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A B S T R A C T   

The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of 
importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR 
concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced 
EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, 
cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk am
plifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cas
cades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular 
remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix pro
duction. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R 
and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR trans
activation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, 
dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of 
various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detri
mental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for 
the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, 
enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis 
of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of 
effective therapeutic strategies of RAAS-induced disorders.   

1. Introduction 

In light of the knowledge gained concerning cardiovascular 
epidermal growth factor receptor (EGFR), a more intense attention on 
this tyrosine kinase receptor from the cardiovascular perspective - and 
not only from the oncological viewpoint - is necessary. Vascular EGFR 
expression and activity under physiological conditions as well as alter
ations in certain pathophysiological is now well established. Beyond this 
correlative knowledge, there is substantial evidence for the involvement 
of EGFR in the regulation of vascular function as well as vascular 

dysfunction and structural remodeling. In this context, it is important to 
consider that EGFR contributes to signaling networks of several vaso
active substances, representing a central regulatory hub. In this review 
we will address mechanisms and consequences of the angiotensin II 
receptor type 1 (AT1R) crosstalk with EGFR for the vascular system. 

1.1. EGF receptors 

ErbB receptors are a family of four receptor tyrosine kinases (Fig. 1) 
that have received attention as promoters of tumor growth, e.g. in breast 
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cancer, ovarian carcinoma, lung tumors, colon carcinoma, and pancre
atic carcinoma [1]. In addition to ErbB2 (Her-2), ErbB3 and ErbB4, the 
ErbB receptor family includes the EGFR (=ErbB1) [2]. In the meantime, 
a pathogenetic significance of the EGFR in non-neoplastic diseases such 
as polycystic kidney disease [3], psoriasis [4,5], bronchial asthma [6] 
and vascular diseases [7,8] has been described. Since the EGFR was 
proposed as a target structure for tumor therapy more than 30 years ago 
[9–11], drugs against ErbB-receptor tyrosine kinases have been devel
oped and successfully integrated into the treatment of cancer patients 
[1,9]. However, the ErbB receptors are almost ubiquitously expressed 
and their physiological significance has not yet been fully elucidated, 
partly because mice with global deletion of the receptors usually die in 
utero or shortly after birth [12]. It is therefore also not surprising that 
side effects occur during the treatment with some of the antitumor 
therapeutics. For example, cardiac hypertrophy and cardiac failure have 
been observed as side effects in patients receiving trastuzumab, espe
cially when taken concomitantly with cytostatic drugs [13]. In addition 
to the findings during tumor therapy, it was shown that the EGFR con
tributes to pathophysiological effects of the mineralocorticoid receptor 
and the AT1R, i.e. of the renin-angiotensin-aldosterone system (RAAS), 
in vascular cells [14]. In large part, the insights concerning the cardio
vascular system have been obtained in studies with cultured primary 
cells or cell lines. 

EGFR-dependent effects include excessive growth of cells, cell 
migration and disorders of connective tissue homeostasis (fibrosis), but 
also physiological processes such as smooth muscle function [15–20]. 
Furthermore, there is evidence that the EGFR also plays a role in cellular 
aging processes [21] and supports the development of a pro- 
inflammatory milieu. However, there are also data indicating that the 
EGFR develops a protective effect in the cardiovascular system under 
certain - not yet precisely known - conditions [8]. Yet, the postnatal 
importance of EGFR for AT1R-related effects in vivo has not yet been 
finally clarified, since the EGFR also plays an essential role for 

cardiovascular development. Consequently, the involvement of the 
EGFR in physiological or pathophysiological effects of AT1R in vivo 
could not be investigated for a long time. Previous investigations 
addressing this question have applied either pharmacological inhibitors 
or rodent models with global reduction in EGFR activity. However, these 
approaches have the disadvantage that the results are difficult to 
interpret due to ubiquitous EGFR expression and the lack of cell speci
ficity of the approaches. For example, detrimental effects on the heart 
could mask positive effects on blood vessel function during EGFR 
inhibition. 

2. EGFR as signaling hub 

EGFR belongs to the group of membrane-bound receptor tyrosine 
kinases (Fig. 1) and can be activated by different ligands with high or 
low affinities [22]. EGF and HB-EGF are high affinity ligands [23]. In 
addition, the EGFR also serves as a relay station for heterologous signal 
transduction [24–27], being activated by signals that are not direct li
gands for it, such as angiotensin II, aldosterone, endothelin-1 or cate
cholamines or their receptors as well as metabolic and mechanical 
factors [25,28–31]. This transactivation is necessary for some of the 
actions of these mediators, although this has not yet been investigated 
systematically in all cases. But, during the last years, the fundamental 
importance of EGFR as signaling hub in the context of angiotensin II- 
induced effects has been increasingly worked out pharmacologically, 
without identifying the contribution of different cell types in vivo 
[32,33]. 

2.1. Canonical pathways of EGFR signaling 

ErbB receptors can form receptor homo- and hetero-dimers, whose 
composition will influence the nature of the activated signaling path
ways (Fig. 1). The type of activated signaling pathways will then 

Fig. 1. Overview showing possible ErbB dimers, their ligands and the downstream cellular pathways affected. ErbB1 and ErbB4 form homodimers and dimers with 
all other family members. ErbB2 and ErbB3 form only heterodimers, because there is no ligand for ErbB2 and ErbB3 has no cytosolic kinase activity. There are 
various ligands for ErB receptors, These ligand vary in terms of receptor specificity as well as in terms of binding affinity (high and low affinity binding). The receptor 
dimers interact with various signaling molecules that mediate the activation signaling networks and finally modulate the activity of transcription factors. Tran
scription regulation can affect various cellular traits (=output). The pattern of signaling network activation and the subsequent output depend on the ligands and 
receptor dimers involved as well as on the cellular context. 
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determine the impact of ErbB in vivo and in vitro. However, the iden
tification of ErbB subtypes constituting receptor heterodimers necessary 
for the activation of the different signaling pathways is complex. ErbB 
receptors (a) can form dimers with all other members, (b) some of the 
signaling pathways can be activated by several ErbB receptors [2,34] 
and (c) there are signaling molecules that are activated at low ligand 
concentrations, while others are only activated at high ligand concen
trations [35]. 

