Statistical Analysis in Multivariate Sampling

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von M.Sc. Nuri Eltabit Mohamed

geb. am 15.07.1966  in Gurdha Shati

genehmigt durch die Fakultit fiir Mathematik
der Otto-von-Guericke-Universitit Magdeburg

Gutachter: Prof. Dr. rer. nat. habil. Rainer Schwabe

Prof. Dr. rer. nat. habil. Waltraud Kahle

eingereicht am: 03.05.2010

Verteidgung am: 05.04.2011



Zusammenfassung

Im Rahmen der Dissertation mit dem Titel "Statistical Analysis in Multivariate Sam-
pling" wird die Analyse von Zihldaten betrachtet. Hierbei werden drei Fille unter-
schieden. Der univariate Fall, bei dem die m Beobachtungen durch Zufallsvariablen
der Form (Y}, X;) beschrieben werden, sowie die bivariate Analyse und die multi-
variate Analyse, bei der die Daten durch Zufallvektoren (Yi;, X;;),i = 1,...,m, j =
1,....k, k=2 Dbzw k > 2 modelliert werden.

Ein grundlegendes Ziel dieser Arbeit ist es, basierend auf geeigneten Modellannah-
men gute Schitzungen fiir die Hiufigheit eines Merkmals zu erhalten (zum Beispiel:
Schiatzung der Anzahl an defekten oder schadhaften Teilen Y in einem bestimmten
Werk, das eine bekannte Anzahl an Teilen produziert oder die Schitzung des Anteils
in Bezug auf die Gesamtzahl). Ebenfalls von interesse ist, Die Konstruktion zuverlés-
siger Konfidenzintervalle fiir Anteile oder Linearkombinationen a’p dieser Anteile,
was Gewinne oder Verluste beschreiben kann. Hierbeiist o € R*, o« > 0,k > 1, und
p € [0,1]%, wobei k die Anzahl der Komponenten der Zéhldaten darstellt, und p der
Vektor der Anteile. Die Konstruktion der Konfidenzintervalle fiir die Anteile p; folgt
ebenfalls als Linearkombination, in dem man o; = 1 und e = (0,..., 0, ;,0, ..., 0)7,

j=1,..., k, wihlt.



Abstract

Within the framework of this dissertation entitled "Statistical Analysis in Multivariate
Sampling’, the analysis of univariate count data involves pairs of random variables
(Y;, X;) of m observations, while in the bivariate and multivariate, analysis data of k
pairs of random variables (Yj;, X;;),t =1,...,m, j=1,...,k, k > 2 are involved.

The fundamental goal of the work is, based on the appropriate model assumptions
to obtain good estimates for the attribute totals such as: estimating the defective or
damage totals, i.e, estimating the defective totals Y in a specific factory containing
a known total amount of the productions, or estimating the proportions of those de-
fective or damage totals with respect to the total amount of the items, as well as,
constructing reliable confidence intervals for the proportion, or constructing confi-
dence intervals for any linear combination of these proportions (which may describe
some monetary gain or loss) @’ p, where
a € R*, a > 0, is a vector of constants, and p € [0,1]%,k > 1, k is the number
of components of the count data, and p is the vector of the underlying proportions.
Constructing confidence intervals for any proportion p; can be obtained as a linear
combination of the proportions by assigning the value a;; = 1 in the vector

a=(0,..,0,a;,0,.,07T, j=1, .,k
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Introduction

Statistical analysis plays an important role in economics, biology, medicine, physics,
and social sciences with a broad range in the other different fields.

In some circumstances as for example: In economic crises, it is important to
obtain a reliable estimate or a function of estimates for the damage proportion(s)
to determine which are compatible with the value of the damage proportion or a
function of the damage proportions for various productions. In medicine, one can
also produce good estimates of the proportions for the patients based on the collected
sample data, to see how these estimates can be compatible with the corresponding
proportions taking in account any dependencies between the data components, and
SO on.

The fundamental aims of the statistical analysis usually are:

Estimating the coefficients of the considered model.

Evaluate fitting the model to the data.

Discovering or predicting further data.

Making a statistical inference (i.e, confidence interval, test of hypothesis regard-

ing the unknown coefficients) about the model coefficients.
The aims of the statistical analysis in this thesis are:

e Producing estimates for the components proportions based on the assumed

model.

e Obtaining the asymptotic distribution of the estimators by involving asymp-
totic theory (asymptotic normality), as well as, constructing the approximate
confidence intervals for the model coefficients, i.e, for the proportions or a lin-
ear combination of the proportions. Thus, all the procedure results will be

approximate results.



This dissertation is devoted to studies and applies the statistical analysis meth-
ods to one or more dimensional data under the assumed model that describes the
relationship among the variables.

On the one direction, the most famous and simple models have been used through-
out this work are the linear models, and the bivariate, multivariate SUR models, which
are the fundamental analyzing of the univariate, and the multivariate sampling data
(non-linear models are not deal with here, nor included in this work).

On the other direction and according to the structure of data (count), the next

bl

involved models are the > Univariate’, ’ Bivariate ’, and the > Multivariate’ Poisson

models (these models were discussed in: [6], and [9], [10], [11], and [13]).



Chapter 1

Univariate data analysis

1.1 Introduction

The univariate analysis deals with analysis of a single random variable, however in fact

being analysis of pair random variables. In this chapter, we will analyze the collected

sample count data (one dimension), sampling from a certain finite population.
Suppose, we are sampling from an infinite population, namely the 7.i.d pairs

(Y1, X1), ..., (Y, X,n) is a random sample of size m drawn from an infinite popu-

lation such that for each index i associated with the pair r.v’s (V;, X;) restricted by

0<Y, <X, V.

The count variables (Y;, X;) have the attributes, for instances:

X,; = No.of children in the family ¢, or No.of non defects of the product i for a specific

factory.

Y, = No.of male children in the same family ¢, or No.of defects for the same product

1 for a specific factory.

> i Yi

m i
i=1 X7f

We will consider the common approach, p = as a sample proportion used to

estimate the unknown population proportion p, where
E(Y))
= — E D) = .
E(X)’ (B) =p
We will start analyzing the sample data with the fundamental method of the
analyzing. It will be assumed in the following section that the relationship between
the random variable Y; and the corresponding variable X; is linear relationship, and

the linear regression technique will be involved to analyze the data under the assumed

linear model. Let us first introduce to the basic knowledge of the general linear model.
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1.2 General linear model and linear ratio model

The general form of the univariate multiple linear regression model is written as
}/z': TB"'EZ Zf] 6]‘1_617

where, 8 = (4,...,3:) € R¥ is a vector of the unknown model coefficients, the
real valued functions f(X;) = (f1(X;), ..., fs(X;))T are the regression functions linear
in the s, and the random variable ¢; is the errors term of the model satisfying
E(Y;) = £(X;)"B,Vi = 1,...,m. We assume that there is no explicit intercept included
in this model, it depends on the considered problem. In particular if, £ = 1, this leads

to B =01 =p, £(X;) = f1(X;) = f(X;), so the model is reduced to the model
Y, = f(Xi)p+ e,
with the assumptions
E(ei | f(X3)) =0, and, Var(e; | f(Xy)) = 0” f(X),

on the model errors ¢;,7 =1, ..., m.

And further, assume the function f(X;) = X;, then the model becomes
}-/Z' = sz + €,

where, F(e; | X;) = 0, and Var(e; | X;) = 02X;, (either X; fixed or random),
1=1,....m
The unconditional variance, or marginal variance (by the law of total variance), and

the unconditional expectation of the model errors are given by

Var(e) = E (Var(e; | X;)) + Var (E(e | Xi)) = 0°E(X;),
E(e) = E(E(e | X3)) =0, (1.1)

1.2.1 Linear model (LM)
It will be assumed first the following univariate linear model

Y; =x;p+ éi,i = 1, e, 1M, (12)
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with the assumptions:
E(Y;) = x;p, E(¢;) = 0, and with variance proportional to z; (x; is fixed variable),
ie, Var(V;) = Var(e) = o?xz;.

Or, it would be convenient to compress the model in vector form

Y = Xp +¢, (1.3)
where, the m x 1 dimension response vector Y = (Y7,--- ,Ym)T, and the m x 1
design vector X = (x4, - ,:L"m)T, and the heteroscedastic errors (e, - - - ,em)T = €,

with the assumptions, E(e) = 0,,, and Var(e) = o*W, where 0,, = (0,...,0)”, and
W = diag(x;). In other words, the errors ¢; are uncorrelated and have variance

proportional to the x;.

1.2.2 Normal linear model (NLM)

Next, It will be assumed the normality of the errors of the linear model 1.3, given
the fixed design vector X = (x1,...,2,)", i.e, T1,..., 2, are fixed or non random
variables, also called covariates or predictors. l.e, given fixed x;, the errors ¢; are
independently normally distributed with mean 0 and with variance proportional to
1, i,e, given x;, the response variable Y; has N(z;p,0?z;), or, the errors ¢; are i.i.d
normally distributed with mean 0 and with variance 6?E(z;), i = 1,...,m.

The relationship between Y; and the predictors z; is postulate as the linear model
Y;:l‘l‘p—i-éi, 1= 1,...,m, (14)

with the assumptions

€ ~ N(0,0%x;), as well as Y; ~ N(xz;p, o2x;), it follows that
Var(Y;) = Var(e) = o%z; (constants) ¢ = 1,...,m, the model is called Normal
linear model (In fact, this model is called, an approximate NLM (ANLM), due to
P(Y; <0) =0,Vi =1, ...,m, which is not satisfied for normality of the model 1.4, but
to use the Normal distribution tools, the model will be assumed as NLM).

The model (1.4) will compress in vector form

Y = Xp +e,
where, Y = (Y3, -- ,Ym)T, and the design vector X = (xq,--- ,xm)T, and the corre-
lated normal errors (eq, - - - ,em)T = €, with the assumptions

E(e) =0, and Var(e) = o*W, where 0,, = (0, ...,0)", and W = diag(z;).
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1.2.3 Standardizing the LM and NLM

It would be more convenient to work with models having constant variances or co-
variances rather than with variable ones.

In this paragraph, the univariate linear regression model will be standardized, where
all covariates are weighted by the square root of the inverse of the function f(X;) in
the conditional variance, where f(X;) = z;. Throughout we will only consider z; > 0.
Thus, the linear model 1.2 will be transformed by the transformation

AY; = A;x;p 4+ Ase;, to obtain the weighted LM

Yi=zip+6,i=1,....m (1.5)
: % Y; ~ _
where, A; = \/%, given that z; > 0,Y; = A4;Y; = = T = Ajx; = Jx;, and
& = Aje; = \;—% , it follows that E(¢;) = 0, and

Var(¢;) = Var(Ase;) = 02 Vi = 1,...,m (homoscedastic errors).
Similarly, the NLM 1.4 will be standardized to obtain the weighted normal linear

model

Y;=Zip+4, (1.6)

with the assumptions, & ~ N(0,02), Y; ~ N(Zp,0%), T; = Vi, x; > 0,Vi=1,...,m,
i.e, the weighted errors are the i.i.d Normal random variables with mean 0 and finite
variance o2, this model is called the weighted NLM .

It would be convenient to rewrite the transformed linear models 1.5, and 1.6 in vector

notation
Y =Xp+e, (1.7)

where, E(€) = 0, and E(Y) = Xp, as well as Cov(€) = 021,, = Cov(Y), where I,
is an identity matrix of dimension m x m, and the weighted response vector

Y = (}N/l, e ,}me)T, and the weighted design vector X = (Ty, -+~ ,Em)T, as well as
the weighted error vector € = (€1, ,&m)" .

It follows from the model 1.6 that, the error vector € has the multivariate Normal
distribution (also, as the AMVN (the approximate multivariate Normal distribution),
but it will be much better to obtain exact results, therefore the model will be consid-
ered as the MVN) with 0, mean vector, and nonsingular covariance matrix o*I,,, i.e

€~ N0, ,0%1,).
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1.2.4 Estimation in linear models

Estimation of the coefficient of the univariate linear ratio model deals with two cases,

according whether the model errors are homoscedastic or heteroscedastic errors.
Homoscedasticity case

Under normality of the errors of the model 1.7, the weighted error vector € has
the multivariate Normal distribution with the 0 mean vector and the nonsingular
covariance matrix o21,,, i.e, has variance proportional to the identity matrix I,,. In
other words, the weighted errors are i¢d normal random variables with mean 0 and
with constant variance o? (homoscedastic errors).
On the other side, it is well-known that the WLSE (weighted least squares estimator)
is the BLUE (the best linear unbiased estimator or the optimal estimator), and since
the weighted errors are homoscedastic then, the WLSE applied to the weighted model
1.7 results in the OLSE (Ordinary least squares estimator), and hence is also the
BLUE (the best linear unbiased estimator or the optimal estimator, according to
Gauss-Markov’s theorem, see [7], pp. 588-591 or, [20], pp. 35-42), i.e., Pyrs = Pores
in case of homoscedastic errors. Mathematically, one can investigate this as following:
Since, Cov(€) = 021,,, then
pus = (X (0°1,) X)X (01,)7' Y

= (X'1,X) X'LY = (X'X) XY =,

m -1 m m iy m
- (Z(M?) > it = ZZ‘Z;@YZ‘ - %ﬁnlyf‘ =5

which results in the ratio estimator, where w/xilz =Y.

Heteroscedasticity case

Since, the error vector of the model 1.3 has covariance that is the variance not pro-
portional to the identity matrix, i.e, proportional to the known invertible diagonal
matrix W, so, it will be used the GLSE (Generalized least squares estimator), which
is also the BLUE. Specifically, if A = £~'/2 is a non singular symmetric positive

definite matrix, then ATSA = I,,,.
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The covariance structure of the model 1.3, is given by
olxy - 0 x; - 0
Cov(e) = : : =o? oot = oW,
0 e o, 0 - z,
i.e, proportional to an invertible matrix W, where W = diag(z;), z;, are fixed, i =
L,...,m,and W tW = I, as well as XTW ! = 1T where [,, is the identity matrix,
and 1,, = (1,...,1)7.

So, we have

- (XT (&W)“X) XTI (o) Y = (XTWOIX)

-1
1 o . S Yi
- (1£X) 1,Y = (Z UUZ) ZYi = Zm—ixl =D,

1=1

p GLS

which results in the ratio estimator.

Note that:

e The regression equation used to estimate the true mean value F(Y) in eq 1.7

can be written as Y = Xﬁ.

SO |
e The variance of the estimator p,,, . in case of homoscedasticity is o* (XTX) ;
whereas in the case of heteroscedasticity is o (XTW’lX)fl, which are equal

(for more details see [19] pp. 148-149).

1.2.5 Properties of the ratio estimator p

Unbiasedness

The expected value of the ratio estimator p is the proportion p, i.e, the ratio estimator

p is an unbiased

E(p) = F (Zlnl 2\/*757) _ > \/x_ZE(?;) . > i VTP _ P W _
D) T

Variation

2211 i Z;ZI i Zi’il T

The variability of the ratio estimator from the proportion p is given by

Var(p) = Var (—Z:nl 2\/3:7)

1 = ~ o?3 " o? Ty —1
=— ) sVar(V) = HE L = 57— =0 (X'x)
(Zznil xi)Q 1221: (Zizl ;)? Zz’:l i ( )
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derivation of the properties of the estimator p_, . in the univariate multiple regression
model with intercept is given in [19] pp. 129.
Given the fixed design vector X (Y;s are Normal), we have

2

g
b N p ——— 1.8
p <p7 S xz) : (1.8)

where, o2 is unknown finite variance.

An unbiased consistent estimator 62 for the unknown finite variance 2 based on the

m residuals is given by

R 1 Y; — px;)? 1 ~
R R D L e B

~ e Y
where, x; = \/x;, ©; >0, Vi, Y; = 5
m =2 2
& 2 (m—1)s2 2
=}~ Xin_15 OF ——=—= ~ X;, 1, hence

E (M) =m—1= "UE(s2) =m—1= E(s%) = 02, and thus 52 is an unbiased

o o2 €

For investigation: since

estimator of o (which in turn, is the BUE according to the Lehmann-Scheffé theorem
(see [8], pp. 426-430), the complete proving is given in the chapter 2 subsection 2.2.6).

In case of the ANLM (Y/s are not normal) one may obtain, asymptotically:
o2
Vm(ﬁm_p) EDN<O7_>7
I

or approximately

provided that, - >" ; —7" p, where, p is known constant, and —7, —? denote

respectively, convergence in probability and in distribution.

1.2.6 Asymptotic normality of the estimator p_, . (ratio esti-
mator p )

So far, it has been assumed that, given fixed z; the errors are normally distributed
in which one could obtain the exact distribution of the ratio estimator p, while our
interesting is to consider the asymptotic distribution of p, in case of the non-normal
errors, but under the stochasticity of Xj.

Thus, one would consider as well as identify the asymptotic Normal distribution of

the ratio estimator p, provided that the sample size is enough large.
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Addition conditions on the pair of observations X;,Y; are required, namely (X;,Y;)
are i.i.d pairs of r.v’s, and E(X;) exists = ()?Z,SZ) are also 7.t.d random variables,

and E()N(ZQ) exists, i = 1,...m, X; = V/X;,Y; = \/Y;T Here we assume throughout

that X; > 0 almost surely.

To derive the asymptotic distribution, one rewrite first the estimator p,, . as
1 m -1 m
pAOLS = (}N(T)N() )N(T? = (Z )?z)?z> Z)N(JN/Z
i=1 i=1
m “1om
- ($0) Sx (), 19)
i=1 i=1

SO

\/E(ﬁOLs_p) = %Zm:‘i?) (%ig&;)
- () (v

i=1 1=1

_ %i}(>_ (%f}\/YE) (1.10)

Derivation of the asymptotic normality of the equation 1.10, needs to verify, the

denominator in 1.10 is consistent, and the numerator obeys the Central limit theorem.

It straightforward to see (by the LLN)

-1
1 m
N x| =P EX)!
(n3x) e
provided that, E(X;) > 0, also
A
(E sz> — Y, pis constant.
i=1
As well as the numerator
1 = o
ﬁ Z lei —>D N (O,UQE(XZ)) R
i=1

where, the marginal or asymptotic variance

Cov (\/ZEZ, \/ZEZ) =Var (\/ZEZ)

—E <XZ-Var('€Z- | XZ-)) +Var(BEv/Xe | X)) = 0?B(X,).
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Therefore, with help of the so-called Slutsky’s lemma (see [8], p. 342, or [14], pp.
119-120), one can obtain immediately the asymptotic Normal distribution of the ratio

estimator p_, thus the equation 1.10 can be rewritten (since, p,, o = p,,) as

vm(p,, —p) —P N (0,0°E(X;)(E(X;)) %) = N (0,0*(E(X;)) ). (1.11)

1.2.7 Confidence intervals for the proportion p

We will give the outlines of the behave of the distribution of the ratio estimator with
the proposed confidence intervals of the proportion based on the previous approaches,

and on the observation X;.
proposition 1

x; are fixed variables:
Standardizing the expression 1.8 (Normal Y;'s) will gives

vm(p—p)~N (0, ;—2> : (1.12)

m

it follows that, the exact (1 — )% confidence intervals for the proportion p are given
by

[ﬁ +z ., S.E(ﬁ)] , as g ~ N(0,1), when o? is known
2 [ —
vV Ly T
[ﬁ + t(m_l,l_%)s.e(ﬁ)] ,as % ~tm_1, when ¢ is unknown,
vV PR
where, the Standard Error of p, S.E(p) = —=%—, and s.e(p) = —==

vV =1 T vV =1 T .
For the non-Normal Y/s (since we have non negative count data), and since the
sequence T, = % ZZL x; — W, p is constant, it follows that the sequence of vari-
0'2 0'2

ances Z— converges to the asymptotic variance o?(u) = -, as m tends to infinity.

