
Investigation in Automatic Fault Detection for Scheduled

Traffic and Frame Preemption in Time-Sensitive Networks

Tobias Ferfers1, Sebastian Schriegel1 Jürgen Jasperneite1

Abstract: A thorough network diagnosis is essential to cutting down the cost of network downtime

in heterogeneous, time-sensitive Ethernet networks. It appears that many Time-Sensitive

Networking mechanisms do not provide sufficient information about possible error sources, error

recognition, or error causes. This paper examines possible symptoms and error sources of Frame

Preemption and how to detect them automatically. Moreover, it examines the limitations and

functionality of the Scheduled Traffic Anomaly Detection algorithm (STADA) by utilizing a test

network. This research provides assistance to manufacturers of industrial automation devices,

experts, and network administrators in performing FDD and root-cause analysis for Scheduled

Traffic and Frame Preemption faults in Time-Sensitive networks.

Keywords: Scheduled Traffic, Time-Sensitive Networking, Fault Detection and Diagnosis,

Frame Preemption

1 Motivation

Time-Sensitive Networking (TSN) for Ethernet networks introduces the possibility of

Quality of Service (QoS) in Ethernet networks like, deterministic and low-latency real-

time communication for control application e.g., PROFINET over TSN [Pr23]. The key

mechanisms of TSN in industrial communication networks are: Time Synchronization

(IEEE 802.1AS), Enhancements for Scheduled Traffic (IEEE 802.1Q) and Frame

Preemption (IEEE 802.1Q). During the lifetime of a TSN device, faults may occur.

Possible faults of devices, products or production plants are physical, hardware, software,

aging, design fault, operating error, configuration error or production error, but also faulty

network cable or rough industrial environments, temperature, humidity and many more.

The additional challenge in TSN networks is the consideration of the time behavior in the

network, especially in case of a fault. The previously mentioned faults can lead to

(network) downtime. The cost of the downtime heavily depends on the industry branch as

well as the company’s size and has a large variance, according to the Ponemon Institute

the average cost of network downtime in data center is about $9000 per minute [Co16].

IEEE 61158-2017 “IEEE Standard for Industrial Real-Time Communication” considers

possible error sources / error symptoms, error recognition and the error handling for some

1 Fraunhofer IOSB-INA, Campusallee 1, 32657, Lemgo {tobias.ferfers, sebastian.schriegel,

jürgen.jasperneite}@iosb-ina.fraunhofer.de

http://dx.doi.org/10.25673/111737

http://dx.doi.org/10.25673/111737

components of this communication technology e.g., data link layer and physical layer

[Ie17]. In comparison, most TSN standards do not provide this kind of error recognition

and error handling, hence expert knowledge and experience is necessary for

troubleshooting. In case of a fault, the fault detection and diagnosis (FDD) [GDC15a,

GDC15b] and troubleshooting can therefore take more time in TSN networks, extend the

production downtime (planned or unplanned) and increase the revenue lost.

The primary objective of FDD and root-cause analysis is to facilitate the troubleshooting

process for users in the event of a fault or failure. [FSJ23] et.al. presented a concept for

the automatic root-cause analysis in time-sensitive networks based on fault models. Fault

models connect the symptoms of faults. to their root causes. The current state of the

physical network (netload, protocol alarms, runtime measurements) is compared to

network models that contain the nominal state of the network (protocols, topology,

netload, schedules, configuration). An anomaly detector uses FDD technologies to detect

symptoms in the physical network, then a reasoner uses fault models to find possible root

causes for troubleshooting and presents the possible root causes and their probability to

the network operator. To create such a system, it is necessary to investigate TSN

mechanism regarding possible faults, their symptoms and root-causes. What faults in TSN

key technologies can occur? How to detect faults of TSN key technologies automatically

during runtime? The aim of this paper is to investigate possible faults, their symptoms and

automatic detection of Frame Preemption mechanism and to evaluate the functionality and

limitations of the Scheduled Traffic Anomaly Detection Algorithm (STADA) [FSJ23].

The first section describes State of the Art Diagnosis in industrial communication. The

second section describes the functionality of Frame Preemption and Scheduled Traffic.

The third section investigates Frame Preemption mechanism and describes possible faults

and how to detect them. The fourth section handles the evaluation of STADA including a

description of the algorithm, the test setup and method as well as the results. The final

section is conclusion and future work. This work will support vendors of industrial

automation devices, experts and administrators of TSN networks during FDD and root-

cause analysis for Scheduled Traffic and Frame Preemption faults.

