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Summary

� Covariation of plant functional traits, that is, phenotypic integration, might constrain their

variability. This was observed for inter- and intraspecific variation, but there is no evidence of

a relationship between phenotypic integration and the functional variation within single plants

(within-individual trait variation; WTV), which could be key to understand the extent of WTV

in contexts like plant–plant interactions.
� We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21

species in planted forest patches varying in species richness in subtropical China. Using visible

and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemi-

cal traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV,

and we used plant trait network properties based on trait correlations to quantify phenotypic

integration.
� Against expectations, strong phenotypic integration within a tree led to greater variation

across leaves. Not only this was true for single traits, but also the dispersion in a tree’s multi-

trait hypervolume was positively associated with tree’s phenotypic integration. Surprisingly,

we only detected weak influence of the surrounding tree-species diversity on these relation-

ships.
� Our study suggests that integrated phenotypes allow the variability of leaf phenotypes

within the organism and supports that phenotypic integration prevents maladaptive variation.

Introduction

Trait-based plant ecology assumes that plant attributes, that is,
functional traits, mediate community assembly and ecosystem
processes (Violle et al., 2007; Shipley et al., 2016). Traditionally,
this discipline focused on mean differences between species’ traits
(i.e. interspecific trait variation) to address ecological questions
related, for example, to plant coexistence or niche differentiation,
ignoring that trait variation may also occur within species (i.e.
intraspecific variation; Bolnick et al., 2011; Violle et al., 2012).
However, by only considering interspecific trait variation we
might fail to explain ecosystem processes at the spatial scales
where individuals interact and, indeed, it is agreed that ignoring
variability within species can lead to biased conclusions (Bolnick
et al., 2011; de Bello et al., 2011; Chase, 2014). Recently, there
has been a growing effort to understand the role of variation at
lower levels of biological organization (Escudero & Valladares,
2016; Hart et al., 2016; Escudero et al., 2021). While variation

among individuals within a species (i.e. intraspecific trait varia-
tion) has gained attention (Hart et al., 2016; Des Roches et al.,
2018), only few studies addressed the ecological role of within-
individual trait variation (WTV; see Table 1). Within-individual
trait variation (WTV) refers to the plastic responses of plant indi-
viduals to express different trait values across different repeated
architectural units of the plant body structure (De Kroon
et al., 2005; Herrera et al., 2015; Herrera, 2017). Far from being
‘phenotypic noise’, plants show within-individual responses in,
for example, leaf (Winn, 1996; Valladares & Niinemets, 2008;
Møller et al., 2022), fruit (Sobral et al., 2019) or flower traits
(March-Salas et al., 2021). Furthermore, this variation may affect
plant performance (Herrera, 2009, 2017) and can have evolu-
tionary consequences (Herrera et al., 2022; Sobral & Sampedro,
2022).

The variation of one trait is not necessarily independent from
the variation of other traits. Indeed, there are numerous and com-
plex trait relationships resulting from genetic, developmental,
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and/or functional trade-offs and allometric constraints (Gould &
Lewontin, 1979; Wright et al., 2004; Huneman, 2010; Armbrus-
ter et al., 2014; Nielsen & Papaj, 2022). For example, a reduc-
tion in specific leaf area (SLA) is usually coupled with an increase
in leaf dry matter content (LDMC; Wright et al., 2004). Under
this premise, traits vary in a coordinated way to optimize some
functions at the cost of others (Messier et al., 2017; Vasseur et al.,
2022). As a result, it is suggested that phenotypic integration (i.e.
the pattern of coordination and covariation among traits reflected
by the amount of significant correlations between traits, Schlicht-
ing & Pigliucci, 1998; Gianoli & Palacio-López, 2009; Armbrus-
ter et al., 2014) could play a role in constraining trait variation
(Valladares et al., 2007; Matesanz et al., 2021). This assumption
is also based on the impossibility of the evolution of organisms
that can reach an optimal value for every trait simultaneously
(Rees, 1993; Laughlin & Messier, 2015). That is why under sce-
narios of strong phenotypic integration, only a subset of possible
trait combinations will exist due to the presence of strong con-
straints from functional trade-offs (Laughlin et al., 2017). Thus,
different levels of phenotypic integration may be associated with
the expression of plastic responses (He et al., 2021; Homeier
et al., 2021; Silva et al., 2021; Li et al., 2022; Xie &Wang, 2022).
However, while previous evidence describing the relationship
between phenotypic integration and trait variation stems from
studies on interspecific and intraspecific trait variation, the rela-
tionship between plant individuals’ phenotypic integration (PIind;
i.e. the number of significant correlations among traits between
different repeated units of the same individual) and WTV is not
known (but see Escribano-Rocafort et al., 2017). Therefore,
understanding this relationship is crucial to assess the extent and
intrinsic limits of WTV in modular organisms. To our knowl-
edge, the only study focusing on PIind and WTV simultaneously
suggested that for olive trees (Olea europaea) with higher leaf
PIind, leaf WTV tended to be lower (Escribano-Rocafort
et al., 2017). According to these results, and similarly to what has

been found at higher levels of biological organization (He
et al., 2021), differences in PIind among individuals might explain
differences in WTV. It could be therefore expected that indivi-
duals with higher PIind would be limited in their WTV. There-
fore, phenotypic integration could affect the amount of WTV as
a response to abiotic and biotic drivers.

