
Refactoring Feature Modules:
Disciplined Generation of Reusable Modules

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.),

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von Dipl.-Inform. Martin Kuhlemann

geb. am 23.03.1982 in Magdeburg

Gutachter:

Prof. Dr. Gunter Saake

Prof. Don Batory, Ph.D.

Prof. Dr. Bernhard Rumpe

Ort und Datum des Promotionskolloquiums Magdeburg, den 14.11.2011

Kuhlemann, Martin:
Refactoring Feature Modules: Disciplined Generation of Reusable Modules
Dissertation, Otto-von-Guericke-Universität Magdeburg, 2011.

Zusammenfassung

In der Softwaretechnik ist die Wiederverwendung von Code ein wichtiges Ziel,
um Aufwand bei der Entwicklung neuer Programme zu sparen. Eine Möglichkeit
den Code wiederzuverwenden ist, diesen in Module zu kapseln und diese Module
dann zu verwenden. Das Entwickeln solcher wiederverwendbarer Module ist jedoch
aufgrund des folgenden Skalierungsdilemmas schwierig. Einerseits soll ein Modul
möglichst viel Funktionalität bereitstellen, um den Vorteil für denjenigen Program-
mierer zu erhöhen, der das Modul wiederverwendet. Andererseits sollen für ein
Modul möglichst wenige unveränderliche Strukturentscheidungen getroffen werden,
weil diese die Wahrscheinlichkeit erhöhen, in Konflikt mit den Entscheidungen zu
stehen, die ein Programmierer bereits für sein zu entwickelndes Programm getrof-
fen hat. Wissenschaftler fanden heraus, dass die beiden Ziele ’viel Funktionalität’
und ’wenige unveränderliche Strukturentscheidungen’ miteinander in Konflikt ste-
hen, da ein Programmierer für ein Modul eine große Anzahl an unveränderlichen
Strukturentscheidungen treffen muss, um anderen Programmierern Zugriff auf die
Funktionalität des Moduls zu ermöglichen. Diesen Wissenschaftlern zu Folge kann
ein Programmierer kein Modul implementieren, welches viel Funktionalität bereit-
stellt und gleichzeitig in einer großen Anzahl von Programmen ohne großen Aufwand
wiederverwendet werden kann.

Ziel dieser Arbeit ist es, das Skalierungsdilemma von Modulen abzuschwächen.
Dazu werden bereits bestehende Ansätze, die es schon jetzt erlauben, die Funktion-
alität von Modulen zu konfigurieren, so erweitert, dass im Folgenden die Struk-
tur dieser Module konfiguriert werden kann. Technisch gesehen, werden Tech-
niken der Software-Produktlinienentwicklung mit Refactorings kombiniert. Software-
Produktlinien stellen einen Ansatz dar, um viele ähnliche Programme effizient
zu entwickeln. Refactorings sind Programmtransformationen, welche die Struktur
einer Software verändern aber nicht deren Funktionalität. Es wird von Fallstudien
berichtet, die zeigen, dass Refactorings helfen, aber alleine nicht ausreichen, um
Module in Programme zu integrieren, sondern dass Refactorings die bestehenden
Techniken von Software-Produktlinien zu diesem Zweck ergänzen müssen. Weiter-
hin wird gezeigt, dass Refactorings zusammen mit Software-Produktlinientechniken
helfen können, (a) Module bezüglich ihrer Funktionalität zu skalieren und zu konfig-
urieren sowie (b) Module bezüglich der bei ihrer Entwicklung getroffenen Entschei-
dungen hinsichtlich der Struktur zu konfigurieren. Das Ergebnis ist, dass die Funk-
tionalität und die Struktur eines Moduls gleichzeitig an die Anforderungen eines
Programmierers angepasst werden können. Für diese Anpassung wird jedoch kein
Wissen über die Implementierung des Moduls benötigt, sondern nur Wissen über
Domänenkonzepte. Zusätzlich wird sichergestellt, dass Entscheidungen bezüglich

iii

der Funktionalität eines Moduls nicht die Entscheidungen bezüglich der Struktur
beeinflussen und umgekehrt.

Es wird demonstriert, dass Refactorings in Software-Produktlinien Code erzeugen
und löschen können. Dabei zählen Beschreibungen von Refactorings nicht immer alle
Code-Bestandteile auf, die sie verändern. Das hat zur Folge, dass durch die Analyse
einer Beschreibung eines Refactorings nicht immer eindeutig bestimmt werden kann,
welche Code-Bestandteile das Refactoring genau transformiert. Refactorings sind
also nicht-monotone und nicht-aufzählende Programmtransformationen in Software-
Produktlinien. Anknüpfend an diese Erkenntnisse werden im Rahmen dieser Arbeit
verschiedene Techniken der Software-Produktlinienentwicklung analysiert und gene-
ralisiert, sodass diese Techniken auch nicht-monotone und nicht-aufzählende Pro-
grammtransformationen in Software-Produktlinien unterstützen. Genauer gesagt
werden Techniken, die die Konsistenz zwischen bestimmten Modellen einer Software-
Produktlinie und den Modulen dieser Software-Produktlinie prüfen, generalisiert.
Überdies werden Techniken erweitert, welche es erlauben, die Fehler in der Funk-
tionalität von Programmen einer Software-Produktlinie zu korrigieren. Innerhalb
dieser Arbeit wird auch analysiert, wie Programme die Zeit reduzieren können, die
(andere) Programme zur Ausführung einer Sequenz von Refactorings benötigen (z. B.
um Programme einer Software-Produktlinie zu generieren). Abschließend wird das
Refactoring von solchen Programmen untersucht, die Artefakte beinhalten, welche
in mehreren Sprachen verfasst wurden.

iv

Abstract

One goal in software engineering is to reuse code because reuse can reduce the effort
of implementing new programs. One option to reuse code is to encapsulate code in
modules and to use these modules henceforth. Modules are beneficial when they are
reused in different programs; but, reusable modules are difficult to implement too
because programmers face a module-scalability dilemma: On the one hand, a mod-
ule shall provide a lot of functionality to increase the benefit for a programmer who
reuses the module; on the other hand, modules shall expose few decisions regarding
their structure to reduce the potential of conflicts with the structure that a reusing
programmer expects. Researchers describe that both goals, to provide suitable func-
tionality and structure, conflict because to provide access to a lot of functionality,
a module must expose a lot of decisions regarding its structure. According to re-
searchers who described the dilemma before, a programmer cannot implement a
module that is full of functionality and is reusable in a high number of programs at
the same time.

Our goal is to mitigate the module-scalability dilemma. We extend existing ap-
proaches, which already allow to configure the functionality of a module, in or-
der to configure the structure of a module. Technically, we integrate techniques of
software-product-line engineering with refactorings; software product lines (SPLs) al-
low to implement a number of similar programs efficiently; a refactoring is a program
transformation that alters the structure of programs but not their functionality. In
case studies, we observed that refactorings help but alone do not suffice to integrate
modules with programs, but that refactorings complement the techniques that are
already in use in SPLs. We found out that refactorings together with SPL tech-
niques can help (a) to configure modules with respect to functionality and (b) to
configure modules with respect to their structure. As a result, users can configure
the functionality as well as the structure of a module to be suitable for a reusing
program.

We demonstrate that refactorings in SPLs (a) create and remove code and (b) do
not always enumerate all the pieces of code they create and remove (i.e., by analyz-
ing a refactoring description, one does not always know all the pieces of code which
the refactoring transforms). Thus, refactorings are nonmonotonic and nonenumer-
ative program transformations in SPLs. With this insight, we analyze and gener-
alize different techniques of SPL engineering such that they support nonmonotonic,
nonenumerative program transformations of refactorings in SPLs: First, we general-
ize techniques to verify consistency between certain models of SPLs and the modules
of respective SPLs when these SPLs involve refactorings. Second, we generalize tech-
niques that support programmers to correct errors in the functionality of programs

v

of SPLs when these SPLs involve refactorings. Third, we analyze how a tool can re-
duce the time that a (second) tool needs to execute a sequence of refactorings (e.g.,
to generate a program). Finally, we use refactorings to configure programs of SPLs
that include artifacts written in multiple languages.

vi

Acknowledgments

I would certainly not have finished this thesis without a number of persons whom
I thus owe a lot. First, I thank my wife, my family, and my friends. It was very
important for me to know that I can always count on them. Thank you folks.

Second, I thank Gunter Saake for his constant and holistic support of my research.
Gunter provided me with a great research atmosphere in his group where I was free
in choosing the research challenge I am interested in the most. Gunter also gave me
the opportunity to collaborate closely with other researchers by visiting them; even
if this meant to swap lectures and being absent for a semester. Gunter, I enjoyed
being part of your group; thank you for this opportunity!

Third, I thank Don Batory whom I visited at the University of Texas at Austin.
Don challenged me to be patient with research results and to spend more time on
thinking on results of my own research; that is, Don encouraged me to find and tackle
the “underlying reasons” of problems. Don further encouraged me to implement the
most scalable and elegant solution I could imagine; even if I already had implemented
a (less strong and less elegant) prototype. Especially, the frequent discussions with
Don helped me to improve my ideas. Don, I enjoyed our discussions a lot; thank
you!

Fourth, I thank Ralf Lämmel, Krzysztof Czarnecki, and my colleagues at the
Universities of Magdeburg, Austin, and Waterloo; they were always available for in-
tensive, long-term research discussions. Among them, I particularly want to thank
Christian Kästner, Sven Apel, Norbert Siegmund, and Marko Rosenmüller for the
great discussions we had. I thank Andreas Lübcke and Christian Kästner for sup-
porting my research stays by swapping lectures.

Finally, I thank my students.

vii

Contents

List of Abbreviations xv

1. Introduction 1

1.1. Who Should Read this Thesis? . 2
1.2. Contribution . 2
1.3. Disclaimer . 3
1.4. Outline . 4

2. Background 5

2.1. Modular Programming . 5
2.2. Domain Engineering and Software Product Lines 10

2.2.1. Domain Analysis . 10
2.2.2. Domain Implementation . 12

2.3. Refactoring . 15
2.4. Summary . 16

3. The Dilemma of Module Scalability 17

3.1. Motivating Studies . 17
3.2. Defining the Dilemma of Module Scalability 19
3.3. Related Work on Module Integration 21
3.4. Summary and Goals . 28

4. Refactoring Feature Modules 31

4.1. Concept . 31
4.1.1. The Scope of RFMs During Program Generation 33
4.1.2. RFM Refinement . 33

4.2. Algebraic Properties of Refactorings Influence the RFM Tools 35
4.2.1. Cases of Nondistributivity of Refactorings 36
4.2.2. Formal Proof of Algebraic Properties of Refactorings 38
4.2.3. Design of the RFM Composer Tool 49

4.3. Case Studies . 49
4.3.1. Integration of Modules . 49
4.3.2. Configuration of Nonfunctional Properties 55

4.4. Summary . 58

5. Managing the Variability of Module Structure 61

5.1. Safe Composition of Jak-Like Feature Modules 62

ix

Contents

5.2. Analysis of RFMs for Safe Composition 64
5.3. Safe Composition of Nonmonotonic, Nonenumerative Modules 67

5.3.1. Basic Concept . 67
5.3.2. Computing Input Programs that Encapsulate Scoped Names 70
5.3.3. Preconditions on Inheritance Hierarchies 74

5.4. Case Studies . 75
5.5. Discussion on Possible Future Extensions 79

5.5.1. Preconditions on Method Bodies 79
5.5.2. The Influence of the Feature Order 81

5.6. Summary . 82

6. Practical Issues of Using RFMs 85

6.1. Correcting Errors in the Functionality of SPL Products 86
6.1.1. Comparison of Approaches for Detecting & Correcting Errors 86
6.1.2. Propagation of Error Corrections to Feature Modules 91
6.1.3. Prototype & Demonstration 94
6.1.4. Summary . 98

6.2. Reducing the Program-Generation Time 98
6.2.1. Optimizing Refactoring Sequences 99
6.2.2. Case Studies . 105
6.2.3. Summary . 109

6.3. Multi-Language Support for RFMs 109
6.3.1. Analyzing MLR for a Hibernate Application 110
6.3.2. Case Studies . 112
6.3.3. Summary . 113

6.4. Summary . 114

7. Related Work 115

7.1. Related Work on RFM Concept . 115
7.2. Related Work on Algebraic-Property Analysis 117
7.3. Related Work on NFP Configuration 119
7.4. Related Work on Safe Composition 120
7.5. Related Work on Correcting Functionality Errors of SPL Products . 124
7.6. Related Work on Reducing the Program-Generation Time 126
7.7. Related Work on Multi-Language Support for RFMs 128

8. Conclusion 131

8.1. Summary of the Thesis . 131
8.2. Contribution . 132
8.3. Future Work . 134

A. Appendix 137

x

List of Figures

2.1. Excerpt of a class from the GPL. 6
2.2. Subclasses in OOP. 8
2.3. Wrapper design pattern implemented for GPL classes. 9
2.4. Feature diagram of the GPL. 11
2.5. Feature modules and the program they generate. 14
2.6. Program of Fig. 2.3 after executing a refactoring. 15

3.1. Personal experience with the module-scalability dilemma. 18
3.2. Object wrappers and class wrappers. 23

4.1. Refactoring unit inside an RFM. 32
4.2. SPL code with RFMs, and SPL products. 32
4.3. Refinement for an Add-Parameter RFM. 34
4.4. Different implementation approaches for RFM composer tools. 36
4.5. Cases in which refactorings do not distribute over feature modules. . 37
4.6. Proof: There are refactorings that do not change a program. 42
4.7. Proof: There are refactorings that invert other refactorings. 44
4.8. Proof: Refactorings do not always distribute over feature modules. . 46
4.9. Code improvement according to NFP metric Cyclomatic Complexity. 56
4.10. Runtimes of a program configured with RFMs for NFP Performance. 57

5.1. Feature model used to explain safe composition. 63
5.2. Jak-like feature modules of the GPL. 63
5.3. Jak-like feature modules and RFMs of a GPL version. 65
5.4. Tree to record the effect of RFM decisions on scoped name. 71
5.5. Tree to record the effect of RFM decisions on the body of a method. 80
5.6. Influence of the feature order on the safe-composition approach. . . . 81

6.1. Feature modules with an error and the program they generate 87
6.2. Refactorings that merge and multiplex code. 88
6.3. Use case to correct SPL products and to update feature modules. . . 91
6.4. Error-correction process for a GPL class. 95
6.5. Corrected GPL class. 97
6.6. Initial and optimized sequence of RFMs. 101
6.7. Conceptual dependency graph for RFMs. 101
6.8. Process of executing two RFMs in parallel. 105
6.9. Hibernate annotations to persistently store properties of objects. . . 111

xi

List of Figures

6.10. Method for which the result is difficult to predict automatically. . . . 112
6.11. Manual adjustment of an MLR-study artifact. 112

xii

List of Tables

3.1. Assessment of related work on module integration. 28

4.1. Refactoring types for which RFM refinement could be beneficial. . . 35
4.2. Data on programs used to evaluate RFMs. 50
4.3. NFPs and how RFMs can alter them. 60

5.1. Data on SPLs used to evaluate our approach to safe composition. . . 76

6.1. Index that relates scoped names of products to feature modules. . . . 92
6.2. Fusion rules for optimizing RFM sequences. 102
6.3. Tool runtimes for feature-module sequences. 107
6.4. Data on programs used to evaluate RFMs for MLR. 113

xiii

List of Abbreviations

API Application Programming Interface

FOP Feature-Oriented Programming

MLR Multi-Language Refactoring

NFP Nonfunctional Property

GPL Graph Product Line

OOP Object-Oriented Programming

RFM Refactoring Feature Module

SPL Software Product Line

SQL Structured Query Language

xv

1. Introduction

Programmers reuse code to reduce the effort of implementing new programs [Par76].
Programmers who decompose code into distinct modules are advantaged [Par78]
because they might be able to implement a piece of functionality in a new program
by copying a single entity – the module – from an existing program. Programmers
who do not decompose code must extract according code from an existing program
first or must reimplement the functionality without reuse.

A module is difficult to develop because programmers face a fundamental
dilemma [Big98, CHSV97, CL01, Her08, HM07, Mey97, OT00, TOHS99, Weg90]:
On the one hand, programmers can implement a module which is large-scale and
valuable (i.e., full of functionality) – but, then this module cannot be reused in
many programs because the module is difficult to integrate with these programs. On
the other hand, programmers can implement a module which is small and easy to
integrate with reusing programs – but, then this module is less valuable and reusing
it does not pay off. Integration problems occur among other things because pro-
grammers must decide on how to structure code to implement functionality, and
this structure can conflict with the code structure of a reusing program (e.g., the
allocations or names of pieces of code) [Par72]. Researchers found that, in general,
programmers cannot implement a module that is full of functionality and easy to
integrate with a high number of programs at the same time.

Research on domain engineering and software product lines (SPLs) tackled the
problem of missing module functionality [BSST93, vdS04]. Domain engineering stud-
ies the differences and commonalities between programs of a domain. During domain
engineering, engineers discover distinguishable characteristics, called features, of pro-
grams of a domain [CE00]; these engineers also relate features to each other and de-
scribe them as common among programs or as variant. An SPL is a set of programs
of a domain that can be developed from a shared code base [CE00]; the features that
contribute to multiple programs enable code reuse [CN06]. Domain engineering and
SPLs allow a user to configure a module to provide the functionality he/she desires.

In this thesis, we shed light on how programmers can configure the structure of a
module to aid reuse (e.g., to configure the names of modules). Specifically, we extend
existing techniques of SPL engineering to generate configured modules. As a new
opportunity, programmers can now configure a module with respect to its structure
to be reusable in programs it could not be reused in as is before. As one follow-up
challenge, we had to cope with higher complexity of verifying consistency between
(a) combinations of features which a model describes to be legal for the programs of
an SPL and (b) supported combinations of modules that implement these features.
We observed that verifying this consistency manually became hard even for small

1

1. Introduction

case studies; thus, one could argue that with our techniques we push the boundaries
of SPL technology to a point, at which powerful mechanisms of program generation
can only be managed safely with concepts and tools as we present in this thesis. A
user in our context might be a programmer of a program which shall reuse a module
of the module SPL, or might be a person who just knows that a program requires a
module in a certain structure.

1.1. Who Should Read this Thesis?

Researchers interested in modular programming should read this thesis. When pro-
grammers are asked by different customers to develop a set of modules in the same
domain that differ in their functionality and their structure, then these programmers
basically either (a) can negotiate with the customers to accept a common structure,
(b) can refuse business with certain customers, and/or (c) can develop the modules
independently from scratch for each customer. Note that if customers want to inte-
grate the module with legacy programs, they rarely accept a structure that differs
from what they requested because they are often times afraid of changing the legacy
programs. We introduce techniques which allow such programmers to efficiently de-
velop a set of modules that differ with respect to functionality and structure. Note
finally that none of the above options is easy to implement.

1.2. Contribution

In this thesis, we make the following main contributions: We extend techniques of
SPL engineering such that users can configure the structure of modules, we generalize
existing concepts of safe composition for SPLs, and we evaluate practical issues of
configuring the structure of modules.

1. We extend techniques of SPL engineering such that users can configure the
functionality and the structure of a module. Thereby, users will be able to de-
fine configurations without knowing anything about the module’s implementa-
tion, because we provide techniques that allow users to configure the structure
of a module based on the concept of features; techniques that allow users to
configure functionality based on features already exist. Our approach ensures
that decisions regarding the functionality of a module do not affect decisions
regarding the structure of this module, and vice versa.

Specifically, the techniques we propose allow users to configure programs and
modules using selectable refactorings. A refactoring is a program transforma-
tion which alters the structure of programs but not their functionality [Opd92].1

1The term refactoring is actually defined with respect to the behavior of a program. In the
remaining thesis, we use the term functionality as a synonym for behavior because (a) the
term functionality suffices to understand our discussions, (b) the term functionality helps us to
describe basic relations between refactoring and SPL mechanisms, and (c) literature on SPLs
uses both terms synonymously, too.

2

1.3. Disclaimer

We call our technique refactoring feature modules (RFMs). We demonstrate
that RFMs are feasible to remove incompatibilities between modules and pro-
grams that shall reuse the modules, and to configure nonfunctional properties
of programs such as performance.

2. We generalize existing concepts of safe composition, which verify that the im-
plementation of an SPL is consistent with its variability model. Existing con-
cepts verify consistency of SPLs built from program transformations that (a)
only add code or only remove code, and that (b) enumerate all the pieces of
code they add or remove (i.e., by analyzing a program transformation, one
knows all the pieces of code it transforms). We generalize these concepts to
verify consistency of SPLs built from program transformations that create and
remove code, and that do not always enumerate all the pieces of code they
transform.

3. We present techniques which support programmers in practical issues of SPLs
when these SPLs involve RFMs. In particular, we present techniques for how
to correct errors in functionality of programs of SPLs; programs which have
been generated using RFMs. We present techniques for how to reduce the
time a tool needs to generate programs of SPLs. We discuss requirements and
challenges to apply refactoring techniques to those programs, of which each is
written in more than one language.

1.3. Disclaimer

In this thesis, we present our concepts for programs written with concepts of object-
oriented programming (OOP) and for SPLs written with concepts of feature-oriented
programming (FOP). Throughout this thesis, we exemplify our concepts using the
OOP language Java [GJSB05] and using the FOP language Jak [BSR04]. Please
note that the presented concepts apply for arbitrary languages and programming
paradigms for which we can describe refactorings in modules; we exemplify our
concepts for Java and Jak only for understandability.2 Furthermore, for under-
standability reasons, we present our concepts using a simple running example of a
graph product line (GPL) (developed and proposed as a benchmark study for SPL
approaches elsewhere [LHB01]) and with simple standard refactorings (described
elsewhere [Fow99]); please note, however, that our approach can scale to arbitrarily
complex SPLs and use arbitrarily complex refactorings.

2We prototypically implemented parts of the concepts presented in this thesis. For our imple-
mentation, we reused several modules and extended existing tools such as Sat4J (http://-
www.sat4j.org/; accessed: July 16,2011), JastAdd [EH07], or tools from the AHEAD tool suite
(http://www.cs.utexas.edu/users/schwartz/ATS.html; accessed: July 16,2011). We distin-
guish our work from these foundations and other related work in Sec. 3.3 and Chap. 7. In the
remaining sections, we focus on concepts and thus omit discussions on our implementation unless
necessary.

3

1. Introduction

1.4. Outline

This thesis is structured as follows3: In Chapter 2, we introduce the basic concepts
we rely on in this thesis. In Chapter 3, we lead to the main problem we tackle in this
thesis. In Chapter 4, we introduce the concept of RFMs and report on case studies
we conducted with RFMs. In Chapter 5, we discuss inconsistencies between the
variability model of an SPL and its implementation, and we discuss how to detect
these inconsistencies. In Chapter 6, we present concepts that help to use RFMs in
SPLs. In Chapter 7, we discuss our concepts with respect to related research. In
Chapter 8, we summarize the concepts and insights of this thesis and give possible
lines of future work.

3 Chapter 3 shares material with [KBA09, KSA10]. Chapter 4 shares material with [KBA08,
KBA09, KKAS11, SKAP10]. Chapter 5 shares material with [KBK09]. Chapter 6 shares mate-
rial with [KLS10a, KS10b, SK10, SKSL11]. Chapter 7 shares material with all papers referenced
in this footnote.

4

2. Background

The topics in this chapter cover the basic concepts we rely on later in this thesis;
specialized background is given in later chapters, as needed. In this chapter, we
review basic concepts of modular programming (cf. Sec. 2.1) and SPLs (cf. Sec. 2.2).
Later in this thesis, we extend the concepts of SPL engineering that are implemented
with modular programming. Accordingly, we now review the implementation tech-
niques OOP (cf. Sec. 2.1) and FOP (cf. Sec. 2.2.2). Finally, we review refactoring
(cf. Sec. 2.3) because as part of our approach, we integrate refactorings with SPL-
engineering techniques.

2.1. Modular Programming

Researchers argue that code of a program should be decomposed into modules to
reduce this code’s complexity, to implement different parts of a program in parallel,
and to increase the reuse of code [Dij69, Dij82, Par72, SMC74]. A module has some
name, some implementation of the module functionality, and can have a description
of the module functionality.

The implementation of a module’s functionality comprises commonly a set of al-
gorithms that compute results for given inputs. The implementation can be writ-
ten in languages of different programming paradigms such as languages of logi-
cal programming [CR96], functional programming [Jon03], or imperative program-
ming [GJSB05]. In this thesis, we concentrate on modules implemented with the
imperative programming language Java (cf. Sec. 2.1, p. 6).

The description of a module’s capabilities commonly is called an interface and
is used to abstract from the module implementation [GHJV95, Mey97, PBvdL05].
In this thesis, we need to distinguish user interfaces from application programming
interfaces (APIs):

• User interfaces describe modules with respect to presentation elements that the
modules provide. Users can use these elements to interact with the modules.
Sample presentation elements are dialog boxes, menus, or terminals [Mye88].

• An API describes a module with respect to algorithms, which the module
encapsulates and which can be referenced from code outside the module (we
call such outside code an environment) [BCK06, CE00, Gro04]. APIs include
method signatures which define how environments can call a method in this
module (i.e., with which input values) and what they can expect from a method
as a result [BCK06]. Further, APIs describe modules with respect to states

5

2. Background

1 package gpl;
2
3 public class Vertex {
4 public String name;
5 public void display(){
6 ...
7 System.out.println();
8 } }

Figure 2.1.: Excerpt of a class from the GPL (package declaration inserted for ex-
planatory reasons) [adapted from LHB01].

which these modules maintain. Sometimes even functionality descriptions of
algorithms are part of an API [BCK06, CE00].

APIs of a module allow a module programmer to hide implementation details
of a module to some extend from environments; for example, when APIs do not
expose every implementation detail of a module. As a result, the programmer
can change those details of a module without the need to update environments
on behalf of this change [BCK06, Mey97, Par72, Sny86, Str91]. APIs also allow
those programmers to replace a module by a different one when both provide
the same API [GHJV95, PBvdL05, Sny86].

APIs can be described separately from the module’s code in a named artifact
(we call such named artifact API artifact). API artifacts can be defined with
concepts of the programming language the module is implemented in (e.g., the
interface concept in Java and the virtual concept in C++ [GJSB05, Str91]), or
API artifacts can be defined with dedicated API description languages [DK76,
Gro04, vdS04]. In the remaining thesis, we say that a module implements an
API artifact when this module provides an implementation for the algorithms
and states described in the API artifact.

OOP in Java

In this subsection, we review concepts of the OOP language Java at a low and
technical level (e.g., we review inheritance and overriding); we do so to avoid con-
fusion when we describe and detect possible errors of refactorings later. In case,
the reader is familiar with OOP concepts and Java, we advise to continue with the
Section Object-Oriented Design Patterns on page 9.

OOP is one approach to decompose programs into modules. Large-scale mod-
ules of current mainstream OOP languages are called packages ; packages encap-
sulate other packages or small-scale modules [GJSB05, Int07, Mey97]. Small-scale
modules of current mainstream OOP languages are called classes; classes encapsu-
late class members [Mey97]. Class members can be variables, methods, and nested
classes [GJSB05]. In Figure 2.1, we show parts of a package gpl; this package con-
tains a class Vertex; Vertex encapsulates the member variable name (Line 4) and the

6

2.1. Modular Programming

method display (Lines 5-8). In Java, API artifacts are defined as special classes that
have no implementation for the methods they declare.

Objects are runtime entities instantiated from classes [Mey97]; that is, objects
provide a field for each member variable of the class they are instances of. The type
of an object associates this object to the class it is an instance of and the methods
of this class respectively [Mey97]. Objects are instantiated by constructor methods
(constructors for short). In Figure 2.1, all objects instantiated from class Vertex are
of the same type (i.e., they all have a field name and a method display because Vertex
defines according members).

An object can access methods and fields of other objects by referencing these ob-
jects with variables, or an object can access methods and fields of itself by referencing
itself using the pseudo variable this [GJSB05, Str91]. Methods and fields that corre-
spond to class members modified with static (static class members) can be accessed
additionally by referencing the class, which hosts the members, instead of an ob-
ject [GJSB05]. In Figure 2.1, Line 7, the method display among others references the
field out of class System without a System object (out is static); this field references
an object which then is used to call the method println.

Modules and their code respectively reference each other unambiguously using
names; for example, a class has a name which other pieces of code use to reference
this class. Modules further introduce scopes for the names they encapsulate such
that names of pieces of code inside a module need not be unambiguous in the whole
program but only within the scope of that module [Gro04, Str91]; for example in
Figure 2.1, the scoped name of the class named Vertex, which is nested inside a
package gpl, is gpl.Vertex and there might be more classes Vertex in other packages
than gpl [Gro04, Str91]. As a result, scoped names are unambiguous in a program.

Only methods are an exception to the unambiguous-name constraint of scoped
names; that is, different methods within the same scope might have equal names
and thus equal scoped names [Mey97]. For that, in order to reference a method
unambiguously, the scoped name of that method must be combined with pa-
rameter objects this method accepts – the types of these objects determine the
method to execute; the combination of a method’s scoped name, all types that the
method’s parameter variables have (i.e., all types of objects that the variables de-
clare to reference), and the method’s return type is called the signature of that
method [GHJV95, GJSB05, Gro04]; signatures identify methods unambiguously. In
Figure 2.1, the signature of method display is gpl.Vertex.display()::void. For homo-
geneity of our descriptions, we add the types that member variables have to the
scoped names of these variables, too.

OOP in Java introduces the class-based reuse mechanism of inheritance and
the object-based reuse mechanism of forwarding [Weg90]. Inheritance allows
a class called subclass to reuse (inherit) the members of a class called super-
class [Mey97, Weg90]. Objects of a class thus provide methods and fields as defined
in that very class or any of its superclasses. For that, subclass objects can be as-
signed to variables that have the type of the subclass (i.e., that declare to reference
objects of the subclass) or any of its superclasses [Mey97]. If an object of a subclass

7

2. Background

1 public interface GraphElement {
2 public void display();
3 }

4 public class SpVertex extends gpl.Vertex implements GraphElement {
5 private String predecessor;
6 private int dweight;
7 public void display() {
8 System.out.print("Pred " + predecessor + " DWeight " + dweight + " ");
9 super.display();

10 } }

Figure 2.2.: Subclasses in OOP.

is assigned to a variable which has the type of a superclass of the subclass, a method
of the subclass is executed instead of a method of the superclass that was called using
the variable if both methods have equal signatures (such subclass method is said
to override the superclass method [GR83, GJSB05, Int07, Mey97]). In Figure 2.2,
SpVertex declares to inherit class members from gpl.Vertex (keyword extends, Line 4)
and so SpVertex objects provide a field name. SpVertex further declares to imple-
ment the API artifact GraphElement. At runtime, SpVertex objects can be assigned
to variables that have either the type SpVertex or the types gpl.Vertex or GraphEle-
ment (because gpl.Vertex and GraphElement are types of superclasses or API artifacts
of SpVertex). However, in any case, a call with such variables (which reference
SpVertex objects) to a method display will execute SpVertex.display()::void. In the
example of Figure 2.2, the SpVertex method does not replace the gpl.Vertex method
when method display is called with SpVertex objects; but, SpVertex.display()::void
calls gpl.Vertex.display()::void (keyword super, Line 9) and thus extends this method.

Forwarding allows a method of an object to provide functionality by calling a sec-
ond method (possibly of a referenced object) [Weg90]. Different methods of possibly
different objects may forward to the same method, and methods of one object may
forward to different methods of different objects. Commonly, forwarding objects
reference the objects, which they forward to, using a field (which corresponds to a
member variable in the class).

Members of a class can be modified with the access modifiers public, protected, and
private [GJSB05]. A member modified with public can be referenced from every piece
of code in the class itself and in the environment of this class (i.e., in code outside
this class). A member modified with protected can be referenced only from code (a)
of the class hosting the member and (b) of every subclass of the class hosting the
member. A member modified with private can be referenced only from code of the
class hosting the member [GJSB05, GR83]. Unmodified class members can be refer-
enced only from code of the same package or from code of classes that inherit from
the member’s host class [GJSB05]. In Figure 2.2, method SpVertex.display()::void
is modified with public and thus can be referenced from every piece of code in the
program; SpVertex.dweight::int is modified with private and thus cannot be referenced

8

2.1. Modular Programming

1 public interface VertexI{
2 public void show();
3 }
4
5 //wrapper
6 public class ADT implements VertexI{
7 private Vertex wrappee;
8 public void show(){
9 wrappee.display();

10 } }

11 //wrappee
12 public class Vertex {
13 public String name;
14 public void display() {
15 ...
16 System.out.println();
17 } }

Figure 2.3.: Wrapper design pattern implemented for GPL classes.

from code outside class SpVertex.
To reuse OOP code at a large scale, programmers may implement frameworks or

libraries. An OOP framework is a program of which users may alter functionality by
extending dedicated classes [CHSV97, JF88]; different sets of user classes then gener-
ate different programs which all reuse the framework. An OOP library encapsulates
classes and packages to be reused in programs [Weg90].

Object-Oriented Design Patterns

We rely on a common understanding of object-oriented design patterns several times
in this thesis and especially on a common understanding of the pattern Wrapper,
which we exemplify below.

There are different ways, how programmers can decompose their object-oriented
code into modules [TOHS99, Tor04]. Object-oriented design patterns are descriptions
of best-practice decompositions of object-oriented code with respect to a recurring
development task [GHJV95]. Researchers cataloged object-oriented design patterns
such that an unexperienced programmer is capable to decompose his/her code best
into modules from beginning. Researchers identified object-oriented design patterns
at different levels of abstraction from code [Chr04, GHJV95, Woo97, Zim95]; the
object-oriented design patterns we deal with in this thesis are at the level of classes;
that is, the patterns describe what functionality a class should encapsulate and how
classes should be connected (inheritance/forwarding) to solve a recurring develop-
ment task.

A wrapper is a well-known object-oriented design pattern [BCK06, GHJV95].
Wrapper describes a proven way to provide an additional API for an object; thereby,
an object of a class called wrapper class, which has a desired API, forwards calls
to a referenced object of a class called wrappee class, which has an undesired API.1

At runtime, wrapper objects then replace wrappee objects and accept calls with
their (desired) API. As (a) wrapper classes can be structured differently than their
respective wrappee classes, (b) wrapper objects can replace wrappee objects at run-

1There are different implementations of Wrapper [GHJV95] but we limit ourselves at this point of
the thesis to one for understandability.

9

2. Background

time, and (c) wrapper objects can provide their wrappees’ functionality (through
forwarding), wrappers simulate a different API for wrappees.

In Figure 2.3, we extend the code of our GPL running example to make ADT
objects wrap Vertex objects (please ignore VertexI for now). We defined a member
variable wrappee in class ADT in order to assign wrappee objects to it (Line 7). We
defined a method show in ADT (Lines 8-10) that forwards its calls to method display
of the referenced Vertex object. As a result, ADT objects provide a different API
for respective Vertex objects because ADT objects allow programmers to reference
Vertex objects using variables, which have the type ADT, and allow programmers to
access the display method using name show.

2.2. Domain Engineering and Software Product Lines

An SPL is a set of programs of a domain; those programs in turn are called products
of their SPL. Products of an SPL cover the same market segment, share features,
and differ in features [CE00, CN06]; a feature in an SPL product is a distinguishable
program characteristic important to some user [CE00]. In contrast to an SPL, a
program family comprises different programs that share code [Dij69, Par76]. SPLs
can (but do not have to) be implemented as program families such that different SPL
products share code, too [BSR04, CE00, CN06]. In this thesis, we extend the work
of others and so in line with them we use the term SPL to refer to a set of programs
of a domain that share code.

The development of an SPL is commonly called domain engineering or SPL engi-
neering [CE00]. To develop an SPL, domain engineers first analyze the domain of
the SPL and thereby model the variability of programs of that domain with respect
to features [CE00]. After that, a programmer can implement different SPL products
in parallel by implementing features which these SPL products share. Overall, the
effort to implement SPL products in parallel is intended to be less than the effort to
implement the same SPL products independently from each other [CE00, Par76]. We
review domain analysis in Section 2.2.1 and domain implementation in Section 2.2.2.

Though SPLs provide benefits, not every program should be implemented with
SPL-engineering techniques from beginning [CK02]. In general, the time program-
mers need to implement a stand-alone program is less than the time they need to
implement the same program in parallel with other programs of an SPL. SPLs first
pay off, when a number of similar programs are demanded. In this thesis, we are
interested in the development of sets of similar programs.

