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Zusammenfassung

Im Rahmen der Dissertation mit dem Titel "Statistical Analysis in Multivariate Sam-

pling" wird die Analyse von Zähldaten betrachtet. Hierbei werden drei Fälle unter-

schieden. Der univariate Fall, bei dem die m Beobachtungen durch Zufallsvariablen

der Form (Yi; Xi) beschrieben werden, sowie die bivariate Analyse und die multi-

variate Analyse, bei der die Daten durch Zufallvektoren (Yij; Xij); i = 1; :::;m; j =

1; :::; k; k = 2 bzw k > 2 modelliert werden.

Ein grundlegendes Ziel dieser Arbeit ist es, basierend auf geeigneten Modellannah-

men gute Schätzungen für die Häu�gheit eines Merkmals zu erhalten (zum Beispiel:

Schätzung der Anzahl an defekten oder schadhaften Teilen Y in einem bestimmten

Werk, das eine bekannte Anzahl an Teilen produziert oder die Schätzung des Anteils

in Bezug auf die Gesamtzahl). Ebenfalls von interesse ist, Die Konstruktion zuverläs-

siger Kon�denzintervalle für Anteile oder Linearkombinationen �Tp dieser Anteile,

was Gewinne oder Verluste beschreiben kann. Hierbei ist � 2 Rk; � � 0; k � 1, und

p 2 [0;1]k, wobei k die Anzahl der Komponenten der Zähldaten darstellt, und p der

Vektor der Anteile. Die Konstruktion der Kon�denzintervalle für die Anteile pj folgt

ebenfalls als Linearkombination, in dem man �j = 1 und � = (0; :::; 0; �j; 0; :::; 0)
T ,

j = 1; :::; k, wählt.
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Abstract

Within the framework of this dissertation entitled 'Statistical Analysis in Multivariate

Sampling', the analysis of univariate count data involves pairs of random variables

(Yi; Xi) of m observations, while in the bivariate and multivariate, analysis data of k

pairs of random variables (Yij; Xij); i = 1; :::;m; j = 1; :::; k; k � 2 are involved.

The fundamental goal of the work is, based on the appropriate model assumptions

to obtain good estimates for the attribute totals such as: estimating the defective or

damage totals, i.e, estimating the defective totals Y in a speci�c factory containing

a known total amount of the productions, or estimating the proportions of those de-

fective or damage totals with respect to the total amount of the items, as well as,

constructing reliable con�dence intervals for the proportion, or constructing con�-

dence intervals for any linear combination of these proportions (which may describe

some monetary gain or loss) �Tp, where

� 2 Rk; � � 0, is a vector of constants, and p 2 [0;1]k; k � 1, k is the number

of components of the count data, and p is the vector of the underlying proportions.

Constructing con�dence intervals for any proportion pj can be obtained as a linear

combination of the proportions by assigning the value �j = 1 in the vector

� = (0; :::; 0; �j; 0; :::; 0)
T , j = 1; :::; k.
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Introduction

Statistical analysis plays an important role in economics, biology, medicine, physics,

and social sciences with a broad range in the other di�erent �elds.

In some circumstances as for example: In economic crises, it is important to

obtain a reliable estimate or a function of estimates for the damage proportion(s)

to determine which are compatible with the value of the damage proportion or a

function of the damage proportions for various productions. In medicine, one can

also produce good estimates of the proportions for the patients based on the collected

sample data, to see how these estimates can be compatible with the corresponding

proportions taking in account any dependencies between the data components, and

so on.

The fundamental aims of the statistical analysis usually are:

� Estimating the coe�cients of the considered model.

� Evaluate �tting the model to the data.

� Discovering or predicting further data.

� Making a statistical inference (i.e, con�dence interval, test of hypothesis regard-

ing the unknown coe�cients) about the model coe�cients.

The aims of the statistical analysis in this thesis are:

� Producing estimates for the components proportions based on the assumed

model.

� Obtaining the asymptotic distribution of the estimators by involving asymp-

totic theory (asymptotic normality), as well as, constructing the approximate

con�dence intervals for the model coe�cients, i.e, for the proportions or a lin-

ear combination of the proportions. Thus, all the procedure results will be

approximate results.
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This dissertation is devoted to studies and applies the statistical analysis meth-

ods to one or more dimensional data under the assumed model that describes the

relationship among the variables.

On the one direction, the most famous and simple models have been used through-

out this work are the linear models, and the bivariate, multivariate SUR models, which

are the fundamental analyzing of the univariate, and the multivariate sampling data

(non-linear models are not deal with here, nor included in this work).

On the other direction and according to the structure of data (count), the next

involved models are the ' Univariate', ' Bivariate ', and the ' Multivariate' Poisson

models (these models were discussed in: [6], and [9], [10], [11], and [13]).



Chapter 1

Univariate data analysis

1.1 Introduction

The univariate analysis deals with analysis of a single random variable, however in fact

being analysis of pair random variables. In this chapter, we will analyze the collected

sample count data (one dimension), sampling from a certain �nite population.

Suppose, we are sampling from an in�nite population, namely the i:i:d pairs

(Y1; X1); :::; (Ym; Xm) is a random sample of size m drawn from an in�nite popu-

lation such that for each index i associated with the pair r.v's (Yi; Xi) restricted by

0 � Yi � Xi, 8i.
The count variables (Yi; Xi) have the attributes, for instances:

Xi � No.of children in the family i, or No.of non defects of the product i for a speci�c

factory.

Yi � No.of male children in the same family i, or No.of defects for the same product

i for a speci�c factory.

We will consider the common approach, p̂ =
Pm

i=1 YiPm
i=1Xi

, as a sample proportion used to

estimate the unknown population proportion p, where

p =
E(Yi)

E(Xi)
; E(p̂) = p:

We will start analyzing the sample data with the fundamental method of the

analyzing. It will be assumed in the following section that the relationship between

the random variable Yi and the corresponding variable Xi is linear relationship, and

the linear regression technique will be involved to analyze the data under the assumed

linear model. Let us �rst introduce to the basic knowledge of the general linear model.

3



1.2. General linear model and linear ratio model 4

1.2 General linear model and linear ratio model

The general form of the univariate multiple linear regression model is written as

Yi = f(Xi)
T� + �i =

kX
j=1

fj(Xi)�j + �i;

where, � = (�1; :::; �k) 2 Rk is a vector of the unknown model coe�cients, the

real valued functions f(Xi) = (f1(Xi); :::; fk(Xi))
T are the regression functions linear

in the �0js, and the random variable �i is the errors term of the model satisfying

E(Yi) = f(Xi)
T�;8i = 1; :::;m. We assume that there is no explicit intercept included

in this model, it depends on the considered problem. In particular if, k = 1, this leads

to � = �1 = p; f(Xi) = f1(Xi) = f(Xi), so the model is reduced to the model

Yi = f(Xi)p+ �i;

with the assumptions

E(�i j f(Xi)) = 0; and; V ar(�i j f(Xi)) = �2f(Xi);

on the model errors �i; i = 1; :::;m.

And further, assume the function f(Xi) = Xi, then the model becomes

Yi = Xip+ �i;

where, E(�i j Xi) = 0, and V ar(�i j Xi) = �2Xi, (either Xi �xed or random),

i = 1; :::;m.

The unconditional variance, or marginal variance (by the law of total variance), and

the unconditional expectation of the model errors are given by

V ar(�i) = E (V ar(�i j Xi)) + V ar (E(�i j Xi)) = �2E(Xi);

E(�i) = E (E(�i j Xi)) = 0; (1.1)

as E(�i j Xi) = 0.

1.2.1 Linear model (LM)

It will be assumed �rst the following univariate linear model

Yi = xip+ �i; i = 1; :::;m; (1.2)
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with the assumptions:

E(Yi) = xip; E(�i) = 0, and with variance proportional to xi (xi is �xed variable),

i.e, V ar(Yi) = V ar(�i) = �2xi.

Or, it would be convenient to compress the model in vector form

Y = Xp+ �; (1.3)

where, the m � 1 dimension response vector Y = (Y1; � � � ; Ym)T , and the m � 1

design vector X = (x1; � � � ; xm)T , and the heteroscedastic errors (�1; � � � ; �m)T = �,

with the assumptions, E(�) = 0m , and V ar(�) = �2W , where 0m = (0; :::; 0)T , and

W = diag(xi). In other words, the errors �i are uncorrelated and have variance

proportional to the xi.

1.2.2 Normal linear model (NLM)

Next, It will be assumed the normality of the errors of the linear model 1.3, given

the �xed design vector X = (x1; :::; xm)
T , i.e, x1; :::; xm are �xed or non random

variables, also called covariates or predictors. I.e, given �xed xi, the errors �i are

independently normally distributed with mean 0 and with variance proportional to

xi, i,e, given xi, the response variable Yi has N(xip; �
2xi); or, the errors �i are i:i:d

normally distributed with mean 0 and with variance �2E(xi); i = 1; :::;m.

The relationship between Yi and the predictors xi is postulate as the linear model

Yi = xip+ �i; i = 1; :::;m; (1.4)

with the assumptions

�i � N(0; �2xi), as well as Yi � N(xip; �
2xi), it follows that

V ar(Yi) = V ar(�i) = �2xi (constants) i = 1; :::;m, the model is called Normal

linear model (In fact, this model is called, an approximate NLM (ANLM), due to

P (Yi < 0) = 0; 8i = 1; :::;m, which is not satis�ed for normality of the model 1.4, but

to use the Normal distribution tools, the model will be assumed as NLM).

The model (1.4) will compress in vector form

Y = Xp+ �;

where, Y = (Y1; � � � ; Ym)T , and the design vector X = (x1; � � � ; xm)T , and the corre-

lated normal errors (�1; � � � ; �m)T = �, with the assumptions

E(�) = 0m , and V ar(�) = �2W , where 0m = (0; :::; 0)T , and W = diag(xi).
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1.2.3 Standardizing the LM and NLM

It would be more convenient to work with models having constant variances or co-

variances rather than with variable ones.

In this paragraph, the univariate linear regression model will be standardized, where

all covariates are weighted by the square root of the inverse of the function f(Xi) in

the conditional variance, where f(Xi) = xi. Throughout we will only consider xi > 0.

Thus, the linear model 1.2 will be transformed by the transformation

AiYi = Aixip+ Ai�i, to obtain the weighted LM

eYi = exip+ e�i; i = 1; :::;m (1.5)

where, Ai = 1p
xi
, given that xi > 0; eYi = AiYi = Yip

xi
; exi = Aixi =

p
xi, ande�i = Ai�i =

�ip
xi

, it follows that E(e�i) = 0, and

V ar(e�i) = V ar(Ai�i) = �2 8i = 1; :::;m (homoscedastic errors).

Similarly, the NLM 1.4 will be standardized to obtain the weighted normal linear

model

eYi = exip+ e�i; (1.6)

with the assumptions, e�i � N(0; �2), eYi � N(exip; �2); exi = p
xi; xi > 0;8i = 1; :::;m,

i.e, the weighted errors are the i:i:d Normal random variables with mean 0 and �nite

variance �2, this model is called the weighted NLM .

It would be convenient to rewrite the transformed linear models 1.5, and 1.6 in vector

notation

eY = eXp+ e�; (1.7)

where, E(e�) = 0m , and E(eY) = eXp, as well as Cov(e�) = �2Im = Cov(eY), where Im

is an identity matrix of dimension m�m, and the weighted response vectoreY = (eY1; � � � ; eYm)T , and the weighted design vector eX = (ex1; � � � ; exm)T , as well as
the weighted error vector e� = (e�1; � � � ;e�m)T .

It follows from the model 1.6 that, the error vector e� has the multivariate Normal

distribution (also, as the AMVN (the approximate multivariate Normal distribution),

but it will be much better to obtain exact results, therefore the model will be consid-

ered as the MVN) with 0m mean vector, and nonsingular covariance matrix �2Im, i.ee� � Nm(0m ; �
2Im).
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1.2.4 Estimation in linear models

Estimation of the coe�cient of the univariate linear ratio model deals with two cases,

according whether the model errors are homoscedastic or heteroscedastic errors.

Homoscedasticity case

Under normality of the errors of the model 1.7, the weighted error vector e� has

the multivariate Normal distribution with the 0 mean vector and the nonsingular

covariance matrix �2Im, i.e, has variance proportional to the identity matrix Im. In

other words, the weighted errors are iid normal random variables with mean 0 and

with constant variance �2 (homoscedastic errors).

On the other side, it is well-known that the WLSE (weighted least squares estimator)

is the BLUE (the best linear unbiased estimator or the optimal estimator), and since

the weighted errors are homoscedastic then, the WLSE applied to the weighted model

1.7 results in the OLSE (Ordinary least squares estimator), and hence is also the

BLUE (the best linear unbiased estimator or the optimal estimator, according to

Gauss-Markov's theorem, see [7], pp. 588-591 or, [20], pp. 35-42), i.e., p̂
WLS

= p̂
OLS

,

in case of homoscedastic errors. Mathematically, one can investigate this as following:

Since, Cov(e�) = �2Im, then

p̂
WLS

=
�eXT

�
�2Im

��1 eX��1 eXT
�
�2Im

��1 eY
=

�eXT Im eX��1 eXT Im eY =
�eXT eX��1 eXT eY = p̂

OLS

=

 
mX
i=1

(
p
xi)

2

!�1 mX
i=1

p
xieYi = Pm

i=1

p
xieYiPm

i=1 xi
=

Pm
i=1 YiPm
i=1 xi

= p̂;

which results in the ratio estimator, where
p
xieYi = Yi .

Heteroscedasticity case

Since, the error vector of the model 1.3 has covariance that is the variance not pro-

portional to the identity matrix, i.e, proportional to the known invertible diagonal

matrix W; so, it will be used the GLSE (Generalized least squares estimator), which

is also the BLUE. Speci�cally, if A = ��1=2 is a non singular symmetric positive

de�nite matrix, then AT�A = Im.
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The covariance structure of the model 1.3, is given by

Cov(�) =

0BB@
�2x1 � � � 0
...

. . .
...

0 � � � �2xm

1CCA = �2

0BB@
x1 � � � 0
...

. . .
...

0 � � � xm

1CCA = �2W;

i.e, proportional to an invertible matrix W; where W = diag(xi); xi, are �xed, i =

1; :::;m, and W�1W = Im, as well as X
TW�1 = 1Tm, where Im is the identity matrix,

and 1m = (1; :::; 1)T .

So, we have

p̂
GLS

=
�
XT
�
�2W

��1
X
��1

XT
�
�2W

��1
Y =

�
XTW�1X

��1
XTW�1Y

=
�
1TmX

��1
1TmY =

 
mX
i=1

xi

!�1 mX
i=1

Yi =

Pm
i=1 YiPm
i=1 xi

= p̂;

which results in the ratio estimator.

Note that:

� The regression equation used to estimate the true mean value E(eY) in eq 1.7

can be written as
beY = eXp̂.

� The variance of the estimator p̂
WLS

in case of homoscedasticity is �2
�eXT eX��1,

whereas in the case of heteroscedasticity is �2
�
XTW�1X

��1
, which are equal

(for more details see [19] pp. 148-149).

1.2.5 Properties of the ratio estimator p̂

Unbiasedness

The expected value of the ratio estimator p̂ is the proportion p, i.e, the ratio estimator

p̂ is an unbiased

E(p̂) = E

 Pm
i=1
eYipxiPm

i=1 xi

!
=

Pm
i=1

p
xiE(eYi)Pm

i=1 xi
=

Pm
i=1

p
xip
p
xiPm

i=1 xi
=
p
Pm

i=1 xiPm
i=1 xi

= p:

Variation

The variability of the ratio estimator from the proportion p is given by

V ar(p̂) = V ar

 Pm
i=1
eYipxiPm

i=1 xi

!

=
1

(
Pm

i=1 xi)
2

mX
i=1

xiV ar(eYi) = �2
Pm

i=1 xi

(
Pm

i=1 xi)
2
=

�2Pm
i=1 xi

= �2
�exTex��1 ;
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derivation of the properties of the estimator p̂
OLS

in the univariate multiple regression

model with intercept is given in [19] pp. 129.

Given the �xed design vector X (Y 0
i s are Normal), we have

p̂ � N

�
p;

�2Pm
i=1 xi

�
; (1.8)

where, �2 is unknown �nite variance.

An unbiased consistent estimator �̂2 for the unknown �nite variance �2 based on the

m residuals is given by

�̂2 = s2e =
1

m� 1

mX
i=1

(Yi � p̂xi)
2

xi
=

1

m� 1

mX
i=1

(eYi � p̂exi)2 = s2ee;

where, exi = p
xi; xi > 0; 8i; eYi = Yiexi .

For investigation : since
Pm

i=1 ee2i
�2

� �2m�1, or
(m�1)s2ee

�2
� �2m�1, hence

E
�
(m�1)s2ee

�2

�
= m�1) (m�1)

�2
E(s2ee) = m�1) E(s2ee) = �2, and thus s2ee is an unbiased

estimator of �2 (which in turn, is the BUE according to the Lehmann-Sche�é theorem

(see [8], pp. 426-430), the complete proving is given in the chapter 2 subsection 2.2.6).

In case of the ANLM (Y 0
i s are not normal) one may obtain, asymptotically:

p
m(p̂m � p) �!D N

�
0;
�2

�

�
;

or approximately

p̂m � N

�
p;

�2

m�

�
;

provided that, 1
m

Pm
i=1 xi �!P �, where, � is known constant, and �!P , �!D denote

respectively, convergence in probability and in distribution.

1.2.6 Asymptotic normality of the estimator p̂
OLS

(ratio esti-
mator p̂

m
)

So far, it has been assumed that, given �xed xi the errors are normally distributed

in which one could obtain the exact distribution of the ratio estimator p̂, while our

interesting is to consider the asymptotic distribution of p̂m in case of the non-normal

errors, but under the stochasticity of Xi.

Thus, one would consider as well as identify the asymptotic Normal distribution of

the ratio estimator p̂m provided that the sample size is enough large.
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Addition conditions on the pair of observations Xi; Yi are required, namely (Xi; Yi)

are i:i:d pairs of r.v's, and E(Xi) exists ) ( eXi; eYi) are also i:i:d random variables,

and E( eX2
i ) exists, i = 1; :::;m, eXi =

p
Xi; eYi = Yip

Xi
. Here we assume throughout

that Xi > 0 almost surely.

To derive the asymptotic distribution, one rewrite �rst the estimator p̂
OLS

as

p̂
OLS

=
�eXT eX��1 eXT eY =

 
mX
i=1

eXi
eXi

!�1 mX
i=1

eXi
eYi

=

 
mX
i=1

eX2
i

!�1 mX
i=1

eXi

� eXip+ e�i� ; (1.9)

so

p
m(p̂

OLS
� p) =

 
1

m

mX
i=1

eX2
i

!�1 
1p
m

mX
i=1

eXie�i!

=

 
1

m

mX
i=1

�p
Xi

�2!�1 
1p
m

mX
i=1

p
Xie�i!

=

 
1

m

mX
i=1

Xi

!�1 
1p
m

mX
i=1

p
Xie�i! : (1.10)

Derivation of the asymptotic normality of the equation 1.10, needs to verify, the

denominator in 1.10 is consistent, and the numerator obeys the Central limit theorem.

It straightforward to see (by the LLN) 
1

m

mX
i=1

Xi

!�1

�!P (E(Xi))
�1
;

provided that, E(Xi) > 0, also 
1

m

mX
i=1

xi

!�1

�! ��1; � is constant:

As well as the numerator

1p
m

mX
i=1

p
Xie�i �!D N

�
0; �2E(Xi)

�
;

where, the marginal or asymptotic variance

Cov
�p

Xie�i;pXie�i� = V ar
�p

Xie�i�
= E

�
XiV ar(e�i j eXi)

�
+ V ar(E

p
Xie�i j eXi)) = �2E(Xi):
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Therefore, with help of the so-called Slutsky's lemma (see [8], p. 342, or [14], pp.

119-120), one can obtain immediately the asymptotic Normal distribution of the ratio

estimator p̂m , thus the equation 1.10 can be rewritten (since, p̂
OLS

� p̂m) as

p
m(p̂m � p) �!D N

�
0; �2E(Xi)(E(Xi))

�2� � N
�
0; �2(E(Xi))

�1� : (1.11)

1.2.7 Con�dence intervals for the proportion p

We will give the outlines of the behave of the distribution of the ratio estimator with

the proposed con�dence intervals of the proportion based on the previous approaches,

and on the observation Xi.

proposition 1

xi are �xed variables:

Standardizing the expression 1.8 (Normal Y 0
i s) will gives

p
m (p̂� p) � N

�
0;
�2

xm

�
; (1.12)

it follows that, the exact (1��)% con�dence intervals for the proportion p are given

by h
p̂� z

1��
2
S:E(p̂)

i
; as

p̂� p
�pPm
i=1 xi

� N(0; 1); when �2 is known

h
p̂� t(m�1;1��

2
)s:e(p̂)

i
; as

p̂� p
sepPm
i=1 xi

� tm�1; when �2 is unknown;

where, the Standard Error of p̂, S:E(p̂) = �pPm
i=1 xi

, and s:e(p̂) = s~epPm
i=1 xi

.

For the non-Normal Y 0
i s (since we have non negative count data), and since the

sequence xm = 1
m

Pm
i=1 xi ! �, � is constant, it follows that the sequence of vari-

ances �2

xm
converges to the asymptotic variance �2(�) = �2

�
, as m tends to in�nity.

Asymptotically, 1.12 can be rewritten as

p
m(p̂m � p) �!D N

�
0;
�2

�

�
;

where, the asymptotic variance

V ar(
p
mp̂m) = E(V ar (

p
mp̂m)) + V ar(E(

p
mp̂m)) =

�2

�
,

as, V ar(E(
p
mp̂m)) = 0. It follows that, an approximate (1� �)% of the asymptotic

con�dence interval for the proportion p (unknown �2) is given byh
p̂m � z

1��
2
s:e(p̂m)

i
;
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as

p̂m � p
sepPm
i=1 xi

�!D N(0; 1);

where, s:e(p̂m) = sepPm
i=1 xi

. As well as z
1��

2
is the (1 � �

2
) percentile of the Stan-

dard Normal distribution, where the Standard Normal random variable Z has the

Cumulative Standard Normal distribution function � : �(z) = P (Z � z), where

P
�
�z

1��
2
� Z � z�

2

�
= 1� �. Further, one may rewrite (non-Normal Y 0

i s)

p̂m � pq dV ar(p̂m)

' tm�1 �!D N(0; 1);

''' denotes as approximately equal to, where the estimator dV ar(p̂m) =
s2eePm
i=1 xi

is a

consistent estimator of the corresponding variance V ar(p̂m), and hence the suggested

conservative con�dence interval (safety bounds) is given byh
p̂m � t(m�1;1��

2
)s:e(p̂m)

i
;

where, s:e(p̂m) =
sepPm
i=1 xi

, and t(m�1;1��
2
) is the (1��

2
) percentile of the t�distribution

with (m� 1) degrees of freedom.

proposition 2

(Yi; Xi) are iid pairs random variables (not necessarily normal):

Since, Xm !P E(Xi) (by the LLN, since Xi are i:i:d, and Xm = 1
m

Pm
i=1Xi), and

hence the sequence of variances �2

Xm
converges to the asymptotic variance �2

E(Xi)
, as m

tends to in�nity, so by the Central limit theorem it follows that

p
m(p̂m � p) �!D N

�
0;

�2

E(Xi)

�
;

where, the asymptotic variance,

V ar(
p
mp̂m) = E(V ar(

p
mp̂m j XT )) + V ar(E(

p
mp̂m j XT )) = �2

E(Xi)
, as,

V ar(E(
p
mp̂m j XT )) = 0, X = (X1; :::; Xm)

T .

