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Kurzfassung

Krebs ist eine sich schnell ausbreitende Krankheit mit vielen Behandlungsmöglichkei-
ten. Eine dieser Behandlungsmethoden ist der Einsatz von Wärmeenergie zur Zer-
störung des bösartigen Gewebes, ohne dass eine offene Operation erforderlich
ist. Bei diesen minimal-invasiven Verfahren ist die Überwachung der Wärmev-
erteilung ein dringender klinischer Bedarf. Mit Hilfe der MRT kann die Temperatur
im Gewebe mit Methoden wie der Protonenresonanzfrequenzverschiebung berech-
net werden. Bislang ist die Erfassung von volumetrischen Wärmekarten entweder
auf die Entwicklung spezieller MR-Sequenzen oder auf die Verwendung interven-
tioneller Simulationen beschränkt. Bei den MR-Sequenzen kann zwischen reinen
3D- und überlagerten 2D-Sequenzen unterschieden werden. Im Hinblick auf die
interventionelle Simulation sind die Pennes’sche Biowärmeübertragungsgleichung
in Kombination mit Levenberg-Marquardt-Schätzern und erweiterten Kalman-Filtern
beliebte Ansätze. Dennoch haben sowohl der MR-Sequenzansatz als auch die
Simulationsansätze Nachteile. Vollständige 3D-Sequenzen sind anfälliger für z. B.
MR-Interferenzen und Bewegungen als 2D-Sequenzen. Für Simulationen mit dem
Kalman-Filter ist die Einführung eines behandlungsspezifischen Wärmequellen-
terms erforderlich. Dieser Term erhöht den Rechenaufwand erheblich und erfordert
viel A-priori-Wissen.

In dieser Arbeit wird ein Konzept für die Rekonstruktion von volumetrischen Wärmekar-
ten vorgestellt. Dazu wird ein neues Sequenzprotokoll vorgestellt, das eine Standard-
Gradient-Recalled-Echo-Sequenz verwendet, die in vielen klinischen Einrichtungen
verfügbar ist. Diese 2D-Sequenz wird mit Hilfe einer Fernsteuerungsschnittstelle des
Scanners um die Hauptachse des Applikators gedreht. Durch diese spezielle Art der
Abtastung des 3D-Raums ist das resultierende Rekonstruktionsproblem weniger
komplex und kann entweder mit üblichen Bildverarbeitungsmethoden oder ein-
fachen Simulationsansätzen gelöst werden, ohne dass ein behandlungsspezifischer
Wärmequellenterm eingeführt werden muss. Zu diesem Zweck wird in dieser Arbeit
gezeigt, dass einfache 2D-zu-3D-Rekonstruktionsalgorithmen geeignet sind, eine
volumetrische Wärmekarte zu rekonstruieren. Darüber hinaus wird ein neuer Ansatz
für adpative Simulationen während des Eingriffs vorgestellt, um die Genauigkeit
der berechneten volumetrischen Wärmekarten weiter zu erhöhen. Die in dieser
Arbeit entwickelten Algorithmen können in einer Vielzahl von klinischen Situationen
eingesetzt werden.
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Abstract

Cancer is a rapidly spreading disease with many treatment options. One of these
treatment procedures is the use of thermal energy to destroy the malignant tissue
without the need of open surgery. During those minimally invasive procedures
the monitoring of the heat distribution is an urgent clinical need. Using MRI, the
temperature inside the tissue can be computed using methods like the proton
resonance frequency shift. Until this time, the acquisition of volumetric heat maps is
limited either to the development of special MR sequences or the use of intervetional
simulations. Regarding the MR sequences, fully 3D and stack of 2D sequences
can be divided. with respect to the inertventional simulation, the Pennes’ bioheat
transfer equation in combination with Levenberg-Marquardt estimators and extended
Kalman filters are popular approaches. Nonetheless, the MR sequence approach
as well as the simulation approaches yield disadvantages. Fully 3D sequences are
more prone to e.g., MR interference and motion than 2D sequences. For simulations
using the Kalman filter the introduction of a treatment specific heat source term is
necessary. This term increases the computational effort significantly and requires
much a priori knowledge.

In this thesis a concept for the reconstruction of volumetric heat maps is proposed.
Here, a new sequence protocol is introduced, which utilizes a standard gradient-
recalled echo sequence available to a wide range of clinical setups. This 2D
sequence will be rotated around the applicator’s main axis using a scanner remote
control interface. By sampling the 3D space in this special way the resulting recon-
struction problem is less complex and can be solved with either common image
processing methods or simple simulation approaches without the introduction of a
treatment specific heat source term. For this purpose, we will show that that simple
2D to 3D reconstruction algorithms are suitable to reconstruct a volumetric heat
map. In addition, a new approach for adaptive simulations during the intervention is
introduced to further increase the accuracy of the computed volumetric heat maps.
The algorithms developed in this thesis will be applicable to a wide range of clinical
setups.
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Introduction 1
„Modern Cancer Surgery someday will be

regarded with the same kind of horror that we
now regard the use of leeches in George
Washington’s time.

— Dr. Robert Mendelsohn
American pediatrician

Cancer is a rapidly spreading disease. In 2018, the number of new cancer cases
was estimated at around 17 million, with 9.5 million deaths (excluding nonmelanoma
skin cancer) (Bray et al., 2018). In 2020, the numbers increased by 6.47% and
4.21% for new cases and deaths, respectively (Sung et al., 2021). In addition to
open surgery, which usually yields a higher trauma for the patient, a wide range of
minimally invasive therapies have been developed for cancer treatment over the
past decades. Among these, mild hyperthermia has been proven to be able to
enhance the efficacy of radiation and chemotherapy, the usual methods of treatment
(VilasBoas-Ribeiro et al., 2022). Here, the tissue is heated up to 39◦C - 43◦C over
a long period of time, causing the cells to irreversibly loose their functionality. Aside
from these approaches, thermal ablation procedures have also been developed over
the past decade (Ahmed et al., 2014; Mauri et al., 2017; Tomasian et al., 2018). In
addition to radiofrequency (RF) and (high) focused ultrasound (HIFU) ablations, one
of these methods is the use of microwave ablation (MWA). Especially for smaller
tumors, MWA shows promising results for treatment (Tehrani et al., 2020).

To fully treat malignant tissue, it is important to not only destroy the malignant cells,
but also ensure a corresponding safety margin. As this minimum ablative margin
(MAM) is crucial for the local tumor progression (LTP), it is of greatest importance to
assess if the malignancy has been adequately and completely treated, regardless
of the etiology. For each millimeter increase of the MAM, a 30% reduction of the
relative risk for LTP was found. The MAM itself is especially important as the only
significant independent predictor of LTP (p = 0.036) (Laimer et al., 2020). During
the intervention, magnetic resonance (MR) imaging offers several advantages for
guidance, such as good soft-tissue contrast without the need of contrast agent, free
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orientation and positioning of single slice scans and the possibility to accurately
track changes in the temperature inside the tissue (MR thermometry) (Gorny et al.,
2019; Kägebein et al., 2018; Rieke et al., 2008; Senneville et al., 2007).

Recently, Fedderson et al. (2020) performed an in-depth study on more than 4000
patients treated with superficial and deep hyperthermia. They were able to identify
two major aspects: first, MR thermometry is the only non-invasive clinically accepted
method to measure the heat distribution inside the human body. Second, up to
now this method is only applicable in areas without motion, and little progress has
been made for 20 years in applying this method to more challenging areas like
the abdomen and thorax. Unfortunately, the research provided by Fedderson et al.
(2020) focuses mainly on 2D MR thermometry approaches. 2D thermometry in a
single slice is not capable of adequately monitoring whether the malignant tissue
and the MAM have been fully treated. For this reason, it is necessary to investigate
possibilities on how to extend the clinically accepted 2D thermometry to a volumetric
approach.

In 2D thermometry, the proton resonance frequency shift (PRFS) method for ther-
mometry computation is reported to be clinically accepted because of its linear
behaviour and the near-independence of different tissue types (Rieke et al., 2008).
Using MR-guidance in combination with the PRFS method, the heat distribution
can be tracked during hyperthermia and thermal ablation procedures. Nonethe-
less, whether a volumetric thermometry map can be clinically acceptable, as well
as whether the errors caused by respiratory motion, e.g., in the thorax can be
minimized, remain open questions.

1.1 Problem Definition

During an initial literature research, the following problems and limitations regarding
volumetric thermometry maps could be identified:

1. Real-time Image Acquisition

3D volume acquisition using MR imaging involves a major trade-off between
temporal and spatial resolution, especially with respect to temperature mea-
surements. In order to acquire high accuracy temperature maps, the resolution
of the acquired volume has to be sufficiently high enough with respect to the
spacing of the voxels. To achieve this resolution, the acquisition time is in-
creased depending on the used sequence. This increase in acquisition time
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also increases the risk for MR inhomogeneities to arise and may decrease
the signal-to-noise-ratio (SNR) significantly.

2. Minimizing Motion Artifacts

An increased acquisition time also increases the risk for motion artifacts.
Full anaesthesia minimizes the patient’s body movement but always yields
a risk for the patient. In addition, even during full anesthesia, the motion
caused by breathing is not negligible. Therefore, 3D thermometry acquisition
is usually paired with complex motion correction methods which increase the
computational effort and reduce the real-time capabilities.

3. Ease of Use

In general, 3D thermometry sequences can be capable of real-time image
acquisition, but, to achieve this, they are usually unique, custom-made and
utilize individual reconstruction pipelines. Therefore, they are not applicable to
a wide range of clinical setups. Installation and operation of these sequences
require special expertise or training, which can be troublesome in the daily
routine of the hospitals.

4. Coagulation Estimation

To aid radiologists during their decision process, it is necessary to provide
real-time information about the current coagulation necrosis estimation. Many
approaches for 3D thermometry acquisition use offline reconstruction and do
not provide an intra-operative coagulation estimation.

Detailed information on the literature research can be found in the related Sub-
chapters 3.2, 4.2, 5.2 and 6.2.

Derived from the current problems and limitations, the aim of the present work is to
conceptualize, develop and evaluate a prototype for the monitoring of heat distribu-
tions during minimally invasive tumor ablation. Because the problems mentioned
before can be more easily addressed in 2D, the focus is on the development of a
volumetric thermometry map, which is based on already available 2D sequences.
The proposed method must provide a reconstruction approach based on the derived
temperature maps while being applicable (to a certain extent) to areas with high
motion. In addition, the developed prototype shall be real-time capable in order
to be used in a wide range of clinical contexts and it would be mandatory for a
volumetric thermometry reconstruction to be at least as accurate as the current
2D state-of-the-art solution. Due to the lack of clinical patient data, all test data is
acquired on bioprotein phantoms, as explained in Chapter 3. As a result of the use
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of these phantoms, the critical temperature model is used for necrosis estimation
as it is easily adaptable to the individual characteristics of each phantom. Yung
et al. (2010) performed a quantitative analysis on thermal dose models, including
the critical temperature threshold model. According to their analysis, a dice score
coefficient (DSC) > 0.7 is excellent, and therefore clinically applicable in the context
of 2D thermometry. Reported DSC values do not differ much with respect to the
used thermal dose model. Regarding the critical temperature threshold, average
results show a DSC > 0.8 with a maximum of up to 0.91. Taking this into account,
the following research question can be formulated:

R1

"Can conventional image processing algorithms be used to reconstruct
volumetric thermometry maps from 2D slices with at least 80% accuracy

(DSC > 0.8) while being real-time capable?"

Another approach for the computation of volumetric heat maps is the use of simula-
tions of the heat distribution. Here, Harry H. Pennes (1948) introduced a bioheat
transfer equation (BHTE) to simulate the heat distribution in the forearm. Even
though he made many assumptions without being able to prove them, his BHTE
showed promising results. Fifty years later, Eugene H. Wissler (1998) revised
the paper and was also able to reproduce the mathematical results from Pennes.
The introduced simulation is very easy to compute but is also very prone to error
accumulation. Nonetheless, this BHTE might be able to be utilized for volumetric
thermometry reconstruction. By feeding the algorithm with live data and adapting the
simulation parameters in real-time it should be possible to reduce the accumulated
error over the time of the intervention. Therefore, a second research question can
be formulated:

R2

"Is it possible to utilize the Pennes’ Bioheat Transfer Equation to simulate
the actual coagulation necrosis during thermal tumor ablation in real-time

while avoiding simulation error accumulation?"

1.2 Concept Design

Based on the identified problems and the formulated research questions, the con-
ceptional design for a prototype was developed. Aside from the integration of the
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Siemens Healthineers’ Access-I framework for direct control of the MR device, the
focus lies on the 2D to 3D reconstruction module. A schematic overview of the
proposed architectural design can be seen in Figure 1.1. Addressing the current

Fig. 1.1: General architectural diagram for the proposed prototype. Control of the MR
device can be obtained by using the Access-I framework provided by Siemens
Healthineers. The monitoring prototype consists of the following modules: 1) The
already existing 2D thermometry based on the PRFS method. 2) The 2D to 3D
reconstruction for volumetric thermometry computation to be developed in the
present thesis. 3) The necrosis estimation based on state of the art thermal dose
models.

limitations in the field of volumetric thermometry maps, the problem of real-time
monitoring will be transferred from the domain of MR physics and MR sequence
programming to that of computer science.
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In the context of the present thesis, the term "real-time" is highly connected to the
used imaging protocol. The consultation of clinical experts in the field of interven-
tional radiology yielded the following (paraphrased by the author of the present
work): "Real-time" in the context of minimally invasive radiology means that the
processing of the images is faster than the continuous imaging technique used
for guidance. In the case of an MR sequence, which takes one second for image
acquisition, the processing of the acquired image and the resulting 2D to 3D recon-
struction has to be less than one second to be considered "real-time". By focusing
on conventional reconstruction algorithms and a very basic simulation approach, the
computational effort can also be optimized to address the first limitation: Real-time
Image Acquisition.

With respect to the image acquisition, a standardized MR sequence has to be
available on a large scale of MR devices as default. One available sequence is a 2D
gradient-recalled echo (GRE) sequence. This sequence is suitable for thermometry,
as it is capable of not only generating magnitude images for diagnosis but also phase
images for the PRFS method. In addition, Gorny et al. (2019) provide an in-depth
analysis for the 2D GRE sequence regarding the breathing cycles of patients and
the SNR during MWA. The sequence used should be based on the information
given by their work. Furthermore, they claim that this sequence can be manually
synchronized with the breathing cycle of the patient, minimizing the respiratory
movement during intervention. By utilizing their research as an input for the 2D
to 3D reconstruction, the second limitation Minimizing Motion Artifacts could be
addressed adequately.

R1 refers to "conventional" image processing algorithms. For those, artificial intelli-
gence is neglected and the input for those algorithms has to be available a priori
or provided directly during the intervention. In order to provide a proper 2D to 3D
reconstruction of a volumetric heat map, the volume of interest needs to be sampled
in a sufficient way. Because the heat source of the applicator’s main axis is a crucial
factor during heat propagation, all acquired images should contain this heat source.
A possible way to achieve this is the rotation around the applicator’s main axis.
Manual planning of the slice rotation for each individual patient and applicator will
be difficult. So that it can still address the third limitation Ease of Use, the prototype
must provide the possibility for taking control of the used MR device. Regarding
Siemens devices, the Access-I framework provided by Siemens Healthineers can
be utilized. This framework allows for not only fetching live images, but also for
taking host control and rotate the 2D sequence around the applicator’s main axis
automatically.
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Regarding R2, an alternative for conventional 2D to 3D reconstruction is the use of
BHTEs for simulation of the heat propagation. Simulations in general do not rely
on a frequent input of information. Using simulations, a continuous feedback loop
can be achieved providing a better understanding of the distribution of the heat in
between image acquisitions. Nonetheless, to be real-time capable in the context
of minimally invasive radiology, the BHTE must not be to complex. Pennes’ BHTE
describes a simple optimization while being very prone to errors accumulating over
time. Combining this approach with the continuous image information from the live
data it should be possible to correct the error over time and thus optimizing the final
outcome of the interventional simulation resulting in an increased accuracy of the
last limitation Coagulation Estimation.

1.3 Thesis Structure

The present thesis describes the reconstruction of a volumetric thermometry map
based on equally distributed 2D MR images for minimally invasive tumor ablation.
The focus lies on the transferal of the problem from the domain of pure MR physics
into the domain of computer science. To address the problem of volumetric ther-
mometry reconstruction and to open this field to a broader range of researchers,
the thesis is structured as follows:

• Chapter 2 introduces the technical and medical background information nec-
essary to understand this thesis. This includes the physical properties of an
MR device and the acquisition of thermometry maps, as well as the basic idea
of MWA and the clinical procedure for minimally invasive interventions.

• Chapter 3 explains the proof-of-concept study conducted to test the feasibility
of this thesis. Here, the generation of a bioprotein phantom data base is
explained, in addition to a first basic 2D to 3D reconstruction approach.

• Chapter 4 conducts research regarding different conventional 2D to 3D ap-
proaches. Here, the focus lies on the identification of the optimal base setup.
Factors considered are volume-based, layer-based and model-based ap-
proaches.

• Chapter 5 introduces a probabilistic thermal dose model based on the state-
of-the-art CEM43 model. Here, the probability density function (PDF) from the
complex phase image is derived and transformed into the thermal dose PDF
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to compute a probabilistic necrosis map in order to increase the accuracy and
therefore improve the input for the presented reconstruction methods.

• Based on the information gained in the previous chapters, Chapter 6 focuses
on the development of an adaptive bio heat transfer simulation. The goal of
this work is the utilization of the easy to compute Pennes’ BHTE while reducing
the accumulation error and preserving the real-time capabilities of the previous
approaches.

• Chapter 7 concludes this thesis by summarizing the methods and contributions
of the presented work and discussing their limitations and potential future work.
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Background 2
„An MRI scan can reveal a world of information,

showing us the secrets hidden within our
bodies and unlocking mysteries we never knew
existed.

— Dr. Sanjay Gupta
American neurosurgeon

The following chapter will describe the medical and technical background of the
proposed methods. The focus lies on the MWA as the chosen method for thermal
ablation, utilizing the MRI device for image guidance. Here, the basic principle of the
device will be explained in more detail with focus on the creation of the thermometry
images, using the PRFS method and one of the current used workflows.

2.1 Magnetic Resonance Tomography

(a) Illustration of the main magnetic field created
by the electric current in the looped wires of
the MR device. Based on (Pooley, 2005).

(b) Illustration of the longitudinal aligned net mag-
netization. Based on (Pooley, 2005).

Fig. 2.1: Illustration of the main magnetic field and the proton precession.

One of the main parts of an MR device is the giant main magnetic field referred to
as B0, which is created by an electric current moving through looped wires (Figure
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2.1a). In an MR device, these wires form a giant magnet perpendicular to the loop.
This magnetic field is very stable with respect to the loss in power and magnetic
field strength. After powering up the device and removing the power source the MR
device, depending on the type, is able to maintain the electric current for several
years. Nonetheless, the immense power input causes the wires to produce very
high temperatures. To cope with the immense heat produced in this state, these
wires are immersed in liquid helium to keep the different parts from breaking (Pooley,
2005).

Observing all kinds of atoms, it can be seen that atomic nuclei with an odd number
of protons and/or neutrons (like hydrogen 1H) have a "nuclear spin" I. The nuclear
spin is always related to the magnetic momentum µ in the form:

µ = γI (2.1)

with γ representing the characteristic gyromagnetic ratio for each nucleus (Reiser et
al., 2007). In the normal state of the human body, the hydrogen protons are randomly
aligned, causing their local magnetic fields to cancel out each other. Applying a
strong magnetic field B0 from the outside, forces these nuclei to align, creating a
net magnetization parallel to B0. An illustration can be seen in Figure 2.1b. This
alignment results in an accumulation of the tiny magnetic fields, creating a larger
local magnetic field. Nonetheless, even when aligned parallel or anti-parallel to B0,
the nuclei still have a magnetic momentum (Pooley, 2005). Therefore, they start
spinning and precessing around the B0 main axis as seen in Figure 2.2a.

To enforce a measurable response from the nuclei, a second RF magnetic field
has to be applied e.g., through a body or head coil. Here, the flow current rapidly
changes back and forth, causing the magnetic field created by the flow of electrons
to also change direction rapidly. The RF signal is usually transmitted during a short
time period. Each of these transmissions is called a single RF pulse. In order
to optimize the energy transfer from the RF pulses to the protons the transmitted
pulses must match the frequency of the precession of the protons (Pooley, 2005).
This precession can be computed using the Larmor equation 2.2:

ω0 = γB0 (2.2)

with ω0 representing the proton precessional frequency, γ representing the nucleus
dependent gyromagnetic constant (e.g., hydrogen protons = 42.6 MHz/T) and B0

representing the magnetic field strength (e.g., 3T) (Grover et al., 2015). The nuclei
absorb the energy from the RF pulses causing the net magnetization field to rotate
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(a) Illustration of the precession of a nucleus around the main
magnetic field B0. Based on (Reiser et al., 2007).

(b) New angulation after RF pulse
transmission. Based on (Poo-
ley, 2005).

Fig. 2.2: Illustration of the net magnetization and the RF pulse transmition.

away from its initial orientation depending on the strength and length of the RF
pulse (Figure 2.2b). The strength of the rotation towards the transversal x-y plane is
referred to as the flip angle and it can be at any angle possible. In general, higher
flip angles (e.g., 90◦ or 180◦) are important when using spin echos while lower flip
angles define faster imaging techniques like the GRE sequence used in this thesis
(Pooley, 2005). The flip angle α can be computed using the gyromagnetic constant
γ and the length of the RF pulse τ at a constant amplitude B̂1 (Brown et al., 2014):

α = γB̂1τ (2.3)

The standard net magnetization, as explained previously, is aligned longitudinal,
and therefore called longitudinal magnetization. By applying a 90◦ RF pulse, the
longitudinal magnetization becomes zero as the whole magnetic field is rotated
away from the longitudinal direction in the transverse plane. The following relaxation
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can be divided into Spin-Lattice relaxation and Spin-Spin relaxation (Brown et al.,
2014).

The Spin-Lattice interdependency describes the recurrence of the spins into the
thermodynamic steady state, which correlates to the minimum energy state of the
system. The constant to describe the time needed for aligning the spins parallel to
the external magnetic field is called T1. During this process, the exchange of energy
mainly occurs with the crystal lattice (Brown et al., 2014).

The Spin-Spin interdependency is responsible for dissipation of the transversal
magnetization. Here, the precession frequency of each nucleus varies because their
local magnetic field is a combination of the external magnetic field and the individual
magnetic field of each nucleus. This results in a different dephasing process of the
individual spins, which is why the transversal magnetization decreases over time.
The constant describing this time is called T2 and is mainly dependent on the different
tissue compositions in the human body. In addition, local inhomogeneities in the
external magnetic field cause a faster dissipation of the transversal magnetization.
This phenomenon is described as T

′
2 and is part of the final relaxation time T ∗

2

(Brown et al., 2014):
1

T ∗
2

=
1

T2
+

1

T ∗
2

(2.4)

Figure 2.3 shows an illustration of the T1 and T2 related relaxation curves in com-
parison to white matter (WM) and grey matter (GM) in the brain. It can be observed
that, the bigger the distance between the WM and GM curves, the higher the
corresponding contrast.

(a) Relaxation curves for T1 weighted images. (b) Relaxation curves for T2 weighted images.

Fig. 2.3: Image acquisition when the curves are furthest away from each other will result
in high contrast images. Note that different tissue types show different relaxation
times causing different intensities. Images taken from (Reiser et al., 2007).

The spatial enconding of the MR device can be described as the measurement
of the transversal magnetization after the application of an RF-pulse. The time

12 Chapter 2 Background



point used for the measurement is specified by the echo time TE . In addition, three
independent gradient coils are used to create gradient fields in x-, y- and z-direction.
The resulting magnetic field is overlapping the external magnetic field leading to
local variations. The resulting spatial encoding process during one RF-pulse can be
described by the following steps (Reiser et al., 2007):

1. Slice-Selective Excitation. In addition to the used RF-pulse, a gradient field
is applied varying the Larmor frequency of the excited nuclei in a 2D slice.
The width of the slice can be changed by changing the bandwidth of the
RF-pulse, and the position can be changed by shifting the center frequency of
the RF-pulse.

2. Frequency Encoding. During the readout of the transversal magnetization, the
second gradient is applied constantly and orthogonal to the first one.

3. Phase Encoding. Between excitation of the nuclei and the readout of the
transversal magnetization, a third gradient is applied orthogonal to the previous
two. This gradient is applied for a certain time, after which the nuclei precess
further but show different phases.

The results of this process are written down in a single row inside a matrix called
k-space matrix. To ensure proper reconstruction of the anatomical image data, the
k-space matrix has to be filled with an appropriate amount of data. Therefore, the
process of spatial encoding is repeated several times using a repetition time TR

between each pulse. After filling the k-space matrix the image data can be decoded
using the inverse Fourier transform. In order to visualize the morphological images,
only the magnitude of the resulting complex signal is used (Paschal et al., 2004).
An example for a magnitude and a phase image can be seen in Figure 2.4.