Asymptotically, 1.12 can be rewritten as
o2
vm(p,, —p) —F N (0, —) :
7

where, the asymptotic variance

Var(ymp,) = E(Var (vmp,,)) + Var(E(vmp,)) = %,
as, Var(E(y/mp,,)) = 0. It follows that, an approximate (1 — @)% of the asymptotic

confidence interval for the proportion p (unknown o?) is given by

[ﬁm + zl_%s.e(ﬁm)} ,
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as
Py — P
——— —P N(0,1),
V2t i
where, s.e(p,) = ——==——. As well as z_, is the (1 — 2) percentile of the Stan-
) m m 1—% 2

dard Normal distribution, where the Standard Normal random variable Z has the
Cumulative Standard Normal distribution function ® : ®(z) = P(Z < z), where
P (—z

La S Z< zg) =1 — «. Further, one may rewrite (non-Normal Y;'s)
2

[N

P — P

Var(p,,)

~ tpm_1 —2 N(0,1),

—

2
'~’ denotes as approximately equal to, where the estimator Var(p, ) = Zflg —is a
i=1%i

consistent estimator of the corresponding variance Var(p,, ), and hence the suggested

conservative confidence interval (safety bounds) is given by

D Ttam-1,1-2)5.€(D,, )| ,

—=e__ and tm-1,1-2)is the (1—%) percentile of the t—distribution
—

m
=17

with (m — 1) degrees of freedom.

where, s.e(p, ) =

proposition 2

(Y;, X;) are iid pairs random variables (not necessarily normal):

Since, X,,, =7 E(X;) (by the LLN, since X are i.i.d, and X,, = - > X;), and
hence the sequence of variances Y"—; converges to the asymptotic variance #;), as m
tends to infinity, so by the Central limit theorem it follows that

vm(p,, —p) —P N (0, %) :

where, the asymptotic variance,
2

Var(y/mp,) = E(Var(y/mp,, | XT)) + Var(E(v/mp,, | XT)) = 5G] 85,
Var(E(v/mp,, | XT)) =0, X = (X1, ..., X;u)T.

And thus, the approximate (1—«)% asymptotic confidence interval for the proportion

p is given by

P, T2, o5.eD,)|,

[N
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~ ~ o s, 2 1 m (Yi—pX;)?
where, the standard error of p,_, s.e(p, ) = e Sm = T Qi1 . and
i=1“*?

. 18 defined as previous.

the normal quantile z,

¥

Further, and since X and s?, are consistent estimators for F(X;) and o2 respec-
2

tively, it follows that a consistent estimator of the Var(p,,) is ﬁ’ also, as

P, — D
s2
—m
m
e X

~ tpm_1 —2 N(0,1).

Hence, the interval whose safety bounds given by

[ﬁm T tm-1,1-2)5.€(D,)|

is the suggested more conservative confidence interval for the proportion p, where

~ . sm
s.e(p,,) = m

i=1 1

For the Normal Y/s, and from 1.12, we have

2
pvme-pIX N (07 E_> 7
X

m

s0, the exact (1 — a)% confidence intervals for the proportion p, are
N N pP—0p 2 .
j = Z_g S.E(p)|,as ————— ~ N(0,1), when ¢ is known
V Z?;l Xi

~

[ﬁ + t(m,m,%)s.e(ﬁ)} ,as ps;p ~tm_1, when ¢ is unknown,
A ey Xi
where, S.E(p) = —=2—, and s.e(p) = —=—, 52 = L= 3" (V; — pX,)?,

Vi Xi im1 Xi
m

)N(Z- = X;, as well as X, =

g|-

Y;
1.3 Poisson model

This section, deals with the next assumed model in which the data analysis based
on, with a new assumption on the variable X;, namely, the variable X; assumes as
a Poisson random variable, X; > 0, (Note that, we are not interest in a relationship
between the observations Y; and X;, only in the conditional distribution of Y; given
X;).

Let us describe the so-called "Univariate Poisson model’, and then we will obtain the
conditional distribution of the r.v Y; given the Poisson random variable X;, as well as,
we will construct the approximate confidence intervals for a function of the Poisson

model parameters.
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1.3.1 The Univariate Poisson model

Assume that the count r.v X; has a Poisson distribution, which decomposes additively
into two independent Poisson random variables Y;, Z; with means, A;, Ay respectively.
Le, X; =Y+ Z,, it follows that X; ~ Poiss(A; + A2), and hence, E(Y;) = Var(Y;) =
A1, and E(Z;) = Var(Z;) = Mg, consequently, E(X;) = Var(X;) = A + As.
Further, one may obtain the conditional distribution of a sub count random variable
Y, given the count r.v X;, which may be summarizing as:

P(Y; | X;) ~ Bin(X,, ﬁ—lh), with the Binomial proportion p = g(A1, Ag) = /\11—1)\2,
X; > 0 (where, Bin(n,p) denotes the Binomial distribution with sample size n and
success probability p, in case, X; =0 =Y; =0).

The Maximum likelihood estimators ;\27ML of the means \;, Ay are Y, Z respec-

1,ML>

tively. The Maximum likelihood estimator
AL+ Ag = j\l,ML + /A\ZyML =Y + Z = X, consequently

~

A

1,ML

=l

ﬁML = g()‘/b\)ﬁ) = g(;\l,Mm 5‘2,ML) N 3 == ==
)\l,ML + /\2,ML Y+ 27

=

where, p,,, denotes the Maximum likelihood estimator of the conditional Binomial
proportion p.

1.3.2 Approximate confidence intervals for the conditional Bi-
nomial proportion p

We will try to identify the asymptotic distribution for the distribution of the estimator

~

pnl

Xy, ..., X, where Xy, ..., X,, are 7.i.d Poisson r.v’s.

In the univariate Poisson model, obtaining the conditional distributions is usually
possible and is fairly straightforward, however in a higher dimension can not be specify
explicitly, due to the dependence of the components, i.e, correlations between them.
We summarize the following steps:

Since, we have
PYXi ~ Bin (X;,p), Xi > 0,

subsequently

PYEYilXi X | Bip (Z Xi;p> :

i=1
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(given that (Y7, X;) are independent), it implies that

P Xty X Bin (Ny,, p)
N,
where, N,,, = Y% X; (random sample size), which diverges as sample size 'm’ be-
comes large.
To demonstrate this formally, since (by the law of large numbers)
P ( Zzn;l Xi

mE (X)) —1‘ >6> —7 0, for each, € > 0,

or one might rewrite it as, P (25( 5 <1- e) —F 0, it follows that

=1

or

P (Z X; < c.m, infinitely many times) =0,

i=1

where the constant, ¢ = (1 — €)E(X;), it follows that, P (", X; — o0) = 1, i.e,
Ny —%% 00

On the one hand, and by applying the Central limit theorem to the conditional

Binomial, we will obtain the following:

V(o —2) M‘Nm Wiy ~Nmp |y (1.13)
PV i) " = P VG ) " = PVNmbn (i) P N(0,1), '

[where, Wy,, = >0, Y, = >0, 57;; = > Z]X:I ?ij = ZE ?Uﬂ SO, ?Xi =
zj‘ii S%ij, pYii = pYxl Bin(X;,p), PYulXy o Bern(1,p), as well as lﬂN}ij
are iid Bern(1,p), (where, Bern(1,p) denotes the Bernoulli distribution with proba-
bility of success p, i.e Binomial distribution with one sample observation or outcome
(success or failure) with probability p of success), i = 1,....m, j=1,..., X;|.

I.e, the asymptotic distribution of the conditional distribution

VNm (P p) WnN,, —Nmp

PV iV L pUminr M _LP N (0, 1),

in words, the asymptotic normality of the conditional Binomial distribution,

Phm| Xt X Bin(Nm,p)

N , conditionally holds.
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On the other hand, deriving the asymptotic normality of the unconditional dis-
tribution of random variables, by the CLT with the random summation index have
been proved by Landers and Rogge (1976), see [15], 269-271.

According to this paper one might restate the following:

Wx. — N,,
P NmA—ZA? <z|— P(2)
Nmp(l _p) ) P
=P -1 >¢}] —"0,
(‘mE(Xi)p(l —-p)
where
Nmp(l _p) ) P

P — 1] >¢) —" 0, for eache > 0. 1.14

(‘mE(Xi)p(l - p) (1-14)

Expression 1.14 will proves the consequence W —7 E(X;)p(1 — p), which is
the LLN, and itself can be proved by Chebyshev’s or Markov’s inequality (see|14],
pp. 123-125), as

(E

The conditional expectation and the conditional variance respectively of the condi-

A+ A
€>§W—>O, as, m — o0.
m?e

tional distribution given by expression 1.13 are obtained by

(o (5 ) ) - (0 (B ) ) - v (3

b

Var(x/N_m<&—p>|Nm):var<M(WNm >|N> NN’”’;@’“_)

X N

which in contrast, the obtained conditional variance is equal to the unconditional

variance (the asymptotic variance)

o (5 (5 ) o (5 (5 ) )
Var (E (\/N_m (;—:—p> INm>> =E(p(l-p))+0

p(1 —p).
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So, the asymptotic Normal distribution of the conditional Binomial distribution of

WNm ’

the r.v, N,, is given by

PV (R p) N pYEn (R 2)Nn 32 v (0, (1 — p)) (1.15)

provided that, the random sample size N,, = >.." X; — 00, as m — 00, as well

as

Pt ny,  Bin (N, p)
N,

It follows from (1.15), that the conditional distribution of /N, (M = p) | N, has

an asymptotic N (0,p(1 — p)), or in other words, one can say:

WNm |

In large sample size N,,, the conditional distribution of the r.v N,, is ap-

proximately Normal distribution with mean is the proportion p and Wlth variance

p(1—p) ~ p(1-p)
N” ier~ N( Nmp).

Therefore, the estimated asymptotic confidence interval for the proportion p = g(A1, A2) =

A . c . . . .
%, 1o this situation will be obtained by

[ﬁm + zl_%s.e(ﬁm)} ,

ﬁm (l_ﬁm )

N

where, the standard error s.e(p, ) =
Further and according to 1.20, the suggested confidence interval (conservative) for

the proportion p can be obtained by
|:ﬁm :|: t(m,Ll,%)S.e(ﬁm)} .

1.3.3 Approximate confidence intervals for the proportion p
by the Delta method

At the end of this chapter and looking from other angel, one attempt to obtain
approximate confidence intervals for the proportion p, when the exact distributions
of either X; nor Y; are not necessary known.

The (Delta or §) method help to obtain the asymptotic distribution for any non-linear
transformation of the pair random variables (V;, X;) regardless the exact distribution
of the r.v’s.

Let the pairs H; = (Y7, XZ-)T,i =1,...,m are i.i.d pairs of random variables,
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A A
and, C = as Cov(H;) = .
Al AL+ A

According to the multivariate central limit theorem we have
vm (H—- E(H)) —” N, (0,C),

or, decomposes to

The Delta method

Suppose that, {én} is a sequence of random vectors with én —7 0, where 0 is a
vector of parameters. Let {a, } be a sequence of constants, a, 1T oc.

If, a, (én - 0) —P Z ~ N, (0,C), where C is a p x p covariance matrix, and let
g(0) : R? — RF be a real valued function that is continuously differentiable at vector
0 € RP. The matrix of partial derivatives of the function g with respect to the vector

0 = (01,...,0,)7 is given by

i 8!}1(09) i
9
292(0)
V@) =] % |,
29:(6)
L 50
or, as 8" = (04, ...,0,), we have
[ 001(0) 00:(0) . 99:1(0) T
3910 8% 6079
dg: dg: dgo
rom [ 09:(6) | R R ... 2D
Vg (0)_ T - . . . . ’
00 i=1,..k : : .. :
o9:(0) 891(0) . oa(0)
TR 902 00, |
i.e,
T _ | a9@ 090 a9(0
vie=[ 42 u . ogR ]

as, g1 = ¢ (univariate delta method).
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In general, for @ = (01, ...,0;)T , where 6, is 1 X p vector of constants,
g(0) : RP* — R* we have

i 391(00) T
o
dg2(6)
vg(e): 8:0 )
891(0)
L 868
or
[ 091(0) 001(0)  0991(0) ]
280, a0, a6
000) 00:(0)  90(0)
vI(6) = 3‘?1 3?2 ) 3‘?1« , (1.16)
991(0)  a9x(0) 9g,(0)
L 00 80, 20, d kxpk

where, agig?) is the vector of partial derivatives of g; with respect to the elements of
J

0,,i,7=1,..k

VRS

Then

a, (g(én) - g(0)) —P V,(0)Z ~ Ny, (0, VT (0)CV,(6)) . (1.17)

Proof:
see [14], pp. 120-121, and pp. 148-149.

The Univariate Delta method

Define the following notations
0 - E(Hl) — (01, 02)T7 01 — E(Y;)7 02 - E(XZ)

0.
9(0) = 9—1, g(0) : R* — R, is continuously differentiable at 8, 65 > 0.

2
The vector of partial derivatives of the continuous differentiable function g with re-

spect to the components of 8, i.e
Tigy _ [ @ 0 _( 1 0
vier=(g &)=(% -&)

6, 0
Also by plugging in the elements of @ to the matrix C we get C = C, = ( b ) ,

)
For, p = %, and according to the delta method with its notation in univariate
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case, we have

9(8) =p, andp, = g(0),

where 8 = H,, = (Y, X,n)7 is a consistent estimator of 8, as well as p = g—m

Hence, it follows that
Vvm(p, —p) —F N (0,V, (8)C,V,(0)), (1.18)

where, the variance in the equation 1.18 simplifies to

6 202 62 0 62 0 0 1
T 1 1 1 1 1 1 1
= — — — —_— == — — = — _ — = 1—
VIO, =g -+ =g = (1) ~ w7
_pr(1-p)
A+ A

and, consequently

Vi, - —° ¥ (05020,

A+ Ay
which results in the asymptotic Normal distribution of the ratio estimator.
On the same context, it is also possible to derive this consequence directly with

helps of the Slutsky’s Theorem.

Since
~ ?m 1 = '
Vi, =) = Vi (52 = p) = Viig (V= 50
_ milzm:(y_ X)) = miizm:(a_ )i — pZ;), (1.19)
= Xmmizl i — PNi) = Xmmizl p)ri —p4i), :

let, G; = (1 — p)Y; — pZ;, where, G; are iid r.v’s, with mean

Ay A

E(G)) = (1= p)Ap — phy = A —

() ( p)l PA2 )\1+)\21 M+ A
A2 2 Ay

ETE S S EA A O VIS W Pl Rl Wy p(1=p)(h + o)

From equation 1.19 we have

Ay = 0, and variance

Var(G;) =

Jink Z (1= p)Yi — pZ) —P N (0,p(1 - p)(\1 + o))

it follows (by Slutsky’s lemma, since X,, —” A + o) that

Vi3 (= pvi-pz) —7 N (0222,

m i=1
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And hence, /m(p,, — p) has an asymptotic Normal distribution with mean zero and

asymptotic variance asVar(p, ) = ’E;’)), whence, F(X;) = A+ Xg. Or in other words

(in terms of p, ), one can say that:

In large sample size m, the approximated Normal distribution for the estimator

p, is, N (p, 2 %(_)1;3)) . The consistent variance estimator is obtained by plugging in the

estimate for the corresponding individual parameters in the approximated variance, i.e

e

N — ﬁm(l_ﬁm) — ﬁm(l_ﬁm) N — Ism(l_ﬁm)
Var(p,,) = il o ouf and hence, the standard error s.e(p, ) = S

Therefore and on one hand, the asymptotic confidence interval for the proportion p

is given by

p, + zli%s.e(ﬁm) ,

which is the previous confidence interval for the proportion p of the conditional Bi-

nomial distribution. As well as, it follows that, p, = == = p, . = p (the ratio
estimator).
On the other hand, it may be possible to write the following expression

Vm (p,, —p)

ie1 Xi

~ tmo1 —2 N(0,1), as,m — oo, (1.20)
which suggest the conservative confidence interval (safety bounds) for the proportion
p which is given by

[ﬁm £ tm-1,1-2)5-€(P,) | 5

where, ¢(;,—11-2) is the (1 — §) quantile of a ¢—distribution with (m — 1) degrees of

freedom.



Chapter 2

Bivariate data analysis

2.1 Introduction

In this chapter, it will be extended the univariate count data to the bivariate setting,
where the bivariate analysis involves data in two dimensional setup.
Consider, there are two relevant components of count data sampling from an infinite
population, taking in account any vertical dependencies between the components,
namely the i.i.d two dimensional pairs ((Yi1, X11), (Yi2, X12))s ooy (Y1, Xon1)s (Yonz, Xon2))
is a random sample of size m drawn from the same population, such that each ob-
servational unit indexed by the subscript ¢ associated with those random variables
restricted by 0 <Y;; < X, Vi, 5.
For illustration, the ¢"* individual represents count variables for example:

X1, X2 = No.of children and No.of dogs respectively in the family 1.

Yi1, Yo = No.of male children and white dogs respectively in the same family.

Also denote that, p, = %%11)211, D, = 2:1:11;222 as the sample proportions corresponding
: . _ E(vy) Sy
to the population proportions p,,p,, where p; = Eeent E(p;) = pj,

0<p <1, 7=12

In the next section, it will be used the fundamental approach (the SUR model)
for analyzing the collected two dimensional count data. Hence, it will be assumed
throughout the first section that the relationship between the pairs of random vari-
ables Yj1, Yo, and the corresponding pairs X;1, X;» (the dependence between the pairs
(Y1, Xi1) and (Yj2, X;2) is crucial) are linearly modeled and then we will use the linear

regression technique to analyze the collected sample points bases on the SUR model.

22
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2.2 Bivariate SUR (Seemingly Unrelated Regression)
Model

In the two dimensional case, the bivariate SUR model (this model was introduced by
Zellner (1962), see also [21], or [25] for more details) based on m observations can be

modeled in the next steps:

2.2.1 The bivariate linear model

The pairs of the univariate linear models will be considered first, as

Yin = xap, +ea

Yio = mpop, + €2

with the following assumptions:

E(esn) = 0, E(e) = 0 and with the variances proportional to x;, 2 respectively
(21, ;o are fixed variables), i.e

Var(en) = Var(Ya) = oiai, Var(en) = Var(Yie) = 032, Cov(en, €i2) = 012/Ti1 iz,
and Cov(e,€0,) =0,Vi# i, 0,0 =1,..,m,j=1,2.

We merge these equations into a single bivariate model (for the i observation)

Yi :Xz-p+ei, (Z: 1,...7m), (21)

where, the response variable Y; = (Yj, YZ-Q)T, the design matrix X; = ( ! ),
0 @

and the model coefficient p = (pl,pQ)T, as well as, the error component €; = (¢;1, eig)T,
1=1,...,m.

The error component €; has the variance-covariance matrix given by

2
0141 0124/ L3142
9 Y
24/ X142 05%542

. J
when i #4¢ =1,....,m.

Y, =Cou(e) = (
g1

COU(GZ', i') = 02><27

2.2.2 The weighted bivariate linear model

In the same manner as in the univariate linear model, the model 2.1 (we assume that

x;; > 0Vi, j) will be standardized by the linear transformation

AY, = A X,p+ Ase;,
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_1 L 0
where, the diagonal transformation matrix A; = X, > = Vil ) , such that
0 N
A X;AT = [,. Hence, the weighted linear model becomes
Y, =X;p+¢, (2.2)

. o \T
where, the weighed response variable Y; = A;Y,; = (Y;l,Y;2> , the weighted error

T
component €; = A€, = ( €ils €52 ) , and the weighted design matrix

~ VAT 0 51 0 ~ 1 ij
X, =AX, = ! = ' - » Uig = /Tij, and Y;J: Y:':c-”
0 /T2 0 x5 N

given that z;; > 0Vi,j, i =1,...m,j = 1,2.