And thus, the approximate (1��)% asymptotic con�dence interval for the proportion

p is given by h
p̂m � z

1��
2
s:e(p̂m)

i
;
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where, the standard error of p̂m , s:e(p̂m) =
smpPm
i=1Xi

, s2m = 1
m�1

Pm
i=1

(Yi�p̂Xi)
2

Xi
, and

the normal quantile z
1��

2
is de�ned as previous.

Further, and since Xm and s2m are consistent estimators for E(Xi) and �2 respec-

tively, it follows that a consistent estimator of the V ar(p̂m) is
s2
mPm

i=1Xi
, also, as

p̂m � pq
s2
mPm

i=1Xi

' tm�1 �!D N(0; 1):

Hence, the interval whose safety bounds given byh
p̂m � t(m�1;1��

2
)s:e(p̂m)

i
;

is the suggested more conservative con�dence interval for the proportion p, where

s:e(p̂m) =
smpPm
i=1Xi

.

For the Normal Y 0
i s, and from 1.12, we have

P
p
m(p̂�p)jX � N

�
0;

�2

Xm

�
;

so, the exact (1� �)% con�dence intervals for the proportion p, areh
p̂� z

1��
2
S:E(p̂)

i
; as

p̂� p
�pPm
i=1Xi

� N(0; 1); when �2 is known

h
p̂� t(m�1;1��

2
)s:e(p̂)

i
; as

p̂� p
s~epPm
i=1Xi

� tm�1; when �2 is unknown;

where, S:E(p̂) = �pPm
i=1Xi

, and s:e(p̂) = s~epPm
i=1Xi

, s2~e =
1

m�1
Pm

i=1(
eYi � p̂ eXi)

2,eYi = Yip
Xi
; eXi =

p
Xi, as well as Xm = 1

m

Pm
i=1Xi.

1.3 Poisson model

This section, deals with the next assumed model in which the data analysis based

on, with a new assumption on the variable Xi, namely, the variable Xi assumes as

a Poisson random variable, Xi � 0, (Note that, we are not interest in a relationship

between the observations Yi and Xi, only in the conditional distribution of Yi given

Xi).

Let us describe the so-called 'Univariate Poisson model', and then we will obtain the

conditional distribution of the r.v Yi given the Poisson random variable Xi, as well as,

we will construct the approximate con�dence intervals for a function of the Poisson

model parameters.
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1.3.1 The Univariate Poisson model

Assume that the count r.v Xi has a Poisson distribution, which decomposes additively

into two independent Poisson random variables Yi; Zi with means, �1; �2 respectively.

I.e, Xi = Yi+Zi, it follows that Xi � Poiss(�1+ �2), and hence, E(Yi) = V ar(Yi) =

�1, and E(Zi) = V ar(Zi) = �2, consequently, E(Xi) = V ar(Xi) = �1 + �2.

Further, one may obtain the conditional distribution of a sub count random variable

Yi given the count r.v Xi, which may be summarizing as:

P (Yi j Xi) � Bin(Xi;
�1

�1+�2
), with the Binomial proportion p = g(�1; �2) =

�1
�1+�2

,

Xi > 0 (where, Bin(n; p) denotes the Binomial distribution with sample size n and

success probability p, in case, Xi � 0) Yi � 0).

The Maximum likelihood estimators �̂
1,ML

; �̂
2,ML

of the means �1; �2 are Y ; Z respec-

tively. The Maximum likelihood estimatord�1 + �2 = �̂
1,ML

+ �̂
2,ML

= Y + Z = X, consequently

p̂
ML

= dg(�1; �2) = g(�̂
1,ML

; �̂
2,ML

) =
�̂
1,ML

�̂
1,ML

+ �̂
2,ML

=
Y

Y + Z
=

Y

X
;

where, p̂
ML

denotes the Maximum likelihood estimator of the conditional Binomial

proportion p.

1.3.2 Approximate con�dence intervals for the conditional Bi-
nomial proportion p

We will try to identify the asymptotic distribution for the distribution of the estimator

p̂m j X1; :::; Xm, where X1; :::; Xm are i:i:d Poisson r.v's.

In the univariate Poisson model, obtaining the conditional distributions is usually

possible and is fairly straightforward, however in a higher dimension can not be specify

explicitly, due to the dependence of the components, i.e, correlations between them.

We summarize the following steps:

Since, we have

P YijXi � Bin (Xi; p) ; Xi > 0;

subsequently

P
Pm

i=1 YijX1;:::;Xm � Bin

 
mX
i=1

Xi; p

!
;
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(given that (Yi; Xi) are independent), it implies that

P p̂m jX1;:::;Xm � Bin (Nm; p)

Nm
;

where, Nm =
Pm

i=1Xi (random sample size), which diverges as sample size 'm' be-

comes large.

To demonstrate this formally, since (by the law of large numbers)

P

�����Pm
i=1Xi

mE(Xi)
� 1

���� > �

�
�!P 0; for each; � > 0;

or one might rewrite it as, P
�Pm

i=1Xi

mE(Xi)
< 1� �

�
�!P 0, it follows that

P

 
mX
i=1

Xi < (1� �):mE(Xi)

!
= 0;

or

P

 
mX
i=1

Xi < c:m; in�nitely many times

!
= 0;

where the constant, c = (1 � �)E(Xi), it follows that, P (
Pm

i=1Xi �!1) = 1, i.e,

Nm �!a:s 1.

On the one hand, and by applying the Central limit theorem to the conditional

Binomial, we will obtain the following:

P

p
Nm(p̂m�p)p
p̂m (1�p̂m )

jNm

= P

p
Nm

�
WNm
Nm

�p
�

p
p̂m (1�p̂m )

jNm

= P
WNm

�Nmpp
Nmp̂m (1�p̂m )

jNm �!D N(0; 1);
(1.13)

[where, WNm =
Pm

i=1 Yi =
Pm

i=1
eY
Xi

=
Pm

i=1

PXi

j=1
eeY ij =

PNm

i=1

eeeY ij, so, eY
Xi

=PXi

j=1
eeY ij; P YijXi � P

Y
Xi
jXi � Bin(Xi; p); P

eeY ij jXij � Bern(1; p), as well as
eeeY ij

are iid Bern(1; p), (where, Bern(1; p) denotes the Bernoulli distribution with proba-

bility of success p, i.e Binomial distribution with one sample observation or outcome

(success or failure) with probability p of success), i = 1; :::;m; j = 1; :::; Xi].

I.e, the asymptotic distribution of the conditional distribution

P

p
Nm(p̂m�p)p
p̂m (1�p̂m )

jNm

= P
WNm

�Nmpp
Nmp̂m (1�p̂m )

jNm �!D N(0; 1);

in words, the asymptotic normality of the conditional Binomial distribution,

P p̂m jX1;:::;Xm � Bin(Nm;p)
Nm

, conditionally holds.



1.3. Poisson model 16

On the other hand, deriving the asymptotic normality of the unconditional dis-

tribution of random variables, by the CLT with the random summation index have

been proved by Landers and Rogge (1976), see [15], 269-271.

According to this paper one might restate the following:

P

 
WNm �Nmpp
Nmp̂(1� p̂)

� x

!
�! �(x)

( P

����� Nmp(1� p)

mE(Xi)p(1� p)
� 1

���� > �

�
�!P 0;

where

P

����� Nmp(1� p)

mE(Xi)p(1� p)
� 1

���� > �

�
�!P 0; for each � > 0: (1.14)

Expression 1.14 will proves the consequence Nmp(1�p)
m

�!P E(Xi)p(1 � p), which is

the LLN, and itself can be proved by Chebyshev's or Markov's inequality (see[14],

pp. 123-125), as

P

�����Nm

m
� E(Xi)

���� > �

�
� m(�1 + �2)

m2�2
�! 0; as; m �!1:

The conditional expectation and the conditional variance respectively of the condi-

tional distribution given by expression 1.13 are obtained by

E

�p
Nm

�
Y m

Xm

� p

�
j Nm

�
= E

�p
Nm

�
WNm

Nm
� p

�
j Nm

�
=
p
Nm

�
Nmp

Nm
� p

�
= 0;

V ar

�p
Nm

�
Y m

Xm

� p

�
j Nm

�
= V ar

�p
Nm

�
WNm

Nm
� p

�
j Nm

�
=
NmNmp(1� p)

N2
m

= p(1� p);

which in contrast, the obtained conditional variance is equal to the unconditional

variance (the asymptotic variance)

V ar

�p
Nm

�
Y m

Xm

� p

��
= E

�
V ar

�p
Nm

�
Y m

Xm

� p

�
j Nm

��
+

V ar

�
E

�p
Nm

�
Y m

Xm

� p

�
j Nm

��
= E (p(1� p)) + 0

= p(1� p):
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So, the asymptotic Normal distribution of the conditional Binomial distribution of

the r.v,
WNm

Nm
j Nm is given by

P
p
Nm

�
Ym
Xm

�p
�
jNm = P

p
Nm

�
WNm
Nm

�p
�
jNm �!D N (0; p(1� p)) (1.15)

provided that, the random sample size Nm =
Pm

i=1Xi �! 1, as m �! 1, as well

as

P
WNm
Nm

jNm � Bin (Nm; p)

Nm
:

It follows from (1.15), that the conditional distribution of
p
Nm

�
WNm

Nm
� p
�
j Nm has

an asymptotic N (0; p(1� p)), or in other words, one can say:

In large sample size Nm, the conditional distribution of the r.v
WNm

Nm
j Nm is ap-

proximately Normal distribution with mean is the proportion p and with variance
p(1�p)
Nm

, i.e � N
�
p;

p(1�p)
Nm

�
.

Therefore, the estimated asymptotic con�dence interval for the proportion p = g(�1; �2) =
�1

�1+�2
in this situation will be obtained byh

p̂m � z
1��

2
s:e(p̂m)

i
;

where, the standard error s:e(p̂m) =
q

p̂m (1�p̂m )
Nm

.

Further and according to 1.20, the suggested con�dence interval (conservative) for

the proportion p can be obtained byh
p̂m � t(m�1;1��

2
)s:e(p̂m)

i
:

1.3.3 Approximate con�dence intervals for the proportion p
by the Delta method

At the end of this chapter and looking from other angel, one attempt to obtain

approximate con�dence intervals for the proportion p, when the exact distributions

of either Xi nor Yi are not necessary known.

The (Delta or �) method help to obtain the asymptotic distribution for any non-linear

transformation of the pair random variables (Yi; Xi) regardless the exact distribution

of the r.v's.

Let the pairs Hi = (Yi; Xi)
T
; i = 1; :::;m are i:i:d pairs of random variables,
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and, C = as Cov(Hi) =

 
�1 �1

�1 �1 + �2

!
.

According to the multivariate central limit theorem we have

p
m
�
H� E(H)

� �!D N2 (0;C) ;

or, decomposes to

p
m

  
Y m

Xm

!
�
 

�1

�1 + �2

!!
�!D N2 (0;C) ;

The Delta method

Suppose that, f�̂ng is a sequence of random vectors with �̂n �!P �, where � is a

vector of parameters. Let fang be a sequence of constants, an " 1.

If, an

�
�̂n � �

�
�!D Z � Np (0;C), where C is a p� p covariance matrix, and let

g(�) : Rp ! Rk be a real valued function that is continuously di�erentiable at vector

� 2 Rp. The matrix of partial derivatives of the function g with respect to the vector

� = (�1; :::; �p)
T is given by

rg(�) =

2666664
@g1(�)
@�

@g2(�)
@�
...

@gk(�)
@�

3777775 ;

or, as �T = (�1; :::; �p), we have

rT
g (�) =

�
@gi(�)

@�T

�
i=1;:::;k

=

2666664
@g1(�)
@�1

@g1(�)
@�2

� � � @g1(�)
@�p

@g2(�)
@�1

@g2(�)
@�2

� � � @g2(�)
@�p

...
...

. . .
...

@gk(�)
@�1

@gk(�)
@�2

� � � @gk(�)
@�p

3777775 ;

i.e,

rT
g (�) =

h
@g(�)
@�1

@g(�)
@�2

� � � @g(�)
@�p

i
;

as, g1 = g (univariate delta method).
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In general, for � = (�1; :::;�k)
T , where �j is 1� p vector of constants,

g(�) : Rpk ! Rk, we have

rg(�) =

2666664
@g1(�)
@�

@g2(�)
@�
...

@gk(�)
@�

3777775 ;
or

rT
g (�) =

26666664

@g1(�)
@�1

@g1(�)
@�2

� � � @g1(�)
@�k

@g2(�)
@�1

@g2(�)
@�2

� � � @g2(�)
@�k

...
...

. . .
...

@gk(�)
@�1

@gk(�)
@�2

� � � @gk(�)
@�k

37777775
k�pk

; (1.16)

where, @gi(�)
@�j

is the vector of partial derivatives of gi with respect to the elements of

�j; i; j = 1; :::; k.

Then

an

�
g(�̂n)� g(�)

�
�!D rg(�)Z � Nk

�
0;rT

g (�)Crg(�)
�
: (1.17)

Proof :

see [14], pp. 120-121, and pp. 148-149.

The Univariate Delta method

De�ne the following notations

� = E(Hi) = (�1; �2)
T ; �1 = E(Yi); �2 = E(Xi)

g(�) =
�1

�2
; g(�) : R2 �! R; is continuously di�erentiable at �; �2 > 0:

The vector of partial derivatives of the continuous di�erentiable function g with re-

spect to the components of �, i.e

rT
g (�) =

�
@g
@�1

@g
@�2

�
=
�

1
�2

� �1
�2

2

�
:

Also by plugging in the elements of � to the matrix C we get C = C
�
=

 
�1 �1

�1 �2

!
,

For, p = E(Yi)
E(Xi)

, and according to the delta method with its notation in univariate
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case, we have

g(�) = p; and p̂m = g(�̂);

where �̂ = Hm = (Y m; Xm)
T is a consistent estimator of �, as well as p̂m = Ym

Xm
.

Hence, it follows that

p
m(p̂m � p) �!D N

�
0;rT

g (�)C�
rg(�)

�
; (1.18)

where, the variance in the equation 1.18 simpli�es to

rT
g (�)C�

rg(�) =
�1

�22
� 2�21

�32
+
�21
�32

=
�1

�22
� �21
�32

=
�1

�22

�
1� �1

�2

�
=

1

E(Xi)
p(1� p)

=
p(1� p)

�1 + �2
;

and, consequently

p
m (p̂m � p) �!D N

�
0;
p(1� p)

�1 + �2

�
;

which results in the asymptotic Normal distribution of the ratio estimator.

On the same context, it is also possible to derive this consequence directly with

helps of the Slutsky's Theorem.

Since

p
m (p̂m � p) =

p
m

�
Y m

Xm

� p

�
=
p
m

1

Xm

�
Y m � pXm

�
=
p
m

1

Xm

1

m

mX
i=1

(Yi � pXi) =
p
m

1

Xm

1

m

mX
i=1

((1� p)Yi � pZi) ; (1.19)

let, Gi = (1� p)Yi � pZi, where, Gi are iid r.v's, with mean

E(Gi) = (1� p)�1 � p�2 =
�2

�1 + �2
�1 � �1

�1 + �2
�2 = 0; and variance

V ar(Gi) =
�22

(�1 + �2)2
�1 +

�21
(�1 + �2)2

�2 =
�1�2

�1 + �2
= p(1� p)(�1 + �2):

From equation 1.19 we have

p
m

1

m

mX
i=1

((1� p)Yi � pZi) �!D N (0; p(1� p)(�1 + �2)) ;

it follows (by Slutsky's lemma, since Xm �!P �1 + �2) that

p
m

1

Xm

1

m

mX
i=1

((1� p)Yi � pZi) �!D N

�
0;
p(1� p)

�1 + �2

�
:



1.3. Poisson model 21

And hence,
p
m(p̂m � p) has an asymptotic Normal distribution with mean zero and

asymptotic variance asV ar(p̂m) =
p(1�p)
E(Xi)

, whence, E(Xi) = �1+�2. Or in other words

(in terms of p̂m), one can say that:

In large sample size m, the approximated Normal distribution for the estimator

p̂m is, N
�
p;

p(1�p)
mE(Xi)

�
. The consistent variance estimator is obtained by plugging in the

estimate for the corresponding individual parameters in the approximated variance, i.edV ar(p̂m) =
p̂m (1�p̂m )

mXm
= p̂m (1�p̂m )Pm

i=1Xi
, and hence, the standard error s:e(p̂m) =

q
p̂m (1�p̂m )Pm

i=1Xi
.

Therefore and on one hand, the asymptotic con�dence interval for the proportion p

is given by h
p̂m � z

1��
2
s:e(p̂m)

i
;

which is the previous con�dence interval for the proportion p of the conditional Bi-

nomial distribution. As well as, it follows that, p̂m = Ym

Xm
= p̂

ML
= p̂ (the ratio

estimator).

On the other hand, it may be possible to write the following expression

p
m (p̂m � p)q
p̂m (1�p̂m )Pm

i=1Xi

' tm�1 �!D N(0; 1); as;m �!1; (1.20)

which suggest the conservative con�dence interval (safety bounds) for the proportion

p which is given by h
p̂m � t(m�1;1��

2
)s:e(p̂m)

i
;

where, t(m�1;1��
2
) is the (1� �

2
) quantile of a t�distribution with (m� 1) degrees of

freedom.



Chapter 2

Bivariate data analysis

2.1 Introduction

In this chapter, it will be extended the univariate count data to the bivariate setting,

where the bivariate analysis involves data in two dimensional setup.

Consider, there are two relevant components of count data sampling from an in�nite

population, taking in account any vertical dependencies between the components,

namely the i:i:d two dimensional pairs ((Y11; X11); (Y12; X12)); :::; ((Ym1; Xm1); (Ym2; Xm2))

is a random sample of size m drawn from the same population, such that each ob-

servational unit indexed by the subscript i associated with those random variables

restricted by 0 � Yij � Xij, 8i; j.
For illustration, the ith individual represents count variables for example:

Xi1; Xi2 � No.of children and No.of dogs respectively in the family i.

Yi1; Yi2 � No.of male children and white dogs respectively in the same family.

Also denote that, p̂1 =
Pm

i=1 Yi1Pm
i=1Xi1

, p̂2 =
Pm

i=1 Yi2Pm
i=1Xi2

as the sample proportions corresponding

to the population proportions p1 ; p2 , where pj =
E(Yij)

E(Xij)
; E(p̂j) = pj,

0 � p
j
� 1; j = 1; 2.

In the next section, it will be used the fundamental approach (the SUR model)

for analyzing the collected two dimensional count data. Hence, it will be assumed

throughout the �rst section that the relationship between the pairs of random vari-

ables Yi1; Yi2, and the corresponding pairs Xi1; Xi2 (the dependence between the pairs

(Yi1; Xi1) and (Yi2; Xi2) is crucial) are linearly modeled and then we will use the linear

regression technique to analyze the collected sample points bases on the SUR model.

22
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2.2 Bivariate SUR (Seemingly Unrelated Regression)
Model

In the two dimensional case, the bivariate SUR model (this model was introduced by

Zellner (1962), see also [21], or [25] for more details) based on m observations can be

modeled in the next steps:

2.2.1 The bivariate linear model

The pairs of the univariate linear models will be considered �rst, as

Yi1 = xi1p1 + �i1

Yi2 = xi2p2 + �i2

with the following assumptions:

E(�i1) = 0; E(�i2) = 0 and with the variances proportional to xi1; xi2 respectively

(xi1; xi2 are �xed variables), i.e

V ar(�i1) = V ar(Yi1) = �21xi1; V ar(�i2) = V ar(Yi2) = �22xi2; Cov(�i1; �i2) = �12
p
xi1xi2,

and Cov(�ij; �i0j) = 0, 8i 6= i
0
; i; i

0
= 1; :::;m; j = 1; 2.

We merge these equations into a single bivariate model (for the ithobservation)

Yi = Xip+ �i; (i = 1; :::;m); (2.1)

where, the response variable Yi = (Yi1; Yi2)
T , the design matrix Xi =

 
xi1 0

0 xi2

!
,

and the model coe�cient p = (p1 ; p2)
T , as well as, the error component �i = (�i1; �i2)

T ,

i = 1; :::;m.

The error component �i has the variance-covariance matrix given by

�i = Cov(�i) =

 
�21xi1 �12

p
xi1xi2

�12
p
xi1xi2 �22xi2

!
;

Cov(�i; �i0 ) = 02�2 , when i 6= i
0
= 1; :::;m.

2.2.2 The weighted bivariate linear model

In the same manner as in the univariate linear model, the model 2.1 (we assume that

xij > 08i; j) will be standardized by the linear transformation

AiYi = AiXip+Ai�i;
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where, the diagonal transformation matrix Ai = X
� 1

2
i =

0@ 1p
xi1

0

0 1p
xi2

1A, such that

AiXiA
T
i = I2. Hence, the weighted linear model becomes

eYi = eXip+ e�i; (2.2)

where, the weighed response variable eYi = AiYi =
�eYi1; eYi2�T , the weighted error

component e�i = Ai�i =
� e�i1;e�i2 �T , and the weighted design matrix

eXi = AiXi =

 p
xi1 0

0
p
xi2

!
=

 exi1 0

0 exi2
!
; exij = p

xij, and eYij = Yijp
xij
;

e�ij = �ijp
xij
, given that xij > 0 8i; j; i = 1; :::;m; j = 1; 2.

The covariance of the weighted error vector is given by

e� = Cov(e�i) = Cov(eYi) = AiCov(�i)A
T
i =

 
�21 �12

�12 �22

!
(homoscedastic error vectors);

and, Cov(e�i;e�i0 ) = 02�2 ; i 6= i
0
= 1; :::;m, where �2j = E

�eYij � exijpj�2,
�12 = E

�
(eYi1 � exi1p1)(eYi2 � exi2p2)� ; j = 1; 2.

2.2.3 The SUR Model

The bivariate SUR model can be established (via stacking in column wise of the

bivariate equations 2.1 in to a single model) as:

0BBBBB@
Y1

Y2

...

Ym

1CCCCCA =

0BBBBBBBBBBBBB@

 
x11 0

0 x12

!
 

x21 0

0 x22

!
... 

xm1 0

0 xm2

!

1CCCCCCCCCCCCCA

 
p1

p2

!
+

0BBBBB@
�1

�2
...

�m

1CCCCCA ;

or, it would be convenient if we rewrite the model compactly in the vector form

Y = Xp+ �; (2.3)
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where, the 2m � 1 dimension response vector Y =
�
YT

1 ;Y
T
2 ; � � � ;YT

m

�T
, the 2m � 2

dimension design matrix X =
�
XT

1 ;X
T
2 ; � � � ;XT

m

�T
, so, 2 � 1 dimension SUR model

parameter p = (p1 ; p2)
T , and the, 2m� 1 dimension SUR model error vector

� =
�
�T1 ; �

T
2 ; � � � ; �Tm

�T
, as well as, the 2m� 2m dimension covariance structure of the

SUR model error vector is given by

� = Cov(�) =

0BB@
�1 � � � 0
...

. . .
...

0 � � � �m

1CCA :

Similarly, the weighted bivariate SUR model (or simply the bivariate SUR model)

0BBBBB@
eY1eY2

...eYm

1CCCCCA =

0BBBBBBBBBBBBB@

 p
x11 0

0
p
x12

!
 p

x21 0

0
p
x22

!
... p

xm1 0

0
p
xm2

!