2.2.1. Domain Analysis

As the first step to implement SPLs, domain engineers commonly perform a domain
analysis. One approach to analyze a domain is to perform a feature-oriented domain
analysis [KCH+90]. Engineers, who perform a feature-oriented domain analysis, an-
alyze a domain in three steps: context analysis, domain modeling, and architecture
modeling. During the context analysis, engineers define the scope of the analyzed

10

2.2. Domain Engineering and Software Product Lines

GPL

Gtp

Directed Undirected

Wgt

Weighted

Alg

StrongConnect

Transpose StronglyConnected

ShortestPath

Legend

GPL

ShortestPath Directed

feature

GPL

ShortestPath Directed

dependency

GPL

ShortestPath Directed
mandatory

GPL

ShortestPath Directed
optional

GPL

Gtp

Directed Undirected

Wgt

Weighted

Alg

StrongConnect

Transpose StronglyConnected

ShortestPath

alternative

GPL

Gtp

Directed Undirected

Wgt

Weighted

Alg

StrongConnect

Transpose StronglyConnected

ShortestPath

inclusive

(ShortestPath implies Directed and Weighted)

Figure 2.4.: Feature diagram of the GPL [adapted from LHB01].

domain by relating it to other domains [KCH+90] (i.e., they define the boundaries of
the analyzed domain); the engineers further define rough APIs of future SPL prod-
ucts [KCH+90]. During domain modeling, engineers identify the features of future
SPL products and relate the features to each other [KCH+90]. During architecture
modeling, engineers define the structure of future SPL products [KCH+90].2

One major outcome of the feature-oriented domain analysis is a feature model. A
feature model relates the features of (future) SPL products to each other, groups
the features, and defines meaningful combinations of the features (i.e., not all com-
binations are meaningful [BO92]) [CE00, KCH+90]. Features can be declared to be
mandatory, optional, or alternative for programs of that domain [KCH+90]. A fea-
ture model finally can be used by SPL users to select an SPL product by selecting
its features [CE00, KCH+90].

A feature diagram is a graphical notation of a feature model [CE00, KCH+90]. In
Figure 2.4, we depict a feature diagram for a simplified version of a feature model
of our GPL running example [adapted from LHB01]. The diagram shows a tree in
which features are represented by rectangles and feature relations are represented by
straight lines, circles, and semicircles. The root feature generally indicates the mod-
eled domain; for example, in Figure 2.4, the feature diagram models the domain of
graph data structures (i.e., the domain of the GPL). Straight lines denote grouping
relations such that all child features of a parent feature are members of one group.
Straight lines further denote dependencies of child features toward their parent fea-
ture in the tree; for example, in Figure 2.4, features ShortestPath and StrongConnect
are defined to be child features of feature Algorithm (Alg) and thus are grouped; at
the same time, ShortestPath and StrongConnect can only be selected when Alg is
selected, too. Circles denote dependencies of parent features toward an individual
child feature. Filled circles denote that a parent feature depends on its child feature;

2Sometimes the architecture-modeling phase is described as its own step after domain analysis
and domain implementation [CE00] – the differences between both options are not important
for this thesis.

11

2. Background

for example, in Figure 2.4, StrongConnect can only be selected when its child feature
Transpose is selected as well. Empty circles denote that a parent feature does not
depend on its child feature; for example, in Figure 2.4, the feature Weight (Wgt) can
be selected independently of its child feature Weighted. Semicircles denote depen-
dencies of parent features toward a group of child features. Filled semicircles denote
that a parent feature depends on that at least one in the group of its child features is
selected; for example, in Figure 2.4, Alg depends on that StrongConnect is selected,
or ShortestPath, or both. Empty semicircles denote that a parent feature depends
on that exactly one in the group of its child features is selected; for example, in
Figure 2.4, feature Gtp depends on that feature Directed is selected, or Undirected,
but not both.

A feature diagram cannot depict all dependencies between features described in a
feature model because feature diagrams must expose a tree structure but dependen-
cies between features in feature models need not [KCH+90]. Relations which cannot
be described in feature diagrams must be described separately [CE99a, KCH+90].
For the diagram of Figure 2.4, we describe separately (underneath the diagram) that
ShortestPath can only be selected together with the features Directed and Weighted.

2.2.2. Domain Implementation

Programs of an analyzed domain can be finally implemented as products of an SPL in
a domain-implementation phase [CE00]. SPLs can be implemented with annotative
or compositional approaches [KAK08, KRT97], or a combination of both [KAK09].
In annotative approaches, programmers commonly implement a single program first
with all features described in the feature model. After that, the programmers an-
notate each piece of code with respect to the features it implements. When a user,
finally, selects desired features of an SPL product, code of nonselected features is
removed and code of selected features remains. Annotative SPL approaches include
#ifdef preprocessors [SC92, Str91] and user-interface approaches [BOT07, KAK08].

In compositional approaches, programmers implement a module or a set of modules
for every feature in the feature model [KAK08]. These feature-related modules are
synthesized once a user selects the features he/she desires for his/her SPL product.
The result of synthesizing feature-related modules then is an SPL product with the
code of the desired features. To implement the feature-related modules with less
effort, programmers commonly target at a common structure for all SPL products
and thus for all feature-related modules [Bat07b, BOT07, CAK06, CN06, JF88,
PBvdL05]. Compositional approaches used for SPLs include frameworks [BMMB00,
CHSV97, JF88], aspect-oriented programming [Gri00, HC02], and FOP [BSR04].

In this thesis, we extend compositional SPL approaches by modules that describe
refactorings. In particular, we exemplify our concepts on top of FOP.

12

2.2. Domain Engineering and Software Product Lines

Feature-oriented programming in Jak

Feature-oriented programming (FOP) is one approach to decompose programs into
modules, which are dedicated to features; these modules are then called feature mod-
ules [BSR04, Pre97]. For the feature-driven decomposition of programs, it does
not matter whether these programs include artifacts written in programming lan-
guages, natural languages (e.g., documentation), grammar languages, XML lan-
guages [DLT00, KKKS08a, KWDE98, Lin95, Mar05, SKL06], or other languages;
FOP techniques apply to all of these artifacts uniformly (named principle of unifor-
mity of FOP [BSR04]) [ADT07, AKL09, BSR04, SKS+08, TBD06].

Jak is a language extension for Java that supports feature modules [BSR04]. In
Jak, a feature module is a program transformation that is dedicated to a single
feature; this feature module then adds (copies) code in a way to its input program
that the generated program implements the feature. A feature module encapsulates
classes and class refinements.3 A class inside a feature module is added to the input
program of this feature module. A class refinement inside a feature module is a
program transformation on its own; it is executed on a single class of the feature
module’s input program. Class refinements encapsulate class members and method
refinements. A class member inside a class refinement is added to the class of the
input program which the class refinement transforms. A method refinement inside a
class refinement is a program transformation on its own; it is executed on a single
method of the class of the input program which the class refinement modifies. Method
refinements encapsulate statements that are added to the refined method.

Feature modules execute consecutively to generate a program; executing them
in different combinations, however, yields different programs – the products of an
SPL. The order in which feature modules can be executed is oftentimes fixed and
predefined for a complete SPL [AKGL10, Bat05, Bat06, BO92, BSR04, KKB08]. In
Figure 2.5a, we show the feature modules Directed and ShortestPath of our GPL
running example. Directed is a program transformation that transforms its input
programs to make them provide the feature of directions in graphs. ShortestPath is a
program transformation that transforms its input programs to make them provide the
feature of shortest-path algorithms for graph programs. The modules are executed
in top-down order such that the input program of Directed is empty and the input
program of ShortestPath is the generated program of Directed.

In Figure 2.5a, Directed encapsulates a class Vertex and adds a copy of this class to
the empty Directed input program. ShortestPath encapsulates a class refinement Ver-
tex (Jak keyword refines, Line 7) and executes this refinement on the ShortestPath in-
put program. The class refinement Vertex encapsulates the class members predecessor
and dweight and adds a copy of these members to the Vertex class of the ShortestPath

3The term refinement is used ambiguously in literature [Bat04]. On the one hand, refinement

describes the reduction of an abstraction level of a program description by adding details –
ultimately such refinements generate code [Big98, Big04, Dij69, WB95]. On the other hand,
refinement in FOP-related literature describes the synthesis of pieces of code without alter-
ing the code’s abstraction level [BDN05, BLO07, BSR04, GA07]. We use the FOP-literature
interpretation in this thesis because we exemplify our concepts on top of FOP.

13

2. Background

Feature module Directed

1 public class Vertex {
2 public String name;
3 public void display(){
4 ...
5 System.out.println();
6 } }

Feature module ShortestPath

7 public refines class Vertex {
8 private String predecessor;
9 private int dweight;

10 public void display() {
11 System.out.print("Pred " + predecessor +

" DWeight " + dweight + " ");
12 Super.display();
13 } }

(a) Feature modules Directed and
ShortestPath.

1 public class Vertex {
2 public String name;
3 private String predecessor;
4 private int dweight;
5 public void display() {
6 System.out.print("Pred " + predecessor +

" DWeight " + dweight + " ");
7 ...
8 System.out.println();
9 } }

(b) Generated program of the feature
modules of Fig. 2.5a.

Figure 2.5.: Feature modules and the program they generate.

input program. The class refinement further encapsulates a method refinement Ver-
tex.display()::void (Lines 10-13) and executes this method refinement on the equally
named Vertex.display()::void method of its input program. The method refinement
Vertex.display()::void of ShortestPath replaces the method Vertex.display()::void in the
ShortestPath input program by a copy of the method refinement; but, as the method
refinement calls the refined method (keyword Super, Line 12), the input program’s
method is integrated and essentially extended instead of replaced. We show the
result of executing Directed and ShortestPath in Figure 2.5b.

Bounded quantification is a guideline to reduce the complexity of transformation-
based systems such as FOP programs [AKB08, LHB05, Par78]. According to this
guideline, the code generated by a feature module should not reference pieces of code
that do not exist in the input program of this feature module and are not added by
this feature module; that is, a feature module should not generate code with dangling
references.

Feature modules (so far) only create code in input programs but never delete code
therein. Thus, researchers called feature modules of FOP monotonic [ALMK10,
BB08].4 Feature modules (so far) enumerate every piece of code, which they trans-
form in the input program; that is, by analyzing a feature module, one knows all
the pieces of code the module transforms. For example, by analyzing feature module
ShortestPath of Figure 2.5a, we know that this module transforms the pieces of code
Vertex and Vertex.display()::void of its input programs. Thus, we call feature modules
of Jak enumerative. For brevity, we call monotonic, enumerative feature modules as

4Monotonicity can hold with respect to different properties of programs [Bax90]. Feature modules
are monotonic with respect to code structure.

14

2.3. Refactoring

1 public interface VertexI{
2 public void display();
3 }
4
5 //wrapper
6 public class ADT implements VertexI{
7 private Vertex wrappee;
8 public void display(){
9 wrappee.display();

10 } }

11 //wrappee
12 public class Vertex {
13 public String name;
14 public void display() {
15 ...
16 System.out.println();
17 } }

Figure 2.6.: Program of Fig. 2.3 after executing the refactoring “Rename method
ADT.show()::void into display”.

in Jak Jak-like feature modules. In this thesis, we denote the execution of Jak-like
feature modules by the operator •; for example, we denote the consecutive execution
of Directed and ShortestPath by (ShortestPath •Directed).

2.3. Refactoring

Decomposing code into modules helps to extend code [MEDJ05, Opd92], helps to
understand code [Fow99, JF88, Opd92], and helps to reuse code [Opd92]. However,
there generally is no best way for how to decompose code into modules [TOHS99,
Tor04]. When programmers decomposed code into modules but later discover a
better decomposition approach or new decomposition requirements, then these pro-
grammers can execute refactorings [Fow99]. A refactoring is a program transfor-
mation which alters the structure of programs but not their functionality [Opd92].
Researchers catalogued refactorings [Amb03, Fow99, Li06, MF05, Opd92, Rob99] but
insist that an infinite number of refactorings exist [KK04, MEDJ05].

A refactoring commonly is defined as a template that accepts parameters before it
can be executed [MEDJ05, RBJ97, VEd06]. Parameters of a refactoring commonly
are scoped names which reference the pieces of code to transform. For example, a
refactoring that renames a method ADT.show()::void into display (Rename-Method
refactoring [Fow99]) accepts two parameters: The scoped name of the method to
rename (ADT.show()::void) and the name of that method after renaming (display).
In the remaining thesis, we call a refactoring which accepts parameters refactoring
type.

In order to execute the above Rename-Method refactoring (“Rename method
ADT.show()::void into display”), we must execute three predefined actions: We must
rename the method ADT.show()::void itself into display; we must rename all meth-
ods which override ADT.show()::void or which are overridden by this method; we
must update all calls to any renamed method. We show the result of executing the
discussed Rename-Method refactoring on the code of Figure 2.3 in Figure 2.6 and
underline affected code.

Refactorings do not alter the functionality of their input program when this input

15

2. Background

program meets preconditions [Fow99, MEDJ05, Opd92, Rob99]. The above refac-
toring “Rename method ADT.show()::void into display” does not alter the function-
ality when a method show exists in the class ADT of its input program and when
no parameterless method display exists in the class ADT of its input program. If
ADT.show()::void does not exist, the refactoring fails as there is no method to re-
name; if an ADT method display without parameters exists, the refactoring fails as the
refactoring cannot create a second method display without parameters in class ADT
of the input program (this creation would be an error according to most program-
ming languages [GJSB05, Gro04, Li06, MEDJ05, Str91]). Of course, functionality is
only guaranteed to be maintained if all code that uses a piece of code is transformed;
that is, to refactor a module to expose a different API, guarantees that the function-
ality of the module is maintained but does not guarantee that the functionality of a
program which uses the module is maintained in case it is not updated.

Commonly, refactoring engines execute refactorings in two consecutive
phases [Li06]. In a verification phase, they verify that preconditions are met by
the input program. In a transformation phase, they transform the input program
and generate a program as the refactoring result.

Name capture is an error in refactoring that occurs when method calls or class
references reference a different method or class after the refactoring than before –
this could change functionality [Li06, MEDJ05, Opd92, SLMD96]. For example,
name capture might occur during a Rename-Method refactoring: When a method
is renamed and overrides a second method after the refactoring, which it did not
override before, then the renamed method captures the name of the second method.

Refactorings exist for artifacts of a number of languages such as OOP lan-
guages [Fow99] and SPL languages [CDCv03, KKB07, LBL06, TBD06]. Refactorings
for artifacts of OOP languages (named object-oriented refactorings) transform OOP
artifacts (packages and classes) into OOP artifacts. Refactorings for artifacts of
FOP languages (named feature-oriented refactorings) transform FOP artifacts (fea-
ture modules) into FOP artifacts or OOP artifacts into FOP artifacts (e.g., feature-
oriented refactorings can decompose OOP artifacts into refinements of feature mod-
ules). Thus, an object-oriented refactoring in Figure 2.5b would be to rename class
Vertex into ADT; in contrast, a feature-oriented refactoring in Figure 2.5b would be to
separate the code of feature ShortestPath into a distinct feature module (cf. Fig. 2.5a).
In this thesis, we focus on object-oriented refactorings and integrate them with FOP.

2.4. Summary

In this chapter, we introduced the basic techniques that we extend and integrate
later. We introduced the concepts of modular programming and SPLs and discussed
the implementation approaches of OOP and FOP, respectively. Finally, we reviewed
refactoring as a technique to alter the structure of programs. In this thesis, we will
integrate SPL techniques with refactorings – our subject is to configure the structure
of modules.

16

3. The Dilemma of Module Scalability

Chapter 3 shares material with [KBA09, KSA10].

On the one hand, the separation of code of multiple, independent features into
a module each is beneficial (cf. Sec. 2.1, p. 5); but on the other hand, exactly this
separation is difficult: Programmers can separate their code with respect to mainly
one feature in general but a program commonly has multiple features and all can
impose different, meaningful separations [OT00, TOHS99, Tor04] – as a result, it is
difficult to choose the best separation of code into modules from the beginning. With
OOP for example, programmers can separate their code into classes with respect to
data-structure features – each separated class then encapsulates the implementation
of a data structure; programmers, however, can also separate the same program into
classes with respect to functionality features – each separated class then encapsulates
a piece of functionality. Decomposing OOP programs with respect to data structures
and functionality at the same time equally is not possible [Tor04].

In this chapter, we show that FOP techniques allow programmers to decompose
code with respect to multiple features pretty well; further, we lead to the well-known
dilemma of module scalability, which we mitigate with the techniques in this thesis.
The dilemma will state that a programmer cannot implement a module which is full
of functionality and is reusable in a number of environments at the same time. In
Section 3.1, we briefly report on preliminary studies which led us to this dilemma.
In Section 3.2, we describe the dilemma and review its descriptions in literature. In
Section 3.3, we describe related work that tackles the dilemma. In Section 3.4, we
summarize the dilemma and the approaches to solve it, and define our goals.

3.1. Motivating Studies

In mainly two studies, which analyzed different programming paradigms and which
followed different goals (details are beyond the scope of this thesis), we observed a
common problem. In an introductory study [KARL08], we compared techniques of
FOP with aspect-oriented programming – aspect-oriented programming is a modu-
larization technique, which can be used to implement SPLs and which gained much
attention lately [CRB04, GJ05, GSF+05, KAB07, KPRS01, LHBC05, XMEH04,
ZJ03].1 We compared FOP and aspect-oriented programming qualitatively by ana-
lyzing programs that have been implemented with either technique (we translated

1Aspect-oriented programming extends modularization techniques by means of aspects [KHH+01,
KLM+97, Lad03]. An aspect mainly adds code to a base program [MKD03].

17

3. The Dilemma of Module Scalability

1 refines class BinaryTreeLeaf implements VisitableNode{
2 public void accept(Visitor visitor){
3 visitor.visitLeaf(this);
4 } }

(a) Available class refinement.

1 refines class LineConnection{
2 public void visit(FigureVisitor visitor){
3 visitor.visitFigure(this);
4 } }

(b) Required class refinement.

Figure 3.1.: Personal experience with the module-scalability dilemma [from KSA10].

programs of aspect-oriented programming into FOP counterparts before in different
variants [KRAL07]).

For all programs, we analyzed to what extend code of a feature could be reused as
independent module across independently developed programs and across dependently
developed programs (e.g., across products of an SPL). Furthermore, we analyzed
to what extend we could group code of features into modules that are valuable to
reuse. In summary, we observed that FOP’s feature modules perform pretty well with
respect to reusing modules across dependently developed programs and with respect
to the grouping of code of features. However, we also observed that feature modules
may hardly be reused across independently developed programs as the references
of feature modules to pieces of code, which they transform, are fixed – this limits
feature modules to be reused only with programs that actually provide the referenced
pieces of code. So far, we did not attach much attention to the lack of reusability of
feature modules across independently developed programs.

In a follow-up study, we applied FOP techniques to large-scale Java programs
(e.g., to the user-interface framework JHotDraw2 with 30K lines of code, and the
embedded-database engine Berkeley DB3 with 90K lines of code) [KSA10]. We
mainly executed feature-oriented refactorings on the studied programs to separate
code of features into feature modules.

In the follow-up study, we again faced the lack of reusability of feature modules
across independently developed programs (we did not attach much attention to this
problem in our introductory study before): In our follow-up study, we had to imple-
ment a class refinement which creates a single method; specifically, a method with
one parameter, no return value, and a method call on the single parameter variable
with the pseudo variable this as the parameter value. Although such class refinement
existed in the code of our introductory study (cf. Fig. 3.1a), we could not reuse this
refinement because the names it provided and used for classes and methods differed
from what we desired now. Now, we desired a refinement which transforms a class
LineConnection instead of BinaryTreeLeaf and which creates a method visit instead
of accept; the visit method should now accept a FigureVisitor object as parameter
instead of a Visitor object and should call method visitFigure instead of visitLeaf. As
we could not reuse the code, we reimplemented its functionality and show our new
module in Figure 3.1b; that is, we introduced a code clone (code clones are considered

2http://sourceforge.net/projects/jhotdraw/ (accessed: January 7,2010)
3http://www.oracle.com/database/berkeley-db/je/ (accessed: January 7,2010)

18

3.2. Defining the Dilemma of Module Scalability

harmful [RC07]).4

We were astonished but learned a lot from the reuse failures in both of our studies.
We aimed to reuse a module, which implements a certain piece of functionality that
we desired for our new program, but could not do so. We learned that the code
structure of a module can prevent the module’s reuse.

3.2. Defining the Dilemma of Module Scalability

Simple name conflicts hindered us to reuse the code of our own module. This hap-
pened, although the code to reuse implemented exactly the functionality we desired.
We analyzed the problem and recognized on the basis of literature [BCS00, Big98,
CHSV97, CL01, Her08, HM07, Mey97, OT00, TOHS99] that a module must follow
conflicting goals:

• The more functionality, the better the module: A description of the function-
ality of a module tells a reusing programmer what has been implemented in
this module. When a module provides a lot of functionality, this functionality
more likely is part of the functionality, which a programmer is about to im-
plement for a new program. If the module functionality covers the required
functionality, then the programmer can save the implementation effort for this
functionality by reusing the module. The more functionality a programmer can
reuse from a module, the less functionality he/she must implement on his/her
own. However, only the large-scale modules foster the fast and efficient im-
plementation of new programs – orchestrating a high number of small-scale
modules to provide a certain piece of functionality is not as beneficial.

• The fewer decisions exposed regarding structure, the better the module: A de-
scription of the decisions regarding the structure of a module tells a reusing
programmer how functionality has been implemented in this module. For ex-
ample, decisions regarding a module’s structure include the allocation and the
name of a piece of code which implements certain functionality. When a mod-
ule exposes few decisions regarding its structure (e.g., few names) it is unlikely
that these decisions conflict with decisions that were already made regarding
the structure of an environment; as a result, the module can be reused in many
environments. By symmetry, if modules expose high numbers of decisions re-
garding their structure, one of these decisions more likely conflicts with the
decisions already made for reusing environments, and then the module cannot
be integrated with these environments as is.

The two goals above conflict because to implement the functionality of a module,
programmers must decide on how to implement it; that is, the programmers must

4As we reimplemented the module’s functionality, we skipped the API artifact VisitableNode be-
cause we did not need it in this follow-up study. Otherwise, the code of Fig. 3.1a and Fig. 3.1b
would have been even more similar.

19

3. The Dilemma of Module Scalability

make a number of decisions regarding a module’s structure. This dilemma of module
scalability is also inevitably connected to APIs: The goal to provide a lot of func-
tionality calls for a rich API to access every piece of functionality on its own; the
goal to expose few decisions regarding structure, in contrast, calls for a narrow API
with few names and few definitions of code allocations [BCK06, Mey97, PBvdL05].
In the remaining thesis, we (as others did before [FCDR95, GJSB05, MSL00]) refer
to each name conflict and each other conflict in structure as an incompatibility.

The module-scalability dilemma is prominent in literature and has multiple names:

• Bertrand Meyer characterizes the reuse-redo dilemma as “the central problem of
software reuse” [Mey97]. Meyer describes that programmers must either reuse
a “frozen” (unchangeable) module with its entire functionality and its entire set
of decisions regarding its structure as is or must redo the implementation of the
module functionality. Meyer insists that unchangeable modules are not very
reusable in practical software development and concludes that modules must
be adaptable. Meyer further concludes that modules must provide a suitable
functionality together with a suitable structure (API) to be reusable [Mey97].

• Ted J. Biggerstaff reports that the vertical-horizontal scaling dilemma is a fun-
damental problem of modular programming [Big98]. Biggerstaff describes that
programmers gain highest reuse payoffs when they reuse large-scale modules
with a lot of functionality included. But Biggerstaff also describes large-scale
modules as being domain-specific and reusable in fewer environments than
modules with less functionality. Biggerstaff argues that a programmer has less
effort to reuse one large-scale module than to reuse a high number of small-scale
modules which together provide the large-scale module’s functionality. He con-
cludes that problems in a module’s structure frequently prevent to reuse the
module.

• Peri Tarr et al. characterize the problem of a dominant decomposition as a
major problem with respect to software reuse [OT00, TOHS99]. Tarr et
al. describe that modules should be large-scale. But Tarr et al. also describe
that large-scale modules expose many decisions regarding their structure and,
thus, are reusable in fewer environments than small-scale modules. They
showed that these decisions exist mainly because programmers must select
one dominant feature (they call it concern) to decompose their code into mod-
ules. Tarr et al. conclude that large-scale modules commonly lack reusability.
They further conclude that programmers should allow users to adapt a module
without changing the module code.

• Stephan Herrmann et al. describe the encapsulation-adaptation dilem-
ma [Her08, HM07]. Herrmann et al. show that encapsulation (i.e., a fixed
structure (API)) is a “key concept for modular software designs” and among
other things is important for reusing a module [Her08]. But Herrmann et
al. also show that modules rarely fit the needs of reusing environments exactly
– they conclude that modules should be adaptable.

20

3.3. Related Work on Module Integration

• Wim Codenie et al. characterize the problem of overfeaturing for object-
oriented frameworks [BCS00, CHSV97, CL01].5 Codenie et al. describe that
programmers commonly increase the functionality of a framework (a) to re-
duce the effort of implementing the classes that reuse the framework and (b)
to avoid repeated implementation of a feature across these classes [BCS00,
CHSV97, CL01]. However, they also describe that frameworks with too much
functionality (i.e., overfeatured frameworks) are less reusable as they are too
domain-specific [BCS00, CHSV97, CL01].

The researchers cited above show that reuse of modules frequently fails because
the modules provide unsuitable functionality, unsuitable structure (set of decisions
regarding structure), or both. These researchers argue that modules cannot scale
with respect to functionality without causing incompatibilities with environments.6

In this thesis, we tackle the module-scalability dilemma; we reuse an approach, which
allows programmers to scale the functionality of modules, and extend it to alter the
structure of modules.

3.3. Related Work on Module Integration

From the beginning of modular programming, modules had to be integrated with
environments (i.e., with code outside the module). Approaches used for module in-
tegration cover wrappers, mediators, generic programming, meta-programming (we
separately discuss the special case of refactoring-like meta-programming), SPLs, and
integrated development environments. We now discuss these approaches with respect
to configuring the functionality and the structure of a module. Thereby, users should
be able to define configurations without knowing anything about the module’s im-
plementation. That is, the configuration of the structure and the functionality of a
module should be based on the concept of features. Furthermore, decisions regarding
the functionality of a module should not affect decisions regarding the structure of
this module, and vice versa. We call this an integrated, feature-driven configuration
of a module’s functionality and structure.

Wrappers. Wrappers can virtually alter the API of wrappees (cf. Sec. 2.1). If the
wrappee is a class, the wrapper is called class wrapper ; if the wrappee is an object,
the wrapper is called object wrapper.

Class wrappers are subclasses of wrappees (wrappees here are classes); that is,
wrappers inherit members of their wrappees and define forward methods [GHJV95].
The forward methods call the inherited wrappee methods. If a wrapper method
has a different name than the wrappee method which it calls, this wrapper method
provides an additional name to access the wrappee method. As class wrappers are
subclasses of their wrappees, objects of class wrappers can be used where objects of

5Frameworks are one approach to reuse code in OOP (cf. Sec. 2.1, p. 9).
6Some of these researchers present approaches, too. We review these approaches later.

21

3. The Dilemma of Module Scalability

wrappees have been used before. In the end, objects of a class wrapper provide the
functionality of objects of the respective wrappee but provide additional names to
access this functionality. Note that wrapper methods can perform additional actions
before and after forwarding to wrappee methods. In Figure 3.2a, class ADT is a
class wrapper of class Vertex (i.e., ADT inherits from Vertex; Line 1) and provides a
method show to access method Vertex.display()::void.

Object wrappers are objects of which each has a field to reference a wrappee
(wrappees here are objects) [GHJV95]. Object wrappers commonly provide meth-
ods that forward to methods of wrappees. If a wrapper method has a different name
than the wrappee method which it calls, this wrapper method provides an alterna-
tive name to access the wrappee method – however, using the wrapper, the wrappee
method is not directly accessible with its own name. If a wrapper does not pro-
vide a forward method for a wrappee method, the wrappee method is not directly
accessible using the wrapper. A wrapper and its wrappee can only be assigned to
the same variables when these variables have types of common superclasses of the
wrapper’s class and the wrappee’s class. Note that wrapper methods again can per-
form additional actions before and after forwarding to wrappee methods. Object
wrappers allow programmers to replace modules with modules that are written in
different languages and different programming paradigms; wrappers then include the
code to translate between the languages [Cle09]. In Figure 3.2b, class ADT is a class
of object wrappers that wrap objects of class Vertex (i.e., ADT references Vertex ob-
jects with a member variable; Line 2) and provides a method show to access method
Vertex.display()::void.

Wrappers share problems (i.e., they might increase complexity). Wrapper classes
(i.e., class wrappers or classes of object wrappers) do not remove wrappee classes
(i.e., wrappees of class wrappers or classes of wrappees of object wrappers); deci-
sions regarding the structure of wrappee classes (e.g., class names) thus can still
prevent a module’s reuse when name conflicts occur. Wrapper classes may require
environments to change because environments must use wrapper classes instead or
in addition to wrappee classes (e.g., to create wrapper objects) [Höl93].7 Wrapper
classes add code to modules and thus increase the effort to maintain these mod-
ules [Bos98, Höl93, MB97]. Wrapper classes have different positions in inheritance
hierarchies than wrappee classes; these positions cause complex redundant class hi-
erarchies of wrappers [Höl93]. For example, in Figures 3.2c & 3.2d, we show wrapper
classes for wrappee classes that are part of an inheritance hierarchy; the hierar-
chy of the wrapper classes ADT and SpADT is redundant to the hierarchy of the
wrappee classes Vertex and SpVertex. When different decisions regarding the struc-
ture of a wrappee should be configurable independently, we must introduce numbers
of wrappers (with numbers of cloned methods) or we must introduce complex class
hierarchies and forward-method chains (e.g., using the object-oriented design pat-
tern Chain of Responsibility [GHJV95]). As example, suppose that a class has two

7Commonly, additional object-oriented design patterns are used to prepare environments for wrap-
per changes (e.g., Factory Method) – but this adds complex code [Höl93].

22

3.3. Related Work on Module Integration

1 public class ADT extends Vertex{
2 public void show(){
3 super.display();
4 } }

(a) Class ADT as a class wrapper
for class Vertex of Fig. 2.5b.

1 public class ADT{
2 Vertex wrappee;
3 public void show(){
4 wrappee.display();
5 } }

(b) Class ADT as an object wrapper for
class Vertex of Fig. 2.5b.

Vertex

Xg

display() Xg
△

△

SpVertex

Xg

display() Xg

ADT

Xg

show() Xg

SpADT

Xg

show() Xg

(c) Multiple class wrappers for Vertex

classes.

Vertex

Xg

display() Xg

ADT

wrappee Xg

show() Xg
△ △

SpVertex

Xg

setPredecessor() Xg

SpADT

Xg

setPredecessor() Xg

♦

(d) Multiple object wrappers for Vertex

classes.

Figure 3.2.: Object wrappers and class wrappers.

methods display and setPredecessor; to provide new names for both methods inde-
pendently, we need three wrappers: The first wrapper provides a new name for
setPredecessor, the second wrapper provides a new name for display, and the third
wrapper provides new names for both. Wrappers can only wrap code and alter code,
which they can reference, but not code they cannot reference; for example, wrappers
can neither wrap nor alter blocks of statements in the middle of wrappee methods.
The implementation of wrapper classes cannot reuse wrappee members, which are
modified with private, but must reimplement them and possibly every method calling
them.

Class wrappers have unique problems. Class wrappers clone code when differ-
ent wrappee classes should be wrapped homogeneously; in languages with multiple-
inheritance support (i.e., in which one class can inherit members from different
classes) such as C++, one wrapper class can wrap different wrappees but need
complex and fragile precedence declarations to avoid ambiguities [Str91] – these
precedence declarations however are fixed and cannot vary when wrappees vary. Re-
dundant class hierarchies of class wrappers might include code clones. For example,
to change the APIs of classes Vertex and SpVertex in Figure 3.2c, a programmer
must implement a subclass for Vertex (ADT in Fig. 3.2c) and a subclass for SpVertex
(SpADT in Fig. 3.2c); the wrapper classes then clone members such as show. In-

23

3. The Dilemma of Module Scalability

terestingly, in Figure 3.2c, the class wrapper SpADT does not inherit from the class
wrapper ADT and so SpADT objects cannot be assigned to variables that have ADT
as their type.

Object wrappers have unique problems, too. Object wrappers impair perfor-
mance because creating respective (wrapper) objects takes time and because these
objects’ forward calls take time [Höl93]. Object wrappers impair footprint be-
cause they add (forward) methods [Höl93]. Object wrappers increase the devel-
opment effort because programmers must implement a wrapper method for every
wrappee method that should be accessible when the wrapper is used (even if the
wrappee method should not change) [Bos98, MB97]. Object wrappers increase
the complexity of code because they add objects, which must be managed at run-
time [BCL10, DNMJ08, HA09, Höl93, Kni99, MHM09, SR02]. As a result, a wrappee
object is not equal to its unwrapped self and a wrappee object can incorrectly execute
a wrapped method without executing the wrapping code; for example, in Figure 3.2d,
a Vertex method might incorrectly call other Vertex methods without executing their
ADT wrapper code. Object wrappers also increase complexity because they are lo-
cated in different positions in inheritance hierarchies than wrappee classes [Höl93];
wrapper objects thus cannot always be used where wrappee objects were used be-
fore. Object wrappers become especially complex when environments expect code in
different positions than it is provided inside the module (as a result, simple forward
methods do no longer suffice); this culminates in wrappers that reimplement func-
tionality of wrappees [BCLvdS10].8 The implementation of object wrappers cannot
reuse wrappee members, which are modified with protected, but must reimplement
them and possibly each method calling them.

Tools can generate wrapper classes but these tools are limited. First, meta-
programs can be triggered in the code of wrapper and wrappee classes; for example,
macros can define name mappings from which forward methods are generated or
macros can introduce language constructs which replace wrapper classes (we discuss
these and other meta-programming approaches on page 26 in more detail). Second,
tools can create wrapper classes from a recorded or inferred sequence of program
transformations which transformed the API of a program into the API of a new re-
vision or of a different version [DNMJ08, ŞR07]; these tools however need a sequence
of refactorings or the complete code of both revisions/versions. That is, with these
approaches we cannot implement empty wrappers for a program and expect these
tools to complete the wrappers with respect to an incompatible module. Finally,
tools can generate wrappers, when modules are replaced by modules that expose
equal functionality but that are written in a different language [Cle09].

Special wrapper-like approaches or approaches that can elegantly add wrapper
code [HO93, JMS07, LLM99, LO06, MO02, MSL00, OT00, OT01, SB98, TOHS99,
WT09] among others allow programmers to add members to classes (e.g., mixins

8Others [BCLvdS10] observed that a major part of incompatibilities (API mismatches) at method
level are simple: Methods map one-to-one to methods of the reused module; this mapping for
example requires (un)wrapping, altering of argument positions, or replacing of this return values.

24

3.3. Related Work on Module Integration

allow to add forward methods or methods with certain names to classes) or to syn-
thesize methods. Individual approaches additionally support to rebind names that
a module expects from its environment [LLM99] but mechanisms beyond the adap-
tation of names were not discussed for these individual approaches; interestingly,
the adapted module of the last approach [LLM99] adapts the module’s environment
(e.g., by replacing methods).

The integrated, feature-driven configuration of a module’s functionality and struc-
ture has not been discussed for the above approaches. That is, in general, program-
mers must verify on their own that their wrappers maintain the functionality of
wrappees (if intended).

Mediators. A module may instruct a mediator program or middleware to interact
with a second module (e.g., to call a method on this second module or to pass
values of variables [GHJV95, Gro04]). The mediator program then is responsible
to locate the requested module, to translate and perform the instruction, and to
return the instruction result [Gro04]. With mediator programs, modules need not
comply any more with decisions regarding the structure of other modules but only
with decisions regarding the structure of the mediator program [GHJV95, Gro04].
The mediator structure (API) that modules must comply with can be overly complex
and inconsistent [Hen08]. Mediator programs provide no concepts to configure the
structure or functionality of a single module.

Generic programming. A template program of generic programming commonly
accepts as a parameter a class name that supersedes placeholders inside the template
program [CE99a, CE00, Gho04, GJSB05, Str91]. This way, template programs can
be adapted to environments at the time the template program is used (i.e., after
its implementation). For example, an environment can call a template program and
pass a class name as a parameter; this class name supersedes placeholders inside the
template program and as a result, the template program can manipulate objects of
the passed class’ type (possibly defined in environments). Finally, an environment
can specialize a template program; the template parameter then is used to select
between alternative implementations inside the template program [CE99b, CE00].
However, in some approaches, programmers must clone the template class to alter
the name of a method; to alter the name of a class that is not nested in other
classes is usually not possible at all. Furthermore, template programs can only avoid
incompatibilities with their environments when the conflicting decision regarding
their structure has been prepared for alteration with a template parameter. Mixins
are special template classes and are evaluated as special wrapper-like approaches
on page 25. In single approaches, templates can be generated from stand-alone
programs; template parameters can then even rename classes that are not nested in
other classes [KR05]. All these approaches do not support to configure the structure
and the functionality of a single module, especially not an integrated, feature-driven
configuration of a single module’s functionality and structure.

