Aus dem Universitätsklinikum für Nieren- und Hochdruckkrankheiten, Diabetologie und Endokrinologie der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg

Einfluss des monozytären YB-1 auf die Entwicklung der tubulointerstitiellen Nierenfibrose

Dissertation
zur Erlangung des Doktorgrades

Dr. med.

(doctor medicinae)

an der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg

vorgelegt von Alexander Fehr
aus Köln
Magdeburg 2017
Dokumentationsblatt

Bibliographische Beschreibung

Fehr, Alexander:
Einfluss des monozytären YB-1 auf die Entwicklung der tubulointerstitiellen Nierenfibrose.
2017 - 84 Bl., 33 Abb., 2 Tab., 5 Anlagen

Kurzreferat

Schlüsselwörter
Y-box protein-1 (YB-1), Nierenfibrose, Makrophagen, Chemokine, Entzündung
Inhalte der vorliegenden Promotion sind in folgenden Arbeiten publiziert worden:

Veröffentlichungen:
* Diese Autoren teilen sich die Erstautorenschaft

Kongressbeteiligung mit Vortrag:
27. Treffen der European Renal Cell Study Group, 26.02. - 01.03.2015 in Dundalk, Irland:
Fehr A, Brandt S, Bernhardt A, Ballhause TM, Lindquist JA, Mertens PR: Monocytic YB-1 plays an important role in resolving kidney inflammation.

29. Treffen der European Renal Cell Study Group, 27.04. - 30.04.2017 in Göttingen, Deutschland:

Kongressbeteiligung mit Poster:
18th Joint Meeting of the Signal Transduction Society, 05.11 - 07.11.2014 in Weimar, Deutschland:
Ballhause TM, Brandt S, Soldati R, Salaru D, Fehr A, Djudjaj S, Lindquist JA, Mertens PR: Exclusive receptor Notch-3 depletion in the bone marrow leads to reduced invasion of monocytes into the inflamed kidney.
We made a promise,
We swore we'd always remember,
No retreat, baby, no surrender.

- Bruce Springsteen
INHALTSVERZEICHNIS

1. ABKÜRZUNGSVERZEICHNIS .. VIII

2. ABBILDUNGS- UND TABELLENVERZEICHNIS ... XI
 2.1 ABBILDUNGSVERZEICHNIS .. XI
 2.2 TABELLENVERZEICHNIS .. XII

3. EINLEITUNG ... 1
 3.1 NIERENFIBROSE ... 1
 3.1.1 Relevanz der Nierenfibrose .. 1
 3.1.2 Mechanismen der renalen Fibrose .. 1
 3.2 MONOZYTEN UND MAKROPHAGEN ... 4
 3.2.1 Generelle Eigenschaften .. 4
 3.2.2 Rolle der Makrophagen in Fibrose .. 4
 3.3 KÄLTESCOCKPROTEINE UND YB-1 ... 7
 3.3.1 Die Familie der Kälteschockproteine ... 7
 3.3.2 Y-box binding protein-1 (YB-1) ... 7
 3.4 CCL5/RANTES .. 9
 3.4.1 Eigenschaften von CCL5/RANTES ... 9
 3.4.2 Interaktion zwischen YB-1 und CCL5 ... 10
 3.5 ZIELSETZUNG DER ARBEIT ... 10

4. MATERIAL ... 12
 4.1 PUFFER UND LÖSUNGEN .. 12
 4.2 GERÄTE ... 13
 4.3 VERBRAUCHSMATERIALIEN ... 14
 4.4 CHEMIKALIEN .. 15
 4.5 MEDIKAMENTE ... 16
 4.6 KOMMERZIELLE KITS UND REAGENZIEN .. 17
 4.7 ZELLKULTUR .. 17
 4.8 ANTİKÖRPER ... 18
 4.9 GENE EXPRESSION ASSAYS .. 19
 4.10 PRIMER ... 19
 4.11 SOFTWARE .. 20

5. METHODEN .. 21
 5.1 TIERMETHODIK .. 21
 5.1.1 Herstellung des YB-1ΔLysM-Stammes .. 21
5.1.2 Tierhaltung .. 22
5.1.3 Unilaterale Ureterobstruktion (UUO) ... 23
5.1.4 Probenaufbereitung .. 23
5.1.5 Isolation von Knochenmarkszellen .. 24
5.1.6 Isolation von Tubulusepithelzellen .. 24
5.1.7 Isolation von Entzündungszenlen aus Nierengewebe ... 25
5.2 MOLEKULARBIOLOGISCHE METHODEN ... 25
5.2.1 Genotypisierung .. 25
5.2.2 RNA-Analyse .. 27
5.3 HISTOLOGISCHE METHODEN ... 28
5.3.1 Herstellen der Gewebeschnitte ... 28
5.3.2 Entparaffinieren der Gewebeschnitte ... 29
5.3.3 Periodsäure Schiff (PAS)-Färbung ... 29
5.3.4 Siriusrot-Färbung .. 29
5.3.5 Immunhistochemie von Methacarn-fixiertem Gewebe .. 30
5.3.6 Immunfluoreszenzmiroskopie ... 31
5.3.7 Bilderfassung und Auswertung ... 31
5.4 METHODEN DER ZELLKULTUR ... 32
5.4.1 Reifung von bone marrow-derived macrophages (BMDMs) ... 32
5.4.2 Ko-Kultivierung von primären Tubuluszellen mit BMDMs .. 32
5.4.3 Phagozytose-Assay .. 32
5.4.4 Proliferations-Assay .. 33
5.4.5 NO-Produktion und -Quantifizierung .. 33
5.4.6 Annexin V-Apoptose-Assay ... 33
5.4.7 Quantifizierung von Zytokinen .. 33
5.5 DURCHFLUSSZYTOMETRIE .. 34
5.6 METHODEN DER PROTEINBIOCHEMIE .. 34
5.6.1 Lysat-Herstellung .. 34
5.6.2 SDS-PAGE (Sodium dodecyl sulfate-Polyacrylamid-Gelelektrophorese) 35
5.6.3 Western Blot ... 36
5.7 GENE-ARRAY-ANALYSE .. 36
5.7.1 Extraktions-Protokoll .. 36
5.7.2 Label-Protokoll ... 36
5.7.3 Hybridisierungs-Protokoll ... 37
5.7.4 Datenverarbeitung .. 37
5.8 STATISTISCHE AUSWERTUNG ... 37
6. ERGEBNISSE .. 38
 6.1 NACHWEIS DES KNOCHTOS UND PHÄNOTYPISIERUNG DER YB-1^{ΔLYSM}-MÄUSE 38
 6.2 DER MONOZYTEN/MAKROPHAGEN-SPEZIFISCHE KNOCKOUT VON YB-1 VERSTÄRK TEND
 TUBULÄREN SCHADEN UND DEN GRAD DER FIBROSE NACH UUO-INDUKTION 39
 6.3 DAS INFRAKTIONSMILIEU IST IN YB-1^{ΔLYSM}-MÄUSEN VERÄNDERT 48
 6.4 FUNKTIONSPELLE ANALYSE UND CHARAKTERISIERUNG VON BONE MARROW-DERIVED
 MACROPHAGES (BMDMs) .. 53

7. DISKUSSION .. 65
 7.1 DISKUSSION DER ERGEBNISSE .. 65
 7.2 AUSBlick ... 68

8. ZUSAMMENFASSUNG ... 69

9. LITERATURVERZEICHNIS ... 70

10. ANHANG .. 78
 10.1 ANLAGEN .. 78
 10.2 DANKSAGUNG ... 81
 10.3 EHRENERKLÄRUNG ... 82
 10.4 DARSTELLUNG DES BILDUNGSWEGES ... 83
1. Abkürzungsverzeichnis

- **α-SMA**: Alpha-smooth muscle actin
- **APCs**: Antigen-presenting cells: Antigen-präsentierende Zellen
- **Aqua dest./dH₂O**: Aqua destillata
- **BMDMs**: Bone marrow-derived macrophages
- **BMP7**: Bone morphogenetic protein 7
- **bp**: Basenpaare
- **BSA**: Bovine serum albumin: Rinderalbumin
- **C**: Celsius
- **CCL**: Chemokine (C-C motif) ligand
- **CCR**: C-C chemokine receptor
- **CD**: Cluster of differentiation
- **cDNA**: Complementary DNA: komplementäre DNA
- **CKD**: Chronic kidney disease: Chronische Nierenerkrankung
- **CO₂**: Kohlendioxid
- **CSD**: Cold shock domain: Kälteschockdomäne
- **CSF-1**: Colony-stimulating factor 1
- **Da**: Dalton
- **DAB**: Diaminobenzidin
- **DAPI**: 4',6-Diamidin-2-phenylindol
- **DbpA/B**: DNA binding protein-A/-B
- **DNA**: Deoxyribonucleic acid: Desoxyribonukleinsäure
- **ECM**: Extracellular matrix: Extrazelluläre Matrix
- **EDTA**: Ethylenediaminetetraessigsäure
- **EGF**: Epidermal growth factor
- **FACS**: Fluorescence-activated cell scanning
- **FCS**: Fetal calve serum: Fetales Kälberserum
- **FITC**: Fluoresceinisothiocyanat
- **g**: Gramm
- **GM-CSF**: Granulocyte-macrophage colony-stimulating factor
- **h**: Stunde
- **H₂O₂**: Wasserstoffperoxid
- **HIV**: Human immunodeficiency virus
- **HLA**: Human leucocyte antigen
- **HTLV-1**: Human T-cell lymphotropic virus type 1
- **IFN-γ**: Interferon gamma
- **Ig**: Immunglobulin
- **IL**: Interleukin
- **kb**: Kilobasen
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO</td>
<td>Knockout</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MCH</td>
<td>Mean corpuscular hemoglobin: Mittleres korpuskuläres Hämoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>Mean corpuscular hemoglobin concentration: Mittlere Korpuskuläre Hämoglobinkonzentration</td>
</tr>
<tr>
<td>MCP-1/CCL2</td>
<td>Monocyte chemoattractant protein-1</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean corpuscular volume: Mittleres Erythrozyteneinzelvolumen</td>
</tr>
<tr>
<td>MFI</td>
<td>Median fluorescence intensity</td>
</tr>
<tr>
<td>MHC-II</td>
<td>Major histocompatibility complex class II</td>
</tr>
<tr>
<td>MIG</td>
<td>Monokine induced by Gamma-Interferon</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>MIP-1α/CCL3</td>
<td>Macrophage inflammatory protein-1</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>Mrp1/2</td>
<td>Multidrug resistance-associated protein 1/2</td>
</tr>
<tr>
<td>n.s.</td>
<td>Nicht signifikant</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodsäure Schiff</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline: Phosphatgepufferte Salzlösung</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction: Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PDGF-B</td>
<td>Platelet-derived growth factor-B</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative real time PCR: Quantitative Echtzeit-PCR</td>
</tr>
<tr>
<td>RANTES</td>
<td>Regulated on activation, normal T cell expressed and secreted</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid: Ribonukleinsäure</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species: Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotationen pro Minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transkriptase-PCR</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde(n)</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation: Standardabweichung</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-Polyacrylamid Gelelektrophorese</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/Borat/EDTA</td>
</tr>
<tr>
<td>TEC</td>
<td>Tubular epithelial cells. Tubulusepithelzellen</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethyldiamin</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor necrosis factor alpha</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Tris</td>
<td>2-Amino-2-(hydroxymethyl)-1,3-propandiol</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TTBS</td>
<td>Tris-gepufferte Salzlösung /Tween 20</td>
</tr>
<tr>
<td>UUO</td>
<td>Unilaterale Ureterobstruktion</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>YB-1</td>
<td>Y-box binding protein-1</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
2. Abbildungs- und Tabellenverzeichnis

