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Abstract: Asiatic acid, a pentacyclic triterpene, was converted into a series of piperazinyl, homopiper-
azinyl, and 1,5-diazocinyl spacered rhodamine conjugates, differing in the type of spacer and the
substitution pattern on the rhodamine moiety of the hybrids. The compounds were tested for cyto-
toxic activity in SRB assays and compound 12, holding an EC50 of 0.8 nM, was the most cytotoxic
compound of this series, but compound 18 (containing a ring expanded 1,5-diazocinyl moiety and
n-propyl substituents on the rhodamine) was the most selective compound exhibiting a selectivity
factor of almost 190 while retaining high cytotoxicity (EC50 = 1.9 nM, for A2780 ovarian carcinoma).

Keywords: asiatic acid; rhodamine conjugates; cytotoxicity

1. Introduction

Currently, a range of methodologies are being investigated for the targeted trans-
portation of biologically active molecules and medicinal agents to mitochondria. One
such approach involves the coupling of biologically active substances with cations from
lipophilic compounds of modest molecular mass, which are predisposed to accumula-
tion within mitochondria. This facilitation of entry into mitochondria is attributed to the
heightened transmembrane potential relative to the cellular membrane potential. The
facile traversal of these cationic entities through membranes has undergone comprehensive
scrutiny and is explicable by the expansive hydrophobic surface and substantial ionic ra-
dius exhibited by these cations. Among the delocalized lipophilic cations that traverse the
hydrophobic barriers of both plasma and mitochondrial membranes are Rhodamine-123,
rhodacyanine MKT-077, dequalinium, triphenylphosphonium, guanidinium cations, and
the recently uncovered cationic entity F16. Previous studies have shown acetylated con-
jugates of triterpene carboxylic acids with secondary cyclic amines and rhodamine B or
rhodamine 101 in the low nano-molar concentration range are cytotoxic to several differ-
ent human cancer cell lines [1–7]. Further studies revealed that these compounds act as
mitocans [8]. Furthermore, conjugates of triterpenes with only one acetyl group in ring A
(e.g., derived from oleanolic acid, ursolic acid, glycyrrhetinic acid, betulinic acid, or platanic
acid, etc.) are highly cytotoxic but are surpassed in efficacy by those compounds with
two or three acetyl groups, such as in maslinic acid [9], madecassic acid [10], tormentic
acid [11], euscaphic acid [3], and corosolic acid [12], but also conjugates of asiatic acid [13].
Most recently, an asiatic acid rhodamine hybrid was established as an excellent cytotoxic
agent holding cytotoxic activity in a sub-nanomolar concentration [13]. For these particular
conjugates, the degree of cytotoxicity was contingent upon the nature of the spacer linked
to the carboxyl group located on ring E. These conjugates, formed by combining asiatic
acid with rhodamine B, exhibited notable cytotoxicity against human tumor cell lines while
demonstrating a high degree of selectivity. Notably, a conjugate holding a homopiperazinyl
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spacer attached to a tri-acetylated asiatic acid skeleton along with rhodamine B displayed
a remarkably low EC50 value of 0.8 nM against A2780 ovarian cancer cells. Additional
experimentation involving staining revealed that this rhodamine B conjugate acted as a
mitocan, inciting apoptosis [13].

Further assessments utilizing 3D spheroid models for colon and breast cancer indi-
cated that these conjugates exhibited activity within the low nanomolar range, displaying
the capacity to surmount resistance observed with standard chemotherapeutic agents
commonly employed in clinical settings. Consequently, this hybrid engendered cytotoxic
responses that were comparable to those elicited by chemotherapy in both sensitive and
resistant tumor models. Investigations into mitochondrial function and ATP production
stemming from glycolysis and respiration substantiated the characterization of these hy-
brids as mitocans. Furthermore, these analyses unveiled a rapid disruption of cellular
energy metabolism as the principal mechanism of action, setting it apart from conventional
chemotherapeutic drugs. This distinct mechanism accounts for such hybrids’ efficacy in
overcoming resistance to chemotherapeutic agents [13].

In addition, a first trend was observed showing that those amide-spacered triterpenoid-
rhodamine hybrids with two acetyl groups in ring A were more cytotoxic than those with
only one acetyl group, and compounds with a 2α, 3β configuration of these acetyl groups
were superior to those compounds holding acetyl groups at positions C-2 and C-3 in a
different configuration [3]. Thus, the outcomes unveiled a heightened cytotoxicity exhibited
by the asiatic acid conjugates in comparison with the analogous counterparts derived from
oleanolic, ursolic, or maslinic acid. Remarkably, these effects surpassed the potency of
previously documented derivatives originating from betulinic and glycyrrhetinic acid.
These findings provide conclusive validation for our initial conjecture, signifying that not
only the triterpene framework and the nature of the amide play a role, but the count of
acetoxy groups and the specific linkage position of the rhodamine moiety profoundly
influence both the cytotoxic potency and the preferential targeting of tumor cells.

It is well known that lipophilic cations exhibit diverse chemical architectures and
encompass distinct mechanisms underlying mitochondrial toxicity. For instance, dequalin-
ium chloride functions through the inhibition of NADH-ubiquinone reductase within the
mitochondrial respiratory chain, thereby fostering excessive reactive oxygen species (ROS)
generation and triggering the opening of the mitochondrial permeability transition (MPT)
pore. As mentioned above, the influence of rhodamine-123 manifests in the disruption of
mitochondria’s bioenergetic functions, achieved via the inhibition of ATP synthase. The
compound denoted as F16 elicits apoptosis by diminishing mitochondrial resistance to
the initiation of the calcium-dependent MPT pore. This difference might also apply to
substituted rhodamines. Hence, a clear indication as to whether rhodamine B conjugates
are superior to those with a rhodamine 101 moiety has not yet been obtained [2]. More
recently, it was discovered for piperazinyl-spacered rhodamine conjugates that the substi-
tution pattern on the rhodamine skeleton exerts some effects onto the cytotoxicity of the
compounds as well [3]. We have recently shown that the presence of a 1,5-diazacyclooctane
spacer (which has a higher degree of molecular flexibility than a piperazinyl or homopiper-
azinyl residue) leads to hybrids with nanomolar cytotoxicity [4]. However, a systematic
study further investigating the dependence of the observed cytotoxicity on the type of
cyclic spacer in combination with spacers of different ring sizes is also missing. It has only
been shown that the conjugates must contain lipophilic cations [14–21]. While lipophilic
cations derived from structurally simple ammonium salts showed only moderate cytotoxi-
city [22,23], diminished cytotoxicity was also observed for BODIPY conjugates [24], and
also for hybrids holding a malachite green [25] scaffold. Conjugates holding an ethylene-
diamine spacer and a rhodamine B moiety were also inactive [6]. The latter compounds
do not form cationic structures under physiological conditions but rather exist as neutral
compounds [26]. However, whether the triterpene had an ursane or oleanane backbone
does not seem to affect cytotoxicity, as shown by a comparison of analogous of maslinic
acid and corosolic acid [3]. Previous research has failed to identify which spacer (piper-
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azine, homopiperazine, or 1,5-diazacyclooctane) is best suited to active compounds with
high cytotoxicity.

2. Results

From these premises, it was concluded that asiatic acid (1, Scheme 1) should be an
ideal starting material for systematic studies. Asiatic acid holds three hydroxyl groups at
positions C-2, C-3, and C-23; it is commercially available at reasonable prices. In addition,
the two hydroxyl groups in ring A are configured 2α,3β.
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n-Bu 47%; (c) TosCl, H2N-(CH2)3-NH2, no solvent, 80 °C, 30 min, 83%; (d) TosCl, HO-(CH2)3-OH, 
pyridine, 0 °C, 30 min, 87%; (e) NaOMe, MeOH, DMF, 80 °C, 12 h, 84%; (f) HBr (33% in glacial acetic 
acid), 80 °C, 3 h, 92%; (g) Ac2O, DCM, NEt3, DMAP (cat.), 21 °C, 24 h, 97%; (h) DCM, (COCl)2, DMF 
(cat), NEt3; then piperazine ( 3, 86%), homopiperazine ( 4, 79%), or 1,5-diazocinyl dihydrobro-
mide ( 5, 68%); (i) Rh1–Rh5, (COCl)2, NEt3, DCM, DMF (cat.), 21 °C, 3 h, then 3–5, NEt3, DMAP 
(cat.), 1 h: 6 (59%), 7 (80%), 8 (57%), 9 (49%), 10 (55%), 11 (49%), 12 (57%), 13 (64%), 14 (58%), 15 
(63%), 16 (55%), 17 (60%), 18 (68%), 19 (70%), 20 (64%). 

Sulforhodamine (SRB) assays were performed to evaluate the cytotoxicity of the com-
pounds. First, the cytotoxicity of the different rhodamines was determined; the results of 
these assays are compiled in Tables 1 and 2 and depicted in Figure 1. 
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alog Rh3. Rh5 (=rhodamine 101) was about as cytotoxic as the propyl-substituted rhoda-
mine Rh3. 