EZ]
Vi’
The covariance of the weighted error vector is given by

Cij =

2
X = OOU(EZ) = OOU(Yz) == AzCOU(EZ)AZT = ( o1 0-122

(homoscedastic error vectors),
J12 O‘g

2
and, Cov(€;,€,) =0, ,, i #i = 1,...,m, where 0j=FE (Yij — :Eijpj) ,
o3 =F ((37@1 — Fup,)(Yir — 37;2292)) 7 =1,2.

2.2.3 The SUR Model

The bivariate SUR model can be established (via stacking in column wise of the

bivariate equations 2.1 in to a single model) as:

or, it would be convenient if we rewrite the model compactly in the vector form

Y =Xp +¢, (2.3)
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where, the 2m x 1 dimension response vector Y = (Y7,Y3,--- ,Y%)T, the 2m x 2
dimension design matrix X = (X, X7, ,Xﬁ)T, so, 2 x 1 dimension SUR model
parameter p = (p,,p,)T, and the, 2m x 1 dimension SUR model error vector

T

T . . .
€= (elT, e, -, em) , as well as, the 2m x 2m dimension covariance structure of the

SUR model error vector is given by

S, - 0
¥ =Cov(e) =
0 --- %,

Similarly, the weighted bivariate SUR model (or simply the bivariate SUR model)

~ 0 /T
v, 12 )
- \/ZE_21 0 -
Y2 21 €2
) = 0 e ( ) + ) ;
: P :
Y, ' Em
A/ Tml 0
0 Tm2

the model compresses in the compact form

Y = )N(p + €, (2.4)

~ S _\T
where, the 2m x 1 dimension weighted response vector Y = (YlT,YQT, e ,Y%) ,

- .  \T
the 2m x 2 dimension weighted design matrix, X = (XlT, xXT .. ,X%) ,the 2 x 1

dimension SUR model parameter vector p = (p,,p,)”, and the 2m x 1 dimension

T
~ ~T ~T ~T . . .
SUR model error vector € = (61 JEg sttty em) , with the 2m X 2m covariance matrix

of the weighted error vector

Y=Cow(@)=|: . : [=5L0%
0 -+ ¥

ie, Var(€) =13, ,, and Cov(&,&') =0, , (Vi £, i,i' =1,...m).
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2.2.4 Estimation in the SUR models

Under the assumption of normality of the linear model errors, the least squares es-
timators of the parameters in p are in fact the corresponding MLE’s, i.e, the least
squares estimators coincide with maximum likelihood estimators.
Further, it well-known that the WLSE (weighted least squires estimator) is the BLUE
(optimal) of the parameter p, however, the WLSE of the SUR model parameter vec-
tor results in not the sample ratio estimator vector in question (which is the OLSE,
and the equality WLSE = OLSE holds if o1, = 0, i.e, the error covariance matrices
are diagonal).
The OLSE will be used, although it is not the optimal estimator nevertheless produces
the ratio estimators.

So, the required estimator of the model parameter (proportion p) will now ob-

tained from the SUR model 2.4

m -1 m m -1 m
p...=(XTX) ' XTY = XTX; X7y, = X2 Xy,
OLS (2 7 2 (2

i—=1 i—1 i—1 i—1
71 —~
m m e ol VEaY;
_ ( D i Tit 0 ) Z ( VT Y ) _ _sz=lle~1 s
0 Yz ) I\ Vit i

which results in the ratio estimator vector, where , /1’7;12]‘ =Yy, =12

2.2.5 Properties of the estimator p_,, (ratio estimator vector
p)
Unbiasedness

As in the univariate case, the expectation of the ratio estimator p, is given by

> ie1 Tig N > ie1 Tig D ey Tij

E(p) = F (271 Vit %‘) X VEGEYy) YR TR NT by 2 T
i) ZT" T B m m -
=1 "]

70
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Dispersion

The variance of the sample ratio p; can be obtained by

o) = v [ e Vi
var 5) = var ( Z V)

i=1 Lij

2xm 2
OjZizleJ 0j

1 = ~
== :EijVCLT(Y;'j) = m - m )
(i xiy) Zz:; (X0 y)® Mty

see also [19] pp. 129.
Furthermore, the covariance between the estimators p,, p, is obtained by

Cov (p,,p,) = Cov > Yavma 200, Yie /T
192 Z?ilxil ) Z?ilz‘m
1 m " m B
012221\/@

1 i ~
= ZCOU (Y Y; )\/:17 Tig = .
Dt Tl Dy T i—1 o e D1 Tl Dy T

The covariance matrix of the ratio vector p is obtained as
PO S N =L f N ey —1

S, = Cov (p) = Cov ((XTX) XTY> - (XTX) (Xsz) (XTX)
m -1y m -1

_ (Z 5&5&) SXISR, (Z 5&5&)

i=1 i=1 i=1
-1

( it 0 ) ( oL Yt Tt 12D, /T T )

0 2211 Li2 o3 2211 Tio
1

D i Til 0
0 D iy 2

o? 012 Y ity /TilTi2
_ [ TmE s | ()

2
75
m
Doty Ti2

Note that, the last covariance matrix is larger than the covariance matrix
~ o~ 1~\—1
(XTE X) , when we use the weighted least squares estimator

e Nl a1
Puis (XTZ 1X) XTS 'Y rather than ’OLSE’ based on the SUR model, where

Y= m® f], (more explanation with a simple example in the univariate linear model

with intercept is given in [19] pp. 151-153.
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Exact and Asymptotic distributions

If one assumed that €; ~ Ny (0,%;), s0 €;1 ~ N(0,0%z;1), and €5 ~ N(0, 052;2), where
0= (0,007, ¢ = (eﬂ,eig)T, as well as, the design vectors, x; = (Jcﬂ,xig)T, x; > 0
are fixed, i = 1,...,m, then the model is called the BNLM, (the Biv-Normal lin-
ear model ). Further, given fixed weighted design vector X! = (Zi1,%i2), Ti1 =
Vi1, Tig = /Ti2 the weighted error vectors €; are i.i.d Biv-Normal random vectors,
namely & ~ N»(0,%), Vi =1, ..., m, where 0 = (0,0)7 .

Also given fixed X!, the i.d weighted random component Y, has a biv-Normal distri-

bution i.e, Y; ~ Ny (( b ) i) .
Ti2P,

So, p ~ Ns (p, Xx), where, p = (pl,pZ)T, and Y, is given by the matrix 2.5.
It follows that

at 121412
vm(p,, —p) —" Ny (07 ( o " )) ;

120412
P12 12

: 1 m 1 m 1 m
provided that, .-> 0%, xj — pn 5 52D 00 Tie — P2, 5 Dy /TiTiz — [l

where piq, f9, 412 are constants.

For the necessity, one might ask the following question:
Are the conditional estimators based on the residuals the best unbiased estimators for
the corresponding parameters 0%, 03, 015 that are need for statistical inference about
the model coefficients?

The answer is not explicit and it needs to investigated, whether these estimators are

~ 2
= s s ~
the BUE’s or not, i.e ¥ = ( ! 122 ) is the best estimator of X.
S12 Sy

These estimators incidentally are defined by the formulae

. 1 m (Y1 —]3 .T'l)g 1 o (~ . 2
2 2 7 141
= = = Yi — Vv z)
1= 8 m—liz; il m—liz; LT Puvita
. 1 (Y — pwin)” 1 (N . 2

2 2 12 21
O = 83 m—liz; T m—l; 2 — DoV Ti2

1 (Ya—paa) (Yo — Py
6'12 = §19 = Z ( 1 DT 1) ( 2 D, T2
m — 1 1 A/ L;1T49
I /=~ ~
= m Z (Yzl ]51 \/Iﬂ) (YzQ —132\/%2) )
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where, 2‘;‘ = j=1,2, x;1, 20 > 0 Vi.

5
It is necessarﬁo demonstrate the unbiasedness and consistence properties of the
MSE’s estimators.

Recall that, the least squares regression model (sample linear regression model or
fitted model) corresponding to the observed or the true model (2.2) is written as

32(} = )?if), with the corresponding residuals €; = Y, — ﬁ/:{'i, where €; = (¢;1, ¢;9)". For

simplicity we will defined the vectors €; = (}N/J - )N(jﬁj), where EN/J = (XN/U, ey Yii) T, a8
well as X; = (Z1j, oo, Tmy) i =1,...,m, j = 1,2.

2.2.6 Properties of the estimator of the covariance structure
of the Bivariate SUR model

Theorem

The conditional estimators s?, s2, namely the diagonal elements of the estimator ma-
trix i are consistent unbiased estimators of the corresponding parameters (disjointly
are also BUE’s according to the Lehmann-Scheffe theorem), while s19, 591, i.e., the
off diagonal elements are consistent but not necessarily unbiased i.e., asymptotically

unbiased.
Proof

Starting with the diagonal entries, we have

~ o~ i Uy 2
(m—1)sf =2fer = (Vi = Xip)" (Vi = Xup,) = Y eh =y (Yil — VT Al)
1=1 i=1

IO

(2?—221@ A+ aad?) -y —221@1@ 1+Zw
1=1
Vo2t

=1

HMS

since

m
—_1EZY3 —" B(Y3) = of + plm,

as well as

m

o im Z znp? —" p?,
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then, si —" of + p*y — p*1 = of, and thus s7 is a consistent estimator of o7,

likewise s3. Furthermore,

E ((m — 1)s) = (m ~ VE() = Y B(T}) - quE

since

2
E(Y:) =0l + (E(Y21)> = o} +pfxi17 as well as, E(p*) =

1

0% —|—p2

Do) Tl v

m

(m—l)E(s?):Z ot +p %1 Z%l <m—x+p>
i—1 1 il
=mo} +p° inl — o} — Zxﬂpf = (m — 1)of,
i=1 i=1

consequently, s7 is an unbiased estimator of of, likewise s3, or in general s7 is an

unbiased estimator of a , 7 =12

One may verifying these results via matrix notations

S

SSE =¢le, = V)TV = Yy) = (V) — Xip)T (Vs — Xify)

I

(V: —
~ ~N\NT s~ ~ o~ o~ o~ o~
( - X(XTX) 1X1TY1) (Yl—Xl(XlTXl)‘leTYl)
— 7 (1 ~XU(XTX)) 15({) i,

the square symmetric nonnegative definite matrix H; = X;(X7X;) ' X7 is called a

projection (hat) matrix, so

B(SSE) = E (V1 (I — H)V:) =tracel(L, — B)Var(F)] + (BE) (L — H)E(T),

where, Var(V)) =0il,, BE(Y1) = p X7,
hence

E(SSE) = 02(m — 1), as, trace(l,, — X1(XTX,) ' XT) =
trace(I,) — trace(XT X\ (XI X)) =m — 1,

as well as

(BOD) (L~ H)E() = pr [X] (L — SH(XTX) 7] ) %] =0
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as
X (7= XuFTX)IRT) X = (KT - XK RTR) =0
therefore s? is an unbiased estimator of o7, likewise s3.
Moreover, since
SSE =& (1L — Xi(XTX) X7 & = e - X (XT X)) 'K a,

it follows that

%Lg{gl —>P U%, and lfﬁ = )?1]91 +g1, then
()N(I‘F)Nfl)_l)?lTiNﬁ —7 p1 = ()ZVIT)/Zl)_l)/ZleCVl —7 0, lfpl =0,

and thus s? is a consistent estimator of ¢?, likewise s3.
Unbiasedness property for the estimator s is not satisfies unless asymptotically.
One can investigate this as following (see also [22]):

For the off-diagonal s;5 = s91, we have
el = (Vi — Xip1)"(Ya — Xopn) = Vi (Iy — Hy) (I — Ha)Y2,
SO
E (#]2) = trace ((In — H)(In — H2)Cov(V1, 12) ) + (B(W) (T = H1) (I — H2)E(V2),
where
Cov(?l,?g) = Cov(?}l,ﬁg)lm =o12lp, Hj = )?j()?f)?j)’l)?f,
since, (I, — Hy)(L, — Hs) =
Ly — Xy (XTX)7'XT — Xo(XTXo) 7' XT + X0 (XT X)) 7' XT X0 (XTX,) ' XT
we have

trace((Ly, — Hy) (I, — Ho) 1) = trace((Ly, — Hy) (I, — H3))

2
(X, Vo)
ZZZI i1 Z?il iy’

=m-—-2+

it follows that

m —\2
E (NTN ) =012 |M — 24 (Zi:1 l‘leZZ)

el e
n Zzﬂil i1 Zzﬂil Tig |
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as

(EY) (I — H)) (I — Ho)E(Ya) =pi X7 [T — Xy (XTX0) IXT — Xo(X] X5) 71X
+)?1(5(:1T)?1)71)?1T552()?QT)?Q)il)?g])?QPQ
:plpg[)N(IT)N(Q — X?yl(ﬁfgl)_lﬁfig
RTR(XTR) KR,
+XT X (XT X)X X (X] X)X X
—pipal XT Xy — XT Xy — XTX, + XTX,) =0,

or, as

)?1T[Im — ] = )?1T[Im — )?1(5(?5(1)715(/?] = [)?1T - )?f)?l()?f)?l)il)?f] :)?1T - )?1T

=07,
ie, X, is orthogonal to each column of the projection matrix [I,, — H;], likewise X,

is orthogonal to each column of the projection matrix [I,,, — H»].
Corollary

The residuals are orthogonal (perpendicular) to the fitted values of 371, also to the

design matrix, in other words: Y, is independent of the error €7 .

Proof

AT
Its enough to show that Y, e; = 0.

Since
2T - - - - - -
Yie,=Y"Hi(l, — H)Y, =Y HY; — Y/ H\Y, = 0,as, H] = Hj,
as well as
XTe,=XTU-H)Y, = (XT = XT)Y, =0"Y, =0,as, X7 H, = X
Therefore
m 2
1 v/ Li1T;
E(fé?féé):o‘m m—1+ (Zml_l ImQ) —1 :Ulg[m—1+cm—1],
Zi:l T41 Zi:l Li2
and hence s1o = —<¢7 € is a biased estimator of 015 with the biased correction ¢, —1,
I . (Z?;l $i1$Ci2)2
where ¢, = <———m—2—

m m .
i i1 2oL Tiz
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Furthermore, (m — 1)eTey=
=V (I, — X3 (XT X)) X = Xo(XT X)X + X0 (X X)X X (X X)) X)YS
= (I, — X\ (XTX ) XT = Xp(XTX) XY + X (XT X)) XTI X, (XTX,) X Te,
=& - E XU XT X)) 'XT& — & Xo(XTXy) 'XT &t
X (X X)) T X(X) X)X &),
and since
maEl €9 —>P 012,

and, if

i}g = )?2]?2 +€2, then, (Xgig)ilyg% —>P P2 = ()?5%2)71)?;’52 —>P O, lf, P2 = O,
1 ~ ~ o~
and, —X] Xy, —7 B(XTX,),
m

1

1 e e~ ~ ) )~
as well as, —(XTX))(X]T X)) 'X[e, —7 0,as, —(X] X)) —F E(X] X)),
m m

and therefore si5 is a consistent estimator of ;5.

From the previous theorem, one may establish the following consequences:

result 1

s19 1 asymptotically unbiased, as F(s13) = wau — 019 for any sequence

m—1
Cm, 0 < ¢, < 1.
result 11

One can observe that, if the relation between x;, 3, say linear relationship (in fact
r? measures the strength of the linear association between \/Z;1, \/Ti), i.€, T = 21,
Or Zjo = cx41,Vi = 1,...,m for any ¢ > 0, this implies that r? = 1, then the bias term

is vanishes and the estimator s, is unbiased.
result III

The coefficient of determination (say the square of the correlation coefficient between
the observed values and the fitted values Y) measures the goodness-of-fit of YZ, Y or

measures the strength of the relationship between Yi, and XZ-, which equals
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SSR __ SSE
Sor = 1— T hence

~

e = (Corn(F 7)) =1 - W Un =0T (S Tay/ma? ()

}71T}~/1 Zz:l i1 Zz:l }/z% Zz:l Yﬁ
_ SSR
- SST

similarly

R? — (C’orr(f/l }72))2 —1_ Vi (I — f{l)gm — Hy)Y;
c tly £ YVIT%

_ Z:il %z(Z?il 17Zl\/37_21 Zﬁl 22\/35_12) + 2211 xn(ZZZl 1721\/:57222’; 17;2 xiQ)
ZEL Ti1 2711 T2 (Zﬁl 17@‘1171‘2)
_Zz lyﬂ\/x_lZz 1Yz2 42 (Zz 1@)
Z =1 %i1 ZZ 1 %2 (ZZ 1 YuYzQ>

0<R:<1.

2.2.7 Asymptotic normality of the ratio estimator vector p

As in the univariate case, it will be assumed that the random error vectors €; are

not normally distributed but i.i.d random vectors, i = 1,...,m, i.e E (€;) = 0, and

Cov(€;) = . Moreover, under certain conditions on the design matrix X; one can

show that in large sample size, p, has the asymptotic Normal distribution. These

conditions namely, the pairs

o _ X0 0 _

(X;,Y;) arei.i.d = (X;,Y;) are also i.i.d, where X; ( b ) Xy = /Xy, Xy >
0 X

0,i=1,....m, j =1,2, as well as E()?ij)?ijr) exists Vj,j =1, 2.

Do, can be rewritten as

m

71 n
pa = (X0%) XY= (Tx0x) yxw
1=1

_ (iii)i (%p +2)
_ (ixi) (iiip+ii~)

=1
i=1

&’ﬂ
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and this can be reexpression as

\/ﬁ (IA)OLS - p) = (% sz; )NCZT)NCZ) _ (% zm: i?é)

Lgn (X 0 ) (L[ S
:<E;< 0 X )) (ﬁ;<)~(2g2>) (2.6)

To derive the required asymptotic distribution, it needs to investigate, first the de-
nominator matrix in eq. 2.6 is consistent, and second the numerator obeys the Central
limit theorem.

Thus, in large m, its straightforward to see that the denominator of eq. 2.6 is consis-

tent. By the LLN, we have

1

-1
1 = g sro
<_ZXZ.TXZ-> —7 (E(XZ-TXZ-)) :
M
provided that X;; > 0 almost surely, thus yields

13 Xy 0 - > E(X) 0
G ) 0 )

i 0
are fixed variables,7 = 1,...,m, 7 = 1, 2, then also satisfies
-1 -1

(v n) —0 )

provided that, % Yo T — % Yo, Lo — [, where puy, f19 are constants.
The numerator obeys the CLT

-1

It may need to mention that, in case of the XZ = (

) 7§ij :\/Z%,leij >0

1 <= ST
——Y XTe, PN (0, E (XTEX)) ,
V=
where, the marginal or the asymptotic covariance
Cov (XZTEZ> =F (COU <X?EZ | Xﬂ, XQ)) + Cov (E (XZTEZ | Xﬂ, Xﬁ))
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as

Thus, the numerator of 2.6 yields

Li( X) HDN(O( B owEWXm)))
m )

i=1 Xig€io Ule( Xan‘z) 0§E(Xi2)

o 2B(X)) o1 (VXi1Xy)
B "\ onE (VX X))  02E(Xs) '

Therefore, with help of the known Slutsky’s lemma, equation (2.6) can be rewritten

(since, p,, ¢ is the ratio estimator p,,) as

E(Xl) 0 O'%E(Xl) O'mE(\/M)
0 E(X,) o B(VX1Xs)  02E(Xy)

E(X) 0 |
0 E(Xy)

\/%(Ism - p) —>D N(0> (

af o12B(vVX1X2)
_ BN BXDE(X) _
— N 07 UlZE( )1(1X2) 105 ? - N (07 EP) I
E(X1)E(X?) E(X2)

which results in the asymptotic Normal with the asymptotic covariance matrix

_of 012 E(VX1 X5)
Zp = Covlvmp,) = | st et
E(X1)E(X>) E(X>)

2.2.8 Approximate confidence intervals for a linear combina-
tion of the proportions

From the last result, we have

vm(p,, —p) —" N(0,5,). (2.7)

By applying the extremely useful result called, the Cramer-Wold device (see [14] pp.
147), it essentially reduces multivariate CLTs to a special case of univariate CLTs.