25

3. The Dilemma of Module Scalability

Meta-programming. A high number of approaches allows meta-programs to trans-
form input programs and/or to generate code based on input parameters (e.g., to
remove incompatibilities between a module and its environment) [Aßm98, Bax90,
Bax92, Big04, BKVV08, BPM04, BTF05, CE99a, CM07, Gog96, HZS07, JS03,
Nov95, Nov97, SdML04, TC98, TCKI00]. Meta-programs may alter the structure
and the functionality of programs; that is, commonly, meta-programs are little or
not restricted in what they change. For that, in many approaches, programmers
must verify on their own that a meta-program does not alter an input program’s
functionality (if intended). In some approaches, programmers even must verify on
their own that the generated program compiles; only some approaches incorporate
tools to verify that every generated program compiles [HZS05].

Macros transform pieces of code in an input program, which have been annotated
or which have an extended syntax [BCVM02, Bos98, HS08, HZS07, KKA10, ML98,
Str91, VRB00] (some macros describe name mappings and are used to generate
wrapper mechanisms [ML98]). Annotations can be comment-like entities or pieces
of code. An annotation can be replaced by macros with code, or an annotation
can trigger transformations related to that annotation. For example, a method’s
annotation can trigger a transformation on the annotated method or on related
code [BCVM02]. In general, macros are not restricted in what code they replace and
so programmers must verify on their own that a macro does not alter a program’s
functionality (if intended). In some approaches, programmers even must verify on
their own that all generated programs compile (e.g., for C++ macros [Str91]).9

Macros are controversial and should be avoided if possible [Str91].

Refactoring-like meta-programming. Some meta-programming approaches as well
as some macro-like approaches are restricted to restructure code [Int07, Läm02,
TCKI00, Tho05, VEd06] or have been used to restructure code [EH07, LGS09,
PRT08]; thus, these approaches can guarantee to generate programs that compile
and that do not differ in functionality. However, all these approaches have not been
analyzed with respect to configuring the structure and the functionality of a sin-
gle module (they also have not been utilized for this), especially not with respect
to an integrated, feature-driven configuration of a single module’s functionality and
structure. Individual meta-programming approaches allow arbitrary changes to in-
tegrate a module; changes that are refactorings (Rename Field, Rename Method,
and Rename Class) and changes that add, remove, or alter code in an unrestricted
way [KH98] – these transformations have not been modeled as configurable features
of individual modules.

Some languages allow programmers to define additional names for named pieces
of code [Jon03, MHQB05, Ode10, Str91]. These approaches do not remove names
of a module (names which may be the reason for an incompatibility) and do not
allow programmers to configure the structure of a module beyond names. Finally,

9C++ macros ignore the syntax of C++ as well as the semantics of C++ mechanisms such as the
semantics of access modifiers; thus, macros may generate programs which do not compile [Str91].

26

3.3. Related Work on Module Integration

they do not support an integrated, feature-driven configuration of a single module’s
functionality and structure.

Software product lines. SPLs can be used to implement configurable mod-
ules [BCS00, BSST93, CE99a, CE99b]. Module users here select features that rep-
resent pieces of functionality. An SPL product then includes code which implements
the user-selected features but generally does not include the code of those features
the user did not select. In this respect, the number of decisions regarding structure
exposed by the SPL product is smaller than the number of decisions exposed by a
fully-fletched program.

Techniques to configure SPL products with respect to structure currently impose
problems: To alter an SPL product’s structure, first, SPL users may alter their fea-
ture selection [KRT97] – this, however, results in a product the users might not be
interested in. Second, users may choose from alternative pieces of code that im-
plement the same features but with a different structure – however, to implement
alternatives is costly and to maintain them is error-prone [Fow99]; alternative imple-
mentations often either involve code clones or a complex structure.

Code that has been assigned to implement a feature may include wrappers; as a
result, a module of an SPL product that was generated with the wrapper feature can
be accessed using these wrappers [BCK06]. However, in addition to the problems
discussed for wrappers above, wrapper classes in SPLs might need to be configured
just as their according wrappee classes are – this increases complexity. For example,
suppose that ADT is a class of object wrappers for Vertex objects (not shown), then
ADT must provide a method that forwards to Vertex.setPredecessor()::void if this
wrappee method exists in a product; however, ADT must not provide this forward
method otherwise to avoid dangling references in the wrapper and thus to avoid
compiler errors. If ADT is a class wrapper for Vertex and encapsulates a method that
forwards to Vertex.display()::void, then ADT must change if Vertex.display()::void does
not exist in a product; if ADT would not be changed in this case, dangling references
and compiler errors would occur.

Special concepts used for SPLs can alter the functionality and the structure of a
program to some extend (e.g., aspect-oriented programming can connect classes via
inheritance) [ALS08, ZGJ05]. Other concepts use template programs to configure
types, which variables of a module have, independently from this module’s func-
tionality [AKL06]. These concepts do not help when names of classes, which are
not nested in other classes, conflict with an environment, or when the allocations of
pieces of code conflict. Finally, macros and preprocessor directives can be used to
alter a module’s structure [Nat06, ZJ04] – but this either is complex or involves code
clones. For example, to alter the name of a package involves fine-grained changes
to numerous pieces of code throughout the program; changes that are difficult to
implement without error [KAK08].

27

3. The Dilemma of Module Scalability

Table 3.1.: Assessment of related work on module integration.

Criteria Wrap
pers

Mediat
ors

GP
α

MP
β

RLMP
χ

SPLs
R-ID

E
δ

Functionality configuration ⊙ ⊖ ⊙ ⊕ ⊖ ⊕ ⊖

Structure configuration ⊕ ⊖ ⊙ ⊙ ⊕ ⊙ ⊕

Configuration independence & integration ⊙ ⊖ ⊕ ⊙ ⊕ ⊙ ⊕

αGeneric programming; βmeta-programming; χrefactoring-like meta-programming;
δrefactoring in integrated development environment; ⊕good support; ⊙problematic

support;⊖bad/no support

Refactoring with integrated development environments. A number of integrated
development environments allow programmers to restructure stand-alone programs
with refactorings (e.g., to remove incompatibilities) [FKK07, FTK04, Li06, RBJ97] or
with refactoring-like transformations [Smi90, Smi91]. Programmers define the refac-
toring parameters by selecting code in the program and completing dialog boxes of
the integrated development environment. However, users who want to refactor pro-
grams with integrated development environments, must know the program in order
to define where to apply a refactoring and must know the refactorings to ensure that
the refactorings generate the desired structure (i.e., they do not allow to configure
using features). Some approaches even allow programmers to execute individual
refactorings on SPLs [Vit03]. However, structure can still not be configured using
features.

3.4. Summary and Goals

In this chapter, we reviewed the well-known dilemma of module scalability. We re-
ported briefly on preliminary studies and described how we experienced the dilemma.
Accordingly, we cannot scale the functionality of a module without reducing the num-
ber of environments this module can be integrated and reused with. We reviewed
descriptions of this dilemma in literature. Finally, we assessed to what extent and
how existing techniques can help to mitigate the dilemma; that is, how they support
an integrated, feature-driven configuration of a module’s functionality and structure.
We summarize our assessment in Table 3.1. We conclude that no approach supports
our aim satisfactorily, i.e., no approach supports an integrated, feature-driven con-
figuration of a module’s functionality and structure.

In this thesis, we aim at an approach that supports an integrated, feature-driven
configuration of a single module’s functionality and structure. That is, we aim at an
approach that supports programmers to configure the functionality and the structure
of a module. Thereby, programmers should be able to define configurations without
knowing anything about the module’s implementation. To achieve this, we aim at
techniques that allow programmers to configure the structure of a module based on
the concept of features (techniques that allow programmers to configure function-

28

3.4. Summary and Goals

ality based on features already exist). We aim at an approach which ensures that
decisions regarding the functionality of a module do not affect decisions regarding
the structure of this module, and vice versa. We will discuss such an approach in
Chapter 4. We target at automated consistency checks between the code of a con-
figurable module and the feature model of such a module (cf. Chap. 5). We want to
understand the implications of our approach in detail and so we will analyze and
evaluate this approach with respect to the correction of modules, with respect to
the configuration-process implications, and with respect to covering multi-language
programs (cf. Chap. 6).

29

4. Refactoring Feature Modules

Chapter 4 shares material with [KBA08, KBA09, KKAS11, SKAP10].

In this chapter, we propose refactoring feature modules (RFMs) to mitigate the
module-scalability dilemma, as described in Chapter 3.1 RFMs are special feature
modules of an SPL; they encapsulate refactorings instead of classes and class re-
finements. RFMs and groups of RFMs correspond to features in the feature model;
features that do not differ from features which Jak-like feature modules correspond
to. RFMs allow users to configure a program or module with respect to its structure.

4.1. Concept

RFMs are special feature modules, which do neither encapsulate classes nor class
refinements; instead, each RFM encapsulates one refactoring unit. A refactoring
unit is a class-like entity which describes parameters for a specific refactoring type.2

In particular, refactoring units first declare which refactoring type they implement
(e.g., the refactoring unit MyRename of Figure 4.1 starts with MyRename implements
RenameMethodRefactoring to declare that it implements a Rename-Method refactor-
ing; Line 1). The tool, which we prototypically implemented to execute Jak-like
feature modules and RFMs (RFM composer tool or composer tool for short), knows
the API artifact of every refactoring type it supports and expects the units accord-
ingly to provide certain methods; each of these methods returns this unit’s value
for a specific parameter of the implemented refactoring type.3 When a refactoring
unit references a refactoring type and provides all the parameters of this type with
according methods, then this unit is executable; when a refactoring unit references a
refactoring type but does not provide all the parameters of this type with according
methods, then the refactoring is not completely specified and the composer tool re-
ports an error. With respect to the refactoring unit of Figure 4.1, the composer tool
knows the RenameMethodRefactoring API artifact and thus enforces MyRename to
provide the methods getOldMethod (to return the refactoring parameter of the old

1The term module commonly is connected to providing functionality (cf. Sec. 2.1) but RFMs will
not provide functionality on their own. In the best case, they separate pieces of functionality
from other modules and make these pieces accessible. However, RFMs correspond to features
of SPLs and make SPL products provide features (regarding structure). To emphasize the
correspondence to Jak-like feature modules, which also make SPL products provide features and
which also are program transformations used in SPLs, we stick with the term module for RFMs.

2A refactoring type is a transformation template which expects parameters (cf. Sec. 2.3, p. 15).
3To prototypically implement the composer tool, we partly reused existing tools and modules

(cf. Sec. 4.2.3).

31

4. Refactoring Feature Modules

1 refactoring MyRename implements RenameMethodRefactoring {
2 String getOldMethod(){return "Vertex.display()::void";}
3 String getNewMethodName(){return "show";}
4 }

Figure 4.1.: Refactoring unit inside an RFM that renames method Vertex.dis-
play()::void into show.

Feature module Directed

Vertex

Xg

display() Xg

Feature module ShortestPath

Vertex

name Xg
ShortestPath()
display() Xg

Feature module DisplayToShow

Rename method Vertex.display()::void into show

Feature module VertexToAdt

Rename class Vertex into ADT

(a) SPL with RFMs.

ADT

name Xg

show()
ShortestPath() Xg

(b) Product of the SPL of Fig. 4.2a

(with RFMs).

Vertex

name Xg

display()
ShortestPath() Xg

ADT

wrappee Xg

show()
ShortestPath() Xg

(c) Product of the SPL of Fig. 4.2a

(without RFMs) extended by a
wrapper class.

♦

>
>

Figure 4.2.: SPL code with RFMs, and SPL products [adapted from KBA09].

method name) and getNewMethodName (to return the refactoring parameter of the
new method name) – if either method would have not been provided in MyRename,
the composer tool would report an error. In Figure 4.1, MyRename provides all re-
quired methods and thus can execute and rename method Vertex.display()::void of an
input program into show. Refactoring units of other refactoring types are defined
analogously.

RFMs integrate with Jak-like feature modules of FOP. In Figure 4.2a, we show
the Jak-like feature modules Directed and ShortestPath of our GPL running example
and added to them the RFMs DisplayToShow and VertexToAdt.4 DisplayToShow
encapsulates the refactoring unit MyRename of Figure 4.1 (i.e., it renames method
Vertex.display()::void into show). VertexToAdt encapsulates a refactoring unit that im-
plements a Rename-Class refactoring to rename class Vertex into ADT. When a user
selects the features Directed, ShortestPath, DisplayToShow, and VertexToAdt, then
all feature modules of Figure 4.2a execute consecutively in top-down order and gener-
ate the program which we show in Figure 4.2b. Note that this program of Figure 4.2b

4Throughout this thesis, we name RFMs according to explanatory reasons only (i.e., as simple
as possible). In practice, names for RFMs would certainly describe the domain concept of the
feature they contribute.

32

4.1. Concept

has basically the same properties as a program generated from the Jak-like feature
modules of Figure 4.2a extended by a wrapper class of Vertex, ADT (cf. Fig. 4.2c):
Class Vertex provides the functionality of features Directed and ShortestPath, Ver-
tex can be accessed with the name ADT, and method Vertex.display()::void can be
accessed with name show using objects of type ADT. In contrast to the wrapper ap-
proach (cf. Fig. 4.2c), the program generated from the feature modules of Figure 4.2a
(cf. Fig. 4.2b) contains no class Vertex any more because VertexToAdt removes Vertex
(and replaces it with a class ADT).

Jak-like feature modules and RFMs map to features in feature models and are
executed on behalf of the feature selection of a user. That is, users can still configure
the functionality of an SPL product when they select features, which map to Jak-like
feature modules. But users now can also configure the structure of an SPL product
when they select features, which map to RFMs. Note that users do neither need
to know about refactorings nor about implementation details in order to configure
an SPL product with a feature model; users only need to know about features as
domain concepts.

4.1.1. The Scope of RFMs During Program Generation

RFMs enforce the bounded-quantification guideline of Jak-like feature modules (cf.
Sec. 2.2.2). That is, during every program generation, Jak-like feature modules and
RFMs execute in the order defined for their features in the feature model; Jak-like
feature modules and RFMs take the program, which was generated by other feature
modules before, as an input, transform this program, and generate a program as an
output. Thereby, RFMs might at most restructure existing references in their input
program but do never add new references. As a result, if the input program of an
RFM has no dangling references and the RFM succeeds then the generated program
has no dangling references, either.

In Figure 4.2a, DisplayToShow and VertexToAdt are RFMs which integrate with
the Jak-like feature modules of the GPL. DisplayToShow transforms the program
generated by ShortestPath and generates a program which includes the method Ver-
tex.show()::void. VertexToAdt transforms the program generated by DisplayToShow
and generates the desired SPL product, finally. DisplayToShow (analogous to any
other RFM) does not transform code that other feature modules generate after Dis-
playToShow was executed according to the feature order (e.g., DisplayToShow does
not transform code generated by VertexToAdt, even if VertexToAdt would be a Jak-
like feature module and would generate a method Vertex.display()::void).

4.1.2. RFM Refinement

RFMs are transformations but are generally not translated into artifacts of the gen-
erated program. Nevertheless, RFMs can vary across SPL products. We show now
that RFMs can be valuably refined with FOP techniques for certain use cases. As a
result, RFMs now can also encapsulate refinements of refactoring units; as a second

33

4. Refactoring Feature Modules

Feature module makeCompatible

1 import java.util.Map;
2 import java.util.HashMap;
3 public refactoring AddParam implements AddParameterRefactoring {
4 public String getMethodToChange(){ return "Vertex.display()::void"; }
5 public String getFormalParameterType(){ return "String"; }
6 public int getFormalParameterPosition(){ return 0; }
7 public String getDefaultActualParameter(){ return "\"VERBOSE\""; }
8 public Map getSpecificActualParameters(){
9 Map params = new HashMap();

10 params.put("Graph.display()::void", "\"RELEASE\"");
11 return params;
12 } }

(a) RFM and its refactoring unit AddParam that implements Add Parameter.

Feature module makeCompatibleTestcase

13 public refines refactoring AddParam {
14 public Map getSpecificActualParameters() {
15 Map params = Super.getSpecificActualParameters();
16 params.put("TestCase.testDisplay()::boolean", "\"DEBUG\"");
17 return params;
18 } }

(b) Refinement for refactoring unit AddParam of Fig. 4.3a.

Figure 4.3.: Refinement for an Add-Parameter RFM [adapted from KBA08].

result, we can reuse individual RFMs for the generation of more SPL products.

We argue that RFM refinement is valuable, for example, to implement a set of
similar Add-Parameter RFMs.5 In Figure 4.3, we demonstrate the refinement of an
Add-Parameter RFM using the RFMs makeCompatible and makeCompatibleTest-
case. The RFM makeCompatible encapsulates a refactoring unit AddParam which
implements an Add-Parameter refactoring; AddParam adds a new first parameter
variable, which has the type String, to method Vertex.display()::void (Lines 4-6) of an
input program; AddParam defines that method calls should pass the string VERBOSE
by default as a value for the new parameter (Line 7); AddParam defines that calls in
method Graph.display()::void of the input program should pass RELEASE as a value
for the new parameter (Lines 8-12). The RFM makeCompatibleTestcase encapsu-
lates a refinement of the refactoring unit AddParam; the refinement defines that the
calls in method Testcase.testDisplay()::boolean extended by AddParam should pass
the value DEBUG as the value for the new parameter instead of the default value
(Line 16). If TestCase.testDisplay()::boolean is absent in a program, we can still ex-
ecute makeCompatible without error (without makeCompatibleTestcase). We show
more possible use cases of RFM refinement in Table 4.1

5Add Parameter is a refactoring type that adds a parameter variable to a method and updates all
calls to that method to pass an additional parameter value [Fow99].

34

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

Table 4.1.: Refactoring types for which RFM refinement could be beneficial.

Refactoring typeα Refinement benefit

Add Parameter The set of method-specific parameters could be extended
Extract Class The set of class members to extract could be extended
Extract Superclass The set of class members to extract could be extended
Inline Method The set of methods which should inline a method could be extended
Pull Up Constructor Body The set of constructors to pull up could be extended
Pull Up Field The set of fields to pull up could be extended
Pull Up Method The set of methods to pull up could be extended
Remove Middle Man The set of forward methods to remove could be extended

αRefactoring types described elsewhere [Fow99]

RFM refinement could impair bounded quantification so we must intervene.6 Cur-
rently, RFM refinements could make refined RFMs transform code incorrectly, which
was added after the refined RFMs executed (but before the RFM refinements). We
forbid this. That is, to keep complexity as low as possible, we define that RFM
refinements must be immediate successors of the RFMs, which they refine, accord-
ing to the feature order (e.g., in Figure 4.3, we do not allow any feature module to
execute between makeCompatible and makeCompatibleTestcase).

4.2. Algebraic Properties of Refactorings Influence the
RFM Tools

In the course of implementing an RFM composer tool, we analyzed algebraic proper-
ties of operations, which abstractly describe refactorings and refinements [KKAS11];
for example, we analyzed whether there are inverse operations in the domain of
refactorings. We present this analysis here because it explains our implementation
decisions regarding the RFM composer tool and because it can influence lines of
research beyond RFMs (e.g., the implementation of refactoring tools for SPLs and
the implementation of other transformation-based SPL techniques [SD10]). In this
analysis, F denotes a Jak-like feature module; R denotes an RFM operation (i.e.,
a refactoring); RA 7→B(F1) denotes a refactoring which transforms the code of the
Jak-like feature module F1 to replace a piece of code A by a piece of code B.

For an RFM composer tool, algebraic properties of refactorings and refinements are
important because we identified two approaches to implement such tool (cf. Fig. 4.4).
To execute the sequence R((F2 • F1)) of feature modules, a composer tool can:

(a) Execute the operations of the Jak-like feature modules and RFMs (refinements
and refactorings) in feature order consecutively (R((F2 •F1)), left perimeter in
Fig. 4.4), or can

6Bounded quantification is a guideline according to which a feature module should not generate
code with dangling references (cf. Sec. 2.2.2, p. 14).

35

4. Refactoring Feature Modules

R((F2 • F1))

F7 = F6

(F5 • F4)R(F3)

?

�
��	

F3 = (F2 • F1) @
@@R
F4 = R(F1)

F5 = R(F2)

?
F7 = R(F3)

?
F6 = (F5 • F4)

Fx = program
R = refactoring-feature module
• = program composition

Figure 4.4.: Different implementation approaches for RFM composer tools [from
KKAS11].

(b) Execute the operations of RFMs (refactorings) first on each Jak-like feature
module individually and execute the refactored Jak-like feature modules after-
wards ((R(F2) • R(F1)), right perimeter in Fig. 4.4).7

If both approaches always yield equal programs, we can also reuse refactoring
approaches, which work for stand-alone programs [CJ08, CN00, Fow99, FKK07,
JH06, KK04, KKKS08b, MEDJ05], for SPLs. Further, if both approaches always
yield equal programs, we can refactor all SPL products in one step by refactoring
every Jak-like feature module individually. In the following, we prove whether both
approaches indeed always yield equal programs.

We found examples, which indicate that approach (a) does not always yield equal
programs to approach (b); we describe these examples in Section 4.2.1. To provide a
convincing and general answer on whether approach (a) yields equal programs to ap-
proach (b) for all refactorings and to estimate the number of cases for which approach
(a) yields equal programs to approach (b), we define a formal model of refactorings
in Section 4.2.2 and prove algebraic properties of refactorings for the general case.
We will find out that refactorings do not distribute over the operations of Jak-like
feature modules in general; that is, both composer-tool implementation approaches
(cf. Fig. 4.4) do not always yield equal programs. Based on our results, we conclude
that the best approach for us to implement a composer tool is to execute Jak-like
feature modules and RFMs consecutively in feature order (corresponds to approach
(a); left perimeter in Fig. 4.4). During this analysis, we additionally prove properties
that are important for later discussions of this thesis (e.g., we prove that there are
identity operations in the domain of refactorings and that there are operations which
invert each other in the domain of refactorings).

4.2.1. Cases of Nondistributivity of Refactorings

We now describe four examples in which executing Jak-like feature modules and
RFMs consecutively (left perimeter in Fig. 4.4) does not yield the same results as

7This approach was inspired by composer tools of Jak-like feature modules [Bat06].

36

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

F1

A

Xg

Xg

F2

B

Xg

Xg

RA7→B

Rename class A into B
(p

(a)

F1

A

Xg

top() Xg

△

<
<

B

Xg

Xg

F2

B

Xg

top() Xg

RA.top()7→first

Rename method A.top()
into first(p

(b)

F1

A

Xg
first()
top() Xg

F2

A

Xg

top() Xg

RA.top()7→∅

Inline method A.top()
(p

(c)

F1

A

Xg

top() Xg

F2

A

Xg

first() Xg

RA.top()7→∅

Inline method A.top()
(p

(d)

Figure 4.5.: Cases in which refactorings do not distribute over feature modules.

executing RFM operations first on the Jak-like feature modules (right perimeter in
Fig. 4.4).

Consecutive execution of Jak-like feature modules and RFMs can result in a dif-
ferent failure than executing the RFMs’ operations (i.e., the refactorings) first on the
Jak-like feature modules. For illustration, suppose that a Rename-Class RFM RA 7→B

follows two Jak-like feature modules F2 and F1 (cf. Fig. 4.5a). F1 creates a class A; F2

creates a class B; RA 7→B renames A into B. According to the preconditions of RA 7→B,
a class A must exist and no class B must exist in the input program of RA 7→B.8 Exe-
cuting RA 7→B consecutively after F2 and F1 (i.e., RA 7→B((F2 •F1))) fails because class
B exists in the generated program of (F2 •F1), which is the input program of RA 7→B.
Executing RA 7→B first on F2 and F1 individually (i.e., (RA 7→B(F2) •RA 7→B(F1))) fails,
too; while RA 7→B(F1) succeeds, RA 7→B(F2) fails because there is no class A in F2. If
we would tolerate RA 7→B(F2) to fail, then class B of RA 7→B(F2) would replace class
B of RA 7→B(F1), incorrectly. Summarizing, both implementation approaches fail but
with different errors.

Consecutive execution of Jak-like feature modules and RFMs can succeed while
executing the RFMs’ operations first on the Jak-like feature modules fails. For
illustration, suppose that a Rename-Method RFM RA.top() 7→first follows F2 and
F1 (cf. Fig. 4.5b). F1 creates a class A with a method A.top() and a class B
with A as its superclass; F2 refines B and creates method B.top(); RA.top() 7→first

renames A.top() into first. Executing RA.top() 7→first consecutively after F2 and
F1 (i.e., RA.top() 7→first((F2 • F1))) generates classes A and B with the methods
A.first() and B.first().9 Executing RA.top() 7→first first on F2 and F1 individually (i.e.,

8 If there is no class A in the input program of RA7→B then RA7→B fails because there is no class to
rename; if there is a class B then RA7→B fails, too, because RA7→B would create a second B and
this is an error in most languages (cf. Sec. 2.3, p. 16).

9RA.top7→first((F2 • F1)) renames B.top() because B.top() overrides renamed A.top().

37

4. Refactoring Feature Modules

(RA.top() 7→first(F2) • RA.top()7→first(F1))) fails because A.top() does not exist in F2. If
we would tolerate RA.top() 7→first(F2) to fail, then classes A and B would exist but with
the methods A.first() and B.top(). Summarizing, one implementation approaches
succeeds while the other one fails.

Consecutive execution of Jak-like feature modules and RFMs can succeed while
executing the RFM’s operation first on the Jak-like feature modules fails. For
illustration, suppose that an Inline-Method RFM RA.top() 7→∅ follows F2 and F1

(cf. Fig. 4.5c). F1 creates method A.top() and method A.first() which calls A.top();
F2 refines A.top(); RA.top() 7→∅ inlines method A.top(). Executing RA.top() 7→∅ consec-
utively after F2 and F1 (i.e., RA.top 7→∅((F2 • F1))) generates A.first() which encap-
sulates the refined body of A.top(). Executing RA.top() 7→∅ first on F2 and F1 indi-
vidually (i.e., (RA.top() 7→∅(F2)•RA.top() 7→∅(F1))) fails; while RA.top() 7→∅(F1) succeeds,
RA.top() 7→∅(F2) fails because the refinement of method A.top() cannot be inlined in
F2. If we would tolerate RA.first() 7→∅(F2) to fail, then A.first() is generated which
encapsulates the unrefined body of A.top(); further, A.top() of F2 would refine a
nonexisting method. Summarizing, one implementation approach succeeds while the
other fails.

Consecutive execution of Jak-like feature modules and RFMs can succeed while
executing the RFM’s operation first on the Jak-like feature modules generates an er-
roneous program. For illustration, suppose that an Inline-Method RFM RA.top() 7→∅

follows F2 and F1 (cf. Fig. 4.5d). F1 creates method A.top(); F2 creates method
A.first() which calls A.top(); RA.top() 7→∅ inlines A.top(). Executing RA.top() 7→∅ con-
secutively after F2 and F1 (i.e., RA.top 7→∅((F2 • F1))) generates A.first() which en-
capsulates the body of A.top(). Executing RA.top() 7→∅ first on F2 and F1 individ-
ually (i.e., (RA.top() 7→∅(F2) • RA.top() 7→∅(F1))) fails; while RA.top() 7→∅(F1) succeeds,
RA.top() 7→∅(F2) fails because there is no method A.top() to inline in F2. Note that
if we tolerate RA.top() 7→∅(F2) to fail, an erroneous program is generated in which
A.first() calls a nonexisting method. Summarizing, one implementation approach
succeeds while the other generates an erroneous program.

4.2.2. Formal Proof of Algebraic Properties of Refactorings

The examples above show that executing Jak-like feature modules and RFMs con-
secutively yields different results in some cases than executing the RFM operations
first on Jak-like feature modules before the refactored Jak-like feature modules are
composed. To gain confidence in our implementation decision of the RFM composer
tool, we must know whether the above examples are just rare exceptions. For that, we
formally proved algebraic properties of refactorings in the setting of SPLs. For exam-
ple, the algebraic property we prove in order to verify the assumption of Figure 4.4,
page 36, is distributivity of refactorings over Jak-like-feature-module execution.10

10To prove that an algebraic property does not hold in general, a counterexample suffices. However,
as we need to know the probability of these cases, a counterexample is not enough.

38

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

An Algebra for Feature Modules and Refactorings

To analyze refactorings algebraically with respect to feature modules, we define terms
that describe programs, and operations that describe program transformations of
Jak-like feature modules and RFMs.

Terms

Code (Q). We represent code in our algebra because we want to compare whether
programs are equal or not. We analyzed before (cf. Chap. 3) that scoped names of
modules – but not method bodies – decide on module reuse when the functionality
of that module does not change. For that, as a first step, we focus on refactorings
which alter scoped names and we represent code in our algebra by a set of scoped
names. For example, we describe the code of the Jak-like feature module Directed
represented in Figure 4.2a, page 32, by the set of its scoped names: QDirected =
{Vertex, Vertex.display()::void}. Set semantics suffices because the order of named
pieces of code generally does not matter.11 We use the meta-variable Q to represent
a set of scoped names (i.e., to range over Q).

Error state (E = {ǫ,X}). Programs, which include errors or were generated er-
roneously, do not implement the features that were selected by users. Thus, those
programs should not be products of an SPL [CP06, KAT+09, TBKC07]. We annotate
code with an error state in order to indicate in our algebra whether the annotated
code was generated without error. The symbol ǫ indicates an error, whereas the
symbol X indicates that there was no error. We use the meta-variable e to represent
an error state (i.e., to range over E).

Programs (F = P(Q)×E). In our algebra, a program is code, which was generated
from feature modules and which is annotated with an error state. In our algebra, a
Jak-like feature module is a program as well; but one that has not been generated
before. As a result, the error state of a Jak-like feature module is always X.

If a program was generated by synthesizing feature modules and one or more feat-
ure-module executions failed, we annotate the program’s code with ǫ. If a program
was synthesized without error, we annotate its code with X. For example, the term
for the program represented in Figure 2.5b, page 14, which was generated without
error, is 〈{Vertex,Vertex.name::String,Vertex.predecessor::String,Vertex.dweight::int,
Vertex.display()::void};X〉.

In our algebra, two programs are equal only when their code as well as their error
states are equal. As a result, programs with equal code can be unequal when their

11The order of named pieces of code does only matter for initialized, static member variables in
Java [GJSB05].

39

4. Refactoring Feature Modules

error states differ12:

((Q1 6= Q2) → (〈Q1; e1〉 6= 〈Q2; e2〉))
(〈Q1;X〉 6= 〈Q2; ǫ〉)
(〈Q1; ǫ〉 = 〈Q1; ǫ〉)
(〈Q1;X〉 = 〈Q1;X〉)

(4.1)

We use the meta-variable F to represent a program (i.e., to range over F).

Operations

Code composition (∪ : P(Q)×P(Q) → P(Q)). Jak-like feature modules compose
code of an input program with the code they encapsulate. Feature modules add
classes and class members to the input program and refine classes and class mem-
bers of that input program. We described code by sets of scoped names and so the
composition of code corresponds in our algebra to the union of simple sets. As an
example, reconsider Figure 2.5a, page 14; the composition of the code of Directed
(QDirected = {Vertex, Vertex.name::String, Vertex.display()::void}) and the code of
ShortestPath (QShortestPath = {Vertex, Vertex.predecessor::String, Vertex.dweight::int,
Vertex.display()::void}) corresponds in our algebra to (QDirected ∪ QShortestPath) =
{Vertex, Vertex.name::String, Vertex.predecessor::String, Vertex.dweight::int, Vertex.-
display()::void}; this set exactly represents the code of the program generated from
Directed and ShortestPath shown in Figure 2.5b. Note that this definition of code
composition is not limited to FOP.

We focus on algebraic properties of refactorings that are applied to synthesized
programs but do not focus on the synthesis of programs itself (this has been done
elsewhere [ALMK10]). Thus, in the following, we assume code composition to suc-
ceed always (e.g., we assume that a class exists when it should be refined).

Program extension (⊕ : F × Q → F). A refactoring generally replaces pieces
of code in a program by other pieces of code – we thus describe such replacement
operation later as a sequence of a code-removal operation and a code-generation
operation. We call the code-generation operation of a refactoring program extension;
for example, a refactoring that renames class Vertex into ADT, generates a class ADT.

Program extension succeeds to generate code when the scoped name of the code to
generate does not exist (the scoped name is not occupied) in the input program and
when the input program is free of error; program extension fails to generate code
otherwise. With respect to our representation of code (set of scoped names), we
define program extension by means of distinct sets. As a result, program extension
succeeds when the set of scoped names of the input program is distinct from the
set of scoped names to generate and when the input program is free of error; the
program-extension operation (and so the refactoring) fails otherwise:

12The reason is simple: If an error occurs, we change the error state of a program but not the code.

40

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

(〈Q1; e1〉 ⊕Q2) =

{

〈(Q1 ∪Q2);X〉, (Q1 ∩Q2 = ∅) ∧ (e1 = X)
〈Q1; ǫ〉, otherwise

(4.2)

Jak-like-feature-module execution (• : F × F → F). Jak-like feature modules
compose code of an input program with the code they encapsulate. Jak-like-feature-
module execution succeeds when this code composition succeeds (we defined code
composition to always succeed; cf. p. 40) and when the input program and the Jak-like
feature module are free of error; Jak-like-feature-module execution fails otherwise:

(〈Q1; e1〉 • 〈Q2; e2〉) =

{

〈(Q1 ∪Q2);X〉, (e2 = e1 = X)
〈Q1; ǫ〉, otherwise

(4.3)

Program contraction (⊖ : F × Q → F). We call the code-removal operation of a
refactoring program contraction; for example, a refactoring that renames class Vertex
into ADT, removes a class Vertex.

Program contraction succeeds to remove code, when code with the scoped name
to remove exists in the code of the input program and when the input program is
free of error; program contraction fails to remove code, otherwise. With respect
to our representation of code (set of scoped names), we define program contraction
by means of supersets. As a result, program contraction succeeds when the set of
scoped names of the input program is a superset of the set of scoped names to remove
and when the input program is free of error; the program-contraction operation fails
otherwise:

(〈Q1; e1〉 ⊖Q2) =

{

〈(Q1\Q2);X〉, (Q1 ∩Q2 = Q2) ∧ (e1 = X)
〈Q1; ǫ〉, otherwise

(4.4)

For simplicity, we define that program contraction can remove code without re-
moving code nested in the removed code. As a result, in our algebra, a refactoring
which removes a scoped name from a set of scoped names does not remove any other
scoped name automatically (though it might represent a piece of code which is nested
in the removed piece of code). For example, removing the scoped name Vertex from
the program represented by the set of scoped names {Vertex, Vertex.display()::void}
becomes {Vertex.display()::void} and not the empty set.

Algebraic Properties of Refactorings (R : F ×Q×Q → F)

A refactoring executed on a program corresponds to the following operations in our
algebra: The refactoring removes the set of scoped names Q1 from the set of scoped
names of the program and then joins the resultant set with a set of new scoped
names Q2. For example, a refactoring “Rename class Vertex into ADT” executed on
a program, removes the set of scoped names Q1 = {Vertex} from the code (set of
scoped names) of that program and then joins the resultant set of scoped names

41

4. Refactoring Feature Modules

Case #1 ((Q1 ∩Q2 = Q2)):

RQ2 7→Q2
(〈Q1;X〉)

= ((〈Q1;X〉 ⊖Q2)⊕Q2) (4.5)
= (〈(Q1\Q2);X〉 ⊕Q2) (4.4)
= 〈((Q1\Q2) ∪Q2);X〉 (4.2)

= 〈Q1;X〉

�

Case #2 ((Q1 ∩Q2 6= Q2)):

RQ2 7→Q2
(〈Q1;X〉)

= ((〈Q1;X〉 ⊖Q2)⊕Q2) (4.5)
= (〈Q1; ǫ〉 ⊕Q2) (4.4)
= 〈Q1; ǫ 〉 (4.2)
E

Figure 4.6.: Proof: There are refactorings that do not change a program [from
KKAS11].

with the set of scoped names Q2 = {ADT}. When a refactoring aims to remove
the elements of a set of scoped names Q1 from the code of the refactoring’s input
program, then all scoped names in Q1 must exist in that input program; when
the refactoring aims to generate code with a set of scoped names Q2 in the input
program then no name in Q2 is allowed to exist in the input program. As a result,
we can describe a refactoring as a composite operation of program contraction and
program extension. We use the meta-variable R to range over refactorings and write
RQ1 7→Q2

(F1) to indicate that R replaces the code Q1 by the code Q2 in program F1:

RQ1 7→Q2
(F1) = ((F1 ⊖Q1)⊕Q2) (4.5)

We now give a set of simplifications with respect to our proofs; simplifications
which we make here on purpose and which still allow us to conclude on refactorings
to the extent we desire: We do not review erroneous input programs as a starting
point for refactorings as such programs lead to erroneous generated programs, which
are not desired [CP06, KAT+09, TBKC07]. We consider a proof to have failed when
an algebraic property holds under preconditions that imply an erroneous generated
program because erroneous generated programs are not desired. We consider refac-
torings in a simplified form such that they only affect the scoped names they pass as
parameters to their refactoring types (i.e., such that refactorings become enumera-
tive). For example, Rename-Method refactorings alter the scoped names of methods
which override the method to rename although their scoped names were not given as
parameters [Fow99] – here, we focus on Rename Monomorphic Method which only
renames the single method given as a parameter.