1CCCCCCCCCCCCCA

 
p1

p2

!
+

0BBBBB@
e�1e�2
...e�m

1CCCCCA ;

the model compresses in the compact form

eY = eXp+ e�; (2.4)

where, the 2m � 1 dimension weighted response vector eY =
�eYT

1 ;
eYT
2 ; � � � ; eYT

m

�T
,

the 2m� 2 dimension weighted design matrix, eX =
�eXT

1 ;
eXT
2 ; ; � � � ; eXT

m

�T
, the 2� 1

dimension SUR model parameter vector p = (p1 ; p2)
T , and the 2m � 1 dimension

SUR model error vector e� = �e�T1 ;e�T2 ; � � � ;e�Tm�T , with the 2m� 2m covariance matrix

of the weighted error vector

e� = Cov(e�) =
0BB@
e� � � � 0
...

. . .
...

0 � � � e�
1CCA = Im 
 e�;

i.e, V ar(e�i) = e�2�2 , and Cov(e�i;e�i0) = 02�2 (8i 6= i0; i; i0 = 1; :::;m).
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2.2.4 Estimation in the SUR models

Under the assumption of normality of the linear model errors, the least squares es-

timators of the parameters in p are in fact the corresponding MLE's, i.e, the least

squares estimators coincide with maximum likelihood estimators.

Further, it well-known that the WLSE (weighted least squires estimator) is the BLUE

(optimal) of the parameter p, however, the WLSE of the SUR model parameter vec-

tor results in not the sample ratio estimator vector in question (which is the OLSE,

and the equality WLSE � OLSE holds if �12 = 0, i.e, the error covariance matrices

are diagonal).

The OLSE will be used, although it is not the optimal estimator nevertheless produces

the ratio estimators.

So, the required estimator of the model parameter (proportion p) will now ob-

tained from the SUR model 2.4

p̂
OLS

= (eXT eX)�1 eXT eY =

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
eYi =

 
mX
i=1

eX2
i

!�1 mX
i=1

eXT
i
eYi

=

 Pm
i=1 xi1 0

0
Pm

i=1 xi2

!�1
mX
i=1

 p
xi1eYi1

p
xi2eYi2

!
=

0@ Pm
i=1

p
xi1 eYi1Pm

i=1 xi1Pm
i=1

p
xi2 eYi2Pm

i=1 xi2

1A = p̂;

which results in the ratio estimator vector, where
p
xi1eYij = Yij; j = 1; 2.

2.2.5 Properties of the estimator p̂
OLS

(ratio estimator vector
p̂)

Unbiasedness

As in the univariate case, the expectation of the ratio estimator p̂
j
is given by

E
�
p̂
j

�
= E

 Pm
i=1
eYi1pxijPm

i=1 xij

!
=

Pm
i=1

p
xijE(eYij)Pm

i=1 xij
=

Pm
i=1

p
xijpj

p
xijPm

i=1 xij
=
p
j

Pm
i=1 xijPm

i=1 xij

= p
j
;

j = 1; 2.
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Dispersion

The variance of the sample ratio p̂
j
can be obtained by

V ar
�
p̂
j

�
= V ar

 Pm
i=1
eYijpxijPm

i=1 xij

!

=
1

(
Pm

i=1 xij)
2

mX
i=1

xijV ar(eYij) = �2j
Pm

i=1 xij

(
Pm

i=1 xij)
2 =

�2jPm
i=1 xij

;

see also [19] pp. 129.

Furthermore, the covariance between the estimators p̂1 ; p̂2 is obtained by

Cov (p̂1 ; p̂2) = Cov

 Pm
i=1
eYi1pxi1Pm

i=1 xi1
;

Pm
i=1
eYi2pxi2Pm

i=1 xi2

!

=
1Pm

i=1 xi1
Pm

i=1 xi2
Cov

 
mX
i=1

p
xi1eYi1; mX

i=1

p
xi2eYi2!

=
1Pm

i=1 xi1
Pm

i=1 xi2

mX
i=1

Cov
�eYi1; eYi2�pxi1xi2 = �12

Pm
i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2
:

The covariance matrix of the ratio vector p̂ is obtained as

�x = Cov (p̂) = Cov

��eXT eX��1 eXT eY� =
�eXT eX��1 �eXT e�eX��eXT eX��1

=

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
e�eXi

 
mX
i=1

eXT
i
eXi

!�1

=

 Pm
i=1 xi1 0

0
Pm

i=1 xi2

!�1 
�21
Pm

i=1 xi1 �12
Pm

i=1

p
xi1xi2

� � � �22
Pm

i=1 xi2

!
 Pm

i=1 xi1 0

0
Pm

i=1 xi2

!�1

=

0@ �21Pm
i=1 xi1

�12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2

� � � �22Pm
i=1 xi2

1A : (2.5)

Note that, the last covariance matrix is larger than the covariance matrix�eXT e��1 eX��1, when we use the weighted least squares estimator

p̂
WLS

=
�eXT e��1 eX��1 eXT e��1 eY rather than 'OLSE' based on the SUR model, wheree� = Im
 e�, (more explanation with a simple example in the univariate linear model

with intercept is given in [19] pp. 151-153.
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Exact and Asymptotic distributions

If one assumed that �i � N2 (0;�i), so �i1 � N(0; �21xi1), and �i2 � N(0; �22xi2), where

0 = (0; 0)T , �i = (�i1; �i2)
T , as well as, the design vectors, xi = (xi1; xi2)

T
; xi > 0

are �xed, i = 1; :::;m, then the model is called the BNLM, (the Biv-Normal lin-

ear model ). Further, given �xed weighted design vector exTi = (exi1; exi2), exi1 =
p
xi1; exi2 = p

xi2 the weighted error vectors e�i are i:i:d Biv-Normal random vectors,

namely e�i � N2(0; e�); 8i = 1; :::;m, where 0 = (0; 0)T .

Also given �xed exTi , the i:d weighted random component eYi has a biv-Normal distri-

bution i.e, eYi � N2

  exi1p1exi2p2
!
; e�! .

So, p̂ � N2 (p;�x), where, p = (p1 ; p2)
T , and �x is given by the matrix 2.5.

It follows that

p
m(p̂m � p) �!D N2

 
0;

 
�21
�1

�12�12
�1�2

�12�12
�1�2

�22
�2

!!
;

provided that, 1
m

Pm
i=1 xi1 �! �1 , 1

m

Pm
i=1 xi2 �! �2,

1
m

Pm
i=1

p
xi1xi2 �! �12,

where �1; �2; �12 are constants.

For the necessity, one might ask the following question:

Are the conditional estimators based on the residuals the best unbiased estimators for

the corresponding parameters �21; �
2
2; �12 that are need for statistical inference about

the model coe�cients?

The answer is not explicit and it needs to investigated, whether these estimators are

the BUE's or not, i.e
be� =

 
s21 s12

s12 s22

!
is the best estimator of e�.

These estimators incidentally are de�ned by the formulae

�̂21 = s21 =
1

m� 1

mX
i=1

(Yi1 � p̂1xi1)
2

xi1
=

1

m� 1

mX
i=1

�eYi1 � p̂1
p
xi1

�2
�̂22 = s22 =

1

m� 1

mX
i=1

(Yi2 � p̂2xi2)
2

xi2
=

1

m� 1

mX
i=1

�eYi2 � p̂2
p
xi2

�2
�̂12 = s12 =

1

m� 1

mX
i=1

(Yi1 � p̂1xi1) (Yi2 � p̂2xi2)p
xi1xi2

=
1

m� 1

mX
i=1

�eYi1 � p̂1
p
xi1

��eYi2 � p̂2
p
xi2

�
;



2.2. Bivariate SUR (Seemingly Unrelated Regression) Model 29

where, eYij = Yijp
xij
; j = 1; 2, xi1; xi2 > 0 8i.

It is necessary to demonstrate the unbiasedness and consistence properties of the

MSE's estimators.

Recall that, the least squares regression model (sample linear regression model or

�tted model) corresponding to the observed or the true model (2.2) is written asbeYi = eXip̂, with the corresponding residuals eei = eYi � beYi, where eei = (eei1; eei2)T . For
simplicity we will de�ned the vectors eej = (eYj � eXj p̂j), where eYj = (eY1j; :::; eYmj)

T , as

well as eXj = (ex1j; :::; exmj)
T ; i = 1; :::;m; j = 1; 2.

2.2.6 Properties of the estimator of the covariance structure
of the Bivariate SUR model

Theorem

The conditional estimators s21; s
2
2, namely the diagonal elements of the estimator ma-

trix
be� are consistent unbiased estimators of the corresponding parameters (disjointly

are also BUE's according to the Lehmann-Sche�e theorem), while s12; s21, i.e., the

o� diagonal elements are consistent but not necessarily unbiased i.e., asymptotically

unbiased.

Proof

Starting with the diagonal entries, we have

(m� 1)s21 = eeT1 ee1 = (eY1 � eX1p̂1)
T (eY1 � eX1p̂1) =

mX
i=1

ee2i1 = mX
i=1

�eYi1 �pxi1p̂1�2
=

mX
i=1

�eY 2
i1 � 2eYi1pxi1p̂1 + xi1p̂

2
1

�
=

mX
i=1

eY 2
i1 � 2

mX
i=1

eYi1pxi1p̂1 + mX
i=1

xi1p̂
2
1

=
mX
i=1

eY 2
i1 �

mX
i=1

xi1p̂
2
1
;

since

m

m� 1

1

m

mX
i=1

eY 2
i1 �!P E(eY 2

i1) = �21 + p2
1
�1;

as well as

m

m� 1

1

m

mX
i=1

xi1p̂
2
1
�!P �1p

2
1
;
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then, s21 �!P �21 + p2
1
�1 � p2

1
�1 = �21, and thus s21 is a consistent estimator of �21,

likewise s22. Furthermore,

E
�
(m� 1)s21

�
= (m� 1)E(s21) =

mX
i=1

E(eY 2
i1)�

mX
i=1

xi1E(p̂
2
1
);

since

E(eY 2
i1) = �21 +

�
E(eYi1)�2 = �21 + p2

1
xi1, as well as; E(p̂

2
1
) =

�21Pm
i=1 xi1

+ p2
1
;

hence

(m� 1)E(s21) =
mX
i=1

�
�21 + p2

1
xi1
�� mX

i=1

xi1

�
�21Pm
i=1 xi1

+ p2
1

�
= m�21 + p2

1

mX
i=1

xi1 � �21 �
mX
i=1

xi1p
2
1
= (m� 1)�21;

consequently, s21 is an unbiased estimator of �21, likewise s22, or in general s2j is an

unbiased estimator of �2j , j = 1; 2.

One may verifying these results via matrix notations

SSE = eeT1 ee1 = (eY1 � êY 1)
T (eY1 � êY 1) = (eY1 � eX1p̂1)

T (eY1 � eX1p̂1)

=
�eY1 � eX1( eXT

1
eX1)

�1 eXT
1
eY1�T �eY1 � eX1( eXT

1
eX1)

�1 eXT
1
eY1�

= eY T
1

�
Im � eX1( eXT

1
eX1)

�1 eXT
1

� eY1;
the square symmetric nonnegative de�nite matrix H1 = eX1( eXT

1
eX1)

�1 eXT
1 is called a

projection (hat) matrix, so

E(SSE) = E
�eY T

1 (Im �H1)eY1� =trace[(Im �H1)V ar(eY1)] + (E(eY1))T (Im �H1)E(eY1);
where; V ar(eY1) =�21Im; E(eY1) = p1 eXT

1 ;

hence

E(SSE) = �21(m� 1); as; trace(Im � eX1( eXT
1
eX1)

�1 eXT
1 ) =

trace(Im)� trace( eXT
1
eX1( eXT

1
eX1)

�1) = m� 1;

as well as

(E(eY1))T (Im �H1)E(eY1) = p1

h eXT
1

�
Im � eX1( eXT

1
eX1)

�1 eXT
1

� eX1

i
= 0
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as

eXT
1

�
I � eX1( eXT

1
eX1)

�1 eXT
1

� eX1 =
� eXT

1
eX1 � eXT

1
eX1( eXT

1
eX1)

�1 eXT
1
eX1

�
= 0;

therefore s21 is an unbiased estimator of �21, likewise s
2
2.

Moreover, since

SSE = e�T1 �Im � eX1( eXT
1
eX1)

�1 eXT
1

�e�1 = e�T1 e�1 � e�T1 eX1( eXT
1
eX1)

�1 eXT
1 e�1;

it follows that

m
m�1

1
m
e�T1 e�1 �!P �21, and if eY1 = eX1p1 + e�1, then
( eXT

1
eX1)

�1 eXT
1
eY1 �!P p1 ) ( eXT

1
eX1)

�1 eXT
1 e�1 �!P 0; if p1 = 0;

and thus s21 is a consistent estimator of �21, likewise s
2
2.

Unbiasedness property for the estimator s12 is not satis�es unless asymptotically.

One can investigate this as following (see also [22]):

For the o�-diagonal s12 = s21, we have

eeT1 ee2 = (eY1 � eX1p̂1)
T (eY2 � eX2p̂2) = eY T

1 (Im �H1)(Im �H2)eY2;
so

E
�eeT1 ee2� = trace

�
(Im �H1)(Im �H2)Cov(eY1; eY2)�+ (E(eY1))T (Im �H1)(Im �H2)E(eY2);

where

Cov(eY1; eY2) = Cov(eYi1; eYi2)Im = �12Im; Hj = eXj( eXT
j
eXj)

�1 eXT
j ;

since, (Im �H1)(Im �H2) =

Im � eX1( eXT
1
eX1)

�1 eXT
1 � eX2( eXT

2
eX2)

�1 eXT
2 + eX1( eXT

1
eX1)

�1 eXT
1
eX2( eXT

2
eX2)

�1 eXT
2 ;

we have

trace((Im �H1)(Im �H2)Im) = trace((Im �H1)(Im �H2))

= m� 2 +

�Pm
i=1

p
xi1xi2

�2Pm
i=1 xi1

Pm
i=1 xi2

;

it follows that

E
�eeT1 ee2� = �12

"
m� 2 +

�Pm
i=1

p
xi1xi2

�2Pm
i=1 xi1

Pm
i=1 xi2

#
;



2.2. Bivariate SUR (Seemingly Unrelated Regression) Model 32

as

(E(eY1))T (Im �H1)(Im �H2)E(eY2) =p1 eXT
1 [Im � eX1( eXT

1
eX1)

�1 eXT
1 � eX2( eXT

2
eX2)

�1 eXT
2

+ eX1( eXT
1
eX1)

�1 eXT
1
eX2( eXT

2
eX2)

�1 eXT
2 ] eX2p2

=p1p2[ eXT
1
eX2 � eXT

1
eX1( eXT

1
eX1)

�1 eXT
1
eX2

� eXT
1
eX2( eXT

2
eX2)

�1 eXT
2
eX2

+ eXT
1
eX1( eXT

1
eX1)

�1 eXT
1
eX2( eXT

2
eX2)

�1 eXT
2
eX2]

=p1p2[ eXT
1
eX2 � eXT

1
eX2 � eXT

1
eX2 + eXT

1
eX2] = 0;

or, as

eXT
1 [Im �H1] = eXT

1 [Im � eX1( eXT
1
eX1)

�1 eXT
1 ] = [ eXT

1 � eXT
1
eX1( eXT

1
eX1)

�1 eXT
1 ] = eXT

1 � eXT
1

=0T ;

i.e, eX1 is orthogonal to each column of the projection matrix [Im �H1], likewise eX2

is orthogonal to each column of the projection matrix [Im �H2].

Corollary

The residuals are orthogonal (perpendicular) to the �tted values of eY1, also to the

design matrix, in other words: êY 1 is independent of the error ee1 .
Proof

Its enough to show that êY T

1 ee1 = 0.

Since

êY T

1 ee1 = eY T
1 H1(Im �H1)eY1 = eY T

1 H1
eY1 � eY T

1 H1
eY1 = 0; as; H2

1 = H1;

as well as

eXT
1 ee1 = eXT

1 (I �H1)eY1 = ( eXT
1 � eXT

1 )eY1 = 0T eY1 = 0; as; eXT
1 H1 = eXT

1 :

Therefore

E(eeT1 ee2) = �12

"
m� 1 +

�Pm
i=1

p
xi1xi2

�2Pm
i=1 xi1

Pm
i=1 xi2

� 1

#
= �12 [m� 1 + cm � 1] ;

and hence s12 =
1

m�1eeT1 ee2 is a biased estimator of �12 with the biased correction cm�1,

where cm =
(
Pm

i=1

p
xi1xi2)

2

Pm
i=1 xi1

Pm
i=1 xi2

.
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Furthermore, (m� 1)eeT1 ee2=
=eY T

1 (Im � eX1( eXT
1
eX1)

�1 eXT
1 � eX2( eXT

2
eX2)

�1 eXT
2 + eX1( eXT

1
eX1)

�1 eXT
1
eX2( eXT

2
eX2)

�1 eXT
2 )eY2

=e�T1 (Im � eX1( eXT
1
eX1)

�1 eXT
1 � eX2( eXT

2
eX2)

�1 eXT
2 + eX1( eXT

1
eX1)

�1 eXT
1
eX2( eXT

2
eX2)

�1 eXT
2 )e�2

=(e�T1 e�2 � e�T1 eX1( eXT
1
eX1)

�1 eXT
1 e�2 � e�T1 eX2( eXT

2
eX2)

�1 eXT
2 e�2+e�T1 eX1( eXT

1
eX1)

�1 eXT
1
eX2( eXT

2
eX2)

�1 eXT
2 e�2);

and since

m

m� 1

1

m
e�T1 e�2 �!P �12;

and, if

eY2 = eX2p2 + e�2; then; ( eXT
2
eX2)

�1 eXT
2
eY2 �!P p2 ) ( eXT

2
eX2)

�1 eXT
2 e�2 �!P 0; if; p2 = 0;

and;
1

m
eXT
1
eX2 �!P E( eXT

1
eX2);

as well as;
1

m
( eXT

1
eX1)( eXT

1
eX1)

�1 eXT
1 e�2 �!P 0; as;

1

m
( eXT

1
eX1) �!P E( eXT

1
eX1);

and therefore s12 is a consistent estimator of �12.

From the previous theorem, one may establish the following consequences:

result I

s12 is asymptotically unbiased, as E(s12) =
m�1�(1�cm)

m�1 �12 �! �12 for any sequence

cm; 0 � cm � 1.

result II

One can observe that, if the relation between x1, x2, say linear relationship (in fact

r2 measures the strength of the linear association between
p
xi1;

p
xi2), i.e, xi2 = xi1,

or xi2 = cxi1;8i = 1; :::;m for any c > 0, this implies that r2 = 1, then the bias term

is vanishes and the estimator s12 is unbiased.

result III

The coe�cient of determination (say the square of the correlation coe�cient between

the observed values and the �tted values êYi) measures the goodness-of-�t of eYi, êY i or

measures the strength of the relationship between eYi, and eXi, which equals
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SSR
SST

= 1� SSE
SST

, hence

R2 =
�
Corr(eYi1; êY i1)

�2
= 1�

eY T
1 (Im �H1) eY1eY T

1
eY1 =

(
Pm

i=1
eYi1pxi1)2Pm

i=1 xi1
Pm

i=1
eY 2
i1

=

Pm
i=1(

êY i1)
2Pm

i=1
eY 2
i1

=
SSR

SST
:

similarly

R2
c =

�
Corr(eYi1; eYi2)�2 = 1�

eY T
1 (Im �H1)(Im �H2)eY2eY T

1
eY2

=

Pm
i=1 xi2(

Pm
i=1
eYi1pxi1Pm

i=1
eYi2pxi2) +Pm

i=1 xi1(
Pm

i=1
eYi1pxi2Pm

i=1
eYi2pxi2)Pm

i=1 xi1
Pm

i=1 xi2

�Pm
i=1
eYi1eYi2�

�Pm
i=1
eYi1pxi1Pm

i=1
eYi2pxi2(Pm

i=1

p
xi1xi2)Pm

i=1 xi1
Pm

i=1 xi2

�Pm
i=1
eYi1eYi2� ;

0 � R2
c � 1.

2.2.7 Asymptotic normality of the ratio estimator vector p̂
m

As in the univariate case, it will be assumed that the random error vectors e�i are
not normally distributed but i:i:d random vectors, i = 1; :::;m, i.e E (e�i) = 0, and

Cov(e�i) = e�. Moreover, under certain conditions on the design matrix Xi one can

show that in large sample size, p̂m has the asymptotic Normal distribution. These

conditions namely, the pairs

(Xi;Yi) are i:i:d) (eXi; eYi) are also i:i:d, where eXi =

 eXi1 0

0 eXi2

!
; eXij =

p
Xij; Xij >

0; i = 1; :::;m, j = 1; 2, as well as E( eXij
eXij0 ) exists 8j; j

0
= 1; 2.

p̂
OLS

can be rewritten as

p̂
OLS

=
�eXT eX��1 eXT eY =

 
mX
i=1

eXT
i
eXi

!�1 nX
i=1

eXT
i
eYi

=

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i

�eXip+ e�i�
=

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
eXip+

mX
i=1

eXT
i e�i
!
;
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and this can be reexpression as

p
m (p̂

OLS
� p) =

 
1

m

mX
i=1

eXT
i
eXi

!�1 
1p
m

mX
i=1

eXT
i e�i
!

=

 
1

m

mX
i=1

 
Xi1 0

0 Xi2

!!�1 
1p
m

mX
i=1

 eXi1e�i1eXi2e�i2
!!

: (2.6)

To derive the required asymptotic distribution, it needs to investigate, �rst the de-

nominator matrix in eq. 2.6 is consistent, and second the numerator obeys the Central

limit theorem.

Thus, in large m, its straightforward to see that the denominator of eq. 2.6 is consis-

tent. By the LLN, we have 
1

m

mX
i=1

eXT
i
eXi

!�1

�!P
�
E(eXT

i
eXi)
��1

;

provided that Xij > 0 almost surely, thus yields 
1

m

mX
i=1

 
Xi1 0

0 Xi2

!!�1

�!P
 

E(X1) 0

0 E(X2)

!�1

:

It may need to mention that, in case of the eXi =

 exi1 0

0 exi2
!
; exij = p

xij; xij > 0

are �xed variables; i = 1; :::;m, j = 1; 2, then also satis�es 
1

m

mX
i=1

 
xi1 0

0 xi2

!!�1

�!
 

�1 0

0 �2

!�1

:

provided that, 1
m

Pm
i=1 xi1 �! �1 ,

1
m

Pm
i=1 xi2 �! �2, where �1; �2 are constants.

The numerator obeys the CLT

1p
m

mX
i=1

eXT
i e�i �!D N

�
0; E

�eXT
i
e�eXi

��
;

where, the marginal or the asymptotic covariance

Cov
�eXT

i e�i� = E
�
Cov

�eXT
i e�i j eXi1; eXi2

��
+ Cov

�
E
�eXT

i e�i j eXi1; eXi2

��
= E

�eXT
i Cov

�e�i j eXi1; eXi2

� eXi

�
= E

�eXT
i
e�eXi

�
;
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as

E
�eXT

i e�i j eXi1; eXi2

�
= eXT

i E
�e�i j eXi1; eXi2

�
= 02 :

Thus, the numerator of 2.6 yields

1p
m

mX
i=1

 p
Xi1e�i1p
Xi2e�i2

!
�!D N

 
0;

 
�21E(Xi1) �12E

�p
Xi1Xi2

�
�12E

�p
Xi1Xi2

�
�22E(Xi2)

!!

� N

 
0;

 
�21E(X1) �12E

�p
X1X2

�
�12E

�p
X1X2

�
�22E(X2)

!!
:

Therefore, with help of the known Slutsky's lemma, equation (2.6) can be rewritten

(since, p̂
OLS

is the ratio estimator p̂m) as

p
m(p̂m � p) �!D N(0;

 
E(X1) 0

0 E(X2)

!�1 
�21E(X1) �12E(

p
X1X2)

�12E(
p
X1X2) �22E(X2)

!
 

