F, followed by halogens and other
chalcogens. As expected from the electronegativity scale41, the
largest gaps are obtained for fluorides, followed by oxides and
chlorides. There are fewer, and still thousands, systems with narrower
gaps that include pnictogens and hydrogen. For metallic elements,
the most common one found in semiconductors and insulators are
the heavy alkali metals Cs, Rb, and K. In all these systems, the largest
PBE gap we found was around 7.8 eV for a series of tetragonal
ternary fluorides, namely LiLnF4, where Ln is a lanthanide (Tm, Dy,
Ho, Tb, Er, Sm, Nd, Pr in order of decreasing band gap).

Magnetic properties
Another property we analyzed is the magnetic moment. In Fig. 5
we plot a histogram of the total magnetization per unit volume

(in μB ⋅Å−3) for all our compounds in the convex hull. Before
analyzing the results, we would like to stress that each calculations
started from an initial ferromagnetic configuration of the spin
moments, as common in other high-throughput studies15,37. Thus
we very likely obtain ferromagnetic states for most magnetic
compounds after optimization. However, the correct identification
of the ferromagnetic, antiferromagnetic, or ferrimagnetic ground
states is crucial for understand the spin interactions in each
system. Unfortunately, this would require accurate energy
calculations for large supercells, drastically increasing the compu-
tational effort. Therefore, in present work we adopt the usual
setup of high-throughput studies, and leave the precise identifica-
tion of the correct ground-states magnetic phases for future
research. In any case, from the energetic point of view, this
problem is harmless, because the differences of total energy
between different magnetic phases are often of the order of the
meV per atom42, while the stability of the composition is
evaluated on an energy scale that is one or two orders of
magnitude larger.
As expected, from Fig. 5 one can see that a large majority of the

systems is not spin-polarized (note that the y-axis is truncated). In
fact, the probability of finding a magnetic compound is only
22.6% (4187 systems out of 18,479), and with the number of
systems decreasing rapidly with the total magnetization. We show
the number of magnetic systems containing each given element
of the periodic table in Fig. 6. The ten most represented metallic
elements in these magnetic compounds are, in decreasing order,
Pu, Eu, Gd, Mn, Fe, Np, Ge, Ce, Ni, and Co. These include, evidently,
the actinides (Pu and Np), the lanthanides (Eu, Gd, and Ce), and
the 3d transition metals (Mn, Fe, Ni, and Co).
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Fig. 3 Band gaps. Histogram of the electronic band-gap for all new
stable compounds.

Fig. 4 Distribution of semiconductors and insulators. The number of stable semiconductors and insulators containing the given chemical
element of the periodic table.

Fig. 5 Total magnetization. Histogram of the total magnetization
per unit volume (in μB ⋅Å−3) for all new stable compounds.
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The fact that Ge appears in this list is actually interesting. By
looking closer at the composition of the magnetic compounds
containing this chemical element, we found that 91% of Ge-
containing magnetic compounds include at least one other
element included in the top-10 list. Moreover, the remaining 9%
compounds also contain other rare-earth or transition metals. A
quick look at some specific materials in our list reveals that the
magnetic moments are not localized on Ge, but on the other
(magnetic) atoms. Therefore, the reason why Ge appears in the list
is that Ge is likely to form stable compounds together with
magnetic elements. This also implies that Ge compounds could be
a promising search ground for experimentalists aiming at the
synthesis of magnetic compounds.
The most common non-metallic elements found in this set are

O, and F. Among all systems, the highest magnetization is around
0.2 μB ⋅Å−3 for a cubic structure of SnGd3, followed by several
other Gd and Eu compounds, often in the inverted perovskite
structure (such as NAlGd3, CGeGd3, CGaGd3, and CSnGd3). Finally,
the most common crystal phase is the cubic double-perovskite
structure with 215 compounds, while magnetic systems were
found in a total of 253 different prototypes.
Having looked at magnetic systems and semiconductors, it is

natural to ask how many magnetic semiconductors are found in
our dataset. If the two properties are completely uncorrelated, the
probability of finding a system exhibiting both is given by the
product of the individual probabilities, yielding 22.6% × 26.1%=
5.9%. The actual number of systems that we found was 884,
yielding a probability of 4.8%. This is consistent with the two
properties being uncorrelated. We also performed a similar
analysis on the Materials Project database. The fractions of stable
systems with a gap above 0.1 eV and of magnetic systems are
45.7% and 31.5%, respectively. This yields a combined probability
of 14.4% to find magnetic semiconductors if the two properties
are uncorrelated. The actual percentage of stable magnetic
semiconductors in the database is 12.1%, which also supports
the hypothesis of absence of correlations.
Among all semiconducting magnetic systems, the most

common prototype that we found was again the cubic double-
perovskite (75 systems). We note that most magnetic semicon-
ductors could be, in fact, antiferromagnetic. Moreover, usually the
antiferromagnetic state has a larger gap than the ferromagnetic
one. Therefore, those band gaps could be "doubly” under-
estimated—due to the PBE approximation and the misidentifica-
tion of magnetic phases. This subset of 884 materials is however,
quite interesting, as it can serve, e.g., as a starting basis for the
discovery of unreported transparent ferromagnets or anti-
ferromagnets with high critical temperatures.

Mechanical properties
Finally, we performed a preliminary analysis of the mechanical
properties by evaluating the hardness. The calculation of the
Vicker’s hardness for the predicted structures was based on the
simple model by Zhang et al.43 This model extends the work of
Šimůnek and Vackář44,45 and improves the earlier hardness
models46 based on bond strength by applying the Laplacian
matrix47 to account for highly anisotropic and molecular systems.
It turns out that laminar systems are correctly described as having
low hardness, but this model still fails for some molecular crystals
that are incorrectly assigned large values for the hardness. This is,
however, not a big problem as these false-positive cases can be
easily identified and discarded.
Most systems are found to be extremely soft, with only a hand-

full of materials being hard or superhard (hardness > 40 GPa).
These, usually a combination of light covalent elements with
transition metals, are shown in Table 2, together with their bulk
and shear moduli (calculated with the PBE). We found that the
oxides in this list have low elastic moduli, which implies that the
simple model has likely overestimated their hardness. This
anomalous behavior can be explained by the unusual oxidation
states and bonding patterns present in these structures. One
should keep in mind that the stability of these oxides is likely
overestimated, as it has been shown in several references48,49

The remaining systems do exhibit large values of the hardness
and of the bulk and shear moduli, indicating that they are
probably hard or even super-hard. This is particularly true for three
compounds, namely VRu2Sn, CrGeRu2, and MnH2.

Fig. 6 Distribution of magnetic systems. The number of magnetic systems containing a given element of the periodic table.

Table 2. Vicker’s Hardness (HV), as well as bulk (B) an shear (G) moduli
of some hard and superhard materials.

