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1. Introduction

In recent years, the efficient management of closed-loop supply chains has been given

increasing attention in theory and industry. By closing the loop, many manufacturers

extend their originally designed, forward-oriented logistic activities to integrate the

backward flow of products from their customers. This creates new opportunities to

generate value by recovering products, components, or materials. When the returned

product is properly functioning, it can be almost directly resold to the customers (in

some cases, a repackaging is required). Yet, firms can also create value from the recovery

of broken products.

Thierry et al. (1995) categorize five different options on how product recovery for re-

turned broken products can be organized. The least complex option to restore the

product’s functionality is to repair it. There, broken parts are simply replaced or fixed

which results in a lower product quality compared to a new product. The second op-

tion named refurbishing brings products to a predefined quality standard. Instead of

replacing or fixing broken parts, technologically superior parts can be used to achieve

a prespecified target quality level. However, the quality of a refurbished product does

not have to concur with the quality of a new product. Bringing a returned prod-

uct to a quality standard comparable to a new product is the objective of the third

option of product recovery, remanufacturing. The process of remanufacturing pur-

sues this objective by disassembling the returned product, thoroughly inspecting all

components obtained and replacing/mechanically remanufacturing broken components.

These components (remanufactured and new) are assembled into the remanufactured

product. While this is the most sophisticated form of product recovery which aims to

save a large part of the product’s value, the final two options mentioned by Thierry

et al. (1995) cannibalization and recycling focus more on harvesting the components

and materials, respectively. Among these options, remanufacturing has become an



1. Introduction 2

interesting option not only for original equipment manufacturers (OEMs) due to the

potential benefits it can create. Until today, remanufacturing operations have been

established in a large variety of industrial applications and account for total sales of

more than $50 billion a year (see, e.g., Guide, 2000).

Akçalı and Çetinkaya (2011) identify in their literature review four basic remanufac-

turable product categories that can be found in industry: Refillable containers, durable

products, technology products, and recoverable materials. The remanufacturing pro-

cess for refillable containers (for liquid gases and beverages) is described, for instance,

by Kelle and Silver (1989). Moreover, toner cartridges and single-use cameras can be in-

terpreted as refillable containers as well (see, for instance, in Majumder and Groenevelt,

2001). Next to the comparably simple remanufacturing of refillable containers, there

is a multitude of durable products which are remanufactured. Seitz and Wells (2006)

present, for instance, the case of automotive engine remanufacturing. The importance

of remanufacturing for automotive manufacturers can be highlighted by the following

figures. In 2008, Volkswagen remanufactured 3.83 million components (mostly engines

and transmissions) and generated a revenue of around 600 million e with their reman-

ufacturing activities (see Volkswagen, 2010). Two additional examples for the remanu-

facturing of complex durable products are photocopiers (as presented in Thierry et al.,

1995) and various medical equipment (see Ferrer and Ketzenberg, 2004). However,

not only durables are remanufactured in practice but also high-end technology prod-

ucts like cellular phones (as presented in Guide and Van Wassenhove, 2001) and PC

components (as in Ashayeri et al., 1996). Finally, Akçalı and Çetinkaya (2011) name

recoverable materials (like steel and glass) as a remanufacturable product category al-

though it may also be classified as a recycling process since no disassembly operation

needs to be performed and solely the relevant materials are recovered. All industrial

remanufacturing processes named above have in common that a remanufacturer has to

consider a plethora of different tasks during the planning process.

In his seminal work, Guide (2000) describes the complicating characteristics of remanu-

facturing in industry. An important planning task for a remanufacturer (or an OEM) is

to adapt his logistics network to handle the return flow of products from his customers

to his remanufacturing facilities efficiently. Yet, even the best organized system cannot
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obviate all uncertainties regarding the timing and quantity of returns. Furthermore,

the quality of returns is uncertain as well, i.e. the remanufacturer does often not know

before disassembling his returns which components can be properly recovered. Alto-

gether, these characteristics imply an uncertain supply of recoverable components. This

uncertain supply aggravates the planning process substantially as the remanufacturer

intends to satisfy customer demand at least partly by remanufacturing returned prod-

ucts. For all planning tasks, Guide elaborates a number of possible research questions

that require further attention. Due to the complexity of an industrial remanufacturing

system, all research questions can only be formulated to focus on a small part of the

entire system. One of the most important questions to ask in this context contains the

timing and sizing of remanufacturing and manufacturing decisions when substantial

setup costs prevail for each process. To present different solution approaches to answer

this question is the main focus of the following work.

In order to do this, a simplified model of a remanufacturing system needs to be formu-

lated that includes all relevant decisions but can be adapted easily to different scenarios.

Next to the decisions on when and how much to (re)manufacture, the corresponding

inventory levels play an important role in this context. Due to their importance, there

are many possibilities to simplify the existing interdependencies of all relevant inventory

levels in a remanufacturing system. Akçalı and Çetinkaya (2011) classify 14 different

modelling approaches that can be found in literature. Although some of these ap-

proaches are rarely used, one approach (named 2SP-c in their work) has been applied

in 41 scientific contributions. Throughout this work, we will use this approach as well.

Figure 1.1 depicts the interdependencies of all relevant stocking points and processes.

R e c o v e r y  

o p e r a t i o n s

M a n u f a c t u r i n g D e m a n d

S t o c k i n g  p o i n t

P r o c e s s ( e s )

Fig. 1.1: Simplified inventory model for a remanufacturing system
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In this simplified model, a single final product (containing a single, vital part) is de-

manded by the remanufacturer’s customers. Regarding demand, we assume that the

remanufacturer always knows in advance what his customers request, i.e. the demand

is deterministic. When the customers have no further use for their product, they have

the possibility to return it to the remanufacturer who stores all returns in a correspond-

ing inventory (at a given holding cost). After a collection interval, the remanufacturer

recovers a number of returns from this stock which brings them to an as-good-as-new

condition. Each remanufacturing run requires a specific setup, for instance to adjust

the required tools. This setup incurs a setup cost that needs to be considered in the

decision making process. All successfully recovered products are held in a final prod-

uct inventory (at a given holding cost) from which final products are delivered to the

customers. In this model context, we impose the assumption that the entire demand

cannot be satisfied by remanufacturing returns alone. Thus, the additional option of

manufacturing new products is required. Likewise, each manufacturing setup incurs

a corresponding setup cost. Newly fabricated products are also brought to the final

product stock. Therefore, the remanufacturer has two options to serve his customers,

remanufacturing returns and manufacturing new products. To facilitate the solution

finding process, we further impose the assumption that customers do not care whether

they procure a remanufactured or a new product.

Respecting this basic modelling approach, we elaborate four variations of it in the

subsequent Chapters and analyze their implications. These variations result from the

fact that all processes in the basic model can be interpreted differently. The following

listing presents all possible process interpretations used henceforth:

1. Recovery process : The recovery process can be explicitly modelled with sepa-

rate disassembly and remanufacturing activities but can also be integrated in a

single recovery operation. A more detailled process is recommended when both

processes differ significantly with respect to their corresponding cost.

2. Yield from recovery : The yield from recovery is, in general, not known in

advance. In contrast to stochastic yields, the commonly applied simplification of

deterministic yields can be presumed as well to facilitate the solution finding.
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3. Manufacturing new products : Manufacturing new products can be allowed

throughout the entire planning horizon or only at its beginning. In reality, manu-

facturing new products becomes in some cases prohibitively expensive after high

volume series production runs out. Depending on the respective model setting,

one of both interpretations will be allowed.

4. Demand and return process : The modelling of the demand and return pro-

cesses can differ as well. On the one hand, a static and continuous demand and

return can be assumed over the entire planning horizon. As this is only a sim-

plification of a real-life environment, the more realistic dynamic demands and

returns can be applied as well. Moreover, we differ between exogeneously given

demands and returns or whether the remanufacturer is able to endogeneously

influence both parameters.

Having two interpretations of four processes leads in general to 16 different model

settings. Yet, as not all models are relevant for a real-life environment, we restrict our

attention to four settings. Table 1.1 presents the respective process interpretations of

the subsequent Chapters 2-5.

Tab. 1.1: Process interpretations of the following Chapters

Recovery

process

Yield from

recovery

Manufacturing

new products

Demand

and return

Ch. 2 remanufacturing deterministic always possible
static and

exogenous

Ch. 3
disassembly &

remanufacturing
stochastic always possible

static and

exogenous

Ch. 4 remanufacturing deterministic always possible
dynamic and

exogenous

Ch. 5 remanufacturing deterministic

only at the

beginning of the

planning horizon

dynamic and

endogenous
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Chapter 2 considers a problem that is well known in literature and can be referred to

as the basic lot sizing model for a remanufacturing system. In it, remanufacturing and

manufacturing decisions have to be aligned over an infinite planning horizon in which

all parameters are static and exogenously given. We review at the beginning of Chapter

2 all currently published solution approaches for this basic model setting and propose

a more effective new solution approach. Thereafter, the first optimization approach

(type: mixed-integer non-linear optimization problem) for this model is introduced

that allows to compare all solutions independently. A numerical study concludes this

Chapter which reveals two interesting results. At first, the newly proposed solution

can improve the currently published solutions by more than 9% for some parameter

settings. Moreover, the optimization approach is able to improve the solutions slightly

further but only in some cases.

In the following Chapter 3, the basic lot sizing model of the preceding Chapter is

extended to incorporate a more detailled recovery process by considering disassembly

and remanufacturing activities separately. As mentioned above, the quality of returns

cannot always be evaluated by the remanufacturer in advance. Thus, disassembling

the returns and inspecting the components obtained thereby is an option to evaluate

the quality of the product returns. This Chapter formulates the research question

what changes to the currently applied methods have to be made when a stochastic

yield from disassembly prevails. In it, three policies are formulated that differ in their

degree of sophistication. While the least sophisticated policy ignores the stochastic

yield entirely and assumes a deterministic equivalent yield, the most sophisticated

policy incorporates the entire yield distribution in its solution finding process. By

conducting a numerical study, we find that the error of applying the least sophisticated

policy instead of the most sophisticated one is seldomly larger than 2%. This can be

interpreted as a very interesting result as it implies that neglecting stochastic yields

and assuming a deterministic equivalent yield instead does not necessarily result in a

large cost difference.

Chapter 4 adjusts the modelling approaches of the preceding Chapters to incorporate

dynamic demand and return patterns in a simplified remanufacturing system. By doing

this, a more realistic setting can be established since the number of products returning



1. Introduction 7

to the remanufacturer varies, in general, over time. Of course, the same can be said

about the number of products demanded from the remanufacturer. In their work,

Teunter et al. (2006) extend three well-known heuristic approaches from the single-

item dynamic lot sizing problem (Silver Meal, Part Period, and Least Unit Cost) by

evaluating two options to satisfy demand, remanufacturing returns and manufacturing

new products. In a numerical study, the authors identify their adapted Silver Meal

approach as the best performing heuristic. However, this heuristic shows an average

error of around 8% when compared to the optimal solution obtained by mixed-integer

linear programming. Since this average error appears to be unnecessarily high, Chapter

4 introduces a modification to the Silver Meal approach by Teunter et al. (2006) that is

able to reduce the average error to below 2.5% when tested in the same experimental

design.

Until now, the remanufacturing system is modelled in a way that the remanufacturer

faces an exogenously given demand and return. In Chapter 5, this assumption is in-

tensively discussed. There, a number of model settings are established that describe

different options for the remanufacturer to directly control the demand for his products.

In general, the preceding Chapters assumed that the remanufacturer is always willing

to satisfy the demand for remanufactured products. The model settings introduced in

Chapter 5, however, allow the remanufacturer to buy back used products to prevent

him from fulfilling a request for a remanufactured product. As this proceeding can be

reasonable, Chapter 5 elaborates optimal buy-back strategies for different settings re-

garding information availability and buy-back flexibility. A numerical study concludes

the analysis and presents circumstances under which buy-back seems to be especially

beneficial for the remanufacturer. In contrast to the preceding Chapters, these mod-

elling approaches assume that the setup cost for (re)manufacturing are neglible.

As mentioned above, all relevant tasks for a real-life remanufacturing system can never

be solved simultaneously. This work addresses, hence, only a small number of relevant

tasks. In real-life remanufacturing systems, for instance, a large number of products

are disassembled that contain a lot of components. When different products contain

the same component, the question arises which kind of product to disassemble in order

to obtain a specific component. This planning task, known as disassembly planning,
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has been discussed intensively, e.g., by Langella and Schulz (2006) as well as Schulz

(2007). Moreover, uncertainties do not only prevail on the supply side of industrial

remanufacturing systems but also on their demand side as a remanufacturer cannot

forecast the demand for remanufactured products perfectly. In this case, an efficient

inventory management needs to be established for the final product inventory. Next

to defining cost-minimizing service levels, the method of drawing operating curves can

help to depict the existing trade-off between mean inventory levels and mean stock-outs.

For a detailled discussion on operating curves, please refer to Inderfurth and Schulz

(2007a,b, 2008, 2009, 2010). Obviously, a large number of additional planning aspects

can be included in a comprehensive analysis of a real-life remanufacturing system (again,

we would like to refer the reader to Guide, 2000; Atasu et al., 2010). Yet, to focus on

the decisions on when and how much to (re)manufacture we restrict ourselves to the

simplified model settings presented above. The next Chapter begins the analysis by

introducing the basic lot sizing model for recovery systems and elaborates possible

improvements to currently established solution methods.



2. Optimal and predefined policies for the

static lot sizing problem in a two stage

recovery system

2.1 Introduction

The growing environmental concern of their customers combined with an increasing

price consciousness poses a challenging task for many manufacturing companies1. This

development in customer behavior supports the manufacturing companies to consider

product recovery as a viable alternative to satisfy customer demand. Depending on

the degree of disassembly and material reuse, Thierry et al. (1995) classify five different

recovery options. Among these options, remanufacturing returned products seems to

be of special interest since it addresses both issues demanded by their customers. On

the one hand, remanufacturing a returned product reduces landfill space as it needs not

to be disposed of. On the other hand, as a part of the value embedded in the product

is saved, the manufacturer is able to offer his customers a significant price discount on

the remanufactured product. When accepting this offer, the customer does not face a

disadvantage compared to buying a new product since in general the same warranty is

issued for both.

In literature, a variety of real-life industrial applications for remanufacturing has been

presented ranging from car engines (as in Seitz and Wells, 2006) over photocopiers (as in

Thierry et al., 1995) to water pumps for diesel engines (as in Tang and Teunter, 2006).

1 This Chapter is based on the work titled ’Optimal and predefined policies for the static lot sizing

problem in a two stage recovery system’ that has been published in the FEMM working paper

series (see Schulz, 2011a).
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Common to all industrial applications is that remanufacturing a returned product

requires a large number of different processing operations. After return, each product is

disassembled to obtain its components. All components are inspected whether they can

be reused or not. If necessary, mechanical rework processes ensure the required quality

standards. Complemented by new components, the remanufactured components are

assembled into remanufactured products which can be offered for sale.

For establishing an efficient remanufacturing system, a multitude of planning tasks

have to be taken into account. Guide (2000) illustrates in his work the complexity

of possible obstacles to overcome during this planning process. One of the most com-

plex issues mentioned in his work is lot sizing for remanufacturing, i.e. the question

of when to remanufacture returned products and how many items to include in each

remanufacturing batch. As, in general, the entire customer demand cannot be satisfied

by remanufacturing, a number of new products need to be manufactured in addition.

Incurring a setup cost for initiating a remanufacturing/manufacturing batch and hold-

ing cost for storing a returned/final product, a lot sizing problem results that needs to

integrate remanufacturing and manufacturing decisions. This objective represents the

main focus of this Chapter.

The first attempt to find a solution to this problem has been proposed by Schrady

(1967). He abstracts from a possible real-life remanufacturing system by imposing a

number of assumptions to facilitate the solution finding. Most importantly, his assump-

tion of a static product demand and return flow of products over an infinite planning

horizon results in a multi-level EOQ problem setting (with EOQ being the Economic

Order Quantity). In order to find a solution to this problem, Schrady separates the

infinite planning horizon into equal cycles. All cycles contain the same sequence of

lot sizing decisions and are repeated identically over the entire planning horizon. As

commonly applied to EOQ-type lot sizing problems, the cycle needs to be determined

that minimizes the total cost per time unit. Schrady recommends a cyclic solution

in which R equal remanufacturing lots precede a single manufacturing lot. For this

kind of policy he derives closed-form expressions for the (re)manufacturing batch sizes.

Further on, Schrady’s proposed solution is referred to as the (R, 1) policy indicating

that R remanufacturing batches and one manufacturing batch are set up in a cycle.
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Nahmias and Rivera (1979) extend Schrady’s contribution by incorporating a finite

recovery rate while keeping the production rate infinitely large. In their contribution,

they adjust the closed-form expressions for both lot sizes to respect their change to

the model setting. Another extension to Schrady’s basic model has been proposed by

Richter (1996a,b). He includes the option to decide whether to dispose of returned

products or not. While in the basic model remanufacturing is assumed to be always

beneficial, Richter shows that this solution depends on the size of the variable cost

of (re)manufacturing. Therefore, a variable disposal rate can influence the solution

to this problem setting significantly when remanufacturing might not be beneficial in

general. Coming back to Schrady’s original problem setting, Teunter (2001) proposes

another policy structure that promises better results for some parameter combinations.

Teunter derives closed-form expressions for both lot sizes when one remanufacturing

batch is succeeded by M equal manufacturing lots. His solution will, thus, be referred

to as the (1,M) policy. Later on, Teunter (2004) extends in another contribution

the work of Nahmias and Rivera to include finite recovery and production rates into

the closed-form expressions for both the (R, 1) and (1,M) policies. All contributions

introduced so far obtain closed-form expressions for the (re)manufacturing batch sizes

under the assumption of a non-integer value for R and M , respectively. Since R and

M have to be integer to ensure feasibility, Minner (2002) proposes a methodology to

correctly consider the issue of integrality.

In his first work, Teunter mentions two opportunities to improve the solutions pro-

posed until then. First, he conjectures a more general (R,M) policy (with R,M > 1

simultaneously) that can decrease the total cost incurred compared to the (R, 1) and

(1,M) policies. This conjecture has been tested by Choi et al. (2007). They introduce

a solution procedure that is able to derive the minimum total cost value for a more

general (R,M) solution while keeping all (re)manufacturing batches equal. In addition,

a numerical experiment has been conducted to evaluate the possible improvements the

more general (R,M) policy offers. In their study, the (R,M) policy is able to improve

the currently proposed policies in about 0.2% of all tested instances with a maximum

deviation of less than 0.5%. These findings have been, among other things, confirmed

by Liu et al. (2009). Moreover, Konstantaras and Skouri (2010) extend the (R,M)
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policy to include possible shortages. In order to do that, they adapt and facilitate the

solution procedure introduced by Choi et al. As a result, their solution approach is

valid for both the non-shortage and the shortage case.

Next to creating a more general (R,M) policy structure, Teunter (2001) conjectures

to allow for differently sized remanufacturing batches within a cycle to improve the

solution even further. By using a Lagrange-multiplier approach, Minner and Lindner

(2004) proved Teunter’s conjecture to be true, i.e. policies containing differently sized

remanufacturing batches can outperform policies with equal ones. Yet, they have

not evaluated the potential gain differently sized remanufacturing batches can have.

Feng and Viswanathan (2011) extend in their contribution the general (R,M) policy

by Choi et al. to include differently sized remanufacturing batches. Their approach

proposes to split the entire (R,M) cycle into two subcycles. Thereafter, an enumerative

procedure tests whether the solution can be improved when the remanufacturing lot

sizes are altered in both subcycles. Yet, within a subcycle all remanufacturing batch

sizes remain equal. The main contribution of this Chapter is to show that scheduling

non-equal remanufacturing batches in a cycle proposes a significant cost reduction

for some parameter classes. Furthermore, a more general optimization approach is

introduced that allows to evaluate the solution quality of the preset policy structures.

The remainder of this Chapter is organized as follows. After elaborating all assump-

tions required of the general problem setting in Section 2.2.1, Schrady’s (R, 1) policy

and Teunter’s (1,M) policy are presented as in the original contributions in Sections

2.2.2 and 2.2.3. The only difference to their presentations is that a yield parameter

β is included in our contribution to consider the influence of an imperfect remanufac-

turing process. Afterwards, Section 2.2.4 presents the alternative formulation of the

total cost function proposed by Minner (2002) to derive a closed-form expression for

the integer number of remanufacturing and manufacturing batches in a cycle. Such a

formulation has neither been included in Schrady’s nor in Teunter’s work. While Sec-

tion 2.2.5 discusses the results of the preceding subsections in greater detail, Section

2.2.6 introduces a new policy structure, the (R, 1)g policy. Deviating from the formerly

introduced (R, 1) policy, this policy allows for differently sized remanufacturing lots in

a cycle. More precisely, the amount to be remanufactured in a batch decreases geomet-
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rically throughout the cycle. This characteristic permits to fulfill the zero inventory

property in both inventory levels, i.e. each remanufacturing lot remanufactures all

returns in stock. Contrary, implementing an (R, 1) policy with equal remanufacturing

lots means that not necessarily all returns are remanufactured in a batch and a posi-

tive number of items can remain in stock. However, the (R, 1)g policy structure is a

predefined structure like the (R, 1) and (1,M) policies which only allows to compare

different policies. As no general optimization approach has yet been formulated in

literature to evaluate the predefined policy structures properly, Section 2.3 provides an

approach to obtain a benchmark solution by solving the underlying problem without

presuming predefined structural characteristics. Thereafter, Section 2.4 conducts a nu-

merical study by presenting a base case from literature and varying its parameters in

a sensitivity analysis to assess the influence of each parameter on the solution quality.

In this study, the simplified policy structures are compared to the benchmark solution

in order to evaluate their performance. Finally, this Chapter is concluded in Section

2.5 with a short summary and an outlook on future research opportunities.

2.2 Predefined policy structures for the two stage

remanufacturing system

2.2.1 General model setting

Before analyzing the two stage remanufacturing system intensively, all necessary as-

sumptions have to be stated. In general, the model setting presented subsequently

concurs (with one exception) to the model setting introduced by Schrady. In it, an

original equipment manufacturer (OEM) engaged in the area of remanufacturing rep-

resents the background. Figure 2.1 presents its general structure.

The OEM sells one product A to his customers. Demand for product A is assumed to be

constant and depletes the finished goods inventory continuously at a rate of λ units per

time unit. A fraction α of used products in the market (denoted by A′) returns to the

manufacturer when his customers have no further use for it. Therefore, a continuous
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Fig. 2.1: Inventory system in a two stage remanufacturing environment

inflow of λα returned products per time unit is observed for the used product inventory.

Storing an unit of A′ in this inventory results in a holding cost hR per time unit. Due

to different stages of wear, not all returned products can be brought to an as-good-

as-new condition which is a prerequisite to resell the product. Hence, β denotes the

deterministic fraction of returned products that can be successfully reworked. Thus, α

as well as β must not exceed one while being non-negative. All products that cannot

be remanufactured sufficiently are recycled. Recycling a returned product is assumed

to be free of charge. This assumption can be imposed when the value of all materials

contained in A′ is about the same as the value of work required to separate these

materials. Setting up the mechanical rework and cleaning tools incurs a setup cost

KR. All successfully remanufactured products are held in a final product inventory

at a cost of hM per unit per time unit. In order to secure that demand for A is

always met, some new products have to be manufactured in addition (as α and β are

usually smaller than one). The relevant setup cost is denoted by KM representing

the cost for initiating a manufacturing lot for product A. This model includes neither

processing nor lead times, i.e. whenever a (re)manufacturing batch is issued it arrives

instantly. Newly manufactured products are held in the same serviceables inventory

as remanufactured ones. Regarding the cost of storage, both remanufactured and

new products are evaluated with the same holding cost parameter hM . As two levels

of inventory are considered (used product and final product) the resulting system is

defined as a two stage recovery system.
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In general, the holding costs of both inventory levels (when interpreted as opportunity

cost of capital) are connected by the following condition. Since an increasing product

value indicates more tied-up capital, the holding cost parameter hM must be larger than

hR as the remanufacturing process provides a significant increase in value. Yet, only the

fraction β of all products returned can be sufficiently remanufactured. In other words,

at an average 1/β products have to be remanufactured to obtain one salable product.

As it cannot be observed before remanufacturing whether this process is successful,

the following condition for both holding cost parameters has to hold to assure validity:

hR/β < hM . On the other hand, no condition is imposed for the process related setup

costs KR and KM . Contrary to these fixed cost parameters, the subsequent model

omits the use of variable costs for manufacturing and remanufacturing product A. By

assumption, obtaining a unit of A by remanufacturing is always less expensive than

manufacturing it. Consequently, the OEM commences the remanufacturing process for

all returns (whether it is successful or not) and disposes no return in advance.

Figure 2.2 presents the levels of inventory for the analyzed framework and depicts

whether the inflows to and outflows from each level are continuous or discrete. The

entire system has a continuous inflow and outflow of goods amounting to λα and λ

units per time unit, respectively. All parameters remain constant over an infinite plan-

u s e d  p r o d u c t

f i n a l  p r o d u c t

l e v e l  ( A ' )

l e v e l  ( A )

c o n t i n u o u s  i n f l o w
( l a  u n i t s  p e r  t i m e  u n i t )

d i s c r e t e  o u t f l o w s

c o n t i n u o u s  o u t f l o w
( l  u n i t s  p e r  t i m e  u n i t )

d i s c r e t e  i n f l o w s

Fig. 2.2: Two stocking points and their inflows and outflows

ning horizon which leads to an EOQ-type model (as setup and holding costs prevail).

The standard single level EOQ approach recommends to replenish the inventory with
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a certain amount (known as the economic order quantity) whenever it is depleted. By

following this simple rule over the infinite planning horizon and thereby creating iden-

tically repeated cycles, the EOQ approach minimizes the total cost per time unit. This

chapter adopts the standard EOQ procedure to the more sophisticated two stage inven-

tory problem presented above. In it, six decisions of interest have to be evaluated: the

length of a cycle (T ) as well as the number of lots scheduled therein, i.e. the number

of remanufacturing (R) and manufacturing lots (M). Moreover, to define a cycle un-

ambiguously, further information is required on the sequence of batch scheduling and

on the quantities of individual lot sizes (denoted by QR for remanufacturing and QM

for manufacturing lots) that need not be integer. Since all lot sizes within a cycle can

be different, a complex policy structure can result. Yet, by imposing restrictions on

some of these decisions, simple policy structures can be derived that facilitate finding

a solution to this problem setting.

2.2.2 Schrady’s (R, 1) policy

The first attempt to define a simple policy structure for this problem has been under-

taken by Schrady (1967). In his work, the author elaborates a set of formulae for a

cyclic pattern in which one manufacturing lot is succeeded by a number of equally sized

remanufacturing lots R. Therefore, this policy is referred to as the (R, 1) policy. The

simplifying assumption of having remanufacturing lots of equal size is, among other

things, relaxed later on. Before doing this, the (R, 1) policy with equal remanufac-

turing lots is presented. Figure 2.3 illustrates, for example, a cyclic pattern with one

manufacturing and three remanufacturing lots. All lots are arranged in the way that

both the used product and the final product inventories are entirely depleted at the

beginning of a cycle. Thus, a cycle starts with a remanufacturing batch containing QR

returned products. Since the fraction β can be brought to an as-good-as-new condition,

QR · β products enter the final product inventory at the beginning of each cycle. After

QR·β
λ

time units the final product inventory is depleted and the sole manufacturing lot

containing QM final products is scheduled. Thereafter, the remaining remanufacturing
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lots are initiated until the end of the cycle is reached and the next, identical cycle

commences. Since all remanufacturing lots are presumed to be equal, not all remanu-

facturable returns available in stock are remanufactured at all times. Hence, the used

product level is only depleted at the beginning/end of a cycle.

u s e d  p r o d u c t

f i n a l  p r o d u c t m a n u f a c t u r i n g

r e m a n u f a c t u r i n g
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Q R
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l
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l

Q R b
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Fig. 2.3: Used product and final product level corresponding to a (3,1) policy

Each (R, 1) policy structure is unambiguously outlined by two decision variables. In his

work, Schrady chooses the lot sizes QR and QM to evaluate the total cost of his policy

structure. The remaining relevant decisions (number of remanufacturing lots R and

cycle length T ) can be deduced from QR and QM as follows. A cyclic structure results if

both inventory levels at the beginning of each cycle are equal to their respective levels

at the corresponding cycle’s end. To ensure this, the number of returned products

collected in a cycle must be equal to the amount of products remanufactured in it.

Since the OEM receives λα products per time unit and each cycle has a length of T

time units, λαT products are remanufactured in R identical batches of size QR, i.e.

R ·QR = λαT. (2.1)

As can be derived from Figure 2.3, the length of a cycle T is computed by

T (QR, QM) =
R ·QR · β +QM

λ
. (2.2)

By combining equations (2.1) and (2.2), analytical expressions can be formulated for
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both R and T that depend only on the relevant decision variables QR and QM .

R(QR, QM) =
α ·QM

(1− αβ) ·QR

and T (QM) =
QM

λ (1− αβ)
. (2.3)

To obtain the smallest total cost of the predetermined (R, 1) policy structure, the sum

of a setup and a holding cost term has to be minimized. Starting with the setup cost

term, the number of remanufacturing lots R needs to be multiplied by KR and added

to the setup cost for initiating the manufacturing batch KM . The resulting value needs

to be divided by the cycle length T to compute the setup cost per time unit. Using

equations (2.2) and (2.3), this results in2:

Km +R ·KR

T
= λ ·

(

(1− αβ) ·KM

QM

+
α ·KR

QR

)

. (2.4)

Regarding the holding cost term, the following analysis considers both inventories

separately. The holding cost per time unit for the used product inventory can be

determined by evaluating the average inventory during a cycle. In static lot sizing

problems, the average inventory can be computed by dividing the maximum inventory

level within a cycle ymax
R by two. Yet, this can only be done when the inventory level

of the corresponding stock is zero at the beginning and at the end of a cycle but never

within. Due to the policy prerequisite of having remanufacturing lots of equal size,

this is always given for an (R, 1) policy structure in the used product inventory. As

depicted in Figure 2.3, the maximum inventory in the used product stock prevails

after the products fabricated in the cycle’s only manufacturing lot run out. At this

point in time, the inventory contains all products returning to the OEM while one

remanufacturing and the manufacturing lot have satisfied customer demand. As λα

products return per time unit, the holding cost for the used product stock is

1

2
ymax
R · hR =

1

2
· α · (QR · β +QM) · hR. (2.5)

The average holding cost in the final product inventory, on the other hand, cannot

be determined by dividing the maximum inventory level during a cycle by two since

it drops to zero several times in it. Generally speaking, the holding cost in a cycle is

determined by multiplying the inventory during this cycle by the corresponding holding

2 For details, please refer to the Appendix, page 69.
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cost. The inventory during a cycle is computed by assessing the region bounded by the

inventory level. For instance, to determine the holding cost of the final product level,

the area of the observed triangles in Figure 2.3 has to be evaluated. This term has to

be multiplied by hR and divided by T as the holding cost per time unit is required. By

using equations (2.2) and (2.3), this gives3

(

1

2
· R · (QR · β)2

λ
+
1

2
· (QM)2

λ

)

· hM · 1
T

=
1

2

(

αβ2 ·QR+(1−αβ) ·QM

)

hM . (2.6)

After establishing the relevant setup and holding cost terms, the total cost function

for Schrady’s (R, 1) policy depending on both lot sizes QR and QM is formulated by

summarizing the cost components in (2.4), (2.5), and (2.6). Henceforth, this total cost

function is denoted by TCR1. It is

TCR1(QR, QM ) =λ ·
(

(1− αβ) ·KM

QM

+
α ·KR

QR

)

+
1

2
· α · (QR · β +QM) · hR+

1

2
·
(

αβ2 ·QR + (1− αβ) ·QM

)

· hM . (2.7)

This total cost function (2.7) is jointly convex4 in both decision variables QR and QM ,

i.e. the smallest total cost can be determined by exploiting its partial derivatives. For

instance, by computing the partial derivative of (2.7) with respect to QR, the best

remanufacturing lot size Q+
R for the (R, 1) policy structure is obtained. This gives

∂TCR1

∂QR

= −λαKR

(QR)
2 +

1

2
· αβ · (hR + β · hM) = 0 and results in

Q+
R =

√

2λ ·KR

β · (hR + β · hM)
. (2.8)

Similarly, the best manufacturing lot size Q+
M for an (R, 1) policy structure is calculated

by

∂TCR1

∂QM

= −λ (1− αβ)KM

(QM)2
+

1

2
· (α · hR + (1− αβ) · hM) = 0 and results in

Q+
M =

√

2λ · (1− αβ) ·KM

α · hR + (1− αβ) · hM

. (2.9)

3 For details, please refer to the Appendix, page 69.
4 For the mathematical proof, please refer to the Appendix, page 69.
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The information about the best remanufacturing and manufacturing batch sizes can

be inserted into the equations (2.3) to obtain the cost minimizing number of remanu-

facturing lots R+ and the corresponding cost minimizing cycle length T+:

R+ =
α

1− αβ
·
√

(1− αβ) ·KM · β · (hR + β · hM)

KR · (α · hR + (1− αβ) · hM)
(2.10)

T+ =

√

2 ·KM

λ · (1− αβ) · (α · hR + (1− αβ) · hM)
. (2.11)

When determining the optimal (R, 1) policy, the number of remanufacturing lots needs

to be determined as in (2.10). However, the number of remanufacturing lots is not

necessarily integer which is a prerequisite for obtaining a feasible solution. In this

case, Schrady recommends a simple rounding procedure (without exactly specifying

the required rounding operations) to determine the optimal policy. In Section 2.2.4,

an exact approach is elaborated to find a solution to this problem.

In his original work, Schrady does not consider an imperfect remanufacturing process

as he assumes the yield fraction β to be one. By introducing this fraction in the above

analysis, several conclusions can be drawn when comparing a situation with yield loss to

a situation without it. All conclusions are supported by analyzing the first derivatives

of the respective formulae with respect to β. When β is smaller than one, a shorter

cycle is recommended. As the overall number of returns decreases due to a shorter

cycle, the number of (equal) remanufacturing lots per cycle decreases as well. Yet, to

compensate for the yield loss and to use each remanufacturing setup efficiently, more

returns are remanufactured in a setup which decreases the number of remanufacturing

lots even further. Regarding the manufacturing lot size QM , no general conclusion can

be drawn as the sign of the first derivative w.r.t β depends on KM and both holding

cost parameters.