E(X1) 0

0 E(X2)

!�1

)

� N

0@0;
0@ �21

E(X1)
�12E(

p
X1X2)

E(X1)E(X2)

�12E(
p
X1X2)

E(X1)E(X2)

�22
E(X2)

1A1A � N (0;�p) ;

which results in the asymptotic Normal with the asymptotic covariance matrix

�p = Cov(
p
mp̂m) =

0@ �21
E(X1)

�12E(
p
X1X2)

E(X1)E(X2)

�12E(
p
X1X2)

E(X1)E(X2)

�22
E(X2)

1A :

2.2.8 Approximate con�dence intervals for a linear combina-
tion of the proportions

From the last result, we have

p
m(p̂m � p) �!D N(0;�p): (2.7)

By applying the extremely useful result called, the Cramer-Wold device (see [14] pp.

147), it essentially reduces multivariate CLTs to a special case of univariate CLTs.

Hence, this result shows that the expr.2.7 holds i�, 8� = (�1; �2)
T 2 R2, such that
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k � k> 0, so we have

p
m
�
�T p̂m ��Tp

�
=
p
m(#̂m � #) �!D N

�
0;�T�p�

�
� N

0@0; (�1 �2)

0@ �21
E(X1)

�12E(
p
X1X2)

E(X1)E(X2)

�12E(
p
X1X2)

E(X1)E(X2)

�22
E(X2)

1A �1

�2

!1A
� N

�
0; �2

1

�21
E(X1)

+ �2
2

�22
E(X2)

+ 2�1�2
�12E(

p
X1X2)

E(X1)E(X2)

�
; (2.8)

where, #̂m = �T p̂m , and # = �Tp. It follows that, the asymptotic variance of #̂m is

given by

V ar(
p
m#̂m) = �2# = �2

1

�21
E(X1)

+ �2
2

�22
E(X2)

+ 2�1�2
�12E(

p
X1X2)

E(X1)E(X2)
:

Constructing the approximate con�dence intervals for the linear combination #, needs

to estimate the asymptotic covariance matrix �p, by plugging in estimates for the

individual parameters �21; �
2
2; �12; E(X1); E(X2), and E(

p
X1X2).

Explicitly, these consistent estimators are s21; s
2
2; s12, X :1; X :2, and X :12, where

s21 =
1

m� 1

mX
i=1

�eYi1 � p̂1

p
Xi1

�2
; s22 =

1

m� 1

mX
i=1

�eYi2 � p̂2

p
Xi2

�2
;

s12 =
1

m� 1

mX
i=1

�eYi1 � p̂1

p
Xi1

��eYi2 � p̂2

p
Xi2

�
; eYij = Yijp

Xij

; Xij > 0; j = 1; 2;

X :1 = 1
m

Pm
i=1Xi1, X :2 = 1

m

Pm
i=1Xi2, X :12 = 1

m

Pm
i=1

p
Xi1Xi2. The consistent

estimator matrix for the covariance matrix �p is given by

b�p =
0@ s21

X:1

s12X:12

X:1X:2

s12X:12

X:1X:2

s22
X:2

1A ; (2.9)

also it follows that, the standard error of the linear combination of the sample ratios

is given by

b�# = s:e(#̂m) =

s
1

m

�
�2
1

s21

X :1

+ �2
2

s22

X :2

+ 2�1�2
s12X :12

X :1X :2

�
;

provided that, X :1; X :2; X :12; s
2
1; s

2
2, and s12 are consistent estimators of the corre-

sponding parameters E(X1); E(X2); E(
p
X1X2); �

2
1; �

2
2, and �12, and hence the stan-

dard error is also a consistent estimator for the corresponding asymptotic standard

deviation.
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Further, one may say that the consistent matrix (2.9) is to be positive de�nite or

at least positive semi de�nite (see A.1), to ensure
d�T�p�
m

� 0; � � 0, otherwise, we

have to exclude the negative variances this will be explicitly clarifying in the chapter

4.

Finally, and based on these estimators, an approximate asymptotic normal con�-

dence interval for the linear combination # = �1p1 + �2p2 can be established byh
#̂m � z

1��
2
s:e(#̂m)

i
;

as well as, the suggested conservative con�dence interval (safety bounds) by the t-

quantile is given by h
#̂m � t(m�1;1��

2
)s:e(#̂m)

i
;

where, t(m�1;1��
2
) is the

�
1� �

2

�
quantile of the t�distribution with (m� 1) d:f .

2.2.9 Derivation of con�dence intervals for the linear combi-
nation of the proportions

One like to summarize the derivation of the con�dence intervals for the linear combi-

nation # = �Tp = �1p1 + �2p2 in the cases:

case I

On one hand and on one side, we will obtain the distribution of #̂ = �T p̂ (unbiased

estimator of #) given the �xed pair of design vectors (xT1 ;x
T
2 ), xj = (x1j; :::; xmj)

T ; j =

1; 2, and Yi has a biv-Normal distribution.

Since

#̂ � N

�
�1p1 + �2p2 ; �

2
1

�21Pm
i=1 xi1

+ �2
2

�22Pm
i=1 xi2

+ 2�1�2
�12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2

�
(2.10)

then 2.10 will rewrite after its standardization, as

p
m
�
#̂� #

�
� N

�
0; �2

1

m�21Pm
i=1 xi1

+ �2
2

m�22Pm
i=1 xi2

+ 2�1�2
m�12

Pm
i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2

�
� N

�
0; �2x

�
;

where, the distribution variance

�2x = �2
1

m�21Pm
i=1 xi1

+ �2
2

m�22Pm
i=1 xi2

+ 2�1�2
m�12

Pm
i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2
:
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It follows that, the exact (1 � �)% con�dence intervals for the linear combination #

are given byh
#̂� z

1��
2
S:E(#̂)

i
; as;

#̂� #

�x
� N(0; 1); when �21; �

2
2; �12 are knownh

#̂� t(m�1;1��
2
)s:e(#̂)

i
; as;

#̂� #b�x � tm�1; when �21; �
2
2; �12 are unknown;

where, the standard errors of #̂ are obtained by

S:E(#̂) =

s
�2
1

�21Pm
i=1 xi1

+ �2
2

�22Pm
i=1 xi2

+ 2�1�2
�12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2
;

as well as

s:e(#̂) =

s
�2
1

s21Pm
i=1 xi1

+ �2
2

s22Pm
i=1 xi2

+ 2�1�2
s12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2
:

On the other side, and for non-bivariate Normal of Y0
is, and if the sequences, say

1
m

Pm
i=1 xi1 �! �1 ,

1
m

Pm
i=1 xi2 �! �2,

1
m

Pm
i=1

p
xi1xi2 �! �12, where �1; �2; �12 are

some constants, then the sequence of the approximate variances �2x converges to the

corresponding constant variance

�2# = �2
1

�21
�1

+ �2
2

�22
�2

+ 2�1�2
�12�12

�1�2
; (2.11)

as m tends to in�nity. So, the asymptotic distribution for the distribution of the

estimator #̂m can be obtained as

p
m
�
#̂m � #

�
�!D N(0; �2#);

as 2:11 is its asymptotic variance.

Therefore, the approximate (1 � �)% con�dence intervals for # (with the unknown

�21; �
2
2; �12) are given by h

#̂m � z
1��

2
s:e(#̂m)

i
;

or h
#̂m � t(m�1;1��

2
)s:e(#̂m)

i
;
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provided that the estimator
d

V ar(#̂m) =
d

V ar(
p
m#̂m)

m
is a consistent estimator of �2�,

and

#̂m � #q d
V ar(#̂m)

' tm�1 �!D N(0; 1);

as well as, the standard error of #̂m,

s:e(#̂m) =

s
�2
1

s21Pm
i=1 xi1

+ �2
2

s22Pm
i=1 xi2

+ 2�1�2
s12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2
:

case II

On the second hand, the conditional variance of #̂ given the pair random vectors

(XT
1 ;X

T
2 ); Xj = (X1j; :::; Xmj)

T ; j = 1; 2, when there vectors Xi = (Xi1; Xi2)
T ; i =

1; :::;m are i:i:d random vectors with non-biv normal of Y0
is is given by

�2
1

�21Pm
i=1Xi1

+ �2
2

�22Pm
i=1Xi2

+ 2�1�2
�12
Pm

i=1

p
Xi1Xi2Pm

i=1Xi1

Pm
i=1Xi2

;

asymptotically

V ar(
p
m#̂) = mV ar(#̂) = �2

1

�21

X :1

+ �2
2

�22

X :2

+ 2�1�2
�12X :12

X :1X :2

: (2.12)

And from the expression 2.8, one can rewrite the asymptotic distribution of #̂m as

p
m
�
#̂m � #

�
�!D N

�
0; �2#

�
;

where, the asymptotic variance �2# is given by

�2# = �2
1

�21
E(X1)

+ �2
2

�22
E(X2)

+ 2�1�2
�12E(

p
X1X2)

E(X1)E(X2)
; (2.13)

however, since, X :1 = 1
m

Pm
i=1Xi1 �!P E(X1), X :2 = 1

m

Pm
i=1Xi2 �!P E(X2), as

well as X :12 = 1
m

Pm
i=1

p
Xi1Xi2 �!P E(

p
X1X2), (LLN), then the variance 2.12

converges in probability to the corresponding asymptotic variance 2.13.

And thus, a consistent variance estimator for �2# is given by

c�2# = �2
1

s21

X :1

+ �2
2

s22

X :2

+ 2�1�2
s12X :12

X :1X :2

;
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provided that, the estimators

s21 =
1

m� 1

mX
i=1

�eYi1 � p̂1

p
Xi1

�2
; s22 =

1

m� 1

mX
i=1

�eYi2 � p̂2

p
Xi2

�2
; and

s12 =
1

m� 1

mX
i=1

�eYi1 � p̂1

p
Xi1

��eYi2 � p̂2

p
Xi2

�
; Xi1; Xi2 > 0;

as well as, X :1; X :2; X :12, are all consistent estimators for the corresponding parame-

ters �21; �
2
2, �12; E(X1); E(X2); E(

p
X1X2), subsequently it follows that the standard

error of #̂, s:e(#̂) =

q
1
m
c�2#.

The approximate con�dence intervals for the linear combination # = �1p1+�2p2 can

be constructed based on the following cases:

� If �21; �
2
2; �12 are known, then the approximate con�dence bounds for # is given

by h
#̂� z

1��
2
S:E(#̂)

i
;

where, the Standard Error

S:E(#̂) =

s
1

m

�
�2
1

�21

X :1

+ �2
2

�22

X :2

+ 2�1�2
�12X :12

X :1X :2

�
;

and the quantile z1��
2
is de�ned as previous.

� In case of the unknown parameters �21; �
2
2; �12, again the asymptotic theory given

here can be used to obtain the approximate con�dence interval for #, which is

given by h
#̂m � z

1��
2
s:e(#̂m)

i
;

where

s:e(#̂m) =

s
1

m

�
�2
1

s21

X :1

+ �2
2

s22

X :2

+ 2�1�2
s12X :12

X :1X :2

�
:

� For small sample sizes, and with all these available consistent estimators, given

#̂m � #

s:e(#̂m)
' tm�1 �!D N(0; 1);
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a statistic t�distribution can be used to obtain the conservative con�dence

interval h
#̂m � t(m�1;1��

2
)s:e(#̂m)

i
;

where, t(m�1;1��
2
) is the

�
1� �

2

�
quantile of the t� distribution with (m � 1)

degrees of freedom.

Finally, when Y0
is has a biv-Normal distribution, then we have

#̂ � N

�
�1p1 + �2p2 ; �

2
1

�21Pm
i=1Xi1

+ �2
2

�22Pm
i=1Xi2

+ 2�1�2
�12
Pm

i=1

p
Xi1Xi2Pm

i=1Xi1

Pm
i=1Xi2

�
;

it follows that

p
m
�
#̂� #

�
� N

�
0; �2

1

m�21Pm
i=1Xi1

+ �2
2

m�22Pm
i=1Xi2

+ 2�1�2
m�12

Pm
i=1

p
Xi1Xi2Pm

i=1Xi1

Pm
i=1Xi2

�
� N

�
0; �2X

�
;

where, the distribution variance

�2X = �2
1

m�21Pm
i=1Xi1

+ �2
2

m�22Pm
i=1Xi2

+ 2�1�2
m�12

Pm
i=1

p
Xi1Xi2Pm

i=1Xi1

Pm
i=1Xi2

:

Thus, the exact (1� �)% con�dence intervals for #, are given byh
#̂� z

1��
2
S:E(#̂)

i
; as;

#̂� #

�X
� N(0; 1); when �21; �

2
2; �12 are knownh

#̂� t(m�1;1��
2
)s:e(#̂)

i
; as;

#̂� #b�X � tm�1; when �21; �
2
2; �12 are unknown;

where, the standard errors

S:E(#̂) =

s
�2
1

�21Pm
i=1Xi1

+ �2
2

�22Pm
i=1Xi2

+ 2�1�2
�12
Pm

i=1

p
Xi1Xi2Pm

i=1Xi1

Pm
i=1Xi2

;

as well as

s:e(#̂) =

s
�2
1

s21Pm
i=1Xi1

+ �2
2

s22Pm
i=1Xi2

+ 2�1�2
s12
Pm

i=1

p
Xi1Xi2Pm

i=1Xi1

Pm
i=1Xi2

:
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2.3 Bivariate Poisson model

A class of bivariate Poisson distributions was introduced and investigated by Aitken

(1936), Campbell (1938), Consael (1952), and Holgate (1964). Recently introduced

and discussed by N. Johnson, S. Kotz, and N. Balakrishnan (1997). Poisson models

were discussed by Karlis and Ntzoufras (2000), they have many researches and arti-

cles in this �eld. There are many applications of bivariate Poisson models in which

Bivariate count data arise for example; in Medicine: paired count data in medical

research; Epidemiology: joint concurrence of two di�erent diseases; Marketing: joint

purchases of two products; sports especially soccer, football, handball, etc. See also

[11].

Karlis and Ntzoufras have been considered independent variables that are Poisson

distributed. They also considered discrete bivariate and multivariate count data.

In this section, we will extend the univariate Poisson model to the bivariate set-

ting, deals with two dimensional count data that are Poisson distributed.

In shortcut, this is another method for the analysis based on other model.

2.3.1 Description of the model

The model is considered by extending the univariate Poisson model to the model

with two components of marked count data where each decomposes additively into

two disjoint groups of data, and thus each individual in the group is independently

distributed Poisson random variable, so each two groups of the components can be

respectively include for instance the events:

� No.of success and failure.

� No.of defect and non-defect.

� Count with property and count with out property, etc.

Let us consider the following observable random variables:

Xi1; Xi2 � total amount of counts of 1st; 2nd component respectively for individual i,

Yi1; Yi2 � No.of successes of the 1st; 2ndcomp. respectively for individual i,

Zi1; Zi2 �No.of failures of the 1st; 2ndcomp. respectively for individual i, with the

latent variables:
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Wi �No.of successes simultaneously in both components for individual i,

Vi1 � No.of success in the 1st, and failure in 2nd component for individual i.

Vi2 � No.of failure in the 1st, and success in 2nd component for individual i,

i = 1; :::;m, where m is the sample size, i.e, Wi; Vi1; Vi2 are unobservable independent

Poisson random variables with parameters �0; �1; �2, as well as Zi1; Zi2 are observable

independent Poisson r.v's with parameters �1; �2 respectively. De�ne the random

variables

Yij = Wi + Vij, additionally Xij = Yij + Zij, where, 0 � Yij � Xij; j = 1; 2. All,

Wi; Vi1; Vi2; Zi1; Zi2 are independent Poisson r.v's with parameters �0; �1; �2; �1; �2

respectively.

The random variables Yi1; Yi2 have jointly a bivariate Poisson distribution denoted

as BPoiss(�0; �1; �2), if they have joint probability function (see [6], or [10]):

P (Yi1 = yi1; Yi2 = yi2) = P (Wi + Vi1 = yi1;Wi + Vi2 = yi2)

=
X
wi

P (Wi = wi; Vi1 = yi1 � wi; Vi2 = yi2 � wi)

= e�(�0+�1+�2)
min(yi1;yi2)X

wi=0

�wi0
wi!

�
yi1�wi
1

(yi1 � wi)!

�
yi2�wi
2

(yi2 � wi)!
: (2.14)

The function (2.14) is computational demanding, and very complicated for estimation

purposes. Moreover, (Xi1; Xi2) � BPoiss(�0; �1 + �1; �2 + �2), where

�0; �1 + �1; �2 + �2 are the parameters of the corresponding independent Poisson

variables Wi; Vi1 + Zi1; Vi2 + Zi2.

2.3.2 Properties of the model

With the properties given in [10], one can list some interesting properties of the model

� The marginal distributions are Poisson, namely

Yij � Poiss(�0 + �j), as well as Xij � Poiss(�0 + �j + �j). This implies that

E(Yij) = V ar(Yij) = �0 + �j, and E(Xij) = V ar(Xij) = �0 + �j + �j.

� Cov(Xi1; Xi2) = Cov(Yi1; Yi2) = �0, (see [6] pp. 126).

� The marginal conditional distributions of Yij given Xij are given by:

P (Yij jXij) � Bin
�
Xij;

�0+�j
�0+�j+�j

�
� Bin(Xij; pj), pj =

�0+�j
�0+�j+�j

is the Binomial

proportion of the jth component. It follows that E(Yij j Xij) = p
j
Xij, as well as
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V ar(Yij j Xij) = p
j
(1� p

j
)Xij; j = 1; 2. However the joint conditional distribu-

tion P (Yi1;Yi2jXi1;Xi2) as well as the conditional covariance Cov(Yi1; Yi2 j Xi1; Xi2)

can not be explicitly calculated.

� Maximum likelihood estimation.

It is too complicated to derive the MLE's of the parameters �0; �1; �2 from

the probability function (2.14), due containing the latent variable Wi, whereas,

�̂
j,ML

= Z :j (from the independence). Karlis and Ntzoufras (2003) had been

described ML estimation for bivariate Poisson model via an EM algorithm,

which does not need calculation of the function (2.14), (for more details on the

EM algorithm see [17])

� Unconditional consistent estimators of the combinations:

�0; �0 + �j; �0 + �j + �j, are: sY1;Y2 ; Y :j; X :j, respectively ([6], pp. 129) i.e:

s
Y1;Y2

�!P �0; Y :j �!P �0 + �j; Y :j � s
Y1;Y2

�!P �j, as well as X :j �!P

�0 + �j + �j. Furthermore, X :j � s
Y1;Y2

�!P �j + �j, Z :j �!P �j, where

Y :j =
1
m

Pm
i=1 Yij; X :j =

1
m

Pm
i=1Xij, and Z :j =

1
m

Pm
i=1 Zij; j = 1; 2, as well

as the unconditional sample covariance s
Y1;Y2

= 1
m�1

Pm
i=1(Yi1�Y :1)(Yi2�Y :2),

and also p̂
j
=

d�0+�jd�0+�j+�j
=

Y :j

X:j
; j = 1; 2 are the commonly used ratio estimators

for the proportions p
j
.

2.3.3 The Bivariate Poisson distribution

One may describe the model through an 2� 5 matrix Ay the elements of Ay are zero

and ones, no duplicate rows exist, and the vector Ti = (Wi; Vi1; Vi2; Zi1; Zi2)
T ;

i = 1; :::;m. So

Ay =

 
1 1 0 0 0

1 0 1 0 0

!
;

and thus, the linear equations

Yi = (Yi1; Yi2)
T = AyTi

follow a bivariate Poisson distribution with parameters �0; �1; �2. Furthermore, de�ne

the matrix

Ax =

 
1 1 0 1 0

1 0 1 0 1

!
;



2.3. Bivariate Poisson model 46

also, the linear equations

Xi = (Xi1; Xi2)
T = AxTi;

follows also a bivariate Poisson distribution with parameters �0; �1 + �1; �2 + �2.

Further, de�ne the vector

Hi = (Yi1; Xi1; Yi2; Xi2)
T
; and A =

0BBBBB@
1 1 0 0 0

1 1 0 1 0

1 0 1 0 0

1 0 1 0 1

1CCCCCA :

Similarly, Hi = ATi.

In order to obtain the approximate con�dence intervals for a linear combination of

the proportions, One shall �rst consider the asymptotic distribution of the proportions

estimators by the delta method (since the joint conditional probability distributions

can not be obtained).

2.3.4 Asymptotic normality of the proportion estimator

For the linear equations Hi = ATi, the covariance structure is obtained by

�� = Cov(Hi) = A Cov(Ti) A
T

=

0BBBBB@
1 1 0 0 0

1 1 0 1 0

1 0 1 0 0

1 0 1 0 1

1CCCCCA

0BBBBBBBB@

�0 0 0 0 0

0 �1 0 0 0

0 0 �2 0 0

0 0 0 �1 0

0 0 0 0 �2

1CCCCCCCCA

0BBBBBBBB@

1 1 1 1

1 1 0 0

0 0 1 1

0 1 0 0

0 0 0 1

1CCCCCCCCA

=

0BBBBB@
�0 + �1 �0 + �1 �0 �0

�0 + �1 �0 + �1 + �1 �0 �0

�0 �0 �0 + �2 �0 + �2

�0 �0 �0 + �2 �0 + �2 + �2

1CCCCCA

=

0BBBBB@
E(Y1) E(Y1) �0 �0

E(Y1) E(X1) �0 �0

�0 �0 E(Y2) E(Y2)

�0 �0 E(Y2) E(X2)

1CCCCCA :
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By the Multivariate central limit theorem, we have

p
m
�
H� E(H)

� �!D N4 (0;�
�) ; or

p
m

0BBBBB@

0BBBBB@
Y :1

X :1

Y :2

X :2

1CCCCCA�

0BBBBB@
E(Y1)

E(X1)

E(Y2)

E(X2)

1CCCCCA

1CCCCCA �!D N4

0BBBBB@

0BBBBB@
0

0

0

0

1CCCCCA ;��

1CCCCCA ;

where, �� is de�ned above.