2.1 Abbildungsverzeichnis

Abb. 1 Ablauf der Nierenfibrose nach unilateraler Ureterobstruktion (UUO) 3
Abb. 2 Phänotypen von Makrophagen und deren Einfluss auf Reaktionsmechanismen nach Nierenschädigung 6
Abb. 3 Schematische Darstellung des YB-1-Moleküls 7
Abb. 4 Schema der Cre-Rekombination in Granulozyten, Monozyten und Makrophagen 22
Abb. 5 Nachweis des YB-1-Knockouts 38
Abb. 6 Tubulärer Schaden nach UUO-Induktion 40
Abb. 7 Expression von α-SMA nach UUO-Induktion 41
Abb. 8 Expression von TGF-β in Nierengewebe 42
Abb. 9 Kollagen-Ablagerung nach UUO-Induktion 43
Abb. 10 Unterscheidung zwischen Kollagen Typ-I und -III mittels Siriusrot-Färbung 44
Abb. 11 TaqMan-Analyse der relativen Kollagen Typ-I- und -III-Expression in kontralateralen und operierten Nieren 44
Abb. 12 PCNA-Expression nach UUO-Induktion 45
Abb. 13 F4/80-Expression nach UUO-Induktion 46
Abb. 14 FACS-Analyse der CD45-positiven Zellen im Nierengewebe 47
Abb. 15 FACS-Analyse der CD45⁺ (Leukozyten)-Subpopulationen 48
Abb. 16 Volcano plot für den Vergleich von gesunden Nieren mit Nieren 6 oder 14 Tage nach UUO aus Wildtyp- und Knockout-Mäusen 49
Abb. 17 Analyse der Genexpression in Nierengewebe 50
Abb. 18 Mengen an ausgewählten Proteinen in der Niere 51
Abb. 19 Fluoreszenzmiroskopie der CCL5-Färbung von UUO-operierten Nieren 52
Abb. 20 qRT-PCR-Analyse von CCL5-Transkripten in Tubuluszellen 53
Abb. 21 Proliferation und Apoptose in BMDMs 54
Abb. 22 Analyse der PCNA-Expression und des Zellzyklus 54
Abb. 23 Differenzierung der BMDMs und MHC II-Expression 55
Abb. 24 Phagozytose-Aktivität der Makrophagen im FITC-Dextran-Aufnahme-Assay 56
Abb. 25 iNOS-Expression im Western Blot 57
Abb. 26 Analyse der NO-Produktion und Arginase I-Expression 58
Abb. 27 Analyse der IL-10-Produktion nach LPS-Stimulation 59
Abb. 28 Charakterisierung der infiltrierenden Makrophagen und IL-10-Sekretion mittels Durchflusszytometrie 60
Abb. 29 Analyse der CCL5-Transkripte in BMDMs nach LPS-Stimulation 61
Abb. 30 Analyse der CCL5-Expression mittels Fluoreszenzmikroskopie 61
Abb. 31 Quantifizierung der CCL5-Färbung 62
Abbildungs- und Tabellenverzeichnis

Abb. 32 CCL5-Expression in Makrophagen nach TGF-β-Stimulation 62
Abb. 33 Schematische Darstellung des Krankheitsverlaufs nach UUO in Wildtyp- und
 YB-1^{ΔLysM}-Mäusen 64

2.2 Tabellenverzeichnis

Tab. 1 YB-1-abhängige Genregulation 8
Tab. 2 Ergebnisse der Phänotypisierung der Mausstämmle zum Zeitpunkt von 3 und 6
 Monaten 39
3. Einleitung

3.1 Nierenfibrose

3.1.1 Relevanz der Nierenfibrose

Die tubulointerstitielle Fibrose ist ein essentieller Bestandteil des Endstadiums verschiedener Nierenerkrankungen, unter anderem der diabetischen Nephropathie und der chronischen Glomerulonephritis.\(^1\),\(^2\) Oftmals führen diese Krankheiten zu chronischer Nierenerkrankung (chronic kidney disease, CKD) und schließlich zu terminaler Nierenversagen, dessen Therapie sich bisher auf die Dialyse oder eine Nierentransplantation beschränkt. Mehrere epidemiologische Studien konnten belegen, dass die Prävalenz von Patienten mit CKD im finalen Stadium international zunimmt.\(^3\) Da sogenannte „Volkskrankheiten“ wie arterielle Hypertonie und Diabetes mellitus immer häufiger werden, ist davon auszugehen, dass sich dieser Trend in der nahen Zukunft nicht ändern, sondern eher noch verschärfen wird. CKD wird daher, noch mehr als jetzt schon, zu einem wachsenden Problem, das sowohl Patienten als auch das öffentliche Gesundheitswesen betrifft. Verschärft wird dieses Problem durch die Tatsache, dass es in der Klinik momentan nur wenige Therapiemöglichkeiten gibt, die sich zudem oft als nicht effektiv erweisen. Unter diesen Gesichtspunkten ist es wichtig, ein besseres Verständnis über die molekularen und zellulären Vorgänge zu erlangen, welche die renale Fibrose beeinflussen. Ziel der Forschung sollte sein, mehr über die Pathogenese dieses äußerst komplexen Prozesses herauszufinden, um neue Ansätze für die Entwicklung und Erprobung effektiver Therapieoptionen zu schaffen.

3.1.2 Mechanismen der renalen Fibrose

Im Allgemeinen beschreibt Fibrose eine krankhafte Vermehrung des Bindegewebes und ist die Reaktion auf eine Schädigung des betroffenen Organs. Diese Schädigung kann durch verschiedene Noxen oder Traumata hervorgerufen werden. An diesem hochkomplexen Prozess sind in der Niere, wie in jedem anderen von Fibrose betroffenen Organ, viele verschiedene Zelltypen beteiligt: Einerseits zu dem Organ gehörende Zellen wie Fibroblasten, Tubuluszellen und Mesangialzellen, andererseits auch infiltrierende Zellen wie Lymphozyten, Monozyten und Fibrozyten.\(^4\) Im Folgenden soll der Prozess der tubulointerstitiellen Fibrose, der sich in vier Phasen unterteilen lässt, kurz erläutert werden (Abbildung 1).

Zu Beginn der ersten Phase, des Priming, steht die Verletzung des Gewebes. Ausgehend davon entsteht in der Niere ein pro-inflammatorisches Milieu, das zur Rekrutierung von
Immunzellen in den Ort der Verletzung führt. Zu diesen hier chemotaktisch wirkenden Mediatoren gehören unter anderem RANTES (*regulated upon activation, normal T cell expressed and secreted*)/CCL5 und das monocyte chemoattractant protein-1 (MCP-1)/CCL2. Die infiltrierenden Entzündungszellen bewirken durch die Freisetzung von pro-fibrotischen Zytokinen, dass residente Fibroblasten und Tubuluszellen die Entwicklung der Fibrose vorantreiben.

Die Herkunft dieser Zellen wird aktuell kontrovers diskutiert, da sie eine große Heterogenität zeigen und ihren Phänotyp in Abhängigkeit von dem umgebenden Milieu ändern können.

In der dritten Phase produzieren die zuvor aktivierten Fibroblasten große Mengen an EZM, welche sich ansammelt und im Interstitium ablagert. Hierbei werden Kollagenfasern gebildet, die größtenteils Kollagen Typ-I und -III beinhalten. Während dieses komplexen Vorgangs sehen sich Myofibroblasten vielen verschieden Zytokinen ausgesetzt, unter anderem *transforming growth factor beta* (TGF-β1), *platelet-derived growth factor* (PDGF) und *bone morphogenetic protein* 7 (BMP7). Entscheidend ist, dass zu Beginn dieser Phase die Fibrose potenziell reversibel ist, da die Kollagenmatrix noch der Proteolyse unterliegt. Das Fortschreiten der Fibrose führt allerdings zu Modifikationen auf molekularer Ebene, was schließlich in einer Resistenz der produzierten Matrix gegenüber proteolytischen Einflüssen resultiert.

Zusammenfassend lassen sich als elementare Bestandteile der Fibrogenese folgende Vorgänge festhalten: Rekrutierung und Infiltration durch inflammatorische Zellen, Aktivierung
Einleitung

von Fibroblasten, Produktion und Ablagerung von Komponenten der extrazellulären Matrix, tubuläre Atrophie und Verlust von Blutgefäßen. 20

Die renale Fibrose ist ein Prozess, in dem Entzündungsvorgänge, Umbau des Organgewebes und überschießende Wundheilung auftreten. 21 Obwohl die Entzündungsreaktion ein Abwehrmechanismus des Organs nach aufgetretener Schädigung ist und die Organfunktion erhalten soll, stellt eine fortbestehende und unbewältigte Immunreaktion die Triebkraft in der Entwicklung der Fibrose dar. 22 Eine angemessene Kontrolle des Reparaturprozesses ist entscheidend, da eine überschießende Reaktion diesen zu Beginn nützlichen Vorgang zu einem schädlichen werden lässt, der die Funktion des Organs ernsthaft gefährdet.
3.2 Monozyten und Makrophagen

3.2.1 Generelle Eigenschaften

Für die Charakterisierung der Makrophagen können verschiedene Oberflächenmarker herangezogen werden, als Leukozyten exprimieren sie CD45. Als allgemeine Marker kann F4/80, welches von den meisten Gewebsmakrophagen der Maus exprimiert wird, und CD11b, das von allen myeloiden Zellen, einschließlich neutrophiler Granulozyten, exprimiert wird, verwendet werden. Aufgrund der großen Heterogenität kann die Population der Makrophagen weiter in verschiedene Unterklassen eingeteilt werden, indem man die Expression verschiedener Antigene und Rezeptoren auf der Zelloberfläche beschreibt, beispielsweise lymphocyte antigen 6C (Ly6C) und C-C chemokine receptor 2 (CCR2).

3.2.2 Rolle der Makrophagen in Fibrose

Einleitung

Für das Verständnis der komplexen Rolle von Makrophagen im Prozess der Fibrose ist es wichtig zu berücksichtigen, dass unterschiedliche Typen von Makrophagen zur gleichen Zeit in dem geschädigten Gewebe vorkommen können. Ebenso können bestimmte Phänotypen in verschiedenen Stadien der Erkrankung vorherrschend sein, in denen sie unterschiedliche
Funktionen erfüllen. Unter diesen Gesichtspunkten scheint eine Unterscheidung in “schlechte” M1- und “gute” M2-Makrophagen zu trivial zu sein, da diese sowohl extreme Phänotypen darstellen als auch beide Phänotypen zur Entstehung der Fibrose beitragen können, wenn das Gleichgewicht aus Entzündung und Reparatur die Balance verliert (Abbildung 2).

Makrophagen spielen außerdem eine weitere Rolle während der Fibrogenese, da sie eine Quelle für Myofibroblasten darstellen: So konnte gezeigt werden, dass Makrophagen positiv für α-SMA sein können, was den Prozess der macrophage-myofibroblast transition repräsentiert. Des Weiteren konnten auch innerhalb des UUO-Modells F4/80- und α-SMA-positive Zellen in fibrotischen Nieren nachgewiesen werden.
3.3 Kälteschockproteine und YB-1

3.3.1 Die Familie der Kälteschockproteine

3.3.2 *Y-box binding protein-1* (YB-1)

YB-1 besteht aus 324 Aminosäuren (Abbildung 3). Namensgebend für dieses Protein war die Tatsache, dass es mit der so genannten *Y-box* (Sequenzmotiv CTGATTGG) in der Promotor-Region des *major histocompatibility complex class II* (MHC-II) Gens interagiert.

Strukturell lässt sich YB-1 in drei Domänen aufteilen, die verschiedene Funktionen besitzen. Der N-Terminus stellt sich als Alanin-und Prolin-reiche Region dar, sodass dieser auch als
Einleitung

A/P-Domäne bezeichnet wird. Er fungiert als trans-Aktivierungsdomäne bei der Transkription und dient als Interaktionsstelle mit dem Zytoskelett über das Protein Aktin. 54 Zentrales und charakterisierendes Element ist die oben bereits erwähnte cold shock domain: Sie befähigt das Protein zur Interaktion mit DNA und RNA. 55,56 Der C-Terminus besteht aus wechselnden Regionen basischer und saurer Aminosäuren, weshalb diese Domäne auch als charged zipper bezeichnet wird. Der C-Terminus verfügt über Interaktionsstellen mit verschiedenen Regulationsproteinen, unter anderem p53 57, und Bindungsstellen für RNA und DNA. 58 Durch diese Bindung und Interaktion ist YB-1 in der Lage, Gene zu trans-aktivieren oder zu reprimieren. Die Beeinflussung der Transkription wird durch drei Mechanismen vermittelt: (I) Direkte Bindung von YB-1 an die Doppelstrang-DNA des jeweiligen Genabschnitts, (II) Interaktion von YB-1 mit anderen Transkriptionsfaktoren, welche so die Transkription fördern bzw. hemmen, (III) Bindung von YB-1 in der Promotor-Region, was die Bindung von anderen Transkriptionsfaktoren entweder verstärkt oder verhindert. 59 Tabelle 1 zeigt eine Übersicht der von YB-1 regulierten Gene, welche in Entzündungsreaktionen oder Fibrose eine Rolle spielen.