Resource competition is considered a major component of
plant–plant interactions. In theory, each individual inhabits a
particular niche where it competes for resources with its local
neighbors (Cabal et al., 2021). Accordingly, it is well established
that there are stabilizing mechanisms that support species coexis-
tence through functional differentiation and niche complemen-
tarity (Wright et al., 2014). Also, within species, niche
complementarity between individuals of the same population can
diminish the strength of intraspecific competition, since indivi-
duals from the same species need common resources and share
similar uptake pathways (Grime, 1973; Tilman et al., 1982).
Such niche complementarity through trait variation within spe-
cies is particularly important in communities with low taxonomic
diversity and, hence, high levels of intraspecific competition
(Gross et al., 2008; Götzenberger et al., 2012). In this context, as
WTV may improve efficiency in the use of resources (Møller
et al., 2022), it has been suggested as a mechanism to foster
niche complementarity and reduce intraspecific competition for
resources among plants interacting directly (Davrinche et al.,
2023). Indeed, WTV was reported to decrease with taxonomic
diversity of the local neighborhood (Proß et al., 2021). However,
as WTV is expected to be limited by phenotypic integration
(Escribano-Rocafort et al., 2017), this could cause plants to fail
to produce the optimal suites of traits for a given microenviron-
ment (Pigliucci, 2005). Therefore, understanding the effect
of neighborhood diversity on WTV and on the WTV-PIind rela-
tionship remains crucial to assess the role and intrinsic limits of
trait variation in plant–plant interactions.

Leaves are repeated organs within plants with a crucial role in
resource acquisition via photosynthesis. Furthermore, the light
interception by leaves is a key factor in competition (Valladares
et al., 2016). That is why plants express different leaf phenotypes
within the crown in order to adjust to the light exposure (Sack
et al., 2006; Escribano-Rocafort et al., 2016; Mediavilla et al.,
2019). In addition, plastic responses in leaf traits are specifically
noticeable in trees, which have great potential to express WTV as
a consequence of their high modularity (Watkinson & White,
1986) and, therefore, could provide a suitable model to study the
relationship between trait variation and phenotypic integration
within an individual. As light heterogeneity is influenced, among
others, by the canopy structure of the community, trees are
expected to adjust their leaves to the different light exposures gen-
erated by different levels of taxonomic diversity. Consequently, a
tree’s leaf WTV may be strongly affected not only by the taxo-
nomic identity of the closest tree neighbor but also by the
taxonomic diversity of the surrounding tree neighborhood (Proß
et al., 2021).

Here, we studied patterns of leaf trait variation and phenotypic
integration within individual trees and how they were affected by
local taxonomic diversity. As the closest adjacent tree is expected

Table 1 Definition of acronyms and abbreviations used.

Acronym/abbreviation Definition

WTV Within-individual trait variation
PIind Individual phenotypic integration
BEF Biodiversity–ecosystem functioning
Vis-NIRS Visible and near-infrared spectrometry
SLA Specific leaf area
LDMC Leaf dry matter content
C : N Carbon-to-nitrogen ratio
C Carbon leaf content
N Nitrogen leaf content
Mg Magnesium leaf content
K Potassium leaf content
Ca Calcium leaf content
P Phosphorous leaf content
FRic Functional richness
FDis Functional dispersion
SD Standard deviation
LMM Linear mixed model
AIC Akaike information criterion
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to have the strongest effect on intraspecific trait variation (Dav-
rinche & Haider, 2021), we considered two scales of local taxo-
nomic diversity: taxonomic diversity of the local neighborhood,
that is, the trees surrounding a focal individual in a community,
and identity of the closest neighbor. We used the currently largest
tree diversity experiment, located in subtropical China, and mea-
sured nine morphological and chemical leaf traits in c. 500 indi-
viduals from 21 species across plots differing in species
composition. We assessed different metrics of functional trait var-
iation (WTV) and phenotypic integration for each individual
tree. We expected that higher PIind constraints WTV (Fig. 1). As
higher WTV is expected for scenarios of high intraspecific com-
petition, we also expected that the WTV-PIind relationship
depends on taxonomic diversity. Specifically, we hypothesized
that the constraint should be more pronounced in scenarios of
high taxonomic diversity (i.e. in diverse communities and, espe-
cially, when trees are directly interacting with a heterospecific
adjacent neighbor) due to the lower ecological relevance of WTV
in these environments (Fig. 1). Contrary, in scenarios of low
taxonomic diversity, trees are expected to prioritize the display of
alternative leaf designs, even if integration is high. We expected

the constrain of PIind on WTV for the WTV of individual traits
and also for metrics of multitrait functional diversity.

Materials and Methods

Study site

This study was conducted in a biodiversity–ecosystem function-
ing (BEF) experiment, the BEF-China tree diversity experiment,
located in Xingangshan, in Jiangxi Province (lat. 29°0801100N,
long. 117°9009300E; Fig. 2a). BEF-China was designed to study
ecosystem functions in planted patches of varying tree-species
richness, hence simulating the effect of species extinction on the
functioning of ecosystems. The climate is subtropical with a
mean annual temperature of 16.5°C (ranging from 0.4°C in Jan-
uary to 34.2°C in July) and mean annual precipitation of
1821 mm (data from the adjacent Wuyuan County, Yang
et al. (2013)). The natural vegetation in the region is dominated
by mixed broadleaved forests with similar number of deciduous
and evergreen species, but with evergreen species dominating in
terms of abundance (Bruelheide et al., 2011; Su et al., 2020).

