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Abstract:  A thorough network diagnosis is essential to cutting down the cost of network downtime 

in heterogeneous, time-sensitive Ethernet networks. It appears that many Time-Sensitive 

Networking mechanisms do not provide sufficient information about possible error sources, error 

recognition, or error causes. This paper examines possible symptoms and error sources of Frame 

Preemption and how to detect them automatically. Moreover, it examines the limitations and 

functionality of the Scheduled Traffic Anomaly Detection algorithm (STADA) by utilizing a test 

network. This research provides assistance to manufacturers of industrial automation devices, 

experts, and network administrators in performing FDD and root-cause analysis for Scheduled 

Traffic and Frame Preemption faults in Time-Sensitive networks. 
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1 Motivation 

Time-Sensitive Networking (TSN) for Ethernet networks introduces the possibility of 

Quality of Service (QoS) in Ethernet networks like, deterministic and low-latency real-

time communication for control application e.g., PROFINET over TSN [Pr23]. The key 

mechanisms of TSN in industrial communication networks are: Time Synchronization 

(IEEE 802.1AS), Enhancements for Scheduled Traffic (IEEE 802.1Q) and Frame 

Preemption (IEEE 802.1Q). During the lifetime of a TSN device, faults may occur. 

Possible faults of devices, products or production plants are physical, hardware, software, 

aging, design fault, operating error, configuration error or production error, but also faulty 

network cable or rough industrial environments, temperature, humidity and many more. 

The additional challenge in TSN networks is the consideration of the time behavior in the 

network, especially in case of a fault. The previously mentioned faults can lead to 

(network) downtime. The cost of the downtime heavily depends on the industry branch as 

well as the company’s size and has a large variance, according to the Ponemon Institute 

the average cost of network downtime in data center is about $9000 per minute [Co16].  

IEEE 61158-2017 “IEEE Standard for Industrial Real-Time Communication” considers 

possible error sources / error symptoms, error recognition and the error handling for some 
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components of this communication technology e.g., data link layer and physical layer 

[Ie17]. In comparison, most TSN standards do not provide this kind of error recognition 

and error handling, hence expert knowledge and experience is necessary for 

troubleshooting. In case of a fault, the fault detection and diagnosis (FDD) [GDC15a, 

GDC15b] and troubleshooting can therefore take more time in TSN networks, extend the 

production downtime (planned or unplanned) and increase the revenue lost.  

The primary objective of FDD and root-cause analysis is to facilitate the troubleshooting 

process for users in the event of a fault or failure. [FSJ23] et.al. presented a concept for 

the automatic root-cause analysis in time-sensitive networks based on fault models. Fault 

models connect the symptoms of faults. to their root causes. The current state of the 

physical network (netload, protocol alarms, runtime measurements) is compared to 

network models that contain the nominal state of the network (protocols, topology, 

netload, schedules, configuration). An anomaly detector uses FDD technologies to detect 

symptoms in the physical network, then a reasoner uses fault models to find possible root 

causes for troubleshooting and presents the possible root causes and their probability to 

the network operator. To create such a system, it is necessary to investigate TSN 

mechanism regarding possible faults, their symptoms and root-causes. What faults in TSN 

key technologies can occur? How to detect faults of TSN key technologies automatically 

during runtime? The aim of this paper is to investigate possible faults, their symptoms and 

automatic detection of Frame Preemption mechanism and to evaluate the functionality and 

limitations of the Scheduled Traffic Anomaly Detection Algorithm (STADA) [FSJ23].  

The first section describes State of the Art Diagnosis in industrial communication. The 

second section describes the functionality of Frame Preemption and Scheduled Traffic. 

The third section investigates Frame Preemption mechanism and describes possible faults 

and how to detect them. The fourth section handles the evaluation of STADA including a 

description of the algorithm, the test setup and method as well as the results. The final 

section is conclusion and future work. This work will support vendors of industrial 

automation devices, experts and administrators of TSN networks during FDD and root-

cause analysis for Scheduled Traffic and Frame Preemption faults. 

