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techniques for a personalized
therapy or treatment selection
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Despite targeted therapies and immunotherapies have revolutionized the

treatment of cancer patients, only a limited number of patients have long-term

responses. Moreover, due to differences within cancer patients in the tumor

mutational burden, composition of the tumormicroenvironment as well as of the

peripheral immune system and microbiome, and in the development of immune

escape mechanisms, there is no “one fit all” therapy. Thus, the treatment of

patients must be personalized based on the specific molecular, immunologic

and/or metabolic landscape of their tumor. In order to identify for each patient

the best possible therapy, different approaches should be employed and

combined. These include (i) the use of predictive biomarkers identified on

large cohorts of patients with the same tumor type and (ii) the evaluation of

the individual tumor with “omics”-based analyses as well as its ex vivo

characterization for susceptibility to different therapies.

KEYWORDS
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1 Introduction

Cancer is one of the major causes of death worldwide and despite the development of

many novel targeted therapies, a high number of patients either do not respond or develop

resistance to the treatment. Similar holds true for tumor immunotherapeutic approaches

including the treatment with immune checkpoint inhibitors (ICPi), which induce a

complete tumor regression, but only in a small number of patients, whose characteristics

have not yet been completely understood. Thus, there is an urgent need to determine for

each patient the best possible therapy either by identifying biomarkers that can predict

response to an available “off the shelf” therapy or by creating an individually-tailored

(immune-based) therapy (Figure 1). Due to the availability of different high throughput

technologies, which are currently also used in clinical research and practice, there exist

currently efforts to integrate different omics technologies to advance not only the

understanding of the biology of each individual tumor specimen, but also to implement

this information e.g. for patients’ stratification and treatment decisions.
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In the following paragraphs, we will report on the recent

developments in the setting of genomics, transcriptomics,

proteomics, microbiomics, metabolomics and immunomics and

how they have been beneficial for the management of tumors by

providing some examples of clinically relevant discoveries.
2 Search for biomarkers for patient
stratification

Based on the improvements over the last decade in different

“omics” technologies, a huge amount of data was generated from

large cohorts of patients with tumors of different histological origin

and (sub)types. Large scale genomics, transcriptomics and

proteomics analyses have increased our understanding of the

(genetic) drivers of cancer and also helped to identify new

clinically relevant disease subtypes (1, 2). All these data could be

correlated with patients’ clinical characteristics, age, sex, outcome

and therapy response in order to identify novel diagnostic,

prognostic and predictive markers that will help patients’

stratification to the different therapies currently available.
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For example, the improvement in genomic and gene sequencing

techniques together with their reduced costs allows deep sequencing

not only of different sample types from each patient, including next

to tumor lesions also liquid biopsies and stool, but also of multiple

types of nucleic acid species, such as DNA and coding as well as

non-coding RNA. Moreover, the development of single cell RNA

sequencing (scRNAseq) technologies has highlighted a high level of

intra-tumoral heterogeneity that was not detected by previous bulk

RNA sequence evaluations (3). Sequencing has also been used to

identify regulating mechanisms, not only in the form of non-coding

RNA species, but also by determining the genome 3D organization,

in particular the accessibility of genetic loci to transcription (4).

Furthermore, standard immunohistochemistry (IHC) used for

the “pathological/diagnostic” evaluation of tumor samples has been

upgraded by different technical approaches, such as the conjugation

of antibodies (Ab) with metals or barcodes versus the use of

sequential cycles of staining and elution, to multiplex IHC. In

such settings, a high number of different Ab can be used on the

same tissue slide thereby enabling a deep characterization of the

different cell types present within the tumor tissue, which can also

be evaluated for their localization and relative spatial distribution

and thus their possibility to interact.
new cancer patient

„historical“ patient cohort

(prognostic and) 

predictive biomarkers

select best „off the shelf“ therapy

- treatment with therapeutics (single

agent or combinations) 
(ex vivo, in vitro, in animal models)

- personalized immunotherapy
(neoAg vax, ACT with TIL or TCR-

transfected cells)

confirm prediction

tumor specimen, liquid biopsies…

DNA, coding / non-coding RNA, proteins, metabolites

malignant, stromal and immune cells

microbiome

FIGURE 1

Strategies to select an individually-tailored cancer therapy. Specimen from “new” cancer patients can be evaluated for the expression of biomarkers
previously identified to predict response to therapy and/or directly tested ex vivo for responsiveness to such therapy. In the case of neoAg as a
biomarker, a personalized immunotherapeutic approach can be created.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1258013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Massa and Seliger 10.3389/fimmu.2023.1258013
The multiplicity of detection has further been extended also to

RNA species with different forms of fluorescence in situ

hybridization (FISH) that allows the identification of more than

hundreds of mRNA transcripts/slide at the single cell or almost

single cell level (5).

