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Abstract
Neural networks have emerged as powerful and versatile tools in the field of deep
learning. As the complexity of the task increases, so do size and architectural
complexity of the network, causing compression techniques to become a focus
of current research. Parameter truncation can provide a significant reduction in
memory and computational complexity. Originating from a model order reduc-
tion framework, the Discrete Empirical Interpolation Method is applied to the
gradient descent training of neural networks and analyze for important param-
eters. The approach for various state-of-the-art neural networks is compared to
established truncationmethods. Furthermetrics like 𝐿2 and Cross-Entropy Loss,
as well as accuracy and compression rate are reported.

1 PRELIMINARIES

In this paper we want to investigate the approximation of the neural network evaluation by a reduced network, where
the truncation is obtained by applying the index selection process of the discrete empirical interpolation method (DEIM),
known from the field ofmodel order reduction (MOR). DEIM is a hyper reduction technique used to interpolate nonlinear
functions, which accelerates repeated evaluations. This paper is structured as follows. Section 1.1 provides an introduc-
tion to projection based MOR via the proper orthogonal decomposition (POD) method. Section 1.2 introduces the DEIM
approach. Section 2 provides a brief description of neural network truncation, also known as pruning, and describes the
application of DEIM in this context. We provide a numerical example and our conclusions in Sections 3 and 4.

1.1 Projection based model order reduction

Partial differential equations (PDEs) arise in various fields of natural sciences and engineering. Since analytic solutions
of general partial differential equations can only be obtained in a small number of special cases, numerical methods for
computing an approximation to the exact solution have been developed. Generally, the domain Ω is discretized using
methods like finite elements or finite volumes into a finite subset {𝑥1, … , 𝑥𝑛} = Ω𝑛 ⊂ Ω. For exemplary purposes, letΩ be
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the spatial domain on which the dynamics are defined and 𝑓 the nonlinearity in the PDE

𝜕𝑡𝑢 = 𝑢 + 𝑓(𝑢) in (0, 𝑇) × Ω, (1)

𝑢(𝑡, 𝑥) = 0 for (𝑡, 𝑥) ∈ (0, 𝑇) × 𝜕Ω,

𝑢(0, 𝑥) = 𝑢0(𝑥) for 𝑥 ∈ Ω,

with Dirichlet boundary conditions. Utilizing, for example, the finite differences discretization scheme, one obtains a
system of ordinary differential equations (ODEs)

�̇� = 𝐀𝑦 + 𝐹(𝑦), 𝑦(0) = 𝑦0 = (𝑢0(𝑥1), … , 𝑢0(𝑥𝑛))𝑇, (2)

where 𝐀 ∈ ℝ𝑛×𝑛 is a constant matrix corresponding to the spatial discretization of the differential operator  and

𝐹 ∶ ℝ𝑛 → ℝ𝑛, 𝑦 ↦ 𝐹(𝑦) ∶= (𝑓(𝑦1), … , 𝑓(𝑦𝑛))𝑇, (3)

is a (nonlinear) function defined by the componentwise evaluation of 𝑓. The dimension of system (2) is determined by
the number of discretization points 𝑛, which is growing exponentially in the dimension of Ω. In order to numerically
solve PDE (1) the system of ODEs (2) is evolved in time. The approximate solution of the original system is then given
by 𝑢(𝑡, 𝑥𝑖) ≈ 𝑦𝑖(𝑡), 𝑖 = 1, … , 𝑛. Clearly, for high spatial resolutions the dimension 𝑛 of the discretized systems can become
very large, which results in expensive computations and high memory complexity.
If in addition a fine time resolution is needed and the evolution equation has to be solved multiple times, for example,

for various parameters or initial conditions, computational costs might become unreasonably high. To resolve this issue
MOR techniques have been developed, see for example [1–4]. Here, we introduce POD and DEIM.
In the POD framework one seeks to find a set of orthonormal basis vectors {𝑣1, … , 𝑣𝑟} ⊂ ℝ𝑛, with 𝑟 ≪ 𝑛, such that the

true system state 𝑦(𝑡) can be approximated in the “trial subspace” 𝑟 = span{𝑣1, … , 𝑣𝑟}, that is

𝑦(𝑡) ≈ 𝐕𝑟𝑦𝑟(𝑡),

for some coefficient vector 𝑦𝑟(𝑡) ∈ ℝ𝑚 and𝐕𝑟 = [𝑣1, … , 𝑣𝑟] ∈ ℝ𝑛×𝑟. By substituting the approximation of 𝑦 into Equation
(2) one obtains the approximation