2 State of the Art Diagnosis 

The first section of the chapter, highlights the most important terms as well as general 

FDD techniques. In the second part of the chapter, three examples of diagnosis in 

industrial communication are explained in greater detail. In the 1990s, Isermann et al. 

defined terms in the field of Fault Detection and diagnosis (FDD), e.g., faults, fault 

diagnosis, fault management, and more [IB96]. Fault detection is the determination of the 

fault’s presence in a system and the time of detection. Fault isolation is the determination 

of the kind, location, and time of the detection of a fault. Fault identification describes the 

determination of the size and time-variant behavior of a fault. After a fault diagnosis, the 

location, size, and type of fault are known, but the root cause and the actions to be taken 



 

 

for rectification are unknown. Sometimes FDD and anomaly detection are used as 

synonyms; in principle, it is about being able to detect deviations from the normal state. 

The field of fault detection and diagnosis (FDD) is divided into four categories: signal-

based, model-based, data driven and hybrid methods [GCD15a, GCD15b]. Signal-based 

methods rest upon signals that are somehow connected to the fault in time, frequency, or 

time-frequency domain and utilize, for example statistical information, e.g., mean value, 

variance, or kurtosis, for example [EM13]. Model-based approaches consider an exact 

(mathematical) representation of the system or process, commonly applied to physical 

processes, for example applied on LAN in [Fo02]. The data-driven methods are divided 

into two methods: statistical analysis and artificial intelligence, e.g. [An18]. Data-driven 

techniques use available information about the devices or network, and are often 

considered as an alternative to model-based approaches because there is no detailed 

modeling necessary. 

The "IEEE61158 Standard for Industrial Hard Real-Time Communication" provides 

additional information and even recommendations regarding error management at both 

the data link layer and physical layer [Ie17]. The standard covers possible error sources, 

error recognition, error handling, and error registration. Loss of link, buffer overflows or 

underruns, timing violations for received frames, transmission errors, collisions, frame 

loss, incorrect physical Ethernet operating mode, and numerous other issues that are 

addressed in the standard. In the following, the “Loss of PollResponses” will be explained 

in more detail. This error indicates that no PollRepsonse frame was received in the current 

time slot. The standard describes multiple categories of possible error sources from 

physical errors e.g., loss of link Rx buffer overflow. Other possible sources of errors are, 

for example, defective components in the network or the use of devices whose latency 

does not meet the requirements. This fault is supposed to noticed in the management node 

cycle state machine and can be recognized if the sot timer expires and no frame was 

received in the slot. When a frame loss is detected, several actions are taken: Notification 

of other devices or components, exclusion from isochronous communication, or error 

logging. 

PROFIENT IRT is a communication profile of PROFINET that outlines a highly 

synchronized (isochronous) and stringent communication protocol, meticulously 

engineered from the topology to the cable delays [Pr22]. Since, PROFINET IRT is highly 

engineered, the protocol implements mechanisms to detect changes in the topology or 

cable length during runtime. One part of error handling is done at the application level 

with the “SignOfLife” application, which has a counter that increases every cycle, and the 

mechanism checks through this counter if frames were lost in a cycle. A threshold is set 

by the user for the number of frames that are acceptable to lose. Normal errors are handled 

as in the non-isochronous PROFINET protocol: if a module or submodule detects a fault, 

an alarm is sent to the upper layer, e.g., if data processing is not finished when the next 

cycle starts. Since, PROFINET IRT depends very much on synchronization, details about 

sync errors are also given in the specification. More precisely, it describes how sync errors 

should be handled on the provider and consumer sides. For example, if an out-of-sync 

error occurs, access to data is refused, or it describes error codes, e.g., jitter out of bounds 



 

 

or no sync telegram within rules received.  PROFINET IRT diagnoses the communication 

at the application level and has an alarm system for notification, but in-depth diagnosis 

and providing the user with the root cause are not included. 

