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Abstract: Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and
CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from
experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin
also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In
the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular
injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart,
calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for
proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release
of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal
VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the
mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to
altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling
will help researchers to understand developmental and pathogenetical aspects of the vasculature. In
this review, we provide an overview of the physiological function and pathophysiology of calcineurin
in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall,
there are indications that under certain pathological settings reduced calcineurin activity seems to be
beneficial for cardiovascular health.
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1. Introduction

Calcineurin, a Ca2+/calmodulin-dependent serine/threonine protein phosphatase, is
classified as protein phosphatase 2B (PPP3) [1]. The protein is a heterodimer consisting of
a catalytic (PPP3C, ~60 kDa) and a regulatory subunit (PPP3R, ~19 kDa), which are both
expressed as multiple isoforms (Figure 1) [2,3]. Three distinct genes, PPP3CA, PPP3CB and
PPP3CC, encode the catalytic domain PPP3C. PPP3CA and PPP3CB are ubiquitously ex-
pressed and comprise nearly all of the enzymatic activity in most tissues, whereas PPP3CC
is mainly expressed in the testis and the brain [4–6]. All isoforms of PPP3C encompass a cat-
alytic domain for serine/threonine phosphatase activity and three regulatory domains for
auto-inhibitory functions, calmodulin binding and PPP3R binding [7]. Of special interest is
the autoinhibitory domain (AID), which binds to the active site of calcineurin in the absence
of Ca2+/calmodulin, thereby inhibiting the enzymatic function of calcineurin [8]. The
regulatory subunit PPP3R, which directs the substrate specificity of the catalytic subunit,
is encoded by two genes, PPP3R1 and PPP3R2 [9]. Both possess four EF-hand motifs for
Ca2+ binding, with the N-terminal Ca2+ binding sites having a low Ca2+ affinity whereas
the C-terminal ones show a high Ca2+ binding affinity [7,10]. Full calcineurin activation
requires increased intracellular calcium concentrations induced by calcium influx from
the extracellular space via different types of calcium channels or by calcium release from
intracellular stores, e.g., via activation of the angiotensin II type 1 receptor (AT1R) with
angiotensin II (angII) [5,11,12]. Consequently, conformational changes are initiated by Ca2+
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binding at specific sites in PPP3R, allowing calmodulin binding on the now-accessible
respective region of PPP3C, which leads to the dissociation of the auto-inhibitory domain
from the active site of PPP3C [10]. This is in accordance with results showing that cal-
cineurin is inactive when calmodulin is not bound to PPP3C because of sterical interference
between the autoinhibitory domain and the catalytic site [10]. A second mechanism for
calcineurin activation is calmodulin-independent and requires the Ca2+-dependent cysteine
protease calpain [13]. Calpain can irreversibly activate calcineurin via proteolytic cleavage
of the autoinhibitory domain of calcineurin [14]. Overall, there is calmodulin-dependent
and calmodulin-independent activation of calcineurin (Figure 2).
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After activation, calcineurin dephosphorylates different substrates such as transcrip-
tion factors, receptors and channels [15–18]. The best-characterized target of calcineurin
is the transcription factor NFaT (nuclear factor of activated T cells). This protein family
of transcription factors is composed of five proteins: NFaT1 (NFaTc2), NFaT2 (NFaTc1),
NFaT3 (NFaTc4), NFaT4 (NFaTc3) and NFaT5 [19]. Activity of NFaT is mainly regulated via
its subcellular localization. In unstimulated cells, inactive phosphorylated NFaT is found
in the cytoplasm. Dephosphorylation by activated calcineurin induces a conformational
change that exposes the nuclear localization signal of NFaT, leading to nuclear import and
transcription of different genes [12,20].
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NFaTs were first identified in lymphoid cells, and the most prominent function of
NFaT is the activation of T cells by the regulation of genes responsible for modulating
immune response [15]. Furthermore, NFaT is implicated in the regulation of cell cycle
progression, as well as in regulating gene transcription in neurons, skeletal muscle, and
the heart [21–23], but it also plays an important role in the regulation of physiological func-
tions in the vasculature, namely in vascular smooth muscle cells (VSMC) and endothelial
cells [24–26]. It is not completely understood what exact role individual NFaT isoforms play
in the vasculature, but NFaTc1 (NFaT2) is the most abundant isoform in smooth muscle cells
(SMCs) [27]. Strikingly, NFaT has been shown to play an important role in the development
of vascular diseases, e.g., in the progression of endothelial dysfunction [28]. In human
aortic VSMCs, NFaT activation stimulates cell proliferation and migration by increasing
IL-33 expression [29]. Another study describes the effect of calcineurin/NFaT activation on
smooth muscle cell proliferation via the calcium-sensing protein STIM1 [30]. Additionally,
NFaT plays a major role in the phenotypic regulation of VSMCs [31]. Furthermore, the
development of vascular inflammation and remodeling is driven by calcineurin/NFaT sig-
naling, as shown by different studies [32–35]. Overall, the activation of calcineurin/NFaT
is a major factor for the development of vascular diseases.

Another prominent transcription factor regulated by calcineurin is the cyclic AMP-
response element (CRE)-binding protein CREB. By dephosphorylation, CREB activity is
inhibited, leading to reduced target gene expression [36]. CREB inactivation also influences
the expression of glucose-6-phosphate dehydrogenase (G6PDH) followed by reduced
reactive oxygen species (ROS) scavenging. An interaction of calcineurin- and cAMP-
dependent signaling pathways with the mineralocorticoid receptor (MR) has been shown.
The MR, as member of the steroid-receptor family, plays a crucial role in the development of
cardiovascular diseases. Aldosterone-induced MR activation increases calcineurin activity
mediated via the catalytic beta subunit of calcineurin (PPP3CB) and thereby attenuates
CREB phosphorylation [37,38].

Not only are NFaT and CREB dephosphorylated by calcineurin, but also the forkhead
transcription factors (FOXO), which are involved in metabolic processes, autophagy and
cardiomyocyte growth [39–41], as well as MEF2 (myocyte-specific enhancer factor 2) and
TFEB (transcription factor EB), which both play important roles in regulating skeletal
muscle mass and neuronal function [42,43].

Besides transcription factors, calcineurin also dephosphorylates receptors and ion
channels. Calcineurin regulates synaptic long-term potentiation and depression as well
as sympathetic tone by targeting AMPA and NMDA receptors [44–46]. Additionally, an
interaction between calcineurin and ryanodine receptors has been described, which then
regulates Ca2+ release [47,48]. Furthermore, calcineurin is implicated in the regulation of
the Na+/Ca2+-exchanger (NCX1) and smooth muscle cell L-type calcium channels [49,50].