Hence, this result shows that the expr.2.7 holds iff, Va = (ay,a3)” € R?, such that
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|  ||> 0, so we have

\/ﬁ(an)m—ap:\/ﬁ(m ) —P N (0,a"Spa)

O'f 0’12E( XlXQ) o
=N |0, E(X1) E(X1)E(X2) !
= 1\ 019 (v X1 X2) o2 o

E(X1)E(X2) E(X2) 2

o , O3 o12E (v X1 X5)
=N (0,041E(X1) +a2E(X2) —|'2 10 E(Xl)E(XQ) ) , (28)

where, - a’p, , and ¥ = a’p. Tt follows that, the asymptotic variance of Oy is

given by

. 2 2 E(VXiX2)
Var(x/mi,,) = 02 = a? o1 +a? 02 + 2« 012 )
(Vi) =03 = i gy T gy M B R B(G)

Constructing the approximate confidence intervals for the linear combination #, needs
to estimate the asymptotic covariance matrix ¥, by plugging in estimates for the
individual parameters o, 03, 019, E(X1), B(X3), and E(v/X,X5).

Explicitly, these consistent estimators are s%, s%, S12, X 1, X 2, and X 19, where

1 NS 2 1 mo 2
e S (V) = S ()
87 m_1i1(1 b, 1) 5952 m_liﬂ 2 — D, 2]
1 K/~ ~ ~ \
- — }/Z —D XZ ) (}/Z — A‘ XZ ) , }/Z — 1] , XZ > 07 ) — ]_’2’
S12 = m—1 1( 1= DvAan 2~ PV A2 j ,—XU j J

7.1 = %Z:’;l Xﬂ, 7.2 = %ZZI XZ'Q, X.lg = %Z:’il \/XilXiQ- The consistent

estimator matrix for the covariance matrix X, is given by

N jf 519X 19
S, = i XaXas 2.9
p 512X 12 83 ’ ( )

also it follows that, the standard error of the linear combination of the sample ratios

is given by

ek ) 1 st S5 $19.X
o9 = s.e(Vy,) = \/E (a%_—l + 02— + 20y 00— 7.12)7

provided that, X 1, X o, X 15, 5?,52, and si, are consistent estimators of the corre-
sponding parameters E (X)), F(X5), E(v/X1X2),0%,03, and 012, and hence the stan-
dard error is also a consistent estimator for the corresponding asymptotic standard

deviation.
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Further, one may say that the consistent matrix (2.9) is to be positive definite or

aTy,
m

at least positive semi definite (see A.1), to ensure o> 0, a > 0, otherwise, we

have to exclude the negative variances this will be explicitly clarifying in the chapter
4.

Finally, and based on these estimators, an approximate asymptotic normal confi-
dence interval for the linear combination ¥ = a;p, + asp, can be established by

[@m + zligs.e(@m)} )
2

as well as, the suggested conservative confidence interval (safety bounds) by the t-
quantile is given by

~

|:19m + t(m,ljl,%)s.e(@m)} 5

where, t(;,-1,1-2) is the (1 — %) quantile of the ¢t—distribution with (m — 1) d.f.

2.2.9 Derivatign_of confidence intervals for the linear combi-
nation of the proportions

One like to summarize the derivation of the confidence intervals for the linear combi-

nation ¥ = a’'p = a1p, + aup, in the cases:
case I

On one hand and on one side, we will obtain the distribution of V= a’p (unbiased
estimator of ¥J) given the fixed pair of design vectors (x1,x3), xj = (T1j, vy Tmj)’,J =
1,2, and Y; has a biv-Normal distribution.

Since

~

o? o2 12 Y i T T
9~ N .02 L 2 2 2 S A 2.10
<Oz1p1 sl Z:il Li1 e ZZL Zi2 Toma Zﬁl Li1 Zﬁl Li2 ( )

then 2.10 will rewrite after its standardization, as
2 2 m
. mo mo Mo Y e /Tl iz
Vv im ('19 — 79) ~ N (07 Ol% Z:il ;il + Ofg Zgli‘ﬁ + 2011@2 Zzl x; 12;1:1‘,; )
=N (O, 0,2() ,

where, the distribution variance

2 2 m —
maoy 2 oj MOz Y iy A/ Ti1Taz

—_— + = + 20q ¢ .
2211 i1 2 Z?il Ti2 e Z?il 41 221 42

2 2
ax_al
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It follows that, the exact (1 — a)% confidence intervals for the linear combination

are given by

R . -
[19 +z ., S.E(ﬁ)} , as, ~ N(0,1), when o}, 03, 015 are known
2 Ox
0 0 9 — 2 2
[19 + t(m,lyl,%)s.e(ﬁ)} , as, —— ~t, 1, when 07,03, 01 are unknown,
Ox

where, the standard errors of U are obtained by

SE(@) 2 U% 012 ZZ 1 VTi1Tq2

+ a3 + 2109
Zz 1

Zz 11'12 Z 11'7,12 1$12

as well as

3.6(19) 2 S% 512 ZZ 1 V&i1Zi2

+ 042 + 20[10[2
Zz 1T

Zz 1 Xi2 Zz 1 L1 Zz 1 Tig

On the other side, and for non-bivariate Normal of Y/s, and if the sequences, say

1
pous ZZ 1Tilt —> M1, 5, Zz 1Ti2 — M2, o Zz VT Ziz — piz, where fig, pig, p12 are

some constants, then the sequence of the approximate variances o2 converges to the

corresponding constant variance

2
%2

02 g
271 4 0222 4 9,0, 71212 (2.11)

02 =«
v H1 H2 H1ft2

as m tends to infinity. So, the asymptotic distribution for the distribution of the

estimator @m can be obtained as

~

Jm (19m _ 19) P N(0,02),

as 2.11 is its asymptotic variance.
Therefore, the approximate (1 — )% confidence intervals for ¢ (with the unknown

01,03,012) are given by
[@m + Zl_gs.e(ﬁm)} ,
2
or

[@m + t(mfl,lf%)s'e(@m)} ’
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———

provided that the estimator Var(vgm) = %‘ﬂm’") is a consistent estimator of 02,

and

9, —
— — ~t, 1 —P N(0,1),

——

Var(0y)

as well as, the standard error of 1§m,

9 st 5 T
s.e(lm) = -+ 0 o+ 201005 VERVATEE
Zz 14 Zz 12 Zz 1 L1 Zz 1 Iz2

case II

On the second hand, the conditional variance of J given the pair random vectors
(XT,X2), X; = (Xij, -, Xmj)",7 = 1,2, when there vectors X; = (X1, X;2)7,i =

1,...,m are i.i.d random vectors with non-biv normal of Y}s is given by

2 2 m
o1 2 03 012> i VX1 Xio

2
o + « + 20n ,
1221 Xit 22;11 Xz ' 22;11 Xit 221 X
asymptotically
g 3 2 Of 2 0% 012X 12
Var(v/mi) = mVar(d) = N + = + 20410z27 7 : (2.12)
1 2 1N 2

And from the expression 2.8, one can rewrite the asymptotic distribution of Opm as
Vi (= 9) —7 N (0,03).

where, the asymptotic variance o3 is given by

O'% 2 02 UlgE(\/XlXQ)

2 2
g4 = Q Qs + 2«
IE(Xl) E(X) e E(Xl)E(XQ) ’

(2.13)

hOW@V@I’, since, X.l = % Z:il Xil —P EV(AXVl)7 X.Q = % Z:il Xig —P EV(AXVQ)7 as
well as X 15 = %ZZL VXX —7 E(v/X1X3), (LLN), then the variance 2.12
converges in probability to the corresponding asymptotic variance 2.13.

And thus, a consistent variance estimator for o3 is given by
2
S9 312X 12

02 =l + 022 4 20 09 ——
) 1 2 XX ’
1 2 1X 2
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provided that, the estimators

IRy 2 L S (7 ’
LS V) e S (e )
S1 m_lzl( 1 b, 1 y 59 m_li:1 2 D, 2 , an

1 (o . =\(o - ;o

S19 = m (}/;1 - D Xﬂ) (}/12 — D, XZQ) ) XilaXiQ > 0;

i=1

as well as, X 1, X 2, X 10, are all consistent estimators for the corresponding parame-

ters 02,03, 019, F(X1), E(X3), E(v/X,X5), subsequently it follows that the standard

error of U, s.e(l)) = %gg.

The approximate confidence intervals for the linear combination 9 = ayp; + asps can

be constructed based on the following cases:

e If 02, 02,015 are known, then the approximate confidence bounds for ¥ is given
by

[19 + zlf%S.E(zg) ,
where, the Standard Error
; 1 2 3 X
S.50) = [+ (0t + a3 + 20, )
m X X XX

and the quantile z;_g is defined as previous.

e In case of the unknown parameters 0%, 03, 019, again the asymptotic theory given
here can be used to obtain the approximate confidence interval for J, which is

given by

m 1_%

[19 +2 .se(d )],

where

R 1 2 2 7
se(¥ )=4/— (a%i—l + a%i—g T _'12).
m X1 X X1Xo

e For small sample sizes, and with all these available consistent estimators, given

O —

~ = tm—l —>D N(07 1)7
s.e(Um)
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a statistic ¢—distribution can be used to obtain the conservative confidence

interval
|:19 :l:t(m 11_,)8 6(19 )

where, ¢(; 1,12 is the (1 — %) quantile of the t— distribution with (m — 1)

degrees of freedom.

Finally, when Y's has a biv-Normal distribution, then we have

U% 1ol U% 1 20100 012 Z?il VX1 X )
Z?il Xy ’ 2211 Xig Zgl Xiy Zﬁl Xiz )"

~

v~ N <a1p1 + Q2P , O‘%

it follows that

A mo? mo? moiy > o vV Xi1 Xz
\/m(ﬁ—ﬁ>~N<0 2 L it 2040 s eiml Y )
“ Zz 1 Xi 2 Zi:l Xia e Zz’:l Xi Zi:l Xia

=N (O,UX) ,

where, the distribution variance

2 2 m
9 mal 2 mos maoq9o Zi:l \/Xile'Q

ox = + « + 2« — — .
X Zz 1 Xit Zz 1 Xio e Zi:l Xit Zi:l Xio

Thus, the exact (1 — «)% confidence intervals for 1, are given by

R ) -
[19 tz ., S.E(ﬁ)} , as, ~ N(0,1), when o}, 03, 015 are known
2 O'X
0 0 ) — 4 2 2
[19 + t(m,lyl,%)s.e(ﬁ)} , as, —— ~t, 1, when 07,035,012 are unknown,
ox

where, the standard errors

. o? o3 o12 Y i VXt Xio
S.E(Y) = + a2 + 20y ==L L ,
( ) Zz 1 Xt 2 Zz 1 Xio 1 221’:1 Xit Zi:l X
as well as
: : 3 VXX
s.e(V) = /a2 msl + a3 24 20009 813712@:1 -
Zi 1 Xil Zz 1 Xio Zi:l Xi Zi:l Xio
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2.3 Bivariate Poisson model

A class of bivariate Poisson distributions was introduced and investigated by Aitken
(1936), Campbell (1938), Consael (1952), and Holgate (1964). Recently introduced
and discussed by N. Johnson, S. Kotz, and N. Balakrishnan (1997). Poisson models
were discussed by Karlis and Ntzoufras (2000), they have many researches and arti-
cles in this field. There are many applications of bivariate Poisson models in which
Bivariate count data arise for example; in Medicine: paired count data in medical
research; Epidemiology: joint concurrence of two different diseases; Marketing: joint
purchases of two products; sports especially soccer, football, handball, etc. See also
[11].
Karlis and Ntzoufras have been considered independent variables that are Poisson
distributed. They also considered discrete bivariate and multivariate count data.

In this section, we will extend the univariate Poisson model to the bivariate set-
ting, deals with two dimensional count data that are Poisson distributed.

In shortcut, this is another method for the analysis based on other model.

2.3.1 Description of the model

The model is considered by extending the univariate Poisson model to the model
with two components of marked count data where each decomposes additively into
two disjoint groups of data, and thus each individual in the group is independently
distributed Poisson random variable, so each two groups of the components can be

respectively include for instance the events:
e No.of success and failure.
e No.of defect and non-defect.
e Count with property and count with out property, etc.

Let us consider the following observable random variables:
X1, X2 = total amount of counts of 1%¢,2"¢ component respectively for individual 4,
Y1, Yio = No.of successes of the 1%, 2%comp. respectively for individual 4,
Zi1, Zis =No.of failures of the 1%, 2"comp. respectively for individual 7, with the

latent variables:
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W; =No.of successes simultaneously in both components for individual ¢,

Vi1 = No.of success in the 1%, and failure in 2"¢ component for individual s.

Vis = No.of failure in the 1°*, and success in 2"¢ component for individual i,
t=1,...,m, where m is the sample size, i.e, W;, V;1, V5 are unobservable independent
Poisson random variables with parameters Ag, A1, Ao, as well as Z;;, Z;» are observable
independent Poisson r.v’s with parameters p, 1o respectively. Define the random
variables

Y, = W; +V,;, additionally X;; = Yj; + Z;;, where, 0 < Y}; < Xj5,5 = 1,2. All
Wi, Vir, Via, Zi1, Zio are independent Poisson r.v’s with parameters Ao, Ai, Ao, i1, o
respectively.

The random variables Y;1, Y;» have jointly a bivariate Poisson distribution denoted

as BPoiss(Ag, A1, A2), if they have joint probability function (see [6], or [10]):
P (Yii = yin, Yie = yi2) = P(Wi + Viy = yir, Wi + Vig = yia)
—ZP = wi, Vi1 = yin — wi, Vi = Yin — w;)
min(yi1,yi2) )\wi )\yn*wz‘ )\ym*wz'

— e*(/\0+>\1+)\2) §

w; =0

L (2.14)
(yzl - wz) (Z/z2 - wz)'
The function (2.14) is computational demanding, and very complicated for estimation
purposes. Moreover, (X;1, X;2) ~ BPoiss(Ag, A1 + 11, A2 + f12), where

Ao, A1+ p1, A9 + o are the parameters of the corresponding independent Poisson

variables W;, Vi1 + Z;1, Via + Zis.
2.3.2 Properties of the model

With the properties given in [10], one can list some interesting properties of the model

e The marginal distributions are Poisson, namely
Yij ~ Poiss(Ao + Aj), as well as X;; ~ Poiss(A\g + A; + p;). This implies that
E(Y;;) = Var(Y;;) = Ao+ Aj, and E(X;;) = Var(X,;) = Ao + Aj + ;.

L] OOU(Xil,Xig) OOU( Zl,Y;Q) = /\0, (See [6] PP- 126)

e The marginal conditional distributions of Y;; given X;; are given by:

X ‘ Ao+A _ Ao+A
PYiilXi) ~ Bin (XZ], ﬁ%) = Bin(Xi;,p,), p, = m is the Binomial

proportion of the j"* component. It follows that E(Y;; | Xi;) = p,; Xij, as well as
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Var(Yy | Xiy) = p,(1—p,;)Xij,j = 1,2. However the joint conditional distribu-
tion POinYielXit:Xi2) a5 well as the conditional covariance Cov (Y, Yig | X1, Xiz)

can not be explicitly calculated.

e Maximum likelihood estimation.
It is too complicated to derive the MLE’s of the parameters Ag, A, Ay from
the probability function (2.14), due containing the latent variable W;, whereas,

fi;,, = Z; (from the independence). Karlis and Ntzoufras (2003) had been
described ML estimation for bivariate Poisson model via an EM algorithm,
which does not need calculation of the function (2.14), (for more details on the

EM algorithm see [17])

e Unconditional consistent estimators of the combinations:
Aoy Ao + Aj, Ao + Aj + py, are: Syl,yy?j»y.j» respectively (|6], pp. 129) i.e:
SYl,Y2 HP )\07?0' HP )\0 + /\j7?.j — S

Ao + Aj + ;. Furthermore, 7,]- — 5

—7 ), as well as X ; —7

Y1,Ys

—P N+ pj, Zj —7 pj, where

vy,Ys
Y=oy, Xj= 50 Xy, and Z; = 2300, Zyj, j = 1,2, as well
as the unconditiorﬁl sample covariance s, , = LS (Y =Y ) (Y —Y o),
and also p, = N — K’ ,J = 1,2 are the commonly used ratio estimators

J Ao+A;+1 X
for the proportions p,.

2.3.3 The Bivariate Poisson distribution

One may describe the model through an 2 x 5 matrix A, the elements of A, are zero

and ones, no duplicate rows exist, and the vector T; = (W, Viy, Vig, Zi1, Zi2)7,

11000
A, = ,
1 0100

and thus, the linear equations

1=1,...,m. So

Y; = (Y, V)" = A,T;

follow a bivariate Poisson distribution with parameters Ay, A1, Ay. Furthermore, define

1 1010
Aa:: >
(10101)

the matrix
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also, the linear equations
X; = (X1, X2)" = A, T,

follows also a bivariate Poisson distribution with parameters Ao, Ay 4+ 1, Ao + po.

Further, define the vector

H; = (Yir, X, Yao, X, )T, and A =

—_ = =
o O = =
==
o O = O
- o O O

Similarly, H; = AT;.

In order to obtain the approximate confidence intervals for a linear combination of
the proportions, One shall first consider the asymptotic distribution of the proportions
estimators by the delta method (since the joint conditional probability distributions

can not be obtained).