Schrady’s idea of creating cycles with one manufacturing lot and at least one remanu-

facturing lot has been discussed in literature later on. Teunter (2001) extends Schrady’s

work by proposing that it might be better to deviate from Schrady’s (R, 1) policy in

some cases. His approach is introduced subsequently.
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2.2.3 Teunter’s (1,M) policy

Contrary to Schrady’s approach, Teunter proposes a preset policy structure which

contains one remanufacturing and M (with M ≥ 1) manufacturing batches. This

policy structure is, thus, denoted as the (1,M) policy. To give an example, Figure

2.4 depicts a (1,2) policy. At the beginning of a cycle, the sole remanufacturing lot

containing QR returned products is initiated. Due to the imperfect remanufacturing

process, only the fraction β can be sufficiently remanufactured, i.e. QR · β products

enter the final product stock. Since the OEM’s customers request λ products per time

unit, this lot lasts for QR·β
λ

time units. Thereafter, M manufacturing lots of equal size

(each comprehending QM final products) are scheduled, each lasting for QM

λ
time units.

u s e d  p r o d u c t

f i n a l  p r o d u c t m a n u f a c t u r i n g

r e m a n u f a c t u r i n g

l e v e l  ( A ' )

l e v e l  ( A )

Q R

Q M

Q R  b

Q R  b Q M

l l

Q M

l

T

Q M

Fig. 2.4: Used product and final product level corresponding to a (1,2) policy

Similar to the (R, 1) policy by Schrady, Teunter uses both lot sizes QR and QM to

formulate the (1,M) policy unambiguously, i.e. the number of manufacturing lots in

a cycle (M) and the cycle length (T ) can be deduced directly from these lot sizes. To

guarantee a perfect cyclic structure, all remanufacturing lots must be of equal size.

Therefore, the number of returned products at the end of a cycle is as large as the

remanufacturing lot at its beginning. Since λα products return per time unit, the
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subsequent condition has to hold

QR = λαT. (2.12)

As can be observed in Figure 2.4 the cycle length T is computed by

T (QR, QM) =
QR · β +M ·QM

λ
. (2.13)

Combining equations (2.12) and (2.13) provides two formulae to describe the number

of manufacturing lots M and the cycle length T depending on QR and QM .

M(QR, QM) =
QR · (1− αβ)

α ·QM

and T (QR) =
QR

λα
. (2.14)

When comparing conditions (2.3) and (2.14), the number of manufacturing lots M for

a (1,M) policy is the inverse of the number of remanufacturing lots R for an (R, 1)

policy when both are formulated depending on QR and QM . In order to pursue the

objective of minimizing the total cost per time unit, a setup and a holding cost term

have to be assessed again. The former comprises the setup cost of a cycle (M times

the setup cost for manufacturing KM plus once the setup cost for remanufacturing KR)

divided by the cycle length T . By transformation using equations (2.13) and (2.14),

the following expression is derived5:

M ·Km +KR

T
= λ ·

(

KM · (1− αβ)

QM

+
KR · α
QR

)

. (2.15)

After formulating the setup cost, the relevant holding cost per time unit is determined.

To do this, the formerly applied methodology of calculating the area bounded by both

inventories during a cycle has to be used. Hence, by using equations (2.13) and (2.14),

the holding cost per time unit for both inventory levels is calculated as6:

[

1

2
·QR · T · hR +

(

1

2
· (QR · β)2

λ
+M · 1

2
· (QM)2

λ

)

· hM

]

· 1
T

=
1

2
·
(

QR · hR +
(

αβ2 ·QR + (1− αβ) ·QM

)

· hM

)

. (2.16)

5 For details, please refer to the Appendix, page 70.
6 For details, please refer to the Appendix, page 70.
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Next, the total cost function for Teunter’s (1,M) policy (indicated by subindex 1M)

is formulated by summarizing the cost components of (2.15) and (2.16). It is

TC1M(QR, QM ) =λ ·
(

KM · (1− αβ)

QM

+
KR · α
QR

)

+

1

2
·
(

QR · hR +
(

αβ2 ·QR + (1− αβ) ·QM

)

· hM

)

. (2.17)

Like the cost function TCR1, the total cost function (2.17) is jointly convex7 in both QR

and QM . Interestingly, the only difference between both cost functions is the evaluation

of the used product’s inventory which has no influence on the curvature of the total

cost function but on its cost minimizing decision variables. By utilizing calculus, these

variables can be computed. For instance, deriving the total cost function (2.17) with

respect to QR provides the optimal size of the remanufacturing lot Q+
R for a (1,M)

policy structure:

∂TC1M

∂QR

= −λαKR

(QR)
2 +

1

2
·
(

hR + αβ2 · hM

)

= 0 and, thus,

Q+
R =

√

2λα ·KR

hR + αβ2 · hM

. (2.18)

Apparently, the same procedure can be applied to determine QM as well. Thus, the

optimal size of each manufacturing lot Q+
M when presuming a (1,M) policy structure

is derived from

∂TC1M

∂QM

= −λ (1− αβ)KM

(QM)2
+

1

2
· (1− αβ) · hM = 0 which results in

Q+
M =

√

2λ ·KM

hM

. (2.19)

Inserting the optimal values of Q+
R and Q+

M into conditions (2.14) gives the cost mini-

mizing number of manufacturing lots per cycle M+ and cycle length T+ for a (1,M)

policy structure:

M+ =
(1− αβ)

α
·
√

α ·KR · hM

KM · (hR + αβ2 · hM)
(2.20)

T+ =

√

2 ·KR

λα · (hR + αβ2 · hM)
. (2.21)

7 For the mathematical proof, please refer to the Appendix, page 71.
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Like for the (R, 1) policy structure, the influence of including an imperfect yield β when

initiating an (1,M) policy is analyzed. For instance, the cost minimizing manufacturing

lot size Q+
M is not influenced at all. On the contrary, the remanufacturing lot size Q+

R

increases to efficiently compensate the yield loss with respect to the setup cost. Hence,

the cycle length T+ increases as more returns need to be collected. A longer cycle

means that more new products are required to satisfy demand which results in an

increasing number of manufacturing lots per cycle since the manufacturing lot size

remains constant. Like in the preceding subsection, these logically drawn conclusions

can be derived as well by analyzing the slope of the respective cost minimizing formulae

with respect to β.

After establishing the (1,M) and (R, 1) policy structures, it is worth mentioning that

both total cost functions yield the same result in a (1,1) scenario. However, using

both policies to determine a feasible solution requires both R+ and M+ to be integer.

Considering the cost minimizing values for R+ in equation (2.10) and M+ in equation

(2.20) depicts that this is not the case in general. While Teunter omits to discuss this is-

sue in his contribution, Schrady mentions it briefly by proposing a rounding procedure

without clearly specifying the exact rounding operation. Minner (2002) continues the

discussion and elaborates an interesting result by alternatively formulating the total

cost functions of both policy structures. In his contribution, both total cost functions

are formulated to depend on only R or M , respectively. By doing this, the obstacle

of obtaining non-integer values for R and M is avoided since the total cost function

depends on the sole variable that is required to be integer. The next subsection focuses

on deriving his findings.

2.2.4 Alternative formulation of the (R, 1) and (1,M) policies

To define the total cost function of their policy structures unambiguously, Schrady and

Teunter use both lot sizes QR and QM as their relevant decision variables. However, by

inserting one of the cost minimizing lot sizesQ+
R (or alternativelyQ+

M) into the total cost

function, the number of relevant decision variables can be reduced by one. Nevertheless,
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the obstacle of ensuring the number of remanufacturing (or manufacturing) lots to be

integer remains to be solved. Therefore, Minner reformulates the total cost functions

of both policy structures to depend on either R for an (R, 1) policy or M for a (1,M)

policy structure. As two decision variables are required at the beginning, Minner

chooses the cycle length T to be the second one.

For the (R, 1) policy, the number of remanufacturing lots per cycle can exceed one while

the number of manufacturing lots is exactly equal to one. Since all remanufacturing

batches are of equal size, the amount of products returning in a cycle (λαT ) has to

be divided by R to obtain the size of each individual lot. Likewise, the amount to

be manufactured in each cycle is given by the demand for the considered product

that cannot be met by remanufacturing returned products, i.e. (1− αβ) of the entire

demand. Therefore, the corresponding lot sizes can be reformulated (depending on R

and T ) according to formulae (2.1) and (2.3) as

QR(R, T ) =
λαT

R
and QM(T ) = λ (1− αβ)T. (2.22)

The setup cost per time unit is defined according to formula (2.4) which gives

R ·KR +KM

T
. (2.23)

Both holding cost elements can be simplified as well. Starting with the holding cost for

the used product stock, the maximum inventory level in a cycle has to be evaluated.

Corresponding to equation (2.5) this results in

1

2
· α · (QR · β +QM) · hR =

1

2
· α ·

(

λαT

R
· β + λ · (1− αβ)T

)

· hR

=
1

2
λT

(

1 + αβ

(

1

R
− 1

))

· αhR. (2.24)

In compliance with equation (2.6), the holding cost per time unit for the final product

inventory is reformulated as

1

2
·
(

αβ2 ·QR + (1− αβ) ·QM

)

· hM =
1

2
·
(

αβ2 · λαT
R

+ λ · (1− αβ)2 T

)

· hM

=
1

2
λT ·

(

α2β2

R
+ (1− αβ)2

)

· hM . (2.25)
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By adding up the setup and holding cost terms, the total cost function for the (R, 1)

policy is established such that it depends on both R and T :

TCR1(R, T ) =
RKR +KM

T
+

1

2
λT

((

1 + αβ

(

1

R
− 1

))

αhR +

(

α2β2

R
+(1− αβ)2

)

hM

)

.

(2.26)

For any given value of R, the optimal cycle length T can be computed by calculus.

Thereby, the cycle length needs to be determined for which the partial derivative of

the total cost function with respect to T is zero. This gives

∂TCR1

∂T
= −RKR +KM

T 2
+

1

2
λ

((

1 + αβ

(

1

R
− 1

))

αhR +

(

α2β2

R
+(1− αβ)2

)

hM

)

= 0

and, thus, T+
R1(R) =

√

√

√

√

2 (RKR +KM)

λ
(

(

1 + αβ
(

1
R
− 1
))

αhR +
(

α2β2

R
+ (1− αβ)2

)

hM

) .

(2.27)

Inserting T+
R1 into the total cost function TCR1 yields an expression that only depends

on the number of remanufacturing lots R

TC+
R1(R) =

√

2λ(RKR+KM)

((

1+αβ

(

1

R
−1

))

αhR+

(

α2β2

R
+(1−αβ)2

)

hM

)

. (2.28)

The cost minimizing number of remanufacturing lots R can, thus, be computed by

deriving function (2.28) with respect to R. Not surprisingly, this value matches exactly

equation (2.10) and is therefore omitted to be presented again. Yet, the reformulation

of the total cost function allows to determine the cost minimizing integer value of R.

When analyzing function (2.28) in the relevant range (R > 0), several characteristics

can be derived. First, formula (2.10) proves that there is only a single optimal value

for R minimizing the total cost function. Moreover, the total cost function approaches

infinity when R moves closer both to zero as well as to +∞8. From that it follows that

the local minimum determined by (2.10) is a global minimum for the relevant range.

Exploiting these characteristics, a general procedure can be applied to determine the

cost minimizing integer value R∗. Figure 2.5 depicts the optimal total cost function

TC+
R1 around its optimal non-integer value R+. In it, we can observe that R+ and R∗

8 For the mathematical proof, please refer to the Appendix, page 71.
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are located between R̂ and R̂ + 1 which do not have to be integer but have to fulfill

the condition TC+
R1(R̂) = TC+

R1(R̂ + 1). This means the total cost function yields the

same result for both values.

T C

R
R +R R + 1

^ ^
R *

Fig. 2.5: Total cost function TC+
R1

There is only one integer value for R between R̂ and R̂+ 1. This value must therefore

be the cost minimizing integer solution R∗. Consequently, the value of R̂ simply needs

to be rounded up to compute R∗. In the case that R̂ is an integer itself, R̂ as well as

R̂ + 1 are both cost minimizing. R∗ is determined by9

TC+
R1(R̂) = TC+

R1(R̂ + 1) which results in

R∗ =

⌈

−1

2
±
√

1

4
+

KMα2β · (hR + hMβ)

KR ·
(

α (1− αβ)hR + (1− αβ)2 hM

)

⌉

. (2.29)

Since only a positive number of remanufacturing lots is allowed, an unequivocal value

for R∗ can be determined. Moreover, the general function ⌈−0.5+x⌉ describes the same

term as if x is rounded to the nearest integer. Thus, the cost minimizing integer number

of remanufacturing lots for an (R, 1) policy structure is computed by the following value

(l indicates rounding to the nearest integer)

R∗ =

√

1

4
+

KMα2β · (hR + hMβ)

KR ·
(

α (1− αβ)hR + (1− αβ)2 hM

) l . (2.30)

9 For details, please refer to the Appendix, page 71.
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This value corresponds to the optimal value of R+ determined by Schrady in equation

(2.10) except that a quarter is added to the radicand and the resulting value is rounded

to the nearest integer afterwards. The same kind of analysis can be conducted for a

(1,M) policy.

For the (1,M) policy structure, the decision variables introduced by Teunter (QR and

QM) are replaced as well by functional expressions depending on the cycle length T

and the number of manufacturing lots M . Similar to the adaptations presented above,

the (re)manufacturing batch sizes QR and QM are reformulated according to formulae

(2.12) and (2.13) as

QR(T ) = λαT and QM(M,T ) =
λ(1− αβ)T

M
. (2.31)

By implementing equations (2.31), the reformulation of the setup cost per time unit is

facilitated. Analogous to equation (2.15), this results in

KR +M ·KM

T
. (2.32)

To obtain the holding cost per time unit for a (1,M) policy in the alternative formula-

tion, formulae (2.31) are used to adapt equation (2.16):
[

1

2
·QR · T · hR +

(

1

2
· (QR · β)2

λ
+M · 1

2
· (QM)2

λ

)

· hM

]

· 1
T

=
1

2
λT ·

(

αhR +

(

α2β2 +
(1− αβ)2

M

)

· hM

)

. (2.33)

The total cost per time unit results from the sum of the setup cost (2.32) and holding

cost (2.33) per time unit. Hence, we get

TC1M(M,T ) =
KR +M ·KM

T
+

1

2
λT ·

(

αhR +

(

α2β2 +
(1− αβ)2

M

)

· hM

)

. (2.34)

In analogy to the procedure for the (R, 1) policy structure, the optimal cycle length

T+
1M and the corresponding minimizing total cost function TC+

1M depending only on

the number of manufacturing lots M can be determined.

T+
1M (M) =

√

√

√

√

2 · (KR +M ·KM)

λ ·
(

αhR +
(

α2β2 + (1−αβ)2

M

)

· hM

)

TC+
1M(M) =

√

√

√

√2λ · (KR +M ·KM) ·
(

αhR +

(

α2β2 +
(1− αβ)2

M

)

· hM

)

. (2.35)
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The total cost function (2.35) reveals the same characteristics as the total cost function

for an (R, 1) policy structure, i.e. it has a single minimum and approaches infinity for

M → 0 and M → ∞10. Therefore, the same methodology can be applied as for the

(R, 1) policy. Let M̂ denote the value of M that needs to be rounded up to obtain the

cost minimizing integer number of manufacturing batches in a cycle. We find11

TC+
1M(M̂) = TC+

1M(M̂ + 1) and, thus,

M∗ =









−1

2
±
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)









. (2.36)

When comparing the results of the (R, 1) policy with the results of the (1,M) policy in

equation (2.36), the outcome is quite similar. Thus, the cost minimizing integer number

of manufacturing lots in a cycle is computed by adding a quarter to the radicand of

Teunter’s solution in equation (2.20) and rounding the resulting value to the nearest

integer. This means

M∗ =

√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
l . (2.37)

Deriving closed-form expressions for R∗ and M∗ has been one of the main results

of Minner’s contribution. However, both values can never be smaller than 1 (as he

presumed) since the radicand is at least 0.25, i.e. its square root is at least 0.5. As

this value has to be rounded to the nearest integer afterwards, the optimal values for

R∗ and M∗ are always at least equal to 1.

Concluding, the optimal parameter R∗ for an (R, 1) policy can be determined by equa-

tion (2.30). Likewise, M∗ can be computed using (2.37) to get the optimal (1,M) policy.

For a given set of parameters, the resulting optimal total cost functions TC+
R1(R

∗) and

TC+
1M(M∗) would have to be compared to find the better solution. The next sub-

section proves that this is not necessary as R∗ and M∗ cannot exceed a value of one

simultaneously when restricting oneself to the (R, 1) and (1,M) policies.

10 We omit to present the mathematical proof as it is similar to the proof for the (R, 1) policy.
11 For details, please refer to the Appendix, page 72.
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2.2.5 Comparison of the optimal values for R∗ and M∗

At the beginning of this subsection, a small example illustrates the implications when

R∗ and M∗ would not be larger than one at the same time. Assume that by applying

formula (2.30) to an exemplary set of parameters, two remanufacturing lots should

be initiated when considering an (R, 1) policy structure, i.e. R∗ = 2. Consequently,

M∗ would have to be one as the conjecture to be proven states that both R∗ and M∗

cannot be larger than one simultaneously. Therefore, the best (1,M) policy structure

would be a (1,1) policy. This policy is, however, outperformed by the (2,1) policy

structure since a (1,1) policy is a possible (R, 1) policy structure as well. Thus, the

decision maker would simply need to calculate the optimal values for R∗ and M∗ using

formulae (2.30) and (2.37) to obtain the best policy parameters for the predetermined

policy structures. Hence, a comparison of both minimal cost values of the (R, 1) and

(1,M) policies could be omitted.

In order to prove the above stated conjecture, two inequalities would have to hold

simultaneously. At first, R∗ determined by formula (2.30) has to be larger than 1.5

since its value rounded to the nearest integer is consequently greater or equal to two.

This gives
√

1

4
+

KMα2β · (hR + hMβ)

KR ·
(

α (1− αβ)hR + (1− αβ)2 hM

) ≥ 1.5 and, thus,

1

2
KMα2β · (hR + hMβ)−KR · α (1− αβ)hR ≥ KR · (1− αβ)2 hM . (2.38)

If condition (2.38) is fulfilled, more than one remanufacturing lot should be initiated

in a cycle (R∗ ≥ 2) when applying the (R, 1) policy. In this case, the number of

manufacturing lots is set to one due to its predefined policy structure.

Next, the same analysis is put forth for the (1,M) policy by accordingly evaluating

condition (2.37). We find
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
≥ 1.5 which results in

2KM ·
(

αhR + α2β2hM

)

≤ KR · (1− αβ)2 · hM . (2.39)

Condition (2.39) needs to hold if more than one manufacturing lot should be scheduled

in a cycle (M∗ ≥ 2) when applying the (1,M) policy. Without loss of generality, the
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non-strict inequalities are replaced by strict inequalities. If two strict inequalities have

to hold at the same time, it is possible to subtract them and analyze the validity of

the resulting inequality. This gives

1

2
KMα2β · (hR + hMβ)−KR · α (1− αβ)hR − 2KM ·

(

αhR + α2β2hM

)

> 0

KMα ·
((

1

2
αβ − 2

)

hR − 3

2
αβ2hM

)

−KR · α (1− αβ)hR > 0. (2.40)

As all parameters are positive and αβ cannot exceed one, the term on the left hand

side of inequality (2.40) is always negative. Hence, this inequality is never satisfied, i.e.

conditions (2.38) and (2.39) never hold simultaneously. This means, R∗ and M∗ can

never be larger than one at the same time when restricting oneself to the preset (R, 1)

and (1,M) policies. However, this result is only valid for these two policy structures.

Choi et al. (2007) have shown in their work, for instance, that a more general (R,M)

policy with both R and M larger than one can reduce the resulting total cost.

After introducing the (R, 1) and (1,M) policy structures it has to be mentioned that

their solution quality is hardly discussed in literature. Minner and Lindner (2004), for

instance, elaborate in their contribution that it might not be optimal to choose reman-

ufacturing lots of equal size in a cycle. This topic is discussed more intensively in the

next subsection. There, a third preset policy structure is introduced which allows for

different remanufacturing batches in a cycle.

2.2.6 The (R, 1)g policy

When non-equal remanufacturing lots are allowed in a cycle, a multitude of alternative

policy structures can be formulated. In their article, Minner and Lindner apply a

Lagrange-multiplier approach to investigate the optimality of having remanufacturing

lots of equal size when using an (R, 1) policy. As a result, they identify three cases which

have in common that differently sized remanufacturing batches are initiated within

each cycle. The first case is to have R− 1 remanufacturing lots of equal size which are

succeeded by a smaller last one. The second case comprises that all remanufacturing

lots in a cycle decrease geometrically. Finally, the third case incorporates a mix of



2. Optimal and predefined policies in a two stage recovery system 32

the first two, i.e. a number of equally sized remanufacturing batches are followed by a

number of geometrically decreasing ones.

Minner and Lindner restrict their analysis to identifying these three cases. The sub-

sequent analysis focuses, however, only on the second case as this case has a special

characteristic. When scheduling geometrically decreasing remanufacturing lots in a

cycle, each lot remanufactures all currently available returns. Such a schedule (that

fulfills the zero inventory property) is easy to apply and can neither be implemented for

a regular (R, 1) policy with equal remanufacturing lots (see, for instance, Figure 2.3)

nor for the remaining two cases identified by Minner and Lindner. Figure 2.6 presents

the used product and final product inventories in a cycle when two geometrically de-

creasing remanufacturing lots are initiated. To differ this policy from a regular (2, 1)

policy, it is denoted by (2, 1)g to indicate the geometrically decreasing remanufacturing

batches.

u s e d  p r o d u c t

f i n a l  p r o d u c t m a n u f a c t u r i n g

r e m a n u f a c t u r i n g

l e v e l  ( A ' )

l e v e l  ( A )

T

Q R , 2 b

l

Q R , 1

Q R , 2

Q R , 1 b

l

Q R , 1 b

l

Q M b

Q R , 2 b

Q M

Fig. 2.6: Used product and final product level corresponding to a (2,1)g policy

By definition, the largest remanufacturing batch in a cycle is denoted by QR,1. It

comprehends all products collected by the OEM while the smallest remanufacturing lot

(denoted by QR,R) and the manufacturing lot satisfy customer demand. Beginning with

the largest remanufacturing batch, each subsequently scheduled lot remanufactures

only αβ of its predecessor’s lot size. This fact is illustrated using QR,1 and QR,2 from

Figure 2.6. QR,1 satisfies demand for exactly QR,1 · β/λ time units. During that time
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interval, the collection of returns for the second remanufacturing lot QR,2 takes place.

Over a time span of QR,1 · β/λ time units λα products are accumulated per time

unit. Therefore, as all collected products have to be remanufactured, QR,2 comprises

λα · QR,1 · β/λ = αβ · QR,1 units. To implement geometrically decreasing lots, two

conditions have to be respected. First, as shown previously each remanufacturing lot

(except QR,1) remanufactures αβ of its predecessor’s batch size. Second, all returned

products must be remanufactured during a cycle, i.e.
∑R

i=1 QR,i = λαT . Respecting

these two conditions, an expression can be derived which describes the size of each

remanufacturing lot for the (R, 1)g policy. Hence12,

QR,i =
λαiβi−1T · (1− αβ)

1− αRβR
∀i = 1, .., R. (2.41)

After formulating the amount to be remanufactured in each lot, the total cost function

is established. The setup cost per time unit can be computed similar to an (R, 1) policy

structure by the following formula:

R ·KR +KM

T
. (2.42)

Due to their complexity, the holding cost terms for both inventories are analyzed sep-

arately. Starting with the used product inventory and using equations (2.41), the

holding cost per time unit for this inventory is formulated as13

1

2
λαThR ·

(

1− αβ

1 + αβ
· 1 + αRβR

1− αRβR

)

. (2.43)

Similarly, the holding cost for the final product inventory is computed. The size of

the cycle’s manufacturing lot corresponds to its size for a regular (R, 1) policy, i.e.

QM = λ(1− αβ)T . Therefore, we obtain14

1

2
λThM

(

α2β2 · 1− αβ

1 + αβ
· 1 + αRβR

1− αRβR
+ (1− αβ)2

)

. (2.44)

The total cost per time unit for a (R, 1)g policy is then calculated by summing up the

cost components (2.42), (2.43), and (2.44). Until now, the total cost function depends

12 For details, please refer to the Appendix, page 73.
13 For details, please refer to the Appendix, page 74.
14 For details, please refer to the Appendix, page 74.
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on both the number of remanufacturing batches R and the cycle length T . It is

TCR1g(R, T ) =
RKR+KM

T
+
1

2
λT

(

(

αhR+α2β2hM

)

·
(

1−αβ

1+αβ
· 1+αRβR

1−αRβR

)

+hM(1−αβ)2
)

.

(2.45)

Similar to the approaches presented above, the total cost can be adapted to depend

only on the number of remanufacturing lots in a cycle R. For this, the cost minimizing

cycle length T+
R1g needs to be computed and inserted into the total cost function. This

gives

T+
R1g(R) =

√

√

√

√

2 · (RKR +KM)

λ
(

(αhR + α2β2hM) ·
(

1−αβ

1+αβ
· 1+αRβR

1−αRβR

)

+hM (1− αβ)2
) and, thus,

TC+
R1g(R) =

√

2λ(RKR+KM)

(

(αhR+α2β2hM)

(

1−αβ

1+αβ
· 1+αRβR

1−αRβR

)

+hM(1−αβ)2
)

.

(2.46)

Although depending only on R, no closed-form expression exists to calculate the cost

minimizing value of R since it can be found both in the base and exponent of equation

(2.46). To obtain a greater insight into the total cost function’s behavior, a large set

of different problem instances has been created. Without exception, the cost function

always had only one cost minimum. Based on this observation, a simple local search

method is recommended to determine the optimal value for R.

After formulating the total cost function for an (R, 1)g policy structure, two interesting

insights can be derived. At first, the condition required for a (2, 1)g policy to outperform

a (1,1) policy is depicted. When setting R equal to one, the total cost function of the

(R, 1)g policy matches exactly the total cost function of the (R, 1) policy. Therefore,

after replacing 1−αβ

1+αβ
· 1+α2β2

1−α2β2 by V , the following condition results15

from TC+
R1g(1)− TC+

R1g(2) >0 :

KR

(

αhR+α2β2hM

)

(1−2V)−KRhM(1−αβ)2+KM

(

αhR+α2β2hM

)

(1−V)>0. (2.47)

If condition (2.47) holds, the number of remanufacturing lots scheduled when applying

an (R, 1)g policy should be larger than one. The preceding subsection 2.2.5 has proven

15 For details, please refer to the Appendix, page 75.
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that R andM can never be larger than one simultaneously when restricting to the (R, 1)

and (1,M) policy structures. An interesting question arises whether the same can be

proven for the (R, 1)g and (1,M) policies. For this to be true, conditions (2.39) and

(2.47) must not hold simultaneously. As before, this can be examined by subtracting

these inequalities and analyzing the resulting inequality. We find

KR

(

αhR + α2β2hM

)

(1− 2V )−KM

(

αhR + α2β2hM

)

(1 + V ) > 0. (2.48)

The resulting inequality (2.48) can never be fulfilled as long as V is always larger than

0.5 since then both terms on the left hand side of (2.48) are strictly negative. The

following calculations prove that this is the case16:

1− αβ

1 + αβ
· 1 + α2β2

1− α2β2
>

1

2
which results in

(1− αβ)3 > 0. (2.49)

Since αβ always lies between zero and one, (1 − αβ)3 is always positive. Inequality

(2.48), thus, is never fulfilled. Therefore, if the local search applied to equation (2.46)

computes a cost minimizing value of R larger than one, the best possible (1,M) policy

would be a (1,1) structure which is in this case outperformed by the best (R, 1)g policy.

The (R, 1)g policy structure cannot only be compared to the (1,M) policy but also to

the (R, 1) policy with equal remanufacturing lots. As this cannot be done in general,

a condition is derived at which a (2, 1)g policy outperforms a (2, 1) policy. To do so,

the total cost functions (2.28) and (2.46) have to be subtracted for R=2. From17

TC+
R1(2)− TC+

R1g(2) > 0 we find

hM

hR

<
3 + αβ

β (1− αβ)
. (2.50)

Four parameters determine whether a (2, 1)g policy with geometrically decreasing

remanufacturing lots outperforms a (2,1) policy with equal remanufacturing batches:

both holding cost parameters and their relation as well as the return and yield fractions

α and β. The relation between hM and hR influences the result of the analysis sub-

stantially. It says that for large values of hM compared to hR, equal remanufacturing

16 For details, please refer to the Appendix, page 75.
17 For details, please refer to the Appendix, page 75.
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batches are preferred. Otherwise, geometrically decreasing remanufacturing batches

should be initiated when the ratio between hM and hR is comparably small. The exact

value is depicted for R = 2 in (2.50). Interestingly, the value of the right hand side

of (2.50) approaches infinity when α and β move closer to either zero or one. In these

settings, geometrically decreasing remanufacturing lots are mostly preferred over lots

of equal size. In the following, the right hand side of inequality (2.50) is analyzed in

greater detail. By deriving it with respect to α the impact of the return fraction is

evaluated. We obtain

∂ 3+αβ

β(1−αβ)

∂α
=

4

(1− αβ)2
. (2.51)

Since this term is strictly positive, 3+αβ

β(1−αβ)
increases if α becomes larger. Hence, a

larger return fraction benefits the (2, 1)g policy over the (2,1) structure. The same

kind of analysis is also conducted for the yield parameter β

∂ 3+αβ

β(1−αβ)

∂β
=

−3 + 6αβ + α2β2

β2 (1− αβ)2
. (2.52)

Contrary to the analysis of the return fraction, an ambiguous result is derived for β.

While the denominator of (2.52) is positive, the numerator’s sign depends on the value

of α. If the return fraction α is smaller than −3+
√
12 (around 46.4%), the right hand

side of (2.50) decreases continuously as larger β becomes, i.e. a (2,1) policy becomes

more attractive as β rises. If, on the other hand, α is larger than −3 +
√
12, an

increasing β lets the value of 3+αβ

β(1−αβ)
fall until it reaches a minimum but begins to rise

thereafter until β approaches one.

The results regarding α and β are supported by logical conclusions. Figure 2.7 confronts

the result of a (2,1) with a (2, 1)g policy. Both policies represent trade-off solutions

when regarding them from an efficiency point of view. Implementing a (2,1) policy,

for instance, is the perfect (because least costly) policy with one manufacturing and

two remanufacturing batches for the final product level. Yet, the used product level

needs to deviate from a good solution by scheduling a remanufacturing lot that does

not remanufacture all returned products on hand. Contrary, a (2, 1)g policy accepts

a worse solution in the final product stock by allowing to remanufacture in differently

sized lots. By doing this, an efficient remanufacturing process from the used product
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Fig. 2.7: Comparison of a (2,1) policy to a (2, 1)g policy

inventory’s point of view is obtained since no return remains in stock after initiating a

remanufacturing batch. Hence, if holding returned products in the used product stock

is relatively expensive compared to holding finished products in the final product inven-

tory, it becomes more interesting to find an efficient solution for the used product level

(geometrically decreasing remanufacturing lots). On the other hand, if holding finished

products is very costly compared to holding returned products, the best solution for

the final product level is chosen (equal remanufacturing lots).

These conclusions can be used to analyze the results with respect to α and β. When

the fraction of returned products per time unit rises, more returns need to be held

and, thus, the importance of the used product stock increases. Hence, a (2, 1)g policy

becomes more attractive as it focuses on an efficient solution for this inventory level.

If the quality parameter β rises, the effects cannot be seen as clearly. An increase in

β leads, ceteris paribus, to less manufactured but more remanufactured products to

satisfy customer demand. Since this only shifts the batches of the final product level

but has no direct influence on the used product level, a logical conclusion cannot be

drawn in general.

As mentioned above, comparing a (2,1) to a (2, 1)g policy structure can only give some

structural insights since these results cannot be generalized. Yet, similar results as

in (2.50) can be derived when comparing other policy structures. In Table 2.1, the
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conditions for an (R, 1)g policy to dominate an (R, 1) policy are presented (for R ≤ 5).

Tab. 2.1: Comparison of policies with and without remanufacturing lots of equal size

Condition that needs to hold when TC+
R1(R)− TC+

R1g(R) > 0

For R = 2
hM

hR

<
3 + αβ

β (1− αβ)

For R = 3
hM

hR

<
2 + αβ

β (1− αβ)

For R = 4
hM

hR

<
3α3β3 + 9α2β2 + 7αβ + 5

β (−3α3β3 − α2β2 + αβ + 3)

For R = 5
hM

hR

<
2α3β3 + 4α2β2 + αβ + 3

β (−2α3β3 + α2β2 − αβ + 2)

Unfortunately, no bounds can be determined on the maximum error of applying an

(R, 1) instead of an (R, 1)g policy. To illustrate the complexity of this situation, a

small example is presented. For an exemplary parameter set, a policy with one manu-

facturing and two equal remanufacturing lots is the best option considering all (R, 1)

and (1,M) policies. For the same parameter set, however, three geometrically decreas-

ing remanufacturing lots are the best solution of all possible (R, 1)g policies, i.e. a (2, 1)

policy would have to be compared to a (3, 1)g policy for this parameter set. As the

interdependence of all policies has to be respected, i.e. general conditions would have

to be derived describing which preset policy is the best for each parameter combina-

tion, a closed-form expression on the percentage gain cannot be derived. Therefore, a

small numerical study is conducted in Section 2.4 to evaluate the (R, 1)g policy with

respect to the (R, 1) policy structure. In this study, a number of instances revealed a

performance gain of more than 5 % when initiating geometrically decreasing instead of

equal remanufacturing batches. Yet, no contribution has yet established a methodol-

ogy to evaluate the performance of the introduced policy structures in general. Hence,

the upcoming Section 2.3 establishes a benchmark solution that determines for a given

R and M the optimal solution without imposing additional constraints on the lot sizes.
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2.3 Establishing a benchmark solution

In order to define a policy structure unambiguously, six decisions need to be determined:

the cycle length (T ), the number of (re)manufacturing batches (R andM), the sequence

of batch scheduling, and the corresponding (re)manufacturing batch sizes (QR and

QM). When establishing a preset policy structure, a number of decisions are fixed

in advance. For the (R, 1)g policy, for instance, the number of manufacturing lots

per cycle is fixed to one. Furthermore, the batch sequence in a cycle is predefined

and the remanufacturing lot sizes are geometrically decreasing. The exact size of the

(re)manufacturing batches depends, however, on the not yet known cycle length and the

number of remanufacturing lots R. Therefore, by fixing the number of manufacturing

lots and assuming a characteristic pattern for all remanufacturing batch sizes, the best

(R, 1)g policy is obtained. Likewise, the best (R, 1) and (1,M) policy can be determined.

The subsequently introduced optimization approach deviates from this procedure as it

fixes next to the number (re)manufacturing lots (R and M) also the cycle length. By

computing the optimal solutions for a possible set of (R,M) combinations, a benchmark

solution can be found.