Calcineurin activity can be blocked by pharmacological inhibitors that are commonly
used as immunosuppressants to avoid allograft rejection or to treat autoimmune dis-
eases. The most famous clinically used inhibitors of calcineurin activity are cyclosporine
A (CsA), tacrolimus (FK-506) and pimecrolimus, as well as the more recently developed
voclosporine. Mechanistically, these drugs form a complex with immunophilins, including
cyclophilin and FK binding proteins, which are endogenous peptidyl-prolyl cis/trans
isomerases that contribute to a variety of cellular processes, and inhibit the catalytic activity
of calcineurin [51,52]. Both CsA and voclosporine bind to cyclophilin-1, but voclosporine
provides a stronger inhibitory effect on calcineurin activity due to a modification in one
amino acid residue compared with CsA. Tacrolimus and pimecrolimus both bind to FK
binding proteins. The formed protein–protein complexes competitively bind to calcineurin
and inhibit NFaT dephosphorylation and activation by blocking the catalytic calcineurin
activity itself [53]. Such unspecific blockage of different isoforms of the catalytic subunit as
well as the interaction with immunophilins seems to be the reason for many side effects of
calcineurin inhibitors, including the development of hypertension due to them influencing
tubular salt reabsorption, causing peripheral vasoconstriction and increasing sympathetic
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tone [54]. Besides proteins inhibiting calcineurin phosphatase activity completely, new
inhibitors are available that selectively prevent the interaction between calcineurin and
NFaT. There are several docking motifs in NFaT for interaction with calcineurin, and a
peptide called VIVIT inhibits protein–protein interaction by mimicking NFaT docking
sites [55]. The advantage of VIVIT in comparison with CsA and FK-506 is its more selective
inhibition profile, because normal calcineurin function in other targets is not impaired but
NFaT activation is interrupted [56].

The AID of calcineurin itself is an endogenous calcineurin activity inhibitor. As
mentioned above, with low calcium concentrations the AID blocks enzymatic functions
and allows substrate binding after Ca2+/Calmodulin binding [9]. In vitro synthesized
AID itself inhibits calcineurin in neuronal cells, showing that calcineurin plays a role in
excitatory neuronal cell death [57].

Furthermore, cellular proteins regulating calcineurin activity, known as regulators
of calcineurin (Rcan1-3), exist, with Rcan1 being the best-studied member of this gene
family because Rcan1.4 is part of a feedback loop with calcineurin/NFaT [58]. High Rcan1
levels lead to an inhibition of calcineurin/NFaT signaling in endothelial cells. On the
other hand, a complete loss of Rcan1 also impairs calcineurin/NFaT signaling [59,60].
Therefore, low Rcan1 activity is important for proper calcineurin/NFaT signaling. In
the late 1990s, another protein called Cabin-1 (calcineurin-binding protein 1, CAIN) was
identified as a regulator of calcineurin signaling in T cells [61]. Its inhibiting effect relies
on hyperphosphorylation of Cabin-1 by PKC, allowing interaction with calcineurin and
blocking NFaT dephosphorylation. Table 1 summarizes calcineurin inhibitors.

Table 1. Summary of known calcineurin inhibitors.

Name of Inhibitor Source References

Cyclosporine A (CsA) exogenous [62–65]
Tacrolimus (FK-506) exogenous [66–68]

Pimecrolimus exogenous [69,70]
Voclosporine exogenous [71,72]

VIVIT exogenous [55,56,73]
Rcan1 endogenous [74,75]

Cabin-1 (CAIN) endogenous [61,76]
AID (autoinhibitory domain) endogenous [77]

2. General Calcineurin Function

The classical calcineurin function was initially described in T cells, where calcineurin/
NFaT signaling acts as a master regulator of lymphocyte development and the expression
of interleukin-2 (IL-2), IL-17 and tumor necrosis factor-α (TNFα) and controls T-cell func-
tions and subsequently immune response [78–81]. Not only is T-cell activity regulated
via calcineurin, but the phosphatase is also expressed in other immune cells, such as B
cells, macrophages and dendritic cells [82–84]. Hence, repression of calcineurin signaling
is a potent target for the suppression of immune response [85]. As calcineurin shows
its highest expression in brain tissues, it plays important roles in modulating synaptic
plasticity, memory and long-term potentiation [44,86]. Alterations in Ca2+ homeostasis due
to accumulation of misfolded proteins support the activation of calcineurin in the brain and
link calcineurin to pathological processes known from neurodegenerative disorders like
Parkinson’s disease [87,88]. Here, clearance of alpha-synuclein aggregates by cathepsin D
is disturbed and accompanied by high or low calcineurin activity. On the other hand, mod-
erate calcineurin activity seems to be neuroprotective in neuronal cell culture models [89].
Furthermore, calcineurin plays a role in bone development, and loss of calcineurin leads to
osteoporosis [90]. A role in osteoblast differentiation is proposed by Huynh et al., who show
that inhibition of calcineurin signaling leads to altered osteoblast differentiation and bone
loss [91]. In the gastrointestinal tract, calcineurin signaling is involved in the regulation of
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secretory processes. In gastric chief cells, calcineurin is responsible for pepsinogen release;
in gastric parietal cells, it is responsible for gastric acid secretion [92,93].

Besides in immune cells, the brain, the bone and the gut, calcineurin plays also an
important role in the development of cardiovascular diseases, including processes like
hypertrophy, inflammation and remodeling. Calcineurin–NFaT signaling is implicated
in vascular patterning, myocardial development and heart valve morphogenesis [94–96].
Several studies show that calcineurin influences vessel outgrowth. The first remarkable
results come from Graef and colleagues, suggesting that calcineurin signaling is necessary
for the crosstalk of vessels and the surrounding tissue for proper patterning of the vascular
system. The authors demonstrate in a mouse model that inhibition of calcineurin leads
to an outgrowth of vessels in regions with high NFaT3 and NFaT4 expression [96]. This
seems to be due to the regulation of local vascular endothelial growth factor A (VEGF-A)
expression by calcineurin/NFaT signaling. VEGF-A is an important mediator of vascu-
logenesis and angiogenesis and is essential for vascular development [97]. In conclusion,
calcineurin directs the outgrowing vessels into a predefined environment, leading to normal
vascular function.