Formula HV (GPa) B (GPa) G (GPa)

NiO4 28.7 60.9 35.7

AsB3O6 29.7 53.2 33.3

CuO4 31.7 65.4 25.0

CoO4 36.6 107.6 72.5

BeCrFe2 25.2 241.9 126.4

RuN2 30.2 163.8 93.3

IrN2 30.7 177.8 99.0

CoH 34.8 217.2 116.9

VRu2Sn 41.5 210.8 85.8

CrGeRu2 58.3 235.3 117.3

MnH2 64.4 133.6 49.6
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DISCUSSION
In this work, we combined fundamental knowledge of chemistry
with high-throughput calculations to efficiently search for stable
crystals. To this end, we replaced chemical elements in known
stable substances by choosing substitutions with "similar”
chemical elements. The elusive concept of similarity was
quantified by a similarity scale obtained by data-mining experi-
mental databases of crystal structures. The transmuted com-
pounds were then studied with DFT, and their stability was
evaluated with respect to the convex hull of stability. The stable
compounds were in their turn transmuted, and this cycle was
repeated three times.
We obtained in total 18,479 stable crystal structures out of

189,981 substitutions, resulting in a success rate of about 10%,
one order of magnitude larger than the usual one of high-
throughput methods. This success rate shows not only the validity
of our approach, but also its high efficiency, leading to a
significant reduction of the computational costs. Our set of stable
materials include elements from across the periodic table, from
main group elements to transition metals, to lanthanides and
actinides.
We also performed a preliminary analysis of the physical

properties of these crystals. We obtained 4840 semiconductors,
with band gaps (calculated with the PBE approximation) extend-
ing almost to 8 eV. These include not only many oxides and
fluorides, but also semiconductors with other halogens, chalco-
gens, pnictogens, etc. We also identified 4187 magnetic systems
with magnetizations extending up to 0.2 μB ⋅Å−3. As expected,
these mostly include some actinides, some lanthanides, and some
3d transition metals. Combining both properties, we filtered out
884 structures having non-zero gap and magnetic moments.

Finally, we evaluated the hardness of our materials, and found few
possible hard and super-hard systems that deserve further
attention.
All in all, this work shows that with a systematic help of

common chemistry knowledge, one can greatly improve the
output of high-throughput calculations for material prediction.
Thanks to this iterative procedure of transmutation, we efficiently
gain access to large unknown portions of the phase space of
stable materials, that may be hiding key materials for future
technologies.

METHODS
Prediction strategy
The starting point of our search is a set of stable compounds, i.e. the
(experimental or theoretical) crystal structures and compositions of a series
of materials on the convex hull of stability. We obtained these structures
from the materials project database50. For computational affordability, we
limited crystal structures to a maximum of 12 atoms in the unit cell. The
starting set is composed of 9524 compounds in 713 different prototype
crystal structures. For each material in this set, we mutate the composition
by replacing each chemical element by another "similar” element, if the
probability of a successful replacement is higher than a certain threshold.
We will see below how we define this probability. Note that only one
element is replaced at a time, and that we do not perform partial
substitutions, i.e. all atoms of a given element in the crystal structure are
replaced simultaneously.
The outcome of this procedure is a set of hypothetical materials. We

observe that it is impossible to perform systematic substitutions of all
elements in known stable crystal structures, employing all other atoms of
the periodic table. Assuming 84 atomic species, from H up to Bi, excluding
noble gases and including Ac, Th, Pa, U, Np, and Pu, and considering 713
prototype crystal structures, we can build 59,892 elementary crystals,

Fig. 7 Work flow. An illustration of a work flow for predicting stable materials based on substitution.
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almost 5 million binaries, 400 million ternaries, and 33 billion quaternary
compositions. We can clearly see that we need to filter out the most
unlikely substitutions and focus on the most promising ones.
At any iteration, we validate the set by performing a geometry

optimization of the resulting structure with DFT, and calculating its
distance to the convex hull of stability. This step is performed with
PYMATGEN

51, using all materials present in the Materials Project database50 as
reservoirs. All stable phases (with negative distances to the materials
project convex hull) are then collected, and the construction of the convex
hull is repeated including our structures. A new cycle of substitutions starts
then for the stable compounds identified in the previous iteration. In total
we performed three iterations of this kind, replacing always one chemical
species per iteration. Thus, the prediction procedure is illustrated in Fig. 7.
Of course, the crucial part of this approach is the knowledge of the

probability that replacing an element by another will yield a stable
compound. We could just take advantage of the periodic table, and define
this probability as the (geometrical) distance between the two elements in
its usual two-dimensional representation. A couple of counter-examples
show, however, that this is clearly not the ideal approach. For example, it
turns out that H can be much more easily replaced by F and not by Li, or Ba
can be replaced by Eu more often than by Cs.
One can certainly use for filtering empirical rules based, e.g., on ionic

radii and oxidation states27. However, in the age of data-driven research,
we have the option to let computer algorithms transform empirical
chemical knowledge into a similarity scale between the chemical elements.
Recently, by performing a statistical analysis of stable crystal phases

Table 3. The number of substitution pairs (Npairs) and the quantity of
resulting compounds (Ncompounds) as a function of the threshold (t),
starting from the initial set of 9524 compounds.

t Npairs Ncompounds

70% 7 214

60% 16 214

50% 47 824

40% 118 1469

30% 200 1957

20% 346 12,007

10% 626 35,579

5% 992 73,375

4% 1111 87,738

3% 1281 104,508

2% 1556 142,617

1% 2235 234,385

0.75% 2554 277,111

0.5% 3008 341,180

Fig. 8 Substitution schema. Replacements are shown by arrows that start from the elements being replaced. Substitutions between elements
within a group are indicated by arrows starting from and pointing to the same box. The thickness of the arrow and the color scale are
proportional to the number of substitutions between the groups, with the thick red line between the Ru-group and the Fe-group
corresponding to 100% replaceability between the two groups. For example, we can immediately see that most lanthanides can be replaced
by Sc or Y, but the elements of the group IIIA can only sometimes be replaced by Fe, Co, or Ni.
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present in the inorganic crystal structure database52,53, some of us
determined such a scale33. The first step was the calculation of the
likelihood that an element A can be replaced by another B in a given
structure. This information was then used to construct a matrix where each
entry (A, B) is a measure of this likelihood. To obtain a probability, every
entry of this matrix has to be normalized in some way. This is a rather non-
trivial step that is complicated by the fact that our knowledge of materials
is unfortunately rather incomplete. Here, we used the quantity33

SAB :¼ 1
NA

X
I;J≠I

δIJAB (1)

where δIJAB ¼ 1 if materials I and J are both in the experimental database
and are connected by the substitution of the chemical element A by B, and
is 0 otherwise. The normalization factor (NA) is the total number of
materials including the given chemical element that are present in the
database.
We also need a threshold value of the element replaceability, below

which we do not consider as likely the corresponding element mutation.
We set the threshold to a value that is a good compromise to keep
affordable the total number of substituted compounds and to have at the
same time a sufficient variety of substitution pairs. A threshold lower than
20% is necessary to include all substitutions within each group of the
periodic table. This means that fixing this threshold to 20% would lead to
include only "obvious” cases, while we would miss other less intuitive and
less common substitutions. We therefore decided to favor a practical
approach and include as many substitutions as possible, selecting the
lowest threshold that our computational resources could reasonably
support. We have to keep in mind that the number of substitution
increases rapidly with the number of substitution pairs, because we have a
large initial set of materials (see Table 3 and discussion in Section
"Thermodynamic stability"). We chose a threshold value equal to 5% that
gives 992 pairs (see List 1 in Supplementary Notes), a number that is
approximately twice as large as the number of in-group substitution pairs.
A schema depicting the result of this procedure can be found in Fig. 8.