Fig. 1 Expected relationship between individual phenotypic integration (PIind) and within-individual trait variation (WTV) at different levels of tree diversity.
PIind is expected to constrain WTV at both levels of taxonomic diversity (Hypothesis 1), indicated in the figure through color variation in leaves. However,
as WTV is an important mechanism to drive niche differentiation as response to intraspecific competition, we expect the WTV-PIind relationship to depend
on the local taxonomic diversity, including both the identity of the adjacent neighbor and the diversity of species in the neighborhood (Hypothesis 2). Thus,
the constraint of WTV by PIind should be less pronounced in scenarios of low taxonomic diversity. Networks on the bottom of the x-axis represent two sce-
narios of PIind, where lines (‘edges’) connecting points indicate coordination between two traits. Thus, low PIind (left) occurs when the number of coordi-
nated pair of traits is low, while high PIind (right) indicates that the number of coordinated pair of traits is high. Zoom areas show the leaf WTV of a target
tree (denoted by variable colored points within the crown) in different contexts of taxonomic diversity (represented by the shape and transparency of the
tree silhouettes surrounding the target tree).
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The experiment consists of two sites, A and B, where trees were
planted in 2009 and 2010, respectively (Bruelheide et al., 2014;
Fig. 2b). Site A extends over an area of 27 ha with an elevation
ranging from 205 to 275 m asl and slopes from 8.5° to 40°. Site
B has a size of > 23 ha with an elevation ranging from 113 to
182 m asl and slopes ranging from 15° to 43°. In the experiment,
trees are arranged following the ‘broken-stick’ design described in
Bruelheide et al. (2014). This design is based on the partitioning
of the pool of species in every site into two equal groups at each
subordinate richness level. Thus, from the total pool of 40 species
in both sites (see Bruelheide et al. (2014) for details on the plant

species), plots range from the 24-species mixture to the monocul-
ture passing through 16-, 8-, 4- and 2-species mixtures (Fig. 2c).
Hence, at each site, all species are equally represented at every
species richness level. In every plot, 400 saplings from local nur-
series were planted in a regular grid with a distance of 1.29 m,
with species randomly assigned to planting positions.

Field sampling

Sampling followed the tree-species pair design as described in
Trogisch et al. (2021), which focuses on the interaction of a pair

Fig. 2 Location of (a) the biodiversity–ecosystem functioning (BEF)-China experiment, (b) sites of the experiment and (c) plots within the sites, and (d, e)
design of the tree-species pair sampling. The BEF-China experiment (a) is located in subtropical China (Xingangshan, Jiangxi Province). The map also shows
in addition the distribution of subtropical forests in China (Olson et al., 2001). The experiment consists (b) of two sites (A and B) distanced by c. 5 km. Each
site contains plots differing in the number of planted species (c). The black dots in (c) indicate the plots where sampling took place for this study. As shown
in (d), within plots we selected at least one tree-species pair, consisting of two adjacent trees directly interacting, and defined the local neighborhood of a
tree-species pair as the group of 10 trees that were directly surrounding the tree-species pair. For every tree-species pair, we sampled leaves at five different
heights (sampling points) along the vertical plane between the trees (interaction plane), which is represented by the dashed line (e).
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of directly adjacent neighbors (hereafter, referenced as tree-
species pair) and the interaction of this tree-species pair with the
surrounding local neighborhood (Fig. 2d). Hence, by sampling
both trees in a tree-species pair, the design allows to study the
interaction between WTV and individual phenotypic integration
(PIind) at two different fine scales of local taxonomic diversity:
the species identity of the tree-species pair partner, that is, the
tree’s closest neighbor (conspecific vs heterospecific); and
the taxonomic diversity of the local neighborhood, that is, the 10
trees (or fewer in case of mortality) surrounding the tree-species
pair. The diversity of the local neighborhood was assessed by cal-
culating the Shannon index (Shannon, 1948), considering the
frequency of the different tree species within the up to 10 neigh-
bor trees of the tree-species pair.

Sampling took place from late August to early October 2018
and mid-August to mid-September 2019 for sites A and B,
respectively. We sampled a total of 432 trees (216 tree-species
pairs) in 69 plots at site A and 437 trees (219 tree-species pairs)
in 57 plots at site B (hereafter, referenced as regular set). From
each tree, we collected leaves along the interaction plane between
the tree-species pair partners (the vertical plane where the two
crowns of the tree-species pair partners meet, Fig. 2e). In order to
encompass the variation of the whole individual, we sampled at
five different heights along the interaction plane. At each height,
we cut three fully developed leaves free from mechanical or
pathogen damage. Immediately after collection, leaves were
stored in sealable plastic bags with moistened tissue. Samples
were transported in an isothermal bag equipped with cooling
bags to prevent dehydration. In the laboratory, samples were tem-
porarily stored at 6–8°C.

In addition, we collected an independent set of leaf samples
for each site (hereafter, referenced as calibration sets). The aim of
this was to predict the trait values for the samples of the regular
set based on the relationship between reflectance spectra and
measured trait values of the calibration set. For the calibration
sets, we aimed to include 10 leaf samples per species per site
across all plots of all species richness levels, collected at different
heights and orientation within the crown, in order to maximize
the sampled scenarios (i.e. combinations of species considering
the closest neighbor and the local neighborhood, different posi-
tion of the leaf within the crown and location of the tree within
the experimental site). A total of 236 samples for site A and 252
for site B were collected for the calibration set, with each sample
composed of 15 leaves on average depending on the leaf size, to
ensure sufficient material for laboratory analyses.

Laboratory analyses

The number of leaf samples in the regular set was high, and the
material from each leaf was too low to conduct all chemical
analyses at the leaf level. For this reason, we used visible and
near-infrared spectrometry (Vis-NIRS), a technique of massive
phenotyping, to estimate trait values for each individual leaf
based on calibration models (Foley et al., 1998; Escudero et al.,
2021). For all leaves (regular and calibration sets), we acquired
reflectance spectra with a portable Vis-NIRS device (ASD

‘FieldSpec4’ Wide-Res Field Spectroradiometer; Malvern Panaly-
tical Ltd, Almelo, the Netherlands). Reflectance was measured
across the full range of solar radiation spectrum (250–2500 nm),
by taking three repeated measurements on the adaxial side of each
leaf while avoiding main veins. For each of these repeated mea-
surements, 10 spectra were averaged internally to reduce noise.
The equipment was optimized regularly with a calibration white
panel (Spectralon, Labsphere, Durham, NH, USA).