𝐕𝑟𝑦𝑟 ≈ 𝐀𝐕𝑟𝑦𝑟 + 𝐹(𝐕𝑟𝑦𝑟). (4)

To restore equality, the residual 𝐕𝑟𝑦𝑟 − 𝐀𝐕𝑟𝑦𝑟 − 𝐹(𝐕𝑟𝑦𝑟) is “tested” against an 𝑟 dimensional “test subspace”𝑟 ⊂ ℝ𝑛.
In more detail, the Petrov–Galerkin conditions

𝐖𝑇
𝑟 (𝐕𝑟𝑦𝑟 − 𝐀𝐕𝑟𝑦𝑟 − 𝐹(𝐕𝑟𝑦𝑟)) = 0, 𝐖𝑟 = [𝑤1, … , 𝑤𝑟] ∈ ℝ𝑛×𝑟, (5)

are enforced, where the subspace𝑟 is spanned by the orthonormal columns of𝐖𝑟. From the Petrov–Galerkin conditions
(5) we obtain

𝐖𝑇
𝑟 𝐕𝑟𝑦𝑟 = 𝐖𝑇

𝑟 𝐀𝐕𝑟𝑦𝑟 + 𝐖𝑇
𝑟 𝐹(𝐕𝑟𝑦𝑟) or 𝐄𝑟�̇�𝑟 = 𝐀𝑟𝑦𝑟 + 𝐖𝑇

𝑟 𝐹(𝐕𝑟𝑦𝑟), (6)

by redefining 𝐄𝑟 ∶= 𝐖𝑇
𝑟 𝐕𝑟 ∈ ℝ𝑟×𝑟 and 𝐀𝑟 ∶= 𝐖𝑇

𝑟 𝐀𝐕𝑟 ∈ ℝ𝑟×𝑟. The resulting reduced order model (ROM) (6) is a system
consisting of 𝑟 ≪ 𝑛 variables and equations. If the 𝑟 is sufficiently small compared to the dimension 𝑛 of the full order
model (FOM), the time required to obtain an approximation of the PDE solution (1) can be reduced significantly. Often it
is convenient to choose the Galerkin projection 𝐖𝑟 = 𝐕𝑟, which leads to 𝐄𝑟 = I𝑟.
While it is possible to project the linear system dynamics onto a smaller subspace using POD, the nonlinear part of

Equation (6) remains to be evaluated on 𝑛 components. Since 𝐹 might not be explicitly known, precomputing 𝐖𝑇
𝑟 𝐹(𝐕𝑟⋅)

is likely not possible. The reduction given by POD can therefore generally not accelerate the computation of the costly
nonlinear term. Utilising DEIM (see [5]), introduced in the next section, it suffices to compute 𝐹 on only 𝑘 ≪ 𝑛 inputs
and interpolate the output of the remaining components.
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1.2 The discrete empirical interpolation method

As stated previously, the nonlinear function 𝐖𝑇
𝑟 𝐹(𝐕𝑟⋅) of the projected system dynamics (6) is generally not precom-

putable. Due to the structure of the nonlinear function 𝐹, given by the componentwise evaluation of 𝑓, cf. (3), the
computational complexity of an evaluation of 𝐹 is (𝑛𝛼), where 𝛼 is the complexity of a single evaluation of 𝑓. Reducing
the complexity of 𝐹 therefore corresponds to either decreasing the number of components 𝑓 is evaluated at or decreasing
𝛼. DEIM [5] finds a set of 𝑘 ≪ 𝑛 indices {𝑖1, … , 𝑖𝑘} ⊂ {1, … , 𝑛} and constructs a linear interpolation of the form

𝐹(𝑦) =

⎡⎢⎢⎣
𝑓(𝑦1)

⋮

𝑓(𝑦𝑛)

⎤⎥⎥⎦ ≈ 𝐐

⎡⎢⎢⎣
𝑓(𝑦𝑖1

)

⋮

𝑓(𝑦𝑖𝑘
)

⎤⎥⎥⎦ .