In general, the total cost of a cycle consists of its total setup cost (SC) that is added

to the corresponding total holding cost (HC). As the total cost per time unit (TC)

represents the objective of optimization, the sum of both costs has to be divided by

the cycle length T :

TC =
SC +HC

T
(2.53)

While the setup cost SC depends only on the number of remanufacturing and man-

ufacturing batches in a cycle but not on the cycle length itself, the holding cost HC

depends on the cycle length, i.e. HC = HC(T ). Obtaining the benchmark solution

to this problem exploits the dependency of HC with respect to T . First, by fixing the

number of R and M in a cycle, the setup cost is also fixed. Therefore, only the size

of the holding cost per cycle needs to be minimized to determine the optimal solution.

Interestingly, the holding cost per cycle depends quadratically on the cycle length. This

can be explained by the fact that the relative scheduling of remanufacturing and man-

ufacturing batches in a cycle (e.g. remanufacture 20% of all returns after 60% of the
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cycle has passed) does not depend on its overall length. For instance, if T is doubled

all batch sizes are doubled, too. Hence, the time to collect the appropriate returns

doubles as well as the time a (re)manufacturing lot is able to satisfy customer demand.

Thus, HC is going to be four times its initial value if T is doubled. By defining HC1 as

the holding cost for a cycle length of one time unit, the condition HC(T ) = HC1 · T 2

can be established. After inserting this condition into formula (2.53) the optimal cycle

length and total cost can be determined by:

TC =
SC +HC1 · T 2

T
=

SC

T
+HC1 · T

⇒ T ∗ =

√

SC

HC1

⇒ TC∗ = 2 ·
√

SC ·HC1 (2.54)

By fixing the cycle length to one time unit, the optimal batch sequence and the cor-

responding (re)manufacturing batch sizes can be determined as long as R and M are

given. The most interesting aspect of this approach is that no direct relation between

the (re)manufacturing batches of a cycle are imposed. In order to calculate the optimal

solution for any (R,M) combination, the problem is solved sequentially in two steps.

These are:

Step 1 : For a given (R,M) combination, minimize HC1 w.r.t. the lot sequence

and (re)manufacturing lot sizes.

Step 2: Compute the optimal total cost and cycle length for HC∗
1 using formula

(2.54).

To obtain the optimal solution for HC1, the concept of subcycle-oriented optimization

is employed. In this concept, the whole cycle is separated into R subcycles (denoted

by s) in which the following presumptions are required to hold. At the beginning of

each subcycle the sole remanufacturing lot is initiated. It contains exactly QR,s items

that are remanufactured at once. If the number of remanufactured components is not

sufficient to satisfy the subcycle’s demand, a number of components (denoted by ΘM,s)

have to be manufactured in νM,s equal manufacturing lots. All manufacturing lots in
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a subcycle should be of equal size since deviating from equal manufacturing lots in a

subcycle would increase the holding cost incurred. This is shown in the Appendix of

Chapter 3, page 107. The individual lot size of a manufacturing lot QM,s is therefore

determined by ΘM,s/νM,s. However, it is possible that no new component is fabricated

in a subcycle, i.e. ΘM,s = 0. To summarize, each subcycle contains exactly one

remanufacturing lot and zero, one, or more manufacturing lots.

To determine the optimal cycle when R and M are given, no further assumptions re-

garding the (re)manufacturing batches are imposed. This includes the option to have

used products left in stock at the end of a subcycle as depicted in Figure 2.3. By

including this possibility, not all products available in stock have to be remanufactured

at the end of a subcycle. In the following model, Vs denotes the used product inven-

tory level at the end of subcycle s. On the other hand, the final product level has to

be depleted at the end of each subcycle. Due to the flexibility in timing and sizing

the (re)manufacturing batches, initiating one of these batches before the final product

level is empty would increase the holding cost incurred since holding final products is

more expensive than holding returns. Figure 2.8 presents a possible solution when the

subcycle-oriented optimization approach is applied to a policy structure with three re-

manufacturing and two manufacturing lots. Without loss of generality, both inventories

are set to zero at the beginning/end of a cycle, i.e. VR = 0.
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Fig. 2.8: Exemplary cycle with R = 3 and M = 2
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For a given policy structure, the minimal holding cost for a cycle length of one time

unit HC∗
1 can be determined by the following optimization approach:

minHC1 =
1

2λ
·
(

hR

α
·
[

(QR,1 + V1)
2 +

R
∑

s=2

[

(QR,s + Vs)
2 − (Vs−1)

2]

]

+

hM ·
R
∑

s=1

[

(QR,s · β)2 +
(ΘM,s)

2

νM,s

])

(2.55)

subject to

QR,s = α (QR,s−1 · β +ΘM,s)− (Vs − Vs−1) ∀s = 2..R (2.56)

QR,1 = α (QR,R · β +ΘM,1)− V1 (2.57)

R
∑

s=1

QR,s = λαβ (2.58)

R
∑

s=1

ΘM,s = λ (1− αβ) (2.59)

R
∑

s=1

νM,s = max(R,M) (2.60)

R
∑

s=1

γM,s = M (2.61)

ΘM,s ≤ λγM,s ∀s = 1..R (2.62)

νM,s ≥ 1 and integer ∀s = 1..R (2.63)

γM,s ≥ 0 and integer ∀s = 1..R (2.64)

QR,s,ΘM,s, Vs ≥ 0 ∀s = 1..R (2.65)

The objective function HC1 (2.55) represents the holding cost of both inventories for

a cycle length of one time unit and needs to be minimized. Beginning with the final

product level, the relevant area of this inventory has to be calculated which consists of

R+M right-angled triangles. Because of the imperfect remanufacturing process, only

the fraction β of all remanufactured products meet the requested quality standards to

be resold to the customers. Therefore, each subcycle’s remanufacturing batch satisfies

customer demand for QR,s · β/λ time units. On the other hand, the amount to be

manufactured in subcycle s is divided into νM,s lots of equal size. Each lot contains,

thus, ΘM,s/νM,s products to fulfill demand for a period of ΘM,s/(νM,s · λ) time units.
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Therefore, the area of the final product inventory is computed by

R
∑

s=1

[

1

2
· (QR,s · β) ·

(QR,s · β)
λ

+ νM,s ·
1

2
· ΘM,s

νM,s

· ΘM,s

νM,s · λ

]

=
1

2λ
·

R
∑

s=1

[

(QR,s · β)2 +
(ΘM,s)

2

νM,s

]

.

Analyzing the used product level is more complicated due to the possibility of having

an initial inventory (Vs−1) as well as a final inventory of used products (Vs) in each

subcycle s. Therefore, the area to be analyzed can take on a trapezoidal shape when

both Vs−1 and Vs are positive (as for the second subcycle of Figure 2.8). The relevant

area is then computed by the general formula 0.5 ·(a+b) ·h in which h is the trapezoid’s

height, and a as well as b represent the lengths of its parallel sides. For subcycle s the

parallel sides are Vs−1 and QR,s+Vs, respectively. The trapezoid’s height is equal to the

subcycle’s duration. As the number of products returning to the OEM in a subcycle

is defined by QR,s + Vs − Vs−1, a subcycle lasts for (QR,s + Vs − Vs−1)/λα time units.

The area of the used product inventory can, thus, be computed for each subcycle by:

1

2
(Vs−1 +QR,s + Vs) ·

QR,s + Vs − Vs−1

λα

=
1

2λα

(

Vs−1QR,s + Vs−1Vs − V 2
s−1 +Q2

R,s +QR,sVs −QR,sVs−1 + VsQR,s + V 2
s − VsVs−1

)

=
1

2λα

(

(QR,s + Vs)
2 − (Vs−1)

2) . (2.66)

Due to the overall cyclic structure, equation (2.66) has to be adapted for the first

subcycle. In this case, the predecessor of the first subcycle would be the last subcycle

of the preceding cycle. Therefore, equation (2.66) becomes 1
2λα

· (QR,1 + V1)
2 for s = 1

since VR has been fixed to zero. By multiplying each area with the respective holding

cost parameter and summing up over all subcycles, the objective function (2.55) is

established. It represents for a given policy structure (i.e. R and M are preset) the

holding cost HC1.

In order to guarantee feasibility of the solution, constraints (2.56) to (2.65) have to

be met. The restrictions in (2.56) represent the inventory balance constraints of the

used product level. They describe the inventory at the end of subcycle s (Vs) as the

inventory at its beginning (Vs−1) plus its inflows and minus its outflows. The inflows
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include all used products arriving in this subcycle. As subcycle s has a length of

(QR,s−1 · β +ΘM,s)/λ time units and λα used products arrive per time unit, altogether

α · (QR,s−1 · β + ΘM,s) used products reach the OEM in subcycle s. The outflows are

computed by the remanufacturing lot initiated at the end of subcycle s which comprises

QR,s products to be remanufactured. Using these inventory balance equations, one can

derive constraint (2.56) after the following manipulation

Vs = Vs−1 + α · (QR,s−1 · β +ΘM,s)−QR,s

QR,s = α (QR,s−1 · β +ΘM,s)− (Vs − Vs−1) .

Constraint (2.57) has to be incorporated to reflect the cyclic structure of the underlying

problem, i.e. a cycle’s last subcycle is the predecessor of the successive cycle’s first

subcycle. Constraint (2.58) guarantees that all products returning during a cycle are

remanufactured. Since demand cannot be met solely by remanufacturing, restriction

(2.59) assures the missing components to be manufactured.

To apply the subcycle-oriented optimization approach, the number of remanufacturing

and manufacturing lots has to be fixed in advance. As R can be smaller than M , not

all subcycles have to include a manufacturing lot. If, for instance, no manufacturing lot

is scheduled in subcycle s, the value νM,s will be zero which would make the objective

function infeasible (division by zero). In this case, constraints (2.60) to (2.64) ensure

that no new product is fabricated, i.e. ΘM,s = 0. Moreover, νM,s is forced to be equal

to one to avoid division by zero in the objective function. Forcing ΘM,s and νM,s to zero

and one, respectively, can be achieved by introducing another integer decision variable

γM,s that decides whether a subcycle contains a manufacturing lot or not. If not, γM,s

is zero and constraint (2.62) restricts ΘM,s to be zero. Otherwise, if a subcycle contains

at least one manufacturing lot, γM,s can take on any positive integer value as it does

not affect the objective function. Yet, restriction (2.61) ensures the sum of γM,s over all

subcycles to equate M . This combined with constraint (2.60) guarantees that at least

R−M (if R > M) subcycles do not contain a manufacturing batch. Constraints (2.63)

to (2.65) restrict all decision variables to non-negative values. While this is sufficient

for QR,s,ΘM,s, and Vs, the remaining variables νM,s and γM,s have to be integer in

addition. Furthermore, νM,s must be greater or equal to one to ensure validity.
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The subcycle-oriented optimization approach can be applied to a multitude of policy

structures to compute a benchmark solution. In order to do that, a number of non-

linear optimization problems have to be solved. Although all constraints are linear, the

objective function is non-linear because of the νM,s decision variables in its denominator.

Therefore, a standard linear solver cannot be used to generate the benchmark solution.

Instead, the software package GAMS provides a number of solvers that can handle

non-linearity quite efficiently. To determine the benchmark solution, the mixed-integer

non-linear programming solver SBB has been applied. This solver uses a combination

of the Branch&Bound methodology known from linear programming combined with

one of the GAMS NLP solvers (for further details on the SBB solver please refer to

SBB, 2009). With respect to time and solution quality, the NLP solver CONOPT3

worked best for this problem setting (see Drud, 2009, for additional details). As no

NLP solver can guarantee to find the optimal solution to the NLP relaxations (the in-

tegrality constraint is relaxed), it cannot be proven that an optimization run provides

the true optimal solution to a problem. Nevertheless, it is possible to compare the re-

sults of the predefined policy structures (R, 1), (1,M), and (R, 1)g with this benchmark

solution to get an idea on their performance. To evaluate the potential benefits the

benchmark solution is able to offer in comparison to the predefined policy structures,

a numerical study is presented in the following Section 2.4.

2.4 Numerical study

Comparing the predefined policy structures with the benchmark solution in a numeri-

cal study requires appropriate test instances. Rardin and Uzsoy (2001) describe four

different options on how to generate test instances properly. First, they name real

world data sets as a viable source of information. Data sets taken from real applica-

tions promise the most realistic evaluation of the tested algorithms as all conclusions

drawn from the experiments can be almost directly transferred to the real applica-

tion. However, there are several pitfalls concerning real world data sets. For example,

gathering this kind of data can be extraordinarily difficult. In our problem context,
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estimating exact setup and holding cost parameters is sometimes a challenging task

in a real-life environment. Furthermore, as there is only a limited number of real-life

problems, the considered algorithms cannot be tested extensively with a large number

of different parameter sets. Hence, Rardin and Uzsoy name random variants of real

world data sets as a second source of generating problem instances. By maintaining

most of the structural properties, the random variation of one or several parameters

avoids the pitfall of not having enough real-life parameter sets. If no practical data is

available at all, the third option of exploiting published and online libraries becomes

interesting. Although being a rich source of different test instances for some problem

settings, it may occur that a new algorithm is proposed performing only well on these

instances. Thus, it must be ensured that a large number of different instances is tested

with a new algorithm. Finally, a random instance generation provides the simplest and

fastest way to generate a vast number of test instances. This fourth option becomes

interesting when none of the other options (exclusive or combined) is able to establish

a comprehensive set of experiments.

The numerical study conducted in this section uses the second methodology, variation

of real world data. Yet, regarding this problem setting there are only a few contribu-

tions in literature presenting practical data. Tang and Teunter (2006), for instance,

analyze the operations of a company that (re)manufactures water pumps for diesel

engines. They provide data on five different types of water pumps including setup and

holding cost parameters. In another work, Ashayeri et al. (1996) present the case of re-

manufacturing computers. As well, they illustrate a practical example including setup

and holding cost parameters. Their example is taken as a base case scenario in this

section. To evaluate the influence of all parameters, the base case scenario is modified

in a sensitivity analysis afterwards. Of course, the data published in Tang and Teunter

could have been taken as well for a base case scenario. At the end of this section, a

short analysis of this data set is presented and compared to the results of the base case.

Interestingly, the important parameter constellation describing the ratio of hM to hR

is the same in both contributions, i.e. holding a final product is twice as expensive as

holding a used product in the corresponding inventory. However, both contributions

discuss that determining hR is especially difficult for practical applications.
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Base case scenario of Ashayeri et al.

Ashayeri et al. present the following parameters which have been used for the base

case scenario. The OEM faces a constant and continuous demand of 100 products per

time unit which comprises in this case 3 days. Initiating a remanufacturing batch costs

50 Dutch guilders while setting up a manufacturing lot is a little more expensive with

150 guilders. Holding a used computer for three days costs 1 guilder, while holding

a new or remanufactured computer costs 2 guilders. For the sake of simplicity, the

currency is omitted in the following analysis. Over the infinite planning horizon, 60 %

of the demand per time unit is returned to the computer remanufacturer. As Ashayeri

et al. did not include a possible yield loss from remanufacturing, they assumed that

all returns can be successfully remanufactured. In order to incorporate an imperfect

remanufacturing process, we set β to 80% for the base case scenario. This change to

the original Ashayeri et al. scenario can be imposed as this parameter is altered later

on to observe its influence on the performance of the preset policy structures compared

to the benchmark solution. Table 2.2 summarizes all base case parameters.

Tab. 2.2: Base case parameters

λ α β KR KM hR hM

100 60 % 80 % 50 150 1 2

Applying equations (2.30) and (2.37) provides the cost minimizing parameters R∗ and

M∗ for the predefined (R, 1) and (1,M) policy structures. We obtain

M∗ =

√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
l= 0.648 l= 1 and

R∗ =

√

1

4
+

KMα2β · (hR + hMβ)

KR ·
(

α (1− αβ)hR + (1− αβ)2 hM

) l= 1.698 l= 2.

While a (1, 1) policy is the cost minimizing of all (1,M) policies for the base case

scenario, the best (R, 1) policy structure would be a (2, 1) policy. As elaborated in

Section 2.2.5, the (2, 1) policy yields a better solution than the (1,1) policy when
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R∗ = 2 and M∗ = 1. Thus, by using equations (2.27) and (2.28) the optimal cycle

length T ∗
R1(2) and the optimal total cost TC∗

R1(2) are computed

T ∗
R1(2) =

√

√

√

√

2 · (R ·KR +KM)

λ ·
(

(

1 + αβ
(

1
R
− 1
))

· αhR +
(

α2β2

R
+ (1− αβ)2

)

· hM

)

T ∗
R1(2) = 2.0185 time units ≈ 6 days

TC∗
R1 =

√

2λ · (RKR+KM) ·
((

1+αβ

(

1

R
−1

))

αhR+

(

α2β2

R
+(1−αβ)2

)

hM

)

TC∗
R1(2) = 247.71

Regarding the predefined (R, 1)g policy with geometrically decreasing remanufactur-

ing batches, the cost minimizing number of remanufacturing lots R∗ is determined by

equation (2.46). As no closed-form expression exists to compute R∗, a local search pro-

cedure has been proposed to determine this value. This procedure begins to compute

the total cost for R = 1. Thereafter, the total cost value is computed for R+1 until the

total cost increases for the first time. When this happens, the local search procedure

terminates. The total cost function for an (R, 1)g policy is

TC∗
R1g =

√

2λ (RKR +KM)

(

(αhR + α2β2hM)

(

1− αβ

1 + αβ
· 1 + αRβR

1− αRβR

)

+ hM (1− αβ)2
)

Table 2.3 presents the results for all R values between one and five. It can be seen

that the total cost value for R=2 is the smallest with 238.40 and that it constantly

increases for R ≥ 2. Therefore, the best (R, 1)g policy is a (2, 1)g policy.

Tab. 2.3: Total cost values for the base case scenario for 1 ≤ R ≤ 5

R=1 R=2 R=3 R=4 R=5

253.11 238.40 245.71 258.60 273.20

By switching to geometrically decreasing remanufacturing lots, a cost saving of around

3.91% (247.71−238.40
238.40

-1) is realized. The relevant decision variables are summarized in

Table 2.4. The optimal cycle length for the (2, 1)g policy is a little longer than for the
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(2,1) policy with remanufacturing lots of equal size. When applying a (2, 1) policy all

returns in a cycle are remanufactured in two equal lots, i.e. QR,1 = QR,2 = 0.5 · λαT .
On the other hand, the remanufacturing lot sizes of the (2, 1)g policy are geometri-

cally decreasing and can be computed according to equations (2.41). For both policy

structures, the only manufacturing lot in a cycle comprises exactly λ(1− αβ)T newly

fabricated products.

Tab. 2.4: Decision variables for the (2, 1) and (2, 1)g policy structures

(2,1)

policy

(2, 1)g

policy

T 2.0184 2.0973

QR,1 60.552 85.0257

QR,2 60.552 40.8123

QM,1 104.9568 109.061

We omit to present the results of the (2, 1) and (2, 1)g policies graphically as they

correspond to the inventory developments of Figure 2.7. In order to evaluate whether

these policies obtained good solutions, the benchmark solution to the base case has

been calculated as well. Altogether, 100 different combinations of R and M have been

analyzed in which each parameter could take on integer values between 1 and 10. The

result has been that the benchmark solution obtained a solution corresponding to the

(2, 1)g policy’s solution and is, thus, not able to improve the solution obtained by the

predefined policies.

The remainder of this subsection presents the results of a one parameter sensitivity

analysis. While keeping six of the seven parameters (please refer again to Table 2.2

for a short overview) constant, the residual parameter is altered in a reasonable range.

This sensitivity analysis is conducted for all parameters except λ since this parameter

does not influence the solution structure which can be seen in the benchmark solution’s

objective function (2.55). At first, the influence of the return fraction α is examined.
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Return fraction α

The fraction of used products returning to the OEM α can vary theoretically between

0 % and 100%. As the extreme values do not seem to be reasonable since the entire

demand would be satisfied by either remanufacturing or manufacturing only, the sen-

sitivity analysis considers all α values between 1 % and 99 % in steps of 0.5%. The

three predefined policy structures (R, 1), (1,M), and (R, 1)g have been tested with this

data and the minimum total cost value for each preset policy structure is presented

graphically in Figure 2.9. There, the best preset policy structure is indicated below

the minimum total cost of all policies.
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Fig. 2.9: Minimum total cost of the preset policy structures for different α values

For small values of α (α ≤ 19%), the (1,M) policy dominates the structures that

propose to initiate more than one remanufacturing lot in a cycle. If α is low, there are

not many returns to remanufacture. Hence, a large fraction of customer demand needs

to be satisfied by manufacturing product A. Since all returned products have to be

remanufactured as the option to dispose them of is prohibited, the cycle length is quite

long to collect a sufficient number of returns to remanufacture in a single batch. Thus,

the total amount to be manufactured increases which lets the number of manufacturing
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lots become larger in a cycle as well. By exploiting condition (2.39) the exact value of

α is calculated at which the optimal number of manufacturing lots switches from two

to one. When α is smaller than 19.18% it is better to schedule two manufacturing lots

instead of one in a cycle18.

For α between 19.18 % and around 48 % all preset policies determine the same minimum

total cost. In this range, a (1, 1) policy is the best choice for all preset policy structures,

i.e. they coincide. For α larger than 48 % the (R, 1)g policy dominates the other policy

structures. Therefore, condition (2.47) provides the exact α value for which an (R, 1)g

policy begins to outperform both the (1,M) and (R, 1) policies. By applying the

bisection method to this method an exact α of 47.65 % has been computed.

In order to evaluate whether the total cost values determined by the preset policy

structures might be far from optimal, the benchmark solution has been obtained for

all problem instances as well. Since the optimization approach requires that R and

M are set in advance, the number of examined combinations has to be limited to

keep the computational effort controllable. Altogether, the mixed-integer non-linear

optimization problem has calculated the benchmark solution for 36 policy structures

where R as well as M could take on any integer value between 1 and 6. By restricting

the number of combinations and as no NLP solver can guarantee to provide the true

optimal solution to a problem, it cannot be guaranteed to find the optimal solution

to the entire problem. However, this approach offers an opportunity to evaluate the

performance of the preset policies on a general level what is not found in literature up

to now.

The benchmark solution is able to improve the preset policies’ solutions in some cases

but not in general. In order to elaborate the influence of equal remanufacturing lots,

the benchmark solution is compared on the one hand to the minimum total cost of the

(R, 1) and (1,M) policies. On the other hand, the benchmark solution is confronted

with the best result from the (R, 1), the (1,M), and the new (R, 1)g policy. Figure

2.10 presents these results.

18 For details on how to determine this value, please refer to the Appendix, page 76.
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Fig. 2.10: Deviation from benchmark solution for different α values

Applying the (R, 1) and (1,M) policy structures leads to an error of more than 9% for

large return fractions when compared to the benchmark. Furthermore, by including

the (R, 1)g policy structure into the decision making process, the deviation from the

benchmark solution can be limited to less than 1% over all instances tested when

varying α for the base case. For instance, the maximum deviation of the best preset

policy structure to the benchmark solution has been around 0.75% for a return fraction

of 47.5%. For this return fraction, the benchmark solution proposed a (3,2) policy while

a (1, 1) policy has been the best suggestion by the preset policies. The proposed cycles

of the (1, 1) and (3, 2) policies are depicted in Figure 2.11 while their relevant decision

variables are presented in Table 2.5.

The most striking difference between both solutions is their divergent cycle length. It

can be seen that the (1, 1) policy’s cycle length is much shorter than the cycle length

for the benchmark (3, 2) policy. This is because the benchmark solution needs to divide

the much larger setup cost of scheduling and therefore needs a longer cycle to do this

efficiently. Comparing the total cost values between both solutions, the (1, 1) policy

obtained a total cost of 247.59 per time unit while the (3, 2) structure is able to reduce

the total cost to 245.76 per time unit. The relative deviation between both values

is, thus, around 0.75%. When analyzing the benchmark in greater detail, the (3, 2)
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Fig. 2.11: (1, 1) and (3, 2) policies for base case with α=0.475

Tab. 2.5: Decision variables for the (1, 1) and (3, 2) policies

preset policy structure benchmark solution

(1, 1) policy (3, 2) policy

TC 247.59 245.76

T 1.6155 3.6621

QR,1 76.7363 78.7352

QR,2 / 29.9194

QR,3 / 65.2952

QM,1 100.161 113.5251

QM,2 / /

QM,3 / 113.5251

solution can be separated into two smaller cycles. The first smaller cycle consists of

QR,3, QR,1, and QM,1 which coincide with a (2, 1)g policy structure, i.e. QR,2 = αβ ·QR,1.

Thereafter, QR,2 and QM,3 correspond to a (1, 1) policy. Moreover, the manufacturing

lots of both smaller cycles are of equal size.

Interestingly, the deviation of the best preset policy to the benchmark solution follows

a characteristic pattern. For a multitude of instances, at least one of the preset struc-
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tures obtains the benchmark solution. This might not be the case when the overall

optimal solution to each instance could be obtained which is not possible due to its

computational complexity. However, in some areas the benchmark solution is already

better than the best preset policy structures of which four areas can be identified in

Figure 2.10. Although hardly recognizable, the first return fraction for which this hap-

pens is 8.5%. Moreover, around the return fractions 18%, 45%, and 70% the other

deviations can be found.

Without loss of generality, either the ratio of R to M or its inverse is an integer number

for all preset policy structures as either R or M is one. Yet, if the benchmark solution

deviates from these policy structures, both the ratio of the benchmark’s R and M as

well as its inverse are not integer. This fact has been depicted in Figure 2.12 which

exhibits the benchmark solution’s ratio of R to M depending on α.
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Fig. 2.12: Ratio of R to M for the benchmark solution

It can be seen that the ratio of R to M never decreases when α becomes larger. For

instance, around α = 45% the value of this ratio is between one and two. Due to the

experimental design (restricting the maximum value of R and M to six) only five differ-

ent policy structures can be found that show an R/M ratio between one and two: the

(3,2) [and therefore also the (6,4) policy which yields the same result], (4,3), (5,3), (5,4),
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and (6,5) policies. Except for the last one, all policy structures have been chosen by the

benchmark solution for at least one α value. When varying the other parameters in the

remaining sensitivity analysis, the same general monotonic behavior can be observed.

This leads to the conjecture that the ratio of R to M for the exact solution increases

monotonically when α increases. However, this conjecture cannot be proven since it is

unlikely to determine the optimal solution, e.g., for a (201, 87) policy with the currently

existing optimization software. Next, the influence of the yield parameter β is analyzed.

Yield parameter β

While keeping the remaining base case parameters constant, the fraction of successfully

remanufactured products β is altered in the following. This parameter has not been

given by Ashayeri et al. and is, thus, of special interest. Like the return fraction, β could

be changed between 0 and 100 %. Yet, for the experiments β is alternated between 1

and 100 % in steps of 0.5 %. A β smaller than one does not seem to be reasonable

since then almost the entire demand would have to be satisfied by manufacturing new

products. Figure 2.13 presents the solutions of the preset policy structures.
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Fig. 2.13: Minimum total cost of the preset policies for different β values
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For β smaller than around 60% all preset policies determine the same result, i.e. a

(1,1) policy is suggested. As β become larger, the preset policy structures differ in

their evaluation. Again, the (R, 1)g policy outperforms both the (R, 1) and (1,M)

policies. By analyzing condition (2.47) the exact value of β is determined at which the

(R, 1)g policy’s solution begins to yield a better result than the other two structures.

Using the bisection method again derives a β of 60.17%.

To compare the solutions of the preset policy structures to the benchmark solution,

Figure 2.14 depicts the percentage error between both methodologies. Interestingly,

the performance gain is largest for β = 100% which has been the original assumption

of Ashayeri et al. Therefore, the declaration of an imperfect remanufacturing process

as base case scenario has been justified. Otherwise, the influence of a large β appears
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Fig. 2.14: Deviation from benchmark solution for different β values

not to be as strong as for a large return fraction α although a percentage error of

more than 5 % compared to the benchmark solution can be observed when the deci-

sion maker omits to check the (R, 1)g policy’s solution. However, including the (R, 1)g

policy’s solution does not always provide the best solution. In this analysis, there

are two regions in which the benchmark solution is better than the preset structures.

The first area can be found around β=60% at which the best preset policy structure

changes from a (1,1) policy to a (2, 1)g policy. Here, as well as for the return fraction α,
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the benchmark obtains a solution for which the ratio of R to M lies between one and

two. Consequently, the area around β = 95% shows the transition from a (2, 1)g to

a (3, 1)g policy. In the following, the effects of diverse holding cost values are examined.

Holding cost parameters hR and hM

Regarding the holding cost parameters hR and hM , not only the absolute values are

of importance but also the ratio of both values. It has been observed in Table 2.1, for

instance, that the ratio of the holding cost parameters determines whether an (R, 1)g

policy with geometrically decreasing remanufacturing lots finds a better solution than

an (R, 1) policy with equal remanufacturing lots. At first, the influence of the holding

cost for the used product inventory is examined. As hR must not exceed βhM , it has

been chosen to take on values between 0 and 1.6 in steps of 0.01. Figure 2.15 presents

the best solutions obtained by the preset policy structures when hR is altered. In
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Fig. 2.15: Minimum total cost of the preset policies for different hR values

contrast to both Figure 2.9 for the return fraction α and Figure 2.13 for the quality

parameter β all preset policies determine a different solution, i.e. a (1,1) policy has

never been the best proposed solution. Instead, the (R, 1)g policy dominates both
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competitors for most of the hR values except for some small ones. There, the (R, 1)

policy is the best alternative. Considering the exact value of the change, it must be

noticed that the switch takes place from a (2,1) to a (2, 1)g policy. Therefore, the value

of hR can be computed by exploiting condition (2.50) which gives an hR of 0.2391. This

means if the holding cost rate for the used product level drops below 0.2391 (which is

around 12 % of the final product level’s holding cost), a policy structure with equal

remanufacturing batches is preferable. As initiating equally sized remanufacturing lots

reduces the inefficiency in the final product’s stock, it is reasonable to take inefficiencies

in the used product level into account when the holding cost hR is comparatively low.

The percentage error when compared to the benchmark solution is presented in Figure

2.16. For hR smaller than 0.2391 both curves are identical as including the (R, 1)g
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Fig. 2.16: Deviation from benchmark solution for different hR values

policy into the decision making process does not yield any benefit. However, if hR

approaches βhM the benefit becomes larger until it reaches around 6 % when they

are almost identical. Furthermore, the (R, 1)g policy coincides with the benchmark

solution for all hR values larger than 0.4 as the benchmark always computes a policy

structure similar to a (2, 1)g policy.
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Regarding the holding cost value for the final product inventory, similar conclusions

can be drawn. Since hM must not be smaller than hR/β the smallest value for hM

in this sensitivity analysis is 1.2. The maximum value, on the other hand, is set to

be three. Within this range all values in steps of 0.01 have been examined. Figure

2.17 presents the results of the three preset policies that reflect the findings of Figure

2.15. Over all instances, the (R, 1)g policy provides the best results of the preset policy
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Fig. 2.17: Minimum total cost of the preset policies for different hM values

structures. To be more precise, the proposed policy has been a (2, 1)g policy for all

tested hM values. Moreover, the absolute deviation between the (R, 1)g and the (R, 1)

policies is largest for hM values that lie close to hR/β. As the total cost increase the

larger hM becomes, the largest relative deviation is observed for small hM values, too.

If the experiments would have been extended to incorporate hM values larger than

8.3647, the (R, 1)g policy would have been outperformed by the (R, 1) policy. This

value can be derived from the ratio of hM to hR in equation (2.50) that describes for

a given value of hR the value of hM at which a (2, 1) policy is better than a (2, 1)g

policy. We omit to present the percentage error with respect to the benchmark for a

varying hM as the results can be derived from Figure 2.16 as well. After analyzing the

influence of both holding cost parameters, the influence of the setup cost parameters

KR and KM is evaluated.
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Setup cost parameters KR and KM

Next to the holding cost parameters, the setup cost values have a direct influence on

the number of lots in a cycle. In general, when the setup cost falls while keeping all

other parameters constant, the number of lots does not decrease. To verify this general

thought for the underlying problem, both setup cost parameters have been altered

to take on values between 0 and 250 in steps of 1. Starting with the setup cost for

remanufacturing KR, the solutions of the preset policy structures have been depicted

in Figure 2.18. For the variation of the base case scenario with respect to the setup
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Fig. 2.18: Minimum total cost of the preset policies for different KR values

cost for remanufacturing, two different phases can be observed. For KR being larger

than 104, all preset policy structures compute the same result, a (1, 1) policy. If, on

the other hand, KR is smaller than 104 the (R, 1)g policy yields the minimum total

cost of these policies. The exact value can be determined by exploiting condition (2.47)

since this condition describes the transition from a (1,1) to a (2, 1)g policy structure.

In this case, the exact value for KR is 103.8156. Otherwise, by manipulating condition

(2.39) the exact value of KR can be determined from which a (1, 2) policy dominates

the (1, 1) policy. The value obtained thereby needs to be larger than 250 as the (1,M)

policy does not dominate the other two policy structures in Figure 2.18. The exact
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value is for the base case scenario a KR of 588.4615. A (1,1) policy is, therefore, the

best preset policy structure for all KR values between 103.8156 and 588.4615.

In order to evaluate the overall solution quality of the preset policy structures, they are

confronted with the benchmark solution as well. Figure 2.19 depicts the results. As
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Fig. 2.19: Deviation from benchmark solution for different KR values

has been observed for all parameters until now, neglecting the opportunity to consider

geometrically decreasing remanufacturing lots can lead to a significant error in the

problem’s solution. When varying KR, this can be observed for a relatively small setup

cost of remanufacturing. Yet, even when incorporating the (R, 1)g policy, an error of up

to 1% prevails when comparing the preset policy structures to the benchmark solution.

Especially for KR between 77 and 134 this error is recognizable.

After elaborating the results for KR, the analysis is put forth for the setup cost of

initiating a manufacturing lot KM . This parameter is altered as well between 0 and

250 in steps of 1. Figure 2.20 illustrates the results of the experiments regarding

the minimum total cost for each preset policy structure. In this Figure, three different

sections can be found. When the setup cost for manufacturing is quite small, the (1,M)

policy calculates the best results since more than one manufacturing lot in a cycle is

beneficial. The second section is represented by a (1,1) policy in which all preset policy
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Fig. 2.20: Minimum total cost of the preset policies for different KM values

structures determine the same result. Finally, the last section is characterized by the

(R, 1)g policy dominating both the (R, 1) and (1,M) policy structures. The transition

values that limit these sections can be determined by exploiting conditions (2.39) and

(2.47). Solving these conditions with respect to KM , condition (2.39) computes a KM

of 12.7451 representing the transition from a (1, 2) to a (1, 1) policy. A KM of 72.2341,

on the other hand, defines the transition from a (1, 1) to a (2, 1)g policy. The second

section of Figure 2.20 lies therefore between KM=12.7451 and KM=72.2341.