The upcoming proofs are structured as follows: Before we prove that an algebraic
property holds or does not hold, we motivate this property. After we proved that
an algebraic property holds or does not hold, we derive requirements for future tools
that refactor SPLs or products of an SPL.

Theorem: There are identity operations in the domain of refactorings. If a
refactoring is an identity operation, it does not alter its input program because,

42

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

therein, it removes exactly these scoped names which it regenerates afterwards. If
there are identity operations in the domain of refactorings, the following formula
should hold for at least one refactoring: RQ2 7→Q2

(F1) = F1 .

Motivation

• Refactorings that regenerate their input programs can be removed without
effects on the generated SPL products. This promises to reduce the time a
tool needs to generate an SPL product when this generation involves to execute
sequences of refactorings.

We prove the existence of identity operations in the domain of refactorings in
Figure 4.6. In Case 1, we applied the Equations 4.5, 4.4, and 4.2 and could prove
that a refactoring R, which replaces Q2 by Q2 in its input program, regenerates
its input program when the code to replace exists in the input program. Case 2
proves that such refactoring does not always generate its input program; a refactoring
does not generate its input program when the code to replace does not exist in the
input program. Summarizing, there are refactorings that are identity operations
conditionally (i.e., if they succeed).

Consequences. It is possible to reduce the time a tool needs to execute a sequence
of refactorings (e.g., refactorings might be sequenced to generate a product of an
SPL) by removing refactorings which implement identity operations. We elaborate
on how to remove refactorings from refactoring sequences to reduce the time a tool
needs to execute the sequences in Section 6.2. We elaborate on how to guarantee the
success of sequenced refactorings in the SPL domain in Chapter 5.

Theorem: There are inverse operations in the domain of refactorings. Refac-
torings replace code with code that is equivalent to the replaced one with respect
to the provided functionality. Once a refactoring executed, we can replace the
replacement with the unrefactored code, which again naturally is equivalent with
respect to the provided functionality. Thus, this second replacement operation
should be provable to be a refactoring too and, in any case, should generate the
un-refactored program [Rob99]. That is, if there are inverse operations in the do-
main of refactorings, the following formula should hold for at least one refactoring:
RQ2 7→Q1

(RQ1 7→Q2
(F1)) = F1 .

Motivation

• Refactorings that follow each other but together regenerate their input program
can be removed without effects on the generated SPL product. This promises to
reduce the time a tool needs to generate an SPL product when this generation
involves to execute sequences of refactorings.

• Inverse refactorings would allow programmers to synchronize SPL products
with according SPLs when the generation of the products involves refactorings.

43

4. Refactoring Feature Modules

Case#1 ((Q1 ∩Q2 = Q2), (Q1 ∩Q3 = ∅)):

RQ3 7→Q2
(RQ2 7→Q3

(〈Q1;X〉))

= RQ3 7→Q2
(((〈Q1;X〉 ⊖Q2)⊕Q3)) (4.5)

= ((((〈Q1;X〉 ⊖Q2)⊕Q3)⊖Q3)⊕Q2) (4.5)
= (((〈(Q1\Q2);X〉 ⊕Q3)⊖Q3)⊕Q2) (4.4)
= ((〈((Q1\Q2) ∪Q3);X〉 ⊖Q3)⊕Q2) (4.2)
= (〈(((Q1\Q2) ∪Q3)\Q3);X〉 ⊕Q2) (4.4)
= (〈(Q1\Q2);X〉 ⊕Q2)
= 〈((Q1\Q2) ∪Q2);X〉 (4.2)

= 〈Q1;X〉

�

Case#2 ((Q1 ∩Q2 = Q2), (Q1 ∩Q3 6= ∅), ((Q1\Q2) ∩Q3 6= ∅)):

RQ3 7→Q2
(RQ2 7→Q3

(〈Q1;X〉))

= RQ3 7→Q2
(((〈Q1;X〉 ⊖Q2)⊕Q3)) (4.5)

= ((((〈Q1;X〉 ⊖Q2)⊕Q3)⊖Q3)⊕Q2) (4.5)
= (((〈(Q1\Q2);X〉 ⊕Q3)⊖Q3)⊕Q2) (4.4)
= ((〈(Q1\Q2); ǫ〉 ⊖Q3)⊕Q2) (4.2)
= (〈(Q1\Q2); ǫ〉 ⊕Q2) (4.4)
= 〈(Q1\Q2); ǫ 〉 (4.2)
E

Case#3 ((Q1 ∩Q2 = Q2), (Q1 ∩Q3 6= ∅), ((Q1\Q2) ∩Q3 = ∅)):

RQ3 7→Q2
(RQ2 7→Q3

(〈Q1;X〉))

= RQ3 7→Q2
(((〈Q1;X〉 ⊖Q2)⊕Q3)) (4.5)

= ((((〈Q1;X〉 ⊖Q2)⊕Q3)⊖Q3)⊕Q2) (4.5)
= (((〈(Q1\Q2);X〉 ⊕Q3)⊖Q3)⊕Q2) (4.4)
= ((〈((Q1\Q2) ∪Q3);X〉 ⊖Q3)⊕Q2) (4.2)
= (〈(((Q1\Q2) ∪Q3)\Q3);X〉 ⊕Q2) (4.4)
= (〈(Q1\Q2);X〉 ⊕Q2)
= 〈((Q1\Q2) ∪Q2);X〉 (4.2)

= 〈Q1;X〉

�

Case#4 ((Q1 ∩Q2 6= Q2)):

RQ3 7→Q2
(RQ2 7→Q3

(〈Q1;X〉))

= RQ3 7→Q2
(((〈Q1;X〉 ⊖Q2)⊕Q3)) (4.5)

= ((((〈Q1;X〉 ⊖Q2)⊕Q3)⊖Q3)⊕Q2) (4.5)
= (((〈Q1; ǫ〉 ⊕Q3)⊖Q3)⊕Q2) (4.4)
= ((〈Q1; ǫ〉 ⊖Q3)⊕Q2) (4.2)
= (〈Q1; ǫ〉 ⊕Q2) (4.4)
= 〈Q1; ǫ 〉 (4.2)
E

Figure 4.7.: Proof: There are refactorings that invert other refactorings [from
KKAS11].

44

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

We prove the existence of inverse operations in the domain of refactorings in Fig-
ure 4.7. In Case 1, we applied the Equations 4.5, 4.4, and 4.2 to generate a program
with two sequenced refactorings that is equal to the input program. However in
Cases 2 and 4, the generated programs were generated with errors and so the gen-
erated program of the inverse refactoring is not equal to the input program, which
has no error. The proof shows that a refactoring can only be inverted by refactor-
ings if it succeeded. Summarizing, there are refactorings that are inverse operations
conditionally (i.e., if they succeed).

Consequences. It is possible to reduce the time a tool needs to execute a sequence
of refactorings (e.g., they might be sequenced to generate a product of an SPL) by
removing sequences of refactorings which invert each other and together generate
the input program. We elaborate on how to remove refactorings from refactoring
sequences to reduce the time a tool needs to generate an SPL product in Section 6.2.
Tools can synchronize SPL-product code and SPL code when the generation of the
products involves refactorings. We elaborate on how to synchronize products and
SPLs in the context of RFMs in Section 6.1. We elaborate on how to guarantee the
success of sequenced refactorings in the SPL domain in Chapter 5.

Theorem: There are refactorings that distribute over Jak-like-feature-module

execution. We discussed two approaches for how to generate refactored products
of an SPL (cf. pp. 35f): (a) RFMs and Jak-like feature modules could be executed
consecutively in feature order, or (b) the refactorings of RFMs could be executed
first on the Jak-like feature modules individually and the refactored Jak-like feature
modules could be executed afterwards. The property, which must hold for both
approaches to indeed yield equal programs, is distributivity of refactoring over Jak-
like-feature-module execution: R((F2 • F1)) = (R(F2) • R(F1))

Motivation

• Distributivity would allow us to implement RFMs with two approaches: To
execute Jak-like feature modules and RFMs consecutively in feature order, or
to refactor Jak-like feature modules first and execute the refactored Jak-like
feature modules afterwards.

• Distributivity would allow us to fit RFMs into existing FOP algebras with-
out changing these algebras, because these algebras reorder sequenced feature
modules [ALMK10, BS07].

• Distributivity would allow us to refactor SPLs using existing tools that already
allow programmers to refactor stand-alone programs.

We prove that refactorings can distribute over Jak-like-feature-module execution
in Figure 4.8. In Case 1, we applied the Equations 4.5, 4.4, 4.2, and 4.3 to generate
equal programs by executing refactorings and Jak-like feature modules consecutively

45

4. Refactoring Feature Modules

Case #1 ((Q1 ∩Q3 = Q3), (Q2 ∩Q3 = Q3), (Q1 ∩Q4 = ∅), (Q2 ∩Q4 = ∅)):

RQ3 7→Q4
(〈(Q1 ∪Q2);X〉)

= ((〈(Q1 ∪Q2);X〉 ⊖Q3)⊕Q4) (4.5)
= (〈((Q1 ∪Q2)\Q3);X〉 ⊕Q4) (4.4)
= 〈(((Q1 ∪Q2)\Q3) ∪Q4);X〉 (4.2)
= 〈(((Q1\Q3) ∪(Q2\Q3)) ∪Q4);X〉
= 〈(((Q1\Q3) ∪Q4) ∪((Q2\Q3) ∪Q4));X〉
= (〈((Q1\Q3) ∪Q4);X〉 •〈((Q2\Q3) ∪Q4);X〉) (4.3)
= (〈((Q1\Q3) ∪Q4);X〉 •(〈(Q2\Q3);X〉 ⊕Q4)) (4.2)
= (〈((Q1\Q3) ∪Q4);X〉 •((〈Q2;X〉 ⊖Q3)⊕Q4)) (4.4)
= (〈((Q1\Q3) ∪Q4);X〉 •RQ3 7→Q4

(〈Q2;X〉)) (4.5)
= ((〈(Q1\Q3);X〉 ⊕Q4) •RQ3 7→Q4

(〈Q2;X〉)) (4.2)
= (((〈Q1;X〉 ⊖Q3)⊕Q4) •RQ3 7→Q4

(〈Q2;X〉)) (4.4)

= (RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉)) (4.5)
�

Case #2 ((Q1 ∩Q3 = Q3), (Q2 ∩Q3 6= Q3), (Q1 ∩Q4 = ∅), (Q2 ∩Q4 = ∅)):

RQ3 7→Q4
(〈(Q1 ∪Q2);X〉)

= ((〈(Q1 ∪Q2);X〉 ⊖Q3)⊕Q4) (4.5)
= (〈((Q1 ∪Q2)\Q3);X〉 ⊕Q4) (4.4)
= 〈(((Q1 ∪Q2)\Q3) ∪Q4);X〉 (4.2)
6= 〈((Q1\Q3) ∪Q4); ǫ 〉 (4.1)
= (〈((Q1\Q3) ∪Q4);X〉 •〈Q2; ǫ〉) (4.3)
= (〈((Q1\Q3) ∪Q4);X〉 •(〈Q2; ǫ〉 ⊕Q4)) (4.2)
= (〈((Q1\Q3) ∪Q4);X〉 •((〈Q2;X〉 ⊖Q3)⊕Q4)) (4.4)
= (〈((Q1\Q3) ∪Q4);X〉 •RQ3 7→Q4

(〈Q2;X〉)) (4.5)
= ((〈(Q1\Q3);X〉 ⊕Q4) •RQ3 7→Q4

(〈Q2;X〉)) (4.2)
= (((〈Q1;X〉 ⊖Q3)⊕Q4) •RQ3 7→Q4

(〈Q2;X〉)) (4.4)

= (RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉)) (4.5)
E

Figure 4.8.: Proof: Refactorings do not always distribute over feature module execu-
tion [from KKAS11].

and by executing refactorings on every Jak-like feature module individually first.
However, Case 2 proves that distributivity does not hold in general for any refactor-
ing; in Case 2, the scoped names to transform exist in the code of one Jak-like feature
module (〈Q1;X〉) but not in the code of a second one (〈Q2;X〉). As a result, the
refactoring fails for Case 2 in 〈Q2;X〉 and generates an erroneous program, finally.
We show the remaining cases of this proof in Appendix A. We can now count the
results of all cases (in Fig. 4.8 and Appendix A) to find out that in theory in the ma-
jority of cases, refactorings do not distribute over Jak-like-feature-module execution;
that is, distributivity holds in three cases but it does not hold in seven, and these

46

4.2. Algebraic Properties of Refactorings Influence the RFM Tools

three cases are special (i.e., four preconditions in average) compared to the seven
cases for which distributivity does not hold (i.e., three preconditions in average).
We conclude that the examples we discussed in Section 4.2.1 were no exceptions but
examples of a general rule; refactorings distribute over feature modules in only rare
cases, theoretically.

Consequences. As a first consequence, we can implement an RFM composer tool
following both approaches shown in Figure 4.4 if the scoped names to remove exist in
every Jak-like feature module and if the scoped names to generate do not exist in any
Jak-like feature module (if the refactoring is not the identity operation). However,
we do not want to restrict RFMs to SPLs in which this constraint holds because
we expect this would rule out a number of SPLs. As a result, we implemented the
RFM composer tool to execute Jak-like feature modules and RFMs consecutively in
feature order (left perimeter in Fig. 4.4).

As a second consequence, we cannot generally reorder RFMs to regroup Jak-like
feature modules and RFMs in a sequence of program transformations because this
would require to execute refactorings on the individual, reordered, Jak-like fea-
ture module (we showed this is not possible in general). Hence, RFMs do not
fit FOP algebras as is that aim to regroup transformations in transformation se-
quences [ALMK10, BS07].

Finally, there are consequences of our proof regarding distributivity beyond RFMs:
We cannot use refactoring techniques of stand-alone programs [CJ08, CN00, FKK07,
Fow99, JH06, KK04, KKKS08b, MEDJ05] without adaptation to refactor Jak-like
feature modules of SPLs. The algebra, proofs, and consequences, which we discussed,
are described in a way that we argue is applicable to more SPL approaches than
RFMs (e.g., [SD10]).

Solutions. We proved that refactorings do not distribute over Jak-like-feature-
module execution, in general. Tools, however, can implement a compromise to tackle
the tasks to some extend, for which distributivity was desired. Specifically, tools can
execute parts of refactoring operations at the level of Jak-like feature modules; but
these tools also must analyze the reasons of failures, which may occur for the refac-
torings at the level of Jak-like feature modules, in a global check (R∫):

R((Q1 ∪Q2)) = R∫ ((R′(Q1) • R
′(Q2))) (4.6)

Within the global check, the refactoring tool must distinguish noncritical and
critical failures of refactorings at the Jak-like-feature-module level (i.e., at the level at
which individual Jak-like feature modules are refactored). When a refactoring engine
detects a noncritical failure, this engine must evaluate that at least one refactoring
at the Jak-like-feature-module level does not fail for this reason. When a refactoring
engine detects a critical failure, the refactoring engine must abort the refactoring

47

4. Refactoring Feature Modules

immediately. Noncritical and critical failures are specific to the executed refactoring;
to demonstrate this, we give two examples:

• A refactoring of the type Rename Class can fail at Jak-like-feature-module level
because (a) the class to rename does not exist and/or (b) the class to generate
exists. Failure (a) is noncritical because other Jak-like feature modules, which
are refactored as well, might encapsulate the class to rename. In the global
check, however, a refactoring tool must ensure that the refactoring does not
fail due to failure (a) in all Jak-like feature modules; if the refactoring fails due
to failure (a) in all Jak-like feature modules, then no class to rename exists in
the whole SPL code and then failure (a) becomes critical. Failure (b) is critical
from beginning. If the refactoring fails in one Jak-like feature module due to
failure (b) then the class, which exists in this Jak-like feature module, may
capture the name of a class that was created by the refactoring in another Jak-
like feature module. A sophisticated refactoring engine might tolerate failure
(b) when the tool can verify that a capture does not occur for any legal SPL
product.

• A refactoring of the type Rename Method can fail at Jak-like-feature-module
level because (a) the method to rename does not exist and/or (b) the method
to generate exists – this is equivalent to Rename Class as discussed before.
In addition to Rename Class, Rename Method transforms code of which the
scoped name alone does not tell whether the code must be transformed, such as
methods that override the parameter method. To determine whether a method
should be transformed at the Jak-like-feature-module level, a refactoring oper-
ation at this level thus must have access to all class relations (inheritance/for-
warding) and all class-member relations (e.g., overriding) – this is only possible
for SPLs that ensure a common structure in all products (i.e., every class and
every class member exists in every product).

Discussion on generality. We applied a number of simplifications to our proofs. We
did not consider initialized, static member variables. We did not consider method
bodies. We assumed that removing a scoped name does not affect other scoped names
– even not scoped names of nested pieces of code. We focused on refactoring types
that accept as parameters all scoped names that they alter. We modeled program
extension and Jak-like-feature-module execution with set union, which is commuta-
tive, although program transformations in existing SPL approaches rarely commute
– this fact does not impair our results, because we did not use commutativity for
these operations in our proofs. The mentioned simplifications limit the generality of
the proof cases which showed that a property holds. The proof cases, which showed
that a property does not hold, (e.g., in the proof regarding distributivity) are not
limited in generality and show that in general RFMs do not have certain algebraic

48

4.3. Case Studies

properties.13

4.2.3. Design of the RFM Composer Tool

We prototypically implemented an RFM composer tool and integrated RFMs with
the FOP language Jak (Jak extends Java; cf. Sec. 2.2.2). We learned from the above
analysis of algebraic properties of refactorings for the implementation of the composer
tool. Hence, we implemented the tool to iterate the feature modules in feature order
and to execute them consecutively. A dispatcher calls a transformation engine of
the AHEAD tool suite to execute Jak-like feature modules; the dispatcher calls
refactoring meta-programs (partly reused from others [EH07]) to execute RFMs.

The RFM composer tool expects a refactoring unit to be implemented as a class.
Such class refers to a refactoring meta-program using its API-artifact reference (key-
word implements in Java) and implements the API artifact’s methods to pass the
refactoring parameters.

We prototypically implemented the RFM composer tool as a black-box framework
such that programmers can add refactoring-type meta-programs in two steps: (a)
adding a meta-program which implements the refactoring type and (b) passing the
meta-program name to the composer as a command-line parameter.

4.3. Case Studies

Our main motivation to develop RFMs was to configure the structure of modules to
ease their reuse (cf. Chap. 3). In this section, we report on studies that we performed
in order to evaluate RFMs in different use cases. First, we evaluate whether RFMs
help to integrate modules with incompatible environments. Second, we evaluate
whether RFMs help to configure nonfunctional properties (NFPs) of SPL products.

4.3.1. Integration of Modules

We used RFMs to integrate stand-alone modules as well as products of module SPLs
with incompatible environments [KBA09]. RFMs allowed us in a number of these
studies to reuse modules in incompatible environments. We used RFMs to integrate
a stand-alone module with an incompatible environment; we used RFMs to integrate
products of module SPLs with an incompatible environment; we used seldom-used
refactorings in RFMs to integrate a product of a module SPL with an incompatible
environment; we used RFMs to integrate a large-scale module with an incompatible
environment; we used RFMs to replace a wrapper; we used RFMs to replace a
hierarchy of wrappers. We summarize the study in Table 4.2.

13We showed problems that occur in our simplified representations of code and refactorings; prob-
lems that do not vanish when completing the representations in complexity.

49

4. Refactoring Feature Modules

Table 4.2.: Data on programs used to evaluate RFMs [extended from KBA09].

Program/Module #SLOCα Refactorings

Log4J ∼12K 1x Move Class, 2x Rename Method
ZipMe ∼3K 2x Move Class, 1x Rename Class
Raroscope ∼250 2x Move Class, 2x Rename Class
TrueZip ∼13K 2x Move Class, 2x Rename Class, 1x Rename Method
GPL ∼1K 4x Move Class, 2x Rename Class, 2x Rename Method,

6x Encapsulate Field, 2x Extract APIModule,
1x Encapsulate InPackage

Workbench.texteditor ∼16K 1x Rename Class, 2x Rename Field

ADTβ module 59 1x Rename Class, 1x Rename Method
JDOM ∼6.7K 6x Rename Method, 6x MoveClass, 2x Extract (Empty)

Common Superclass, 1x Rename Class
αlines of source code; βabstract data type

Stand-alone module. The database engine SmallSQL14 (∼20K lines of source code)
uses a proprietary logging engine. Log4J15 is a standard logging engine. Log4J
cannot replace the SmallSQL logging engine due to incompatibilities with SmallSQL.
We applied RFMs to Log4J in order to integrate Log4J with SmallSQL and in order to
replace the SmallSQL logging engine by Log4J. After our integration, SmallSQL was
able to use Log4J (and probably future releases of Log4J) to perform standardized
logging.

To integrate Log4J, we transformed it into an SPL with one feature module (i.e.,
we moved the Log4J code into a Jak-like feature module). We extended this SPL by
RFMs. One RFM moved class org.apache.log4j.Logger into the SmallSQL package
smallsql.database; two RFMs renamed Logger methods to have SmallSQL-compatible
names. The RFMs were simple to implement (i.e., we defined two parameters for
each RFM) although the code they transformed was scattered throughout Log4J.
For example, the Move-Class RFM automatically moved org.apache.log4j.Logger, au-
tomatically updated 144 references in 38 Log4J classes distributed over 10 Log4J
packages, and automatically altered the access modifiers of numerous class members
to be public.

We could not remove the following incompatibility with RFMs: We could not
refactor Log4J to provide a single parameterless constructor in class org.apache.log4j.-
Logger which calls set-access methods. We defined a Jak-like feature module to
generate this constructor in Logger.

Module SPLs. We developed a user interface (153 lines of source code) which used
an archive-access module to analyze files inside ZIP archives (file names, last modifi-
cation dates, uncompressed file size) and to decompress them. We wanted to replace
the archive-access module by the archive-access modules ZipMe, Raroscope, and

14http://www.smallsql.de/ (accessed: July 10,2009)
15http://logging.apache.org/log4j/ (accessed: July 10,2009)

50

4.3. Case Studies

TrueZip. ZipMe16 allows users to access and analyze files in ZIP archives. Raro-
scope17 allows users to access and analyze files in RAR archives. TrueZip18 allows
users to access and analyze files in TAR archives. The used versions of ZipMe and
Raroscope were decomposed into Jak-like feature modules of an SPL and thus were
configurable with respect to functionality (e.g., we could include or omit the code of
feature Checksum from the archive-access modules). We moved the code of TrueZip
into a Jak-like feature module to create an SPL with one feature module. All prod-
ucts of the ZipMe SPL, Raroscope SPL, and TrueZip SPL were incompatible with
our user interface so we could not reuse them as is. After our integration, our user
interface was able to analyze and decompress ZIP archives (using the old module
and different ZipMe products), analyze RAR archives, and analyze and decompress
TAR archives.

To integrate the archive-access-module products, we added numbers of RFMs.
For example, we defined an RFM in the ZipMe SPL to rename class
net.sf.zipme.ZipArchive into ZipFile. We could not remove the following incompat-
ibilities with RFMs: We could not refactor ZipMe products and TrueZip products to
make their archive-representation classes provide constructors that accept a single
parameter object of type File; we defined a Jak-like feature module to generate such
constructor in the ZipMe and TrueZip products. We could not refactor TrueZip to
alter the signature of a method (i.e., to remove a parameter and assign it with a
fixed value); we extended the Jak-like feature module which we already added to
the TrueZip SPL to make it generate a suitable method (as a forward method).
We could not refactor Raroscope products to provide the functionality to decom-
press RAR archives; we thus disabled archive decompression in our user interface for
Raroscope (still we can analyze RAR archives).

Technically, the ZipMe SPL comprised 13 Jak-like feature modules and had 64
products; the Raroscope SPL comprised five Jak-like feature modules and had 16
products. We generated different ZipMe and Raroscope products and all were com-
patible automatically with our user interface when we selected the features, which
triggered the RFMs and – in the case of ZipMe – the added Jak-like feature mod-
ule.19 This was especially interesting because just the fully-fletched products existed
before.

Seldom-used refactorings. The GPL generates modules that contain graph data
structures and graph algorithms. We wanted to use GPL products in an environ-
ment which used structures of the module OpenJGraph20 to represent and manip-

16http://sourceforge.net/projects/zipme/ (accessed: July 10,2009)
17http://code.google.com/p/raroscope/ (accessed: July 10,2009)
18https://truezip.dev.java.net/ (accessed: July 10,2009)
19We observed informally that with the fully-fletched ZipMe product, our user interface was able

to decompress ZIP archives ∼4% faster than with the old, replaced ZIP-archive-access module.
We observed that the fully-fletched ZipMe module had a ∼28% smaller footprint than the old,
replaced ZIP-archive-access module. Integrating ZipMe thus payed off.

20http://sourceforge.net/projects/openjgraph/ (accessed: July 10,2009)

51

4. Refactoring Feature Modules

ulate graphs (i.e., we wanted to replace OpenJGraph by GPL products). All GPL
products, however, were incompatible with the environment which used OpenJGraph
before. After our integration, we were able to reuse products of the GPL as modules
in the environment.

To integrate the GPL products, we added RFMs to the GPL. These RFMs renamed
GPL classes into OpenJGraph names and moved GPL classes into the OpenJGraph
package salvo.jesus.graph. Interestingly, we also needed RFMs to implement seldom-
used refactorings (e.g., to encapsulate GPL products in a package21, encapsulate
fields with access methods22, and extract API artifacts).

We could not remove the following incompatibilities with RFMs: We could not
refactor GPL products to provide serialization methods (toString methods) for the
classes Vertex, Graph, and Edge. We could not refactor GPL products to provide a
parameterless constructor in class Vertex. We could not refactor GPL products to
alter the type which a parameter variable of a method had (to be double instead
of int). We added a Jak-like feature module to the GPL; a Jak-like feature module
which generates the above methods.

Technically, the GPL comprised 15 Jak-like feature modules and had 55 products.
We generated different GPL products and all were compatible automatically with
the environment when we selected the features, which triggered RFMs and the added
Jak-like feature module.

Large-scale module. The Eclipse23 module ’workbench.texteditor’ (∼16K lines
of source code) was reported incompatible with an environment [DNMJ08]. We
transformed ’workbench.texteditor’ into an SPL with one feature module by
moving the Eclipse module’s code into a Jak-like feature module. We added
one RFM to the ’workbench.texteditor’ SPL which renames class Levenshtein
into Levenstein and added two RFMs which rename the fields DefaultCellCom-
puter.levenshtein::Levenshtein and OptimizedCellComputer.levenshtein::Levenshtein into
levenstein. After we executed the Jak-like feature modules and RFMs, ’work-
bench.texteditor’ (and probably its future releases) was compatible with the formerly
incompatible environment.

Replacing wrappers. An SPL [from BSST93] generated modules that contained
abstract data types and wrapper code. We reimplemented this SPL using Jak
and thereby reimplemented the wrapper code with an object wrapper. The wrap-
per allows programmers to access a class Container using the name Deque and al-
lows programmers to access a method Container.insert front(Element)::Element using

21This refactoring type has different names: Move Definition [Li06], Abstraction Extrac-
tion [Läm02], or Extract Package (see: http://www.refactoring.com/catalog/extractPack-

age.html; accessed: November 30,2010).
22An Encapsulate-Field refactoring generates a get-access and a set-access method for a member

variable and updates all references to the field to use the get-access or set-access method [Fow99].
23http://www.eclipse.org/ (accessed: July 16,2011)

52

4.3. Case Studies

the name add front in class Deque. We added two RFMs to the SPL which re-
named Container into Deque and renamed Deque.insert front(Element)::Element into
add front. Since Container now is accessible using the name Deque and method
Container.insert front(Element)::Element now is accessible using the name add front
with objects of class Deque, we were able to remove the obsolete wrapper. Techni-
cally, this SPL comprised five Jak-like feature modules and had seven products.

Replacing wrapper hierarchies. We aimed at reimplementing object-wrapper hier-
archies [from BCLvdS10] to integrate the module JDOM24, which provides access to
artifacts of extensible markup languages, with an environment that used the module
XOM25; this environment consists of a number of JUnit26 tests. We transformed the
JDOM module into an SPL with one feature module by moving the JDOM module’s
code into a Jak-like feature module. Due to problems (which we describe next), we
decided to integrate JDOM with just three of the mentioned JUnit tests. After the
execution of the Jak-like feature modules and RFMs, we were able to reuse JDOM
with three XOM JUnit tests; tests that yielded the same results as for wrappers.
Thus, we call this study a partial success.

In this study, RFMs failed to completely reimplement the wrapper hierarchies and
we now analyze why they failed. The major reason for RFMs to fail was that the
wrappers reused a module to implement functionality that was missing in JDOM, and
this module in turn required the existence of several JDOM classes. As a result, these
JDOM classes had to exist even after the integration and refactoring of the JDOM
module. To be precise, the wrappers reused the Jaxen27 module (specifically, method
org.jaxen.jdom.XPathNamespace.getJDOMNamespace()::org.jdom.Namespace) to ex-
tend the functionality of the JDOM method nu.xom.Namespace.getNamespace()-
::org.jdom.Namespace; the Jaxen module in turn required the JDOM class
org.jdom.Namespace to exist. So we could not move org.jdom.Namespace to package
nu.xom as desired, without creating incompatibilities between our JDOM product
and the Jaxen module. A second reason for RFMs to fail was that the wrappers
wrapped standard classes of Java such as java.util.List (wrapped in nu.xom.Nodes),
java.lang.Integer (wrapped in nu.xom.Attribute Type), or java.util.List (wrapped in
nu.xom.Elements). We could not transform these standard classes with RFMs to
be compatible because they were nontransformable in a referenced library. For the
above reasons, we reused a number of wrapper classes and classes they reference,
and moved them all into a new Jak-like feature module of the JDOM SPL.

As we replaced some wrapper classes with refactorings and refinements, some
remaining wrapper classes had to become polymorph with their wrappee classes
– our solutions obfuscated the class structure in several cases: We transformed the
wrapper class nu.xom.Namespace and its wrappee class org.jdom.Namespace to inherit
from a new common superclass (superclass extracted by an RFM); after we extended

24http://www.jdom.org/ (accessed: March 25,2011)
25http://www.xom.nu/ (accessed: March 25,2011)
26http://www.junit.org/ (accessed: March 25,2011)
27http://jaxen.codehaus.org/ (accessed: March 25,2011)

53

4. Refactoring Feature Modules

the new superclass, however, both Namespace classes had to provide new methods
(i.e., Jak-like feature modules and RFMs intermixed in the feature order). The
methods, which we had to add to the wrapper classes, could forward calls to wrappee
methods. Some methods, which we had to add to the wrappee classes, however,
could not be implemented meaningfully – we added a number of empty methods,
accordingly. Furthermore, the wrapper class overrode wrappee methods which were
annotated with final28 and thus produced compiler errors; as neither the refactorings
we implemented nor the refinements of Jak can alter final annotations, we had to
adapt the original JDOM code, manually. In a similar situation, we added an RFM
to rename a wrappee method such that the wrapper method with the same name
and parameter list could be added later (both differed in their return types).

A difficulty we faced, though not a reason for the RFM failure, occurred when
wrapper methods and constructors performed tests before they called the wrappee
constructors. We could not refine JDOM constructors with this wrapper code be-
cause a constructor of a Java class must first call the superclass constructor instead
of the tests [GJSB05]. As a workaround, we followed the advice from the Jak doc-
umentation [Sof08]: We extracted the constructor bodies into methods and refined
these extracted methods accordingly.

After we executed the RFMs and Jak-like feature modules, the JDOM product no
longer raised compiler errors with three JUnit tests that involved or tested wrapper
classes which we replaced. We refined the JDOM code to add missing functionality
(reused from the wrappers) before we executed these tests; as a result, these tests
produced the same results as with the wrapper classes before (50 test cases ran
without errors and with two failures; both failures occurred equally in the wrapper
tests).

Summary. We observed that RFMs can help to integrate modules with environ-
ments with which the modules were incompatible before. As a result, in a number of
cases, we were able to reuse the modules in these environments. We observed that
RFMs support module integration even if modules, which are generated from SPLs,
have never been generated before. The number of products of an SPL no longer
matters for all these products to be adapted.

We observed that RFMs do not replace Jak-like feature modules but complement
them with respect to module integration. We observed that (sequences of) RFMs
can be selected as features in feature models just as Jak-like feature modules could
be selected as features before.

We observed that renaming and moving classes and class members was most im-
portant in our studies. However, especially in the GPL study and the JDOM study,
we observed the need for other refactoring types, too (e.g., in the GPL study, RFMs
had to implement Extract-API-Artifact refactorings). In our perspective, RFMs can
encapsulate any transformation that alters the structure of a program but does not
alter its functionality.

28Methods annotated with final cannot be overridden in Java [GJSB05].

54

4.3. Case Studies

4.3.2. Configuration of Nonfunctional Properties

Programs differ in properties beyond functionality and structure (e.g., proper-
ties of presentation, power consumption, maintainability, binary size, or perfor-
mance) [AT96, CG94, CIBR00, KCH+90, Mye88, SKAP10, SRK+08]. These prop-
erties are called nonfunctional properties (NFPs) [SKR+08, SRK+08]. Refactorings
are known to affect NFPs [Fow99] and we show that RFMs can also be used to con-
figure NFPs of SPL products [SKAP10]. For example, we show that a refactoring of
type Rename Method can be used to configure code with respect to the NFP Code
Quality by reducing the number of nonmnemonic method names. We summarize
how refactorings of RFMs can be used to configure SPL products with respect to
NFPs in Table 4.3, page 60.

Code quality. RFMs can improve the quality of a piece of code when they improve
this piece’s accordance to desired naming conventions of different customers. For
example, RFMs that implement the refactoring type Rename Method can remove
the code smell of nonmnemonic method names [Fow99] or can allow a single module
to satisfy different, conflicting naming conventions (e.g., of different customers).

RFMs can improve the quality of a piece of code when they improve this piece’s ac-
cordance to code-quality metrics such as Cyclomatic Complexity. Cyclomatic Com-
plexity evaluates the complexity of methods [McC76]; a method is considered to be
complex when it includes a high number of branching statements such as conditionals
or loops. In line with the metric authors [McC76], we found that executing Extract-
Method refactorings can reduce the Cyclomatic-Complexity value of a method.29

In addition, we found that refactorings of types Replace Conditional With Poly-
morphism [Fow99] and Replace Nested Conditional With Guard Clauses [Fow99]
can reduce Cyclomatic Complexity because they can remove branching statements.
We found that refactorings of types Inline Method and Replace Exception With
Test [Fow99] may impair the Cyclomatic Complexity of a method, because these
refactorings may introduce branching statements into methods. In Figure 4.9a, we
show a method together with its control-flow graph; in Figure 4.9b, we show the
same method with its control-flow graph after a Replace-Nested-Conditional-with-
Guard-Clauses refactoring applied. According to the Cyclomatic-Complexity metric,
the refactored version of the method (cf. Fig. 4.9b) is less complex.

RFMs can improve the quality of a piece of code when they improve this piece’s
accordance to code-quality metrics such as Weighted Methods Per Class. Weighted-
Methods-Per-Class evaluates the complexity of a class [CK94]; a class is considered to
be complex, when it encapsulates a number of methods. We found that refactorings
of the type Extract Superclass can decrease the complexity of classes according to this
metric (the refactorings separate methods of a class in new classes) and refactorings

29To evaluate Cyclomatic Complexity of a method, we must analyze a control-flow graph of this
method [McC76]. Specifically, we must subtract the number of vertices of the graph from the
number of edges and sum to this number the doubled number of graphs of the method.

55

4. Refactoring Feature Modules

1 int setPredecessor(Vertex newP){
2 int result;
3 if (newP == null){
4 result = −1;
5 } else {
6 if (newP == pred){
7 result = −1;
8 } else {
9 pred = newP;

10 result = 0;
11 }
12 }
13 return result;
14 }

1 int setPredecessor(Vertex newP){
2 if (newP == null){
3 return −1;
4 }
5 if (newP == pred){
6 return −1;
7 }
8 pred = newP;
9 return 0;

10 }

(a) Method and its control-flow graph
before refactoring; Cyclomatic Com-
plexity is 3.

(b) Method of Fig. 4.9a and its control-
flow graph after the refactoring; Cyclo-
matic Complexity is 1.

Figure 4.9.: Code improvement according to NFP metric Cyclomatic Complexity
achieved with a Replace-Nested-Conditional-with-Guard-Clauses refac-
toring.

of type Collapse Hierarchy can impair the complexity of classes according to this
metric (the refactorings join methods of different classes in one class).

Performance. RFMs can improve the performance of a piece of code (cf. Tab. 4.3).
For example, an RFM which implements an Inline-Method refactoring can improve
the performance of a program by removing method calls (and replacing them by
the called method body); over-inlining, however, can impair the performance (e.g.,
by increased load times of huge methods) [DC94]. There might emerge additional
refactoring opportunities after inlining a method [DC94] but we do not discuss them
here. Conversely, an RFM which implements an Extract-Method refactoring can
impair performance by introducing at least one method call toward the extracted
method.