<table>
<thead>
<tr>
<th>Zielgen</th>
<th>Regulation</th>
<th>Wirkmechanismus</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entzündungs-relevante Chemokine und Zytokine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL5/RANTES</td>
<td>↑↓</td>
<td>Aktivierung der Gen-Transkription</td>
<td>60,61</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>↑↓</td>
<td>Stabilisierung von mRNA-Transkripten</td>
<td></td>
</tr>
<tr>
<td>IFN-α/β</td>
<td>↓</td>
<td>Unterdrückung der Gen-Transkription</td>
<td>64</td>
</tr>
<tr>
<td>IL-2</td>
<td>↑</td>
<td>Stabilisierung von mRNA-Transkripten</td>
<td>65</td>
</tr>
<tr>
<td>PDGF-B</td>
<td>↑</td>
<td>Aktivierung der Gen-Transkription</td>
<td>66</td>
</tr>
<tr>
<td>TGF-β</td>
<td>↓</td>
<td>Kontrolle der Translation</td>
<td>67</td>
</tr>
<tr>
<td>VEGF</td>
<td>↓</td>
<td>Repression des Promotors</td>
<td>68</td>
</tr>
<tr>
<td>Fibrose-relevante Gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SMA</td>
<td>↓</td>
<td>Unterdrückung der Gen-Transkription</td>
<td>69</td>
</tr>
<tr>
<td>Gelatinase A (MMP-2)</td>
<td>↑↓</td>
<td>Aktivierung der Gen-Transkription</td>
<td></td>
</tr>
<tr>
<td>Kollagen</td>
<td>↑↓</td>
<td>Stabilisierung von mRNA-Transkripten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repression des Promotors</td>
<td>71,72</td>
</tr>
</tbody>
</table>

Tabelle 1. YB-1-abhängige Genregulation: Aktivierung des Gens ↑ Repression des Gens ↓ Zelltyp-abhängige Regulation ↑↓

3.4 CCL5/RANTES

3.4.1 Eigenschaften von CCL5/RANTES

Die Bedeutung des Verständnisses der Regulation und Wirkung von CCL5 zeigt sich auch bei Krankheitsbildern, die für den klinisch tätigen Arzt wichtig sind: Ein entscheidender Schritt in der Transplantatabstoßung ist die Infiltration des Spenderorgans durch Immunzellen. Im Mausversuch konnte bei der Abstoßung von transplantierten Nieren eine deutliche
Hochregulation von CCL5-Transskripten beobachtet werden, was auf eine ausschlaggebende Rolle von CCL5 innerhalb von Abstoßungsreaktionen hindeuten könnte. 86

3.4.2 Interaktion zwischen YB-1 und CCL5

Neben der engen Interaktion mit CCL5 beeinflusst YB-1 Entzündungsreaktionen auf eine andere Weise: Analog zu anderen inflammatorischen Mediatoren wie IL-1β oder fibroblastic growth factor 2 wird YB-1 durch einen nicht-klassischen Sekretionsweg freigesetzt. 89 Dieses extrazelluläre YB-1 verfügt über chemotaktische und mitogene Eigenschaften und fungiert als Ligand für den Notch-3-Rezeptor. 90 Dieser Rezeptor spielt eine wichtige Rolle in der Entstehung von Nierenfibrose nach Induktion eines tubulointerstitiellen Schadens. 91

3.5 Zielsetzung der Arbeit

Einleitung

4. Material

4.1 Puffer und Lösungen

Annexin V-Bindungspuffer (10x) 0,1 M HEPES/NaOH (pH 7,4), 1,4 M NaCl, 25 mM CaCl₂

Blockierungslösung (BSA/Milch) 2,5 g BSA/Milchpulver, ad 50 ml TBST

Erythrozyten-Lysepuffer 840 mg NaHCO₃, 8,29 g NH₄Cl, 200 µl 0,5 M EDTA, ad 1000 ml dH₂O

FACS-Puffer 50 ml 20x PBS, 50 ml FCS, 5 g BSA, 100 µl 14 % NaN₃, ad 900 ml dH₂O

Laufpuffer (10x) 30 g Tris, 144 g Glycin, 10 g SDS, ad 1000 ml dH₂O, adjust pH 8,6

Methacarn 60 % Methanol (100 %), 30 % Chloroform, 10 % Eisessig

PBS (20x) 80,06 g NaCl, 2,01 g KCl, 17,8 g Na₂HPO₄, 3,05 g KH₂PO₄, ad 500 ml dH₂O

Resolving buffer 90,86 g Tris, ad 500 ml dH₂O, adjust pH 8,8

RIPA-Zellysepuffer 50 mM Tris-HCl, adjust pH 7,5, 150 mM NaCl, 1 % Nonidet P-40 (NP40), 0,5 % Natrium-Desoxycholat, 0,1 % SDS, Protease Inhibitor Cocktail ‘Complete’, Phosphatase Inhibitor Cocktail

Sample buffer (5x) 1,18 g Tris-HCl, 15 ml Glycerol, 6 ml SDS (10 %), 12 ml Beta-Mercaptoethanol, Spatelspitze Bromphenolblau, ad 50 ml dH₂O

Stacking buffer 30,29 g Tris, ad 500 ml dH₂O, adjust pH 6,8

TBE-Puffer (20x) 107,8 g Tris, 55 g Borsäure, 7,4 g EDTA, ad 1000 ml dH₂O, adjust pH 8,3
<table>
<thead>
<tr>
<th>Material</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBS (1x)</td>
<td>12,5 ml Tris (pH 8; 1,0 M), 15 ml NaCl (5,0 M), ad 500 ml dH₂O</td>
</tr>
<tr>
<td>TBST (1x)</td>
<td>50 ml Tris (pH 8, 1,0 M), 60 ml NaCl (5,0 M), 1 ml Tween-20 (100 %), ad 2000 ml dH₂O</td>
</tr>
<tr>
<td>Transferpuffer (10x)</td>
<td>6,06 g Tris, 28,53 g Glycin, 400 ml Methanol (100 %) ad 2000 ml dH₂O, adjust pH 8,2</td>
</tr>
<tr>
<td>Tris-Puffer</td>
<td>9 g Tris, 68,5 g Tris-HCl, 87,8 g NaCl, ad 1000 ml dH₂O, Zugabe von 3 Tropfen Triton-X</td>
</tr>
<tr>
<td>Verdaupuffer</td>
<td>40 mg BSA, 800 µl Collagenase D (10 % in PBS), 800 µl DNAse I (1 % in PBS), ad 40 ml RPMI</td>
</tr>
<tr>
<td>Zitratpuffer</td>
<td>2,9 g Trinatrium-Zitrat, 0,5 ml Tween-20 (100 %), ad 1000 ml dH₂O, adjust pH 6,0</td>
</tr>
</tbody>
</table>

4.2 Geräte

-80°C Forma Ultratiefkühl schrank: Thermo Fischer Scientific (Dreieich)
Advia 2120i Hämatologie Analyseautomat: Siemens Healthcare (Eschborn)
Autoklav: H&P Labortechnik (Oberschleißheim)
CO₂ Inkubator HERACell 150i: Thermo Fischer Scientific (Dreieich)
DakoCytomation Paskal Druckkammer: Dako (Hamburg)
Feinwaage: Acculab (Göttingen)
Flex Cycler: Analytik Jena (Jena)
Flow Cytometer FACSCanto II: BD Bioscience (Heidelberg)
Fluorescence Imager Advanced: Intas (Göttingen)
Gelelektrophorese-System DNA SUB CELL: Bio-Rad (München)
Heizplatte Hi1220: Leica (Wetzlar)
Kühl schrank: Liebherr (Bulle)
Magnetrührer: IKA Labor- und Analysetechnik (Staufen)
Mikroskop DM6000 B (mit Kamera DFC420 und Fluoreszenzkamera DFC340 FX): Leica (Wetzlar)
Mikrowelle: Sharp (Köln)
Mini Blot-Transferkammer: Bio-Rad (München)
Neubauer Zählkam merr: Marienfeld (Lauda Königshofen)
Operationsbesteck: John Dee Zimmermann (Worms)
Phasenkontrastmikroskop Axiovert 40CFL: Zeiss (Oberkochen)
4.3 Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipetten (Research, Research plus, Reference)</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Pipetus Pipettierhilfe</td>
<td>Hirschmann Laborgeräte (Eberstadt)</td>
</tr>
<tr>
<td>Real Time PCR Fast 7500</td>
<td>Applied Biosystems (Darmstadt)</td>
</tr>
<tr>
<td>Reinstwasseranlage MilliQ</td>
<td>Merck Millipore (Darmstadt)</td>
</tr>
<tr>
<td>Rollmischer</td>
<td>Bibby Scientific Limited (Staffordshire, UK)</td>
</tr>
<tr>
<td>Rotationsmikrotom RM 2135</td>
<td>Leica (Wetzlar)</td>
</tr>
<tr>
<td>Shaker Vortex</td>
<td>VWR International (Darmstadt)</td>
</tr>
<tr>
<td>Spektralphotometer Infinite200 PRO</td>
<td>Tecan (Grödig, Österreich)</td>
</tr>
<tr>
<td>Thermoblock Thermomixer Comfort</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Tischzentrifuge</td>
<td>VWR International (Darmstadt)</td>
</tr>
<tr>
<td>TissueRuptor</td>
<td>Qiagen (Hilden)</td>
</tr>
<tr>
<td>Transformer Power Pac 1000</td>
<td>Bio-Rad (München)</td>
</tr>
<tr>
<td>UV-Spektrometer Ultrspec 2100 Pro</td>
<td>Healthcare Bio-Sciences (Uppsala, Schweden)</td>
</tr>
<tr>
<td>UV-Transilluminator Luormat</td>
<td>Vilber (Mame La Vallee, Frankreich)</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>P-D Industriegeellschaft mbH (Berlin)</td>
</tr>
<tr>
<td>Zentrifuge 4-16K</td>
<td>Sigma (Newton, UK)</td>
</tr>
<tr>
<td>Zentrifuge 5417R</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Deckgläser</td>
<td>Thermo Fischer Scientific (Dreieich)</td>
</tr>
<tr>
<td>Einhbettkassetten</td>
<td>Carl Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Falcon Röhrchen</td>
<td>Greiner Bio One (Kremsmünster, Österreich)</td>
</tr>
<tr>
<td>Flow cytometry Röhrchen, 5 ml (+ Zellsieb)</td>
<td>BD Bioscience (Heidelberg)</td>
</tr>
<tr>
<td>Insulin Kanüle BD Microfine (0,5 ml)</td>
<td>BD Medical (Heidelberg)</td>
</tr>
<tr>
<td>MicroAmp selbstklebende Folie</td>
<td>Life Technologies (Darmstadt)</td>
</tr>
<tr>
<td>Nahtmaterial Perma-Hand Seide, 4 - 0</td>
<td>Ethicon (Norderstedt)</td>
</tr>
<tr>
<td>Nitrozellulosemembran</td>
<td>Bio-Rad (München)</td>
</tr>
<tr>
<td>Nylon Zellsieb (100 µm, 70 µm, 40 µm)</td>
<td>BD Bioscience (Heidelberg)</td>
</tr>
<tr>
<td>Objekttträger</td>
<td>Thermo Fischer Scientific (Dreieich)</td>
</tr>
<tr>
<td>Parafilm</td>
<td>Pechiney Plastic Packaging (Chicago, Il, USA)</td>
</tr>
<tr>
<td>PCR 96-Well-Platte</td>
<td>Life Technologies (Darmstadt)</td>
</tr>
<tr>
<td>PCR-Reaktionsgefässe</td>
<td>Carl Roth (Karlsruhe)</td>
</tr>
<tr>
<td>Petrischale</td>
<td>BD Bioscience (Heidelberg)</td>
</tr>
<tr>
<td>Pipettenspitzen (mit Filter)</td>
<td>Sarstedt (Nümbrecht)</td>
</tr>
<tr>
<td>Reaktionsgefässe (1,5 ml, 2 ml)</td>
<td>Eppendorf (Hamburg)</td>
</tr>
<tr>
<td>Serologische Pipette</td>
<td>Techno Plastic Products (Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Whatman-Filterpapier</td>
<td>GE (Buckinghamshire, UK)</td>
</tr>
<tr>
<td>Zellkulturschalen, 75 cm²</td>
<td>Techno Plastic Products (Trasadingen, Schweiz)</td>
</tr>
<tr>
<td>Zellkulturplatten, 12-Well</td>
<td>Techno Plastic Products (Trasadingen, Schweiz)</td>
</tr>
</tbody>
</table>
Zellkulturplatten, 6-Well
Zellschaber