Additionally, the role of calcineurin in heart hypertrophy is well characterized. Mice
with reduced PPP3CB activity show a decreased hypertrophic response of the heart upon
angII and isoproterenol infusion or pressure overload [98]. On the other hand, a loss
of PPP3CB increases the sensitivity of the myocardium to ischemia-reperfusion injury,
implying a positive effect of calcineurin signaling in maintenance of myocyte viability [99].
In the kidney, a role for calcineurin/NFaT is well described, as calcineurin inhibitors
decrease mortality after transplantation dramatically but lead to chronic nephrotoxicity in
the long term, with fibrosis and inflammation in the vessels and glomeruli [85]. A variety
of studies show that calcineurin is responsible for the development of glomerular and
whole-kidney hypertrophy in diabetic rodents and that calcineurin is activated in diabetes
and required for extracellular matrix accumulation in the kidney [100,101]. Experiments
with the calcineurin inhibitors FK-506 and CsA lead to the assumption that calcineurin
plays an important role in the progression of cardiovascular diseases like hypertension and
atherosclerosis [102–104].

Despite increasing knowledge about calcineurin-dependent mechanisms regulating
pathological processes in the cardiovascular system, not everything has been completely
understood until now. In this review, we provide an overview of the understanding of the
regulation, mechanisms of action and functions of calcineurin in the VSMCs of different
organs under physiological and pathological conditions.

2.1. Calcineurin in the Aorta

The vessel walls of the aorta and arteries consist of endothelial cells, smooth muscle
cells (SMCs) and fibroblasts. Each cell type exerts a distinct role required for the physio-
logical function of the vessel. As an important part of medium- and large-sized arteries,
vascular smooth muscle cells (VSMCs) control the regulation of vascular tone. It is known
that VSMCs undergo a phenotypic switch under pathological conditions, leading to a loss
of their physiological functions and morphology. For example, the cells lose their con-
tractile filaments, leading to a more migratory and proliferative phenotype, which in turn
favors vascular remodeling and diseases like hypertension and atherosclerosis [105,106].
Furthermore, VSMCs can sense changes in their environment, such as mechanical stress or
hyperlipidemia [107].

The role of calcineurin in aortic vascular smooth muscle cells (aVSMCs) comprises
the regulation of extracellular matrix secretion, proliferation, migration and inflamma-
tion, which are hallmarks of pathological remodeling processes in blood vessels. In the
aorta, calcineurin inhibition influences angII-induced neointima and aneurysm formation
in mouse models of vascular injury and atherosclerosis [108]. Calcineurin is implicated
in angII-induced arterial damage. AngII stimulates aortic intima thickening after vessel
injury, whereas CsA administration protects against this hypertrophic response in the aorta.
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Here, increased angII-mediated aortic vascular smooth muscle cell migration leads to the
observed effects [109]. On the other hand, inhibition of calcineurin with CsA stimulates
the development of hypertension via not-fully-understood calcineurin-independent mech-
anisms and possibly by increasing circulating angII levels, which lead to altered renal
vascular tone [110,111].

Furthermore, a role of calcineurin in angII-induced hypertension is described in a
study by Nieves-Cintrón et al. [112]. Administration of angII increases PKCα-dependent
Ca2+ sparklets in aVSMCs, whereas a PKCα knockout shows no response to angII regarding
Ca2+ influx. Additionally, long-term angII infusion in WT mice leads to an elevation of
blood pressure with no effect in PKCα KO mice. Furthermore, calcineurin activity is
increased in WT mice but not in PKCα KO mice, suggesting that PKCα-dependent Ca2+

sparklets are necessary for calcineurin/NFaT activation and the development of angII-
induced hypertension. In a study from our lab, we also focused on the role of calcineurin
in angII-induced vascular changes [113]. We also showed, in a mouse model, that long-
term angII treatment via osmotic minipumps led to increased systolic blood pressure with
hypertension and pathological aortic remodeling, including increased media thickness
and higher expression of inflammation markers like Serpine1 or Rcan1. In calcineurin
knockout mice, the angII-effect was abolished. Many studies provide insights into the
effects downstream of high CTGF levels, but we demonstrated that calcineurin modulates
CTGF expression via altered EGFR signaling. In detail, we observed that angII stimulated
the EGFR-TGFβ-CTGF signaling cascade via HB-EGF calcineurin dependently leading to
increased CTGF and consequently to higher collagen production in aortic vascular smooth
muscle cells. Blocking angiotensin II type 1 receptor with losartan abolished the effects,
whereas AT2R inhibition had no effect. Our results suggest a crucial role for calcineurin
in angII-mediated pathological vessel remodeling and that calcineurin KO has protective
effects on the vasculature.

In former work, Min et al. proposed a similar role for angII and AT1R in calcineurin
signaling in terms of vascular senescence. They investigated whether ATRAP, a receptor-
interacting protein inhibiting AT1R function, is able to prevent VSMC senescence [114].
ATRAP is expressed in various tissues and interacts with the carboxyl-terminal domain
of the AT1R, whereby the receptor is internalized and AT1R signaling is antagonized.
AngII-dependent activation of NFaT transcriptional activity led to an increase in p53 and
p21 expression and to a higher number of senescent vascular smooth muscle cells. Aortic
vascular smooth muscle cells of ATRAP transgenic mice showed decreased proliferation
and senescence after angII stimulation. Furthermore, calcineurin signaling and NFaT
activation were reduced in these cells compared with ATRAP wild-type cells. Treatment
of wild-type cells with angII and CsA also attenuated proliferation and senescence. In
summary, the authors showed that ATRAP is able to inhibit the calcineurin/NFaT signaling
pathway to prevent vascular senescence and that calcineurin plays an important role in the
pathogenesis of cardiovascular diseases.