For ease of notation we will denote the simultaneous evaluation of the nonlinear function 𝑓 on the components index by
{𝑖1, … , 𝑖𝑘}with𝐹([𝑦1, … , 𝑦𝑘]𝑇) = [𝑓(𝑦𝑖1

), … , 𝑓(𝑦𝑖𝑘
)]𝑇 . Defining𝐏 ∈ ℝ𝑛×𝑘 as a row selectionmatrix, s.t.𝐏𝑇𝑦 = [𝑦𝑖1

, … , 𝑦𝑖𝑘
]𝑇 ,

the linear interpolation of 𝐹(𝑦) can be written as

𝐹(𝑦) ≈ 𝐐𝐹(𝐏𝑇𝑦). (7)

Here 𝐐 ∈ ℝ𝑛×𝑘 is the interpolation matrix corresponding index selection {𝑖1, … , 𝑖𝑘}. Consequently, the costly function 𝑓

only has to be evaluated at 𝑘 ≪ 𝑛 components in each time step. Combined with the complexity of the matrix-vector
multiplication of the linear interpolation, one obtains (𝑛𝑘 + 𝑘𝛼) as computational complexity.
In more detail, the DEIM approach approximates the image space Im(𝐹) ⊂ ℝ𝑛 by a linear subspace 𝑘 ⊂ ℝ𝑛 with

dimension dim(𝑘) = 𝑘 ≪ 𝑛. If 𝑘 is spanned by orthonormal vectors {𝑢1, … , 𝑢𝑘} the evaluation of 𝐹(𝑦) can be
approximated by a linear combination of these basis vectors

𝐹(𝑦) ≈ 𝐔𝑘𝑐(𝑦), (8)

where 𝐔𝑘 = [𝑢1, … , 𝑢𝑘] ∈ ℝ𝑛×𝑘. The coefficients 𝑐(𝑦) ∈ ℝ𝑘 can be uniquely determined by selecting 𝑘 rows in the fol-
lowing way. The index subset {𝑖1, … , 𝑖𝑘} is iteratively constructed by selecting the index 𝑖𝑗 in the 𝑗-th iteration where
the interpolation error of the basis vector 𝑢𝑗 is maximal. The selection of the interpolation components 𝐏𝑇𝑦 of 𝑦 in (7)
is achieved by collecting standard basis vectors 𝑒𝑖 ∈ ℝ𝑛 into a matrix 𝑃 = [𝑒𝑖1

, … , 𝑒𝑖𝑘
] ∈ ℝ𝑛×𝑘, which allows to require

exactness in (8), for example

𝐏𝑇𝐹(𝑦) = 𝐏𝑇𝐔𝑘𝑐(𝑦).

Since 𝐏𝑇𝐔𝑘 is invertible, the unique solution is given by 𝑐(𝑦) = (𝐏𝑇𝐔𝑘)−1𝐏𝑇𝐹(𝑦), resulting in

𝐹(𝑦) ≈ 𝐔𝑘(𝐏𝑇𝐔𝑘)−1𝐏𝑇𝐹(𝑦).

Defining 𝐐 = 𝐔𝑘(𝐏𝑇𝐔𝑘)−1 and utilising the componentwise structure of 𝐹, approximation (7) is obtained.
The advantage of utilizing DEIM in conjunction with POD is that no additional computations are required, if the

subspaces 𝑟 and 𝑘 are constructed in the following way. First, singular value decompositions (SVD) of the snapshot
matrices

𝐗 ∶=
[
𝑦(𝑡1), … , 𝑦(𝑡𝑠)

]
= 𝕍𝑋𝕊𝑋𝕎𝑇

𝑋
and 𝐅 ∶=

[
𝐹(𝑦(𝑡1)), … , 𝐹(𝑦(𝑡𝑠))

]
= 𝕍𝐹𝕊𝐹𝕎𝑇

𝐹
,

of the system state and the evaluation of 𝐹 at observation times 𝑡1, … , 𝑡𝑠 are computed. Let 𝑙1, 𝑙2 be the ranks of 𝐗

and 𝐅, respectively, then the matrices of left singular vectors are given by the orthonormal columns of the matrices
𝕍𝑋 = [𝑣1, … , 𝑣𝑙1

] ∈ ℝ𝑛×𝑙1 and 𝕍𝐹 = [𝑣1, … , 𝑣𝑙2
] ∈ ℝ𝑛×𝑙𝑙 . The right singular vectors form the orthonormal columns of the

matrices𝕎𝑋 ∈ ℝ𝑛×𝑙1 and𝕎𝐹 ∈ ℝ𝑛×𝑙𝑙 . The singular values are contained in the diagonalmatrices𝕊𝑋 = diag(𝜎𝑋,1, … 𝜎𝑋,𝑙1
)

and 𝕊𝐹 = diag(𝜎𝐹,1, … 𝜎𝐹,𝑙2
) in decreasing order. The projection matrices 𝐕𝑟 and 𝐔𝑘 are then constructed by taking the 𝑟

and 𝑘 leading singular vectors 𝐕𝑟 = [𝑣1, … , 𝑣𝑟] and 𝐔𝑘 = [𝑣1, … , 𝑣𝑘]. The neglected singular values can be used to bound
the error of the interpolation by the DEIM Algorithm.
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2 NEURAL NETWORK PRUNING