For the samples of the calibration set, we determined nine
morphological and chemical leaf traits which are assumed to
reflect a plant’s strategy in terms of the investment of nutrients
and dry mass in the leaves (Pérez-Harguindeguy et al., 2013;
Dı́az et al., 2016; see Supporting Information Table S1). Addi-
tionally, these traits are key components of the leaf economics
spectrum and reflect the most important trade-offs along differ-
ent leaf designs (Wright et al., 2004; Osnas et al., 2013): specific
leaf area (SLA; leaf area divided by leaf dry mass), leaf dry matter
content (LDMC; leaf dry mass divided leaf fresh mass), carbon-
to-nitrogen ratio (C : N), carbon content (C), nitrogen content
(N), magnesium content (Mg), potassium content (K), calcium
content (Ca), and phosphorus content (P). After collection, the
saturated fresh leaves of the calibration samples were weighed
(DeltaRange Precision Balance PB303-S; Mettler-Toledo
GmbH, Gießen, Germany) and scanned at a resolution of 300
dpi to calculate leaf area (WinFOLIA; Regent Instruments, Que-
bec, QC, Canada). Leaves were oven-dried at 80°C for 72 h and
weighed to calculate SLA and LDMC. Dried leaves were ground
(Mixer Mill 400; Retsch, Haan, Germany), and 200 mg of the
resulting powder was used for a nitric acid digestion. After the
digestion, Mg, Ca, and K were analyzed with atomic absorption
spectrometry (ContrAA 300 AAS; Analytik Jena, Jena, Ger-
many), while P was measured through a molybdate spectrophoto-
metric method. Additionally, we used an elemental analyzer
(Vario El Cube; Elementar, Langenselbold, Germany) to gas-
chromatographically determine C and N and, from these mea-
surements, C : N.

Leaf spectra of the samples of the calibration set were analyzed
with the UNSCRAMBLER X software (v.10.1; CAMO Analytics,
Oslo, Norway) for all species together but separately for site A
and site B. The use of multispecies calibrations aimed to cover the
broadest trait space possible, in order to better reflect the possible
variation in our samples (Burnett et al., 2021) and allowed for
more data to build the calibration model. Spectral pretreatments
were applied in order to optimize the prediction of traits (normal-
ization, smoothing and 2nd derivate, orthogonal signal correction,
standard normal variate, detrending according to Barnes
et al. (1989), or baseline correction). Spectra were then used to fit
partial least square regression models by using the NIPALS algo-
rithm (Dayal & Macgregor, 1997; Burnett et al., 2021). Selection
of the partial least square regression models was based on their
quality (determined by a high R2 value and a low root mean
square error for a validation set), parsimony (indicated by a low
number of factors), and predictive power (determined by a high
R2 for predicted vs reference value). For site A, R2 for predicted vs
reference value of the best models for each trait was
66.94� 20.23 (mean� standard deviation), with a maximum R2
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for SLA (88.90) and minimum for Ca (24.20), while for site B we
obtained a mean R2 of 74.60� 11.00, with maximum and mini-
mum values for SLA (89.88) and Ca (58.84), respectively (see
Davrinche & Haider (2021) and Davrinche et al. (2023) for
methodical details). Finally, these models were used to predict the
trait values from the reflectance spectra of the samples of the regu-
lar set. From the three predicted values for each leaf in the regular
set (resulting from the three repeated measurements per scan), we
excluded: negative ones; those with > 5% deviation from the
range limits of the calibration data; and values outside of the 95%
confidence interval of the model prediction. The remaining values
per leaf were averaged. As a consequence of outlier detection, an
average of 3.3� 1.1% (mean� SD) of the leaves was removed
depending on the trait (see Table S2).

Metrics of individual phenotypic integration and trait
variation

To accurately estimate PIind and WTV, we only used data from
those trees, which met several criteria in the regular dataset. Thus,
as the study of phenotypic integration requires the lack of missing
data (He et al., 2020) only leaves with trait data available for all
nine traits were considered. Furthermore, in order to avoid low
accuracy in the metrics for WTV, and especially, for PIind, only
trees with data from a minimum of 10 leaves were considered
(see Fig. S1 for details on data selection). Finally, as the underre-
presentation of specific sampled species could make sample sizes
across groups highly unbalanced and, thus, our models unstable
(Grueber et al., 2011), we only worked with those species which
after the filtering described before were represented by more than
eight individuals. Thus, from the original number of 869 trees
from 27 species, our study included 499 trees from 21 species
located in 97 plots and represented across different levels of taxo-
nomic diversity (see Tables S3, S4).

To measure PIind, we first computed for each tree all possible
pairwise correlations between traits based on the trait values for
individual leaves (Fig. S2a). Then, we evaluated the significance
of the correlations by using permutation tests in which trait
values were rearranged 20 000 times and pairwise correlations
were calculated from each randomization. We calculated the P-
values based on the permutation distribution of correlations
obtained from randomizations. These tests were performed by
using the function perm.cor.test in the JMUOUTLIER package
(Garrenstjmuedu, 2019). Based on our correlation matrix, we
built a plant trait network for each tree as described in He
et al. (2020). To avoid spurious correlations among traits, we
only considered connections (‘edges’) of significant correlation
(P< 0.05) and with a Pearson coefficient |ρ|≥ 0.6 (Aggarwal &
Ranganathan, 2016). Importantly, most trait–trait pairs consid-
ered for the network were highly significant (P< 0.01), indicat-
ing that the considered correlations are not likely statistical noise
but, rather, a biological signal (see Figs S3, S4). We measured
two properties that estimate the tightness of the networks: edge
density, which measures the proportion of actual connections
among traits out of all possible connections within a network
and, thus, can be used to quantify the connectivity of all traits

across the whole trait network (Benavides et al., 2021); and
degree (Poorter et al., 2014; He et al., 2021), which represents a
measure of coordination for each trait as it measures the number
of connections of one focal trait (‘node’) to all others. These
properties of the networks were assessed by using functions from
the IGRAPH package (Csardi, 2021).