In accordance with these findings, several studies are dealing with the role of calcineurin–
NFaT signaling in aortic vascular smooth muscle cell proliferation [115–118]. A role for
calcineurin in alpha-adrenergic-receptor-activated aVSMC proliferation has been reported.
Treatment of aVSMCs with phenylephrine (PE) increased smooth muscle cell prolifera-
tion and cell count. After application of CsA, PE-induced aVSMC growth was dimin-
ished [117,118]. Subsequently, NFaTc1 was exclusively located in the nucleus 24 h after PE
treatment, and the transcriptional activity of NFaT was increased as shown by luciferase
reporter gene assays. CsA was able to attenuate these effects, suggesting that calcineurin
activation is necessary for PE-induced aVSMC growth [118]. A study by Li et al. pro-
poses that nitric oxide (NO) inhibits phenylephrine-induced aVSMC proliferation through
modulation of intracellular Ca2+ concentration and calcineurin activity. Accordingly, after
application of CsA, aVSMC proliferation was inhibited and could no longer be influenced
by NO donator S-Nitroso-N-acetyl-DL-penicillamin (SNAP) or phenylephrine. [117]. Con-
versely, the neuropeptide catestatin, an endogenous nicotinic cholinergic antagonist, has a
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positive proliferative effect on aVSMCs from rat aorta. It increases intracellular calcium and
thereby promotes calcineurin/NFaT signaling. Subsequently, transcription of proliferative
genes was induced, including cyclin A and c-myc. Administration of CsA abolished these
effects, indicating that activation of calcineurin/NFaT signaling is necessary for catestatin-
induced smooth muscle cell proliferation [115]. Increased migration and proliferation
of vascular smooth muscle cells after vascular injury are a problem in the development
of vascular in-stent restenosis in arterial tissue. In a study by Giordano et al., similar to
with TGFβ administration, treatment with the calcineurin inhibitor FK-506 stimulated the
proliferation and extracellular matrix production of vascular smooth muscle cells [119].
Additionally, inhibition of TGFβ type 1 receptor kinase attenuated FK-506-induced VSMC
proliferation. Taken together, this study implies that FK-506 exerts a proliferative effect on
VSMCs and is a potential stimulus for neointima formation, although FK-506 reduces cal-
cineurin (and cytokine)-dependent VSMC migration and proliferation [119]. This suggests
a calcineurin-independent effect via TGFβ signaling.

Grzesk et al. found that CsA increases calcium influx from extracellular calcium
stores, thereby stimulating vascular smooth muscle cell contractility, whereas FK-506 did
not show this effect, suggesting that calcineurin regulates smooth muscle cell behavior in
different manners. CsA directly stimulates protein kinase C, which leads to L-type calcium
channel phosphorylation and induces calcium influx [120]. In a study by Potier et al., it was
found that SOCE (store-operated calcium entry) influences the proliferation, migration and
apoptosis of aVSMCs [121]. Another remarkable study showed that rapamycin (sirolimus)
is able to prevent calcineurin activation by blocking Orai1-mediated Ca2+ entry into the
cell, thereby inhibiting cell proliferation in VSMCs [122]. The authors showed that another
indirect way of blocking Ca2+ entry into the cell can also inhibit calcineurin function.
Sirolimus prevented SOCE into the cell and thereby activation of NFaT via calcineurin.
Additionally, the phosphorylation of the transcription factor CREB was blocked by mTOR
inhibition. Overall, these findings suggest that SOCE is an important mechanism for
calcineurin activation in VSMCs, which can be inhibited by sirolimus.

Important mediators of remodeling processes include inflammatory events occurring
in the vascular wall. It was shown that hyperglycemia induces increased calcineurin/NFaT
signaling in vascular smooth muscle cells followed by elevated mRNA and protein expres-
sion of the pro-inflammatory cytokine osteopontin (OPN) in resistance arteries and large
conduit arteries. Again, inhibition of calcineurin/NFaT signaling with CsA or the NFaT
inhibitor A-285222 led to a reversal of increased glucose-induced OPN expression. It was
suggested that calcineurin/NFaT acts as a molecular sensor in the vascular wall for the
development of vascular damage with high importance for vascular dysfunction [123].

A role for calcineurin/NFaT in matrix-driven inflammatory gene expression was
suggested in a publication from Orr et al. Here, aVSMCs plated on a matrix consisting of
Col1 exhibited increased VCAM1 gene and protein expression, which can modulate the
local inflammatory response within an atherosclerotic plaque. Inhibition of calcineurin
by CsA significantly decreased VCAM1 expression. Furthermore, the authors showed
that VCAM1 expression in aVSMCs is regulated by NFaT, as administration of CsA or the
NFaT inhibitor A-285222 completely blocked VCAM1 expression in aVSMCs plated on a
Col1 matrix [124]. Satonaka et al. found an influence of calcineurin on the expression of
monocyte chemoattractant protein-1 (MCP-1) in aVSMCs. Usage of a constitutively active
mutant of calcineurin promoted MCP-1 expression on transcriptional and protein level,
whereas MCP-1 expression was abolished by CsA treatment. Additionally, CsA inhibited
MCP-1 expression in the femoral arteries after mechanical injury as well as macrophage
infiltration, suggesting a stimulating effect of calcineurin on vascular inflammation [103].

Dysfunction of the vessel is a hallmark of vascular diseases like atherosclerosis or
hypertension. Regulating the vascular tone and stiffness of the vessels is important to
maintain their physiological condition and blood pressure. Calcineurin plays a role in these
processes via Rcan1. Rcan1 is described as an inhibitor of calcineurin activity, but there are
also reports showing that Rcan1 can stimulate phosphatase activity [60,125]. Regarding
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the inhibitory function of Rcan1, in a study by García-Redondo, Rcan1 regulated vascular
contractility and stiffness via COX-2 [126]. Rcan1 deficiency led to increased COX-2 ex-
pression in aVSMCs and a higher phenylephrine-induced vascular response in myography
experiments. When cells were treated with CsA, this increased response was attenuated. In
summary, Rcan1 acts here as a negative regulator of calcineurin activity, maintaining physi-
ological vessel contractility and stiffness. In another study, a new role of calcineurin/NFaT
signaling in VSMCs for regulating the vascular tone was proposed. There, calcineurin
was implicated in PKA-dependent modulation of voltage-gated potassium channels (KV).
Activation of PKA increased the KV current, whereas inhibition of calcineurin resulted in a
decrease in the channel current [127]. Additionally, activation of calcineurin/NFaT was
shown to influence large-conductance calcium-activated potassium channels (BK), which
are important for the modulation of excitability and the contractile state of SMCs [128].
The authors showed that angII administration activated calcineurin/NFaT signaling and
thereby decreased the expression of a subunit of the BK channel, which is responsible for
its Ca2+ sensitivity. Consequently, proper function of the potassium channel was disrupted,
which contributed to the development of hypertension and vascular dysfunction [128].
A role of calcineurin in regulating vascular stiffness was proposed in a study by Valisno
et al., where knockout of the transcription factor BCL11B in vascular smooth muscle cells
in a mouse model led to increased calcineurin expression and stiffness in aortae from
these animals. Here, calcineurin expression and activity were directly correlated with the
regulation of vascular tone. As a mechanism for these observations, calcineurin was shown
to modulate the phosphorylation of VASP (vasodilator-stimulated phosphoprotein), where
decreased VASP phosphorylation increased vascular stiffness [129].