Signaling pathways activated by low EGFR ligand concentrations 
include ERK1/2 (Extracellular signal regulated kinase), protein kinase B 
(Akt), Shc1, the adaptor protein CrkL, the E3 ubiquitin protein ligase Cbl 
and the GRB2-associated Binding protein 1 (Gab1). STAT1, STAT3, 
STAT5 and phospholipase C (PLC) γ1 are switched to an active state by 
the EGFR only at high ligand concentrations [35]. This could be the 
result of two EGF receptors with different ligand affinities, both derived 
from the same transcript [35]. The differences in receptor ligand affin
ities appear to cause different cellular effects. Thus, at low ligand con
centrations, the high-affinity receptors activate signaling pathways that 
lead to e.g. proliferation, while at high ligand concentrations, the low- 
affinity receptors inhibit proliferation and promote the formation of 
cell clusters [35]. EGFRs interact with downstream proteins via their 
SH2 or PTB domains. Over a hundred proteins have been described that 
interact with the EGFR itself and over 200 proteins that are modified in 
an EGFR-dependent manner [36]. Furthermore, when examining the 
signaling pathways induced by EGFR, it should be considered that the 
EGFR can be internalized and some proteins mainly interact with the 
internalized receptors to promote their signal transmission [23]. The 
four major signaling pathways activated by EGFR (Figs. 1 and 2) include 
1) the Ras-Raf-MEK-ERK signaling pathway, 2) the PI3-kinase-Akt 
signaling pathway, 3) the PLCγ and 4) the STAT signaling pathway 
[37]. Beyond the type of signaling pathway activated, the subcellular 
localization of signal transduction affects the cellular outcome [38]. 
EGFR activation and subsequent information transfer can occur at the 
cell membrane, at endocytic vesicles, in late endosomes and in the nu
cleus. At least at certain microdomains in the cell membrane and in 
endocytic vesicles the interaction with AT1R is possible. 

2.2. Transactivation 

Transactivation of the EGFR was first described in 1994 [39]. 
Through transactivation, the EGFR can transmit signals from other 
mediators such as endothelin [40–42], norepinephrine [2], prosta
glandin E2 (PGE2) [43] or angiotensin II [44]. But also glucose [45], 
reactive oxygen species [46], oxidized lipids [47], ultraviolet light [39], 
changes in cell volume [48] and stretching [49] can activate cellular 
signaling pathways by transactivation of the EGFR and thus enable the 
organism to adapt to changing environmental conditions. Through this 
mechanism, the EGFR seems to be involved in pathological processes 
such as damage to the heart by ischemia and reperfusion, atheroscle
rosis, kidney disease, hypertension and bronchial asthma. Four mecha
nisms of EGFR transactivation (Fig. 3) can be distinguished [50–53]. 

2.3. EGFR ligand-independent transactivation 

In this mechanism, EGFR is activated without any specific ligand. 
Activation of cytosolic signaling networks led to EGFR phosphorylation. 
This was first described for growth hormone [54] and prolactin [55]. 
The signaling networks involved comprise cSRC, protein kinase C, pro
tein tyrosine kinase 2 beta (PYK2), Ca2+, reactive oxygen species and 
JAK2 [31,56]. During ligand-independent transactivation, EGFR serves 
as a scaffold and activation of its kinase domain is not necessary for 
signaling [57]. EGFR phosphorylation on tyrosine residues that are not 
the canonical autophosphorylation sites, leads to activation of down
stream signaling pathways, such as PI3 kinase [57–60]. Yamauchi et al 
[54] were the first to show that growth hormone leads to tyrosine 
phosphorylation of EGFR in mouse liver and in cultured cells. In this 
case EGFR phosphorylation was dependent on the kinase JAK2 but not 
on EGFR kinase activity [54,61]. Growth hormone may induce EGFR 
phosphorylation at Y1068, which is part of a growth factor receptor- 
bound protein 2 (Grb2) binding motif. Subsequently, EGFR and Grb2 
associate, finally leading to ERK1/2 activation [61]. Growth hormone 
leads to simultaneous serine/threonine phosphorylation of both EGFR 
and ErbB2 [61,62] inactivating ErbB-2 [62] but enhancing EGFR 
signaling after its internalization [61], indicating the complexity of the 
functional signaling networks. 

G protein-coupled receptors (GPCR) can induce ligand-independent 

Fig. 2. Scheme of important EGFR (=ErbB1) tyrosine phosphorylation sites and their functional role in cell signaling. There are tyrosine residues autophosphor
ylation sites that get more intensely phosphorylated by the tyrosine kinase activity of an activated EGFR. Other tyrosine residues get phosphorylation by cytosolic 
kinases (mostly cSrc). In both cases phosphorylation serves as an on-switch for downstream signaling pathways. For this pur-pose adapter (Grb2, SOS, Shc) or 
executer (STAT, PLCγ, phosphoinositide 3-kinase) proteins are recruited and activated by phosphorylated tyrosines. As an exception, c-Cbl recruitment and activation 
serves as regulator of EGFR retrival from the membrane and degradation. 
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EGFR transactivation via the recruitment of β-arrestins or cSrc through 
their βγ-subunits [63–65]. cSrc will activate the kinase domain of EGFR 
[44,65,66]. The target structures of cSrc are tyrosine residues Y845 and 
Y1101 [59,67,68]. Transactivation of EGFR by cSrc induces MAPK 
[45,46], PI3-kinase [41,45,46,58,59,69] and STAT signaling. Stimuli 
reported to transactivate EGFR via cSrc include rapamycin [70], per
vanadate [71], hydrogen peroxide [46], D-glucose [45], PGE2 [43], 
activation of proteinase-activated receptor-2 (PAR2) [72], endothelin-1 
[41] and angiotensin II in VSMC [44]. For AT1R additional putative 
mediators with guanine nucleotide exchange function or kinase function 
for ligand-independent EGFR transactivation have been identified. 
These include TRIO (triple functional domain), BMX (BMX nonreceptor 
tyrosine kinase) and CHKA (choline kinase alpha) [53]. 