Employing one or a combination of these techniques, a number

of “biological read outs” have been evaluated in the search of

biomarkers that would allow patients’ stratification with respect

to risk and probability to respond to different therapies, thus leading

to the selection of an individually tailored therapeutic approach.

These biological read outs represent all major hallmarks of cancer

(6), ranging from the intrinsic capacity of the transformed cells to

proliferate, migrate, survive and rewire their metabolism to the

composition of the tumor microenvironment (TME) and the

interactions among its different cellular components, namely

stromal and immune cells.
2.1 Tumor signatures

Neoplastic transformation is mediated by an accumulation of

mutations in oncogenes or tumor suppressor genes (7), some of

which are shared within the particular tumor type or subtype,

whereas others are individual, which might be e.g. the reason, why

many patients do not respond to “general tumor type-selected”

targeted therapies.

In addition to such inter-patient heterogeneity, therapy

resistance is also related to the intra-patient heterogeneity of the

tumor. Since a long time it is known that there exists a niche of

tumor stem cells with a higher resistance to therapy. Recently, a

stemness signature correlating to patients’ risk and low response to

ICPi therapy across many tumor types has been described (8).

Similarly, a pan-cancer evaluation for prediction of resistance to

ICPi identified a malignant cell signature centered on the CDK4/6

pathway, which was associated with the induction of a T cell

excluded phenotype (9).

The complexity of the intra-patient heterogeneity of the tumor

has been further highlighted by the widespread application of

multiplex IHC and scRNAseq, which can identify within the

“bulk” tumor mass individual cells expressing characteristics of a

tumor subtype distinct from the bulk tumor (10). Such intra-tumor

heterogeneity has important consequences in patients with

metastatic disease. Indeed, the evaluation of paired samples from

primary and lymph node (LN) metastases of breast cancer (BC)

patients highlighted discrepancies in the prevalent “molecular

subset” between the two locations suggesting that for optimal

therapy not only the knowledge of the presence of LN metastases,

but also the characterization of their molecular features are

required (11).

In addition to bioinformatics analyses of available patients´ data

from large cohorts and evaluation of their response to therapy to

identify predictive gene signatures, databanks of cell lines and their

in vitro tested sensitivity to chemotherapeutic drugs are also used to

create predicting algorithms of responsiveness [reviewed in (12)].

For example, Geeleher and co-workers employed whole genome

expression data obtained frommultiple tumor cell lines with known
Frontiers in Immunology 03
sensitivity to selected drugs to generate a prediction tool allowing

the identification of drug sensitivity of tumor from patients in a

clinical trial (13). Despite the analyses at the proteomic level are for

now far from clinical translation, Tognetti and co-authors were able

to identify different signaling pathways in BC cell lines that were

able to predict response to specific drugs of patient-derived

xenografts (PDX) (14).
2.2 Neoantigens

Due to their high proliferation rate, malignant cells accumulate

mutations that can lead to the generation of neoantigens (neoAg),

i.e. immunogenic peptides encompassing a tumor specific mutation,

against which no central tolerance has been created and thus

representing optimal targets for immunotherapy (15).

In order to be implemented for therapy, such neoAg have to be

identified, which is currently performed by two complementary

strategies: (i) at the protein level by elution of peptides associated

with the HLA class I and class II molecules on the surface of tumor

cell (lines) followed by their identification via mass spectrometry,

which leads to the generation of different databanks (16, 17). This

approach has been recently expanded to healthy tissue in order to

create a reference for a more precise identification of “real” tumor

associated neoAg (18). (ii) At the genetic level by comparison of the

genomic sequences between malignant and normal cells, which

allows the identification of somatic mutations and translocations

within the tumor cells. Peptides encompassing such mutations are

then subjected to “in silico” analysis for the possibility to give rise to

epitopes presented via the HLA alleles expressed by the patient (19).

In recent years, next to “standard” HLA class I-restricted peptides,

these strategies have identified many neoAg-restricted to HLA class

II molecules (20, 21) or derived from non-coding sequences (22)

leading to the development of new algorithms for their improved

identification from sequencing data (23–25). Continuous progresses

in artificial intelligence approaches are further improving the

capabilities to identify neoAg for clinical application (26).