In summary, the effects of calcineurin in aVSMCs are very diverse and interconnected.
A large number of studies suggest an important role for vasoactive substances such as
phenylephrine and angII in regulating calcineurin activity in aVSMCs. Through this, the
proliferation and migration of aVSMCs is enhanced. On the other hand, SMC senescence is
promoted via angII/calcineurin under certain circumstances. Furthermore, calcineurin al-
ters ion channel expression and SOCE, which then modulates Ca2+ sensitivity/homeostasis
and consequently changes the contractile functions of aVSMCs. Additionally, calcineurin
activation promotes inflammation via the upregulating of VCAM or OPN. The effects
described above in aVSMCs are all mediated via NFaT (Figure 3). Next, we highlight the
functions of calcineurin in SMCs in the heart vasculature.
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extracellular influx or release from intracellular stores. Upon activation, calcineurin promotes the
transcriptional activity of NFaT by dephosphorylation. Altered gene expression regulates VSMC
proliferation, migration and inflammation as well as cell phenotype, senescence and vascular tone.
Overall, calcineurin inhibitors like cyclosporine A, tacrolimus and endogenous Rcan1 disrupt the
signaling cascade but induce side effects. SR, sarcoplasmatic reticulum. “arrow up” indicates an
increase; “?” indicates, that the effect is unclear so far.
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2.2. Calcineurin in the Coronary Arteries

In the coronary arteries, calcineurin plays an important role in the regulation of vessel
wall development, inflammatory processes and proliferation. A study revealed that inhi-
bition of calcineurin/NFaT signaling had a negative impact on the vascularization of the
developing heart. Treatment of mice embryos with CsA led to disrupted formation of the en-
dothelial tubes, which were fused and restricted to the atrioventricular junction compared
with a normally developed network in untreated controls. The same phenotype could be
observed in mice embryos with an endothelial-cell-specific deletion of calcineurin [130]. In
a report from Yang et al., it was stated that calcineurin–NFaT signaling organizes coronary
arterial wall development within a distinct developmental window [131]. Furthermore,
calcineurin has been implicated in the development of inflammation in the cardiac vascula-
ture [132,133].

SMCs play an important role in the function of the heart; e.g., they regulate cardiac
perfusion by mediating vascular tone [131,134]. It has been shown that alterations in
SMCs are responsible for the development of pathological processes, e.g., atherosclerosis or
hypertension. SMCs develop from epicardially derived mesenchymal cells and differentiate
into SMCs when associating with endothelial cells.

It was demonstrated in a study that calcineurin/NFaT signaling in epicardial progeni-
tor cells directs coronary arterial wall formation [131]. Thereby, calcineurin–NFaT signaling
regulates Smad2 expression, which is responsible for TGFβ signaling. Using an epicardial
PPP3R1 null mouse model, the authors found a similar phenotype as in Alk5-null hearts
(TGFβ1 receptor), with a strongly decreased smooth muscle cell number and reduced
maturation [131].

In the previously mentioned study by Zeini et al., impaired endothelial assembly in
early coronary vascular development is initiated by the loss or inhibition of calcineurin in
endothelial cells, showing that calcineurin is required for proper development of the coro-
nary arteries [130]. Furthermore, activation of calcineurin–NFaT signaling in endothelial
cells governs mesenchymal stem cell differentiation into SMCs. Crosstalk between endothe-
lial and mesenchymal stem cells/smooth muscle cells seem to be crucial for coronary artery
formation [131]. A study dealing with the clinical aspects of calcineurin/NFaT and its
role in VSMC proliferation has shown that FK-506 is able to prevent restenosis in coronary
arteries after stent implantation by inhibiting VSMC proliferation. FK-506-treated VSMCs
in a cell culture model exhibited a lower increase in cell number compared with controls.
Additionally, protein expression of calcineurin, NFaT, and IL-2 was significantly decreased,
and knockdown of calcineurin had the same effect [135]. Therefore, the authors claimed
that calcineurin is an important molecular target for preventing restenosis in coronary
arteries after stent implantation. Another study showed the inhibitory effect of FK-506 on
KV channel currents in coronary vascular smooth muscle cells. In comparison with other
studies, the observed effects seemed to be independent of calcineurin because the reduced
KV currents after FK-506 application occurred much faster than calcineurin inhibition. This
observation might explain some side effects of FK-506 as a calcineurin inhibitor [136].

In summary, in coronary arteries, calcineurin influences vessel wall formation during
heart development and promotes restenosis after stent implantation as well as atherosclero-
sis and hypertension. Just like in the aorta, calcineurin promotes the proliferation of VSMCs
and stimulates TGFβ signaling. The described effects are mainly mediated by NFaT. The
next part will focus on the role of calcineurin in the pulmonary arteries.

2.3. Calcineurin in the Pulmonary Arteries

Calcineurin plays an important role in the remodeling processes of the pulmonary
arteries, especially in pulmonary arterial hypertension (PAH), which is characterized by in-
creased pulmonary resistance and arterial pressure [137,138]. Furthermore, calcineurin reg-
ulates the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs)
and modulates Ca2+ entry into cells by influencing ion channel activity or expression.
Vascular remodeling is often accompanied by endothelial dysfunction, increased migration
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or proliferation of PASMCs, fibroblast proliferation and abnormal deposition of the extra-
cellular matrix. In PASMCs, calcineurin was shown to induce processes like migration,
proliferation, vasoconstriction, cellular hypertrophy and apoptosis [139]. To find a curative
approach against PAH, a great effort is being made to identify the underlying molecular
mechanisms for these changes in PASMC.

In an article by He et al., it was shown that calcineurin activity is increased after
induction of PAH in rat PASMCs, suggesting activated calcineurin/NFaT signaling in
PAH. Furthermore, PASMC proliferation and migration are significantly decreased after
treatment with CsA. These results indicate that calcineurin seems to be relevant for the
development of PAH [139] and that, in PASMCs, key events include the induction of
migration and proliferation. A more detailed understanding comes from studies dealing
with the regulation of intracellular Ca2+ concentrations, as this is an important mediator of
vasoconstriction as well as proliferation and migration in PASMCs [121,140,141].

Another study deals with the function of calcineurin in sphingosine-1-phosphate
(S1P) and osteopontin-mediated cell proliferation and migration. PASMCs were treated
with S1P, leading to increased store-operated calcium entry (SOCE) through activation
of PLC followed by augmented calcineurin activity with NFaTc3 dephosphorylation and
stimulation of osteopontin gene expression. Osteopontin (OPN) is not only known for its
role in bone metabolism but also has functions in cardiac remodeling and pulmonary hy-
pertension [142,143]. Consequently, with BrdU-ELISA, stimulation in PASMC proliferation
was detectable. Inhibition of calcineurin with CsA abolished the observed effects. Likewise,
old mice displayed higher lung osteopontin levels, right ventricular systolic pressure, and
pulmonary vessel muscularization. These changes could be abrogated in osteopontin −/−
mice, which also developed attenuated PAH during hypoxia. Accordingly, PASMCs from
old mice had a faster growth rate, which could be suppressed by osteopontin antibod-
ies. Taken together, these studies provide new insights into the regulation of PASMC
proliferation by calcineurin [144].