The Multivariate Delta method

The delta method (see the subsection 1.3.3), is a method for deriving the asymp-

totic Normal distribution for any statistical estimator and gives knowledge about the

asymptotic variance. For obtaining the asymptotic normality of the estimator p̂m

via a non-linear transformation, we will introduce to the multivariate delta method

k = 2, where k is the number of columns of the data matrix. Here, is its notations:

� = E(Hi) = (�1; �2; �3; �4)
T ; �1 = E(Y1); �2 = E(X1)

; �3 = E(Y2); �4 = E(X2)

g(�) =

�
�1

�2
;
�3

�4

�
; g(�) : R4 �! R2;

is a two dimension vector real-valued function that is continuously di�erentiable at

�, �2; �4 > 0. The matrix of partial derivatives of the function g with respect to the

components of � is given by

rT
g (�) =

24 @g1
@�1

@g1
@�2

@g1
@�3

@g1
@�4

@g2
@�1

@g2
@�2

@g2
@�3

@g2
@�4

35 =

"
1
�2

� �1
�2

2 0 0

0 0 1
�4

� �3
�4

2

#
;

also by plugging in the elements of � into the matrix ��, we get the covariance matrix

�� = �
�; �0

=

0BBBBB@
�1 �1 �0 �0

�1 �2 �0 �0

�0 �0 �3 �3

�0 �0 �3 �4

1CCCCCA :

For, p = (p1 ; p2)
T , and according to the delta method with its notation, we have

g(�) = p; and p̂m = (p̂
m1 ; p̂m2)

T = g(�̂m); �̂m = H;
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with the corresponding estimators p̂
mj

=
Y :j

X:j
; j = 1; 2. Hence, it follows that

p
m(p̂m � p) �!D N2

�
0;rT

g (�)��; �0
rg(�)

�
; (2.15)

where, the asymptotic covariance matrix of expression (2.15), equals

rT
g (�) ��; �0 rg(�) =

"
1
�2

� �1
�2

2 0 0

0 0 1
�4

� �3
�4

2

#
�

0BBBBB@
�1 �1 �0 �0

�1 �2 �0 �0

�0 �0 �3 �3

�0 �0 �3 �4

1CCCCCA

�

2666664
1
�2

0

� �1
�2

2 0

0 1
�4

0 � �3
�4

2

3777775
=

24 �1
�22
� 2�21

�32
+

�21
�32

�0
�2�4

� �0�1
�22�4

� �0�3
�2�24

+ �0�1�3
�22�

2
4

�0
�2�4

� �0�3
�2�24

� �0�1
�22�4

+ �0�1�3
�22�

2
4

�3
�24
� 2�23

�34
+

�23
�34

35 ;
There �rst diagonal element simpli�es to

�1

�22
� 2�21

�32
+
�21
�32

=
�1

�22
� �21
�32

=
�1

�22

�
1� �1

�2

�
=

1

E(X1)
p1(1� p1);

and similarly, the second diagonal element

�3

�24
� 2�23

�34
+
�23
�34

=
�3

�24
� �23
�34

=
�3

�24

�
1� �3

�4

�
=

1

E(X2)
p2(1� p2);

as well as, the o�-diagonal elements are symmetric, so we have

�0

�2�4
� �0�1

�22�4
� �0�3

�2�
2
4

+
�0�1�3

�22�
2
4

=
�0

�2�4

�
1� �1

�2
� �3

�4
+
�1�3

�2�4

�
=

�0

�2�4

��
1� �1

�2

�
� �3

�4

�
1� �1

�2

��
=

�0

�2�4

�
1� �1

�2

��
1� �3

�4

�
=

�0

E(X1)E(X2)
(1� p1) (1� p2) :

Thus, 2.15 can be rewritten as

p
m(p̂m � p) �!D N

0@0;
0@ p1 (1�p1 )

E(X1)

�0(1�p1 )(1�p2 )
E(X1)E(X2)

�0(1�p1 )(1�p2 )
E(X1)E(X2)

p2 (1�p2 )
E(X2)

1A1A ; (2.16)
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which is the asymptotic Normal distribution of the estimator p̂m , where

�0 = Cov(Y1; Y2). For statistical inference, it needs to estimate the asymptotic co-

variance matrix in 2.16, i.e, asCov(p̂m) =

0@ p1 (1�p1 )
E(X1)

�0(1�p1 )(1�p2 )
E(X1)E(X2)

�0(1�p1 )(1�p2 )
E(X1)E(X2)

p2 (1�p2 )
E(X2)

1A, which

can be obtained by plugging in the estimator for each individual parameter

dasCov(p̂m) =

0@ p̂1 (1�p̂1 )
X:1

s
Y1;Y2

(1�p̂1 )(1�p̂2 )
X:1X:2

s
Y1;Y2

(1�p̂1 )(1�p̂2 )
X:1X:2

p̂2 (1�p̂2 )
X:2

1A ; (2.17)

where,

X :1 �!P E(X1); X :2 �!P E(X2); p̂1 �!P p1 ; p̂2 �!P p2 ; and sY1;Y2 �!P �0;

consequently the estimator matrix 2.17 is consistent.

2.3.5 Approximate con�dence intervals for a linear combina-
tion of the proportions

A necessary condition for constructing con�dence intervals for a linear combination

# = �Tp, where � = (�1; �2)
T � 0, is the matrix (2.17) be positive de�nite or at

least positive semi de�nite (see A.1, or [16]) to ensure
dasV ar(�T p̂m )
m

� 0, otherwise we

have to truncate the corresponding intervals by taking only the positive variances.

Hence, to be on the safe side from the unde�ned s.e's (s:e =

q dasV ar
m

) during the

con�dence intervals evaluation, one should take only the positive variances, this will

be explained in chapter 4. Obviously

asV ar(#̂m) = asV ar(�T p̂m) = �TasV ar(p̂m)�

= (�1 �2)

0@ p1 (1�p1 )
E(X1)

�0(1�p1 )(1�p2 )
E(X1)E(X2)

�0(1�p1 )(1�p2 )
E(X1)E(X2)

p2 (1�p2 )
E(X2)

1A �1

�2

!

= �2
1

p1(1� p1)

E(X1)
+ �2

2

p2(1� p2)

E(X2)
+ 2�1�2

�0(1� p1)(1� p2)

E(X1)E(X2)
;

it follows that, the standard error of the linear combination �T p̂m (if de�ned) is given

by

s:e(#̂m) =

r
1

m

d
asV ar(#̂m) =

r
1

m
dasV ar(�T p̂m)

=

s
1

m

�
�2
1

p̂1(1� p̂1)

X :1

+ �2
2

p̂2(1� p̂2)

X :2

+ 2�1�2
s
Y1;Y2

(1� p̂1)(1� p̂2)

X :1X :2

�
:
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Finally, the approximate (1� �)% asymptotic normal con�dence interval by the

normal quantile z
1��

2
for the linear combination # is given byh

#̂m � z
1��

2
s:e(#̂m)

i
;

or, the proposed conservative con�dence interval by the t-quantileh
#̂m � t(m�1;1��

2
)s:e(#̂m)

i
;

where, z
1��

2
is the (1 � �

2
) percentile of a standard normal distribution, as well as

t(m�1;1��
2
) is the (1� �

2
) percentile of a t�distribution with (m�1) degrees of freedom.



Chapter 3

Multivariate data analysis

3.1 Introduction

In the multivariate analysis being extending the analysis of a bivariate count data

to the analysis of a multivariate count data. It will be assumed that there are k

components of marked count data. Clearly, we have 2k dimension random sample

of size m drawn from an in�nite population, i.e, (Yi1; Xi1); :::; (Yik; Xik); i = 1; :::;m

where Hi = ((Yi1; Xi1); :::; (Yik; Xik)) are i:i:d sets of k pairs of random variables. The

data are displayed in a matrix of dimension m� 2k of marked count data, where the

m rows represent the individuals, and 2k columns represent the k dimension of the

pairs count data, with the restrictions, 0 � Yij � Xij, 8i; j; j = 1; :::; k.

The estimator p̂
j
=

Pm
i=1 YijPm
i=1Xij

is the commonly sample proportion corresponding to the

proportion p
j
, where pj =

E(Yij)

E(Xij)
; E(p̂j) = pj,

0 � p
j
� 1; j = 1; 2; :::; k.

In the following section, we will analyze the marked count data matrix using the

multivariate SUR model, assuming that the relation between each of the response

random variables Yi1; :::; Yik and the corresponding variables Xi1; :::; Xik for the ith

individual is linearly modeled. We assume that Xij > 0 almost surely. The stacked

SUR equations will be considered to obtain optimal estimators if exists for the (co-

e�cients) proportions p
j
; j = 1; :::; k of the SUR model, namely, the LSE's including

there asymptotic properties.

3.2 The SUR (Seemingly Unrelated Regression) Model

The SUR model (k correlated regression equations) based on the m observations can

be modeled next:

51
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3.2.1 The multiple linear model

Consider the k linear equations

Yi1 =xi1p1+�i1

...
...

Yik =xikpk+�ik

, with the assumptions: E(�ij) = 0, and with variances proportional to xij, where xij,

are the �xed variables, i.e

V ar(�ij) = �2jxij; Cov(�ij; �ij0 ) = �jj0
p
xijxij0 ; 8j 6= j

0
;

Cov(�ij; �i0j) = 0; 8i 6= i
0
; i; i

0
= 1; :::;m; j; j

0
= 1; :::; k:

We merge these linear models compactly into a single multivariate linear model (for

the ith observation)

Yi = Xip+ �i; i = 1; :::;m; (3.1)

where, the response variable, Yi = (Yi1; � � � ; Yik)T , the observed design matrix

Xi =

0BBBBB@
xi1 0 � � � 0

0 xi2
. . .

...
...

. . . . . . 0

0 � � � 0 xik

1CCCCCA ;

and the model coe�cients (proportions), p = (p1 ; � � � ; pk)T , as well as the error

component, �i = (�i1; � � � ; �ik)T , i = 1; :::;m. The error vector �i has the variance-

covariance matrix given by

�i = V ar(�i) =

0BBBBB@
�21xi1 �12

p
xi1xi2 � � � �1k

p
xi1xik

�12
p
xi1xi2 �22xi2 � � � �2k

p
xi2xik

...
...

. . .
...

�1k
p
xi1xik �2k

p
xi2xik � � � �2kxik

1CCCCCA ;

where, Cov(�i; �i0 ) = 0
k�k , when, i 6= i

0
= 1; :::;m.
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3.2.2 The weighted multiple linear model

In the same manner as in the bivariate linear model, the model 3.1 will be standardized

by the linear transformation AiYi = AiXip+Ai�i, where the transformation matrix

Ai = X
� 1

2
i = diag

�
x
� 1

2
ij

�
j=1;:::;k

=

0BBBBB@
1p
xi1

0 � � � 0

0 1p
xi2

. . .
...

...
. . . . . . 0

0 � � � 0 1p
xik

1CCCCCA ;

(given that xij > 0 8i; j; i = 1; :::;m; j = 1; :::; k) to obtain the weighted multivariate

linear model

eYi = eXip+ e�i; i = 1; :::;m; (3.2)

one can also observe that AiXiA
T
i = Ik, where Ik is the k dimension identity matrix,

the weighed response variable

eYi = AiYi =

�
Yi1p
xi1

; � � � ; Yikp
xik

�T

= (eYi1; :::; eYik)T ;
and the weighted error component

e�i = Ai�i =

�
�i1p
xi1

; � � � ; �ikp
xik

�T

= (e�i1; � � � ;e�ik)T ;
as well as, the weighted design matrix

eXi = AiXi =

0BBBBB@
exi1 0 � � � 0

0 exi2 . . .
...

...
. . . . . . 0

0 � � � 0 exik

1CCCCCA = diag (exij)j=1;:::;k ;
where, exij = p

xij; provided that, xij > 0; 8i; j; i = 1; :::;m; j = 1; :::; k.

The covariance of the weighted error vector e�i is given by

e�
k�k = Cov(e�i) = AiCov(�i)A

T
i

=

0BBBBB@
�21 �12 � � � �1k

�12 �22 � � � �2k
...

...
. . .

...

�1k �2k � � � �2k

1CCCCCA (homoscedastic error vectors);

and, Cov(e�i;e�i0 ) = 0
k�k ; i 6= i

0
.
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3.2.3 The SUR Model

And thus, one can stacking the multivariate linear equations 3.2 in the form

0BBBBB@
eY1eY2

...eYm

1CCCCCA =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0BBBBB@
p
x11 0 � � � 0

0
p
x12

. . .
...

...
. . . . . . 0

0 � � � 0
p
x1k

1CCCCCA
0BBBBB@
p
x21 0 � � � 0

0
p
x22

. . .
...

...
. . . . . . 0

0 � � � 0
p
x2k

1CCCCCA
...0BBBBB@

p
xm1 0 � � � 0

0
p
xm2

. . .
...

...
. . . . . . 0

0 � � � 0
p
xmk

1CCCCCA

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BB@
p1
...

p
k

1CCA+

0BBBBB@
e�1e�2
...e�m

1CCCCCA ;

the model can be compressed in to a single model as (see also [21] , for more details)

eY = eXp+ e�; (3.3)

where, the mk� 1 dimension SUR model response vector eY =
�eYT

1 ;
eYT
2 ; � � � ; eYT

m

�T
,

the mk � k dimension design matrix eX =
�eXT

1 ;
eXT
2 ; � � � ; eXT

m

�T
, so k � 1 dimension

SUR model parameter vector p = (p1 ; :::; pk)
T , and the mk�1 dimension SUR model

error vector e� =
�e�T1 ;e�T2 ; � � � ;e�Tm�T of the i:i:d error components e�i, as well as the

mk �mk dimension covariance structure of the SUR model error vector is given by

e� = Cov(e�) =
0BBBBB@
e� 0 � � � 0

0 e� . . .
...

...
. . . . . . 0

0 � � � 0 e�

1CCCCCA = Im 
 e�;

i.e, V ar(e�i) = e�
k�k , and Cov(e�i;e�i0) = 0

k�k(8i 6= i0; i; i0 = 1; :::;m), where 0
k�k is

the square matrix of dimension k � k of zero's.
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3.2.4 Estimation of the parameter vector p in the SUR model

The ordinary least squares estimator of the model parameter (proportion p) derived

from the SUR model 3.3 is given by

p̂
OLS

= (eXT eX)�1 eXT eY =

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
eYi =

 
mX
i=1

eX2
i

!�1 mX
i=1

eXT
i
eYi

=

0BBBBB@
Pm

i=1 xi1 0 � � � 0

0
Pm

i=1 xi2
. . .

...
...

. . . . . . 0

0 � � � 0
Pm

i=1 xik

1CCCCCA

�1

mX
i=1

0BB@
p
xi1eYi1
...

p
xik eYik

1CCA

=

0BB@
Pm

i=1

p
xi1 eYi1Pm

i=1 xi1
...Pm

i=1

p
xik eYikPm

i=1 xik

1CCA =

0BB@
Pm

i=1 Yi1Pm
i=1 xi1
...Pm

i=1 YikPm
i=1 xik

1CCA = p̂;

which results in the ratio estimator vector, where Yij =
p
xi1eYij; j = 1; :::; k.

3.2.5 Properties of the estimator p̂
OLS

(ratio vector p̂)

Unbiasedness

The expectation of the ratio estimator p̂
j
is given by

E
�
p̂
j

�
= E

 Pm
i=1
eYijpxijPm

i=1 xij

!
=

Pm
i=1

p
xijE

�eYij�Pm
i=1 xij

=

Pm
i=1

p
xijpj

p
xijPm

i=1 xij
=
p
j

Pm
i=1 xijPm

i=1 xij

= p
j
;

j = 1; :::; k.

Dispersion

The variance of the ratio estimator p̂
j
is obtained by

V ar
�
p̂
j

�
= V ar

 Pm
i=1
eYijpxijPm

i=1 xij

!
=

1

(
Pm

i=1 xij)
2

mX
i=1

xijV ar(eYij) = �2j
Pm

i=1 xij

(
Pm

i=1 xij)
2

=
�2jPm
i=1 xij

:
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Furthermore, the covariance of the ratio estimators p̂
j
; p̂

j
0 ; j 6= j0, and j; j0 = 1; :::; k,

will be obtained as

Cov
�
p̂
j
; p̂

j
0
�
= Cov

 Pm
i=1
eYijpxijPm

i=1 xij
;

Pm
i=1
eYij0pxij0Pm
i=1 xij0

!

=
1Pm

i=1 xij
Pm

i=1 xij0
Cov

 
mX
i=1

p
xij eYij; mX

i=1

p
xij0 eYij0!

=
1Pm

i=1Xij

Pm
i=1 xij0

mX
i=1

Cov
�eYij; eYij0�pxijxij0

=
�jj0

Pm
i=1

p
xijxij0Pm

i=1 xij
Pm

i=1 xij0
:

Consequently, the covariance matrix of the ratio vector p̂ can be established as

�x = Cov (p̂) = Cov

��eXT eX��1 eXT eY� =
�eXT eX��1 �eXT e�eX��eXT eX��1

=

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
e�eXi

 
mX
i=1

eXT
i
eXi

!�1

=

0BBBBB@
Pm

i=1 xi1 0 � � � 0

0
Pm

i=1 xi2
. . .

...
...

. . . . . . 0

0 � � � 0
Pm

i=1 xik

1CCCCCA

�1

�

0BBBBB@
�21
Pm

i=1 xi1 �12
Pm

i=1

p
xi1xi2 � � � �1k

Pm
i=1

p
xi1xik

�12
Pm

i=1

p
xi1xi2 �22

Pm
i=1 xi2 � � � �2k

Pm
i=1

p
xi2xik

...
...

. . .
...

�1k
Pm

i=1

p
xi1xik �2k

Pm
i=1

p
xi2xik � � � �2k

Pm
i=1 xik

1CCCCCA�
0BBBBB@
Pm

i=1 xi1 0 � � � 0

0
Pm

i=1 xi2
. . .

...
...

. . . . . . 0

0 � � � 0
Pm

i=1 xik

1CCCCCA

�1

=

0BBBBB@
�21Pm
i=1 xi1

�12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2
� � � �1k

Pm
i=1

p
xi1xikPm

i=1 xi1
Pm

i=1 xik
�12
Pm

i=1

p
xi1xi2Pm

i=1 xi1
Pm

i=1 xi2

�22Pm
i=1 xi2

� � � �2k
Pm

i=1

p
xi2xikPm

i=1 xi2
Pm

i=1 xik
...

. . . . . .
...

�1k
Pm

i=1

p
xi1xikPm

i=1 xi1
Pm

i=1 xik

�2k
Pm

i=1

p
xi2xikPm

i=1 xi2
Pm

i=1 xik
� � � �2kPm

i=1 xik

1CCCCCA : (3.4)
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As mentioned in chapter 2, the covariance matrix 3.4 is larger than the covariance

matrix
�eXT e��1 eX��1, when we use the weighted least squares estimator p̂

WLS
.

Recall also that, the conditional consistent estimators based on m residuals for

the corresponding diagonal and o�-diagonal entries, namely �2j and �jj0 respectively

for the covariance matrix of the ratio vector p̂ are given by:

�̂2j = s2j =
1

m� 1

mX
i=1

�
Yij � p̂

j
xij
�2

xij
=

1

m� 1

mX
i=1

�eYij � p̂
j

p
xij

�2
;

�̂jj0 = sjj0 =
1

m� 1

mX
i=1

�
Yij � p̂

j
xij
� �
Yij0 � p̂

j
0xij0

�
p
xij
p
xij0

=
1

m� 1

mX
i=1

�eYij � p̂
j

p
xij

��eYij0 � p̂
j
0
p
xij0
�
;

provided that, xij; xij0 > 0 8j 6= j0; j; j
0
= 1; :::; k; i = 1; :::;m, eYij = Yijp

xij
, eYij0 = Yij0pxij0 .

They were well demonstrated as seen in chapter 2 that, s2j is consistent unbiased

estimator of the corresponding parameter �2j , while sjj0 is consistent but only asymp-

totically unbiased estimator of the corresponding �jj0 , j 6= j0.

Exact and Asymptotic distributions

If one assumed that, �i � Nk (0;�i), so �ij � N(0; �2jxij); j = 1; :::; k;8i = 1; :::;m,

where, Nk (0;�i) denotes, the K-variate Normal distribution with mean vector 0 =

(0; :::; 0)T , and with the symmetric covariance matrix �i, this is called the MNLM

(Multivariate Normal linear model).

Further, given the design vectors exTi = (exi1; :::; exik), are �xed, i = 1; :::;m, the

weighted error vectors e�i are i:i:d, k-variate Normal random vectors, i.ee�i � Nk(0k ;
e�) 8i = 1; :::;m, where 0

k
= (0; :::; 0)T . Also, one may say that, given exTi

the i:d weighted random component eYi has the multivariate Normal distribution i.e,

eYi � Nk

0BB@
0BB@
exi1p1
...exikpk

1CCA ; e�
1CCA ; exij = p

xij; xij > 0. The distribution of p̂ � Nk (p;�x),

where �x is given by the matrix 3.4 , as well as p = (p1 ; � � � ; pk)T . Asymptotically
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one can obtain

p
m(p̂m � p) �!D Nk

0BBBBB@0;
0BBBBB@

�21
�1

�12�12
�1�2

� � � �1k�1k
�1�k

�12�12
�1�2

�22
�2

� � � �2k�2k
�2�k

...
...

. . .
...

�1k�1k
�1�k

�2k�2k
�2�k

� � � �2k
�k

1CCCCCA

1CCCCCA ;

provided that, 1
m

Pm
i=1 xij �! �j,

1
m

Pm
i=1
p
xijxij0 �! �jj0 , where �j; �jj0 , j < j0 =

1; :::; k, are constants.

3.2.6 Multivariate asymptotic normality of the ratio vector
p̂
m

In a similar way as in the bivariate case, it will be assumed that the random error

components e�i are not normally distributed, but are i:i:d random vectors, i.e,

E (e�i) = 0
k
, and Cov(e�i) = e�k�k , i = 1; :::;m.

Moreover, under conditions on the weighted design matrices eXi, we will show that in

large sample size m, p̂m has the multivariate Normal asymptotic distribution. These

conditions, namely the pairs

(Xi;Yi) are i:i:d ) the pairs (eXi; eYi) are also i:i:d, where, eXi = diag
� eXij

�
j=1;:::;k

,eXij =
p
Xij; Xij > 0; 8i; j; i = 1; :::;m; j = 1; :::; k: As well as, E( eXij

eXij0 ) i.e,

E
�p

XijXij0
�
exists; 8j; j 0 = 1; :::; k.

So again, one can rewrite p̂
OLS

as

p̂
OLS

=
�eXT eX��1 eXT eY =

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
eYi

=

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i

�eXip+ e�i�
=

 
mX
i=1

eXT
i
eXi

!�1 mX
i=1

eXT
i
eXip+

mX
i=1

eXT
i e�i
!
;
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and this can be rewritten as

p
m (p̂

OLS
� p) =

 
1

m

mX
i=1

eXT
i
eXi

!�1 
1p
m

mX
i=1

eXT
i e�i
!

=

0BBBBB@
1

m

mX
i=1

0BBBBB@
Xi1 0 � � � 0

0 Xi2
. . .

...
...

. . . . . . 0

0 � � � 0 Xik

1CCCCCA

1CCCCCA

�10BB@ 1p
m

mX
i=1

0BB@
eXi1e�i1
...eXike�ik

1CCA
1CCA :

(3.5)

To derive the multivariate asymptotic distribution it needs to investigate �rst, the

denominator matrix in expression 3.5 is consistent, and second the numerator obeys

the multivariate central limit theorem.

Thus in large m, and by following the LLN, the denominator of 3.5 is consistent.

Since  
1

m

mX
i=1

eXT
i
eXi

!�1

�!P
�
E
�eXT

i
eXi

���1
(3.6)

provided that,

�
E
�eXT

i
eXi

��1�
> 0, subsequently, eq. 3.6 can be written as

 
1

m

mX
i=1

(diag(Xij))j=1;:::;k

!�1

�!P ((diag(E(Xij)))j=1;:::;k)
�1

> 0;

or

0BBBBB@
1

m

mX
i=1

0BBBBB@
Xi1 0 � � � 0

0 Xi2
. . .

...
...

. . . . . . 0

0 � � � 0 Xik

1CCCCCA

1CCCCCA

�1

�!P

0BBBBB@
E(Xi1) 0 � � � 0

0 E(Xi2)
. . .

...
...

. . . . . . 0

0 � � � 0 E(Xik)

1CCCCCA

�1

:

The numerator obeys the Multivariate Central limit theorem

1p
m

mX
i=1

eXT
i e�i �!D N

�
0
k
; E
�eXT

i
e�eXi

��
� N

�
0
k
;
�
�jj0E

�q
XijXij0

��
j;j0=1;:::;k

�
; (3.7)
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where, the asymptotic covariance

Cov
�eXT

i e�i� = E
�
Cov

�eXT
i e�i j eXi1; :::; eXik

��
+ Cov

�
E
�eXT

i e�i j eXi1; :::; eXik

��
= E

�eXT
i Cov

�e�i j eXi1; :::; eXik

� eXi

�
= E

�eXT
i
e�eXi

�
;

as

E
�eXT

i e�i j eXi1; :::; eXik

�
= eXT

i E
�e�i j eXi1; :::; eXik

�
= 0

k
:

The asymptotic covariance in the consequence 3.7 can be derived as following: From

the MVSUR model 3.3, and for i = 1; :::;m, we have

Cov(eXT
i e�i) = Cov

0BB@
p
Xi1e�i1
...

p
Xike�ik

1CCA =
�
Cov

�p
Xije�ij;qXij0e�ij0��

j;j0=1;:::;k

=
�
E
�q

XijXij0e�ije�ij0��
j;j0=1;:::;k

� 0 =
�
E(
q
XijXij0 )E

�e�ije�ij0��
j;j0=1;:::;k

=
�
�jj0E(

q
XijXij0 )

�
j;j0=1;:::;k

; as; E(e�ij) = 0; E(e�ij0 ) = 0:

It follows that

1p
m

mX
i=1

0BB@
p
Xi1e�i1
...

p
Xike�ik

1CCA �!D

N

0BBBBB@0k ;
0BBBBB@

�21E(Xi1) �12E(
p
Xi1Xi2) � � � �1kE(

p
Xi1Xik)

�12E(
p
Xi1Xi2) �22E(Xi2) � � � �2kE(

p
Xi2Xik)

...
...