To improve readability, we gathered the chemical elements in groups.
There are a series of immediate conclusions we can draw from the figure.
First of all, with the chosen threshold, almost no first-row element can be
replaced by any other element. In chemistry this is known as the first-row
anomaly54, i.e., the small-core elements of the first row are in some sense
special and are only vaguely similar to second-row elements. Second,
many elements only accept replacements with elements within the same
group of the periodic table. This is in particular true for the alkali metals,
the halogens, etc. Third, we identify two main groups of metals in Fig. 8,
one centered around the lanthanides and the other around Fe, Co, and Ni.
It is rather interesting that our threshold roughly divides the metals in

two families. The subdivision is simply related to the geometry of the
periodic table, namely family I includes the left side of the periodic table
(groups 2–5, as well as the lanthanides and actinides), while family II
contains the remaining groups (6–15). Furthermore, we find no substitu-
tions between group 5 and 6. This would indeed indicate that there seems
to be a significant discontinuity in the periodic table. In fact, we can see
some indications of this discontinuity by looking, for example, at the
typical oxidation states that show from a monotonous increase from +2
(group 2), +3 (group 3), +4 (group 4), +5 (group 5) back to +3 and +4 in
group 6. However, we emphasize that this analysis depends on our choice
for the threshold, and that a more detailed investigation, using more
powerful statistical tools, is required to achieve general conclusions.

DFT calculations
We used the code VASP

55,56, where all parameters were set to guarantee
compatibility with the data available in the Materials Project database50.
We used the PAW57 datasets of version 5.2 with a cutoff of 520 eV. The
Brillouin zone was sampled by Γ-centered k-point grids with a uniform
density calculated to yield 1000 points per reciprocal atom, i.e. the same k-
point density used by the Materials Project58. All energies were converged
to better than 2meV per atom and the geometry optimization was
stopped when forces were smaller than 0.005 eV per Å. We used a denser
k-point mesh of 5000 points per atom to calculate band structures. All
calculations were performed with spin-polarization using the PBE59

exchange-correlation functional, with the exception of oxides and fluorides
containing Co, Cr, Fe, Mn, Mo, Ni, V, W, where an on-site Coulomb repulsive
interaction U with a value of 3.32, 3.7, 5.3, 3.9, 4,38, 6.2, 3.25, and
6.2 eV, respectively, was added to correct the d-state (https://docs.
materialsproject.org/methodology/gga-plus-u/#calibration-of-u-values).

A correction scheme which allows to mix GGA and GGA + U calculations to
obtain the correct formation energy and distance to the convex hull is
applied60.
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Chapter 6 Machine Learning Aided Search of New 2D

Materials

In the following publication, “Symmetry-based computational search for novel

binary and ternary 2D materials” [WPhD4], we perform a symmetry-based

exhaustive search on the structural and compositional richness of two-dimensional

(2D) materials.

2D materials have attracted significant attention since the synthesis of mono-layer

graphene [178], and multiple research interests, such as catalysis [179, 180], electronic

transport [181, 182], optics [183, 184], and topological properties [185–187] regarding

2D materials has been widely discussed in the literature. However, as we have shown in

Chapter 2, the chemical space for 2D materials is still relatively unexplored compared

to bulk, three-dimensional (3D) compounds. Experiments have focused only on a

few dozen exfoliatable 3D layered materials, which largely limited follow-up prototype

based HT search [150–152].

In this Chapter, we adopt an exhaustive systematic strategy which does not rely on

experimental prototypes. We start by generating combinations of 74 elements within

the periodic table from Li until Bi, excluding radioactive (Tc, Pm, Pr) and rare gases

(Ne, Ar, Kr, Xe). A total of 74 × 73/2 = 2, 701 binary and 74 × 73 × 72/6 = 64, 824

ternary combinations is obtained. The list of of these combinations is denoted as X.

Then we consider all the Wycoff positions (WPs) in each two-dimensional space

group [188–190]. For each space group, all permutations of the Wycoff positions are

generated for afilling 2 or 3 elements. The resulting list is Pj for each space group j.

Note Pj is also the list of general compositions (e.g., AB2) for a given j decorated with

elements A and B (as well as C if considering ternary). A product of list X and P

is then generated. This product list Si,j = Xi ⊗ Pj represents a list of stoichiometries

for a given combination of elements and space group.

The number of stoichiometries in each list S can be too large at this stage, so we

apply two restrictions: 1) The sum of most common oxidation states (Q) of elements

(
∑

i,j Q
j=WPs
i=elements) can reach zero. 2) The electronegativities of cations are lower than

that of anions. Note that we rule out intermetallics that often adopt uncommon

oxidation states of metals. However, we can go beyond these limitations with the

help of machine learning models. The stoichiometries are then input to PyxTal
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package [191] to generate appropriate structure with reasonable cell parameters

considering the covalent radius of the atoms.

Before performing the DFT calculation, we use a universal neural-network force field

M3gnet [22] to pre-optimize the structure. Then, the optimized structures are filtered

against three more criteria: 1) The layer thickness is within 7.5Å. 2) The distance to

the convex hull (Ehull) predicted by the CGAT model [21] is below 600 meV/atom,

and 3) the system is not already in the C2DB database [150–152]. The systems that

pass all three criteria are then optimized with DFT, and their Ehull are evaluated using

the hull in Ref [160].

We recover the large majority of systems already present in C2DB, showing the validity

of our generating workflow. Moreover, the diversity of structural motifs is beyond that

of the experimental ones (mostly square and hexagonal lattices). These interesting new

motifs appear naturally in our workflow and are unlikely to be constructed by hand

a priori. Most importantly, some tilings are unique to the 2D world, with no layered

3D counterpart known, which could lead to further interest in studying the stacking

of these layers.

We also push one more step beyond the above workflow by running a systematic

prototype search based on all motifs, including both new ones and the ones in

C2DB. Again, we pre-filter out binary systems below 200 meV/atom and ternaries

below 50 meV/atom through the Cgat model and obtained 1023 candidates. After

consecutive optimizations with the M3gnet force field and DFT, we find 638 systems

with Ehull below 250 meV/atom. The success rate is exceptionally high, at around

62%, which demonstrates how powerful and important the machine-model- based pre-

filtering can be in the high-throughput search.
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Abstract
We present a symmetry-based systematic approach to explore the structural and compositional
richness of two-dimensional materials. We use a ‘combinatorial engine’ that constructs candidate
compounds by occupying all possible Wyckoff positions for a certain space group with
combinations of chemical elements. These combinations are restricted by imposing charge
neutrality and the Pauling test for electronegativities. The structures are then pre-optimized with a
specially crafted universal neural-network force-field, before a final step of geometry optimization
using density-functional theory is performed. In this way we unveil an unprecedented variety of
two-dimensional materials, covering the whole periodic table in more than 30 different
stoichiometries of form AnBm or AnBmCk. Among the discovered structures, we find examples that
can be built by decorating nearly all Platonic and Archimedean tessellations as well as their dual
Laves or Catalan tilings. We also obtain a rich, and unexpected, polymorphism for some specific
compounds. We further accelerate the exploration of the chemical space of two-dimensional
materials by employing machine-learning-accelerated prototype search, based on the structural
types discovered in the systematic search. In total, we obtain around 6500 compounds, not present
in previous available databases of 2D materials, with a distance to the convex hull of
thermodynamic stability smaller than 250 meV/atom.

1. Introduction

Since the synthesis of single graphene layers [1], two-
dimensional (2D) materials have attracted significant
interest from the community. Their relevance extends
to different research fields, such as catalysis, electronic
transport, optical properties, and topological prop-
erties. However, the chemical space for 2D materials
is still relatively unexplored, even though great effort
has been spent on investigating the vast chemical
space for bulk, three-dimensional (3D) compounds.
In fact, experimental synthesis efforts have focused
on a few structures, mostly obtained by exfoliation of
known 3D layered materials [2].

On the computational side, we can find a
few online databases of 2D materials, such as
Materials Cloud two-dimensional crystals database
(MC2D) [3], V2DB [4], 2DMatpedia [5], and the
Computational 2D Materials Database (C2DB) [6–
8]. These databases were built starting from 3D
databases, by exfoliating single-layers from layered,
van der Waals compounds. At the moment the vast
majority of known 2Dmaterials correspond to binar-
ies [4, 9]. An exception is the very recent addition of
materials discovered via a crystal diffusion variational
autoencoder in [8].