Some of the identified neoAg are “public” or shared,

corresponding to hotspot of mutations present in many tumors

within and among different histotypes or derived from viral

antigens in viral-driven cancers. In some cases, “off the shelf”

therapeutics have been generated for such neoAg, such as

transgenic T cell receptors (TCR) or TCR mimics against shared

mutations of KRAS (27) and p53 (28) as well as against human

papillomavirus (HPV) antigens (29).

However, in most cases, neoAg are private, i.e. specific for each

individual tumor, and therefore a personalized vaccine has to be

created for each patient. Many different strategies can be

implemented, ranging from their direct use as a vaccine in the

form of synthetic peptides or of the coding mRNA to their in vitro

use to load dendritic cells (DC) that will then be employed for

vaccination or for in vitro expansion of autologous tumor

infiltrating lymphocytes (TIL) (30, 31). Such in vitro T cell

restimulation with the neoAg peptides can be implemented as a

screening tool to test the immunogenicity of the predicted epitopes

as well as to isolate neoAg-specific T cell clones and their TCR (32).
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Those TCR sequences could then be cloned and transfected into

autologous peripheral T cells to provide a non-exhausted source of

neoAg-specific TCR-transgenic effector cells.

Next to the improved identification of possible neoAg, there are

also studies to improve their clinical implementation with better

strategies for loading DC with polypeptides (33) or optimal spacers

for multi-epitope constructs to allow processing into the single

peptides (34). Moreover, a genetic and proteomic signature for

neoAg-specific CD4+ and CD8+ T cells has been identified, which

could allow the isolation of neoAg-specific T cells from patients’

TIL without the need of previous in vitro expansion (35).
2.3 Non-coding RNA species

Deep sequencing techniques have identified an array of non-

coding RNA species, such as microRNA (miRNA), long non-coding

RNA (lncRNA) and circular RNA (circRNA), which are all involved in

the regulation of different aspects of malignant transformation (36).

MiRNA are short 20-22 nucleotide RNA sequences that upon

binding to complementary regions (seeds) on target mRNA

molecules affect their transcription leading in the majority of

cases to its inhibition by inducing RNA degradation or inhibiting

its translation. Sequencing of patients derived material highlighted

multiple miRNA, which could serve as prognostic markers and/or

predict treatment response, for example to radiotherapy (RT) and/

or tamoxifen in BC patients (37), to RT in prostate cancer (38) and

to cisplatin in lung cancer (39).

LncRNA are categorized into different subtypes depending on

the chromosomal region from which they are translated and can

exert different functions depending on their cellular sublocalization

(40). While nuclear located lncRNA are involved in the genomic

organization, such as e.g. the inactivation of the second X

chromosome in female cells (41), the cytoplasmic lncRNA are

involved in post-transcriptional regulation either by acting as a

miRNA sponge or by directly interacting with the transcript or with

RNA-binding proteins (RBP) (42). Functionally, lncRNA could be

involved in all hallmarks of cancer and can therefore be used both as

prognostic markers and as therapeutic targets. In multiple myeloma

(MM), an array of lncRNA have been associated with resistance to

chemotherapy (43). In colorectal cancer (CRC) a lncRNA signature

can also predict response to immunotherapy as well as to

chemotherapy (44), while in BC linc00665 has been demonstrated

to predict response to cisplatin-paclitaxel (45). Evaluation of

glioblastoma multiforme identified different immune related

lncRNA signatures characterizing different disease subtypes

driven by distinct genes and displaying discordant sensitivity to

multiple treatments (46).

CircRNA regulates protein translation by different mechanisms,

e.g. acting as a sponge for miRNA or protein, but also by interacting

with proteins involved in transcription or splicing. In addition,

some circRNA can also be translated into proteins (47). Next to

being established as diagnostic and prognostic markers in different

tumor settings, their use as predictive tool is currently investigated.

For example, circ_0026652 could predict response to different
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targeted treatments in MM (48), whereas in glioblastoma circ-

METRN was involved in RT resistance (49). As potential

therapeutic target, studies performed with ovarian cancer cell

lines indicated a role for circ_0025033 in the resistance to

paclitaxel due to the expression of FOXM1 upon inhibition of

mir-532-3p (50), whereas circPVT1 protects osteosarcoma from

doxorubicin and cisplatin (51, 52) and gastric cancer from

paclitaxel (53).