2 State of the Art Diagnosis

The first section of the chapter, highlights the most important terms as well as general

FDD techniques. In the second part of the chapter, three examples of diagnosis in

industrial communication are explained in greater detail. In the 1990s, Isermann et al.

defined terms in the field of Fault Detection and diagnosis (FDD), e.g., faults, fault

diagnosis, fault management, and more [IB96]. Fault detection is the determination of the

fault’s presence in a system and the time of detection. Fault isolation is the determination

of the kind, location, and time of the detection of a fault. Fault identification describes the

determination of the size and time-variant behavior of a fault. After a fault diagnosis, the

location, size, and type of fault are known, but the root cause and the actions to be taken

for rectification are unknown. Sometimes FDD and anomaly detection are used as

synonyms; in principle, it is about being able to detect deviations from the normal state.

The field of fault detection and diagnosis (FDD) is divided into four categories: signal-

based, model-based, data driven and hybrid methods [GCD15a, GCD15b]. Signal-based

methods rest upon signals that are somehow connected to the fault in time, frequency, or

time-frequency domain and utilize, for example statistical information, e.g., mean value,

variance, or kurtosis, for example [EM13]. Model-based approaches consider an exact

(mathematical) representation of the system or process, commonly applied to physical

processes, for example applied on LAN in [Fo02]. The data-driven methods are divided

into two methods: statistical analysis and artificial intelligence, e.g. [An18]. Data-driven

techniques use available information about the devices or network, and are often

considered as an alternative to model-based approaches because there is no detailed

modeling necessary.

The "IEEE61158 Standard for Industrial Hard Real-Time Communication" provides

additional information and even recommendations regarding error management at both

the data link layer and physical layer [Ie17]. The standard covers possible error sources,

error recognition, error handling, and error registration. Loss of link, buffer overflows or

underruns, timing violations for received frames, transmission errors, collisions, frame

loss, incorrect physical Ethernet operating mode, and numerous other issues that are

addressed in the standard. In the following, the “Loss of PollResponses” will be explained

in more detail. This error indicates that no PollRepsonse frame was received in the current

time slot. The standard describes multiple categories of possible error sources from

physical errors e.g., loss of link Rx buffer overflow. Other possible sources of errors are,

for example, defective components in the network or the use of devices whose latency

does not meet the requirements. This fault is supposed to noticed in the management node

cycle state machine and can be recognized if the sot timer expires and no frame was

received in the slot. When a frame loss is detected, several actions are taken: Notification

of other devices or components, exclusion from isochronous communication, or error

logging.

PROFIENT IRT is a communication profile of PROFINET that outlines a highly

synchronized (isochronous) and stringent communication protocol, meticulously

engineered from the topology to the cable delays [Pr22]. Since, PROFINET IRT is highly

engineered, the protocol implements mechanisms to detect changes in the topology or

cable length during runtime. One part of error handling is done at the application level

with the “SignOfLife” application, which has a counter that increases every cycle, and the

mechanism checks through this counter if frames were lost in a cycle. A threshold is set

by the user for the number of frames that are acceptable to lose. Normal errors are handled

as in the non-isochronous PROFINET protocol: if a module or submodule detects a fault,

an alarm is sent to the upper layer, e.g., if data processing is not finished when the next

cycle starts. Since, PROFINET IRT depends very much on synchronization, details about

sync errors are also given in the specification. More precisely, it describes how sync errors

should be handled on the provider and consumer sides. For example, if an out-of-sync

error occurs, access to data is refused, or it describes error codes, e.g., jitter out of bounds

or no sync telegram within rules received. PROFINET IRT diagnoses the communication

at the application level and has an alarm system for notification, but in-depth diagnosis

and providing the user with the root cause are not included.

“IEC/IEEE 60802 TSN Profile for Industrial Automation” describes a set of rules for time-

sensitive networking in the industrial automation field [Ie23]. For diagnosis, the profile

suggests observing the YANG data model representation in the local database of the

component and observing the available objects. Furthermore, the profile defines a

subscriber-based notification mechanism and corresponding events, e.g., loss of link, loss

of sync or periodic statistics. As with other protocols, there are mechanisms to detect

certain errors, but possible causes or actions to clarify them do not exist.

3 TSN-Mechanisms Scheduled Traffic and Frame Preemption

3.1 Scheduled Traffic

The Enhancements for Scheduled Traffic (IEEE 802.1Qbv) allows the transmission of

each transmission queue to be scheduled to a relative time. Transmission gates are

associated with each queue [Ie16a]. The state of the gate determines whether frames can

be selected for transmission (open or closed). Every port has a gate control list with

ordered gate operations, and for each entry in the gate control list, there is a traffic class

assigned. Depending on whether frame preemption is used or not, the gate operation of

each entry allows preemption of frames. Scheduled traffic leads to a slot-based

communication where one or more traffic classes are assigned to the slots (see Fig. 1). The

most important parameters for scheduled traffic are: base-time (start time of the schedule),

cycle time, ControlList, ControlListLength and the CycleTimeExtension.