We assessed multitrait WTV for each tree including all traits
by using two indices related to different attributes of the func-
tional hypervolume of all leaves in a tree: functional richness
(FRic); and functional dispersion (FDis). Together, these two
indices can reveal two different and complementary aspects of
trait variation. Functional richness (FRic) measures the total
functional hypervolume by using the minimum convex volume
(Cornwell et al., 2006; Botta-Dukát & Czúcz, 2016). This index
aims to detect reductions in the niche space occupied by indivi-
duals (Cornwell et al., 2006). Thus, a higher FRic indicates that
an individual occupies a greater niche space. Functional disper-
sion (FDis) measures the distances of leaves to the centroid of the
functional hypervolume, thus describing whether the distribution
of leaves in a trait space is clustered or dispersed (Laliberte &
Legendre, 2010). To calculate these indices, we first obtained a
leaf-by-leaf trait distance matrix per tree by using Gower’s dis-
tance. This was calculated with the gowdis function in the FD

package (Laliberté et al., 2014). Then, for every tree we com-
puted both indices through principal coordinate analysis (PCoA)
by using the function dbFD from the same package. As these
indices can be sensitive to the number of observations and in
order to account for the different number of leaves per tree
(Mason et al., 2013), we used standardized effect sizes (SES) as
described in Gotelli & McCabe (2002). We used 500 randomiza-
tions in a null-model analysis to ensure accurate estimates of SES
values. Additionally, we assessed single-trait WTV by using the
standard deviation (SD) of each trait across all leaves within a
tree, as it represents how trait values are spread around the mean
value (Proß et al., 2021; Fig. S2b).

Statistical analyses

All statistical analyses were performed in R v.4.02 (R Core
Team, 2021). To assess the joint effect of PIind and local taxo-
nomic diversity on within-tree trait variation (WTV), we per-
formed linear mixed models (LMMs) for the multitrait and
single-trait metrics of WTV. To do so, we used the two func-
tional indices (SES(FDis) and SES(FRic)) and the SD of each of
the nine traits, respectively, as response variables, resulting in a
total of 11 models. Explanatory variables were the two metrics
for PIind (edge density in the case of multitrait WTV (SES(FDis)
and SES(FRic)), and the degree in the case of the models for
single-trait WTV (SD)), the diversity of the tree-species pair
(conspecific vs heterospecific), the Shannon diversity of the local
neighborhood of a tree-species pair, and all possible interactions
of these variables (including the three-way interaction). We
included tree-species pair identity nested in plot, in turn nested
in site, and species identity as crossed random effects in order to
account for the design of the experiment and differences among
species, respectively (see Table S5). These analyses were
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conducted using the lmer function in the LMERTEST package
(Kuznetsova et al., 2017). We used diagnostic plots of the resi-
duals to study the assumptions of normality, homoscedasticity
and linearity in our models: residuals vs fitted values plots, histo-
grams of the residuals and Q-Q plots for the deviance of the resi-
duals. Thus, to meet the premises of homoscedasticity and
normality of the residuals in the models, SD(SLA), SD(C), and
SD(P) were log-transformed and SD(LDMC), SD(N), SD(K),
and SD(Ca) were square-root transformed. We fitted ‘beyond
optimal’ models, which included all of the fixed effects to fit the
model. Then, by including only subsets of the predictors, the
AIC was calculated for all possible models that varied in their
fixed effects. We selected all models with ΔAIC lower than 2 as
competing models holding similar information and followed the
principle of parsimony to prioritize the simplest model with the
smallest number of predictors among all competing models
(Burnham & Anderson, 2004; Richards et al., 2011; Harrison
et al., 2018). Finally, we assessed the quality of fit of our compet-
ing models by calculating the marginal and conditional R2, which
address the variance explained only by fixed effects and the var-
iance explained by the entire model, respectively.

Results

We found a positive relationship between multitrait WTV and
PIind. However, of the two multitrait functional indices, only
SES(FDis) responded to edge density, which was used to quan-
tify PIind at the multitrait level (Table 2). In both competing
models, SES(FDis) increased with edge density and this response
was stronger for trees with a conspecific partner (significant inter-
action of edge density and the diversity of the tree-species pair;
Figs 3, 4a). Furthermore, one of the competing models, but not
the simplest model, included a negative effect of local neighbor-
hood Shannon diversity, indicating that higher local neighbor-
hood diversity was associated with lower SES(FDis; see Fig. S5).
The effect of edge density on SES(FRic) was included in three of
the competing models, but the most parsimonious model neither
included edge density nor any of the other predictor variables. In
the three competing models including edge density among the
predictors, two suggested that SES(FRic) increases with edge
density while the third indicated that the response depends on
the identity of the closest neighbor, increasing in the case of a
conspecific partner and decreasing in the case of a heterospecific
one (see Fig. S6). This suggests that the effect of edge density on
SES(FRic) was rather weak and could be attributable to correla-
tions between metrics (see Fig. S4). For the most parsimonious
model of SES(FDis), marginal R2 accounted for 13% of the var-
iance, and 17% of the variance was explained when also consider-
ing the random effects as well. In the case of SES(FRic), for the
simplest model, conditional R2 accounted for 8% of the variance.