Since both lncRNA and circRNA can compete with miRNA for

binding to target mRNA, different studies are currently performed

to identify competitive endogenous RNA (ceRNA) networks

composed of mRNA, miRNA, lncRNA and circRNA. This will

allow to determine the overall effect of all regulatory components at

the level of mRNA transcription to improve their diagnostic and/or

prognostic value. For example, a prognostic network was identified

in acute myeloid leukemia (AML) (54), whereas a ceRNA network

was involved in predicting the efficacy of interferon (IFN)-a
treatment in hepatocellular carcinoma (55, 56). Similarly, in CRC,

a ceRNA signature identified high risk patients, who had also an

enhanced sensitivity to different drugs and immunotherapies (57).

Genetic material can also be released by (tumor) cells into the

circulation, not only within extracellular vesicles (EV), but also as

free molecules. Changes in the repertoire of circulating free DNA

(cfDNA) as well as RNA are associated with disease progression and

thus studied as diagnostic, prognostic as well as predictive markers

(58). For example, serum levels of miR-10b and soluble E-cadherin

can predict BC metastases (59), whereas a ceRNA signature in the

exosome has been shown to predict response to neoadjuvant

chemotherapy in patients with advanced gastric cancer (60).
2.4 3D genomic organization

Evaluation of the 3D organization of the genome of

transformed cells can provide information on the existence of

chromosomal fusion or translocation, which can lead not only to

driver mutations and neoAg, but also to changes in the regulation of

gene transcription that could affect therapy response. Indeed,

mutations in genes such as histone 1 (61) and STAG2 (62) have

profound consequences on the 3D genome landscape of the cells by

affecting important signaling pathways in tumors. In addition,

screening of glioblastoma stem cells from different patients

highlighted differences in their 3D genome leading to different

signatures and targetable pathways (63). In BC cell lines, changes in

the genomic 3D structure during drug treatment or upon acquired

resistance were identified, which could possibly help to define new

targets for therapy or reversal of resistance (64–66).

Employing “older techniques”, such as FISH and 3D-FISH,

differences identified in the translocation between chromosome 9

and 22 in Brc-Abl chronic myeloid leukemia (CML) were associated

with the responsiveness to tyrosine kinase inhibitors (TKI), thus

correlating the level of nearby chromosome disruption to

chemotherapy-responsiveness (67). In a murine BC model, genes

in different 3D conformation had a prognostic value for response to

endocrine therapy (68)
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2.5 Metabolism

Alterations in the tumor metabolism are one hallmark of cancer

that not only intrinsically allow malignant cells to proliferate and

survive, but also help to establish an immunosuppressive TME, thus

further favoring tumor development through immune escape (69). The

tumor associated metabolism has been characterized at the level of the

mutational profile and the expression of metabolic genes within tumor

specimens, by the characterization of metabolites in liquid biopsies via

mass spectrometry or directly within the patients by using specific

reagents for PET-CT (70) as well as other emerging techniques (71).

General differences in the expression of metabolic genes allowed

to stratify patients with ovarian cancer into high and low risk

patients and could also predict an enhanced response to different

chemotherapies (72). In addition, a 7 metabolism-gene signature

identified in BC and further validated in melanoma and urothelial

epithelial cancer was stratifying patients for outcome and therapy

response (73). Enhanced biosynthesis of nicotinamide adenine

dinucleotide (NAD+), an abundant metabolite that plays a key

role in cellular homeostasis, stemness and immune response (74),

not only discriminates healthy versus BC tissue, but can also

identify a subgroup of patients with a worse prognosis (75).

Moreover, since patients with a high NAD+ biosynthesis have a

higher immunogenicity as well as an increased immune

suppression, this score might be implemented to select patients

with enhanced responsiveness to immunotherapies, such as

ICPi (75).

Other studies focused on specific metabolic pathways in order

to stratify patients. The most known alteration in the tumor

metabolism is the Warburg effect, namely the prevalent usage of

anaerobic glycolysis to degrade glucose even in the presence of

oxygen (76). In such context, Sun and co-authors identified a lactate

related signature in renal cell carcinoma (RCC) patients, which can

predict overall survival (OS) (77).