(a) Magnitude image of the liver. (b) Phase image of the liver.

Fig. 2.4: After the inverse Fourier Transform the magnitude of the complex result is used to
generate the morphological images.
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The combination of the RF-pulses, the gradient coils and the readout is called an
MR pulse sequence. In the present thesis, the 2D GRE sequence is utilized. Using
a 2D-GRE, the flip angles chosen are less than 90◦ allowing for smaller TR and
therefore reducing the imaging time. In addition, the sequence uses additional
gradients before every RF-pulse to dephase the left over transversal magnetization
(Reiser et al., 2007). An example pulse diagram of a GRE sequence can be seen
in Figure 2.5.

Fig. 2.5: An example pulse diagram for a GRE sequence using a flip angle α <90◦. GS =
Slice-selective gradient. GP = Phase gradient. GA = Readout gradient. Based on
(Reiser et al., 2007).

2.2 MR Thermometry

The MR device as explained in the previous section is not only used for interventional
imaging but can also be utilized for measurement of the temperature inside the
tissue. Because the clinical case of application focused on in this thesis are thermal
ablation procedures, the following section will explain the basic principles of the MR
thermometry. Here, the most commonly used technique is the PRFS thermometry
introduced by Porter et al. (1995; 1995) and Ishihara et al. (1995). The PRFS
method is able to achieve good spatial and temporal resolution with respect to
real-time compatibility.
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The resonance frequency of a nucleus is determined by the local magnetic field Bloc

and can be computed by:
Bloc = (1− σ) ∗B0 (2.5)

with σ representing the screening constant for each nucleus dependent on the
chemical environment (Rieke et al., 2008). In the human body, every hydrogen
nucleus is bound as a water molecule (H20) and the nuclei are permanently screened
by the electrons of the macroscopic field. These water molecules bond with each
other creating an inter-molecular hydrogen bridge bond (HBB). As soon as an
HBBis created, the screening of these nuclei is reduced; whereas, free water
molecules show a higher screening. By applying temperature to the tissue (e.g.,
during thermal ablation), the HBBs are damaged. As a result, σ is increasing (Rieke
et al., 2008). For temperatures in the range of -15◦C up to 100◦C, the screening
constant increases linearly with the temperature T by the temperature-dependent
chemical shift coefficient α (Rieke et al., 2008):

σ(T ) = α ∗ T (2.6)

α =
1 ∗ 10−8

◦C
= 0.01

ppm
◦C

In summary, the application of heat inside the tissue leads to an increase in screening
efficiency; therefore, a decreasing of the local magnetic field and as a result also
decreases the proton resonance frequency. These properties can be exploited
to create thermometry maps for the monitoring of thermal procedures. Next to
spectroscopic imaging, phase mapping has evolved as one of the possible methods.
Phase images can be acquired, for example, by GRE imaging sequences. Due
to the change in resonance frequency caused by the heating of the tissue, the
resulting phase also changes. By computing the phase difference between two
time points, a phase shift can be observed. To reduce temperature-independent
confounding factors, several reference images prior to the treatment can be acquired
and averaged (Rieke et al., 2008; Blackwell et al., 2022). Taking into account the
physical properties and parameters of the MR device as well as the phase images
at different time points, the total temperature T can be computed as:

T =
ϕ(t)− ϕ(t0)

2πγαB0TE
+ T0 (2.7)

with ϕ(t)− ϕ(t0) defining the phase difference between the current time point ϕ(t)
and the reference time point ϕ(t0), γ = 42, 576MHz

T representing the gyromagnetic
ratio of hydrogen protons, α = 0.01ppm

∆T representing the proton resonance frequency
change coefficient, B0 representing the used magnetic field strength and TE repre-
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senting the used echo time. The constant T0 needs to be added to the temperature
because Equation 2.7 otherwise only computes the temperature change, neglecting
the tissue’s base temperature. In addition, every image acquired is a trade-off
between computational time and resolution (mainly the SNR). To achieve an optimal
SNR, the TE should be defined close to T ∗

2 (Rieke et al., 2008). Another factor to
consider is the phase drift. El-Sharkawy et al. (2006) described the phase drift
as a continuous change of the main magnetic field B0 with 0,8 to 2,5 ppm. This
spatial and temporal change of the magnetic field influences the phase measured
by the MR device and therefore altering the results of the thermometry computation.
Several approaches for phase drift correction have been introduced in the past using
reference materials or non-heated areas in the images themselves (El-Sharkawy
et al., 2006; Poorter, 1995).

In the present thesis the heat maps are transferred into necrosis maps by using the
critical temperature model. In order to reduce the computational bias, the phase drift
of around 2◦C is considered during computation of the necrosis map by adapting
the necessary threshold applied for the final reconstruction.

2.3 Minimally invasive Thermal Ablation: Microwave
Ablation

(a) Graphical sketch of an applicator placed inside a
tumor in the liver. (b) Real coagulation necrosis after MWA.

Fig. 2.6: During thermal ablation the heat is induced through the electrode in the tip creating
the characteristic ellipsoid coagulation shape including the "tail" around the shaft.
Images taken from (Lubner et al., 2010).

The interventional procedure in focus of the present thesis is the MWA. In contrast to
other procedures like RF ablation, MWA offers several potential benefits like higher
intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the
ability to use multiple applicators, and less procedural pain (Simon et al., 2005).
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Especially, the ability to reach temperatures above 100◦C allows for treatment of
malignant tissues in areas with high water content. In addition, MWA seems to
be more robust towards heat sink effects, which leads to bigger necrosis sizes
on average (Lloyd et al., 2011). On the other side, the higher temperatures also
cause the shaft of the applicator to heat up causing a "heat tail" along the shaft as
illustrated in Figure 2.6a. This phenomenon and the overall faster heating of the
tissue is hard to control when aiming for bigger necrotic areas (Poulou et al., 2015).
To address the issue of the heat tail, MWA systems usually integrate a shaft cooling
approach (Lubner et al., 2010).

The physical principle which the MWA is based on is called dielectric hysteresis. By
applying a rapidly alternating electromagnetic field (2-3 billion times per second),
the water molecules inside the tissue try to realign with the magnetic field. If the
alternation is too fast, the remaining energy will be converted into heat instead of
kinetic energy (Figure 2.7). The final rate of heat generation (Qh) is computed using
Equation 2.8:

Qh = k ∗ |E|2 (2.8)

with E representing the applied electric field magnitude and k the effective conduc-
tivity as a measure of microwave absorption (Bray et al., 2018).

Fig. 2.7: Illustration of water molecules realigning with the alternating electromagnetic field.
Based on (Christopher L Brace, 2009).
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An MWA system consists of three main components: a generator, a power distri-
bution system and an applicator (in the literature also referred to as antenna). The
generator defines the power source of the system using frequencies of 915MHz
up to 2.45GHz as allowed by the Federal Communications Commission. The dis-
tribution of this created energy is done through a coaxial transmission line. The
most critical part in a MWA system is the applicator because the heat transfer to
the tissue highly depends on its geometry. Therefore, most applicator designs are
straight and needle like using a shaft cooling system to reduce the heat around the
skin and prevent injuries like skin burn. An illustration of a placed applicator can be
seen in Figure 2.6a. The actual size and shape of the coagulation necrosis highly
depends on several factor like the applicator design, the tissue type, the thermal
conduction or thermal heat sinks caused by vessels and other cooling structures
(Lubner et al., 2010). A real coagulation necrosis can be seen in Figure 2.6b.

2.4 Minimally invasive Thermal Ablation: Current
Workflow

The workflow procedures used for minimally invasive thermal ablation vary depend-
ing on the hospital and the performing radiologist. Nonetheless, some key steps
are universally applicable. The following workflow description is based on the clini-
cal procedure at the Hannover Medical School (MHH) and the University Hospital
Magdeburg (UMD). The information presented was acquired during clinical visits,
observations and discussion with the performing radiologists. In addition, Kaye et
al. (2015) performed a review on closed-bore interventional MRI for percutaneous
biopsies and thermal procedures. Their findings support the observations regarding
the key steps during the procedures, which can be divided in a non-sterile and a
sterile part. A summary of the derived state-of-the-art workflow for a procedures with
general anesthesia can be seen in Figure 2.8. The key steps necessary to perform
the intervention are briefly explained in the following starting with the non-sterile
part of the intervention:

1. Admit Patient

The very first step is the admittance to the hospital. Here, the preoperative
discussion with the patient takes place. In addition, blood from the patient
is drawn and analyzed regarding coagulation values and kidney values. If
everything is in place and confirmed, the patient is prepared for the intervention.
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Fig. 2.8: Summary of the workflow derived from the MHH and UMD workflow. The different
key steps are divided into non-sterile and sterile activities.

2. General Anesthesia

The patient is put under general anesthesia before the preparation of the
patient.

3. Prepare Patient for MRI

The patient is checked for any metal objects, which may be attracted by the
magnetic field causing harm to the patient or the staff. After that the patient is
positioned on the table and fixated to reduce involuntary movement. The last
step during patient preparation is the positioning of additional coils (e.g., a flex
coil) on the patient to increase the signal strength and therefore contrast of
the images.

4. Scan for Planning

The patient is moved inside the MR bore and the localizer is used for checking
the flex coil position. Afterwards, a 3D planning image is acquired. Note that
usually the ventilation of the patient is stopped for every 3D volume acquisition.

5. Planning the Procedure

During the planning of the procedure, the area of interest is defined by the
performing radiologist. This also includes the definition of the entry and target
points for used medical instrument (e.g., applicator for thermal ablation). When
the trajectory of the used medical instrument has been defined, the medical
technical assistant usually aligns the interventional MR sequence used during
the procedure to the planned trajectory. The interventional sequence is then
run to see if the target structure, in this case the malignant tissue, is visible.
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6. Find Entry Point

One of the most common approaches for finding the correct entry point is
the "Finger-Tipping" - method. Here, the previously prepared interventional
sequence is used, and the performing radiologist moves a finger across the
patient’s body until it appears in the live image data. When the finger is
visible in the acquired images, it stays at the position while the patient is being
moved out of the bore to mark the entry point with a bio-compatible ink marker.
Example images during the Finger-Tipping can be seen in Figure 2.9.

(a) No finger visible in the image. (b) Finger visible in the image.

Fig. 2.9: The Finger-Tipping method is a widely used technique to find the entry point during
MR-guided needle-based interventions. The images shown are provided by the
MHH and show a characteristic image with and without the finder visible.

7. Create Sterile Area

The last step during the non-sterile part of the intervention is the sterilization of
the patient and the used environment. First, the area of intervention is cleaned
and sterilized. After that, the drapes are placed on top of the patient, with
the interventional access point placed above the area of interest. Lastly, the
performing radiologist is prepared for the upcoming intervention

After preparation and sterilization of the performing radiologist, the following steps
are performed in a sterile environment. Every contamination of either the radiologist
or the area of interest will result in a repetition of the sterilization process and may
cause harm to the patient due to longer intervention times. The following steps
cover the sterile process of the intervention:

1. Local Anesthesia
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Even when placed under general anesthesia, a local anesthesia is applied
through the marked entry point in order to reduce the deep tissue pain during
and after the intervention.

2. Insert Applicator Slightly

The patient’s skin is cut open at the marked entry point using a scalpel. The
applicator is inserted into the tissue for around 2-3cm with an assumed angu-
lation and orientation. The patient table is moved into the bore while holding
the applicator in place and the position and orientation is verified using the
previously prepared interventional imaging sequence.

3. Insert Applicator Completely

Complete insertion of the applicator is performed inside the bore and by
utilizing live image data. Here, the position of the applicator is constantly
monitored and adjusted based on the images provided and the experience of
the performing radiologist. Example images during insertion can be seen in
Figure 2.10.

(a) Applicator inserted half way. (b) Applicator has reached the target position.

Fig. 2.10: During insertion of the applicator the position and orientation is verified using
MR images. The applicator is visible as a black hole inside the image data. The
presented examples are acquired during thermal ablation inside the liver and
provided by the MHH.

4. Control needle position

After insertion, the position of the applicator is verified using a 3D image
sequence. If the position can be verified in 3D space, the thermal ablation will
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be prepared. Otherwise, the applicator has to be removed to a certain degree
and the orientation has to be corrected.

5. Prepare Ablation

If a monitoring is used during the thermal ablation procedure, it is planned
by preparation of a thermometry sequence. In the present thesis, a 2D GRE
sequence is utilized. This sequence is placed in a way that it intersects with
the applicator in the images, showing the increase of temperature around the
electrode in the tip of the applicator.

6. Perform Ablation

To perform the thermal ablation, the patient is moved outside the bore again.
The applicator is connected to the generator and the patient is moved back into
the bore. Usually, the cables involved need to be held during the movement
and afterwards fixed somehow so that their weight does not alter the position
of the applicator inside the patient. If everything is fixed, the thermal ablation
starts. In the case that no holding device is used, the performing radiologist
has to make sure that the applicator stays in position.

7. Post-process patient

After the intervention the generator is turned off and the applicator is discon-
nected. A 3D volume is acquired to confirm the created coagulation necrosis
inside the images and decide if the intervention has to be repeated. If that
is not the case, the applicator is connected to the generator again and it is
turned on. During removal of the applicator, the insertion canal is atrophied by
the applied heat and the risk for residual malignant cells is reduced. A final 3D
volume is acquired to check for inner bleeding. If everything is confirmed to be
acceptable the patient table is moved outside of the bore and the equipment
is removed.

8. Release patient

Before releasing the patient, a final confirmation check is made. This can
be, for example, an ultrasound scan after 3 hours to verify that no internal
bleeding is present. Finally, the patient is released from the hospital.

The present thesis focuses on step number six in the sterile part of the interven-
tion. During the performance of the intervention, a proper monitoring of the heat
distribution is necessary in order to ensure a successful treatment of the malignant
tissue. The following chapters will describe a method for 2D to 3D reconstruction of
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thermometry maps by utilizing a 2D GRE sequence rotated around the applicator’s
main axis. The resulting volumetric thermometry approach is then evaluated with
respect to similarity measurements to test the suitability for the clinical routine.
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2.5D Thermometry
Reconstruction
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3.1 Introduction

„Life is really simple, but we insist on making it
complicated.

— Confucius
Chinese philosopher

Malignant tumor treatment using mild hyperthermia in combination with chemother-
apy and/or radiotherapy has become a widely spread approach. Here, the tempera-
ture is ideally limited to 40◦C - 43◦C for 30 to 60 minutes to reduce the damaging of
adjacent tissue (Feddersen et al., 2020). In addition to mild hyperthermia, thermal
tumor ablation has also become a promising alternative to open surgery. Here, the
heat is increased to over 55◦C until coagulation of the tissue is introduced. This
causes the cells to be irreversibly destroyed (Ahmed et al., 2014; Mauri et al., 2017;
Tomasian et al., 2018). Regardless of the chosen method of treatment, monitoring
of the heat distribution is an urgent clinical need. Up to this date, MR thermometry
based on the PRFS is the only clinically accepted procedure to monitor the heat
distribution during thermal interventions under MR guidance (Kokuryo et al., 2020).
In the recent years, many studies have focused on multi-slice 2D approaches in-
stead of full 3D thermometry acquisition due to the limited acquisition time during
intervention. This trade-off between computational efficiency and resolution often
results in the acquisition of less slices leaving several slice gaps. On the other
hand, real-time capabilities must be ensured to create clinical acceptability during
interventional procedures e.g., through computational acceleration of the used MR
imaging sequences (R. Jiang et al., 2020).

In this chapter, a novel approach for the creation of a volumetric thermometry map
without the development of a fully 3D sequence is presented. The introduced 2.5D
thermometry method utilizes any common 2D GRE sequence. Therefore, possible
temporal limitations are less restricting than for the 3D sequences and images with
higher resolution may be acquired offering thermometry accuracy of around 1◦C
deviation while being more robust towards MR inhomogeneities (Gorny et al., 2019).
The described method is well-suited to reconstruct the actual coagulation necrosis
after thermal ablation.

26 Chapter 3 2.5D Thermometry Reconstruction



3.2 Related Work - Volumetric Thermometry Imaging

The major novelty in the present chapter is the definition of a sequence protocol,
which allows the implementation of basic 2D to 3D image reconstruction algorithms.
To get a proper overview of the existing protocols and possibilities an initial unstruc-
tured literature research was conducted. Based on the results, frequently used
phrases and synonyms where identified and collected to define a proper search
term. Regarding the topic of volumetric thermometry, the term was divided into three
major categories, also observable in Table 3.1:

1. The dimensionality of the thermometry data should be restricted to volumetric
approaches. Many approaches exist in the field of pure 2D thermometry.
Because the focus of the present thesis lies on the creation of a volumetric
map, these 2D approaches are neglected. Included are full 3D sequences or
stack of 2D sequences.

2. Any kind of heat map is interesting for the present thesis.

3. Even though other approaches like US thermometry exist, the present thesis
only focuses on the use of MR guidance during minimally invasive radiology.

Tab. 3.1: Synonyms regarding the three categories "Dimensionality", "Type of map" and
"imaging system". All synonyms were identified during the initial, unstructured
literature research.

Synonym Dimensionality Type of map Imaging system
1 3D heat MR
2 volumetric heat map MRI
3 volume heatmap Magnetic Resonance
4 three dimensional thermometry Magnetic Resonance Imaging
5 3 dimensional heat distribution —
6 three-dimensional — —

After definition of the presented categories a structured literature research was
performed for the last ten years from 01.01.2012 to 31.07.2022 on PubMed. Con-
necting the columns in Table 3.1 with logical AND operations and including the date
range the following search term was created:

((3D[Title/Abstract] OR volumetric[Title/Abstract] OR volume[Title/Abstract] OR
three dimensional[Title/Abstract] OR 3 dimensional[Title/Abstract] OR

three-dimensional[Title/Abstract])
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AND

(heat[Title/Abstract] OR heat map[Title/Abstract] OR heatmap[Title/Abstract] OR
thermometry[Title/Abstract] OR heat distribution[Title/Abstract])

AND

(MR[Title/Abstract] OR MRI[Title/Abstract] OR Magnetic Resonance[Title/Abstract]
OR Magnetic Resonance Imaging[Title/Abstract])

AND

(2012/1/1:2022/7/31[pdat]))

This search term yields 343 results, which are analysed in a first title/abstract
research. Considered for a more detailed analysis where 87 papers dealing with
the topic of thermometry assuming they are not purely focused on 2D approaches.
Those papers were analysed in more detail performing a full paper research. All
papers describing volumetric thermometry approaches where included resulting in
22 relevant papers for the last ten years. In the last step, additional relevant papers
not appearing in the search term but already known by the author of the present
thesis where included in this chapter.

The results of the literature research can be mainly clustered in the categories "Full
3D Thermometry" and "Stack of 2D Thermometry". The former describes volumetric
MR sequence approaches, whereas the latter describes a special arrangement of
single 2D image slices sub-sampling the volume of interest (VOI).

A detailed analysis of the related work can be observed in Tables 3.2 and 3.3. In
addition, Kokuryo et al. (2020) describe the clinical applicability of thermometry
approaches also including a very brief description of volumetric approaches.

3.2.1 Full 3D Thermometry

The field of full 3D thermometry acquisition covers the part of the related work, which
is focusing on the development of real 3D MR thermometry sequences. Here, the
field of view (FOV) is three-dimensional without gaps between the adjacent image
slices. In the following, the different approaches are briefly described and analysed
regarding their general approach, acquisition time, resolution, volume coverage
(FOV) and temperature accuracy. The related work is sorted according to the year
of publication in ascending order.
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Kickhefel et al. (2012) addressed the problem of susceptibility artifacts during
cryoablation. The artifacts were corrected in a post-processing step, using a rapid
numerical algorithm. For temperature measurements repetitive MR image acqui-
sitions were performed using a 3D FLASH GRE sequence with twelve adjacent
coronal slices covering an area of 300x300x24mm2 in 57.8 seconds. The whole
post-processing pipeline is set up on-line. Todd et al. (2014) introduced an approach
called temporally constrained reconstruction to solve the problem of obtaining large
coverage 3D temperature measurements. Their extended approach only uses ac-
quired k-space data up to the current time and utilizes a GPU architecture to achieve
real-time capabilities. Odeén et al. (2014) developed a 3D GRE pulse sequence
using a segmented echo planar imaging (EPI) readout. Acquisition time of the raw
data for the whole volume was roughly four seconds but image reconstruction was
performed offline using MATLAB in 803 seconds for 250 iterations of their TCR
algorithm. Two years later Odeén et al. (2016) introduced a US modeling combined
with a hybrid angular spectrum method to obtain the US power deposition required
for a model predictive filtering method to compute the heat distribution for MR guided
interventions. Dharmadhikari et al. (2016) introduced a new 3D GRE sequence
tested on a phantom study. They performed all data processing offline using MAT-
LAB resulting in a very high resolution of 0.5mm isotropic voxels but a small volume
coverage of 32x32x64mm3. Overduin et al. (2016) assessed the feasibility and
accuracy of a 3D ultrashort echo time MR thermometry. The sequence itself was pro-
vided by Siemens Healthineers as a work-in-progress package for Cryoablations. To
compare the results of the thermometry three fiber optic temperature sensors were
inserted into the tissue. Svedin et al. (2016) describe a 3D segmented EPI GRE
sequence in combination with the PRFS method to obtain the thermometry maps.
In addition, they explain a way for respiratory motion compensation by introducing a
phase navigator inserted into the EPI before and after the readout to monitor the
B0 field variations. Their experiments consist of volunteer breast images without
heating to verify the motion compensation algorithm and phantom experiments with
a breathing person lying underneath the phantom to simulate the respiratory motion.
Later, Svedin et al. (2018) also presented a multi-echo stack-of-stars sequence for
MR thermometry. They combine the sequence with a pseudo-golden angle sampling
and k-space weighted image contrast. This allows for simultaneous acquisition of
multiple quantitative measurements for PRFS temperatures. Fielden et al. (2018)
developed a 3D spiral MR thermometry sequence based on the retraced spiral-in/out
trajectory and implemented it on a real-time platform for evaluation in an in vivo
porcine model. Bever et al. (2018) introduced an in-house build single-channel RF
coil for their experiments. Using a 3D GRE segmented multi-shot EPI sequence
with 12 slices acquired. They evaluated their sequence using a total of five different
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experiments including two phantom studies and three ex vivo porcine brains. They
were able to achieve a high temperature accuracy of ±0.3◦C but report a image
acquisition of around 20 seconds. Zhang et al. (2019) propose a a variable flip
angle golden-angle ordered 3D stack-of-radial sequence for simultaneous T1-based
temperature mapping using the PRFS method. Jeong et al. (2021) use a multi echo
GRE sequence during a 21 minute ablation cycle. With an acquisition time of 41
seconds they were able to achieve 30 image repetitions during the intervention with
a volume coverage of a solid 300x300x300mm3.

Tab. 3.2: Overview of the related work on different approaches to create a volumetric heat
map using a full 3D sequence approach. The table is sorted with respect to the
year of publication starting in ascending order. The duplicate entry for Odeén et
al. (2014) results from two different experiments described (phantom and lamb).
Underlined entries did not appear in the structured literature research.

Author Acq.
Time [s]

Resolution
[mm]

Coverage
[mm]

Temp.
[°C]

(Kickhefel et al., 2012) 57.8 1.56x1.56x2 300x300x24 ±0.35
(Odéen et al., 2014) 3.3 1.2x1.2x2.5 192×192×110 —
(Odéen et al., 2014) 4.32 1.0x1.0x2.0 192x144x60 —
(Todd et al., 2014) 1.2 1.5x1.5x3.0 192x162x66 ±0.5

(Dharmadhikari et al., 2016) — 0.5x0.5x0.5 32x32x64 —
(Overduin et al., 2016) 74 1.62x1.62x1.62 260x260x260 -1.2± 2.7
(Odéen et al., 2016) 2.4 2.3x2.3x2.5 288x221x135 <1.1
(Svedin et al., 2016) 10.3 1x1x3 224x154x24 0.45±0.32
(Svedin et al., 2018) <3 1.3x1.3x1.3 208x208x41.6 0.3-1.0
(Fielden et al., 2018) 2.9-3.3 0.4x0.4x0.4 224x224x224 1.3

(J. T. d. Bever et al., 2018) 19.4-20.3 1.25x1.25x3.0 160x114x36 ±0.3
(L. Zhang et al., 2019) 2-5 1.17x1.17x5.0 300x300x160 <2
(Q. Chen et al., 2020) 3.3 2.0x2.0x5.0 192x192x80 ± 0.56
(R. Jiang et al., 2020) 3 2.0x2.0x5.0 192x192x80 0.37-0.45
(Jeong et al., 2021) 41 4.7x4.7x10 300x300x300 —

3.2.2 Stack of 2D Thermometry

The second cluster for volumetric thermometry approaches can be described as a
stack of 2D approach. The described image sequences do not cover the full VOI
but single slices. Here, the FOV is mainly two-dimensional with moderate gaps
between the adjacent image slices. In the following, the different approaches are
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briefly described and analysed regarding their general approach, acquisition time,
resolution, volume coverage (FOV) and temperature accuracy. The related work is
sorted according to the year of publication in ascending order.