4.4 Chemikalien

Aceton
Acrylamid/Bis Lösung
Agarose
Annexin V, FITC-konjugiert
APS (Ammoniumpersulphat)
Aqua dest.
Beta-Mercaptoethanol
Borsäure
Braunol
Bromphenolblau
BSA (bovine serum albumin)
Chloroform
DAPI
DEPC (Diethyldicarbonat)
Dextran, FITC-konjugiert
Direct Red 80
Dulbecco’s Modified Eagle Medium (DMEM)
Dulbecco’s Phosphate Buffered Saline (DPBS)
EDTA (Ethylendiamintetraessigsäure)
Eisessig
Ethanol (absolut, 96 %)
Ethidiumbromid
Fetales Kälberserum (FCS)
Fluoreszenz-Eindeckmedium
Glycerol
Glycin
Griess Reagenz
H₂O₂
HCl 37 %
Hematoxylin Gill No. 3
Histo-Clear
Isopropanol
KCl (Kaliumchlorid)
KH₂PO₄ (Kaliumhydrogenhydrogenphosphat)
KOH (Kaliumhydroxid)

Techno Plastic Products (Trasadingen, Schweiz)
Bio-Rad (München)
Carl Roth (Karlsruhe)
Serva (Heidelberg)
Carl Roth (Karlsruhe)
BD Bioscience (Heidelberg)
Carl Roth (Karlsruhe)
Braun (Melsungen)
Carl Roth (Karlsruhe)
Carl Roth (Karlsruhe)
Braun (Melsungen)
Merck (Darmstadt)
Carl Roth (Karlsruhe)
Sigma-Aldrich (München)
Sigma-Aldrich (München)
Life Technologies (Darmstadt)
Thermo Fischer Scientific (Dreieich)
Bio-rad (München)
Otto Fischar GmbH (Saarbrücken)
Bio-Rad (München)
Life Technologies (Darmstadt)
DAKO (Hamburg)
Carl Roth (Karlsruhe)
Carl Roth (Karlsruhe)
Sigma-Aldrich (München)
Carl Roth (Karlsruhe)
Carl Roth (Karlsruhe)
Applichem (Darmstadt)
Carl Roth (Karlsruhe)
Material

Mayer's Hämatoxylin Invitrogen (Karlsruhe)
Methanol Carl Roth (Karlsruhe)
Milchpulver Carl Roth (Karlsruhe)
Na$_2$HPO$_4$ (Natriumhydrogenphosphat) Merck (Darmstadt)
NaCl (Natriumchlorid) Carl Roth (Karlsruhe)
NaHCO$_3$ (Natriumbikarbonat) Applichem (Darmstadt)
Na$_2$ON (Natriumazid) Carl Roth (Karlsruhe)
NaOH (Natriumhydroxid) Applichem (Darmstadt)
Natriumdesoxycholat Merck (Darmstadt)
NH$_4$Cl (Ammoniumchlorid) Sigma Aldrich (Seelze)
Nonidet P-40 (NP40) Carl Roth (Karlsruhe)
Paraffin Applichem (Darmstadt)
Paraformaldehyd Sigma-Aldrich (München)
PBS Life Technologies (Darmstadt)
Percoll GE Healthcare (Braunschweig)
Periodsäure Dr. K. Hollborn & Söhne (Leipzig)
Pikrinsäure 1,2 % Lösung Applichem (Darmstadt)
Propidiumiodid Applichem (Darmstadt)
Protease 1 Ventana Medical Systems (Tucson, Az, USA)
Roti-Histokitt II (Eindeckmedium) DAKO (Hamburg)
Schiff-Reagenz Bio-Rad (München)
SDS (Natriumdodecylsulfat) Carl Roth (Karlsruhe)
TEMED (Tetramethylethylenediamin) Carl Roth (Karlsruhe)
Trinatrium-Zitrat Merck (Darmstadt)
TRIS(hydroxymethyl)-aminomethan Carl Roth (Karlsruhe)
Tris-HCL Applichem (Darmstadt)
Triton X-100 Sigma-Aldrich (München)
Trizol Life Technologies (Darmstadt)
Tween-20 Applichem (Darmstadt)
Type N/F Immersion Liquid Leica (Wetzlar)

4.5 Medikamente

Heparin-Natrium (25.000 Units) Ratiopharm (Ulm)
Isofluran Baxter (Unterschleißheim)
Ketavet (Ketamin) Pfizer (Berlin)
Rimadyl (Carprofen) Pfizer (Berlin)
Rompun 2 % (Xylazin) Bayer (Leverkusen)
4.6 Kommerzielle Kits und Reagenzie

Collagenase D
DC Protein Assay
Direct PCR-Tail Lysis Reagenz
DNA Ladder (100 bp, 1 kb)
DNAse I
DreamTaq Green PCR Master Mix (2x)
Dual endogenous enzyme block
FOXp3 Fix/Perm Puffer Set
Liquid DAB+ Substrat Chromogen System
Mouse Enhanced Sensitivity Master Puffer Kit
Mouse IL-10 Enhanced Sensitivity Flex Set
PageRuler Plus Prestained
Phosphatase Inhibitor Easy Pack
Pierce ECL Western Blotting Substrate
Protease Inhibitor Complete Mini
Proteinase K
Restore Western Blot Stripping Buffer
RevertAid First Strand cDNA Synthesis Kit
TaqMan Fast Universal PCR Master Mix (2x)
Vectastain Elite ABC Kit
Roche (Grenzach-Wyhlen)
Bio-Rad (München)
PeqLab (Erlangen)
Invitrogen GmbH (Darmstadt)
Sigma-Aldrich (München)
PeqLab (Erlangen)
Thermo Fischer Scientific (Dreieich)
BioLegend (Fell)
DAKO (Hamburg)
BD Biosciences (Heidelberg)
BD Biosciences (Heidelberg)
Thermo Fischer Scientific (Dreieich)
Roche (Grenzach-Wyhlen)
Thermo Fischer Scientific (Dreieich)
Roche (Grenzach-Wyhlen)
Thermo Fischer Scientific (Dreieich)
Thermo Fischer Scientific (Dreieich)
Applied Biosystems (Darmstadt)
Vector Laboratories (Burlingame, Ca, USA)

4.7 Zellkultur

Epidermal growth factor
HEPES
Hydrocortison
IL-13
IL-4
IL-6
ITS-G (Insulin, Transferrin, Selenium)
Lipopolysaccharide aus E. coli O26:B6
M-CSF
Penicillin/Streptomycin
Prostaglandin E1
RPMI1640
Triiodothyronin
Trypsin-EDTA (0,5 %)
Peprotech (Hamburg)
Carl Roth (Karlsruhe)
Peprotech (Hamburg)
Peprotech (Hamburg)
Peprotech (Hamburg)
Thermo Fischer Scientific (Dreieich)
Sigma-Aldrich (München)
R&D-Systems (Wiesbaden-Nordenstadt)
Life Technologies (Darmstadt)
Sigma-Aldrich (München)
Life Technologies (Darmstadt)
Sigma-Aldrich (München)
Life Technologies (Darmstadt)
4.8 Antikörper

Antikörper für Immunohistochemie

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Spezies</th>
<th>Firma, Kat.-No.</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primäre Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-SMA</td>
<td>Rabbit</td>
<td>Abcam, ab5694</td>
<td>1:150</td>
</tr>
<tr>
<td>F4/80</td>
<td>Rat</td>
<td>AbD Serotec, MCA497GA</td>
<td>1:400</td>
</tr>
<tr>
<td>PCNA</td>
<td>Mouse</td>
<td>Santa Cruz Biotechnology, sc-56</td>
<td>1:200</td>
</tr>
<tr>
<td>Sekundäre Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>Goat</td>
<td>Abcam, ab6721</td>
<td>1:500</td>
</tr>
<tr>
<td>Rat IgG</td>
<td>Rabbit</td>
<td>Biozol, BA-4001</td>
<td>1:200</td>
</tr>
<tr>
<td>Mouse IgG</td>
<td>Rabbit</td>
<td>DAKO, P0260</td>
<td>1:500</td>
</tr>
</tbody>
</table>

Antikörper für Fluoreszenzmikroskopie

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Spezies</th>
<th>Firma, Kat.-No.</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primärer Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL5/RANTES</td>
<td>Goat</td>
<td>Santa Cruz Biotechnology, sc-1410</td>
<td>1:200</td>
</tr>
<tr>
<td>Sekundärer Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep IgG-FITC</td>
<td>Donkey</td>
<td>Jackson, 713-095-003</td>
<td>1:100</td>
</tr>
</tbody>
</table>

Antikörper für Western Blot

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Spezies</th>
<th>Firma, Kat.-No.</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primäre Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginase I</td>
<td>Mouse</td>
<td>BD Bioscience, 610708</td>
<td>1:1.000</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Rabbit</td>
<td>Cell Signaling, 2118S</td>
<td>1:1.000</td>
</tr>
<tr>
<td>iNOS/NOSII</td>
<td>Mouse</td>
<td>Santa Cruz Biotechnology, sc-7271</td>
<td>1:1.000</td>
</tr>
<tr>
<td>PCNA</td>
<td>Mouse</td>
<td>Santa Cruz Biotechnology, sc-56</td>
<td>1:1.000</td>
</tr>
<tr>
<td>Vinculin</td>
<td>Mouse</td>
<td>Santa Cruz Biotechnology, sc-59803</td>
<td>1:1.000</td>
</tr>
<tr>
<td>YB-1 c-term</td>
<td>Mouse</td>
<td>Eurogentec, EP085177</td>
<td>1:1.000</td>
</tr>
<tr>
<td>Sekundäre Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse IgG</td>
<td>Goat</td>
<td>SouthernBiotech, 1031-05</td>
<td>1:10.000</td>
</tr>
<tr>
<td>Rabbit IgG</td>
<td>Goat</td>
<td>SouthernBiotech, 4050-05</td>
<td>1:10.000</td>
</tr>
</tbody>
</table>
Antikörper für Durchflusszytometrie

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Spezies</th>
<th>Firma, Kat.-No.</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3-APC</td>
<td>Hamster</td>
<td>Biolegend, 100312</td>
<td>1:100</td>
</tr>
<tr>
<td>CD11b-APC/Cy7</td>
<td>Rat</td>
<td>Biolegend, 101225</td>
<td>1:100</td>
</tr>
<tr>
<td>CD45-PE</td>
<td>Rat</td>
<td>Biolegend, 103106</td>
<td>1:100</td>
</tr>
<tr>
<td>CD197 (CCR7)-PerCP/Cy5.5</td>
<td>Rat</td>
<td>Biolegend, 120116</td>
<td>1:100</td>
</tr>
<tr>
<td>CD206 (MMR)-PE/Cy7</td>
<td>Rat</td>
<td>Biolegend, 141720</td>
<td>1:100</td>
</tr>
<tr>
<td>F4/80-Pacific Blue</td>
<td>Rat</td>
<td>Biolegend, 123124</td>
<td>1:100</td>
</tr>
<tr>
<td>GR1 (Ly-6G/Ly-6C)-PerCP/Cy5.5</td>
<td>Rat</td>
<td>Biolegend, 108428</td>
<td>1:100</td>
</tr>
<tr>
<td>Intrazellulärer Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YB-1 c-term</td>
<td>Rabbit</td>
<td>Eurogentec, EP085177</td>
<td>1:100</td>
</tr>
<tr>
<td>Sekundärer Antikörper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit-IgG</td>
<td>Goat</td>
<td>Dianova Jackson,111-096-144</td>
<td>1:167</td>
</tr>
</tbody>
</table>

4.9 Gene expression assays

<table>
<thead>
<tr>
<th>Gen</th>
<th>Firma</th>
<th>Kat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-Actin (ActB)</td>
<td>Life Technologies</td>
<td>Mm00607939_s1</td>
</tr>
<tr>
<td>Collagen-1α1 (Col1a1)</td>
<td>Life Technologies</td>
<td>Mm00801666_g1</td>
</tr>
<tr>
<td>Collagen-3α1 (Col3a1)</td>
<td>Life Technologies</td>
<td>Mm01254476_m1</td>
</tr>
<tr>
<td>RANTES/CCL5 (Ccl5)</td>
<td>Life Technologies</td>
<td>Mm01302427_m1</td>
</tr>
</tbody>
</table>