Scheme 1. Synthesis of starting material (rhodamines Rh1–Rh4; structure of Rh5) and com-
pounds 2–20; reactions and conditions: (a) DMF, K2CO3; for R = Me (from MeI, 52%), for R = Et (from
EtBr, 67%), for R = n-Prop (from n-Prop-Br, 61%), for R = n-Bu (from n-Bu-Br, 68%), 3–8 h, 21 ◦C;
(b) phthalic anhydride, AlCl3 (cat.), 5–60 min, 200 ◦C: for R = Me 35%, R = Et 45%, R = n-Prop 42%,
R = n-Bu 47%; (c) TosCl, H2N-(CH2)3-NH2, no solvent, 80 ◦C, 30 min, 83%; (d) TosCl, HO-(CH2)3-OH,
pyridine, 0 ◦C, 30 min, 87%; (e) NaOMe, MeOH, DMF, 80 ◦C, 12 h, 84%; (f) HBr (33% in glacial acetic
acid), 80 ◦C, 3 h, 92%; (g) Ac2O, DCM, NEt3, DMAP (cat.), 21 ◦C, 24 h, 97%; (h) DCM, (COCl)2, DMF
(cat), NEt3; then piperazine (→ 3, 86%), homopiperazine (→ 4, 79%), or 1,5-diazocinyl dihydrobro-
mide (→ 5, 68%); (i) Rh1–Rh5, (COCl)2, NEt3, DCM, DMF (cat.), 21 ◦C, 3 h, then 3–5, NEt3, DMAP
(cat.), 1 h: 6 (59%), 7 (80%), 8 (57%), 9 (49%), 10 (55%), 11 (49%), 12 (57%), 13 (64%), 14 (58%), 15 (63%),
16 (55%), 17 (60%), 18 (68%), 19 (70%), 20 (64%).
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Since the amide-bound spacer must be a secondary amine group, piperazine, ho-
mopiperazine (perhydro-1,4-diazepane), and the ring-extended analog octahydro-1,5-
diazocine (a “bis-homopiperazine”) were selected. While the first two amines are com-
mercially available, the latter is not commercially available but can be synthesized via
various routes reported in the literature [27–36]. Many different routes were tried, but in
the end, only one proved to be truly feasible [37]. The tosylation of 1,3-propane-diamine
(Scheme 1) and 1,3-propanediol with p-toluenesulfonyl chloride gave the correspond-
ing di-tosylates. Their reaction with sodium methoxide in refluxing methanol afforded
1,5-bis(p-toluenesulfonyl)-1,5-diazacyclooctane in an 84% isolated yield. Its treatment with
HBr (33% in glacial acetic acid) in the presence of an excess of thioanisole [37] afforded
octahydro-1,5-diazocine as dihydromide in a 92% isolated yield. This meant that the third
spacer to be used in this study was also now readily available and could be prepared in
larger quantities.

A further problem arose in the selection of the differently substituted rhodamines.
Whilst rhodamine B and rhodamine 101 are commercially available, this is not the case
for the analogs that differ in the substituents on the two nitrogen substituents of the rho-
damine. The syntheses of the alkyl-substituted rhodamines were carried out as previously
reported [13]. Briefly, the reaction of 3-aminophenol with an excess of the corresponding
alkyl halide and potassium carbonate in DMF at 100 ◦C for 3–8 h afforded 3-(dialkylamino)-
phenols in a 50–70% yield. Their reaction with phthalic anhydride in the presence of
aluminium chloride (catalytic amounts) at 200 ◦C followed by chromatography (silica gel,
CHCl3/MeOH mixtures) afforded the rhodamines Rh1–Rh4 violet solids. Although the
overall yields obtained for the rhodamines were low to moderate (but in excellent agree-
ment with reported values), no attempts have been made to improve the yields. Significant
product loss was observed during the purification of these compounds.

Thus, all the building blocks were now available. Asiatic acid (1) was acetylated
(Scheme 1) as previously described, and tri-O-acetyl-asiatic acid (2) was obtained in a 97%
yield [13]. The activation of 2 with oxalyl chloride afforded an intermediate acid chloride
which was reacted with piperazine, homopiperazine, and its ring-expanded homolog,
octahydro-1,5-diazocine, to give amides 3–5. The reaction with the rhodamines Rh1–Rh5
(previously activated with oxalyl chloride) gave the piperazine-derived conjugates 6–10,
the homopiperazine derivatives 11–15, and the ring-expanded compounds 16–20. All
conjugates exhibited their typical purple color, clearly demonstrating that they are present
in a cationic form [6].

Sulforhodamine (SRB) assays were performed to evaluate the cytotoxicity of the
compounds. First, the cytotoxicity of the different rhodamines was determined; the results
of these assays are compiled in Tables 1 and 2 and depicted in Figure 1.

Table 1. Cytotoxicity of rhodamines Rh1–Rh5 (in µM) from SRB assays after 72 h of treatment:
averaged from three independent experiments each in triplicate; confidence interval CI = 95%. Human
tumor cell lines: A375 (melanoma), HT29 (colorectal carcinoma), MCF7 (breast adenocarcinoma),
HeLa (cervical adenocarcinoma), A2780 (ovarian carcinoma), NIH 3T3 (non-malignant fibroblasts,
murine); cut-off of the assay 30 µM; n.d. not determined; doxorubicin (DX) has been used as a
positive standard.

A375 HT29 MCF7 A2780 HeLa NIH 3T3

Rh1 >30 >30 >30 >30 >30 >30
Rh2 >30 >30 >30 >30 >30 >30
Rh3 8.2 ± 0.2 9.3 ± 0.4 6.4 ± 0.4 6.7 ± 0.7 8.0 ± 0.7 12.0 ± 0.7
Rh4 4.3 ± 0.1 4.9 ± 0.3 3.08 ± 0.06 3.4 ± 0.1 4.3 ± 0.3 4.3 ± 0.1
Rh5 11.2 ± 1.8 18.5 ± 1.8 8.2 ± 0.8 8.0 ± 1.5 11.8 ± 1.1 11.9 ± 1.3
DX n.d. 0.9 ± 0.2 1.1 ± 0.3 0.02 ± 0.01 n.d. 11.9 ± 1.3
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Table 2. Cytotoxicity of conjugates 6–20 (in µM) from SRB assays after 72 h of treatment: averaged
from three independent experiments each in triplicate; confidence interval CI = 95%. Human
tumor cell lines: A375 (melanoma), HT29 (colorectal carcinoma), MCF7 (breast adenocarcinoma),
HeLa (cervical adenocarcinoma), A2780 (ovarian carcinoma), NIH 3T3 (non-malignant fibroblasts,
murine); cut-off of the assay 30 µM; n.d. not determined; doxorubicin (DX) has been used as a
positive standard.

A375 HT29 MCF7 A2780 HeLa NIH 3T3

6 0.15 ± 0.008 0.23 ± 0.08 0.15 ± 0.03 0.043 ± 0.008 0.70 ± 0.2 0.55 ± 0.06
7 0.027 ± 0.009 0.026 ± 0.009 0.034 ± 0.009 0.0056 ± 0.0006 0.20 ± 0.1 0.33 ± 0.08
8 0.032 ± 0.003 0.031 ± 0.007 0.034 ± 0.005 0.0055 ± 0.0005 0.16 ± 0.05 0.44 ± 0.09
9 0.016 ± 0.003 0.026 ± 0.008 0.05 ± 0.01 0.0049 ± 0.0007 0.21 ± 0.05 0.40 ± 0.1
10 0.045 ± 0.004 0.05 ± 0.02 0.05 ± 0.01 0.009 ± 0.002 0.22 ± 0.05 0.25 ± 0.05
11 0.039 ± 0.003 0.02 ± 0.01 0.028 ± 0.005 0.0032 ± 0.0004 0.40 ± 0.1 0.30 ± 0.1
12 0.0028 ± 00005 0.0055 ± 0.0023 0.0071 ± 0.0021 0.0008 ± 0.0001 0.0177 ± 0.0049 0.0650 ± 0.0262
13 0.0039 ± 0.0006 0.006 ± 0.001 0.010 ± 0.001 0.0011 ± 0.0001 0.041 ± 0.009 0.10 ± 0.05
14 0.014 ± 0.001 0.025 ± 0.005 0.049 ± 0.006 0.0045 ± 0.0004 0.15 ± 0.05 0.20 ± 0.1
15 0.008 ± 0.001 0.010 ± 0.006 0.019 ± 0.006 0.0031 ± 0.0005 0.08 ± 0.03 0.14 ± 0.05
16 0.07 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.006 ± 0.001 0.50 ± 0.2 0.40 ± 0.09
17 0.03 ± 0.01 0.03 ± 0.01 0.025 ± 0.02 0.007 ± 0.002 0.06 ± 0.01 0.45 ± 0.02
18 0.0074 ± 0.0009 0.012 ± 0.004 0.017 ± 0.002 0.0019 ± 0.0002 0.07 ± 0.02 0.36 ± 0.05
19 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.005 0.006 ± 0.002 0.17 ± 0.08 0.24 ± 0.08
20 0.02 ± 0.01 0.01 ± 0.005 0.0039 ± 0.002 0.004 ± 0.001 0.11 ± 0.06 0.32 ± 0.02

DX n.d. 0.9 ± 0.2 1.1 ± 0.3 0.02 ± 0.01 n.d. 11.9 ±1.3
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Figure 1. Cytotoxicity of compounds 6–20 for different human tumor cell lines.

Thereby methyl- and ethyl (=rhodamine B)-substituted rhodamines Rh1 and Rh2 were
found to not be cytotoxic within the limits of the assay (EC50 > 30 µM) for all human tumor
cell lines but also for non-malignant fibroblasts (NIH 3T3). Increased cytotoxicity, however,
was observed for the rhodamines carrying propyl or butyl moieties. Thereby, the butyl-
substituted rhodamine Rh4 was more cytotoxic than the propyl-substituted analog Rh3.
Rh5 (=rhodamine 101) was about as cytotoxic as the propyl-substituted rhodamine Rh3.

As a result, the A2780 cell line (ovarian cancer) proved to be the most sensitive for
the piperazinyl spacer compounds 6–10, with the lowest EC50 values determined ranging
from 0.043 µM to 0.0049 µM. When compared with non-malignant NIH 3T3 fibroblasts, a
selectivity factor (calculated as the ratio EC50, tumor cell/EC50, NIH 3T3) of 82 was observed,
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indicating that this compound is more cytotoxic to cancer cells than to non-malignant
cells. In this series of compounds, the butyl-substituted rhodamine-conjugated asiatic acid
hybrid 9 also proved to be the best for A375 (melanoma) and HT29 (colon adenocarcinoma)
cells. A summary of SI values is depicted in Figure 2.
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Figure 2. Selectivity index (ratio EC50,malignantcellline/EC50non-malignantNIH3T3) for compounds 6–20.