Another role of calcineurin/NFaT signaling in vascular remodeling was found by de
Frutos et al., who also showed that NFaTc3 is expressed in PASMCs and is activated by
chronic hypoxia in a calcineurin-dependent manner. There, inhibition of calcineurin with
CsA abolished the NFaTc3-induced upregulation of α-smooth muscle actin (α-SMA) in
PASMCs [145]. As thickening of the aortic media is one of the most prominent features
of vascular remodeling induced by PASMC hypertrophy, increased expression of α-SMA
regulated by calcineurin could be one cause of vascular remodeling.

Regulation of Ca2+ entry into the cell is a critical step in the ability of smooth muscle
cells to contract, and deregulation can lead to vasoconstriction and pathological remodeling
processes. Calcineurin activity is Ca2+-dependent, but activated calcineurin can also cause
ion channel remodeling with altered calcium influx. As experiments with acid-sensing ion
channel 1 (ASIC1) KO mice reveal, Ca2+ influx through ASIC1 contributes to PAH induced
by chronic hypoxia and endothelin-1. This process is mediated by calcineurin and NFaTc3
nuclear import and requires PICK1 as a scaffolding protein [146]. ASIC1 can also contribute
to SOCE and is regulated by calcineurin. It was shown that dephosphorylation of ASIC1
by calcineurin reduces SOCE in PASMCs and that inhibition of calcineurin abolished this
effect [146]. However, there are controversial findings regarding the role of calcineurin in
regulating SOCE [147]. In a very recent study, Masson et al. provide a possible therapeutic
option for treatment of PAH. Here, inhibition of the previously mentioned Orai channels
(see Section 2.1 Calcineurin in the Aorta) leads to reduced SOCE, which finally reduces
Calcineurin/NFaT activity and abolishes PASMC proliferation and migration [148].

However, not only Ca2+ influx via Orai channels, but also influx via TRP channels, can
influence calcineurin activity in a pathological manner. In a study by Parpaite et al., chronic
hypoxia leads to structural and functional changes in PASMCs, including modulation of ion
channel expression. They demonstrated that hypoxia influences transient receptor potential
channels’ TRPV4 activity and stimulates TRPV1- and TRPV4-mediated migratory behavior
in rat PASMCs. In this process, calcineurin/NFaTc4 signaling seems to be involved, as
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application of CsA abolished NFaTc4 translocation to the nucleus in response to TRPV1 or
TRPV4 activation [149].

Additionally, Li et al. found an influence of calcineurin/NFaT signaling on transient
receptor potential channel 6 (TRPC6) expression, which can contribute to pathological
proliferation of PASMCs in pulmonary hypertension. They observed an endothelin-1 (ET-
1)-mediated upregulation of phosphodiesterase 5 (PDE5) that increased calcineurin/NFaTc4
activity in PASMCs. ET-1 decreased the phosphorylation of NFaTc4 and supported its
translocation to the nucleus followed by elevated levels of TRPC6 expression, as TRPC6
was shown to be a direct NFaTc4 target [140]. Furthermore, after TRPC activation by
lipopolysaccharide (LPS), TRPC3 and TRPC4 were significantly upregulated in PASMCs.
Again, activation of calcineurin was responsible for increased TRPC gene transcription [150].
Another indication of the involvement of calcineurin in PASMC proliferation comes from
studies examining the role of serotonin (5-HT) in TRPC channel expression. Nuclear
translocation of dephosphorylated NFaT was increased by administration of 5-HT and led
to elevated TRPC gene transcription followed by higher PASMC proliferation via increased
Ca2+ levels. Here, calcineurin stimulated TRPC expression and cell proliferation in a
positive manner [151].

Calcineurin not only plays important roles in the regulation of smooth muscle cell
proliferation and migration but also mediates inflammation, which can cause vascular
remodeling leading to pathological changes in vessel morphology [152]. In a study by Liu
et al., calcineurin promoted the inflammatory response of PASMCs. Here, it was postulated
that TNF-α has an influence on calcineurin/NFaT signaling. Inhibition of calcineurin/NFaT
signaling by administration of mesenchymal-stem-cell-conditioned media suppressed the
inflammation-associated overproliferation of pulmonary artery smooth muscle cells [153].
Accordingly, in a rat monocrotaline-induced PAH model, TNF-α in the lung tissue and the
plasma increased, as well as calcineurin and NFaTc2 expression in the pulmonary arteries.
Transplantation of mesenchymal stem cells reversed the TNF-α and calcineurin/NFaT
increase and attenuated PAH, presumably by attenuating proliferation of PASMCs [154].

The regulation of calcineurin/NFaT in PASMCs was also investigated in a study
by Yaghi and Sims [155]. Administration of the vasoconstrictor phenylephrine (PE) to
PASMCs elevated intracellular Ca2+ remarkably and induced translocation of NFaT into
the nucleus. With calcineurin inhibitors, the PE-induced intracellular Ca2+ increase and
NFaT translocation were abolished. Furthermore, the authors showed that rho kinase exerts
an important role in calcineurin/NFaT activation. Usage of the rho-kinase blocker Y-27632
abolished translocation of NFaT to the nucleus. Overall, they found that vasoconstrictors
not only cause alterations in vascular tone but also regulate gene expression by modulating
calcineurin/NFaT activity.

In PASMCs, hypoxia and vasoactive substances like ET-1 and 5-HT induce calcineurin/
NFaT-dependent effects, resulting in increased contractile protein expression or ion channel
remodeling, which in consequence leads to increased cell migration, proliferation and vaso-
constriction, hallmarks of PAH. Additionally, apoptosis was also described. Next, we will
provide a short overview of calcineurin in vascular smooth muscle cells in kidney vessels.