In the single-trait analyses, WTV (quantified through trait
SD) increased with increasing PIind (quantified through degree,
i.e. the number of significant associations of that trait with
others) in all competing models (Table 2; Fig. 4c–k). In contrast,
the effect of taxonomic diversity and its role in mediating the
response of single-trait WTV to PIind was not included in all

competing models. Local neighborhood Shannon diversity
appeared as a predictor in at least one of the competing models
for each trait (see Figs 3, S7–S15), suggesting that Shannon
diversity of the local neighborhood may cause a decrease in
WTV. However, only in the case of Ca this effect was included
in the simplest model (Fig. 5). Similarly, tree-species pair diver-
sity (conspecific vs heterospecific) was maintained as a predictor
in at least one competing model for all traits, but never in the
simplest model. For all traits, except for Mg and Ca, there was
slightly more WTV in trees with conspecific partners. Interac-
tions between PIind and local neighborhood Shannon diversity
were found among some of the competing models for C : N, C,
K and Ca, suggesting in most cases that the response of WTV to
PIind could be slightly stronger when local neighborhood diver-
sity decreases. In the case of the interaction between degree and
tree-species pair diversity, this effect was present among some of
the competing models for SLA, LDMC, N, and K, but the effect
of the interaction was inconsistent across traits (see Figs S7, S8,
S11, S13). In most cases, marginal R2 accounted for a small por-
tion of the total variance in the simplest models (varying between
c. 5% in the case of Mg and P and c. 15% for the models of SLA,
LDMC, N, and Ca), but conditional R2 accounted for a greater
portion of the variance (varying from c. 27% in P to c. 85% in P;
see Table 2). This suggests that even though we found a correla-
tion between PIind and WTV, the predictive ability of these mod-
els is rather low.

Discussion

By using multiple leaves from each of 499 tree individuals from
21 species in a tree diversity experiment in subtropical China, we
assessed whether WTV is influenced by PIind, and how tree-
species diversity affects this relationship. Contrary to our expecta-
tion, our results showed that high individual WTV was associated
with higher PIind. We found this response for FDis, a metric
including all traits measured and reflecting the mean distance of
each leaf to the centroid in a multidimensional trait space (i.e.
how much a tree’s leaves differ from the average trait values of all
leaves of this tree), and for single traits’ SD (i.e. leaves’ deviation
from the tree’s mean considering single traits). To our knowl-
edge, this is the first study showing such a consistent positive rela-
tionship between the integration of the phenotype and WTV. In
contrast to the consistent response of FDis, the total trait hyper-
volume estimated by FRic did not show a clear pattern. Referring
to the best and simplest model, the positive associations between
WTV and PIind were mediated by taxonomic diversity only in
the case of FDis, for which the response was stronger in conspeci-
fic tree-species pairs. Furthermore, WTV of leaf Ca showed a
decrease in response to local neighborhood Shannon diversity.

In disagreement with our first hypothesis, our results suggest
that PIind and WTV did not follow the same pattern described
for higher levels of biological organization (inter- and intraspeci-
fic trait variation). The trade-off between trait variation and
phenotypic integration is a widely spread statement in ecology
(Valladares et al., 2007) and was observed for interspecific trait
variation (Dwyer & Laughlin, 2017; He et al., 2021; Silva et al.,
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2021) and intraspecific trait variation (Carvalho et al., 2020; He
et al., 2021). However, at the within-individual level of biological
organization used here, most metrics of trait variation showed an
increase with PIind. Therefore, far from representing a constraint,
PIind seems to be coupled with variation within an individual.
Our results suggest that there is a link between the need of indivi-
duals to express alternative leaf designs and the maximization of
the trait–trait coordination. As stated by Armbruster et al. (2014)
and Zimmermann et al. (2016), phenotypic integration could act

as a facilitator of adaptation by reducing maladaptive uncoordi-
nated variation. Indeed, this could be a strategy that would allow
individuals to maximize their fitness while adjusting to heteroge-
nous microenvironmental conditions within the canopy. How-
ever, even though the general patterns observed point out an
increase in WTV with increasing PIind, the use of two comple-
mentary functional indices revealed that there are still intrinsic
limits to trait variation (Valladares et al., 2007; Auld et al.,
2010). While FDis was positively related to PIind, the total

Table 2 Competing models to identify the drivers of within-individual trait variation (WTV).

Response Int PIind S TSPDiv PIind : S PIind : TSPDiv S : TSPDiv PIind : S : TSPDiv df Delta R2
m R2

c

SES(FDis) �3.085 1.992 �0.824 × 9 0 0.133 0.174
�3.021 2.002 �0.075 �0.845 × 10 1.471 0.135 0.177

SES(FRic) �0.493 0.236 7 0 0.005 0.093
�0.374 6 0.585 0 0.084
�0.339 �0.08 �0.244 × 9 1.48 0.01 0.109
�0.503 0.24 0.011 8 1.942 0.005 0.1

log(SLASD) 2.385 0.089 7 0 0.062 0.709
2.374 0.088 0.023 8 1.557 0.062 0.71
2.401 0.088 �0.019 8 1.671 0.062 0.71
2.292 0.106 0.15 × 9 1.853 0.063 0.712

sqrt(LDMCSD) 3.889 0.242 7 0 0.163 0.267
3.691 0.238 0.21 0.295 × 10 1.115 0.169 0.272
3.513 0.278 0.21 0.585 × × 11 1.401 0.173 0.273
3.907 0.242 �0.025 8 1.94 0.163 0.268