Köhler et al. (2009) introduce a new volumetric sonification approach for HIFU
procedures. Rapid and volumetric temperature mapping is achieved by not only
monitoring the target region but also along the beam axis and the near field. Nonethe-
less, this approach only offers a low sampling of the volumetric ROI and does not
reconstruct a full 3D heat map. Reconstruction of the images and the thermal dose
is performed online to allow for real-time capability. Petrusca et al. (2014) utilize
a GRE EPI sequence with five acquired slices. One axial and one sagittal slice
each aligned with the HIFU beam main axis, and three coronal slices with a 10mm
gap. Because the MR Host was equipped with a real-time data export facility the
images were sent to an online display interface using a fast ethernet connection.
Due to the arrangement of the slices and the gap between adjacent slices the VOI
was undersampled without any reconstruction of the missing information. Marx et
al. (2014) introduced the so-called MASTER sequence for Multiple Adjacent Slice
Thermometry with Excitation Refocusing. They tested the new image sequence
against a common GRE sequence with three and six slices. In the experiments
the gap between the slices was said to be 10mm with a slice thickness of 3mm,
which resulted in an undersampling of the VOI. On the other hand, they reported an
image acquisition time of only 5 seconds while providing a temperature accuracy of
±0.73◦C in vivo and ±0.29◦C in a phantom. Tillander et al. (2016) use a multishot
RF-spoiled FFE-EPI sequence with a total of six differently aligned slices. Three
coronal slices and one sagittal slice are placed within the region of interest while
two more coronal slices were placed to monitor the near and far field of the HIFU
beam. No full volume coverage was reported. Chu et al. (2016) are addressing
HIFU hyperthermia using a RF-spoiled fast field-echo EPI sequence. Similar to
Tillander et al. (2016) they also arrange six image slices in the region of interest.
Three of them perpendicular to the HIFU beam, one sagitall centered at the focus,
one across the near field of the beam and one image slice across the beam to
monitor sensitive structures. Toupin et al. (2017) use a fat saturated, single-shot EPI
combined with GRAPPA acceleration for reconstruction in the field of cardiovascular
interventions. With their method they are able to acquire up to five slices at each
heartbeat utilizing an ECG trigger. Marx et al. (2017) divide the treatment of lesions
using MR guided focused US into three different stages with individually tailored MR
protocols: focal spot localization, focal monitoring and background monitoring. To
improve the performance during multi-slice acquisition multi-echo spiral thermom-
etry was utilized. Odeén et al. (2019) performed a detailed comparison study of
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different 2D and 3D approaches while introducing optimized and new sequences.
The focus lies on widely used pulse sequences like Cartesian 2D, 3D GRE and EPI.
They were able to demonstrate that their developed volumetric approach was able
to acquire twelve slabs in the same time as the conventional 2D sequence while
maintaining an equal precision as the 2D approaches.

Tab. 3.3: Overview of the related work on different approaches to create a volumetric heat
map using a stack of 2D slices approach. The table is sorted with respect to the
year of publication in ascending order. Underlined entries did not appear in the
structured literature research.

Author Acq.
Time [s]

Resolution
[mm]

Coverage
[mm]

Temp.
[°C]

(Köhler et al., 2009) 2.9 2.5x2.5x7.0 400x248x21 1.2±0.2
(Petrusca et al., 2014) 4 1.0x1.0x5.0 128x128x30 1.3±0.5

(Marx et al., 2014) 5 1.1x2.2x3.0 280x280x50 ±0.73/±0.29
(Tillander et al., 2016) 3.2 2.5x2.5x7 400x400x?? -0.7±0.9

(Chu et al., 2016) 3.2 2.5x2.5x7 ??x??x?? 0.3±0.5
(Toupin et al., 2017) — 1.6x1.6x3 180x180x16.5 ±1.5
(Marx et al., 2017) <=5 2.0x2.0x2.0 360x360x360 <0.5

(Odéen et al., 2019) — 0.94x1.88x?? — —
(Quah et al., 2020) 11.7 ??x??x3.0 — <1

(Campwala et al., 2021) 10 1.7x2.0x5.0 150x150x25 —
(Landro et al., 2021) 2.9 1.44x1.44x3.0 300x300x24 0.38

This Chapter 1.1 1.0x1.0x5.0 256x256x256 1

Quah et al. (2020) introduce a simultaneous multi-slice temperature imaging for
acquisition of volumetric temperature maps combined from several 2D slices. Their
approach can be implemented in the current 2D Fourier Transform scans currently
used for temperature imaging. Campwala et al. (2021) developed another multi-
slice volumetric 2D magnetic resonance thermal imaging method to access the heat
distribution during robotically-assisted needle-based therapeutic US. To correlate
the measurement volumes with histologically confirmed regions of tissue damage
they tested their approach in seven swine and confirmed the temperature accuracy
and outcome. De Landro et al. (2021) performed a comparison study between
2D and 3D segmented EPI sequences to test for temperature accuracy evaluated
by applying a linear regression and Bland-Altman analysis. According to their
reporting 2D segmented EPI is confirmed to be more robust in providing reliable
temperature maps. this only applies if a high spatial and temporal resolution is not
mandatory. 3D segmented EPI on the other hand show advantages during thermal
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procedures due to the higher spatial resolution. VilasBoas-Ribeiro et al. (2022)
utilize a double echo GRE sequence in combination with the PRFS method for
thermometry reconstruction. Their approach is able to acquire 25 axial slices with a
slice thickness of 1mm in around 83 seconds.

3.3 Material and Methods

3.3.1 Data Base Preparation

(a) Pictographic representation of the
plane rotation around the applica-
tor’s main axis.

(b) View through the needle axis to show the arrangement
of the individual image planes.

Fig. 3.1: Illustration of the proposed image acquisition protocol. The image plane is rotated
around the applicator’s main axis by a fixed rotation angle.

The proposed 2.5D thermometry relies on sampling the VOI using a common 2D
GRE sequence. The GRE sequence can directly reconstruct magnitude and phase
images simultaneously. The phase images are used as an input for the PRFS
method afterwards to compute the actual temperature in the images. To ensure
a proper sampling of the VOI the GRE sequence is rotated by 22.5◦ around the
applicator’s main axis, which results in an evenly distributed sample of eight different
image orientations. To increase the spatial resolution, the angles between the
acquired scans should be as high as possible, resulting in the following acquisition
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order: 0◦, 90◦, 45◦, 135◦, 22.5◦, 112.5◦, 67.5◦, and 157.5◦. The delay between
image acquisition and visualization of the volumetric thermometry map has been
reduced by integration of the SIEMENS Healthineers Access-I Framework. The
framework allows for fetching the image data directly from SIEMENS MR devices
without an intermediate imaging archive system.

After defining the sequence protocol for image plane rotation around the applicator’s
main axis, ablation procedures where performed in a total of 13 tissue-mimicking
bio-protein phantoms as described in the recipe by Bu Lin et al. (2008). To simulate
vessels polyvinyl chloride (PVC) tubes were inserted in a subset of the phantoms to
create an artificial heat sink effect. An example can be seen in Figure 3.2.

(a) A bio-protein phantom with PVC tubes inserted
to simulate the heat sink effect prior to ablation
and the same phantom after the ablation. The
white opaque coagulation area is clearly visible.

(b) Profile of a homogeneous phantom without
PVC tubes after the ablation. For reference
the applicator was held in the correct posi-
tion. The heat tail along the shaft is visible
as well as the main coagulation area.

Fig. 3.2: The bio-protein phantoms are prepared in the lab and afterwards used for thermal
ablation to create the test data.

The phantom was designed to mimic the physical properties of the human liver and
tested in comparison with these specific parameters. Here, the authors of the original
paper were able to show that the phantom values differ only slightly from the physical
property values of a human liver as summarized in Table 3.4. In addition, it has to be
noted that the absolute coagulation temperature of the phantoms differ slightly based
on the pH-value. Slight inaccuracies in the dosage of the individual ingredients can
lead to deviations of the pH value from the set value of 4.3. Evaluations provided
by Bu Lin et al. (2008) show a range of coagulation temperatures based on a
pH-value between 4.3 and 4.8 of 50.1◦C to 59.5◦C, respectively. The applicator
of the permittivity feedback control MWA system (MedWaves Avecure, Medwaves,
San Diego, CA, USA, 14G) was placed inside the phantom by sight and secured
in position. Subsequently, the phantoms were placed inside a 1.5T MR scanner
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Tab. 3.4: Difference between the phantom and a human liver regarding the physical prop-
erties. The range of the phantom values include variations caused by different
pH-values in the range from 4.3 to 4.8. All values reported are based on the
research conducted by Bu Lin et al. (2008)

Density
[kg ·m−3]

Electrical conductivity
[S ·m−1]

Specific heat capacity
[J · kg−1 ·◦ C]

Liver 1.060 0.148 3600
Phantom [1.066,1.072] [0.113,0.123] [3481,3952]

(Siemens Avanto, Siemens Healthineers, Germany). The coaxial cables connected
to the applicator and MW generator were led through a waveguide. Chokes and
electrical grounding measures were added as described by Gorny et al. (2019) to
reduce radio frequency interference. In the case of the perfusion phantoms, the
PVC tubes were led through the wave guide. They were connected to a diaphragm
pump and a water reservoir outside the scanning room. A flow meter (SM6000, ifm
electronic, Essen, Germany) was interposed between the reservoir and the pump,
providing a flow rate of 800 mL

min . Observations showed a moderate heat sink effect
using this setup with a maximum antenna power of 36W. Additionally, temperature
sensors were inserted in two phantoms to experimentally verify the temperature
accuracy of 1◦C. Right before treatment, ten reference phase images were acquired

Fig. 3.3: Setup for data base creation. Flexible tubes (blue) lead the water (a) through a
flow meter (b), a diaphragm pump (c) and the bio protein phantom (e). The coaxial
cables (red) connect the applicator with the MW generator d).

and averaged for each orientation to compensate for static noise. The MWA duration
was set to 15 minutes with a temperature limit of 90◦C. The GRE sequence offers a
slice thickness of 5mm, a FOV of 256mm x 256mm, a matrix of 256 x 256, and a
bandwidth of 260 Hz

Px . Image acquisition took around 1.1s with a 5s break to simulate
the temporal resolution for a breathing patient. The TE was 3.69ms, the TR 7.5ms,
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and the flip angle 7◦. For post-treatment observation a 3D turbo spin echo (TSE)
sequence (TE = 156ms, TR = 11780ms, flip angle = 180◦, matrix = 256 x 256, FOV
= 256mm x 256mm, bandwidth = 40Hz

Px , slice thickness = 1mm) was used. The 3D
TSE allows for proper visualization of the real coagulation zone due to a very high
tissue contrast. Extraction of the coagulation ground truth was done manually by a
clinical expert using MEVIS draw (Fraunhofer MEVIS, Bremen, Germany).

In the present Chapter, a cylindrical container with a diameter of 102.9mm and
a filling volume of 1 liter was used. Additionally to the original recipe, the co-
agulation zone’s visibility in the post-treatment MR data sets was increased by
adding a contrast agent (0,5µmol/L Dotarem) to the phantoms. This was done
to aid the clinical experts during manual creation of the ground truth after the
experiments. Furthermore, additional PVC tubes with a diameter of 5mm and a
wall thickness of 1mm were integrated into six out of 13 phantoms (three single-
tubes, three double-tubes) to simulate a possible heat sink effect. All data sets
created in the experiments of the presented Chapter are publicly available via http:

//open-science.ub.ovgu.de/xmlui/handle/684882692/89 and used for evalua-
tion of all consecutive reconstruction and simulation methods.

3.3.2 Volumetric Heat Map Reconstruction

Before treatment starts, reference phase images are acquired for each of the eight
orientations. Afterwards, each newly acquired phase image will start computing the
up-to-date 2D thermometry map for the current orientation during the treatment. To
do so, the PRFS method is used as described in 2.2. The temperature T based on
the PRFS is computed using the following Equation

T =
ϕ(t)− ϕ(t0)

γαB0TE
+ T0 (3.1)

with ϕ(t)− ϕ(t0) defining the phase difference between the current time point ϕ(ti)
and the reference timepoint ϕ(t0), γ = 42, 576MHz

T representing the gyromagnetic
ratio of hydrogen protons, α = −0.01ppm

∆T representing the proton resonance fre-
quency change coefficient, B0 representing the used magnetic field strength and
TE representing the used echo time. The constant T0 needs to be added to the tem-
perature because Equation 3.1 otherwise only computes the temperature change,
neglecting the tissue’s base temperature. The Access-I integration and 2D ther-
mometry computation were implemented as modules using MeVisLab 3.4.1 (Ritter
et al., 2011). The 2.5D thermometry reconstruction itself was implemented using

36 Chapter 3 2.5D Thermometry Reconstruction

http://open-science.ub.ovgu.de/xmlui/handle/684882692/89
http://open-science.ub.ovgu.de/xmlui/handle/684882692/89


Fig. 3.4: Schematic overview of the proposed method. Based on the phase reference the
population map is created. Including the live 2D thermometry data the reconstruc-
tion is performed and the volumetric heat map is generated.

C++. A schematic overview of the method can be seen in Figure 3.4. To handle
the voxel values during slice rotation every cartesian coordinate was mapped to the
corresponding cylindrical coordinate representation using Equation 3.2:

Pr(x, y, z) = Pc(r, θ, z) (3.2)

r =

√
(x− xc)

2 + (y − yc)
2

θ = atan2

(
x− xc
y − yc

)
where x, y represents the Cartesian coordinates of the current voxel and xc, yc rep-
resents the Cartesian coordinates of the centerline corresponding to the applicator’s
axis for every slice z in the reconstructed volume. Upon acquisition of the reference
images, a multi-dimensional population map is created. For each voxel (xi, yi, zi) in

3.3 Material and Methods 37



the reconstructed volume, this population map holds information about the radius r

and angle θ of the cylindrical coordinates, the general interpolation weight Iw, the
adjacent interpolation partner coordinates IPleft(x, y) and IPright(x, y) in the 2D live
data as Cartesian representation and the weights w1 and w2 of those interpolation
partners. The weights may be acquired using Equation 3.3,

w1 =

∣∣∣∣ θIPleft
− θi

θIPleft
− θIPright

∣∣∣∣ (3.3)

w2 = 1− w1

with θi representing the cylindric angle of the current Voxel i and θIPleft
, θIPright

representing the orientation angles of the left and right interpolation partners, re-
spectively.

(a) Example population map for output
weights color coded on gray scale.

(b) Left: Reconstructed volumetric heat map. Middle:
Estimated coagulation necrosis based on a thresh-
old of 57◦C. Right: Manually segmented ground
truth.

Fig. 3.5: For 2D to 3D reconstruction a population map is created to reduce the computa-
tional effort during reconstruction. The reconstructed necrosis map is afterwards
compared to the groundtruth regarding DSC similarity.

The 2D population map can be applied to every slice of the final 3D output volume,
reducing the computational power needed. During the intervention, every acquired
live image triggers the reconstruction of the up-to-date 2.5D thermometry map. Here,
the heat value for each voxel is reconstructed using Equation 3.4,

Ti = Iw · (w1 · TIPleft
+ w2 · TIPright

) (3.4)

with Ti representing the temperature of the current voxel i and TIPleft
, TIPright

representing the temperature of the adjacent interpolation partners. Occurring
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vessels or other structures, which cause a heat sink effect are segmented during
the intervention planning. Subsequently, the segmented structure is saved as
an additional Look-Up Volume. Here, each voxel can be checked if it is part of
a heat sink structure. Using this knowledge, the interpolation weight Iw, which
ranges between [0, 1], may be adjusted. Figure 3.5 shows a single dimension of the
population map for parameter weighting, a reconstructed heat map, a coagulation
estimation based on an empirically defined threshold and the corresponding ground
truth segmentation. All source code is available for download at https://github.
com/jalpers/2.5DThermometryReconstruction.

3.4 Experimental Setup

For evaluation of the 2.5D Thermometry reconstruction method the data sets as
specified in Section 3.3.1 were used. All data sets were loaded into the developed
software retrospectively and the reconstruction was performed. Afterwards, the
results were compared to the manually extracted ground truth.

3.4.1 Statistical evaluation

Final evaluation of the acquired data was performed using the DSC as explained in
Equation 3.5

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(3.5)

with TP representing the true positives, FP the false positives and FN the false
negatives. Additionally, the standard error of the mean (SEM) was computed at a
confidence level of 95% (p = 0.05) using Equation 3.6

σ =

√∑
(xi − x̄)2

N − 1
(3.6)

SEM =
σ√
N

∗ 1.96

with σ representing the standard deviation, xi the current sample, x̄ the mean value
and N the sample size. To compute the SEM at a confidence level of 95% it has to
be multiplied by 1.96, which is the approximated value of the 97.5 percentile of the
standard normal distribution.
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3.5 Results

Summarized evaluation results can be seen in Figure 3.6. Empirically determined
coagulation thresholds were set between 51◦C and 61◦C depending on each phan-
tom’s pH value. It is noticeable that the DSCs for heat sink phantoms show a

Fig. 3.6: Summarized evaluation results for phantoms without heat sink effect, phantoms
with heat sink effect and the overall results. Note that the data range [0,0.3] was
left out because no data points are present in that range.

very high SEM with 0.70±0.15 (±21.25%) and 0.74±0.06 (±8.49%) regarding the
sensitivity. The high range results from a corrupted data set due to heavy artifacts
within the image data.

Leaving the corrupted data set out of the evaluation, the SEM shows a significantly
lower deviation of 0.76±0.062 (±8.07%) and 0.77±0.048 (±6.25%) for the DSC and
sensitivity, respectively. Observations show a slightly higher DSC and sensitivity
for phantoms without any heat sink effect. Here, the values range from 0.79±0.04
(±4.53%) and 0.79±0.04 (±5.55%), respectively. Evaluation showed an overall
SEM for the DSC of 0.75±0.07 (±9.76%) and a SEM for sensitivity of 0.77±0.04
(±4.99%). To evaluate the computational effort, every major step was performed
100 times. The creation of the population map and the heat sink look up volume
took 25.53ms±3.33ms and 3.91s±0.59s, respectively. These two steps need to
be done just once before start of the treatment. The reconstruction of the 2.5D
thermometry map was performed in 18.02ms±5.91ms on a customary workstation
(Intel( R) Core(TM) i5-6200U CPU, double-core 2.30GHz, 8GB RAM, Intel(R) HD
Graphics 520). This reconstruction will be performed every time a new image is
acquired during treatment.
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3.6 Discussion and Conclusion

The aim of the presented chapter was to develop a volumetric thermometry map,
which can be applied to a wide variety of clinical setups. Therefore, this method
heavily relies on the up-to-date standard 2D GRE sequence for image acquisition.
This allows for an accuracy of the thermometry up to 1.0◦C. Nonetheless, the
sampling of the 3D volume also results in some disadvantages, which need to be
addressed in the future. First, the diffusion of the heat inside the tissue is not linear
over time. Therefore, it would be necessary to include an adaptive temporal and
spatial resolution depending on the current intervention time. A new study should
be conducted to identify an optimal sequence protocol for this 2.5D thermometry
approach. Second, it was found that the reconstruction sometimes shows stair-case
artifacts. Because only one image is acquired every few seconds, the time difference
between adjacent orientations may be very high. The temperature difference for
each voxel dependent on the applicator’s radius may be computed and applied to
the corresponding voxel on every other out-of-date data to compensate for this error.
This transfer of the heat gradient may improve the reconstruction accuracy. Another
approach may be the use of a model-based reconstruction to take different tissue
characteristics into account. To pseudo-increase the temporal resolution, bio heat
transfer simulations may also be included during reconstruction. The acquired live
data may be able to adjust the simulation parameters to increase the simulation
accuracy. Finally, this study only performs on bio protein phantoms. Results show
a proof of concept for the proposed method, but it still has to be evaluated in
real tissue and a more realistic clinical environment. Therefore, perfused ex vivo
livers may be a way to go in the future (D. Becker et al., 2019). Additionally, this
work currently assumes a breath-holding state or at least a breath-triggered image
acquisition. Research shows that a wide range of interventional registration methods
is available (Xue et al., 2011; Dutta et al., 2013; McClelland et al., 2014), but further
investigations in this area still need to be done to create an applicable method. The
last issues arise because of the MR inhomogeneity during image acquisition. The
slightest disturbances may result in heavy image artifacts. Proper shielding of the
MW generator is needed to reduce the SNR loss over time thus increasing the
thermometry and reconstruction accuracy (Ehses et al., 2021).

Regarding the related work presented in Section 3.2 the proposed sequence protocol
can be included in the cluster of stack-of-2D image approaches. Even though,
other researchers show a higher temperature accuracy in their approaches the
presented method outperforms all other research in terms of resolution and coverage.
The stated acquisition time of 1.1 second on the other hand, is only given for
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one reconstruction. A full coverage of the VOI requires eight image acquisitions
resulting in a total acquisition time of 8.8s without the intermediate breaks for breath-
triggered acquisition. Nonetheless, a major advantage of the proposed method is
the distribution of the overall image acquisition time over a longer period of time.
The presented approach can lead the way for other researchers not familiar with
sequence programming to start addressing the complex problems of volumetric
thermometry reconstruction.

In conclusion, this chapter proposed a novel method for 2.5D thermometry map
reconstruction based on common GRE sequences rotated around the applicator’s
main axis. A pilot study was conducted using bio protein phantoms to simulate cases
with possible heat sink effects and without. The evaluation shows promising results
regarding the DSC of the reconstructed 2.5D thermometry map and a manually
defined ground truth. Future work should address the reconstruction method’s
improvement by integrating further apriori knowledge like the estimated shape of
the heat distribution. Furthermore, a more realistic study should be conducted with
bigger sample size and real tissue. In sum, the method shows a high potential to
improve the clinical success rate of minimally invasive ablation procedures without
necessarily hampering the standard clinical workflow of the individual clinician.
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4.1 Introduction„Simplicity is about subtracting the obvious and
adding the meaningful.

— John Maeda
Chief Technology Officer of Everbridge

From 2018 to 2020, the incidences and deaths caused by cancer increased by
6.47% and 4.21%, respectively (Bray et al., 2018; Sung et al., 2021). Minimally
invasive approaches are considered safer than open surgery. In addition, open
surgery is not always applicable due to comorbidities, the spread of tumorous lesions
or anatomical limitations. A growing alternative is the use of minimally invasive
approaches. Along with others, MWA is a promising technique for treating primary
and secondary liver lesions with several FDA-certified systems on the market (Ruiter
et al., 2019). MWA offers several advantages for the treatment of tumorous lesions,
such as fast temperature development within the tissue, fast ablation times, and
the ability to use several applicators simultaneously. In addition, MWA tends to
reduce patient trauma and to increase the 5-year survival rate of patients with,
e.g., hepatocellular carcinoma and liver metastases (Yang et al., 2020). No matter
what ablation technique is used, it is of greatest importance to assess if the whole
lesion has been destroyed, including the MAM. This MAM was found to be the only
important predictor of LTP for liver lesions. Laimer et al. (2020) showed that the
chance for LTP was decreased by 30% for each millimeter increase of the MAM. To
track the temperature inside the tissue and assess the live coagulation necrosis,
MRI thermometry can be performed. Using MRI, the most common approach for
thermometry monitoring is the PRFS method using phase mapping (Zhu et al.,
2017; Kägebein et al., 2018). In Chapter 3, a novel approach was introduced for
the creation of a volumetric thermometry map by utilizing common GRE sequence
and performing a simple spatial interpolation. Nonetheless, the approach has
disadvantages. This temperature interpolation is prone to errors and anatomical
inhomogeneities. Therefore, a priori knowledge about risk structures is necessary.
Additionally, the evaluation of bio-protein phantoms raises another bias due to the
variable threshold for the coagulation necrosis, based on the pH-value.

In this Chapter, three approaches for reconstruction of a volumetric necrosis map
are compared to each other. All algorithms are evaluated on the same data sets
introduced in the previous Chapter, including updated thresholds to minimize the
bias caused by the phantoms. This Chapter will show that the new approaches are
able to exceed the accuracy of the previous reconstruction method while being more
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robust towards artifacts and outliers. The goal of the evaluation is the identification
of a suitable reconstruction approach with respect to the accuracy, robustness, and
the adaptability (necessity of a priori knowledge).

4.2 Related Work - 3D Reconstruction Algorithms

The major novelty in the present chapter is the analysis whether basic image pro-
cessing algorithms are capable of reconstructing a 3D heat or necrosis map from
2D interventional image data. The focus lies on the differentiation between a full
3D reconstruction and a layer-wise approach based on interpolation and volume
stitching. To get a proper overview of the existing methods an initial unstructured
literature research was conducted. Based on the results, frequently used phrases
and synonyms where identified and collected to define a proper search term. Re-
garding the topic of volumetric reconstruction, the term was divided into three major
categories, also observable in Table 4.1:

1. Again the dimensionality of the reconstruction is meant to be volumetric. There-
fore, the search term should yield as few as possible results regarding 2D-2D
reconstruction.

