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Abstract: (1) Background: Kidney and cardiovascular diseases are responsible for a large fraction of
population morbidity and mortality. Early, targeted, personalized intervention represents the ideal
approach to cope with this challenge. Proteomic/peptidomic changes are largely responsible for the
onset and progression of these diseases and should hold information about the optimal means of
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treatment and prevention. (2) Methods: We investigated the prediction of renal or cardiovascular
events using previously defined urinary peptidomic classifiers CKD273, HF2, and CAD160 in a cohort
of 5585 subjects, in a retrospective study. (3) Results: We have demonstrated a highly significant
prediction of events, with an HR of 2.59, 1.71, and 4.12 for HF, CAD, and CKD, respectively. We
applied in silico treatment, implementing on each patient’s urinary profile changes to the classifiers
corresponding to exactly defined peptide abundance changes, following commonly used interven-
tions (MRA, SGLT2i, DPP4i, ARB, GLP1RA, olive oil, and exercise), as defined in previous studies.
Applying the proteomic classifiers after the in silico treatment indicated the individual benefits of
specific interventions on a personalized level. (4) Conclusions: The in silico evaluation may provide
information on the future impact of specific drugs and interventions on endpoints, opening the
door to a precision-based medicine approach. An investigation into the extent of the benefit of this
approach in a prospective clinical trial is warranted.

Keywords: cardiovascular events; coronary artery disease; heart failure; chronic kidney disease;
personalized medicine; urinary biomarkers

1. Introduction

Cardiovascular diseases, including coronary artery disease (CAD) and heart failure
(HF), along with chronic kidney disease (CKD), are the leading causes of morbidity and
mortality worldwide [1,2]. These conditions place a significant burden on the affected
individuals and healthcare systems globally. Efforts to reduce the known cardiovascular
and kidney disease risk factors, such as hypertension, high cholesterol levels, a sedentary
lifestyle, diabetes, obesity, and smoking, help to prevent disease progression in some
patients [2,3]. Advances in medical care and novel treatments have improved the prognosis
of individuals who are affected by these chronic diseases [1,4,5]. However, despite this
progress, the factors associated with disease progression in individual patients are poorly
understood. While traditional clinical risk factors and underlying molecular mechanisms
can explain a significant part of the attributable risk [6,7], their predictive power for future
cardiovascular or kidney events is limited, or has not been evaluated, and, in certain cases,
may not be readily applicable in a clinical setting [7–11].

Furthermore, CAD, HF, and CKD require a complex treatment regimen compris-
ing multiple drug combinations. Randomized trials have demonstrated the value of
different individual treatments in preventing future cardiac or kidney events, reducing
mortality, and managing symptoms [12–16]. However, the benefits of such treatments are
only detected in some patients, and a substantial number of individuals still progress to
terminal organ failure, despite the treatment. The commonly recommended treatments
include lifestyle interventions, including dietary changes, antiplatelet therapy, β-blockers,
angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB),
mineralocorticoid receptor antagonists (MRAs), glucagon-like peptide-1 receptor agonists
(GLP1 RAs), dipeptidyl peptidase-4 inhibitors (DPP4i), and sodium-glucose co-transporter
2 inhibitors (SGLT2i) [17,18]. However, while these drugs demonstrably have an impact on
the notional targets, such as the reduction in blood pressure or blood glucose, the targets
are often surrogates for the real reason to treat—that is, preventing (or delaying) end-organ
damage. That is more difficult to assess and needs a much longer time scale than days or
weeks. There are currently no methods to predict treatment success in individuals or to
give guidance on the optimal therapy for an individual patient.

Recent advances in biomarker research have contributed to the development of predic-
tive classifiers that are more accurate markers of the progression towards adverse outcomes,
including severe disease or mortality [7,19,20]. Multidimensional urinary peptide profiles
seem to be particularly promising for predicting the outcome at early stage and can show
the effect of a treatment on different chronic diseases at a molecular level [7,11,21–23]. Par-
ticularly, in cancer research, the biomarker-based approach has made significant progress,
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from basic science to clinical validation [24,25]. For example, in diseases such as breast
cancer, lung cancer, and melanoma, increasing attention has been directed towards genetic
biomarkers being used as pivotal guides for treatment decisions [26,27].