. . .
...

�1kE(
p
Xi1Xik) �2kE(

p
Xi2Xik) � � � �2kE(Xik)

1CCCCCA

1CCCCCA :

Therefore (with help of the known Slutsky's lemma), one can obtain the asymptotic

Normal distribution of the sample ratio estimator p̂m , hence the expression 3.5 can
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be rewritten as

p
m(p̂m � p) �!D N(0;

0BBBBB@
E(X1) 0 � � � 0

0 E(X2)
. . .

...
...

. . . . . . 0

0 � � � 0 E(Xk)

1CCCCCA

�1

�

0BBBBB@
�21E(X1) �12E(

p
X1X2) � � � �1kE(

p
X1Xk)

�12E(
p
X1X2) �22E(X2) � � � �2kE(

p
X2Xk)

...
...

. . .
...

�1kE(
p
X1Xk) �2kE(

p
X2Xk) � � � �2kE(Xk)

1CCCCCA�
0BBBBB@

E(X1) 0 � � � 0

0 E(X2)
. . .

...
...

. . . . . . 0

0 � � � 0 E(Xk)

1CCCCCA

�1

)

� N(0;

0BBBBB@
�21

E(X1)
�12E(

p
X1X2)

E(X1)E(X2)
� � � �1kE(

p
X1Xk)

E(X1)E(Xk)

�12E(
p
X1X2)

E(X1)E(X2)

�22
E(X2)

� � � �2kE(
p
X2Xk)

E(X2)E(Xk)
...

...
. . .

...
�1kE(

p
X1Xk)

E(X1)E(Xk)
�2kE(

p
X2Xk)

E(X2)E(Xk)
� � � �2k

E(Xk)

1CCCCCA) (3.8)

is the multivariate asymptotic Normal distribution of the ratio estimator vector p̂m

with the asymptotic covariance matrix

�p =

0BBBBB@
�21

E(X1)
�12E(

p
X1X2)

E(X1)E(X2)
� � � �1kE(

p
X1Xk)

E(X1)E(Xk)

�12E(
p
X1X2)

E(X1)E(X2)

�22
E(X2)

� � � �2kE(
p
X2Xk)

E(X2)E(Xk)
...

...
. . .

...
�1kE(

p
X1Xk)

E(X1)E(Xk)
�2kE(

p
X2Xk)

E(X2)E(Xk)
� � � �2k

E(Xk)

1CCCCCA :

3.2.7 Approximate con�dence intervals for the linear combi-
nation # = �Tp

By recalling the last consequence

p
m(p̂m � p) �!D N(0;�p); (3.9)
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and again by applying the Cramer-Wold device, so Cramer-Wold device shows that

the exp 3.9 holds i�, 8� = (�1; :::; �k)
T 2 Rk such that k � k> 0, so we have

p
m(#̂m � #) =

p
m
�
�T p̂m ��Tp

� �!D N
�
0;�T�p�

�

� N

0BBBBB@0; (�1 � � ��k)

0BBBBB@
�21

E(X1)
�12E(

p
X1X2)

E(X1)E(X2)
� � � �1kE(

p
X1Xk)

E(X1)E(Xk)

�12E(
p
X1X2)

E(X1)E(X2)

�22
E(X2)

� � � �2kE(
p
X2Xk)

E(X2)E(Xk)
...

...
. . .

...
�1kE(

p
X1Xk)

E(X1)E(Xk)
�2kE(

p
X2Xk)

E(X2)E(Xk)
� � � �2k

E(Xk)

1CCCCCA
0BB@

�1
...

�k

1CCA
1CCCCCA

� N

0@0;
kX

j=1

�2
j

�2j

E(Xj)
+ 2

kX
j0=2

j
0�1X
j=1

�j�j0
�jj0E(

p
XjXj0 )

E(Xj)E(Xj0 )

1A ; (3.10)

and hence, the asymptotic variance of #̂m = �T p̂m is given by

�2# =
kX

j=1

�2
j

�2j

E(Xj)
+ 2

kX
j0=2

j
0�1X
j=1

�j�j0
�jj0E(

p
XjXj0 )

E(Xj)E(Xj0 )
; (3.11)

which is, the asymptotic variance of #̂m, when the error components are Normally

distributed.

To obtain the approximate con�dence intervals for the linear combination of the

proportions, it needs to estimate the asymptotic covariance matrix �p by plugging in

estimates for each corresponding individual parameter, which are

X :j =
1

m

mX
i=1

Xij; X :jj0 =
1

m

mX
i=1

q
XijXij0 ; j 6= j

0
; j; j

0
= 1; :::; k;

as well as

s2j =
1

m� 1

mX
i=1

�
Yij � p̂

j
Xij

�2
Xij

=
1

m� 1

mX
i=1

�eYij � p̂
j

p
Xij

�2
sjj0 =

1

m� 1

mX
i=1

�
Yij � p̂

j
Xij

� �
Yij0 � p̂

j
0Xij0

�p
Xij

p
Xij0

=
1

m� 1

mX
i=1

�eYij � p̂
j

p
Xij

��eYij0 � p̂
j
0
p
Xij0

�
;
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provided that,

Xij; Xij0 > 0 8j 6= j0; j; j
0
= 1; :::; k; i = 1; :::;m, eYij = Yijp

Xij

, eYij0 = Yij0p
Xij0

, and hence

b�p =
0BBBBB@

s21
X:1

s12X:12

X:1X:2
� � � s1kX:1k

X:1X:k

s12X:12

X:1X:2

s22
X:2

� � � s2kX:2k

X:2X:k

...
...

. . .
...

s1kX:1k

X:1X:k

s2kX:2k

X:2X:k
� � � s2k

X:k

1CCCCCA :

Consequently, from 3.11, one can obtain the standard error of #̂m as

b�# = s:e(#̂m) =

vuuut 1

m

0@ kX
j=1

�2
j

s2j

X :j

+ 2
kX

j0=2

j0�1X
j=1

�j�j0
sjj0X :jj0

X :jX :j0

1A;
where, the estimators namely X :j; X :jj0 ; s

2
j , and sjj0 are the consistent estimators of

the corresponding parameters E(Xj); E(
p
XjXj0 ); �

2
j , and �jj0 .

One also should mention here that, during the intervals evaluation, the estimator

covariance matrix have to be positive or at least positive semi de�nite, to ensure

that
d�T�p�
m

� 0, otherwise, we have to exclude the negative variances, this will be

clari�ed in chapter 4.

Finally, The approximate con�dence interval for the linear combination # = �Tp,

can be obtained by the normal quantile z
1��

2
ash

#̂m � z
1��

2
s:e(#̂m)

i
;

or the suggested conservative con�dence interval by the t-quantile which is given byh
#̂m � t(m�1;1��

2
)s:e(#̂m)

i
;

as, #̂m�#
s:e(#̂m)

' tm�1, where, t(m�1;1��
2
) is a

�
1� �

2

�
quantile of the t�distribution with

(m� 1) degrees of freedom.

3.2.8 Derivation of con�dence intervals for #

In continuous context, one may gives the outline for deriving the con�dence intervals

for the linear combination # of the proportions, where # = �Tp, � � 0 at the

following cases:
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case I

Firstly and on one hand, the distribution of #̂ = �T p̂ ( #̂ is an unbiased estimator

of #), given the design vectors (xT1 ; :::;x
T
k ); xj = (x1j; :::; xmj)

T ; j = 1; :::; k, where

p̂ � Nk (p;�x), �x is the covariance matrix given by 3.4, will obtained as

#̂ � N

0@ kX
j=1

�jpj ;

kX
j=1

�2
j

�2jPm
i=1 xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0

Pm
i=1
p
xijxij0Pm

i=1 xij
Pm

i=1 xij0

1A ; (3.12)

the expression 3.12 rewritten after it is standardization, as

p
m
�
#̂� #

�
� N

0@0;
kX

j=1

�2
j

m�2jPm
i=1 xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0m

Pm
i=1
p
xijxij0Pm

i=1 xij
Pm

i=1 xij0

1A
� N

�
0; �2x

�
;

where, the variance

�2x =
kX

j=1

�2
j

m�2jPm
i=1 xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0m

Pm
i=1
p
xijxij0Pm

i=1 xij
Pm

i=1 xij0
:

It follows that, the exact (1� �)% con�dence intervals for # are obtained byh
#̂� z

1��
2
S:E(#̂)

i
; as;

#̂� #

�x
� N(0; 1);

when �2j ; �jj0 , j 6= j
0
; j; j

0
= 1; :::; k are known;h

#̂� t(m�1;1��
2
)s:e(#̂)

i
; as;

#̂� #b�x � tm�1;

when �2j ; �jj0 , j 6= j
0
; j; j

0
= 1; :::; k are unknown;

where, the standard errors of #̂ are given by

S:E(#̂) =

vuuut kX
j=1

�2
j

�2jPm
i=1 xij

+ 2
kX

j0=2

j0�1X
j=1

�j�j0
�jj0

Pm
i=1
p
xijxij0Pm

i=1 xij
Pm

i=1 xij0
;

and

s:e(#̂) =

vuuut kX
j=1

�2
j

s2jPm
i=1 xij

+ 2
kX

j0=2

j0�1X
j=1

�j�j0
sjj0

Pm
i=1
p
xijxij0Pm

i=1 xij
Pm

i=1 xij0
:
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For the non multivariate Normal distribution of Yi or non multivariate Normal dis-

tribution of p̂, and if these sequences say converge to the corresponding constants,

namely:

1

m

mX
i=1

xij �! �j;
1

m

mX
i=1

p
xijxij0 �! �jj0 ;

where, �j; �jj0 are constants, j < j
0
= 1; :::; k; then the sequence of variances �2x

converges to the corresponding variance �2� as m tends to in�nity, where

�2� =
kX

j=1

�2
j

�2j

�j
+ 2

kX
j0=2

j
0�1X
j=1

�j�j0
�jj0�jj0

�j�j0
: (3.13)

And hence, the asymptotic Normal distribution of the estimator #̂m can be obtained

by

p
m
�
#̂m � #

�
�!D N(0; �2�);

where the asymptotic variance �2� is given by 3.13.

The obtained con�dence interval is an approximate con�dence interval, since the

asymptotic Normal of #̂m is involved.

case II

On the second hand, the conditional variance of #̂ given the random vectors (XT
1 ; :::;X

T
k ),

Xj = (X1j; :::; Xmj)
T ; j = 1; :::; k, when the vectors Xi = (Xi1; :::; Xik)

T ; i = 1; :::;m

are i:i:d random vectors (non multivariate Normal distribution of Yi) would be ob-

tained by

kX
j=1

�2
j

�2jPm
i=1Xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0

Pm
i=1

p
XijXij0Pm

i=1Xij

Pm
i=1Xij0

;

subsequently, it follows that

V ar(
p
m#̂) = mV ar(#̂) =

kX
j=1

�2
j

�2j

X :j

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0X :jj0

X :jX :j0
; (3.14)

And from the expression 3.10, one can rewrite the asymptotic distribution of the

distribution of #̂m as

p
m
�
#̂m � #

�
�!D N

�
0; �2#

�
; (3.15)
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where, the asymptotic variance �2# is given by

V ar(
p
m#̂m) = �2# =

kX
j=1

�2
j

�2j

E(Xj)
+ 2

kX
j0=2

j
0�1X
j=1

�j�j0
�jj0E(

p
XjXj0 )

E(Xj)E(Xj0 )
: (3.16)

However, since

X :j �!P E(Xj); X :j0 �!P E(Xj0 ); as well as

X :jj0 =
1

m

mX
i=1

q
XijXij0 �!P E

�q
XjXj0

�
; and j 6= j

0
(with the LLN);

then the variance in 3.14 converges also in probability to the corresponding asymptotic

variance 3.16.

And thus, the corresponding variance estimator for �2# is obtained by plugging in the

estimator for the individual parameter in 3.16 as

c�2# = kX
j=1

�2
j

s2j

X :j

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
sjj0X :jj0

X :jX :j0
;

provided that, the estimators

s2j =
1

m� 1

mX
i=1

�eYij � p̂
j

p
Xij

�2
;

sjj0 =
1

m� 1

mX
i=1

�eYij � p̂
j

p
Xij

��eYij0 � p̂j0
q
Xij0

�
; Xij; Xij0 > 0

as well as, X :j; X :j0 ; X :jj0 , are all consistent estimators for the corresponding parame-

ters �2j and �jj0 ; E(Xj); E(Xj0 ); E
�p

XjXj0
�
. It follows that, the estimatorc�2# is also

a consistent estimator of �2#, and hence the standard error of #̂, s:e(#̂) =

q
1
m
c�2#.

One can now construct the approximate con�dence intervals for the linear combina-

tion # as following:

When, �2j ; �jj0 ;8j; j
0
= 1; :::; k; j 6= j

0
are known then, the approximate con�dence

bounds for # is given by h
#̂� z

1��
2
S:E(#̂)

i
;

where, the Standard Error

S:E(#̂) =

vuuut 1

m

0@ kX
j=1

�2
j

�2j

X :j

+ 2
kX

j0=2

j0�1X
j=1

�j�j0
�jj0X :jj0

X :jX :j0

1A;
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and the quantile, z
1��

2
is de�ned as previous.

In case of unknown parameters �2j ; �jj0 , again the asymptotic theory given here

will be involved to obtain the approximate con�dence interval for #, which is given

by h
#̂m � z

1��
2
s:e(#̂m)

i
;

where,

s:e(#̂m) =

vuuut 1

m

0@ kX
j=1

�2
j

sj

X :j

+ 2
kX

j0=2

j0�1X
j=1

�j�j0
sjj0X :jj0

X :jX :j0

1A:
For a small sample size with all these available consistent estimators, the t�distribution
can be involved to obtain a conservative con�dence interval for the linear combination

# =
Pk

j=1 �jpj, which is given byh
#̂m � t(m�1;1��

2
)s:e(#̂m)

i
;

as

#̂m � #

s:e(#̂m)
' tm�1 �!D N(0; 1):

Finally, when the i:d weighted random component eYi has the multivariate Normal

distribution (p̂ has the multivariate Normal distribution), then given

(XT
1 ; :::;X

T
k ) we will have

#̂ � N

0@ kX
j=1

�jpj ;

kX
j=1

�2
j

�2jPm
i=1Xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0

Pm
i=1

p
XijXij0Pm

i=1Xij

Pm
i=1Xij0

1A
this expression rewritten after its standardization, as

p
m
�
#̂� #

�
� N

0@0;
kX

j=1

�2
j

m�2jPm
i=1Xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0m

Pm
i=1

p
XijXij0Pm

i=1Xij

Pm
i=1Xij0

1A
� N

�
0; �2X

�
;

where, the variance

�2X =
kX

j=1

�2
j

m�2jPm
i=1Xij

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
�jj0m

Pm
i=1

p
XijXij0Pm

i=1Xij

Pm
i=1Xij0

:
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Similar to the case I, the constructing con�dence intervals in this case are exact

con�dence intervals, since it was assumed that the random components Yi has the

multivariate Normal distribution.

3.3 Multivariate Poisson model

There are many �elds in which the multivariate Poisson data arises, i.e: Epidemiology:

Incidences of di�erent diseases across in time; Crime data: rapes, arson, manslaughter,

smuggling; marketing: Purchases of di�erent products; economics: Di�erent types of

faults in production system; sports: Football data, etc.

For a comprehensive discussion of the bivariate Poisson model and its multivariate

extensions see [6].

3.3.1 The Multivariate Poisson model

In order to extend the bivariate Poisson model to the multivariate extension, one shall

consider the following random variables:

Y1 = W + V1; X1 = Y1 + Z1

Y2 = W + V2; X2 = Y2 + Z2

...
...

Yk = W + Vk; Xk = Yk + Zk

where, W;Vj; Zj are independent Poisson distributed random variables with the pa-

rameters �0; �j; �j respectively, W;Vj are latent variables, while Yj; Zj are observable,

j = 1; :::; k.

The random variables Y1; :::; Yk follow jointly a Multivariate Poisson distribution with

the joint probability function is given by

P (Y = y) = P (Y1 = y1 ; Y2 = y2 ; :::; Yk = y
k
) =

sX
w=0

P (W = w; Vj = y
j
� w)

= e�(�0+
Pk

j=1 �j)
kY

j=1

�
y
j

j

y
j
!

sX
w=0

"
kY
l=1

 
y
l

w

!
wk�1!

 
�0Qk
j=1 �j

!w#
(3.17)

where, s = min(y1 ; y2 ; :::; yk).

The probability function (3.17) is quite complicated for calculation and for obtaining
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the Likelihood function for maximization (containing the latent variable W ), nev-

ertheless one can say that Y1; :::; Yk � MulPoiss(�0; �1; :::; �k), where, MulPoiss

denotes the multivariate Poisson distribution, and �0; �j are the parameters of the

independent Poisson random variables W;Vj respectively.

Moreover, X1; :::; Xk � MulPoiss(�0; �1 + �1; :::; �k + �k), where �0; �j + �j are the

parameters of the corresponding independent Poisson variablesW;Vj+Zj; j = 1; :::; k.

3.3.2 Properties of the model

� Marginally, Yj � Poiss(�0 + �j), as well as Xj � Poiss(�0 + �j + �j). This

implies that E(Yj) = V ar(Yj) = �0 + �j, and

E(Xj) = V ar(Xj) = �0 + �j + �j; j = 1; :::; k.

� Cov(Xj; Xj0 ) = Cov(Yj; Yj0 ) = �0;8j 6= j
0
; j; j

0
= 1; :::; k,

i.e, the parameter �0 is the covariance between all the pairs of the random

variable Yj, and all the pairs of the random variable Xj. For di�erent covariance

structure for each pair of the variables, see [13].

� The Marginal Conditional distributions are given by:

P (Yj jXj) � Bin
�
Xj;

�0+�j
�0+�j+�j

�
� Bin(Xj; pj), where the Binomial proportion

p
j
=

�0+�j
�0+�j+�j

, further, it follows that E(Yj j Xj) = p
j
Xj, as well as

V ar(Yj j Xj) = p
j
(1� p

j
)Xj, however the joint conditional distribution

P

�
Yj ;Yj0 jXj ;Xj

0
�
and the pair conditional covariance Cov(Yj; Yj0 j Xj; Xj0 ) ; j 6=

j
0
= 1; :::; k can not be explicitly calculated.

� Unconditional consistent estimators of the combinations:

�0; �0 + �j; �0 + �j + �j, are: sYj;Yj0
; Y :j; X :j, respectively i.e:

s
Yj;Yj

0 �!P �0; Y :j �!P �0 + �j; Y :j � s
Yj;Yj

0 �!P �j, as well as

X :j �!P �0 + �j + �j. Furthermore X :j � s
Yj;Yj

0 �!P �j + �j, Z :j �!P �j,

where Y :j =
1
m

Pm
i=1 Yij = W + V :j; X :j =

1
m

Pm
i=1Xij = W + V :j + Z :j, and

Z :j =
1
m

Pm
i=1 Zij, as well as the unconditional sample covariance

s
Yj;Yj

0 =
1

m�1
Pm

i=1(Yij � Y :j)(Yij0 � Y :j0 ); j < j
0
; j; j

0
= 1; :::; k, and also

p̂
j
=

d�0+�jd�0+�j+�j
=

Y :j

X:j
are the commonly used ratio estimators for the proportions

p
j
; j = 1; :::; k.
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3.3.3 Description of the model

One may describe the model through the vector, T = (W;V1; :::; Vk; Z1; :::Zk)
T , and

an k� (2k+1) matrix A (i.e, the elements of A are zero and ones no duplicate rows

exist, (see [12], for more details).

De�ne the matrices Ay;Ax, having the forms Ay = [1k Ik 0k�k], Ax = [1k Ik Ik],

where 1k = (1; :::; 1)T , Ik is the identity matrix of size k � k, as well as 0k�k is a

matrix of k � k zero's.

The vector Y = (Y1; Y2; :::; Yk)
T = AyT follows a multivariate Poisson distribution

with parameters �0; �1; :::; �k.

Furthermore, X = (X1; X2; :::; Xk)
T = AxT follows also a multivariate Poisson distri-

bution with parameters �0; �1+�1; :::; �k+�k. The number of the model parameters

is exactly 2k + 1; k � 2.

Further, one may describe the hole model by the vector (Y;X)T , as

 
Y

X

!
=

 
Ay

Ax

!0BB@
W

V

Z

1CCA ;

where, Y = (Y1; :::; Yk)
T ;X = (X1; :::; Xk)

T ;V = (V1; :::; Vk)
T , Z = (Z1; :::; Zk)

T , and

Ay;Ax are de�ned above.

3.3.4 Multivariate asymptotic normality of the estimator vec-
tor p̂

m

We will derive the asymptotic distribution of the estimator vector p̂m of the proportion

vector p = (p1 ; :::; pk)
T , where, p̂m = (p̂

m1 ; :::; p̂mk
)T , as well as, p̂

mj
is the ratio

estimator of the corresponding proportion p
j
; j = 1; :::; k.

For the independent r.v's W;Vj and Zj of the vector T = (W;V1; :::; Vk; Z1; :::Zk)
T ,

we have the asymptotic covariance matrix
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� = Cov(T) =2666666666666664

�0 0 � � � � � � � � � � � � 0

0 �1 0 � � � � � � � � � ...
...

. . . . . . . . . � � � � � � ...
... � � � . . . �k

. . . � � � ...
... � � � � � � . . . �1

. . .
...

... � � � � � � � � � . . . . . . 0

0 � � � 0 � � � � � � 0 �k

3777777777777775
(2k+1)�(2k+1)

= diag (�0; �1; :::; �k; :::; �k) ;

and further one can apply the multivariate central limit theorem to the vector Tm =

1
m

Pm
i=1Ti, where the i:i:d random vectors Ti = (Wi; Vi1; :::; Vik; Zi1; :::Zik)

T :

p
m
�
Tm � E(T)

� �!D N2k+1 (02k+1;�) ;

where, the covariance matrix � is de�ned above.

De�ne the vector H = (Y1; X1; :::; Yk; Xk)
T , with the covariance matrix

�
�
= Cov(H) = Cov

0BBBBBBBBBBBBB@

Y1

X1

� � �
...

� � �
Yk

Xk

1CCCCCCCCCCCCCA

=

266666666666666664

C1

"
�o �o

�o �o

#
� � �

"
�o �o

�o �o

#
"
�o �o

�o �o

#
C2

. . .
...

...
. . . . . .