These 2D databases are newer, and considerably
smaller, than their three-dimensional counterparts,

© 2023 The Author(s). Published by IOP Publishing Ltd
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e.g. Materials Project [10], the crystallographic open
database [11], the Cambridge structural data-
base [12], the NIST crystallographic database [13],
OQMD [14], AFLOW [15], Materials Cloud [16],
and many others. All these initiatives were seeded
by experimental crystal structures stored in the inor-
ganic crystal structure database (ICSD) and other
experimental databases. In fact, the creation of the
ICSD in 1912 [17–19] paved the way to the system-
atic study of the relationship between crystal struc-
ture and materials properties. To complement exper-
imental data, many databases (both 2D and 3D) also
contain results from high-throughput studies (often
accelerated by machine learning).

High-throughput searches are responsible for a
majority of the calculations in the large theoret-
ical databases like AFLOW [15], OQMD [14] and
DCGAT [20]. Traditional high-throughput searches
rely on simple empirical rules to select candidate
materials for evaluation with density functional the-
ory (DFT). Consequently, they contain a large num-
ber of highly unstable systems. A particularly popu-
lar approach is prototype search, where newmaterials
are hypothesized by changing the chemical elements
in a known crystal structure (often stemming from
ICSD). In some cases, all combinations of chemical
elements are taken into account, while in other cases
arguments based on charge neutrality, atomic or ionic
radii, etc are used to circumvent the combinatorial
nature of the problem.

In comparison to these rule-based selections,
machine learning algorithms generally allow us to
consider all combinations of the chemical elements
due to their computational efficiency [21–24]. In
fact, recent progress has enabled us to speed up the
scanning of crystal prototypes by a factor of up to
∼2000 [22] with respect to traditional DFT high-
throughput studies. A second research direction are
generative models that do not rely on existing proto-
types. Here, generative adversarial networks [25, 26],
variational auto encoders [27, 28] and, more recently,
diffusion models [8, 29] are the most successful
approaches.While these generativemodels havemade
great progress over the last year and improved with
respect to their bias toward stable structures, the
stability of the structure still has to be evaluated
with a secondary machine learning model. No mat-
ter the generation or selection algorithm, the next
step consists in a local structural optimization of each
compound, invariantly using DFT as the workhorse
method [30, 31]. Analysis of thermodynamic stabil-
ity can then be achieved by computing the forma-
tion energy or the distance to the convex hull. In this
way, databases have grown considerably and can now
sometimes reach millions of crystal structures.

While the success of using chemical
combinatorics is recognized for 3D materials, it

has been a substantial handicap for predicting new
2D materials. The number of known 2D materi-
als prototypes is unfortunately very small. Various
research groups have considered different strategies
to address this issue, often resorting tomachine learn-
ingmethods. This paper presents an entirely different
approach which is not based on motifs or chemical
substitutions. Instead, we create all possible combin-
ations of chemical elements for binary (and ternary)
systems for specific two-dimensional space groups.
Therefore, based on symmetries and chemical cri-
teria, we can arrive at a sizeable two-dimensional
crystal structure database and a diverse set of struc-
tural prototypes. The crystal shapes show a variety
of bondings and forms absent in existing databases.
As our search is systematic, crystal structures con-
tain a large number of different chemical formulae as
well as almost all possible Wyckoff positions (WPs)
allowed by the space groups. Here we focus on two-
dimensional materials but our approach is general,
and it can also be applied to three-, one-, or even
zero-dimensional structures.

This article is structured as follows. We start by
discussing in detail the systematic approach to dis-
cover 2D crystal structures and our strategies to accel-
erate the search. We then present an overview of the
materials we discover, giving a few examples of struc-
tural diversity and polymorphism. In the following,
we discuss machine-learning accelerated prototype
search based on the wealth of prototypes obtained.
In the appendix following the conclusions, we give
details on our methodology.

2. Strategy

Figures 1 and 2 summarize our approach for the
generation of materials. The first step corresponds
to a combinatorial workflow that creates hypothet-
ical compounds. The initial input parameter is the
number of desired chemical species in the particu-
lar material. We consider most elements of the peri-
odic table, fromLi to Bi, including first-row rare earth
elements. We exclude, however, radioactive elements
and rare gases, namely At, Tc, Pr, Pm, He, Ne, Ar, Kr,
Xe, and Rn. We then generate all possible combina-
tions of the different elements selected from the peri-
odic table. For example, a total of 2701 combinations
are obtained with no repeated elements for a binary
compound.

The second parameter is the two-dimensional
space group. We use the table of layer group sym-
metries, created by considering the wallpaper group
and adding reflections in the perpendicular direction.
A full description of the possible groups is given in
[32–34]. To generate the atomic positions provided
by the layer space group for all possible WPs, we used
the package PyxTal [35]. A list of the possibleWPs can
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Figure 1. Summarized flowchart for choosing potential materials using group symmetries and their Wyckoff positions.

Figure 2. Pipeline for the materials screening, from materials chosen following flowchart 1.

be found in the Bilbao Crystallographic Server. From
the 80 layered groups, we studied the 18 that have the
smallest number of different WPs and therefore the
smallest number of combinations.

The next step is the creation of all possible com-
binations of theWPs for each chemical element in the
combined list. For example, if the number of WPs is
four, we get 4! possibilities. This strategy allows differ-
ent WPs for the same species and therefore broadens
the number of possible stoichiometries (i.e. a chem-
ical species can occupy more than one WP). We then
create a product of this list associated with the num-
ber of selected species. This selection leads to the
definition of a chemical composition based on the
occupation of the different WPs for each species in
the compound. As certain WPs have free paramet-
ers, our approach is not exhaustive. For example, for
the p1 space group we only occupy the (single) pos-
ition 1 a once for each atomic species. This leads to
a single possibility for both the binary compound
AB, and the ternary compound ABC. The number of
possibilities increases, however, very rapidly with the
number of different WPs available within the space
group.

In parallel, we create a list of possible oxidation
states of the considered species. We make all possible

combinations without replacement for each element
from this list, and we create a product of the differ-
ent list elements. We used the experimentally most
common oxidation states, as they will have consid-
erably larger potential to be synthesized (the selected
oxidation states are included in the supplementary
information). Finally, a compound is created from
the provided number of species, the combination of
WPs, and the oxidation state.

We have not imposed any explicit limit on the
number of atoms in the unit cell. However, the pro-
cedure we use to generate the compounds does lead
to an implicit constraint which, however, depends on
the number andmultiplicity of theWPs for each space
group. For the space groups studied here, the max-
imumnumber of atoms in the unit cell is 32, although
themajority of the compounds has less than 16 atoms
in the unit cell.

After the material is obtained from the previ-
ous step, and before we perform a complete elec-
tronic structure calculation, we conduct a screen-
ing, which allows us to reduce the number of com-
pounds to be fully considered. For the screening, we
used rules implemented in the open-source material-
screening Python package SMACT [36]. In this pack-
age, decisions are made based on stoichiometry. The
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Table 1. Crystallographic summary of the layer groups considered in this work: the space group symbol (and number in parenthesis),

the Wyckoff positions (and site symmetries in parenthesis). We also show the number of binary (N
(2)
tot ) and ternary systems (N

(3)
tot )

generated by our combinatorial engine and the number of entries that were found below 250 meV/atom from the convex hull of stability

(N
(2)
<0.25 and N

(3)
<0.25).