Neural networks are a powerful class of models used in a wide range of applications, for example, classification tasks,
pattern recognition, simulation or surrogate modelling. Since these models often require a high number of parameters for
complex tasks and therefore large amounts of computational power andmemory, various approaches have been developed
to address the computational challenges. These so called “Pruning” methods aim to remove parameters or even entire
structures, for example, filters in a convolutional layer, while trying to preserve the overall quality of predictions.
Training a neural network consists of finding sets of weights 𝑊 and biases 𝑏, such that a given Loss function 𝐿(𝑊, 𝑏),

for example, the following 𝐿2 Loss

𝐿(𝑊, 𝑏) ∶=
∑

(𝑥,𝑦)∈(×)

||𝑁(𝑥, 𝑊, 𝑏) − 𝑦||2
2
,

based on the Euclidean norm || ⋅ ||2 is minimized, where 𝑁(𝑥, 𝑊, 𝑏) is used to indicate the evaluation of the described
neural network architecture with weights 𝑊 and biases 𝑏 on the input data 𝑥 ∈  , the target output data is denoted by
𝑦 ∈  . Originating in the setting of optimization, the gradient descend method serves as the basis for more sophisticated
optimization algorithms, like BFGS or the Adam optimizer. Given a set of parameters 𝑝(𝑛) = vec(𝑊(𝑛), 𝑏(𝑛)) ∈ ℝ𝑛𝑝 at the
𝑛-th gradient descend training step, an update is performed according to

𝑝(𝑛+1) = 𝑝(𝑛) − 𝜂∇𝑝𝐿(𝑝(𝑛)), (9)

where 𝜂 > 0 is called the learning rate. In the context of ODEs, Equation (9) can be regarded as an Euler discretization of
the gradient flow

�̇� = −∇𝑝𝐿(𝑝), (10)

with stepsize 𝜂 > 0. Generally, the gradient flow (10) does not contain an immediately accessible linear component,
causing the POD approximation (6)

�̇�𝑟 = −𝐖𝑇
𝑟 ∇𝑝𝐿(𝐕𝑟𝑝𝑟).

not to be precomputable, which leads us to the use of the hyper reduction technique DEIM, described in Section 1.2. How-
ever, since the evaluation of a neural network𝑁 is inextricably linked to its structure, performing an intrusive truncation
method like POD or DEIM is infeasible. If the objective is to obtain a ROM, that can be treated again as a neural network;
an approach is to identify an “important” set of parameters 𝑝𝑖1

, … , 𝑝𝑖𝑘
, sparsifying the model accordingly by defining a

mask 𝑀 ∈ {0, 1}𝑛𝑝 , s.t.

�̃�𝑖 ∶= (𝑝◦𝑀)𝑖 =

{
𝑝𝑖, 𝑖 ∈ {𝑖1, … , 𝑖𝑘},

0, else

where ◦ denotes the Hadamard product, and using 𝑓(𝑥, �̃�) as an approximation of 𝑓(𝑥, 𝑝). Such methods are referred to
as “pruning” [6]. Current methods prune a network at initialization or after training. Pruning at initialization [7] selects
parameters after the network is initialised, but before the actual training occurs. In contrast, for pruning after training
[8], a network is trained until convergence in a first step. Next, the parameters 𝑝 are scored by computing a saliency
function 𝑆 ∶ ℝ𝑛𝑝 → ℝ𝑛𝑝 and truncated, that is, set to zero, if their score is below a selected threshold. Subsequently fine
tuning of the network is performed, which means that the network is again trained until convergence to allow recovery.
This procedure is repeated until the desired compression is achieved. The authors of [8] summarize the “pruning after
training” method by Algorithm 1.
Commonbaselinemethods for benchmarking [8] aremagnitude pruning (MP) and gradientmagnitude pruning (GMP),

with saliency functions componentwise given by

𝑆𝑀𝑃
𝑖

(𝑝) = |𝑝𝑖| and 𝑆𝐺𝑀𝑃
𝑖

(𝑝) = |𝑝𝑖 ⋅ 𝜕𝑝𝑖
𝐿(𝑝)|. (11)
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ALGORITHM 1 Pruning after training

𝑝 ← initialize network
𝑝 ← train until convergence criterion is reached
for 𝑖 = 1 ∶ NumPruningIterations do

𝑠(𝑝) ← score 𝑝

𝑀 ← construct mask from 𝑠(𝑝)

𝑝 ← fine tune 𝑝◦𝑀

end for

F IGURE 1 Subdivision of [−4, 4] × [−20, 20] into 𝑀1, 𝑀2, 𝑀3, 𝑀4.