To the best of our knowledge, no study has yet investigated the potential ability of
biomarker-based information to predict the potential impact of different interventions in
decreasing the risk of events (critical progression or death) from cardiovascular or kidney
diseases on a personalized level. The objectives of this study were as follows: (1) to assess
the efficacy of three previously developed urinary-peptide-based classifiers as biomarkers
for predicting CAD, HF, or CKD events; and (2) to investigate the individual impact of
prophylactic or therapeutic interventions in silico, with specific active agents, with the
hypothesis that the treatment that shows the most pronounced effect in silico should be the
optimal personalized therapeutic strategy.

2. Results
2.1. Clinical Characteristics of Population

A total of 5585 datasets were extracted from the database (Table 1). The baseline
characteristics are shown in Table 2.

Table 1. Summary of the studies included in the analysis.

Characteristic N = 5585 Study Information

Study

CACTI 19 (0.34%) Adults with type 1 diabetes

CADPredictions 147 (2.63%) Adults with acute coronary syndromes

CardioRen 116 (2.08%) Adults with heart failure with reduced ejection fraction

DIRECT 769 (13.77%) Adults with type 2 diabetes with normoalbuminuria

EPOGH 826 (14.79%) Adults with type 2 diabetes treated with basal insulin

FLEMENGHO 65 (1.16%) General population

Generation Scotland 450 (8.06%) Adults with and without coronary artery disease (CAD)

HOMAGE 354 (6.34%) Adults with heart failure

Predictions Groningen_Prag 38 (0.68%) Adults with type 2 diabetes

PRIORITY 1761 (31.53%) Adults with type 2 diabetes, normal urinary albumin
excretion, and preserved renal function

SUNmacro 580 (10.38%) Adults with type 2 diabetic nephropathy

UZ-Gent 460 (8.24%) Adults with chronic kidney disease

n (%)

Table 2. Baseline characteristics of study participants.

Characteristic N = 5585

Duration of follow-up (years) 3.75 (0.38, 7.11)

Clinic characteristics

Age 62 (28, 82.3)

Female 3410 (61.06%)

sBP (mm Hg) 133 (105, 171)

dBP (mm Hg) 79 (58, 98)

Hypertension 2381 (42.63%)

Diabetes 3330 (59.62%)
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Table 2. Cont.

Characteristic N = 5585

eGFR (mL/min/1.73 m2) 81.89 (23, 117)

BMI (kg/m2) 28.4 (19.8, 41)

Urinary-peptide-based classifiers

HF2 −0.29 (−0.76, 0.21)

CAD 160-marker −0.32 (−0.71, 0.03)

CKD273 −0.50 (−0.84, −0.01)

Median (95% IC); n (%)

Abbreviations: eGFR, estimated glomerular filtration rate (mL/min per 1.73 m2); BMI, body mass index; sBP,
systolic blood pressure; dBP, diastolic blood pressure.

2.2. Peptide-Based Classifiers and Prediction of Events

The association between the classifiers and the risk of cardiovascular/kidney events
is detailed in Table 3. The individuals were divided into quintiles with different relative
risk, according to their classifier scores (Table S1). The event rates for the outcome of
cardiovascular/kidney events varied across the five score subgroups. There was a stepwise
increase in the risk of an adverse event with each quintile, that is, the individuals with higher
classifier scores, as represented in the 5th quintile, had higher rates of the primary outcome
compared to those individuals in the lower quintile of the classifier (1st quintile) (Figure 1).
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Figure 1. Urinary peptidomics classifiers and primary outcomes. Kaplan–Meier curves for the
primary outcome; classifier scores from the lowest (1) to highest (5) quintile, for risk of heart failure
events, as assessed by HF2 (A), coronary artery disease events, as assessed by CAD160 (B), and
chronic kidney disease progression, as assessed by CKD273 (C).
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Table 3. Risk of HF events, CAD events, and CKD outcomes by baseline urinary peptidomics classifiers.