(C : N)SD 2.069 0.299 7 0 0.123 0.344
2.177 0.295 �0.127 8 0.1 0.126 0.345
1.987 0.337 0.137 × 9 1.017 0.127 0.348
2.044 0.297 0.052 8 1.773 0.123 0.343

log(CSD) �0.805 0.08 �0.037 8 0 0.093 0.745
�0.831 0.08 7 0.632 0.092 0.743
�0.838 0.089 0.009 × 9 0.989 0.093 0.744
�0.848 0.079 0.03 8 1.067 0.093 0.744
�0.82 0.08 �0.03 0.019 9 1.543 0.093 0.745

sqrt(NSD) 0.308 0.02 7 0 0.145 0.416
0.304 0.02 0.007 8 0.55 0.147 0.415
0.313 0.019 �0.005 8 0.924 0.146 0.414
0.312 0.018 �0.007 × 9 1.947 0.148 0.418

MgSD 0.469 0.033 �0.059 �0.023 × 10 0 0.048 0.789
0.44 0.042 �0.018 �0.023 9 1.055 0.046 0.79
0.424 0.042 �0.017 8 1.255 0.046 0.788
0.415 0.041 7 1.294 0.045 0.787
0.451 0.033 �0.051 × 9 1.57 0.046 0.788
0.474 0.033 �0.064 �0.031 × × 11 1.935 0.048 0.789

sqrt(KSD) 0.544 0.09 0.152 0.299 × × × × 13 0 0.124 0.549
0.699 0.057 0.098 × 9 0.75 0.116 0.533
0.717 0.057 �0.021 0.092 × 10 0.758 0.118 0.537
0.761 0.044 7 1.65 0.11 0.531
0.7 0.056 0.00 0.116 × × 11 1.755 0.118 0.538
0.776 0.043 �0.019 8 1.777 0.111 0.535

sqrt(CaSD) 1.003 0.049 �0.029 8 0 0.155 0.427
1.013 0.049 �0.033 �0.012 9 1.352 0.156 0.428

log(PSD) �2.468 0.094 7 0 0.055 0.853
�2.486 0.094 0.032 8 0.252 0.056 0.852
�2.455 0.094 �0.015 8 1.588 0.056 0.852

The simplest model for each trait according to the parsimony principle is highlighted in bold. For each model, information about the estimates of all the
included explanatory variables, degrees of freedom, delta of Akaike information criterion (AIC), and marginal and conditional R2 are provided. ‘×’ indicates
that the interaction term was included in the model. See Supporting Information Fig. S5 for more details in the effect sizes of the variables included in the
competing models. df, degrees of freedom for the model; Int, intercept; PIind, individual phenotypic integration; R

2
m, marginal R2; R2

c , conditional R
2;

S, Shannon diversity of the local neighborhood; TSPDiv, tree-species pair diversity.
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Fig. 3 Effects of the predictors in the simplest (red) and competing models (gray; ΔAICc< 2) for (a) the standarized effect size of functional dispersion
(SES(FDis)) and (b) functional richness (SES(FRic)), and the standard deviation (SD) of (c) specific leaf area (SLA), (d) leaf dry matter content (LDMC),
(e) carbon-to-nitrogen content (C : N), (f) leaf carbon content (c), (g) leaf nitrogen content (n), (h) leaf magnesium content (Mg), (i) leaf potassium content
(K), (j) leaf calcium content (Ca), and (k) leaf phosphorous content (P), with 95% confidence intervals. Log and square-root transformations of the variables
were indicated for every trait by log and sqrt, respectively. The acronyms correspond to the different predictors (PIind, individual phenotypic integration;
S, Shannon diversity of the local neighborhood; TSPDiv, tree-species pair diversity), and interactions between predictors are indicated by ‘:’. For
tree-species pairs, positive and negative coefficients indicate higher and lower values for conspecific tree-specific pairs compared with heterospecific
tree-specific pairs, respectively. The lack of red error bars in (b) indicates that the simplest model for FRic did not include any predictor.
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Fig. 4 Effects of PIind obtained in the simplest model according to the parsimony principle for (a) standardized effect size of functional dispersion (SES
(FDis)), (b) standardized effect size of functional richness (SES(FRic)), (c) log-transformed standard deviation (SD) of specific leaf area (log(SLASD)),
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leaf content (log(CSD)), (g) square-root-transformed SD of leaf nitrogen content (sqrt(NSD)), (h) SD of leaf magnesium content (MgSD), (i) square-root-
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Fig. 3; Table 2). Network diagrams on the upper panel illustrate the gradient from low to high PIind.
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functional space filled by the individual (represented by FRic;
Cornwell et al., 2006) tended to remain unaffected by PIind.
Thus, our results suggest that instead of occupying a larger niche
volume, individual trees with higher PIind fill a similar trait space,
but there are differences in the density and distribution of indivi-
dual leaves within this trait space (Fig. 6). Leaves tend to be
located in the inner part of the trait hypervolume when PIind is
low and move toward the extremes as PIind increases. As a result,

it seems that even though the studied trees increase leaf diversity
with PIind, trait variation is not unlimited (Valladares
et al., 2007).