Fig. 1: Scheduled Traffic 802.1Qbv

3.2 Frame Preemption

IEEE 802.1Qbu – Enhancements for frame Preemption and IEEE 802.1br are a set of

features that allows higher priority frames to interrupt the transmission of lower priority

frames and resume it later [Ie16b]. Frame preemption is implemented at data link layer

according to the ISO/OSI model. The MAC layer provides two services: the preemptable

MAC (pMAC) and the express MAC (eMAC). A MAC merge layer merges these two

MAC services back together and preempts preemptable traffic currently being transmitted

or prevents the start of the transmission of preemptable traffic. When the preemption

capability is inactive, the MAC Merge sublayer does not allow express traffic to interrupt

a frame provided by the pMAC service interface. In the MAC Merge sublayer, a special

packet format is used called mPacket. (see Fig. 2).

Fig. 2 : mPacket format MAC merge sublayer

The Preamble of an mPacket is identical to a MAC Preamble, the Start Frame Delimiter

(SFD) is replaced by the Start mPacket Delimiter (SMD) value and identifies the type of

mPacket frame e.g., verify, respond, express packet, preemptable packet start (SMD-S0 to

SMD-S3), or a continuation fragment (SMD-C0 to SMD-C3). The frag_count in a

fragment is a modulo-4 counter that increments each continuous fragment of a preempted

mPacket. The frag_count is used to detect mPacket reassembly errors by enabling

detection of the loss of up to three packets. As seen in Fig. 2 the frag_count is only included

at a continuous fragment of a mPacket. The CRC field contains a cyclic redundancy check

(CRC) and an indication of whether this is the final mPacket of a frame. In the final

mPacket of a frame the CRC field contains the CRC of the MAC frame. For other

mPackets the CRC field contains an mCRC (mPacket CRC) value for that specific

mPacket. Generally, the preemption capability is enabled on the transmit direction only if

it’s ensured that the link partner also supports the frame preemption capability. The

process of discovering the support on the link partner relies on the exchange of additional

Ethernet capability TLV in the LLDP frame. The mechanism is only enabled if the support

was announced before and the preemption mechanism is disabled in case of a link failure.

Only if the frame preemption functionality has been made known beforehand the

verification process will be triggered. In this process a verify mPacket is sent and a respond

packet is expected from the link partner. If the frame preemption capability is enabled but

has not been verified yet, the MAC merge sublayer indicates verification process.

Verification can be disabled, this is useful for engineered networks.

a) format of express packet, complete

preemptable packet or an initial

fragment of a packet

b) format of a fragment of a packet

4 Possible Faults and Symptoms Frame Preemption

In order to diagnose the previously outlined Frame Preemption mechanism, it is imperative

to distinguish between two distinct stages: initialization during the ongoing verification

process (static) and diagnosis subsequent to successful verification at runtime (dynamic).

Static errors describe the fact that the verification process was not successful, which can

have several causes. This phenomenon may manifest itself in the absence of LLDP frames

or the absence of the additional Ethernet availability for frame preemption in the frame.

Possible root causes are an incorrect implementation or configuration of the device or an

increased network load could that leads to frame loss of LLD frames or verification

mPackets. Therefore, devices or additional measuring equipment could check if the

verification was successful, e.g., during startup or after a link failure. The second possible

error category pertains to dynamic errors, which may arise in the event that the frame

preemption verification was successful and the mechanism is operational and functioning.

The standard already provides capabilities to indicate faults, like various counters and

status variables to check if the mechanism is working correctly e.g.,

aMACMergeAssErrorCount, count of MAC frame reassembly errors on receiver side or

the MACMergeFrameSmdErrorCount is a counter of the received MAC frames / frame

fragments rejected due to unknown SMD value or arriving of SMD-C when no frame in

progress. For detailed diagnosis access to these counters and the current device

configuration is necessary. A faulty implementation could also be the reason for

incorrectly sent or re-assembled fragments, which could be noticed by the link partner

(missing frames etc.). Further on, it is possible to observe the jitter of the real-time network

traffic, if frame preemption should be configured but is not and, enough best effort traffic

is going through the network this faulty configuration could be noticed.

Some of the evaluation of the functionality can be done by observing counters or variables

already defined in the frame preemption standard, especially for the runtime errors.