Events/At Risk (%) Model Unadjusted Model (Adjusted for Age, BP, BMI, Sex,
and eGFR)

HF2 HF Events HR (95% CI) p-Value HR (95% CI) p-Value

Per 1-SD increment 472/5200 (9.08) 2.59 ± 0.047 <2 × 10−16 1.64 ± 0.056 1.72 × 10−18

Quintile 1 25/1041 (2.40) Reference Reference Reference Reference

Quintile 2 38/1040 (3.65) 1.81 ± 0.26 0.02 1.15 ± 0.26 0.60

Quintile 3 59/1040 (5.67) 3.17 ± 0.24 1.42 × 10−6 1.51 ± 0.24 0.09

Quintile 4 119/1040 (11.44) 7.21 ± 0.22 4.60 × 10−19 2.53 ± 0.23 5.92 × 10−5

Quintile 5 231/1039 (22.23) 16.20 ± 0.21 3.15 × 10−39 3.84 ± 0.23 5.64 × 10−9

CAD-160-marker CAD events

Per 1-SD increment 384/5112 1.72 ± 0.050 <2 × 10−16 1.33 ± 0.057 5.55 × 10−7

Quintile 1 46/1024 (4.49) Reference Reference Reference Reference

Quintile 2 55/1020 (5.39) 1.84 ± 0.20 2.45 × 10−3 1.39 ± 0.20 0.11

Quintile 3 71/1026 (6.92) 2.93 ± 0.19 2.77 × 10−8 2.13 ± 0.20 1.25 × 10−4

Quintile 4 91/1019 (8.90) 3.92 ± 0.19 2.65 × 10−13 2.53 ± 0.19 1.32 × 10−6

Quintile 5 121/1023 (11.83) 4.73 ± 0.18 4.93 × 10−18 2.82 ± 0.19 3.32 × 10−8

CKD273 CKD events

Per 1-SD increment 113/3635 (3.11) 4.19 ± 0.094 <2 × 10−16 3.18 ± 0.121 1.03 × 10−21

Quintile 1 6/732 (0.82) Reference Reference Reference Reference

Quintile 2 11/722 (1.52) 2.02 ± 0.51 0.17 1.96 ± 0.50 0.18

Quintile 3 11/730 (1.51) 2.13 ± 0.51 0.14 1.80 ± 0.51 0.25

Quintile 4 22/724 (3.04) 5.58 ± 0.46 2.07 × 10−4 5.33 ± 0.47 3.55 × 10−4

Quintile 5 63/727 (8.67) 35.47 ± 0.43 1.61 × 10−16 19.59 ± 0.47 7.32 × 10−11

2.3. Personalized In Silico Prediction of Treatment Efficacy

Having established a highly significant association between the classifier scores and
the outcomes, we investigated whether the in silico treatment effect (e.g., the adjustment of
the peptide intensities based on the treatment response), as described in Section 4, had an
impact on the classifiers. The in silico treatment had a significant impact on the classifiers,
as shown in Figures 2–4 (also shown in Table S1). The heatmap representation of the sorted
scores before the in silico treatment revealed an alignment of HF events, CAD events,
and CKD progression with higher scores (Figures 2–4). This observation reinforces the
predictive capability of the scores and their association with HF and CAD events and
CKD progression.

After the in silico treatment, MRA, SGLT2i, and ARB treatments had a positive effect
on the HF2 classifier in the individuals with higher scores, suggesting a potential beneficial
impact of the treatment, especially in those with a higher baseline risk (and likely more
advanced disease (Figure 2A)). The olive oil and GLP1R agonist treatments showed a
positive impact mostly in the individuals at low risk of HF events. DPP4i and exercise
had inconsistent effects across the different scores, making their impact on patients with a
high risk of HF events less evident. The predictions showed individual differences in the
treatment impact (Figure 2B).
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Figure 2. HF2 classifier treatment responses. HF2 scores were z-scaled across samples for visual-
ization. Heatmap HF2 classifier treatment responses of 5585 patients (A). The top of the heatmap
shows the event information. Samples (columns) were ordered based on the HF2 score prior to in
silico treatment, from lower scores (left) to higher scores (right). The zoomed-in heatmap shows
the treatment response of HF2 in 10 patients (B). Patients who were already receiving one of the
treatments at the beginning of the study are depicted in gray.