2. Basic image processing methods for 2D to 3D reconstruction are of interest
for the present Chapter. These include but are not limited to the Delaunay
triangulation, splines and enclosing ellipsoids (especially the MVEE approach).

3. To further reduce the amount of medical papers focusing on 3D image acquisi-
tion the term "reconstruction" must be present in either the title or the abstract.
In combination with Category 2) the resulting set of scientific work is excluding
most papers addressing the field of 3D image reconstruction from scanner
raw data, which is not of interest for the present thesis.

After definition of the presented categories a structured literature research was
performed for the last ten years from 01.01.2012 to 31.07.2022 on PubMed. Con-
necting the columns in Table 4.1 with logical AND operations and including the date
range the following search term was created:

((3D[Title/Abstract] OR volumetric[Title/Abstract] OR volume[Title/Abstract] OR
three dimensional[Title/Abstract] OR 3 dimensional[Title/Abstract] OR

three-dimensional[Title/Abstract])

AND
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(Delaunay[Title/Abstract] OR Delauney[Title/Abstract] OR Spline[Title/Abstract] OR
Splines[Title/Abstract] OR Ellipsoid[Title/Abstract] OR MVEE[Title/Abstract])

AND

(Reconstruction[Title/Abstract])

AND

(2012/1/1:2022/7/31[pdat]))

Tab. 4.1: Synonyms for the literature research regarding 2D to 3D reconstruction ap-
proaches. The categories can be divided into "Dimensionality", the used "Ap-
proach" and "Others".

Synonym Dimensionality Approach Others
1 3D Delaunay Reconstruction
2 volumetric Delauney —
3 volume Spline —
4 three dimensional Splines —
5 3 dimensional Ellipsoid —
6 three-dimensional MVEE —

This search term yields 171 results, which are analysed in a first title/abstract
research. Considered for a more detailed analysis where 49 papers dealing with
the topic of 2D-3D reconstruction. Those papers were analysed in more detail
performing a full paper research. All papers describing a reconstruction of a volume
from sparse 2D data or point clouds where included resulting in 12 relevant papers
for the last ten years. Exempted from this are papers, which are describing 3D
reconstruction approaches from photographs. In the last step, additional relevant
papers not appearing in the search term but already known by the author of the
present thesis where included in this chapter. The reconstruction methods analyzed
include the minimum volume enclosing ellipsoid (MVEE), the Delaunay triangulation
and Splines approaches.

Bowyer (1981) and Watson (1981) introduced an incremental 3D Delaunay trian-
gulation. Their initial approach has a time complexity of O(N3/4) to O(N2) and
belongs to the serial strategies. Because the efficiency of their introduced method
for large data sets is bad other approaches have emerged using parallel strategies.
Wan et al. (2015) reconstruct a 3D volume for the left cardiac structure based on
multi-planed cardiac MR images. Here, they use a layer-wise interpolation after
contour registration from multiple images followed by a Delaunay triangulation for
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surface mesh generation. Optimization of the Delaunay triangulation was performed
by also applying a graph-cut algorithm. Results show promising DSCs of 0.9 and
higher for all data sets. In 2019, Marot et al. (2019) provided a 3D triangulation
approach using parallel computation, which is able to reconstruct 55 million tetra-
hedras in one second. Lately, Su et al. (2020) provided a detailed related work
analysis and another approaches for a rapid 3D Delaunay algorithm adapting 3D
Hilbert curves and 3D multi-grid division to extend the basic triangulation. Overall,
the Delaunay triangulation is said to be suitable for reconstruction of homogeneous
structures and convex surfaces.

Regarding the MVEE, Van Aelst et al. (2009) offer a detailed analysis and explanation
of the algorithm. They are able to show that the it behaves properly under affine
transformation of the data points while providing an efficient convergence rate. In
addition, it is shown that the highest break down value lies at around 50%, which is
said to be the maximum value for all affine equivariant estimators like the MVEE.
Many years later, Abo et al. (2020) on the other hand introduced the use of MVEE
for a finite set of points and show that the problem can also be solved by computing
the MVEE of a polytope defined by the convex hull. Nonetheless, the literature
research does not provide any approach where the MVEE method was used to
reconstruct 3D volume data from 2D medical images in any way.

The Bezier splines are an efficient approach to evaluate a spline curve at a given
point while being numerically stable. De Boor (1978) also increased the efficiency
by introducing the condition that no terms are computed, which are guaranteed
to be multiplied by zero. Denk et al. (2004) introduced the splines to perform a
myocardial displacement and strain reconstruction using a new cylindrical coordinate
B-Spline model, which takes roughly 20s to compute. Galassi et al. (2018) on the
other hand reconstruct the 3D coronary artery from 2D X-ray images. They use a
non-uniform rational basis splines called NURBS and perform an joint operation
on the 2D reconstruction to compute the 3D volume at the end. Zhao et al. (2022)
use an enhanced version of the NURBS approach for reconstruction of 3D model
shapes from 2D CT angiography data while Reddy et al. (2022) are using cubic
spline interpolation to restore the shape of the vocal fold medial surface. Yu et al.
(2016) demonstrate a fully automatic reconstruction algorithm for the proximal femur
from 2D X-ray images. They provide a 3D template model of the proximal femur
and perform a hierarchical two-stage registration. First a rigid 2D to 3D registration
is performed followed by regularized deformable B-spline registration. Xiong et al.
(2015) are focusing on the reconstruction of the upper airway in the human nostril
from MR images. They use a level-set approach to initially segment the structures
and create 2D contour lines. The 3D surface is afterwards reconstructed by utilizing
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NURBS from axial, sagittal and coronal slices. Fu et al. (2014) reconstruct the
3D representation of the endocardium surface based on sparse point clouds using
Thin Plate Splines in combination with progressive approximation of the surface
after euclidean-based point matching. Prakosa et al. (2014) introduce a pipeline for
reconstruction of patient ventricles from low resolution clinical images. They compare
different interpolation methods including splines (DSC = 0.86+-0.06) and harmonics
(DSC = 0.87+-0.04). Rim et al. (2013) propose an approach for reconstruction of
the arterial geometry based on non-linear cubic spline interpolation. The input data
is acquired during intravascular ultrasound imaging.

Regarding the scope of the present thesis three papers can be considered to be
closely related to the approaches presented. First, the already mentioned work
from Prakosa et al. (2014) is using splines for interpolation of ellipsoidal structures
in 2D images. This approach is easily adaptable to the problem of thermometry
reconstruction because the cross-sectional plane through the coagulation necrosis
perpendicular to the applicator’s main axis is also ellipsoidal in shape. Hence,
it is suitable to follow the approach from Prakosa et al. (2014) and optimize it
for the problem of volumetric thermometry reconstruction. In addition, Faridi et
al. (2020) propose a method to reconstruct a volumetric heat map from single
2D temperature maps during mild hyperthermia. Here, they utilize three slices
in axial order for the phantom experiments and two axial plus one sagittal slice
for their in-vivo experiments. Their approach is based on a compressed sensing
algorithm, which is in need of all the afore mentioned orientation during the same
time. Due to the sparsely distributed temporal data points of the method proposed in
Chapter 3 this approach is not suitable. The last important related work dealing with
the reconstruction of volumetric thermometry maps from 2D temperature maps is
provided by Seasons et al. (2019). They use a 3D Gaussian fitting model to recreate
a volumetric temperature map including necrosis estimation. They compared their
approach to a ground truth using the DCS similarity measurement with an average
DSC of 0.689. Unfortunately, their approach is only suitable for post-treatment
evaluation of lesion. The predicted volumetric necrosis estimation is not meant for
intra-operative use.

A summary of the important related work can be seen in Table 4.2. The table show
the results analysed by the method used for reconstruction, the area of application,
the used data input for the method and if provided the DSC similarity measurement.
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4.3 Material and Methods

In Chapter 3, a new approach for creating a volumetric heat map was described.
Here, a 2D GRE sequence (TE = 3.69ms, TR = 7.5ms, flip angle = 7°, FOV = 256 x
256mm, matrix = 256 x 256, bandwidth = 40Hz

Px , slice thickness = 5mm) is utilized by
rotating it around the applicator’s main axis and reconstructing the missing informa-
tion. The chosen GRE sequence is inspired by Gorny et al. (2019) who also provide
an in depth study about the temporal resolution of GRE sequences during the use of
MWA. Therefore, the 13 bio protein phantom data sets offer a temperature accuracy
of ±1◦C and each slice was acquired with a resolution of 1.0x1.0x5.0mm in 1.1s. In
the following Subsections all tested algorithms are explained in detail. All coagula-
tion necroses were computed using the critical temperature model and a phantom
specific threshold between 50◦C and 60◦C. For rapid prototyping purposes, all three
new approaches are implemented in python. The source code can be accessed via
https://github.com/jalpers/ScientificReports2022_ComparisonStudy.

4.3.1 Temperature Interpolation

The temperature interpolation method aims at reconstructing the heat map and not
the estimated necrosis map. Here, the Cartesian 2D coordinates were mapped
to the corresponding polar coordinates. After acquisition of the phase reference
images used for the PRFS method to compute the heat map, a population map is
created. This population map holds the weights for each interpolation partner for
every voxel. The weights are computed using Equation 4.1:

w1 =

∣∣∣∣ θIPleft
− θi

θIPleft
− θIPright

∣∣∣∣ (4.1)

w2 = 1− w1

with θi representing the cylindric angle of the current voxel i and θIPleft
, θIPright

representing the orientation angles of the left and right interpolation partners, respec-
tively. The final interpolation of the temperature is done by applying the population
map to every slice along the applicator’s main axis using Equation 4.2:

Ti = Iw · (w1 · TIPleft
+ w2 · TIPright

) (4.2)

with Ti representing the temperature of the current voxel i and TIPleft
, TIPright

representing the temperature of the adjacent interpolation partners. To reduce
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the background noise caused by the air outside of the phantoms, the data sets
were cropped to a 60x60mm region of interest (ROI). The morphological opening to
reduce the remaining background noise was replaced in this version by a connected
component analysis. An example of the method from coronal, axial and sagittal
view can be seen in Figure 4.1.

Fig. 4.1: Reconstruction results for the temperature interpolation in axial (left), sagittal
(middle) and coronal (right). In addition, the bottom shows the color bar used for
the temperature interpolation visualization (0°C - 100°C). The black line indicates
the alpha value of the lookup table.

4.3.2 Outlier Detection

For the Delaunay triangulation, the MVEE and the splines method an outlier detection
was developed to improve the robustness towards single outlier slices during image
acquisition. For this approach the latest acquired image at time point ti is compared
to the previous time point ti−1 for that specific orientation with the assumption that
the coagulation necrosis is always increasing in size and never shrinking. First, a
connected component analysis is performed to remove background noise and small
irregularities. Second, the growth of the coagulation necrosis ∆A in percentage is
computed and compared between both time points using:

∆A =
|Ati −Ati−1 | · 100%

Ati−1

(4.3)

with A representing the area of the coagulation necrosis. If ∆A > 80% an abnormal
behaviour was detected. This specific value was defined empirically by observation
of all phantoms. If a slice is considered an outlier this slice is not taken into account
for the current reconstruction.
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4.3.3 Delaunay Triangulation

By considering the necrotic voxels as a point cloud, a triangulation can be performed
to get an outer hull. This hull features a global and smooth connection of edges
resulting in the contour of the estimated coagulation necrosis. In addition, staircase
artifacts due to consideration of only single slices are prevented and the polygon
mesh is more suitable for post-processing and visualization.

A standardized method for generating a closed surface mesh from a set of points
is the Delauny triangulation. It divides an unstructured point set into an uneven
triangular grid. To compute the triangulation, the VTK implementation based on the
works of Watson (1981) and Bowyer (1981) is utilized. Their algorithm is based on
an incremental approach, where one point is added each time to an already valid
Delaunay triangulation. Therefore, an initial triangle is placed inside the triangulation,
which is big enough to enclose all points of the initial point cloud. These points
are now added one after another to the triangulation. Every time this is done, all
invalid triangles are identified. For these triangles, the polygonal hole is identified
and the triangles are removed from the data structure. After removal, the polygonal
hole is re-triangulated and the next point from the input point cloud is inserted in the
triangulation. Finally, every triangle was determined whether it contains a vertex,
which is part of the initial triangle. If a vertex is found, the corresponding triangle
is removed from the triangulation as well. The approach from Watson and Bowyer
also introduced a few acceleration steps which caused the algorithm to be faster
than the original method. After computation of the modified Delaunay triangulation
a convex hull is generated as an output. For creating a volumetric necrosis zone,
the voxels within the surface mesh are also marked as necrotic. An example of the
Delaunay reconstruction can be seen in Figure 4.2.

Fig. 4.2: Reconstruction results for the Delaunay triangulation in axial (left), sagittal (middle)
and coronal (right).
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4.3.4 Minimum Volume Enclosing Ellipsoid

The construction of an ellipse around the applicator’s main axis models the idealized
concentric heat distribution. The applicator can be interpreted as many heat point
sources in a row. The maximum of heat is generated in the electrode of the applicator
and decreases along the applicator’s main axis. In homogeneous media, the heat of
a plane point source decreases exponentially with quadratic distance. This results in
the typical ellipsoid shape of the coagulation necrosis. With this a priori knowledge,
a proper geometric model is determined. In the presented approach, ellipses are
formed slice-wise perpendicular to the applicator’s main axis following the extent
and alignment of the necrotic voxels. By exploiting this behaviour, irregularities of
the heat distribution or incomplete data can be compensated by the convex hull.

The implementation is based on the work by Nima Moshtagh’s algorithm for the
computation of the MVEE (Moshtagh et al., 2005). This algorithm calculates the
parameters of an ellipsoid with the smallest volume by containing a set of n dimen-
sional data points Pi. The algorithm is applied slice-wise on each 2D voxel slice
perpendicular to the applicator’s main axis. The parameter consisting of the center
c, the two radii r1 and r2 and the rotation matrix of the ellipse are calculated by
solving the following optimization problem:

log(det(A)) −→ min (4.4)

such that
(Pi − c)T ·A · (Pi − c) ≤ 1 (4.5)

with A containing all information regarding the shape of the ellipses. This information
can be decomposed by a singular value decomposition:

[U Q V ] = svd(A) (4.6)

with U and V defining a first and second rotation matrix of the ellipse, respectively.
The scaling matrix Q is containing the singular values σ1 and σ2, which are repre-
senting the semi-major and semi-minor axis of the ellipse. The radii ri can now be
calculated by:

ri =
1√
Qii

(4.7)

Each voxel xi inside of the generated ellipses is assumed to be coagulated and
will be flagged as necrotic. In this way, a three-dimensional coagulation necrosis is
created. An example of two slices along the applicator’s main axis can be seen in
Figure 4.3.
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Fig. 4.3: MVEE reconstruction for homogeneous phantom number 1. Exemplary shown
are slice 44 and 58 along the applicator’s main axis (yellow dot). Visible are the
rotated MR images (yellow lines), the data points used as an input (light turquoise)
and the corresponding computed outline of the reconstruction (dark turquoise).
Note that the number of input points may vary due to outlier detection.

4.3.5 Bezier Splines

Considering the necrotic contour voxels of the live data slice-wise perpendicular
to the applicator’s main axis, the link between two neighbored voxels is done by
a polynomial of third degree for creating a smooth, naturally curved shape. This
method forms a concave and closed hull. The effect of drawing a tight hull around
the data only results in a local impact of outliers on the overall reconstruction.
The interpolation of incorrect live data is determined by the two neighbored slices.
Hence, a proper sampling rate of the volume leads to a good reconstruction despite
erroneous or missing data.

The 3D volume consisting of the oriented necrosis maps is sliced perpendicular to
the applicator’s main axis. The order of connecting the voxels V is determined by
the size of angles regarding their cylinder coordinates Vc:

V (x, y, z) = Vc(r, θ, z) (4.8)

r =

√
(x− xc)

2 + (y − yc)
2

θ = atan2

(
x− xc
y − yc

)
with (x, y) representing the Cartesian coordinates of a voxel in a slice z, r repre-
senting the radius, θ representing the angle of the cylindric coordinates and (xc, yc)
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representing the Cartesian coordinates of the applicator’s main axis in each slice z.
The voxels are listed in ascending order of their angles in relation to 0◦ MRI slice,
so that for two voxels i and j, the following neighborhood condition applies:

0 > i < j ≤ n if θi < θj (4.9)

Afterwards, the set of voxel data is interpolated by a continuous closed Cubic
Bezier Curve using de Boor’s Algorithm (De Boor et al., 1978). De Boor’s algorithm
introduces a fast and stable way to evaluate a point on a B-spline curve by not
directly computing the B-spline functions but evaluating the spline curve through an
equivalent recursion formula. For determining the voxels inside the closed hull to
flag them as necrotic, the winding number algorithm after Sunday’s implementation
(Sunday, 2004) is used. This is more robust for points close to complex polygon
boundaries and is as fast as comparable methods. An example of the splines
method for two slices is shown in Figure 4.4.

Fig. 4.4: Spline reconstruction for homogeneous phantom number 1. Exemplary shown
are slice 44 and 58 along the applicator’s main axis (yellow dot). Visible are the
rotated MR images (yellow lines), the data points used as an input (light turquoise)
and the corresponding computed outline of the reconstruction (dark turquoise).
Note that the number of input points may vary due to outlier detection.

4.4 Experimental Setup

Evaluation of the explained reconstruction methods was conducted on the same
13 bio protein data sets as introduced in Chapter 3 to ensure comparability of the
results. All methods are evaluated with respect to:
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1. Accuracy: Improvement of the DSC and the SEM.

2. Robustness: Compensation of artifacts and MR inhomogeneities.

3. Adaptability: Necessity of a priori knowledge about vessels and real-time
capability.

If not mentioned explicitly, all results were acquired without taking the a priori
knowledge about vessels into account. All data sets provide a ground truth manually
extracted by a medical expert after the intervention. The DSC was computed
according as explained in Section 3.4 using an SEM at a confidence level of 95%
(p = 0.05) over all 13 phantoms.

In the following Sections outliers will refer to single slices in the interventional
protocol, which show a very low SNR. This causes the predefined threshold to
highly overestimate the coagulation necrosis even when optimized. With respect
to the original temperature interpolation these corrupted slices caused the method
to fail. These outliers can mainly be observed in perfusion phantoms 1 and 4 and
are therefore examined carefully during the evaluation. Outliers are detected and
removed as explained in Subsection 4.3.2. Examples images of those phantoms
for two orientations can be seen in Figure 4.5.

(a) Artifact affected perfusion phantom 1 at time
point 1.

(b) Artifact affected perfusion phantom 1 at time
point 2.

(c) Artifact affected perfusion phantom 4 at time
point 1.

(d) Artifact affected perfusion phantom 4 at time
point 2.

Fig. 4.5: All four panels show the magnitude (left) and corresponding phase (right). It is
noticeable that the SNR of the data changing rapidly between two consecutive
time points. The yellow rectangles show the inserted PVC tubes.
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Accuracy

During testing of the accuracy, the introduced bias for estimating the coagulation
necrosis was carefully examined. Due to the use of bio protein phantoms the
critical temperature model is applied instead of the CEM43 or Arrhenius model (M. S.
Breen et al., 2007; Rempp et al., 2012). The thermal threshold was identified for
each phantom individually within a range of 50-60◦C. Because the evaluation is
focused on the reconstruction algorithms and not on the temperature accuracy of
the acquired images the used coagulation thresholds were identified by applying
the thresholds in a range from 0◦C to 100◦C for each orientation. The results
for each value were compared to the corresponding image plane in the ground
truth and the optimal threshold for each orientation was identified. Due to the
pH-value inhomogeneities in the phantoms this approach shows different optimal
thresholds for different orientations reflecting the tissue inhomogeneities in a human.
Unfortunately, the phantoms did not show a proper sub-lethal transition zone in
the post-treatment images. Therefore, only one threshold is applied to define if a
voxel is coagulated or not, neglecting sub-lethal damage to the tissue. Nonetheless,
the threshold for this estimation highly depends on the pH-value of the phantoms,
which can vary much within each phantom according to Bu Lin et al. (2008). To
address this bias, the new methods are not only evaluated with the original global
threshold used in Chapter 3, but also with two other introduced thresholds. In
addition, it is investigated how well the presented methods will perform considering
perfect input. Therefore, the given ground truth is resliced for each data set and the
eight predefined orientations, usually acquired during live imaging, are extracted.
Afterwards, these eight slices are used as an input for reconstruction to simulate
a perfect input. The resulting set of tested inputs consists of the following three
thresholds for necrosis estimation and the resliced ground truth:

1. Global: Original threshold used in Chapter 3.

2. Median: The optimal threshold for each orientation was empirically determined.
Afterwards, the median threshold value from each of the eight orientations was
used for reconstruction to reliably remove outlier thresholds (global compen-
sation of pH value inhomogeneities, which may result in unrealistic thresholds
of e.g, 25◦C or 84◦C).

3. Local: The optimal threshold for each orientation is used for reconstruction
(local compensation of pH value inhomogeneities).

4. Ground truth: Resliced ground truth offering perfect input.
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Robustness

The test for the robustness of the proposed methods, is focused on the evaluation
of phantoms with perfusion to simulate a heat sink effect. Here, the perfusion
phantoms number 1 and 4 show strong artifacts and MR inhomogeneities causing
th initial method presented in previous Chapter to fail. All the methods with and
without these critical data sets are compared to determine the influence of heavily
corrupted data on the methods.

Adaptability

Regarding the adaptability, each reconstruction is performed two times. First, the a
priori knowledge is taken into account by providing the segmented vessel structures
as input to each algorithm. After reconstruction, these vessels are subtracted from
the result to enforce a proper deformation of the reconstructed volume. During
the second reconstruction, no a priori knowledge is provided as additional input.
For evaluation, the volume of false positive classified voxel values is computed by
subtraction of both corresponding reconstructions. Thus, it can be identified which
algorithm performs best in the presence of vessel structures.

In addition, each reconstruction was performed 100 times to measure the mean
computational time and the standard deviation. For the accuracy and adaptability
experiments, additional one-way ANOVAs were conducted with respect to the dif-
ferent used algorithms. Afterwards, post-hoc tests were performed using pairwise
t-tests with Bonferroni correction. An exemplary overview about the performance of
the algorithms tested can be seen in Figure 4.6.

4.5 Results

All methods where evaluated regarding accuracy, robustness, and adaptability.
In the following subsections, the results with respect to these three parameters
are presented. A summary of the ANOVAs’ results can be observed in Table 4.3.
Statistically significant post-hoc test results can be seen as horizonal lines in the
corresponding Figures for accuracy and adaptability tests. All boxplots show the
interquartile range (box), the 25th and 75th percentile (borders of each box), the
median (horizontal line in the box), the minimum and maximum values (whiskers)
and the potential outliers (dots).
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(a) Groundtruth for perfusion
phantom 2.

(b) Temperature interpolation reconstruction for
perfusion phantom 2.

(c) Delaunay reconstruction for perfusion phan-
tom 2.

(d) MVEE reconstruction for perfusion phantom
2.

(e) Splines reconstruction for perfusion phantom
2.

Fig. 4.6: Reconstructions for perfusion phantom 2. Visible are the ground truth contours
(white) in addition to the output contour (yellow) in axial, sagittal an coronal. The
3D representation is shown without any smoothing or other visual post-processing
applied.

4.5.1 Accuracy

An overview of the accuracy test results can be observed in Figure 4.7. The global
threshold is identical with the one used in Chapter 3. The splines (0.75±0.08) and
MVEE (0.74±0.07) method yield comparable DSC results to the original temperature
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Tab. 4.3: Summary of the ANOVAs’ results. Df = Degrees of Freedom in the numerator, F
= F-value, p = probability of the data given the null hypothesis, Sig. = p-values
less than the traditional α <0.05, η2 = Generalized Eta-Squared measure of effect
size.

Variable df F p Sig. η2

Accuracy
Algorithm with Global Threshold 3 3.86 0.017 * 0.056
Algorithm with Median Threshold 3 4.16 0.013 * 0.107
Algorithm with Local Threshold 2 51.82 <0.001 * 0.542
Algorithm with Ground Truth Threshold 2 116.66 <0.001 * 0.687
Adaptability
Algorithm with Median Threshold 3 39.99 <0.001 * 0.81

interpolation (0.73±0.07) method, whereas the Delaunay triangulation performs
more poorly (0.69±0.04). The median thresholds for each data set shows slightly
different results. The effect of the new thresholds mainly affect the corrupted data
sets of the perfusion phantom 1 and 4. Here, the compensation of the bias introduced
by the pH value variations causes the splines (0.77±0.04), MVEE (0.80±0.03)
and even the Delaunay triangulation (0.75±0.02) to outperform the initial method
(0.73±0.07) presented in the previous Capter. The local threshold, which is individual
for each of the eight orientations, could not be applied to the temperature interpolation
method because the necrosis estimation was performed on the reconstructed volume
instead of every input slide. For the new approaches, the optimized local threshold
shows that the Delaunay triangulation (0.78±0.02) performs more poorly than the
other two. The splines method (0.81±0.02) performes somewhat worse than the
MVEE (0.84±0.02) regarding the mean DSC, but still better than Delaunay and the
temperature interpolation method.