Interestingly, for the homopiperazinyl conjugates 11–15, the compounds that per-
formed best were those holding a rhodamine B (Rh2) unit, and for A2780 cells, a low EC50
value of 0.8 nm was determined. The selectivity factor (relative to NIH 3T3) was about
81. A375, HT29, MCF7 (breast adenocarcinoma), and HeLa (cervix carcinoma) cells also
responded well to this compound with low EC50 values between 0.0028 and 0.0177 µM.

Increasing the ring size of the spacer using the 1,5-diazocinyl spacer changed the de-
pendence of cytotoxicity on the residue attached to the rhodamine core since the rhodamine
B derivatives no longer performed best compared with the N, N-dipropyl substituted com-
pound 18; therefore, for A2780 cells, an EC50 = 1.9 nM was determined, and an excellent
selectivity factor of almost 190 was thereby observed.

Rhodamine 101 (Rh5) conjugates behaved—more or less—like the alkyl-substituted
rhodamine conjugates, and the lowest EC50 values were again measured for A2780 cells,
and thereby the lowest EC50 value was 0.004 µM (selectivity factor = 80).

In conclusion, all human tumor cell lines were shown to be very sensitive to the
spacered asiatic acid-rhodamine hybrids, and a significant influence of the substitution
pattern of the rhodamine onto the cytotoxic effect was observed. A similar behavior was
observed for the influence of the amide spacer linking the triterpenoid skeleton and the
rhodamine part. For example, for A2780 cells and propyl substituents, the EC50 decreased
for the piperazinyl-spacered 8 (5.5 nM) to EC50 = 1.1 nM (for 13) but increased again slightly
for 18 (EC50 = 1.9 nM). Although it is not possible to generalize which spacer/rhodamine
combination performed best across all cell lines, it appears that homopiperazinyl and
1,5-diazocinyl derivatives are superior to those carrying a “simple” piperazinyl moiety. Our
previous studies have shown that triterpenoic acid–rhodamine conjugates act as mitocans,
shutting down mitochondrial ATP production [13]. This is in excellent agreement with
the results of Modico-Napolitano et al. for rhodamine 123 [5]. These researchers showed
that the mitochondrial ATPase is the primary biochemical target for rhodamine 123, but
they also found that differences in both mitochondrial membrane potential and ATPase
sensitivity contribute to selective cytotoxicity for certain cell types in vitro [4,5]. This also
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applies, for example, to compound 18 (Figure 3). The simultaneous incubation of A375
cells with 18 and MitoTracker green shows that 18 is also preferentially incorporated into
the mitochondria.
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Figure 3. Incubation of A375 cells (48 h) with Mito Tracker green and compound 18: (A): detection of
Mito Tracker green; (B): detection of compound 18; (C): merged pictures (A,B); (D) control.

Investigations employing 3D spheroid models as well as multi-resistant tumor cell
lines (such as MDA-MB 231) will be carried out in due course to investigate the potential of
these conjugates in more detail.

3. Conclusions

A series of piperazinyl-, homopiperazinyl-, and 1,5-diazocinyl-spacered rhodamine
conjugates were prepared from asiatic acid, a naturally occurring pentacyclic triterpene.
The hybrids were tested for cytotoxic activity in SRB assays with respect to different
ring sizes of the spacer and to a different substitution pattern of the rhodamine scaffold.
Therefore, compound 12 holding an EC50 of 0.8 nM was the most cytotoxic compound
of this series but 18 with EC50 = 1.9 nM was the most selective compound exhibiting a
selectivity factor of almost 190.

4. Experimental Section

Experimental equipment: as previously described [2,4] biological assays were per-
formed as previously reported employing cell lines obtained from the Department of On-
cology [Martin-Luther-University Halle Wittenberg; they were bought from ATCC [2,4,7]].
Rhodamine 101 B, as well as asiatic acid, were obtained from local vendors and used
as received.

For the SRB assay and staining experiments: as previously described [2,4].

4.1. Synthesis of 1,5-Diazocinyl Dihydrobromide

This compound was prepared as described in the literature [4,37].
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4.2. General Procedure for the Synthesis of Triterpenoic Amides 3–5 (GP A)

Compound 1 (1 eq.) was dissolved in dry DCM (10 mL), and oxalyl chloride (4 eq.),
DMF (0.24 eq.) and NEt3 (0.24 eq.) were added. The mixture was stirred for 2 h at ambient
temperature, the volatiles were removed in vacuo, and the residue was dissolved in dry
DCM (10 mL). A solution of the piperazine, homopiperazine or 1,5-diazocinyl dihydromide
(3 eq.) in dry DCM, NEt3 (1 eq.; 4 eq. when using 1,5-diazocinyl dihydromide) and DMAP
(cat.) was added, and stirring was continued until completion of the reaction (as indicated
by TLC). The solvent was removed under reduced pressure, and the crude product was
subjected to column chromatography to yield compounds 3–5.

4.3. General Procedure for Synthesis of Rhodamine B Conjugates 6–20 (GP B)

Rhodamine Rh1–Rh5 (1.5 eq.), oxalyl chloride (6 eq.), DMF (0.2 eq.), and NEt3 (0.2 eq.)
in dry DCM (30 mL) were allowed to react as described above (GP A), the volatiles were
removed, and the residue was dissolved in dry DCM (30 mL). To this solution, com-
pounds 3–5 (1 eq.), NEt3 (1.5 eq.), and DMAP (cat.) were added. After stirring for 1 h, the
solvent was removed under reduced pressure, and the resulting solid was subjected to
column chromatography to yield compounds 6–20, each as a purple solid.

4.4. Tri-O-Acetyl-Asiatic Acid [(2α,3β,4α) 2,3,23-Tris(acetyloxy)-urs-12-en-28-oic Acid] (2)

Acetylation of asiatic acid (1, 11.2 g, 21.8 mmol) in dry DCM (250 mL) with Ac2O
(20.0 mL, 210 mmol) in the presence of NEt3 (26 mL, 180 mmol) and catal. DMAP for 24 h
followed by usual aq. workup and chromatography (SiO2, hexanes/ethyl acetate, 7:3) gave
2 (97%) as a colorless solid; m.p. 160–162 ◦C (lit.: [13] 160–163 ◦C); [α]20

D = +35.8◦ (c 0.25,
CHCl3) [lit.: [13] [α]20

D = +34.71◦ (c 0.35, CHCl3)]; RF = 0.29 (hexanes/ethyl acetate, 7:3); MS
(ESI, MeOH): m/z = 615.2 (15% [M+H]+, 637.3 (100%, [M+Na]+).

4.5. (2α,3β,4α)28-Oxo-28-Piperazin-1-yl-urs-12-ene-2,3,23-Triyl Triacetate (3)

Following GP A, from 2 (200 mg, 0.32 mmol) and piperazine (85 mg, 0.97 mmol),
3 (190 mg, 86%) was obtained as a colorless solid; m.p. 158–160 ◦C (lit.: [13] 157–160 ◦C);
[α]20

D = +17.20◦ (c 0.31, CHCl3), [lit. [13] [α]20
D = +17.48◦ (c 0.27, CHCl3)]; RF = 0.33 (SiO2,

CHCl3/MeOH, 9:1); MS (ESI, MeOH): m/z = 683.4 (100%, [M+H]+).

4.6. (2α,3β,4α)28-(1,4-Diazepan-1-yl)-28-oxo-urs-12-ene-2,3,23-Triyl Triacetate (4)

Following GP A, from 2 (500 mg, 0.81 mmol) and homopiperazine (210 mg, 2.43 mmol),
4 (445 mg, 79%) was obtained as a colorless solid; m.p. 185–187 ◦C (lit.: [13] 185.3–186.3 ◦C));
[α]20

D = +14.5◦ (c 0.21, CHCl3), [lit.: [13] [α]20
D = +14.38◦ (c 0.145, CHCl3)]; RF = 0.40 (SiO2,

CHCl3/MeOH, 9:1); MS (ESI, MeOH): m/z = 697.4 (100%, [M+H]+).

4.7. (2α,3β,4α)28-(1,5-Diazocin-1-yl)-28-oxo-urs-12-ene-2,3,23-Triyl Triacetate (5)

Following GP A, from 2 (400 mg, 0.80 mmol) and 1,5-diazocinyl dihydromide (660 mg,
2.4 mmol), 5 (390 mg, 68%) was obtained as a colorless solid; m.p. 187–190 ◦C (lit. [4] 188–191 ◦C);
RF = 0.36 (CHCl3/MeOH, 9:1); [α]20

D = −29.7◦ (c 0.02, CHCl3) [lit.: [4] [α]20
D =−30.2◦ (c 0.015,

CHCl3)]; MS (ESI, MeOH/CHCl3, 4:1): m/z = 711.2 (100%, [M+H+); analysis calcd for C42H66N2O7
(711.00): C 70.95, H 9.36, N 3.94; found: C 70.71, H 9.63, N 3.75.