Footprint. RFMs can improve the footprint of a piece of code (cf. Tab. 4.3). For ex-
ample, an RFM which implements a Pull-Up-Field refactoring can replace a number
of member variables of subclasses by a single member variable of a common super-
class; the refactored code thus has less footprint than the original. Conversely, an
RFM which implements a Push-Down-Field refactoring multiplexes a member vari-
able in subclasses and thereby might impair the footprint of the generated program.

Proof of Concept

In a proof-of-concept test, we executed an Inline-Method RFM to configure the NFP
Performance of a micro benchmark program (developed by others [GP09]). However,

56

4.3. Case Studies

 10

 100

 1000

 10000

<1325

1350
1375

1400
1425

1450
1475

1500
1525

1550
1575

1600
1625

1650
1675

1700
1725

1750
1775

1800
1825

1850
1875

1900
1925

1950
1975

2000
>2000

N
u

m
b

e
r

o
f

fi
n

is
h

e
d

 r
u

n
s
*

Runtime intervals (ms)

NFP-configured program (with RFMs)
Original program (without RFMs)

*Logarithmic scale.

Figure 4.10.: Runtimes of a program configured with RFMs for NFP Performance
(with Inline-Method refactorings) [adapted from SKAP10].

at first we did not gain any benefit. We conjectured that only the implementation
and selection of high numbers of RFMs produce noticeable effects.

We argue that to implement and select high numbers of RFMs is laborious and
error-prone; thus, we propose to adapt the product-generation process. We propose
to configure an SPL product in two independent stages: In the first stage, users
should configure the functionality and structure of their product; in the second stage,
users should configure NFPs of their product. After the first stage, a preliminary
program can be generated, hidden from the user, and analyzed automatically for
pieces of code, which might be refactored to make the product better support certain
NFPs. In the second stage, the refactorings and sequences of refactorings then
can be grouped in the feature model according to the NFPs they alter and can
be suggested to a user for the purpose of altering the NFP value. However, we argue
to not generate RFMs that should improve the NFP Code Quality because this is
controversial [Opd92, RBJ97].

We integrated the RFM composer tool with SPLConqueror30, a tool which mea-
sures and optimizes NFPs for SPL products [SRK+08]. We extended both tools to
implement the above two-staged process. After that, we configured the same bench-
mark program as before (developed by others [GP09]) to expose the same NFP as

30http://fosd.de/SPLConqueror/ (accessed: July 16,2011)

57

4. Refactoring Feature Modules

before (high performance). This time however, in the second stage of the configura-
tion process, we selected the suggested surrogate feature High Performance and thus
triggered 120 generated Inline-Method RFMs in one step. We re-evaluated the run-
times; we ran the original and the configured program 10,000 times and observed a
performance benefit for the NFP-configured program.31 We show our measurements
in the diagram of Figure 4.10; the diagram relates runtime intervals to the number
of runs that finished in an interval. The left-shift of the graph, which represents run-
times of the NFP-configured program, with respect to the graph, which represents
the runtimes of the original program, indicates that the configured program required
less time to run in general than the original program (the configured program was
generally faster). For example, we observed that 59 of 10,000 runs of the original
program finished in less than 1325ms; but, we observed that 5160 of 10,000 runs of
the NFP-configured program finished in less than 1325ms. Summarizing, although
the refactorings generated suboptimal code (e.g., they generated variable declara-
tions not needed here), we gained an average runtime benefit of 2% through NFP
configuration with RFMs. A continuative study conducted and supervised in the
course of this thesis confirmed our results at a finer scale of granularity [Mos11].

We compared the footprint of the original benchmark program with the footprint
of the NFP-configured counterpart. We observed that the sum of the footprints of all
binary files (.class files in Java) of the NFP-configured program was higher by 18%
than the sum of the footprints of all binary files of the original program (833,021 Byte
compared to 705,569 Byte).32 We thus showed that to configure with Inline-Method
RFMs can also affect the footprint of a program.

4.4. Summary

In this chapter, we tackled the dilemma of module scalability which we described
in Chapter 3: We extended techniques of SPL engineering to support an integrated,
feature-driven configuration of a module’s functionality and structure. This con-
figuration allows module programmers to implement large-scale modules which are
compatible with a lot of environments at the same time. Specifically, we described
how refactorings can be used and implemented as selectable features of SPLs and
called this approach refactoring feature modules (RFMs). If a large-scale module
is incompatible with an environment, users select features for this module; features
which make the module compatible with the environment by altering the module
structure. With the combination of Jak-like feature modules and RFMs, users can
now configure the functionality of a module without worrying about the resulting
structure (i.e., independently from the structure), because this structure can be con-
figured and revised using RFMs. Users further can now configure the structure of a

31We performed the measurements of this section on an computer with an Intel Pentium 4 CPU
with 3GHz and 2GB RAM running Windows XP SP2.

32Note that the increase in performance by 2% and the related increase in footprint by 18% can
hardly be compared numerically – when a user requires a fast program, he/she might be required
to accept footprint penalties.

58

4.4. Summary

module without worrying about the functionality of the module (i.e., independently
from the functionality), because refactorings do not alter functionality. Summarizing,
RFMs can aid the reuse of modules by removing incompatibilities.

We analyzed algebraic properties of refactorings with respect to Jak-like feature
modules in order to decide, in which order a composer tool should execute Jak-like
feature modules and RFMs best. We found that such tool should execute Jak-like
feature modules and RFMs consecutively in feature order.

We evaluated RFMs with respect to module integration in a number of case studies.
These studies showed that RFMs can help to integrate modules with incompatible
environments. The studies however also demonstrated that RFMs do not replace but
complement Jak-like feature modules. One study showed that we could not refactor
a module when conflicting requirements exist regarding the structure of this module.

We demonstrated that RFMs can help to configure programs with respect to NFPs.
Specifically, we demonstrated that with RFMs we are able to configure products of
an SPL to provide high performance. We discussed that with RFMs we are able to
configure products to have a small footprint or to adhere to different code-quality
metrics. We observed that a single refactoring can improve one NFP of a program
while at the same time it impairs another NFP of the same program. We observed
that a single NFP can be improved by one refactoring and impaired by another
refactoring.

59

4. Refactoring Feature Modules

Table 4.3.: NFPs and how RFMs can alter them [extended and adapted from
SKAP10].

NFP Improving Refactoring Types Impairing Refactoring Types

Code quality
Naming conventions Rename Class, Rename Field, Re-

name Method
Rename Class, Rename Field, Re-
name Method

Method size Extract Method, Create Tem-
plate Method, Consolidate Dupli-
cate Conditional Fragments

Inline Method

Cyclomatic
complexityα

Extract Method, Replace Condi-
tional With Polymorphism, Re-
place Nested Conditional With
Guard Clauses

Inline Method, Replace Exception
With Test

Weighted methods
per classβ

Extract Class, Extract Subclass,
Extract Superclass, Inline Method

Collapse Hierarchy, Consolidate
Conditional expression, Decom-
pose Conditional, Encapsulate
Field, Extract Method, Hide
Delegate, Inline Class

Depth of inheritance
hierarchyβ

Replace Inheritance With Delega-
tion, Collapse Hierarchy

Replace Delegation With Inheri-
tance, Extract Subclass, Extract
Superclass

Performance Inline Method, Inline Class, Re-
move Middleman, Remove Setting
Method, Replace Delegation With
Inheritance, Replace Temp With
Query, Inline Temp

Encapsulate Field, Extract Class,
Extract Method, Form Tem-
plate Method, Hide Delegate,
Introduce Assertion, Decompose
Conditional, Replace Inheritance
With Delegation, Self Encapsulate
Field, Change Unidirectional To
Bidirectional

Footprint Collapse Hierarchy, Pull Up Con-
structor Body, Pull Up Field, Pull
Up Method, Remove Middleman,
Remove Setting Method

Decompose Conditional, Encap-
sulate Field, Extract Class, Ex-
tract Interface, Hide Delegate, In-
line Class, Inline Method, Inline
Temp, Introduce Assertion, Intro-
duce Explaining Variable, Push
Down Field, Push Down Method,
Remove Assignments to Parame-
ters, Self Encapsulate Field

αintroduced elsewhere [McC76]; β introduced elsewhere [CK94]

60

5. Managing the Variability of Module

Structure

Chapter 5 shares material with [KBK09].

Refactorings differ from refinements because refinements are monotonic (cf.
Sec. 2.2.2) but refactorings are not, and refinements are enumerative (cf. Sec. 2.2.2)
but refactorings are not. Refactorings are nonmonotonic because they add and re-
move code (e.g., if an RFM renames a class, this RFM in essence removes the old
class and adds a new class, with equal functionality but a different name). Refactor-
ings are nonenumerative because they do not always enumerate all the pieces of code
that they alter (e.g., a Rename-Class RFM does not enumerate all methods of which
it changes the scoped name or the return-type name). As a result, we must analyze
whether programmers can still manage SPLs when these SPLs involve nonmonotonic,
nonenumerative feature modules such as RFMs (i.e., whether programmers can still
detect errors in their SPLs).

To analyze whether programmers can manage SPLs with RFMs, we developed and
prototypically implemented a test to detect whether the programmer managed the
variability correctly. If we can detect with this test at least one product that is in
error, we know that the programmer has not managed variability correctly. Stated
differently, SPL programmers must verify that every program, which they allow to
generate, provides the features which the user selected for this SPL product. A prod-
uct however only matches a set of features when every feature module succeeds that
was executed on behalf of the features to generate the product. A feature module
succeeds when its input program satisfies preconditions [TBKC07]. As a result, SPL
programmers must validate all legal input programs of every feature module with
respect to the preconditions of this feature module. But, a programmer cannot gen-
erate all legal input programs in advance as their number might be too high [Kru06];
especially, industrial SPLs with thousands of products [MPY+04, vdLSR07] or even
thousands of features [LP07, TSSPL09] are too large.

Safe composition is a technique to verify that every product of an SPL can be
compiled and can be generated by the successful execution of feature modules [CP06,
KA08, KAT+09, KKB08, TBKC07]. Prior research on safe composition focused
on Jak-like feature modules; thus, according approaches are insufficient for RFMs
because they do not support nonmonotonic, nonenumerative feature modules.

In this chapter, we generalize existing concepts to verify safe composition for SPLs
with nonmonotonic, nonenumerative feature modules such as RFMs. The RFMs we
use to illustrate our concepts implement the refactoring types Rename Method and

61

5. Managing the Variability of Module Structure

Rename Class. The concepts however are not limited to Rename Method and Re-
name Class and presumably are not limited to RFMs in general. After we discussed
the new concepts, we report on a tool which prototypically implements the concepts,
and we report on a number of case studies.

The major insight of this chapter is that SPLs can benefit from nonmonotonic,
nonenumerative feature modules, but are complex to manage by hand, when they
include such modules. Interestingly, complexity grew rapidly in our studies, and more
than we initially expected. We observed that concepts and prototypes as presented
next are a must when nonmonotonic, nonenumerative feature modules are used in
SPLs.

In the next steps, we review existing work on safe composition of Jak-like fea-
ture modules (cf. Sec. 5.1) and we analyze RFMs with respect to safe composi-
tion (cf. Sec. 5.2). We present our concept to test for safe composition of RFMs
(cf. Sec. 5.3) and report on case studies (cf. Sec. 5.4). Finally, in Section 5.5, we dis-
cuss possible future extensions to the presented concepts.

5.1. Safe Composition of Jak-Like Feature Modules

A feature model describes products of an SPL by defining the meaningful combina-
tions of features (cf. Sec. 2.2.1). In Figure 5.1a, we depict a simplified feature model
of our GPL running example. The model describes that all legal GPL products must
implement feature ShortestPath or must implement both features ShortestPath and
Directed. A tool can map each of these features to a Jak-like feature module shown in
Figure 5.2, and can execute each module when the SPL user selects the respective fea-
ture. We illustrate the feature order (i.e., the execution order for feature modules) in
the diagram of Figure 5.1a by reading features from right to left (generally, this order
can be defined separately from a feature diagram). According to the feature model
depicted in Figure 5.1a, the Jak-like feature module ShortestPath can be executed
alone to generate a legal SPL product or both Jak-like feature modules ShortestPath
and Directed together can be executed to generate a legal SPL product; if both are
executed, Directed executes before ShortestPath ((ShortestPath •Directed)) because
this is defined in the feature order; ShortestPath cannot be executed before Directed,
so (Directed • ShortestPath) does not yield a legal SPL product.1

The feature model of Figure 5.1a is inconsistent with the SPL implementation
of Figure 5.2. According to the feature model, a program with only the feature
ShortestPath is a legal product of the GPL. Such GPL product, however, cannot be
generated with the feature modules of Figure 5.2 because feature module Shortest-
Path cannot be executed alone. Feature module ShortestPath depends on feature
module Directed for two reasons: (a) ShortestPath refines class Vertex and, thus, de-
pends on that Vertex exists in the input program; according to the feature modules
of Figure 5.2 and the feature order, Vertex can only exist in the ShortestPath input

1To ease explanations in this chapter, we use the operator • to denote the sequencing of arbitrary
feature modules of which each is denoted by its name.

62

5.1. Safe Composition of Jak-Like Feature Modules

GPL

ShortestPath Directed

(a) Diagram notation.

GPL∧
(ShortestPath → GPL)∧
(GPL → ShortestPath)∧

(Directed → GPL)

(b) Formula notation.

Figure 5.1.: Feature model used to explain safe composition [adapted from KBK09].

Feature module Directed

1 public class Vertex {
2 public String name;
3 public void display(){
4 ...
5 System.out.println();
6 } }

Feature module ShortestPath

7 refines class Vertex {
8 private String predecessor;
9 private int dweight;

10 public void display() {
11 System.out.print("Pred " + predecessor + " DWeight " + dweight + " ");
12 Super.display();
13 } }

Figure 5.2.: Jak-like feature modules of the GPL [adapted from LHB01].

program when Directed executed on this program; (b) ShortestPath-method Ver-
tex.display()::void calls method Vertex.display()::void of its input program (Line 12)
and, thus, depends on that Vertex.display()::void exists in the input program; accord-
ing to the feature modules of Figure 5.2 and the feature order, the called method
can only exist in the ShortestPath input program when Directed executed on this
program. When ShortestPath executes without Directed, the required pieces of code
Vertex and Vertex.display()::void do not exist and ShortestPath fails.

From the inconsistency between the feature model of Figure 5.1a and its associated
feature modules of Figure 5.2, we know that we found an error: Either the feature
model is in error, the feature module ShortestPath is in error, or both. An SPL
programmer can now correct the reported inconsistency.

Feature diagrams as depicted in Figure 5.1a are used to illustrate feature models
because they are easy to understand for SPL users. But, to validate consistency
between a feature model and associated feature modules, the representation of fea-
ture models as propositional formulas is more helpful [MWC09]. In Figure 5.1b,
we translate the feature model described in Figure 5.1a using standard translation
rules [Bat05, CP06, CW07, TBKC07] into a propositional formula. In this formula,
every variable corresponds to one feature – in line with preceding work, we thus call
such variable feature variable. That is, the value of a feature variable is true when

63

5. Managing the Variability of Module Structure

the feature the variable corresponds to is selected for an SPL product (i.e., when the
according feature module is executed), and false if it is not selected. For example
in Figure 5.1b, the value of feature variable ShortestPath is true when the feature
ShortestPath is selected, and false otherwise. The propositional formula over feature
variables evaluates to true when the assignment of feature variables in this formula
corresponds to a feature combination that is legal to the SPL’s feature model.

Prior research detects dependencies between Jak-like feature modules and for-
mulates them in execution constraints [TBKC07]. If they detect an inconsistency
between feature models and execution constraints of Jak-like feature modules they
advise the domain engineer to add the violated constraint to the feature model. As a
result, every feature combination that is legal to the revised feature model results in
an SPL product that can be generated without error and can be compiled. To make
the SPL feature model of Figure 5.1 consistent with the constraints of according
feature modules of Figure 5.2, we can add the constraint that ShortestPath depends
on Directed; prior research represents such constraint with a propositional formula
over feature variables of according features2: ShortestPath→Directed.

5.2. Analysis of RFMs for Safe Composition

Existing research does not verify safe composition for nonmonotonic, nonenumerative
feature modules (i.e., feature modules which add code, remove code, and do not al-
ways enumerate all the pieces of code they transform). RFMs are nonmonotonic and
nonenumerative, so we must generalize safe-composition concepts to cover RFMs.
But, before we can generalize concepts of safe composition, we must analyze the
properties of RFMs with respect to safe composition.

An RFM – in line with any other program transformation – executes safely when
its input program fulfills preconditions (cf. Sec. 2.3, p. 16). The precondition of an
RFM is commonly formulated in terms of scoped names which must exist or must
not exist in input programs of that RFM. For example, a Rename-Class refactoring
RVertex 7→ADT, which renames class Vertex into ADT, imposes two preconditions on its
input program: The input program must contain a class Vertex; the program must
not contain a class ADT [Opd92, Rob99]. If there is no class Vertex, then RVertex 7→ADT

fails as there is no class to rename. If there is a class ADT, then RVertex 7→ADT fails
too as it cannot generate a second class ADT. If both preconditions of RVertex 7→ADT

are fulfilled in every legal input program of RVertex7→ADT, then RVertex 7→ADT is verified
to execute safely. Our aim is, thus, to formulate an execution constraint which
guarantees that RVertex 7→ADT executes safely and which we can verify with respect to
a feature model.

In Figure 5.3, we show a Jak-like feature module Directed and five RFMs top-down
in the order defined for their features in the feature model (i.e., in their execution
order). We use these feature modules to demonstrate the challenges of formulating

2As we defined that there is only one order for all features, there is no need to encode this order
in the propositional formula.

64

5.2. Analysis of RFMs for Safe Composition

Feature module Directed

Vertex

name Xg

display() Xg

Feature module DisplayShow

Rename method Vertex.display()::void into show

Feature module VertexAdt

Rename class Vertex into ADT

Feature module VertexVerteximpl

Rename class Vertex into VertexImpl

Feature module ShowReport

Rename method VertexImpl.show()::void into report

Feature module DisplayReport

Rename method VertexImpl.display()::void into report

Figure 5.3.: Jak-like feature modules and RFMs of a GPL version [adapted from
KBK09].

execution constraints for RFMs. Please note the rapidly growing complexity of
execution constraints even for this small example:

• Directed transforms its input program (the empty program in this case) by
adding a class Vertex. Vertex and its methods shall not reference other code so
Directed has no preconditions. The execution constraint is: (Directed→true).

• DisplayShow transforms its input program by renaming method Vertex.dis-
play()::void into show. First, DisplayShow requires that a piece of code Ver-
tex.display()::void exists in its input program. The piece exists when Di-
rected executed before to generate the input program of DisplayShow; for
that, DisplayShow can only be executed safely together with Directed. Sec-
ond, DisplayShow requires a piece of code Vertex.show()::void to not exist.
Vertex.show()::void cannot exist in the input program of DisplayShow because
no feature-module sequence, which adheres to the feature order (i.e., to the
feature-module execution order), can create show before DisplayShow; so, Dis-
playShow has no precondition in this respect. The composed execution con-
straint of DisplayShow is: (DisplayShow→Directed).

• VertexAdt transforms its input program by renaming class Vertex into ADT.
First, VertexAdt requires that a piece of code Vertex exists in its input pro-
gram. The piece exists when Directed executed before to generate the input
program of VertexAdt; that is, VertexAdt can only be executed safely together
with Directed. Second, VertexAdt requires a piece of code ADT to not exist.
ADT cannot exist in the input program of VertexAdt; so, VertexAdt has no

65

5. Managing the Variability of Module Structure

precondition in this respect. The composed execution constraint of VertexAdt
is: (VertexAdt→Directed).

• VertexVerteximpl transforms its input program by renaming class Vertex into
VertexImpl. First, VertexVerteximpl requires that a piece of code Vertex exists in
its input program. Second, VertexVerteximpl requires a piece of code VertexImpl
to not exist. Interesting in this case: VertexAdt removes the required Vertex and
thus can make VertexVerteximpl fail. For that, VertexVerteximpl can only be
executed safely when VertexAdt is not executed. The composed execution con-
straint of VertexVerteximpl is: (VertexVerteximpl → (¬VertexAdt∧Directed)).

• ShowReport transforms its input program by renaming method VertexImpl.-
show()::void into report. First, ShowReport requires that a piece of code Ver-
texImpl.show()::void exists in its input program. Second, ShowReport requires
a piece of code VertexImpl.report()::void to not exist. Interesting in this case:
The required VertexImpl.show()::void exists only when both (a) the feature-
module sequence (VertexVertex impl • (DisplayShow • Directed)) executed to
generate the input program and (b) VertexAdt did not execute to generate
the input program. The composed execution constraint of ShowReport is:
(ShowReport → (VertexVerteximpl ∧ ¬VertexAdt ∧DisplayShow ∧Directed)).

• DisplayReport transforms its input program by renaming method
VertexImpl.display()::void into report. First, DisplayReport requires that a piece
of code VertexImpl.display()::void exists in its input program. Second, Dis-
playReport requires a piece of code VertexImpl.report()::void to not exist. Inter-
esting in this case: The required VertexImpl.display()::void exists only when both
(a) the sequence (VertexVerteximpl •Directed) is executed and (b) both feature
modules DisplayShow and VertexAdt are not executed. Here, the existence of
VertexImpl.display()::void includes the nonexistence of VertexImpl.report()::void.
The composed execution constraint of DisplayReport is: (DisplayReport →
(¬ShowReport ∧VertexVerteximpl ∧¬VertexAdt ∧¬DisplayShow ∧Directed)).

Note that we can simplify above constraints when we remove transitive dependen-
cies (i.e., dependencies toward feature modules which depend on each other). For ex-
ample, we can simplify the constraint of DisplayReport to become (DisplayReport →
(VertexVerteximpl ∧ ¬DisplayShow)).

Summary. Safe composition for SPLs with Jak-like feature modules involves con-
straints in which one Jak-like feature module depends on only individual other Jak-
like feature modules. It further involves constraints in which one feature module
depends on only the execution of feature modules. Safe composition for SPLs with
nonmonotonic, nonenumerative feature modules involves constraints in which one
feature module can depend on the execution of a sequence of other feature modules.
It further involves constraints in which one feature module can depend at the same

66

5.3. Safe Composition of Nonmonotonic, Nonenumerative Modules

time on a feature module X to be executed and on a feature module Y not to be exe-
cuted. The reason for the increased complexity compared to Jak-like feature modules
is that refinements of Jak-like feature modules are monotonic and enumerative but
refactorings of RFMs are not.

5.3. Safe Composition of Nonmonotonic,
Nonenumerative Modules

We now present new concepts for how a tool could verify safe composition for SPLs
implemented with Jak-like feature modules and RFMs. First, in Section 5.3.1, we
present the basic concept. After that, in Section 5.3.2 and Section 5.3.3, we discuss
concepts that could be used to implement the basic concept. In our discussions, we
use F to denote the set of all feature modules, C to denote the set of all sequences of
feature modules over F, P to denote the set of all propositional formulas over feature
variables, and S to denote the set of all possible scoped names.

To keep explanations simple, we assume RFMs to be the final transformations in
the feature order. This simplification reflects the use cases of RFMs discussed in
Chapter 4 in which RFMs were proposed to be final transformations to integrate
modules and to configure modules with respect to NFPs. As a first step, we con-
centrate on RFMs which implement refactoring types that depend only on scoped
names and transform scoped names (especially important for module integration;
cf. Sec. 4.3.1). We do not consider RFMs which implement refactoring types that
always depend on method bodies (e.g., RFMs that implement the refactoring type
Change Bidirectional Association to Unidirectional).3 We cover these RFMs once
we would extend our concepts to analyze method bodies (discussed in Section 5.5.1).
Even with the above simplifications, our concepts can verify safe composition for
implementations of 28% of all refactoring types from [Fow99].4

5.3.1. Basic Concept

An RFM implements a refactoring and executes safely when the refactoring executes
safely (i.e., when the input program meets the preconditions of the refactoring); the
RFM fails if the input program does not meet a precondition of the refactoring. A
precondition may define that a scoped name must exist (i.e., the name is occupied

3Refactorings of type Change Bidirectional Association to Unidirectional remove member variables
used for two-way relations between objects to create one-way relations [Fow99].

4We cover implementations of the refactoring types Add Parameter, Change Unidirectional Asso-
ciation to Bidirectional, Change Value to Reference, Encapsulate Field, Extract Class, Extract
Complete Interface, Extract Superclass, Hide Delegate, Inline Method, Introduce Parameter Ob-
ject, Move Class, Move Field, Move Method, Rename Class, Rename Field, Rename Method,
Remove Assignments to Parameters, Replace Constructor with Factory Method, Replace Magic
Number with Symbolic Constant, Replace Method with Method Object, Self Encapsulate Field.
Two refactoring types, Consolidate Duplicate Conditional Fragments and Replace Nested Con-
ditional with Guard Clauses, alter method bodies but not scoped names – as method bodies are
irrelevant for module integration we count them to be supported.

67

5. Managing the Variability of Module Structure

by some code) or that a scoped name must not exist in an input program. In the
following, we determine feature-module sequences which adhere to the feature order
and make certain scoped names exist or not exist in the input programs of RFMs. We
use those sequences to generate execution constraints. We transform the constraints
into propositional formulas and use SAT solvers to validate the constraints in feature
models for all legal feature combinations, in one step.

To simplify the next discussions, we define a function p to translate sequences
of feature modules (denoted by their names) into propositional formulas (p : C →
P). The function p determines the feature of every feature module of its input
sequence (for simplicity, we assume that the feature name is the feature-module
name) and translates each of those features into a feature variable; p determines the
features of all feature modules of the SPL, which are not part of the sequence, and
translates each of those features into a negated feature variable; finally, p combines
all translated feature variables and negated feature variables in a conjunction. For
example, p translates the sequence of feature modules VertexAdt and Directed but not
DisplayShow (i.e., (VertexAdt •Directed)) into VertexAdt ∧¬DisplayShow ∧Directed

(i.e., p(VertexAdt • Directed) = VertexAdt ∧ ¬DisplayShow ∧ Directed). Features
which follow VertexAdt in the feature order do not contribute to the formula because
they are not relevant. The generated propositional formula evaluates to true for the
feature-module sequence (VertexAdt • Directed), and to false for others that adhere
to the predefined feature order.

Refactorings have two types of preconditions: Some scoped names S+ must exist
and some scoped names S− must not exist in input programs (S+ ⊆ S; S− ⊆ S;
S+∩ S− = ∅). For every scoped name which an RFM’s refactoring requires to exist
or not exist, we generate an execution constraint and validate it. For example, when
an RFM R implements a refactoring which requires name x ∈ S+ to exist in input
programs, we validate that x exists in the input programs of R in the generation
process of all legal SPL products; when R implements a refactoring which requires
name y ∈ S− to not exist, we validate that y does not exist in the input programs
of R in any legal SPL product. If all constraints are met by all input programs of
an RFM in the generation process of all legal SPL products, this RFM is verified to
execute safely.

In the following, we use VertexVerteximpl of Figure 5.3 as a running example for an
RFM to verify. VertexVerteximpl renames class Vertex into VertexImpl. VertexVertex-
impl executes safely, when the input program of VertexVerteximpl in the generation
process of every legal SPL product includes code with scoped name Vertex and does
not include code with scoped name VertexImpl.

Existence of scoped names. If a feature module R requires a scoped name x to
exist, we assume a function c to calculate all feature-module sequences which (a)
adhere to the feature order and (b) make code with name x exist in the input program
of R (c : S× F → P(C)). We discuss an implementation approach of c later.

c(x,R) = {C1, C2, . . . , Cn}

68

5.3. Safe Composition of Nonmonotonic, Nonenumerative Modules

For example, VertexVerteximpl requires code with name Vertex to exist in the input
program of VertexVerteximpl. With c, we can calculate all feature-module sequences
which make Vertex exist:

c(Vertex,VertexVerteximpl) = {Directed , (DisplayShow •Directed)}

We can now define execution constraints for R: If R is executed then one or more
feature-module sequences in the result of c(x,R) must have been executed on the
input program of R before. We determine the feature variable that corresponds to
the feature of R and formulate the following constraint:

R → (p(C1) ∨ p(C2) ∨ . . . ∨ p(Cn)) (5.1)

We must validate these constraints for all legal SPL products to verify R to execute
safely (i.e., for all legal feature combinations). For example, the constraint we must
validate for VertexVerteximpl is5:

VertexVerteximpl → (p(Directed) ∨ p(DisplayShow •Directed))

The constraints above are propositional formulas which a SAT solver can process
efficiently [MMZ+01]. However, generally, SAT solvers only proof that at least one
assignment exists for the variables of a formula such that the formula evaluates to
true. To use SAT solvers, we transform Constraint 5.1 and the verification goal
using a key insight from other researchers [CP06]: If C is a constraint that should
hold in every legal feature combination and FM is a propositional formula which
represents a feature model (cf. Fig. 5.1b, p. 63), then FM → C must be a tautology
and ¬(FM → C) must be unsatisfiable. With respect to Constraint 5.1, we do no
longer validate whether all legal SPL products fulfill Constraint 5.1 but we validate
whether at least one legal SPL product exists (i.e., one legal feature combination),
which does not fulfill Constraint 5.1. To verify Constraint 5.1, we thus finally validate
that the following formula is unsatisfiable:

¬(FM → (R → (p(C1) ∨ p(C2) ∨ . . . ∨ p(Cn)))) (5.2)

If Formula 5.2 is unsatisfiable (i.e., the SAT solver fails), R executes safely. If
Formula 5.2 is satisfiable (i.e., the SAT solver finds an assignment for the feature
variables), R may fail when generating a legal SPL product. The assignment then
tells us a legal feature combination that maps to a feature-module sequence for which
R shall execute but for which the input program of R violates a precondition of R
(because x does not exist).

To verify safe composition for VertexVerteximpl, we must validate that the follow-

5p(Directed) = ¬VertexAdt∧¬DisplayShow∧Directed ; p((DisplayShow•Directed)) = ¬VertexAdt∧

DisplayShow ∧Directed ; feature modules executed after VertexAdt (predecessor of VertexVertex-

impl) are not relevant because they cannot generate names in the input program of VertexVer-

teximpl.

69

5. Managing the Variability of Module Structure

ing formula is unsatisfiable:

¬(FM → (VertexVerteximpl → (p(Directed) ∨ p((DisplayShow •Directed)))))

Nonexistence of scoped names. If a feature module R requires a scoped name y to
not exist, we use function c to calculate all feature-module sequences which adhere
to the feature order and make code with name y exist in the input program of R.

c(y,R) = {C ′
1, C

′
2, . . . , C

′
n}

For example, VertexVerteximpl requires code with name VertexImpl to not exist
in the input program of VertexVerteximpl. With c, we can calculate that the set
of feature-module sequences, which make VertexImpl exist in the input program of
VertexVerteximpl, is empty (c(VertexImpl,VertexVerteximpl)=∅).

As before, we can define execution constraints for R: If R is executed then no
feature-module sequence in the result of c(y,R) is allowed to have been executed on
the input program of R before:

R → ¬(p(C ′
1) ∨ p(C ′

2) ∨ . . . ∨ p(C ′
n)) (5.3)

We must validate these constraints for all legal SPL products to verify R to execute
safely. Again, we transform the constraint and the verification goal into a proposi-
tional formula and use a SAT solver to process both. As before, R executes safely if
the formula ¬(FM → C) is unsatisfiable – this time with C being the Constraint 5.3.
If the formula is satisfiable, the assignment for the feature variables tells us a legal
feature combination for which R shall execute but for which the input program of R
violates a precondition of R (because y exists).

For VertexVerteximpl, c(VertexImpl,VertexVerteximpl) computes the empty set
such that Constraint 5.3 becomes a tautology and the negated formula passed to
the SAT solver is unsatisfiable.

If any verification above for the existence or nonexistence of scoped names fails
(i.e., a SAT test succeeds), we know the feature model is in error, the feature modules
are in error, or both. That is, a feature module R may fail although it is executed only
to generate legal SPL products (in those products, the input program of R violates
a precondition of R). The verification tool then can alert programmers and domain
engineers to repair the SPL. We redo the above process until no constraint is violated
any more (i.e., all SAT tests fail) – as a result, every legal feature combination
generates an SPL product that can be compiled and can be generated without error.

5.3.2. Computing Input Programs that Encapsulate Scoped Names

In the last discussion, we assumed a function c exists to calculate feature-module
sequences which adhere to the feature order and make a particular scoped name
exist in the program they generate. A trivial approach to implement c would be to
execute all sequences, which adhere to the feature order, and to test for the scoped

70

5.3. Safe Composition of Nonmonotonic, Nonenumerative Modules

Directed

DisplayShow

VertexAdt

∅

�
�

�
�Vertex

�
�

�
�Vertex

�
�

�
�Vertex

�
�

�
�ADT
�
�

�
�Vertex
�
�

�
�ADT
�
�

�
�Vertex

?

Y

@
@
@R

�
�

�	
NY

B
B
BN

�
�

�	
NY A

A
AU

�
�
��

NY

Directed

DisplayShow

VertexAdt

∅

�
�

�
�Vertex

�
�

�
�ADT

�
�

�
�Vertex

?

Y

J
J
Ĵ

�
NY

Legend

∅ empty program
�
�

�
�X scoped name

-Y feature module
executed

-N feature module
not executed

(a) Unoptimized tree. (b) Optimized tree.

Figure 5.4.: Tree to record the effect of RFM decisions on scoped name Vertex be-
fore feature module VertexVerteximpl of Fig. 5.3 executes [adapted from
KBK09].

name in their generated programs; however this approach does not scale because a
single SPL can have millions of those sequences and we cannot execute them all.
Thus, we investigated in concepts of a different approach to implement c that do not
involve the execution of feature-module sequences.

We propose to create a decision tree for every scoped name that Jak-like feature
modules can create (i.e., each scoped name is recorded in the root of a new decision
tree). Thereby, we create multiple decision trees when different Jak-like feature
modules create different pieces of code with equal scoped names. Once created, we
record in each tree the effects of executing feature modules on scoped names, and
of not executing them (corresponds to the selection of according features and of not
selecting them). While the recording of a decision to execute a feature module may
lead a tree node to a new node with a new scoped name, the recording of a decision to
not execute a feature module always leads to a new node with the same scoped name.
One decision tree thus represents one piece of code and records those scoped names
which this piece has over time (after RFMs executed). Decision trees, finally, may
include special nodes to indicate a scoped name got removed instead of transformed.

For example in Figure 5.4a, we depict how the scoped name Vertex is affected by
decisions on feature modules which can execute prior to VertexVerteximpl according
to the feature order (i.e., how decisions on Directed, DisplayShow, and VertexAdt
affect Vertex; cf. Fig. 5.3). Arrows in this figure represent decisions on the execution
of feature modules which lead from nodes of old scoped names (arrow source) to
nodes of new scoped names (arrow target). Arrow annotations indicate whether the
decision to execute a feature module generates the new scoped name or whether
the decision to not execute a feature module does. If a feature module does not
transform a certain scoped name the decision arrows, which start from this scoped
name’s node, lead to nodes with equal scoped names.

We propose to create decision trees by iteratively analyzing all feature modules in

71

5. Managing the Variability of Module Structure

the order defined for their features in the feature model. First in each iteration, we
verify using the existing decision trees that the current feature module executes safely
(i.e., the algorithm knows all preconditions and transformation effects). Second in
each iteration, we extend the existing decision trees and record in them how scoped
names are altered when the current feature module is executed and when it is not
executed. As a result, when we validate a feature module, the used decision trees
include only effects of feature modules which can execute prior to the current feature
module – this is on purpose because feature modules only transform code which other
feature modules generated before (cf. Sec. 2.2.2). In each iteration step, we thus add
one level of nodes to all decision trees.

With decision trees for all pieces of code which have a scoped name, we can cal-
culate the feature-module sequences which adhere to the feature order and make a
particular scoped name exist in the input program of a feature module to verify.
When a feature module requires code with a particular scoped name to exist in its
input program, we find all leaf nodes with that scoped name. We find the feature-
module sequence, which adheres to the feature order and makes the scoped name of a
leaf exist in the input program of the currently verified feature module, by analyzing
the decisions along the path from this leaf backward to the empty program. Note
that leafs with equal scoped names can exist in different trees, but these names can
only exist in different products (i.e., the feature-module sequences recorded for them
are always different) – otherwise the verification of a preceding feature module would
have raised an error already because the nonexistence preconditions of this preceding
module preclude the generation of equal scoped names in one product. That is, equal
scoped names that are recorded in different trees are generated by preceding feature
modules but do never occur in the same SPL product.