Additional measuring equipment or an extension of the devices is necessary to detect faults

in the verification process or the jitter of real-time traffic. Furthermore, access through an

API must be granted for network administrators or central diagnosis systems to evaluate

the quality of the network. This must be integrated into the driver or firmware of the

devices to provide this information, if it is not already the case through Management

Information Base (MIB).

5 Evaluation of STADA

5.1 Description STADA

The Scheduled Traffic Anomaly Detection Algorithm (STADA), presented in [Fe23],

aims to validate the correct scheduled traffic configuration based on the transmit

timestamp (tx_timestamp) of a frame at runtime, the desired scheduled traffic

configuration (base time of the schedule, traffic class for each slot). Based on the transmit

timestamp the exceeded time in the current cycle can be calculated: time_elapsed =

(tx_timestamp – base_time) % cycle_time. With the desired configuration and the elapsed

time in the current cycle the current slot of the schedule can be determind and which

frames are allowed. Then the algorithm compares whether the allowed and actual frame

type match. If the frame types do not match, further comparison is done to determine if

the frame type is even configured or if the interval is too short or too long or a wrong order

of time slots is given. But how does this algorithm performs in a test setup and network?

Figure 1: Possible faults scheduled traffic

5.2 Test setup

The test setup for the evaluation of STADA consists of a TSN controller, TSN switch,

TSN device and additional measuring equipment. To analyze the traffic on the wire a

network Test access point (TAP) is set between the TSN controller and the TSN switch.

The TSN controller, TSN device and the measuring device is Linux based with Intel I225

network cards. Traffic on the controller is generated by a dummy application. Generally,

it is possible to implement the STADA in the device driver or firmware of the network

component, except of the API to the (Linux) kernel this is highly vendor specific and

closed source. Therefore, STADA was implemented on additional measuring equipment

and the transmit timestamp is calculated as transmit_timestamp = receive_timestamp –

delay. The delay was determined by the delay of the TAP and previous measurements.

The measuring equipment is connected to the TSN switch for synchronization and to the

network TAP for diagnosis. The schedule for evaluation has three slots: network

management (PTP and LLDP), second slot real-time traffic (PROFINET) and the third

slot best effort (IPv4) as seen in Tab. 1.

Slot number Length [µs] Traffic type

1 200 PTP, LLDP

2 250 PROFINET

3 550 Best effort (IPv4)

Tab. 1: nominal scheduled traffic configuration

(a) faulty slot order (b) faulty interval length

Fig. 3: Test setup for STADA

5.3 Method

As described in previous work [Fe23], possible faults for scheduled traffic are a wrong

order of slots and an incorrect interval length (too short or too long). For the determination

of the possible combinations for testing, it was specified that no repetitions may occur in

the order. With the test schedule from the test setup this results in the following possible

combination shown in Tab. 2. A short interval length is defined as half of the normal

interval length, the long interval length is defined as double of the normal slot length.

Slot order Slot 1 interval Slot 2 interval Slot interval 3

123 Short Short short

132 Normal Normal Normal

213 Long Long Long

231

312

321

Tab. 2: scheduling configuration

The possible combinations based on Tab. 2 are 6x3x3x3 = 162 combinations. In the

literature there are methods about reducing the test cases for example [Ho13]. In order to

reduce the number of test cases, the approach of pairwise testing was selected. The idea

behind pairwise testing is that some combinations of the parameters are responsible for

faults, and most of the time the combination of two parameters. The construction of the

possible test combinations is done via orthogonal arrays, as described in [Ho13]. After the

reduction of test cases, the matrices show don’t care entries, it was defined that every time

an entry consists a don’t care the normal slot interval length was chosen. With pairwise

testing the combinations could be reduced to 33 test cases. The test sequence for all 33

test cases was as follows: Start synchronization, set the schedule, wait until

synchronization is complete, start STADA for five minutes, procced with next test case.

For all frames, the transmit time was determined based on the cycle time and logged.

5.4 Result

In all 33 executed test cases, the algorithm detected a faulty scheduled traffic

configuration. However, the detailed statement (wrong order, interval length too short or

too long) was not clear in most cases. The algorithm principle is responsible for this

imprecise recognition. The algorithm uses the transmission time and only knows about the

traffic class of the previous frame and the desired traffic class. Tab. 3 you can see some

summarized measured values, e.g., mean, minimal, maximum value, from the two test

cases. The first test case is the desired configuration, the second test case is the correct

order but all intervals are too short. This shows that the mean value in the misconfigured

case deviates significantly from the normal case, as does the standard deviation of the

network management. These can be also parameters, which one puts into an extension of

the algorithm. In the future, it may be possible to obtain a more precise diagnosis by

closely scrutinizing multiple cycles, for instance.