Space group Wyckoff positions N(2)
tot N(2)

<0.25 N(3)
tot N(3)

<0.25

p1 (01) 1a (1) 225 5
p11 m (04) 2b (1), 1a (..m) 1321 339
p11a (05) 2a (1) 225 47 1944 307
p211 (08) 2c(1), 1b(2..), 1a(2..) 6645 623
p2111 (09) 2a (1) 225 40 1944 273
c211 (10) 4b (1), 2a (2..) 1321 153
pb11 (12) 2a (1) 225 15 1944 448
cm11 (13) 4b (1), 2a (m..) 1321 268
p21/b11 (17) 4c (1), 2b (−1), 2a (−1) 3129 220
p21212 (21) 4c(1), 2b(..2),2a(..2) 6645 398
pb21m (29) 4b (1), 2a (..m) 1321 140
pb2b (30) 4c (1), 2b (.2.), 2a (.2.) 6645 228
pm2a (31) 4c (1), 2b (m..), 2a (.2.) 6645 478
pm21n (32) 4b (1), 2a (m..) 1321 148
pb21a (33) 4a (1) 225 19 1944 139
pb2n (34) 4b (1), 2a (.2.) 1321 74
cm2e (36) 8c (1), 4b (m..), 4a (.2.) 6645 383
p31m (70) 6d (1), 3c (..m), 2b (3..) 1a (3.m) 15 728 783

first rule is to have only charge neutral compounds,
which can be easily computed from the stoichiometry
and the oxidation states. The second rule is the so-
called Pauling test for materials which requires that
positive ions have lower electronegativity than negat-
ive ions.

After screening, we use the main properties of
a given material, such as oxidation states, stoi-
chiometry, and WPs to generate the potential struc-
tures. In this step, we use the PyxTal utility [35] to
create a 2D unit cell with the given number of spe-
cies. When WPs have internal degrees of freedom,
PyxTal tries to create a unit cell with the provided
symmetry constraints. First, the cell directions are
selected according to the space group. Then, the WPs
are generated from the symmetry operations, and, if
there are internal degrees of freedom, they are set ran-
domly. Next, the cell parameters and the volume are
determined, assuming that each atom has a radius
equal to its covalent bond radius. Finally, a density
is obtained from the cell volume and atomic masses,
which is compared with a threshold density. If the cell
density is smaller than 0.75 (in scaled units), the pack-
age attempts first to re-define the atomic positions
randomly (setting the number of attempts to 40), and,
in case this fails, it tries to change the cell paramet-
ers (up to ten times) and repeat the generation of
the cell. If a cell cannot be defined in this way, the
structure generation is considered unsuccessful, and
the next candidate is considered. A summary of the
pipeline is represented in figure 2. We generate sys-
tematically two dimensional structures for the space
groups shown in table 1. In this table we also include
the corresponding WPs, the site symmetry and the

number of different compounds generated for each
space group.

The next step is the geometry optimization.
Unfortunately, the initial structures are usually very
far away from equilibrium, making structural optim-
ization with DFT cumbersome. To increase the effi-
ciency of our workflow we perform an intermediate
geometry optimization step using a universal neural-
network force-field [23]. In contrast to standard force
fields that are usually trained to reproduce the poten-
tial energy surface of a specific system, universal
neural network force fields describe all possible com-
pounds. Of course, the objective of the latter is not to
replace the former, that will be more precise but with
a more limited applicability. Instead, they provide a
reasonable description for all geometrical arrange-
ments and chemical elements. Our model, trained
using a transfer learning approach, has a median
absolute error of 96meV/atom for geometry optimiz-
ations. This is already a competitive value, suitable for
describing 2Dmaterials in this intermediate screening
step.

At this point we remove from our dataset the
materials that are too thick (using a threshold of
7.5 Å) or that are predicted to be too unstable by the
machine learning model (more than 600 meV/atom
from the hull, corresponding approximately to twice
the mean absolute error (MAE) of the original
model). We also remove structures that were already
included in C2DB [7] (excluding the very recent
structures of [8]).

The use of machine learning force fields resolves
several technical problems: the pre-converged geo-
metries are, in most cases, already quite good, only
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requiring a few steps of geometry optimization using
DFT. They also allow us to discardmany repeated and
very high-energy structures. After the DFT geometry
optimization we evaluate the distance to the convex
hull of stability.We use the convex hull of [20, 22] that
is considerably larger than the one of the Materials
Project [10], in particular in what concerns the tern-
ary (and quaternary) sector. Consequently, our dis-
tances to the hull are sometimes larger than in other
2D databases.

Note that besides thermodynamic stability, the
issue of dynamical stability is a crucial factor for 2D
materials, and should always be verified before a spe-
cific material is proposed for synthesis. A material
is dynamically stable when it exhibits no imaginary
phonon frequencies across the Brillouin zone. Unfor-
tunately, the calculation of the phonon dispersion is
extremely time-consuming, and even more so for 2D
systems due to issues related to the vacuum required
to treat the long-range part of the Coulomb interac-
tion. [37] We also note that imaginary phonon fre-
quencies could be an indication of a charge-density
wave phase (at even lower formation energy) which
we might be overlooking due to the use of unit cells
with a limited number of atoms.

3. 2Dmaterials

It turns out that our workflow was able to arrive
at the large majority of systems already present in
C2DB. This is particularly true for binary systems, as
these were more extensively investigated than ternar-
ies (see table 1). This, in our opinion, fully validates
our workflow.

Figure 3 presents a comparison of the binary
materials present in our database (excluding the ones
found in C2DB) compared to C2DB. For the discus-
sion, we only took into account the materials that are
within a distance of 250 meV/atom from the convex
hull of stability, that corresponds loosely to the defin-
ition of ‘high-stability’ in C2DB [7]. Note that for
consistency we have reoptimized the C2DB structures
using our convergence criteria and our selected set of
pseudopotentials.

We find 2D compounds across the whole peri-
odic table, including some with lanthanides that have
been up to now excluded from previous works. Not
surprisingly, the majority of compounds includes a
non-metal element (due to the requirement of charge
neutrality), leading to the pronounced peaks for O,
S, Se, Te, F, Cl, Br, I, etc. The figure also reveals
some differences in the prevalence of certain elements
between our dataset and C2DB. For example, we find
considerably more compounds with F than with O,
while in C2DB we observe the opposite behavior. As
our approach is to a large extent systematic in what
concerns chemical compositions and geometries, we

believe that the differences are explained by a bias
already present in ICSD and other databases that were
used to seed the 2D databases. For example, it is well
known that oxides are over-represented in experi-
mental works as they can be more easily synthesized
and are often stable in air.

Other conclusions can be drawn from figure 3.
For example, it can be seen clearly that the non-metals
in the second row have more difficulty in forming
low-energy compounds than other non-metals in the
same group. This is a consequence of the Singular-
ity Principle [38], i.e. that the chemistry of the these
elements is often different to the later members of
their respective groups. Furthermore, elements like
N, O, C, and F form very strong directional cova-
lent bonds that leave comparatively little room for
distortions that would be required to form different
structures. As for metallic elements, it is in particular
the transition elements in the fourth row from Ti to
Cu (and in particularly this last one), together with
late group III-A (In and Tl) seem to form easily 2D
compounds.

The diversity of stoichiometries is illustrated in
figure 4. As our emphasis has been on binary com-
pounds, it is not surprising that most represented
stoichiometries are binary. Among these, the simple
AB2, AB3, A2B3, etc dominate the low-energy struc-
tures. This fact can be easily understood by the
requirement of charge neutrality and the fact that
most non-metals have oxidation states of -I, -II, or -
III. As such, the same situation can be found for bulk,
3D semiconductors and insulators. However, we do
find a long list of other stoichiometries (more than
30), and these often reveal very interesting and unex-
pected structures.