Overall, the results regarding accuracy show a meaningful trend in favor of the MVEE
method followed by the splines approach. The Delaunay triangulation performs
worst in most tested scenarios. This statement is supported by evaluation of the
ground truth reconstruction which simulates a perfect input. Here, the Delaunay
triangulation achieves a maximum of 0.88±0.02, the splines of 0.92±m0.01 and
the MVEE of 0.95±0.01. For the purpose of further testing, the median threshold
will be used, as it best reflects the real clinical conditions.
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Fig. 4.7: Results of the accuracy tests for all 13 phantoms. DSC measurements are sepa-
rated for each method and each tested threshold with: Global = Threshold used
in the previous interpolation method. Median = Median threshold from all eight
orientations. Local = Individual threshold for each orientation. Ground Truth =
Resliced input data from the ground truth. Horizontal lines indicate statistically
significant post-hoc pairwise t-test results.

4.5.2 Robustness

A graphical overview about the results regarding the robustness test can be seen
in Figure 4.8. After removing the corrupted perfusion phantoms number 1 and 4,
the mean DSC of the interpolation method is improved by 0.05, while the standard
deviation decreases by 73.61% from ∼0.07 to ∼0.02. The Delaunay triangulation
improves by just 0.01 with a nearly identical standard deviation. The spline method
shows a 0.04 higher DSC after outlier removal, whereas the MVEE method shows
an improvement of 0.02. Regarding the standard deviation, the splines method
improves by 53.87% from ∼0.04 to ∼0.02 and the MVEE method by 32.07% from
∼0.03 to ∼0.02. Two sample t-tests between the groups "With Outliers" and "Without
Outliers" for the algorithms temperature interpolation (p=0.27), Delauney (p=0.75),
Splines (p=0.27) and MVEE (p=0.40) were performed. No significant differences
could be observed.

Overall, it can be observed that the new methods show less variation in the standard
deviation, including the corrupted data sets than the original temperature interpola-
tion method. Nonetheless, no significance could be observed. Between the new
approaches, no trend can be observed.
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Fig. 4.8: Results of the robustness tests. The median threshold was used for necrosis
estimation and the error bars correspond to the standard deviation. With outliers
= All data sets were taken into account including the highly corrupted data sets.
Without outliers = Perfusion phantom 1 and 4 were left out of the evaluation. No
statistical significance was found.

4.5.3 Adaptability

An overview of the adaptability test can be observed in Figure 4.9. The original
interpolation method shows a mean volume of 0.21±0.10ml incorrectly classified
voxels, closely followed by the splines and MVEE method with 0.52±0.10ml and
1.18±0.30ml, respectively. The Delaunay triangulation offers the worst result regard-
ing the adaptability with a mean volume of 2.12±0.53ml false positive classification
regarding the vessels. The maximum vessel volume affected by the coagulation
necrosis was computed at 1.5±0.42ml.

Overall, it can be said that the original interpolation method shows the least false
positive classification of vessel voxels whereas the Delaunay triangulation performs
the worst regarding the vessels even exceeding the maximum vessel intersection
due to overestimation of the coagulation necrosis. While comparing the splines and
the MVEE method, it can be noticed that the splines not only showed a lower mean
for false positive classification, but also provided a much lower standard deviation
over all six perfusion phantoms. Regarding the robustness there is a trend towards
the temperature interpolation and the splines.

With respect to the reconstruction times, the temperature interpolation (C++) method
shows 8.02±5.91ms, the Delauney trinagulation (Python) 1.57±0.3s, the MVEE
method (Python) 4.5±0.6s and the Spline method (Python) 6.2±0.55s.

62 Chapter 4 Volumetric Necrosis Map Reconstruction - Comparison Study



Fig. 4.9: Results of the adaptability tests. The volume of the wrongly classified voxels
can be seen for each of the four algorithms. In addition, the boxplot "Maximum"
indicates the true vessel volume affected by the coagulation necrosis over all
six perfusion phantoms. Horizontal lines indicate statistically significant post-hoc
pairwise t-test results.

4.6 Discussion and Conclusion

Regarding accuracy, the results show a strong trend in favor of the MVEE method.
Apparently, MR inhomogeneities and other artifacts cause the data to frequently
underestimate the coagulation necrosis when computed through a simple threshold.
In these cases, the MVEE method is able to compensate for this loss of information
and provide a proper reconstruction. The big disadvantage of the MVEE approach,
on the other hand, can be observed during experiments with the perfusion phantoms.
The compensation of the underestimation of the coagulation necrosis also causes
the vessels to vanish to an extent, which is not considered negligible. The splines
method was shown to be more capable of dealing with vessel structures, but on
the other hand shows a lower DSC similarity overall. The Delaunay triangulation
shows an even worse performance than the temperature interpolation method,
which is caused by the approach itself. Fitting a triangulation mesh to a set of
points completely neglects any deformation caused by vessels and others. Even
though this approach is well suited for homogeneous heat distributions without any
anomalies, it is far from a real-life scenario. Therefore, the Delaunay triangulation
will not be investigated further.

The differences regarding the similarity are mainly caused by a continuous underes-
timation of the coagulation necrosis. This underestimation is not only caused by
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the approach used to recompute the heat maps, the noise, and other artifacts in
the images, but also by the partially strong pH value variations within the phantom.
Here, it would be suitable to conduct more studies with ex vivo organs to see if
these variations have an impact on the overall similarity of reconstruction. In a later
step, the image acquisition protocol should also be tested in a real clinical setup,
e.g., with the use of in vivo animal experiments. In addition, the adaptability of the
presented approach may be increased by a dynamic framework which does not
need predefined reference images for heat map reconstruction. To achieve this
reference-free thermometry, approaches as introduced by Salomir et al. (2011)
can be combined with framework presented in the present thesis. A reference-free
thermometry would allow for a life adaptation and change of the region of interest,
e.g., when a vessel or organ boundary was automatically detected during the inter-
vention (e.g., through deep-learning approaches). To overcome the temporal heat
variation in single voxels caused by local MR inhomogeneities or artifacts, it might
be suitable to combine the presented approach with real-time simulations of the
heat transfer. A first approach would be the use of the Pennes’ Bioheat Equation
(Wissler, 1998) while optimizing the simulation parameters based on the live data
for different orientations. This approach could result in an even higher accuracy
while providing a visually more appealing result, which can be easier to use by a
clinical end user. Furthermore, this approach may also be extended by using a
Kalman Filtering to achieve a self-adaptive hybrid magnetic resonance thermometry
as introduced by Zhang et al. (2016). Their method offers the possibility to follow
temperature changes in presence of motion and adapt the temporal and spatial
resolution of the thermometry. Using Kalman filters the acquired data can be cor-
rected, and corrupted data points within the images can be removed. Therefore,
this approach may be beneficial to better spot heat sinks (e.g. caused by vessels)
and get a better understanding of their effects during ablation.

Using the resliced ground truth, it was shown that the proposed methods work
well with appropriate initial input, which is mainly dependent on the used 2D GRE
sequence. Because the setup is able to take any 2D phase or temperature input
with any number of orientation, it can directly utilize new image sequences as soon
as they are published. This allows the presented setup to be applicable to a wide
range clinical setups as well as providing an improved reconstruction along with the
improvement of the MR sequences.

Conclusion. In this Chapter, three approaches for the reconstruction of a volumetric
coagulation necrosis for the monitoring of MWA procedures were compared and
analyzed. All methods are able to utilize any 2D MR sequence, as long as the se-
quence provides phase images for heat map reconstruction. It can be observed that
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the spline and MVEE approach have the potential for highly accurate reconstruction
of the volume while outperforming the previously proposed interpolation method
in a more realistic setup regarding accuracy and robustness. To overcome local
inhomogeneities caused by noise or MR dependent artifacts, the use of adaptive
simulations should be considered in the future to compute a more homogeneous
volumetric map. Future work should also conduct studies in ex vivo and in vivo
animal experiments to verify transferability from the phantoms to a more realistic
environment.
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5.1 Introduction„Medicine is a science of uncertainty and an art
of probability.

— William Osler
Former professor at John Hopkins Hospital

For a successful outcome of a thermal ablation procedureit is important that the
tumor cells are fully destroyed within a certain minimal ablative margin (Laimer
et al., 2020). Not fully destroying the tumor cells within this minimal ablative margin
due to a premature termination of the procedure will increase the risk of a local
recurrence (Laimer et al., 2020). This can happen when the imaging modality is
not sufficiently precise or external influences such as electromagnetic interferences
cause the acquired images to become inaccurate. Subsequently, the necrosis maps
computed from these images may provide false information to the radiologist. They
could for example show pixels falsely classified as necrotic which would then cause
the radiologist to prematurely stop the treatment if they think the entire tumor is
destroyed. Therefore, a precise measurement is important if the ablation is to be
successful. Furthermore, an estimation of the uncertainty with which the pixels are
classified as necrotic or not necrotic does not yet exist but could provide additional
information to help surgeons to successfully destroy the tumor. The causes of the
errors and uncertainty in imaging are manifold. Some uncertainty is introduced
by the imprecision with which an MRI device conducts its measurements. Some
errors are introduced by imaging artifacts due to electromagnetic interference or
metal objects within the patients body. Others are in turn caused by numerical
approximations in the mathematical models computing the thermal dose. Current
state-of-the-art thermal dose models such as the CEM43 model and the Arrhenius
model use deterministic equations to classify pixels as necrotic. The character of the
MRI measurement error, however, is probabilistic in nature. To sensibly incorporate
the error into the thermal dose estimation, a new model therefore needs to work with
random variables instead of scalar values. A mathematical framework based on
stochastic instead of deterministic equations will subsequently have the advantage
of being able to take different uncertainties and errors into account. Evidently, there
is a need for a mathematical framework that helps estimate the uncertainty of the
necrosis map classification and accounts for these sources of errors within the
thermal dose computation.

This chapter will introduce a mathematical framework based on the CEM43, which is
able to estimate the thermal dose applied to tissue during a thermal ablation. PDFs
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describing the distribution of measured quantities are derived. These PDFs are
able to provide a probabilistic estimation of the variables as opposed to the typical
scalar representation in other thermal dose models. As a result a novel way of
computing necrosis maps , which are potentially more accurate and robust than the
conventional CEM43 model and can still be computed in real time.

5.2 Related Work - Probabilistic CEM43 Thermal Dose
Model

The major novelty in the present chapter is the analysis of the MR measurement
error and the impact to the computation of the conventional CEM43 necrosis model.
Focus lies on the probabilistic behaviour of the error and how to propagate this error
from the image acquisition to through the PRFS thermometry up to the computation
of the necrosis. To get a proper overview of the existing methods an initial unstruc-
tured literature research was conducted. Based on the results, frequently used
phrases and synonyms where identified and collected to define a proper search
term. Regarding the topic of probabilistic error propagation, the term was divided
into three major categories, also observable in Table 5.1:

1. The first category describes the factor of uncertainty or probability

2. This chapter is focusing on the influence of the MR measurement error on the
necrosis estimation. Here, all three state-of-the-art methods should be used,
namely the CEM43 model, the Arrhenius model and the critical temperature
(threshold) model.

3. To reduce the number of unrelated papers the focus in category three lies
on the medical part. Here, the points of interest focus on thermal ablation
procedures for any image guidance approach.

After definition of the presented categories a structured literature research was
performed for the last ten years from 01.01.2012 to 31.07.2022 on PubMed. Con-
necting the columns in Table 4.1 with logical AND operations and including the date
range the following search term was created:

((Probabilistic[Title/Abstract] OR Probability[Title/Abstract] OR
Uncertainty[Title/Abstract])

AND
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(CEM43[Title/Abstract] OR CEM 43[Title/Abstract] OR Arrhenius[Title/Abstract] OR
Critical temperature[Title/Abstract] OR necrosis[Title/Abstract] OR

necrotic[Title/Abstract] OR denaturation[Title/Abstract])

AND

(ablation[Title/Abstract] OR thermal[Title/Abstract] OR hyperthermia[Title/Abstract])

AND

(2012/1/1:2022/7/31[pdat]))

Tab. 5.1: Synonyms for the literature research regarding 2D to 3D reconstruction ap-
proaches. The categories can be divided into "Dimensionality", the used "Ap-
proach" and "Others".

Synonym Probability Necrosis Model Procedure
1 probabilistic CEM43 ablation
2 probability CEM 43 thermal
3 uncertainty Arrhenius hyperthermia
4 — critical temperature —
5 — necrosis —
6 — necrotic —
7 — denaturation —

This search term yields 54 results, which are analysed in a first title/abstract research.
Considered for a more detailed analysis where 13 papers dealing with the topic
of uncertainty estimation in any kind. Those papers were analysed in more detail
performing a full paper research. All papers describing a probabilistic approach to
measure the outcome of an error prone algorithm where included resulting in one
relevant paper for the last ten years from McDannold et al. (McDannold et al., 2020),
which will be explained in more detail later. Because the literature research was not
providing a sufficient amount of papers another unstructured literature research was
conducted expanding the search to other related fields: The uncertainty propagation
in ablation simulation, thermal dose and thermometry error analysis and correction
and a more general analysis of the CEM43 model. It can be seen that these areas
of research use similar approaches with a different scope or aim.

Regarding the uncertainty propagation in ablation simulation, Ristovski et al. (2019)
analyzed the uncertainty of thermal ablation based on the variability of biological tis-
sue parameters with radiofrequency ablation simulations. The simulation at the core
of their work uses a set of partial differential equations describing the heat diffusion
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through the tissue. Introducing the uncertainty of the biological tissue parameters
as random variables the propagation of this uncertainty is then investigated. For
this purpose the partial differential equations are rewritten as stochastic differential
equations. The simulation is executed with a stochastic finite element method to ob-
tain a per pixel PDF for the ablation of the underlying tissue. The biggest differences
to the presented Chapter are the data input and the error observed. Ristovski et al.
(2019) make use of simulated data not considering live data input and their uncer-
tainty stems from the variability of biological tissue parameters, while the presented
approach investigates the uncertainty due to imprecise measurement of the MR
image acquisition and numerical errors. Labarbera (2017) analyzed the uncertainty
of tumor ablation by irreversible electroporation caused by a varying conductivity
in the tumor and the surrounding tissue. The tumor and tissue conductivity are
treated as random variables with PDFs which were taken from the literature. A
Monte Carlo simulation was used to determine the volume of the ablation zone as
well as the mean and the standard deviation of the electrical field experienced by the
tumor. Similar to the framework presented in this Chapter, their work computes the
uncertainty of the ablation zone based on randomly distributed parameters. As with
the approach presented by Ristovski et al. (2019), however, this method describes
uncertainties within a simulation and can therefore not necessarily be applied to
real ablation procedures. Furthermore, Labarbera (2017) investigate the uncertainty
caused by the tumor and tissue conductivity and not the uncertainties including MR
image acquisition and numerical errors. Further similarities to the present Chapter
can be seen in the works of Jiang et al. (2021) and Dos Santos et al. (2009). These
publications investigate the effects of the uncertainty of multiple parameters on the
outcome of irreversible electroporation and radiofrequency ablation, respectively.
Jiang et al. (2021) observed the parameters pulse intensity, electrode diameter,
the location of the electrode from the center of the tumor, electrode length, and
number of electrode. Dos Santos et al. (2009) observed the parameters thermal
conductivity, specific heat, blood perfusion, and electrical conductivity. Both works
investigate the influence of the uncertainty of parameters on the outcome of the
respective procedure similar to the approach presented in this Chapter. The purpose
of both works, however, is to find out what factors the outcome of the respective
procedure is most sensitive to, which differs from the overall purpose of this Chapter.
Furthermore, the area of application is again restricted to simulations.

With respect to thermometry and thermal dose error analysis and correction, Zucconi
et al. (2014) analyzed the errors in PRFS-based MR thermometry and their effects
on the thermal dose during a HIFU ablation. They additionally proposed a low-pass
filtering on temperature maps to reduce errors in the thermal dose. This method was
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evaluated through a Monte Carlo simulation and showed promising results reducing
the overestimation factor of the thermal dose from 2.62 without the filter to 1.11 with
the filter. While their work analyzes the error of PRFS-based MR thermometry and its
influence on the thermal dose similar to the presented method, it differs in its scope
and methodology. The work of Zucconi et al. (2014) conducts a statistical analysis
of the thermometry error and does not provide a solid theoretical background to allow
the derivation of general principles for describing the thermal dose error. Additionally,
it only focuses on the error at the stage of the thermometry while the present Chapter
considers the error at an earlier stage in the MRI processing pipeline. Baron et al.
(2014) created a model-based approach for correcting PRFS-based thermometry
influenced by heat-induced magnetic susceptibility changes during HIFU ablation.
A 3D model was created by monitoring an ablation in breast fat and recording the
changes in magnetic susceptibility. Subsequently, a second ablation procedure was
conducted and monitored for which the temperature profile was then corrected based
on the 3D model recorded before. However, Baron et al. (2014) do not provide any
tools to estimate uncertainty or predict the influence of errors on the final ablation
result. Furthermore, their approach does not provide any insight into the theoretical
character of the error as the model used is utilized as a black box to correct existing
errors. Viallon et al. (2010) observed PRFS-based MR thermometry artifacts
caused by the formation of gas-bubbles at high voltages influencing the magnetic
susceptibility during radio frequency ablation. Additional factors correlating with the
severity of the errors caused by the artifacts were investigated. A model assuming
a Gaussian dynamic source of susceptibility was used to successfully correct the
artifacts. Similar to the present Chapter, their work investigates the influence of
specific factors on the accuracy of MR thermometry. However, the scope of the
approach is limited to the investigation of the errors caused by cavitation-induced
artifacts. Additionally, it does not consider the influence of these artifacts on the
thermal dose. It also does not provide any theoretical description for the errors,
which could be used to mathematically predict or estimate the influence of these
artifacts more generally.

Regarding the mathematical foundation of the CEM43 model Sapareto et al. (1984)
described the accumulated thermal dose in equivalent-minutes. With the values
computed by the proposed equation effects of thermal exposure can be compared
regardless of the specific temperature profile or the exposure time. The presented
method utilizes the work of Sapareto et al. (1984) as its mathematical foundation for
the proposition of a probabilistic framework. Pearce (2009) described a conversion of
a thermal dose computed by the CEM43 model to a probability of cell death by taking
into account the reaction rates described by the Arrhenius equation. Additionally,
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a method was proposed that allows the derivation of Arrhenius model constants
from CEM43 model data, effectively converting equivalent-minutes into the damage
parameter of the Arrhenius model. Their work shows a probabilistic interpretation
of the CEM43 model similar to the thermal dose model presented in this Chapter.
However, it does not take into account any errors or uncertainties caused by MRI
measurements imprecision. It only provides a probabilistic representation of the
CEM43 model without basing the computed probabilities in real influencing factors.
Lately, McDannold et al. (McDannold et al., 2020) computed the thermal threshold
for the CEM43 including the computation of the probability for thermal damage. Even
though their work is not computing the probabilistic error of the MR image acquisition
it is one of the few attempts to include a probabilistic approach during necrosis
estimation.

5.3 Material and Methods

The original CEM43 model was derived from the Arrhenius model (Sapareto et al.,
1984). In order to solve a continuous integral in real time a numerical integration
was used that introduces an error omitted in the final formulation of the CEM43

model. This error has to be included in the probabilistic formulation for this potential
source of errors to be considered. Rewriting the equation to include this numerical
integration error yields the following expression:

τ =

∫ tfinal

0
βT (t)−43dt = ∆t

tfinal∑
t=0

βT t−43 +

tfinal∑
t=0

ϵt (5.1)

where ϵt is the error due to numerical integration at time step t. As T t =
Tt−1+Tt

2

is used in practice for two temperature measurements at times t − 1 and t, the
numerical integration shown in Equation 5.1 utilizes a variation of the trapezoidal
quadrature rule that averages the temperature over time. Because of this, the
quantities T t =

Tt−1+Tt

2 and T t+1 =
Tt+Tt+1

2 are correlated with each other through
the shared temperature measurement Tt. This correlation causes a probabilistic
formulation of the CEM43 model to become difficult as combinations of correlated
stochastic quantities generally have more complex PDFs than independent ones. To
prevent these difficulties the numerical integration of the probabilistic formulation will
use a variation of the rectangular quadrature rule which uses T t = Tt. Even though
this quadrature rule has a bigger numerical integration error than the trapezoidal
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rule for finite intervals it still converges to the exact solution of the integration as
∆t −→ 0. The final probabilistic formulation of the CEM43 model can be written as:

τ = ∆t

tfinal∑
t=0

βTt−43 +

tfinal∑
t=0

ϵt (5.2)

where Tt is the temperature measurement at time t. Observing the formula it is
noticeable that all values except Tt and ϵt are constants. This leads to the conclusion
that these two quantities have to be the source of any non-constant error regarding
τ . Indeed, Tt is affected by the measurement error from the MRI device and ϵt is
the error caused by the numerical integration.

The computation of thermal doses within MR-guided tumor ablation is done in four
steps according to the MR thermometry pipeline shown in Figure 5.1. The first step

Fig. 5.1: Schematic diagram depicting the mathematical processing pipeline from the com-
plex image acquired by the MRI device to the thermal dose map used for later
information extraction.

is the acquisition of complex-valued k-Space data, which is reconstructed into a
sequence of complex images via Fourier-Transform. In the second step, phase
images are computed from these complex images by means of a polar coordinate
transformation. During the third step, the PRFS method as described in Chapter
2.2 can be used to compute temperature maps from the phase images. In the last
step, the temperature maps at different points in time are accumulated using the
CEM43 model to compute the thermal dose maps. Thresholding these thermal dose
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maps yields the necrosis maps. The goal of considering the uncertainty introduced
by the MRI measurement error is to predict its effects on the final distribution of the
thermal dose. This is done by introducing the measurement error at the start of the
pipeline and observing its transformation throughout. In the following sections, the
MR thermometry pipeline is converted into a probabilistic model, which is used to
compute probabilistic necrosis maps.

5.3.1 Complex Image PDF

The first step in the MR thermometry pipeline is the acquisition and Fourier-Transform
of complex-valued k-Space data yielding a set of complex images. These raw images
contain a complex number for every single pixel consisting of a real component R̂
and an imaginary component Î. All following equations will be given with respect to
a single pixel unless explicitly mentioned otherwise. As has been found by McVeigh
et al. (1985), the measurement error and therefore the distribution of R̂ and Î at this
stage has the character of a normal distribution assuming a linear transformation
such as the Fourier-Transform is used for reconstruction. For this reason, it can be
shown that the underlying values R and I (unaffected by the measurement error)
are random variables distributed according to the normal PDF pR(x) = N (µR, σ

2
R)

and pI(x) = N (µI , σ
2
I ), respectively, where µR and µI are the real and imaginary

components as measured by the MRI device. The normal PDF is given by:

N (µ, σ2) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (5.3)

Assuming time-invariant noise the standard deviations of these PDFs can be deter-
mined by utilizing reference images that have been recorded pre-operatively. σ2

R

and σ2
I are therefore approximated by the sample variance of the real and imaginary

components of the reference images.

5.3.2 Phase PDF

The second step consists of the computation of the phase image by means of a
polar coordinate transformation. The phase ϕ can be computed by:

ϕ = tan−1

(
I

R

)
. (5.4)
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Taking into account that I and R are normally distributed, the PDF of ϕ can be derived.
This can be split into two steps: First, the ratio distribution of I

R is computed. Second,
the PDF of ϕ is calculated by transforming the ratio distribution according to tan−1.
The ratio distribution of two uncorrelated normally distributed random variables can
be computed analytically and Hinkley (1969) stated an equation for the ratio of two
correlated normally distributed random variables. Due to the independence of R
and I, this equation can be further simplified by setting the correlation factor ρ = 0.
This allows the PDF of Z = I

R to be written as:

pϕ(x) =
b(x)d(x)

a3(x)

1√
2πσIσR

[
Φ

(
b(x)

a(x)

)
− Φ

(
− b(x)

a(x)

)]
+

1

a2(x)πσIσR
e−

c
2 (5.5)

where

a(x) =

√
1

σ2
I

x2 +
1

σ2
R

b(x) =
µI

σ2
I

+
µR

σ2
R

c =
µ2
I

σ2
I

+
µ2
R

σ2
R

d(x) = e
b2(x)−ca2(x)

2a2(x)

and Φ is the standard normal cumulative distribution function:

Φ(x) =

∫ x

−∞
N(0, 1)dx =

1

2

[
1 + erf

(
x√
2

)]
(5.6)

The ratio distribution is transformed by tan−1
(
I
R

)
according to the general transfor-

mation rule of random variables. Assuming that the random variable X ∼ f(x) is
transformed into Y ∼ g(y), the new PDF can be written as:

g(y) = f(x)

∣∣∣∣dxdy
∣∣∣∣ (5.7)

With pZ(z) being the PDF of Z = I
R it can be utilized that due to Z = tan(ϕ) and

x = tan(y), the new PDF pϕ(y) is given by:

pϕ(y) = pZ(x)

∣∣∣∣dzdy
∣∣∣∣ = pZ(tan(y))

∣∣∣∣dtan(y)dy

∣∣∣∣ = pZ(tan(y))
1

cos2(y)
(5.8)
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With this in mind Equation 5.5 can now be substituted into pϕ(y) yielding the final
formula:

pϕ(x) =

(
b(x)d(x)

a3(x)

1√
2πσIσR

[
Φ

(
b(x)

a(x)

)
− Φ

(
− b(x)

a(x)

)]
+

1

a2(x)πσIσR
e−

c
2

)
1

cos2(x)
, (5.9)

where

a(x) =

√
1

σ2
I

tan2(x) +
1

σ2
R

,

b(x) =
µI

σ2
I

tan(x) +
µR

σ2
R

,

c =
µ2
I

σ2
I

+
µ2
R

σ2
R

,

d(x) = e
b2(x)−ca2(x)

2a2(x) .

and Φ(x) is the cumulative distribution function of the standard normal distribution.