4.10 Primer

<table>
<thead>
<tr>
<th>Primer für die jeweilige Genotypisierungs-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
</tr>
<tr>
<td>YB-1flox</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LysMCre</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cre-Rekombination</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
4.11 Software

<table>
<thead>
<tr>
<th>Name</th>
<th>Version</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500 Fast Real-Time PCR Software</td>
<td>2.0.6</td>
<td>Applied Biosystems (Darmstadt)</td>
</tr>
<tr>
<td>Adobe Photoshop CS6</td>
<td>13.0.1</td>
<td>Adobe Systems (San Jose, Ca, USA)</td>
</tr>
<tr>
<td>Chemostar</td>
<td>0.4.14.0</td>
<td>Intas Science Imaging Instruments (Göttingen)</td>
</tr>
<tr>
<td>Endnote</td>
<td>X8</td>
<td>Clarivate Analytics (Boston, Ma, USA)</td>
</tr>
<tr>
<td>FACS Diva Software</td>
<td>6.1.3</td>
<td>BD Bioscience (Heidelberg)</td>
</tr>
<tr>
<td>FlowJo</td>
<td>7.6.4</td>
<td>FlowJo (Ashland, Or, USA)</td>
</tr>
<tr>
<td>GraphPad Prism</td>
<td>7.01</td>
<td>Graphpad Software (La Jolla, Ca, USA)</td>
</tr>
<tr>
<td>ImageJ</td>
<td>1.45s</td>
<td>National Institutes of Health (Bethesda, Md, USA)</td>
</tr>
<tr>
<td>ImageProPlus</td>
<td>4.5.0.29</td>
<td>Media Cybernetics (Rockville, Md, USA)</td>
</tr>
<tr>
<td>Leica Application Suite</td>
<td>3.08.2000</td>
<td>Leica (Wetzlar)</td>
</tr>
<tr>
<td>Magellan</td>
<td>6.06</td>
<td>Tecan Group (Männedorf, Schweiz)</td>
</tr>
<tr>
<td>Microsoft Office 2010</td>
<td>14.0.7177.5000</td>
<td>Microsoft Corporation (Redmond, Wa, USA)</td>
</tr>
</tbody>
</table>
5. Methoden

5.1 Tiermethodik

5.1.1 Herstellung des \textit{YB-1}^{ΔLysM}-Stammes

Neben den oben beschriebenen \textit{YB-1}^{ΔLysM}-Mäusen wurden als Kontrolltiere \textit{YB-1}^{floxflox} (C57BL/6N genetischer Hintergrund, Taconic) und \textit{LysMCre}-Mäuse (C57BL/6J genetischer Hintergrund, Jackson) verwendet. Diese beiden Mausstämme werden nachfolgend als Wildtypen bezeichnet.

5.1.2 Tierhaltung

5.1.3 Unilaterale Ureterobstruktion (UUO)

5.1.4 Probenaufbereitung
Teil wurde in RPMI-Medium auf Eis gelagert, um noch am selben Tag für die FACS-Analyse verarbeitet zu werden.

5.1.5 **Isolation von Knochenmarkszellen**

5.1.6 **Isolation von Tubulusepithelzellen**

Tubulusepithelzellen der Nieren wurden isoliert und kultiviert wie zuvor beschrieben. Die Tiere wurden durch Isofluran getötet und mit PBS perfundiert. Die Nierenkapsel wurde entfernt und das Parenchym der Niere mit einem Skalpell zerkleinert. Zwecks Verdau des Gewebes erfolgte die Inkubation mit 1 mg/ml Collagenase für 30 Minuten bei 37 ºC, danach wurde das Gewebe durch ein Sieb gegeben. Nach Zentrifugation (1.500 rpm, 5 min, 4 ºC) erfolgte die Resuspension in 2 ml PBS. Das Tubulargewebe wurde mittels 31 % Percoll Gradient isoliert, resuspendiert und zweimal mit 3 ml PBS gewaschen (1.200 rpm, 5 min, 4 ºC). Abschließend wurden die Tubuluzellen in folgendem Medium resuspendiert: DMEM versetzt mit 10 % FCS, 50 U/ml Penicillin, 50 µg/ml Streptomycin und einem Hormonmix (5 µg/ml Insulin, 1,25 ng/ml Prostaglandin E1, 34 pg/ml Triiodthyronin, 5 µg/ml Transferrin, 1,73 ng/ml Natriumseitenit, 18 ng/ml Hydrocortison, 25 ng/ml *epidermal growth factor*). Die Zellen wuchsen in Zellkulturschalen (37 ºC, 5 % CO₂, 100 % Luftfeuchte) für 5 – 7 Tage bis eine Konfluenz von 60 – 80 % erreicht wurde. Der Mediumwechsel erfolgte an Tag 2, Tag 5 und Tag 7.
5.1.7 Isolation von Entzündungszellen aus Nierengewebe
Das wie unter 5.1.4 beschrieben aus der Maus entnommene Stück Nierengewebe wurde in RPMI auf Eis gelagert und in die Vertiefung einer 24-Well-Platte gelegt. Das Gewebe wurde mittels Schere und Skalpell mechanisch so weit wie möglich zerkleinert, der Verdaupuffer hinzugegeben und für 30 Minuten im Brutschrank (37 °C, 5 % CO₂, 100 % Luftfeuchte) inkubiert. Danach erfolgten nochmals eine mechanische Zerkleinerung mit einer Pipettenspitze und eine weitere Inkubation für 15 Minuten im Brutschrank. Nach der Inkubation wurde der gesamte Inhalt des Wells auf ein 70 µm Zellsieb gegeben, das Sieb mit RPMI durchgespült und die Suspension in einem 50 ml Falcon aufgefangen. Dieser Vorgang wiederholte sich mit einem 40 µm Zellsieb. Nach Zentrifugation (1300 rpm, 5 min, 4 °C) und Dekantieren des Überstands erfolgte die Zugabe von 2 ml Erythrozyten-Lysepuffer. Die Lysereaktion wurde nach Sicht durch Stellen der Proben auf Eis beendet, die Suspension mit 2 ml FACS-Puffer aufgefüllt und zentrifugiert (1300 rpm, 5 min, 4 °C). Nach einem weiteren Waschschnitt wurden die Zellen gezählt und für die FACS-Analyse weiterverarbeitet.

5.2 Molekularbiologische Methoden
5.2.1 Genotypisierung

<table>
<thead>
<tr>
<th>Reaktionsansatz YB-1flox-PCR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DreamTag Green PCR Mastermix (2x)</td>
<td>12 µl</td>
</tr>
<tr>
<td>Autoklaviertes H₂O</td>
<td>11 µl</td>
</tr>
<tr>
<td>Primer 4954_133 (10 µM)</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Primer 4954_134 (10 µM)</td>
<td>0,5 µl</td>
</tr>
</tbody>
</table>
Methoden

<table>
<thead>
<tr>
<th>Reaktionsansatz LysMCre-PCR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DreamTaq Green PCR Mastermix (2x)</td>
<td>12 µl</td>
</tr>
<tr>
<td>Autoklaviertes H₂O</td>
<td>9,5 µl</td>
</tr>
<tr>
<td>Primer MLYS1 (10 µM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer MLYS2 (10 µM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primer CRE8 (10 µM)</td>
<td>0,5 µl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaktionsansatz Cre-Rekombinations-PCR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DreamTaq Green PCR Mastermix (2x)</td>
<td>12 µl</td>
</tr>
<tr>
<td>Autoklaviertes H₂O</td>
<td>11 µl</td>
</tr>
<tr>
<td>Primer 4954_133 (10 µM)</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Primer Ybx1 Intron3 flox distal (10 µM)</td>
<td>0,5 µl</td>
</tr>
</tbody>
</table>

Von diesem Ansatz wurden 24 µl in jedes PCR-Tube gegeben und 1 µl der jeweiligen DNA-Probe hinzupipettiert. Bei jeder PCR wurde zudem eine Positivkontrolle (DNA einer zuvor sicher identifizierten Maus) und eine Negativkontrolle (statt DNA Zugabe von sterilem Aqua dest.) mitgeführt. Je nach zu bestimmendem Genotyp wurde das jeweilige Programm verwendet:

Konditionale YB-1flox-PCR: 35 Zyklen bei 95 °C für 30 s, 60 °C für 30 s, 72 °C für 60 s.

LysMCre-PCR: 36 Zyklen bei 94 °C für 60 s, 56 °C für 30 s, 72 °C für 120 s.

Cre-Rekombinations-PCR: 30 Zyklen bei 95 °C für 30 s, 58 °C für 30 s, 72 °C für 180 s.

Nach Ende der PCR wurden jeweils 15 µl der Probe auf ein 1 %iges Agarosegel geladen, welches mit 5 µl Ethidiumbromid versetzt worden ist. Das Gel lag während der PCR in 1x TBE-Puffer, die Elektrophorese lief bei einer anliegenden Spannung von 80 V für ca. 1 Stunde, danach erfolgte eine Kontrolle der Auftrennung mittels UV-Lampe. Beim Erreichen der gewünschten Auftrennung wurde die Elektrophorese beendet und das Gel mit dem
Transilluminator entwickelt. Zur Größenbestimmung der DNA-Fragmente diente die 100bp DNA Ladder von Invitrogen.
Die LysMCre-Bande zeigte sich bei 700 bp, die Wildtyp-Bande bei 350 bp. Alleiniges Vorkommen einer Bande zeigte eine Homozygotie an, das Vorkommen beider Banden Heterozygotie.
Für die Cre-Rekombinations-PCR zeigten sich die zu erwartenden Banden bei 1607 bp für Wildtyp- und 401 bp bei Knockout-Mäusen.

5.2.2 RNA-Analyse

Herstellung von komplementärer DNA (complementary DNA, cDNA)
erfolgte hierbei durch die M-MuLV (Moloney Murine Leukemia Virus)-Reverse Transkriptase. 1 µg RNA wurden 10 µl Nuklease-freies Wasser und 1 µl oligo(dT)$_{18}$ Primer zugesetzt. Die gelöste RNA wurde für 5 Minuten bei 65 °C inkubiert, um Sekundärstrukturen aufzulösen. Anschließend wurde die RNA mit folgendem Reaktionsansatz versetzt:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x Reaction Buffer</td>
<td>4 µl</td>
</tr>
<tr>
<td>RiboLock RNase Inhibitor (20 u/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>10 mM dNTP Mix</td>
<td>2 µl</td>
</tr>
<tr>
<td>RevertAid M-MuLV Reverse Transkriptase (200 U/µl)</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

Nach Inkubation für 60 Minuten bei 42 °C wurde die Reaktion durch Inkubation über 5 Minuten bei 70 °C beendet. Die cDNA wurde bei -80 °C gelagert.

Quantitative real-time PCR (qRT-PCR)
Die qRT-PCR wurde mittels 7500 Fast Real-Time PCR System (Applied Biosystems) durchgeführt, wobei die verwendeten Gene Expression Assays (Applied Biosystems) hochspezifisch für die zu amplifizierende Produkte waren. β-Actin diente als interne Referenz (Housekeeper).
Für jede Reaktion wurde folgender Reaktionsansatz pipettiert:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan Fast Universal Mastermix (2x)</td>
<td>10 µl</td>
</tr>
<tr>
<td>Gene Expression Assay</td>
<td>1 µl</td>
</tr>
<tr>
<td>cDNA (1 µg/µl)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>8 µl</td>
</tr>
</tbody>
</table>

Das Standardtemperaturprofil enthielt eine initiale Denaturierung über 10 Minuten bei 95 °C, gefolgt von 35 Zyklen von Denaturierung bei 95 °C für 15 s, Annealing bei 52 °C bis 60 °C (abhängig von der verwendeten Sonde) für 15 s und Extension bei 72 °C für 10 s. Die relative Häufigkeit (fold change verglichen mit der Kontrolle) wurde mittels der delta-Ct-Methode ($2^{-∆∆Ct}$) berechnet.

5.3 Histologische Methoden

5.3.1 Herstellen der Gewebeschnitte
Das Trocknen der Schnitte erfolgte auf einer Heizplatte bei 45 °C über Nacht, die Lagerung bis zur Färbung in Objektträgerkästen bei Raumtemperatur.