In figure 5 we give a glimpse of the diversity of
structural motifs found by our method. Note that
this is far from a complete list of all 2D structures
found.We concentrate on unusual arrangements that
go beyond the most common square and hexagonal
lattices. We emphasize that these motifs appeared
naturally in our workflow and were not construc-
ted by hand. Interestingly, we easily found examples
that can be derived from the majority of the dif-
ferent Euclidean uniform tilings, both Platonic and
Archimedean as well as their dual Laves or Catalan
tilings. Moreover, many of these tilings seem to be
unique to the two-dimensional world, as no layered
3D material is known to possess them.

The first two structures can be derived from a
truncated square and a rhombic tiling. In the first
case, Cs2Br2 squares are connected, forming regu-
lar empty octahedra, leading to a rather open lattice.
In the second, Se3O3 rectangular units form bonds
along the corners, leading to flattened octahedra. We
then present an example of a Pythagorean tiling,
a motif that is composed of two different squares
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Figure 3. Periodic tables showing the frequency of the chemical elements in binary compounds below 250 meV/atom in (a) our
work and (b) C2DB. We emphasize that our entries do not include, by construction, any of the compounds of C2DB.

Figure 4. Pie chart of the frequency of different general chemical formula for compounds with distances to the convex hull
smaller than 250 meV/atom in our database. The category other includes 29 general formulas.

that share one side, and can be found all over the
world in kitchen or garage floors. Interestingly, it was
proposed recently that elementary, two-dimensional
Cl, Br, and I might be able to adopt this arrange-
ment [39]. We also find a series of Cairo pentagonal
tilings. In this example, AgS2 forms two overlaying
tessellations of the plane by irregular hexagons, where
each of the hexagons is formed by four identical
pentagons. At the center of the hexagons we find a Se–
Se bond. Note that this is the same Cairo pentagonal

tiling that was found for PdSe2 [40–42]. One of
the possible structures of Cu3S2 consists on a tri-
hexagonal tiling (that is often called the Kagome
lattice due to its use in traditional Japanese bas-
ketry) of the plane by Cu atoms, decorated by a S
atom in the middle of the triangles. Triakis triangu-
lar lattices appear quite commonly in our data. The
example in figure 5 can be seen as composed of Ce
equilateral triangles decorated with a Se atom at its
center.
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Figure 5. Diversity of structures obtained by our procedure. We label in bold the convex tiling from which the structure can be
derived. Next to the chemical formula, in parenthesis, is the distance to the convex hull (in meV/atom) of the specific compound.
Note that the structure depicted is not necessarily the lowest 2D phase for the composition we found in our search.

The following three examples are derived from
snub-square lattices. In the first two, the metal forms
this interesting square-triangle lattice and the non-
metal decorates the squares. In the case of CoTe, Te-
atoms can be found above and below the plane of the
Co atoms, while in Cu2Se, Se-atoms alternate above
and below the plane of the Cu-atoms. We note that

this specific lattice was recently proposed for some
noble metal chalcogenide monolayers [43] and for
certain Ba and Ti oxides [44]. The third example is
more complex, as both In and Tl form a distorted
version of the snub-square lattice, with further Tl-
atoms alternating above and below the plane. Note,
however, that this curious structure is almost at the
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Figure 6. Polymorphism in CuI. The vertical axis denotes increasing energy distance to the convex hull of stability in meV/atom.
Copper atoms are depicted in gold, while iodine is in violet. For each structure we show a top and a side view.

limit of our energy threshold. Finally, we present six
examples of rhombitrihexagonal lattices, where the
metal atoms form the triangle-square-hexagon lattice
that is then decorated (mostly) by the non-metals.We
found a very diverse number of different decorations,
allowing for many different stoichiometries, ranging
from the simple AB and AB2 to the more uncon-
ventional A2B5 and A2B7. A very interesting possib-
ility raised by the finding of all these snub-square
and rhombitrihexagonal structures is that these can
be easily inflated by a recursive approach to gener-
ate quasi-crystalline systems [45, 46]. This is, how-
ever, only possible for structures not including out-
of-plane alternating atoms, as this induces frustration
in the system reducing its stability [44].

We have given several examples of the different
stoichiometries in our dataset and of the structural
variety stemming from them. Now, we look at the
issue of polymorphism, i.e. the different phases pos-
sible for a specific chemical composition. Not sur-
prisingly, polymorphism depends strongly on the

chemical elements present in the compound. For
example, for BN we found a single structure below
250 meV/atom, the well-known honeycomb lattice,
while for other compounds we have an extraordinary
variety in the same energy range.

As an example, we show in figure 6(a) selec-
tion of the crystal structures that we found for CuI.
We recall that zincblende CuI is at the moment
the most promising p-type transparent conduct-
ing semiconductor [47]. However, CuI has a num-
ber of polymorphs, including a couple of trigonal
phases [48–51] that are layered, with a bonding pat-
tern rather different from the γ-phase. Figure 6 shows
that also in the 2D case, we find a large variety of
structures and of bonding patterns.

As the lowest-energy 2D layer we find a cova-
lently bound hexagonal double-layer (i) that is essen-
tially on the convex hull of thermodynamic stability.
The (buckled) single layer (x) and the van-der-Waals
bound double flat-layer also appear in the energy
spectrum but considerably higher, at more than
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70 meV/atom. The second most stable structure is,
surprisingly, a rectangular lattice of Cu–I (ii), with
the I-atoms alternating above and below the plane
of the Cu-atoms. A related lattice (iv) appears just a
few meV/atom above. Structure (iii), which is only
6 meV/atom above the hull, and structure (ix) are
arrangements of one-dimensional objects. The first
exhibits nanowires with a triangular section arranged
in an alternating fashion as depicted in figure 6. The
latter (ix) is a periodic arrangements of nanostripes.
(Incidentally, higher in energy, at 161 meV/atom,
we even find a molecular crystal of Cu4I4 pyram-
idal clusters.) All these systems turn out to be semi-
conducting, with calculated (PBE) band gaps ranging
from around 0.5 eV to more than 2.1 eV.

4. Prototype search

The biggest advantage of the workflow presented
above is that it is (i) systematic and (ii) unbiased in
what concerns the structural variety. Unfortunately,
the price to pay for these advantages is efficiency, in
the sense that it is computationally expensive to go
through all possible compositions and space groups
and thatmany of the possibilities turn out to be highly
unstable or lead to thick slabs. It is, however, possible
to accelerate considerably the exploration of the 2D
material space by using the structural prototypes dis-
covered by our approach, and combining them with
a machine-learning model appropriate for prototype
search [52, 53]. Of course, in this way we will not dis-
cover new structural motifs, but we can explore the
whole compositional space very efficiently.

Our approach follows the same basic principles
as V2DB [4], but goes beyond it in a number of dif-
ferent directions. First, we perform transfer learning
from a 3Dmachine, which allows to transfer many of
the chemical principles that govern atomic bonding.
Second, we use a much larger training set, increas-
ing the accuracy of the machine. Third, we lift sev-
eral constrains (like charge neutrality or electroneg-
ativity rules) used in V2DB and in our systematic
search, and we expand the possible chemical elements
to the whole periodic table. This allows us to discover
a variety of intermetallics and compounds combining
elements with unusual oxidation states. We further-
more perform machine-learning predictions for all
two-dimensional prototypes, either already present
in C2DB or stemming from our systematic search.
Finally, we perform validation DFT calculations for
some of the predictions, specifically for the binary
stoichiometries A2B5, A2B7, and the ternary ABC2,
ABC3, AB2C2, A2B2C3.