4.8. (2α,3β,4α)-9-[2-{[4-(2,3,23-Tris(acetyloxy)-urs-12-en-28-oyl)-Piperazinyl]Carbonyl}Phenyl]-
3,6-bis(Dimethylamino)-Xanthylium Chloride (6)

Following GB B, from 3 (150 mg, 0.22 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 6 (140 mg, 59%) was obtained as a violet solid; m.p. = 248–250 ◦C;
Rf = 0.62 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 552 nm (4.71); IR
(ATR): ν = 2923m, 2869w, 1737m, 1630m, 1592vs, 1534w, 1493m, 1457w, 1406m, 1365m, 1340s,
1231s, 1184vs, 1124m, 1042m, 1004m, 926m, 823m, 699m, 596w, 580w, 517w cm−1; 1H NMR
(500 MHz, CDCl3): δ = 7.71–7.60 (m, 2H, 44-H, 46-H), 7.55–7.48 (m, 1H, 47-H), 7.39–7.29
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(m, 1H, 45-H), 7.28–7.22 (m, 2H, 51-H), 7.07–6.93 (m, 2H, 50-H), 6.86–6.77 (m, 2H, 53-H),
5.19–5.08 (m, 2H, 12-H, 2-H), 5.04 (d, J = 10.3 Hz, 1H, 3-H), 3.83 (d, J = 11.6 Hz, 1H, 24-Ha),
3.54 (d, J = 11.9 Hz, 1H, 24-Hb), 3.43–3.19 (m, 8H, 37-H, 38-H, 39-H, 40-H), 3.32 (s, 12H,
55-H, 56-H), 2.41–2.22 (m, 1H, 18-H), 2.05 (s, 3H, 32-H), 2.04–2.00 (m, 1H, 1-Ha), 1.99 (s, 3H,
34-H), 1.94 (s, 3H, 36-H), 1.93–1.85 (m, 3H, 11-H, 16-Ha), 1.71–1.63 (m, 2H, 16-Hb, 22-Ha),
1.60–1.54 (m, 1H, 9-H), 1.53–1.19 (m, 9H, 22-Hb, 21-Ha, 7-Ha, 6-H, 19-H, 5-H, 21-Hb, 7-Hb),
1.10 (d, J = 12.2 Hz, 1H, 1-Hb), 1.04 (s, 4H, 25-H, 15-Ha), 1.02 (s, 4H, 27-H, 15-Hb), 0.89 (s, 4H,
20-H, 30-H), 0.85 (s, 3H, 23-H), 0.82–0.79 (m, 3H, 29-H), 0.63 (s, 3H, 26-H) ppm; 13C NMR
(126 MHz, CDCl3): δ = 175.9 (C-28), 170.9 (C-35), 170.5 (C-31), 170.4 (C-33), 167.7 (C-41),
157.6 (C-54), 156.4 (C-48, C-52), 144.1 (C-13), 135.2 (C-43), 131.8 (C-51), 130.5 (C-42), 130.4
(C-46), 130.4 (C-44), 130.2 (C-45), 127.8 (C-47), 124.7 (C-12), 114.5 (C-50), 114.0 (C-49), 96.9
(C-53), 74.9 (C-3), 70.0 (C-2), 65.3 (C-24), 55.1 (C-18), 48.7 (C-17), 47.7 (C-9), 47.6 (C-5), 43.8
(C-1), 42.2 (C-37, C-38, C-39, C-40), 42.2 (C-14), 42.0 (C-4), 41.2 (C-55, C-56), 39.5 (C-19), 38.7
(C-20), 37.9 (C-8, C-10), 34.2 (C-22), 32.4 (C-7), 30.4 (C-21), 28.1 (C-15), 23.4 (C-11, C-16), 23.4
(C-27), 21.2 (C-36), 21.1 (C-30), 21.0 (C-34), 20.8 (C-32), 17.9 (C-6), 17.4 (C-29), 17.1 (C-25),
16.9 (C-26), 14.0 (C-23) ppm; MS (ESI, MeOH/CHCl3): m/z = 1052 (100%, [M-Cl]+); analysis
calcd for C64H834N4O9Cl (1087.84): C 70.66, H 7.69, N 5.15; found: C 70.39, H 7.91, N 4.96.

4.9. (2α,3β,4α)-9-[2-{[4-(2,3,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-
Piperazinyl]Carbonyl}Phenyl]-3,6-Bis(Diethylamino)-Xanthylium Chloride) (7)

Following GP B, from 3 (70 mg, 0.10 mmol) and rhodamine B (72 mg, 0.15 mmol),
7 (93 mg, 80%) was obtained as a purple solid; m.p. 241–243 ◦C (lit.: [4] 244–246 ◦C);
Rf = 0.28 (SiO2, CHCl3/MeOH, 9:1); MS (ESI, MeOH): m/z = 1107.7 (100%, [M-Cl]+).

4.10. (2α,3β,4α)-9-[2-{[4-(2,3,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-Piperazinyl]Carbonyl}Phenyl]-
3,6-Bis(Dipropylamino)-Xanthylium Chloride (8)

Following GP B, from 3 (150 mg, 0.22 mmol) followed by chromatography (SiO2,
CHCl3/MeOH 9:1) gave 8 (150 mg, 57%) as a violet solid; m.p. 226–228 ◦C; Rf = 0.55 (SiO2,
CHCl3/MeOH 8:2); UV-Vis (MeOH): λmax (log ε) = 563 nm (4.72); IR (ATR): ν = 2926m,
2872w, 1739m, 1633m, 1589vs, 1545w, 1456m, 1410m, 1366m, 1336s, 1301w, 1230vs, 1178s,
1132m, 1100m, 1041m, 1004m, 962w, 940w, 918m, 825w, 758w, 597w, 576w, 506w cm−1;
1H NMR (500 MHz, CDCl3): δ = 7.71–7.62 (m, 2H, 45-H, 46-H), 7.56–7.48 (m, 1H, 47-H),
7.37–7.32 (m, 1H, 44-H), 7.31–7.22 (m, 2H, 51-H), 7.01–6.94 (m, 2H, 50-H), 6.76–6.69 (m, 2H,
53-H), 5.19–5.09 (m, 2H, 12-H, 2-H), 5.06 (d, J = 10.3 Hz, 1H, 3-H), 3.83 (d, J = 11.8 Hz, 1H,
24-Ha), 3.56 (d, J = 11.9 Hz, 1H, 24-Hb), 3.49 (t, J = 7.9, 7.2 Hz, 8H, 55-H, 56-H), 3.46–3.24
(m, 8H, 37-H, 38-H, 39-H, 40-H), 2.39–2.30 (m, 1H, 18-H), 2.07 (s, 3H, 32-H), 2.05–2.01 (m,
1H, 1-Ha), 2.00 (s, 3H, 34-H), 1.96 (s, 3H, 36-H), 1.94–1.87 (m, 3H, 11-H, 16-Ha), 1.76–1.66
(m, 10H, 57-H, 59-H, 16-Hb, 22-Ha), 1.62–1.56 (m, 2H, 9-H, 22-Hb), 1.50–1.17 (m, 8H, 21-Ha,
7-Ha, 6-H, 19-H, 5-H, 21-Hb, 7-Hb), 1.12–1.08 (m, 2H, 1-Hb, 15-Ha), 1.05 (s, 3H, 25-H), 1.03
(s, 4H, 27-H, 15-Hb), 1.00 (t, J = 7.4 Hz, 12H, 58-H), 0.92–0.90 (m, 4H, 20-H, 30-H), 0.86 (s,
3H, 23-H), 0.84–0.81 (m, 3H, 29-H), 0.67 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3):
δ = 176.1 (C-28), 171.0 (C-35), 170.6 (C-31), 170.4 (C-33), 167.9 (C-41), 157.8 (C-54), 156.3
(C-48), 156.2 (C-52), 143.2 (C-13), 135.1 (C-43), 132.3 (C-51), 130.8 (C-42), 130.5 (C-44), 130.4
(C-45), 130.4 (C-46), 127.8 (C-47), 124.7 (C-12), 114.6 (C-50), 114.0 (C-49), 96.6 (C-53), 74.9
(C-3), 70.0 (C-2), 65.4 (C-24), 54.7 (C-18), 53.9 (C-55, C-56), 49.0 (C-17), 47.7 (C-9), 47.6 (C-5),
47.4 (C-37, C-38, C-39, C-40), 43.8 (C-1), 42.2 (C-14), 42.0 (C-4), 39.5, 39.3 (C-19), 38.7 (C-20),
37.9 (C-8, C-10), 34.3 (C-22), 32.6 (C-7), 30.5 (C-21), 28.1 (C-15), 23.4 (C-11, C-16), 23.4 (C-27),
21.3 (C-36), 21.2 (C-30), 21.0 (C-34), 20.9 (C-32), 20.7 (C-57, C-59), 18.0 (C-6), 17.4 (C-29),
17.1 (C-25), 17.0 (C-26), 14.0 (C-23), 11.4 (C-58, C-60) ppm; MS (ESI, MeOH): m/z = 1164.5
(100%, [M-Cl]+); analysis calcd for C72H99N4O9Cl (1200.03): C 72.06, H 8.32, N 4.67; found:
C 71.85, H 8.53, N 4.40.
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4.11. (2α,3β,4α)-9-[2-{[4-(2,3,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-Piperazinyl]Carbonyl}Phenyl]-
3,6-Bis(Dibutylamino)-Xanthylium Chloride (9)