2.4. EGFR ligand-dependent transactivation 

GPCR exert a large part of their influence on cell proliferation, cell 
survival and migration by this mechanism. During ligand-dependent 
EGFR transactivation, vasoactive substances bind to their canonical re
ceptor and activate cytosolic signaling pathways that enhance the ac
tivity of membrane-anchored proteases, mainly ADAM- 
metalloproteinases [24,73–75]. The latter promote the release of li
gands that subsequently bind to and activate the EGFR. Since the signal 
passes through the cell membrane three times during ligand-dependent 
transactivation, it is referred to as the “triple membrane spanning” 
mechanism and was first described for carbachol by the group of Axel 
Ullrich [24]. Angiotensin II, for example, induces the release of 
membrane-anchored EGFR ligands from the cell surface mainly via the 
metalloproteinase ADAM17 [7,76]. The substrates for ADAM17 are very 
often HB-EGF or transforming growth factor α [77]. 

The ligands released upon GPCR-activation bind to the EGFR in an 
auto- or paracrine fashion, promote its activation [42,65,78] and thus 
the activity of the EGFR’s canonical signaling pathways, such as MAPK 
and PLC-γ1. Given the great number of different GPCRs and their vari
able expression depending on the type of tissue, this mechanism is most 
probably of great physiological and pathophysiological importance in 

several circumstances. Ligands of GPCR known to transactivate EGFR 
via this mechanism include acetylcholine [37,79], oxidized phospho
lipids [47], serotonin [80,81] endothelin-1 [81], thrombin [81], 
angiotensin II [82], lysophosphatidic acid [2] or adrenergic agonists [2]. 

The exact molecular mechanism for each GPCR has not yet been 
finally elucidated. Neither the ligand-releasing proteases nor the intra
cellular signaling pathways have been identified for all transactivating 
substances. The AT1R induces ligand-dependent transactivation by 
coupling to the Gq/11-pathway [7,83]. Gαq/11 engages different 
signaling modules (Ca2+, protein kinase C, reactive oxygen species, 
cSRC) to activate the metalloproteinase ADAM17, which clusters with 
EGFR and HB-EGF in caveolae [84]. In addition, the contribution of 
PLA2 and p38 kinase in this process has been suggested [85,86]. In these 
cell membrane microdomains locally released HB-EGF binds to and 
activates adjacent EGFR. Activation of ADAM17 involves, at least in 
part, its phosphorylation at Y702 [84,87,88]. Activated EGFR stimulates 
the downstream pathways ERK1/2, p38, AKT, p70S6K [31]. There is 
now experimental evidence for the pathophysiological in vivo relevance 
of this mechanism [87,89–92], e.g. during hypertension, vascular 
remodeling or aortic aneurysm formation. In addition to ADAM17, 
MMP14/Membrane Type-1 Matrix Metalloprotease has been shown to 
contribute to AT1R-induced EGFR transactivation. This mechanism 
appears to be mediated via the direct activation of MMP-14 by Gβγ and 
subsequent release of HB-EGF [65]. Transactivation of EGFR by oxidized 
phospholipids is the result of lipid binding to a free cysteine residue of 
ADAM10 or ADAMTS4, thereby enhancing their activity [47]. In 
endothelial cells (EC), this results in an increased release of HB-EGF 
leading to enhanced expression of IL-8 [47]. 

Apparently, coupling of AT1R to Gα12/13 does not contribute to 
EGFR transactivation but stimulates the RhoA/Rock pathway [7]. By 
contrast, the βγ-subunits of the heterotrimeric G-proteins can induce 
ligand-independent EGFR transactivation, as described above [89,93]. 
Thus, activating AT1R may induce a network-like signal transduction 
due to the simultaneous recruitment of several interacting signaling 
pathways. This implies that network analysis instead of linear pathway 
analysis is required to unveil the full AT1R impact on cellular signaling. 

Fig. 3. Four possible mechanisms of AT1R-EGFR crosstalk, leading to EGFR transactivation resp. enhanced EGFR activity are shown. 1) AT1R activates a membrane 
metalloproteinase (ADAM), which cleaves membrane-anchored EGFR ligand. This ligand activates EGFR of the same (autocrine) or adjacent (paracrine) cells. 2) 
AT1R activates, via some intermediate steps, cytosolic tyrosine kinases (mostly of the cSrc family) that phosphorylate cytosolic EGFR tyrosine residues thereby 
activating the receptor. The evidence level for these two mechanisms and their relevance for vascular cell signaling is very high. This is not the case for the other two 
mechanisms, which are still controversially discussed. 3) AT1R may directly and physical interact with EGFR, forming heterocomplexes. This interaction is supposed 
to induces alteration of the cytoplasmic part of EGFR that finally result in enhanced kinase activity. The available data do not allow to conclude that heterodimers are 
formed but also could be explained by the formation of complexes consisting of several proteins. 4) The last and most indirect transactivation, results from AT1R- 
indcued expression of EGFR ligand. In this case EGFR activation occurs with a substantial temporal delay after AT1R activation. Thus this mechanism would not 
explain an AT1R-EGFR crosstalk during fast effects, like vasoconstriction but could be relevant for vascular remodeling. 
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Other GPCR, like those for serotonin and endothelin-1 also mediate the 
transactivation of EGFR via Gαq/11 subunits [81]. 

It can be concluded that ligand-dependent transactivation of EGFR 
depends on the inducing ligand, its receptor, the cell type and the actual 
status of the cell. Furthermore, transactivation can lead to signaling 
divergence that finally results in activity modulation of intracellular 
signaling networks. The physiological and pathophysiological signifi
cance of these events for angiotensin II have not yet been clarified 
conclusively, but more and more evidence for a physiological and 
pathophysiological relevance is provided [7,8,76]. 

2.5. Heterocomplex formation 

A third mechanism for EGFR transactivation is the direct protein–
protein interaction between GPCR and EGFR, i.e. a heterocomplex for
mation. There are now various studies that provide evidence for several 
GPCRs, including the AT1R, concerning EGFR heterocomplex formation 
[27,50,94–98]. Thereby, it has been recently proposed that AT1R-EGFR 
heteromerization leads to the recruitment of Grb2, which may result in 
the activation of downstream pathways [98]. The evidence for such 
interactions was obtained from different experimental approaches, like 
FRET, BRET, immunoprecipitation or proximity labelling mediated by 
APEX proximity labeling [99]. Heterocomplexes can be constitutive and 
ligand-independent or exist in a ligand-dependent equilibrium between 
association and dissociation. In this case, ligands may favor either 
dissociation or association. Furthermore, heterocomplex formation is 
thought to depend on the subcellular location of the interaction partner. 
The above mentioned protein TRIO has been identified as interaction 
partner of AT1R-EGFR heteromers contributing to the transactivation 
process and connecting the heteromer to several downstream signaling 
modules [100]. Finally, competition of GPCR for heterocomplex for
mation with EGFR has been shown [94], although not yet for AT1R. By 
such a competition, one GPCR could influence the EGFR-dependent 
signaling of a second GPCR and finally lead to weaker or stronger acti
vation of the downstream pathways, depending on the relative 
“strength” of the two GPCRs. 