As an example, we now can use the decision trees to recalculate the set of feature-
module sequences which adhere to the feature order and make Vertex exist in the
input program of VertexVerteximpl of Figure 5.3 (in Sec. 5.3.1, we assumed a func-
tion c for this task to exist). Figure 5.4a shows the relevant decision tree with the
recorded decisions on those feature modules which can execute before VertexVertex-
impl. In that tree, two Vertex leaf nodes exist and thus we can calculate two different
feature-module sequences which make Vertex exist in the input program of Ver-
texVerteximpl, c(Vertex,VertexVerteximpl) = {Directed , (DisplayShow • Directed)}.
We translate and use these sequences to derive the execution constraint of VertexVer-
teximpl; finally, we verify this constraint with a SAT solver.

We encode the feature order in the decision trees because we iterate feature mod-
ules in the order defined for their features to record their effects. As a result, we
do not have to encode this order again in the propositional formulas. A combi-
nation of features as defined in the constraints together with the predefined fea-
ture order (cf. Sec. 2.2.2) corresponds to a single feature-module sequence. For ex-
ample, we created the decision tree of Figure 5.4a by iterating the feature mod-
ules Directed, DisplayShow, and VertexAdt in the order defined for their features.
As a result, we know that both propositional formulas, (Directed ∧ DisplayShow)
and (DisplayShow ∧ Directed), correspond to the single feature-module sequence

72

5.3. Safe Composition of Nonmonotonic, Nonenumerative Modules

(DisplayShow •Directed) in a constraint to verify and a SAT-test result (i.e., we can
use either one to generate constraints). In Section 5.5.2, we discuss how we could
verify SPLs that have no feature order.

For understandability, we concentrate on the basic concepts only. That is, we omit
discussions on special cases of single refactoring types which require extensions to
the above concepts.6

Compression. Every decision tree is binary and balanced and we add a level of
nodes to all trees each time we record the effects of a single feature module; as
a result, the number of tree nodes grows exponentially in the number of recorded
feature modules. Thus, memory and performance problems may arise when the
number of feature modules is high or the number of decision trees is high. To avoid
such problems, we compress decision trees: We only record the effects of decisions on
the execution of a feature module for a leaf node when the executed feature module
alters the scoped name of that leaf (i.e., when both decisions on the feature module do
not lead the leaf to new nodes with equal scoped names). For example, the executed
Rename-Method RFM DisplayShow of Figure 5.3 does not alter the scoped name of
class Vertex; thus, both decisions on DisplayShow lead Vertex nodes to new nodes
with equal scoped names in the decision tree of Figure 5.4a. Due to our compression,
we do no longer record the effect of DisplayShow decisions for Vertex nodes; we depict
the resulting compressed decision tree in Figure 5.4b. We observed in our studies
(see Sec. 5.4) that this optimization is important because – especially in large-scale
SPLs – most feature modules do not alter the scoped name of a particular piece of
code.

With compressed decision trees we now calculate patterns for feature-module se-
quences when we calculate tree paths from leaf nodes toward the empty program;
every pattern then only includes a decision on a feature module when this feature
module decides whether the piece of code of the tree exists with the scoped name
of the leaf. For example in Figure 5.3, feature module DisplayShow does not decide
whether the piece of code Vertex (added by Directed) exists with the scoped name
Vertex and so neither the tree of Figure 5.4b nor the pattern derived from this tree for
scoped name Vertex includes a decision on DisplayShow (i.e., the path in the tree of
Fig. 5.4b from the Vertex leaf toward the empty program does not include a decision
on DisplayShow). We use the patterns instead of definite feature-module sequences
to generate execution constraints.

Patterns translate differently into propositional formulas than definite feature-
module sequences and so we must change our basic concept to use a new function p’
instead of the function p.7 In contrast to p, function p’ translates single patterns

6For example, we must combine decisions of feature-module sequences of different leafs to verify
and record the effect of an Add-Parameter refactoring. Specifically, we must combine decisions
of sequences, which make the scoped name of the method to extend exist, with decisions of
sequences, which make the scoped name of the class exist that shall be referenced in the new
parameter declaration.

7Function p translates sequences of feature modules into propositional formulas (cf. Sec. 5.3.1).

73

5. Managing the Variability of Module Structure

into a propositional formula (p’ : P(F)× P(F) → P); that is, it translates a set fea-
ture modules decided to be executed and a set of feature modules decided to not be
executed into a propositional formula. Thereby, p’ determines the feature of each
feature module decided in the pattern to be executed and translates this feature
into a feature variable; p’ determines the feature of each feature module decided to
not be executed and translates this feature into a negated feature variable; finally,
p’ combines all translated feature variables and negated feature variables in a con-
junction. If a pattern does not define a decision for a feature module, no feature
variable for the feature of this feature module contributes to the translated formula;
that is, the feature decision is left undefined (this is different from p which made the
translated formula include a variable for every feature). For example, the pattern to
describe the feature-module sequences which adhere to the feature order and make
Vertex exist in the input program of VertexVerteximpl is (¬VertexAdt ∧ Directed)
(cf. Fig. 5.4b). The translated formula contains no feature variable for DisplayShow
because DisplayShow does not decide the existence of the scoped name Vertex in the
generated program. Again the translated propositional formula evaluates to true for
every feature-module sequence which adheres to the feature order and makes Vertex
exist in the input program of VertexVerteximpl, and false for others that adhere to
the feature order.

To compress decision trees even more, we can merge their nodes when these nodes
represent equal scoped names. As a result, decision trees become directed graphs
when different feature-module sequences make one piece of code expose equal scoped
names. As a second result, different decision graphs can share nodes, when different
pieces of code can be transformed to expose equal scoped names. However, we show
in Section 5.3.3 that we cannot merge nodes with equal scoped names in general.

We implemented additional optimizations; but we omit their discussion here for
the clarity of this thesis – they are not important for the presented concept.8

5.3.3. Preconditions on Inheritance Hierarchies

A number of refactorings require more than the sole existence of certain scoped names
in order to execute safely. To be precise, 14 of the 23 refactoring types, which we
already cover for safe composition, require that in their input programs inheritance
hierarchies fulfill preconditions. If the preconditions are not fulfilled, the refactorings
fail though the refactored program may compile (cf. name capture, Sec. 2.3, p. 16).
For example, a refactoring which renames the method Vertex.display()::void into show,
requires that no method show must exist (a) in class Vertex but also (b) in any
superclass or subclass of Vertex. If such superclass or subclass method exists, the
refactoring may accidentally redirect method calls and thus change functionality. In
order to verify preconditions on inheritance hierarchies, we must consider relations
between pieces of code.

8For example, we remove the inner nodes of decision trees and instead attach precomputed parts
of tree paths to leaf nodes.

74

5.4. Case Studies

We can detect the relations between pieces of code in Jak-like feature modules
and maintain these relations for every node in the decision trees. For example, a
node, which represents a method in one decision tree, references a node of a different
tree, which represents the method’s host class. Since a relation between tree nodes
represents a relation between their respective pieces of code, we can now calculate
those methods from node relations, which a method to be renamed may capture.
As a result, we can combine patterns of related nodes to verify relations between
according pieces of code: We can collect into a set X those nodes which have a
certain scoped name, can calculate for each node in X those nodes it relates to, and
can finally combine the patterns of related nodes to verify whether in a legal SPL
product at least one node in X applies together with its related node before a certain
feature module executes (i.e., both according, related pieces of code exist).

The above extension allows us to verify preconditions toward inheritance hierar-
chies correctly even if different pieces of code have equal scoped names (in different
SPL products): Assume a method m1, which has the scoped name m in an SPL
product, is hosted by a class which has a superclass. Assume further a different
method m2, which has the scoped name m in a different SPL product, is hosted
by a class which has no superclass/subclass. While m1 may capture the name of a
superclass method, m2 cannot. As a result, the pattern which leads to the decision
tree node of m1 must be combined with patterns of methods which m1 relates to and
may capture; the method m2 can be calculated to never relate to a method it may
capture so the pattern of m2 can be used as is.

As tree nodes now reference each other, two nodes are equal only (i.e., represent
equivalent code with respect to refactoring success) when their scoped names are
equal and their relations to other nodes are the same. As a result, we cannot merge
nodes in general just because their scoped names are equal. We can merge nodes
when their scoped names are equal and their relations to other nodes are the same
(e.g., when two method nodes reference the same host-class node).

5.4. Case Studies

We extended existing algorithms and tools [TBKC07], which verify safe composi-
tion for Jak-like feature modules, in order to prototypically implement the safe-
composition concepts presented in Section 5.3.9 We evaluated our concepts and
prototype in five case studies in order to show the feasibility of the presented con-
cepts: To prove the concept, we studied a module SPL of small-scale abstract data
types which was written independently of this work. To analyze whether storing high
numbers of trees exceeds memory, we studied an SPL version (which uses RFMs) of
the Eclipse module ’workbench.texteditor’ with large-scale Jak-like feature modules.

9We reused the tool, which verifies Jak-like feature modules (developed by others [TBKC07]),
and the tools and modules it depends on (e.g., the Sat4j SAT solver, bcj2j, and bccompiler).
Accordingly, we had to adapt the studies slightly (e.g., we moved all classes into the default
package first). The concepts, however, are not restricted this way.

75

5. Managing the Variability of Module Structure

Table 5.1.: Data on SPLs used to evaluate our approach to safe composition [from
KBK09].

Program Refactorings #
S
L
O
C

α
#

J
F
M

s
β

#
sn

χ
fr
om

J
F
M

s
β

#
sn

χ
fr
om

R
F
M

s

m
ax

.
T
H

δ
av

g.
T
H

δ

ADTǫ module 1x Rename Class,
4x Rename Method

11 1 7 9 5 2

Workbench.texteditor 1x Rename Class,
2x Rename Field

∼16K 2 3428 68 3 1.02

Workbench.texteditor #2 27x Rename Class,
28x Rename Field

∼16K 2 3428 2538 55 1.53

GPL 2x Rename Class,
2x Rename Method,
18x Encapsulate Field,
2x Extract Interfaceζ

∼1K 15 160 252 4 1.89

ZipMe 1x Rename Class ∼3K 14 656 18 2 1.03
Raroscope 2x Rename Class ∼250 5 57 54 2 1.9

αlines of source code without RFMs; βJak-like feature module; χscoped name; δtree height;
ǫabstract data type; ζAPI artifact

To check whether our algorithm terminates in a reasonable time on current comput-
ers for a high number of RFMs and a high number of trees, we studied an extended
version of the large-scale ’workbench.texteditor’ study. To test whether our concepts
apply for an SPL in which a high number of Jak-like feature modules can execute be-
fore RFMs execute, we studied a version of the GPL. Finally, to analyze whether our
algorithm terminates for SPLs with high numbers of SPL products, we studied safe
composition for RFMs added to existing feature-oriented designs of archive-access
modules. We summarize interesting properties of the studied SPLs in Table 5.1.

Proof of concept. We studied a version of a module SPL of abstract data types
which leans on a study from prior work (cf. Sec. 4.3.1). With the study, we want to
test now our safe-composition concept and prototype. The study has a feature model
of moderate complexity (e.g., it subdivides features) and has a very small-scale code
base (only 11 lines of source code; i.e., no functionality) – these properties made us
believe that this study is simple. As a result, we were surprised that our verifier
alerted errors because the study looked correct. After we analyzed the SPL in more
detail, we found the error in the feature model and corrected it.

Technically, this study is small: Only seven scoped names are defined in the code of
the solitary Jak-like feature module; only nine names can be generated additionally
with five RFMs. The compressed decision trees had a height of just two nodes in

76

5.4. Case Studies

average and just five nodes at maximum. The verifier created the trees and evaluated
them in 0.2 seconds and thus outperformed our manual attempt by far.10

Large-scale Jak-like feature modules. We studied a version of the large-scale
Eclipse module ’workbench.texteditor’ (∼16K lines of source code; study inspired
by [DNMJ08]); we formerly added RFMs to this study in order to analyze the power
of RFMs. With this study, we want to test now whether our concept and prototype
do exceed memory when Jak-like feature modules are large-scale and create num-
bers of scoped names. For our study, we moved a release of ’workbench.texteditor’
into a feature module and reimplemented to some extent, with Jak-like feature mod-
ules and RFMs, the development steps to create the successor release (the steps were
recorded in the module’s versioning system and were described elsewhere [DNMJ08]).
With this SPL, we aimed at generating different releases of ’workbench.texteditor’
by selecting features.

This study contained two Jak-like feature modules and three RFMs: One RFM
renamed class Levenstein into Levenshtein because the versioning system recorded
this change; two other RFMs renamed two member variables which both are used
to reference objects of the renamed class Levenstein. The feature model defined
that the Rename-Field RFMs execute after the Rename-Class RFM; thus, the
Rename-Field RFMs reference the member variables to rename using the type name
Levenshtein (Levenstein no longer exists). As a result, the Rename-Field RFMs re-
quire the Rename-Class RFM to execute on their input programs because it cre-
ates Levenshtein. However, the prototype alerted that the model we used so far for
this study (every feature was declared to be independent from others) allowed the
Rename-Field RFMs to be executed in a legal SPL product although the Rename-
Class RFM did not execute in this product at all; as a result, the input programs for
both Rename-Field RFMs might not include the member variables to rename and
thus the Rename-Field RFMs could fail. The prototype proposes to add the detected
execution constraint to the feature model in order to make it safe.

Technically, the two Jak-like feature modules were large-scale: Together they cre-
ated 3428 scoped names. The three RFMs created 68 scoped names additionally.
The prototype created and evaluated the decision trees in 1.6 seconds and did not
run into memory problems.

High number of RFMs. We studied an extended version of the study on the large-
scale Eclipse module ’workbench.texteditor’; we extended the study such that it
includes a high number of RFMs. With this new study, we want to test whether
our concept and prototype terminates in a reasonable time on current computers,
when large-scale, Jak-like feature modules and a high number of RFMs must be

10We performed the measurements of this chapter on a computer with an Intel Pentium M CPU
with 1.5GHz and 512MB RAM running Windows XP SP2. The measurements are meant as
hints; for example, they do not include calculations of statistics or calculations which verify safe
composition of Jak-like feature modules.

77

5. Managing the Variability of Module Structure

verified. Specifically, we extended the ’workbench.texteditor’ study to include 55
RFMs: 27 RFMs renamed class Levenstein, one RFM renamed member variable
DefaultCellComputer.levenstein::Levenstein, and 27 RFMs renamed member variable
OptimizedCellComputer.levenstein::Levenstein. These RFMs shall create deep decision
trees (i.e., with lots of recorded decisions) with different refactorings.

As before, the two Jak-like feature modules can create 3428 scoped names. Our
prototype records each name as a root of a new decision tree (i.e., it records 3428
decision trees). The 55 RFMs can create 2538 additional scoped names and the pro-
totype records each of them in the decision trees. In this study, our tree compression
became very important: If we had not compressed the 3428 trees, the 57 possible
decisions on feature modules (two Jak-like feature modules + 55 RFMs) would have
led to trees of which each would be 57 nodes high and of which each would have
256 leaf nodes (each tree is binary and balanced); due to our tree compressions, the
prototype had to create and evaluate just 5966 nodes altogether. Interestingly, our
compression reduces the average height of all compressed decision trees of this study
to be rather shallow (1.53 nodes). Despite the large scale of this study, the prototype
created and verified the decision trees in acceptable 6.7 seconds.

The prototype corrected us successfully already in the small-scale proof-of-concept
study and so we were not really surprised when the prototype alerted errors for the
current large-scale study. The alerted errors led us to missing dependencies between
features in the feature model and led us to spelling mistakes in our RFMs (i.e., RFMs
were defined to rename member variables which could not exist at all). Still, we did
not expect such high number of mistakes as we found with our prototype.

High number of Jak-like feature modules. We verified a study from prior work
in which we added a number of RFMs to the GPL. With this study, we want to test
whether our concept and prototype work when a number of Jak-like feature modules
can create scoped names before RFMs execute.

The GPL version comprised 15 Jak-like feature modules that are followed by 24
RFMs. The Jak-like feature modules generate a number of scoped names and are
correlated in complex execution constraints; thus, our manual attempt to verify the
RFMs was seriously hampered (the Jak-like feature modules have been verified before
with existing safe-composition techniques). Our prototype created the decision trees
and evaluated them in 1.5 seconds while we needed minutes to confirm the alerted
errors. Several times, we doubted our prototype until we found our own subtle
mistakes in the verified RFMs and the verified feature model.

High number of SPL products. We studied an SPL version of the archive-access
module ZipMe in which we applied RFMs in order to integrate ZipMe products with
incompatible environments. With this study, we want to test whether our concept
and prototype work when a high number of programs can be generated from Jak-
like feature modules – the studied ZipMe SPL had 128 products. The ZipMe SPL
comprised 14 Jak-like feature modules (e.g., Crc or Checksum) which were followed

78

5.5. Discussion on Possible Future Extensions

by one RFM. Our prototype created the decision trees and evaluated them in 0.2
seconds. The prototype did not generate the 128 ZipMe products.

We verified an SPL version of the archive-access module Raroscope in which we
applied RFMs in order to integrate Raroscope products with incompatible environ-
ments. We again want to test whether our concept and prototype work when a high
number of programs can be generated from Jak-like feature modules – the studied
Raroscope SPL had 16 products. The Raroscope SPL comprised five Jak-like feature
modules (e.g., Crc or OperatingSystem) which were followed by two RFMs. Our pro-
totype created the decision trees and evaluated them in 0.1 seconds. The prototype
again did not generate the 16 Raroscope products.

Summary. We evaluated case studies with our prototype and found mistakes which
we did not notice before. The studies included SPLs with complex feature models,
SPLs with large-scale Jak-like feature modules, SPLs with high numbers of Jak-like
feature modules, and SPLs with high numbers of products. The prototype verified
all studies in no time while we needed minutes several times to confirm the alerted
mistakes. We observed that SPLs become complex rapidly when they include non-
monotonic, nonenumerative feature modules such as RFMs. As a result, even small
SPLs became difficult to verify by hand (several times we doubted our prototype
until we found the alerted, subtle error). We showed that nonmonotonic, nonenu-
merative feature modules are beneficial with respect to their use cases (e.g., with
respect to integrating modules and with respect to configuring NFPs; cf. Sec. 4.3.1
& Sec. 4.3.2) but to use them in practice we argue: When advanced feature trans-
formations, such as nonmonotonic, nonenumerative feature modules, are used to
implement SPLs, programmers need concepts and tools to verify their SPLs; in this
chapter, we presented and prototypically implemented such concepts.

5.5. Discussion on Possible Future Extensions

In this section, we discuss possible future extensions to our safe-composition concepts
that would allow us to verify preconditions of refactorings toward method bodies
(cf. Sec. 5.5.1) and we discuss possible future extensions to our approach that would
allow us to verify SPLs without a predefined feature order (cf. Sec. 2.2.2). We do so
in order to make our concepts cover all refactorings and presumably even general
meta-programming approaches.

5.5.1. Preconditions on Method Bodies

So far, we restricted our focus in order to keep explanations simple: We focused on
refactoring-type implementations which have preconditions only on scoped names
and relations between scoped names; we did not focus on refactorings which have
preconditions on method bodies. Our restricted focus sufficed to verify safe com-
position for a number of refactoring-type implementations which are important for

79

5. Managing the Variability of Module Structure

Directed

DisplayShow

∅

�

�

�

�

public void Graph.display() {
int i;
...
for (i=0; i<vertices.size(); i++)
((Vertex) vertices.get(i)).display();

...
}

�

�

�

�

public void Graph.display() {
int i;
...
for (i=0; i<vertices.size(); i++)
((Vertex) vertices.get(i)).show();

...
}

�

�

�

�

public void Graph.display() {
int i;
...
for (i=0; i<vertices.size(); i++)
((Vertex) vertices.get(i)).display();

...
}

?
Y

J
J
Ĵ

�
NY

Figure 5.5.: Tree to record the effect of RFM decisions on the body of a method
Graph.display()::void before feature VertexVerteximpl of Fig. 5.3.

module integration (cf. Sec. 5.3). However, in general, refactoring types may have
preconditions on method bodies; for example, a refactoring of type Change Bidi-
rectional Association to Unidirectional requires that no method body references the
member variable to remove. We now discuss possible future extensions to our safe-
composition approach such that it supports refactoring types that need to verify
method bodies.

To verify method bodies, we can record method bodies in addition to scoped names
in decision trees and their nodes respectively. As a result, refactorings could then also
alter the body recorded in a node; as a second result, the trees would branch more
frequently than trees which only record scoped names. As an example, we depict
the new decision tree for method display of class Graph in Figure 5.5.11 According to
this tree, DisplayShow is decisive with respect to the properties of the display node
(i.e., the node records a call to the Vertex method display and DisplayShow alters this
call); while DisplayShow was not decisive for nodes of the tree of Graph.display()::void
before, this tree must branch for DisplayShow as soon as method bodies are consid-
ered. Note that the trees recording method bodies would also branch for refinements
of Jak-like feature modules because Jak-like feature modules alter method bodies.

To make the extension work, a verification tool should relate references of method
bodies to the nodes of the referenced pieces of code. These references will allow to

11We slightly adapted the syntax of the method signature in Fig. 5.5 by adding the scoped name
of the host class to the method name.

80

5.5. Discussion on Possible Future Extensions

Directed

DisplayShow

ShowReport

∅

�

�

�

�display

�

�

�

�showp

�
�

�
�report
�
�

�
�show

�

�

�

�display

?

Y

@
@
@

�
�

�	
NY

B
B
BN

�
�

�	

NY

?

Directed

ShowReport

DisplayShow

∅

�

�

�

�display

�

�

�

�showp
�

�

�

�display

?

Y

J
J
Ĵ

�
NY

(a) Decision tree with fea-
ture order (ShowReport •
(DisplayShow •Directed)).

(b) Decision tree with fea-
ture order (DisplayShow •
(ShowReport •Directed)).

Figure 5.6.: Influence of the feature order on the safe-composition approach.

determine whether a method body and its tree node respectively must be updated
(extended by child nodes) on behalf of a change on some other piece of code.

Decision trees, which record method bodies, can be integrated smoothly with the
safe-composition concepts we presented in Section 5.3: Suppose that a transforma-
tion has preconditions on method bodies, then we could find in the decision trees
those leaf nodes which represent methods of which the bodies satisfy the precondi-
tions; we could compute with the decision trees the paths from respective leaf nodes
to the empty program; we could transform the decisions of these paths to proposi-
tional constraints; finally, we could verify these constraints with a SAT solver in the
feature model.

With method bodies in decision trees, we presumably could verify transformations
in an SPL which exceed refactorings (e.g., transformations implemented with general
meta-programming approaches; cf. Sec. 3.3, p. 26). What remains to be done to cover
general meta-programming is presumably to identify the preconditions of individual
transformations in these approaches and to implement a template test for them based
on the decision trees.

5.5.2. The Influence of the Feature Order

We defined concepts of different functions and steps, which a tool can work out,
in order to verify safe composition for an SPL with nonmonotonic, nonenumerative
feature modules. One of these functions, the c function12, relies on a total order of
features of an SPL. While a total order might be beneficial (cf. Sec. 2.2.2, p. 13), SPL
approaches might exist with no such total feature order. As a result, we now analyze
how we could verify safe composition for SPLs with no total feature order.

12Function c calculates feature-module sequences that adhere to the feature order and make a
scoped name exist in an input program of a feature module (cf. Sec. 5.3.1, p. 68).

81

5. Managing the Variability of Module Structure

When there is no total feature order, a sequence of feature modules may be re-
ordered legally (i.e., a reordered sequence of feature modules still can represent an
SPL product that is legal to a feature model). When the feature order changes,
our approach does not change conceptually but its result may change; the reason
is that if the feature modules are iterated in the different orders, different decision
trees are recorded in the course of function c. As an example, we show two de-
cision trees in Figure 5.6; these trees record the effects of decisions on executing
the feature modules Directed, DisplayShow, and ShowReport on the method Ver-
tex.display()::void of Figure 5.3: The tree of Figure 5.6a would be created in the
course of c when the feature order is (ShowReport • (DisplayShow • Directed));
the tree of Figure 5.6b would be created in the course of c when the feature order
is (DisplayShow • (ShowReport • Directed)). We can use both trees to calculate
a set of feature-module sequences which make the display method exist in an in-
put program with a certain scoped name (note that both sets of sequences adhere
to different feature orders), and use each respective set to generate an execution
constraint that we can validate with respect to a feature model as before. For exam-
ple, when the tree of Figure 5.6a is created in the course of c (i.e., feature order is
(ShowReport•(DisplayShow•Directed))), then the calculated set of feature-module
sequences, which make a method Vertex.report()::void exist after executing Directed,
DisplayShow, and ShowReport, is {(ShowReport • (DisplayShow • Directed))};
when the tree of Figure 5.6b is created in the course of c (i.e., feature order is
(DisplayShow•(ShowReport•Directed))), the same set of feature-module sequences
is empty (because there is no leaf report).

If there is no total feature order, we propose to start our safe-composition approach
repeatedly, each time with a new feature order – there are n! different feature orders
for n features. The SPL then would be regarded as safe when it is regarded as safe for
every feature order. Note that the absolute number of starts of our safe-composition
approach might be very high.

5.6. Summary

In this section, we analyzed the complexity of managing RFMs in SPLs. We pre-
sented concepts that tools could implement to verify the consistency between the
feature model of an SPL and the feature modules of that SPL. Prior work on SPLs
discussed concepts that allow tools to verify consistency of feature models with fea-
ture modules in which the feature modules (a) monotonically add code or mono-
tonically remove code and (b) enumerate all the pieces of code they transform. We
extended and generalized these concepts to also verify safe composition for nonmono-
tonic, nonenumerative feature modules such as RFMs. We used these concepts to
verify refactorings of RFMs of an SPL, which are executed on behalf of features in a
feature model. We prototypically implemented the concepts in a tool and evaluated
it in a number of case studies. Finally, we discussed possible future extensions to
our concepts.

82

5.6. Summary

We observed that nonmonotonic, nonenumerative feature modules can increase
the complexity of SPLs rapidly. Specifically, subtle mistakes went unnoticed with
our manual verification attempts for even small-scale SPLs (with a small amount
of code and few RFMs). We conclude that programmers depend on concepts and
prototypes as we presented in this chapter to implement and manage nonmonotonic,
nonenumerative feature modules in SPLs.

83

6. Practical Issues of Using RFMs

In Chapter 3, we reported on the module-scalability dilemma; in Chapter 4, we tack-
led this dilemma with RFMs and showed benefits and limitations of the approach;
in Chapter 5, we observed that – though we were able to prototypically automate a
test to verify safe composition of SPLs that involve RFMs – we were hardly able to
verify safe composition of such SPLs by hand. So is the RFM concept worth to be
analyzed in further detail?

We argue that the RFM concept is worth to be analyzed in further detail because
only the combination of Jak-like feature modules and RFMs supports the integrated,
feature-driven configuration of a module’s functionality and structure. This config-
uration helped us in studies to reuse modules; modules which could not have been
reused as is before. We further argue that the complexity of managing SPLs that in-
volve RFMs can be reduced by tools (cf. Chap. 5). This discussion boils down to the
worthiness of code reuse and we cannot give a final answer here but can only evaluate
the new concept as best as possible in every possible respect. In the end, we also may
consider RFMs to show boundaries for the capabilities of program transformations
that should be used in SPLs.

In this chapter, we analyze whether common tasks in SPL development become
complex due to RFMs, and to what extent we can support programmers with tools
for these tasks. These topics have been analyzed in Diploma theses and Master theses
that were conducted and supervised in the course of this thesis. In Section 6.1, we
discuss how the functionality of SPL products can be corrected when they have
been generated using RFMs. In Section 6.2, we discuss how SPL products can be
generated faster when they have been generated using RFMs. In Section 6.3, we
discuss problems of using RFMs to refactor SPL products, which include artifacts of
different languages.1

1Section 6.1 is based on the Diploma thesis of Martin Sturm [Stu10], which was conducted and
supervised in the course of this thesis; extended versions have been published elsewhere [KS10a,
KS10b]. Section 6.2 is based on and extends the Master thesis of Liang Liang [Lia10], which was
conducted and supervised in the course of this thesis; extended versions have been published
elsewhere [KLS10a, KLS10b]. Section 6.3 is based on the Diploma thesis of Hagen Schink [Sch10],
which was conducted and supervised in the course of this thesis; extended versions have been
published elsewhere [SK10, SKSL11].

85

6. Practical Issues of Using RFMs

6.1. Correcting Errors in the Functionality of SPL
Products

Section 6.1 is based on the Diploma thesis of Martin Sturm [Stu10], which was
conducted and supervised in the course of this thesis; extended versions have been

published elsewhere [KS10a, KS10b].

In prior research, we and others observed that incorrect code of SPLs and SPL
products was difficult to detect and correct [AKGL10, DCB09, KBK09, TBKC07].
The according approaches detect noncompilable SPL products, but these approaches
do neither detect nor correct errors in functionality.

In this section, we first compare approaches (a) for how programmers can detect
incorrect code in SPLs and SPL products (we call this error detection), and (b)
for how programmers can correct incorrect code (we call this error correction). We
compare error detection and error correction when they start (a) at the level of the
feature modules or (b) at the level of a single SPL product. We conclude that starting
at the level of the feature modules can be inappropriate, and that SPL programmers
need techniques to start at the level of a single SPL product. Finally, we present a
new approach which automatically propagates error corrections from a product of an
SPL to the feature modules of this SPL. We prototypically implement the presented
concepts and demonstrate them feasible.

6.1.1. Comparison of Approaches for Detecting & Correcting Errors

We will exemplify the following discussions with the code of Figure 6.1a. In this
figure, we review the slightly modified feature modules Directed, ShortestPath, and
DisplayShow of our GPL running example (we introduced an error on purpose). In
Figure 6.1b, we review the product which the feature modules of Figure 6.1a generate.
The product is supposed to print the count of invocations of Vertex.display()::void
but it prints zeros instead. The reason is that Line 7 of Figure 6.1b is in error; to
correct the product, we must replace Line 7 by “counter=counter+1;”. Ultimately,
however, this correction must occur in the feature modules of Figure 6.1a. To correct
the SPL product, we can (a) start at the level of the feature modules (cf. Fig. 6.1a)
and generate afterwards the corrected product, or (b) start at the level of the SPL
product (cf. Fig. 6.1b) and propagate afterwards the correction to the feature modules.
We found strengths and weaknesses for both approaches with respect to detecting
incorrect code, distraction from correcting the product in error, SPL complexity, and
the propagation of changes between levels of code abstraction.

Detecting Incorrect Code

When a programmer detects incorrect code, the pieces of code that are displayed
to him/her in consecutive steps should be reasonable according to code at the level
he/she inspects. During error detection, values of variables should be available for
inspection.

86

6.1. Correcting Errors in the Functionality of SPL Products

Feature module Directed

1 public class Vertex {
2 public String name;
3 public void display(){
4 ...
5 System.out.println();
6 } }

Feature module ShortestPath

7 public refines class Vertex {
8 private String predecessor;
9 private int dweight;

10 int counter=0;
11 public void count(){
12 counter = counter/1;
13 System.out.print(counter);
14 }
15 public void display() {
16 System.out.print("Pred " + predecessor + "

DWeight " + dweight + " ");
17 count();
18 Super.display();
19 } }

Feature module DisplayShow

20 Rename method Vertex.display()::void into show

(a) Feature modules with an error.

1 public class Vertex {
2 public String name;
3 private String predecessor;
4 private int dweight;
5 int counter=0;
6 public void count(){
7 counter = counter/1;
8 System.out.print(counter);
9 }

10 public void show() {
11 System.out.print("Pred " + predecessor + "

DWeight " + dweight + " ");
12 count();
13 ...
14 System.out.println();
15 } }

(b) Program generated from all feature
modules of Fig. 6.1a.

Figure 6.1.: Feature modules with an error and the program they generate [adapted
from KS10b].

When programmers start at the level of one SPL product, the pieces of
code that are displayed to a programmer in consecutive steps are reasonable accord-
ing to the code at the level of one SPL product (the displayed code actually is the
executed code). The programmer can inspect values of variables.

When programmers start at the level of the feature modules, there might
be no code to display to programmers at all: For example, an Encapsulate-Field
RFM, creates get-access and set-access methods but does not include these methods;
however, skipping this code at the level of the feature modules, would be error-
prone [Fai98]. If such access methods further got refined, even more code would be
in question.

When programmers start at the level of the feature modules, incorrect code might
be displayed to programmers: For example, in Figure 6.2, we depict the input pro-
gram (cf. Fig. 6.2a) and the generated program (cf. Fig. 6.2b) of a Pull-Up-Method
RFM. This RFM merges the method ColoredV.display()::void with method Weight-
edV.display()::void to generate method Vertex.display()::void. In the generated pro-
gram, commonly only one method can be encoded to represent Vertex.display()::void
at the level of the feature modules (either the ColoredV or the WeightedV method).

87

6. Practical Issues of Using RFMs

ColoredV

Xg

display() Xg

WeightedV

Xg

display() Xg

Vertex

name Xg

Xg

△

Pull-Up Methodp
−−−−−−−−−−−−−→

(a) Original program.

ColoredV

Xg

Xg

WeightedV

Xg

Xg

Vertex

name Xg

display() Xg

△

Push-Down Fieldp
−−−−−−−−−−−−−→

(b) Generated program #1.

ColoredV

name Xg

Xg

WeightedV

name Xg

Xg

Vertex

Xg

display() Xg

△

(c) Generated program #2.

Figure 6.2.: Refactorings that merge and multiplex code [adapted from KS10b].

This encoding however can be incorrect according to the method called at the level
of the feature modules (ColoredV.display()::void or WeightedV.display()::void). For ex-
ample, if ColoredV.display()::void is encoded but WeightedV.display()::void is called,
ColoredV.display()::void is displayed though it should not.

When programmers start at the level of the feature modules, breakpoints might
not work properly: For example, if ColoredV.display()::void of Figure 6.2a is en-
coded to be displayed when Vertex.display()::void is executed, then a breakpoint set
to ColoredV.display()::void would be associated to Vertex.display()::void and thus can
interrupt WeightedV.display()::void, though it should not; a breakpoint set in this
situation to WeightedV.display()::void would not be associated to the generated, exe-
cuted method and thus never interrupts the product though it should.

When programmers start at the level of the feature modules, values of variables
cannot be inspected, generally: For example, in Figure 6.2, we depict the input
program (cf. Fig. 6.2b) and the generated program (cf. Fig. 6.2c) of a Push-Down-
Field RFM; this RFM multiplexes the static member variable Vertex.name::String in
the classes ColoredV and WeightedV.2 At the level of the feature modules, the value
of Vertex.name::String must be merged from the values of all variables generated from
Vertex.name::String (ColoredV.name::String and WeightedV.name::String in Fig. 6.2c)
– this merge however is not always possible.

Approaches exist that could relate product code to feature-module code [AT96,
Hen82, Zel83], but these approaches rely on that conditional breakpoints and path
analyses can be compiled into binaries. While this is possible for some languages, it
requires high effort to implement supportive tools for every new language.

Distraction from Correcting the Product in Error

In the first place, programmers should focus on the product which is in error. For
that, code of the product which is in error should be displayed cohesively and other
code should be hidden. As a result, the programmer is not distracted from correcting
the product in error, can understand this product more easily, and can correct it more

2We modified the field name with static here to ease explanations.

88

6.1. Correcting Errors in the Functionality of SPL Products

easily; for example, dangling references can be avoided more easily because all code,
which is available in the product, is displayed and all code, which is not available in
the product, is hidden. Just in the second place, programmers should focus on other
products. Finally, the code displayed to a programmer should be in a language, the
programmer is familiar with.

When programmers start at the level of one SPL product, the code of
the analyzed SPL product is displayed cohesively to a programmer. Other code is
hidden at that time. After programmers corrected the product, they can focus on
how to integrate the corrections with feature modules. The integration of corrections
can be supported by tools; for example, tools can verify that the correction of feature
modules does not put other products of this SPL syntactically in error.

For Jak-like feature modules and RFMs, the displayed, generated code is in a lan-
guage (Java) which is very similar to the language the programmer used to implement
the SPL (Jak and RFM).

When programmers start at the level of the feature modules, code of all
feature modules of the SPL is displayed to the programmers, even of feature modules
that do not contribute to the product in error (i.e., code that does not necessarily
contribute to the error). Furthermore, the code of a product, which is in error, is not
cohesive and cannot be displayed cohesively but is scattered across feature modules.
Note that if tools would visualize generated code, they switch to the approach correct
at the level of one SPL product.

For Jak-like feature modules and RFMs, the displayed code is in the language
which the programmer used to implement the SPL.

SPL Complexity

Bounded quantification is a guideline for how programmers should write feature
modules; following this guideline promises to simplify SPLs.3 To not increase com-
plexity of an SPL, bounded quantification should hold before error correction and
after; that is, no programmer/tool should correct a method, field, or class in a fea-
ture module such that the program generated by this corrected feature module has
a dangling reference. Programmers should be advised accordingly (before changing
a feature module), which feature module they should correct (we call this feature
module target) and how they should correct it.