Following GP B, from 3 (200 mg, 0.29 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 9 (180 mg, 0.14 mmol, 49%) was obtained as a violet solid; m.p.
222–226 ◦C; Rf = 0.44 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 567 nm
(4.91); IR (ATR): ν = 2929m, 2870w, 1740m, 1633w, 1587vs, 1528w, 1506w, 1462m, 1429w,
1411s, 1394m, 1366m, 1340s, 1290m, 1219vs, 1188w, 1176s, 1133m, 1109m, 1042m, 1004m, 962w,
922m, 823w, 755w, 732w, 705w, 664w, 641w, 597w, 509w cm−1; 1H NMR (500 MHz, CDCl3):
δ = 7.69–7.64 (m, 2H, 45-H, 46-H), 7.55–7.50 (m, 1H, 47-H), 7.35–7.30 (m, 1H, 44-H), 7.28–7.21
(m, 2H, 51-H), 7.07–6.91 (m, 2H, 50-H), 6.70 (s, 2H, 53-H), 5.15 (s, 1H, 12-H), 5.13–5.09 (m,
1H, 2-H), 5.04 (d, J = 10.3 Hz, 1H, 3-H), 3.81 (d, J = 11.7 Hz, 1H, 24-Ha), 3.60–3.55 (m, 1H,
24-Hb), 3.54–3.48 (m, 8H, 55-H, 59-H), 3.39–3.24 (m, 8H, 37-H, 38-H, 39-H, 40-H), 2.37–2.29
(m, 1H, 18-H), 2.05 (s, 3H, 32-H), 2.04–2.01 (m, 1H, 1-Ha), 1.99 (s, 3H, 34-H), 1.94 (s, 3H,
36-H), 1.92–1.86 (m, 4H, 11-H, 16-H), 1.75–1.70 (m, 1H, 22-Ha), 1.69–1.62 (m, 8H, 56-H, 60-H),
1.60–1.55 (m, 1H, 9-H), 1.50–1.19 (m, 17H, 22-Hb, 21-Ha, 57-H, 61-H, 7-Ha, 6-H, 19-H, 5-H,
21-Hb, 7-Hb), 1.10 (d, J = 11.9 Hz, 1H, 1-Hb), 1.04 (s, 3H, 25-H), 1.02 (s, 5H, 27-H, 15-H), 0.96
(t, J = 6.8 Hz, 12H, 58-H, 62-H), 0.93–0.92 (m, 1H, 20-H), 0.90 (s, 3H, 30-H), 0.85 (s, 3H, 23-H),
0.81 (d, J = 6.3 Hz, 3H, 29-H), 0.66 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 175.9
(C-28), 170.9 (C-35), 170.5 (C-31), 170.4 (C-33), 167.8 (C-41), 157.7 (C-54), 156.1 (C-48), 156.0
(C-52), 143.9 (C-13), 135.0 (C-43), 132.3 (C-51), 130.7 (C-42), 130.5 (C-44), 130.4 (C-46), 130.4
(C-45), 127.8 (C-47), 124.7 (C-12), 114.5 (C-50), 113.9 (C-49), 96.5 (C-53), 74.9 (C-3), 70.0 (C-2),
65.3 (C-24), 55.2 (C-18), 52.0 (C-55, C-59), 47.7 (C-9), 47.6 (C-5), 47.4 (C-37, C-38), 43.8 (C-1),
42.3 (C-39, C-40), 42.2 (C-14), 42.0 (C-4, C-17), 39.5 (C-19), 38.7 (C-20), 37.9 (C-8, C-10), 34.2
(C-22), 32.6 (C-7), 30.5 (C-21), 29.6 (C-56, C-60), 28.1 (C-15), 23.4 (C-11, C-16), 23.4 (C-27),
21.2 (C-30), 21.1 (C-36), 20.9 (C-34), 20.8 (C-32), 20.3 (C-57, C-61), 18.0 (C-6), 17.4 (C-29),
17.1 (C-25), 16.9 (C-26), 14.0 (C-23), 13.9 (C-58, C-62) ppm; MS (ESI, MeOH): m/z = 1219.4
(100%, [M-Cl]+); analysis calcd for C76H107N4O9Cl (1256.16): C 72.67, H 8.59, N 4.46; found:
C 72.49, H 8.75, N 4.20.

4.12. (2α,3β,4α)-2,3,23-Triacetoxy-28-[3-(2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-
Pyrido[3.2.1-Ij]Pyrido[1′′,2′′,3′′:1′,8′]Quinolino[6′,5′:5,6]Pyrano[2,3-F]Quinoline-4-Ium-9-
Yl)Benzoyl]-Piperazin-1-Yl]-28-Oxo-Olean-12-Ene Chloride (10)

Following GP B, from 3 (150 mg, 0.22 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 10 (144 mg, 55%) was obtained as a violet solid; m.p. 244–247 ◦C;
Rf = 0.38 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 581 nm (4.69); IR (ATR):
ν = 2924m, 2867w, 1739s, 1630m, 1595s, 1546w, 1493m, 1458w, 1446w, 1364s, 1296s, 1233vs,
1196s, 1182s, 1097s, 1035s, 1004m, 962w, 773w, 735w, 641w, 622w, 598w, 422w cm−1; 1H NMR
(500 MHz, CDCl3): δ = 7.70–7.62 (m, 2H, 45-H, 46-H), 7.55–7.46 (m, 1H, 47-H), 7.30–7.27
(m, 1H, 44-H), 6.72–6.62 (m, 2H, 50-H), 5.19–5.15 (m, 1H, 12-H), 5.12 (td, J = 11.1, 4.5 Hz,
1H, 2-H), 5.05 (d, J = 10.3 Hz, 1H, 3-H), 3.83 (d, J = 11.7 Hz, 1H, 24-Ha), 3.69–3.21 (m, 17H,
24-Hb, 57-H, 58-H, 37-H, 38-H, 39-H, 40-H), 3.08–2.92 (m, 4H, 55-H), 2.78–2.60 (m, 4H, 60-H),
2.45–2.25 (m, 1H, 18-H), 2.14–2.08 (m, 4H, 56-H), 2.06 (s, 3H, 32-H), 2.04–2.01 (m, 1H, 1-Ha),
1.99 (s, 3H, 34-H), 1.95 (s, 3H, 36-H), 1.93–1.86 (m, 7H, 59-H, 11-H, 16-Ha), 1.74–1.64 (m, 2H,
22-Ha, 16-Hb), 1.62–1.50 (m, 2H, 9-H, 22-Hb), 1.46–1.14 (m, 8H, 21-Ha, 7-Ha, 6-H, 19-H, 5-H,
21-Hb, 7-Hb), 1.14–1.07 (m, 2H, 1-Hb, 15-Ha), 1.06 (s, 3H, 25-H), 1.03 (s, 4H, 27-H, 15-Hb),
0.96–0.92 (m, 1H, 20-H), 0.92–0.89 (m, 3H, 30-H), 0.86 (s, 3H, 29-H), 0.84–0.80 (m, 3H, 23-H),
0.67 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 175.9 (C-28), 170.9 (C-35), 170.5
(C-31), 170.4 (C-33), 168.0 (C-41), 153.1 (C-54,C- 62), 152.1 (C-48), 151.3 (C-52, C-72), 143.9
(C-13), 134.9 (C-43), 131.8 (C-42), 130.8 (C-44), 130.3 (C-46), 129.9 (C-45), 127.6 (C-47), 126.7
(C-50, C-70), 124.8 (C-12), 123.7 (C-51, C-71), 113.3 (C-49, C-61), 105.5 (C-53, C-73), 74.9
(C-3), 70.0 (C-2), 65.3 (C-24), 55.2 (C-18), 51.1 (C-58, C-83), 50.6 (C-57, C-85), 49.0 (C-17), 47.7
(C-9), 47.6 (C-5), 43.8 (C-1), 42.2 (C-14), 42.2 (C-37, C-38, C-39, C-40), 42.0 (C-4), 39.5 (C-19),
38.7 (C-20), 37.9 (C-8, C-10), 34.3 (C-22), 32.6 (C-7), 30.5 (C-21), 28.1 (C-15), 27.7 (C-60, C-81),
23.5 (C-27), 23.4 (C-11, C-16), 21.3 (C-30), 21.1 (C-36), 21.0 (C-34), 20.8 (C-32), 20.7 (C-59,
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C-82), 20.0 (C-55, C-87), 19.8 (C-56, C-86), 18.0 (C-6), 17.4 (C-29), 17.1 (C-25), 16.9 (C-26),
14.0 (C-23) ppm; MS (ESI, MeOH/CHCl3): m/z = 1156.3 (100%, [M-Cl]+); analysis calcd for
C68H78N4O5Cl (1040.47): C 78.50, H 8.43, N 5.36; found: C 78.34, H 8.59, N 5.24.

4.13. (2α,3β,4α)-9-[2-{[4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-
Homopiperazinyl]Carbonyl}Phenyl]-3,6-Bis(Dimethylamino)-Xanthylium Chloride (11)

Following GP B, from 4 (200 mg, 0.29 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 11 (156 mg, 49%) was obtained as a violet solid; m.p. 258–260 ◦C
Rf = 0.38 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 553 nm (4.70); IR (ATR):
ν = 2925m, 2870w, 1738m, 1592vs, 1534w, 1493m, 1406m, 1365m, 1341s, 1304w, 1231s, 1185s,
1135m, 1042m, 1032m, 963w, 926m, 823w, 700m, 602w, 580w, 516w cm−1; 1H NMR (400 MHz,
CDCl3): δ = 7.69–7.57 (m, 2H, 45-H, 47-H), 7.47–7.38 (m, 1H, 48-H), 7.34–7.28 (m, 1H, 46-H),
7.26–7.11 (m, 2H, 52-H), 7.02–6.72 (m, 4H, 54-H, 51-H), 5.23–5.09 (m, 2H, 12-H, 2-H), 5.05
(d, J = 10.3 Hz, 1H, 3-H), 3.82 (d, J = 11.7 Hz, 1H, 24-Ha), 3.55 (d, J = 11.9 Hz, 1H, 24-Hb),
3.51–2.79 (m, 22H, 56-H, 57-H, 37-H, 38-H, 39-H, 40-H, 41-H), 2.49–2.32 (m, 1H, 18-H), 2.05
(s, 3H, 32-H), 2.04–2.01 (m, 1H, 1-Ha), 1.99 (s, 3H, 34-H), 1.95 (s, 3H, 36-H), 1.94–1.82 (m,
3H, 11-H, 16-Ha), 1.82–1.62 (m, 2H, 16-Ha, 22-Ha), 1.63–1.54 (m, 1H, 9-H), 1.50–1.17 (m, 9H,
22-Hb, 21-Ha, 7-Ha, 6-H, 19-H, 5-H, 21-Hb, 7-Hb), 1.11 (d, J = 12.0 Hz, 1H, 1-Hb), 1.05 (s, 3H,
25-H), 1.02 (s, 4H, 27-H, 15-Ha), 1.00–0.96 (m, 2H, 20-H, 15-Ha), 0.95–0.88 (m, 3H, 30-H), 0.85
(s, 6H, 23-H, 29-H), 0.69 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 173.3 (C-28),
171.0 (C-35), 170.6 (C-31), 170.5 (C-33), 168.1 (C-42), 157.7 (C-55), 157.6 (C-49), 157.5 (C-53),
144.9 (C-13), 135.0 (C-44), 132.0 (C-52), 130.5 (C-43), 130.3 (C-47), 130.2 (C-45), 129.7 (C-46),
126.9 (C-48), 124.8 (C-12), 114.1 (C-51), 113.9 (C-50), 96.8 (C-54), 75.0 (C-3), 70.0 (C-2), 65.4
(C-24), 55.4 (C-18), 49.0 (C-17), 47.8 (C-9), 47.7 (C-5), 43.8 (C-1), 42.4 (C-14), 42.0 (C-4), 41.4
(C-37, C-38, C-39, C-40, C-41), 41.2 (C-56, C-57), 39.4 (C-19), 38.8 (C-20), 37.9 (C-8, C-10),
34.0 (C-22), 32.4 (C-7), 30.6 (C-21), 27.9 (C-15), 23.4 (C-27), 23.4 (C-11, C-16), 21.3 (C-30),
21.2 (C-36), 21.0 (C-34), 20.9 (C-32), 18.0 (C-6), 17.5 (C-29), 17.1 (C-25), 17.0 (C-26), 14.0
(C-23) ppm; MS (ESI, MeOH/CHCl3): m/z = 1065.5 (100%, [M-Cl]+); analysis calcd for
C65H85N4O9Cl (1101.86): C 70.85, H 7.78, N 5.08; found: C 70.59, H 7.93, N 4.88.