2.3.4 Asymptotic normality of the proportion estimator

For the linear equations H; = AT, the covariance structure is obtained by

¥* = Cov(H;) = A Cou(T;) AT

N 000 0 0\ /1111
11000
0 A 0 0 0 1100
11010
= 0 0 A 0 0 0011
10100
0 0 0 p O 0100
10101
0 0 0 0 m/ 0001
o )\04‘)\1 )\04‘)\1‘1‘/1/1 )\0 /\0
Ao Ao Xo+Xa Mg+ A
Ao Ao Ao+ Aa Ao+ Ao+ o
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By the Multivariate central limit theorem, we have

vm (H— EH)) —" N,(0,5%), or

Y, EW) 0
X FE(X 0
m —.1 - ( 1) —>D N4 72* )
Y, E(Ys) 0
X, E(Xy) 0

where, ¥* is defined above.
The Multivariate Delta method

The delta method (see the subsection 1.3.3), is a method for deriving the asymp-
totic Normal distribution for any statistical estimator and gives knowledge about the
asymptotic variance. For obtaining the asymptotic normality of the estimator p,
via a non-linear transformation, we will introduce to the multivariate delta method

k = 2, where k is the number of columns of the data matrix. Here, is its notations:

0 = E(Hz) - (91792703794)T7 01 - E(Sfl)7 92 - E(Xl)
;05 = E(Y2), 01 = E(X3)

g0) = (1.9 y6): R R
0, 04

is a two dimension vector real-valued function that is continuously differentiable at
@, 05,0, > 0. The matrix of partial derivatives of the function g with respect to the

components of 8 is given by

99, 99, 99, 99, 1 _0 0
vT(O) = 891 02 d03 004 — 0o 052
g 99, 99, 09, 09y 0 0 1 _ 03 |’
001 902 903 004 04 042

also by plugging in the elements of 8 into the matrix ¥*, we get the covariance matrix

0, 0, X N

0, 0, \g A

sty _ 1 U2 Ay Ao
0, Ao X Ao O3 0O

Ao Ao O3 O

For, p = (p,,p,)”, and according to the delta method with its notation, we have

~

g(e) = p’ and ]-Sm = (ﬁml7ﬁm2)T = g(ém)70m = ﬁ7
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I

with the corresponding estimators p, . =

=

Vip, - p) =7 N (0.91015, | 7,00)).

where, the asymptotic covariance matrix of expression (2.15), equals

6 6 Mo Ao
L 0 g 0, 05 Mo A
T - 92 622 1 2 0 0
Vg(B) 20,)\0 Vg(B)— ) 0 X N
| 0 % Tl o Ao U3 U3
Ao Ao O3 04
% 0
S )
X 02
1
0 &
9
| 0 042
o0y _ 2% 07 Do Agfr _ Moly 4
_ 02 03 03 0200~ 0305 6207
Ao Aofs _ Ao + A0b103 03 % 0_§
0201 6207 0204 0267 02 03 63

There first diagonal element simplifies to

0 207 07 6 9]2_91<1_01>

0 0 0

T - - p(1=-
2w TR R e e E(Xl)pl( Py

and similarly, the second diagonal element

05 2932, 9% 05 9% 05 ( 03) 1
_—— = == ]_ - = 2 1 — VMo )
5,) = Ex5y)” (1-p,)

;6 6 6 6 6
as well as, the off-diagonal elements are symmetric, so we have

A Aot Aols  Aoth0 A 0, 05 0,0
0 o1 0% | Aothls _ 0{ 1 3+13]:

0.0, 020, 0,02 ' 0202 T 0,0, |0 0y 0, 0.0,

No [(_ 0N _0a( 0N _ do ([ 0\ (,_t
020, 02 04 )] 020, 0> 04

5 =1,2. Hence, it follows that
J

(2.15)

(2.16)

Ao
=————(1-— 1—p,).
Thus, 2.15 can be rewritten as
pl(lfpl) AO(lfpl)(lfpg)
L D E(X1) E(X1)E(X2)
Vm(®, —p) =" N0, S0 Ly )

E(X1)E(X>) E(X>)
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which is the asymptotic Normal distribution of the estimator p  , where

Ao = Couv(Y1,Y5). For statistical inference, it needs to estimate the asymptotic co-

pl(l—pl) )‘0(1_171)(1_102)
variance matrix in 2.16, i.e, asCov(p,,) = >\0(1—Ep()§8—p ) E;X(ll)_EIE)gZ) , which
1 2 2 2
B(X1)E(X>) BE(X>)

can be obtained by plugging in the estimator for each individual parameter

e P (1-p,) SYI,Y:,(l*ﬁﬂ(l*ﬁg)
P, ) = X XX
asCov(p,,) = SY1,Y2(1—1'311)(1—152) . ('11713';) : (2.17)
X1X X

where,
7.1 —>P E(Xl);y.Q —>P E(X2)7p1 —>P p17p2 —>P D and Syl,yz —>P )‘07
consequently the estimator matrix 2.17 is consistent.

2.3.5 Approximate confidence intervals for a linear combina-
tion of the proportions

A necessary condition for constructing confidence intervals for a linear combination

¥ = ap, where o = (a1, 9)”7 > 0, is the matrix (2.17) be positive definite or at
asVar(an)m)

> 0, otherwise we
m

least positive semi definite (see A.1, or [16]) to ensure
have to truncate the corresponding intervals by taking only the positive variances.
Hence, to be on the safe side from the undefined s.e’s (s.e = \/“Smj) during the
confidence intervals evaluation, one should take only the positive variances, this will

be explained in chapter 4. Obviously

GSVCET(ém) - asVa'r(an)m) = aTasVar(f)m)a

p(1-p;) Ao(1-py)(1=py) o
_ E(X1) B(X1)E(X?)
- (041 042) )\O(l—pl)él—pQ) p2(11—p2)2 (a )
E(X1)E(X2) E(X>2) 2
2p1<1_p1) 2p2<1_p2) Ao(l—pl)(l—p2)
= ——— + o, ————= + 20 «x ,
YE(X) 2 B(X,) T E(X)E(Xs)

it follows that, the standard error of the linear combination a’p,, (if defined) is given
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Finally, the approximate (1 — o) % asymptotic normal confidence interval by the

normal quantile z,_, for the linear combination ¥ is given by

_a
2

[@m +z s.e(@m)} ,

IR

or, the proposed conservative confidence interval by the t-quantile

|:1§m + t(m,lyl,%)s.e(@m)} s

where, 2, is the (1 — %) percentile of a standard normal distribution, as well as

t(m—1,1-2) is the (1—5) percentile of a t—distribution with (m —1) degrees of freedom.



Chapter 3

Multivariate data analysis

3.1 Introduction

In the multivariate analysis being extending the analysis of a bivariate count data
to the analysis of a multivariate count data. It will be assumed that there are k
components of marked count data. Clearly, we have 2k dimension random sample
of size m drawn from an infinite population, i.e, (Y1, X;1), ..., Yk, Xix), 7 = 1,...,m
where H; = (Y1, X;1), ..., (Yik, Xix)) are i.i.d sets of k pairs of random variables. The
data are displayed in a matrix of dimension m x 2k of marked count data, where the
m rows represent the individuals, and 2k columns represent the £ dimension of the
pairs count data, with the restrictions, 0 < Y;; < Xy;, Vi, 7, 7 =1,.., k.

% is the commonly sample proportion corresponding to the

Xij
. E(Y; .
proportion p,, where p; = E((Xij)),E(pj) = Dj;

0<p, <1, j=1,2,..k

The estimator p, =

i=1

In the following section, we will analyze the marked count data matrix using the
multivariate SUR model, assuming that the relation between each of the response
random variables Yjj, ..., Yj, and the corresponding variables Xji, ..., X;; for the '
individual is linearly modeled. We assume that X;; > 0 almost surely. The stacked
SUR equations will be considered to obtain optimal estimators if exists for the (co-
efficients) proportions p,, j = 1,...,k of the SUR model, namely, the LSE’s including

there asymptotic properties.

3.2 The SUR (Seemingly Unrelated Regression) Model

The SUR model (k correlated regression equations) based on the m observations can

be modeled next:

o1
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3.2.1 The multiple linear model

Consider the k£ linear equations

Yii =xip,+en

Yie =wip, +e€ir

, with the assumptions: E(e;;) = 0, and with variances proportional to x;;, where x;;,

are the fixed variables, i.e

Var(e;) = o5aig, Covley, €)= 0,5 \[Tijtyy, Vi # 7,
Cov(ej ep;) =0, Vi, i,i =1,.,m,j,j =1,...k.

We merge these linear models compactly into a single multivariate linear model (for

the " observation)

Yi :Xz‘p“‘ﬁi, 1= 1,...,m, (31)
where, the response variable, Y; = (Yj, - - - ,Yik)T, the observed design matrix
Ti1 0 0
X, = 0 @ |
0
0 0 Tk
and the model coefficients (proportions), p = (p,,--- ,pk)T , as well as the error
component, € = (€1, - ,eik)T, i = 1,...,m. The error vector €; has the variance-

covariance matrix given by

2
01Z41 0124/ X152 O1k\/Ti1Tik
2
0124/ X31%42 O05%i2 Tt 02K/ Ti2%4k
Y, =Var(e) = ' ' ' ,

2
O1kN/TilZik  O2kN/Li2Zik =~ O Tik

. W
where, Cov(e;,€7) =0, ., when, i #i =1,...,m.
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3.2.2 The weighted multiple linear model

In the same manner as in the bivariate linear model, the model 3.1 will be standardized

by the linear transformation A;Y; = A, X,;p + A€;, where the transformation matrix

\/9107 0o .. 0
1 1 0 L
A; =X, * =diag (ZEijz) = Viz 7
J=1h0k 0
1
0 cee 0 e

(given that x;; > 0Vi,j, i =1,...,m,j =1,....k) to obtain the weighted multivariate

linear model
Y, =X;p+¢,i=1,..m, (3.2)

one can also observe that AiXiA;fF = I}, where [ is the k dimension identity matrix,

the weighed response variable

T
?i:AiYi:<YZ h ) _(N Y,

) = O e Ya) T
and the weighted error component
€; €; r
Ei:Aiez’:( - 7T Zk) :(al,"'7ak)T7
VZil VZik

as well as, the weighted design matrix

zqa 0 -+ 0
~ 0 ~i ~
Xi=AX, = e = diag (xij)jzl k>
0 - 0 Ty

where, z;; = ,/Z;;, provided that, z;; >0, Vi,j, i =1,...m, j=1,.. k.
The covariance of the weighted error vector €; is given by

Y. = Cov(&) = A;Cov(e)A]

kX

2
01 012 -+ O1k
2
012 09 -+ Og .
= . . . (homoscedastic error vectors),
2
O O2k -+ O

and, Cov(€;,€;) =0, ,, 1 #1 .
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3.2.3 The SUR Model

And thus, one can stacking the multivariate linear equations 3.2 in the form

/T11 0 0
0 v T12 ' :

0
~ V21

0 e 0
Y, ) . €
=~ 0 T2 - : by ~
Y, . . €
, = : e T 0 : + , ;
~ 0 0 Vz
Ym 2k b, ,Em

VTl 0 0
0 VT i
) ) 0
0 0 Tk

the model can be compressed in to a single model as (see also [21] , for more details)

Y =Xp+¢, (3.3)

~ - ~ AT
where, the mk x 1 dimension SUR model response vector Y = (YIT, YL, ,Y%) ,
T

the mk x k dimension design matrix X = (5({,5{5, - iT) , so k x 1 dimension

? m

SUR model parameter vector p = (p,, ..., p, )7, and the mk x 1 dimension SUR model

T ~T ~T

T
error vector € = (el , €y, ,em) of the i.i.d error components €;, as well as the

mk X mk dimension covariance structure of the SUR model error vector is given by

S 0 - 0
_ 0o ¥ .. _
X =Cov(e)=| =1,9%,
L 0
0 --- 0 X

i.e, Var(e;) = ikxk, and Cov(€;,€') =0, (Vi #4', i,/ =1,...,m), where O, , is

the square matrix of dimension k£ x k of zero’s.
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3.2.4 Estimation of the parameter vector p in the SUR model

The ordinary least squares estimator of the model parameter (proportion p) derived

from the SUR model 3.3 is given by

m -1 m m -1 m
Pos = (X'X)'XTY = () XTX> > XTY; = (Z X?) > XTY,
=1 =1 =1 =1
> -
™ i 0 . 0 N
m . . m Ve Ya
_ 0 Zi:l T2 ‘. . Z :
E 0 — ' -
m VTik ik
0 . 0 o7, i
S, VEL Y S Ya
Z;ll Zil 2?;1 Til
S VB Yk S Yik
2oy Tik Z?;l Tik

which results in the ratio estimator vector, where Yj; = \/x;1Y;;, j = 1,..., k.

3.2.5 Properties of the estimator p_ . (ratio vector p)

Unbiasedness

The expectation of the ratio estimator p; is given by

Doy Tij Do Tij D D Doty Tij

:pj7

E(5)=F (Z?il Yij\/fﬂzj) _ e VTiE (Y“) i VTGPNT P i Ty

j=1, ..k
Dispersion

The variance of the ratio estimator p, is obtained by

(5 — Var Z;L%m)z 1
v ) - vor (E5 =

i ~ o2y " Xy
E ,TZJVCZT(S/;]) = )=l =17
D iy Tig

2 2
i=1 i) i=1 (2211 Ti5)
2

_ 95

D
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Furthermore, the covariance of the ratio estimators p,,p,,j # j', and j, j' = 1,..., k,
will be obtained as

A A o Zz 1 \/ﬂ Z’L 1
Cov (pij,)_o ( Zz 1 Lij

ij'\/W
D iey Ti

1 n ~
:Zm "Z?wa (Z\/:L’_” sz}\/WEJ’)

i=1 Tij

1 m
= X sy 2o (Vo V) v
i=1<"0 =12 =1

_ Oy’ Zz 1 \/371]372]
Zz 1 Tig Zz 1xw

Consequently, the covariance matrix of the ratio vector p can be established as

SO T =l N e 1
S = Cov (p) = Cov ((XTX) XTY> - (XTX) (XTEX) (XTX)
m -1 m m —1
= (Y XX | D XX () XX | =
i=1 i=1 i=1
o 1
D i Tl 0 T 0
m .
0 D et Ti
X
' 0
m
0 e 0 D20 ik
2 m m m
O D iy Tia 012D i) \/TilTi2 Ok D imy /Tl T
m 2 m m
O12) ity /TilTia 03 0 Tip Ook D iy /Ti2Tik y
m m 2 ™m
Ol Dimy N/TilTik Ok D _iq \/TiaTik Oii D i1 Tik
. -1
Zi:l Zi1 O
m
0 Zi:1 X2
. . 0
m
0 0 Zizl Zig,
g'% 012 Zl 1 V/Til%i2 O1k ZZL Ti1Tik
Doty Tl it wia Zz 1 Ti2 Doiny i1 Doty Tik
012 310 /TilTiz o3 Tk Doie ) /Ti2Tik
— DIl Tl Dojeg T2 Doiey T2 Doy T2 )i Tik (3 4)
Ok Doimy V/TilTik T2k )ieq /Ti2Tik o}
DML Til Yy Tk Qe T2 Y oieq Tik Do Tk
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As mentioned in chapter 2, the covariance matrix 3.4 is larger than the covariance

—~ ~_1 -1
matrix (XT by X) , when we use the weighted least squares estimator p,, .

Recall also that, the conditional consistent estimators based on m residuals for

the corresponding diagonal and off-diagonal entries, namely OJQ- and o, respectively

for the covariance matrix of the ratio vector p are given by:

}/;- — 37 2 1 “ <7 ~
Wy —pry) _ Z(K‘j—pj\/x_ij)
Lij 1
(Yij = bzig) (Yigy — Dywgr)
VTij/Tij

(Yij - ﬁj\/%’j) (Yzj' - ﬁ/\/l"ij') :

1
m—1

2
J

<o
Il
Y2
SN
I
[
|
3
|
—_

1

-
Il

055" = Sjj" =

@
Il
—

Il

‘ 3

— | |~
INGERANGE

m—1
=1
. . . Lo . < Y;; = Y
provided that, z;;, z;7 >0Vj #j', 4,7 =1,..,k,i=1,...,m, Y, = Nt Yii = \/IJT

They were well demonstrated as seen in chapter 2 that, s? is consistent unbiased
estimator of the corresponding parameter ajz, while s, is consistent but only asymp-

totically unbiased estimator of the corresponding o;;, j # g

Exact and Asymptotic distributions

If one assumed that, €; ~ Ni (0,%;), so e5 ~ N(0,05x;;), j = 1,....,k,Vi=1,..,m,
where, Ny (0,%;) denotes, the K-variate Normal distribution with mean vector 0 =
(0,...,0)", and with the symmetric covariance matrix ¥;, this is called the MNLM
(Multivariate Normal linear model).

Further, given the design vectors X! = (T;, ..., %), are fixed, i = 1,...,m, the
weighted error vectors €; are i.i.d, k-variate Normal random vectors, i.e
& ~ Ni(0,,%) Vi =1,....m, where 0, = (0,...,0)”. Also, one may say that, given X”
the 7.d weighted random component \N(Z has the multivariate Normal distribution i.e,

TPy

Y, ~ N, DY ;fij = /Tij, Ts5 > 0. The distribution of p ~ Ny (p, EX),

where ¥ is given by the matrix 3.4 , as well as p = (p,,--- ,pk)T. Asymptotically
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one can obtain

2

91 gi2M12 . OlkMik

B pap2 1 o

O12/412 Uz ... O2klok

~ D H1p2 w2 M2 g

\% m(pm - p) ? Nk 07 . . . . )

2
OikMik  O2kM2k . . Tk
H1peg 257297 Bk

: 1 m 1 m . .
provided that, - > 0" Tij — pj, 52 D iy \/TijTyy — fyy, Where pj, poa, j < j' =
., k, are constants.

3.2.6  Multivariate asymptotic normality of the ratio vector
P,

In a similar way as in the bivariate case, it will be assumed that the random error

components €; are not normally distributed, but are 7.i.d random vectors, i.e,

E (&) =0, and Cov(€;) =%

Moreover, under conditions on the weighted design matrices )~(i, we will show that in

werr L= 1,..,m.

large sample size m, p, has the multivariate Normal asymptotic distribution. These

conditions, namely the pairs

(X;,Y;) are i.i.d = the pairs ()N(Z,SN(Z) are also 7.i.d, where, X; = diag (Xw>
J 1

Xij = VXij, Xiy >0, Vi,j, i =1,..,m,j = 1,..., k. As well as, E(XZ] ,)

E (/X5Xy) exists, Vi, j =1,... k.

i

So again, one can rewrite p,, ¢ as

m

b= (X'X) X'Y = (LXK XY,
=1 =1
m -1 m
= (XXX YXI(Xip+e)
i—1 i=1
m -1 m
= (Y XIx, (Z X Xp + Z XTGZ) ,

=1
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and this can be rewritten as

-1
I o 1l <=
5 .—pl=|— XX, — ) XTe
o= (i335) (GrEwe)
-1
Xy 0 .- 0 -
Xi€i1
1 & 0 X

i=1 Do 0
0 - 0 Xy

lm
|

Xik€ik

(3.5)

To derive the multivariate asymptotic distribution it needs to investigate first, the
denominator matrix in expression 3.5 is consistent, and second the numerator obeys
the multivariate central limit theorem.

Thus in large m, and by following the LLN, the denominator of 3.5 is consistent.

Since
-1

() — (e(x) oo

SO |
provided that, <E (XZTXZ) ) > 0, subsequently, eq. 3.6 can be written as

(%Z (diag(Xy5));—, k) —" ((diag(B(Xy)))j=1,.6) " >0,

.....
1=1

or

-1 -1
Xq 0 -+ 0 E(X;) 0 0

1 m O Xl "- E O EXZ

D I — -

me : N : 0
o --- 0 X 0 0 FE(Xi)

The numerator obeys the Multivariate Central limit theorem
1 s D v TS
= Y XTe, —P N (Ok,E (X EX))
i=1

= N <0k, (o B (VX)) k) : (3.7)

.....
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where, the asymptotic covariance

as

The asymptotic covariance in the consequence 3.7 can be derived as following: From

the MVSUR model 3.3, and for ¢ = 1, ..., m, we have

Xi€n

Cov(XT€) = Cov : = (COU (\/X_UEU’ \/7 ij ))

Il
VN
ey
N
Is

.
i><
B
.
Sm
M
\/
N——
Q'\
I
a5
|
1
N
&
=
L
i><
@
—
m
Ly
M
h\
N—
N——
I
a

=1L,...

J
- (%’E(\/ XUXZ‘J"))jjfl a8 Bley) =0,E(Gy) =0.

.....

.....

It follows that

m Xit€a
1 . I~
|
Xik€ik
o1E(Xa) o1 BE(V X Xia) 0 ouE(VXiaXi)
N 012E(\/Xi1Xi2) U%E(XZQ) UzkE( XiZXik)

k?