In light of the important role of lipids for signaling as well as for

membrane formation, Zhu and coauthor analyzed specimens from

bladder cancer identifying a gene signature with 11 lipid-related

genes that was able not only to stratify patients better than the

currently used system based on clinical characteristics, but also to

predict response to immunotherapy (78). In cervical cancer, a

signature based more specifically on fatty acid metabolism

identified high risk patients (79), whereas the sphingolipid

metabolism in association with hypoxia stratified patients with

pancreatic ductal adenocarcinoma (80).

Amino acids and their metabolism have also been evaluated. In

different tumor histotypes, the presence of specific free amino acids

in biological fluids can be used as an early diagnostic marker for

tumor development as well as for more subtle patients’ stratification

regarding grading and outcome (81, 82). In ovarian cancer, a score

based on the expression of genes associated with the adenosine

metabolism was able to identify patients with a shorter survival and

with a (predicted) lower sensitivity to different chemotherapeutics

(83), while in lung adenocarcinoma, a signature associated with a

low glutamine metabolism identified low-risk patients, which

respond to immunotherapy (84)
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2.6 Microbiome

The studies performed during the last decade demonstrated that

the different host-intrinsic microorganisms composing the

microbiome are an important component of the human body,

which influence many different functions, ranging from the

cellular metabolism to the immune response (85). Thus,

alterat ions in the microbiome composit ion can have

consequences on disease development and therapy response.

With the widespread implementation of shotgun metagenomics

or 16S rRNA sequencing to evaluate the different species composing

the microbiota, a huge amount of information on the microbiome

of patients with different tumor types and responding or not to

different therapies has been generated and investigated for

biomarkers, which could be used for patient stratification as well

as for possible therapeutic approaches to improve treatment

outcomes in cancer (86).

Whereas the first studies analyzed the gut microbiome, which is

the most abundant in the host and easy to sample, the focus has now

also moved to the investigation of the intra-tumoral microbiota.

Indeed, for all the major tumor types, also from soft tissue with no

direct contact with the outer world (87), the presence of intra-

tumoral bacteria, viruses and archea has been demonstrated, which

is different to the corresponding normal tissue microbiome,

indicating a “non-random” mechanism of accumulation. Indeed,

evaluation of the spatial distribution of the microorganisms within

the tumor lesions indicated a specific accumulation into niches

enriched of immunosuppressive cells and depleted of T cells, thus

underlying an active interaction with the components of the TME

(88). Also for the intra-tumoral microbiome, there is a high level of

inter-patient heterogeneity (89).

The determination of the composition of the gut microbiota was

used for general prognosis as well as for the prediction of patients’

responsiveness to systemic therapies, such as chemotherapies and

immunotherapy, thereby linking the response to treatment with the

presence or absence of different species (90–92). In contrast, the

response to local therapy, such as RT, has been associated with the

intra-tumoral, but not with the gut microbiome (87)

In some cases, the mechanisms responsible for the correlation

with the patients’ outcome were also identified. For example,

different gamma-proteobacteria strains can protect CRC from

gemcitabine chemotherapeutics by directly metabolizing it into its

inactive form (93), whereas Fusobacterium nucleatum promotes

chemo-resistance in this disease by activating the autophagy

pathway of tumor cells and thus protecting them from apoptosis

induction (94). The opposite mechanism, a reduction of tumor

autophagy due to accumulation of reactive oxygen species, is

responsible for the protective role of the microbiota metabolite

indole-3-acetic acid in pancreatic cancer (95). Instead, the

promotion of tumor cell death by pyroptosis is responsible for the

enhanced response to immunotherapy of triple negative breast

cancer (TNBC) patients with higher intra-tumoral levels of the

microbial metabolite trimethylamine N-oxide (96). Another

mechanism, by which the microbiota can influence tumor

development, is the neoAg presentation via HLA surface antigens.
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Indeed, characterization of peptides eluted from melanoma

metastasis identified many HLA class I as well as class II epitopes

derived from intracellular pathogens, which could also be

recognized by the patients´ TIL (97).

In addition to its prognostic and predictive role, the microbiota

could also be used therapeutically to improve therapy response via

fecal transfer from healthy donors or from patients responding to

the same therapy (98).
2.7 Immunomonitoring

Due to the central role of the immune system not only in the

natural immune-surveillance against malignant transformation, but

also as a target and mode of therapy, a large array of comparison of

the immune system in cancer patients versus healthy individuals as

well as in responder and non-responder patients was performed

using different technologies and different biomaterials. Immune

cells have been identified at the protein level by direct staining with

Ab using flow cytometry and (multiplex) IHC or identified within

bulk transcriptomic data using different algorithms, such as

CIBERSORT (99) or directly by scRNAseq.