Test case
traffic

type

Count

[µs]
Mean [µs]

Std

[µs]
Min [µs] Max [µs]

TC 1

desired

NM 6494 29 45 0,5 199

Real-Time 326491 424 0,48 419 438

TC 4

short,123

NM 6646 269 251 0,63 599

Real-Time 334101 601 0,11 600 604

Tab. 3 : Example Measurements results STADA evaluation

6 Conclusion

In this work possible errors and methods to detect frame preemption faults were

investigated. Furthermore, the Scheduled Traffic Anomaly Detection Algorithm

(STADA) was evaluated in a test setup. An example schedule with three time slots was

chosen and the possible combinations determined. With pairwise testing the test cases

could be reduced from 162 to 33. These 33 test cases were executed in the test setup. It

could be shown that STADA generally detects a faulty configuration of the scheduled

traffic. As of today, the algorithm cannot give a detailed analysis of what exactly is wrong

with the schedule. Future work should concentrate on improvement of STADA with the

mentioned ideas and the evaluation of the Frame Preemption fault detection ideas.

Literature

[Pr23] PROFINET over TSN, https://www.profibus.com/technology/industrie-

40/profinet-over-tsn, 20.10.2023

[Co16] Cost of Data Center Outages, https://www.vertiv.com/globalassets/

documents/reports/2016-cost-of-data-center-outages-11-11_51190_1.pdf, 2016

[Ie17] IEEE61158: IEEE Std 61158-2017 (Adoption of EPSG DS 301). IEEE Standard

for Industrial Hard Real-Time Communication. IEEE, S.l., 2017.

[GCD15a] Gao, Z.; Cecati, C.; Ding, S. X.: A Survey of Fault Diagnosis and Fault-Tolerant

Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based

Approaches. IEEE Transactions on Industrial Electronics 6/62, pp. 3757–3767,

2015.

[GCD15b] Gao, Z.; Cecati, C.; Ding, S.: A Survey of Fault Diagnosis and Fault-Tolerant

Techniques Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active

Approaches. IEEE Transactions on Industrial Electronics, 2015.

[FSJ23] Ferfers, Tobias; S Schriegel, Sebastian; Jasperneite, Juergen: Automated Root

Cause Analysis in Time-Sensitive Networks based on Fault Models,

International IEEE Symposium on Precision Clock Synchronization for

Measurement, Control and Communication ISPCS 2023, London, United

Kingdom, 2023

[IB96] Isermann, Rolf; Ballé, Peter: Trends in the Application of Model Based Fault

Detection and Diagnosis of Technical Processes, IFAC Proceedings Volumes,

Volume 29, Issue 1, Pages 6325-6336, 1996

[EM13] Estima, J. O.; Marques Cardoso, A.J.; A New Algorithm for Real-Time Multiple

Open-Circuit Fault Diagnosis in Voltage-Fed PWM Motor Drives by the

Reference Current Errors, In IEEE Transactions on Industrial Electronics, vol.

60, no. 8, pp. 3496-3505, Aug. 2013

[Fo02] Fontanini, S. T.; Wainer J.; Bernal V.; Maragon S.: Model based diagnosis in

LANs, IEEE Workshop on IP Operations and Management, Dallas, TX, USA,

2002, pp. 121-125

[An18] Anusasamornkul, Tanapat: A Network Root Cause Analysis and Repair System,

2018 6th International Symposium on Computational and Business Intelligence

(ISCBI), 2018

[Pr22] Profibus Nutzerorganisation e.V.: Isochronous Mode – Guideline for

PROFNET IO, Version 1.3, 2022

[Ie23] IEC/IEEE 60802 TSN Profile for Industrial Automation,

https://1.ieee802.org/tsn/iec-ieee-60802/, draft 2.1, 20.10.2023

[Ie16a] IEEE Standard for Local and metropolitan area networks -- Bridges and Bridged

Networks - Amendment 25: Enhancements for Scheduled Traffic, in IEEE Std

802.1Qbv-2015 , no., pp.1-57, 18 March 2016

[Ie16b] IEEE Standard for Local and metropolitan area networks -- Bridges and Bridged

Networks -- Amendment 26: Frame Preemption, in IEEE Std 802.1Qbu-2016

(Amendment to IEEE Std 802.1Q-2014) , vol., no., pp.1-52, 30 Aug. 2016

[Ho13] Hoffmann, W. Dirk: Software-Qualität, 2. Auflage, Springer Vieweg, 2013