5.3.2 Entparaffinieren der Gewebeschnitte
Zum Entparaffinieren der Gewebeschnitte wurden die Objektträger zweimal in eine Färbeürette mit Histo-Clear (Xylolersatz) für je 5 Minuten gestellt. Hiernach erfolgte mittels absteigender Alkoholreihe die Rehydrierung der Schnitte.

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol 100 %</td>
<td>2 x 5 min</td>
</tr>
<tr>
<td>Ethanol 96 %</td>
<td>1 x 5 min</td>
</tr>
<tr>
<td>Ethanol 80 %</td>
<td>1 x 5 min</td>
</tr>
<tr>
<td>Ethanol 70 %</td>
<td>1 x 5 min</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>3 x 5 min</td>
</tr>
</tbody>
</table>

5.3.3 Periodsäure Schiff (PAS)-Färbung

5.3.4 Siriusrot-Färbung
Die Färbung mit Siriusrot ermöglicht den Nachweis von Kollagenen. Diese stellen sich während der Durchlichtmikroskopie rot dar, Muskelfasern und Zytoplasma gelb. Unter Polarisation zeigen sich nur die Kollagenfasern, die gelb-orange erscheinen. Nach dem Entparaffinieren wurden die Objektträger für 1 Stunde in 0,1 % Siriusrot-Lösung in 1,2 % wässriger Pikrinsäure inkubiert und danach für 3 Sekunden in 0,01 M HCl gespült. Es
Methoden

die Dehydrierung und das anschließende Einbetten vollzogen sich analog zur obigen Beschreibung.

5.3.5 Immunhistochemie von Methacarn-fixiertem Gewebe

Nach dem Entparaffinieren der Schnitte folgte die Demaskierung der zu detektierenden Antigene. Diese wurde antigenspezifisch durchgeführt:

\[\text{\textit{a-smooth muscle actin}} \]

Zitratpuffer (pH 6,0), Aufkochen in Mikrowelle für 5 Minuten

PCNA

EDTA (pH 8,0) in Paskaldruckkammer

F4/80

Protease 1, 10 Minuten bei Raumtemperatur

Der Färbevorgang des F4/80-Antigens wich stellenweise vom obigen Protokoll ab. Der hierfür verwendete biotynilierte Sekundärantikörper inkubierte für 30 Minuten bei
Raumtemperatur, danach wurden die Schnitte dreimalig in 1x Tris-Puffer gewaschen. Als Label wurde ein Avidin-Biotin-Peroxidase-Komplex (Elite Kit, Fa. Vector) verwendet und für 30 Minuten bei Raumtemperatur inkubiert. Der Rest des Protokolls vollzog sich wie oben beschrieben.

5.3.6 Immunfluoreszenzmikroskopie

5.3.7 Bildersassung und Auswertung

0 = kein Schaden
1 = milde fokale Dilatation der Tubuli
2 = höhere Anzahl an dilatierten Tubuli, Verlust des Bürstensaums
3 = Apoptose/Nekrose des Tubulussystems, Verlust des Bürstensaums

5.4 Methoden der Zellkultur

5.4.1 Reifung von bone marrow-derived macrophages (BMDMs)

5.4.2 Ko-Kultivierung von primären Tubuluszellen mit BMDMs

Die zuvor kultivierten und ggf. polarisierten Makrophagen wurden trypsiniert. 2x10^5 Zellen wurden zu Tubuluszellen gegeben, welche zuvor in einer 6-Well-Platte konfluent gewachsen waren. Nach 48 Stunden wurden die Überstände für die Zytokin-Bestimmung abgenommen und die Zellen zwecks RNA-Isolation lysiert.

5.4.3 Phagozytose-Assay

Um die Makrophagen auf ihre Fähigkeit zur Phagozytose zu untersuchen, wurde ein Phagozytose-Assay durchgeführt. Hierbei wurde die Aufnahme von FITC-konjugiertem Dextran durch die Makrophagen beurteilt. Aufbereitete Makrophagen wurden auf 12-Well-Platten in einer Konzentration von 5x10^4 Zellen pro Well kultiviert. FITC-Dextran wurde diesen Wells in einer Konzentration von 0,5 mg/ml hinzugefügt und die Platten bei 4 °C bzw. 37 °C für 45 Minuten inkubiert. Grundsätzlich findet bei diesem Assay bei 4 °C lediglich eine Bindung des FITC-Dextrans statt, während bei 37 °C Phagozytose durch die Makrophagen
stattfinden kann. Nach dieser Inkubation wurden die Zellen gründlich gewaschen und die Makrophagen mit 5 % Trypsin abgelöst. Abschließend wurden die Zellen mittels FACS analysiert und die median fluorescence intensities (MFI) bestimmt.

5.4.4 Proliferations-Assay

Bone marrow-derived macrophages wurden in separaten 6-Well-Platten in einer Konzentration von 1×10^4 Zellen pro Well ausgesät und kultiviert. Hierbei wurde *complete DMEM* (DMEM, 10 % FCS, 2 mM L-Glutamin, 100 U/ml Penicillin, 100 µg/mL Streptomycin) mit 10 ng/ml M-CSF verwendet, die Hälfte des Mediums wurde täglich gewechselt. Die Anzahl der Zellen wurde mittels Neubauer-Zählkammer ermittelt.

5.4.5 NO-Produktion und -Quantifizierung

NO_2^-, das stabile Abbauprodukt von Stickstoffmonoxid (NO), wurde unter Verwendung des *Griess colometric Assay* bestimmt. Die Zellen wurden in DMEM ohne Phenolrot plus 10 % FCS kultiviert. Die Überstände wurden abgenommen und für 15 Minuten mit dem äquivalenten Volumen 1x Griess Reagenz inkubiert. Die Absorption wurde bei 540 nm mit einem *ELISA reader* gemessen.

5.4.6 Annexin V-Apoptose-Assay

Bone marrow-derived macrophages wurden in 6-Well-Platten ausgesät und für Annexin V zu den angegebenen Zeitpunkten gefärbt. Dazu wurden die Zellen zweimal mit PBS gewaschen und in 1x Annexin V-Bindungspuffer in einer Konzentration von 1×10^6 Zellen/ml resuspendiert. 5 µl Annexin V wurden zu 100 µl der Zellsuspension gegeben und bei Raumtemperatur für 15 Minuten im Dunkeln inkubiert. Nach der Inkubation wurden 400 µl des 1x Annexin V-Bindungspuffer hinzugegeben und die Zellen mittels FACS analysiert.

5.4.7 Quantifizierung von Zytokinen

Die Menge an Zytokinen in mechanisch homogenisierten Nieren, Überständen von LPS-stimulierten BMDMs oder BMDMs, welche zuvor mit Tubuluszellen ko-kultiviert worden sind, wurden mittels Bioplex Assay bestimmt. Hierzu wurden die *flow cytometry-based bead assay and Flex-Sets* von BD Bioscience nach Anleitung des Herstellers verwendet und die in der Tabelle aufgeführten Zytokine bestimmt. Der Detektionsbereich erstreckte sich von 20 bis 2.500 pg/ml.
5.5 Durchflusszytometrie

Im Folgenden umfasst „Waschen“ die Zugabe des jeweiligen Puffers, Vortexen, Zentrifugation mit 1350 rpm bei 4 °C für 5 Minuten und Dekantieren des Überstands. Alle Arbeitsschritte wurden, wenn nicht anders gekennzeichnet, auf Eis durchgeführt.

Die Zellen aus dem Nierengewebe wurden wie unter 5.1.8 beschrieben auf die Färbung der Durchflusszytometrie vorbereitet. Für das nachfolgende Protokoll wurden pro Färbeansatz 1x10⁶ Zellen verwendet. Die Zellen wurden in 2 ml FACS-Puffer gewaschen. Hiernach folgte die Zugabe der direkt gelabelten Oberflächenantikörper, pro Färbeansatz wurde 1 µl des jeweiligen Antikörpers direkt auf das Pellet gegeben. Die Proben wurden für 30 Minuten bei 4 °C in Dunkelheit inkubiert. Nach einem Waschvorgang mit 2 ml FACS-Puffer folgte die Fixierung der Oberflächenfärbung und die Permeabilisierung der Zellmembran. Hierzu wurde das FOXP3 Fix/Perm Buffer Set (Firma Biolegend) laut Angaben des Herstellers verwendet.

5.6 Methoden der Proteinbiochemie

5.6.1 Lysat-Herstellung

Bone marrow-derived macrophages wurden mit RIPA-Lysepuffer bei 4 °C für 5 Minuten lysiert, es folgte eine Zentrifugation mit 15.000 rpm bei 4 °C über 30 Minuten. Der Überstand...
wurde abgenommen und die Menge des erhaltenen Proteins mittels Bio-Rad protein Assay bestimmt. Die Konzentrationen wurden nun durch die Zugabe des jeweiligen Volumens an RIPA-Puffer angenähert und die Proben im Verhältnis 1:5 mit 5x Sample Buffer versetzt. Nach Erhitzen auf 95 °C für 5 Minuten waren die Proben bereit für die weitere Verarbeitung.

5.6.2 SDS-PAGE (Sodium dodecyl sulfate-Polyacrylamid-Gelelektrophorese)

<table>
<thead>
<tr>
<th>Rezeptur für Trenn- und Sammelgelen für die SDS-PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Trenngele, 10 %</td>
</tr>
<tr>
<td>(Resolving Gel)</td>
</tr>
<tr>
<td>Aqua dest.</td>
</tr>
<tr>
<td>SDS 10%</td>
</tr>
<tr>
<td>Acryl-/-Bisacrylamid 30%</td>
</tr>
<tr>
<td>APS 10%</td>
</tr>
<tr>
<td>TEMED</td>
</tr>
<tr>
<td>Resolving Buffer</td>
</tr>
<tr>
<td>Stacking Buffer</td>
</tr>
</tbody>
</table>

5.6.3 Western Blot
Für das Stripping der Membran wurde der Restore Western Blot Stripping Buffer (Thermo Scientific) verwendet.

5.7 Gene-Array-Analyse

5.7.1 Extraktions-Protokoll

5.7.2 Label-Protokoll
Cyanine-3-gelabelte cRNA wurde aus 0,5 µg RNA mit dem One-Color Low RNA Input Linear Amplification PLUS kit (Agilent) nach Anleitung des Herstellers hergestellt. Hiernach folgte die Aufreinigung durch die RNAeasy Säule (Quiagen). Die Farbstoffaufnahme und die Ausbeute an cRNA wurden mit dem NanoDrop-ND-1000 überprüft.
5.7.3 Hybridisierungs-Protokoll
1,5 µg der Cy3-gelabelten cRNA (spezifische Aktivität >10,0 pmol Cy3/µg cRNA) wurden für 30 Minuten bei 60 °C in einem Reaktionsvolumen von 250 ml fragmentiert, welches 1x Agilent fragmentation buffer und 2x Agilent blocking agent enthielt, wobei nach der Anleitung des Herstellers vorgegangen wurde. Nach Fertigstellung der Fragmentierung wurden 250 ml des 2x Agilent hybridization buffer hinzugegeben und die Hybridisierung mit Agilent 4x44k Mouse V2 Design ID: 026655 für 17 h bei 65 °C in einem rotierenden Agilent Hybridisierungs-Ofen vollzogen. Danach wurden die Mikroarrays für 1 Minute bei Raumtemperatur mit GE wash buffer 1 (Agilent) und nochmals für 1 Minute bei 37 °C mit GE wash buffer 2 (Agilent) gewaschen. Anschließend wurden diese unverzüglich durch kurzes Zentrifugieren getrocknet.