Screening can be done on both tumor and liquid biopsies. The

first has the advantage of representing the site of the disease and

thus the presence and location of the immune cells is highly

informative. Since it requires surgery, it is mainly used for

diagnostic purposes and not for longitudinal evaluation, whereas

liquid biopsies, such as blood samples or lavages, are easier to obtain

at multiple time points, but only represent the systemic and not the

local composition, spatial distribution and status of the

immune system.

Initial markers for patients’ stratification using tumor tissues

were the evaluation of TIL numbers followed by the development of

the immunoscore, where the cell subtypes and their broad location

(margin versus tumor center) acquired importance (100). With the

improvement of multiplex IHC and of software for data analysis,

the spatial distance between different cell types (101, 102), their

organization in particular cellular neighborhoods (103), TME

archetypes (104) or tertiary lymphoid structure (TLS) (105) could

be determined and correlated with response to therapy. Since PD-

L1 expression within the tumor is not a good predictor for response

to ICPi, many evaluations have focused on its receptor. Due to the

opposing effects of PD1 signaling in CD8+ effector T cells and in

regulatory T cells (Treg), the relative frequency of CD8+ T cells and

Treg expressing PD1 within the TME was found to affect response

to ICPi (106). Moreover, high levels of PD1+ Treg were correlated

with the hyper-progressor phenotype of patients treated with anti-

PD1 Ab (107).

Analysis of the immune cell repertoire in peripheral blood by

multicolor flow cytometry or mass cytometry (CyTOF) allow to

detect the phenotype of effector cells or the presence of

immunosuppressive populations as well as their function/activity.

Regarding immunosuppressive subsets and their soluble mediators,

a score based on the presence of different myeloid cells identifies

melanoma patients with a worse prognosis (108), whereas the

amount of IL-13 in the sera of patients with diffuse large B cell
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lymphoma lesions represents a signature of Treg and is associated

with a poor OS (109). An enhanced neutrophil to lymphocyte ratio,

which since long time is correlated with a worse patients’ prognosis

(110), is accompanied by a reduced response to anti-PD1 in non-

small lung cell cancer (111). Similarly, higher basophil counts in

gastric cancer are associated with a low response to anti-

PD1 Ab in combination to chemotherapy, but not to

chemotherapy alone (112). In contrast, enhanced starting levels of

“immunostimulatory” monocytes (113) and a functional CD4+ T

cell compartment (114) predict therapy response. In addition to

these “baseline” markers, which are needed for initial patient

stratification to therapy, there is also the need of markers during

treatment that confirm response or indicate the requirement of a

therapy change or optimization due to unresponsiveness or

resistance development. In addition to blood evaluation

at patient´s first presentation for therapy stratification,

immunomonitoring can also be performed longitudinally, during

therapy, in order to determine responsiveness to the therapy. For

example, the presence of proliferating T cells (i.e. expressing Ki-67)

is predictive for a good clinical outcome and therapy response in

lung cancer patients (115), whereas in melanoma T cell

proliferation has to be normalized to the tumor burden in order

to significantly discriminate responding patients (116). Similar

discrepancies among different tumor types were found regarding

the clonality of the immune response, with a more clonal or a more

diverse TCR repertoire correlating with response to ICPi in different

tumor types (117).

Based on the availability of databases with clinical as well as

RNAseq data from cancer patients undergoing immunotherapy

with ICPi, many different immune-related genetic signatures have

been identified that correlated with the response, such as the T cell-

inflamed signature (118), the adaptive immune response associated

with a pro-tumorigenic inflammation ratio (119) and an ICPi

responsive B cell cluster signature (120). Moreover, additional

signatures focusing on all aspects of the TME have been

generated for better patients’ stratification (121). A different

strategy used tumor cells obtained from patients’ material co-

cultured in vitro with limiting dilution of the autologous, in vitro

expanded TIL in order to identify a “tumor undergoing T cell

attack” signature, which included many components involved in

IFNg signaling and allowed the prediction of the clinical outcome to

ICPi in multiple tumor types (122).