Although, there is evidence for heteromer formation, the issue is still 
discussed controversially and further molecular and biophysical in
vestigations are required. Furthermore, it is not clear whether real di
mers or protein multimers (microdomains) are formed [53,98,100,101]. 

Heterocomplex formation could also enable a bidirectional infor
mation exchange and explain the modulation of GPCR activity by acti
vated EGFR [95]. However, this direction of crosstalk is less well 
investigated and therefore the relevance for AT1R signaling cannot be 
assessed. In general, AT1R heterocomplex formation can result in 
pathologic aggregation, as shown for the AT1R-B2R heteromer [102]. 
Whether this is also the case for AT1R-EGFR heteromers has to be 
investigated in the future. 

2.6. Induction of EGFR ligands 

Finally, AT1R can modulate EGFR activity on a different time scale 
by enhancing the expression of membrane-anchored EGFR ligands. Such 
a mechanism was proposed for angiotensin II in murine vascular smooth 
muscle cells (VSMC) [103]. Increased abundance of HB-EGF was 
required for the induction of transforming growth factor β and con
nective tissue growth factor expression. Angiotensin II-induced HB-EGF 
upregulation was also shown for bladder smooth muscle cells and in a 
model of nephrotoxicity [104,105]. Assuming that AT1R activation 
would also stimulate HB-EGF shedding, angiotensin II acts via two 
mechanisms with different time scales, whereby the second mechanism 
enforces the first one. 

3. Cellular consequences of EGFR-AT1R crosstalk 

Canonical, EGFR-independent, angiotensin II signaling is mediated 

by AT1R and AT2R [7]. Vasoconstriction and pathological vascular ef
fect are mediated mainly by the AT1R. Both receptors couple to heter
otrimeric G-proteins, whereby downstream signaling of AT2R is less 
well understood. AT1R activates either Gq or G12/13 subunits of het
erotrimeric G-proteins. Subsequently, either the phospholipase Cβ or the 
RhoA/ROCK pathway are engaged, both leading to vasoconstriction. 
The protein tyrosine kinase 2 beta (PYK2), JAK2 and Ca2+/calmodulin- 
dependent protein kinase II can support this process. 

3.1. Nuclear information transfer 

Although AT1R-EGFR interaction is well studied with respect to 
proximal signaling in cells, the consequences of this interaction in terms 
of information transfer to the nucleus, transcription regulation and 
finally the transcriptome are less well understood (Fig. 4). It is possible 
that AT1R-EGFR-transctivation leads to (i) a linear, EGFR-triggered, 
nuclear signaling or whether transactivation induces (ii) parallel AT1R 
and EGFR signaling leading to (iii) synergistic effects, as it would be also 
the case during separate but simultaneous activation by external ligands 
(EGF and angiotensin II). Deeper understanding of these mechanisms is 
of importance because nuclear information transfer affects gene 
expression with major impact on cell fate [99] and is therefore of po
tential physiological and pathophysiological relevance (Fig. 4). In this 
regard, the question arised whether a potential synergistic information 
transfer leads to quantitative, qualitative or temporal variations relevant 
for gene expression and environmental interaction [99]. 

The influence of AT1R and EGFR on SRF (serum response factor), 
activator protein 1 and early growth response protein 1 transcriptional 
activity, and transcriptome regulation were investigated in HEK293 
cells, HK-2 cells and VSMC in combination with RNA sequencing and 
comprehensive bioinformatic analysis [99,106]. The data showed that 
AT1R and EGFR synergistically activate SRF via the ERK1/2-TCF and the 
actin-MRTF pathway. This synergism, consisting of switch-like and 
graded single-cell reaction, converged at least partially on the tran
scription factors activator protein 1 and early growth response protein 1 
and led to substantial transcriptome changes, qualitatively (number of 
affected genes), quantitatively (expression level of individual genes) and 
temporal (later onset and longer-expressed genes). Bioinfomatic ana
lyses pointed to persistent cell stress and consequences for vascular 
biology. The synergism occurred during separate but simultaneous 
activation of both receptors and during AT1R-induced transactivation of 
EGFR. EGFR and AT1R thus synergistically regulate gene expression in 
qualitative, quantitative and temporal terms with (patho)physiological 
relevance. An AT1R-EGFR synergism regarding nuclear signaling was 
also described for intestinal epithelial cells, albeit it involved the tran
scription factor CREB [107]. 

3.2. Vascular smooth muscle cells 

In VSMC, the activation of the following signaling modules are 
described after EGFR stimulation: ERK1/2 [19,108–110], STAT3 [19], 
JAK [19], phosphoinositide 3-kinase [109], PLC-γ [111], GIT-1 [111] 
and light chain of myosin [19]. However, it should be noted that VSMC 
differ in the expression of e.g. receptors or ion channels, depending 
among other things on the circulatory segment from which they origi
nate. For example, a stretch-dependent vasoconstriction can be induced 
in VSMC of resistance vessels, but not in those of large arteries. So far, 
little attention has been paid to the difference in VSMC depending on the 
vessel type of origin. 

Substances that transactivate EGFR in VSMC include angiotensin II 
[44,110,112] aldosterone [113], adrenergic agonists [114,115], endo
thelin 1 [116–118] and ATP [119]. Ligand-dependent and ligand- 
independent transactivation have been described in VSMC, and it is 
possible that both pathways can be activated by the same substance. 
Angiotensin II is said to activate the EGFR in a ligand-dependent [112] 
but also in a ligand-independent [44,110] manner. Whether the 
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activation of the EGFR in VSMC of different arteries occurs with the help 
of the same mechanism has not yet been investigated in detail. The 
ligand that mediates EGFR transactivation in VSMC is mostly HB-EGF 
[114,114,120,121], although transactivation by transforming growth 
factor α [122] has also been described. 