"
�o �o

�o �o

#
"
�o �o

�o �o

#
� � �

"
�o �o

�o �o

#
Ck

377777777777777775
(2k�2k)

;

where, the diagonal elements of the covariance matrix are given by

Cj =

"
�o + �j �o + �j

�o + �j �o + �j + �j

#
=

"
E(Yj) E(Yj)

E(Yj) E(Xj)

#
; j = 1; :::; k:
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Thus, by plugging in these diagonal entries to the covariance matrix �
�
, we obtain

�
�
= diag

 
�j121

T
2 +

"
0 0

0 �j

#!
j=1;:::;k

+ �012k1
T
2k: (3.18)

And in same manner, by applying the Multivariate Central limit theorem to the i:i:d

random vectors Hi = (Yi1; Xi1; :::; Yik; Xik)
T , Hm = 1

m

Pm
i=1Hi, yields

p
m
�
Hm � E(H)

� �!D N2k (0;��
) ;

or,

p
m

0BBBBBBBBBBBBBB@

266666666666664

Y :1

X :1

� � �
...

� � �
Y :k

X :k

377777777777775
2k�1

�

266666666666664

�0 + �1

�0 + �1 + �1

� � �
...

� � �
�0 + �k

�0 + �k + �k

377777777777775

1CCCCCCCCCCCCCCA
�!D N2k

0BBBBBBBBBBBBBB@

266666666666664

0

0

� � �
...

� � �
0

0

377777777777775
2k�1

;�
�

1CCCCCCCCCCCCCCA
;

The Multivariate Delta method

So far, it was just applying the MVCLT to the pairs (Y j; Xj) to obtain the asymp-

totic normality of the vector estimator p̂, we will introduce to the extended �-method

called the multivariate �-method (see the subsection 1.3.3 or [14]) which is applied

to obtain the asymptotic distribution of a k dimensional non-linear mappings of the

pairs random variables (Yj; Xj), i.e, asymptotic distribution of the non-linear trans-

formations
Y :j

X:j
; j = 1; :::; k.

We will de�ne the following notations:

� = E(H) = (�11; �21; :::; �1k; �2k)
T ; �1j = E(Yj); �2j = E(Xj); j = 1; :::; k;

� 2 R2k; g(�) =

�
�1j

�2j

�
j=1;:::;k

; g(�) : R2k �! Rk; (3.19)

is a vector-valued function that is continuously di�erentiable at � such that �2j > 0 8j.
By plugging in the elements of � of notation 3.19 to the covariance matrix 3.18, we
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obtain

�
�
= �

�;�0
=

266666666666666664

"
�11 �11

�11 �21

# "
�0 �0

�0 �0

#
� � �

"
�0 �0

�0 �0

#
"
�0 �0

�0 �0

# "
�12 �12

�12 �22

#
. . .

...

...
. . . . . .

"
�0 �0

�0 �0

#
"
�0 �0

�0 �0

#
� � �

"
�0 �0

�0 �0

# "
�1k �1k

�1k �2k

#

377777777777777775
2k�2k

;

where,

�sj =

8<:E(Yj) ; for s = 1

E(Xj) ; for s = 2
;8 j = 1; :::; k:

Let, �j =

"
�1j �1j

�1j �2j

#
, and �0 =

"
�0 �0

�0 �0

#
, then the squared block matrix

�
�;�0

=

2666664
�1 �0 � � � �0

�0 �2
. . .

...
...

. . . . . . �0

�0 � � � �0 �k

3777775
2k�2k

: (3.20)

The matrix rT
g (�) of partial derivatives of the continuous di�erentiable function

g with respect to � is obtained by

rT
g (�) =

@g(�)

@�T
=
h

@gj(�)
@�1j

@gj(�)
@�2j

i
j=1;:::;k

=

2666664
@g1
@�11

@g1
@�21

@g1
@�12

@g1
@�22

� � � @g1
@�1k

@g1
@�2k

@g2
@�11

@g2
@�21

@g2
@�12

@g2
@�22

� � � @g2
@�1k

@g2
@�2k

...
...

...
...

. . .
...

...
@g

k

@�11

@g
k

@�21

@g
k

@�12

@g
k

@�22
� � � @g

k

@�1k

@g
k

@�2k

3777775
(k�2k)

=

26666664
1
�21

� �11
�221

0 0 � � � 0 0

0 0 1
�22

� �12
�222

. . .
...

...
...

...
. . . . . . . . . 0 0

0 0 � � � 0 0 1
�2k

� �1k
�22k

37777775
(k�2k)

:
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Let, �j =
�

1
�2j

� �1j
�22j

�
j=1;:::;k

, the block diagonal matrix

rT
g (�) =

2666664
�1 0 � � � 0

0 �2
. . .

...
...

. . . . . . 0

0 � � � 0 �k

3777775
(k�2k)

= block:diag
�
�j

�
j=1;:::;k

; whose the o�-

diagonal matrices 0 = (0 0), as well as the transpose of rT
g (�) is given by

rg(�) =

2666664
�T
1 0T � � � 0T

0T �T
2

. . .
...

...
. . . . . . 0T

0T � � � 0T �T
k

3777775 :

For, p = (p1 ; :::; pk)
T , where p

j
=

E(Yj)

E(Xj)
=

�0+�j
�0+�j+�j

, and according to the MV�-

method we have

g(�) = p) g(�̂m) = p̂m ; �̂m = Hm;

with the corresponding estimators of p̂m = (p̂
m1 ; :::; p̂mk

)T , p̂
mj

=
Y :j

X:j
; j = 1; :::; k.

Hence, it follows that

p
m(p̂m � p) �!D Nk

�
0;rT

g (�) ��;�0
rg(�)

�
; (3.21)

where, �
�;�0

is given by the matrix 3.20. So, the asymptotic covariance matrix of

expression (3.21) equals

rT
g (�) ��;�0

rg(�) =

=

2666664
�1 0 � � � 0

0 �2
. . .

...
...

. . . . . . 0

0 � � � 0 �k

3777775�
2666664
�1 �0 � � � �0

�0 �2
. . .

...
...

. . . . . . �0

�0 � � � �0 �k

3777775�
2666664
�T
1 0T � � � 0T

0T �T
2

. . .
...

...
. . . . . . 0T

0T � � � 0T �T
k

3777775

=

2666664
�1�1�

T
1 �1�0�

T
2 � � � �1�0�

T
k

�2�0�
T
1 �2�2�

T
2 � � � �2�0�

T
k

...
...

. . .
...

�k�0�
T
1 �k�0�

T
2 � � � �k�k�

T
k

3777775 : (3.22)
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There jth diagonal element simpli�es to

�j�j�
T
j =

�1j

�22j
� 2�21j

�32j
+
�21j

�32j
=
�1j

�22j
� �21j

�32j
=
�1j

�22j

�
1� �1j

�2j

�
=

E(Yj)

(E(Xj))2

�
1� E(Yj)

E(Xj)

�
=

1

E(Xj)
pj(1� pj); j = 1; :::; k;

and whose o�-diagonal elements simplify to

�j�0�
T
j0 = �j0�0�

T
j =

�0

�2j�2j0
� �0�1j

�22j�2j0
� �0�1j0

�2j�
2
2j0

+
�0�1j�1j0

�22j�
2
2j0

=
�0

�2j�2j0

"
1� �1j

�2j
� �1j0

�2j0
+
�1j�1j0

�2j�2j0

#

=
�0

�2j�2j0

"�
1� �1j

�2j

�
� �1j0

�2j0

�
1� �1j

�2j

�#

=
�0

�2j�2j0

�
1� �1j

�2j

� 
1� �1j0

�2j0

!
=

�0

E(Xj)E(Xj0 )
(1� pj)(1� pj0 ); 8j 6= j

0
; j; j

0
= 1; :::; k:

The multivariate asymptotic Normal distribution follows now by plugging in the above

diagonal and o�-diagonal entries to the matrix 3.22 of the expression 3.21
p
m(p̂m � p) �!D

Nk

0BBBBB@0;
2666664

p1 (1�p1 )
E(X1)

Cov(Y1;Y2)(1�p1 )(1�p2 )
E(X1)E(X2)

� � � Cov(Y1;Yk)(1�p1 )(1�pk )
E(X1)E(Xk)

Cov(Y1;Y2)(1�p1 )(1�p2 )
E(X1)E(X2)

p2 (1�p2 )
E(X2)

� � � Cov(Y2;Yk)(1�p2 )(1�pk )
E(X2)E(Xk)

...
...

. . .
...

Cov(Y1;Yk)(1�p1 )(1�pk )
E(X1)E(Xk)

Cov(Y2;Yk)(1�p2 )(1�pk )
E(X2)E(Xk)

� � � p
k
(1�p

k
)

E(Xk)

3777775

1CCCCCA ;

where, Cov(Yj; Yj0 ) = �0; 8j < j
0
; j; j

0
= 1; :::; k. The asymptotic covariance matrix

of the ratio estimator vector p̂m will be

asCov(p̂m) =

2666664
p1 (1�p1 )
E(X1)

Cov(Y1;Y2)(1�p1 )(1�p2 )
E(X1)E(X2)

� � � Cov(Y1;Yk)(1�p1 )(1�pk )
E(X1)E(Xk)

Cov(Y1;Y2)(1�p1 )(1�p2 )
E(X1)E(X2)

p2 (1�p2 )
E(X2)

� � � Cov(Y2;Yk)(1�p2 )(1�pk )
E(X2)E(Xk)

...
...

. . .
...

Cov(Y1;Yk)(1�p1 )(1�pk )
E(X1)E(Xk)

Cov(Y2;Yk)(1�p2 )(1�pk )
E(X2)E(Xk)

� � � p
k
(1�p

k
)

E(Xk)

3777775 :

Again the estimator for the asymptotic covariance matrix can be obtained by plugging

in the estimates for each individual parameter in the matrix asCov(p̂m)
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dasCov(p̂m) =

26666664

p̂1 (1�p̂1 )
X:1

s
Y1;Y2

(1�p̂1 )(1�p̂2 )
X:1X:2

� � � s
Y1;Yk

(1�p̂1 )(1�p̂k )
X:1X:k

s
Y1;Y2

(1�p̂1 )(1�p̂2 )
X:1X:2

p̂2 (1�p̂2 )
X:2

� � � s
Y2;Yk

(1�p̂2 )(1�p̂k )
X:2X:k

...
...

. . .
...

s
Y1;Yk

(1�p̂1 )(1�p̂k )
X:1X:k

s
Y2;Yk

(1�p̂2 )(1�p̂k )
X:2X:k

� � � p̂
k
(1�p̂

k
)

X:k

37777775 ; (3.23)

where

X :j �!P E(Xj); p̂j �!P p
j
; s

Y
j
;Y
j
0 �!P Cov(Yj; Yj0 );

and the unconditional sample covariances

s
Yj;Yj

0 =
1

m� 1

mX
i=1

(Yij � Y :j)(Yij0 � Y :j0 ); j < j
0
; j; j

0
= 1; :::; k;

alternatively, one may consider a joint estimator for �0

s
j;j
0 =

1
k(k�1)

2

kX
j=1

kX
j0=j�1

s
Yj;Yj

0 :

I.e, the matrix 3.23 is also a consistent.

3.3.5 Approximate con�dence intervals for a 'k' linear combi-
nation of the proportions

For constructing the con�dence intervals for the linear combination of the proportions

one should mention that, the matrix 3.23 have to be positive or at least positive

semi de�nite, to ensure,
dasV ar(�T p̂)
m

� 0, otherwise we have to exclude the negative

variances (see chapter 2, subsection 2.3.5, also it will be clari�ed in the chapter 4).

The estimated variance of the linear combination of the ratio estimators of p̂m , such

that � � 0 is given by

dasV ar(�T p̂m) =
kX

j=1

�2
j

p̂
j
(1� p̂

j
)

X :j

+ 2
kX

j0=2

j
0�1X
j=1

�j�j0
s
Y
j
;Y
j
0 (1� p̂

j
)(1� p̂j0 )

X
:j
X :j0

; (3.24)

and consequently, the standard error of the linear combination �T p̂m (if de�ned), is

giiven by the square root of the expression 3.24 divided by the
p
m,

s:e(�T p̂m) =

vuuut 1

m

0@ kX
j=1

�2
j

p̂
j
(1� p̂

j
)

X :j

+ 2
kX

j0=2

j0�1X
j=1

�j�j0
s
Y
j
;Y
j
0 (1� p̂

j
)(1� p̂j0 )

X
:j
X :j0

1A:
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Finally, the approximate (1� �)% con�dence intervals for the linear combination of

the proportions �Tp are given byh
�T p̂m � z

1��
2
s:e(�T p̂m)

i
;

Or, the suggested conservative con�dence intervals (safety bounds) by the t-quantilesh
�T p̂m � t(m�1;1��

2
)s:e(�

T p̂m)
i
;

as, �
T p̂m��Tp

s:e(�T p̂m )
' tm�1 �!D N(0; 1), and the quantiles z

1��
2
, t(m�1;1��

2
) are previously

de�ned.



Chapter 4

Simulations for approximating the

"true" coverage

4.1 Introduction

An extremely powerful application of modern computers is in the �eld of simulation.

A simulation is a computer experiment which mirrors some aspect of real life data

(which is complicated to manipulate in real life) that appears to be based on random

processes.

Computer simulation tools can be used to compare the observed coverage ('cover-

age probability' or simply 'coverage', which is a number of the covering intervals for

the parameter divided by the total replications or loops, or a percent of the covering

intervals with respect to the total number of these intervals) of the con�dence inter-

vals with the corresponding nominal value (the true coverage).

The programs instructions are performed with the R language to run the R software

packages. They made to compare a curve plotted by the coverage of the correspond-

ing con�dence interval with the nominal value of the true coverage (1-�), where � is

the con�dence level, with the fact: under repeated sampling, (1-�)% of these intervals

will contain the proportion p or a linear function of the proportions.

78
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Aim of the simulation

the main goal of the simulations is to validate approximate con�dence intervals for a

linear combination of the proportions based on Poisson models. The simulation study

was performed and evaluated to obtain a more reasonable and appropriate coverage

close to the true coverage. For approximating the true coverage for di�erent sample

sizes and model parameter values, I considered two con�dence intervals, approximate

(with the normal quantile) and conservative (with the t- quantile).

Thus, 'With large replications, samples of di�erent sizes are taken from the Pois-

son distribution with di�erent parameter values at di�erent levels of the con�dence

intervals'.

To display the results graphically, the results plotted in �gures with horizontal line

to indicate the nominal values and by the corresponding tables for more illustration.
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4.2 The Univariate case

Simulation in a univariate case does not need much work. Theoretically, the sample

variance based on the univariate residuals as well as the variance estimator based on

the univariate Poisson model are both BUE's.

The program is running with 10,000 replications at the nominal value 0.95, for small

and large values of the Poisson parameter for di�erent sample size m, taking in

account only the valid intervals (runs) with valid standard errors, i.e.,
Pm

i=1Xi > 0,

if
Pm

i=1Xi = 0 in a sample, presumably nobody would like to calculate a con�dence

interval in that case, as no real observations are available). The t-quantile is adjusted

on the reduced actual sample sizem1 which contains only the informative observations

(a noninformative observation is the random variable associates with the event Ai =

fXi = 0g with probability of occurrence P (Ai) = e�� , and P (Ai) = 1 � e�� , where

Ai = fXi > 0g; i = 1; :::;m) (we only accept runs as valid, for which the reduced

sample size m1 of informative observations is at least 9 ). Also one can calculate the

percentage of the excluded runs (non valid).

Figure 4.1: Coverage of the con�dence interval
for the proportion for the parameter values � = 1,
m = 10; 15; 20; 50; 100 with the variance estimate
based on the Poisson model.

Figure 4.2: Coverage of the con�dence inter-
val for the proportion for the parameter values
� = 1, m = 10; 15; 20; 50; 100 with the sample
variance.
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For �xed �1 = �2 = � = 1 for di�erent sample sizes with the variance estimate

based on the Poisson model �gure 4.1, the coverage by the adjusted t-quantile method

are larger than the nominal value, while by z-quantile are smaller. And with the

sample variance (�gure 4.2) is nearly similar to the �gure 4.1. Further, there is no

excluded runs, when the sample sizes become larger for any � as seen in tables 4.1

and 4.2.

sample size m
Coverage 10 15 20 50 100

by the z-quantile 0.9359 0.9409 0.9398 0.9450 0.9472

by the adjusted t-quantile 0.9616 0.9602 0.9555 0.9526 0.9509

The percentage of the excluded runs 0.3914 0.0018 0 0 0

Table 4.1: Coverage of the con�dence interval for the proportion and the percentage of the excluded
runs for the parameter values � = 1 for sample sizesm = 10; 15; 20; 50; 100 with the variance estimate
based on the Poisson model.

sample size m
Coverage 10 15 20 50 100

by the z-quantile 0.9218 0.9292 0.9336 0.9446 0.9493

by the adjusted t-quantile 0.9541 0.9519 0.9499 0.9502 0.9533

The percentage of the excluded runs 0.4026 0.0023 0 0 0

Table 4.2: Coverage of the con�dence interval for the proportion and the percentage of the excluded
runs for the parameter values � = 1 for sample sizes m = 10; 15; 20; 50; 100 with the sample variance.

Further, the coverage for more parameter values, i.e., � = 0:5; 2, with the both

variances estimates are given in the �gures 4.3,4.4, 4.5, and 4.6.
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Figure 4.3: Coverage for � = 0:5, m = 10; 15; 20; 50; 100

with the variance estimate based on the Poisson model.
Figure 4.4: Coverage for � = 0:5,
m = 10; 15; 20; 50; 100 with the sample
variance.

Figure 4.5: Coverage for � = 2, m =

10; 15; 20; 50; 100 with the variance estimate based
on the Poisson model.

Figure 4.6: Coverage for � = 2, m =

10; 15; 20; 50; 100 with the sample vari-
ance.
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On the other hand, for the �xed sample sizes 10; 50, and � = f0:5; 0:8; 1; 2; 5g, we
simulate the true coverage as following:

a) Using the sample variance.

From the �gure 4.7, the coverage by the adjusted t-quantile method is conser-

vative and gives more reasonable coverage especially for large �, while by the

z-quantile method the coverage is dramatically smaller than the nominal value,

also there is a big di�erence between the both methods. For larger sample size

(�gure 4.8), the coverage by the t-quantile method are again more reasonable

while by the z-quantile are slightly smaller with small di�erence between the

coverage of both methods. Further, the tables 4.4 and 4.5 show that for all

� = f0:5; 0:8; 1; 2; 5g, there is no excluded runs when lambda or sample sizes

are large.

Similar results hold at di�erent con�dence levels (because, the con�dence inter-

vals demonstrated the same pattern for all con�dence levels, we focus on the

level 0.95). See for example table 4.3 for more coverage at di�erent con�dence

levels.

Coverage by the z-quantile at the con�dence level

m 0.90 0.95 0.99 0.999
10 0.8697 0.9184 0.9728 0.9896
15 0.8795 0.9262 0.9740 0.9940
20 0.8863 0.9313 0.9820 0.9953
50 0.8909 0.9449 0.9872 0.9982
100 0.8967 0.9488 0.9879 0.9982

Coverage by the adjusted t-quantile at the con�dence level

m 0.90 0.95 0.99 0.999
10 0.9041 0.9496 0.9904 0.9988
15 0.9053 0.9501 0.9888 0.9992
20 0.9045 0.9502 0.9904 0.9990
50 0.8997 0.9501 0.9902 0.9989
100 0.9006 0.9516 0.9899 0.9989

Table 4.3: Coverage for � = 1, with the sample variance
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Figure 4.7: Coverage for the parameter values
� = f0:5; 0:8; 1; 2; 5g, m = 10 with the sample
variance.

Figure 4.8: Coverage for the parameter values
� = f0:5; 0:8; 1; 2; 5g, m = 50 with the sample
variance.

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9199 0.9161 0.9227 0.9203 0.9194

by the adjusted t-quantile 0.9498 0.9498 0.9524 0.9506 0.9510

The percentage of the excluded runs 0.9263 0.6294 0.3996 0.0140 0

Table 4.4: Coverage and percentage of the excluded runs for parameter values � = f0:5; 0:8; 1; 2; 5g,
m = 10 with the sample variance.

b) Using the variance estimate based on the Poisson model.

Figure 4.9 shows that the t-quantile method is more conservative and gives

larger coverage than that by the z-quantile which gives small coverage for all �

and smaller coverage when � is small. When the sample size is larger (�gure

4.10), the coverage are similar to that in the �gure 4.8 but slightly larger (the

estimated variance based on the Poisson model is larger than the sample vari-

ance). Also, from the tables 4.6 and 4.7, one can see that, when � or sample

sizes are larger then there is no excluded runs by the both methods.
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�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9442 0.9441 0.9461 0.9439 0.9435

by adjusted the t-quantile 0.9525 0.9508 0.9530 0.9497 0.9486

The percentage of the excluded runs 0 0 0 0 0

Table 4.5: Coverage and percentage of the excluded runs for parameter values � = f0:5; 0:8; 1; 2; 5g,
m = 50 with the sample variance

Figure 4.9: Coverage for �, m = 10

with the variance estimate based on the
Poisson model.

Figure 4.10: Coverage for �, m = 50

with the variance estimate based on
the Poisson model.

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9000 0.9227 0.9328 0.9404 0.9488

by the adjusted t-quantile 0.9406 0.9548 0.9576 0.9666 0.9736

The percentage of the excluded runs 0.9310 0.6325 0.3944 0.0133 0

Table 4.6: Coverage and percentage of the excluded runs for � for m = 10 with the variance
estimate based on the Poisson model.

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9454 0.9464 0.9462 0.9452 0.9490

by the adjusted t-quantile 0.9548 0.9536 0.9544 0.9503 0.9548

The percentage of the excluded runs 0 0 0 0 0

Table 4.7: Coverage and percentage of the excluded runs for � for m = 50 with the variance
estimate based on the Poisson model.
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4.3 The Bivariate case

In this section, one would consider the coverage of the con�dence intervals for the

linear combination of the proportions a1p1+a2p2 , so we will simulate the sample data

of sizes 10,15,20,50,100 of the data points (Wi; Vi1; Vi2) from Poisson distribution with

10,000 replications to consider closeness of the coverage to the nominal value. The

purpose of this section is to compare the coverage of the runs using the Poisson

estimated covariance or the SUR estimated covariance by the both quantiles with the

corresponding nominal value.

Note that, small values of the model parameter will produce more noninforma-

tive observations with high probability (the noninformative observations is the set of

events Ai = fXij = 0g, with probability of success P (Ai) = e�� , and P (Ai) = 1�e�� ,
where Ai = fXij > 0g; i = 1; :::;m; j = 1; 2), or more unwanted negative variances

produce invalid runs with invalid s.e's during the runs session in which will be ex-

cluded as well as a run is excluded, if
Pm

i=1Xij = 0 for any component j, by exclude

these runs and will not be counted (also we mention here that we only accept runs as

valid, for which the reduced sample size mj 8j of informative observations is at least

9 to justify the use of the asymptotic approach), in addition one can also specify the

percentage of the excluded runs. The procedure called 'A truncation of the invalid

runs'.

Moreover, we need to take the following considerations:

� Taking only the informative observations will reduce the actual sample sizem to

the random sample sizemj. Theoretically, one can calculate the random number

of the noninformative observations in each sample, which equals m�mj, where

mj � m, as well as, the random percentage of the noninformative observations

is 1� mj

m
.

� The valid runs are based on the positive variances (to ensure that, we will take

only the positive estimated covariances) and the positive summations of the

observations Xj. Further, the standard error is a consistent estimator for the

corresponding positive asymptotic variance, so it converges to a positive number

as sample size m tends to in�nity, this will ensure the validity of the con�dence

interval at large sample sizes.
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� We will adjust the degrees of freedom for the t-quantile on the reduced sample

size m1, where m1 is the number of the informative observations of X1. So, the

conservative con�dence interval (safety bounds) becomes:h
�T p̂� t(m1�1;1��

2
)s:e(�

T p̂)
i
, as well as, the approximate con�dence interval ish

�T p̂� z
1��

2
s:e(�T p̂)

i
, where s:e(�T p̂) =

q
1
m

dasV ar(�T p̂).

a) For very small values of the Poisson parameter the procedure results in many non

informative observations with high probability.

b) For small values (< 1), for example

�0 = 0:4; �1 = 0:5; �2 = 0:4; �1 = 0:4; �2 = 0:5, the coverage by the z-quantiles

method are smaller than the nominal level especially for m � 20, �gure 4.11,

because the simulation produces many noninformative observations or non pos-

itive covariances which may cause invalid s.e's, and hence the corresponding

runs were excluded. From �gure 4.12 (using the SUR estimated covariance),

the both method gave coverage less than the nominal.