Biomarkers predicting response to therapy are required also for

other immunotherapeutic interventions, such as for example

adoptive cell therapy (ACT). Indeed, due to its personalized

nature, implementing autologous TIL expanded in vitro or the

autologous T cells transfected with chimeric antigen receptor

(CAR), the therapeutic agent of ACT is a variable on its own,

which has to be optimized for optimal usage. To this aim, the final

expanded cell products have been characterized in depth and

correlated to the patients’ outcome in order to identify T cell

phenotypes and subpopulations (123–125) or expression pattern

(126, 127), which are positively or negatively associated with the

clinical response and could thus be implemented to improve the

efficacy of future preparations. In line with the longitudinal

evaluation of response to ICPi, also blood samples from patients
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undergoing ACT have been analyzed to identify (early) predictive

markers of response that might allow possible therapy changes or

improvement by e.g. implementing combinations with other

treatments. Upon CAR T cell transfer, expansion of the injected

cells did not correlate with response (128, 129), while enhanced

levels of different subsets such as CD4+ and CD8+ CAR cells

expressing CD57 and T-bet (129), or CD4+ CAR T cells

expressing PD1 and LAG3 as well as lower levels of CD8+ CAR T

expressing CD107 (128) did predict response.
3 Patient derived material for
therapy selection

Whereas most of the approaches described above aim to

identify biomarker(s)/signature(s) able to predict the

responsiveness of a tumor specimen to different treatments in

order to select the optimal therapy or combination thereof, tumor

cells from the patient specimen can also be directly tested ex vivo to

evaluate or confirm the predicted susceptibility to available

treatments. The experimental settings, which have been

implemented to study the tumor development and therapy

response with established tumor cell lines, have been adapted for

the use of patient derived material. In the following paragraphs, we

present those different approaches together with their advantages

and limitations for the implementation in personalized medicine

and provide some examples of their clinical application.
3.1 Culture of tissue slices/pieces

For the development of slice cultures, tumor material derived

from surgical resection is directly cut into pieces or slices, which are

then cultured in the presence or absence of the different treatments

to be evaluated. These include not only chemotherapeutics or

targeted drugs, but also immune-based therapies, such as ICPi,

since the full cellular repertoire with its local distribution is

preserved within the slice for at least a few days up to 2 weeks

without undergoing (excessive) spontaneous cell death (130, 131).

This procedure has been successfully applied to tumors from

the liver (132), pancreas (133, 134), stomach and gastroesophageal

junction (135), lung (130), prostate and bladder (131) and from

hepatic metastasis of CRC (136). At different time points, the slices

can be evaluated to determine the level of tumor cell death and

when immunotherapeutics were applied to investigate the

proliferation and/or relocalization of immune cells (130, 132).

Despite the short turn-around time required for the read out and

the retention of the tumor composition and structure, a strong

limitation of this technique is associated to its low throughput, since

the number of conditions that can be evaluated is restricted by the

size of the resection specimen and thus the amount of slices, which

could be generated.
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3.2 In vitro culture of tissue
digested material

In order to obtain a “never ending source” of malignant cells,

tumor specimens have been mechanically and enzymatically

digested in order to obtain tumor cell lines that could be then

tested in vitro. Whereas in the last century, pure tumor cell lines

have been obtained and used for drug susceptibility screening in

2D monolayer, nowadays the attempt is to grow tumor cells in 3D

spheroids, which better resemble the in vivo situation with

the formation of concentration gradients and the presence of the

physical restrain of a solid tumor mass (137). To mimic more the

in vivo situation, 3D organoids are currently generated, which

include tumor cells as well as stromal cells, like cancer associated

fibroblasts (CAF), which might be involved in therapy resistance of

the tumor in vivo. Different protocols have been established for

organoid cultures of different tumor histotypes (138), which were

also improved to allow high throughput analysis (139–141). Despite

such organoids do not retain the immune cell infiltrate, autologous

peripheral blood mononuclear cells (PBMC) as well as TIL can be

co-cultured with the organoids in order to evaluate responsiveness

to different (immuno)therapeutic approaches (142).

Different cases of highly successful selection of therapy upon

screening with organoid have been recently reported in patients

with ovarian and lung cancer (143, 144).
3.3 Xenograft setting

In order to physiologically reproduce the in vivo conditions of

tumor growth, human tumors have been transplanted into immune-

deficient mice as PDX, which could be evaluated in an in vivo setting

for susceptibility to chemotherapy. In order to be able to evaluate also

immunotherapeutic approaches, new strains of immune-deficient

mice have been developed in order to allow a better engraftment of

human immune cells, such as hematopoietic CD34+ stem cells (145,

146) and autologous PBMC (147), or to promote the survival of TIL

present within the tumor specimen (148).