“IEC/IEEE 60802 TSN Profile for Industrial Automation” describes a set of rules for time-

sensitive networking in the industrial automation field [Ie23]. For diagnosis, the profile 

suggests observing the YANG data model representation in the local database of the 

component and observing the available objects. Furthermore, the profile defines a 

subscriber-based notification mechanism and corresponding events, e.g., loss of link, loss 

of sync or periodic statistics. As with other protocols, there are mechanisms to detect 

certain errors, but possible causes or actions to clarify them do not exist. 

3 TSN-Mechanisms Scheduled Traffic and Frame Preemption 

3.1 Scheduled Traffic 

The Enhancements for Scheduled Traffic (IEEE 802.1Qbv) allows the transmission of 

each transmission queue to be scheduled to a relative time. Transmission gates are 

associated with each queue [Ie16a]. The state of the gate determines whether frames can 

be selected for transmission (open or closed). Every port has a gate control list with 

ordered gate operations, and for each entry in the gate control list, there is a traffic class 

assigned. Depending on whether frame preemption is used or not, the gate operation of 

each entry allows preemption of frames. Scheduled traffic leads to a slot-based 

communication where one or more traffic classes are assigned to the slots (see Fig. 1). The 

most important parameters for scheduled traffic are: base-time (start time of the schedule), 

cycle time, ControlList, ControlListLength and the CycleTimeExtension.  

 

Fig. 1: Scheduled Traffic 802.1Qbv 

3.2 Frame Preemption 

IEEE 802.1Qbu – Enhancements for frame Preemption and IEEE 802.1br are a set of 

features that allows higher priority frames to interrupt the transmission of lower priority 

frames and resume it later [Ie16b]. Frame preemption is implemented at data link layer 

according to the ISO/OSI model. The MAC layer provides two services: the preemptable 



 

 

MAC (pMAC) and the express MAC (eMAC). A MAC merge layer merges these two 

MAC services back together and preempts preemptable traffic currently being transmitted 

or prevents the start of the transmission of preemptable traffic. When the preemption 

capability is inactive, the MAC Merge sublayer does not allow express traffic to interrupt 

a frame provided by the pMAC service interface. In the MAC Merge sublayer, a special 

packet format is used called mPacket. (see Fig. 2).  

 

Fig. 2 : mPacket format MAC merge sublayer 

The Preamble of an mPacket is identical to a MAC Preamble, the Start Frame Delimiter 

(SFD) is replaced by the Start mPacket Delimiter (SMD) value and identifies the type of 

mPacket frame e.g., verify, respond, express packet, preemptable packet start (SMD-S0 to 

SMD-S3), or a continuation fragment (SMD-C0 to SMD-C3). The frag_count in a 

fragment is a modulo-4 counter that increments each continuous fragment of a preempted 

mPacket. The frag_count is used to detect mPacket reassembly errors by enabling 

detection of the loss of up to three packets. As seen in Fig. 2 the frag_count is only included 

at a continuous fragment of a mPacket. The CRC field contains a cyclic redundancy check 

(CRC) and an indication of whether this is the final mPacket of a frame. In the final 

mPacket of a frame the CRC field contains the CRC of the MAC frame. For other 

mPackets the CRC field contains an mCRC (mPacket CRC) value for that specific 

mPacket. Generally, the preemption capability is enabled on the transmit direction only if 

it’s ensured that the link partner also supports the frame preemption capability. The 

process of discovering the support on the link partner relies on the exchange of additional 

Ethernet capability TLV in the LLDP frame. The mechanism is only enabled if the support 

was announced before and the preemption mechanism is disabled in case of a link failure. 

Only if the frame preemption functionality has been made known beforehand the 

verification process will be triggered. In this process a verify mPacket is sent and a respond 

packet is expected from the link partner. If the frame preemption capability is enabled but 

has not been verified yet, the MAC merge sublayer indicates verification process. 