UlkE(\/XilXikz) UQkE(\/XiQXik:) U]%E(Xikz)

Therefore (with help of the known Slutsky’s lemma), one can obtain the asymptotic

Normal distribution of the sample ratio estimator p, , hence the expression 3.5 can
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be rewritten as

E(X;)) 0 - 0
vm(p,, —p) —" N(0, . . . . X
0 o0 B(Xy)
O'%E(Xl) 0'12E(\/X1X2) O'lkE( Xle)
OlgE(\/XlXQ) U%E(XQ) OQkE(\/XQXk) y
UlkE( Xle) O'QkE( XQXk) O']%E(Xk)
-1
BE(X)) 0 - 0
0 E(Xy) )
. . 0
0 o0 B(X)
o2 e E(VX1Xe) . ouB/XiXp)
E(X1) E(X1)E(X>) E(X1)E(Xy)
a2 E(vVX1X>) a3 L ounEWXXy)
= N(0, E(Xl).E(X2) E(?Q) . E(X2)F(Xk) ) (3.8)
ok E(VX1Xy)  oauE(WXeXy) o}
E(X1)E(X)  E(X2)E(Xj) E(Xk)

is the multivariate asymptotic Normal distribution of the ratio estimator vector p,,

with the asymptotic covariance matrix

af o12 E(v/X1X2) L o1, E(vX1 Xg)
E(X1) E(X1)E(X2) E(X1)E(Xk)
012 E(vX1X3) o3 . o B(VXaXy)
- E(X1)E(X2) E(X>) E(X2)E(Xy)
P . . . .
o B(VX1Xg) o BE(WXaeXy) o}
E(X1)B(X) E(X2)BE(Xy) B(X)

3.2.7 Approximate confidence intervals for the linear combi-
nation ¥ = o’ p

By recalling the last consequence

vm(p, —p) —7 N(0,%,), (3.9)
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and again by applying the Cramer-Wold device, so Cramer-Wold device shows that
the exp 3.9 holds iff, Va = (v, ..., )T € R¥ such that || a ||> 0, so we have

Vm(y, —9) =vm (a'p,, — a’'p) —P N (0,a"S,0)

o3 cB(VX1Xe) |, ocuBE(WX1Xy)
E(X1) E(X1)E(X2) E(X1)E(Xy) 0
o12E(vX1X>2) o3 L o BE(VXXy) E
=N|o, (041 . Ofk:) E(Xl).E(XZ) E(?(z) . E(Xz).E(Xk)
o EVXIXD)  ouB(W/XXY) of O
E(Xl)E(Xk) E(X2)E(X}) E(X})
2 k j 1 XXI)
— J
=N OZ%E;( +QZZ% AE(X,J) , (3.10)
] —9 j=1 J

and hence, the asymptotic variance of Oy = a’p, is given by

k 2 k j —1
5 O Xij’)
=) a; +2 e , (3.11)
S el ey 2 Lo 3o

which is, the asymptotic variance of @m, when the error components are Normally
distributed.

To obtain the approximate confidence intervals for the linear combination of the
proportions, it needs to estimate the asymptotic covariance matrix X, by plugging in

estimates for each corresponding individual parameter, which are

_ 1 & _ 1 & S,
X,j= EZXW Xy = EZ\/XUXUU JF T30 = Lk,
1 =1

=1
as well as
21§ (¥ ﬁ]XU)Q Ly (N' 4 )2
s]_m_1; X, _m—lzz; Yij — 0,/ Xij
S = 1 z’m: (Y;] _ﬁJXU) (Y;]' _ﬁ /XZ]/)
23 m — 1 i1 Xi] Xij’
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provided that,
nd Yi; i Y /

XijaXij’ > 0 vj 7éjl7 j?j = 17"'7k7i = 17"'>m7 Y;] = X—Lj7 Y;j’ = \/T/ and hence

S seXa ... suXu
X X1X.2 XX g
soXp 32X o
S XaX.2 X.2 XXy
Ep - .
~ ~ 2
16Xk S26X.2k Sk
XX X oX .

Consequently, from 3.11, one can obtain the standard error of 9, as

"
J 5, rX

Gy = s.e(Up) = Za_ —I-QZZ(IJ = ,

N

j=2J=1 J

where, the estimators namely Y,j,y.jjz, 3?, and s, are the consistent estimators of
the corresponding parameters F(X;), E(\/X;X;), 0]2, and 0,
One also should mention here that, during the intervals evaluation, the estimator
covariarlc\e matrix have to be positive or at least positive semi definite, to ensure
that Oﬂ’% > 0, otherwise, we have to exclude the negative variances, this will be
clarified in chapter 4.

Finally, The approximate confidence interval for the linear combination ¥ = a’p,

can be obtained by the normal quantile z,_, as

_a
2

[@m + zl_gs.e(@m)} ,

2
or the suggested conservative confidence interval by the t-quantile which is given by
|:7§m + t(m_l,l_%)s.e(ﬁm)} s
-

s.e(Dm)
(m — 1) degrees of freedom.

as, ~ tm_1, Where, bim—1,1-2) is a (1 — %) quantile of the t—distribution with

3.2.8 Derivation of confidence intervals for ¢

In continuous context, one may gives the outline for deriving the confidence intervals
for the linear combination 9 of the proportions, where ¥ = a’p, o > 0 at the

following cases:
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case I

Firstly and on one hand, the distribution of D = a’p ( Y is an unbiased estimator
of ¥), given the design vectors (X{,...,Xt), X; = (T1j, ..., Tm;)’ 7 = 1,..., k, where

p ~ Ni (p, Xx), Xx is the covariance matrix given by 3.4, will obtained as

k jlfl Z TiT
U~ N ap,, Y o +2 o LV . (3.12)
Z ]JZ lelw ]’2; JJZ T Ty

the expression 3.12 rewritten after it is standardization, as

kg1 s —
~ g1 S Iljxij'
\/m(ﬁ—ﬁ)wN % +2 ooy~ Zlm
Z J Z Z Z I R D i

=1L j'=2 j=1

a = o + Qo
7 Z =1 3513 . SRR WD Y Lig
It follows that, the exact (1 — a)% confidence intervals for ¥ are obtained by

9 —

Ox

[@ 7, S.E(@)} s ~ N(0,1),

Wheno 0/,j7éj 7,7 =1,...,k are known,

. ) -
[19 + t(m,lyl,%)s.e(ﬁ)} , as, —— ~ by,

X

. oo
when aj?,ajjf, j#73,73,5 =1,.. k are unknown,

where, the standard errors of o are given by

k j-1

- o? Z —1 \/LigT;
jz:; T T jfzzgyz; i Z L Tig i 1$ i

and

: 53 ki Z 1/ Yij;
9\ — 2 J i=
s-e(¥) = Zajzm ..+QZZO‘J &y’ Z LT LT ,'
= ]: 1= 1=
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For the non multivariate Normal distribution of Y; or non multivariate Normal dis-

tribution of p, and if these sequences say converge to the corresponding constants,

namely:
1 & 1 &
ooy ZZL"” — Ky, ™ Z V&5 = Myt
=1 =1
where, p;, p, are constants, j < j = 1,...,k, then the sequence of variances o2

converges to the corresponding variance O'Z as m tends to infinity, where

2 k J —1
2 29 94 Hij"
o, = g ()éj;+2 E E QoL — wy (3.13)
j:l J ] 72] 1

And hence, the asymptotic Normal distribution of the estimator U.m can be obtained
by
Vi (9 = ) —P N(0,2),

where the asymptotic variance JZ is given by 3.13.
The obtained confidence interval is an approximate confidence interval, since the

asymptotic Normal of Upm is involved.
case 11

On the second hand, the conditional variance of 0 given the random vectors (X7, ..., X},
Xj = (le, ...7ij)T,j = ]_7 ...,k, when the vectors Xz = (Xih ...,Xik)T,i = ]_7 e

are 4.i.d random vectors (non multivariate Normal distribution of Y;) would be ob-

tained by
k koj -1 » Zm \/7
i=1 ij
Z & X +2 Z Z Q;ay X X

Zzl o =1 Zzl ZJZz1 7

subsequently, it follows that
k k J 71 ~

Var(vmd) = mVar(d) = Z a?— +2 Z Z Oy === (3.14)

./

j=2 =1 J
And from the expression 3.10, one can rewrite the asymptotic distribution of the
distribution of @m as

~

Vi (O = 9) —P N (0,03). (3.15)
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where, the asymptotic variance o3 is given by

k 2 k j *1 X]XI)
95 J
Var(v/mdy, E BY) +2 E E o -)E(Xjr) . (3.16)
j=1 j'=2J=1

However, since

X, =7 B(X;), X ; —7 BE(X)), as well as

1 & /
| :—Z /7_>7>E( /Xij/), and j # j (with the LLN),
m

then the variance in 3.14 converges also in probability to the corresponding asymptotic
variance 3.16.
And thus, the corresponding variance estimator for o3 is obtained by plugging in the

estimator for the individual parameter in 3.16 as

k koj—1

i s X jj
aﬁ—g a—+2§ E ijou ,’
j'=27=1 -J

provided that, the estimators

2 1 e N 2
§;=— (Yij—pj Xz'j) ;

m— 14
1=

1l &Ko . Yoo —pas/
85 = ] (Yij - D, Xz'j) (Y;j’ — Dy Xij’) =Xij7Xij’ >0
i=1

as well as, X X X ;;» are all consistent estimators for the Correspondlng parame-
ters o7 and o, E(Xj), E(Xy), E ( Xijr). It follows that, the estimator aﬂ is also
a consistent estimator of o2, and hence the standard error of 9, s.e(d)) = %;g.
One can now construct the approximate confidence intervals for the linear combina-
tion ¥ as following:

When, aJ , a”r,Vj,j’ =1,...k,j # j are known then, the approximate confidence
bounds for ¥ is given by

[19 + zl_%s.E(zé)] ,

where, the Standard Error
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and the quantile, z,_, is defined as previous.

In case of unknown parameters a],a]jr, again the asymptotic theory given here

will be involved to obtain the approximate confidence interval for 1J, which is given

by

where,

s.e(Vp) = Za +222a3a18_/{
X

j'=2 =1

For a small sample size with all these available consistent estimators, the t—distribution
can be involved to obtain a conservative confidence interval for the linear combination

U= Z?Zl a;p;, which is given by
'lgm + t(m_l,l_%)s.e(ﬁm)

as
O — ¥
s.e(Upm)

~ tm1 —" N(0,1).

Finally, when the i.d weighted random component Y, has the multivariate Normal
distribution (p has the multivariate Normal distribution), then given

(XT, ..., XT) we will have

k-1 , XX
\/%(19_19) Zasz IXZJ+QZZaj ]ijZl ZJ
j'=

where, the variance

k k J _1 /mzm \/W
+2 j] - =1 - tJ<*g .
z:: Z Z e Zi:l Xij Zi:l Xij’
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Similar to the case I, the constructing confidence intervals in this case are exact
confidence intervals, since it was assumed that the random components Y; has the

multivariate Normal distribution.

3.3  Multivariate Poisson model

There are many fields in which the multivariate Poisson data arises, i.e: Epidemiology:
Incidences of different diseases across in time; Crime data: rapes, arson, manslaughter,
smuggling; marketing: Purchases of different products; economics: Different types of
faults in production system; sports: Football data, etc.

For a comprehensive discussion of the bivariate Poisson model and its multivariate

extensions see [6].

3.3.1 The Multivariate Poisson model

In order to extend the bivariate Poisson model to the multivariate extension, one shall

consider the following random variables:

Yi=W+1WV, Xi=Y+27
Yo =W +V;, Xo=Yo+ 27,
Y =W 4+ Vi, Xy =Y, + 7

where, W, V;, Z; are independent Poisson distributed random variables with the pa-
rameters \g, \;, i; respectively, W, V; are latent variables, while Y}, Z; are observable,
j=1,...k.

The random variables Y7, ..., Y, follow jointly a Multivariate Poisson distribution with

the joint probability function is given by

P(YZY):P(le—yUYVQ_yz?: ZP _wa‘/;:yj_w)
y] s k A\ w
— /\0+Z] 1A H ] Z [H ( Y )wkll (k—0> ] (317)
J w=0 Li=1 w Hj:l )‘j

where, s = min(y,, ¥,, ..., ¥,)-

The probability function (3.17) is quite complicated for calculation and for obtaining
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the Likelihood function for maximization (containing the latent variable W), nev-
ertheless one can say that Yi,..., Yy ~ MulPoiss(\g, A1, ..., \g), where, MulPoiss
denotes the multivariate Poisson distribution, and Ay, A; are the parameters of the
independent Poisson random variables W, V; respectively.

Moreover, Xy, ..., Xx ~ MulPoiss(Ag, A1 + i1, ..., A + pi), where Ao, A; + p; are the

parameters of the corresponding independent Poisson variables W, V;+Z7;,7 =1, ..., k.

3.3.2 Properties of the model

e Marginally, Y; ~ Poiss(Ag + )\;), as well as X; ~ Poiss(Ag + \; + p;). This
implies that E(Y;) = Var(Y;) = Ao+ A, and
E(X;)=Var(X;) =X+ A+ pj.j =1, ... k.

o Cov(X;, Xy ) =Cov(Y},Yy) = Ao, Vj # i =1 ..k,
i.e, the parameter )y is the covariance between all the pairs of the random
variable Y}, and all the pairs of the random variable X;. For different covariance

structure for each pair of the variables, see [13].

e The Marginal Conditional distributions are given by:

PYiX5) ~ Bin (Xj, %) = Bin(Xj,p,), where the Binomial proportion
J J

Ao+A; .
p, = ﬁ further, it follows that E(Y; | X;) = p,X;, as well as

Var(Y; | X;) =p,(1 —p,)X;, however the joint conditional distribution
P<Yj’Yi"Xj’Xj') and the pair conditional covariance Cov(Y}, Yy | X, X)) ,j #

.

j =1,...,k can not be explicitly calculated.

e Unconditional consistent estimators of the combinations:
Aoy Ao + Aj, Ao + Aj + py, are: SYNJ_, ,Y,j,yj, respectively i.e:
SY]_’Y]‘, —F )\0,7.]- —P X+ )\j,?,j — 5y,
X; —7 X+ Aj + pj. Furthermore X ; — syj,yj, —P N+ oy, 25—
where Y ; = L3 Vi, =W+ V,, X;=L15" X =W+V,;+Z;, and

7o _ 1 m - s .
Z > iv1 Zij, as well as the unconditional sample covariance

T m

v —7 N, as well as
L7
J

Sy, = AN (V=Y )Yy =Y ), 5 <444 =1,..,k, and also
. IYEDY Y,

are the commonly used ratio estimators for the proportions

o

g Xo+Aj 11
p;,J =1,k

-J



3.3. Multivariate Poisson model 70

3.3.3 Description of the model

One may describe the model through the vector, T = (W, Vy,..., Vi, Z1,...Z;)T, and
an k x (2k + 1) matrix A (i.e, the elements of A are zero and ones no duplicate rows
exist, (see [12], for more details).
Define the matrices A,, A,, having the forms A, = [1j I Opxi), Az = [k I Igl,
where 1, = (1,...,1)7, I} is the identity matrix of size k x k, as well as Oz, is a
matrix of k X k zero’s.
The vector Y = (Y1, Y3, ..., Y,)T = A, T follows a multivariate Poisson distribution
with parameters Ag, A1, ..., \s.
Furthermore, X = (X, Xo, ..., X3)7 = A, T follows also a multivariate Poisson distri-
bution with parameters Ay, Ay + pt1, ..., Ak + 4. The number of the model parameters
is exactly 2k + 1,k > 2.

Further, one may describe the hole model by the vector (Y, X)?, as

-2 )

where, Y = (Y, ... V), X = (X, ... Xp)', V=WV, .. V), Z = (Z,.... Z)", and
Ay, A, are defined above.

3.3.4 Multivariate asymptotic normality of the estimator vec-
tor p

We will derive the asymptotic distribution of the estimator vector p,, of the proportion

vector p = (p,,....p,)", where, p,, = (D, D,,.)", as well as, p,. is the ratio

estimator of the corresponding proportion p,,j = 1,.... k.

For the independent r.v’s W,V; and Z; of the vector T = (W, V4, ..., Vi, Z1, .. Z) 7,

we have the asymptotic covariance matrix
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A=Cou(T) =
Y 0 ]
0 X O
e e e :diag()\g,)\l,...,/\k,...,uk),
231
' 0
0 - 0 e 0 S P

and further one can apply the multivariate central limit theorem to the vector T,, =
L3 Ty, where the 4.i.d random vectors T; = (W;, Vi1, ..., Vig, Zir, ... Zis) "
Vm (T — E(T)) =" Nags1 (Ogps1, A)

where, the covariance matrix A is defined above.

Define the vector H = (Y3, X1, ..., Y3, X;,)T, with the covariance matrix

Yi
Xy

¥, =Cov(H) =Cov

Ao Ao Ao Ao
C,
Ao Ao Ao Ao

L 4 (2kx2k)
where, the diagonal elements of the covariance matrix are given by
Ao+ A Ao + A E(Y;) E(Y;) ‘
Cj: = ,jzl,...,k‘.
)\o—i-)\j )\O—F)\j—Fﬂj E(Y}) E(X])
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Thus, by plugging in these diagonal entries to the covariance matrix 3, we obtain

3, = diag (Ajmg +

0
D + Aolorld,. (3.18)
wil/) .

=1,k

And in same manner, by applying the Multivariate Central limit theorem to the 7.i.d

random vectors H; = (Yi1, X1, ..., Yig, Xix) T, Hyy = 2 377 H;, yields

vm (H,, — E(H)) —7" Ny, (0,%,),

or,

Y, Ao+ M 0
X, Ao+ AL+ 0
\/% - —>D NQk ?EA 9
Yk Ao + Mg 0
-X'k—2k><1 [ Ao+ Ak g | | 0 okt

The Multivariate Delta method

So far, it was just applying the MVCLT to the pairs (Y, X;) to obtain the asymp-
totic normality of the vector estimator p, we will introduce to the extended §-method
called the multivariate 6-method (see the subsection 1.3.3 or [14]) which is applied
to obtain the asymptotic distribution of a k& dimensional non-linear mappings of the
pairs random variables (Y}, X;), i.e, asymptotic distribution of the non-linear trans-
formations %,j =1,.., k.
g
We will define the following notations:

0 = E(H) = (91179217 .. 91k792k) ) 14 92J — E(X ) .] - 17"'7k7

0
0 c R*, ¢(0 <9“> :R* — R*, (3.19)
25

is a vector-valued function that is continuously differentiable at @ such that 65; > 0 Vj.