Tables 4.8, 4.9 show also the excluded runs decrease as sample sizes become

larger by the both estimated covariances, as well as show larger exclusions for

small sample size.

Figure 4.11: Coverage of the combina-
tion a1p1 + a2p2 using the Poisson esti-
mated covariance at nominal value 0.95, for
�0 = 0:4; �1 = 0:5; �2 = 0:4; �1 = 0:4; �2 =

0:5; �1 = 1; �2 = 2.

Figure 4.12: Coverage of the combination
a1p1 + a2p2 using the SUR estimated co-
variance at nominal value 0.95, for �0 =

0:4; �1 = 0:5; �2 = 0:4; �1 = 0:4; �2 =

0:5; �1 = 1; �2 = 2.

c) For larger parameter values (� 1), for example

�0 = 4; �1 = 5; �2 = 4; �1 = 4; �2 = 5 (�gure 4.13), the con�dence interval
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sample size m

Coverage 10 15 20 50 100

by the z-quantile 0.7391 0.9218 0.9356 0.9438 0.9483

by the adjusted t-quantile 0.8261 0.9487 0.9546 0.9507 0.9526

The percentage of the excluded runs 0.9977 0.7058 0.2226 0.0005 0

Table 4.8: Coverage of the combination a1p1 + a2p2 using the Poisson estimated covariance at
nominal value 0.95, for �0 = 0:4; �1 = 0:5; �2 = 0:4; �1 = 0:4; �2 = 0:5; �1 = 1; �2 = 2.

sample size m

Coverage 10 15 20 50 100

by the z-quantile 0.8667 0.9127 0.9294 0.9374 0.9327

by the adjusted t-quantile 0.9333 0.9411 0.9499 0.9455 0.9373

The percentage of the excluded runs 0.9970 0.7811 0.4168 0.1347 0.0551

Table 4.9: Coverage of the combination a1p1 + a2p2 using the the SUR estimated covariance at
nominal value 0.95, for �0 = 0:4; �1 = 0:5; �2 = 0:4; �1 = 0:4; �2 = 0:5; �1 = 1; �2 = 2.

by t-quantile method is more conservative especially for small sample sizes and

gives larger coverage, however by z-quantiles gives coverage slightly smaller but

more reasonable. In �gure 4.14, the SUR estimated covariance has been used,

it is look like that the coverage in 4.13 are shifted down. Table 4.10 shows

also the percentage of the truncated runs which tend to zero as sample sizes

become larger, the interesting things from table 4.11 is that the percentage of the

exclusions is larger due to the estimated conditional SUR covariance depends

strictly on the observations of Xj which may causes many negative covariances

that have been removed.

sample size m
Coverage 10 15 20 50 100

by the z-quantile 0.9435 0.9475 0.9473 0.9519 0.9485

by the adjusted t-quantile 0.9719 0.9663 0.9632 0.9579 0.9515

The percentage of the excluded runs 0.0731 0.0320 0.0159 0.0001 0

Table 4.10: Coverage using the Poisson estimated covariance, for �0 = 4; �1 = 5; �2 = 4; �1 =

4; �2 = 5.
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Figure 4.13: Coverage using the Poisson es-
timated covariance, for �0 = 4; �1 = 5; �2 =

4; �1 = 4; �2 = 5.

Figure 4.14: Coverage using the SUR es-
timated covariance, for �0 = 4; �1 = 5; �2 =

4; �1 = 4; �2 = 5.

sample size m
Coverage 10 15 20 50 100

by the z-quantile 0.9308 0.9380 0.9353 0.9329 0.9351

by the adjusted t-quantile 0.9641 0.9579 0.9510 0.9390 0.9375

The percentage of the excluded runs 0.3167 0.2810 0.2427 0.1292 0.0544

Table 4.11: Coverage using the SUR estimated covariance, for �0 = 4; �1 = 5; �2 = 4; �1 = 4; �2 =

5.

For � = 0:5; 0:8; 1; 2; 5, sample sizes m = 10; 50:

� (with the Poisson estimated covariance):

For the sample size 10 for �0 = �1 = �2 = �1 = �2 = �, �gure 4.15, the coverage

by the adjusted t-quantiles is more conservative and give larger coverage except

for small parameter values, while by z-quantiles gives dramatically smaller cov-

erage specially for small �, there is also a big di�erence between the coverage

by the two methods. However, for the sample size 50, �gures 4.16 shows that

both coverage by the both quantiles are more close to each other and to the

nominal value.

One can see from the tables 4.12, and 4.13, for small � the percentage of ex-

cluded runs is more than that of large �, as well as the exclusions decrease as

� or sample sizes become larger.

This can be theocratically demonstrate as:
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P (Xij = 0) = e(��0+�j+�j) = e�3�; P (
Pm

i=1Xij = 0) = P (Xij = 0 for all i =

1; :::;m) = (e�3�)m, and P (9j
Pm

i=1Xij = 0) � P2
j=1 P (

Pm
i=1Xij = 0) =

2(e�3�)m ! 0 for �! 0.

Figure 4.15: Coverage for �0 = �1 = �2 =

�1 = �2 = �, m=10 (with the Poisson estimated
covariance).

Figure 4.16: Coverage for �0 = �1 = �2 =

�1 = �2 = �, m=50 (with the Poisson estimated
covariance).

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.8981 0.9195 0.9291 0.9411 0.9476

by the adjusted t-quantile 0.9352 0.9529 0.9608 0.9697 0.9737

The percentage of the excluded runs 0.9892 0.8385 0.6502 0.1067 0.0618

Table 4.12: Coverage for �0 = �1 = �2 = �1 = �2 = �, m=10 (with the Poisson estimated
covariance).

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9450 0.9457 0.9477 0.9486 0.9489

by the adjusted t-quantile 0.9505 0.9526 0.9536 0.9542 0.9537

The percentage of the excluded runs 3e-04 3e-04 1e-04 0 1e-04

Table 4.13: Coverage for �0 = �1 = �2 = �1 = �2 = �, m=50 (with the Poisson estimated
covariance).
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� (with the SUR estimated covariance):

Figures 4.17 shows that for small sample size '10', the coverage by the z-quantiles

are dramatically smaller than the nominal value, but by the t-quantile is conser-

vative for large � and gives larger coverage except for small �, while for larger

sample size '50' the both methods produce coverage smaller than the nominal

value as seen in �gure 4.18.

Figure 4.17: Coverage for �0 = �1 = �2 = �1 =

�2 = �, m=10 (wwith the SUR estimated covari-
ance).

Figure 4.18: Coverage for �0 = �1 = �2 =

�1 = �2 = �, m=50 (with the SUR estimated
covariance).

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9036 0.9041 0.9255 0.9302 0.9321

by the adjusted t-quantile 0.9398 0.9411 0.9606 0.9636 0.9644

The percentage of the excluded runs 0.9917 0.8863 0.7490 0.3520 0.3171

Table 4.14: Coverage for �0 = �1 = �2 = �1 = �2 = �,m=10 (with the SUR estimated covariance).

�

Coverage 0.5 0.8 1 2 5

by the z-quantile 0.9314 0.9328 0.9387 0.9356 0.9344

by the adjusted t-quantile 0.9412 0.9382 0.9448 0.9420 0.9419

The percentage of the excluded runs 0.1279 0.1246 0.1352 0.1272 0.1229

Table 4.15: Coverage for �0 = �1 = �2 = �1 = �2 = �,m=50 (with the SUR estimated covariance).
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The same case for the percentage of excluded runs, the percentage in tables 4.14

and 4.15 are larger than that in the tables 4.12 and 4.13 respectively, because the

conditional covariance estimators are used which are depend on the observations of

Xj that based on the reduced sample size m12, where m12 is the number of the

informative observations of X1 and X2 simultaneously, but also the exclusions are

decrease as sample sizes and � decrease.

Similar results hold for � = 0:5; 0:8; 1; 2; 5, m = 10; 15; 20; 50; 100 for both esti-

mated covariances. Figure 4.19 plotted for � = 2 using the Poisson covariance, while

using the SUR covariance shown in �gure 4.20.

It seems that the coverage in �gure 4.20 similar to 4.19 but shifted down.

Figure 4.19: Coverage using the Poisson
estimated covariance for �0 = �1 = �2 =

�1 = �2 = 2.

Figure 4.20: Coverage using the SUR co-
variance term for �0 = �1 = �2 = �1 = �2 =

2.
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The corresponding coverage using the Poisson estimated covariance shown in table

4.16.

Coverage by the z-quantile for �

m 0.5 0.8 1 2 5

10 0.9115 0.9305 0.9378 0.9402 0.9502
15 0.9247 0.9407 0.9401 0.9430 0.9501
20 0.9323 0.9412 0.9445 0.9471 0.9470
50 0.9448 0.9473 0.9450 0.9461 0.9478
100 0.9515 0.9463 0.9464 0.9491 0.9489

Coverage by the adjusted t-quantile for �

m 0.5 0.8 1 2 5

10 0.9506 0.9617 0.9668 0.9679 0.9770
15 0.9532 0.9608 0.9616 0.9628 0.9655
20 0.9525 0.9556 0.9590 0.9592 0.9612
50 0.9526 0.9534 0.9507 0.9513 0.9531
100 0.9551 0.9485 0.9488 0.9515 0.9513

Table 4.16: Coverage using the Poisson estimated covariance at 0.95 for �0 = �1 = �2 = �1 =

�2 = �.

See tables 4.17 and 4.18 respectively, for more coverage on other con�dence levels.
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Coverage by the z-quantile at con�dence level

m 0.90 0.95 0.99 0.999

10 0.8940 0.9398 0.9839 0.9980
15 0.8929 0.9468 0.9868 0.9984
20 0.8963 0.9442 0.9879 0.9988
50 0.8951 0.9491 0.9860 0.9984
100 0.8946 0.9480 0.9894 0.9989

Coverage by the adjusted t-quantile at con�dence level

m 0.90 0.95 0.99 0.999

10 0.9258 0.9695 0.9967 1.0000
15 0.9151 0.9647 0.9959 1.0000
20 0.9147 0.9598 0.9931 0.9995
50 0.9036 0.9550 0.9894 0.9991
100 0.8978 0.9507 0.9906 0.9992

Table 4.17: Coverage for the parameter values �0 = �1 = �2 = �1 = �2 = 2, using the Poisson
estimated covariance.

Coverage by the z-quantile at con�dence level

m 0.90 0.95 0.99 0.999

10 0.8728 0.9302 0.9789 0.9962
15 0.8752 0.9294 0.9806 0.9972
20 0.8709 0.9309 0.9811 0.9973
50 0.8773 0.9348 0.9857 0.9978
100 0.8742 0.9321 0.9832 0.9980

Coverage by the adjusted t-quantile at con�dence level

m 0.90 0.95 0.99 0.999

10 0.9120 0.9642 0.9969 0.9999
15 0.9005 0.9492 0.9910 0.9997
20 0.8905 0.9472 0.9894 0.9995
50 0.8859 0.9425 0.9890 0.9990
100 0.8777 0.9360 0.9857 0.9983

Table 4.18: Coverage for the parameter values �0 = �1 = �2 = �1 = �2 = 2, using the SUR
estimated covariance.
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4.4 Conclusions

Simulations are made to evaluate and validate the con�dence intervals. The programs

instructions made with �exible choices of the model parameter values and the sample

sizes as well as the con�dence levels, which enable achieving a more reasonable and

appropriate coverage being close to the nominal value.

The con�dence intervals generated by the adjusted t-quantiles method are more

conservative (unless when the sample sizes or the parameter values are small), and

give always larger coverage than the that by the z-quantiles method .

Small values of the model parameter produce results in many noninformative

observations with high probability which can be theoretically calculated, or produce

runs with invalid standard errors (negative variances) that will not be counted during

the runs session, and will be excluded by taking the runs based only on the positive

variances and positive summations of the observations of Xj; j = 1; :::; k.

As the sample size m or � become larger, the percentage of the excluded runs

become smaller and tends to zero. Further for large �, the sample size m � mj;8j.
The suggested con�dence interval by the t-quantile method is too conservative for

large � (not recommended for a given parameters), also the corresponding coverage

always larger than that by the z-quantile. While by the z-quantile is recommended

when � is large. To get better coverage, one may propose to take the average of the

coverage of the both methods simultaneously.

Finally, the exclusions using the Poisson estimated covariance are less than the

exclusion using the SUR covariance for all sample sizes. Both exclusions are decreasing

as m, � become larger.



Chapter 5

Contributions and Results

In each chapter of this dissertation two methods were used for the analysis of count

data, one concerns the Linear or the SUR model, while the other concerns the Poisson

model. Further, In this chapter we would mention that the assumptionXij > 0 almost

surely in our theoretical derivations, but in the Poisson model, which we employ in

the simulation, this condition is violated, as P (Xij = 0) > 0.

In chapter 1, the normality of the estimator p̂ of the corresponding proportion p

was studied based on the assumed linear model, assuming in the �rst part the nor-

mality of the errors of the linear model given that Xi are �xed variables, and the

exact con�dence intervals of the model coe�cient (proportion) constructed. Further,

the asymptotic normality of p̂m under the non normal errors assumption given the

i:i:d of the observations Xi are obtained, and approximate con�dence intervals of

the proportion are constructed. In the second part, the distribution of the estimator

p̂m was discussed given that the observations Xi having Poisson distribution (uni-

variate Poisson model), which results in the conditional Binomial distribution, and

consequently the asymptotic normality of the conditional Binomial distribution of p̂m

was obtained, which was the asymptotic normality of a non-linear transformation of

the pairs (Yi; Xi) by using the Delta-method regardless the exact distribution of Yi,

and Xi. Consequently, the approximate con�dence intervals of the proportions were

identical.

In chapter 2 and 3, the bivariate and the multivariate normal distributions of the

estimator vector p̂ of the proportion vector p have been assumed based on the SUR

model, by assuming in the �rst part of each chapters, the normality of the error vectors

of the SUR model given the �xed design vectors, where the constructed con�dence

intervals of the SUR model coe�cient vector (proportion vector) were exact. The

96
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asymptotic bivariate and multivariate normality of p̂m under the non normal error

vectors given that iid diagonal design matrices eXi, are derived, and the corresponding

approximate con�dence intervals of a linear combination of the proportion vector have

been constructed.

In the second part, the bivariate and the multivariate Poisson models in both

chapters respectively including there de�nitions and properties were introduced and

discussed. It was not explicitly possible to calculate the conditional distributions

and the conditional covariance Cov(Yi1; Yi2 j Xi1; Xi2) either in the multivariate case,

and hence, the approximate con�dence intervals for the linear combination of the

proportions based on the models have been constructed by the asymptotic normality

using the multivariate delta method .

On the other side, in the both assumed models, the observations Yij conditionally

depending on the observations Xij, in other words, in the linear and SUR models, the

observations Xij considered as the constants or random variables, while in the Poisson

models, the observations Xij considered as Poisson random variables, j = 1; :::; k, and

due to the correlations between the count data, the data were conditionally analyzed.

Furthermore, due to the dependence between the components, the BLUE's, BUE's

which are, the best linear unbiased estimators, the best unbiased estimators of the

proportions, and the variances respectively, satis�ed only in the univariate case, while

in a higher dimension case were not satis�ed.

In the simulation chapter, it was taken the public available statistical software

comprehensive R program to evaluate the approximate con�dence intervals, and aid

to see how the proportion or a linear combination of the proportions con�dently fall

in intervals having coverage closed to the nominal value.

Finally, this work may not considered as broader than that the wider contains

many di�erent techniques, however some were described and the required assumptions

were given. Although some of the derivations were not included within the text but

was refereed the reader to the reference where can he found the derivations, or the

source of the used technique, further some knowledge of matrix algebra are covered

in the appendix.

One may mention, that the open problems which can not be explicitly calculated:

� P
(Yij jXij ;Xij

0 ) �??
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� P
(Yij ;Yij0 jXij ;Xij

0 ) �??

� E(Yij j Xij; Xij0 ) =??

� V ar(Yij j Xij; Xij0 ) =??

� Cov(Yij; Yij0 j Xij; Xij0 ) =??; j 6= j
0
= 1; :::; k.

One may look for the BLUE estimators of p or the vector p, namely

p̂
WLS

= (eXT��1 eX)�1 eXT��1 eY, or the estimatorbbp
WLS

= (eXT b��1 eX)�1 eXT b��1 eY, which are at least asymptotically e�cient.

They are not the ratio estimator vectors, but give more appropriate con�dence inter-

vals for the linear combination of p.



Appendix A

Supplementary Material

A.1 Background from the theory of Matrix Algebra

Let, w and v be two vectors having the same order, and let A and B are two squared

symmetric matrices of the same dimension n� n, then the following are available:

The inverse of A is denoted by A�1 , the inverse exists and unique I� A is non-

singular, where A is a nonsingular I� its determinate j A j6= 0, for which

j A�1 j= 1
jAj , and AA

�1 = A�1A = In. Furthermore if A, and B are invertible

or nonsingular, then

� (AB)�1 = B�1A�1

� (AB)T = BTAT

Idempotent matrix A is called symmetric idempotent if A = AA = ATA, so it

follows that:

� In �A is symmetric idempotent.

� A(In �A) = 0, and (In �A)A = 0.

� A(ATA)�1AT is also symmetric idempotent.

Trace of A is denoted by trace(A) or tr(A), where tr(A) =
Pn

i=1 aii, aii are the

diagonal elements of A. Some properties of the trace are given by the following:

� tr(A�B) = tr(B�A) = tr(A)� tr(B).

� tr(AB) = tr(BA)1.

1 it holds also for any matrices A;B for dimensional n� p; p� n respectively, where also for any
n < p; n > p; n = p.
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� tr(AT ) = tr(A).

� tr(ATA) = tr(AAT ) =
Pn

i=1 a
T
i ai =

Pn
i=1

Pn
j=1 a

2
ij, where ai is the i

th

row vector of A.

� tr(kA) = k tr(A), where k is a real number.

Rank of an idempotent matrix A is its trace, where the rank of A is the num-

ber of linearly independent columns, or the no.of linearly independent rows.

orthogonal vectors w and v are orthogonal vectors if the vector product

wTv = vTw = 0.

Quadratic Form, the functionwTAw =
Pn

i=1

Pn
j=1 aijwiwj is called the quadratic

form, and A is called the matrix of quadratic form.

Positive de�nite and positive semi de�nite matrices, matrix A is said to be

positive de�nite if wTAw > 0 8w 2 Rn; w 6= 0, and said to be positive

semi de�nite if wTAw = 0, for some w 6= 0.

if A is positive de�nite matrix, then j A j> 0, j A�1 j> 0, and it follows that

all its diagonal elements aii > 0;8i = 1; :::; n, similarly for positive semi

de�nite matrix, we replace > by �. Further if A is diagonal matrix then

j A j=Qn
i=1 aii.

A.2 Background from the theory of the linear mod-

els and the MSUR model

� expectation of the quadratic forms

let Y = (Y1; :::; Yn)
T be the univariate random vector of size n with mean vector

E(Y) = X�, and variance-covariance matrix V ar(Y) = �2In, where X is the

design matrix of n� k covariates, and � = (�1; :::; �k)
T , then

E(YTAY) = �2tr(AIn) + �TXTAX� = �2tr(A) + �TXTAX� (A.1)
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� if Z = AY, then

Cov(Z) = E((Z� E(Z))(Z� E(Z))T ) = E
�
(AY �AX�)(AY �AX�)T �

= E(A(Y �X�)(Y �X�)TAT )

= A(E(Y �X�)(Y �X�)T )AT = ACov(Y)AT = �2AAT (A.2)

The least squares estimator �̂
OLS

is obtained by minimizing the sum of the

squired deviations of the observations from their expected values. Hence mini-

mizing

S(�) = (Y � X�)T (Y � X�) which leads to the system of normal equations

(XTX)�1�̂
OLS

= XTY, assuming that (XTX)�1 is invertible, the OLSE �̂
OLS

can be written explicitly as

�̂
OLS

= (XTX)�1XTY, which is a linear function of Y, the vector of �t-

ted values Ŷ corresponding to the observed Y is Ŷ = X�̂ = HY, where

H = X(XTX)�1XT is known as the hat or projection matrix which plays a

central role in linear model analysis, the vector of residuals is given by

e = Y � Ŷ = Y �HY = (In �H)Y; and more

E(Ŷ) = HE(Y) = HX� = X�; (A.3)

and thus, Ŷ is an unbiased estimator of the mean of Y.

On the other side, if V ar(Y) = �2
, where 
 is a positive de�nite matrix

but not equal to In, then it may be possible to implement a generalized least

squares (GLSE) estimator that is the BLUE (at least asymptotically), so the

GLSE estimator �̂
GLS

= (XT
�1X)�1XT
�1Y is the BLUE, with the variance-

covariance matrix (XT
�1X)�1. Note that when 
 = In, then the GLSE =

OLSE with the covariance = �2(XTX)�1(i.e, OLS is a special case of the more

general estimator).

� If Y = (YT
1 ; :::;Y

T
k )

T is the multivariate columns wise expansion of the random

vector Y of dimension nk � 1 with mean vector E(Y) = X�, and variance-

covariance matrix V ar(Y) = �
 In, (assuming � = e�), where X is the design

matrix of dimension nk�k covariates, and � is a vector of k�1 of the unknown

parameters. Then, the least squares estimator �̂ is obtained by minimizing the

sum of squared deviations of the observations from their expected values. Hence



A.2. Background from the theory of the linear models and the MSUR model 102

minimizing

S(�) = (Y � X�)T (Y � X�) which leads to the system of normal equations

(XTX)�1�̂ = XTY, assuming that (XTX)�1 is invertible, the OLSE �̂ of the

SUR model parameter vector can be written explicitly as �̂ = (XTX)�1XTY,

which is the linear function of Y, as well as, the WLSE is given by:

�̂
WLS

=
�
XT (�
 In)

�1X
��1

XT (�
 In)
�1Y.

There are two cases where the WLSE reduces to the OLSE:

� if �jj0 = 0; 8j 6= j
0
= 1; :::; k, i.e, � is diagonal.

� if X1 = X2 = ::: = Xn = X0.

These two cases are proved by Zellner (1962), see [25], [26].

Furthermore:

� If Y = (YT
1 ; :::;Y

T
n )

T is the multivariate rows wise random vector of dimension

nk � 1 with mean vector E(Y) = X�, and with variance-covariance matrix

V ar(Y) = In 
 �, (assuming � = e�), where X is the design matrix of nk � k

covariates, and � is a vector of nk�1 of unknown parameters. Then, the WLSE

of the SUR model parameter vector is given by

�̂
WLS

=
�
XT (In 
 �)�1X

��1
XT (In 
 �)�1Y;

consequently

Cov(�̂
WLS

) =
�
XT (In 
 �)�1X

��1
=
�
XT (In 
 ��1)X

��1
=

 
nX
i=1

XT
i �

�1Xi

!�1

;

(A.4)

whereas

Cov(�̂
OLS

) =
�
XTX

��1 �
XT (In 
 �)X

� �
XTX

��1
=

 
nX
i=1

XT
i Xi

!�1 nX
i=1

XT
i �Xi

 
nX
i=1

XT
i Xi

!�1

; (A.5)

and are equivalent when � is diagonal matrix.
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