Concluding, the benchmark solution has been obtained as well for all instances re-

garding a variation of KM and can now be opposed to the preset policy structures in

Figure 2.21. This Figure presents an almost familiar picture. Omitting geometrically

decreasing remanufacturing lots results in an error of up to 3.9 %. Interestingly, this

percentage deviation has been constant over a multitude of instances from KM = 114

to the upper bound. This is because the best preset policy structures have been the

(2, 1)g and the (2, 1) policies. Since the holding cost per time unit is not affected by

a variation in the setup cost for manufacturing, the total cost value increases propor-

tionally with an increasing KM value. As a matter of fact, this happens independently

from the presumption of considering equal or different remanufacturing lots in a cycle.

The same behavior could also be observed in Figure 2.19 for the setup cost for reman-
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Fig. 2.21: Deviation from benchmark solution for different KM values

ufacturing. Although not being as prominent as for the setup cost for manufacturing,

the same explanation can be used there.

Parameter settings of Tang and Teunter

Before concluding this chapter, the effects of a different base case scenario are analyzed

in the following. As mentioned above, Tang and Teunter (2006) present real-life data for

the (re)manufacturing process of water pumps for diesel engines. In their contribution,

five different types of water pumps (denoted by TT1 to TT5) are considered. Table

2.6 summarizes the relevant setup and holding cost parameters for these products. For

all products, the setup cost to initiate a (re)manufacturing batch is 20. Furthermore,

holding a final product for one time unit costs twice the amount of holding a returned

product for one time unit. The remanufacturer faces only a small return ratio of water

pumps amounting to 20% for all analyzed products. Since the yield parameter β has

not been included by Tang and Teunter, we fix it to 80% as for the Ashayeri et al. base

case scenario. Finally, demand for TT1 to TT5 differs between 3 and 30 units per time

unit.
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Tab. 2.6: Parameters for TT1 to TT5

Product λ α β KR KM hR hM

TT1 9 20 % 80 % 20 20 0.0088 0.0175

TT2 9 20 % 80 % 20 20 0.0132 0.0263

TT3 9 20 % 80 % 20 20 0.0175 0.035

TT4 30 20 % 80 % 20 20 0.0219 0.0438

TT5 3 20 % 80 % 20 20 0.0263 0.0525

In order to determine the best preset policy structure, equations (2.30), (2.37), and

(2.46) are evaluated for all products. As a result, a (1, 2) policy outperforms both the

(R, 1) and the (R, 1)g policy structures for all parameter sets examined. Afterwards, by

applying the optimization approach presented in Section 2.3 the benchmark solution

for all products is obtained. Due to the similar parameter structure, the benchmark

solution coincides for all products as well, i.e. a policy with two remanufacturing and

five manufacturing lots in a cycle is recommended. Yet, the error of applying a (1,2)

policy instead of the benchmark solution is less than 0.01 % for all products. Table 2.7

summarizes the relevant results.

Tab. 2.7: Best preset policy structure and benchmark for TT1 to TT5

Best preset policy structure Benchmark solution

Product R M TC R M TC

TT1 1 2 3.0087 2 5 3.0085

TT2 1 2 3.6877 2 5 3.6873

TT3 1 2 4.2524 2 5 4.2517

TT4 1 2 8.6853 2 5 8.6839

TT5 1 2 3.0075 2 5 3.0071

A sensitivity analysis has been conducted for the base case scenario of Ashayeri et al.

to assess the impact of each parameter on the solution structure. This could be done
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for the parameter sets of TT1 to TT5 as well. As the results do not differ substantially

with respect to the Ashayeri et al. base case, only a variation of the return ratio α for

product TT1 is presented henceforth. Figure 2.22 compares the minimum total cost of

the preset policy structures (1,M), (R, 1), and (R, 1)g for TT1 when α is altered.
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Fig. 2.22: Minimum total cost of the preset policy structures for different α values

(TT1)

In correspondence to Figure 2.9, the (1,M) policy dominates the policies that propose

to schedule more than one remanufacturing lot for small return rates. When α lies

between 35.31% and 66.3%, a (1, 1) policy is suggested by all preset policy structures.

The exact values for α are computed, again, by evaluating equations (2.39) and (2.47).

When α becomes larger than 66.3%, the (R, 1)g policy is the best preset policy structure.

Thus, Figure 2.23 depicts the deviation of the best preset policy structures from the

benchmark solution when including or omitting the (R, 1)g policy. It can be observed

as for the Ashayeri et al. base case that neglecting the (R, 1)g policy in the decision

making process results in a significant error for large return fractions. Moreover, the

best preset policy structure does not deviate by more than 1.5% from the benchmark

solution. The worst case deviation of 1.02% can be found when α amounts to 66.5%.
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Fig. 2.23: Deviation from benchmark solution for different α values (TT1)

A similar outcome can be observed when the return ratio is altered for products TT2

to TT5. Likewise, the findings of varying the remaining parameters correspond to a

large extent to the Ashayeri et al. base case scenario. Therefore, we omit to present the

corresponding Figures and conclude this Chapter by a short summary and an outlook

on future research options.

2.5 Concluding remarks and outlook

After giving a short introduction to the problem setting and presenting the available

literature on this topic in Section 2.1, two policy structures known from literature

have been presented in the adjacent Section 2.2, Schrady’s (R, 1) policy and Teunter’s

(1,M) policy. Both policies rely on the assumption of equally sized batches in either

the remanufacturing (Schrady) or the manufacturing (Teunter) process and formulate

the objective function depending on these lot sizing decisions. By doing this, they

neglect that the number of remanufacturing lots R and manufacturing lots M have to

be integer. Minner avoids this pitfall by reformulating both policies such that their

objective function depends on the cycle length T as well as on R or M , respectively.

This reformulation allows to derive closed-form expressions to determine the optimal
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integer R∗ andM∗ for both policy structures. Subsequently, it has been proven that it is

not possible for R∗ andM∗ to be larger than one simultaneously when restricting oneself

to the (R, 1) and (1,M) policies. This reduces the effort to compute the better of these

policies. In contrast to these policy structures, a third approach has been introduced

in Section 2.2.6, the (R, 1)g policy. Instead of initiating remanufacturing lots of equal

size as the (R, 1) policy requires, the (R, 1)g policy schedules geometrically decreasing

remanufacturing lots. When doing this, each remanufacturing lot remanufactures all

available returns which depletes the used product inventory after each remanufacturing

run. Yet, a closed-form expression to generate the optimal integer value for R could

not be derived. However, some conditions could be determined at which this preset

policy outperforms the other preset policy structures.

So far, the preset policy structures could only be compared to each other. Therefore, the

main focus of the subsequent Section 2.3 has been to present an optimization approach

in order to compute the optimal cycle. To do this, a mixed-integer non-linear problem

is introduced that requires the number of remanufacturing and manufacturing batches

in a cycle as input. This model has been solved to generate a benchmark solution

that provides an opportunity to evaluate the performance of the three preset policy

structures. This evaluation has been the subject of Section 2.4, the numerical study.

Starting with the introduction of a base case scenario (taken from Ashayeri et al.), a

sensitivity analysis is conducted that modifies each parameter individually. Several

interesting aspects have been observed during this study. One of the most important

aspects has been that by neglecting the (R, 1)g policy a significant error of up to 9 %

could be made for some parameter combinations (in this study this is the case when the

return rate α is large). Furthermore, the benchmark solution has in no instance been

worse than the best preset policy structure. This could not be expected beforehand

due to the non-linearity of the objective function and the restriction to 36 different

parameter combinations of R and M . Finally, the best solutions of the preset policies

have never been worse than 1 % compared to the benchmark solution which can be

interpreted as a promising result.

Several research questions remain still unanswered and can be addressed in future. At

first, the preset policy structures can be extended to include policies having more than
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one remanufacturing and more than one manufacturing batch in a cycle simultaneously.

Choi et al. (2007) have been the first authors to test this assumption. Although they

restrict their analysis to general (R,M) policy structures with equal remanufacturing

and equal manufacturing batches, they are able to identify problem instances for which

the solution can be improved. It would be interesting to evaluate the performance gain

for a more general (R,M)g policy structure in which all remanufacturing batches use

all available returns in stock.

Improving the benchmark solution can be another challenging task. In order to do this,

the properties of the benchmark solutions have to be analyzed in greater detail to incor-

porate these findings into an improved optimization approach. Another opportunity

would be to drop the integrality constraints of the optimization program and examine

the relaxed solution to determine lower bounds for the optimal solution. It would be

an interesting insight if the monotonicity in the ratio of R∗ and M∗ (as depicted in

Figure 2.12 for a varying α) can be confirmed when using the relaxed optimization

approach instead of the original one.

In addition, several assumptions can be analyzed critically to evaluate their importance

on the results presented in this chapter. In our study, remanufacturing has been consid-

ered a profitable opportunity for the OEM no matter how long the returns are kept in

stock. In reality, disposing of some returns at the beginning of a cycle can be advanta-

geous as they would have to be stored over a long time before remanufacturing. Several

contributions have analyzed this setting as well as a setting with a finite production

and remanufacturing rate and possible lead times. Future research efforts can examine

the effect of introducing differently sized remanufacturing lots for these settings as well.

Moreover, the assumption of static demand and return rates can be criticized. Incor-

porating time variant returns and demand can help to model a more realistic system

in this problem context. Chapter 4 is going to address this issue. Concluding, uncer-

tainties can almost never be neglected in real-life systems. Uncertainties prevail for

remanufacturing systems regarding their inputs as the OEM does not know how many

customers return their product at what time and in which condition. Furthermore, the

output is uncertain, too, since the yield of remanufacturing and the customer demand

can only be estimated in advance. The next Chapter 2 presents, thus, an adaptation
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of this Chapter’s model to evaluate the error that can be made when stochastic yields

prevail.

2.6 Appendix

Derivation of equation (2.4):

Km +R ·KR

T
=

Km +R ·KR

QM+R·QR·β
λ

= λ ·
Km + α·QM

(1−αβ)·QR
·KR

QM + α·QM

(1−αβ)·QR
·QR · β

= λ ·
Km + α·QM

(1−αβ)·QR
·KR

QM ·
(

1 + αβ

1−αβ

)

= λ ·
Km + α·QM

(1−αβ)·QR
·KR

QM

1−αβ

= λ ·
(

Km · 1− αβ

QM

+
α ·QM

(1− αβ) ·QR

·KR · 1− αβ

QM

)

= λ ·
(

(1− αβ) ·KM

QM

+
α ·KR

QR

)

.

Derivation of equation (2.6):
(

1

2
· R · (QR · β)2

λ
+

1

2
· (QM)2

λ

)

· hM · 1
T

=
1

2λ
· R · (QR · β)2 + (QM)2

R·QR·β+QM

λ

· hM

=
1

2
·

α·QM

(1−αβ)·QR
· (QR · β)2 + (QM)2

α·QM

(1−αβ)·QR
·QR · β +QM

· hM manipulation similar to (2.4)

=
1

2
·

α·QM

(1−αβ)
·QR · β2 + (QM)2

QM

1−αβ

· hM

=
1

2
·
(

αβ2 ·QR + (1− αβ) ·QM

)

· hM .

Proof of convexity of the total cost function in (2.7) In order to prove the

convexity of the total cost function TCR1, its Hessian matrix has to be elaborated.
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This results in:

H(TCR1) =







∂2TCR1

∂(QR)2
∂2TCR1

∂QR∂QM

∂2TCR1

∂QM∂QR

∂2TCR1

∂(QM )2






=







2λαKR

(QR)3
0

0 2λ(1−αβ)KM

(QM )3






.

This Hessian is positive definite as its leading principal minors are strictly positive, i.e.

2λαKR

(QR)3
> 0 and 4λ2αKrKm(1−αβ)

(QR)3·(QM )3
> 0. Therefore, the total cost function TCR1 is jointly

convex in both decision variables QR and QM .

Derivation of equation (2.15):

M ·Km +KR

T
=

M ·Km +KR

M ·QM+QR·β
λ

= λ ·
QR·(1−αβ)

α·QM
·Km +KR

QR·(1−αβ)
α·QM

·QM +QR · β

= λ ·
QR·(1−αβ)

α·QM
·Km +KR

QR ·
(

1−αβ

α
+ β

)

= λ ·
QR·(1−αβ)

α·QM
·Km +KR

QR

α

= λ ·
(

QR · (1− αβ)

α ·QM

·Km · α

QR

+KR · α

QR

)

= λ ·
(

KM · (1− αβ)

QM

+
KR · α
QR

)

.

Derivation of equation (2.16):

[

1

2
·QR · T · hR +

(

1

2
· (QR · β)2

λ
+M · 1

2
· (QM)2

λ

)

· hM

]

· 1
T

=
1

2
·QR · hR +

(

1
2
· (QR·β)2

λ
+M · 1

2
· (QM )2

λ

)

M ·QM+QR·β
λ

· hM

=
1

2
·QR · hR +

1

2
·
(QR · β)2 + QR·(1−αβ)

α·QM
· (QM)2

QR·(1−αβ)
α·QM

·QM +QR · β
· hM manipulation similar to (2.15)

=
1

2
·QR · hR +

1

2
· (QR · β)2 + QR·(1−αβ)

α
·QM

QR

α

· hM

=
1

2
·
(

QR · hR +
(

αβ2 ·QR + (1− αβ) ·QM

)

· hM

)

.
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Proof of convexity of the total cost function in (2.17):

As for the (R, 1) policy, the Hessian matrix of the total cost function has to be computed

to analyze its properties. The Hessian matrix of TC1M is:

H(TC1M) =







∂2TC1M

∂(QR)2
∂2TC1M

∂QR∂QM

∂2TC1M

∂QM∂QR

∂2TC1M

∂(QM )2






=







2λαKR

(QR)3
0

0 2λ(1−αβ)KM

(QM )3






.

The Hessian matrix of TC1M coincides with the matrix for TCR1. Thus, all leading

principal minors are strictly positive again and the joint convexity (regarding QR and

QM) of the total cost function TC1M is proven.

Behavior of equation (2.28) near 0 and ∞ :

TC+
R1(R) =

√

2λ(R ·KR+KM)

((

1+αβ

(

1

R
−1

))

αhR+

(

α2β2

R
+(1−αβ)2

)

hM

)

TC+
R1(R) =

√

2λ

(

A ·R + B +
C

R

)

with A = KR ·
(

αhR (1− αβ) + (1− αβ)2
)

≥ 0

B = KRα
2β (hR + βhM) +KM

(

αhR (1− αβ) + (1− αβ)2 hM

)

≥ 0

C = KMα2β (hR + βhM) ≥ 0

lim
R→0

TC+
R1(R) =

√

2λ

(

A ·R + B +
C

R

)

= ∞

lim
R→∞

TC+
R1(R) =

√

2λ

(

A ·R + B +
C

R

)

= ∞.

Derivation of equation (2.29):
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R1(R̂) = TC+

R1(R̂ + 1)

√

2λ
(

R̂KR +KM

)
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(
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)
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)

=

√
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)
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(

1
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(
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+(1−αβ)2

)

hM

)
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(
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+
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(
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(
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= 0
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(

α (1− αβ)hR + (1− αβ)2 hM

) = 0

R̂ = −1
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±
√

1

4
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α (1− αβ)hR + (1− αβ)2 hM

)
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⌈
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√

1

4
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KMα2β · (hR + hMβ)

KR ·
(
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⌉

.

Derivation of equation (2.36):

TC+
1M(M̂) = TC+

1M(M̂ + 1)

√

√

√

√2λ ·
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KR + M̂ ·KM
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√

√

√
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·KM
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)
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)
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(

KR + M̂ ·KM

)

·
(

αhR +

(

α2β2 +
(1− αβ)2

M̂

)

· hM

)

−
(

KR +
(

M̂ + 1
)

·KM

)

·
(

αhR +

(

α2β2 +
(1− αβ)2

M̂ + 1

)

· hM

)

= 0

KR · (1− αβ)2 · hM ·
(

1

M̂
− 1

M̂ + 1

)

−KM ·
(

αhR + α2β2hM

)

= 0

M̂ + 1− M̂

M̂ ·
(

M̂ + 1
) − KM · (αhR + α2β2hM)

KR · (1− αβ)2 · hM

= 0

M̂2 + M̂ − KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)
= 0

M̂ = −1

2
±
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)

M∗ =









−1

2
±
√

1

4
+

KR · (1− αβ)2 · hM

KM · (αhR + α2β2hM)









.

Derivation of equation (2.41):

λαT = QR,1 +QR,2 +QR,3 + ..+QR,R

λαT = QR,1 + αβQR,1 + α2β2QR,1 + ..+ αR−1βR−1QR,1

λαT = QR,1 ·
(

1 + αβ + α2β2 + ..+ αR−1βR−1
)

λαT = QR,1 ·
R−1
∑

i=0

αiβi

λαT = QR,1 ·
1− αRβR

1− αβ

QR,1 =
λαT · (1− αβ)

1− αRβR
.

In the transformations, the convenient formula for a geometric series has been used.

In general, this formula states that sn = a0
∑n

k=0 q
k = a0

1−qn+1

1−q
(for q 6= 1), where a0

denotes the initial value and q the common ratio. Here, the initial value is equal to

QR,1 while the common ratio is αβ. The remaining remanufacturing batches can be



2. Optimal and predefined policies in a two stage recovery system 74

calculated by using the first condition explained above. Therefore,

QR,i =
λαT · (1− αβ)

1− αRβR
· αi−1βi−1 =

λαiβi−1T · (1− αβ)

1− αRβR
∀i = 1, .., R.

Derivation of equation (2.43):
[

1

2

R
∑

i=1

(

QR,i ·
QR,i

λα

)

hR

]

· 1
T

=

[

hR

2λα

R
∑

i=1

(

λαiβi−1T · (1− αβ)

1− αRβR

)2
]

· 1
T

=
hRT

2λα

λ2 · (1− αβ)2

(1− αRβR)2
·

R
∑

i=1

α2iβ2·(i−1)

=
hRT

2α

λ · (1− αβ)2

(1− αRβR)2
· 1

β2

R
∑

i=1

(

α2
)i (

β2
)i

=
hRT

2α

λ · (1− αβ)2

(1− αRβR)2
· α

2β2

β2

R−1
∑

i=0

(

α2
)i (

β2
)i

[formula for geometric series]

=
hRT

2

λα · (1− αβ)2

(1− αRβR)2
· 1− α2Rβ2R

1− α2β2

=
hRT

2

λα · (1− αβ)2

(1− αRβR)2
·
(

1− αRβR
)

·
(

1 + αRβR
)

(1− αβ) · (1 + αβ)

=
1

2
λαThR ·

(

1− αβ

1 + αβ
· 1 + αRβR

1− αRβR

)

.

Derivation of equation (2.44):
[

1

2

(

R
∑

i=1

(

QR,i · β · QR,i · β
λ

)

+QM · QM

λ

)

hM

]

1

T

=

[

hM

2λ

(

β2

R
∑

i=1

(

λαiβi−1T · (1− αβ)

1− αRβR

)2

+ λ2 · (1− αβ)2 T 2

)]

1

T

=
hMT

2λ

(

λ2 · (1− αβ)2

(1− αRβR)2

R
∑

i=1

(

α2
)i (

β2
)i
+ λ2 · (1− αβ)2

)

=
λhMT

2

(

α2β2 · (1− αβ)2

(1− αRβR)2

R−1
∑

i=0

(

α2
)i (

β2
)i
+ (1− αβ)2

)

=
λhMT

2

(

α2β2 · (1− αβ)2

(1− αRβR)2
· 1− α2Rβ2R

1− α2β2
+ (1− αβ)2

)

=
1

2
λThM

(

α2β2 · 1− αβ

1 + αβ
· 1 + αRβR

1− αRβR
+ (1− αβ)2

)

.
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Derivation of inequality (2.47):

TC+
R1g(1)− TC+

R1g(2) > 0

√

2λ · (KR +KM) ·
(

αhR + α2β2hM + hM (1− αβ)2
)

−
√

2λ · (2KR +KM) ·
(

(αhR + α2β2hM) · V + hM (1− αβ)2
)

> 0

(KR +KM) ·
(

αhR + α2β2hM + hM (1− αβ)2
)

− (2KR +KM) ·
((

αhR + α2β2hM

)

· V + hM (1− αβ)2
)

> 0

KR

(

αhR+α2β2hM

)

(1−2V)−KRhM(1−αβ)2+KM

(

αhR+α2β2hM

)

(1−V)> 0.

Derivation of inequality (2.49):

1− αβ

1 + αβ
· 1 + α2β2

1− α2β2
) >

1

2

2 (1− αβ)
(

1 + α2β2
)

> (1 + αβ)
(

1− α2β2
)

2− 2αβ + 2α2β2 − 2α3β3 > 1 + αβ − α2β2 − α3β3

1− 3αβ − 3α2β2 − α3β3 > 0

(1− αβ)3 > 0.

Derivation of inequality (2.50):

TC+
R1(2)− TC+

R1g(2) > 0

√

2λ · (2KR +KM) ·
((

1 + αβ

(

1

2
− 1

))

· αhR +

(

α2β2

2
+ (1− αβ)2

)

· hM

)

−
√

2λ · (2KR +KM) ·
(

(αhR + α2β2hM) · V + hM (1− αβ)2
)

> 0

(

1 + αβ

(

1

2
− 1

))

· αhR +
α2β2

2
· hM −

(

αhR + α2β2hM

)

· V > 0

hMα2β2V − αhR

(

−1 +
1

2
αβ + V

)

> 0
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Since V is larger than 0.5 which has been shown in condition (2.49), the direction of

the inequality is reversed. Hence, when replacing V by 1−αβ

1+αβ
· 1+α2β2

1−α2β2

hM

hR

<
α
(

1−αβ

1+αβ
· 1+α2β2

1−α2β2 − 1 + 1
2
αβ
)

α2β2
(

1
2
− 1−αβ

1+αβ
· 1+α2β2

1−α2β2

)

hM

hR

<

(

1−αβ

1+αβ
· 1+α2β2

(1−αβ)·(1+αβ)
− 1 + 1

2
αβ
)

αβ2
(

1
2
− 1−αβ

1+αβ
· 1+α2β2

(1−αβ)·(1+αβ)

)

hM

hR

<

(

1+α2β2

(1+αβ)2
− 1 + 1

2
αβ
)

αβ2
(

1
2
− 1+α2β2

(1+αβ)2

)

hM

hR

<

1+α2β2−(1+αβ)2+ 1

2
αβ·(1+αβ)2

(1+αβ)2

αβ2
(

(1+αβ)2−2·(1+α2β2)

2·(1+αβ)2

)

hM

hR

<
1 + α2β2 − 1− 2αβ − α2β2 + 1

2
αβ + α2β2 + 1

2
α3β3

1
2
αβ2 (1 + 2αβ + α2β2 − 2− 2α2β2)

hM

hR

<
−3

2
αβ + α2β2 + 1

2
α3β3

1
2
αβ2 (−1 + 2αβ − α2β2)

hM

hR

<
−1

2
αβ (3− 2αβ − α2β2)

−1
2
αβ2 (1− αβ)2

hM

hR

<
(3 + αβ) · (1− αβ)

β (1− αβ)2

hM

hR

<
3 + αβ

β (1− αβ)
.

Base case analysis: Determination of α when it is better to initiate two

instead of one manufacturing lots in a cycle (page 51)

KR · (1− αβ)2 · hM − 2KM ·
(

αhR + α2β2hM

)

= 0

KRhM − 2KRαβhM +KRα
2β2hM − 2KMαhR − 2KMα2β2hM = 0

α2
(

KRhMβ2 − 2KMhMβ2
)

− α (2KRhMβ + 2KMhR) +KRhM = 0

α1,2 =
KRhMβ +KMhR

KRhMβ2−2KMhMβ2
±
√

(

KRhMβ +KMhR

KRhMβ2−2KMhMβ2

)2

− KRhM

KRhMβ2−2KMhMβ2
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α1,2 = −230

320
±
√

(

230

320

)2

+
100

320

α1 = 0.1918 α2 = −1.6291.

As only α1 lies within the relevant range between 0 and 1, the value of α at which it is

better to have only one manufacturing lot instead of two lies for the base case at 19.18

%.



3. On the alignment of lot sizing decisions in

a remanufacturing system in the presence

of random yield

3.1 Introduction

The reuse field has grown significantly in the past decades due to its economical ben-

efits and the environmental requirements1. Remanufacturing which represents a so-

phisticated form of reuse focuses on value-added recovery and has been introduced for

many different products ranging from car engines (as has been reported in Seitz and

Wells, 2006) over photocopiers (as has been reported in Thierry et al., 1995) to water

pumps for diesel engines (as has been reported in Tang and Teunter, 2006). Within

the process of remanufacturing, products that are returned by the customers to the

producer are disassembled to obtain functional components. The obtained components

are afterwards cleaned and reworked until an as-good-as-new quality is assured. Having

met the required quality standards, these components can be used for the assembly of

a remanufactured product that is delivered to the customers with the same warranty

as a newly produced one. In addition to the economic profitability, as a part of the

embedded economic value can be saved by remanufacturing, there is an increasingly

legislative restriction that assigns the producers the responsibility for their used prod-

ucts, for instance the Directive 2002/96/EC related to Waste Electrical and Electronic

Equipment and the Directive 2002/525/EC related to End of Life Vehicles. Because of

1 This Chapter is based on the work titled ’On the alignment of lot sizing decisions in a remanu-

facturing system in the presence of random yield’ that has been published in the FEMM working

paper series (see Schulz and Ferretti, 2008).
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that, remanufacturing has become an important industry sector to achieve the goal of

sustainable development (see, for instance, Webster and Mitra, 2007). Therefore, the

management and control of inventory systems that incorporate joint manufacturing

and remanufacturing options has received considerable attention in recent literature

contributions.

One of the main topics in these contributions is the assessment of joint lot sizing deci-

sions for remanufacturing and manufacturing which has been thoroughly investigated

in recent years. One of the first authors who established a basic modeling approach is

Schrady (1967) who develops a simple solution procedure for determining the lot sizes

of repair and manufacturing lots. He assumes in his work that a constant and contin-

uous demand for a single product has to be satisfied over an infinite planning horizon.

Furthermore, a constant return fraction is established that describes the percentage

of used products that return to the producer. By using that assumption, a constant

and continuous return rate is ensured. Presuming setup costs for remanufacturing and

manufacturing as well as different holding costs for repairable and newly manufactured

products, a simple EOQ-type formula (with EOQ being the economic order quantity)

is proposed that minimizes the sum of setup and holding costs per time unit. As a

result, an efficient cyclic pattern is established which is characterized by the fact that

within each repair cycle a number of repair lots of equal size succeed exactly one manu-

facturing lot. By solving the proposed EOQ-formula which can be applied because an

infinite production and repair rate is presumed as well, the number of repair lots and

the length of a repair cycle can be determined. Teunter (2001) generalizes the results

of Schrady in a way that he examines different structures of a repair cycle. He adds to

the efficient cycle patterns a cycle in which several manufacturing lots of equal size are

followed by exactly one repair lot. The assumption of equal lot sizes is among other

aspects critically studied in the contribution of Minner and Lindner (2004). They show

that a policy with non-identical lot sizes can outperform a policy with identical lot sizes.

However, the structure of an efficient repair cycle prevails also when the assumption of

equal lot sizes is lifted.

Next to the analysis of the basic model context several extensions have been proposed

that relax some of the assumptions made so far. Teunter (2004), for instance, relaxes
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the assumption of an instantaneous manufacturing and repair process in order to derive

more general expressions for the number of manufacturing and repair lots and their

corresponding lot sizes. Since only a heuristic procedure is introduced on how to

determine these values, Konstantaras and Papachristos (2008) extend Teunter’s work

by developing an algorithm that leads to the optimal policy for certain parameter

classes. By incorporating stochastic lead times and thereby including the possibility of

backorders, Tang and Grubbstrom (2005) extend the basic model. Two general options

are recommended on how such a system can be dealt with, a cycle ordering model and

a dual sourcing ordering policy. Both approaches are compared in a numerical study

that indicates certain parameter specifications under which one approach outperforms

the other. Furthermore, several papers have been published by Richter and Dobos (e.g.

Richter, 1996a,b; Richter and Dobos, 1999) that relax the assumption of a constant

rate of return. In their contributions, several situations are presented in which a so

called pure strategy is always optimal. In this context, a pure strategy means that

either every returned product is repaired or everything is disposed of immediately.

Therefore, a mixed strategy in which a part of the returned products is repaired and

the rest is disposed of is always dominated by one of the pure strategies. Finally,

the assumption of continuous demand and return rates has been relaxed by several

authors. Consequently, the former EOQ-type model becomes a dynamic lot sizing

problem. The contribution of Teunter et al. (2006) extends well-known dynamic lot

sizing heuristics such as the Silver Meal or the Part Period algorithm in order to test

their performance in a remanufacturing environment. In their work, the adapted Silver

Meal approach revealed an average percentage deviation of around 8 % compared to

the optimal solution. Schulz (2011b) improves among other things their approach by

incorporating ideas known from the static environment and reduces the average error

to around 2 %.

Common to all contributions is that they do not consider the remanufacturing process

explicitly. Although some authors speak of remanufacturing, they analyze a remanufac-

turing system in the same way as a repair system. This may lead to wrong conclusions

as it is not regarded that the remanufacturing process itself consists of two different

subprocesses, a disassembly process in which the returned products are disassembled
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and a rework process in which the obtained components are brought to an as-good-as-

new quality (for possible definitions see Thierry et al., 1995; Atasu et al., 2010). By

explicitly incorporating both subprocesses in this contribution, the decisions that need

to be made regarding disassembly and rework are decoupled which generalizes the basic

models used so far.

Next to this generalization, this Chapter will further relax the assumption of a deter-

ministic yield, i.e. the number of components obtained by disassembly is not known

with certainty beforehand. To present a practical application of this problem, the re-

manufacturing process for a car engine can be analyzed. When a batch of returned

engines is disassembled, the remanufacturer does not know in advance how many re-

manufacturable components can be obtained. This is because the quality of the returns

cannot always be assessed before disassembly. Hence, such a process can only be ana-

lyzed thoroughly when both processes disassembly and rework are evaluated separately.

Considering stochastic yields has attained significant interest in the scientific literature

as the basic work of Yano and Lee (1995) as well as the overview of Grosfeld-Nir and

Gerchak (2004) indicate. However, most of the contributions presented by Grosfeld-

Nir and Gerchak (2004) describe pure manufacturing environments which cannot be

entirely translated to a remanufacturing system as such a system inherits greater risks

to be dealt with (for details, see Toffel, 2004). Nevertheless, stochastic yields have

also been studied in a remanufacturing environment. Inderfurth and Langella (2006),

for instance, have concentrated their analysis specifically on the yield risk within the

disassembly process. Yet, they focus on a multi-product multi-component problem

setting in which a given discrete demand for components has to be satisfied by either

disassembling used products or manufacturing new components. The authors develop

in their contribution heuristic methods on how to deal with such a problem in which

they neglect the presence of setup costs for the disassembly and the remanufacturing

process. In another work, Ferrer (2003) evaluates four different scenarios in a single

period remanufacturing environment that differ in their process capabilities. For each

scenario, the optimal policy has been derived. In a numerical study, all four scenarios

have been tested and compared.
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After this short introduction, the problem assumptions and the nomenclature used in

the remainder of the paper are illustrated in Section 3.2. Section 3.3 presents there-

after two solution procedures to find the optimal solution in the deterministic yield

scenario for a given predefined policy structure before Section 3.4 widens the scope to

a stochastic yield problem and presents three heuristic approaches that facilitate the

decision making process in such an environment. The fifth Section of this Chapter (3.5)

conducts a numerical experiment in order to test the heuristics’ performance. Finally,

a conclusion and an outlook are given in the last Section.

3.2 Problem setting and model formulation

A company engaged in the area of remanufacturing that remanufactures several used

products (e.g. engines) coming back from their customers is the background for the

problem setting. To keep the analysis simple, the focus shall be restricted to only one

specific remanufactured product named A. Figure 3.1 presents the general structure

of this simplified system which is modeled as a multi-level inventory system containing

three stages. Further simplifications are made regarding the fact that there are neither

lead nor processing times. Furthermore, no disposal option is included in the problem

setting.

C

r e m a n u f a c t u r e   

C '

m a n u f a c t u r e  C

d e m a n d  r a t e  ( l  )

r e t u r n  f r a c t i o n  ( a  )

y i e l d  f r a c t i o n  ( b  )

c u s t o m e r sa s s e m b l e  A

d i s a s s e m b l e  A ' A 'C '

A

Fig. 3.1: Inventory system in a remanufacturing environment

The customers’ demand for the final product A is assumed to be constant and depletes

the finished goods inventory continuously by a constant rate of λ units per time unit.

In order to satisfy that demand, the company manufactures the final product by using
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component C which represents the most important component of the product. For the

sake of simplicity, only the most important component C is included in the analysis.

However, the proposed model could be easily extended to a multi-component setting.

The assembly process is supposed to be a flow line process at which the final product

is assembled continuously and immediately delivered to the customers, i.e. there is

no stocking point for the final product A. When the customers have no further use

for their product A (e.g. it is broken or its leasing contract ends) they have the

opportunity to return the product to the company. Yet, only a fraction (named α) of

those products in the market returns to the producer. For the subsequent analysis, the

return flow of used products (which are denoted A′) fills the used product inventory

by the constant and continuous rate of λα. By disassembling A′ the worn component

C ′ is obtained. Although the process of disassembly typically consists of manual work,

a setup cost prevails for adjusting the required disassembly tools and/or measuring

devices that allow an improved assessment of the reusability of components before

disassembly. Within this model KD represents the setup costs for a disassembly batch

while hD is the holding cost incurred for storing one unit of A′ for one time unit. Due

to different stages of wear, not all returned products contain a reworkable component

C ′. The ratio of the number of reworkable items obtained from the disassembly of A′ to

the rate of product returns λα is denoted by β. Assuming that at most one reworkable

component C ′ can be obtained by disassembling one unit of A′ the ratio β must not

exceed one while being non-negative. As the released components C ′ cannot be used

directly for the assembly of the final product A since they usually do not meet the

designated quality standards, these components have to be remanufactured. Since the

remanufacturing process incurs a cost of KR for setting up the cleaning and mechanical

rework tools, a batching of reworkable components takes place as well. Hence, some

reworkable components need to be stored before the next remanufacturing batch is

started resulting in costs of hR per unit and time unit. It is furthermore assumed that

each component that is remanufactured is brought to an as-good-as-new condition. All

successfully reworked components are held in a serviceables inventory at a cost of hM

per unit and time unit. In order to secure the final product assembly of A, some

components of C have to be manufactured in addition (as α and β are usually smaller
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than one). The relevant costs are denoted by KM representing the cost for setting up

a manufacturing lot for component C. Newly manufactured components are held in

the same serviceables inventory as remanufactured ones and it is supposed that the

holding costs do not differ between both sourcing options. A detailed discussion on the

topic on how to set the holding cost parameters can be found in Teunter et al. (2000).