Despite being highly relevant, these murine models are more

prone to be used for mechanistic and functional studies and

retrospective analysis to understand why cancer patients are

therapy responders or developed resistances than for direct

selection of personalized therapy. Indeed, the time length

required for their establishment is an obstacle to their

implementation for high risk patients and highly aggressive

tumors. Despite that, a combination of organoid and PDX was

successfully used for personalized therapy selection for a patient

with gallbladder cancer (149). Similarly, for a patient with an

urothelial bladder cancer with HRAS mutation, a combination of

scRNAseq and PDX identified an upregulation of PD-L1 on

chemoresistant cells, thus leading to the treatment of this patient

with the anti PD-L1 Ab atezolizumab (150).
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Zebrafish has mainly been used as a model to study tumor

development but is currently also implemented in the context of

personalized therapy. It has many advantages over the conventional

murine models including a shorter time required for generation of

results and of genetically modified species, lower costs and due to

the transparency of its cells an easier evaluation of growing tumor

cells than in murine models (151). Establishment of a high

throughput system to image and quantify tumor growth further

amplify the potential usefulness of this model system (152).

Not only solid tumors, such as melanoma (153), BC (154) and

gastric cancer (155), but also different hematopoietic malignancies,

such as B cell precursor acute lymphoblastic leukemia (156), CML

and AML (157), have been successfully transplanted into zebrafish

giving rise to zebrafish PDX (zPDX). The system does not only

allow evaluation of responsiveness to chemotherapy, but has also

been evaluated to test sensitivity to radiotherapy (158) and its

possible enhancement by combination with other drugs, such as

metformin (159). Moreover, zPDX are also being implemented to

evaluate susceptibility to immunotherapy either in the form of CAR

T cells (160, 161) or of retargeting bispecific antibodies, which are

injected together with autologous PBMC (162). In this context, it is

noteworthy that currently two clinical trials in patients with

pancreatic ductus adenocarcinoma (PDAC) (163) and CRC (164)

are performed using the zPDX setting for the selection of the

patients’ optimal therapy.
4 Outlook

As described above many progresses have been made in the

identification of blood- and tissue-based biomarkers either for

patients’ stratification to therapy or to determine their

responsiveness to it. In addition, new possible therapeutic targets

have also been characterized. Despite most of the approaches

reported used only one “omic” technique, there is increasing

evidence that for the selection of the best possible therapeutic

option for each individual patient, multiple features of the tumor

have to be evaluated since its development is influenced by genetic,

epigenetic and environmental factors. Combination of data from

multiple “omics” profile from a single patient will provide powerful

tool to generate a holistic view of molecular, metabolic and

immunological effects, which can be used to predict response to

therapy. Different strategies based on machine learning have been

developed during the last years to perform data integration and

have recently been reviewed in various articles (165–168). However,

it is noteworthy and has to be taken into account that “omics” data
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are fundamentally different. While genetic variation data are

discrete and static, RNAseq measurements, metabolic profiling or

immuno-monitoring are continuous, time dependent, but on the

other hand could provide longitudinal information.

Despite all these difficulties, preliminary studies have

demonstrated the feasibility to integrate data obtained from

different techniques in order to identify the best possible therapy

for the patients within a clinical timeframe (169).
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Glossary

Adoptive cell therapy ACT

acute myeloid leukemia AML

antibody Ab

breast cancer BC

cancer associated fibroblast CAF

chimeric antigen receptor CAR

circulating free DNA cfDNA

chronic myeloid leukemia CML

circular RNA circRNA

colorectal cancer CRC

dendritic cell DC

extracellular vesicle EV

fluorescence in situ hybridization FISH

immune checkpoint inhibitor ICPi

interferon IFN

immunohistochemistry IHC

lymph node LN

long non-coding RNA lncRNA

microRNA miRNA

multiple myeloma MM

neoantigen neoAg

pancreatic ductus adenocarcinoma PDAC

patient-derived xenograft PDX

peripheral blood mononuclear cell PBMC

radiotherapy RT

renal cell carcinoma RCC

RNA-binding protein RBP

single cell RNA sequencing scRNAseq

T cell receptor TCR

tertiary lymphoid structure TLS

triple negative breast cancer TNBC

tumor infiltrating lymphocyte TIL

tumor microenvironment TME

tumor mutational burden TMB

regulatory T cell Treg

tyrosine kinase inhibitor TKI

zebrafish PDX zPDX
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