5.3.3 Temperature PDF

After deriving the phase PDF it now has to be transformed into a temperature
PDF by utilizing the PRFS method and its linear correlation between phase and
temperature. The variables T0 and ϕ(t0) will be assumed to be scalars without any
intrinsic uncertainty because of the following reasons:

1. It is presumed that T0, as the baseline temperature, is determined prior to the
intervention with adequate precision.

2. Because ϕ(t0) is not a single image but the mean of all baseline images
acquired the error information omitted by assuming this quantity to be exact is
negligible.
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Analogous to the Subsection 5.3.2 Equation 5.7 can be utilized to transform the
PDF of ϕ into the PDF of the temperature T . By solving the PRFS Equation 2.7 for
ϕ and substituting it into Equation 5.7, the PDF pt(x) can be written as:

pT (y) =pϕ(x)

∣∣∣∣dxdy
∣∣∣∣

=pϕ((y − T0)γαB0TE + ϕ(t0))

∣∣∣∣d((y − T0)γαB0TE + ϕ(t0))

dy

∣∣∣∣
=pϕ((y − T0)γαB0TE + ϕ(t0))|γαB0TE + ϕ(t0)| (5.10)

This equation yields an exact description of the temperature uncertainty but due
its complexity it is difficult to further transform this PDF in the next steps. Empirical
observation of the given test data described in Section 5.4 indicates that the shape
of pϕ(x) for small values of σ(R) and σ(I) can be adequately approximated by a
normal distribution. Testing several configurations of µR, µI , σ(R) and σ(I) no
configuration could be found where µR > 10σR and µI > 10σI while pϕ(x) is not
similar to a normal distribution. This indicates that the similarity of pϕ(x) and a
normal distribution holds true more generally. Under this assumption pT (x) can be
similarly approximated because the family of normal distributions is closed under
linear transformations. This characteristics allows for the following assumption:
If p̃ϕ(x) ≈ pϕ(x) is a normal distribution p̃T (x) ≈ pT (x) because of the linear
transformation from ϕ to T described in Equation 2.7. Taking into account the
normal PDF Equation 5.3 the parameters of the function p̃T (x) = N (µT , σ

2
T ) such

that the error between the original function pT (x) and the normal approximation is
minimized. According to empirical observation, this seems to be the case when
µT is equal to the temperature computed by the PRFS method from the measured
quantities µR and µI . σT is determined by asserting that pT (µT ) = p̃T (µT ) and
solving for σT :

µT =T0 +
tan−1

(
µI
µR

− ϕ(t0)
)

γαB0TE

σT =
1√

2πpT (µT )
(5.11)

5.3.4 Thermal Dose PDF

After deriving the PDF pT (x) describing the distribution of the temperature T the
final thermal dose distribution pτ (x) can be derived. In terms of the processing
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pipeline shown in Figure 5.1 this includes the transformation of the temperature
map into a thermal dose map using the CEM43 model.

τ =

tfinal∑
t=0

∆t βTt−43 (5.12)

Deriving the thermal dose PDF will be described in two parts. The first part will
focus on the derivation of the PDF of a single exponential term of the CEM43 model.
Afterwards, the sum of the single terms will be used to derive the final thermal dose
PDF.

The derivation of the single term PDF is focused on a single exponential term in the
sum of probabilistic CEM43 given by Equation 5.2. This term can be written as:

E = ∆tβT−43 (5.13)

The derivation is based on the approximated normal distribution described by Equa-
tion 5.11 and can be simplified by taking into account the previous assumption that
the temperature measurement T is a normally distributed random variable. This
causes the otherwise complex formula to become a less complex lognormal distri-
bution because the term eµ+σX for a standard normal random variable X ∼ N (0, 1)

is lognormally distributed with its PDF being:

LN (µ, σ2) =
1

xσ
√
2π

e−
(ln x−µ)2

2σ2 (5.14)

For the derivation of µE and σE it is necessary to rearrange the exponential term E

from the CEM43 model into the form eµE+σEX as explained above. Distributing the
leading ∆t factor accross the sum to reduce the complexity, the resulting rearranged
exponential term E can be written as:

∆tβT−43 =∆tβµT+σTX−43

=eln(∆t)eln(β)(µT+σTX−43)

=eln(∆t)+ln(β)(µT−43)+ln(β)+σTX (5.15)

Taking this rearrangement into account and solving it for µE and σE it can be
concluded that

µE =ln(∆t) + ln(β)(µT − 43) (5.16)
σE =ln(β)σT (5.17)
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which allows the computation of the single exponential term PDF pE(x) ≈ LN(µE , σ
2
E).

The final thermal dose PDF pτ (x) is obtained by computing the PDF of the sum of all
Et. This is typically done by a chain of convolutions over all pEt(x). Due to the high
computational effort of a convolution, however, this step is approximated to ensure
real-time capability. The PDF of the sum of lognormally distributed independent
random variables generally resembles a lognormal distribution (Mitchell, 1968). For
this reason, the final thermal dose PDF is approximated by pτ (x) = LN (µτ , σ

2
τ ).

The parameters µτ and στ are obtained using an approach inspired by Wilkinson’s
cumulative distribution function (Beaulieu et al., 1995). For example, the first two
moments m1,m2 of the convolution of two PDFs pEt ∗ pEt+1 are computed by:

m1[pEt ∗ pEt+1 ] = m1[pEt ]m1[pEt+1 ], (5.18)
m2[pEt ∗ pEt+1 ] = m2[pEt ] + 2m1[pEt ]m1[pEt+1 ] (5.19)

+m2[pEt+1 ].

Analogously, the moments for the convolution of all Et can be computed. After
matching the first moments according to:

m1[pτ ] = m1[pE0 ∗ ... ∗ pEtfinal
],

m2[pτ ] = m2[pE0 ∗ ... ∗ pEtfinal
],

the parameters of the thermal dose PDF are computed by:

µτ = 2 ln(m1[pτ ])−
1

2
ln(m2[pτ ]) (5.20)

στ =
√
ln(m2[pτ ])− 2 ln(m1[pτ ]), (5.21)

5.3.5 Probabilistic Necrosis Map Computation

In conventional necrosis maps derived from the CEM43 model, a necrosis threshold
θ is applied to the thermal dose to determine if the underlying tissue is necrotic. This
yields a binary necrosis map.

In the probabilistic case, the same threshold θ can be applied to the thermal dose
PDF in order to determine the probability of necrosis. This yields a necrosis map
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with real values between 0 and 1. The probability of necrosis P (N) is computed as
the integral over pτ (x) from θ to infinity written as:

P (N) =

∫ ∞

θ
pτ (x)dx. (5.22)

P (N) is computed for every pixel. The resulting probabilistic necrosis map can be
visualized to provide information about the current ablation zone. An example of a
probabilistic necrosis map is shown in Figure 5.2.

Fig. 5.2: Exemplary visualization of a probabilistic necrosis map. The data was acquired in
a bioprotein phantom without motion. The resulting probabilities are color coded
using a traffic light color scheme from 0 (green) to 1 (red).

To quantitatively compare the introduced necrosis map to the conventional one,
another threshold ξ is applied. This threshold describes a probability above which
necrosis is considered to be certain. It converts the probabilistic necrosis map into
a binary form. The optimal value for ξ depends on the MRI parameters and the
specific setup of the procedure.
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5.4 Experimental Setup

5.4.1 Data Sets

The evaluation was conducted using four data sets. MWA using a MedWaves
Avecure (Medwaves, San Diego, CA, USA, 14G) of a polyacrilamide gel phantom
was monitored with PRFS-based MR thermometry on a 1.5 Tesla scanner (Siemens
Avanto, Siemens Healthineers, Germany) using a single-echo single slice 2D spoiled
GRE sequence (TE = 9.56ms, TR = 20ms, slice thickness = 4mm, bandwidth =
260Hz/Px, flip angle = 12◦, FOV = 192x192mm2, matrix size = 96x96). 30 reference
images were recorded before the start of the treatment. All 140 subsequent images
record the emulated ablation procedure.

3D T2-weighted imaging (TE = 385ms, TR = 3200ms, slice thickness = 2.5mm, band-
width = 780Hz/Px, flip angle = 120◦, FOV = 250x250mm2, matrix size = 256x256,
turbo factor = 242), manually segmented by a medical expert, was used as ground
truth for the assessment of the ablation zone. This ground truth was scaled down
to a size of 96x96 pixel via a Lanczos-Filter with a = 3 in order to match the intra-
operative data. Finally, the ground truth was cropped to a rectangle as shown in
Figure 5.3. This avoids the inclusion of any background noise, allowing for a more
meaningful evaluation. Additionally, PRFS-based MR thermometry was performed

Fig. 5.3: A phase image of the phantom data set with the ground truth of the ablation zone
(green) and the cropped area to avoid background noise (red).

on a 1.5 Tesla scanner (Siemens Aera, Siemens Healthineers, Germany) in hepatic
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MWA of three in-vivo swine using a single-echo single slice spoiled GRE sequence
(TE = 9.6ms, TR = 20ms, slice thickness = 3mm, bandwidth = 260Hz/Px, flip angle
= 12◦, FOV = 512x512mm2, matrix size: 256x256). 10 reference images were
recorded before heat application and subsequently 30 to 49 images were recorded
during MWA.

Post-ablative contrast-enhanced (intravenous injection of 0.025 mmol/kg gadolin-
ium ethoxybenzyl diethylenetriamine pentaacetic acid, Primovist, Bayer-Schering
Pharma, Berlin, Germany) 3D T1-weighted imaging (TE = 1.2ms, TR = 3.4ms, slice
thickness = 2mm, bandwidth = 475 Hz/Px, flip angle = 12◦, FOV = 320x240mm2,
matrix: 160x120), manually segmented by a medical expert, was used as ground
truth for the assessment of the ablation zone. The images were scaled down to
the size 128x128 pixels via a Lanczos-Filter with a = 3 to match the intra-operative
image data. The final ground truth is then cropped to exclude any background noise
while still containing the greatest possible area.

The study was conducted in accordance with the German law for animal protection
(TierSchG) and the European Directive 2010/63/EU. All experiments were approved
by the local animal ethic committee (Lower Saxony State Office for Consumer
Protection and Food Safety, LAVES). The reuse of animals from study 16/2374
was permitted after veterinary examination and demonstration that the animal’s
general state of health and well-being had been fully restored (18/2987). One
female and two male LEWE minipigs (body weight 39.6 kg±1.7kg, body length
108±6cm) were used. Anesthesia was induced by intravenous injection of 10mg/kg
propofol (Narcofol®, CP Pharma, Germany) via a central line to enable endotracheal
intubation. Animals were maintained under general anesthesia using an isoflurane
precision vaporizer and mechanically ventilated (air-oxygen mixture 1:1, pIso >1.8
mmHg). The breathing rate was set to 12 breaths per minute and a ventilation
volume of 8-10 ml/kg per breath was chosen, based on the EtCO2 (35-45 mmHg)
concentration. The depth of anesthesia was continuously monitored and animals
received continuous fluid therapy (Ringer’s lactate, 10 ml/kg/h). Analgesia was
achieved by an initial systemic intravenous dose of 4 mg/kg carprofen (Rimadyl®,
Zoetis, US). For liver ablation, 1mg/kg Lidocaine (Xylocain, Aspen, Germany) was
locally infiltrated at the needle insertion sites. At the end of the experiment, pigs
were euthanized under deep anesthesia by intravenous injection of 15-25 ml/animal
of T61 until heart arrest was confirmed.
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5.4.2 Statistical Evaluation

The probabilistic model i evaluated by comparing its necrosis maps to the necrosis
maps produced by the conventional CEM43 model. The goal of this evaluation is
less to obtain results that statistically show the superiority of the probabilistic model
and more to indicate its feasibility compared to the state-of-the-art. This comparison
is done according to the criteria accuracy, robustness, and efficiency.

Accuracy

To compare the two approaches, the probabilistic necrosis map is converted into a
binary map by applying a threshold ξ ∈ [0, 1] to every pixel. Every pixel is classified
as either necrotic if its probability of necrosis is bigger than or equal to ξ, or as not
necrotic otherwise. The ablation zones predicted by either approach are compared
to the ground truth to determine the accuracy. To find the most suitable threshold
for the prediction of the ablation zone, this comparison is done for different values
of ξ on the phantom data set. The best ξ is used for all subsequent pig liver data
sets. To quantify the accuracy, the sensitivity and DSC are used. Furthermore, in
order to evaluate the amount of false positives relative to the size of the ablation
zone, the false positive rate (FPR) is taken into account. It is computed as the ratio
of the amount of false positives and the amount of pixels composing the ablation
zone in the ground truth. This measure has the advantage of not depending on
the absolute amount of negatives, i.e. the size of the background, contrary to the
measure of specificity.

Robustness

Unfavorable measurement circumstances can have a variety of causes. In this
evaluation the quantity considered to represent random uncertainties is the SNR.
The SNR of R and I correlates with the overall precision of the MRI measurements
that are the foundation of the thermal dose model. It is computed as:

SNRR =

(
WH∑
x,y

r̄x,y

)
/

(
WH∑
x,y

σRx,y

)
(5.23)

SNRI =

(
WH∑
x,y

ı̄x,y

)
/

(
WH∑
x,y

σIx,y

)
, (5.24)
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where W and H are the width and the height, respectively, r̄x,y and ı̄x,y are the
sample mean of the real and the imaginary value for each pixel, and σRx,y and σIx,y

are the standard deviations for each pixel. To determine the overall robustness, the
accuracy of the conventional and probabilistic necrosis maps is measured while
varying the SNR. For this purpose, increasingly intense Gaussian noise is introduced
into the complex images. The accuracy is measured as described in the previous
paragraph, with ξ set to the value giving the best possible accuracy for the first data
set. This includes the comparison of the ablation zones predicted by both necrosis
maps to the ground truths with respect to the sensitivity, the FPR, and the DSC. As
artificially lowering the SNR renders the pig liver data sets unusable due to their
comparatively low initial quality, the overall computation of the robustness is, as
opposed to the computation of the accuracy, only performed for the phantom data
set. The introduction of Gaussian noise only mimics the effects of a decreasing
SNR. Therefore, this study does not evaluate the model’s robustness for a varying
MRI measurement error realistically. Still, due to the MRI measurement error for the
real and imaginary image being Gaussian in nature (Gudbjartsson et al., 1995), it
can be expected that the results of this study closely resemble those obtained by a
more realistic evaluation.

Efficiency

The duration of the computation of a probabilistic necrosis map is measured. This
duration does not include the time it takes to compute σR and σI nor the time it
takes to obtain a new image from the MR apparatus and load it into the RAM of the
computer. These are equal for any PRFS-based MR thermometry and thus do not
allow any conclusions about the real-time capability of the probabilistic CEM43 model.
As the computations made for every pixel are the same regardless of the data set,
the performance is, similar to the robustness, only evaluated for the phantom data
set.

5.5 Results

5.5.1 Accuracy

First, the accuracy of the CEM43 necrosis map was measured with respect to the
phantom data set. The ablation zone was predicted with a sensitivity of 1, an FPR
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Fig. 5.4: The DSC, the sensitivity, and the FPR of the probabilistic necrosis map (P) for
different ξ compared to the conventional necrosis map (C) applied to the phantom
data set. The graph of the sensitivity of the conventional model is hidden behind
the graph of the sensitivity of the probabilistic model and has a constant value of
1.

of 1.005 and a DSC of 0.666. The same measurement was then performed multiple
times for the probabilistic necrosis map for different ξ. The results show a DSC
bigger than 0.666 for ξ ≳ 0.16, with a maximum of 0.85 at ξ = 1; a sensitivity being
close to 1 for all ξ with a minimum of 0.985 for ξ = 1; and a FPR being smaller
than 1.005 for ξ ≳ 0.18 with a minimum of 0.333 for ξ = 1. These results can be
seen in Figure 5.5. The dashed lines represent the DSC, the sensitivity, and the
FPR of the conventional necrosis map. The one representing the sensitivity of the
conventional necrosis map is occluded by the solid line representing the sensitivity
of the probabilistic necrosis map and has a constant value of 1. Evidently, the lowest
FPR (0.333) and the maximum DSC (0.85) are obtained for ξ = 1. The ablation
zones predicted by the conventional and probabilistic model are shown in Figure
5.5. Note, that here ξ = 1 is equivalent to ξ > 1− MP, where MP is the machine
precision limit for a 32-bit floating point number, i.e. 1.175494× 10−38.

Furthermore, the accuracy was determined with respect to the pig livers. As ξ = 1

has been determined to yield the best results, this value was used to compute the
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(a) Conventional CEM43 model. (b) Probabilistic CEM43 model.

Fig. 5.5: Magnitude images of the phantom data set with the ablation zones predicted in
red and the groundtruth in yellow / green.

probabilistic necrosis maps for the other three data sets. The results for the pig
livers showed a higher DSC for the probabilistic necrosis map compared to the
conventional model: The differences between the scores of the probabilistic and the
conventional necrosis maps are ∼ 0.1, ∼ 0.04, and ∼ 0.072 for data sets two, three,
and four, respectively. Additionally, the conventional necrosis maps provided a higher
sensitivity than the probabilistic approach: The differences between the scores of
the probabilistic and the conventional necrosis maps are ∼ −0.023, ∼ −0.128, and
∼ −0.141 for data sets two, three, and four, respectively. Also, the results for the
pig livers showed a lower FPR for the probabilistic necrosis map compared to the
conventional model: The differences between the scores of the probabilistic and the
conventional necrosis maps are ∼ −0.256, ∼ −0.692, and ∼ −1.422 for data sets two,
three, and four, respectively. The ablation zones predicted by the conventional and
probabilistic model for dataset three are shown in Figure 5.6. All results regarding
the differences in DSC, sensitivity, and FPR can be seen in Figure 5.7.

5.5.2 Robustness

The robustness of the conventional and probabilistic necrosis map was evaluated
by measuring the dependency of their accuracy on the SNR.

Both the conventional and the probabilistic necrosis map were evaluated. A baseline
SNR of 6.214 for the real and 6.501 for the imaginary components of the complex
image acquired by the MRI apparatus was measured. The SNR was evenly de-
creased in steps of 0.5 by introducing Gaussian noise to measure the influence
on the accuracy. For the conventional necrosis map, the accuracy of the ablation
zone prediction varies according to Figure 5.8. In general, the DSC decreases with
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(a) Conventional CEM43 model. (b) Probabilistic CEM43 model.

Fig. 5.6: Magnitude images of the second pig liver data set with the ablation zones predicted
in red and the groundtruth in yellow / green.

decreasing SNR showing a maximum value of 0.666 for the original data and a
minimum value of 0.419 for an SNR decrease of 6.0. The sensitivity has a value
of 1.0 for any change in SNR. The FPR increases with a decreasing SNR having
a minimum of 1.005 for the original data and a maximum of 2.771 for an SNR
decrease of 6.0.

The change in accuracy for the prediction of the ablation zone by the probabilistic
necrosis map was evaluated similarly. The measurements show a decrease in
accuracy, as can be seen in Figure 5.8. The DSC with decreasing SNR having a
maximum of 0.85 for the original data and a minimum of 0.428 for an SNR decrease
of 6.0. The sensitivity was measured to be close to 1.0 for any decrease of the SNR
with its minimum being 0.96 for an SNR decrease of 5.0. The FPR increases with a
decreasing SNR having a minimum of 0.333 for the original data and a maximum of
2.673 for an SNR decrease of 6.0.

5.5.3 Efficiency

The performance was measured in terms of the duration for computing the proba-
bilistic necrosis map. This duration only includes the computations from the complex
image to the probabilistic necrosis map, as loading times of the images are the
same for any thermal dose estimation algorithm and are thus not characteristic for
this model. The computation of 140 necrosis maps for images with a resolution
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Fig. 5.7: The relative differences in scoring for the three pig data sets when comparing the
probabilistic with the conventional approach. Scores displayed are the DSC, the
sensitivity, and the FPR

of 96x96 pixels was performed in 89.215s. Therefore, the mean duration for the
computation of a probabilistic necrosis map is 0.637s per image with a standard
deviation of 0.0002s.

5.6 Discussion and Conclusion

As can be concluded from the results and existing results (Yung et al., 2010), CEM43
necrosis maps often overestimate the size of the ablation zone. A more accurate
estimate would therefore necessitate a higher threshold for classifying a pixel as
necrotic to make the ablation zone smaller. For this reason, a probabilistic necrosis
map with a large probabilistic threshold ξ would produce better results compared
to the conventional approach. Correspondingly, a threshold of ξ = 1 results in the
highest accuracy for the probabilistic necrosis. Next to the intersection of union,
the DSC is an established measure for determining the overlap of the predicted
and the true ablation zone. As this measure scores higher for all four data sets,
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Fig. 5.8: The DSC, the sensitivity, and the FPR for the conventional necrosis map and the
probabilistic approach in comparison. The results are observed with respect to
changes in the SNRs.

the probabilistic ablation zone seems to generally perform better in predicting the
ablation zone than the conventional necrosis map. The difference in the scoring
is largest in the first data set (phantom), which has the best acquisition conditions
out of all four data sets. More investigation could give an indication as to whether
this difference in scoring is related to the image quality. The sensitivity of the
probabilistic necrosis map is lower throughout all data sets, even if it gets close to
the sensitivity of the conventional necrosis map (difference smaller than 0.1) for
the phantom and first pig data set. This can be explained by the overestimation
of the ablation zone by the conventional model. A larger ablation zone has less
false negatives and therefore a higher sensitivity. This, however, comes at the
cost of more false positives. With the main issue in the conventional approach
being too many false positives resulting in premature abortion of the treatment, the
underestimation by the probabilistic approach as indicated by the lower sensitivity is
usually less harmful. Too many false negatives only become an issue close to risk
structures as pixels might not be classified as necrotic even if they are, which could
result in unintentional damage to healthy tissue. Utilizing the standard deviation of
the thermal dose PDF, the uncertainty close to these structures could be evaluated.
This would allow the indication of possible false negatives close to risk structures.
The FPR of the probabilistic necrosis map is better than the conventional necrosis
map for all data sets. This score is arguably more important than the sensitivity,
as the false positives are the reason for incomplete tumor treatment. The lower
sensitivity and lower FPR indicate that the probabilistic necrosis map with ξ = 1

estimates a smaller ablation zone compared to the conventional necrosis map. As
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the conventional model generally tends to overestimate ablation zones, this might
yield a more accurate estimate. A smaller predicted ablation zone can also help
prevent premature ablation terminations. Furthermore, ξ can be set to a smaller
value to increase the size of the ablation zone and subsequently increase the
sensitivity, if necessary. The parameter could also be adjusted dynamically based
on the operators experience or by machine learning algorithms based on training
data.

The sensitivity of both necrosis maps is close to 1.0 for any SNR indicating an
overestimation of the ablation zone due to noise pushing the thermal dose values
above the necrosis threshold. Random fluctuations observed for the probabilistic
necrosis map can be traced back to an inaccurate estimation of σR and σI . Additional
Gaussian noise is applied to all images except for the reference images, which
determine the estimate of the standard deviations. Therefore, the estimate of the
standard deviations is lower than their true value as additional noise increases the
variance of the data. This inaccuracy results in inaccurate PDFs and thus results
in an inaccurate prediction of the ablation zone. The FPR of both necrosis maps
increases as the SNR decreases. This is caused by the Gaussian noise randomly
pushing the thermal dose in pixels over the necrosis threshold, which then results
in false positives. Again, the probabilistic necrosis map has better FPR values for
any SNR decrease when compared to the conventional necrosis map. This can be
explained by the different types of necrosis thresholds for the two methods. The
conventional necrosis map computes scalar thermal dose values for each pixel,
which have to exceed the necrosis threshold in order to be classified as necrotic.
Therefore, a single time step with a random spike in the temperature is enough to
classify a pixel as necrotic. The probabilistic necrosis map, however, classifies pixels
as necrotic only if the probability of the underlying tissue being necrotic exceeds
a certain threshold. As this threshold was chosen to be ξ = 1, almost 100% of
the area under the thermal dose PDF must be right of the necrosis threshold for
a positive classification. Having a thermal dose high enough for this to happen is
more unlikely than having a thermal dose above the necrosis threshold. Therefore,
the probabilistic necrosis map classifies less pixels as necrotic and thus contains
less false positives. All in all, the probabilistic necrosis map predicts the ablation
zone more accurately than the conventional necrosis map for any SNR decrease.
This indicates a higher robustness of the probabilistic approach to random noise
when compared to the conventional CEM43 model, which may be of additional
advantage in interventional MRI where noise may be increased by electromagnetic
interference of the interventional devices. To conclusively show an overall higher
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robustness, however, more research with different types of noise and artifacts needs
to be conducted.