By plugging in the elements of @ of notation 3.19 to the covariance matrix 3.18, we



3.3.  Multivariate Poisson model 73
obtain
[911 011] [Ao Ao] [/\0 Ao]
011 O Ao Ao Ao Ao
[Ao Ao] [012 912]
Ao Ao o Oo
X, = EG,AO = )
. Mo Ao
Ao Ao
[Ao Ao] [)\0 /\0] lelk elk]
L N VDT I TOR Y I
where,
E(Y;,) ,fors=1
0,; = 35 NVji=1, ..k
E(X;) ,fors=2
01 61 Ao Ao )
Let, 8, = ,and Ag = , then the squared block matrix
O1j 0O Ao Ao
[0, A A |
Ao 6>
Yo = | (3.20)
Ao
o AO AO ek - 2kx2k

The matrix V'(0) of partial derivatives of the continuous differentiable function

g with respect to 0 is obtained by

vi(g) = 290 _[ 0,6 2,6
g 007 001 0925 Jj=1,.k
[ 99, 99, 9y, g, 99,  909; ]
8011 001 9012 902 301 00y
892 892 892 892 892 892
_ 0011 0021 0012 0022 001, 00y
agk agk agk agk 8gk agk
| 8011 8021 9012 902 01 902k (kx2k)
[ 1 _fu ]
o o, 0 0 0 0
1 0
— 0 022 03
’ 0 0
0 0 0 0 = -9
| Ok O 1 (kx2k)
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, the block diagonal matrix

) =1,...,k _
m 0 0
T 0 Up .
V,(0) = = block.diag ('r/j)jf1 ,» Whose the off-
. 0 1,y
| 0 0 n, ]

(kx2k)
diagonal matrices 0 = (0 0), as well as the transpose of V() is given by

[l o7 0" |
OT T
Vg(a) = &
P o’
o 0" ni |
For, p = (p,,...,p,)", where D, = 5(()3 - Aoﬁ);jijw, and according to the MVJ-
method we have
9(8) =p=g(8,) =5,.0, =H,,
with the corresponding estimators of p,, = (p,.,, -, D,., )7 Doy = %, j=1,...k.
Hence, it follows that
Vb, = p) —7 Ni (0,V1(0) ., V,(0)) . (3.21)

where, ¥ is given by the matrix 3.20. So, the asymptotic covariance matrix of

0.7

expression (3.21) equals

V;(e) Ea,/\o Vg(e) =

n, O 0

0 n,

. 0

0 0 n, |

0, Ao Ao
o 6 :
X
. N
Ry Ao O
méin!  mAens
| Mt ma0am3
| mAoni Moy

n 0"
ol nf
OT

7, AonE

(3.22)
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I6)

There j** diagonal element simplifies to

=0 P Gy () )
71 9% 0§’j 0§’j ng egj 0§j 02
B(Y) ( E(Y») 1 .
— 1_ fny p(]_—p),j:]_7,k,
(E(X;)) B(X;))  B(X;)™ ’
and whose off-diagonal elements simplify to
)\0 )\001j )\Oelj' )\091j0 !
MMM = 1 Ao -
77 770 02]92], G0y 6202, 63,02,
[y by Oty
023‘ 92 5 923‘ 92 5 92] 92 5
Ay ( _@>_01_f(1_@>
023'02]" i 023‘ 02;" 023‘
__ M (1_@> 1_01_14
02,65, B 0y
(=) (1= py) i £ S = Lk
BOE(Y,) P T SRS = ek

The multivariate asymptotic Normal distribution follows now by plugging in the above

diagonal and off-diagonal entries to the matrix

vm(p,, —p) —7

3.22 of the expression 3.21

p,(1-p,) Cou(Y1,Y2)(1-p; )(1—p,) Cov(Y1,Yi)(1—p )(1—p,) |
E(X1) E(X1)E(X2) E(X1)E(Xy)
Cov(Y1,Y2)(1—p, )(1—p,) Py (1—py) Cou(Y2,Y ) (1-p,)(1-p,)
N, | o, E(X1)E(X2) E(X, E(X )E(Xk') :
COU(YhYk)(lfpl)(lfpk) COU(eryk)(lfpg)(lfpk) pk(lfpk)
3 E(X1)E(Xy) E(X32)E(Xy) E(Xy) d

where, Cov(Y;,Y;) = Xo, Vj <j .5, =1,...,

of the ratio estimator vector p,, will be

k. The asymptotic covariance matrix

[ p,(1-p)) Cov(Y1,Y2)(1-p,)(1-p,) Cov(Y1,Yg)(1—p )(1=p,) ]
E(X1) E(X1)E(X2) E(X1)E(X})
Cov(Y1,Y2)(1—p, )(1—p,) Py (1—py) Cov(Y2,Yy)(1-p,)(1-p,)
asCov(p, ) = E(Xl)'E(XZ) E(?Q) E(X2 ). (X&)

Cov(Y1,Yy)(1—p, )(1—p,)

Cov(Ya, Yy )(1—py)(1—p,)

Py (l_pk)

BE(X1)E(Xk)

BE(X2)E(Xk)

E(Xk)

Again the estimator for the asymptotic covariance matrix can be obtained by plugging

in the estimates for each individual parameter

in the matrix asCov(p,,)
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[ P (1-5,) Sy, v, (1=P1)(1=D,) Sy1,Yy, (1=p)(1=p;) |
X1 XX XaX g
B e R (5 A B O (=
asCov(p,,) = XX X2 X2 Xk , (3.23)
syly (1 pl)(l—pk) syz,yk(l pg)(l_pk) pk(lfpk)
| Xa1Xk XXk X i
where

and the unconditional sample covariances

m

1 = — . N
Sy. Y, — 1 (}/Zj - Y])(}/U’ - Y.j')7 J < 1,577 = ]-7 "'7k7
! m=1ia

alternatively, one may consider a joint estimator for Ay

=

k

Y;, Y,
77

i=1 4 =j—1

I.e, the matrix 3.23 is also a consistent.

3.3.5 Approximate confidence intervals for a ’k’ linear combi-
nation of the proportions

For constructing the confidence intervals for the linear combination of the proportions
one should mention that, the matrix 3.23 have to be positive or at least positive
semi definite, to ensure, @ > 0, otherwise we have to exclude the negative
variances (see chapter 2, subsection 2.3.5, also it will be clarified in the chapter 4).
The estimated variance of the linear combination of the ratio estimators of p_ , such
that o > 0 is given by

o k P kgl YY,(l_Aj)(l_p\j,)

asVar(a™p,) = Zajzp] = 22 Za]a o — ~ % ., (3.24)
J .j'

Jj=1 ]—21 1

and consequently, the standard error of the linear combination ap, (if defined), is

giiven by the square root of the expression 3.24 divided by the /m,
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Finally, the approximate (1 — a)) % confidence intervals for the linear combination of

the proportions a’p are given by
[an)m +z _, s.e(an)m)} ,
-2
Or, the suggested conservative confidence intervals (safety bounds) by the t-quantiles

[an)m + t(m—1,1_%)8-6(an>m)} ;

'ose(aTp,,)

defined.

m-1 —" N(0,1), and the quantiles z,_,, t(m—1,-2) are previously
2



Chapter 4

Simulations for approximating the
"true" coverage

4.1 Introduction

An extremely powerful application of modern computers is in the field of simulation.
A simulation is a computer experiment which mirrors some aspect of real life data
(which is complicated to manipulate in real life) that appears to be based on random
processes.

Computer simulation tools can be used to compare the observed coverage (’cover-
age probability’ or simply 'coverage’, which is a number of the covering intervals for
the parameter divided by the total replications or loops, or a percent of the covering
intervals with respect to the total number of these intervals) of the confidence inter-
vals with the corresponding nominal value (the true coverage).

The programs instructions are performed with the R language to run the R software
packages. They made to compare a curve plotted by the coverage of the correspond-
ing confidence interval with the nominal value of the true coverage (1-a), where « is
the confidence level, with the fact: under repeated sampling, (1-«)% of these intervals

will contain the proportion p or a linear function of the proportions.

78
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Aim of the simulation

the main goal of the simulations is to validate approximate confidence intervals for a
linear combination of the proportions based on Poisson models. The simulation study
was performed and evaluated to obtain a more reasonable and appropriate coverage
close to the true coverage. For approximating the true coverage for different sample
sizes and model parameter values, I considered two confidence intervals, approximate
(with the normal quantile) and conservative (with the t- quantile).

Thus, "With large replications, samples of different sizes are taken from the Pois-
son distribution with different parameter values at different levels of the confidence
intervals’.

To display the results graphically, the results plotted in figures with horizontal line

to indicate the nominal values and by the corresponding tables for more illustration.
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4.2 The Univariate case

Simulation in a univariate case does not need much work. Theoretically, the sample
variance based on the univariate residuals as well as the variance estimator based on
the univariate Poisson model are both BUE’s.

The program is running with 10,000 replications at the nominal value 0.95, for small
and large values of the Poisson parameter for different sample size m, taking in
account only the valid intervals (runs) with valid standard errors, i.e., Y 1" X; > 0,
if Y X; =0 in a sample, presumably nobody would like to calculate a confidence
interval in that case, as no real observations are available). The t-quantile is adjusted
on the reduced actual sample size m; which contains only the informative observations
(a noninformative observation is the random variable associates with the event A; =
{X; = 0} with probability of occurrence P(4;) = e, and P(A4;) = 1 — ™", where
A; = {X; > 0},i = 1,...,m) (we only accept runs as valid, for which the reduced

sample size m; of informative observations is at least 9 ). Also one can calculate the

percentage of the excluded runs (non valid).

coverage
o
coverage

I I I I I N N N B |
Ny

0.900 0.910 0920 0.930 0.940 0950 0.960 0.970

0.900 0.910 0920 0.930 0.940 0950 0.960 0.970

—— by the z-quantil —— by the z-quantil
—— by the t-quantil —— by the t-quantil

T T T T T T T T T T T T T T T T T T T T T T
o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100

sample size m sample size m

Figure 4.1: Coverage of the confidence interval Figure 4.2: Coverage of the confidence inter-
for the proportion for the parameter values A = 1, val for the proportion for the parameter values
m = 10, 15, 20, 50, 100 with the variance estimate X\ = 1, m = 10, 15,20, 50, 100 with the sample
based on the Poisson model. variance.
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For fixed Ay = Ay = A = 1 for different sample sizes with the variance estimate
based on the Poisson model figure 4.1, the coverage by the adjusted t-quantile method
are larger than the nominal value, while by z-quantile are smaller. And with the
sample variance (figure 4.2) is nearly similar to the figure 4.1. Further, there is no

excluded runs, when the sample sizes become larger for any A as seen in tables 4.1

and 4.2.
sample size m
Coverage 10 15 20 50 100
by the z-quantile | 0.9359 0.9409 0.9398 0.9450 0.9472
by the adjusted t-quantile | 0.9616 0.9602 0.9555 0.9526 0.9509
The percentage of the excluded runs | 0.3914 0.0018 0 0 0

Table 4.1: Coverage of the confidence interval for the proportion and the percentage of the excluded
runs for the parameter values A = 1 for sample sizes m = 10, 15, 20, 50, 100 with the variance estimate
based on the Poisson model.

sample size m
Coverage 10 15 20 50 100

by the z-quantile | 0.9218 0.9292 0.9336 0.9446 0.9493
by the adjusted t-quantile | 0.9541 0.9519 0.9499 0.9502 0.9533

The percentage of the excluded runs | 0.4026 0.0023 0 0 0

Table 4.2: Coverage of the confidence interval for the proportion and the percentage of the excluded
runs for the parameter values A = 1 for sample sizes m = 10, 15, 20, 50,100 with the sample variance.

Further, the coverage for more parameter values, i.e., A = 0.5,2, with the both

variances estimates are given in the figures 4.3,4.4, 4.5, and 4.6.
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Figure 4.3: Coverage for A = 0.5, m = 10, 15, 20, 50, 100
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on the Poisson model.
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Figure 4.4: Coverage for A = 0.5,
m = 10,15, 20, 50,100 with the sample
variance.
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On the other hand, for the fixed sample sizes 10,50, and A = {0.5,0.8,1,2,5}, we

simulate the true coverage as following:

a) Using the sample variance.

From the figure 4.7, the coverage by the adjusted t-quantile method is conser-
vative and gives more reasonable coverage especially for large A, while by the
z-quantile method the coverage is dramatically smaller than the nominal value,
also there is a big difference between the both methods. For larger sample size
(figure 4.8), the coverage by the t-quantile method are again more reasonable
while by the z-quantile are slightly smaller with small difference between the
coverage of both methods. Further, the tables 4.4 and 4.5 show that for all
A = {0.5,0.8,1,2,5}, there is no excluded runs when lambda or sample sizes

are large.

Similar results hold at different confidence levels (because, the confidence inter-
vals demonstrated the same pattern for all confidence levels, we focus on the
level 0.95). See for example table 4.3 for more coverage at different confidence

levels.

Coverage by the z-quantile at the confidence level

m | 0.90 0.95 0.99 0.999
10 | 0.8697 0.9184 0.9728 0.9896
15 |1 0.8795 0.9262 0.9740 0.9940
20 | 0.8863 0.9313 0.9820 0.9953
20 | 0.8909 0.9449 0.9872 0.9982
100 | 0.8967 0.9488 0.9879 0.9982

Coverage by the adjusted t-quantile at the confidence level

m | 0.90 0.95 0.99 0.999
10 | 0.9041 0.9496 0.9904 0.9988
15 1 0.9053 0.9501 0.9888 0.9992
20 1 0.9045 0.9502 0.9904 0.9990
50 | 0.8997 0.9501 0.9902 0.9989
100 | 0.9006 0.9516 0.9899 0.9989

Table 4.3: Coverage for A = 1, with the sample variance
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Figure 4.7: Coverage for the parameter values Figure 4.8: Coverage for the parameter values
A = {0.5,0.8,1,2,5}, m = 10 with the sample A = {0.5,0.8,1,2,5}, m = 50 with the sample
variance. variance.

A
Coverage 0.5 0.8 1 2 5

by the z-quantile | 0.9199 0.9161 0.9227 0.9203 0.9194
by the adjusted t-quantile | 0.9498 0.9498 0.9524 0.9506 0.9510

The percentage of the excluded runs | 0.9263 0.6294 0.3996 0.0140 0

Table 4.4: Coverage and percentage of the excluded runs for parameter values A = {0.5,0.8,1,2, 5},
m = 10 with the sample variance.

b) Using the variance estimate based on the Poisson model.

Figure 4.9 shows that the t-quantile method is more conservative and gives
larger coverage than that by the z-quantile which gives small coverage for all A
and smaller coverage when A is small. When the sample size is larger (figure
4.10), the coverage are similar to that in the figure 4.8 but slightly larger (the
estimated variance based on the Poisson model is larger than the sample vari-
ance). Also, from the tables 4.6 and 4.7, one can see that, when A or sample

sizes are larger then there is no excluded runs by the both methods.
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A
Coverage 0.5 0.8 1 2 5
by the z-quantile | 0.9442 0.9441 0.9461 0.9439 0.9435
by adjusted the t-quantile | 0.9525 0.9508 0.9530 0.9497 0.9486
The percentage of the excluded runs 0 0 0 0 0

Table 4.5: Coverage and percentage of the excluded runs for parameter values A = {0.5,0.8,1,2,5},

m = 50 with the sample variance
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Figure 4.9: Coverage for A, m = 10
with the variance estimate based on the
Poisson model.
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Figure 4.10: Coverage for A, m = 50
with the variance estimate based on
the Poisson model.

A
Coverage 0.5 0.8 1 2 5
by the z-quantile | 0.9000 0.9227 0.9328 0.9404 0.9488
by the adjusted t-quantile | 0.9406 0.9548 0.9576 0.9666 0.9736
The percentage of the excluded runs | 0.9310 0.6325 0.3944 0.0133 0

Table 4.6: Coverage and percentage of the excluded runs for A for m = 10 with the variance

estimate based on the Poisson model.

A
Coverage 0.5 0.8 1 2 5
by the z-quantile | 0.9454 0.9464 0.9462 0.9452 0.9490
by the adjusted t-quantile | 0.9548 0.9536 0.9544 0.9503 0.9548
The percentage of the excluded runs 0 0 0 0 0

Table 4.7: Coverage and percentage of the excluded runs for A for m = 50 with the variance

estimate based on the Poisson model.
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4.3 The Bivariate case

In this section, one would consider the coverage of the confidence intervals for the
linear combination of the proportions a,p, +asp,, so we will simulate the sample data
of sizes 10,15,20,50,100 of the data points (W;, V;1, Vi) from Poisson distribution with
10,000 replications to consider closeness of the coverage to the nominal value. The
purpose of this section is to compare the coverage of the runs using the Poisson
estimated covariance or the SUR estimated covariance by the both quantiles with the
corresponding nominal value.

Note that, small values of the model parameter will produce more noninforma-
tive observations with high probability (the noninformative observations is the set of
events A; = {X;; = 0}, with probability of success P(A;) = e, and P(4;) = 1—e7?,
where A; = {Xi; > 0},i =1,..,m,j = 1,2), or more unwanted negative variances
produce invalid runs with invalid s.e’s during the runs session in which will be ex-
cluded as well as a run is excluded, if Y " | X;; = 0 for any component j, by exclude
these runs and will not be counted (also we mention here that we only accept runs as
valid, for which the reduced sample size m; Vj of informative observations is at least
9 to justify the use of the asymptotic approach), in addition one can also specify the
percentage of the excluded runs. The procedure called A truncation of the invalid
runs’.

Moreover, we need to take the following considerations:

e Taking only the informative observations will reduce the actual sample size m to
the random sample size m;. Theoretically, one can calculate the random number
of the noninformative observations in each sample, which equals m — m;, where
m; < m, as well as, the random percentage of the noninformative observations

is 1 — 24,
m

e The valid runs are based on the positive variances (to ensure that, we will take
only the positive estimated covariances) and the positive summations of the
observations X;. Further, the standard error is a consistent estimator for the
corresponding positive asymptotic variance, so it converges to a positive number
as sample size m tends to infinity, this will ensure the validity of the confidence

interval at large sample sizes.



4.3. The Bivariate case 87

e We will adjust the degrees of freedom for the t-quantile on the reduced sample
size m1, where m; is the number of the informative observations of X;. So, the
conservative confidence interval (safety bounds) becomes:

[an) + t(ml_lyl_%)s.e(an))] , as well as, the approximate confidence interval is

[an) + zlfgs.e(an))], where s.e(a®p) = \/%asv&(\an)).
2

a) For very small values of the Poisson parameter the procedure results in many non

informative observations with high probability.

b) For small values (< 1), for example
Ao =04, 0 =0.5, A =04, 11 =04, us = 0.5, the coverage by the z-quantiles
method are smaller than the nominal level especially for m < 20, figure 4.11,
because the simulation produces many noninformative observations or non pos-
itive covariances which may cause invalid s.e’s, and hence the corresponding
runs were excluded. From figure 4.12 (using the SUR estimated covariance),

the both method gave coverage less than the nominal.

Tables 4.8, 4.9 show also the excluded runs decrease as sample sizes become

larger by the both estimated covariances, as well as show larger exclusions for
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sample size m sample size m
Figure 4.11: Coverage of the combina- Figure 4.12: Coverage of the combination
tion ai1p, + az2p, using the Poisson esti- a1p, + azp, using the SUR estimated co-
mated covariance at nominal value 0.95, for variance at nominal value 0.95, for Ay =
)\() = 0.4, )\1 = 0.5,/\2 = 0.4,#1 = 0.4,#2 = 0.4,/\1 = 0.5,)\2 = 0.47 H1 = 0.4,[12 =
0.5,&1 = 1,&2 =2. 0.5,&1 = 1,&2 =2.

c¢) For larger parameter values (> 1), for example

X = 4,0 =5, X =4,y = 4,10 =5 (figure 4.13), the confidence interval
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sample size m

Coverage 10 15 20 50 100

by the z-quantile | 0.7391 0.9218 0.9356 0.9438 0.9483

by the adjusted t-quantile | 0.8261 0.9487 0.9546 0.9507 0.9526

The percentage of the excluded runs | 0.9977 0.7058 0.2226 0.0005 0

Table 4.8: Coverage of the combination a1p, + asp, using the Poisson estimated covariance at
nominal value 0.95, for Ag = 0.4,A\; = 0.5, = 0.4, 41 =04, 2 = 0.5,y = 1,5 = 2.

sample size m

Coverage 10 15 20 50 100

by the z-quantile | 0.8667 0.9127 0.9294 0.9374 0.9327

by the adjusted t-quantile | 0.9333 0.9411 0.9499 0.9455 0.9373

The percentage of the excluded runs | 0.9970 0.7811 0.4168 0.1347 0.0551

Table 4.9: Coverage of the combination a;p, + asp, using the the SUR estimated covariance at
nominal value 0.95, for Ag = 0.4,A\; =0.5,A2 =04, 41 =04, 42 = 05,01 = 1,5 = 2.

by t-quantile method is more conservative especially for small sample sizes and

gives larger coverage, however by z-quantiles gives coverage slightly smaller but

more reasonable. In figure 4.14, the SUR estimated covariance has been used,

it is look like that the coverage in 4.13 are shifted down. Table 4.10 shows

also the percentage of the truncated runs which tend to zero as sample sizes

become larger, the interesting things from table 4.11 is that the percentage of the

exclusions is larger due to the estimated conditional SUR covariance depends

strictly on the observations of X; which may causes many negative covariances

that have been removed.

sample size m

Coverage 10 15 20 20 100

by the z-quantile | 0.9435 0.9475 0.9473 0.9519 0.9485

by the adjusted t-quantile | 0.9719 0.9663 0.9632 0.9579 0.9515

The percentage of the excluded runs | 0.0731 0.0320 0.0159 0.0001 0

Table 4.10: Coverage using the Poisson estimated covariance, for Ag = 4, A1 = 5, 2 = 4,1 =

4,/1,2 = 5.
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Figure 4.13: Coverage using the Poisson es-
timated covariance, for Ay = 4,A1 = 5, Xy =
4, =4, p2 =5.
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Figure 4.14: Coverage using the SUR es-
timated covariance, for \g = 4, A\; = 5,y =

4,1 =4, 2 = 5.

sample size m

Coverage 10 15 20 50 100

by the z-quantile | 0.9308 0.9380 0.9353 0.9329 0.9351

by the adjusted t-quantile | 0.9641 0.9579 0.9510 0.9390 0.9375

The percentage of the excluded runs | 0.3167 0.2810 0.2427 0.1292 0.0544

Table 4.11: Coverage using the SUR estimated covariance, for \g =4, \; =5, Ay =4, 4y =4, us =

5.