Note that, in contrast to the systematic genera-
tion of structures based on the space groups, in the
machine-learning assisted prototype search, we do
not impose any constraint on the possible oxidation
states. As such, the machine can, and does, propose

2D systems including chemical elements in other, less
common oxidation states.

To keep the number of structures manageable,
we asked the machine to output all structures that
it found below 200 meV/atom for the binaries and
50 meV/atom for the ternaries. In total, we obtained
1023 candidates that were pre-optimized with our
neural-network force-field and then optimized with
DFT. From these 638 were found to be below
250 meV/atom from the hull, yielding an exceptional
success rate of around 62%. The lowest success rate,
of only 9%, was found for the A2B7 stoichiometry: as
these compounds were sparsely present in the train-
ing set, the machine could not learn the specificity
of those structures. The problem can, of course, be
solved by adding further samples to the dataset, in
order to remove the structural (and compositional)
bias, as previously shown for bulk systems in [22].
We are currently performing DFT calculations for
∼ 40000 more materials, resulting from 238 million
machine-learning predictions, that will be available in
the next release of our dataset.

5. Conclusions

We have presented a systematic approach to explore
the structural and compositional diversity that is pos-
sible in the chemical space of 2D materials. The main
advantage of this approach is that it is not based on a
specific number of structural prototypes. This is par-
ticularly important for 2D materials, as the space of
possible structures is still rather unexplored and only
few prototype structures, mainly from exfoliation of
layered 3D materials, are known so far. In this way,
we have discovered thousands of unexpected phases
that have no counterpart in theworld of layered three-
dimensional materials. We expect that such unusual
bonding and geometrical patterns will also lead to
unique mechanical, electronic, optical, and magnetic
properties.

Our method relies heavily on the use of machine
learning. The extensive use of neural networks in
several parts of our workflow is self-accelerating.
In fact, the faster we generate more data for two-
dimensional systems, the larger will be our training
sets, resulting in even more accurate machine learn-
ing models. This leads to a virtuous cycle that, in
our opinion, will pave the way for a rather complete
exploration of the binary, ternary, and eventually also
the quaternary two-dimensional phases in the near
future.

Finally, an important question is howmany of the
phases in our dataset can be synthesized. We chose to
filter our results to include only compounds with an
energy less than 250meV/atom above the convex hull,
as these have higher stability and therefore higher
probability to be synthesized. (For comparison, sili-
cene, that has been experimentally synthesized [54],
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is more than 600 meV/atom above the hull in its free-
standing form.) However, besides these thermody-
namic arguments, a key factor will be the choice of
suitable substrates that stabilize the two-dimensional
layers, and, of course, the ingenuity of experimental
physicists and chemists to design targeted synthesis
strategies.
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Appendix. Methods

DFT calculations
We performed all geometry optimizations and total
energy calculations with the code VASP [55, 56].
The 2D Brillouin zones were sampled by uniform
Γ-centered k-point grids with a density of 6 k-
points Å−2. We performed spin-polarized calcula-
tions starting froma ferromagnetic state, and used the
projector augmented wave setups [57, 58] of VASP ver-
sion 5.2 with a cutoff of 520 eV. We converged the
calculations to forces smaller than 0.005 eVÅ−1. As
exchange-correlation functional we used the Perdew–
Burke–Ernzerhof [59] functional with on-site cor-
rections for oxides and fluorides containing Co, Cr,
Fe, Mn, Mo, Ni, V, or W. The repulsive on-site cor-
rections to the d-states were 3.32, 3.7, 5.3, 3.9, 4.38,
6.2, 3.25, and 6.2 eV, respectively. These paramet-
ers were chosen to be compatible with the Mater-
ials Project database [10]. We imposed a vacuum
region of 15 Å, and systems that resulted in struc-
tures with a thickness greater than 7.5 Å were auto-
matically discarded. Finally, as it is common in this
kind of approaches, some of the calculations did not
converge due to a multitude of reasons. The corres-
ponding phases were then simply eliminated from the
dataset.

Distances to the convex hull were evaluated using
PYMATGEN [60] using the large complex hull of [22]
corresponding to the dataset available in theMaterials
Cloud repository [20].

M3GNET
We employed the universal neural-network force-
field M3GNET [23] that was developed to reproduce
the energies and the forces of bulk structures with
remarkable results. As a starting point we used the
pretrained network distributed with M3GNET. We
tested this model on 1300 of our systems by meas-
uring the difference between the energy calculated
withM3GNET (at the M3GNET relaxed structure) and the
energy calculatedwithDFT (at theDFT relaxed struc-
ture). We arrived at a MAE of 320 meV/atom and a
median absolute error of 223meV/atom. These num-
bers are already rather small, especially when we con-
sider that the training set of M3GNET did not include
2D systems that can exhibit very different bonding
patterns compared to bulk structures. As soon as
enough data was available from our own simula-
tions, we used transfer learning techniques to retrain
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M3GNET for 2D materials (see appendix). Specifically,
we build a dataset comprising energies, forces, and
stresses from structures calculated during the geo-
metry optimization steps. Structures with extremely
high forces above 50 eVÅ−1 were removed from the
data as were structures with no neighboring atoms
inside the cutoff radius to avoid errors during train-
ing. To balance the training set, for systems withmore
than 4 recorded geometry optimization steps only the
first, last and Nsteps/3 step were used. The final train-
ing set for M3GNET contained 11 612 geometry relax-
ations corresponding to 34 944 energies and struc-
tures. The resulting network had a validation MAE
of 61 meV/atom for direct energy predictions after
training. The test errors for geometry optimizations
on the same dataset as the pretrained model were
198meV/atom for theMAE and 96meV/atom for the
median absolute error proving the efficiency of our
transfer learning strategy. Of course, we expect these
errors to decrease further simply by addingmore data
to the training set. The models were trained with the
base hyperparameters fromM3GNET and by setting the
loss function of the stress in the non-periodic direc-
tion to zero.

Crystal-graph attention networks
We used the crystal-graph attention neural networks
developed in [61] as they were specifically crafted
for prototype searches. In particular, they require as
input only the (unrelaxed) structural prototype and
not accurate relaxed structures. Of course, this model
was trained on bulk 3D structures, so we do not
expect it to perform accurately in our case. How-
ever, many of the bonding patterns present in our 2D
materials can already be found in the 3D world. To

take advantage of this, we performed transfer learn-
ing of the 3D model, using the 2D structures in our
dataset as training data. We used a dataset of DFT
calculations with 22 007 entries, 80% of which were
used for training 10% for validation and 10% for test-
ing. Evaluating both models on the test set, we arrive
at an MAE of 222 meV/atom for the original model
and 86meV/atom for themodel transferred to the 2D
data.