Regarding the CAD-160-marker classifier, distinctly different treatment responses were
observed when comparing the high-CAD-160-marker-score and low-CAD-160-marker-
score groups (Figure 3A). Among the individuals with higher scores, the olive oil, DPP4i,
and especially ARB treatments were predicted to present positive impacts, with the ARB
treatment being notably effective for patients at high risk of CAD events. Nonetheless, the
individual predictions displayed unique differences, emphasizing the personalized nature
of the prediction of treatment response (Figure 3B).
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Figure 3. CAD-160-marker classifier treatment responses. CAD-160-marker scores were z-scaled
across samples for visualization. Heatmap CAD-160-marker classifier treatment responses of
5585 patients (A). The top of the heatmap shows the event information. Samples (columns) were
ordered based on the CAD-160-marker score prior to in silico treatment, from lower scores (left) to
higher scores (right). The zoomed-in heatmap shows the treatment response of the CAD-160-marker
classifier in 10 patients (B). Patients who were already receiving one of the treatments at the beginning
of the study are depicted in gray.

In the context of CKD, no major impact was observed for spironolactone or for
GLP1RA. In the patients with high CKD273 scoring, with many having eGFR values of
less than 60 mL/min per 1.73 m2, the SGLT2i, olive oil, exercise, and ARB treatments
exhibited treatment responses, with SGLT2i and ARB treatments showing a more pro-
nounced impact. In contrast, the olive oil treatment seemed to have a positive impact
mostly in the patients with lower scores (Figure 4A,B). The impact of DPP4i varies among
patients, and, in certain cases, it demonstrates a positive effect in the advanced stages of
the disease.
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Figure 4. CKD273 classifier treatment responses. CKD273 scores were z-scaled across samples for
visualization. Heatmap CKD273 classifier treatment responses of 5585 patients (A). The top of the
heatmap shows the baseline eGFR value information. Samples (columns) were ordered based on
the CKD273 score prior to in silico treatment, from lower scores (left) to higher scores (right). The
zoomed heatmap shows the treatment response of the CKD273 classifier in 10 patients (B). Patients
who were already receiving one of the treatments at the beginning of the study are depicted in gray.

3. Discussion

The identification of the biomarkers that aid physicians in decision making and
treatment planning for patients with cardiovascular or kidney disease will serve a major
clinical need. The early diagnosis of cardiovascular diseases and CKD is challenging, as
the patients may remain asymptomatic in the early stages, leading to late-stage clinical
presentations and diagnosis/detection. Additionally, considering the significant inter-
individual variability in response to different treatments, uncertainty remains about how
the development of an event can be best avoided, or at least delayed. While a substantial
number of studies have demonstrated the potential value of biomarkers in predicting
disease progression (renal as well as cardiovascular events [7–11]), these studies typically
did not investigate the far more relevant topic (from the patient point-of-view) of the
prediction of optimal intervention. The prediction of drug response on a population-based
level was proposed by the group from Heerspink [28], but not on an individual level.
Therefore, the crucial need for non-invasive biomarkers for early disease detection, and
to understand the impact of the different treatments, becomes evident, enabling timely
individual (personalized) treatment and the prevention of chronic disease progression,
ultimately improving patients’ outcomes.
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Multiple drugs are available that impact risk factors such as elevated blood pressure,
blood glucose, or cholesterol. The normalization of these parameters can generally be easily
and rapidly assessed. However, the question of whether the normalization of these param-
eters has an optimal desired beneficial impact on target organ damage on an individual
level cannot be easily answered, and would require long-term follow-up, which is not
compatible with clinical practice. What is needed is an approach to assess, and, ideally, even
predict, the impact of the drug on the outcome on the target organ damage. In this study,
we assessed three established urinary-peptide-based classifiers, HF2, CAD-160-marker,
and CKD273 [20,29,30], designed to predict the risk of major complications or mortality
in individuals at high risk of, or already suffering from, chronic cardiovascular or kidney
disease conditions, and we investigated the potential impact of different interventions on
reducing the occurrence of these events.