5.7.4 Datenverarbeitung

5.8 Statistische Auswertung
Alle Daten in der vorliegenden Arbeit wurden als Mittelwerte +/- Standardabweichung angegeben. Die statistische Auswertung aller Versuche erfolgte unter Verwendung des t-Testes nach Student. Als statistisch signifikant wurden p-Werte p<0,05 (*), p<0,005 (**) oder p<0.0005 (***) angesehen.
6. Ergebnisse

6.1 Nachweis des Knockouts und Phänotypisierung der YB-1^{\Delta LysM}-Maus

<table>
<thead>
<tr>
<th>Monate</th>
<th>Wildtyp</th>
<th>(YB-1^{\Delta LysM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Körpergewicht (g)</td>
<td>23,9 ± 0,80</td>
<td>30,29 ± 1,0</td>
</tr>
<tr>
<td>Nierengewicht (mg)</td>
<td>161 ± 10</td>
<td>184 ± 6</td>
</tr>
<tr>
<td>Blutbild</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrozyten x10^{12}/l</td>
<td>9,2 ± 0,4</td>
<td>8,3 ± 0,5</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>54,6 ± 0,6</td>
<td>51,4 ± 0,4</td>
</tr>
<tr>
<td>MCHC (mmol/l)</td>
<td>15,9 ± 0,2</td>
<td>16,3 ± 0,2</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>15,9 ± 0,2</td>
<td>13,8 ± 0,5</td>
</tr>
<tr>
<td>Leukozyten x10^{9}/l</td>
<td>1,6 ± 0,2</td>
<td>1,7 ± 0,3</td>
</tr>
<tr>
<td>Lymphozyten %</td>
<td>83,0 ± 2,7</td>
<td>81,2 ± 1,5</td>
</tr>
<tr>
<td>Monozyten %</td>
<td>2,1 ± 0,2</td>
<td>2,5 ± 0,4</td>
</tr>
<tr>
<td>Neutrophile %</td>
<td>10,4 ± 2,5</td>
<td>9,4 ± 1,0</td>
</tr>
<tr>
<td>Basophile %</td>
<td>0,8 ± 0,3</td>
<td>1,9 ± 0,7</td>
</tr>
<tr>
<td>Eosinophile %</td>
<td>4,5 ± 0,6</td>
<td>6,0 ± 0,8</td>
</tr>
</tbody>
</table>

6.2 Der Monozyten/Makrophagen-spezifische Knockout von YB-1 verstärkt den tubulären Schaden und den Grad der Fibrose nach UUO-Induktion

Ergebnisse

Ergebnisse

TGF-β ist einer der zentralen pro-fibrotischen Faktoren, die zur Aktivierung von Myofibroblasten beitragen. Daher wurde die Menge an TGF-β in den UUO-operierten Nieren zwischen Wildtyp- und Knockout-Mäusen mittels FACS-basiertem bead assay untersucht (Abbildung 8). Übereinstimmend mit den Ergebnissen der α-smooth muscle actin-Färbung zeigten sich in den Gewebelysaten erhöhte Level an TGF-β in Knockout-Nieren im Vergleich zum Wildtyp.
Ergebnisse

Der durch die UUO induzierte renale Schaden führte zu einer Entzündungsreaktion, durch die nachfolgend Immunzellen aus dem Blut in die Niere rekrutiert wurden. Um den Grad dieser Immunzellinfiltration durch Monozyten/Makrophagen zu bestimmen, wurden die...
Ergebnisse

Ergebnisse

Ergebnisse

der Neutrophilen (CD11b⁺, GR1⁺), ein Unterschied zwischen beiden Mausstämmen konnte hier jedoch nicht nachgewiesen werden.

6.3 Das inflammatorische Milieu ist in YB-1ΔLysM-Mäusen verändert

Um die molekularen Mechanismen, die zu den beobachteten Unterschieden in der Immunzellinfiltration und Ausprägung der Fibrose führten, näher zu untersuchen, wurde in einem nächsten Schritt die Expression verschiedener Gene bestimmt. Hierzu wurde RNA analysiert, welche zuvor aus Nieren beider Mausstämmen vor und nach UUO-Induktion extrahiert wurde. Die multidimensionale Skalierungsanalyse zeigte eine enge Korrelation und

Um die Interpretation dieser Daten zu erleichtern, wurde sich zu Beginn auf eine Gruppe von Genen konzentriert, von denen bekannt ist, dass sie in Nierenerkrankungen eine wichtige Rolle spielen (Abbildung 17A). Die Analyse konnte zeigen, dass mehrere pro-fibrotische Gene in Knockout-Nieren nach 6 und 14 Tagen im Vergleich zu Wildtyp-Nieren hochreguliert sind. Für anti-inflammatorische und immunmodulatorische Zytokine wie IL-10 und TGF-β1
Ergebnisse

zeigte sich dagegen eine Runterregulation (die Quantifizierung der Genexpression ist in der Anlage 4 aufgeführt). Um diese Unterschiede zu bestätigen, wurde die Menge an CCL5-Transkripten mittels qRT-PCR bestimmt (Abbildung 17B). Für Tag 6 zeigte sich in Wildtyp-Nieren eine Erhöhung der CCL5-Transkripte, welche in YB-ΔLysM-Mäusen noch stärker ausgeprägt war. An Tag 14 zeigte sich im Vergleich zu Tag 6 eine Abnahme der CCL5-Transkripte, allerdings fiel diese in Knockout-Tieren geringer aus, sodass zum späten Beobachtungszeitpunkt signifikant höhere Zahlen an CCL5-Transkripten nachweisbar waren.

Die Analyse auf Proteinebene konnte diese Beobachtung bestätigen (Abbildung 18): Die Menge an CCL5 nahm in Wildtypen an Tag 14 ab, während in Knockout-Mäusen weiterhin erhöhte Werte gefunden werden konnten. Außerdem konnte ein Trend in Richtung einer erhöhten KC/IL-8- und eine signifikant erhöhte MCP-1/CCL2-Expression in
Ergebnisse

$YB-1^{ΔLysM}$-Mäusen festgestellt werden. Dagegen war die Expression von MIP-1α/CCL3 nach 6 Tagen in den Knockout-Tieren deutlich vermindert.

![Lysate aus Nierengewebe](image)

In vorherigen Studien konnte gezeigt werden, dass $YB-1$ einen unterschiedlichen Einfluss auf die Expression von CCL5 in Monozyten gegenüber der von Makrophagen ausübt. 61 Da in dieser Arbeit in $YB-1^{ΔLysM}$-Tieren sowohl eine Erhöhung der Anzahl infiltrierender Zellen als auch eine vermehrte CCL5-Expression beobachtet werden konnte, wurde die Hypothese formuliert, dass ein Defekt in der Differenzierung bzw. Polarisation der Monozyten zu Makrophagen diese Veränderungen erklären könnte. Als weiterer Erklärungsansatz wurde in Betracht gezogen, dass andere Zellen der Niere für die vermehrte Expression von CCL5 verantwortlich sein könnten. 62 Daher wurden zunächst Tubuluszellen auf CCL5 gefärbt, um
eventuelle Unterschiede zwischen den Mausstämmen festzustellen. In der Fluoreszenzmikroskopie konnte tatsächlich ein vermehrter Gehalt an CCL5 in Tubuluszellen des YB-1ΔLysM-Stammes gefunden werden (Abbildung 19).

Ergebnisse

verhielten, konnte ein direkter Effekt von YB-1, beispielsweise als sekretierter Faktor, ausgeschlossen werden.

6.4 Funktionelle Analyse und Charakterisierung von bone marrow-derived macrophages (BMDMs)

Die Expression von PCNA als Marker der Proliferation wurde zudem per Western Blot untersucht (Abbildung 22). Diese war in YB-1-defizienten Makrophagen im Vergleich zum Wildtyp um ca. 50 % reduziert. Diese Daten waren konsistent mit der Zellzyklus-Analyse, die mittels Propidiumiodid durchgeführt wurde. Hierbei zeigte sich, dass die Anzahl an Zellen mit verstärkter DNA-Replikation (S-Phase) um ca. 30 % reduziert war.

Abbildung 22. Analyse der PCNA-Expression und des Zellzyklus. (A) Western Blot-Analyse der PCNA-Expression von BMDMs aus Wildtypen (WT), heterozygoten (HET) und YB-1ΔLysM-Mäusen. Alle Proben wurden auf dasselbe Gel aufgetragen, die Bandenintensität quantifiziert und die PCNA-Expression gegen GAPDH normalisiert (n=3). (B) Zellzyklus-Analyse mittels Propidiumiodid-Färbung fixierter Zellen nach 9 Tagen Kultivierung. Der Anteil an Zellen in der G1-, S- und G2/M-Phase ist in der Tabelle aufgeführt (n = 3 pro Gruppe).

Ergebnisse

In einem nächsten Schritt wurde die Reaktion der Makrophagen auf einen Stimulus - hier LPS - untersucht (Abbildung 25). Die Stimulation mit LPS führte in IL-4/IL-13-stimulierten Makrophagen zu einer starken Induktion von YB-1, während sich IL-6-polarisierte Makrophagen ähnlich wie unpolarisierte Zellen verhielten, was darauf hindeutete, dass YB-1 in Makrophagen unterschiedlich reguliert wird. Die LPS-Stimulation bewirkte außerdem eine YB-1/Ser102-Phosphorylierung. Diese Modifikation ist notwendig für die nukleäre Translokation des YB-1-Moleküls. Eine starke Induktion von iNOS konnte nur in IL-6-
polarisierten Makrophagen von Wildtyp-Mäusen beobachtet werden, wohingegen diese Reaktion in Knockout-Makrophagen nicht nachgewiesen werden konnte.

Abbildung 25. iNOS-Expression im Western Blot. IL-6-polarisierte Makrophagen zeigten nach LPS-Stimulation eine starke Expression von iNOS. YB-1^{ΔLysM}-Makrophagen dagegen zeigten diese Zunahme der Expression nicht (n = 3 pro Gruppe).

Abbildung 26. Analyse der NO-Produktion und Arginase I-Expression. (A) Bestimmung der NO-Produktion mittels Griess-Reaktion im Überstand von BMDMs. Nicht- und IL-6-polarisierte BMDMs aus Knockout-Mäusen zeigten eine signifikante Abnahme der NO-Produktion. (B) Analyse der Arginase I-Expression mittels Western Blot. Wildtyp-Makrophagen, welche zuvor mit IL-4/IL-13 polarisiert wurden, zeigten eine starke Expression von Arg1, wohingegen YB-1ΔLysM-Knockout-Makrophagen eine verminderte Expression aufwiesen (n = 3 pro Gruppe).

Um ihre vielfältigen Funktionen wahrnehmen zu können, müssen Makrophagen über die Fähigkeit verfügen, Zytokine zu produzieren. Diese Funktion wurde in einem nächsten Experiment überprüft. Ein ausgeprägter Effekt konnte für das anti-inflammatorische Zytokin IL-10 beobachtet werden (Abbildung 27). IL-6-polarisierte Zellen zeigten eine hohe Sekretion von IL-10 als Antwort auf die LPS-Stimulation, wohingegen IL-4/IL-13-polarisierte Makrophagen im Vergleich zu den unpolarisierten Zellen weniger IL-10 sekretierten. Im Gegensatz dazu schien die IL-10-Produktion in YB-1ΔLysM-Makrophagen drastisch verringert. Dies legte den Schluss nahe, dass diese YB-1-defizienten Makrophagen einen Defekt in der IL-10-Produktion oder -Sekretion aufweisen. Der hier beschriebene IL-10-Defekt war spezifisch für dieses Zytokin, da für andere untersuchte Zytokine wie IL-6, CCL2 und KC/IL-8 kein Unterschied zwischen Wildtyp und Knockout festgestellt werden konnte (Anlage 5).
Ergebnisse

Abbildung 27. Analyse der IL-10-Produktion nach LPS-Stimulation. Effekt der Stimulation mit LPS auf die Produktion des anti-inflammatorischen Zytokins IL-10. Für alle 3 Phänotypen zeigte sich in YB-1-defizienten Makrophagen eine signifikant verminderte IL-10-Produktion. Die rote Linie repräsentiert die Mittelwerte (n = 4 pro Gruppe).

Ergebnisse

Ergebnisse

Abbildung 29. Analyse der CCL5-Transkripte in BMDMs nach LPS-Stimulation. Die Anzahl an CCL5-Transkripten wurde mittels qRT-PCR bestimmt. Die Analyse zeigte einen Anstieg der CCL5-Transkripte in Wildtyp-Makrophagen. In YB-1ΔLysM-Knockout-Makrophagen zeigte sich eine Reduktion der CCL5-Transkripte. Dargestellt sind die Mittelwerte ± Standardabweichung (n = 3 pro Gruppe).

Abbildung 30. Analyse der CCL5-Expression mittels Fluoreszenzmikroskopie. Wildtyp- und Knockout-Makrophagen blieben entweder unbehandelt oder wurden über 20 Stunden mit LPS stimuliert, bevor sie mit 4 % PFA fixiert, permeabilisiert und auf CCL5 gefärbt wurden. Der Maßstabsbalken misst 50 µm (n = 3 pro Gruppe).
Ergebnisse

Dazu passende Ergebnisse, welche die YB-1-Abhängigkeit der CCL5-Produktion in Makrophagen bestätigten, konnten unter TGF-β-Stimulation gezeigt werden (Abbildung 32).