Another reference method is random pruning (RP), in which in each pruning pass a fixed number of randomly chosen
weights are removed. We propose to precompute the order in which the weights are pruned by utilization of the DEIM
index selection procedure. By defining the nonlinear function 𝐹 as the gradient of the Loss

𝐹(𝑝) = −∇𝑝𝐿(𝑝), 𝐹 ∶ ℝ𝑛𝑝 → ℝ𝑛𝑝 , (12)

we can obtain basis functions of the image of 𝐹 by training the neural network for 𝑠 steps and collecting the corresponding
states into a snapshot matrix 𝐅 and its singular value decomposition

𝐅 =
[
𝐹(𝑝(1)), … , 𝐹(𝑝(𝑠))

]
=
[
−∇𝑝𝐿(𝑝(1)), … , −∇𝑝𝐿(𝑝(𝑠))

]
= 𝐔𝐒𝐕𝑇. (13)

In contrast to Section 1.2, a non-truncated SVD of 𝐅 is performed to obtain a reordering {𝑝𝑖1
, … , 𝑝𝑖𝑛

} of all parameter
components {𝑝1, … , 𝑝𝑛𝑝

}. Subsequently, the index selection process of DEIM is performed to obtain {𝑖1, … , 𝑖𝑛}.

3 COMPARISON TO BASELINEMETHODS

In our numerical experiment, a fully connect feedforward neural network with 4 layers, containing 20 neurons each with
logistic sigmoid activation functions and four output neurons, is investigated. The total number of network parameters is
hence 𝑛𝑝 = 984. The network was trained on the simple classification task to assign the label 𝑒𝑖 ∈ ℝ4 to the point (𝑥1, 𝑥2)

if (𝑥1, 𝑥2) ∈ 𝑀𝑖 , cf. Figure 1. The network was trained using gradient descent over 𝑠 = 104 epochs, a training set consisting
of 100 randomly chosen datapoints and the standard 𝐿2 Loss. To construct the snapshot matrix 𝐅 from Equation (13), all
gradients 𝐹(𝑝(𝑖)) = −∇𝑝𝐿(𝑝(𝑖))), 𝑖 = 1, … , 𝑠 were collected during the training. To allow a better exploration of the image
space of 𝐹, 𝑛𝑎𝑠𝑎 additional gradients from 𝑛𝑎 short training trajectories, each consisting of 𝑠𝑎 gradient descend steps,
were included.
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ALGORITHM 2 Construction of nonlinear snapshot matric 𝐅

𝑝 ← initialize network with random weights
𝐅 ← [ ]

for 𝑖 = 1 ∶ 𝑠 do
compute 𝐹(𝑝) = −∇𝑝𝐿(𝑝)

𝐅 ← [𝐅, 𝐹(𝑝)]

𝑝 ← 𝑝 + 𝐹(𝑝)

end for
for 𝑖 = 1 ∶ 𝑛𝑎 do

𝑝 ← initialize network with random weights
for 𝑗 = 1 ∶ 𝑠𝑎 do
compute 𝐹(𝑝) = −∇𝑝𝐿(𝑝)

𝐅 ← [𝐅, 𝐹(𝑝)]

𝑝 ← 𝑝 + 𝐹(𝑝)

end for
end for

ALGORITHM 3 Pruning experiment

for 𝑗 = 1 ∶ 𝐾 do
𝑝 ← initialize network with random weights
𝑝 ← train network until convergence criterion is reached
formethod in PruningMethods do

�̂� ← 𝑝

for 𝑖 = 1 ∶ NumPruningIterations do
𝑠(�̂�) ← score �̂�

𝑀 ← construct mask from 𝑠(�̂�)

�̂� ← fine tune 𝑝◦𝑀

compute metrics for specified compression rates
end for

end for
end for
compute empiric mean and empiric standard deviation for each metric and compression rate