EGFR transactivation by angiotensin II in VSMC is mediated pre
dominantly by AT1R that couples to Gαq/11 or Gα12/13 [7] and can 
involve EGFR transactivation via ADAM metalloproteinase domain 17 
or cSrc kinase [31,124]. In the case of ADAM17, EGFR is activated by 
shedding and binding of HB-EGF whereas cSrc leads to direct EGFR 
phosphorylation [56]. AT1R-EGFR heteromerization leading to 
recruitment of Grb2, has also been proposed [98]. Besides, AT1R-EGFR 
synergy independent of transactivation or receptor interaction has been 
described [123–126], although the post-receptor steps involved are not 
well characterized. 

In addition to the previously described signaling pathways of EGFR 
transactivation through activation of c-Src or Jak, activation of EGFR 
through changes in ion currents has also been described in VSMC 
[49,116,117], with non-voltage-dependent Ca2+ channels playing the 
crucial role. Thus, mechanical stretch in VSMC leads to the opening of 
stretch-dependent Ca2+ channels and thereby to the activation of EGFR 
and ERK1/2 [49]. Endothelin-1 also induces EGFR transactivation via 
activation of Ca2+ channels [116,117]. 

The importance of EGFR for VSMC survival, pentose phosphate 
pathway activity, matrix homeostasis, activation of mitogen-activated 
kinases (ERK1/2) and interference with cellular calcium homeostasis 
was established in murine primary VSMC from the aorta of mice with 
conditional VSMC-EGFR deletion [127]. EGFR deletion enhances 
spontaneous cell death, reduced pentose phosphate pathway activity, 

disrupted cellular matrix homeostasis (collagen III and fibronectin), 
motility, and switched off EGF sensitivity. In addition, endothelin-1-, 
phenylephrine-, ATP- and H2O2-induced ERK1/2 phosphorylation was 
significantly reduced in VSMC from knockout animals, as was the cal
cium response to endothelin-1 and phenylephrine. These findings 
demonstrate the importance of the VSMC-EGFR for (i) basal VSMC cell 
homeostasis, (ii) ERK1/2 activation by G-protein coupled receptors and 
oxygen radical stress, and (iii) calcium signaling [127,128]. 

Being a relevant signaling hub, its expression level influences the 
importance of VSMC-EGFR. Concerning the crosstalk of EGFR with the 
RAAS [21] in VSMC, an ageing-related EGFR-induction has been shown 
[21]. EGFR expression in VSMC is stimulated by aging and aldosterone. 
Inhibition of EGFR reduced age-related expression of pro-inflammatory 
genes. Parallel to EGFR, the expression of the mineralocorticoid receptor 
and the aldosterone sensitivity of the cells to EGFR-dependent ERK1/2 
phosphorylation increased with age. Aldosterone also resulted in 
increased expression of Transforming Growth Factor-ß, Intercellular 
Adhesion Molecule 1 and Procollagen 1, depending on age and the 
EGFR-ERK1/2 axis. These data indicate that during ageing the RAAS 
enhances EGFR expression, making VSMC more sensitive to angiotensin 
II. This enhanced RAAS sensitivity supports the pro-inflammatory VSMC 
phenotype during ageing in an EGFR-dependent manner [21]. Further 
investigations showed that the induction of EGFR expression in VSMC 
occurs via a new, SP1-dependent, response element in the EGFR pro
moter [129]. 

The relevance of transcriptional signaling synergy based on the 
interaction of EGFR with AT1R and in parallel with the thromboxane A2 
receptor (TBXA2R) has been investigated in primary murine aortic 
vascular muscle cells [106]. Transcriptome analysis revealed that 

Fig. 4. Overview of vascular consequences resulting from AT1R-induced EGFR transactivation in vascular smooth muscle cells (VSMC) and a subsequent crosstalk 
with endothelial cells (EC). RAAS = renin-angiotensin-aldosterone system. CTGF = Connecting tissue growth factor. Mito = mitochondria. DMT2 = diabetes mellitus 
type 2. 
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simultaneous EGFR-AT1R or EGFR-TBXA2R activation led to signifi
cantly different gene expression patterns compared to single substance 
exposure (=qualitative synergy). In addition, simultaneous EGFR- 
TBXA2R activation led to an over-additive increase in the amplitude 
of expression changes of a group of genes (=quantitative synergy) 
including Klf15 and Spp1, which are relevant in vascular damage. 
Furthermore, Gene Ontology enrichment analyses showed that synergy- 
dependent changes in gene expression affect processes critical to 
vascular integrity, such as cell cycle regulation and senescence. These 
data show that the activation of GPCRs in parallel to EGFR induces 
synergistic regulation of gene expression in VSMC and requires exten
sive network analyses to evaluate functional relevance of altered 
signaling. Investigating the effect of individual receptors often does not 
provide a sufficient knowledge for assessing physiological or patholog
ical effects [106]. 

3.3. Endothelial cells 

Less is known about the importance of EGFR in EC. However, several 
factors mediating at least part of their effect via the EGFR were 
described. Substances that contribute to vascular damage in diseases 
such as diabetes mellitus or atherosclerosis and may transactivate 
endothelial EGFR include advanced glycation end products (AGE) 
[130], hydrogen peroxide [46], oxidized lipids [47], endothelin-1 
[41,131] and angiotensin II [132]. Possible consequences of EGFR 
transactivation in EC have not yet been assessed conclusively. However, 
there is increasing evidence that activation of EGFR stimulates EC pro
liferation, promotes angiogenesis, induces adhesion of leukocytes, in
creases permeability and affects vascular reactivity [8,27,41,133]. In 
line, angiotensin II stimulates angiogenesis via transactivation of EC 
EGFR in a cell culture model [132]. With regard to the signaling path
ways activated by the EGFR in EC, systematic descriptions are still 
lacking. In addition to the “triple membrane spanning” mechanism, 
ligand-independent EGFR transactivation [46] has been described. 