Personalized intervention was developed initially in oncology, where personalized
treatment is now routinely applied, based on certain oncogenic mutations that can be
targeted with specific drugs [24–27]. This approach has proven to be quite successful. A
similar approach, targeting specific mutations, does not seem to be applicable in kidney
and cardiovascular disease, as these are generally not driven by a specific genetic change,
but rather by a number of different factors, some possibly being genetic-based, while most
are the results of environmental impact. This fact has inspired the development of the
following approach: instead of targeting a specific mutation, we aimed at “normalizing”
multiple disease-associated changes. The approach was also inspired by the application
of the Connectivity Map (CMap) [31–33], where potentially beneficial drugs are defined
based on the “normalization” of a disease-specific transcriptome or proteome signature.

The study presented here has two main results. The first result is the demonstration of
the prognostic value of the three applied urinary peptide classifiers in a very large cohort
of >5000 subjects. This result further confirms the previous reports [20,29,30] in large
cohorts. While such a prognosis is valuable in guiding the treatment and management,
it obviously lacks specific guidance on the treatment. This fact leads to the second main
result. Applying the previously established impact of the specific treatment on the urinary
peptides allows for the implementation of the “in silico treatment”, which may be used
to guide personalized intervention, based on the predicted response. Using this in silico
approach, we have achieved individualized prediction of the effects of seven different
treatment approaches based on the urinary-peptide-based classifiers. These findings offer
a novel approach towards personalized treatment strategies and risk management for
patients at risk of cardiovascular or kidney diseases, based on the predicted molecular
impact of the specific treatment.

Previous studies have already demonstrated the predictive performance of the HF2
model, the CAD-160-marker model, and the CKD273 model, in different populations
for the respective clinical conditions [20,29,30]. In our larger population, we observed
effective risk stratification based on the model scores, successfully identifying the patients
at higher risk of cardiovascular/kidney events. Specifically, the individuals in the lower-
score group exhibited a reduced risk of HF, CAD, and CKD events compared to those in
the higher-score group.

Regarding the individualized prediction of the treatment impact, we observed signifi-
cant effects with interventions such as SGLT2i, ARB, MRA, DPP4i, and lifestyle changes.
The overall observations are consistent with the results from previous intervention studies.
Specifically, it appears that a benefit of ARB in CKD is most prominent in subjects with
the highest risk, likely with late-stage disease, which is in agreement with the failure to
demonstrate a significant benefit of ARB at the early of stage disease [34]. We have also
detected a more pronounced benefit of SGLT2i, particularly in subjects with a high risk of
HF and CKD, but to a much lesser degree in the context of CAD, which is in very good
agreement with the respective intervention studies [35–38]. The impact, in the context of
CAD, appeared to be most prominent for ARB in the subjects with an increased risk, which
was also observed in the intervention trials [39,40]. MRA is a recommended treatment for
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HF in individuals with reduced and preserved ejection fraction. Notably, our findings have
revealed a beneficial effect of MRA in HF among individuals at the highest risk, but not as
clear in CAD or CKD, in line also with the results of the PRIORITY trial [11]. Our results are
consistent with those of previous clinical trials, supporting the potential efficacy of MRA to
improve HF outcomes [41]. However, the impact of MRA on CAD or CKD has not been
clearly demonstrated. In CKD, MRA showed an early effect on renal function changes but
did not have any longer-term effects [42].