2.4. Calcineurin in Kidney Vessels

The role of calcineurin in kidney allograft rejection is well described, but a more precise
understanding of its cell-type-specific role, especially in smooth muscle cells, is of great
interest. Unfortunately, for renal smooth muscle cells, just a few studies exist. Calcineurin
exerts important functions in regulating the contraction ability of renal vascular smooth
muscle cells and consequently renal blood flow. Therefore, there are indications that renal
vascular smooth muscle cells promote the pathogenesis of CsA nephrotoxicity. Usage of
calcineurin inhibitors (CNIs) after renal transplantation is still very common, although,
e.g., CsA causes nephrotoxicity with hypertension and vascular injury, which primarily
affects arterioles with smooth muscle cell vacuolization, loss of definition of cell boundaries,
apoptosis and necrosis [156–158]. Increased deposits of CD61 (integrin β3)-marked platelets
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are found in the arteriolar walls of patients treated with calcineurin inhibitors. CD61 is part
of the blood coagulation cascade and is used to identify activated platelets, suggesting that
calcineurin inhibitors cause vascular injury [157]. Histological changes are similar between
renal allografts and native kidneys and between different calcineurin inhibitors [159–162].

Renal hemodynamic alterations have been identified as another factor contributing
to CsA-induced nephrotoxicity. In rats, vasoconstriction of renal afferent arterioles, and,
in patients with kidney allografts, a decrease in renal blood flow, has been reported af-
ter receipt of CsA [163,164]. Amador et al. showed that the MR in VSMCs, but not in
endothelial cells, is involved in hemodynamic alterations induced by CsA and leading
to CsA-induced nephrotoxicity. They found that the application of CsA in renal MR KO
VSMCs attenuates the plasma urea and creatinine increase typical after CsA adminis-
tration [165]. On a functional level, CsA-induced phosphorylation of VSMC contractile
proteins was prevented in MR KO cells, leading to an attenuated increase in renal vascular
resistance. As a mechanism for this observation, attenuation of the renal vascular activity
of the L-type- Ca2+ channel was found. Furthermore, a connection between calcineurin
and the mineralocorticoid receptor (MR) was found in a study that demonstrated that
MR-induced inhibition of cAMP/CRE signaling was calcineurin-dependent. Increased
calcineurin activity was promoted by activated MR and led to a dephosphorylation of
CREB, which in turn attenuated CREB-induced glucose-6-phosphate dehydrogenase ex-
pression [166]. NFaT signaling was activated by aldosterone/MR and induced a change
in subcellular distribution of the catalytic beta subunit of calcineurin from the cytosol to
the nucleus and decreased expression of the endogenous calcineurin inhibitor CAIN [38].
Activation of the glucocorticoid receptor led to a different outcome. SiRNA experiments
indicate that PPP3CB and not PPP3CA mediate the observed effects.

In other studies dealing with CsA and renal damage, altered gene and protein expres-
sion is also found in smooth muscle cells. For example, FCS-induced COX-2 expression
and prostacyclin production were reduced in renal allograft patients after CsA [167]. A role
for calcineurin in renal upregulation of the vasoconstrictor endothelin-1 was described by
Frank et al., where, after renal transplantation, the expression of endothelin-1 was found
to be increased and the usage of ET-1 inhibitors decreased allograft rejection [168]. The
authors documented higher ET-1 expression in different tissues of the human kidney, and
also in renal vascular smooth muscle cells. Interestingly, ET-1 expression was not altered in
kidney grafts, with CsA toxicity implicating an influence of calcineurin on ET-1 expression.

Several studies show a beneficial effect of calcineurin inhibitors for preventing glomeru-
lar hypertrophy and matrix accumulation in early diabetic nephropathy through their NFaT
inhibitory effect in the glomeruli [100,169]. Conversely, TGFβ was found to regulate ECM
via induction of calcium influx and calcineurin in mesangial cells, which then supports
glomerular hyperplasia [170]. In early diabetes, blood flow to the glomerulus of the kidney
is increased due to inappropriate dilation of the afferent arterioles. This enhanced blood
flow is related to a decreased intracellular Ca2+ rise and is considered to also facilitate
glomerular hypertrophy and shear-induced vessel damage and glomerulosclerosis in late
diabetes [171–173]. Overall, this suggests that calcineurin may not only play a role in the
pathogenesis of diabetic nephropathy in mesangial cells but maybe also in vascular smooth
muscle cells that regulate glomerular blood flow.

Additional studies on the function of calcineurin in the kidneys originated from exper-
iments with myofibroblasts. This cell type develops from fibroblasts that have transformed
to a smooth-muscle-cell-like phenotype with similar properties to SMCs [174]. It can be
shown that inhibition of calcineurin activity with the endogenous calcineurin inhibitor
Rcan1 reduces extracellular matrix deposition by myofibroblasts. Additionally, overex-
pression of Rcan1.4 increases the expression of apoptosis-related proteins. Treatment of
the cells with CsA amplifies the effects, suggesting a prominent role for calcineurin in
the development of renal fibrosis [175]. In a very recent article, Ume et al. provide an
explanation of the contribution of myofibroblasts to calcineurin-inhibitor-induced renal
fibrosis. They show that application of FK-506 induces an increase in α-smooth muscle
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actin as well as an upregulation of TGFβ-receptor activation and downstream Smad2/3
signaling. The observed effects are accompanied by fibroblast-to-myofibroblast transition,
with increased cell motility and higher collagen IV expression, suggesting a contribution of
calcineurin to the phenotypic switching of fibroblasts to a more smooth-muscle-cell-like
phenotype [176].

Overall, in kidney, calcineurin regulates vascular tone by mediating Ca2+ influx into
smooth muscle cells or ET-1 expression. Additionally, calcineurin promotes extracellular
matrix production via TGFβ. Interestingly, calcineurin-dependent changes in ROS scavenging
in kidney smooth muscle cells are mediated via CREB and not via NFaT. In the last section,
we give an overview of the role of calcineurin in the cerebral and mesenterial vasculature.

2.5. Calcineurin in the Cerebral and Mesenterial Vasculature

The role of calcineurin in the smooth muscle cells of the cerebral and mesenterial
vasculature is not well described. Most studies deal with alterations in intracellular calcium
homeostasis mediated by extracellular signals. In intact cerebral arteries from mice, a
modest increase in extracellular glucose led to an increase in intracellular Ca2+, calcineurin
activation and the nuclear accumulation of NFaTc3, which was mediated by the activation
of P2Y receptors by UTP and UDP [177]. Simultaneously, glycogen synthase kinase 3 beta
and c-Jun N-terminal kinase activity were reduced by high glucose, resulting in increased
NFaT activation via reduced nuclear NFaT export. In aortae and portal veins, high glucose
led to a similar increase in NFaT activation [177].