The snapshot matrix 𝐅, as constructed by Algorithm 2, therefore consists of 𝑛𝑝 rows and 𝑠 + 𝑛𝑎𝑠𝑎 columns.We compare
our approach for 𝑛𝑎 ∈ {0, 10, 100} and 𝑠𝑎 = 10 to the baselinemethodsmentioned in the previous section, cf. Equation (11).
The experiment is set up as follows. First, Algorithm 2 is performed with 𝑛𝑎 = 100, returning the nonlinear snapshot
matrix 𝐅100. From 𝐅100, the submatrices 𝐅0 and 𝐅10, consisting of the first 𝑠 and 𝑠 + 10𝑠𝑎 columns are extracted. These
submatrices correspond to the choice 𝑛𝑎 = 0 and 𝑛𝑎 = 10, respectively. For each matrix 𝐅0, 𝐅10 and 𝐅100, the first 𝑛𝑝 left
singular vectors are computed. Subsequently the index selection process of the DEIM Algorithm is performed on each set
of singular vectors, cf. Equation (13) at the end of the previous section and [5]. Afterwards Algorithm 3, an extension of
Algorithm 1, is performed. After the training of the randomly initialized network has converged, each pruning method
is performed according to the second part of Algorithm 1. For each pruning method the 𝐿2 Loss, Top1 accuracy, that
is, the ratio of correct predictions to total number of predictions, are reported. In addition we report the Cross-Entropy
Loss −

∑100

𝑖=1
𝑦𝑇

𝑖
log(𝑞𝑖), where log(𝑞𝑖) is the componentwise natural logarithm of 𝑞𝑖 , which is the softmax rescaled output

𝑁(𝑥𝑖, 𝑊, 𝑏) and 𝑦𝑖 is the label corresponding to 𝑥𝑖 . The metrics are computed at the percentages of remaining network
parameters 𝑐 ∈ {1,

1

2
,

1

4
,

1

8
,

1

16
,

1

32
,

1

64
}. The experiment is repeated𝐾 = 128 times. To obtain the plots in Figure 2, the sample

mean and sample standard deviation are computed for each pruning method and each compression rate.
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(A) (B)

(C) (D)

F IGURE 2 𝐿2 Loss, Top1 accuracy and Cross-Entropy metrics as computed by Algorithm 3 for methods GMP,MP, RP as well as our
method for 𝑛𝑎 = 0, 10, 100 and singular values of snapshot matrices 𝐅0, 𝐅10, 𝐅100.

4 CONCLUSIONS AND FURTHER RESEARCH

Wewould like to point out, that the index ordering {𝑖1, … , 𝑖𝑛} is fixed before Algorithm 3 is performed and does not depend
on the weights of the neural network at the time of pruning. Therefore, in contrast to the pruning methods used for
comparison, our approach does not adapt to the state of the neural network during the pruning procedure.
An immediate observation in Figure 2(A) is that the decay of singular values of 𝐅0 is shifted by a slower initial decay,

when additional trajectories (𝑛𝑎 = 10, 100) are incorporated into the snapshot matrix. In the case, where no additional
trajectories were incorporated (𝑛𝑎 = 0), our approach outperforms MP for low compression rates 𝑐 = 1,

1

2
,

1

4
,

1

8
and is

comparable to GMP for 𝑐 = 1,
1

2
,

1

4
in the Top1 accuracy metric with overall similar standard deviations compared to the

reference methods, except random pruning. The reference method GMP outperforms all other methods for 𝑐 ≥
1

16
. Our

approach decreases over all metrics for 𝑐 ≥
1

16
, when using additional trajectories in the snapshot matrices (𝑛𝑎 = 10, 100).

In the case of high compression rates 𝑐 =
1

32
,

1

64
, the pruning order derived from 𝐅10 and 𝐅100 show better scores over all

metrices. Furthermore, we observe a reduced standard deviation for our approach compared to the reference methods
GMP and MP by up to one order of magnitude.
The results of the reported experiments, combined with the non-adaptivity of our approach to the network state during

the pruning stage, suggest that an identification of an approximating sub network from the networks gradients is possible.
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Since we only conducted our experiments for a neural network of simple structure, further research, investigating the
proposed approach for more complex structures, is needed. The decrease of standard deviation and overall comparable
or better performance for 𝑛𝑎 = 100 and 𝑐 =

1

64
,

1

32
suggest the existence and identification of an “essential” or “worst-

case” subnetwork. A possible connection to the pathway decomposition of the neural tangent kernel, proposed in [7]
is of interest. In addition, the view of residual neural networks in the context of dynamical systems [9] might allow an
application of other MOR techniques.
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