In figure 7 we present a histogram with the dis-
tances to the convex hull of stability calculated with
DFT. The C2DB data is in light green, and is highly
peaked at zero, decaying slowly for larger energies.
This is expected, as C2DB was seeded with stable 3D,
van der Waals bonded structures from ICSD. In blue
we depict the structures obtained through our sys-
tematic approach. These form a continuous distri-
bution with a peak at around 300 meV/atom, and
extending beyond 1.5 eV. Knowing that such dis-
tribution for random compounds can extend bey-
ond 4 eV, we see how the charge and electronegat-
ivity constraints lead to relatively stable compounds
(at the price of overlooking intermetallics or com-
pounds with unusual oxidation states. In light blue
we show the machine-learning binaries predicted to
be within 200 meV/atom from the hull. This shows
a peak at around that value, as expected form the
cutoff, then decaying similarly to the C2DB data.
The ternary entries, displayed in green, are shifted
to much lower energy, as expected by the smaller
cutoff of 50 meV/atom. This results are consistent
with theMAE of 86meV/atom for the 2Dmodel. The
CGAT-hyperparameters are listed in the supplement-
ary material and the code can be found at https://
github.com/hyllios/CGAT.git.
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Figure 7. Distribution of the distances to the convex hull (calculated with DFT) for the compounds obtained through our
systematic approach and stemming from the machine-learning assisted prototype search compared to the entries of C2DB.
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Conclusions and Outlooks

In the four publications in this Thesis, we used systematic high-throughput techniques

to search for promising functional materials. The first publication focused on finding

promising transparent p-type semiconductors which could broaden the choice for

experiments in building the p-n junctions in photovoltaic applications. We adopted

a systematic search on the double perovskite prototype, only restricting the A-site

elements to be Rb or Cs based on previous experimental evidence of stable Rb/Cs-

related systems. Our success rate in finding (meta-)stable systems is nearly 10%, which

is higher than usually non-restricted exhaustive search, showing how pre-selection

could be helpful. Then, we applied criteria on the band gap and hole effective masses

that shrank the promising list drastically, resulting in 18 qualified candidates. Ten of

them can be considered friendly to ecosystems.

The second publication focused on mix-anion perovskites. We again conducted a

systematic search. At first, we only considered the fully ordered five-atoms unit-cell of

the formula ABX2Y. We successfully recovered the experimentally known systems.

Moreover, we predicted several novel (meta-)stable oxyfluorides and oxynitrides.

For nitrofluoride, we found only one system, LaMgF2N, having a distance to the

convex hull less than 200 meV/atom. Further considering the disorder of X and Y

anions and lattice distortions, we found that both factors have varying stabilization

effects from tens to a few hundreds of meV/atom, depending on the stoichiometry.

We also identified some mix-anion structures that are favoured energetically over

non-perovskite structures. The electronic structures of the candidates confirm the

feasibility of adjusting the gap via anion-alloying.

In the third publication, we tried to explore the labyrinth of chemical space

systematically. We used experimental intuition, and the concept of similarity of

elements, i.e., considerable similarity between two elements potentially allows the

substitution of one element by another while keeping the crystal structure stable.

We systematically performed the substitutions by choosing an optimal threshold of

similarity. Starting from less than 10,000 stable structures within the Materials Project

(MP) database, we generated and calculated nearly 190,000 structures. We found more

than 18,000 new stable ones, which increased the information about the convex hull at

the time of this publication by more than 50%. Moreover, the success rate of the whole

process is nearly 10%, which is an order of magnitude larger than usual systematic
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high-throughput searches. We found several super-hard materials and more than 800

potential magnetic semiconductors among these new systems.

The fourth publication focused on two-dimensional systems. For 2D, there are

only a few known and widely discussed prototypes. To enrich the knowledge of

possible 2D motifs, we applied a systematic workflow based on enumerating all

permutations of Wycoff position in the 2D space groups to generate all possible

stoichiometries. Similarly, the combinatorial exploding number of candidate structures

makes brute force DFT validation impractical. Instead, we applied machine models of

interatomic force-field [22] and thermodynamic stability [21] to pre-select potential

stable structures. We recovered the 2D structures in the C2DB database and

found many new motifs (prototypes) that can not be constructed by hand or

from the exfoliation of known 3D structures. We performed a machine-learning

supported prototype-based high-throughput search on several compositions using all

the prototypes, both those known in C2DB and the ones constructed by us. As a

result, we found 638 new meta-stable structures out of 1023 DFT calculations. This

exceptional success rate (>60%) shows a dramatic efficiency increase when combining

well-performing machine models with the high-throughput scan.

We want to note that searching for new functional materials can be more complicated

than running brute force DFT calculations. The number of possible structures

combinatorially explodes with the increasing number of elements in a composition.

Brute force search is more like finding a path through the labyrinth of chemical

space via trial and error. Ideally, we want a priori a list of the highly promising

candidates, i.e., a map of the labyrinth. Commonly this map is empirically drawn

before actual exploration takes place. Therefore, it is inevitably human-biased.

Despite this bias, the high-throughput search can be successful, as shown in Chapters 3

and 4. In Chapter 5, we tried a more sophisticated pre-selection, we minimized

the human-intervened, and used the data-mining-based similarities of elements, to

significantly improved success rate. Our results show that the bias could impede the

efficiency of high-throughput search. In Chapter 6, we went beyond search in merely

the chemical space and included configurations of Wycoff positions to explore the

structural labyrinth. We show that this task is only possible by using machine models

to pre-draw the map. Not surprisingly, but impressively, the pre-drawn map is quite

accurate, enabling the search to extend beyond the border of the tiny known corner

of the labyrinth.
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Further work based on Chapter 3 could investigate the p-type dopability of the

promising candidates. The workflow can be easily adapted to layered perovskites,

hybrid perovskites, or even beyond. The data of effective masses can also be used to

train an explanatory model to extract and better understand the underlying physics

deciding the electronic structures in perovskites and reverse-design [174] potential

compositions. It has been shown [WPhD5] that the gap could be changed drastically

through strain caused by the lattice mismatch during the fabrication of the device.

Furthermore, strain can also affect the band curvature and, thus, the effective masses.

In Chapter 3, the transparent candidates were filtered out based only on their PBE

band gap values. We did not consider the excitonic effect that can also affect optical

absorption. Unfortunately, the proper consideration of excitons involves too expensive

DFT calculations. Therefore, machine learning techniques will again be critical in

enabling more accurate filtering criteria.

When performing the study in Chapter 4, we did not use any machine model.

Otherwise, we could make the investigation using supercells and consider the disorder

effect at the beginning. The disorder was discussed considering the space group’s

symmetry, and fully disordered structures can be generated and pre-optimized easily

with a machine learning force-field, for example, M3gnet [22]. With a better and

more complete hull [160], we would have more confidence in predicting whether the

perovskite structure is the ground state of the mix-anion composition. It would also

be important to predict how the gap and effective mass vary as a function of the ratio

of two or more mixed anions. This task, again, requires large supercells, so it will be

more efficient using machine learning techniques.

The chemically and structurally diverse dataset obtained in Chapter 5 has been used

to train machine learning models to predict the stability of inorganic materials [21,

120]. Such a relatively large amount of data increased the capacity of the training

sets and, consequently, helped to achieve good performance of the models. Since

the total energy is not the only result of our calculations, the other properties, for

example, the band structure and density of state, can also be used to train models

to predict (PBE) gaps or fit tight-binding parameters. However, we did not consider

anti- or ferrimagnetic configurations in the workflow. Further work in this direction can

filter magnetic semiconductors or insulators, fit the Heisenberg model to extract spin

exchange parameters, or train explanatory models to help unveil more physics behind

them. Combined with the recent achievement of machine-aided high-throughput
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results [WPhD12], we can also revisit the similarity scale between elements.

Following the work in Chapter 6, we are calculating structures generated for the rest

of the space groups and more ternary compositions. We plan to run DFT calculations

on about 40,000 systems pre-selected by the Cgat machine model [21]. Our dataset

also broadens the horizon for potential 2D functional materials, including but not

limited to topological structures, mechanoelectrics, heterostructures, twistronics, etc.

Noticing that many motifs lack a 3D layered counterpart, we can stack the 2D

motifs and construct new interesting 3D layered prototypes, which can further push

the exploration of the labyrinth of chemical space beyond the vicinity of current

experimental prototypes.
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