Several studies have investigated the potential beneficial effects of GLP1RA and DPP4i
on cardiovascular and kidney diseases [43–46]. Some clinical studies have suggested that
these drugs may have a beneficial impact on the progression of these conditions; however,
data from clinical trials remain somewhat controversial [47]. In our study, we observed
a positive impact in individuals with a higher risk of CAD. However, further trials with
appropriate power and design are necessary. Larger and well-controlled clinical trials will
provide a clearer understanding of the potential benefits of these drugs.

Lifestyle modification is generally recommended for the management of cardiovas-
cular and kidney diseases. However, when it comes to CKD and CAD, physical activity
recommendations should be carefully considered, depending on the patient’s condition,
due to the potential risk of impairing kidney function and increasing proteinuria, or trig-
gering cardiovascular events during exercise [48,49]. As for olive oil in the diet, some
evidence has suggested that this intervention may have a beneficial impact in preventing
cardiovascular or kidney events [50,51]. Specifically, our observations have revealed that
the impact of lifestyle intervention seems to have an individual pattern, with a positive
impact in the patients at both low and high risk. Regarding exercise, we observed a positive
impact in the individuals at lower risk of CAD events and in some individuals at high risk.
Meanwhile, it seemed to have a preventive effect on HF and CKD events in the individuals
at high risk, which is consistent with the findings from previous studies [52,53].

The study also has shortcomings, and the results should be interpreted with caution.
First, this is a retrospective study based on data collected in the context of multiple different
previous studies. However, the large number of subjects included is expected to counteract
the potential bias introduced by some of the specific previous cohorts. Furthermore, the
results observed are fully in line with the previous observations, further supporting the
validity. Second, the impact of the treatment on the urinary proteome by the different means
of intervention is not fully comparable, as the number of subjects in the previous studies, the
demographic characteristics, and the duration of the intervention differed. To counteract
these issues, the data were normalized to Z-scores to prevent the dominance of one specific
intervention. Given the results, the fact that some types of intervention are predicted to
be specifically beneficial in certain situations (e.g., SGLT2 inhibition indicating a benefit in
most patients with a high risk of HF and CKD events, but not in subjects with a high risk of
CAD events), and that this observation is in very good agreement with the observations
in the intervention trials reported, further supports the validity of the approach. At the
same time, inter-individual variability has been observed, which highlights the need for the
personalized aspect of the presented in silico predictor to be further tested in the context
of a prospective clinical intervention trial. Along the same lines, we have not formally
demonstrated that the prediction of the best-suited intervention does, in fact, provide a
significant benefit to the patients, with respect to preventing them from experiencing any
of the patient-relevant endpoints. Such a benefit can only be demonstrated in a prospective
trial. However, based on the data available, we feel that using this approach may well be
justified in a situation when guidance on the ideal intervention is missing. In addition, we
are currently in the process of planning and initiating a prospective trial that is expected to
demonstrate a significant benefit.
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4. Materials and Methods
4.1. Study Participants and Study Design

This study included 5585 datasets from the following previous studies: PRIOR-
ITY, DIRECT, FLEMENGHO, CACTI, CardioRen, CAD prediction, Generation Scotland,
HOMAGE, SUNmacro, and UZ-Gent. Detailed information on the designs and methods
used in these studies are available in the previous publications [11,30,54–65]. The inclu-
sion criteria were as follows: availability of estimated glomerular filtration rate (eGFR,
calculated using the CKD Epidemiology Collaboration (CKD-EPI) formula), information
on cardiovascular events, and availability of follow-up information. The endpoints were
defined as follows: For coronary artery disease, the event was defined as non-fatal and
fatal acute myocardial infarction. A heart failure event was defined as hospitalization or
death from heart failure. For CKD, an event was defined as a decline of ≥40% in eGFR
values during the follow-up, and the date when this decline was observed was considered
as the duration of the follow-up. Only one (the first) endpoint per patient was allowed, and
if an endpoint was reached, the further endpoints were censored.

All individuals with urine samples at the baseline visit were included in the analysis.
Several covariables, including body mass index, age, sex, blood pressure, and eGFR,
were determined at the time of the baseline assessment. The median follow-up was
3.74 ± 3.36 years. The study was conducted according to the guidelines of the Declara-
tion of Helsinki and all datasets were fully anonymized. This study was approved by
the ethics committee of the Hannover Medical School, Germany, under the reference
number 3116-2016.