According to the results the computation of the probabilistic necrosis map can be
performed in real-time and is thus practically feasible during ablation procedures.
Still, the current means used to compute the necrosis map are not optimized in
terms of memory management and GPU shaders. Re-implementing the algorithms
in C++ instead of the current C# language would allow for faster overall memory
management. Furthermore, in the current implementation, large chunks of the
software, which could be run on the GPU, are still executed on the CPU. Offloading
this code to the GPU would yield a performance increase and could allow the
algorithms to run in real-time especially for high resolution images. Even though the
model derived and evaluated in this Chapter shows promising results, many features
could still be implemented to further increase the predictive power with respect to
accuracy, robustness, and efficiency. One example of this is the integration of other
sources of errors, which can be considered by the probabilistic nature of the model.
This includes, for instance, the consideration of known MRI artifacts that can be
detected with image processing software. A subsequent adjustment of σR and σI

according to the character of these artifacts could further improve the robustness of
the model.

Also, as the sample size of the presented evaluation was too low, the results of this
method need to be validated in a larger cohort. A real time evaluation during an
ablation procedure could be the next step towards a general deployment of this model
during MR-guided ablation surgeries. Even though the present Chapter is focusing
on the prediction of ablation zones and the probability distribution of the thermal dose,
other quantities such as the magnitude could also be investigated through a similar
probabilistic approach, extending this model to more than only temperature-related
quantities. The same mathematical tools used for the estimation of the thermal
dose distribution can be used to estimate other randomly distributed quantities. An
extension of this model to other unrelated MR-imaging tasks is therefore possible.
Furthermore, an empirical investigation of relationships between error distribution
character and quantities like blood perfusion and attenuation coefficients can be
conducted through simulations. This allows the derivation of probability density
functions without a priori knowledge about the error source. Simulations of Penne’s
bioheat transfer equation (Pennes, 1948) could be used for this task. Moreover,
adding the probabilistic methodology of this model to current real-time simulation
approaches (J. Zhang et al., 2021; Mariappan et al., 2017; He et al., 2016; Carluccio
et al., 2013) could give additional information about error bounds and confidence
intervals of the ablation zone.
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In the evaluation, ξ was determined by the ablation zone prediction with the best
accuracy for the phantom data set. However, as this ξ is a parameter that represents
all hidden parameters specific to any MRI setup, applying the same ξ to data sets
acquired under different conditions will likely yield less-than-ideal results. Optimal
calibration of ξ would therefore require the evaluation of a pre-operative data set with
a pre-operative ground truth. This would be a time-consuming and cumbersome
task. Alternatively, the empirical relationships between ξ and parameters, such as
the magnetic field strength, and the ablation temperature could be investigated to
derive mathematical models for an optimal calibration.

In conclusion, this Chapter derives a probabilistic thermal dose model for the pre-
diction of ablation zones during thermal ablation procedures based on the CEM43

thermal dose model. The model estimates the probability distribution of different
quantities within the MRI processing pipeline and the probability of ablation. A
subsequent empirical evaluation of this model with a polyacrylamide gel phantom
and three in-vivo pig livers indicates a more accurate prediction of ablation zones
compared to the conventional CEM43 model in the majority of cases. The ablation
zones predicted by the probabilistic necrosis maps are smaller than the ablation
zones predicted by the conventional approach. As the probabilistic necrosis map
generally has a lower rate of false positives it can help prevent premature ablation
termination. Furthermore, the results show a higher accuracy of the probabilistic
necrosis map independent of the intensity of random noise. This indicates a higher
robustness against noise. Also, the new probabilistic model is feasible for real-time
application during ablation procedures.
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6.1 Introduction„Theory provides the maps that turn an
uncoordinated set of experiments or computer
simulations into a cumulative exploration.

— David E. Goldberg
Computer scientist and former professor

In both hypothermic and hyperthermic treatment methods, the severe deviation
from the normal range of body temperature can induce coagulation necrosis or
apoptotic cell death. Successful clinical treatment requires complete destruction
of tumor tissue while sparing healthy tissues and risk structures (e.g., vessels).
Precise adherence to the planned ablation zone plus safety margin is essential,
also to prevent re-growth of the tumor locally. A disadvantage of minimally inva-
sive treatment is the lack of a line of sight to monitor ablation progress. During
the intervention, MRI offers the possibility to measure the temperature changes
inside the tissue. Using a volumetric thermometry map, which provides real-time
information about the temperature distribution in the target tissue, radiologists could
estimate the extent of the necrosis zone and then schedule the ablation process
in a timely manner. Unfortunately, the direct development of an MRI thermometry
map that fully covers the required 3D space is accompanied by complex problems,
such as an inhomogeneous magnetic field or the time required. One approach
to overcome these problems is to use an interventional simulation of the ablation
process. A simulation, which is adapted to patient- and intervention-specific and
intervention-specific conditions, can be achieved by optimizing the underlying model
with data measured in real time.

Contribution. In this Chapter, a new method for volumetric heat map generation is
introduced, which can be applied during minimally invasive tumor ablation. Pennes’
BHTE is updated based on 2D thermometry maps acquired during ablation. Because
these maps are rotated around the applicator’s main axis, the full heat profile is
always visible, and the simulation is not restricted to a specific heat source term
and can be applied to all ablation techniques. The initial setting chosen for the fitted
parameters is of little to no consequence as they subsequentially get optimized
by minimizing the sum squared error between isotherms extracted from the 2D
maps and the current 3D simulation. Evaluation shows promising results of up to
0.88±0.04 similarity to a manually extracted ground truth, while also being robust
towards outliers and applicable to a wide range of clinical setups.
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6.2 Related Work - Bio Heat Transfer Simulation

Johnson and Saidel (2002) began research in the field of interventional and adaptive
simulation in 2002 by analyzing 3D simulation for thermal processes and conducting
one of the first theoretical studies. Based on their work, they and other researchers
(Roujol et al., 2011; Todd et al., 2010) came to the same two conclusions. First, a
continuous simulation of the heat distribution is able to increase the spatial resolution
of a volumetric ablation monitoring. Second, a biological heat model is capable of
aiding the real-time process of interventional radiology.

The major novelty in the present chapter is the development of an adaptive simulation
utilizing the easy to compute Pennes’ BHTE. This equation, while easy to compute, is
very prone to measurement errors. By utilizing the sequence protocol introduced in
Chapter 3 the live data can be fed to the algorithm to adapt the simulation parameters
live during the procedure. Hence, the accumulated error can be minimized and the
overall accuracy of the simulation can be improved. To get a proper overview of the
existing methods an initial unstructured literature research was conducted focusing
on thermal simulation procedures in general. Based on the results, frequently used
phrases and synonyms where identified and collected to define a proper search
term. Regarding the topic of adaptive simulation, the term was divided into four
major categories, also observable in Table 6.1:

1. Again the dimensionality of the simulation is meant to be volumetric. Therefore,
the search term should yield as few as possible results regarding pure 2D
simulations.

2. The approach used for simulation of the thermal distribution. This can either
be a bio heat transfer like Penne’s BHTE or other approaches like (extended)
Kalman filters.

3. The continuity is one of the major factors in this chapter. The simulation shall
be performed in real time to ensure that the information is available during
treatment with as less as possible delay after image acquisition.

4. Only heat maps of any kind will be considered during the literature research.

After definition of the presented categories a structured literature research was
performed for the last ten years from 01.01.2012 to 31.07.2022 on PubMed. Con-
necting the columns in Table 6.1 with logical AND operations and including the date
range the following search term was created:
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((3D[Title/Abstract] OR volumetric[Title/Abstract] OR volume[Title/Abstract] OR
three dimensional[Title/Abstract] OR 3 dimensional[Title/Abstract] OR

three-dimensional[Title/Abstract])

AND

(simulation[Title/Abstract] OR bio heat transfer[Title/Abstract] OR
Penne’s[Title/Abstract] OR Pennes[Title/Abstract] OR BHTE[Title/Abstract] OR

Kalman[Title/Abstract] OR EKF[Title/Abstract])

AND

(live[Title/Abstract] OR adaptive[Title/Abstract] OR realtime[Title/Abstract] OR
real-time[Title/Abstract] OR real time[Title/Abstract] OR

interventional[Title/Abstract] OR intra-operative[Title/Abstract] OR
intraoperative[Title/Abstract] OR continous[Title/Abstract])

AND

(heat[Title/Abstract] OR heat map[Title/Abstract] OR heatmap[Title/Abstract] OR
thermometry[Title/Abstract] OR heat distribution[Title/Abstract])

AND

(2012/1/1:2022/7/31[pdat]))

Tab. 6.1: Synonyms for the literature research regarding adaptive simulation approaches.
The categories can be divided into "Dimensionality", the used "Approach", the
"Continuity" of the approach and the "Type of Map".

Synonym Dimensionality Approach Continuity Type of Map
1 3D simulation adaptive heat map
2 volumetric bio heat transfer realtime heatmap
3 volume Penne’s real-time thermometry
4 three dimensional Pennes real time heat distribution
5 three-dimensional BHTE interventional —
6 — kalman intra-operative —
7 — EKF intraoperative —
8 — — continuous —

This search term yields 56 results, which are analysed in a first title/abstract research.
Considered for a more detailed analysis where 21 papers dealing with the topic
of simulation of thermal distributions. Those papers were analysed in more detail
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performing a full paper research. All papers describing a simulation of the heat
distribution during the a thermal procedure where included resulting in just two
relevant papers. Excluded from this literature research are all additional papers,
which only address simulations used for planning without the use of live data input
during the intervention. In the last step, additional relevant papers not appearing in
the search term but already known by the author of the present thesis where included
in this chapter. The majority of those papers describe basic simulation approaches,
which highly influenced the design of the method presented in this chapter. Therefore,
these papers may also describe simulation for planning purpose.

Another way to tackle this problem is through the use of control algorithms to
determine the value of one parameter. A rather simple control algorithm has been
developed by Enholm et. al (2009). Their aim was to adjust the duration of irradiation
during a HIFU intervention. Orthogonal to a focused ultrasound beam, concentric
circles were used to set temperature limits to which the ablation could maximally
reach. These values were determined by a pre-interventional simulation in which the
optimal irradiation was calculated. Temperature-sensitive MRI data using the PRFS
method provide feedback on whether the voxels lying on the circle have reached the
target temperature or thermal dose. If so, irradiation continues in a different area.
Quesson et. al (2002), on the other hand, did not focus on the duration, but rather
on the intensity of the focused ultrasound irradiation. In addition, they aimed at
maintaining a predefined temperature profile. In contrast to Enholm et al. (2009), the
calculation of the simulation is performed in real time during the intervention. This is
possible by a simplified description of the equation in frequency space. The Fourier
transformed equation can be thereby solved with an algebraic expression and the
heat radiation amplitude can be found. Together with the MRI-generated heat maps,
a control loop can again be implemented. The position of the applicator and tissue
or perfusion parameters are determined prior to ablation using reference images
and then assumed to be constant during the whole intervention. Nonetheless,
control algorithms are also capable of adjusting more than one parameter at a time.
Mougenot et. al. (2009) transferred the problem of coefficient determination for
BHTE to the field of control engineering. They compared the temperature distribution
of a HIFU simulation θ with a sequence of MRI heat maps T in a dynamic control
loop. The difference between the target temperature T and the actual measured
temperature θ was minimized based on the design of a PID controller. This control
algorithm takes into account both the current temperature difference and its time
derivative, as well as the accumulation of the error over the past time steps. By
coupling the controller with the solution of the heat equation in Fourier space, they
were able to determine the values of ultrasound absorption, heat diffusion, and
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perfusion. The optimization with the help of an algorithm for the multidimensional
search of the local minimum was carried out by iterative calculation of the heat
equation with modified tissue parameters. The evaluation of the approach resulted
in a real-time, accurate determination of the parameters with little dependence on
noise. These properties lead to a fast termination of the algorithm and therefore
to the stability of their method. De Bever et al. (2014) developed another method,
where a less complex model is used to describe the heat change. The heat input
and removal are described by two simple and flexible exponential equations. Their
parameters are immediately updated for targeted voxels based on each new MRI
measurement. Thus, any change, no matter the physical background, is taken
into account. Because of the constant updating, the predictions of heat distribution
need to be accurate only until the next measurement is obtained and not for the
entire ablation period. Finally, methods of inverse problems can be applied to heat
propagation and thus to thermal ablation. In the work of Hafid et al. (2017) it was
possible to calculate the propagation of temperatures during cryoablation using
a few sensors in the tissue. The thermal behavior during the transition from soft
to frozen tissue was integrated into the BHTE, which allowed for the prediction of
the movement of the cold front. The most relevant thermophysical coefficients of
the model could be obtained by inverse evaluation of the temperature sensor data.
Verhaart et al. (2015) also worked with point sensor data, two of which are located
in different tissue types. Because they developed their approach on patients rather
than simulated data, they were able to determine different diffusion and perfusion
values for tumor, muscle, and adipose tissue. Their stimulation of an RF ablation
could thus be tailored to different patients and sessions. Fuentes et al. (2010)
performed in vivo ablations with the support of a BHTE model adapted to MRI
temperature data. MRI slices acquired every five seconds made it possible to track
the progress of LITT procedures in real time. By optimizing the complex nonlinear
perfusion and diffusion terms, the simulation could be adapted to the interventional
data.

The following three approaches are the closest to the one presented in this chapter.
In 2011, Funetes et al (2011) show that it is possible to reconstruct missing data
for volume reconstruction using the Kalman filter. In their work, they removed
data from the images of an MRI-assisted thermal therapy, which were replaced
by the BHTE modeled values. With consecutive data corruption below 10 sec,
successful recovery was possible. Their research shows, that the BHTE simulation
is suitable for the problem of thermal heat propagation simulation but unfortunately,
their approach was not meant to be used for interventional simulations of ablation.
One year later, de Senneville and Roujol’s group (2012) where able to introduce an
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approach suitable to improve the accuracy and reliability of MRI thermometry data
with respect to the influence of stochastic noise. This is because the calculation
of the thermal dose for necrosis determination is highly error-prone at low SNR
due to the exponential dependence on temperature. They also made use of an
extended Kalman filter to solve the optimization problem. Their approach is usable
during the intervention by continuous multi-slice MR measurements. They were
able to show a computation time for a whole 3D volume of less than 63.5ms but they
need to define all parameter estimations prior to the intervention not providing the
possibility to adapt the optimization during runtime. Zhang et al. (2019a) describe
a neural network, which is able to formulate nonlinear dynamics of the bio-heat
transfer process. Their network needs a fully segmented CT image (fat, bone, liver)
in order to compute the different simulations based on the tissue type. Again, their
approach is not considering the change in simulation parameters during the process
and assumes that these are consistent over the period of the intervention.

An overview of the related work can be seen in Table 6.2.
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6.3 Material and Methods

(a) Thermometry map includ-
ing artifacts and baseline
temperature. Gray values
correspond to temperature
values.

(b) Pathfinding map to deter-
mine the path of lowest
costs.

(c) Eight extracted isotherms
within a range of 24◦C
color-coded on a grey-
scale. The highlighted yel-
low isotherm corresponds
to 21◦C.

Fig. 6.1: The thermometry map is converted into a pathfinding map encoding the computed
costs of each pixel along the path. Afterwards, the isotherms are extracted by
providing the temperature of interest as an input. No color-coding is applied in
the thermometry map for better visibility of baseline temperature (background
temperature without any heating) and artifact affected pixels (within and around
the needle axis caused by signal cancellation and air). For the pathfinding map
darker areas depict regions of low cost for the path finding algorithm. Yellow =
Extracted isoline.

Many of the related works utilize a mathematical model to simulate the ablation
procedures. The prerequisite for clinical use is intervention-specific modeling, which
includes both spatial and temporal adjustment of the coefficients. This is because
the parameters are not only temperature-dependent and change in the course of
the ablation, but different tissue and material types require a separate treatment. In
addition, the needle not only acts as an energy source, but its material itself interacts
with the emitted heat, which in turn shapes the pattern of heat distribution. Also,
more complex geometries of the needle (e.g., in MWA) require special modeling
(Deshazer et al., 2017). The consideration of so many physical interactions may
lead to complex differential equations with many coefficients. In an interventional
setup, these equations must be solved at each time step, and the set of parameters
must be optimized regularly. The difficulty here is in reconciling the complexity and
the resulting increased accuracy of the computation with a real-time capability.

Therefore, the method aims to reduce the mathematical problem to a diffusion
process. Hence, the approach to the modeling of heat distribution shifts from
the consideration of a physical optimization problem to the consideration of an
optimization problem in computer vision. In the following concept, the goal is not to
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describe an internal physical process as best as possible, but to extract suitable
information from 2D thermometry data in order to map it to a 3D simulation. The
measured data thus only adjust the progress of the ablation, while their values
themselves are not included in the simulation.

6.3.1 Isothermal Filter

The data set presented in Chapter 3 is used as an input for the developed adaptive
simulation. Because of the uniform distribution around the main axis of the applicator
the current heat profile can be observed in every image acquired and the location
of the applicator artifact (heat source) is always known. Using this information,
no mathematical term for a treatment specific heat source needs to be introduced
in the equation because the heat profile directly correlates with the heat source
distribution. The thermometry maps are characterized by noise and artifacts caused
by the applicator. The inter-dependency between the applicator and MRI magnetic
field may result in complete erasure or distortion of thermal information around the
applicator. Furthermore, the major part of the measured 2D data consists of the
baseline temperature of the non heated parts in the phantom (see Fig. 6.1). To
overcome the image corruption problem and to compress the information, the maps
are filtered by extracting isotherms. By placing the data in a relative relationship to
a reference point, the determination of the isotherm is more robust against noise.
This can be done by using Equation 6.1:

Di = |Ti − Tiso|∀i ∈ N (6.1)

with Di referring to the temperature deviation between the temperature iso-value
Tiso and the measured temperature T for all pixel N in the image. The idea is that
the fluctuations around the isovalue are considered only in the context of the total
displacement. By adding up these positive and negative deviations in the calculation
of the total distance, the stochastic noise can be eliminated. The global minimization
of the Gaussian-distributed noise in the acquired data results in a path that follows
temperature of interest. An example of the relative temperature distribution can be
seen in Fig. 6.2.

The implementation used in the presented method is based on Dijkstra’s algorithm
(Dijkstra, 1959). In the case of the isothermal filter the path can be forced only in
the direction of the needle axis. In this way, outliers in the data are also robustly
removed. Only directly connected pixels with values close to the thermal isovalue
generate a path with low cost.
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(a) Absolute temperature map. (b) Relative temperature cost
map with a reference value
of 25◦C.

(c) Relative temperature map
with a reference value of
35◦C.

Fig. 6.2: The absolute temperature map is color-coded using an iron heat color scale.
The relative temperature maps for 25◦C and 35◦C are gray-scale with the same
window/level settings. Note, that by shifting the reference value the corresponding
relative temperature values also narrow down.

6.3.2 Adaptive Pennes’ Bioheat Simulation

A widely used mathematical model for studying the heat transfer in biological tissue
is given by Pennes’ BHTE (Pennes, 1948; Wissler, 1998):

ρ(T )c(T )
∂T (t)

∂t
= ∇(k(T )∇T (t))︸ ︷︷ ︸

Diffusion Term

+wbcb(Ta − T (t))︸ ︷︷ ︸
Perfusion Term

+Qm(t) +Qr(t) (6.2)

where ρ, c and k are the tissue density, tissue specific heat capacity and tissue
thermal conductivity. The perfusion term consists of wb, the blood perfusion rate,
cb, the blood specific capacity and Ta, the temperature of the arterial blood. Qm

describes the metabolic heat generation rate, Qr the regional heat source and T

represents the temperature at a given time point t. Regarding the density of blood
itself ρb there are different approaches. Some authors like Bourantas et al. (2019)
treat the blood density individually in the simulation term. Other authors like Zhang
et al. (2019b) do not report the blood density in their optimization term because it
is indirectly included in the blood perfusion rate wb. In the proposed method the
example of Zhang et al. (2019b) is followed and ρb is considered to be already
included in the perfusion rate.

To utilize the Pennes’ BHTE, the position of the heat source must be identified within
every acquired 2D image. Because the images are rotated around the applicator’s
main axis the heat source must be located on this axis as well. In addition, the
simulation problem is broken down from a mathematical model to a diffusion process.
Therefore, Qr(t) in Eq. 6.2 can be set to 0 for all voxel outside the applicator’s main
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axis. The BHTE, a parabolic partial differential equation, can be physically described
as a non-homogeneous heat equation. In addition to the homogeneous part of the
diffusion, it consists of positive and negative heat sources, which have no spatial
or temporal derivative. By combining and rearranging the terms and coefficients, it
can be reduced to the following general equation:

∂T (−→x , t)

∂t
= D · ∇2T (−→x , t) + P (−→x , t, T ) (6.3)

P (x, t, T ) =
wbcb(Ta − T (t) +Qm(t) +Qr(t))

ρ(T )c(T )

D =
k

ρ · c

Here, P (x, t, T ) describes the local heat sources and sinks and −→x refers to the three
dimensional point within the volume of interest. For each of the N heat sources on
a point of the needle axis ri, the orthogonal distance to each of the M isotherms tm

is determined and summed up. To obtain the relative temperature distribution along
the axis, the total distances are divided by the maximum total distance qmax of all N
points. This results in a relative strength of the heat points qi in the range [0,1] as
given by Equation 6.4:

qi =
1

qmax

M∑
m=0

|ri − tm|∀i ∈ N (6.4)

By specifying a factor, an absolute distribution can be obtained from the relative
distribution. This factor limits the heat input to a maximum temperature and can
thus be understood as a vertical shift of the complete temperature distribution. In
the form of a newly introduced ablation parameter, Tmax assigns an absolute value
Ti to each qi using Equation 6.5

Ti = qi · Tmax (6.5)

The quantitative determination of unknown tissue and ablation parameters can be
described by the inverse heat conduction problem. In this approach, the inverse
heat transfer for estimating the values of the simulation parameters is performed
using a least-square norm estimation procedure.

The Levenberg-Marquardt algorithm, originally developed for nonlinear parameter
estimation problems (Levenberg, 1944; Marquardt, 1963), has been successfully ap-
plied to the solution of the ill conditioned inverse heat conduction problem (Min et al.,
2014; Cui et al., 2017). Its combination of steepest descent and the Gauss-Newton
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(a) Simulation at time point t =
0.

(b) Simulation at time point t =
66.

(c) Simulation at time point t =
112.

Fig. 6.3: The image slices are uniformly distributed around the applicator’s main axis (three
slices shown exemplary). Example of the 3D simulation (red volume) fitting using
a least-square norm estimation half way through the procedure(t=66). The final
simulation and fitting of the 3D simulation (red volume) is performed at the end
of procedure (t=112). Note that the deformation on the left and right side of the
simulation is caused by heat sink effects.

method increases robustness and the likelihood for convergence. For optimization
of the simulation, the following objective function f has to be minimized:

f
(
P i
)
=

N∑
j=0

[−→
TE

i
j

(
P i,

−→
TE

i−1
j

)
−
−→
TR

i
j

]2
∀ti ∈ In (6.6)

where −→
TE is the vector of estimated temperatures at the current discrete time step ti.−→

TE is obtained by the direct Pennes’ BHTE model. The simulation is based on the
state of the optimization at time step ti−1 and is corrected by the updated unknown
parameter set P = {D,Tmax}. −→TR is the vector of real temperatures extracted from
the live 2D thermometry map. The sum squared error between each data point j in
the live data and the 3D simulation is reduced for each new acquired thermometry
map I1...In. An example is shown in Fig. 6.3.

For defining the time varying tissue temperature T for every voxel at every time step
t, the Crank–Nicolson’s scheme for finite differences (Crank et al., 1947) is utilized
as in Equation 6.7.

T i+1
j − T i

j

∆t
=

1

2

(
D
T i
j+1 − 2T i

j + T i
j−1

(∆x)2
+ P i

j +D
T i+1
j+1 − 2T i+1

j + T i+1
j−1

(∆x)2
+ P i+1

j

)
(6.7)
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This method combines the explicit and implicit Euler method in time and central
differences in space. Hence, this scheme is unconditionally stable for diffusion
equations and has second order spatial and temporal accuracy. For reducing
the computational effort to solve the implicit equations in multiple dimensions, an
alternating-direction implicit method (Douglas et al., 1964) is implemented. This
allows for solving the linear system by only considering tridiagonal matrices, which
can be done by the Thomas algorithm. The presented method was implemented
on a GPU architecture using the alternating-direction implicit method for parabolic
differential equations to further increase the computational speed. All source code
is publicly available via https://github.com/jalpers/ScientificReports2022_

AdaptivePennesSimulation/tree/main.