When programmers start at the level of one SPL product, a tool can
support programmers in all three steps: (a) identify corrected pieces of code in the
SPL product, (b) advise which feature module to use as a target, and (c) verify that
propagating a piece to its target does not break bounded quantification in any SPL
product. That is, programmers can be supported before a correction (which already
is implemented in the SPL product) is made to the feature modules, to decide, which
feature module they should correct best (e.g., such that bounded quantification is
not broken in any SPL product).

3Bounded quantification is a guideline according to which a feature module should not generate
code with dangling references (cf. Sec. 2.2.2, p. 14).

89

6. Practical Issues of Using RFMs

When programmers start at the level of the feature modules, a program-
mer cannot be supported before a correction is made to the feature modules (i.e.,
before implementing it), to decide, which feature module he/she should correct best
(e.g., such that bounded quantification is not broken in any SPL product). After a
correction has been implemented, the programmer could be advised in restructuring
the feature modules (if possible).

Propagation of Changes Between Levels of Code Abstraction

The tools, which support to integrate corrections with feature modules, should never
get stuck in any situation.

When programmers start at the level of one SPL product, a tool should
propagate each piece of corrected code from the product to a target (feature module
to correct). For that, this tool must invert – in the corrected SPL product – all feature
modules in reverse feature order, which followed the target during the generation of
the corrected product: To invert a Jak-like feature module, the tool must remove
the created code in the SPL product; to invert an RFM, the tool must execute a
refactoring in the SPL product which inverts this RFM.

Certain corrections to a product may preclude a tool to invert feature modules
that generated the product. For example, when a programmer created a method
Vertex.display()::void in the code of Figure 6.1b, no tool can smoothly invert Dis-
playShow (“Rename method Vertex.display()::void into show”) in the corrected SPL
product (i.e., Vertex.show()::void cannot be renamed into display); if a tool would in-
vert DisplayShow smoothly, two pieces of code with equal scoped names would occur
in future DisplayShow input programs though this is not allowed in most languages
(cf. Sec. 2.3, p. 16). For that, there must be a fall-back strategy – for Jak-like feature
modules and RFMs, such strategy exists and is discussed later.

When programmers start at the level of the feature modules, they do
not need a tool to propagate corrections between levels of code abstractions – they
simply regenerate the product. However, if an error occurs in the generation process
after the programmers corrected the feature modules, these programmers got stuck.

Summary

When programmers start to correct an SPL at the level of the feature modules, in-
correct code may be displayed to them, code that is scattered across feature modules
may be displayed to them, and only weak tool support can be provided to them
(e.g., to decide which feature module to change). On the one hand, the approach of
starting to correct SPLs at the level of a single SPL product avoids these problems;
on the other hand, this approach calls for a fall-back strategy. Noteworthy, none of
the above approaches can guarantee that all SPL products work as intended after
correcting the feature modules.

90

6.1. Correcting Errors in the Functionality of SPL Products

Modules

DisplayShow
ShortestPath
Directedaaia

Corrected modules

DisplayShow
ShortestPath
Directedaaia

SPL product Corrected
SPL product

?

6�

�

�

�
4) Save propagation
�

�

�

�
3) Perform propagation
�

�

�

�
2) Prepare propagation
�

�

�

�
1) Find and link corrections

�
�

�
�Generate product

K �
�

�
�Confirm

R

�
�

�
�Correct

j

@@��

j

@@��

Figure 6.3.: Use case to correct SPL products and to update feature modules [extended
and adapted from KS10b].

6.1.2. Propagation of Error Corrections to Feature Modules

Some researchers argue that programmers should detect errors and correct errors of
an SPL product at the level of the feature modules (there: high-level code of an
unoptimized, stand-alone program) [CIBR00, HCU92, WGM08]; from our analysis
and in line with others [AT96, CE00, EBLSP10, Fai98, FNP97, IKI04] we argue that
programmers should also be allowed to detect errors of a single SPL product at the
level of this single product. We show now how programmers could be supported by
tools when (after error detection) they start to correct an SPL product at the level
of this single product.

Conceptual Process

When the programmer detected incorrect code of a single SPL product and cor-
rected this code at the level of this single product, he/she could trigger a tool which
propagates his/her correction to the feature modules. This propagation tool should
find and link corrected pieces code, should prepare the propagation, should perform the
propagation, and should save the propagation. We visualize this process in Figure 6.3.

Find and link corrected pieces of code. The propagation tool should first find all
the corrected pieces of code in the SPL product (e.g., changes made to individual
methods). The tool can find these pieces by comparing the corrected SPL product
with the old and incorrect version of the same product. The tool then should link each
piece of corrected code to a scoped name (allows us later to compute good targets).
For example, in Figure 6.1b, the propagation tool should find the correction in Line 7
(which we corrected to be counter=counter+1;) and should link it to the scoped name
Vertex.count()::void.

91

6. Practical Issues of Using RFMs

Table 6.1.: Index that relates scoped names of products to feature modules of Fig-
ure 6.1b [adapted from KS10b].

Index key Index value

Vertex.show()::void [Directed:Vertex.display()::void,
ShortestPath:Vertex.display()::void]

Vertex.name::String [Directed:Vertex.name::String]
Vertex.predecessor::String [ShortestPath:Vertex.predecessor::String]
Vertex.dweight::int [ShortestPath:Vertex.dweight::int]
Vertex.count()::void [ShortestPath:Vertex.count()::void]
Vertex [ShortestPath:Vertex]

Prepare the propagation. The propagation tool should create an index data struc-
ture and a transformation-history data structure to compute good targets for each
piece of corrected code later. The tool should create an index data structure which
maps each piece of code x of the SPL product to those pieces of code in feature
modules which create and include (parts of) x. The index should map x to an empty
value when an RFM created x (then there is no code in the feature modules which
includes x). For example, we show a sample index as we propose it for the product
of Figure 6.1b in Table 6.1. A key in this index is a piece of code (represented by a
scoped name) of the SPL product; a value in this index is a list of pieces of code in
feature modules that create a piece of code in the analyzed product. The index of
Table 6.1 tells us that the code of Vertex.show()::void in the SPL product was created
by and is included in the pieces of code Vertex.display()::void of the feature modules
Directed and ShortestPath.

The propagation tool should create a transformation-history data structure, which
records the names of all executed feature modules in the execution order of these
feature modules. For example, the transformation history for the product of Fig-
ure 6.1b should record that DisplayShow executed after Directed and ShortestPath.
The history data structure should also record the input program of every executed
feature module together with an own index structure for all of these programs.

Perform propagation. The propagation tool should calculate a good target for each
piece of corrected code. The tool then should propagate each piece to its target by
inverting all feature modules on the piece which follow the target in the transforma-
tion history. The tool could calculate a good target for a piece of corrected code in
three steps: First, the tool could detect, which piece of code in the feature modules
creates and includes the corrected piece of code, or which feature module created
most of the pieces of code the corrected piece relates to – respective feature mod-
ules are considered to be good targets. Second, the tool could verify that every
feature module, which should be inverted in the course of the propagation, can still
be executed correctly after the propagation. The tool additionally could verify safe
composition of the corrected SPL (i.e., that every product of the corrected SPL can
be generated without error; cf. Chap. 5). The tool could adjust the target if needed.

92

6.1. Correcting Errors in the Functionality of SPL Products

If the tool calculates that one feature module should be inverted to propagate a
corrected piece of code but cannot be inverted on that corrected piece of code, the
tool could apply a fall-back strategy such as: Create a Jak-like feature module which
follows the noninvertible feature module according to the feature order and let the
new feature module be the new target. This new feature module would be executed
at least during future generations of the corrected product and would replace therein
the erroneous code. Third, the tool could verify that propagating a piece of corrected
code to its target does not break bounded quantification for any product. The tool
could adjust the target if needed.

To exemplify the propagation of a corrected piece of code, we reconsider the correc-
tion in Figure 6.1b (replace Line 7 by counter=counter+1;). The correction involves
only one piece of code and this piece is linked to the scoped name Vertex.count()::void.
Then the tool could compute a target in three steps: First, the tool could ana-
lyze with the index for the code of Figure 6.1b (cf. Tab. 6.1) that the method Ver-
tex.count()::void has been created and is included in feature module ShortestPath;
thus, ShortestPath is the target for count. Second, the tool could verify that every
feature module which follows ShortestPath still executes correctly after the tool prop-
agated the corrected piece of code to ShortestPath. Third, the tool could verify that
a corrected count in ShortestPath does not break bounded quantification. In this
example, the tool would not need to adjust the target. After the tool would have
computed the target, the tool could invert DisplayShow on the piece of corrected
code (nothing changes) and would retrieve the corrected piece of code to insert into
the feature module ShortestPath.

When a piece of corrected code does not reference other pieces of code and the
scoped name relates to an empty value in the index (i.e., the piece got created by
an RFM) then the tool should propagate the piece along the reverse sequence of
feature modules (which are recorded by name in the transformation history) without
target. This propagation should stop as soon as the tool recognizes that the feature
module it inverts created the incorrect piece of code in the first place; the tool
then can provide a new target for the propagated piece of code. For example, if
DisplayShow would have created the corrected Vertex.count()::void in Figure 6.1b,
then Vertex.count()::void would exist in the index but would map to an empty value.
The tool then would invert all feature modules DisplayShow to Directed in their
reverse feature order in the code of Vertex.count()::void. As soon as the tool would
invert DisplayShow, the tool would detect that DisplayShow created the incorrect
Vertex.count()::void in the first place; the tool then could compute a new target for
the corrected method count. For example, the tool then could define the target
to be a Jak-like feature module, which follows the RFM (according to the feature
order) that created the incorrect count method. Note that if DisplayShow would have
merged the corrected method Vertex.count()::void from multiple pieces of code in the
first place, then the tool which inverts DisplayShow could detect that DisplayShow
created Vertex.count()::void in the first place, and could define multiple new targets
for the correction.

93

6. Practical Issues of Using RFMs

Save propagation. The propagation tool might compute that a certain feature
module is a good target for a piece of corrected code; a programmer however might
consider a different feature module to be a better target for the same piece. The
propagation tool thus should always ask the programmer to confirm the target and
the correction proposal for each piece.

Unsupported Error Corrections & Feature Module Capabilities

The capabilities of feature modules limit the corrections which a tool can propagate
from a product of an SPL to the feature modules of that SPL. With respect to the
Jak language, no fall-back strategy seems available:

Jak-like feature modules written in Jak cannot replace constructors in their input
programs [Sof08]. However, replacing an incorrect piece of code in a new feature
module was our fall-back strategy when we could not propagate corrections. We
thus need and propose a second fall-back strategy (based on the advice from the Jak
documentation [Sof08]): Extract constructor bodies into methods and propagate
corrections to these methods instead.

Jak-like feature modules written in Jak, as well as RFMs cannot remove code in
their input programs without a replacement. As a result, the propagation tool may
fail when it cannot propagate a correction, in which a programmer removed a piece
of code from the SPL product.

In general, feature modules of SPLs must be invertible to propagate corrections
from an SPL product toward the feature modules. Many program transformations
used in SPLs can be inverted [BSR04, KBA09, KHH+01], but certainly not all. When
a transformation cannot be inverted our fall-back strategy should be used.

A tool, which propagates corrections from a product of an SPL to the feature
modules of that SPL, will depend on the tool, which was used to generate the product
in the first place. If different composer tools generate different products for the same
feature modules (common for FOP [Bat06]), the propagation tool must differ with
respect to the used composer tool. Note that different composer tools add complexity
to every possible solution.

6.1.3. Prototype & Demonstration

We prototypically implemented the index concept and the transformation-history
concept for SPLs with Jak-like feature modules and RFMs.4 We used this prototype
in a demonstrating example. Our prototype finds pieces of corrected code in the
SPL product and links them to scoped names (Step Find and link corrected pieces of
code in Sec. 6.1.2), creates an index data structure and a transformation-history data
structure (Step Prepare the propagation), propagates each piece of corrected code to

4For example, the prototype so far does support only one composer tool, does not keep complete
input programs of feature modules (thus, it does neither support so far to detect name capture
nor to invert RFMs that merge code), does not guarantee safe composition for the corrected
SPL, and maintains only one index structure at all.

94

6.1. Correcting Errors in the Functionality of SPL Products

Feature module Directed (JFMα)

1 class Graph{ ...
2 public void addEdge(Edge the_edge){
3 Vertex start = the_edge.start;
4 Vertex end = the_edge.end;
5 edges.add(the_edge);
6 start.addNeighbor(new

Neighbor(end,the_edge));
7 }}

Feature module Weighted (JFM)
Feature module Shortest (JFM)

Feature module Benchmark (JFM)
Feature module AdaptToClient (JFM)

Feature module VertexVerteximpl (RFM)

8 Rename class Vertex into VertexImpl

Feature module GraphWgraph (RFM)

9 Rename class Graph into WeightedGraphImpl

Feature module AddvertexAdd (RFM)

10 Rename method WeightedGraphImpl.add−
Vertex(VertexImpl) into add

Feature module ShortestSmall (RFM)

11 Rename method WeightedGraphImpl.Shortest−
Path(VertexImpl) into shortestPath

(a) Original feature modules (return
types omitted in RFMs for brevity).Ô

Feature module Directed (JFM)

1 class Graph{ ...
2 public void addEdge(Edge the_edge){
3 if(the_edge != null){
4 Vertex start = the_edge.start;
5 Vertex end = the_edge.end;
6 edges.add(the_edge);
7 start.addNeighbor(new Neighbor(end, the_edge));
8 }else{
9 System.out.println("Param the_edge was null!");

10 } } }

Feature module notInvertible ShortestSmall (JFM)

11 refines class WeightedGraphImpl{
12 public WeightedGraphImpl ShortestPath(VertexImpl s){
13 return shortestPath(s);
14 } }

(d) Advise for correcting feature modules.
Ô

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the_edge){
3 VertexImpl start = the_edge.start;
4 VertexImpl end = the_edge.end;
5 edges.add(the_edge);
6 start.addNeighbor(new~~~~~~~~~~

Neighbor(end, the_edge));
7 } }

(b) Generated SPL program. Ô

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the_edge){
3 if (the_edge != null){
4 VertexImpl start = the_edge.start;
5 VertexImpl end = the_edge.end;
6 edges.add(the_edge);
7 start.addNeighbor(new Neighbor(end, the_edge));
8 }else{
9 System.out.println("Param the_edge was null!"); } }

10 public WeightedGraphImpl ShortestPath(VertexImpl s){
11 return shortestPath(s);
12 } }

(c) Corrected, generated SPL program.

αJak-like feature module

Figure 6.4.: Error-correction process for a GPL class WeightedGraphImpl (formerly
Graph) [from KS10b].

a good target (Step Perform propagation), and saves the corrected Jak-like feature
modules separately (Step Save propagation).

95

6. Practical Issues of Using RFMs

Demonstrating example. To demonstrate our prototype, we use a version of the
GPL from prior work (cf. Sec. 4.3.1) to which we added RFMs.5 We generated a
compilable GPL product from five Jak-like feature modules and four RFMs. We list
the names of these nine feature modules top-down in Figure 6.4a in feature order
together with relevant excerpts of these modules. As we could not detect mistakes
in the GPL product, we applied changes to the product’s classes WeightedGraphImpl
and VertexImpl; changes which cover interesting cases during propagation. For ho-
mogeneity, we call our changes corrections.

We demonstrate in Figures 6.4a-d, how we corrected code in the class Weight-
edGraphImpl (formerly Graph; cf. Fig. 6.4a) in the product and how we propagated
the corrected code to the feature modules. In Figure 6.4a, we list the GPL feature
modules (and relevant excerpts of them), which we executed to generate the studied
product. In Figure 6.4b, we show (relevant excerpts of) the studied product.

We observe the product of Figure 6.4b to malfunction, detect its incorrect
code, and correct it (cf. Fig. 6.4c, we underlined the pieces of corrected code);
then we start our prototype to propagate the correction. The prototype com-
pares an old and incorrect version of the GPL product (cf. Fig. 6.4b) with its
corrected counterpart (cf. Fig. 6.4c). The prototype finds three pieces of cor-
rected code, links two of them (Lines 3 and 8-9) to the scoped name Weighted-
GraphImpl.addEdge(Edge)::void, and links one of them (Lines 10-12) to the scoped
name WeightedGraphImpl.ShortestPath(VertexImpl)::WeightedGraphImpl.

First, the prototype propagates the corrections in method WeightedGraphImpl.add-
Edge(Edge)::void. The prototype detects with the index data structure that (a)
WeightedGraphImpl.addEdge(Edge)::void got altered and not added during error cor-
rection (i.e., index key WeightedGraphImpl.addEdge(Edge)::void exists) and that (b)
the incorrect WeightedGraphImpl.addEdge(Edge)::void got created and is included in
the feature module Directed. So, Directed is target for the correction in addEdge.
The prototype verifies using the transformation history that the RFMs, which follow
Directed, can be inverted in the code of addEdge (Jak-like feature modules can always
be inverted).6 The prototype verifies using the index that a corrected addEdge in Di-
rected does not break bounded quantification. Finally, the prototype propagates the
correction and saves the corrected feature module Directed separately (cf. Fig. 6.4d).
Once the programmer confirmed the target and the correction proposal, the cor-
rected feature module could replace the original feature module (replacement not
automated so far). Note that the pieces of corrected code of Line 3 and Lines 8-9 of
Figure 6.4c are propagated together because they affect the same piece of code.

Second, the prototype propagates the correction in method Weighted-
GraphImpl.ShortestPath(VertexImpl)::WeightedGraphImpl. The prototype detects with

5We pruned the GPL version to fit the current capabilities of our prototype; for example, we
removed RFMs when they did not implement refactorings of type Rename Class or Rename
Method.

6The prototype so far depends on a composer tool which generates a method for every method
refinement [Bat06]. Inverting a refinement thus means to remove its according method. Other
composer tools might require more sophisticated mechanisms.

96

6.1. Correcting Errors in the Functionality of SPL Products

1 class VertexImpl{ ...
2 private boolean displayed = false;
3 public void display() {
4 System.out.print("Pred " + predecessor + " DWeight " + dweight + " ");
5 display$$eval$outWeighted$GG();
6 this.displayed = true; }
7 public boolean wasDisplayed(){
8 return displayed; }
9 public VertexImpl assignName(String name) {

10 this.name = name;
11 if(this.wasDisplayed()){
12 System.out.println("was already displayed!"); }
13 return (VertexImpl)this;
14 } }

Figure 6.5.: Corrected GPL class Vertex/VertexImpl [from KS10b].

the index data structure that ShortestPath got created during error correction (i.e.,
index key WeightedGraphImpl.ShortestPath(VertexImpl)::WeightedGraphImpl does not
exist). After detecting this, the prototype detects that (a) ShortestPath solely
references method shortestPath in the same class, and that (b) this referenced
method shortestPath got created by the feature module Shortest. So, Short-
est is target for the new method ShortestPath. The prototype then checks
whether all feature modules, which follow Shortest, can be inverted in the code
of ShortestPath. RFM ShortestSmall would not execute correctly any more in fu-
ture products when it would be inverted in the code of ShortestPath7; that is,
the prototype cannot propagate the correction ShortestPath to its target Short-
est. The prototype implements the fall-back strategy and creates a Jak-like fea-
ture module notInvertible ShortestSmall which follows ShortestSmall according to
the feature order (cf. Fig. 6.4d) and which creates method ShortestPath in future
SPL products. Interestingly, notInvertible ShortestSmall refines class Weighted-
GraphImpl but not Graph because WeightedGraphImpl exists in the input program
of notInvertible ShortestSmall (input program generated by ShortestSmall) but not
Graph.

Finally, the prototype propagates a correction which we made to class
VertexImpl (formerly Vertex). We show the corrected class VertexImpl in
Figure 6.5 and underlined our correction.8 First, the prototype detects
the corrections in VertexImpl and links them to the scoped names Vertex-
Impl.displayed::boolean, VertexImpl.display()::void, VertexImpl.wasDisplayed()::boolean,
and VertexImpl.assignName(String)::VertexImpl. The prototype further detects that
the member variable displayed and the method wasDisplayed got created in Vertex-
Impl during error correction, and that methods display and assignName got altered.

The prototype firstly propagates the added member variable displayed. The proto-

7After inverting ShortestSmall, a future input program of ShortestSmall would contain two Short-
estPath methods, and this would make ShortestSmall fail.

8The code in Line 5 of Fig. 6.5 is a possible translation for Super.display(); (cf. Fig. 6.1a, p. 87,
Line 18); inlining such calls removes the statement.

97

6. Practical Issues of Using RFMs

type detects that the method display, which was created by Jak-like feature modules,
accesses displayed and so, the target for displayed becomes the feature module that
lastly creates code in display: Shortest.

The prototype secondly propagates the added method wasDisplayed: The prototype
detects that wasDisplayed solely accesses displayed and so the target of wasDisplayed
becomes the target of displayed: Shortest.

The prototype finally calculates targets for the altered methods display and assign-
Name. The prototype detects that Directed created both methods and thus Directed
becomes a first target for the corrections in both methods. However, the prototype
must adjust the target: The prototype detects that display and assignName reference
class members which are created in Shortest, displayed and wasDisplayed; to maintain
bounded quantification, the prototype adjusts the target for the corrected methods
display and assignName: Shortest. According to the propagation proposal, Shortest
will replace display and assignName (which are still created in Directed) with correct
counterparts in future product generations.

6.1.4. Summary

In this section, we analyzed how programmers can start to detect and correct errors
in an SPL product that was generated from Jak-like feature modules and RFMs. We
compared two basic approaches: (a) start at the level of a single SPL product and
(b) start at the level of the feature modules. We found strengths and weaknesses for
both approaches. We observed that approach (b) is not always better than approach
(a); for SPLs implemented with Jak-like feature modules and RFMs, we observed
that approach (a) can be beneficial. Finally, we implemented a prototype, which
propagates corrections from a generated product of an SPL to the feature modules
of this SPL. We demonstrated the prototype using a product of our GPL running
example.

6.2. Reducing the Program-Generation Time

Section 6.2 is based on and extends the Master thesis of Liang Liang [Lia10],
which was conducted and supervised in the course of this thesis; extended versions

have been published elsewhere [KLS10a, KLS10b].

SPL users and SPL programmers generally have different views on an SPL: An
SPL user knows features and their meaning but not their implementation in general
(e.g., SPL users do not need to know the code of feature modules); in contrast,
SPL programmers implement the SPL and, thus, do know the implementation of
features. An SPL user prefers fewer selectable features and could even appreciate
automated selection of features [Bat05, RS10, WSWN07, ZJ04]; in contrast, an SPL
programmer prefers a high number of features because he/she can then satisfy a high
number of customers with tailored programs; programmers could even appreciate
to reuse individual feature modules to implement different features. That is, SPL

98

6.2. Reducing the Program-Generation Time

programmers prefer to have a small number of feature modules that can be combined
in many ways [CE99b].

Based on the different views on SPLs, users may (unknowingly) execute sequences
of feature modules, which are longer than necessary to generate a single product and
which thus may take a tool longer than necessary to execute. As a simple example,
assume that in one SPL product the classes Vertex and Node exist and should swap
names; then programmers must define three RFMs (e.g., “Rename class Node into
Temp”, “Rename class Vertex into Node”, and “Rename class Temp into Vertex”). If
for a new SPL product only class Vertex exists and should be renamed into Node,
then programmers may reuse the already existing sequenced RFMs (“Rename class
Node into Temp”, “Rename class Temp into Vertex”). The latter sequence of RFMs,
however, is longer than necessary and can be replaced by a single refactoring “Rename
class Node into Vertex” – this replacement shortens the overall sequence to execute
and could reduce the time to generate the product. Finally, sequences of feature
modules can also be longer than necessary when SPLs grow large-scale and individual
programmers are not in charge of all feature modules.9

The problem of suboptimal feature-module sequences corresponds to the problem
of suboptimal database queries (discussed in Sec. 7.6). In this section, we lean on
optimization techniques of database management systems to optimize (shorten) se-
quences of RFMs. We discuss the concepts, describe our prototype, and report on
the evaluation of that prototype. In our studies, the prototype reduced program-
generation time in a number of cases.

6.2.1. Optimizing Refactoring Sequences

Commonly, refactoring tools execute refactorings in two phases (cf. Sec. 2.3, p. 16):
A verification phase and a transformation phase. We argue that both phases offer
potential to optimize sequences of refactorings in order to reduce the time a tool needs
to execute the sequences. Researchers showed that verification phases of refactorings
in a sequence of refactorings can be omitted when the verified preconditions are
known to be satisfied for a refactoring [KK04, Rob99]; after omitting precondition
checks, a tool can execute the sequence of refactorings faster.

We show how transformation phases of refactorings in sequences of RFMs can be
optimized. For example, when two RFMs follow each other in a sequence, of which
the first RFM renames a class Vertex into Temp and of which the second RFM re-
names Temp into Node, then we replace both refactorings before program generation
by a fused refactoring which renames Vertex into Node in one step. For this opti-
mized sequence, we expect performance benefits for the program-generation process
because (a) the optimized RFM sequence generates the same program as the unopti-
mized sequence and (b) the optimized sequence avoids to parse the program multiple
times, avoids to detect code relations multiple times, and avoids to transform the
program multiple times. The transformation phases of a sequence of refactorings can

9Researchers report on long refactoring sequences in which 81 and even 800 refactorings were
consecutively executed on stand-alone programs [TB01].

99

6. Practical Issues of Using RFMs

be optimized without any analysis of the program to refactor (we call this algebraic
optimization) and with an analysis of the program to refactor (we call this cost-based
optimization).

Algebraic Optimization

With algebraic optimization, we aim at fusing transformation phases of sequenced
refactorings (fusing verification phases has been shown before [KK04, Rob99]). To
optimize, we propose to first reorder the sequenced refactorings in order to group
refactorings with transformation phases detected to be fusible. After this happened,
we propose to fuse refactorings based on rules which we define later.

Basic concept. We can iterate a refactoring sequence in order to detect the refac-
torings with fusible transformation phases. We propose to allow to fuse the trans-
formation phases of two refactorings, when (a) both refactorings follow each other
directly in the sequence of refactorings, (b) the refactoring to be executed earlier
generates the code which the following refactoring transforms, (c) fusing both refac-
torings yields either a standard refactoring according to catalogues [Fow99] or the
identity transformation (we remove identity transformations as they do not change
the generated product), and (d) both are known to execute without errors. We define
that the fused refactoring must be a standard refactoring to allow the same fusion
rules when the optimized sequence is extended or embedded in another sequence
later. To allow nonstandard refactorings as fusion results means to support an infi-
nite number of refactorings in every following optimization step and execution step
(nonstandard refactorings have been analyzed elsewhere [KK04]).

In Figure 6.6a, we show a sample sequence of feature modules top-down in their
execution order; the Jak-like feature module Directed1 and a number of RFMs (R2 to
R6). In this sequence, we can detect that R2 (“Rename class Vertex into TempVertex”)
can be fused with R4 (“Rename class TempVertex into Node”) to become a new RFM
C2 (“Rename class Vertex into Node”); we can fuse the refactorings of these RFMs
because R2 generates the code which R4 transforms (class TempVertex) and because
C2 is a standard refactoring. So far, both refactorings however do not follow each
other directly in the sequence of feature modules. We can commute R4 with its
predecessor RFMs to make R4 the successor of R2. Finally, we can fuse R2 with R4
– we show the optimization result of Figure 6.6a in Figure 6.6b.

We can detect that R4 and R6 can be fused exactly like R2 and R4 were fused
before (R4 creates Node lastly which R6 transforms; fusing R4 with R6 would yield
the standard refactoring “Rename class TempVertex into ADT”). However, we cannot
reorder R6 to become the successor of R4 because we cannot commute R5 with R6
– if we would commute R5 with R6 then R6 would fail in the resulting sequence
because the class ADT would exist in the input program of R6 though R6 requires
ADT to not exist. To prevent such errors, we propose to detect the dependencies
between refactorings (and possibly to record them in a graph data structure; similar
to others [Rob99]).

100

6.2. Reducing the Program-Generation Time

Feature module Directed1

Vertex

predecessor Xg
display() Xg

ADT

Xg

Xg

Feature module R2

Rename class Vertex into TempVertex

Feature module R3

Rename method TempVertex.display() into show

Feature module R4

Rename class TempVertex into Node

Feature module R5

Rename class ADT into myADT

Feature module R6

Rename class Node into ADT

Feature module Directed1

Vertex

predecessor Xg
display() Xg

ADT

Xg

Xg

Feature module C2

Rename class Vertex into Node

Feature module C3

Rename method Node.display() into show

Feature module R5

Rename class ADT into myADT

Feature module R6

Rename class Node into ADT

(a) Initial RFM sequence. (b) Optimized RFM sequence.

Figure 6.6.: Initial and optimized sequence of RFMs (return types omitted for
brevity) [adapted from KLS10a].

Directed1 R2 R3 R4 R5 R6
	 ++

Y
�

Legend
� set-up

dependency

� predecessor
dependency

Figure 6.7.: Conceptual dependency graph for RFMs of Fig. 6.6a [adapted from
KLS10a].

We can analyze the refactorings in their execution order and detect dependencies
among them. In particular, we can detect set-up dependencies to detect that an RFM
requires another feature module to execute on the input program before (to generate
a piece of code which the RFM transforms and requires). Further, we can detect
predecessor dependencies to detect that an RFM requires another feature module to
execute before because this other feature module removes a piece of code that the
RFM requires to not exist. We show the resulting conceptual dependency graph for
the feature modules of Figure 6.6a in Figure 6.7.10

With respect to our optimization, set-up dependencies indicate the RFMs of which
the parameters possibly must be updated after reordering. We propose to update

10Directed1 generates classes Vertex and ADT which are required by R2 and R5; R2 generates class
TempVertex which is required by R3 and R4; R4 generates class Node lastly which is required
by the following R6; R5 removes ADT which is required by R6 to not exist.

101

6. Practical Issues of Using RFMs

Table 6.2.: Fusion rules for optimizing RFM sequences [from KLS10a].

Preceding RFM Follower RFM Fused RFM

Rename class C1 into C2 Rename class C2 into C3 Rename class C1 into C3

Extract API artifact C1 into I1 Rename class I1 into I2 Extract API Artifact C1 into I2

Rename method M1 into M2 Inline method M2 Inline method M1

Move class C1 into C2 Move class C2 into C3 Move class C1 into C3

Rename class C1 into C2 Collapse hierarchy (C2,C3) into
C3

Collapse hierarchy (C1,C3) into
C3

Extract class C1 into C2 Rename class C2 into C3 Extract class C1 into C3

Extract method M1 into M2 Rename method M2 into M3 Extract method M1 into M3

Extract class C1 into C2 Rename class C2 into C3 Extract class C1 into C3

Extract class C1 into C2 Move class C2 into C3 Extract class C1 into C3

Extract subclass C1 into C2 Rename class C2 into C3 Extract subclass C1 into C3

Extract subclass C1 into C2 Move class C2 into C3 Extract subclass C1 into C3

Extract superclass C1 into C2 Rename class C2 into C3 Extract superclass C1 into C3

Extract superclass C1 into C2 Move class C2 into C3 Extract superclass C1 into C3

Push-down field F1 into F2 Pull-up field F2 into F1 ∅

Push-down method F1 into F2 Pull-up method F2 into F1 ∅

C represents a class; I represents an API artifact; M represents a method; F represents a field

the parameters of two commuted RFMs when (a) both RFMs depend on the same
scoped name and when (b) a parameter value of the former predecessor RFM is
affected by the former follower RFM, or vice versa. For example in Figure 6.6a, we
can commute R3 and R4 to fuse R4 with R2; R3 and R4 both depend on TempVertex
and a parameter of R3 (TempVertex.display()) is affected by R4 – for that, we should
update the parameters of R3 (“Rename method TempVertex.display() into show”) to
become a new RFM C3 (“Rename method Node.display() into show”; cf. Fig. 6.6b).
Predecessor dependencies indicate which refactorings cannot be commuted at all.
For example, we can detect that R6 cannot be commuted with R5 at all because we
can detect a predecessor dependency between R5 and R6.

Once we are finished with reordering RFMs, we can fuse RFMs that follow each
other directly when their refactorings match a pattern we define in Table 6.2 (see
[KLS10a, Lia10] for a complete list). For example, when two Rename-Class RFMs
follow each other of which the first RFM renames a class and of which the second
RFM renames the renamed class a second time, we can fuse both RFMs to become
a single Rename-Class RFM which renames the original class to its final name (We
can fuse refactorings “Rename class C1 into C2” and “Rename class C2 into C3” to
become “Rename class C1 into C3”; cf. Tab. 6.2).

Name capture. Name capture is an error, which can occur when override relations
between methods change during refactoring (cf. Sec. 2.3, p. 16). We must prevent
name capture when we commute RFMs but we generally do not know whether class
members referenced in different RFMs can capture each other or override each other
(we execute the RFMs after the optimization but not before). Nevertheless, the
program generated from the original feature-module sequence must be equal to the

102

6.2. Reducing the Program-Generation Time

program generated from the optimized feature-module sequence.
To avoid name capture, we cannot commute generally a refactoring “Rename

method Vertex.display()::void into show” with a refactoring “Rename method SpVer-
tex.show()::void into display”. The reason is that we cannot detect whether Ver-
tex.show()::void (generated by the predecessor refactoring) is overridden by SpVer-
tex.show()::void (transformed by the follower refactoring). Thus, when reordering
both refactorings we cannot detect if we must update the refactoring parameters
or not. A second example, in which we cannot commute refactorings generally,
is when an Extract-API-Artifact RFM follows a Move-Method RFM (or an Inline-
Method RFM) and both affect the same class; the reason is that if we would commute
both RFMs (i.e., execute the Extract-Interface RFM before the Move-Method RFM)
then the Move-Method RFM would fail because only monomorphic methods can be
moved [Fow99].

We consider three possible approaches to avoid name capture during our optimiza-
tion: First, we can detect the override relations between class members in the code,
which is generated by the first Jak-like feature module, and can combine these rela-
tions with recorded refactoring effects during program generation. Before we execute
a specific RFM, we can then use our records to calculate whether class members,
referenced in this RFM override each other in the input program of this RFM when
certain refactorings are known to not apply before the RFM. Second, we can disal-
low commutation of two RFMs when both RFMs alter methods, both RFMs alter
member variables, or when one of these RFMs creates new overriding relations like
Extract-API-Artifact RFMs. Thereby, we must only disallow commutation when the
altered method names match or the altered member-variable names match. For ex-
ample, we could commute a refactoring “Rename method SpVertex.show()::void into
display” with a refactoring “Rename method SpVertex.setPredecessor()::void into set”
without a problem. Third, we can extend RFMs to enumerate the scoped names of
all pieces of code they alter (e.g., a Rename-Class RFM could enumerate all methods
of which it changes the scoped name or the return-type name). In the last approach,
RFM parameters must only be updated after commutation if the sets of scoped
names in two RFMs overlap.

Heuristical reordering. Reordering RFM sequences could reduce the time a tool
needs to execute the sequences although no transformation phases (and no verifica-
tion phases) are merged. For example, the time a tool needs to execute an RFM
sequence could be reduced when in that sequence an RFM, which renames a mem-
ber variable (Rename-Field refactoring), follows an RFM, which encapsulates the
same member variable (Encapsulate-Field refactoring). When the Rename-Field
RFM is executed before the Encapsulate-Field RFM, a refactoring tool must update
field references throughout the program for both RFMs; when the Encapsulate-Field
RFM is executed before the Rename-Field RFM, the refactoring tool must update
only two references for the Rename-Field RFM, and the tool knows the locations
of these references (one is in the generated get-access and one is in the generated

103

6. Practical Issues of Using RFMs

set-access method). When member-variable names contribute to according access-
method names, this particular commutation is not possible because it would alter
the generated product.

The time a tool needs to execute an RFM sequence could be reduced when in
this sequence an RFM, which alters the access modifier of a method (Hide-Method
refactoring11), follows an RFM, which renames the same method. When the Rename-
Method RFM is executed before the Hide-Method RFM, a refactoring tool must look
for references to rename throughout the program. When the Hide-Method RFM is
executed before the Rename-Method RFM, the refactoring tool first creates an access
modifier for the method; from this modifier, the refactoring tool can predict for the
Rename-Method RFM which classes may include references to update. For example,
if the Hide-Method RFM modified a method with private12 before the rename, the
refactoring tool could infer that, in order to rename the method, it only must parse,
analyze, and update the class, which hosts the method, and its respective superclasses
to avoid name capture.

Random reordering. The concepts presented so far cannot detect all fusion poten-
tials; for example, the concepts do not detect that the RFM sequence (R3 •(R2 •R1))
can be shortened in which R1 is “Rename class C1 into C2”, R2 is “Move class C2

into C3”, and R3 is “Rename class C3 into C4”. The presented concepts would detect
that R1 cannot be fused with R2 and that R2 cannot be fused with R3 because the
resulting RFMs would not implement standard refactorings. However, the concepts
do not detect that R1 can be fused with R3; they do not detect this because the
earlier executed RFM R1 does not generate the piece of code which the RFM R3
transforms later (it actually does generate this code but R2 prevents that we can
detect this from the refactoring parameters).