3.4. Intercellular communication 

Using murine VSMC, it was shown that VSMC-EGFR can act as a relay 
station for pathologically relevant paracrine communication (Fig. 4). 
Angiotensin II increased HB-EGF expression in primary VSMC with a 
subsequent, EGFR-mediated expression and secretion increase of trans
forming growth factor ß followed by enhanced connective tissue growth 
factor expression. Both mediators can lead to pathological changes in 
VSMC as well as in EC, so that there is a possible mechanism of VSMC- 
EGFR-dependent changes in endothelial function [99,103,134]. In 
addition, it was shown that angiotensin II-induced HB-EGF release leads 
to an activation of the SRF signaling pathway through paracrine binding 
to the EGFR of neighboring cells, synergistically with the AT1R. This 
indicates that the EGFR signaling pathway enables communication be
tween neighbouring vascular cells and mediates their adaptation to 
changing environmental conditions [99,103]. 

4. EGFR and vasculature 

Vessel function and morphology are under the control of numerous 
humoral and local mediators that affect interacting cellular signaling 
cascades forming functional networks, with integrated signaling 
changes ultimately critical to understanding (patho)physiological pro
cesses. Here, the EGFR plays an important role as an integrator of 
numerous signaling pathways [8,99,135]. 

The importance of ErbB receptors in cardiovascular function and 
homeostasis was first recognized in women who developed cardiac hy
pertrophy during a cancer therapy with pharmacological EGFR in
hibitors. There are now numerous reports emphasizing the importance 
of all four members of the ErbB family in the development of the car
diovascular system [9,136]. A review by Forrester et al [31] gives an 

overview of the cardiovascular phenotype in different mouse lines with 
reduced EGFR activity, either due to mutation-induced changes or 
pharmacological inhibition of the receptor. 

Transactivation of the EGFR could be demonstrated in blood vessels 
in vivo as well as ex vivo and is supposed to be involved in vascular 
remodeling and the development of high blood pressure. The influence 
on angiogenesis, restenosis [137,138], atherosclerosis, vascular 
dysfunction [139] and vascular fibrosis has been described. Further
more, EGFR is responsible for some of the vascular changes during 
diabetes mellitus [140] and ageing [21]. Finally yet importantly, 
transactivation of the EGFR in blood vessels has been described for 
angiotensin II [32,141–144]. However, the in vivo relevance of EGFR for 
vascular alterations was mainly assessed by pharmacological inhibition, 
global partial reduction of its activity due to mutations or indirectly by 
interference with putative ligands [31]. It was therefore not possible to 
distinguish whether, for example, a reduced blood pressure-increasing 
effect of angiotensin II when EGFR is inhibited results from a reduced 
contraction of the VSMC or is caused by increased NO synthesis in the 
endothelium [145]. 

Under resting conditions, the EGFR seemed to have only a small ef
fect on vessel structure, since no macro- or microscopic differences could 
be observed in mice with a hypomorphic EGFR [15]. In the carotid ar
tery, it could be shown that the lumen-reducing vascular remodeling 
(inward remodeling) can be reduced by inhibition of EGFR, either via 
AG1478 [137] or an inhibitory antibody [138]. The physiological 
importance of the EGFR for maintaining blood pressure was also un
clear. There is no difference in systolic blood pressure in Wa-2 mice 
compared to wild-type animals [15,146]. Furthermore, the adminis
tration of AG1478 for five hours did not change neither systolic, dia
stolic nor mean blood pressure in rats [145]. Altogether, these findings 
did not allow conclusive assessment of EGFR importance during the 
development of high blood pressure. 

In mice with a global hypoactive EGFR (Wa-2, mouse waved-2 
phenotype with a point mutation in the EGFR tyrosine kinase), 
endothelium-dependent vasodilation of abdominal aortic rings was 
slightly reduced [15]. However, the endothelium-independent vaso
relaxation is unchanged, suggesting that the differences were caused by 
EC, possibly due to the reduced expression of endothelial NO synthase 
(eNOS) in these animals [15]. This finding could be reproduced in the 
pathophysiological relevant model of aldosterone/salt treatment in 
combination with 5/6 nephrectomy [15]. This treatment sensitized 
blood vessels to angiotensin II in an EGFR-dependent manner [147]. 
These results are at least in part contradictory to findings in rat thoracic 
aortic rings [141], which describe an EGFR-dependent desensitization 
for angiotensin II in 5/6 nephrectomy. However, the EGFR promoted 
sensitization of the myogenic response. The importance of the vascular 
EGFR has so far been examined focusing on VSMC, whereby there is also 
evidence for a role in EC (e.g. NO homeostasis, endothelial dysfunction, 
effect of angiotensin II), which however requires further functional 
confirmation or pathophysiological evaluation [8,31,131,148,149]. 
Thus, data availability for vascular muscle cells is far more compre
hensive and has recently been expanded by in vivo and ex vivo in
vestigations on genetic mouse models [15,127,150,151], with regard to 
the physiological significance and pathophysiological relevance. 

Beyond their cell-biological importance, vascular EGFR are also of 
pathological and clinical relevance. Their involvement in pathogenic 
vascular processes during atherosclerosis, in obesity and DMT2 as well 
as systemic and pulmonary hypertension is postulated with substantial 
evidence [8,131,140,152,153]. Examining genetic models with cell- 
specific EGFR deletion, it could be shown in vivo that the smooth 
muscle EGFR contributes to the setting of a physiological vascular tone 
and thus blood pressure and supports the effect of vasoactive hormones 
(see below) [127,150,151]. Furthermore, these investigations showed 
that the smooth muscle EGFR contributes to the maintenance of vascular 
wall homeostasis. Overall, the findings show that the EGFR plays a more 
complex role in the signaling network of the vessel wall in vivo and that 
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cell-unspecific reductions in its activity (by inhibitors or the Wa-2 mouse 
strain) cannot provide conclusive answers. The picture of a Janus-faced 
EGFR emerges, since on the one hand, EGFR contributes to physiological 
vascular function and homeostasis, but on the other hand it also supports 
the development of pathological vascular changes, so that it plays an 
important role in two different contexts. The role of the EGFR is thus 
complex, since it can have both protective and damaging effects and 
these may depend on the strength or circumstance of activation. 