In general, the holding costs (when interpreted as costs for capital lockup) of all levels

are connected by the following inequality since more value is added to the component

on each level, i.e. hD < hR < hM .

Balancing setup and holding costs shall be achieved by applying an average cost ap-

proach to this model. This is commonly done for one-level inventory systems by using

the well known EOQ-model formulation but can be easily extended to a multi-level

environment by respecting the stipulated assumptions of the EOQ-model (e.g. infinite

planning horizon with constant costs over time). As a result, an optimal cyclic pattern

is obtained by minimizing the average cost per time unit. In order to control the entire

system, three decision variables are required. Firstly, the length of the disassembly

cycle T determines the lot size of each disassembly batch (λαT ) under the assumption

that there is only one disassembly lot per cycle. This assumption is made for the sake

of simplicity as an additional decision variable (number of disassembly lots per cycle)

would complicate the analysis significantly. However, if we consider high setup costs

of disassembly, we conjecture that this assumption of one disassembly lot per cycle

assures the optimality of the introduced deterministic policy. Furthermore, by fixing

the number of remanufacturing lots R per disassembly cycle, their equal lot size can be

computed by λαβT/R. Finally, the number of manufacturing lots M per disassembly

cycle determines the lot sizes of the manufacturing lots to be λ(1 − αβ)T/M . The

subsequent section presents the optimal solution of a completely deterministic setting

in which all parameters are known with certainty.

3.3 Deterministic yields

In this section, a model is introduced that permits the evaluation of the optimal number

of manufacturing and remanufacturing lots in a disassembly cycle with one disassem-
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bly batch. Before expanding the scope to stochastic yields from disassembly which

represents the core issue of this Chapter, the deterministic setting is studied in order

to gain insight into the interrelations of the whole system. Figure 3.2 illustrates the

behavior of the relevant inventory levels for three consecutive disassembly cycles. As

a matter of fact, the optimal decision variables (T , R, and M) remain constant over

time in a deterministic environment. As shown in Figure 3.2 below, the manufacturing

lots are always positioned after the remanufacturing lots in the serviceables inventory.

This is obvious as this strategy strictly dominates the strategy of starting a cycle on

the serviceables level with a manufacturing lot due to the increased holding costs on

the remanufacturables level.

m a n u f a c t u r i n g

r e m a n u f a c t u r i n g

u s e d  p r o d u c t  l e v e l  ( A ' )

r e m a n u f a c t u r a b l e s  l e v e l  ( C ' )

s e r v i c e a b l e s  l e v e l  ( C )

T

l a T

l a b T

l ( 1 - a b ) T

Fig. 3.2: Used product, remanufacturables, and serviceables inventory in a determinis-

tic yield environment (with D = 1, R=2, and M=1)

By minimizing the total average cost per time unit, this specific example shows the

optimal cycle length T for two remanufacturing lots (R = 2) which split the remanu-

facturables inventory inflow equally and one manufacturing lot (M = 1) which satisfies

the remaining demand of the assembly process for product A. To analyze the total

cost function (TCD) only two main types of costs have to be considered, the setup

costs SCD and the holding cost HCD in which the index D indicates the determinis-
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tic setting. The total cost function in the deterministic setting can be formulated as

follows2:

TCD =
SCD

T
+

λT

2
·HCD (3.1)

with SCD = KD +RKR +MKM and

HCD = αhD + R−1
R

α2β2hR + (α
2β2

R
+ (1−αβ)2

M
)hM .

In order to minimize the total cost function which is a mixed-integer non-linear op-

timization problem two procedures can be applied. The first procedure is a simple

enumerative procedure. Since R and M have to be integer, only a finite number of

calculations (in which R and M are set to integer values) have to be compared if R

and M are restricted to certain intervals. The original objective function simplifies for

given values of R and M to a non-linear convex function that only depends on T . Such

a problem can be solved easily by using the subsequent equations

TD∗

=

√

2 · SCD

λ ·HCD
(3.2)

TCD∗

=
√
2λ · SCD ·HCD. (3.3)

There, formula 3.2 is comparable to the determination of the economic order interval.

However, the optimality of this solution approach can only be guaranteed if the optimal

total cost TCD∗

is determined for all possible (R,M) combinations which leads to a

large number of calculations. Nevertheless, a good solution can be obtained in a fast

manner by restricting the number of possible realizations.

After introducing an enumerative procedure another promising approach is presented

next. By relaxing the original objective function (3.1) such that R and M need not to

take on integer values, one can prove that the total cost function has only a single local

2 For details, please refer to the Appendix, page 100. Moreover, a mathematical proof is elaborated

in the Appendix (from page 103.) which shows that it is optimal to schedule equal remanufactur-

ing and equal manufacturing lots in a disassembly cycle.
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minimum in the relevant area (for T , R,M > 0)3. Yet, by evaluating the Hessian matrix

in this area, it can be shown that the total cost function is not convex in all variables4.

This leads to the significant problem that a simple rounding procedure cannot be

used to obtain the optimal solution for the integer number of remanufacturing and

manufacturing lots. Therefore, a solution algorithm could be implemented that is able

to globally determine the minimum cost of this mixed-integer non-linear optimization

problem. The BARON algorithm, as implemented in the GAMS software package,

proved to be a valuable tool for this problem setting. In general, BARON implements

deterministic global optimization algorithms of the branch-and-reduce type in order

to determine the optimal solution for a mixed-integer non-linear optimization problem.

For a detailed description of the algorithm, please refer to Sahinidis and Tawarmalani

(2005).

The subsequent section extends the deterministic model of this section to incorporate

stochastic yields.

3.4 Stochastic yields

One of the main problems for many practical applications in the area of remanufac-

turing is that they have to deal with stochastic yields which means that the amount

of remanufacturable components obtained from disassembling returned products is not

known with certainty (see also Inderfurth and Langella, 2006). Due to the significance

of that problem in a remanufacturing planning environment, we will now put forth

the extension of the deterministic model introduced in the last section to incorporate

stochastic yield fractions resulting from the disassembly process. Although being uncer-

tain, it can be assured that the lowest possible yield fraction βl cannot be smaller than

zero as negative yields would not be reasonable. The largest possible yield fraction βu,

however, cannot exceed the value of one since this describes the situation that from ev-

ery disassembled used product more than one remanufacturable component is obtained

which is ruled out by the assumptions made. Within the range from βl to βu a specific

3 For details, please refer to the Appendix, page 108.
4 For details, please refer to the Appendix, page 109.
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distribution function can be defined which will be denoted in the following analysis by

ϕ(β). As the number of returned products disassembled per cycle corresponds to λαT ,

the independence of ϕ(β) with respect to T reflects the fact that the subsequent anal-

ysis assumes stochastic proportional yields (for a definition see Yano and Lee, 1995).

Therefore, the formerly used total cost function for a deterministic yield scenario (3.1)

has to be extended to incorporate any possible yield outcome. Hence, the total cost

of a given stochastic yield scenario can only be formulated as an expected total cost

(which will be further on denoted as TCS) that is presented in the following equation:

TCS =
SCS

T
+

λT

2
·HCS (3.4)

with SCS = KD +
∫ βu

βl
(R(β)KR +M(β)KM) · ϕ(β)dβ and

HCS = αhD + hM

∫ βu

βl

1
M(β)

· ϕ(β)dβ − 2αhM

∫ βu

βl

1
M(β)

· β · ϕ(β)dβ+
α2
∫ βu

βl
(hR − hR

R(β)
+ hM

R(β)
+ hM

M(β)
) · β2 · ϕ(β)dβ.

The fact that for any possible yield realization β an integer number of R and M has

to be defined complicates the analysis of the total cost function TCS significantly. In

this setting, R(β) describes the optimal number of remanufacturing lots for a given

yield fraction β. Likewise, M(β) represents the optimal number of manufacturing lots

if the yield fraction β is fixed. Due to the fact that β is not known with certainty,

the total cost per time unit can only be formulated as an expectation over all differ-

ent yield realizations. In contrast to the total cost function of the deterministic case

(3.1), SCS and HCS can be regarded as an expectation of their corresponding deter-

ministic equivalents SCD and HCD. As finding the optimal solution for any problem

setting cannot be guaranteed, which will be shown later in this Chapter, three different

heuristic policies will be presented in the succeeding paragraphs that differ in their de-

gree of sophistication. The first and least complex policy is introduced in the following:

Policy I

The easiest option on how to handle a stochastic problem is to neglect the underlying

stochastics in order to derive a deterministic equivalent of the stochastic problem. The
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first policy introduced proceeds exactly in this manner as it neglects the fact that R

and M depend on the yield realization β. Thus, only one value for R and M needs

to be derived that is valid for every yield realization between βl and βu. To obtain

these values, one can insert a specific yield fraction into the deterministic total cost

function of the last section (3.1) and apply the recommended solution procedures to

obtain R and M . As any yield fraction can be inserted that lies in the range of

possible yield realizations and therefore many different combinations of R and M may

prevail, we limit the focus of policy I on inserting only the mean yield fraction into the

deterministic model since the mean yield is one of the most important characteristics

of the underlying yield distribution. As a result, we obtain the values of RD and MD

that replace R(β) and M(β) for every possible yield realization β in formula (3.4). The

expected total cost of the first policy (TCI) can therefore be easily calculated by the

subsequent equation:

TCI = TCS(T,RD,MD). (3.5)

Since policy I is a very simple approach, the decision maker can improve the expected

total cost by incorporating the underlying stochastics in the decision making process

which is introduced in policy II.

Policy II

Contrary to the first policy, the second policy does not neglect the dependence of R

and M on the realization of the random yield fraction β. Nevertheless, in order to

keep this policy simple, the disassembly cycle length T is kept constant which reduces

the complexity of this policy significantly. For the sake of simplicity, the length of

the disassembly cycle T will be set to the optimal deterministic cycle length TD∗

obtained by formula (3.2) assuming that the mean yield fraction has been inserted as

deterministic equivalent for the underlying yield distribution. The assumption of fixing

the cycle length to a specific value can be further used to draw some basic conclusions

that can only be drawn for a given cycle length. The stochastic yield realization β

determines for each disassembly cycle the number of remanufacturable items. As the

number of remanufacturable and manufactured components per cycle always adds up

to the value of λT , the number of manufactured items depends as well on the yield
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realization. However, for both options of demand fulfillment it can be observed that if

more items are processed (either by manufacturing or remanufacturing), the number of

respective lots in a cycle does not decrease. Therefore, when comparing two different

yield realizations with all other parameters remaining constant it can be said: The

larger the yield realization is, the more components have to be remanufactured which

means that the number of remanufacturing lots per cycle does not decrease. On the

other hand, the number of newly manufactured components decreases as larger the

yield realization becomes which means that the number of manufacturing lots per cycle

does not increase. Figures 3.3 and 3.4 compare both heuristic policies introduced so

far for three consecutive disassembly cycles. On the left hand side (Figure 3.3), it can

be observed for policy I that regardless of the realized yield fraction the same number

of R and M is applied in every cycle (R=2 and M=1). Figure 3.4 on the right hand

side, however, shows policy II that reacts for the same cycle length T on the different

realizations of β which is supported by the fact that for a small yield realization the

number of remanufacturing lots is smaller than for a large yield realization (R=1 in the

first cycle compared to R=3 in the third cycle). An opposing behavior can be observed

for the number of manufacturing lots per cycle that does not increase the smaller the

yield realization is.

These general conclusions cannot only be formulated verbally but also in a mathemat-

ical form by introducing so-called transition yield fractions which have the property

that either the number of remanufacturing lots or the number of manufacturing lots

changes when optimizing the deterministic equivalent problem. For the calculation of

the specific yield fraction that is characterized by a switch of the optimal policy from R

to R+1 remanufacturing lots, one needs to equate the deterministic total cost functions

for R and R+1 as presented in the following equation

SCD(R)

T
+

λT

2
·HCD(R) =

SCD(R + 1)

T
+

λT

2
·HCD(R + 1)

with SCD(R) = KD +RKR +MKM and

HCD(R) = αhD + R−1
R

α2β2hR + (α
2β2

R
+ (1−αβ)2

M
)hM .
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This equation can be solved with respect to β in order to obtain the transition yield

fraction β(R) at which the optimal decision in the deterministic case switches from R

to R+1 for a given cycle length5:

β(R) =
1

αT
·
√

2KRR(R + 1)

λ(hM − hR)
. (3.6)

Not only is this function monotonously increasing in R which corresponds to the find-

ings above that the number of remanufacturing lots does not decrease for larger values

of β but it also does not depend on the number of manufacturing lots per cycle M .

Thus, the same analysis can be carried out independently for the transition from M

to M -1 manufacturing lots per cycle by equating both total cost functions in order to

obtain the transition yield fraction β(M)6:

β(M) =
1

α
− 1

αT
·
√

2KMM(M − 1)

λhM

. (3.7)

Because this function is monotonously decreasing in M , the insight that a larger yield

fraction does not lead to less manufacturing lots in a cycle is approved. Consequently,

5 For details, please refer to the Appendix, page 110.
6 For details, please refer to the Appendix, page 110.
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the lowest and highest values for R and M can be determined by exploiting the two

formulae given above. Thus, for the lowest possible yield fraction βl Rmin andMmax can

be computed by the following procedure (analogously Rmax and Mmin can be computed

for the highest possible yield fraction βu):

Rmin = min
R

{β(R) ≥ βl} Mmax = max
M

{β(M) ≥ βl}. (3.8)

As the disassembly cycle length is fixed to a given value, the distribution function of

the stochastic yield fraction can be subdivided into several intervals. Each interval j

contains all yield realizations between its lower bound lj and its upper bound uj. Such

an interval is characterized by the fact that within this interval only one R and M

induce the optimal solution for any possible yield fraction. The optimal number of re-

manufacturing and manufacturing lots in a certain interval j are furthermore denoted

by Rj and Mj, respectively. For the identification of the respective interval bounds the

following pseudocode can be used:

start j = 1, lj = βl, Rj = Rmin, Mj = Mmax, β(0) = ∞
while min{β(Rj + 1), β(Mj − 1)} < βu do

if β(Rj + 1) < β(Mj − 1) then

uj = β(Rj + 1)

j = j + 1, lj = uj−1, Rj = Rj−1 + 1, Mj = Mj−1

else

uj = β(Mj − 1)

j = j + 1, lj = uj−1, Rj = Rj−1, Mj = Mj−1 − 1

end if

end do

uj = βu, J = j

end

After the initialization in which the first interval j=1 is opened (l1=βl) and given

the values Rmin and Mmax the procedure evaluates if the transition to Rmin+1 or

Mmax-1 is closer to βl. For the lower of these two values, the upper bound of the first

interval u1 is fixed to the transition rate and the next interval is opened (l2 = u1).
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This procedure stops when both next transitions to R+1 and M -1 are larger than the

highest possible yield fraction βu. At this point, the total number of intervals into

which the yield distribution can be separated is determined by the index j which is

set to the number of intervals J . As a result, the total yield distribution is separated

into several intervals which is depicted for an example in Figure 3.5. In this example

(with βl = 0 and βu = 1) it can be observed that the solution of policy I would have

been R=3 and M=4 as this would solve the deterministic equivalent to optimality for

β=0.5 .

4

3

2

1

0
b

j ( b )

( 1 , 6 )

( 1 , 5 )

( 2 , 5 )

( 2 , 4 )
( 3 , 4 )

( 3 , 3 )

( 4 , 3 )

( 4 , 2 )

w i t h  ( R , M )

0 , 2 5 0 , 5 0 , 7 5 1

( 4 , 1 )

Fig. 3.5: Exemplary separation of a yield distribution according to policy II

As the interval bounds vary with a changing disassembly cycle length T , the expected

total cost function for policy II can be formulated as follows using the optimal disas-

sembly cycle length TD∗ obtained by inserting the mean yield fraction into equation

(3.3):

TCII =
SCS

TD∗
+

λTD∗

2
·HCS (3.9)

with SCS = KD +
∑

j∈J(RjKR +MjKM) ·
∫ uj

lj
ϕ(β)dβ and

HCS = αhD + hM

∑

j∈J
1
Mj

·
∫ uj

lj
ϕ(β)dβ − 2αhM

∑

j∈J
1
Mj

·
∫ uj

lj
β · ϕ(β)dβ+

α2
∑

j∈J(hR − hR

Rj
+ hM

Rj
+ hM

Mj
) ·
∫ uj

lj
β2 · ϕ(β)dβ.

In comparison to formula (3.4) only a finite number of R and M has to be considered

in order to determine the solution using policy II. The formerly required R(β) which
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represents the optimal number of remanufacturing lots for any given yield fraction β

has been replaced by Rj after separating the yield distribution into intervals in which

only one R is optimal for each yield realization. Consequently, the same simplification

holds for the number of manufacturing lots M . However, this solution can be further

improved by varying the disassembly cycle length T which is done in the most sophis-

ticated heuristic approach of this contribution.

Policy III

As the convexity of the expected total cost function of policy II (3.9) regarding the

only remaining variable T cannot be proven for any possible yield distribution we face

the fact that obtaining the optimal solution for this system cannot be guaranteed by

using a simple local search algorithm. Nevertheless, we implemented such an algorithm

that alters the disassembly cycle length T from its initial value of policy II in order to

check whether the expected total cost increases or decreases. The expected total cost

function is evaluated by applying the procedure of policy II for any chosen parameter

T . The local search procedure stops when both an increase or a decrease of T results

in an increasing expected total cost meaning that at least a local minimum has been

found that improves the solution of policy II at the expense of an increased complexity.

The following section elaborates a numerical experiment in which all three introduced

heuristic policies are tested in order to evaluate their performance in a stochastic yield

environment.

3.5 Numerical experiment

The main objective of the numerical experiment conducted in this section is to evaluate

the error that can be made when the simplest approach (policy I) is used compared

to the more complex ones (policies II and III). In order to estimate the error, several

numerical tests have been conducted using randomly generated instances. To our

knowledge, no scientific contribution contains reliable and complete real life data for

this specific problem setting. As the number of adequate test instances cannot be
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guaranteed in this case, Rardin and Uzsoy (2001) recommend to create an experimental

design based on random test instances. Although they discuss the pitfalls of random

test instances in detail, we have applied this procedure to provide a first insight into

each policy’s performance. All parameters required for the test instances are drawn

from a discrete uniform distribution DU(a, b) with a as the lower and b as the upper

bound of the distribution. Some parameters are multiplied after the random draw with

a constant term in order to obtain reasonable values. Table 3.1 lists all parameters

that are randomly drawn in this experiment:

Tab. 3.1: Parameters generated randomly in numerical experiment

Parameter Generation method

Demand rate λ ∼ DU(1, 10) · 100

Return fraction α ∼ DU(6, 18) · 0.05

Setup cost for disassembly KD ∼ DU(0, 50)

Setup cost for remanufacturing KR ∼ DU(1, 100)

Setup cost for manufacturing KM ∼ DU(1, 100)

Holding cost for used product hD ∼ DU(1, 10) · 0.01

Holding cost for remanufacturable component hR ∼ DU(5, 15) · 0.01

Holding cost for serviceable component hM ∼ DU(10, 20) · 0.01

The return fraction α, for instance, can take on values between 30 % and 90 %, only

limited by the fact that the percentage must be an integer multiple of 5 %. Regarding

the setup costs, we restricted the possible region on integer values between 0 and

50 for the disassembly process and 1 to 100 for setting up a remanufacturing or a

manufacturing lot. For the disassembly lot, we established smaller values as these

processes are done manually in some industrial applications and do not necessarily

require a specific setup. With respect to the holding costs we implicitly assumed

that the holding cost increase from level to level as more effort has been put into

the components. This means that each randomly generated instance has to fulfill

the presumed inequality hD < hR < hM . From these probability distributions, 1,000

instances are drawn and tested for different yield distributions. In general, the yield
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distribution followed a symmetric beta-distribution within the limits βl=0 and βu=1.

The parameter that altered the yield distribution is the coefficient of variation ρ that is

changed in the limits between 0.05 and 0.55 which is motivated by our experience with

an automotive remanufacturer regarding its yield fractions. While a ρ of 0.05 indicates

that almost the entire probability mass is centered around the distribution’s mean, a

coefficient of variation of 0.55 indicates for a beta-distribution within the interval 0 to

1 an approximately uniform yield distribution.

All three introduced heuristic approaches have been tested for all instances. Fig-

ure 3.6 illustrates, for instance, the percentage deviation of the expected total costs

of policies I and II. ∆I−>II denotes this percentage deviation and is calculated by

∆I−>II=TCI/TCII-1. In detail, this deviation shows the expected percentage loss in

performance if policy I (at which only the mean yield fraction is considered to represent

the entire yield distribution) is applied instead of policy II. The deviation with respect

to the coefficient of variation of the underlying yield distribution is presented with the

aid of box plots that do not only show the maximum and minimum deviations but also

where half of the deviations are located inside the shaded area around the median.
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Fig. 3.6: Percentage deviation of policy I compared to policy II

For very small coefficients of variation that are characterized by the fact that almost

the entire probability mass is centered around the mean yield, the deviation between

policy I and policy II is almost negligible. The reason for that is easy to be found.
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Although the yield distribution is defined in the interval between 0 and 1, the range

of realizations that have a significant probability is very small. If the optimal number

of remanufacturing and manufacturing lots per cycle that is determined by policy I is

also optimal for a wide range of yield fractions around the distribution’s mean both

policies arrive at the same result. However, if the coefficient of variation grows larger

the deviations increase as well. For an approximately uniformly distributed yield, for

instance, the maximum deviation between policy I and II is around 5.4 %. On the other

hand, the minimum deviation is 0 % which means that the optimal cycle pattern of

policy I can be still optimal for every yield realization between 0 and 1 even for such a

widespread distribution. Although many instances have been tested, the effect of every

parameter on the deviation cannot be interpreted without doubt. Yet, some general

trends can be derived from the experiments. For instance, it seems to be the case

that the percentage gap between policy I and II increases as larger the return rate α

becomes. Additionally, the different setup costs seem to influence this gap as well. For

high setup costs for disassembly and remanufacturing (KD and KR) as well as for small

setup costs for manufacturing (KM) the observed percentage gap increases for a large

coefficient of variation of the yield distribution. The same analysis can be conducted

for the different holding cost parameters, too. The percentage gap between policy I

and II increases if the holding costs hD, hR, and hM deviate significantly. Furthermore,

it can be said as larger the difference between Rmin and Rmax as well as the difference

between Mmin and Mmax is as larger is the percentage gap. Finally, no considerable

influence on the percentage gap can be observed for the demand per time unit λ.

Figure 3.7 presents the expected deviation of policy II from policy III which means that

the cycle length T is varied in order to decrease the total cost function even further.

By ∆II−>III this deviation is represented. Regarding the coefficients of variation the

same can be observed as for the first examined deviation. For small coefficients of

variation there is almost no improvement possible by changing the cycle length. On

the other hand, for larger coefficients the percentage gap grows larger which means that

an adaptation of T can improve the total cost function. However, these improvements

are relatively small (in 97.4 % of all cases smaller than 1 % for ρ=0.55). Regarding

the cost deviation between policy II and III, it is even more difficult (in comparison to
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Fig. 3.7: Percentage deviation of policy II compared to policy III

the deviation between policy I and II) to define parameter areas at which the expected

deviation is typically high or low. Yet, a general trend can be noticed. The largest

deviations can be observed for instances with a large α and a wide spread of the holding

cost levels. However, this observation cannot be generalized for all instances with this

parameter constellation.

Another interesting question that can be analyzed with this numerical experiment is

whether the adapted cycle length (obtained by local search) increases or decreases in

comparison to the cycle length of policy I and II that remains constant for all coefficients

of variation. In 69.1% of all instances the cycle length decreases while it increases in the

remaining 31.9%. Therefore, no general conclusion can be drawn regarding this aspect

as no specific parameter constellation can be identified that increases or decreases the

cycle length in general7.

3.6 Conclusion and outlook

This Chapter outlines an approach on how to handle deterministic and stochastic yield

fractions within a multi-level remanufacturing system that considers the disassembly

process explicitly. While being restricted to a single disassembly lot per cycle, simple

7 Please refer to the Appendix (page 111.) for a detailled discussion on how to determine a lower

and an upper bound for the disassembly cycle length T .
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derivations are made with respect to the three necessary parameters, the optimal disas-

sembly cycle length as well as the optimal number of remanufacturing and manufactur-

ing lots per disassembly cycle. By examining both the stochastic and the deterministic

case, the error that can be made by neglecting the underlying stochastics is evaluated.

The numerical experiment in section 3.5 has confirmed a quite straightforward assump-

tion. The less variability the random yield fraction has, the smaller is the error that is

made by using the mean yield policy I instead of the more sophisticated ones. However,

there are situations in which using the simple policy I results in performance losses of

more than 5 %. Nevertheless, in most cases the decision maker will obtain fairly good

results if he neglects the underlying yield distribution and follows the deterministic

mean yield fraction approach of policy I. In this sense, a problem setting has been

identified in which the influence of stochastic yields does not complicate the decisions

to be made significantly.

Next, an outlook regarding future research efforts shall be given. The proposed model

can be extended in several ways. For both the stochastic and the deterministic one, the

option of allowing more than one disassembly lot per disassembly cycle is a promising

extension of the model presented in this contribution. Especially for instances show-

ing a small setup cost of disassembly this might provide a valuable option to decrease

the average costs per time unit. Furthermore, it can be studied how a multi-product

multi-component setting affects the decision making process in both environments since

aspects like multiplicity (one component can be obtained by the disassembly of different

product types) have to be incorporated. Another interesting topic that can be included

in the analysis is a disposal option. This might be a worthwhile option if the setup

costs of remanufacturing are quite high and the yield realization is very small. In the

proposed model context, at least one remanufacturing process has to be set up in such

a disassembly cycle. However, if there is a disposal option, the obtained components

can be disposed of and total customer demand will be satisfied by newly manufactured

components, i.e. the optimal number of remanufacturing lots R can be 0. As a last

possible extension, all heuristic approaches can be tested not only for stochastically

proportional yields but also for non-proportional yields. In order to achieve this objec-
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tive, the yield fraction distribution cannot be modeled as a beta-distribution any more

but has to be modeled for instance with a binomial distribution.

As discussed above, a number of different uncertainties can be found in a real life re-

manufacturing system. This Chapter has revealed that a possible yield uncertainty

can be neglected in a multitude of problem instances when considering joint remanu-

facturing and manufacturing lot sizing decisions in a recovery system. This is a rather

untypical result when real-life industrial applications such as the remanufacturing of

car engines face stochastic yields in their process. To obtain good solutions for the

lot sizing problem presented above, the only required information regarding the yield

distribution is its mean value. By planning the lot sizes with this mean value, the error

of neglecting stochastic yields can be reduced in most cases to less than 2 %.

Until now, the demand and return processes have been modeled as constant and con-

tinuous flows. Yet, in a real world recovery system this is typically not the case. The

following Chapter addresses this issue by adapting the demand and return process to be

dynamic and discrete. Moreover, we omit to include the stochastic yield process in the

analysis of Chapter 4 for the sake of simplicity. The main objective of the subsequent

Chapter is to improve a proposed heuristic solution to this problem setting.

3.7 Appendix

Derivation of the total cost function TCD (3.1):

The total cost function TCD minimizes the sum of all relevant setup and holding costs

per time unit which is optimal in the model setting presented in Section 3.2. The

decisions that need to be made in order to calculate the cost minimum consist of

determining the disassembly cycle length T as well as the number of remanufacturing

and manufacturing lots per disassembly cycle R and M , respectively. All three decision

variables depend on both the setup and the holding costs. The total cost function TCD

is presented subsequently as it has been formulated in Section 3.3:
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TCD =
SCD

T
+

λT

2
·HCD

with SCD = KD +RKR +MKM and

HCD = αhD + R−1
R

α2β2hR + (α
2β2

R
+ (1−αβ)2

M
)hM .

The setup cost term SCD contains all relevant setup costs multiplied with the number

of respective lots that are set up in a disassembly cycle. As defined in the model set-

ting, only one disassembly lot is allowed per cycle which leads to 1 ·KD. However, the

number of remanufacturing lots R and manufacturing lots M has to be determined.

Consequently, the setup costs for remanufacturing in a disassembly cycle are repre-

sented by R · KR and the setup costs for manufacturing in a disassembly cycle by

M ·KM . Afterwards, the sum of all setup costs SCD needs to be divided by T in order

to determine the setup costs per time unit.

Regarding the holding costs, the three different stock levels are analyzed separately.

Beginning with the used product level, one disassembly cycle is presented in Figure 3.8.

As only one disassembly lot is allowed per cycle and the disassembly cycle length is a

decision variable, this lot has the size of λαT .

u s e d  p r o d u c t  l e v e l  

T

l a T

Fig. 3.8: Used product level for one disassembly cycle

The holding costs at the used product level per disassembly cycle can be determined

as:
1

2
T · λαT · hD.
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As the holding cost at the used product level need to be calculated per time unit, the

formula simplifies to the following equation which represents the first cost component

of HCD:
T · λαT · hD

2 · T =
λT

2
· αhD.

After analyzing the holding cost at the used product level, the holding cost at the

remanufacturables level are considered in the following. Assuming equal remanufac-

turing lot sizes (which is proven to be optimal on page 103), each remanufacturing lot

has the size of λαβT

R
. By initiating a remanufacturing lot one obtains λαβT

R
serviceable

components which satisfy customer demand for αβT

R
periods. Adjacent, another reman-

ufacturing lot or a manufacturing lot has to be set up since no backlogs are allowed in

the model. As the number of remanufacturing lots per cycle R is a decision variable, the

remanufacturables inventory depends on the value of R. This dependency is visualized

in Figures 3.9 and 3.10. While on the left hand side the remanufacturables inventory

is displayed for R = 2, the right hand side presents the corresponding inventory for

R = 3.

r e m a n u f a c t u r a b l e s  l e v e l

l a b T
R

l a b T
R

a b T
R

Fig. 3.9: Remanufacturables in-

ventory for R=2

r e m a n u f a c t u r a b l e s  l e v e l

l a b T
R

l a b T
R

a b T
R

a b T
R

l a b T
R

Fig. 3.10: Remanufacturables in-

ventory for R=3

Depending on the number of remanufacturing lots R, the remanufacturables inventory

area that is used to calculate the holding cost can be subdivided into several equally

sized rectangles. For R = 2, as presented in Figure 3.9, only one rectangle of the

size λα2β2T 2

R2 needs to be evaluated. If R = 3 on the other hand, three rectangles of

this size have to be considered. In general, the number of equally sized rectangles



3. On the alignment of lot sizing decisions in the presence of random yield 103

that has to be evaluated can be formulated as R(R−1)
2

. Thus, the holding costs for the

remanufacturables level per time unit can be formulated as:

R(R− 1)

2
· λα

2β2T 2

R2
· hR · 1

T
=

λT

2
· R− 1

R
α2β2hR.

Finally, the holding cost at the serviceables level has to be evaluated. Following the R

remanufacturing lots, M equal manufacturing lots are set up at this level. While satis-

fying the fraction αβ of customer demand by remanufacturing, 1− αβ of this demand

has to be satisfied by manufacturing new components. Hence, each manufacturing lot

has the size of λ(1−αβ)T
M

items and lasts for (1−αβ)T
M

time units. Figure 3.11 presents

the serviceables inventory for a disassembly cycle with two remanufacturing and two

manufacturing lots.

m a n u f a c t u r i n g

r e m a n u f a c t u r i n g

s e r v i c e a b l e s  l e v e l

l ( 1 - a b ) T

a b T
R

l a b T
R

( 1 - a b ) T
M

M

Fig. 3.11: Serviceables level for R = 2 and M = 2

The holding cost for the serviceables level per time unit can be formulated as follows:

(R · 1
2
· λα

2β2T 2

R2
· hM +M · 1

2
· λ(1− αβ)2T 2

M2
· hM) · 1

T
=

λT

2
· (α

2β2

R
+

(1− αβ)2

M
)hM .

By determining the holding cost of the serviceables level the holding cost term HCD

is completed and can be used to formulate the total cost function TCD.

Optimality of equal remanufacturing lots:

For a given cycle length T the total number of remanufactured components is given

in the deterministic setting by λαβT . As a decision variable, the number of remanu-
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facturing lots needs to be determined. Let QR,i denote the lot size of remanufacturing

lot i with i = 1, .., R. If all lot sizes are equal, each QR,i contains exactly
λαβT

R
units.

This analysis proves that unequal remanufacturing lot sizes result in higher total cost

than equal ones. Therefore, the remanufacturing lot sizes in a more general setting are

described as:

QR,i =
λαβT

R
+∆i ∀i = 1, .., R− 1 (3.10)

QR,R =
λαβT

R
−

R−1
∑

i=1

∆i. (3.11)

The distortion from the equal lot sizes which is denoted for each remanufacturing lot

by ∆i lies within the range of −λαβT

R
≤ ∆i ≤ (R−1)·λαβT

R
as all lot sizes have to be

non-negative and cannot exceed the value of λαβT . In formula (3.11), the lot size

QR,R has been simplified using the fact that the sum of all distortions has to be zero,

i.e.
∑R

i=1 ∆i = 0. As an illustration, Figure 3.12 presents the remanufacturables and

the serviceables inventory for three equally sized remanufacturing lots.

m a n u f a c t u r i n g

r e m a n u f a c t u r i n g

r e m a n u f a c t u r a b l e s  l e v e l

s e r v i c e a b l e s  l e v e l  

Q R , 1

l

Q R , 1

Q R , 2

Q R , 3

l

Q R , 2

l

Q R , 1

l

Q R , 2

l

Q R , 3

Fig. 3.12: Remanufacturables and serviceables inventory with three equally sized re-

manufacturing lots

As the remanufacturing lot sizes affect the holding cost of the remanufacturables and

the serviceables level, both holding costs have to be analyzed. Starting with the re-
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manufacturables level, let HCrem denote the holding costs per time unit for the reman-

ufacturables inventory. It can be determined by:

HCrem =
hR

λT
· (

R−1
∑

i=1

QR,i ·
R
∑

j=i+1

QR,j).