4.14. (2α,3β,4α)-9-[2-{[4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-
Homopiperazinyl]Carbonyl}Phenyl]-3,6-Bis(Diethylamino)-Xanthylium Chloride (12)

Following GP B, from 4 (180 mg, 0.26 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 12 (224 mg, 64%) was obtained as a violet solid; m.p. 253–257 ◦C (lit.:[4]
254–258 ◦C; Rf = 0.30 (SiO2, CHCl3/MeOH, 8:1); MS (ESI, MeOH/CHCl3): m/z = 1121.4
(100%, [M-Cl]+).

4.15. (2α,3β,4α)-9-[2-{[4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-
Homopiperazinyl]Carbonyl}Phenyl]-3,6-Bis(Dipropylamino)-Xanthylium Chloride (13)

Following GP B, from 4 (200 mg, 0.29 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 13 (224 mg, 64%) was obtained as a violet solid; m.p. 224–225 ◦C;
Rf = 0.33 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 566 nm (4.91); IR (ATR):
ν = 2928m, 2873w, 1739m, 1627m, 1587vs, 1528w, 1507w, 1470m, 1412s, 1365m, 1337s, 1301m,
1230vs, 1177s, 1133m, 1100m, 1041m, 1032m, 997w, 963w, 939w, 919w, 824w, 780w, 757w,
597w, 575w, 507w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.64–7.57 (m, 2H, 46-H, 47-H),
7.46–7.37 (m, 1H, 48-H), 7.30–7.15 (m, 3H, 45-H, 52-H), 6.78–6.67 (m, 2H, 54-H), 5.20–5.15 (m,
1H, 2-H), 5.12 (td, J = 11.0, 4.7 Hz, 2H, 12-H), 5.04 (d, J = 10.3 Hz, 1H, 3-H), 4.16–3.86 (m, 4H,
37-H, 38-H), 3.80 (d, J = 11.7 Hz, 1H, 24-Ha), 3.54 (d, J = 11.8 Hz, 1H, 24-Hb), 3.53–3.38 (m,
8H, 56-H, 59-H), 3.34–2.97 (m, 8H, 39-H, 40-H), 2.49–2.35 (m, 1H, 18-H), 2.05 (s, 3H, 32-H),
2.03–2.00 (m, 1H, 1-Ha), 1.98 (s, 3H, 34-H), 1.94 (s, 3H, 36-H), 1.93–1.83 (m, 3H, 11-H, 16-Ha),
1.79–1.65 (m, 10H, 57-H, 60-H, 16-Hb, 22-Ha), 1.62–1.53 (m, 1H, 22-Hb, 9-H), 1.42–1.18 (m,
10H, 21-Ha, 7-Ha, 6-H, 19-H, 5-H, 21-Hb, 7-Hb, 41-H), 1.10–1.07 (m, 1H, 1-Hb), 1.04 (s, 3H,
25-H), 1.01 (s, 4H, 27-H, 15-Ha), 1.00–0.96 (m, 13H, 58-H, 61-H, 20-H), 0.93–0.88 (m, 4H,
30-H, 15-Hb), 0.85 (s, 6H, 23-H, 29-H), 0.68 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3):
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δ = 176.6 (C-28), 170.9 (C-35), 170.5 (C-33), 170.4 (C-31), 168.1 (C-42), 157.8 (C-55), 156.3
(C-49), 156.2 (C-53), 142.6 (C-13), 136.0 (C-44), 132.6 (C-52), 130.7 (C-43), 130.2 (C-47), 130.2
(C-45), 129.7 (C-46), 126.9 (C-48), 124.6 (C-12), 114.9 (C-51), 113.8 (C-50), 96.6 (C-54), 77.4,
77.2, 76.9, 75.0 (C-3), 70.0 (C-2), 65.4 (C-24), 55.8 (C-18), 53.9 (C-56, C-59), 53.8 (C-37, C-38,
C-39, C-40, C-41), 48.9 (C-17), 47.8 (C-9), 47.7 (C-5), 43.8 (C-1), 42.4 (C-14), 42.0 (C-4), 39.4
(C-19), 38.8 (C-20), 37.9 (C-8, C-10), 34.0 (C-22), 32.7 (C-7), 30.5 (C-21), 28.0 (C-15), 23.4
(C-11, C-16), 23.4 (C-27), 21.3 (C-30), 21.1 (C-36), 21.0 (C-34), 20.8 (C-32), 20.8 (C-57, C-60),
18.0 (C-6), 17.5 (C-29), 17.1 (C-25), 17.0 (C-26), 14.0 (C-23), 11.4 (C-58, C-61) ppm; MS (ESI,
MeOH/CHCl3): m/z = 1178.4 (100%, [M-Cl]+); analysis calcd for C73H101N4O9Cl (1214.08):
C 72.22, H 8.39, N 4.61; found: C 71.97, H 8.48, N 4.39.

4.16. (2α,3β,4α)-9-[2-{[4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-
Homopiperazinyl]Carbonyl}Phenyl]-3,6-Bis(Dibutylamino)-Xanthylium Chloride (14)

Following GP B, from 4 (284 mg, 0.4 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 14 (2198 mg, 58%) was obtained as a violet solid; m.p. 210–213 ◦C;
Rf = 0.36 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 567 nm (4.94); IR (ATR):
ν = 2927m, 2870w, 1741m, 1626w, 1588vs, 1528w, 1507w, 1462m, 1412s, 1394w, 1366m, 1339s,
1291m, 1220s, 1187s, 1177s, 1133m, 1109m, 1043m, 1033m, 963w, 921m, 823w, 756w, 704w,
597w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.68–7.54 (m, 2H, 46-H, 47-H), 7.46–7.36 (m, 1H,
48-H), 7.29–7.25 (m, 2H, 45-H), 7.25–7.14 (m, 2H, 52-H), 7.09–6.98 (m, 2H, 51-H), 6.79–6.64
(m, 2H, 54-H), 5.18–5.15 (m, 1H, 12-H), 5.12 (td, J = 11.0, 4.7 Hz, 1H, 2-H), 5.03 (d, J = 10.3 Hz,
1H, 3-H), 4.26–2.89 (m, 20H, 24-H, 37-H, 38-H, 39-H, 40-H, 41-H, 56-H, 60-H), 2.49–2.33
(m, 1H, 18-H), 2.04 (s, 3H, 32-H), 2.03–2.00 (m, 1H, 1-Ha), 1.98 (s, 3H, 34-H), 1.94 (s, 3H,
36-H), 1.92–1.82 (m, 4H, 11-H, 16-H), 1.81–1.72 (m, 2H, 22-H), 1.71–1.61 (m, 8H, 57-H, 61-H),
1.61–1.54 (m, 1H, 9-H), 1.48–1.18 (m, 16H, 58-H, 62-H, 21-Ha, 7-Ha, 6-H, 19-H, 5-H, 21-Hb,
7-Hb), 1.12–1.07 (m, 1H, 1-Hb), 1.04 (m, 5H, 25-H, 15-H), 1.01 (s, 3H, 27-H), 0.96 (t, J = 7.2 Hz,
13H, 59-H, 63-H, 20-H), 0.93–0.88 (m, 3H, 30-H), 0.84 (s, 6H, 23-H, 29-H), 0.68 (s, 3H, 26-H)
ppm; 13C NMR (126 MHz, CDCl3): δ = 176.4 (C-28), 170.9 (C-35), 170.5 (C-31) 170.4 (C-33),
168.0 (C-42), 157.8 (C-55), 156.1 (C-49), 156.0 (C-53), 143.9 (C-13), 136.0 (C-44), 132.6 (C-52),
130.2 (C-43), 130.2 (C-45), 129.8 (C-47), 129.7 (C-46), 126.9 (C-48), 124.6 (C-12), 114.7 (C-51),
113.8 (C-50), 96.4 (C-54), 75.0 (C-3), 70.0 (C-2), 65.4 (C-24), 55.5 (C-18), 52.1 (C-37, C-38, C-39,
C-40, C-41), 52.0 (C-56, C-60), 49.0 (C-17), 47.8 (C-9), 47.7 (C-5), 43.8 (C-1), 42.4 (C-14), 42.0
(C-4), 39.4 (C-19), 38.8 (C-20), 37.9 (C-8, C-10), 34.0 (C-22), 32.6 (C-7), 30.5 (C-21), 29.6 (C-57,
C-62), 27.6 (C-15), 23.4 (C-11, C-16), 23.4 (C-27), 21.3 (C-30), 21.1 (C-36), 20.9 (C-34), 20.8
(C-32), 20.3 (C-58, C-63), 17.9 (C-6), 17.5 (C-29), 17.1 (C-25), 17.0 (C-26), 14.0 (C-23), 13.9
(C-59, C-64) ppm; MS (ESI, MeOH/CHCl3): m/z = 1234.3 (100%, [M-Cl]+); analysis calcd
for C77H109N4O9Cl (1270.19): C 72.81, H 8.65, N 4.41; found: C 72.61, H 8.86, N 4.21.