Verification can be disabled, this is useful for engineered networks. 

a) format of express packet, complete 

preemptable packet or an initial 

fragment of a packet 

b) format of a fragment of a packet 



 

 

4 Possible Faults and Symptoms Frame Preemption  

In order to diagnose the previously outlined Frame Preemption mechanism, it is imperative 

to distinguish between two distinct stages: initialization during the ongoing verification 

process (static) and diagnosis subsequent to successful verification at runtime (dynamic). 

Static errors describe the fact that the verification process was not successful, which can 

have several causes. This phenomenon may manifest itself in the absence of LLDP frames 

or the absence of the additional Ethernet availability for frame preemption in the frame. 

Possible root causes are an incorrect implementation or configuration of the device or an 

increased network load could that leads to frame loss of LLD frames or verification 

mPackets. Therefore, devices or additional measuring equipment could check if the 

verification was successful, e.g., during startup or after a link failure. The second possible 

error category pertains to dynamic errors, which may arise in the event that the frame 

preemption verification was successful and the mechanism is operational and functioning. 

The standard already provides capabilities to indicate faults, like various counters and 

status variables to check if the mechanism is working correctly e.g., 

aMACMergeAssErrorCount, count of MAC frame reassembly errors on receiver side or 

the MACMergeFrameSmdErrorCount is a counter of the received MAC frames / frame 

fragments rejected due to unknown SMD value or arriving of SMD-C when no frame in 

progress. For detailed diagnosis access to these counters and the current device 

configuration is necessary. A faulty implementation could also be the reason for 

incorrectly sent or re-assembled fragments, which could be noticed by the link partner 

(missing frames etc.). Further on, it is possible to observe the jitter of the real-time network 

traffic, if frame preemption should be configured but is not and, enough best effort traffic 

is going through the network this faulty configuration could be noticed.  

Some of the evaluation of the functionality can be done by observing counters or variables 

already defined in the frame preemption standard, especially for the runtime errors. 

Additional measuring equipment or an extension of the devices is necessary to detect faults 

in the verification process or the jitter of real-time traffic. Furthermore, access through an 

API must be granted for network administrators or central diagnosis systems to evaluate 

the quality of the network. This must be integrated into the driver or firmware of the 

devices to provide this information, if it is not already the case through Management 

Information Base (MIB).  

5 Evaluation of STADA 

5.1 Description STADA 

The Scheduled Traffic Anomaly Detection Algorithm (STADA), presented in [Fe23], 

aims to validate the correct scheduled traffic configuration based on the transmit 

timestamp (tx_timestamp) of a frame at runtime, the desired scheduled traffic 



 

 

configuration (base time of the schedule, traffic class for each slot). Based on the transmit 

timestamp the exceeded time in the current cycle can be calculated: time_elapsed = 

(tx_timestamp – base_time) % cycle_time. With the desired configuration and the elapsed 

time in the current cycle the current slot of the schedule can be determind and which 

frames are allowed. Then the algorithm compares whether the allowed and actual frame 

type match. If the frame types do not match, further comparison is done to determine if 

the frame type is even configured or if the interval is too short or too long or a wrong order 

of time slots is given. But how does this algorithm performs in a test setup and network? 

 

Figure 1: Possible faults scheduled traffic 

5.2 Test setup 

The test setup for the evaluation of STADA consists of a TSN controller, TSN switch, 

TSN device and additional measuring equipment. To analyze the traffic on the wire a 

network Test access point (TAP) is set between the TSN controller and the TSN switch. 

The TSN controller, TSN device and the measuring device is Linux based with Intel I225 

network cards. Traffic on the controller is generated by a dummy application. Generally, 

it is possible to implement the STADA in the device driver or firmware of the network 

component, except of the API to the (Linux) kernel this is highly vendor specific and 

closed source. Therefore, STADA was implemented on additional measuring equipment 

and the transmit timestamp is calculated as transmit_timestamp = receive_timestamp – 

delay. The delay was determined by the delay of the TAP and previous measurements. 