By (
∑R−1

i=1 QR,i ·
∑R

j=i+1QR,j)/λ the total remanufacturables inventory per disassembly

cycle is determined. While the first sum in this formula represents the width of the

rectangles the second sum represents the corresponding heights. Using this formula for

the example in Figure 3.12 leads to QR,1 · (QR,2 +QR,3) +QR,2 ·QR,3. This expression

can be simplified using equations (3.10) and (3.11) and replacing the term λαβT/R by

X:

HCrem =
hR

λT
·
R−1
∑

i=1

QR,i ·
[

R−1
∑

j=i+1

QR,j +QR,R

]

=
hR

λT
·
R−1
∑

i=1

(X +∆i) ·
[

R−1
∑

j=i+1

(X +∆j) +X −
R−1
∑

j=1

∆j

]

=
hR

λT
·
R−1
∑

i=1

(X +∆i) ·
[

(R− i) ·X −
i
∑

j=1

∆j

]

=
hR

λT
·
[

X2 ·
R−1
∑

i=1

(R− i) +X ·
R−1
∑

i=1

∆i ·(R− i)−X ·
R−1
∑

i=1

i
∑

j=1

∆j −
R−1
∑

i=1

∆i ·
i
∑

j=1

∆j

]

.

It can be shown thatX ·∑R−1
i=1 ∆i·(R−i)−X ·∑R−1

i=1

∑i

j=1 ∆j is equal to 0. Furthermore,

the sum
∑R−1

i=1 (R − i) can be simplified to
∑R−1

i=1 i. Consequently, the holding cost in

the remanufacturables inventory can be formulated as:

HCrem =
hR

λT
·
[

X2 ·
R−1
∑

i=1

i−
R−1
∑

i=1

∆i ·
i
∑

j=1

∆j

]

. (3.12)

Let HC0
rem denote the holding cost of the remanufacturables level with equal remanu-

facturing lots, i.e. ∆i = 0 ∀i = 1, .., R. Then, the difference in holding cost for the

remanufacturables level if the remanufacturing lots are not equal can be expressed by

the difference betweenHCrem andHC0
rem. This difference can be formulated depending

on the distortions ∆i:
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HCrem −HC0
rem =

hR

λT
·
[

X2 ·
R−1
∑

i=1

i−
R−1
∑

i=1

∆i ·
i
∑

j=1

∆j −X2 ·
R−1
∑

i=1

i

]

= − hR

λT
·
R−1
∑

i=1

∆i ·
i
∑

j=1

∆j. (3.13)

It can be shown that this term is strictly negative if at least one ∆i is not zero. Thus,

the holding cost for the remanufacturables level always decrease whenever non-equal

remanufacturing lots are initiated. The analysis is now put forth for the serviceables

level. Let HCserv denote the holding cost for the serviceables inventory without con-

sidering the holding cost for manufacturing lots as it does not depend on changes of

the remanufacturing lot sizes.

HCserv =
hM

2λT
·
[

Q2
R,R +

R−1
∑

i=1

Q2
R,i

]

=
hM

2λT
·
[

(X −
R−1
∑

i=1

∆i)
2 +

R−1
∑

i=1

(X +∆i)
2

]

=
hM

2λT
·
[

X2−2X
R−1
∑

i=1

∆i + 2
R−1
∑

i=1

∆i

i
∑

j=1

∆j−
R−1
∑

i=1

∆2
i +

R−1
∑

i=1

(X2 + 2X∆i +∆2
i )

]

=
hM

2λT
·
[

R ·X2 + 2
R−1
∑

i=1

∆i

i
∑

j=1

∆j

]

.

In correspondence to the analysis of the remanufacturables level, HC0
serv denotes the

holding cost of the serviceables inventory if all remanufacturing lots are equally sized.

Hence, the cost effect of a possible distortion can be calculated by the difference of

HCserv −HC0
serv which is presented in the following formula:

HCserv −HC0
serv =

hM

2λT
·
[

R ·X2 + 2
R−1
∑

i=1

∆i

i
∑

j=1

∆j −R ·X2

]

=
hM

λT
·
R−1
∑

i=1

∆i

i
∑

j=1

∆j. (3.14)

This term proves that whenever the remanufacturing lots are not equal (which means

that at least one ∆i is not zero), the holding cost of the serviceables inventory increases.

As the increase of holding cost at the serviceables level is always larger than the decrease

of the holding cost at the remanufacturables level because of hM > hR, the total cost
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increase in any situation that is characterized by the fact that all remanufacturing

lots in a disassembly cycle are not of equal size. This means as a conclusion that it is

optimal to choose equal remanufacturing lot sizes in a disassembly cycle in this problem

setting.

The differences to the results derived in the preceding Chapter 2 can be explained

twofold. On the one hand, the problem setting presented there does not consider that

the recovery process can be separated into a disassembly and a remanufacturing pro-

cess. There, a two stage inventory system is analyzed with a continuous inflow of old

products to the first stage and a continuous outflow from the second one. In this Chap-

ter, the remanufacturing level with discrete inflows is compared to the serviceables

inventory with a continuous outflow. This fact can be used to explain the different

results because the basic flow pattern of the analysis has changed. On the other hand,

we restrict this Chapter’s problem setting to allow only one disassembly batch per cycle

on the first stage of the system (the one with the continuous inflow of returns). The

results derived above depend on this assumption. In this problem context, the option

of initiating different remanufacturing lots only needs to be analyzed when more than

one disassembly lot per cycle can be scheduled.

Optimality of equal manufacturing lots:

The analysis of manufacturing lots that are not equally sized is similar to the analysis of

non-equal remanufacturing lots on the serviceables inventory level. Thus, a distortion

of the manufacturing lot sizes leads always to higher holding costs on the serviceables

level. We omit the presentation of the mathematics behind that conclusion as the

analysis that led to the derivation of formula (3.14) can be applied.
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Optimizing the relaxed total cost function TCD:

If the number of remanufacturing and manufacturing lots needs not to be integer, the

relaxed total cost function (3.1) can be solved to optimality by simple calculations.

The partial derivatives of the total cost function with respect to all decision variables

have to be obtained at first:

∂TCD

∂T
=

λ

2
(αhD+α2β2(hR+

hM − hR

R
)+

hM

M
(1− αβ)2)− KD+RKR+MKM

T 2
= 0

∂TCD

∂R
=

KR

T
− λα2β2T · hM − hR

2R2
= 0

∂TCD

∂M
=

KM

T
− λThM · (1− αβ)2

2M2
= 0.

The solution of this equation system with respect to all decision variables and assuming

that these decision variables have to be positive results in the optimal values for T , R,

and M . We obtain

R∗ = αβT ∗ ·
√

λ · (hM − hR)

2KR

(3.15)

M∗ = (1− αβ)T ∗ ·
√

λhM

2KM

(3.16)

T ∗ =

√

2(KD +R∗KR +M∗KM)

λ(αhD + α2β2(hR + hM−hR

R∗
) + hM

M∗
(1− αβ)2)

. (3.17)

As equation (3.17) contains both optimal values of the remanufacturing and manufac-

turing lot sizes, this equation can be further simplified by inserting equations (3.15)

and (3.16) into (3.17):

T ∗ =

√

2(KD +R∗KR +M∗KM)

λ
(

αhD + α2β2
(

hR + hM−hR

R∗

)

+ hM

M∗
(1− αβ)2

)

T ∗ =

√

√

√

√

√

√

√

2

(

KD + αβT ∗
√

λ(hM−hR)KR

2
+ (1− αβ)T ∗

√

λhMKM

2

)

λ

(

αhD + α2β2

(

hR + 1
αβT ∗

√

2KR(hM−hR)
λ

)

+ (1−αβ)
T ∗

√

2KMhM

λ

)

T ∗ =

√

√

√

√

√

2KD + T ∗
√
2λ
(

αβ
(

√

KR (hM − hR)−
√
KMhM

)

+
√
KMhM

)

λα (hD + αβ2hR) +
√
2λ

T ∗

(

αβ
(

√

KR (hM − hR)−
√
KMhM

)

+
√
KMhM

)
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(T ∗)2 =
2KD+T ∗√2λΘ

λα (hD+αβ2hR)+
√
2λ

T ∗
Θ

with Θ = αβ
(

√

KR (hM−hR)−
√

KMhM

)

+
√

KMhM

T ∗ =

√

2KD

λα (hD + αβ2hR)
. (3.18)

Equation (3.18) can be used to calculate the optimal number of remanufacturing and

manufacturing lot sizes by inserting it in equations (3.15) and (3.16):

R∗ = β ·
√

αKD(hM − hR)

KR(hD + αβ2hR)
(3.19)

M∗ = (1− αβ) ·
√

hMKD

KMα(hD + αβ2hR)
. (3.20)

By inserting the optimal values of T ∗, R∗, and M∗ into the respective second deriva-

tives it can be proven that the total cost function is in a minimum at this point.

Convexity of the total cost function TCD:

In order to analyze the convexity of the total cost function it is necessary to show that

the Hessian matrix of the total cost function TCD is positive semidefinite. Therefore,

the Hessian matrix H has to be set up and analyzed:

H =















∂2TCD

∂T 2

∂2TCD

∂T∂M
∂2TCD

∂T∂R

∂2TCD

∂M∂T
∂2TCD

∂M2

∂2TCD

∂M∂R

∂2TCD

∂R∂T
∂2TCD

∂R∂M
∂2TCD

∂R2















.

By calculating the three eigenvalues of the Hessian matrix one can see that two of them

are always positive for positive values of T , R, and M . However, the third eigenvalue

becomes negative for certain parameter values. We omit the presentation of the eigen-

values as they are of a very complex nature. Therefore, the total cost function TCD is

not entirely convex in all variables in all cases.
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Derivation of equations (3.6) and (3.7):

In order to determine the transition yield rate for a switch from R to R + 1 remanu-

facturing lots in a cycle the following manipulations have to be done

KD + (R + 1)KR +MKM

T
+

λT

2

(

αhD +
R

R + 1
α2β2hR +

(

α2β2

R + 1
+

(1− αβ)2

M

)

hM

)

=
KD +RKR +MKM

T
+

λT

2

(

αhD +
R− 1

R
α2β2hR +

(

α2β2

R
+

(1− αβ)2

M

)

hM

)

λT

2

(

R

R + 1
α2β2hR +

α2β2

R + 1
hM − R− 1

R
α2β2hR − α2β2

R
hM

)

=
KD +RKR +MKM

T
− KD + (R + 1)KR +MKM

T

λT

2
α2β2

(

RhR + hM

R + 1
− (R− 1)hR + hM

R

)

= −KR

T

λT

2
α2β2

(

hM − hR

R · (R + 1)

)

=
KR

T

β(R) =
1

αT
·
√

2KRR(R + 1)

λ(hM − hR)

In the same manner, the transition yield rate β(M) can be determined that represents

a switch from M to M + 1 manufacturing batches for a given cycle length T

KD +RKR + (M + 1)KM

T
+

λT

2

(

αhD +
R− 1

R
α2β2hR +

(

α2β2

R
+

(1− αβ)2

M + 1

)

hM

)

=
KD +RKR +MKM

T
+

λT

2

(

αhD +
R− 1

R
α2β2hR +

(

α2β2

R
+

(1− αβ)2

M

)

hM

)

λT

2

(

(1− αβ)2

M + 1
hM − (1− αβ)2

M
hM

)

=
MKM − (M + 1)KM

T

−λT

2

(

(1− αβ)2hM

M(M + 1)

)

= −KM

T

1− 2αβ + α2β2 =
2KMM(M + 1)

λT 2hM

β(M) =
1

α
± 1

αT
·
√

2KMM(M − 1)

λhM
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As α lies between zero and one, 1/α is always larger than one. This means that only

one of the possible β(M) values is relevant. It is

β(M) =
1

α
− 1

αT
·
√

2KMM(M − 1)

λhM

.

Determining an upper and lower bound for the disassembly cycle length T

in the presence of random yields:

This analysis focuses on determining an upper and lower bound for the disassembly

cycle length T in a stochastic yield scenario which shall be denoted by Tmin and Tmax,

respectively. As the question on how to define these bounds appears to be very com-

plex, two different heuristic approaches are presented subsequently. Common to both

approaches is the presumption that a stochastic yield distribution can be regarded as a

combination of several equivalent deterministic problems. Thus, the approaches assume

that the solution to a stochastic yield problem could also be obtained by combining the

solutions of a number of deterministic problems. Hence, the lower and upper bound for

the stochastic problem Tmin and Tmax, respectively, can be obtained by calculating the

highest and lowest disassembly cycle lengths of all possible deterministic yield scenarios.

Two approaches are introduced subsequently to determine these bounds. At first, the

bounds are computed by using the relaxed deterministic total cost function TCD from

Section 3.3. Thereafter, the mixed-integer non-linear optimization approach of this

Section is analyzed to propose an alternative approach. At the end, both approaches

are evaluated using the data from the numerical study of section 3.5.

Analyzing the relaxed total cost function TCD

In order to determine the upper and lower bound for the disassembly cycle length

using the relaxed total cost function one needs to analyze the optimal disassembly

cycle length T ∗ (3.18) for each possible deterministic yield fraction β. One can see that

the first derivative of T ∗ with respect to β is strictly negative for 0 < β < 1, i.e. the

optimal disassembly cycle length decreases as larger the deterministic yield is. This
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can be mathematically proven as follows

dT ∗

dβ
=

−1
2
·
√

2λαKD

hD+αβ2hR
· 2αβhR

λα(hD + αβ2hR)

= −
√

2αKD

λ(hD + αβ2hR)
· βhR

hD + αβ2hR

< 0. (3.21)

Therefore, the upper bound of the disassembly cycle length for the relaxed total cost

function T rel
max (which is indicated by rel) can be observed for the lowest possible yield

fraction, i.e. β = 0. On the other hand, the lower bound for the disassembly cycle

length T rel
min can be observed for the largest possible yield fraction, i.e. β = 1. By

inserting β = 0 and β = 1 into equation (3.18) the values of T rel
min and T rel

max can be

calculated by the following formulae:

T rel
min =

√

2KD

λαhD

(3.22)

T rel
max =

√

2KD

λα(hD + αhR)
. (3.23)

However, these results are derived under the assumption that the number of remanu-

facturing and manufacturing lots in a disassembly cycle needs not to be integer. This

fact shows the heuristic character of this procedure as for example, if β = ǫ (with

ǫ being a very small positive number) the optimal number of remanufacturing lots

reveals only a very small but positive amount. This is of course not possible in the

model context presented above as the number of remanufacturing lots must be a pos-

itive integer number. Hence, the smallest possible value for R is one which leads to

the fact that the bounds T int
min and T int

max (where int indicates the exact mixed-integer

approach) must be calculated in a different way. The next analysis focuses on this topic.

Analyzing the mixed-integer non-linear problem

If the number of remanufacturing and manufacturing lots has to be integer, the simple

procedure presented above needs to be adjusted in order to cope with this change in

the problem setting. Yet, the general approach of the first heuristic is applied to the

second heuristic as well. This means that the disassembly cycle length is evaluated

for a certain number of possible deterministic yield fractions and the minimum and
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maximum value become the lower and the upper bound for the cycle length. However,

if the number of remanufacturing and manufacturing lots needs to be integer valued,

the cycle length T cannot be formulated as a continuous function with respect to

the yield β as a switch in either R or M results in a discontinuity of the total cost

function. By analyzing these discontinuities as well as the function T (β) between these

discontinuities, heuristic values for the lower and upper bound of the disassembly cycle

length can be determined.

However, the formulation of an algorithm that can handle this specific problem in an

efficient manner is very complex. Therefore, we present a simpler approach on how to

deal with this problem setting. This approach solves q deterministic problems between

the smallest and largest yield fraction using formula (3.2). It shall be mentioned that

the interval between two consecutively examined yield fractions is always 1/(q− 1), as

a yield distribution is generally defined between 0 and 1. The following pseudocode

can be applied in order to obtain the upper and lower bound for the disassembly cycle

length:

For i = 1 to q

β = (i− 1)/(q − 1)

calculate Ti by using equation (3.2) from the deterministic model of Section 3.3

Next i

T int
min = min

i
(Ti), T int

max = max
i

(Ti)

The numerical study conducted in section 3.5 provides a data set of 1000 instances.

Both heuristic approaches, the relaxed TC (total cost) approach as well as the integer

TC approach are tested for these instances in order to evaluate their performance.

Therefore, the actual minimum and maximum cycle lengths (denoted by T ∗
min and T ∗

max)

for each instance are obtained by applying policy III to all tested yield distributions for

all instances. The actually observed minimum values are afterwards compared to the

lower bounds T rel
min and T int

min that are calculated by both heuristic approaches. The left

hand side of Table 3.2 summarizes the results of these experiments. The right hand
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side of this Table illustrates the comparison of the calculated upper bounds T rel
max and

T int
max with the actually observed ones.

Tab. 3.2: Performance of the relaxed and integer total cost approach regarding their

estimations of the minimum and maximum disassembly cycle length

percentage of instances percentage of instances

with T rel
min < T ∗

min with T rel
max > T ∗

max

relaxed TC approach 100 % 13.6 %

percentage of instances percentage of instances

with T int
min < T ∗

min with T int
max > T ∗

max

integer TC approach (q=10) 90.7 % 100 %

integer TC approach (q=20) 96.9 % 100 %

integer TC approach (q=50) 98.4 % 100 %

integer TC approach (q=100) 98.8 % 100 %

integer TC approach (q=10000) 99.1 % 100 %

It can be seen that the performance of the relaxed TC approach is ambivalent. While

the minimum cycle length is always estimated correctly by formula (3.22), the maxi-

mum cycle length Tmax is frequently underestimated by formula (3.23). By incorpo-

rating the fact that the number of remanufacturing and manufacturing lots must be

integer, the performance of the integer TC approach can be described as very good.

The actually observed upper bounds Tmax have never been underestimated even for a

very small number of calculations. The lower bounds Tmin, on the other hand, seem

to benefit from an increasing number of calculations q. However, the performance of

only 10 calculations has already been very good (90.7 % of all estimations are correct).

Although the general performance of the integer TC heuristic seems to improve with

an increasing number of calculations, the general heuristic approach can be observed

by the fact that even if q is very large not all lower bounds are estimated correctly. Yet,
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the percentage error that is made by the false estimation of the integer TC approach

is rather small. The average error over the 9 instances for which the bounds could

not be calculated correctly is around 0.463% with a maximum deviation of 0.6 % (for

q=10000). To conclude this section, it can be said, that the best method for calculating

the lower bound of the disassembly cycle length is to apply the relaxed TC approach

using formula (3.22). For estimating the upper bound of the disassembly cycle length,

on the other hand, the integer TC approach should be used as it (even for low q values)

always estimates the actually observed upper bound of all instances correctly.



4. A new Silver-Meal based heuristic for the

single-item dynamic lot sizing problem with

returns and remanufacturing

4.1 Introduction

Due to the increasing environmental awareness of firms and the public, the research

field of reverse logistics has grown steadily over the past decades1. By analyzing not

only the forward flow of products from a firm to its customers but also including

the corresponding backward flow from the customers to the firm, this research area

provides valuable insights on how these flows can be managed efficiently. Among

many options (see, e.g., Thierry et al., 1995, for an overview on different alternatives),

remanufacturing has been well established in several industries (as has been reported in

Kumar and Putnam, 2008). When including remanufactured products in their product

portfolio, firms take back products from their customers, rework them to a sufficient

condition in order to resell them afterwards. This saves not only a part of the value

embedded in the original product but also reduces the demand for natural resources and

landfill space substantially (see, for instance, de Brito and Dekker, 2004). In industry,

the process of remanufacturing is affected by many stochastic influences as has been

depicted, for instance, by Guide (2000) as well as Inderfurth and Langella (2006). As

these influences complicate the underlying problem significantly, this Chapter neglects

any uncertainty and presents an entirely deterministic system.

1 This Chapter is based on the work titled ’A new Silver-Meal based heuristic for the single-item

dynamic lot sizing problem with returns and remanufacturing’ that is accepted for publication in

the International Journal of Production Research (see Schulz, 2011b).
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By assuming setup costs for replenishment orders and holding costs for carrying prod-

ucts in different conditions, a lot sizing problem arises. Such a problem has been

analyzed thoroughly for the case of static and continuous demand and return rates.

Please refer to Minner and Lindner (2004) or to Chapter 2 for a brief literature review.

However, the case of dynamic and discrete demands and returns has not achieved that

much attention in the recent literature. Teunter et al. (2006) introduce a dynamic

lot sizing model with returns and remanufacturing and distinguish between the case

of joint and separate setup cost for the replenishment sources remanufacturing and

manufacturing. They test in a large numerical experiment three well-known heuristic

approaches that are adapted from the single-item dynamic lot sizing problem without

returns. In both model settings, the Silver-Meal based heuristic has been shown to be

the best heuristic resulting in an average deviation of 3% from the optimal solution in

the joint and 8.3% in the separate setup cost setting. Using heuristics to handle these

problems has been motivated by the fact that the authors conjecture the underlying

problem of the separate setup cost setting to be NP-hard.

Several other contributions have been made to this specific research field whereas only

two shall be mentioned exemplarily. Richter and Sombrutzki (2000) discuss the dy-

namic lot sizing problem with returns and remanufacturing and analyze a situation in

which a sufficiently large number of returned products is available, i.e. the entire de-

mand could be met by solely remanufacturing returned products. They proof that the

zero-inventory property known from the dynamic lot sizing problem without returns

and remanufacturing must hold in such an environment. Furthermore, they apply a

Silver-Meal based algorithm to illustrate the stability of its solution. This Chapter

employs a Silver-Meal based algorithm to the situation when the entire demand can

only be met by a mix of remanufacturing and manufacturing. As illustrated by Te-

unter et al. (2006), the zero-inventory property needs not to be valid in such a setting.

Pan et al. (2009) extend the analysis of Teunter et al. (2006) by including a disposal

option for returned products and by restricting production, remanufacturing, and dis-

posal capacities. They illustrate different problem formulations and elaborate dynamic

programming algorithms to solve some of these problems to optimality.
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This Chapter proposes a generalization of the Silver-Meal based heuristic introduced

by Teunter et al. (2006) for the separate setup cost setting (without disposal option and

restricted capacities) by applying methods known from the corresponding static prob-

lem. Furthermore, a simple improvement heuristic is applied to the solution obtained

to enhance the heuristic’s performance. The remainder of this Chapter is organized as

follows. Section 4.2 presents the basic assumptions of the model analyzed in this Chap-

ter and describes some solution methods for the underlying problem context. Next to

a mixed-integer linear program the Silver-Meal based heuristic introduced in Teunter

et al. (2006) and our extension are depicted in this section. Both heuristics are tested

extensively in a numerical study in the subsequent Section 4.3. Afterwards, Section

4.4 points out an improvement heuristic and tests its ideas in a numerical experiment.

Finally, the last section concludes this Chapter and gives a short outlook on future

research opportunities.

4.2 Model formulation and proposed solution methods

4.2.1 Basic assumptions and mixed-integer linear program

In their contribution, Teunter et al. (2006) introduce a dynamic lot sizing model with

separate setup costs for remanufacturing and manufacturing as an extension of the well-

known Wagner/Whitin model (see Wagner and Whitin, 1958). The basic assumptions

of this modeling approach are as follows. As depicted in Figure 4.1, we consider an

original equipment manufacturer (OEM) that sells one product over a planning horizon

of T periods. In each period t = 1, .., T customers demand a discrete and known

amount of this product. The demand in each period is further on denoted by dt. The

OEM provides each customer the opportunity to return her product if it is broken or

when she has no further use for it. Whenever a product is returned to the OEM it

is inspected whether it can be sufficiently remanufactured. All returns that pass the

inspection (which will be denoted by rt) are brought to the used product inventory.

Per time unit a recoverable product incurs a holding cost of hR while disposing it of

preliminarily is assumed to be prohibitively expensive. If required, the OEM can (by
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paying the setup cost KR) remanufacture QR,t returned products in period t in order

to bring them to an as-good-as-new condition. Recovery is always successful. After

remanufacturing, the recovered products are brought to the final product inventory

from which customer demand is satisfied. Yet, as it is not possible to serve the entire

demand from remanufacturing returned products, the OEM can replenish his final

product inventory alternatively by manufacturing QM,t products in period t. Setting

up a manufacturing lot in period t incurs a setup cost of KM while holding a final

product for one period in the respective inventory costs hM . Finally, the inventory

level at the end of period t is denoted by yR,t for the used product and yM,t for the

final product inventory.

M a n u f a c t u r i n g

R e m a n u f a c t u r i n g

f i n a l  p r o d u c t

i n v e n t o r y

y M , t

u s e d  p r o d u c t

i n v e n t o r y

y R , t

c u s t o m e r s

O E M

d t

r t

Fig. 4.1: Dynamic lot sizing model with returns and remanufacturing

By means of mixed-integer linear programming this model can be solved to optimality.

Next to the notation introduced above two more decision variables are required. If a

remanufacturing lot is initiated in period t (i.e. QR,t > 0), the binary decision variable

γR,t becomes one. However, ifQR,t = 0 the decision variable γR,t remains zero. Likewise,

γM,t is set to one when a manufacturing lot is produced in period t and to zero if no

product needs to be manufactured. The optimization model can be formulated as:

minC =
T
∑

t=1

(KR · γR,t +KM · γM,t + hR · yR,t + hM · yM,t) (4.1)

s.t.:

yR,t = yR,t−1 + rt −QR,t ∀t = 1, .., T (4.2)

yM,t = yM,t−1 +QR,t +QM,t − dt ∀t = 1, .., T (4.3)
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QR,t ≤ ζ · γR,t ∀t = 1, .., T (4.4)

QM,t ≤ ζ · γM,t ∀t = 1, .., T (4.5)

yR,0 = yM,0 = 0 (4.6)

γR,t, γM,t ∈ {0, 1} ∀i = 1, .., T

yR,t, yM,t, QR,t, QM,t ≥ 0 ∀i = 1, .., T

The objective function (4.1) minimizes the sum of all relevant setup and holding costs.

Constraints (4.2) and (4.3) represent inventory balance equations that describe the

inventory at the end of period t as the inventory at the beginning of this period plus

its inflows and minus its outflows. In order to ensure that setup costs have to be paid

whenever a lot is scheduled, restrictions (4.4) and (4.5) have to be established whereas ζ

needs to be a sufficiently large number (e.g. the sum of all demands during the planning

horizon). Without loss of generality, the initial inventories in both stocks are set to zero

by imposing constraint (4.6). Finally, non-negativity and binary constraints have to be

defined as well to assure validity of the decisions made. Interestingly, the zero-inventory

property that holds for a dynamic lot sizing model without returns and remanufacturing

does not have to be valid in this model setting (as has been discussed by Teunter et al.,

2006), i.e. it can be optimal to schedule a (re)manufacturing lot in period t even

when the final product inventory at the beginning of t is not depleted. This extends

the results of Richter and Sombrutzki (2000) who proved the zero-inventory property

to hold when there is a sufficiently large number of returned products in the used

product stock at the beginning of the planning horizon. Moreover, Teunter et al. (2006)

conjecture that the underlying optimization problem is NP-hard, i.e. it becomes very

difficult to obtain the optimal solution for a long planning horizon. Hence, they propose

several heuristic algorithms on how to handle this problem. In a large numerical study,

the Silver-Meal based heuristic which will be introduced subsequently revealed the best

average performance when compared to the optimal solution.
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4.2.2 The adapted Silver-Meal heuristic by Teunter et al. (2006)

Unfortunately, the original Silver-Meal heuristic (please refer to Silver and Meal, 1973,

for details) cannot be applied to the model context presented above as the final product

inventory from which all customer demands are satisfied can be replenished from two

sources: manufacturing and remanufacturing. Thus, Teunter et al. (2006) adapted the

original Silver-Meal heuristic to include both sources in form of manufacturing (option

1) as well as remanufacturing and manufacturing (option 2) in the decision-making

process. The basic idea of clustering the entire planning horizon into smaller time win-

dows (starting in period τ and ending in period z) and choosing those time windows

with the smallest cost per period is kept. However, both options that will be described

subsequently assume the zero-inventory property to hold.

Option 1: Manufacture only

When applying this option the entire demand in a time window is satisfied by ini-

tiating a manufacturing run in period τ . Its lot size would be

QM,τ =
z
∑

i=τ

di. (4.7)

The associated cost per period for the entire time window (which will be denoted as

C1
τ,z) contains the setup cost for scheduling a manufacturing lot in τ as well as the cost

for carrying products in the final product inventory. Furthermore, the cost for holding

the returned products in stock need to be taken into account as well. The total cost per

period for option 1 can, hence, be formulated by using equations (4.2) for determining

yR,t and equations (4.3) for yM,t as

C1
τ,z =

KM + hM ·
z
∑

t=τ

yM,t + hR ·
z
∑

t=τ

yR,t

z − τ + 1
. (4.8)

Option 2: Remanufacture (and manufacture if necessary)

The second option introduced by Teunter et al. (2006) seeks to remanufacture in period

τ . Yet, as the amount of used products might not be sufficient to cover the entire de-

mand up to period z, a manufacturing lot can be initiated in τ if necessary. Thus, both
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lot sizes depend on the available number of used products in τ which is by definition

yR,τ−1 + rτ . Both lot sizes for this period are presented in the following formulae:

QM,τ = max

(

z
∑

t=τ

dt − yR,τ−1 − rτ , 0

)

, QR,τ = min

(

yR,τ−1 + rτ ,
z
∑

t=τ

dt

)

. (4.9)

Forcing the possibly required manufacturing lot to be scheduled in τ can result in

an inefficient solution when there is no immediate demand for at least one of the

manufactured products. Hence, all products manufactured in τ will be held in the final

product inventory unnecessarily until they are needed. An opportunity to overcome

this deficiency will be presented later in this section.

Next to the holding cost for the used and final product stock, the cost per period for

the second option C2
τ,z can contain both setup costs. As a manufacturing lot is only

needed when the number of recoverable products is not sufficient, the binary variable

γM,τ represents this fact by being one if a manufacturing run is required and zero else.

Therefore, the cost per period for the second option can be formulated as

C2
τ,z =

KR +KM · γM,τ + hM ·
z
∑

t=τ

yM,t + hR ·
z
∑

t=τ

yR,t

z − τ + 1
. (4.10)

For each time window, C1
τ,z is compared to C2

τ,z and the smaller one is chosen. Moreover,

the basic idea of the Silver-Meal heuristic is applied which means that a time window

is extended as long as the smaller cost of both options does not increase. Further on,

the heuristic approach introduced by Teunter et al. (2006) is referred to as the SM2

heuristic since two distinct options are evaluated. Teunter et al. (2006) have tested this

heuristic extensively in their contribution. As a result of their numerical study a mean

deviation to the optimal solution of 8.3% has been observed over all instances. By

generalizing the SM2 heuristic with two additional options derived from the results of

the corresponding static model, we enhance the heuristic’s performance. This approach

(which will be further on denoted as the SM4 heuristic) is presented in the following.

4.2.3 The SM4 heuristic

Although the dynamic lot sizing model with returns and remanufacturing has not been

analyzed extensively in literature so far, the corresponding static model (with constant
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demand and return rates) has received much more attention. Among many contri-

butions, two shall be mentioned explicitly. In his work, Schrady (1967) is the first

author who examines this model context. His option on how to handle this problem

effectively is to create a cyclic pattern that is repeated over the entire infinite planning

horizon. This cyclic pattern begins with a manufacturing lot and is always followed

by a constant number of remanufacturing lots R. Teunter (2001) generalizes these

findings by introducing cycles that commence with one remanufacturing lot which is

always succeeded by a constant number of manufacturing lots M . He argues as well

that in order to be efficient each cycle should have either one remanufacturing or one

manufacturing lot. As this provides very good solutions to the static problem, both

cyclic patterns can be incorporated into the dynamic lot sizing model with returns and

remanufacturing which is presented subsequently. While the third option analyzes time

windows with a manufacturing lot in τ that is followed by remanufacturing lots in later

periods, a time window in the fourth option commences with a remanufacturing lot in

τ that is succeeded by a number of manufacturing lots. Two promising effects can be

observed when applying both additional options. At first, by considering more than

one lot in each time window the used product inventory which is a critical cost factor

can be controlled more accurately. Furthermore, contrary to the first two options the

zero-inventory property is only presumed to hold for the first period of a time window

but not within each time window any more. Hence, a (re)manufacturing lot can be

scheduled although the initial final product inventory of the period under consideration

is not zero.

Option 3: Manufacture first, remanufacture (in multiple lots) later

When applying this option, a manufacturing lot is scheduled in τ that is followed

by one or more remanufacturing lots in the consecutive periods τ + 1 to z. As the

amount of products available in the used product stock needs not to be sufficient, the

manufacturing lot in period τ must replenish the unavailable products. The number of

unavailable products in each period t ranging from τ + 1 to z (which will be referred

to as the net requirement NRt) can be determined as
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NRt =
t
∑

i=τ

(di − ri)− yR,τ−1 ∀t = τ + 1, .., z. (4.11)

As a manufacturing lot has to be scheduled in period τ and no remanufacturing takes

place in that period, the lot size QM,τ cannot be smaller than dτ as the entire demand

in the first period of the time window has to be met. On the other hand, this lot must

be able to complement all unavailable products and corresponds therefore at least to

the maximum of all net requirements. Calculating the manufacturing lot size for period

τ differs from equation (4.9) as the timing of all returns and demands has to be taken

into account for this option. Thus,

QM,τ = max

(

dτ , max
t=τ+1,..,z

(NRt)

)

, QR,τ = 0. (4.12)

In all consecutive periods of the time window under consideration no manufacturing lot

will be set up. However, as the amount manufactured in period τ can be sufficient to

satisfy the customer demand at least partly between period τ+1 and z, only the actually

required products are remanufactured in these periods in order to avoid unnecessary

holding cost for the final product inventory. By computing QM,τ using equation (4.12)

it is ensured that in every period between τ +1 and z enough products are available in

the used product stock to be remanufactured. The resulting lot sizes for the remaining

time windows can be visualized as in equation (4.13). After determining the relevant

inventories yR,t and yM,t using equations (4.2) and (4.3), the total cost per period can

be calculated as in (4.14). We obtain

QM,t = 0, QR,t = max

(

t
∑

i=τ

di−
t−1
∑

i=τ

QR,i−QM,τ , 0

)

∀t = τ + 1, .., z (4.13)

C3
τ,z =

z
∑

t=τ

γR,t ·KR +KM + hM ·
z
∑

t=τ

yM,t + hR ·
z
∑

t=τ

yR,t

z − τ + 1
. (4.14)

After creating a first initial solution for option 3 using formulae (4.12) and (4.13) it

must be noticed that the total cost per period of this option (denoted by Cini) can

be very high. This is especially the case when a long time window is examined and

the setup cost KR is large. Therefore, a greedy algorithm has been formulated in

addition that commences in τ + 1 and checks two possible improvement opportuni-

ties for each remanufacturing lot. Common to both opportunities I and II is that all
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products obtained in the remanufacturing lot under consideration (which has been orig-

inally scheduled in period k and contains QR,k products) are replenished alternatively.