Abbildung 32. CCL5-Expression in Makrophagen nach TGF-β-Stimulation. BMDMs aus Wildtyp- und YB-1 ΔLysM-Mäusen wurden polarisiert und anschließend über 24 Stunden mit TGF-β stimuliert. (A) Darstellung der Menge an CCL5-Transkripten. (B) Darstellung der Menge an sekretiertem CCL5.
Ergebnisse

7. Diskussion

7.1 Diskussion der Ergebnisse

Von bemerkenswerter Bedeutung ist die Tatsache, dass in der vorliegenden Arbeit nachgewiesen werden konnte, dass Monozyten eine wichtige Rolle in der Auflösung von Gewebeentzündungen spielen. Dies konnte herausgefunden werden, indem gezeigt wurde, dass YB-1-defiziente Monozyten einen Differenzierungsdefekt aufweisen: Infiltrierende Monozyten differenzieren nicht in M2c/suppressor-Makrophagen. Hierbei handelt es sich um eine Subpopulation innerhalb der M2-Makrophagen, welche vor allem anti-inflammatorische Funktionen erfüllen und somit einen wichtigen Beitrag zur Auflösung von Entzündungsreaktionen leisten.\(^{101}\) Das Fehlen dieses Phänotyps führt zu einer verstärkten Fibrosierung und damit zu einer größeren Schädigung des Gewebes. Makrophagen beeinflussen mehrere Phasen der Gewebeschädigung und deren Wiederherstellung. Daher wurde in dieser Arbeit untersucht, ob der Verlust von YB-1 die Makrophagen in ihrer Funktion beeinträchtigt.\(^{35}\) Aktuell wird vermutet, dass Zellnekrose einen pro-inflammatorischen Phänotyp von Makrophagen (M1-Makrophagen) induziert und so die Schädigung der Nieren verstärkt.\(^{102,103}\) Umgekehrt führt die Aufnahme von apoptotischen Zellkörperchen zur Ausprägung eines anti-inflammatorischen Phänotyps (M2c/suppressor-

IL-10 ist ein entscheidendes Zytokin, welches in YB-1ΔLysM-Mäusen herunterreguliert ist und daher die stärker ausgeprägte inflammatorische Antwort erklären könnte. Tiere, welche für IL-10 defizient sind, zeigen eine vermehrte Zellinfiltration, eine Hochregulation pro-inflammatorischer Chemokine (CCL5, MCP-1) und Zytokine (TNFα, IL-6, IL-8 und M-CSF) und nach UUO eine stärker ausgeprägte Fibrose der Niere. Ein möglicher Erklärungsansatz könnte sein, dass Makrophagen für ihre IL-10-Produktion YB-1 benötigen. Daher führt die Abwesenheit von YB-1 in eben diesen Zellen dazu, dass sie nicht in der Lage sind, eine anti-inflammatorische Antwort zu geben.

Ähnlich wie Mastzellen verfügen auch Monozyten/Makrophagen über pro- und anti-inflammatorische Aktivitäten. In dem in dieser Arbeit verwendeten Mausmodell bewirkt die Abwesenheit von YB-1 in Monozyten und Makrophagen eine verstärkte pro-inflammatorische bzw. eine verringerte anti-inflammatorische Reaktion, was zu einem verschärften Verlauf der Erkrankung führt. Im Rahmen der Experimente konnten sowohl IL-10 als auch iNOS als Moleküle identifiziert werden, für deren Induktion YB-1 benötigt wird. Die Tatsache, dass die Makrophagen nicht in der Lage sind, IL-10 zu bilden, scheint eine passende Erklärung dafür zu sein, dass die Fibrose der Nieren von YB-1ΔLysM-Mäusen stärker ausfällt. Die aktuelle Veröffentlichung von Zhang et al. unterstützt unsere Hypothese, dass alternativ aktivierte Makrophagen notwendig sind, um beschädigtes Gewebe wiederherzustellen.

Anders als T-Zellen sind Makrophagen darauf ausgelegt, IL-10 zu produzieren und benötigen lediglich inflammatorische Signale wie z.B. LPS, um dies zu tun.
Diskussion

Zufälligerweise aktiviert LPS-induziertes *Signaling* Kinasen, die wiederum YB-1 aktivieren. Die Stimulatio durch LPS induziert die Phosphorylierung von YB-1, was diese Theorie stützt. 90 Ein Versagen in der Aktivierung von YB-1 könnte die Reduktion von MIP-1α erklären, da pro-inflammatorische Signale die Expression von MIP-1α in Makrophagen induzieren und YB-1 als positiver und auch negativer Regulator der Zytokin-Expression fungiert. 108, 109 Andererseits wird die Expression von MIP-1α durch anti-inflammatorische Zytokine wie TGF-β unterdrückt. TGF-β wird in der UUO verstärkt exprimiert und treibt die Fibrose voran. 110-112

7.2 Ausblick

8. Zusammenfassung

9. Literaturverzeichnis

77. Evdokimova, VM, Kovrigina, EA, Nashchekin, DV, Davydova, EK, Hershey, JW, Ovchinnikov, LP: The major core protein of messenger ribonucleoprotein

10. Anhang

10.1 Anlagen

<table>
<thead>
<tr>
<th>Wildtyp</th>
<th>(\text{YB-7}^{\text{alysM}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUO 6 Tage</td>
<td>14 Tage</td>
</tr>
<tr>
<td>Erythrozyten (\times 10^{12}/l)</td>
<td>5,3 (\pm 0,4)</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>51,2 (\pm 0,6)</td>
</tr>
<tr>
<td>MCHC (mmol/l)</td>
<td>16,9 (\pm 0,2)</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>10,1 (\pm 1,2)</td>
</tr>
<tr>
<td>Leukozyten (\times 10^9/l)</td>
<td>2,0 (\pm 0,3)</td>
</tr>
<tr>
<td>Lymphozyten %</td>
<td>81,5 (\pm 1,6)</td>
</tr>
<tr>
<td>Monozyten %</td>
<td>2,5 (\pm 1,0)</td>
</tr>
<tr>
<td>Neutrophile %</td>
<td>7,8 (\pm 0,7)</td>
</tr>
<tr>
<td>Basophile %</td>
<td>1,0 (\pm 0,3)</td>
</tr>
<tr>
<td>Eosinophile %</td>
<td>5,0 (\pm 0,5)</td>
</tr>
</tbody>
</table>

Anlagen

Anlage 3. Multidimensionale Skalierungsanalyse. In dieser Analyse konnte eine enge Korrelation und hohe Reproduzierbarkeit nachgewiesen werden.

Anlage 4. Quantifizierung der Genexpression aus Abbildung 16.

<table>
<thead>
<tr>
<th>Systematischer Name</th>
<th>ENTREZID</th>
<th>Beschreibung</th>
<th>Symbol</th>
<th>logFC Tag 6 WT</th>
<th>logFC Tag 6 KO</th>
<th>logFC Tag 14 WT</th>
<th>logFC Tag 14 KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_013653</td>
<td>20304</td>
<td>chemokine (C-C motif) ligand 5 [Source:MGI Symbol:Acc:MGI:98262]</td>
<td>Ccl5</td>
<td>2.399</td>
<td>3.172</td>
<td>2.513</td>
<td>2.695</td>
</tr>
<tr>
<td>NM_010548</td>
<td>16153</td>
<td>interleukin 10 [Source:MGI Symbol:Acc:MGI:96530]</td>
<td>Il10</td>
<td>0.027</td>
<td>0.009</td>
<td>0.036</td>
<td>0.000</td>
</tr>
<tr>
<td>NM_011577</td>
<td>21803</td>
<td>transforming growth factor, beta 1 [Source:MGI Symbol:Acc:MGI:98725]</td>
<td>Tgfβ1</td>
<td>1.330</td>
<td>1.004</td>
<td>1.792</td>
<td>1.277</td>
</tr>
<tr>
<td>NM_007719</td>
<td>12775</td>
<td>chemokine (C-C motif) receptor 7 [Source:MGI Symbol:Acc:MGI:103011]</td>
<td>Ccr7</td>
<td>0.846</td>
<td>0.296</td>
<td>2.320</td>
<td>1.614</td>
</tr>
<tr>
<td>NM_007742</td>
<td>12842</td>
<td>collagen, type I, alpha 1 [Source:MGI Symbol:Acc:MGI:88487]</td>
<td>Col1α1</td>
<td>4.337</td>
<td>5.383</td>
<td>5.121</td>
<td>5.429</td>
</tr>
<tr>
<td>NM_009367</td>
<td>21808</td>
<td>transforming growth factor, beta 2 [Source:MGI Symbol:Acc:MGI:98726]</td>
<td>Tgfβ2</td>
<td>0.962</td>
<td>1.383</td>
<td>1.792</td>
<td>1.959</td>
</tr>
<tr>
<td>NM_009915</td>
<td>12772</td>
<td>chemokine (C-C motif) receptor 2 [Source:MGI Symbol:Acc:MGI:106185]</td>
<td>Ccr2</td>
<td>1.162</td>
<td>1.776</td>
<td>1.976</td>
<td>2.380</td>
</tr>
<tr>
<td>NM_008625</td>
<td>17533</td>
<td>mannose receptor, C type 1 [Source:MGI Symbol:Acc:MGI:97142]</td>
<td>Mrc1</td>
<td>2.017</td>
<td>2.676</td>
<td>2.738</td>
<td>3.364</td>
</tr>
<tr>
<td>NM_008716</td>
<td>18131</td>
<td>notch 3 [Source:MGI Symbol:Acc:MGI:99460]</td>
<td>Notch3</td>
<td>0.970</td>
<td>1.053</td>
<td>1.228</td>
<td>1.332</td>
</tr>
<tr>
<td>NM_019388</td>
<td>12524</td>
<td>CD86 antigen [Source:MGI Symbol:Acc:MGI:101773]</td>
<td>CD86</td>
<td>0.906</td>
<td>1.238</td>
<td>1.745</td>
<td>1.979</td>
</tr>
</tbody>
</table>
10.2 Danksagung

Zu allererst gebührt mein Dank Prof. Dr. Mertens für die Überlassung des Promotionsthemas. Seine Ideen und Anregungen haben mir stets Inspiration für das wissenschaftliche Arbeiten geliefert.

Ein großes Danke möchte ich meinen direkten Betreuerinnen Dr. Sabine Brandt und Dr. Anja Bernhardt aussprechen. Die gute fachliche Betreuung, ihre Geduld und Unterstützung in schwierigen Phasen, in denen sie mir immer den Rücken gestärkt haben, waren bemerkenswert. Von ebenso großem Wert waren auch die gemeinsamen Kaffeepausen, die neue Energie verliehen haben.

Vielen Dank auch an PD Dr. Jon Lindquist, der bei Fragen und Problemen jederzeit ein offenes Ohr für mich hatte. Für seine Ratschläge, die oft auch über die eigentliche Arbeit an der Promotion hinausgingen, bin ich ihm sehr dankbar.

Danke Paulina.
10.3 Ehrenerklärung

Ich erkläre, dass ich die der Medizinischen Fakultät der Otto-von-Guericke-Universität zur Promotion eingereichte Dissertation mit dem Titel

„Einfluss des monozytären YB-1 auf die Entwicklung der tubulointerstitiellen Nierenfibrose“

im Universitätsklinikum für Nieren-, Hochdruckkrankheiten, Diabetologie und Endokrinologie

mit Unterstützung durch Prof. Dr. med. Peter R. Mertens

ohne sonstige Hilfe durchgeführt und bei der Abfassung der Dissertation keine anderen als die dort aufgeführten Hilfsmittel benutzt habe.

Bei der Abfassung der Dissertation sind Rechte Dritter nicht verletzt worden.

Ich habe diese Dissertation bisher an keiner in- oder ausländischen Hochschule zur Promotion eingereicht. Ich übertrage der Medizinischen Fakultät das Recht, weitere Kopien meiner Dissertation herzustellen und zu vertreiben.

Magdeburg, den 10.07.2017

Alexander Fehr
10.4 Darstellung des Bildungsweges

Der Lebenslauf ist in der Online-Version aus Datenschutzgründen nicht enthalten.
Darstellung des Bildungsweges

Der Lebenslauf ist in der Online-Version aus Datenschutzgründen nicht enthalten.