The measuring equipment is connected to the TSN switch for synchronization and to the 

network TAP for diagnosis. The schedule for evaluation has three slots: network 

management (PTP and LLDP), second slot real-time traffic (PROFINET) and the third 

slot best effort (IPv4) as seen in Tab. 1.  

Slot number Length [µs] Traffic type 

1 200 PTP, LLDP 

2 250 PROFINET 

3 550 Best effort (IPv4) 

Tab. 1: nominal scheduled traffic configuration 

(a) faulty slot order             (b) faulty interval length 



 

 

 

 

Fig. 3: Test setup for STADA 

5.3 Method 

As described in previous work [Fe23], possible faults for scheduled traffic are a wrong 

order of slots and an incorrect interval length (too short or too long). For the determination 

of the possible combinations for testing, it was specified that no repetitions may occur in 

the order. With the test schedule from the test setup this results in the following possible 

combination shown in Tab. 2. A short interval length is defined as half of the normal 

interval length, the long interval length is defined as double of the normal slot length. 

Slot order Slot 1 interval Slot 2 interval  Slot interval 3 

123 Short Short short 

132 Normal Normal Normal 

213 Long Long Long 

231    

312    

321    

Tab. 2: scheduling configuration 

The possible combinations based on Tab. 2 are 6x3x3x3 = 162 combinations. In the 

literature there are methods about reducing the test cases for example [Ho13]. In order to 

reduce the number of test cases, the approach of pairwise testing was selected. The idea 

behind pairwise testing is that some combinations of the parameters are responsible for 

faults, and most of the time the combination of two parameters. The construction of the 

possible test combinations is done via orthogonal arrays, as described in [Ho13]. After the 

reduction of test cases, the matrices show don’t care entries, it was defined that every time 

an entry consists a don’t care the normal slot interval length was chosen. With pairwise 

testing the combinations could be reduced to 33 test cases. The test sequence for all 33 

test cases was as follows: Start synchronization, set the schedule, wait until 

synchronization is complete, start STADA for five minutes, procced with next test case. 

For all frames, the transmit time was determined based on the cycle time and logged. 



 

 

5.4 Result  

In all 33 executed test cases, the algorithm detected a faulty scheduled traffic 

configuration. However, the detailed statement (wrong order, interval length too short or 

too long) was not clear in most cases. The algorithm principle is responsible for this 

imprecise recognition. The algorithm uses the transmission time and only knows about the 

traffic class of the previous frame and the desired traffic class. Tab. 3 you can see some 

summarized measured values, e.g., mean, minimal, maximum value, from the two test 

cases. The first test case is the desired configuration, the second test case is the correct 

order but all intervals are too short. This shows that the mean value in the misconfigured 

case deviates significantly from the normal case, as does the standard deviation of the 

network management. These can be also parameters, which one puts into an extension of 

the algorithm. In the future, it may be possible to obtain a more precise diagnosis by 

closely scrutinizing multiple cycles, for instance.   

Test case 
traffic 

type 

Count 

[µs] 
Mean [µs] 

Std 

[µs] 
Min [µs] Max [µs] 

TC 1 

desired 

NM 6494 29 45 0,5 199 

Real-Time 326491 424 0,48 419 438 

TC 4 

short,123 

NM 6646 269 251 0,63 599 

Real-Time 334101 601 0,11 600 604 

Tab. 3 : Example Measurements results STADA evaluation 

6 Conclusion 

In this work possible errors and methods to detect frame preemption faults were 

investigated. Furthermore, the Scheduled Traffic Anomaly Detection Algorithm 

(STADA) was evaluated in a test setup. An example schedule with three time slots was 

chosen and the possible combinations determined. With pairwise testing the test cases 

could be reduced from 162 to 33. These 33 test cases were executed in the test setup. It 

could be shown that STADA generally detects a faulty configuration of the scheduled 

traffic. As of today, the algorithm cannot give a detailed analysis of what exactly is wrong 

with the schedule. Future work should concentrate on improvement of STADA with the 

mentioned ideas and the evaluation of the Frame Preemption fault detection ideas.  
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