Vascular EGFR has been linked to inflammatory processes in the 
vessel wall, also in connection with angiotensin II, as reviewed before 
[31,56]. These inflammatory processes are most probably the result of 
EC activation that can result from endothelial EGFR or smooth muscle 
EGFR signaling. In the latter case, an EGFR-dependent VSMC-to-EC 
crosstalk induces inflammation, as indicated in an obesity model [154]. 
Signaling pathways that with proinflammatory transcription-al impact 
include ER-stress, HIF1α, CREB and NFkB [56,155]. The relevance for 
angiotensin II-induced inflammation has been shown in a mouse model 
with endothelial-specific HB-EGF deletion. Knock-out animals showed 
significantly reduced angiotensin II-induced renal inflammation, indi
cated by lower IL6 and MCP1 expression [156]. Evidence for a systemic 
pathophysiological relevance was proved by a study showing that EGFR 
inhibitors decrease inflammation markers (TNFα, IL6) in atherosclerotic 
plaques of mice and their macrophages, as well as in in human VSMC 
[157]. 

In a mouse model of SM22 promoter dependent EGFR deletion, the 
basal, cell-specific importance of the EGFR in VSMC and cardiomyocytes 
could be investigated in vivo for the first time [150]. Plethysmographic 
and intravascular blood pressure measurements as well as echocardi
ography showed a reduced peripheral vascular resistance, reduced 
diastolic and mean blood pressure with unchanged systolic blood pres
sure. Loss of VSMC-EGFR resulted in a dilated vascular phenotype with 
low levels of fibrosis and inflammation and reduced angiotensin II 
reactivity. Echocardiography, necropsy and histology revealed dramatic 
eccentric cardiac hypertrophy in constitutive conditional knockout mice 
with greater stroke and cardiac output, left ventricular volume and 
thickened ventricular wall. Cardiac hypertrophy is accompanied by an 
increase in cardiomyocyte volume and the expression of hypertrophy 
markers, without a significant increase in profibrotic or proin
flammatory parameters. Furthermore, an increased mRNA expression of 
NADPH oxidase 4 (NOX4), but not NOX2, as well as increased NOX 
activity in the heart and in isolated cardiomyocytes could be detected. 
Thus, the EGFR appears to counteract cardiac growth, possibly by 
affecting oxygen radical homeostasis. These changes correspond mech
anistically to those that occur in cardiomyocytes as part of aging [158]. 
The blood pressure changes were confirmed in the inducible model of 
SMMHC-CreERT2-driven EGFR knockout in VSMC [134,159]. Since 
cardiac output was not increased in this model, systolic blood pressure 
was also reduced. Thus, VSMC-EGFR contributes to the maintenance of 
the vessel wall architecture as well as vessel reactivity and physiological 
vasotonus [150]. 

At the cellular level (i.e. studies using cultured cells) the mechanisms 
of GPCR-EGFR crosstalk seem to be similar and in many cases trans
activation is dependent on the activation of ADAMs, irrespective of the 
stimulus. However, the cell type under investigation may play a role for 
the mode of transactivation, because the expression of membrane-bound 
EGFR-ligands can differ. Ex vivo studies with isolated vessels showed 
that the importance of EGFR-transactivation by vasoconstrictor differs. 
Whereas vascular reactivity to AII, phenylephrine or U46619 is at least 
partially EGFR-dependent, reactivity to KCl (depolarization), serotonin 
or endothelin-1 was not [160]. Since vascular reactivity to e.g. KCl was 
not affected in EGFR-KO animals, a basal impairment of contractile 
function is not likely. 

5. EGFR-AT1R crosstalk in vivo 

One of the better-studied roles of vascular EGFR in vivo is its 

contribution to the blood pressure-increasing effect of angiotensin II. 
However, the data were inconsistent for a long time. For example, the 
angiotensin II-induced increase in blood pressure could be reduced by 
AG1478 administration to rats [145]. On the other hand, Chan et al. 
[32] were unable to observe an effect on the hypertension induced by 
angiotensin II either with genetic mutation (Wa-2 mouse strain, strong 
reduction in EGFR activity) or with inhibition of EGFR (AG1478) [32]. 
The contractile response of murine aortic rings [15] by angiotensin II 
was altered by a global but partial reduction of EGFR activity. 
Contraction of human coronary vessels was unaffected by EGFR 
blockade when stimulated with angiotensin II alone, whereas an 
angiotensin-aldosterone synergism was prevented [161]. 

Concerning the acute angiotensin II-induced blood pressure burden, 
an essential role for VSMC-EGFR was observed in a transgenic mouse 
model with inducible and conditional EGFR knockout [159]. As in the 
constitutive-conditional VSMC-KO model [127,150], a dilated vascular 
phenotype was also present. Morphometry and gene expression analysis 
on aortic rings from wild type and VSMC-EGFR-KO animals showed no 
significant basal differences. The same holds true for strain-wall stress 
behavior in the relevant working range, determined by myography. The 
response to KCl, serotonin and endothelin-1 as well as the carbachol- or 
NO-induced relaxation were virtually not changed. In contrast, angio
tensin II-induced force development was significantly reduced in 
constitutive and inducible conditional transgenic models. Further 
investigation showed that AT1R signaling was reduced; homologous 
desensitization was accelerated but receptor mRNA expression was 
unaltered. The involvement of AT2 receptors could be ruled out phar
macologically. These data demonstrated for the first time the differential 
role of the VSMC-EGFR in the regulation of vascular tone by stimuli 
capable of EGFR transactivation [160]. Furthermore, the KO animals 
were protected from the age-dependent increase in heart weight and 
also showed no increase in aortic and cardiac inflammatory markers 
(Ccl2, Serpine 1). These data suggest that the VSMC-EGFR is involved in 
basal blood pressure homeostasis and acute blood pressure regulation by 
angiotensin II and contributes to age-related cardiovascular remodeling 
[160]. 

Concerning chronic angiotensin II-induced alterations in blood 
pressure and vascular dysfunction, three-week infusion of angiotensin II 
via osmotic minipumps in wild-type animals resulted in an increase in 
blood pressure and aortic wall thickness. These effects were not 
observed in animals with inducible VSMC-EGFR-KO (aortic wall thick
ness) or were significantly reduced (blood pressure increase) [134]. 
There were no differences in water and food intake. Parallel to the aortic 
wall thickening, the fibrosis markers collagen-1, fibronectin-1 and 
collagen-3 were induced by angiotensin II infusion in wild-type animals 
but not in KO animals. These data demonstrate that the VSMC-EGFR is 
involved not only in acute physiological, but also the chronic, patho
logical actions of angiotensin II in the cardiovascular system, thus 
complementing pharmacological studies on the action of EGFR antag
onists in the cardiovascular system [33,134]. 