For A =0.5,0.8,1,2,5, sample sizes m = 10, 50:

e (with the Poisson estimated covariance):

nominal value.

A or sample sizes become larger.

This can be theocratically demonstrate as:

For the sample size 10 for \y = Ay = Ay = 1 = po = A, figure 4.15, the coverage
by the adjusted t-quantiles is more conservative and give larger coverage except
for small parameter values, while by z-quantiles gives dramatically smaller cov-
erage specially for small A, there is also a big difference between the coverage
by the two methods. However, for the sample size 50, figures 4.16 shows that

both coverage by the both quantiles are more close to each other and to the

One can see from the tables 4.12, and 4.13, for small A the percentage of ex-

cluded runs is more than that of large )\, as well as the exclusions decrease as
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Figure 4.16: Coverage for \g = Ay = Ay =
11 = pe = A, m=50 (with the Poisson estimated
covariance).

Coverage

A
0.5 0.8 1 2 5

by the z-quantile
by the adjusted t-quantile

0.8981 0.9195 0.9291 0.9411 0.9476
0.9352 0.9529 0.9608 0.9697 0.9737

The percentage of the excluded runs

0.9892 0.8385 0.6502 0.1067 0.0618

Table 4.12: Coverage for \g = A\ = A2 = 1 = p2 = A, m=10 (with the Poisson estimated

covariance).

Coverage

A
0.5 0.8 1 2 5

by the z-quantile
by the adjusted t-quantile

0.9450 0.9457 0.9477 0.9486 0.9489
0.9505 0.9526 0.9536 0.9542 0.9537

The percentage of the excluded runs

3e-04  3e-04 le-04 0 le-04

Table 4.13: Coverage for \g = A\ = A2 = u1 = ps = A, m=50 (with the Poisson estimated

covariance).
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e (with the SUR estimated covariance):

Figures 4.17 shows that for small sample size '10’, the coverage by the z-quantiles
are dramatically smaller than the nominal value, but by the t-quantile is conser-
vative for large A and gives larger coverage except for small A, while for larger

sample size 50’ the both methods produce coverage smaller than the nominal

~ ~
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Figure 4.17: Coverage for \¢g = A\; = Ay = 3 = Figure 4.18: Coverage for A\g = Ay = Ay =
o = A, m=10 (wwith the SUR estimated covari- p; = ps = A, m=50 (with the SUR estimated
ance). covariance).

A
Coverage 0.5 0.8 1 2 5

by the z-quantile | 0.9036 0.9041 0.9255 0.9302 0.9321
by the adjusted t-quantile | 0.9398 0.9411 0.9606 0.9636 0.9644

The percentage of the excluded runs | 0.9917 0.8863 0.7490 0.3520 0.3171

Table 4.14: Coverage for \g = Ay = Ay = g = p2 = A, m=10 (with the SUR estimated covariance).

A
Coverage 0.5 0.8 1 2 5

by the z-quantile | 0.9314 0.9328 0.9387 0.9356 0.9344
by the adjusted t-quantile | 0.9412 0.9382 0.9448 0.9420 0.9419

The percentage of the excluded runs | 0.1279 0.1246 0.1352 0.1272 0.1229

Table 4.15: Coverage for \g = Ay = Ay = g = p2 = A, m=50 (with the SUR estimated covariance).
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The same case for the percentage of excluded runs, the percentage in tables 4.14
and 4.15 are larger than that in the tables 4.12 and 4.13 respectively, because the
conditional covariance estimators are used which are depend on the observations of
X, that based on the reduced sample size m12, where m12 is the number of the
informative observations of X; and X, simultaneously, but also the exclusions are
decrease as sample sizes and A decrease.

Similar results hold for A = 0.5,0.8,1,2,5, m = 10, 15, 20, 50, 100 for both esti-
mated covariances. Figure 4.19 plotted for A = 2 using the Poisson covariance, while
using the SUR covariance shown in figure 4.20.

It seems that the coverage in figure 4.20 similar to 4.19 but shifted down.

0.970
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0.960
7/
0.960
1
o

0.950
ol
0.950

coverage
0.930 0.940
| |
o,
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[
coverage
0.930 0.940
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0.920

| |
0.920

| |
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|

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
sample size m sample size m
Figure 4.19: Coverage using the Poisson Figure 4.20: Coverage using the SUR co-
estimated covariance for \g = Ay = Ay = variance term for A\g = Ay = Ao = g = o =

M1 :ﬂ2:2 2.
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The corresponding coverage using the Poisson estimated covariance shown in table

4.16.

Coverage by the z-quantile for A

0.5

0.8

1

2

5

10
15
20
20
100

0.9115
0.9247
0.9323
0.9448
0.9515

0.9305
0.9407
0.9412
0.9473
0.9463

0.9378
0.9401
0.9445
0.9450
0.9464

0.9402
0.9430
0.9471
0.9461
0.9491

0.9502
0.9501
0.9470
0.9478
0.9489

m

Coverage by the adjusted t-quantile for A

0.5

0.8

1

2

5

10
15
20
20
100

0.9506
0.9532
0.9525
0.9526
0.9551

0.9617
0.9608
0.9556
0.9534
0.9485

0.9668
0.9616
0.9590
0.9507
0.9488

0.9679
0.9628
0.9592
0.9513
0.9515

0.9770
0.9655
0.9612
0.9531
0.9513

Table 4.16: Coverage using the Poisson estimated covariance at 0.95 for A\g = Ay = A2 = 1y

/12:/\.

See tables 4.17 and 4.18 respectively, for more coverage on other confidence levels.



4.3. The Bivariate case

94

Coverage by the z-quantile at confidence level
0.90 0.95 0.99 0.999

10
15
20
20
100

0.8940 0.9398 0.9839 0.9980
0.8929 0.9468 0.9868 0.9984
0.8963 0.9442 0.9879 0.9988
0.8951 0.9491 0.9860 0.9984
0.8946 0.9480 0.9894 0.9989

m

Coverage by the adjusted t-quantile at confidence level
0.90 0.95 0.99 0.999

10
15
20
50
100

0.9258 0.9695 0.9967 1.0000
0.9151 0.9647 0.9959 1.0000
0.9147 0.9598 0.9931 0.9995
0.9036 0.9550 0.9894 0.9991
0.8978 0.9507 0.9906 0.9992

Table 4.17: Coverage for the parameter values Ag = Ay = As = p1 = po = 2, using the Poisson
estimated covariance.

Coverage by the z-quantile at confidence level
0.90 0.95 0.99 0.999

10
15
20
20
100

0.8728 0.9302 0.9789 0.9962
0.8752 0.9294 0.9806 0.9972
0.8709 0.9309 0.9811 0.9973
0.8773 0.9348 0.9857 0.9978
0.8742 0.9321 0.9832 0.9980

m

Coverage by the adjusted t-quantile at confidence level
0.90 0.95 0.99 0.999

10
15
20
20
100

0.9120 0.9642 0.9969 0.9999
0.9005 0.9492 0.9910 0.9997
0.8905 0.9472 0.9894 0.9995
0.8859 0.9425 0.9890 0.9990
0.8777 0.9360 0.9857 0.9983

Table 4.18: Coverage for the parameter values \g = A\; = Ay = p1 = ps = 2, using the SUR
estimated covariance.
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4.4 Conclusions

Simulations are made to evaluate and validate the confidence intervals. The programs
instructions made with flexible choices of the model parameter values and the sample
sizes as well as the confidence levels, which enable achieving a more reasonable and
appropriate coverage being close to the nominal value.

The confidence intervals generated by the adjusted t-quantiles method are more
conservative (unless when the sample sizes or the parameter values are small), and
give always larger coverage than the that by the z-quantiles method .

Small values of the model parameter produce results in many noninformative
observations with high probability which can be theoretically calculated, or produce
runs with invalid standard errors (negative variances) that will not be counted during
the runs session, and will be excluded by taking the runs based only on the positive
variances and positive summations of the observations of X;,j =1,..., k.

As the sample size m or A become larger, the percentage of the excluded runs
become smaller and tends to zero. Further for large A, the sample size m ~ m;, Vj.

The suggested confidence interval by the t-quantile method is too conservative for
large A (not recommended for a given parameters), also the corresponding coverage
always larger than that by the z-quantile. While by the z-quantile is recommended
when )\ is large. To get better coverage, one may propose to take the average of the
coverage of the both methods simultaneously.

Finally, the exclusions using the Poisson estimated covariance are less than the
exclusion using the SUR covariance for all sample sizes. Both exclusions are decreasing

as m, A become larger.



Chapter 5

Contributions and Results

In each chapter of this dissertation two methods were used for the analysis of count
data, one concerns the Linear or the SUR model, while the other concerns the Poisson
model. Further, In this chapter we would mention that the assumption X;; > 0 almost
surely in our theoretical derivations, but in the Poisson model, which we employ in
the simulation, this condition is violated, as P(X;; = 0) > 0.

In chapter 1, the normality of the estimator p of the corresponding proportion p
was studied based on the assumed linear model, assuming in the first part the nor-
mality of the errors of the linear model given that X; are fixed variables, and the
exact confidence intervals of the model coefficient (proportion) constructed. Further,
the asymptotic normality of p_ under the non normal errors assumption given the
2.2.d of the observations X, are obtained, and approximate confidence intervals of
the proportion are constructed. In the second part, the distribution of the estimator
p,. was discussed given that the observations X; having Poisson distribution (uni-
variate Poisson model), which results in the conditional Binomial distribution, and
consequently the asymptotic normality of the conditional Binomial distribution of p
was obtained, which was the asymptotic normality of a non-linear transformation of
the pairs (V;, X;) by using the Delta-method regardless the exact distribution of Y;,
and X;. Consequently, the approximate confidence intervals of the proportions were
identical.

In chapter 2 and 3, the bivariate and the multivariate normal distributions of the
estimator vector p of the proportion vector p have been assumed based on the SUR
model, by assuming in the first part of each chapters, the normality of the error vectors
of the SUR model given the fixed design vectors, where the constructed confidence

intervals of the SUR model coefficient vector (proportion vector) were exact. The

96
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asymptotic bivariate and multivariate normality of p, under the non normal error
vectors given that ¢¢d diagonal design matrices )?i, are derived, and the corresponding
approximate confidence intervals of a linear combination of the proportion vector have
been constructed.

In the second part, the bivariate and the multivariate Poisson models in both
chapters respectively including there definitions and properties were introduced and
discussed. It was not explicitly possible to calculate the conditional distributions
and the conditional covariance Cov(Y;, Yia | Xi1, Xj2) either in the multivariate case,
and hence, the approximate confidence intervals for the linear combination of the
proportions based on the models have been constructed by the asymptotic normality
using the multivariate delta method.

On the other side, in the both assumed models, the observations Y;; conditionally
depending on the observations Xj;, in other words, in the linear and SUR models, the
observations X;; considered as the constants or random variables, while in the Poisson
models, the observations X;; considered as Poisson random variables, j = 1,..., k, and
due to the correlations between the count data, the data were conditionally analyzed.

Furthermore, due to the dependence between the components, the BLUE’s, BUE’s
which are, the best linear unbiased estimators, the best unbiased estimators of the
proportions, and the variances respectively, satisfied only in the univariate case, while
in a higher dimension case were not satisfied.

In the simulation chapter, it was taken the public available statistical software
comprehensive R program to evaluate the approximate confidence intervals, and aid
to see how the proportion or a linear combination of the proportions confidently fall
in intervals having coverage closed to the nominal value.

Finally, this work may not considered as broader than that the wider contains
many different techniques, however some were described and the required assumptions
were given. Although some of the derivations were not included within the text but
was refereed the reader to the reference where can he found the derivations, or the
source of the used technique, further some knowledge of matrix algebra are covered
in the appendix.

One may mention, that the open problems which can not be explicitly calculated:

o P(Yz‘j\Xv:j Xii) ~7?



98

o PV | Xig: Xr) 9o

E(Yij | Xij’Xij') =77

V(IT(Y;]‘ | Xij,XZ-j/) =77

Cov(Yyy, Yo | X, X)) =725 435 =1,...,k.

One may look for the BLUE estimators of p or the vector p, namely
Puis = (}N(TEA)N()AXTEA?, or the estimator
ﬁwm — (XTE1X)"IXTS-1Y, which are at least asymptotically efficient.

They are not the ratio estimator vectors, but give more appropriate confidence inter-

vals for the linear combination of p.



Appendix A

Supplementary Material

A.1 Background from the theory of Matrix Algebra

Let, w and v be two vectors having the same order, and let A and B are two squared

symmetric matrices of the same dimension n x n, then the following are available:

The inverse of A is denoted by A~! | the inverse exists and unique Iff A is non-
singular, where A is a nonsingular Iff its determinate | A |# 0, for which

| A7 = \le and AA~!' = A~'A = J,. Furthermore if A, and B are invertible

or nonsingular, then
e (AB)'=B'A!
e (AB)" =BTAT

Idempotent matrix A is called symmetric idempotent if A = AA = ATA, so it
follows that:

e [, — A is symmetric idempotent.
e A(I[, —A)=0,and (I, — A)A =0.

e A(ATA)"'A” is also symmetric idempotent.

Trace of A is denoted by trace(A) or ir(A), where tr(A) = Y"1 | ay, a; are the
diagonal elements of A. Some properties of the trace are given by the following:
o ir(A+B)=tr(B+ A) =tr(A) £ tr(B).
o tr(AB) = tr(BA)%.

1 it holds also for any matrices A, B for dimensional n X p, p X n respectively, where also for any
n < p,n>p,n=p.

99
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o ir(AT) =tr(A).
o tr(ATA) = tr(AAT) = 377" jala; = 33 Y00 af, where a; is the i

row vector of A.

o tr(kA) =k tr(A), where k is a real number.

Rank of an idempotent matrix A is its trace, where the rank of A is the num-

ber of linearly independent columns, or the no.of linearly independent rows.

orthogonal vectors w and v are orthogonal vectors if the vector product

wlv =vIiw = 0.

Quadratic Form, the function w”Aw =" | > i1 aijw;wy is called the quadratic

form, and A is called the matrixz of quadratic form.

Positive definite and positive semi definite matrices, matrix A is said to be
positive definite if w/Aw > 0 Vw € R", w # 0, and said to be positive

semt definite if wl' Aw = 0, for some w # 0.

if A is positive definite matrix, then | A |> 0, | A~! |> 0, and it follows that
all its diagonal elements a;; > 0,Vi = 1,...,n, similarly for positive sema

definite matrix, we replace > by >. Further if A is diagonal matrix then

| A =TT, au.

A.2 Background from the theory of the linear mod-
els and the MSUR model

e expectation of the quadratic forms
let Y = (Y1,...,¥,)T be the univariate random vector of size n with mean vector
E(Y) = X8, and variance-covariance matrix Var(Y) = 0?1, where X is the

design matrix of n x k covariates, and 8 = (51, ..., Bx)7, then

E(YTAY) = o’tr(AL) + B"XTAXB = o*tr(A) + B7XTAXB (A1)
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o if Z = AY, then

Cov(Z) = E((Z — E(Z))(Z — E(Z))") = E ((AY — AXB)(AY — AXpB)")
XB)(Y - XB)"AT)
Xp) XB)AT = ACou(Y)AT = 0?AAT  (A2)

_ (Y —
_ (Y —
The least squares estimator (3 os 18 obtained by minimizing the sum of the
squired deviations of the observations from their expected values. Hence mini-
mizing

S(B) = (Y — XB)T(Y — XB3) which leads to the system of normal equations
(XTX)'B,,. = XTY, assuming that (X7X)~! is invertible, the OLSE 3
can be written explicitly as

BOLS = (XTX) 'XTY, which is a linear function of Y, the vector of fit-

ted values Y corresponding to the observed Y is Y = XB = HY, where

OLS

H = X(X"X)7'X" is known as the hat or projection matrix which plays a

central role in linear model analysis, the vector of residuals is given by

e=Y-Y=Y—-HY = (I, — H)Y, and more

E(Y)=HE(Y)= HXB = X8, (A.3)

and thus, Y is an unbiased estimator of the mean of Y.

On the other side, if Var(Y) = 02Q, where Q is a positive definite matrix
but not equal to I,,, then it may be possible to implement a generalized least
squares (GLSE) estimator that is the BLUE (at least asymptotically), so the
GLSE estimator BGLS = (XTQ'X)'XTQ7Y is the BLUE, with the variance-
covariance matrix (X7Q'X)"!. Note that when Q = I,,, then the GLSE =
OLSE with the covariance = o?(X*"X)™!(i.e, OLS is a special case of the more

general estimator).

IfY = (YL, ..., YT is the multivariate columns wise expansion of the random
vector Y of dimension nk x 1 with mean vector F(Y) = X3, and variance-
covariance matrix Var(Y) = X ® I,,, (assuming ¥ = %), where X is the design
matrix of dimension nk x k covariates, and 8 is a vector of k£ x 1 of the unknown
parameters. Then, the least squares estimator ,[:} is obtained by minimizing the

sum of squared deviations of the observations from their expected values. Hence
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minimizing

S(B) = (Y — XB)T(Y — XB) which leads to the system of normal equations
(XTX) 18 = XTY, assuming that (X7X) ! is invertible, the OLSE S8 of the
SUR model parameter vector can be written explicitly as 8 = (X7X)~'X7Y,
which is the linear function of Y, as well as, the WLSE is given by:
B..=X'(TeL)'X) "' X"(Te,)'Y.

There are two cases where the WLSE reduces to the OLSE:

—ifo,; =0, V) # j =1,...,k ie, ¥ is diagonal.

—le1:X2::Xn:X0

These two cases are proved by Zellner (1962), see [25], [26].

Furthermore:

o IfY = (Y{,...,Y])" is the multivariate rows wise random vector of dimension
nk x 1 with mean vector E(Y) = X, and with variance-covariance matrix
Var(Y) =1, ® ¥, (assuming ¥ = X)), where X is the design matrix of nk x k
covariates, and 3 is a vector of nk x 1 of unknown parameters. Then, the WLSE

of the SUR model parameter vector is given by

~

_ -1 _
Bos=X'I,o2) ' X) X(,®%)'Y,

consequently

Cov(B,,.) = (X" (L, eY)'X) " = (X (L, L ™H)X) " = (zn: sz—lxi> ,
i (A.4)

whereas

~

Cov(B, ) = (XTX)_1 (X'(I, @ ©)X) (XTX)_I

= (zn:xTx)_ En:XiT X, (zn:XTX)_ , (A.5)

=1 =1 i=1

OLS

and are equivalent when 3 is diagonal matrix.
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