6.4 Experimental Setup

The same data set as explained in Chapter 3 is used for evaluation of the proposed
adaptive simulation. The images are used as a sequential input for the algorithm to
simulate a live fetching from the MR device, e.g., by using the Siemens Healthineers
Access-I Framework for direct scanner control. Because the optimization of the
simulation parameters is global and not local, heat sinks caused by vessels are not
reflected by the simulation alone. Therefore, it is assumed that big vessels have
been extracted from the pre-clinical data and can be applied to the final simulation
outcome to a certain degree.

6.4.1 Initial Parameter Estimation

The initial condition is determined by the baseline temperature before the ablation,
with x = (x, y, z) representing the 3D coordinate in the final output volume:

T (−→x , t) = T0, (6.8)

The huge amount of unaffected tissue in the peripheral boundary and a constant
ambient temperature are suitable for using the Dirichlet boundary condition ΓE :

T (−→x , t) = TΓ, t > t0,
−→x ∈ ΓE (6.9)
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Due to the use of bio protein phantoms, the following parameters are set for the
Penne’s BHTE:

Qm = 0 (no metabolistic activity) (6.10)

cb = 4182[
J

Kg ·K
]

wb =
flow rate of pump * density of water

r2π · l
Ta = 25C◦

The studies summarized by Mohammadi et al (Mohammadi et al., 2021) give a
range of thermal diffusivity D from 0.142 to 3.68 mm2

s at 22◦C. Considering the
increasing values due to temperature dependence, the optimization range is set to
[0.1, 5] mm2

s with an initial value of 1.5 mm2

s . The second parameter to be optimized,
Tmax, has an optimization range from 80◦C to 300◦C and starts at the homogeneous
and known ambient temperature T0.

6.4.2 Statistical Evaluation

For statistical evaluation purpose, the simulated heat map has to be converted in
a binary coagulation necrosis. To achieve this, the same thresholds as described
in Chapter 4 are applied in the range of [50,60]◦C for each phantom individually
(Global threshold).

Regarding the accuracy, a similarity measurement between the simulation and the
ground truth is performed using the DSC computed by Equation 6.11:

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(6.11)

taking into account the relation between true positives (TP), false positives (FP)
and false negatives (FN). To analyze the error of the results, again the SEM at a
confidence interval level of 95% (p = 0.05) is used as seen in Equation 6.12.

σ =

√∑
(xi − x̄)2

N − 1
(6.12)

SEM =
σ√
N

∗ 1.96

with σ = standard deviation, xi = current sample, x̄ = mean value, N = sample
size and 1.96 = approximated value of the 97.5 percentile of the standard normal
distribution. The SEM provides an assumption on how far the sample’s mean is likely
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to be from the real population mean. In combination with the standard deviation σ,
these statistical values are able to give a decent overview of the performance of
the proposed method. The initial temperature interpolation method introduced in
Chapter 3 is used as both methods need to have a priori knowledge about vessels
as an Input.

In addition, tests regarding the robustness of the proposed method are conducted.
For this purpose, the optimization is performed, on the one hand, with less real-time
data, and, on the other hand, with less a priori knowledge about the expected values
of the coefficients. The reduction of data can be achieved by not considering ther-
mometry maps from certain orientations. Thus, an experimental setup is generated
in which a modified recording protocol is simulated. Reducing the amount of data
results in the following configurations: config. 1 = [0◦, 22.5◦, 45◦, 67.5◦], config. 2 =
[90◦, 112.5◦, 135◦, 157◦], config. 3 = [0◦, 22.5◦], config. 4 = [90◦] and config. 5 =
[22.5◦]. Additional tests were performed by variation of the optimization parameters
initial values and search criteria. Here, the following two configurations were tested:
config. 6 = Unrestricted search range with D in the range [0.1,1000] and Tmax

also in the range [0.1,1000] and config. 7 = Unrealistic initial parameters with D

= 10 mm2

s and Tmax = 500◦C. All robustness tests were also conducted with an
additional threshold configuration (Median). Instead of using the global threshold
as explained in Chapter 4 the best threshold for each individual orientation was
identified. Afterwards, the median of these eight thresholds was computed and
used for better reflection of the varying conditions inside the tissue.

Finally, an ANOVA test paired with post-hoc pairwise t-tests is performed to analyze
the significance of each conducted test scenario. All p-values are adjusted using
the Bonferroni correction method and reported as horizontal lines in Fig. 6.4 and
Fig. 6.5.

6.5 Results

ANOVA test results can be seen in Table 6.3. Evaluation results regarding the
similarity and the corresponding post-hoc results can be observed in Fig. 6.4.
Observations show an average overall DSC of 0.89±0.04 exceeding the original
temperature interpolation approach by a total of 0.10 regarding the overall average
DSC. With respect to the homogeneous and perfusion phantoms separately, an
average DSC of 0.91±0.02 and 0.86±0.03 can be observed, respectively. The SEM
values are constant at 0.01 for all three groups. Regarding the standard deviation,
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Tab. 6.3: ANOVAs’ results. Df = degrees of freedom, F = F-value, p = probability of the data
given the null hypothesis, Sig. = p-values less than the traditional α <0.05, η2 =
Generalized Eta-Squared measure of effect size.

Variable df F p Sig. η2

Accuracy
Algorithm for all phantoms (overall) 2 23.97 <0.001 * 0.48
Algorithm for perfusion phantoms 2 6.82 0.001 * 0.43
Algorithm for homogeneous phantoms 2 77.69 <0.001 * 0.89
Robustness
Local threshold 84 0.96 0.44 0.02
Global threshold 84 1.03 0.42 0.02
Reference configuration 12 10.38 0.007 * 0.21
Test configuration 1 12 7.86 0.016 * 0.14
Test configuration 2 12 5.95 0.031 * 0.15
Test configuration 3 12 8.12 0.015 * 0.07
Test configuration 4 12 10.09 0.008 * 0.23
Test configuration 5 12 11.14 0.006 * 0.12
Test configuration 6 12 7.05 0.021 * 0.16
Test configuration 7 12 5.5 0.037 * 0.13

the initial method presented in Chapter 3 shows values of 0.3 and 0.17 for the
homogeneous and perfusion phantoms, respectively. The simulation approach
presented in this Chapter shows a standard deviation of 0.02 and 0.03 for the
homogeneous and perfusion phantoms, respectively. In conclusion, the proposed
method does not only exceed the previous version by a mean DSC of 0.10, but
it is also more robust towards corrupted images, which caused the temperature
interpolation method to fail. With respect to the robustness tests, slight differences
in the overall mean DSC for all phantoms can be seen, but significant changes
between the different configurations could be detected. Therefore, it can be assumed
that the number of different orientations during image acquisition, as well as the
initial parameter values and boundary conditions, do not have an influence on the
performance of the proposed method. Regarding the variation of the threshold
configuration significant differences between the global and median approach could
be detected. All results can be observed in Fig. 6.5 including the post-hoc pairwise
t-test results as horizontal lines. All results were generated on a Desktop PC (Intel
Core i7-2600K, 16GB RAM, NVIDIA GeForce GTX 1060 with 6GB memory) with

6.5 Results 111



Fig. 6.4: Results of the similarity measurements. The DSC is separated for each phantom
category with: Homogeneous = Phantoms without PVC tubes and water perfusion
(n=7). Perfusion = Phantoms with PVC tubes and water perfusion (n=6) . Overall
= All phantoms (n=13). Horizontal lines indicate statistically significant post-hoc
pairwise t-test results. No values are located below a DSC of 0.3.

GPU acceleration and computation of the parameters D and Tmax took 1.05±0.26
seconds for each newly acquired image. Computation times are based on a volume
size of 60x60x60 voxels and 100 repetitions.

6.6 Discussion and Conclusion

One of the advantages of the proposed method is the rotation of the acquired
images around the main axis of the applicator. This results in a typical shape of
heat propagation, even when vessels causing a heat sink effect are present. Hence,
the measurement can be easily verified and corrected. In addition, every image
contains the heat source in the form of the elongated artifact of the applicator. This
artifact can be detected and traced back to find the source of the heat distribution
used for simulation. Nonetheless, the preparation of this sequence protocol can be
troublesome for inexperienced MRI users. In order to be as accurate as possible,
the rotated images should intersect in the center of the field of view, and this
intersection should correspond to the applicator’s main axis. Even though this
should not be troublesome for an experienced MRI user, it might be cumbersome
for new radiologists or medical technical assistants. Another problem may arise
from out-of-plane angulation or bending of the needle. The more the needle is
away from the intersection of the rotated planes, the less accurate the simulation
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Fig. 6.5: Results of the robustness analysis. Configuration (Config.) 1 - 5 represent the
variation of the number of orientations. Configuration 6 and 7 represent the
variation of optimization parameters. Global = globally optimized threshold. Median
= Median from the optimized thresholds of each of the eight image orientations.
Horizontal lines indicate statistically significant post-hoc pairwise t-test results. No
values are located below a DSC of 0.4.

method will be because the simulated applicator axis (heat source) is inaccurate.
Here, a possible solution could be the inclusion of a priori knowledge about the
applicator’s position, either from manual annotation or planning. Additionally, an
automated slice positioning algorithm can be used to find the optimum positioning
of the images during intervention. Van der Kouwe et al. (2005) introduced an
atlas-based approach for aligning the MRI plane in the region of interest. This
approach may be applied to the simulation by acquisition of a 3D reference volume
after needle insertion and prior treatment. The needle artifact can be extracted
automatically, and an optimal MRI plane position can be computed and applied.
Another problem with the presented approach arises from the used bio protein heat
phantoms. According to Bu Lin et al. (2008), the coagulation of the phantom highly
depends on the pH-value, which can vary within the phantom itself. For this reason,
the computation of the coagulation necrosis using, e.g., a threshold approach, will
introduce an error of unknown size. In addition, the used PVC tubes to simulate
a heat sink effect do not provide real tissue dependent parameters. Hence, the
approximation of the perfusion term does not reflect the real heat distribution. This
problem can be addressed by evaluation of the method in a more clinical context.
Here, perfused ex vivo porcine livers can be used, as introduced by Becker et al. (D.
Becker et al., 2019), to create a more realistic data base. Regarding the algorithm,
a global approach for optimization of the parameters was used. This leads to a
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more or less homogeneous prediction of the ablation zone, but does not take into
account local tissue variation or heat sinks without a priori knowledge based on e.g.,
segmentation of structures. Here, it would be suitable to look for a computationally
efficient solution for local optimization of the parameters. This approach could be
combined with the temperature interpolation method presented in Chapter 3. The
local parameters could be optimized for one image locally and then interpolated
between the other acquired images.

Conclusion. In this Chapter new approach for an adaptive Penne’s BHTE for
interventional MR-guided tumor ablation was proposed. The approach is robust
towards outliers and artifacts and shows promising results of up to 90% similarity to
a manually extracted ground truth. Due to the unique image acquisition protocol, it
is possible to identify the heat source in every image and therefore are not limited
to a specific heat source term. This reduces the computational effort and allows the
method to be applicable to a wide range of clinical setups. Future work should focus
on a local optimization of the simulation parameters instead of a global optimization.
I highly believe that this approach would be able to accurately detect heat sinks in
the data. In summary, the method presented in this Chapter shows a high potential
to aid the performing radiologist during minimally invasive thermal procedures and
increase the success rate, while not necessarily hampering the workflow of the
individual clinician.
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Conclusion 7
„Critical thinking is not something you do once

with an issue and then drop it. It requires that
we update our knowledge as new information
comes in.

— Daniel Levitin
Cognitive Psychologist

Minimally invasive thermal ablation procedures are becoming increasingly important
in the treatment of malignant tissues. The full coverage of the malignant tissue is
very important, as it mainly depicts the chances of local tumor progression after the
intervention. Because the computation of volumetric thermometry is troublesome in
terms of developed MR-sequences, it is of great interest to transfer the problem of
volumetric thermometry reconstruction into another field.

The presented thesis covers a first approach on the transfer of the problem into the
domain of computer science by developing a new image acquisition protocol. This
protocol utilizes common 2D-GRE sequences by rotating the image plane around
the applicators main axis and performing a simple 2D to 3D reconstruction. The
developed algorithms were statistically compared regarding their efficiency. It was
shown that conventional image processing methods are suitable to reconstruct a
volumetric thermometry map for clinical use.

7.1 Contribution

In Chapter 1 the current problems were defined and explained in relation to the
reconstruction of volumetric thermometry maps. These problems include:

1. Real-time image acquisition

2. Minimizing Motion Artifacts

3. Ease of Use
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4. Coagulation Estimation

In addition, the following two research questions were defined in Chapter 1 and
addressed in Chapters 3 to 6:

1. "Can conventional image processing algorithms be used to reconstruct vol-
umetric thermometry maps from 2D slices with at least 80% accuracy while
being real-time capable?"

2. "Is it possible to utilize the Pennes’ Bioheat Transfer Equation to simulate the
actual coagulation necrosis during thermal tumor ablation in real-time while
avoiding simulation error accumulation?"

In the following, the contributions of this thesis will be summarized.

New Sequence Protocol

The approach presented in this thesis is not developing a new MR sequence but
utilizing a common 2D GRE sequence. This sequence is available in a wide range of
clinical setups and is exploited by rotating it around the applicator’s main axis. The
acquired images are fetched from the MR scanner using the Siemens Healthineers
Access-I framework. For testing, a data base of 13 bioprotein phantoms (Bu-Lin
et al., 2008) was created and made publicly available. This data base can be used
by fellow researchers to develop and/or test 2D to 3D reconstruction algorithms for
volumetric heat map generation.

The new sequence protocol addresses the problems:

• Real-time image acquisition, as the Access-I Framework allows for immediate
fetching of the images without the delay through the PACS

• Minimizing Motion Artifacts, as the use of a single 2D image at a time is able
to minimize the motion artifacts as it can be synchronized with the breathing
cycle (Gorny et al., 2019)

• Ease of Use, as the maintenance and adjusting of a commonly known se-
quence is more intuitive and easy than a custom made sequence
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Migration of the Problem from MR Physics to Computer Science

The new sequence protocol has additionally provided the possibility to sample the
3D volume with different temporal and spatial resolution, depending on the scenario.
Using the sampled 2D images, simple 2D to 3D reconstruction algorithms can
be utilized to create a volumetric heat map. In Chapter 4 the basic temperature
interpolation, Delaunay triangulation, splines and MVEE were compared as possible
approaches, including a statistical analysis. In addition, the implementation of all
tested methods is publicly available via GitHub.

The migration of the problem from MR physics to computer science addresses the
following problems and research questions:

• Real-time image acquisition, as the computation of the thermometry recon-
struction is faster than the image acquisition during the intervention

• Research question #1 can be answered positive as the statistical analysis
shows a similarity of over 80% for the splines and MVEE methods

Adaptive Simulation for Interventional Use

After observation of the results presented in Chapter 4 an adaptive simulation
was developed. The proposed method utilizes the same sequence protocol in
combination with the Pennes’ bio heat transfer equation, as the rotation around
the applicator’s main axis yields the benefit of showing the heat source in every
acquired image. This advantage allows for elimination of the treatment specific heat
source term and reduction of the problem to a diffusion process. To still enable
real-time capabilities, the implementation was transferred to the GPU. In addition,
all source code for the simulation is publicly available via GitHub.

The adaptive simulation for interventional use addresses the following problems
and research questions:

• Real-time image acquisition, as the GPU implementation allows for compu-
tation times of less than 1.1s and therefore a faster reconstruction than the
image acquisition

• Research question #2 can be answered positive as the statistical analysis
performed shows a similarity of 90% on average concluding that the error
during simulation did not accumulate over the time of the intervention
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Probabilistic CEM43 Model

All of the previously presented methods make use of the critical temperature model
for the conversion of the heat maps into necrosis maps. This approach was used
to compensate for the fact that the conventional CEM43 failed due to a bad SNR.
To compensate for this, Chapter 5 introduces a mathematical model to convert the
original CEM43 model into a probabilistic one, which integrates the MR measurement
error. Evaluation shows that the new approach is able to increase the accuracy
during prediction of the coagulation necrosis.

The probabilistic CEM43 model addresses the following problems:

• Real-time image acquisition, as the provided GPU acceleration cause the
computations to be faster than the actual image acquisition

• Coagulation Estimation, as the accuracy of the conventional models could be
increased

Considering the above-mentioned contribution, this thesis offers a contribution to the
field of volumetric heat map reconstruction during minimally invasive thermal ablation
procedures. It was shown that conventional 2D to 3D reconstruction methods are
suitable for accurate reconstruction while considering the applicability and real-time
capabilities of the developed methods.

7.2 Limitations

Even though the previously mentioned contributions show that the developed meth-
ods are suitable for volumetric thermometry reconstruction, some limitations still
remain, and others are introduced. In the following paragraphs, the identified limi-
tations and problems will be explained in detail including a suggestion on how to
tackles these in the future.

Real-time image acquisition

Real-time image acquisition in the context of this thesis was defined using two major
characteristics:

1. The fetching of the acquired images has to be transferred to the software
without delay caused by, e.g., transfer through the PACS.
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2. The performed computational operations need to be faster than the used
image acquisition protocol (in the presented case less than 1.1 seconds) as
per the feedback of available clinical partners.

As can be seen the achievement of a real-time capable reconstruction in the terms
of interventional radiology is highly dependent on the used MR sequence protocol
and therefore not unified. Especially in the field of thermal ablation procedures, a
dynamic temporal mapping of the VOI is crucial. The coagulation necrosis grows
very fast in the first few minutes of the intervention, while it slows down towards
the end of the procedure until it reaches stagnation. Hence, it would be suitable
to adapt the proposed method in a way to dynamically change the spatial and
temporal resolution of the sequence protocol. This could be done utilizing a proper
scanner remote control interface like Access-I. Here, a suitable protocol can be the
implementation of a lower sampling rate in the VOI, resulting in fewer orientations
and therefore providing a better overview of the heat distribution in the whole volume.
In the later stages of the intervention, it would be more suitable to have a higher
sampling rate with more orientations, as the observation of the MAM is crucial for
the outcome of the intervention.

Necessity of PRFS reference images

The previously mentioned limitation regarding the dynamic temporal and spatial
resolution is also caused by the necessity of reference images for the used PRFS
thermometry method. This limits the approaches proposed in this thesis to a pre-
defined set of orientations preventing a dynamic adjustment of the sampling factor.
Here, it is necessary to implement a referenceless PRFS method. Zou et al. (2016)
compare five different approaches for referenceless MR thermometry model. Their
work can be used to analyse the potential of any of these for the use during intra-
operative monitoring of thermal ablation processes.

Manual placement of the VOI

The introduced method can be used in three different ways as per the current
implementation. First, the sequence protocol can be defined manually one time
using different dependent slice groups. This preset can be saved and loaded during
any intervention, but the whole VOI has to be placed manually inside the data
set making sure that the intersection of the planes is also overlaying the artifact
of the needle in the pre-intervention planning data set. The second approach
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makes use of scanner remote control protocols like Access-I. Here, only one image
plane has to be placed more or less centered within the applicator’s artifact. The
scanner remote control protocol is able to rotate this image plane around a defined
axis (e.g., the applicator’s main axis). In this thesis, the Access-I framework was
implemented and tested to fetch the images from the MR device but the image
planes were placed manually by a medical technical assistant to avoid ambiguities
during phantom ablation. An improvement of the current procedure would be a third
fully automatic approach for finding the the applicator’s main axis inside the data set
and placing the image plane into the intersection. Afterwards, the rotation angles
can be automatically computed and the single image plane can be rotated around
the applicator’s main axis. For finding the needle inside the data set, Mehrtash et al.
(2018) introduced an algorithm for automatic needle segmentation in 3D MRI data
using convolutional neural networks. Utilizing up-to-date GPU architectures this
approach could be implemented while preserving real-time capabilities. Another
approach could be derived from the work of Van der Kouwe et al. (2005). Their
work introduces an atlas-based approach for aligning the MRI plane in a region of
interest.

Full sampling of the VOI is time-consuming

In the current version of the data base, a sequence protocol with 1.1 second pure
image acquisition is utilized including an additional five second break to simulate the
breathing cycle of a patient. Using a total of eight orientations, a full rotation in the
VOI takes 48.8 seconds. Therefore, slices adjacent to the latest one are out of date
but still used for interpolation. In the first half of an intervention, this introduced error
can be very high; however, the error gets smaller over time as the heat propagation
boundary converges towards its maximum extend. To reduce this error, a gradient
propagation can be introduced. The latest acquired heat gradient profile will be
extracted and analyzed for each row in the image matrix, separately. This profile is
then compared with the one from the last time point in the same orientation. The
difference in the heat gradient profiles can be computed and applied to all other
orientations. Using the information from the other gradient profiles, the difference
could also be adjusted to prevent an overcorrection of the real temperature.

Local vs. global optimization during simulation

The proposed adaptive Penne’s BHTE offers an intra-operative simulation, but the
optimization computes the used simulation parameters on a global base for the
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whole image. This results in tissue inhomogeneities not being considered during
this reconstruction approach. To overcome this limitation, a local optimization with
more than one resulting parameter set would be beneficial. Here, the image could
be analyzed row-wise or in smaller patches to create local optimized parameter
sets. Using this approach, the possibility to detect heat sinks can be increased,
and also non-homogeneous heat distribution can be simulated without the use of
apriori knowledge. To keep this possibility real-time capable, the use of an optimized
GPU architecture has to be utilized. Switching from the used FDM method to
a meshless numerical technique for simulation like the material-to-points (MPM)
method may increase the computational efficiency of the optimization problem. Here,
Liu et al. (2020) introduced an approach for a multi-GPU MPM method using a
shared memory. Their solution allows for synchronizing several GPU architectures
to increase the computational power of the whole system. With more computational
power, Penne’s BHTE could also be replaced in the future by more complex but
more accurate BHTEs.

Probabilistic CEM43 model only includes approximation of MR measurement
error

For the development of the probabilistic CEM43 model, only the approximation
of the MR measurement error was considered. Here, it would be suitable in the
future to also consider the integration of other sources of errors, which can be
considered by the probabilistic nature of the model like known MRI artifacts that
can be detected using image processing software. A subsequent adjustment of
σR and σI according to the character of these artifacts could further improve the
robustness of the proposed approach. In addition, the results acquired are not
meaningful to a full extent because of the small sample size during evaluation. More
image data needs to be acquired and evaluation should be repeated for significant
assumptions.

Heat sink detection

The last limitation identified is the proper detection of heat sink effects inside the
acquired image data during the intervention. This detection is crucial as heat
sinks are hampering the treatment especially near bigger blood vessels (Pillai et
al., 2015). Right now, only the Splines method is able to consider these during
the reconstruction of the volumetric thermometry map. This problem is usually
not addressed directly, but indirectly through, e.g., the introduction of automatic

7.2 Limitations 121



vessel segmentation algorithms. Lu et al. (2017) introduced an automatic vessel
segmentation algorithm for vessels in the liver. Their proposed method is able to
achieve a DSC similarity of over 80%, which as per definition is rated as clinically
acceptable.

7.3 Future Work

Based on the identified limitations of the present thesis, this Section will provide a
brief overview of specific steps, which should be conducted in the near future.

In order to improve the clinical applicability of the proposed methods, the following
next steps need to be performed an integrated into the existing framework:

1. (Semi-)automatic placement of the slice groups

2. Integration of referenceless thermometry computation

3. Proper detection of heat sink effects

To assist the medical technical assistant and to reduce the need for specialized
experts, the effort in preparing the sequence protocol has to be reduced. During data
base acquisition in Chapter 3, the Access-I framework was already implemented.
This framework has to be extended to not only fetch the images from the scanner,
but to also rotate the image slice automatically around the main axis. This will reduce
the time needed and provides a higher clinical applicability in the daily routine of the
hospitals.

Using the automated rotation, the need for dynamic change of the slices of interested
has to be considered. Here, referencless thermometry approaches must be included.
One of the approaches introduced by Zou et al. (2016) can be re-implemented and
replace the current PRFS thermometry. Additionally, the provided software interface
shall include a mask to change the orientations of the slices during intervention.
Here, a proper usability engineering has to be conducted to accurately determine a
workflow.

The last step after sequence protocol optimization should focus on the detection
of heat sink effect. Two approaches come to mind. First, the heat profile of the
acquired image data is analyzed and anomalies (like drops in the heat profile) are
identified and considered during reconstruction. Second, the major vessel system is
automatically identified, extracted and applied to the homogeneously reconstructed
thermometry map. As vessel segmentation algorithms already exist, which have
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proven to be reliable, one of these should simply be integrated in the first prototype.
Here, the work from Lu et al. (2017) yields good results and is also compatible with
the current architectural design (e.g., GPU acceleration).

Further researchers are encouraged to follow the above-mentioned steps before
addressing other limitations, as the clinical applicability is a major factor for further
ex-vivo and in-vivo tests. Further limitations will surely arise during clinical tests and
an early identification of these will reduce the effort, time and frustration on the way
towards a usable volumetric thermometry approach for the monitoring of thermal
ablation procedures.
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