Gomez et al. support that NFaT activation in cerebral artery smooth muscle is induced
by UTP through an increase in intracellular Ca2+ and the activation of calcineurin. They
expand these findings to other Gq11-coupled receptor agonists like angII, endothelin-1
and prostacyclin F2a [178]. They stress that the rise in intracellular Ca2+ results from Ca2+

release from the sarcoplasmic reticulum through IP3 receptors and Ca2+ influx through
L-type voltage-dependent Ca2+ channels. However, depolarization-induced Ca2+ influx
failed to induce NFaT translocation to the nucleus. Ca2+ sparks released by ryanodine
receptors even exerted a negative influence on NFaT activation [178]. In smooth muscle
cells from rat cerebral resistance arteries, the Ca2+ removal rate after temporary membrane-
depolarization-triggered Ca2+ currents was dependent on caveolin-1, caveolin-3 and cal-
cineurin [179]. In hyperglycemic mice on a high-fat diet, AKAP150 is required for the
activation of calcineurin/NFaT signaling via Ca2+ influx through L-type calcium channels.
NFaT activation suppresses the expression of a subunit of large-conductance calcium-
activated potassium channels (BKCa) and thereby reduces its calcium sensitivity, which
increases the vasoconstriction of resistance arteries. These effects were investigated in
cerebral and mesenteric arteries and their corresponding VSMCs. In AKAP150 KO mice on
a high-fat diet, enhanced vasoconstriction and an increase in systemic blood pressure was
absent [180].

The influence of calcineurin on neointima formation in the carotid arteries after balloon
injury is controversial. Liu et al. report that calcineurin inhibitors like CsA and GFP-VIVIT
can attenuate neointima formation by 40% and reduce the proliferation of smooth muscle
cells. Conversely, NFaT leads to the activation of PDGF-BB and COX-2 in cultured aortic
vascular smooth muscle cells [181]. In contrast, Waller et al. report no beneficial effect and
even an aggravating effect of CsA on intima hyperplasia in a rat carotid artery balloon
injury model [182]. In intracranial aneurysm, a VSMC phenotypic switch is reported that is
mediated by increased TRPC6, calcineurin and NFaT expression that leads to enhanced
NOX4, p22phox and p47phox expression and ROS production followed by the progression
of intracranial aneurysm [183].

Another easily available vessel used to analyze the effect of calcineurin and its in-
hibitors is the mesenteric arteries. Here, the activation of potassium channels led to
hyperpolarization and vasodilation. In rat mesenteric vascular smooth muscle cells, the
activity of voltage-gated potassium channels was upheld caveolae-dependently by tonic
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PKA activation, which could be reversed by calcineurin, thus indicating a mechanism by
which calcineurin favors vasoconstriction [127].

In VSMCs from the mesenteric arteries, Na+-HCO3
− cotransporter NBCn1 interacts

with the catalytic calcineurin beta subunit. Furthermore, intracellular Ca2+ activates NBCn1
in a calcineurin-dependent way and protects cells against intracellular acidification [184].
Calcineurin inhibitors, on the other hand, augment the intracellular acidification of VSMCs,
for example during norepinephrine-induced artery contractions.

In the small mesenteric arteries and aortae, experiments with KO mice of the en-
dogenous calcineurin inhibitor Rcan1 suggest that, through inhibition of calcineurin and
the NF-KB pathway, Rcan1 inhibits COX-2 expression and activity to maintain normal
vascular contractility and stiffness [126]. Accordingly, deficiency in Rcan1 led to an in-
crease in phenylephrine-induced vasoconstrictor response and thromboxane A2 levels.
Inhibition of COX-2 by CsA was previously reported by Jespersen et al. in human aortic
VSMCs [167]. Others have also found an attenuated vasoconstrictor response in Rcan1 KO
mice in response to phenylephrine compared with WT mice. Overall contractility was not
affected; only sensitivity to agonists was decreased. Furthermore, NO synthase inhibitors
potentiated vasoconstriction in KO animals, suggesting that elevated NO production is
involved in the reduced vasoconstriction [185]. In endothelial cells, Rcan1 is furthermore
known as a regulator of angiogenesis.

Further results indicating that CsA may exert its nephrotoxic and hypertensive side ef-
fect by acting as a vasoconstrictor have come from experiments with rat mesenteric arteries,
where CsA induces increased vasoconstriction in response to agonists like noradrenaline
and vasopressin. Increased calcium influx in VSMCs upon treatment with vasoconstrictors
like angII, serotonin and endothelin-1 was found to be a possible mechanism. However,
loading of intracellular calcium pools and interactions with cyclophilins and calcineurin
were not involved [186].

Overall, in the smooth muscle cells of the cerebral and mesenterial vasculature, cal-
cineurin regulates intracellular calcium homeostasis, thereby promoting vasoconstriction.
These effects are initiated by high glucose, UTP, angII and ET-1, which increase calcium
release from intracellular stores and promote calcineurin/NFaT activity. Additionally,
the calcineurin/NFaT-dependent upregulation of genes like COX-2 and PDGF-BB, which
stimulate smooth muscle cell proliferation, is described.

3. Conclusions

In summary, calcineurin plays an essential role in the regulation of physiological
and pathophysiological smooth muscle cell function in the vasculature. Dysregulation of
this well balanced signaling pathway, which modulates smooth muscle cell proliferation,
migration and differentiation has severe consequences. Although calcineurin inhibitors
lead to reduced allograft rejection after organ transplantation, they can cause pathological
outcomes like hypertension, inflammation and endothelial dysfunction in the vasculature,
suggesting positive as well as negative effects of calcineurin. As a putative reason for the
observed effects, altered Ca2+ homeostasis modulated by calcineurin in VSMCs was found.
An increase in intracellular calcium concentration is driven either by release from the
sarcoplasmatic reticulum or by entry via ion channels from the extracellular space. Calcium
then leads to calcineurin/NFaT activation and is also modulated by calcineurin/NFaT
itself, e.g., via ASIC1. Furthermore, calcineurin/NFaT signaling directly promotes the
expression of genes which are responsible for inflammatory events (OPN, VCAM, MCP-1)
or proliferation (TRPC, CTGF). One role of calcineurin/CREB is described in terms of ROS
scavenging. Nevertheless, the best-investigated calcineurin signaling pathway in VSMCs
involves NFaT.

Much progress has been made in recent years to elucidate calcineurin signaling events
with the identification of downstream targets of this signaling cascade, but most of the
responsible downstream signaling events are not completely understood so far, especially
in VSMCs. To evaluate these, further experiments should be conducted with calcineurin-
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knockout cell cultures and in vivo models to avoid the side effects of calcineurin inhibitors.
Additionally, other known calcineurin targets like FOXO and MEF2 need to be investigated
further in vascular smooth muscle cells.

Understanding the calcineurin signaling pathways causing these pathological effects
in the smooth muscle cells of the vasculature will help to improve the treatment of diseases
like pulmonary arterial hypertension and chronic kidney disease.
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