4.17. (2α,3β,4α)-2,3,23-Triacetoxy-28-[3-(2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-
Pyrido[3.2.1-Ij]Pyrido[1′′,2′′,3′′:1′,8′]Quinolino[6′,5′:5,6]Pyrano[2,3-F]Quinoline-4-Ium-9-
Yl)Benzoyl]-1,4-Diazepan-1-Yl]-28-Oxo-Olean-12-Ene Chloride (15)

Following GP B, from 4 (115 mg, 0.17 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 15 (104 mg, 0.1 mmol, 63%) was obtained as a violet solid; m.p.
287–289 ◦C; Rf = 0.19 (SiO2, CHCl3/MeOH, 9:1); UV-Vis (MeOH): λmax (log ε) = 582 nm
(4.82); IR (ATR): ν = 2924m, 2866w, 1738s, 1621m, 1595vs, 1545w, 1493m, 1458w, 1445w,
1435w, 1363s, 1294vs, 1232s, 1179vs, 1100s, 1034s, 962w, 743m, 640w, 623w, 598w, 420m
cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.72–7.52 (m, 2H, 46-H, 47-H), 7.47–7.34 (m, 1H,
48-H), 7.25–7.20 (m, 1H, 45-H), 6.79–6.55 (m, 2H, 51-H), 5.22–5.17 (m, 1H, 12-H), 5.14 (td,
J = 11.1, 4.5 Hz, 1H, 2-H), 5.05 (d, J = 10.3 Hz, 1H, 3-H), 4.50–3.89 (m, 4H, 37-H, 38-H), 3.82
(d, J = 11.6 Hz, 1H, 24-Ha), 3.69–3.15 (m, 13H, 24-Hb, 39-H, 40-H, 58-H, 59-H), 3.05–2.95 (m,
4H, 56-H), 2.80–2.63 (m, 4H, 61-H), 2.49–2.39 (m, 1H, 18-H), 2.15–2.08 (m, 4H, 57-H), 2.06 (s,
3H, 32-H), 2.04–2.02 (m, 1H, 1-Ha), 2.00 (s, 3H, 34-H), 1.96 (s, 3H, 36-H), 1.94–1.84 (m, 5H,
60-H, 11-Ha), 1.85–1.64 (m, 4H, 11-Hb, 16-H, 22-Ha), 1.63–1.56 (m, 2H, 9-H, 22-Hb), 1.51–1.14
(m, 10H, 21-Ha, 7-Ha, 6-H, 19-H, 5-H, 21-Hb, 7-Hb, 41-H), 1.14–1.08 (m, 1H, 1-Hb), 1.06 (s,
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4H, 25-H, 15-Ha), 1.02 (s, 4H, 27-H, 15-Hb), 0.97–0.92 (m, 1H, 20-H), 0.92–0.88 (m, 3H, 30-H),
0.86 (s, 6H, 23-H, 29-H), 0.70 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 175.5
(C-28), 170.8 (C-35), 170.4 (C-31), 170.3 (C-33), 168.0 (C-42), 152.9 (C-55), 151.9 (C-49), 151.3
(C-53), 143.8 (C-13), 135.0 (C-44), 131.8 (C-43), 130.4 (C-45), 129.6 (C-46), 129.5 (C-47), 126.7
(C-48), 126.6 (C-51), 124.7 (C-12), 123.7 (C-52), 113.4 (C-50), 105.1 (C-54), 74.9 (C-3), 69.9
(C-2), 65.3 (C-24), 55.6 (C-18), 51.0 (C-37, C-38, C-39, C-40), 51.0 (C-59), 50.6 (C-58), 48.9
(C-17), 47.7 (C-9), 47.6 (C-5), 43.7 (C-1), 42.0 (C-4), 41.9 (C-14), 39.4 (C-19), 38.7 (C-20), 37.8
(C-8, C-10), 34.3 (C-22), 32.5 (C-7), 30.5 (C-21), 29.7 (C-41), 27.6 (C-15), 27.6 (C-61), 23.4
(C-27), 23.3 (C-11, C-16), 21.2 (C-30), 21.0 (C-36), 20.9 (C-34), 20.7 (C-32), 20.6 (C-60), 19.9
(C-56), 19.7 (C-57), 17.8 (C-6), 17.4 (C-29), 17.3 (C-25), 17.0 (C-26), 13.9 (C-23) ppm; MS (ESI,
MeOH/CHCl3): m/z = 1169.7 (100%, [M-Cl]+); analysis calcd for C69H89N4O5Cl (1054.49):
C 78.59, H 8.51, N 5.31; found: C 78.22, H 8.79, N 5.06.

4.18. (2α,3β,4α)-9-[2-[{4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-1,5-Diazocan-1-
Yl]Carbonyl}Phenyl]-3,6-Bis(Dimethylamino)-Xanthylium Chloride (16)

Following GP B, from 5 (670 mg, 0.94 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 16 (523 mg, 55%) was obtained as a violet solid; m.p. 224–226 ◦C;
Rf = 0.50 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 556 nm (4.72); IR
(ATR): ν = 2922s, 2852m, 1741m, 1624w, 1593vs, 1534w, 1508w, 1493m, 1437w, 1407m, 1365m,
1343s, 1285w, 1231s, 1185vs, 1135m, 1085w, 1043m, 1033m, 925m, 820m, 757w, 699m, 518w,
492w cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.70–7.58 (m, 2H, 46-H, 48-H), 7.57–7.46 (m,
1H, 49-H), 7.37–7.27 (m, 3H, 47-H, 53-H), 7.06–6.87 (m, 2H, 52-H), 6.84–6.65 (m, 2H, 55-H),
5.23–5.17 (m, 1H, 12-H), 5.14 (td, J = 11.2, 5.3 Hz, 1H, 2-H), 5.06 (d, J = 10.3 Hz, 1H, 3-H),
3.82 (d, J = 11.8 Hz, 1H, 24-Ha), 3.56 (d, J = 11.9 Hz, 1H, 24-Hb), 3.52–2.83 (m, 8H, 37-H,
38-H, 41-H, 42-H), 3.40–3.29 (m, 12H, 57-H, 58-H), 2.48–2.38 (m, 1H, 18-H), 2.07 (s, 3H,
32-H), 2.05–2.02 (m, 1H, 1-Ha), 2.00 (s, 3H, 34-H), 1.96 (s, 3H, 36-H), 1.94–1.73 (m, 4H, 11-H,
16-H), 1.63–1.55 (m, 1H, 9-H), 1.54–1.14 (m, 15H, 21-Ha, 7-Ha, 22-Ha, 6-H, 39-H, 40-H, 19-H,
5-H, 22-Hb, 21-Hb, 7-Hb, 15-Ha), 1.10 (s, 2H, 1-Hb, 15-Hb), 1.08–1.02 (m, 6H, 25-H, 27-H),
1.01–0.95 (m, 1H, 20-H), 0.93–0.89 (m, 3H, 30-H), 0.86 (s, 3H, 23-H), 0.85–0.82 (m, 3H, 29-H),
0.72 (s, 3H, 26-H) ppm; 13C NMR (126 MHz, CDCl3): δ = 175.8 (C-28), 171.0 (C-35), 170.6
(C-31), 170.5 (C-33), 167.9 (C-43), 157.7 (C-56), 157.5 (C-54), 156.4 (C-50), 145.0 (C-13), 136.8
(C-45), 131.2 (C-53), 130.6 (C-44), 130.4 (C-46, C-48), 130.1 (C-47), 127.9 (C-49), 124.6 (C-12),
114.4 (C-52), 114.1 (C-51), 96.9 (C-55), 77.4, 77.2, 76.9, 76.9, 75.0 (C-3), 70.1 (C-2), 65.4 (C-24),
55.6 (C-18), 48.0 (C-17), 47.8 (C-9), 47.7 (C-5), 43.9 (C-1), 42.7 (C-37, C-38, C-41, C-42), 42.2
(C-14), 42.0 (C-4), 41.4 (C-57, C-58), 39.4 (C-19), 38.8 (C-20), 38.0 (C-8, C-10), 34.1 (C-22),
32.0 (C-7), 29.8 (C-21), 27.4 (C-15), 25.0, 23.4 (C-11, C-16), 23.4 (C-27), 22.8 (C-39, C-40),
21.2 (C-36), 21.0 (C-34), 20.9 (C-32), 18.0 (C-6), 17.5 (C-29), 17.2 (C-25), 17.0 (C-26), 14.0
(C-23) ppm; MS (ESI, MeOH/CHCl3): m/z = 1079.5 (100%, [M-Cl]+); analysis calcd for
C66H87N4O9Cl (1115.89): C 71.04, H 7.86, N 5.02; found: C 70.86, H 8.03, N 4.77.

4.19. (2α,3β,4α)-9-[2-[{4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-1,5-Diazocan-1-
Yl]Carbonyl}Phenyl]-3,6-Bis(Diethylamino)-Xanthylium Chloride (17)

Following GP B, from 5 (300 mg, 0.4 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 17 (188 mg, 60%) was obtained as a purple solid; m.p. 222–227 ◦C (lit: [4]
223–226 ◦C); Rf = 0.42 (SiO2, CHCl3/MeOH, 9:1); MS (ESI, MeOH/CHCl3): m/z = 1036.3
(100%, [M-Cl]+); analysis calcd for C70H95N4O9Cl (1172.00): C 71.74, H 8.17, N 4.78; found:
C 71.48, H 8.22, N 5.37.