A more complex, angiotensin-dependent clinical-pathological sce
nario is obesity-induced diabetes mellitus type 2 (DMT2). Vascular 
dysfunctions in this context depends to a major part on an overactive 
RAAS. The role of the EGFR in these situations is of mechanistic and 
clinical relevance, since previous studies prove the fundamental 
importance of the EGFR without specifying the cell types involved or the 
pathomechanisms affected [31]. For example, increased vascular EGFR 
expression or increased EGFR phosphorylation has been described in 
hyperglycemia and in insulin-resistant animals. Furthermore, vascular 
function and wall homeostasis improve in the presence of EGFR kinase 
inhibitors [8,140,152,153]. Since a relevant role of angiotensin II in the 
context of vascular damage during obesity and DMT2 has been shown 
[162,163] and vascular EGFR is necessary for the full effect of angio
tensin II on vessel structure and function, a fundamental pathogenic 
significance of vascular EGFRs for vascular dysfunction/wall remodel
ing under the conditions mentioned is conceivable. This role may turn 
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vascular EGFR, for which pharmacological tools already exist, into a 
relevant therapeutic target. However, for a long time it was not possible 
to test the hypothesis of a cell-specific EGFR involvement in vascular 
dysfunction or damage in the context of obesity/DMT2 in vivo. 

The role of vascular EGFR in high-fat diet (HFD)-induced DMT2 was 
studied in mouse models with induced VSMC-EGFR-KO or with EC- 
EGFR-KO [154,162]. The results show that the VSMC-EGFR mediates 
obesity/DMT2-induced vascular dysfunction, remodeling and tran
scriptional dysregulation. These precede kidney damage. Furthermore, 
they identify an EGFR-glucose synergism with regard to serum response 
factor (SRF; main regulator of VSMC differentiation and glucose sensor) 
activation, matrix dysregulation and mitochondrial dysfunction. VSMC- 
EGFR-KO protects the animals from HFD-induced endothelial dysfunc
tion (thus there is a VSMC-EGFR-dependent interaction between VSMC 
and endothelium), creatininemia and albuminuria. Furthermore, the 
HFD-induced changes of the vascular transcriptome were prevented. 
These findings suggest EGFR-dependent SRF activation, matrix dysre
gulation and mitochondrial dysfunction. At the cellular level, hyper
glycaemia was shown to increase EGFR/ErbB2-induced stimulation of 
SRF activity via the EGFR/ErbB2 ROCK-actin-MRTF signaling pathway 
and amplify mitochondrial dysfunction. Thus, it was shown that the 
VSMC-EGFR contributes to HFD-induced vascular and ultimately renal 
changes. The potentiation of the EGFR/ErbB2-ROCK-MRTF-SRF 
signaling axis and mitochondrial dysfunction plays an important role 
here. [154]. 

The results with the EC-EGFR-KO model on vascular and renal 
function under control and HFD (i.e. obesity) conditions showed a very 
different role and importance of EC-EGFR in vivo [164]. Heart and lung 
weights, blood pressure and aortic transcriptome were unaffected by EC- 
EGFR-KO, as was aortic contractile response to α1-adrenergic stimuli, in 
contrast to VSMC-EGFR-KO [134,150,159]. Yet, the endothelium- 
dependent relaxation of the abdominal aorta of EC-EGFR-KO animals 
was reduced. The results for mesenteric arteries were in part different, 
indicating a vessel type specific role of EC-EGFR. Mesenteric arteries 
from EC-EGFR-KO animals were more sensitive to α1-adrenergic stim
ulation than wild-type animals, while endothelium-dependent relaxa
tion and vessel wall morphology were unchanged. The obesity-induced 
changes are comparable in EC-EGFR-WT and -KO animals. HFD-induced 
aortic endothelial dysfunction, which is not additive to EC-EGFR-KO- 
induced dysfunction, indicating a negative effect of obesity on the pro
tective role of EC-EGFR. Only HFD-induced albuminuria is attenuated in 
EC-EGFR-KO animals. These data suggest that the EC-EGFR, compared 
to the VSMC-EGFR, is of lesser and sometimes opposite importance for 
vascular function itself and for obesity-induced damage [164]. 

6. Perspective 

The importance of EGFR has expanded over the field of tumour 
biology and is now well documented for the cardiovascular system, 
especially for angiotensin II. For a long time our knowledge was based 
mainly on studies with primary cells, cell lines or heterologous expres
sion systems and cell non-specific in vivo interventions. The generation 
of cell-specific EGFR-KO mouse models in recent years made the trans
lation to in vivo models possible, giving the opportunity to dissect the 
importance of EGFR in different cell types. Combining cellular, ex vivo 
and in vivo data teaches us a complex and cell-specific role of vascular 
EGFR as a central hub in intracellular and intercellular signaling net
works. This complex role comprises physiological functions and tissue 
homeostasis as well as pathological vascular alterations. We now need to 
deepen our understanding on the one hand of its role in cellular 
signaling and transcription networks by the appropriate bioinformatic 
analyses and modelling approaches. On the other hand we need to 
deepen our understanding of its systemic and cell-specific role under 
physiological and pathophysiological conditions to enable the devel
opment of rationale therapeutic approach with vascular EGFR as drug 
target. 

Rating the future impact of our improved knowledge, concerning 
vascular EGFR, beyond the basal mechanistic understanding, is com
plex. We now understand that EGFR is an important signaling hub with 
respect to the balance and dysbalance of vascular wall functional and 
structural homeostasis. Because there are several clinical EGFR in
hibitors available, it is tempting to speculate about their use in patients 
with vascular diseases. However, systemic application of EGFR in
hibitors could interfere with its beneficial functions, like epithelial 
repair mechanisms. Furthermore, application ErbB inhibitor during 
cancer treatment showed cardiac side effects. Thus, while EGFR in
hibitors may not be an additional option for the reduction of an 
enhanced vasotonus (there are very efficient drugs on the market), they 
may well add a valuable layer to the therapeutic strategies concerning 
vascular remodeling, stiffening and even atherosclerosis. For this pur
pose, inhibitors that act mainly on vascular cells are desirable. 
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