Overall, we found weak effect of taxonomic diversity on
WTV, suggesting that WTV could facilitate intraspecific plant–
plant interactions by promoting slight niche complementarity.
First, in the case of single traits, local neighborhood Shannon
diversity reduced WTV of leaf Ca, and similar trends were found
in at least one competing model for all other traits. Therefore,
our results, even though are rather weak, suggest that trees may
display higher WTV in monospecific communities. Indeed, this
is consistent with similar patterns found for trees in a similar
experiment in the tropics (Proß et al., 2021). Second, the identity
of the closest neighbor mediated the WTV-PIind relationship, as
shown by the results for FDis, supporting that the positive effect
of phenotypic integration on trait variation is stronger for trees
with a conspecific closest neighbor. This result evidences that the
role of phenotypic integration to prevent uncoordinated variation
is even more important in the context of intraspecific competi-
tion. Thus, as higher WTV could facilitate intraspecific interac-
tions by, for example, improving the efficiency of light capture
(Møller et al., 2022) and providing niche complementarity (Proß
et al., 2021), the steeper relationship with PIind in the presence
of a conspecific may prevent maladjustment of leaf designs
(Armbruster et al., 2014). Considering these responses to taxo-
nomic diversity and taking in account that WTV represents a
great portion of the total trait diversity occurring within a species
(Herrera et al., 2015), we suggest that coexistence of individuals
is not only driven by inter- and intraspecific trait variation.
Rather, WTV could also constitute a mechanism that fosters
niche complementarity.

Furthermore, the lack of strong responses of most single traits
to taxonomic diversity (either heterospecificity of the closest
neighbor or Shannon diversity of the local neighborhood) could
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Fig. 5 Relationship between within-individual variation of leaf calcium
(square-root transformed standard deviation (SD)) and Shannon diversity
of the local neighborhood (see Table 2). Gray areas represent the confi-
dence intervals at 95%.

Low PIind
High PIind

Functional hypervolume Distance to the centroid

(a) (b)

Fig. 6 Conceptual representation of the
occupancy of the functional trait space under
scenarios of (a) low and (b) high individual
phenotypic integration (PIind), as suggested
by our results. While overall trait space does
not change, leaves (black points) tend to
increase their distance to the centroid with
higher PIind. Red arrows in (b) indicate the
direction of the change detected by
functional dispersion. Network diagrams
illustrate scenarios of low and high PIind.
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have two complementary explanations: as drivers of trait varia-
tion act on multiple traits simultaneously, multitrait approaches
reflect variation patterns better than single-trait analyses (Albert
et al., 2010); and the relationship between WTV and taxonomic
diversity could be hampered by other important drivers of
WTV such as plant–animal interactions, and environmental fac-
tors like resource availability and climate predictability. Regard-
ing plant–animal interactions, there is a growing literature
showing the effect of pollination and seed dispersal on WTV of
reproductive traits (Sobral et al., 2010, 2019) and, specifically
for the case of leaves, antagonistic interactions such as leaf her-
bivory have been suggested to select for higher WTV (Herrera,
2017). Concerning resource availability, Davrinche et al. (2023)
showed that the relationship between WTV in leaves and diver-
sity was dependent on the availability of nutrients in the soil.
Last, higher WTV has been proposed to be an adaptive strategy
to cope with unpredictability in rain regimes (March-Salas
et al., 2021).

While the variance explained by the predictors was not large, a
large proportion of the variance in our data was attributed to ran-
dom effects, including species identity and the location of the tree
within the experiment. Species identity explains differences in
trait variation (Mudrák et al., 2019), supporting that species dif-
fering in their evolutionary history and adaptations exhibit differ-
ences in their plastic responses (Schlichting, 1986; Davidson
et al., 2011). Furthermore, because of its large spatial extent, the
BEF-China experiment comprises environmental heterogeneity
concerning, for example, slope, soil nutrients, and erosion (Schol-
ten et al., 2017), and it already has been observed that these dif-
ferences influence intraspecific variation in the trees’ crown shape
(Perles-Garcia et al., 2022). Indeed, as WTV also changes in
response to small differences in abiotic conditions within the
same habitat (Sobral et al., 2019), it seems that differences in
WTV among individuals could also be explained by their loca-
tion within the experiment.

Concluding remarks

We aimed to provide new insights into the functional con-
straints of WTV, which, even though it is still widely understu-
died, seems to play a role in ecological processes (Sobral &
Sampedro, 2022) and could be key for plants to adaptively
respond to future scenarios of global change (March-Salas
et al., 2021). Although WTV is not unlimited, our study sup-
ports that integrated phenotypes maintain dissimilar leaf designs
within the organism. This means that high PIind is needed to
express large WTV and, as shown by our results, this is particu-
larly important in the case of intraspecific interactions, where
WTV could act as a stabilizing mechanism. Furthermore, if
we aim to better understand WTV and its adaptive role for
plants/trees in the response to future environmental conditions
(Nicotra et al., 2010), it should acknowledge that PIind also
responds to abiotic factors (Garcı́a-Verdugo et al., 2009) and,
therefore, following research on WTV and its limits should con-
sider not only the WTV-PIind relationship but also its changes
across environmental conditions.
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Andréa Davrinche https://orcid.org/0000-0003-0339-2997
Sylvia Haider https://orcid.org/0000-0002-2966-0534
W. Stanley Harpole https://orcid.org/0000-0002-3404-9174
Silvia Matesanz https://orcid.org/0000-0003-0060-6136

Data availability

Code and data for the data analysis of this study are available at
the Zenodo repository: doi: 10.5281/zenodo.8243092.

References

Aggarwal R, Ranganathan P. 2016. Common pitfalls in statistical analysis: the

use of correlation techniques. Perspectives in Clinical Research 7: 187.
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S. 2010.

A multi-trait approach reveals the structure and the relative importance of

intra- vs interspecific variability in plant traits. Functional Ecology 24:
1192–1201.
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Scholten T, Goebes P, Kühn P, Seitz S, Assmann T, Bauhus J, Bruelheide H,

Buscot F, Erfmeier A, Fischer M et al. 2017.On the combined effect of soil

fertility and topography on tree growth in subtropical forest ecosystems—a

study from SE China. Journal of Plant Ecology 10: 111–127.
Shannon CE. 1948. A mathematical theory of communication. The Bell System
Technical Journal 27: 379–423.

Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB.
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