4.20. (2α,3β,4α)-9-[2-[{4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-1,5-Diazocan-1-
Yl]Carbonyl}Phenyl]-3,6-Bis(Dipropylamino)-Xanthylium Chloride (18)

Following GP B, from 5 (500 mg, 0.7 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 18 (612 mg, 68%) was obtained as a violet solid; m.p. 207–209 ◦C;
Rf = 0.53 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 564 nm (4.47); IR (ATR):
ν = 2927m, 2873w, 1740s, 1696w, 1589s, 1528w, 1504w, 1457m, 1432w, 1412m, 1367m, 1338m,
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1301w, 1230vs, 1194w, 1178m, 1133m, 1101w, 1042m, 1032m, 964w, 939w, 918w, 825w, 641w,
598w, 508w cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.70–7.57 (m, 2H, 47-H, 48-H), 7.57–7.47
(m, 1H, 49-H), 7.39–7.27 (m, 3H, 46-H, 53-H), 7.15–6.88 (m, 2H, 52-H), 6.79–6.62 (m, 2H,
55-H), 5.27–5.18 (m, 1H, 12-H), 5.14 (td, J = 11.2, 5.5 Hz, 1H, 2-H), 5.06 (d, J = 10.3 Hz, 1H,
3-H), 3.82 (d, J = 11.6 Hz, 1H, 24-Ha), 3.76–2.76 (m, 17H, 24-Hb, 57-H, 37-H, 38-H, 41-H,
42-H), 2.48–2.31 (m, 1H, 18-H), 2.07 (s, 3H, 32-H), 2.05–2.02 (m, 1H, 1-Ha), 2.00 (s, 3H, 34-H),
1.96 (s, 3H, 36-H), 1.95–1.84 (m, 4H, 11-H, 16-H), 1.81–1.65 (m, 8H, 58-H), 1.65–1.56 (m,
1H, 9-H), 1.56–1.22 (m, 14H, 22-H, 21-Ha, 7-Ha, 39-H, 40-H, 6-H, 19-H, 5-H, 21-Hb, 7-Hb),
1.15–1.10 (m, 1H, 1-Hb), 1.10–1.06 (m, 4H, 25-H, 15-Ha), 1.04 (s, 4H, 27-H, 15-Hb), 1.01 (t,
J = 7.0 Hz, 12H, 59-H), 0.97–0.94 (m, 1H, 20-H), 0.92 (s, 3H, 30-H), 0.88–0.85 (m, 3H, 23-H),
0.85 (s, 3H, 29-H), 0.77–0.69 (m, 3H, 26-H) ppm; 13C NMR (101 MHz, CDCl3): δ = 176.1
(C-28), 171.0 (C-35), 170.6 (C-33), 170.5 (C-31), 168.2 (C-43), 157.8 (C-56), 156.3 (C-50), 156.2
(C-54), 144.0 (C-13), 136.1 (C-45), 132.4 (C-53), 130.7 (C-44), 130.3 (C-48), 130.0 (C-46), 129.5
(C-47), 127.3 (C-49), 124.7 (C-12), 115.0 (C-52), 114.0 (C-51), 96.4 (C-55), 75.0 (C-3), 70.1
(C-2), 65.4 (C-24), 55.2 (C-18), 53.9 (C-37, C-38, C-41, C-42), 53.9 (C-57#, C-57), 49.2 (C-17),
47.8 (C-5), 47.7 (C-9), 43.9 (C-1), 42.0 (C-14), 42.0 (C-4), 39.5 (C-19), 39.5 (C-8), 38.8 (C-20),
38.0 (C-10), 34.0 (C-22), 32.7 (C-7), 30.7 (C-21), 29.8 (C-39, C-40), 28.3 (C-15), 23.5 (C-16),
23.5 (C-27), 23.4 (C-11), 21.4 (C-30), 21.2 (C-32), 21.0 (C-34), 20.9 (C-36), 20.9 (C-58#, C-58),
18.0 (C-6), 17.5 (C-29), 17.4 (C-25), 17.2 (C-26), 14.0 (C-23), 11.5 (C-59#, 59) ppm; MS (ESI,
MeOH/CHCl3): m/z = 1191.3 (100%, [M-Cl]+); analysis calcd for C74H103N4O9Cl (1228.11):
C 72.37, H 8.45, N 4.56; found: C 72.11, H 8.64, N 4.40.

4.21. (2α,3β,4α)-9-[2-[{4-(2α,3β,23-Tris(Acetyloxy)-urs-12-en-28-oyl)-1,5-Diazocan-1-
Yl]Carbonyl}Phenyl]-3,6-Bis(Dibutylamino)-Xanthylium Chloride (19)

Following GP B, from 5 (400 mg, 0.56 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 19 (520 mg, 70%) was obtained as a violet solid;.m.p. 215–218 ◦C;
Rf = 0.43 (SiO2, CHCl3/MeOH, 8:2); UV-Vis (MeOH): λmax (log ε) = 566 nm (4.79); IR (ATR):
ν = 2930m, 2871w, 1741m, 1633w, 1589vs, 1528w, 1461m, 1412s, 1394w, 1367m, 1338s, 1292m,
1221vs, 1178s, 1133m, 1109m, 1043m, 964w, 921m, 825w, 757w, 597w cm−1; 1H NMR (500
MHz, CDCl3): δ = 7.68–7.54 (m, 2H, 47-H, 48-H), 7.52–7.46 (m, 1H, 49-H), 7.31–7.18 (m, 3H,
53-H, 46-H), 7.04–6.76 (m, 2H, 52-H), 6.74–6.57 (m, 2H, 55-H), 5.19–5.14 (m, 1H, 12-H), 5.11
(td, J = 10.9, 4.9 Hz, 1H, 2-H), 5.03 (d, J = 10.3 Hz, 1H, 3-H), 3.79 (d, J = 11.7 Hz, 1H, 24-Ha),
3.67–2.76 (m, 17H, 24-Hb, 57-H, 37-H, 38-H, 41-H, 42-H), 2.41–2.33 (m, 1H, 18-H), 2.04 (s, 3H,
32-H), 2.02–1.99 (m, 1H, 1-Ha), 1.97 (s, 3H, 34-H), 1.93 (s, 3H, 36-H), 1.91–1.80 (m, 3H, 11-H,
16-Ha), 1.79–1.71 (m, 1H, 16-Hb), 1.69–1.59 (m, 8H, 58-H), 1.59–1.54 (m, 1H, 9-H), 1.50–1.16
(m, 19H, 59-H, 22-H, 7-Ha, 21-Ha, 6-H, 19-H, 39-H, 40-H, 5-H, 7-Hb, 21-Hb, 15-Ha), 1.09–1.05
(m, 2H, 1-Hb, 15-Hb), 1.03 (s, 3H, 25-H), 1.01 (s, 3H, 27-H), 0.95 (t, J = 6.1 Hz, 13H, 60-H,
20-H), 0.90–0.86 (m, 3H, 30-H), 0.83 (s, 3H, 23-H), 0.82–0.78 (m, 3H, 29-H), 0.69 (s, 3H, 26-H)
ppm; 13C NMR (126 MHz, CDCl3): δ = 176.1 (C-28), 170.9 (C-35), 170.5 (C-31), 170.4 (C-33),
168.0 (C-43), 157.7 (C-56), 156.1 (C-50), 156.1 (C-54), 144.1 (C-13), 136.6 (C-45), 132.2 (C-53),
130.2 (C-48), 130.1 (C-46), 129.4 (C-44), 129.3 (C-47), 127.4 (C-49), 124.5 (C-12), 113.8 (C-52),
113.5 (C-51), 96.3 (C-55), 74.9 (C-3), 70.0 (C-2), 65.3 (C-24), 55.4 (C-18), 52.0 (C-57, C-57), 52.0
(C-37, C-38, C-41, C-42), 49.0 (C-17), 47.7 (C-9), 47.6 (C-5), 43.8 (C-1), 42.1 (C-14), 41.9 (C-4),
39.8 (C-39, C-40), 39.4 (C-19), 38.7 (C-20), 37.9 (C-10), 37.9 (C-8), 34.3 (C-22), 32.6 (C-7), 30.6
(C-21), 29.7 (C-58#, C-58), 28.1 (C-15), 23.4 (C-11, C-16), 23.3 (C-27), 21.3 (C-30), 21.1 (C-36),
20.9 (C-34), 20.8 (C-32), 20.2 (C-59#, C-59), 17.9 (C-6), 17.4 (C-29), 17.1 (C-25), 17.0 (C-26),
14.0 (C-23), 13.9 (C-60, 61) ppm; MS (ESI, MeOH/CHCl3): m/z = 1247.3 (100%, [M-Cl]+);
analysis calcd for C78H111N4O9Cl (1284.22): C 72.95, H 8.71, N 4.36; found: C 72.70, H 8.96,
N 4.17.
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4.22. (2α,3β,4α)-2,3,23-Triacetoxy-28-[3-(2,3,6,7,12,13,16,17-Octahydro-1H,5H,11H,15H-
Pyrido[3.2.1-Ij]Pyrido[1′′,2′′,3′′:1′,8′]Quinolino[6′,5′:5,6]Pyrano[2,3-F]Quinoline-4-Ium-9-
Yl)Benzoyl]-1,5-Diazocan-1-Yl]-28-Oxo-Olean-12-Ene Chloride (20)

Following GP B, from 5 (200 mg, 0.3 mmol) followed by chromatography (SiO2,
CHCl3/MeOH, 9:1), 20 (232 mg, 64%)was obtained as a violet solid; m.p. 194–196 ◦C (lit.: [4]
193–196 ◦C); Rf = 0.42 (SiO2, CHCl3/MeOH, 9:1); MS (ESI, MeOH/CHCl3): m/z = 1084.6
(100%, [M-Cl]+); analysis calcd for C70H91N4O5Cl (1068.52): C 78.69, H 8.58, N 5.24; found:
C 78.32, H 8.86, N 5.09.
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