Therefore, no remanufacturing lot is scheduled in period k in order to save the setup

costs incurred. First, the potential cost saving is evaluated if the manufacturing lot

in τ is increased by QR,k. Since this decision affects all remanufacturing lots between

τ + 1 and k, formula (4.13) is applied to update the corresponding lot sizes. The sec-

ond opportunity comprises the option to increase the last remanufacturing lot before

period k (which is scheduled in period l) by QR,k products. In order to do that, at

least QR,k products need to be available in the used product stock in period l. On the

other hand, if the used product stock does not contain enough recoverable products the

difference is manufactured additionally in period τ and again all remanufacturing lots

that are affected by this decision are determined using formula (4.13). Obviously, this

option cannot be evaluated for the first remanufacturing lot in a time window. Both

improvement opportunities are examined for each remanufacturing lot between τ + 1

and z, i.e. at most 2 · (z − τ) different schedules are analyzed. For each schedule, the

total cost is calculated by using formula (4.14) and afterwards compared to Cini. The

schedule yielding the largest cost saving is chosen and the entire proceeding is repeated

until no further improvement can be achieved. Finally, after the greedy local search

has been applied, a number of remanufacturing lots R succeed one manufacturing lot.

To illustrate the third option in greater detail, the following pseudocode can be imple-

mented as in Figure 4.2.

Option 4: Remanufacture first, manufacture (in multiple lots) later

This option seeks to establish a time window in which a remanufacturing run is started

in period τ which is followed by at least one manufacturing lot in the consecutive

periods. By assumption, the entire used product inventory is remanufactured in the

first period of the time window τ and no manufacturing batch is set up. Obviously,

if the number of available recoverable products in period τ is not sufficient to meet

the demand of that period dτ , option 4 cannot be applied and option 2 provides the

only solution incorporating a remanufacturing lot in τ . On the other hand, whenever
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Fig. 4.2: Pseudocode for Option 3: Manufacture first, remanufacture later

Step 1: Find initial schedule

Determine net requirements using equation (4.11)

Determine QM,τ and QR,τ using equation (4.12)

Determine QM,t and QR,t using equation (4.13)

Determine yM,t and yR,t using equations (4.2) and (4.3)

Cini = C3
τ,z

Step 2: Improve the initial schedule for periods τ to z

For k = τ + 1 to z

If QR,k > 0 then

QM,τ = QM,τ + QR,k, QR,k = 0

For i = τ + 1 to k

Update QR,i using equation (4.13)

Update yM,t and yR,t using equations (4.2) and (4.3)

Next i

Determine ∆CI(k) = C3
τ,z − Cini

Reset initial schedule

Find period l (period of the last remanufacturing lot before period k)

If yR,l ≥ QR,k then

QR,l = QR,l +QR,k, QR,k = 0

Else

QM,τ = QM,τ + (QR,k − yR,l), QR,l = QR,l + yR,l, QR,k = 0

End If

Update yM,t and yR,t using equations (4.2) and (4.3)

Determine ∆CII(k) = C3
τ,z − Cini

End If

Next k

Step 3: Implement the best option

If mink∈{τ+1,...,z} (∆CI(k),∆CII(k)) < 0 then

Implement the best schedule which becomes the updated initial schedule

Cini = Cini +mink∈{τ+1,...,z} (∆CI(k),∆CII(k)), Goto Step 2:

End If
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at least one manufacturing lot is required to satisfy the demand up to period z and

QR,τ > dτ , option 2 will be always dominated by option 4 because the holding cost for

the final product inventory is smaller. This gives for period τ

QM,τ = 0, QR,τ = yR,τ + rτ . (4.15)

In order to create an initial solution to this option, the lot sizes of the remaining periods

have to be determined as well. In each period from τ + 1 to z all missing parts are

manufactured as there are no further remanufacturing lots allowed in this time window.

The respective formulae are:

QM,t = max

(

t
∑

i=τ

di −
t−1
∑

i=τ

QM,i −QR,τ , 0

)

, QR,t = 0 ∀t = τ + 1, .., z. (4.16)

Similar to option 3, the initial solution can be quite expensive if a large setup cost KM

prevails. Therefore, a greedy algorithm can be used again to search for possible cost

reductions. In contrast to the third option, this algorithm reviews all manufacturing

lots. It begins by checking whether it would be less expensive to combine the second and

the third manufacturing lot of the time window and proceeds in this manner (merging

the third and the fourth manufacturing lot, ...) to the end of the corresponding time

window. The alternative revealing the largest cost reduction is implemented and the

proceeding is restarted until no further cost reductions are possible. We omit the

presentation of this algorithm as its general structure is similar to the one presented

for option 3. After applying this algorithm, one remanufacturing lot is followed by a

number of manufacturing lots M which can be used to determine the associated cost

per period of the fourth option:

C4
τ,z =

KR +
z
∑

t=τ

γR,M ·KM + hM ·
z
∑

t=τ

yM,t + hR ·
z
∑

t=τ

yR,t

z − τ + 1
. (4.17)

Including options 3 and 4 into the decision-making process extends the original Silver-

Meal based heuristic introduced by Teunter et al. (2006). We will refer to this heuristic

as the SM4 heuristic as the decision to extend the time window will be made by

comparing the resulting costs per period of all four options. The following section tests

both heuristics extensively in a numerical experiment to assess their performance.
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4.3 Numerical experiments

In order to guarantee a fair comparison to the original heuristic of Teunter et al. (2006),

the experimental design that has been used to conduct the numerical study presented

in this section corresponds mostly to their design. A full factorial study has been

chosen in which all instances examined have a planning horizon T of twelve periods in

common. Both setup cost parameters KM and KR can take on values of 200, 500, and

2000. While the rate of keeping a final product for one period in stock (hM) is set to

one holding a recoverable product for one period (hR) can cost 0.2, 0.5, and 0.8. All

customer demands dt have been drawn randomly from a normal distribution with a

mean of 100 units per period. Likewise, the amount of returned products per period

rt has been drawn from a normal distribution with a mean of 30 (i.e. a return ratio

α of 30% prevails), 50, and 70. Both normal distributions were further distinguished

into a small and a large variance setting. While the coefficient of variation in the small

variance setting has always been set to 10% it takes on the value of 20% in the large

variance setting. Contrary to the experiment conducted in Teunter et al. (2006), we

omit the use of different demand and return patterns such as positive/negative trends

and seasonal patterns. For each demand and return setting 20 instances (instead of 4

in their study) were drawn randomly. Therefore, the full factorial study considers in

total 34 · 22 · 20 = 6480 different examples.

For all examples both heuristic results have been calculated whereas CPLEX 11 has

been used to determine the optimal solution. Both heuristics are evaluated by using

the percentage gap to the optimal solution as a performance measure. The results of

the numerical experiments are presented in Table 4.1.

By including two additional options in the decision-making process, the average per-

formance of the SM2 heuristic improves slightly from 7.5% to 6.1% over all instances.

Comparing the performance of the SM2 heuristic to the original numerical study in

Teunter et al. (2006) it must be noticed that the performance in our study is slightly

better which can be attributed to the differences in the experimental design. Although

the SM4 heuristic reduces the average percentage gap in almost all settings, an improve-

ment of more than 2% can only be observed for a small setup cost for remanufacturing
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Tab. 4.1: Performance of the SM2 and SM4 heuristic

Percentage cost error to the optimal solution

Average Standard deviation Maximum

SM2 SM4 SM2 SM4 SM2 SM4

All instances 7.5% 6.1% 7.9% 7.6% 49.2% 47.3%

Demand

Small variance 7.2% 6.0% 7.9% 7.6% 43.6% 47.3%

Large variance 7.8% 6.1% 8.0% 7.5% 49.2% 43.9%

Returns

Small Variance 7.3% 6.1% 7.8% 7.6% 47.2% 47.3%

Large Variance 7.7% 6.1% 8.0% 7.5% 49.2% 46.3%

Return ratio α

30% 5.5% 3.7% 5.5% 4.5% 31.3% 28.5%

50% 8.5% 7.3% 9.4% 8.2% 40.1% 41.8%

70% 8.4% 7.2% 8.0% 8.7% 49.2% 47.3%

KM

200 4.3% 3.4% 4.5% 3.6% 20.2% 17.6%

500 5.4% 3.9% 5.2% 3.9% 25.1% 19.3%

2000 12.8% 10.9% 9.9% 10.4% 49.2% 47.3%

KR

200 10.9% 6.6% 9.1% 7.8% 49.2% 40.2%

500 7.9% 8.1% 6.6% 8.2% 34.7% 47.3%

2000 3.7% 3.5% 6.0% 5.7% 29.4% 25.7%

hR

0.2 5.9% 5.3% 8.0% 8.0% 42.9% 47.3%

0.5 7.5% 6.5% 7.7% 7.6% 49.2% 42.4%

0.8 9.1% 6.3% 7.7% 7.0% 44.4% 40.3%
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(KR = 200) and a large holding cost for the used product inventory (hR = 0.8). Both

heuristics seem to perform well when the return ratio α or the setup cost for manufac-

turing KM is low and when the setup cost for remanufacturing KR is high. Contrary,

for the opposite directions the performance of both heuristics is not sufficient with av-

erage errors of more than 7%. In the next section the heuristic solutions are examined

whether small modifications can be made to the initially obtained solution in order to

reduce the total cost significantly.

4.4 Improvement phase

A commonly applied methodology to improve the performance of lot sizing heuristics

is to use metaheuristics (see, for instance, Jans and Degraeve, 2007, for an overview).

However, metaheuristics rely on an appropriate selection of parameter values which

itself might be hard to determine. Therefore, this Chapter omits the use of meta-

heuristics and tries to enhance the solutions found by the SM2 and SM4 heuristic by

examining two possible improvement opportunities.

Improvement 1: Check whether two consecutive time windows can be combined

A first improvement to the initial solution can be found by checking whether a cost

reduction can be achieved if two consecutive time windows are combined. Hence, it

is examined whether one of the four (two) options introduced in Section 4.2 for the

SM4 (SM2) heuristic could improve the solution for an integrated time window that

comprises both initial time windows.

Improvement 2: Check whether a remanufacturing lot can be increased

Being a myopic heuristic approach, the SM2 and SM4 heuristics neglect all decisions

beyond the time window currently examined. Thus, some solutions revealed that re-

coverable products are held in stock until the end of the planning horizon although

they could have been used instead of manufacturing them later. Starting in the first
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period of the planning horizon, the algorithm checks for the current period i whether

a remanufacturing lot has been initiated. The basic idea of the second improvement

is to examine if the total cost can be reduced by enlarging the remanufacturing lot

in period i and simultaneously decreasing the first manufacturing lot scheduled after

period i by the same amount. In order to that, the algorithm needs to determine at

first period n which represents the period of the first manufacturing lot scheduled after

period i. Without changing the number and sequence of lots determined initially by

the SM2 or SM4 heuristic, the maximum number of returned products that can be

remanufactured additionally in period i is restricted by two values. First, the number

of recoverable products available needs to be taken into account. This number can

be determined by the minimum of all subsequent used product inventory levels, i.e.

mink∈{i,...,T} (yR,k). On the other hand, since the manufacturing lot in period n must

be non-negative, the number of additionally remanufactured products must not exceed

QM,n. After adapting the corresponding lot sizes QR,i and QM,n, the algorithm checks

whether these changes increase or decrease the total cost determined by equation (4.1).

If the total cost can be decreased, the modified lot sizes are kept and the algorithm

proceeds with the next period. Contrary, if changing both lot sizes leads to an increase

in the total cost, all changes made are reversed and the next period is analyzed.

When approaching the end of the planning horizon, it might be the case that no manu-

facturing lot is scheduled after period i. In this case, the algorithm examines whether

it is possible to reduce the preceding manufacturing lot set up in period l. However, a

positive final product stock in period i− 1 (yM,i−1) must prevail in order to follow this

idea. This value restricts the possible change of the remanufacturing lot in period i as

well as the manufacturing lot QM,l. Furthermore, QR,i is constrained by the maximum

number of recoverable products available for remanufacturing in period i which has

been depicted above. Again, when the change in lot sizes increases the total cost, the

responsible changes are reversed. Only when it leads to a decrease in costs, the changes

are kept and the algorithm proceeds with the next period. To clarify the second im-

provement in greater detail, the following pseudocode has been elaborated in Figure 4.3.
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Fig. 4.3: Pseudocode for Improvement 2

For i = 1 to T

If QR,i > 0 then

Find period n (period of the next manufacturing lot after period i)

If i+ 1 ≤ n ≤ T then

QR,i = QR,i +min
(

QM,n,mink∈{i,...,T} (yR,k)
)

QM,n = max
(

QM,n −mink∈{i,...,T} (yR,k) , 0
)

Update yM,t and yR,t using equations (4.2) and (4.3)

If total cost determined by equation (4.1) cannot be reduced then

Reverse decisions made regarding QR,i and QM,n

Update yM,t and yR,t using equations (4.2) and (4.3)

End If

Else If yM,i > 0 then

Find period l (period of the last manufacturing lot before

period i)

QR,i = QR,i +min
(

yM,i−1, QM,l,minj∈{i,...,T} (yR,j)
)

QM,l = max
(

QM,l −min
(

yM,i−1,minj∈{i,...,T} (yR,j)
)

, 0
)

Update yM,t and yR,t using equations (4.2) and (4.3)

If total cost determined by equation (4.1) cannot be reduced then

Reverse decisions made regarding QR,i and QM,n

Update yM,t and yR,t using equations (4.2) and (4.3)

End If

End If

End If

Next i
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As mentioned above, both improvements can be applied to the solutions obtained by

the SM2 and SM4 heuristic. Table 4.2 summarizes the results of the numerical study

in which the superscript + indicates that the initial solution has been examined for

both improvements.

It can be seen that the performance of the SM4 heuristic could be enhanced substan-

tially from 6.1% to 2.2% by applying both improvements. The larger influence on

the solution improvement can be credited to improvement 1 which was able to affect

the SM4 heuristic especially (around 85% of the improvement). That is because by

analyzing all four options introduced in Section 4.2 a larger flexibility in satisfying the

customer demand is established in comparison to the SM2 heuristic. Regarding the

zero-inventory property, 61.4% of all heuristic solutions obtained by the SM4 heuristic

revealed at least one period in which the zero-inventory property did not hold. In

contrast to the original results of the SM2 heuristic, the SM+
4 heuristic could reduce

the percentage gap to less than half of its original value in almost all settings examined.

When comparing the median of all instances the improvement is even more noticeable.

While the median of all instances has been 5.6% for the SM2 heuristic the SM
+
4 heuris-

tic could reduce it to around 1.0%. Interestingly, the SM+
4 heuristic is able to stabilize

the average performance of all settings to lie between 1.2% and 3.4%. Although the

SM+
4 heuristic has reduced the maximum deviation from the optimal solution consid-

erably (as can be observed in the right hand side of both Tables 4.1 and 4.2) there

are still instances which perform poorly. Nevertheless, the SM+
4 heuristic was able to

achieve that in only 2% of all instances the percentage gap was larger than 10%. On

the contrary, 18% of all instances exhibited a percentage gap of more than 10% when

using the original SM2 heuristic.

As depicted above, the performance of the original SM2 heuristic has been enhanced

substantially. In their work, Teunter et al. (2006) examined not only a Silver-Meal

based criterion but also an adapted Least-Unit-Cost and Part-Period approach. These

heuristics have been adapted as well by including the additional options and improve-

ment steps. Unfortunately, their performance improved only slightly in comparison

to the original work and was not able to outperform the performance gain of the

Silver-Meal based approach. However, it must be mentioned that this improvement in
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Tab. 4.2: Performance of the SM+
2 and SM+

4 heuristic

Percentage cost error to the optimal solution

Average Standard deviation Maximum

SM+
2 SM+

4 SM+
2 SM+

4 SM+
2 SM+

4

All instances 6.9% 2.2% 7.9% 2.9% 49.2% 24.3%

Demand

Small variance 6.6% 2.1% 7.9% 2.8% 43.5% 18.9%

Large variance 7.2% 2.4% 8.0% 3.0% 49.2% 24.3%

Returns

Small Variance 6.8% 2.2% 7.8% 2.9% 47.2% 21.1%

Large Variance 7.1% 2.3% 8.0% 2.9% 49.2% 24.3%

Return ratio α

30% 4.9% 1.2% 5.4% 1.8% 31.3% 12.1%

50% 8.0% 2.3% 9.3% 2.7% 39.8% 16.2%

70% 8.0% 3.3% 8.0% 3.5% 49.2% 24.3%

KM

200 3.5% 2.3% 4.0% 2.6% 20.2% 13.5%

500 4.8% 2.1% 4.9% 2.5% 23.7% 12.8%

2000 12.6% 2.3% 9.9% 3.4% 49.2% 24.3%

KR

200 10.0% 1.9% 9.4% 2.1% 49.2% 11.8%

500 7.3% 3.4% 6.6% 3.2% 34.7% 19.1%

2000 3.6% 1.4% 5.9% 2.9% 29.4% 24.3%

hR

0.2 5.8% 1.7% 8.0% 2.5% 42.9% 21.1%

0.5 7.0% 2.3% 7.7% 3.0% 49.2% 24.3%

0.8 8.1% 2.8% 7.8% 3.0% 44.4% 20.6%
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performance is accompanied by an increase in computational complexity. Although the

complexity of the proposed algorithms increased, only a small rise in the computation

time for each instance could be observed. Therefore, implementing both the addi-

tional options and the improvement steps provides a fast and well performing heuristic

algorithm for the dynamic lot sizing problem with returns and remanufacturing.

4.5 Conclusion and Outlook

This Chapter extends the seminal work of Teunter et al. (2006) in the area of simple

heuristics for the dynamic lot sizing problem with returns and remanufacturing. In their

work, the authors introduce a Silver-Meal based heuristic that analyzes two options to

meet customer demand. This Chapter includes two more options to be analyzed that

are well-known from the corresponding static lot sizing problem. By doing this, the

percentage gap to the optimal solution that has been used as a performance measure

could be reduced slightly from 7.5% to 6.1% (mean over all instances). Afterwards,

two simple procedures are applied to the initial solutions found by the SM2 and SM4

heuristic to improve the results they created. The average percentage gap to the

optimal solution has been reduced over all instances to 2.2% when using the SM4

heuristic’s solution as initial one. Comparing this result to the heuristic introduced by

Teunter et al. (2006), the average percentage gap has thus been reduced to less than

half of its original value.

Future research efforts can be directed to a more detailed modeling of the remanu-

facturing process. While in this Chapter all remanufacturing operations have been

subsumed to a single stage, in industry the process of remanufacturing contains next

to the disassembly of returned products also the cleaning and rework of the parts

obtained, and finally the re-assembly into as-good-as-new products. Furthermore, in-

cluding the option to dispose of recoverable products when they are not required and

variable unit cost for remanufacturing and manufacturing alter the decision-making

process. Another promising research opportunity would be to test the heuristics in a

rolling planning horizon environment. As has been shown by Blackburn and Millen

(1980) the heuristic might outperform even the optimal solution because of its schedule
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stability. Another interesting aspect of rolling planning horizon environments that can

be analyzed in this context is the uncertainty of demand and return realizations at

the end of each planning roll which becomes more accurate as closer one gets to this

period.

All model settings presented in the preceding Chapters impose the assumption that the

OEM wants to satisfy customer demand any time without exception. The following

Chapter 5 discusses this assumption in greater detail by analyzing a long-term planning

approach which allows the OEM to endogenously control both his customer demand

and his product returns in order to optimize the total profits.



5. Dynamic buy-back for product recovery in

end-of-life spare parts procurement

5.1 Introduction

In recent years, original equipment manufacturers (OEMs) of durable goods identified

the after-sales market as one of their key business segments1. For instance, Cohen et al.

(2006) provide results of a 1999 AMR Research report stating that by being active in

the aftermarket businesses could generate about 45% of their gross profits. Further-

more, by efficiently handling the supply of spare parts, a competitive advantage can be

established if the OEM provides a superior service to his customers, e.g. by guarantee-

ing the availability of spare parts during a comparably long service period. Thus, the

length of the service period becomes an important strategic parameter for management.

This period is subdivided into two distinct phases, namely the normal phase and the

final phase. During the normal phase the primary product is manufactured and sold to

the customers. The final phase starts when serial production ceases and lasts as long

as spare parts availability is guaranteed. Therefore, it is often considerably longer than

the production period. In the automotive sector, for instance, the final phase usually

lasts for 10-15 years. However, several OEMs provide a significantly longer availability

for their spare parts as the example of a 30 years service period for Mercedes-Benz cars

indicates.

In a recent paper, Kim and Park (2008) propose a model that allows to determine the

optimal length of the final phase. They argue that the marketing department seeks

1 This Chapter is based on the work titled ’Dynamic buy-back for product recovery in end-of-

life spare parts procurement’ that is accepted for publication in the International Journal of

Production Research (see Kleber et al., 2011)
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to stimulate demand by offering a long period with guaranteed spare parts availability

as this signals a high quality of the product (see, e.g., Spence, 1977; Gal-Or, 1989).

Obviously, if the final phase would be determined without such considerations by only

accounting for the operational costs and revenues of service, it would often be chosen

considerably shorter. Our research basically focuses on situations in which both per-

spectives (marketing and operations) yield large differences in the length of the final

period and we propose an efficient method for spare parts management under those

circumstances.

From the OEM’s perspective, inventory management for spare parts differs consider-

ably from inventory management applied to manufacturing processes, mainly because

demand for spare parts is less predictable and highly dynamic on a comparably low

level (see, e.g., Kennedy et al., 2002; Huiskonen, 2001). In addition, options for re-

supply become increasingly rare during the final phase. While in the normal phase

production facilities of the primary product can be used, this efficient sourcing option

is often no longer recommendable in the final phase due to high fixed costs incurred for

a relatively small output. Thus, a frequently adopted strategy is to place a final order

at the time when regular production comes to an end. However, this is connected with

high stock levels resulting in large holding cost and a high obsolescence risk as all de-

mands occurring in the final phase need to be estimated beforehand. Extra production

represents an additional option in the final phase which in contrast to regular pro-

duction is typically performed in small lots. Nonetheless, this option is under certain

circumstances prohibitively expensive or technically infeasible (see Hesselbach et al.,

2002, for a comprehensive overview on available options).

There is a one-to-one correspondence between a spare part and the broken component.

This creates the opportunity to recover the broken part for later use as a spare part.

Part recovery, hence, can complement other sources of spare parts supply. An overview

on different recovery processing options is provided by Thierry et al. (1995) including

repair, refurbishing, and remanufacturing. Although all of these options can be applied

in principle to satisfy an existing spare part demand, this Chapter focuses solely on

remanufacturing processes. Remanufactured parts are considered to be as-good-as-new

and OEMs frequently offer the same warranty as for new parts. Compared to extra
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production, remanufacturing is relatively cheap, but since not all broken parts might

be remanufacturable it should be accompanied by other options to avoid shortages (see,

e.g., Inderfurth and Mukherjee, 2008; Inderfurth and Kleber, 2009).

In case of not being able to fulfill occurring spare part demands and in order to avoid

a penalty or a goodwill loss, further options the OEM can offer to his customers range

from swapping to buy-back. Swapping refers to a replacement of the dysfunctional

product with a new generation product free of charge for the customer (as has been

reported by Pourakbar et al., 2008). This option is favorable for high tech products

experiencing a considerable price deterioration between successive product generations

but is less beneficial for durables. Buy-back of products is typically performed in

practice in form of trade-in campaigns. These campaigns, though, foremost intend to

increase the sales of new products and thus both functional and broken products are

accepted. Although there are many examples from industry (see, e.g., Ray et al., 2005),

an acquisition of recoverable parts for satisfying spare part demands is (at best) seen

as a side effect and is hence not explicitly stated as motivation for such a campaign.

In this Chapter, however, we emphasize the use of more focused trade-in campaigns

which explicitly aim to control the OEM’s supply of recoverable parts. By doing so,

we abstract from the above mentioned sales promoting effects for other products and

isolate the sole effect of buying back broken products on spare parts management.

In particular, we are interested in those conditions under which buying back broken

products for obtaining spare parts profitably complements the traditional sourcing

options final order and remanufacturing. This could for instance be accomplished by

using the already existing service network which provides the OEM with a direct access

to his customers demanding spare parts.

An active integration of buying back used products into a generic product recovery

system has been examined by Minner and Kiesmüller (2002) in a deterministic setting

with a stationary price-response function. There, the effects of the acquisition decision

on current and future demands are neglected. In our case, however, buying back broken

products would on the one hand decrease current and future demands for spare parts

since no future spare part demand is generated from a bought back product. On the

other hand, customers with a dysfunctional product might accept a comparably low
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compensation yielding a cheap supply of recoverable parts for the OEM. Therefore,

the trade-off between cannibalizing current and future demands to release oneself from

the obligation to provide spare parts and creating an additional source of supply for

satisfying the remaining demand represents the main focus of this Chapter.

The profitability of the buy-back option depends on constraints on price and quantity

decisions but also on the availability of required information. First, the OEM might be

able to approach different customers in a specific way. In the marketing literature, a

number of market-segmentation approaches are discussed (see, e.g., Kotler and Keller,

2008; Wedel and Kamakura, 2000). Especially, it is argued that one can segment

the market by observable and unobservable characteristics. Observable criteria for

segmenting customers are mostly geographic or demographic data. Here, one might

additionally segment on type of relationship, for instance B2B (car rental enterprise) or

B2C (private customer). Criteria that are unobservable typically contain psychographic

or behavioral characteristics.

Furthermore, the OEM might be restricted in his flexibility to price-discriminate be-

tween customers because of legislation like the Robinson-Patman act in the US. We

refer to Bernstein et al. (2006) for a more comprehensive motivation for simple pricing

schemes. Finally, the OEM might have no control over the buy-back quantity once he

offers a price. This might be the case because he communicates a buy-back campaign

in the mass media. Additionally, a quantity restriction of buy-backs for the decentral-

ized repair shops might not be realizable as the demand at each facility is unknown or

uncertain in advance.

The remainder of this Chapter is organized as follows. In Section 5.2 we introduce

a basic mathematical model on how to incorporate buy-backs in the decision-making

process and state its main assumptions. Afterwards, Section 5.3 analyzes a base case

scenario and elaborates possible benefits from segmenting the OEM’s customers into

distinct groups. The fourth section elaborates the critical assumptions made in the ba-

sic model and shows how to adapt it to be able to deal with additional constraints and

limited information availability as described above. Furthermore, the base case param-

eters set in Section 5.3 are critically reviewed in a sensitivity analysis. Finally, Section

5.5 summarizes the main conclusions and gives some directions for future research.
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5.2 A basic model with buy-back

We consider a single product for which the OEM guarantees the availability of spare

parts during the final phase of service. The planning horizon of length T starts at the

end of regular production, i.e. at the time when no further products are manufactured to

be sold. Thus, at this point in time the number of products with the customers (which

we will refer to as the install base) no longer increases. For the sake of simplicity, the

considered product includes only one vital component that can fail and needs to be

replaced by a spare part to restore its functionality. Otherwise, the product’s value

would reduce considerably. Failures occur deterministically with rate f , i.e. each period

a fraction of the install base requires spare parts to replace the broken components.

This is accomplished by the existing service network operated by the OEM which is

also used to return broken components to a remanufacturing facility.

...
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Fig. 5.1: Spare parts supply system

In this Chapter, we focus on the spare parts supply system depicted in Figure 5.1. The

notation used is summarized in Table 5.1. Demand for spare parts is satisfied from

a central stocking point. Let yM,t denote the OEM’s spare parts stock at the end of

period t (which corresponds to the final product stock of the preceding Chapters). The

OEM can replenish this inventory using two different options. At the beginning of

the planning period, he places a final order FO at unit cost cf . Afterwards, regular

production ceases, i.e. manufacturing new parts is only possible at the beginning of

the planning horizon. When this happens, remanufacturing broken components from

the stock of recoverables yR,t (which corresponds to the used product inventory of the
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Tab. 5.1: Notation used

Parameters

n Number of customer segments

T Planning horizon

cr Unit cost of remanufacturing

cf Final order unit cost

hM Spare parts holding costs per unit and period

hR Returned products holding costs per unit and period

pi Reservation price in customer segment i

ps Revenue per spare part sold

β Remanufacturing yield rate

f Components failure rate

r Interest rate

w̄i Initial product stock in customer segment i

ȳR,0 Initial stock of broken products

νi,t Percentage of products leaving the OEM’s access of segment i in period t

Decision and state variables

yM,t Spare parts inventory at the beginning of period t

yR,t Recoverables inventory at the beginning of period t

FO Size of the final order

Rt Number of remanufactured parts in period t

Dt Number of broken products disposed of in period t

Et Fulfilled spare part demand in period t

xi,j,t Number of broken products bought back from segment i at price pj in period t

wi,t Number of customers in segment i in period t

Θi,t Binary pricing variable for customer segment i in period t
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preceding Chapters) becomes the only sourcing option. The parameters hR and hM

represent the unit holding cost for broken parts and spare parts per period, respectively.

In each period t, the OEM must decide on the amount of broken components that he

would like to remanufactureRt at unit cost cr and on the quantity of broken components

to be disposed ofDt. As it is commonly presumed for practical applications, we suppose

that revenues for recovering material and costs of extracting materials are about the

same size which means that the disposal costs are negligible. Due to an imperfect

remanufacturing process only the fraction β of the remanufactured products fulfill the

designated quality standards to be sold as spare parts. All costs and revenues are

discounted by the interest rate r. Since we analyze a long-term planning environment,

possible setup cost for initiating a remanufacturing run (or for scheduling the final

order at the beginning of the planning horizon) are neglected.

Both replenishment options exhibit considerable disadvantages. The final order bears

the burden of holding spare parts over a long period of time and the option of reman-

ufacturing broken parts cannot provide all spare parts demanded due to the imperfect

remanufacturing process. An appropriate way to overcome these deficiencies would be

to include the buy-back of broken products as another option. If the OEM decides to

buy back, he loses a revenue of ps per spare part that would be sold otherwise but he

also increases the recoverables stock since an additional broken component (included

in the product bought back) is returned to the OEM. The compensation paid to the

customer to persuade her to sell her broken product depends on her valuation of the

product. For this, we assume that all customers value their product differently, but

this valuation does not change over time. Different buy-back prices, thus, yield dif-

ferent quantities and decisions upon both must be made simultaneously. In contrast

to other approaches (see, e.g., Minner and Kiesmüller, 2002) where a given functional

relationship does not change over time, in our long range approach buy-back decisions

impact the composition of the install base and therefore, change conditions relevant

for later decisions.

For the OEM, individual information upon each customer’s valuation for a broken

product might hardly be obtainable. He therefore segments his customers into groups

i = 1, ..., n in which all customers value their product similarly. The number of func-
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tioning products in each customer segment i at the end of period t is denoted by wi,t.

It is assumed that the initial size of each segment w̄i is known in advance, and indepen-

dent of any of the OEM’s decisions a fraction νi,t of all products in a customer segment

i leaves the service network as they are, for example, salvaged at a breakers yard. Let pi

denote the reservation price of all customers in segment i representing their valuation

of a defective product. Without loss of generality, the customer segments are arranged

such that the inequality p1 < ... < pn is satisfied. It is easy to see that only these

prices are relevant for the buy-back decision. If the OEM would propose a price to a

segment that lies between two adjacent reservation prices, he could easily reduce this

price to the lower of the two reservation prices while still being able to acquire the

same quantity.

In an idealized setting (denoted by M1) the OEM can decide for each segment separately

on which quantities he wishes to buy back for which price. This requires, that the

OEM can assign each customer to her segment, i.e. that individual information is

available on all customers. Buy-back quantities are denoted by xi,j,t representing the

number of broken products bought back from customer segment i at price pj in period t.

Consequently, the amount of broken products that is bought back reduces the number

of spare parts sold in period t which will be denoted by Et. Additionally, the OEM

needs to determine the size of the final order FO and in each period t he decides on the

number of remanufactured Rt and disposed of parts Dt. Problem M1 can be formulated

as follows:

maxΠ1 =
T
∑

t=1

(1+r)−t



ps ·Et−cr ·Rt−hR ·yR,t−hM ·yM,t−
n
∑

i=1

n
∑

j=1

xi,j,t ·pj





−cf ·FO (5.1)

s.t.

Et = f

n
∑

i=1

wi,t−1 −
n
∑

i=1

n
∑

j=1

xi,j,t t = 1, ..., T (5.2)

yM,t = yM,t−1 − Et + β ·Rt t = 1, ..., T (5.3)

yM,0 = FO (5.4)

yR,t = yR,t−1 −Rt −Dt + f ·
n
∑

i=1

wi,t−1 t = 1, ..., T (5.5)

yR,0 = ȳR,0 (5.6)
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wi,t = wi,t−1 · (1− νi,t)−
n
∑

j=1

xi,j,t i = 1, ..., n t = 1, ..., T (5.7)

wi,0 = w̄i i = 1, ..., n (5.8)
n
∑

j=1

xi,j,t ≤ f · wi,t−1 i = 1, ..., n t = 1, ..., T (5.9)

xi,j,t = 0 i, j = 1, ..., n j < i (5.10)

yM,t, yR,t, Et, Rt, xi,j,t, wi,t ≥ 0 i, j = 1, ..., n t = 1, ..., T (5.11)

The OEM maximizes his discounted profit Π1 which includes each period’s net cash

flow consisting of the revenue of selling Et spare parts minus the cost incurred for

remanufacturing, stock-keeping, and buy-back as well as the expenses for producing

the final order. Constraints (5.2)-(5.11) are interpreted as follows. The number of

spare parts sold to the customers Et is determined in (5.2) by the number of products

that break down in t reduced by the amount of broken products the OEM buys back.

Constraints (5.3) and (5.5) are inventory balance equations for the spare parts and

recoverables inventory with initial levels set in (5.4) and (5.6). The initial spare parts

stock equals the size of the final order. The stock of spare parts at the end of period

t yM,t is determined by the stock at the end of the previous period yM,t−1 reduced by

the fulfilled spare parts demand Et plus the yield from the remanufacturing process

β ·Rt. Starting from an initial value ȳR,0, the stock of recoverables is reduced in each

period by the number of remanufactured Rt and disposed of parts Dt and increases by

the number of broken products that return to the OEM.

The development of the number of products in each customer segment is given in

balance equation (5.7) while (5.8) represents the initial size of each segment. The

segment size reduces by the exogenous drain of leaving customers wi,t−1 ·(1− νi,t) and

the total number of bought-back products from that segment. Constraint (5.9) ensures

that the number of bought-back products from customer segment i must not exceed

the number of broken products in the respective period. By establishing the logical

constraint (5.10) it is guaranteed that no buy-back occurs for a lower price than the

segment’s reservation price. For instance, the OEM cannot acquire any broken product

from segment 2 for the price p1 since this would not be sufficient. The non-negativity

restrictions (5.11) assure validity of decisions.
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In the idealized setting it can be easily seen that it is not optimal to buy back products

for a different price than the segment’s specific reservation price. Thus, an optimal

solution of M1 will always show xi,j,t = 0 for i 6= j.