4.2. Peptide-Based Classifiers and Prediction of Events

The classifier CKD273 was used for the prediction of CKD events and the impact
of the treatments [20]. The predictive capacity of, and the impact of treatments on, the
classifiers HF2 and CAD-160-marker, were assessed for HF and CAD, respectively [29,30].
The scores for each classifier were calculated using a support vector machine (SVM)
algorithm, integrated into the MosaCluster software. All statistical tests were performed
in R statistical software (R version 4.1.0, R Foundation for Statistical Computing, Vienna,
Austria). The Kaplan–Meier estimator was applied to assess the association of longitu-
dinal survival with each classifier. Corresponding hazard ratios (HR) were estimated
using Cox regression models, and log-rank tests were used to assess the hypothesis of no
group differences in hazard functions. All survival analyses were carried out using the R
package “survival”.

4.3. In Silico Impact of Treatments

To assess the impact of various treatments on the classifiers for CAD, HF, and CKD,
the impact on the urinary peptidomic profiles from five different drug-based interventions
(MRA, SGLT2i, GLP1RA, DPP4i, and ARB), one dietary intervention (olive oil), or from
exercise were applied. These data were generated in previous studies that were either
published, submitted for publication, or unpublished (exercise). Briefly, the effect of the
interventions on the urinary peptidomic profiles was assessed, and the fold change values
(as a result of the intervention) were determined. To predict the impact of the treatment,
these fold changes were then used to multiply the intensities of the respective peptides
in each patient, and the predictor (CKD273, HF2, or CAD-160-marker) scores were re-
calculated. A decrease in the classifier score was indicative of a positive impact of the
treatment on the outcome, as depicted in Figure 5. The results were visually represented
using heatmaps generated with the R package “ComplexHeatmap”.
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Figure 5. Schematic depiction of the study design. The relative abundance of 5071 sequenced
urinary peptides was investigated using CE-MS. Data on some selected peptides (ID) for 1 subject are
shown. Several of these peptides were previously identified as being associated with the respective
pathophysiology and combined into classifiers CKD273, CAD160, and HF2. Some of these peptides
are labelled with their respective color. In the first step, the patient received a score for progression to
event using the predefined urinary classifiers. Of the peptides shown, 3, labelled in bold, were found
to be affected by the SGLT2i treatment. In the second step, the abundance of these 3 peptides was
adjusted, based on the observed fold change, as a result of the treatment (“in silico treatment”). The
classifier score was then re-calculated (labelled *), and the result was compared to the initial scoring,
where a decrease in the scoring indicated the benefit of the treatment. In this example, the relevant
impact of the SGLT2i treatment on a CKD and HF event is predicted, but not the impact on CAD.

5. Conclusions

In conclusion, this study pioneers a groundbreaking in silico approach to predicting
the impact of different drugs on an individual’s urinary peptidomic signature and may
provide information on the future impact of specific drugs on hard endpoints in that
individual, opening the door to a precision-based medicine approach to selecting the
optimal treatment for individuals with, or at risk of, CAD, HF, or CKD progression. While
previous studies have demonstrated the potential value of biomarkers in predicting disease
progression and related events, the focus has primarily been on prognosis rather than on
guiding optimal interventions. This study aims to fill this critical gap. By assessing the
previously established effects of the specific treatments on urinary peptides, this approach
enables in silico treatment and offers personalized predictions of treatment impact. The
results show the significant effects of different interventions, such as SGLT2i, ARB, MRA,
DPP4i, and lifestyle changes, based on individualized risk profiles.

These findings open the door to a new era of personalized treatment strategies and
risk management, offering a pathway to improved outcomes for patients at risk of car-
diovascular or kidney diseases. The robustness of the results and their consistency with
previous observations lend credibility to the findings. Nevertheless, the performance of
this in silico test should be validated in a prospective clinical trial as a critical next step to
definitively confirm its clinical utility.
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