5.3 The value of buy-back under idealistic conditions

5.3.1 Base case parameters

In this section, an example is used to illustrate the potential benefit of buying back

broken products and to elaborate the gains of a more detailed customer segmentation.

The respective parameter values of the base case scenario are summarized in Table 5.2.

Tab. 5.2: Base case parameter values

n T w̄1 ν1 f ps cf cr β r hM hR p1 p̂1

1 80 400 1.5% 10% 10 3 1.5 50% 2.5% 0.2 0.1 20 30

We start our analysis with a single customer segment (n = 1) for which all spare part

demands must be satisfied for the next 80 periods. A period is hereby defined to be a

quarter of a year, i.e. the OEM faces a 20 year planning horizon. The OEM estimates

the initial number of products in the install base to be w̄1=400 out of which a fraction

of ν1 = 1.5% are leaving the service network each period. The main component fails

at a rate f = 10%, i.e. each product has to be repaired on average once in two and

a half years yielding a revenue of ps=10. The OEM estimates that a broken product

can be acquired at a price of p1 = 20 being twice the revenue from selling a spare part.

Hence, the trade-in price for a functional product is given by p̂1 = p1 + ps = 30.

Spare parts are procured by placing a final order at unit cost cf=3 yielding an initial

profit margin of 70%. All products returning to the OEM will be remanufactured at

unit cost cr = 1.5. It is assumed that remanufacturing is successful in β = 50% of all

cases, i.e. only one of two broken parts can be brought to an as-good-as-new condition.

Thus, there is no direct cost advantage for neither parts procured in the final order

nor for parts succesfully remanufactured. The discount rate is set to r = 2.5% per
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quarter or about 10% per year. Out of pocket holding cost are hM = 0.2 and hR = 0.1

per unit and period for spare parts and recoverable parts, respectively. Taking both

discounting and holding cost into account, it would be economically beneficial to satisfy

demand from parts procured in the final order for at most 20 periods (5 years) and then

to switch to remanufacturing. Hence, the base case parameters depict the situation

motivated in the introduction, i.e. the operations manager is confronted with a much

longer final phase than he would choose individually.

5.3.2 The value of buy-back without segmentation

Initially, a problem setting is analyzed in which the OEM is not able to segment

his customer base. By inserting the parameter values from the preceding subsection

into model M1 outlined in Section 5.2, the optimal solution is obtained by using the

optimization software CPLEX 11. This solution is henceforth compared with both a

benchmark solution that does not allow for buying back broken products and a trade-

in solution in which the OEM is obliged to take back all products (functioning and

broken) the customers are willing to return. The main results are shown in Table 5.3.

Tab. 5.3: Optimal final order FO, discounted profit Π, relative profit surplus ∆ and

first period in which buy-back takes place z in the benchmark and the trade-in

solution as well as for M1

Benchmark Optimal Trade-in Optimal buy-back in M1

FOBM ΠBM FOTI zTI ΠTI ∆TI FO1 z1 Π1 ∆1

935 2390 935 / 2390 0% 658 46 3127 +30.8%

The benchmark solution has been obtained by forcing all buy-back quantities xi,j,t to

zero. The solution shows a structure where (as has been examined in a related approach

by Kleber and Inderfurth, 2007) there are two phases to be distinguished. In a first

phase (periods 1 to 29) the demand for spare parts is satisfied from the final order of

size FOBM = 935. All broken parts that return are held in the recoverables inventory

and none is disposed of. In the second phase (periods 30 to 80) the strategic stock
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of returned products built up in the first phase is used to serve the entire demand by

remanufacturing broken parts from the recoverables inventory. Thus, the size of the

final order equals that part of total demand over the planning horizon which cannot be

satisfied by remanufacturing. The benchmark solution to the base case scenario yields

a total discounted profit of 2390.

When including the buy-back option using model M1, the final order reduces to 658

implying a substantial reduction in holding cost. Although considerably shorter (the

first phase ends in period 19), both of the above phases are found as well in the

optimal solution. In an adjacent third phase (starting in period z1 = 46), the OEM

buys back as many products as are needed to satisfy demand. Interestingly, no stock is

build up in the recoverables inventory during that phase since all returns are instantly

remanufactured. Hence, each period’s buy-back quantity is set to just compensate the

yield loss. The discounted profit of the base case scenario increases by about 31% to

3127 when buy-backs are included2.

A third option for the OEM would be to give all customers the opportunity to sell their

products in use. For modeling this situation, an additional binary decision variable

Θi,t is introduced which represents the OEM’s decision to offer a trade-in at price p̂i in

period t. In the objective, pi is substituted by p̂i, and restrictions (5.2) and (5.9) have

to be replaced by

Et = f

n
∑

i=1

wi,t−1 t = 1, ..., T (5.12)

xi,j,t ≤ ζ ·Θj,t i, j = 1, ..., n t = 1, ..., T (5.13)

wi,t−1(1− νi,t)− xi,j,t ≤ ζ ·(1−Θj,t) i, j = 1, ..., n ∧ i ≤ j t = 1, ..., T (5.14)
n
∑

i=1

Θi,t ≤ 1 t = 1, ..., T (5.15)

Θi,t ∈ {0, 1} i = 1, ..., n t = 1, ..., T (5.16)

Restriction (5.12) ensures that only functioning products are bought back (after repair

if required). Constraint (5.14) ensures that all customers return their products to the

OEM when Θi,t is set to one. In this case, all remaining products in segment i (the

initial inventory minus the drain at the beginning of this period) are procured by the

2 For a detailed description of the M1 policy structure see the Appendix, page 162.
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OEM. If, otherwise, Θi,t is set to 0, restriction (5.13) forces the buy-back quantity to 0.

Finally, restriction (5.15) guarantees that only one buy-back price can be set at most

by the OEM. Not surprisingly, the solution for a trade-in campaign does not deviate

from the benchmark solution if the OEM is not able to segment his customer base.

This is because selling spare parts remains a profitable business opportunity for the

OEM over the entire planning horizon. Hence, running a trade-in campaign before the

end of the planning horizon means that the OEM will not be able to sell any spare

part for this product any more since his entire customer base would be depleted.

5.3.3 The value of customer segmentation

This subsection broadens the above analysis by allowing the OEM to segment the

install base w.r.t. differences in the customers’ valuation of the product. The analysis

might provide managers with valuable insights on how much effort they should invest

in segmenting the install base more thoroughly.

In order to keep the results consistent, the only difference between customer segments

is the buy-back price. All other parameters remain the same as in the base case, e.g. the

fraction of customers leaving the service network νi is kept at 1.5 % for all segments i.

For determining the segment specific buy-back prices it is assumed that the willingness

to accept a buy-back, i.e. the reservation price, is uniformly distributed among the 400

customers within an interval between 0 and 20. Given n segments, 400/n customers

with the lowest reservation price are assigned to the first segment, the next 400/n

customers to segment 2, and so on. Each buy-back price, thus, indicates the value for

which all customers of a respective segment would sell their broken products. In the

first segment it would be pn1 = 20/n, in the second one pn2 = 2·20/n, and so on. The

segmentation of customers is sketched in Figure 5.2. The corresponding trade-in prices

p̂j can be determined consequently by adding ps to the respective segments’ buy-back

prices.

Table 5.4 depicts the results of the experiments which can be interpreted as follows.

As the solution to M1 can react more flexible, the profitability of the buy-back option

increases as more different segments have been identified. That is because a more



5. Dynamic buy-back for product recovery 150

1  s e g m e n t

2  s e g m e n t s

4  s e g m e n t s

8  s e g m e n t s

1

1

1

1

w   =  4 0 0

p   =  2 0

1

2

1

2
w   =  2 0 0

p   =  1 0

2

2

2

2

w   =  2 0 0

p   =  2 0

1

4

1

4

w   =  1 0 0

p   =  5

2

4

2

4

w   =  1 0 0

p   =  1 0

3

4

3

4

w   =  1 0 0

p   =  1 5

4

4

4

4

w   =  1 0 0

p   =  2 0

8

8

8

8

w   =  5 0

p   =  2 0

7

8

7

8

w   =  5 0

p   =  1 7 . 5

6

8

6

8

w   =  5 0

p   =  1 5

5

8

5

8

w   =  5 0

p   =  1 2 . 5

4

8

4

8

w   =  5 0

p   =  1 0

3

8

3

8

w   =  5 0

p   =  7 . 5

2

8

2

8

w   =  5 0

p   =  5

1

8

1

8

w   =  5 0

p   =  2 . 5

Fig. 5.2: Initial segment sizes w̄n
i and corresponding buy-back prices pni for different

numbers of segments n

Tab. 5.4: Influence of the number of segments n on the final order and discounted profit

Optimal Trade-in Optimal buy-back in M1

n FOTI zTI ΠTI ∆TI FO1 z1 Π1 ∆1

1 935 / 2390 0% 658 46 3127 +30.8%

2 848 56 2416 +1.1% 621 41 3383 +41.5%

4 840 52 2474 +3.5% 592 38 3514 +47.0%

8 834 49 2505 +4.8% 582 36 3578 +49.7%

16 831 48 2520 +5.4% 576 35 3610 +51.0%

32 832 45 2526 +5.7% 573 35 3626 +51.7%

precise fragmentation of the install base allows the OEM to approach each customer’s

actual reservation price. If there is only a rough segmentation of the install base, the

OEM offers some customers too high prices since they would have also sold their broken

product for a much lower price. However, it can be seen that the additional benefit of

a more detailed segmentation does decrease as more different segments are established.

A similar result can be observed for initiating trade-in campaigns. In contrast to the

situation in which the OEM cannot differentiate his customers, the solution improves

when he is able to fragment his install base. Yet, the possible gain is (due to the lower

flexibility compared to M1) much smaller lying between 1 and around 6 %. Thus,
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the remainder of this Chapter focuses solely on the opportunity to buy back broken

products as this has been shown to be the more profitable business option.

5.4 Robustness with respect to critical assumptions and

parameters

This section deals with more realistic conditions than those required for the basic

model. First, we delineate potential problems when approaching customer segments

individually, and assess secondly the impact of such deficiencies on the profitability of

the buy-back option.

5.4.1 Critical assumptions

While analyzing the model context, a subset of problems can be established that arises

due to possibly existing exogenous constraints, such as communication, information,

and pricing constraints. Communication constraints will be analyzed both from an

external as well as an internal point of view. The internal view refers to an internal

communication within the OEM’s service network. Thus, the OEM is able to approach

each customer individually to offer her a buy-back and has therefore the flexibility to

decide on the quantity he buys back in each planning period. The external view, on the

other hand, corresponds to a setting in which the OEM communicates the buy-back of-

fer to all customers simultaneously via a mass media marketing campaign. As the OEM

cannot withdraw his offer, he has to accept all broken products his customers intend

to sell. Whether the communication focuses on his service network or his customers,

thus, determines the OEM’s buy-back quantity flexibility.

The OEM can face furthermore information constraints, if he cannot assign a customer

to her corresponding segment and does hence not know from which segment he bought

back a broken product. This will typically be the case when the segmentation is based

on unobservable criteria, such as psychological or behavioral characteristics (see Kotler

and Keller, 2008, Chapter 8).
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Tab. 5.5: Three dimensions of flexibility and information availability

quantity flexibility

yes no

individual

informa-

tion

available not avail. available not avail.

pricing

flexibil-

ity

yes

full pricing and

quantity flexibility,

full information

availability (M1)

no

limited pricing and

full quantity flexibil-

ity, full information

availability (M2)

limited pricing and

full quantity flexi-

bility, limited infor-

mation availability

(M3)

limited pricing and

quantity flexibility,

limited information

availability (M4)

Finally, the OEM can face limited pricing flexibility. Pricing constraints describe the

OEM’s restriction to address each segment independently, i.e. his pricing flexibility is

restricted. Therefore, the OEM might be limited to set only one price per period. In

this case, he is not able to buy back products from different segments for different

prices in a given period. Bernstein et al. (2006) give an overview on reasons why the

OEM might be restricted in his pricing format.

These three dimensions, namely pricing and quantity flexibility as well as individual

information availability result in eight subclasses of problems (see Table 5.5). However,

it can be shown that several subclasses are redundant (empty cells). First, the OEM

cannot exploit any pricing and quantity flexibility if he cannot assign his customers

to the respective segments (as every customer will apparently claim that she has a

high reservation price). Second, we argue that the OEM is only able to communicate

one buy-back price per period directly to all his customers if the external view of

communication prevails. Hence, if the pricing flexibility acts as an additional constraint

only one case needs to be analyzed regardless the information availability. Because of
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the limited buy-back quantity flexibility, the OEM is required to buy back all products

the customers intend to sell. As the OEM is, by assumption, able to estimate the

total size of each customer segment, he has no advantage of assigning the customers

to the segments since he cannot utilize this information satisfactorily. Yet, there is the

possibility to advertize ‘up-to’ prices. This case, however, could be treated in the same

way as the internal view.

5.4.2 The economic impact of critical assumptions

In order to assess the economic impact of the assumptions made, the model M1 needs

to be adapted. Subsequently, we describe the required changes. The second setting M2

is characterized by less flexibility than M1 due to its restricted pricing flexibility. This

is supported by the fact that only a single buy-back price can be set in each period.

In this setting, however, it is still possible to assign each customer to her segment and

to choose which quantity to buy from which customer segment. The OEM’s pricing

decision is described, as before, by the binary decision variable Θi,t that determines

which buy-back price the OEM sets in period t. It is 1 if the buy-back price pi is offered

and 0 else. In order to implement the second setting M2, constraints (5.13), (5.15), and

(5.16) have to be added to the original setting M1. Obviously, due to the additional

restrictions imposed the profit of M2 (denoted by Π2) cannot exceed the profit of M1.

In the third setting M3, the OEM can again only set a single price in each period and

he can also choose upon the quantity to take back. However, the absence of available

information regarding each customer’s assignment results in the problem that it cannot

be easily determined how many items were bought back from which customer segment.

Hence, further assumptions are required to keep track of the number of customers in

each segment. Yet, it is easy to conclude that the profit of this setting must lie between

the profits of the less restricted setting M2 and the even more restricted setting M4. A

more detailed analysis of this setting will be left for future research.

Setting M4 provides us with the least flexible environment that still allows for customer

segmentation. Due to its limited pricing flexibility only a single price can be selected

per period, but since this price is externally communicated, all customers for which
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the offered price exceeds their reservation price return their dysfunctional product to

the OEM. Constraint (5.14) must hence be replaced by (5.17).

f · wi,t−1 − xi,j,t ≤ M · (1−Θj,t) i, j = 1, ..., n i ≤ j t = 1, ..., T (5.17)

Constraint (5.17) captures the fact that for a given buy-back price pj (i.e. Θj,t = 1) all

customers from segments i = 1, ..., j − 1 are going to sell their broken products.

By solving the respective optimization problems M2 and M4 for n=2 segments the

economic impact of the assumptions regarding pricing and quantity flexibility as well

as information availability can be evaluated. In Table 5.6, the total discounted profits

and the final order sizes are presented for each setting. Interestingly, while showing

in general the same solution structure with three phases as M1, the third (buy-back)

phase of both settings M2 and M4 is characterized by switching price decisions. While

in most periods the low price p1 is set and broken products from the first customer

segment are bought back only, sporadically the price p2 is set. In those ‘campaign’

periods a stock of broken products is build up, i.e. more broken products are bought

back than are actually needed to satisfy the current period’s demand3.

Tab. 5.6: Total discounted profit, relative deviation from M1 and corresponding final

order sizes.

Benchmark M1 M2 M4

Total discounted profit Π 2390 3383 3358 3343

Relative deviation from Benchmark ∆ – +41.6% +40.5% +39.9%

Final order size FO 935 621 622 626

The comparably small gap between M1, M2, and M4 can be explained by the similarity

of the optimal solution structures. First, it can be observed that the different assump-

tions do not influence the size of the final order substantially. Second, a variation in

the model assumptions results in changes in the optimal solution structure that occur

quite late in the planning horizon. As all cash flows are discounted, a deviation in one

3 For a detailed description of the M2 policy structure see the Appendix, page 163. For the

corresponding description of the M4 policy structure, please refer to the Appendix, page 164.
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of the later periods does therefore only have a limited effect on the total discounted

profit. Although M3 is not explicitly treated, interpreting the optimal objective values

of M2 as a lower and of M4 as an upper bound of the optimal objective value, analo-

gous results are to be expected for the not explicitly modeled setting M3. Thus, a main

insight from this example is that the OEM can significantly enhance his performance

by including buy-backs into his decision-making process even with only limited pricing

and quantity flexibility and information availability.

Since we only dealt with a single example so far, the following subsection conducts a

sensitivity analysis to provide insights into the robustness of our findings.

5.4.3 Sensitivity to changing parameters

Taking the base case from Section 3 with two segments as starting point, a sensitivity

analysis is performed that focuses on the question under which parameter combinations

the buy-back option appears to be especially valuable. To achieve this, all relevant

parameters are modified to a considerably higher and lower value while keeping all other

parameters constant. Since we did not find a substantial difference for the settings

M2 and M4, we restrict our discussion to a comparison of M1 and the benchmark

solution without buy-back. The corresponding results for M2 and M4 can be found

in the Appendix, page 165f. Table 5.7 presents those parameters that seem to have a

substantial impact on the profitability of the buy-back option, i.e. the remanufacturing

yield rate β, the interest rate r, the final lot unit cost cf , the length of the planning

horizon T as well as both holding cost parameters hR and hM .

These findings can be explained as follows. In the benchmark setting, spare part

demand can only be satisfied by two options, either by manufacturing spare parts in

the final order or by remanufacturing. As serving customers close to the end of the

planning horizon becomes more and more expensive, the benchmark solution worsens

as the final order becomes larger compared to setting M1. For instance, this is the

case if the remanufacturing yield rate β is low and if the interest rate r, the final order

unit cost cf or one of both holding cost parameters become larger. A larger hR, for

instance, means that the remanufacturing operations could have started earlier which
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Tab. 5.7: Optimal final order FO, discounted profit Π, first buy-back period z and

relative profit change ∆ in the benchmark solution and M1 for parameters

with significant impact.

Benchmark Optimal buy-back in M1

FOBM ΠBM FO1 z1 Π1 ∆1

base case 935 2390 621 42 3383 +41.6%

β

40% 1122 836 689 36 2415 +188.7%

50% 935 2390 621 42 3383 +41.6%

60% 748 3821 541 47 4396 +15.1%

r

1.25% 935 4142 758 55 4513 +8.9%

2.5% 935 2390 621 42 3383 +41.6%

5% 935 567 462 29 2287 +303%

cf

1.5 935 3793 724 48 4369 +15.2%

3 935 2390 621 42 3383 +41.6%

4.5 935 986 553 36 2510 +154.4%

T

60 795 3156 628 42 3454 +9.4%

80 935 2390 621 42 3383 +41.6%

100 1039 1644 610 41 3371 +105%

hM

0.15 935 2868 652 45 3604 +25.7%

0.2 935 2390 621 42 3383 +41.6%

0.25 935 1912 587 39 3185 +66.6%

hR

0.05 935 3210 674 47 3816 +18.9%

0.1 935 2390 621 42 3383 +41.6%

0.15 935 1789 576 38 3108 +73.7%
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reduces the number of spare parts procured in the final order. However, due to its

limited flexibility the benchmark solution cannot react appropriately and is therefore

less profitable than setting M1. Regarding the length of the planning horizon, it can

be said that a longer planning horizon reduces the total profits of the OEM if he does

not account for the buy-back option. In turn, incorporating the buy-back option into

the spare parts fulfillment strategy allows the OEM to offer even longer service periods

while keeping the costs for this additional service at an adequate level.

Table 5.8 presents those parameters that change the advantageousness of the buy-back

option only slightly, i.e. the outflow rates ν1 and ν2, the buy-back prices p1 and p2,

and the initial segment sizes w̄1 and w̄2. It can be seen that a decreasing outflow from

one of the customer segments improves the relative performance of M1 slightly. This

is because the less flexible benchmark solution needs to increase the final order while

M1 can react by buying back more broken products. The influence of both buy-back

prices appears to be relatively small as well. The larger one of these prices is, the

smaller the possible gain becomes. The buy-back price effect shows its impact also

when the initial assignment of customers to segments is changed while keeping the

total number of customers constant at 400. If, for instance, the initial install base in

segment one comprises 300 customers while it contains only 100 in the second segment,

the average buy-back price will decrease as p1 and p2 remain at 10 and 20, respectively.

Interestingly, the deviation ∆1 remains constant if the number of customers in each

segment is multiplied by the same factor.

Finally, other parameters that do not influence the outcome significantly need to be

mentioned as well. Among these parameters, the failure rate f can be found. The

numerical investigation has revealed that a change in the failure rate does not have a

large impact on the profitability of the buy-back option as all decisions are increased

or decreased approximately proportionally. This means that for f = 5% the size of

the final order and all subsequent decisions decrease to about half of their initial base

case values. Furthermore, the variable cost of remanufacturing a broken product cr has

no substantial influence. This can be explained by the fact that all broken products

have to be remanufactured if they are not disposed of beforehand. Thus, no important
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Tab. 5.8: Optimal final order FO, discounted profit Π, first buy-back period z and

relative profit change ∆ in the benchmark solution and M1 for parameters

with relatively small impact.

Benchmark Optimal buy-back in M1

FOBM ΠBM FO1 z1 Π1 ∆1

base case 935 2390 621 42 3383 +41.6%

ν1

1% 1020 2222 643 41 3467 +56.1%

1.5% 935 2390 621 42 3383 +41.6%

2% 868 2492 598 42 3305 +32.6%

ν2

1% 1020 2222 645 41 3385 +52.4%

1.5% 935 2390 621 42 3383 +41.6%

2% 868 2492 590 42 3368 +35.1%

p1

5 935 2390 595 39 3534 +47.9%

10 935 2390 621 42 3383 +41.6%

15 935 2390 638 44 3249 +36%

p2

15 935 2390 605 41 3456 +44.6%

20 935 2390 621 42 3383 +41.6%

25 935 2390 628 42 3317 +38.8%

(w̄1/w̄2)

(300/100) 935 2390 594 40 3495 +46.2%

(200/200) 935 2390 621 42 3383 +41.6%

(100/300) 935 2390 635 41 3256 +36.2%

influence on the buy-back decision can be derived from this parameter. We would like

to refer the reader to the Appendix, page 165f, for the corresponding results.

Regarding the other model settings (M2 and M4), the examined numerical examples

reveal that the profit loss from restricted information availability and/or quantity and
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pricing flexibility only reacts slightly when one of the parameter values is altered. The

largest loss in total profit that has been observed is 2.7% between settings M4 and M1

in a situation with a large remanufacturing yield rate β=60%. However, tendencies

can be identified. The relative deviation between the profits of M4 and M1 seems

to increase for a small failure rate f , for a high per unit final lot cost cf , and for

comparably large holding costs hR and hM , respectively. These tendencies could also

be observed when comparing M2 and M1 but on a less prominent scale. For details,

we refer again to the Appendix, page 165f.

5.5 Conclusions

Due to a high profitability, after-sales management has received an ever increasing at-

tention in the recent past. This study was particularly motivated by the automotive

industry which continues to give long lasting mobility warranties for their cars. These

warranties are obviously an attractive instrument for the marketing and sales depart-

ment while they impose a challenge for the management of spare parts. This study

highlights that buying back broken products is, under certain circumstances which can

be found in practice, an attractive instrument to manage the end-of-life service period,

especially in situations in which options to resupply are limited to placing a final order

and later remanufacturing broken parts.

For different settings regarding the availability of information required for buy-back as

well as limited pricing and quantity flexibility we propose simple MILP models that are

able to find optimal strategies. After evaluating these strategies in a numerical study

we find, that buying back defective products is a beneficial substitute for building up

a large inventory of spare parts at the beginning of the planning horizon by procuring

parts in a final order. It seems that the availability of detailed information and lim-

itations of pricing and quantity flexibility do not affect the profitability of a product

recovery system with buy-back option substantially. A main reason for this result can

be found in the structural similarities of the optimal policies that could be observed by

numerically examining a representative base case. Interestingly though, the buy-back

is performed in form of campaigns in situations where the pricing flexibility is limited,
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i.e. a regular low price buy-back interval is interrupted by single periods in which a

high price is offered to the customers.

It was shown which parameters especially influence the profitability of the buy-back

option. Here it seems that those parameters determining the profit impact of the final

order size (like unit production and holding cost) seem to be of highest importance,

while the influence of buy-back related parameters like prices show only limited impact.

This is because our benchmark solution without buy-back only shows small flexibility

to react on parameter changes while in the buy-back case, a trade-off is struck between

the final order size and later buying back more or less products. In case of a high

remanufacturing yield rate, the system can be handled like a repair system (see, e.g.,

Sherbrooke, 2004) where the buy-back option is less favorable. If the cost of the

employed capital is high, it becomes more and more attractive to reduce the final order

and instead compensating the customers for not fulfilling the spare parts availability

guarantee.

This study is to our knowledge the first attempt to investigate the value of a buy-back

option in a closed-loop supply chain for spare parts. There are certainly some limita-

tions to this study which can be overcome by further research. We limit our analysis

to a MILP formulation which is numerically solved. Even though the numerical study

is restricted to parameters that do not change over time (like e.g. the failure rate or

customer valuation of their product), time dependent parameters can be addressed as

well. General structural properties of optimal solutions could be obtained by using op-

timal control methods, as have been successfully applied in product recovery systems

(see Kiesmüller et al., 2004; Kleber, 2006). Complementing our deterministic approach,

a stochastic simulation could be used to evaluate more realistic models involving un-

certainty. Here, due to the high flexibility, buying back broken products becomes an

even more attractive option. Finally, another extension would include the case where

multiple parts are included in a product and thus, the buy-back would yield inflows of

several remanufacturable parts.
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Fig. 5.3: Fulfillment of spare parts demand the benchmark solution

5.6 Appendix

5.6.1 Detailed discussion of policy structures

In the following, we discuss structural properties of optimal solutions. Since the main

effects are already observable when two customer segments are distinguished, we restrict

ourselves to that case.

Benchmark without buy-back. Figure 5.3 depicts the optimal solution structure.

Here, total demand for spare parts (the height of each bar) is presented over the entire

planning horizon. Thus, it can be seen that the total demand for spare parts is equal

to 40 units in the first period. As customers leave the service network, the demand for

spare parts declines over the planning horizon, reaching 31.8% of its first period’s value

in the last period. Since total demand for spare parts consists of the demand of two

different customer segments, the black line in Figure 5.3 indicates the first segment’s

demand for spare parts, and the distance between the height of each bar and the black

line depicts the second segment’s demand. Additionally, the color-coded bars in this

figure present the respective source from which the demand for spare parts has been

satisfied. Two phases can be distinguished without buy-back option. In the first phase

(periods 1 to 29) the demand for spare parts is satisfied completely from the final order.
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Fig. 5.4: Fulfillment of spare parts demand in case M1

All broken products returning to the OEM in this phase are immediately disassembled

and the parts obtained by this procedure are held in the recoverables inventory and

none is disposed of. In the second phase (periods 30 to 80) the strategic stock of

returned products built up in the first phase is used to serve the entire demand by

remanufacturing the recoverables inventory.

M1. In the following, we analyze how this structure changes when including the buy-

back option. Figure 5.4 depicts the development of spare part demand in setting M1

in the case of two customer segments. Although considerably shorter, both phases of

the benchmark solution can be found in the optimal solution of setting M1 as well.

While the first phase consists of 17 periods (from period 1 to 17) in which the entire

spare part demand is satisfied by acquisitions made in the final lot, the second phase

covers 23 periods (from period 18 to 40). In this phase, all demands are fulfilled by

remanufacturing broken products that have been brought to the recoverables inventory

in the first phase. In contrast to the benchmark solution, the recoverables inventory

is not depleted at the end of the second phase. In a third phase (starting in period

41), the OEM starts to buy back from the first customer segment. These products are

remanufactured instantly and are used to satisfy the current demand. The remaining

demand which cannot be satisfied by remanufacturing bought-back products from the

first segment is fulfilled by remanufacturing broken parts left in stock from the second
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Fig. 5.5: Fulfillment of spare parts demand in case M2

phase. This strategy is followed until the recoverables stock is depleted. Then, the

OEM buys back from both segments. Interestingly, no further stock is build up in the

recoverables inventory. Hence, the total buy-back quantity is set to just compensate

the yield loss. As the OEM has perfect knowledge of his customers and can offer each

customer an individual buy-back price, he will only procure broken products from the

first segment for the buy-back price p1.

M2. Figure 5.5 depicts the structure of the optimal solution if the presumption of

full pricing flexibility is lifted. One can still find the three phases already explained

for setting M1. However, quantity and pricing decisions change in the third phase due

to the limited pricing flexibility. In contrast to setting M1, the third phase of setting

M2 is characterized by switching price decisions. While in most periods the low price

p1 is set and broken products from the first customer segment are bought back only,

sporadically the second price p2 is set. In those ‘campaign’ periods a stock of broken

products is build up, i.e. more broken products are bought back than are actually

needed to satisfy the current period’s demand. This strategy is driven by the fact that

the OEM wants to set the price p2 as seldom as possible. Yet, the entire demand of

the second segment cannot be satisfied by only using bought-back products from the

first segment. Thus, without stock-keeping the OEM would be forced to set p2 in every

period, a strategy that cannot be optimal.
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Fig. 5.6: Fulfillment of spare parts demand in case M4

M4. The structure of the optimal solution of setting M4 is illustrated in Figure 5.6.

As there is no quantity flexibility in this setting, the OEM has to buy back all broken

products from both segments if the price p2 is set, i.e. he pays all customers in segment 1

a higher price than their reservation price. The third phase exhibits the same switching

pattern as in setting M2, except the fact that fewer periods can be observed during

which the higher price p2 is set. This can be explained by the missing quantity flexibility.

If the price p2 is set, the OEM has to buy back all products from the first and the second

customer segment. Thus, a higher temporary stock is build up in the recoverables

inventory which lasts longer to fulfill future spare part demands than in M2.

5.6.2 Results of the sensitivity analysis

The following Tables 5.9 and 5.10 present the results of the sensitivity analysis of all

settings examined (Benchmark, M1, M2, and M4).
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altered parameter Benchmark M4 M2 M1

FOBM ΠBM FO4 z4 Π4 ∆4 FO2 z2 Π2 ∆2 FO1 z1 Π1 ∆1

base case 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

β

40% 1122 836 689 35 2352 +181.2% 685 35 2366 +182.9% 689 36 2415 +188.7%

50% 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

60% 748 3821 545 48 4372 +14.4% 541 47 4383 +14.7% 541 47 4396 +15.1%

r

1.25% 935 4142 781 55 4493 +8.5% 777 55 4496 +8.5% 758 55 4513 +8.9%

2.5% 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

5% 935 567 471 29 2249 +296.3% 461 28 2263 +298.7% 462 29 2287 +303%

cf

1.5 935 3793 700 48 4332 +14.2% 694 48 4341 +14.5% 724 48 4369 +15.2%

3 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

4.5 935 986 559 35 2457 +149.1% 552 35 2478 +151.2% 553 36 2510 +154.4%

T

60 795 3156 644 42 3436 +8.9% 639 42 3437 +8.9% 628 42 3454 +9.4%

80 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

100 1039 1644 626 41 3327 +102.3% 620 41 3346 +103.5% 610 41 3371 +105%

(hR/hM )

(0.1/0.15) 935 2868 657 44 3569 +24.5% 654 44 3581 +24.9% 652 45 3604 +25.7%

(0.1/0.2) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(0.1/0.25) 935 1912 604 39 3138 +64.2% 590 38 3157 +65.1% 587 39 3185 +66.6%

(0.05/0.2) 935 3210 677 46 3789 +18% 677 46 3798 +18.3% 674 47 3816 +18.9%

(0.1/0.2) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(0.15/0.2) 935 1789 582 37 3056 +70.8% 586 38 3076 +71.9% 576 38 3108 +73.7%

(0.05/0.15) 935 3688 725 51 4061 +10.1% 718 50 4067 +10.3% 715 51 4082 +10.7%

(0.1/0.2) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(0.15/0.25) 935 1091 555 35 2785 +155.2% 549 35 2809 +157.5% 539 35 2846 +160.8%
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altered parameter Benchmark M4 M2 M1

FOBM ΠBM FO4 z4 Π4 ∆4 FO2 z2 Π2 ∆2 FO1 z1 Π1 ∆1

(ν1/ν2)

(1.5%/1%) 1020 2222 664 41 3335 +50.1% 649 40 3356 +51.1% 645 41 3385 +52.4%

(1.5%/1.5%) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(1.5%/2%) 868 2492 593 41 3335 +33.8% 589 41 3346 +34.3% 590 42 3368 +35.1%

(1%/1.5%) 1020 2222 651 41 3422 +54% 643 41 3438 +54.7% 643 41 3467 +56.1%

(1.5%/1.5%) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(2%/1.5%) 868 2492 604 41 3269 +31.2% 601 41 3283 +31.8% 598 42 3305 +32.6%

(1%/1%) 1105 2051 671 40 3412 +66.3% 680 41 3434 +67.4% 668 41 3468 +69.1%

(1.5%/1.5%) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(2%/2%) 801 2592 571 41 3259 +25.8% 568 41 3269 +26.1% 567 42 3289 +26.9%

(p1/p2)

(10/15) 935 2390 614 41 3423 +43.2% 603 40 3437 +43.8% 605 41 3456 +44.6%

(10/20) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(10/25) 935 2390 640 41 3276 +37.1% 635 41 3291 +37.7% 628 42 3317 +38.8%

(5/20) 935 2390 597 37 3488 +46% 600 38 3505 +46.7% 595 39 3534 +47.9%

(10/20) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(15/20) 935 2390 646 44 3220 +34.7% 644 44 3232 +35.2% 638 44 3249 +36%

(5/15) 935 2390 582 37 3567 +49.3% 578 37 3584 +50% 576 38 3612 +51.1%

(10/20) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(15/25) 935 2390 657 44 3151 +31.9% 661 45 3164 +32.4% 652 45 3187 +33.4%

(w̄1/w̄2)

(300/100) 935 2390 605 41 3473 +45.3% 595 40 3484 +45.8% 594 40 3495 +46.2%

(200/200) 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

(100/300) 935 2390 638 39 3217 +34.6% 642 40 3235 +35.4% 635 41 3256 +36.2%

cr

0.75 935 2808 612 40 3859 +37.4% 620 41 3877 +38% 610 41 3905 +39.1%

1.5 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

2.25 935 1971 629 41 2827 +43.5% 626 41 2840 +44.1% 623 42 2863 +45.3%

f

5% 468 1195 316 42 1652 +38.3% 318 42 1656 +38.6% 316 43 1679 +40.5%

10% 935 2390 626 41 3343 +39.9% 622 41 3358 +40.5% 621 42 3383 +41.6%

15% 1403 3584 916 40 5087 +41.9% 910 40 5112 +42.6% 911 41 5134 +43.2%
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