If the refactoring tool would at random commute either R1 with R2 or R2 with R3,
the above concepts could detect that (reordered) R1 can be fused with (reordered)
R3. We envision that refactoring tools clone RFM sequences and commute RFMs
at random (if possible) in individual cloned sequences; the randomly reordered se-
quences could then be analyzed for fusible RFMs again; the shortest, optimized,
cloned sequence finally could be executed.

Cost-based Optimization

A tool could reduce the time (other) tools need to execute a sequence of RFMs when
the tool would analyze the program which the RFMs shall refactor – the code of this
program is commonly generated by the first Jak-like feature module(s).

A tool could analyze inheritance hierarchies and access modifiers in order to iden-
tify RFMs which affect distinct parts of a program; when the tool can make these
RFMs follow each other directly, the tool then can execute these RFMs in parallel.

11A Hide-Method refactoring replaces the access modifier of a method in order to restrict access as
much as possible [Fow99].

12No code outside a class can reference private members of that class (cf. Sec. 2.1, p. 8).

104

6.2. Reducing the Program-Generation Time

R2
-

R3
-

R7’
-

R4
-

Figure 6.8.: Process of executing two RFMs in parallel [from KLS10a].

There are different ways to determine that RFMs affect distinct parts of a program
(of which we list only a few): RFMs affect distinct parts of a program when they
affect private members of different classes. RFMs affect distinct parts of a program
when they reference unmodified members of classes13 and when these classes are
located in different packages and have no superclasses, subclasses, or API artifacts.
RFMs affect distinct parts of a program when they affect unmodified classes, these
classes (a) are not nested in other classes, (b) have no subclasses, no superclasses,
and no API artifacts, and (c) are located in different packages. As an example,
assume the RFM R3 (“Rename method TempVertex.display()::void into show”) and
an RFM R7 (“Rename method gpl.Vertex.show()::void into insert”); a refactoring tool
could analyze that TempVertex.display()::void and gpl.Vertex.show()::void are unmod-
ified, that the classes TempVertex and gpl.Vertex are in different packages, and that
TempVertex and gpl.Vertex have no subclasses, no superclasses, and no API artifacts.
Thus, the tool could execute R3 and R7 in parallel when it can reorder them to
become direct successors in an RFM sequence (cf. Fig. 6.8).

A tool could also analyze inheritance hierarchies and access modifiers in order to
identify RFMs which are likely cheap (affect less code). For example, if an RFM
is analyzed (a) to transform a piece of code which is modified with private or if an
RFM is analyzed (b) to transform a piece of code that is modified with protected
and located inside a shallow inheritance hierarchy, this RFM probably is cheaper to
execute than an RFM that transforms a piece of code, which is modified with public
inside a deep inheritance hierarchy. The refactoring tool then could try to arrange
cheap RFMs first in the sequence of RFMs because this can help that for a longer
time, memory is not exceeded by loading code – this can reduce the number of buffer
misses and increase performance.

6.2.2. Case Studies

We prototypically implemented the basic concept of the algebraic optimization ap-
proach (e.g., the prototype so far does not check that the sequence to optimize
succeeds). The prototype currently optimizes the RFM sequence of an SPL product
separately before the product is generated (for details, see [KLS10b, Lia10]). We
report now on the evaluation of the prototype in a number of case studies.

13Unmodified members can be accessed only from code of the same package or code of subclasses
of respective host classes (cf. Sec. 2.1, p. 8).

105

6. Practical Issues of Using RFMs

Study Setup

We studied SPLs of different sizes and purposes. For each SPL, we performed three
basic steps: First, we measured the time which the composer tool needed to generate
an SPL product with an unoptimized sequence of feature modules. Second, we
measured the time which the optimizer prototype needed to optimize the feature-
module sequence. Finally, we measured the time which the same composer tool
needed to generate the SPL product with the optimized sequence of feature modules.
We show the measured runtimes in Table 6.3.14 For each of our studies, we selected
only one solitary Jak-like feature module because the optimizer does neither alter
Jak-like feature modules nor their order.

We evaluated our concept and prototype in four case studies: To prove the concept,
we studied the generation of a conceptual list implementation without functionality.
To analyze whether SPLs with functionality can be optimized with our concepts,
we studied a product of an SPL of arcade games which has small-scale Jak-like
feature modules. To analyze whether large-scale Jak-like feature modules and long
RFM sequences can be optimized with our concepts, we studied three products of
an SPL version of a large-scale Eclipse module; a version with a number of RFMs.
To show that optimizing feature-module sequences can impair the generation time
of programs, we report on a product of the SPL version of the archive-access module
ZipMe.

Proof of concept. We analyzed three products of an SPL of conceptual list imple-
mentations (did not define functionality); in these products, different RFM sequences
transformed the code that was generated by the solitary Jak-like feature module. In
a first SPL product, the optimizer fused an RFM, which extracted the API arti-
fact AbstractList from a class List, with multiple reordered RFMs, which all renamed
the extracted API artifact. In the optimized feature-module sequence, a new RFM
extracts the API artifact with the final name in the first place. In a second SPL
product, the optimizer could not fuse two RFMs because predecessor dependencies
prohibited it to reorder the RFMs.

Functionality in Jak-like feature modules. We analyzed a product of an SPL of
arcade games for personal computers and cell phones: TankWar. The study is small-
scale but includes functionality (in contrast to the proof-of-concept study). The
concepts worked well for this study such that we could reduce the time a tool needs
to generate the analyzed SPL product.

14We performed the measurements on a computer with an Intel Core 2 CPU T5500 with 1.66GHz
and 0.99GB RAM running a Microsoft Windows XP SP2. The measurements of Tab. 6.3 are
averages over 10 runs, listed one by one elsewhere [Lia10]. The optimizer generates optimized
and unchanged RFMs into a temporary directory but does not copy the Jak-like feature modules;
we copied the Jak-like feature modules manually into the directory to measure the time the tool
needs to execute the optimized feature-module sequence (to generate the SPL product). We did
not implement the detection of name capture so far. We implemented five fusion rules so far.

106

6.2. Reducing the Program-Generation Time

Table 6.3.: Tool runtimes for feature-module sequences (in ms) [from KLS10a].

Program #
S
L
O

C
α

#
R

F
M

s
(u

n
o
p
t.

)

#
R

F
M

s
(o

p
t.

)

C
o
m

p
o
se

r
ru

n
ti

m
e

(u
n
o
p
t.

)

C
o
m

p
o
se

r
ru

n
ti

m
e

(o
p
t.

)

O
p
ti

m
iz

e
r

ru
n
ti

m
e

P
u
re

o
p
ti

m
iz

a
ti

o
n

ru
n
ti

m
e

Conceptual List (a) 19 5 2 12018.6 9870.4 8934.6 9.4
Conceptual List (b) 19 8 4 12840.7 9546.8 9401.4 9.5
Conceptual List (c) 19 10 4 16359.3 10412.3 9074.6 20.3
TankWar ∼1K 10 4 31934.2 14093.6 8206.3 18.8
Workbench.texteditor (a) ∼16K 10 4 172162.4 83561.1 18749.9 17.2
Workbench.texteditor (b) ∼16K 17 3 253831.2 59731.2 18448.4 23.3
Workbench.texteditor (c) ∼16K 55 3 769617.5 61292.1 77632.7 101.4
ZipMe ∼3K 3 3 20461 20281.4 7867.1 10.8

αlines of source code without RFMs

Large-scale Jak-like feature modules. We analyzed three products of an SPL
version of the Eclipse module ’workbench.texteditor’; a version which includes a
large-scale Jak-like feature module. While generating the SPL products with the
unoptimized RFM sequences, the composer tool executed 10 to 55 RFMs. The opti-
mizer prototype reduced the number of RFMs in all analyzed SPL products to three;
optimization did reduce the time a tool needed to generate the products.

Impairing optimization. We analyzed a product of an SPL version of the archive-
access module ZipMe. In this study, the optimizer could not fuse any RFMs. As a
result, the optimizer runtime must be added to the time the composer tool needs to
execute the unoptimized feature-module sequence; optimization thus is derogatory
in this case.

Discussion

In Table 6.3, we list the runtimes that we measured for the optimizer prototype and
relate them to the runtimes that we measured for the composer tool executing (a) the
unoptimized and (b) the optimized feature-module sequences. In some studied cases,
runtime decreased with optimization by up to 81 % (in the ’workbench.texteditor’(c)
case) and thus our optimization was beneficial here.15 In other cases, runtime in-
creased with optimization by up to 56 % (in the conceptual-list(a) case).16 However,

1581% = (1-(61292.1ms+77632.7ms)/769617.5ms)
16(-56%) = (1-(9870.4ms+8934.6ms)/12018.6ms)

107

6. Practical Issues of Using RFMs

our optimization approach did not fail. The runtime increased mainly because the
optimizer prototype executes separately before the composer tool. For that, times to
load RFMs in the optimizer prototype and times to store the result of the optimizer
prototype contribute to the measured tool runtimes though these times vanish once
both tools are integrated (possible future work).17

To emulate the case, when the optimizer prototype is integrated with the composer
tool, we measured the time which the optimizer prototype needed to only optimize
the loaded RFM sequences (cf. Tab. 6.3, column Pure optimization runtime). As a
result in all but the ZipMe study, runtime decreased remarkably with optimization;
for the ’workbench.texteditor’(c) case, the runtime decreased by even 92 %.18

Our measurements suggest that the optimization benefit corresponds to the size
of Jak-like feature modules; the reason is that the highest runtime reductions could
be achieved for the SPL products which have the Jak-like feature modules of the
largest scale (’workbench.texteditor’(a)-(c)). We assume that the refactoring tool
needs more time to alter and traverse a lot of code than to alter and traverse less
code, and that saving this time has a higher influence with large-scale RFMs.

Our measurements suggest that the optimization benefit corresponds to the length
of RFM sequences; the reason is that the highest runtime reductions could be
achieved for the SPL products for which the longest RFM sequences must be ex-
ecuted (’workbench.texteditor’(a)-(c)). We assume that a growing number of RFMs
increases the potential for fusible RFMs.

Threats to validity. Our measurements depend on how much time the composer
tool needs to load RFMs; if loading an RFM takes a lot of time, then reducing
the number of RFMs saves a lot of time. Our measurements depend on how much
time the composer tool needs to execute RFMs; if to execute a single RFM takes
a lot of time, then reducing the number of RFMs saves a lot of time. To execute
RFMs, we used the only RFM composer tool we know of (cf. Sec. 4.2.3); this tool
was written for flexibility and not for performance and so other composer tools may
behave differently.

The studies were just in part implemented independently from this evaluation (i.e.,
many studies existed before but we added RFMs to them especially for this study).
Evaluating sequences of others remains future work. Nevertheless, we were able to
show that optimizing sequences of feature modules is possible and can be beneficial.

The removal of RFMs includes the removal of precondition checks (if implemented).
We did not distinguish execution times for verification and transformation so far.

17Currently, the optimizer prototype and the composer tool load the RFMs; an integrated tool
would load the RFMs only once and pass them in memory. Currently, the optimizer prototype
writes the optimization result to hard disk; an integrated tool would pass the result in memory.

1892% = (1-(61292.1ms+101.4ms)/769617.5ms)

108

6.3. Multi-Language Support for RFMs

6.2.3. Summary

SPL users can trigger sequences of feature modules by selecting features. The se-
quences a user can trigger may take more time to execute than necessary. In this
section, we showed how a tool can shorten the user-triggered sequences of RFMs in
order to reduce the time a composer tool needs to execute them. We implemented
a prototype and evaluated this prototype in a number of case studies. We observed
that optimization reduced program-generation time in many cases though not all.

6.3. Multi-Language Support for RFMs

Section 6.3 is based on the Diploma thesis of Hagen Schink [Sch10], which was
conducted and supervised in the course of this thesis; extended versions have been

published elsewhere [SK10, SKSL11].

In the previous chapters and sections, we analyzed RFMs for SPLs that were
written using one programming language, only. That is, we concentrated on SPLs
written in the Jak programming language (note that the concepts presented so far
work for every language for which we can describe refactorings in modules). However,
a single program may include (a) pieces of code written in different programming
languages of one programming paradigm, such as C++ (OOP language [Str91]) and
Java (OOP language [GJSB05]), (b) pieces of code written in languages of different
programming paradigms, such as Haskell (functional programming language [Jon03])
and Prolog (logic programming language [CR96]), and (c) noncode artifacts, such as
documentation and models [BSR04, CJ08, For08, GBP04, KWDE98, SKL06]. We
call a program written in more than one language multi-language program. Common
examples of multi-language programs include Java programs that call methods writ-
ten in C++ [Lia99], C++ and Java programs that execute database queries written
in the structured query language (SQL) [Ora05, Sun06], and Java programs that
manipulate artifacts written in extensible markup languages [BEA03, CJ08].

In a multi-language program, artifacts written in different languages can interact
(e.g., due to method calls or due to overloaded mechanism meanings). Refactorings
exist for presumably all languages that support structured artifacts [LBL06, MT04].
When tools implement these refactorings and transform only the artifacts of one
language, relations between different artifacts of a multi-language program may break
and functionality may change (i.e., the refactorings would fail). For example, when
a refactoring tool renames a method in Java artifacts but does not update the C++
artifact, which calls the Java method, then this C++ artifact has a dangling reference
after the refactoring, and linking errors or runtime errors can occur. As a result, we
and others [BSR04, TBD06] conclude: To generate a multi-language program from
feature modules, feature modules must generate and alter all documents of that
multi-language program consistently.

As a first step, we studied whether RFMs can be used to generate a multi-language
program and interestingly, we observed several problems: The refactoring of multi-

109

6. Practical Issues of Using RFMs

language programs (we call such refactorings multi-language refactorings (MLRs))
may involve to alter artifacts which control cross-language interactions in a multi-
language program (i.e., artifacts that do neither define program functionality nor
program state). MLR may depend on the existence of artifacts written in a certain
language rather than on the existence of certain artifacts in a language. MLR may
depend on correct predictions on runtime behavior of methods.

Based on our analysis, we prototypically extended our composer tool such that
RFMs can transform certain multi-language programs; we evaluated the prototype
in case studies and discuss its limitations. We conclude that tools can only automate
general MLR with programmer interaction. Refactorings for specific combinations
of languages are still possible to automate completely.

6.3.1. Analyzing MLR for a Hibernate Application

We extended a product of the GPL to be a multi-language program.19 Specifically,
we extended the product to include artifacts written in the OOP language Java,
the functional programming language Clojure20, and the declarative database-query
language SQL [CB74]. We then refactored the extended GPL product manually to
identify challenges of automating MLR.

In this study, we used the module Hibernate21 to integrate Java artifacts with
the database and thus with SQL artifacts. That is, we used SQL artifacts to first
create database tuples; we then used Hibernate to create objects in the Java program
from the tuples (Hibernate also could update the tuples on behalf of changes to the
Java objects but we did not use this facility). We used Hibernate in property-access
mode [KS06]; that is, we annotated classes to define that the properties of these
classes are to be stored in the database, and we defined access methods to specify and
access these properties. As an example, in Figure 6.9a, we show, how we annotated
class Vertex to make Hibernate synchronize Vertex objects with tuples in the database
table vertices (Lines 1-2); without the @Table annotation, Hibernate would try to
synchronize Vertex objects with tuples of a table Vertex. In Figure 6.9a, we also show
the access methods Vertex.getName()::String and Vertex.setName(String)::void, which
together define the property name of Vertex objects (by name correspondence) –
Hibernate stores the property name of Vertex objects in column name of the database
table vertices. We refactored the multi-language program starting from the Java and
starting from the SQL artifacts; we now report on the three most interesting cases
(more cases are discussed elsewhere [Sch10, SK10, SKSL11]).

• We applied a refactoring to Java artifacts; specifically, we renamed the method
Vertex.getName()::String into getVertexName to distinguish this method from

19 We did not actually extend a GPL product. Instead, we implemented a sample multi-language
program HRManager from scratch [Sch10, SK10, SKSL11], similarly to the example in [KS06].
We transfer the results from HRManager to the GPL example to keep the examples consistent
in this thesis. That is, for this thesis we map names of HRManager to names of the GPL.

20http://clojure.org/ (accessed: November 26,2010)
21http://www.hibernate.org/ (accessed: November 26,2010)

110

6.3. Multi-Language Support for RFMs

1 @Entity
2 @Table(name="vertices")
3 public class Vertex implements Serializable {
4 private String name;
5 public void setName(String name) {
6 this.name = name;
7 }
8 public String getName() {
9 return name;

10 } }

(a) Class of objects to store.

1 CREATE TABLE vertices(
2 name varchar(255)
3);

(b) Database table to store Vertex objects.

1 CREATE TABLE vertices(
2 name varchar(255) CONSTRAINT std_name DEFAULT

’noname’
3);

(c) Database table to store Vertex objects after
Introduce-Default-Value refactoring.

Figure 6.9.: Hibernate annotations to persistently store properties of objects of class
Vertex in the database table vertices [adapted from Sch10].

other methods. We had to update a piece of Clojure code which referenced
Vertex.getName()::String; however, as variables in Clojure do not need to have
a type [VS10], we had to know that the Clojure code actually references the
Vertex method and only this method – a tool, however, cannot predict this
safely at development time [RBJ97, TDDN00].

We had to refactor the complete multi-language program a second time to
rename method Vertex.setName(String)::void into setVertexName; this was nec-
essary because Hibernate otherwise would alert that there exists a property
VertexName with a get-access method but no set-access method. Hibernate
requires such method pair in property-access mode [KS06]; if Hibernate would
have been used in other modes than property-access mode, different actions
would be required from a refactoring tool.

Finally, we had two options to maintain the consistency between the Java arti-
facts and the SQL artifacts: We could (a) rename the column name in database
table vertices to VertexName and update a number of SQL statements22 or we
could (b) add a Hibernate-specific @Column annotation to method getVertex-
Name to instruct Hibernate to synchronize the property VertexName with the
database column name. In this study, we added the annotation.

• We applied a refactoring to SQL artifacts (Fig. 6.9b); specifically, we defined
that the default value for the column name of a tuple of the table vertices should
be noname (Fig. 6.9c, Line 2; Introduce-Default-Value refactoring [Amb03]). To
maintain consistency between artifacts of the multi-language program, we had
to initialize the field name of class Vertex with the new default value noname;
however in doing this, we could not guarantee to maintain the functional-

22As object-oriented refactorings commonly do not discuss runtime entities derived from classes
(objects), we do not discuss runtime entities of database schemas (tuples).

111

6. Practical Issues of Using RFMs

1 String delim = askUser();
2 public void setVertexName(String edgeID) {
3 if (name.indexOf(delim) != −1) {
4 this.name = edgeID.substring(0,edgeID.indexOf(delim));
5 this.neighborName = edgeID.substring(edgeID.indexOf(delim),edgeID.length());
6 } else {
7 this.name = edgeID;
8 } }

Figure 6.10.: Method for which the result is difficult to predict automatically.

1 select sum(i.quantity) from Inventory i

(a) Original statement.

1 select sum(i.numberOfProducts) from Inventory i

(b) Transformed statement.

Figure 6.11.: Manual adjustment of an MLR-study artifact that was written in the
Hibernate query language [from SK10].

ity of those Java methods that behave in a certain way when the field Ver-
tex.name::String is uninitialized (value is null); these methods must change to
make them work with noname as new default value but this might be difficult
(e.g., when noname is used as a value already in those methods though not
as default). Updating a multi-language program automatically, which includes
such methods, might be impossible.

The Java member variables to initialize and their new initialization values can-
not be predicted, in general. That is, the fields to set may be calculated at run-
time by the multi-language program’s methods and the results of these methods
are difficult to predict (static analyses of programs are limited [LSH98]). For
example in Figure 6.10, we show a possible set-access method setVertexName
that calculates the fields to set and that transforms its parameters; it is difficult
to predict for this method which fields should be set by the refactoring and
how.

• We applied a refactoring to the SQL artifacts; specifically, we removed a table
that was no longer needed (Remove-Table refactoring [Amb03]). To maintain
consistency, we had to remove the class which corresponded to the removed
table according to the Hibernate configuration file. In addition, we had to
update this tool-specific (Hibernate-specific) configuration file to avoid runtime
errors.

6.3.2. Case Studies

We prototypically extended the implementation of some refactoring types of our
composer tool to support multi-language programs (according RFMs now implement

112

6.3. Multi-Language Support for RFMs

Table 6.4.: Data on programs used to evaluate RFMs for MLR [adapted from SK10].

Program #Java-SLOCα Refactorings (Start language)

HRManager 428 Remove Table (SQL), Rename Method (Java)
Seam-gen project 164 Rename Method (Java)
Seam DVD store 1714 Push Down Method (Java), Rename Method (Java)
Seam space 1367 Rename Method (Java)

αlines of source code

MLRs to some extent as we explain next). We used this prototype to execute RFMs
on the multi-language program, which we just studied (i.e., HRManager [SKSL11]),
and on different sample multi-language programs of the application framework JBoss
Seam23. All multi-language programs included at least Java artifacts and Hibernate-
related artifacts (Java annotations). Due to technical limitations of our prototype,
we made minor adjustments manually (e.g., we adjusted an artifact of the Hibernate
query language shown in Figure 6.11a to become the artifact shown in Figure 6.11b,
and we adjusted SQL queries that occurred together in a file). We summarize our
studies in Table 6.4.24 For simplicity, our prototype applies Hibernate-specific Java
annotations to avoid updating a number of SQL artifacts.

6.3.3. Summary

We analyzed how a refactoring of an RFM can transform programs that are written
in multiple languages. We found that refactorings, which execute on artifacts written
in one language, may impose functionality changes for artifacts written in other lan-
guages. We observed that updating artifacts on behalf of a refactoring might require
predictions on method results – these predictions are difficult to make automatically.
We observed that tools, which implement MLRs, must maintain configuration files
of modules, which manage the interaction between artifacts in the refactored code;
these tools further must act according to the configuration of these modules in order
to carry out a refactoring correctly.

In our analysis, we observed a trade-off between supported refactorings and sup-
ported languages: Either refactoring tools can support a number of refactorings,
then these tools in our experience can cover only a limited number of languages; or
refactoring tools can cover a high number of languages, then these tools can only
cover a few refactorings; to support a high number of refactorings for a high number
of languages, the tool must consider a high number of concepts for every of these
languages – this hardly scales in terms of implementation effort. As a result, also
the extension that we prototypically implemented for the RFM composer tool is spe-
cific for the analyzed multi-language programs; for example, it expects Hibernate to

23http://seamframework.org/ (accessed: November 26,2010)
24In parts, the studied multi-language programs include artifacts written in languages our prototype

does not support so far. We updated these artifacts manually. In these cases, our prototype
reduced the manual effort to carry out the MLR but did not carry out the MLR automatically
completely.

113

6. Practical Issues of Using RFMs

be used, it expects Hibernate to be used in property-access mode, and it expects
Hibernate annotations to be available.

6.4. Summary

The first challenge we discussed and tackled in this chapter was the detection of
incorrect code in SPLs and SPL products, and its effective correction; we found that
starting to detect and correct errors at the level of a single product can be beneficial
when the SPL involves only Jak-like feature modules and RFMs. We showed how
programmers can semi-automatically correct the SPL based on corrections made in
a single product.

The second challenge we discussed and tackled was the reduction of the time that
a tool needs to generate products of an SPL from a sequence of Jak-like feature
modules and RFMs; we reordered and fused RFMs and we defined what should be
analyzed in Jak-like feature modules in order to reduce the time a tool needs to
generate products of such SPL.

The final challenge we discussed was the consistent configuration of programs
with RFMs when the programs include artifacts written in different languages; we
observed that refactoring tools might need predictions on algorithm results and are
limited by a trade-off between supported refactorings and supported languages. We
were able to provide a partial solution for MLR of multi-language programs. To gain
a fully fletched solution, further research is required.

114

7. Related Work

We now review work that is related to the ideas and concepts we discussed in this
thesis. We group the work with respect to the discussions of the prior chapters.

7.1. Related Work on RFM Concept

In Chapter 4, we proposed to integrate refactorings with feature modules of SPLs
in order to configure the structure of SPL products (i.e., we described refactorings
in SPL modules and used them to generate modules/programs). We reviewed re-
lated approaches on module integration and showed their weaknesses in Section 3.3.
RFMs address these weaknesses (cf. Chap. 4 & 5). That is, SPLs with Jak-like fea-
ture modules and RFMs support an integrated, feature-driven configuration of a
module’s functionality and structure.1 We now distinguish the RFM concept from
the approaches partly discussed in Section 3.3 beyond the strengths and weaknesses
which we already discussed.

Wrappers. Wrappers can make a module compatible with an environment when
this environment expects the module to be written in a different language, whereas
RFMs cannot make a module compatible with an environment when this environ-
ment expects the module to be written in a different language. Wrappers can
remove incompatibilities which RFMs cannot remove; for example, wrappers can
be independent classes which provide the functionality of one class of a module,
whereas RFMs cannot generate independent classes which provide the functional-
ity of one class of a module. Wrappers can add code of missing functionality to
programs [BCL10, ESWH04], whereas RFMs cannot – however, RFMs are inte-
grated with Jak-like feature modules and these Jak-like feature modules can add
such code. Wrappers cannot remove incompatibilities which RFMs can remove; for
example, wrappers cannot provide a new name for a method without introducing a
new scoped name for the method’s hosting class simultaneously. Wrappers cannot
provide access to code of modules that is not part of the module’s API (e.g., to blocks
inside methods), whereas RFMs can provide access to such code by extracting it into
new methods. Wrappers commonly cannot guarantee to maintain functionality of a

1Integrated, feature-driven configuration (cf. Sec.3.3): Users should be able to configure the func-
tionality and the structure of a module. Thereby, users should be able to define configurations
without knowing anything about the module’s implementation. Thus, the configuration of the
structure and the functionality of a module should be based on the concept of features. Finally,
such an approach should ensure that decisions regarding the functionality of a module do not
affect decisions regarding the structure of this module, and vice versa.

115

7. Related Work

module, whereas RFMs do. Wrappers are commonly developed by programmers of
the environment, whereas RFMs are intended to be developed by programmers of
the reusable module; programmers of RFMs thus need to know the module environ-
ments. Thereby, programmers of modules are pointed to the pieces of code inside
the environment, which their modules should interact with, by compiler errors on
dangling references; programmers of environments or wrappers are not pointed to
pieces of code inside the module their environment should interact with.

Automated extension or redefinition of APIs. Researchers explored how to ex-
tend APIs of modules (e.g., to allow environments to access private members of the
modules) [Her08]. Technically, researchers can define pieces of code in the reused
module that should be extended and can define extensions to these pieces [HM07].
In these approaches, the old APIs of modules remain valid after integration, whereas
with RFMs, old APIs do not remain valid.

Researchers defined meta-programs that transform names, parameter values, and
return values of methods of a module as well as names and values of fields; as a result,
such module can be manipulated by a generic algorithm [Nov95, Nov97]. Program-
mers must verify on their own that their meta-programs maintain functionality (if
intended); for example, programmers must verify on their own that parameter val-
ues and return values are transformed consistently. After the transformation, only
the new names remain valid. The meta-programs of these approaches have not been
used to implement configurable features of SPLs, whereas RFMs have been used this
way. With RFMs, programmers do not define meta-programs but only parameters
for meta-programs (of refactoring types). After the transformation of RFMs, only
the new names remain valid.

Refactoring for module integration. Programmers can record a sequence of refac-
torings in a refactoring history. The refactoring history then groups refactorings by
programs and execution time. Programmers can select refactorings in a refactor-
ing history for a refactoring script [Wid07].2 Refactoring scripts finally can update
legacy copies of the refactored program or legacy environments of a refactored mod-
ule [Dev09]. In contrast to refactoring histories, a feature model groups refactorings
(of RFMs) by the features they implement. The transformations (refactorings) in
a refactoring history or refactoring script do not allow programmers to configure
modules with respect to functionality.

Researchers execute refactoring-like transformations on a program to derive a rep-
resentation for this program which is at a higher or lower level of abstraction (e.g.,
they derive COBOL II code from Assembler code or derive code from specifica-
tions) [PR01, PR03, WB95]. In these approaches, refactorings and transformations

2Eclipse documentation (accessed: January 31,2011): http://help.eclipse.org/help33/-

topic/org.eclipse.jdt.doc.user/tasks/tasks-240.htm, http://help.eclipse.org/help-

33/topic/org.eclipse.jdt.doc.user/tasks/tasks-241.htm, http://help.eclipse.org/-

help33/topic/org.eclipse.jdt.doc.user/tasks/tasks-242.htm

116

7.2. Related Work on Algebraic-Property Analysis

are not related to selectable features of an SPL; that is, in these approaches, users
know the code which they change as well as the refactorings.

Annotative SPL approaches. Researchers implemented SPLs using annotative ap-
proaches.3 Annotative approaches implement enumerative program transformations
because by analyzing the code, which an annotation embraces, one knows all the
pieces of code this annotation transforms. Annotative approaches implement mono-
tonic program transformations because they only involve code removal; thus, they
do not support features of refactorings well. To implement an RFM “Rename class
Vertex into ADT” in an SPL implemented with an annotative approach, the program
with all features must include a class Vertex and a class ADT, or a class with two
alternative names; further, the SPL code must include for every reference to Vertex
an alternative reference to ADT. This either introduces code clones or fine-grained
annotations (described to be complex [KAK08]).

Module migration beyond structure. Researchers performed semi-automated vi-
sual analyses to migrate user-interface modules [Ger09]. The migration concerns the
positions of user-interface elements, such as buttons, and their replacement. Instead,
RFMs change the structure of the code of a module.

Aspect refinement vs. RFM refinement. Researchers refined program transfor-
mations (aspects) of aspect-oriented programming, before these researchers executed
the synthesized transformations to generate SPL products [AKLS07]. Similarly, we
refine program transformations (refactorings) of SPLs, before we execute the syn-
thesized transformations to generate SPL products. The (synthesized) aspects may
generate code with new functionality within their input programs, whereas (synthe-
sized) RFMs do not – RFMs only restructure code.

7.2. Related Work on Algebraic-Property Analysis

In Section 4.2, we analyzed refactorings for SPLs and SPL products with respect to
algebraic properties. To be precise, we defined terms and operations of refactorings
and Jak-like feature modules. Based on these terms and operations, we analyzed
whether there are identity operations in the domain of refactorings, whether there are
inverse operations in the domain of refactorings, and whether there are refactorings
that distribute over Jak-like-feature-module execution.

Algebraic properties of program transformations. There are a number of desired
algebraic properties for refactorings with respect to Jak-like feature modules of SPLs
(e.g., distributivity) [BAS08, Bat07b, Bat07c, Bat09, BS07]. Researchers analyzed

3Common annotative approach to implement SPLs (cf. Sec. 2.2.2, p. 12): (a) Implement a program
with all features of the SPL; (b) annotate code with respect to features; (c) remove the code of
unselected features when generating a product.

117

7. Related Work

that rewrite transformations do not distribute over Jak-like-feature-module execu-
tion [BS07]. Researchers formally prove algebraic properties of Jak-like feature mod-
ules [ALMK10]. Our examples and formal proofs show that programmers cannot dis-
tribute refactorings over Jak-like-feature-module execution in general; we were even
able to show that, in theory, distributivity holds only in exceptional cases. Beside
distributivity, we proved the existence of identity operations and inverse operations
in the domain of refactorings.

The operations of refinements and transformations have been analyzed to dis-
tribute in several cases [TBD07]. For example, researchers were able to generate
equal controllers for their domain-specific language of portlets in both ways: (a) ex-
ecute Jak-like feature modules to generate a state chart from state-chart pieces and
translate this state chart to the language of the controller, or (b) translate the state-
chart pieces in the Jak-like feature modules to the language of the controller and
execute the translated Jak-like feature modules. That is, researchers showed among
other things that language translation can distribute over Jak-like-feature-module
execution. We proved that refactoring operations do not generally distribute over
Jak-like-feature-module execution; specifically, we were able to show that, in theory,
refactorings distribute rarely over Jak-like-feature-module execution.

Researchers describe an algebra on patches that allows them to merge concurrent
patch sequences; the resulting integrated sequence can be executed on a program
afterwards [Lyn06]. In contrast to patches, refactorings in RFMs have sophisticated
preconditions that must stop the refactoring of the RFM if they are not met in the
input program of this RFM; the properties which researchers showed for patches thus
cannot be assigned to refactorings smoothly. In contrast to this related work, we an-
alyzed algebraic properties of refactorings with respect to Jak-like-feature-module
execution. With respect to our discussion on correcting functionality er-
rors of SPL products (cf. Sec. 6.1): The algebra on patches allows programmers
to invert transformations in concurrent sequences of transformations, but we invert
transformations (refactorings and refinements) in a single sequence. The algebra
on patches allows programmers to integrate patches with a stand-alone program,
whereas we integrate corrections with all products of an SPL (i.e., with up to mil-
lions of programs). The algebra on patches allows programmers to reorder and
invert transformations to generate an integrated sequence of program transforma-
tions; we reorder and invert in order to propagate corrections from products of an
SPL to feature modules of this SPL. With respect to our discussion on re-
ducing the generation time of SPL products (cf. Sec. 6.2): The algebra on
patches allows programmers to reorder and fuse program transformations of concur-
rent sequences, but our optimization approach reorders and fuses transformations
in only one transformation sequence. The algebra on patches allows programmers
to integrate different sequences, whereas we aim at reducing the length of a single
sequence.

Researchers describe an algebra of model composition and define algebraic prop-
erties for model-composition operators [HKR+07]. In contrast, we define an algebra
on refactorings and code composition of Jak-like feature modules.

118

7.3. Related Work on NFP Configuration

Refactoring of SPLs. Researchers refactor SPLs at the level of models as well
as at the level of code. At the level of models, researchers restructure feature mod-
els [AGM+06]; for example, they remove features which cannot be selected for any le-
gal product. At the level of code, researchers execute feature-oriented refactorings to
transform a stand-alone program into a set of Jak-like feature modules, or to restruc-
ture Jak-like feature modules (cf. Sec. 2.3, p. 16). Aspect-oriented refactoring trans-
forms a program into a base program plus aspects [CBS+07, GJ05, MF04, MF05], or
aspect-oriented refactoring restructures aspects. RFMs apply at code level. RFMs,
however, do neither separate programs into Jak-like feature modules nor into aspects.
RFMs implement object-oriented refactoring types such as Rename Method. None of
the above studies discussed problems which we proved formally for refactoring Jak-
like feature modules. With respect to our discussion on the RFM concept
(cf. Chap. 4): RFMs do not transform the feature modules of an SPL but only their
execution results (individual products of SPLs).

Researchers rename pieces of code in an SPL that is implemented with an anno-
tative approach [Vit03]. These researchers faced problems (e.g., they faced situa-
tions in which they could not decide which pieces of code to rename). To overcome
the problems, they generate parts of different SPL products and in the worst case
they generate a number of products (which can count exponential in the number
of features). We formalized refactorings and Jak-like-feature-module execution in
an algebra to find general underlying concepts and challenges for their combination
(also underlying the problems these researchers faced for renaming).

7.3. Related Work on NFP Configuration

In Section 4.3.2, we discussed how RFMs can be used to configure SPL products
with respect to NFPs. We demonstrated that RFMs can be used to configure SPL
products with respect to the quality of their code, with respect to their performance
and footprint. In the course of this study, we generated RFMs in order to make a
difference for NFPs that is noticeable.

Determining NFPs. Researchers found that NFPs of programs are difficult to de-
termine [SRK+08] and that NFPs are even more difficult to predict for SPL prod-
ucts [SSS07]. We do not predict values for code with respect to an NFP metric (as
others did before [SRK+08]) but proposed heuristics for how to alter code such that
it performs better with respect to NFP metrics; we alter code with refactorings.

Researchers optimize programs with respect to NFPs after they attributed the fea-
tures with values for NFPs [BSTR07, BTR05, ZJ05, ZJY03]. Based on these values,
the researchers calculate feature selections of which the products satisfy NFP con-
straints best. In addition, researchers use these feature-attribute values to prune the
set of selectable features during program configuration [WDS09, WSWN07]. Most
above approaches predict values for products with respect to NFP metrics. We con-
figure NFPs of SPL products without attributing features. We also do not predict

119

7. Related Work

values for generated programs with respect to a given NFP metric. We do not prune
the set of SPL products during program configuration. Nevertheless, we improve
code with respect to NFPs.

Researchers restructure sets of SPL products such that these products expose
smaller footprints. Specifically, when multiple products of an SPL are used simulta-
neously in an environment, the researchers merge the common parts of these products
in a module [LB04]. In contrast, we target NFPs beyond footprint and we improve
individual SPL products with respect to NFPs.

Optimizing stand-alone programs. Researchers optimize stand-alone programs
with respect to an NFP by selecting transformations, which alter the programs with
respect to this NFP; for example, researchers select transformations which perform
partial evaluation [Smi90, Smi91, WS97]. We analyzed how users can configure
NFPs at the level of features (i.e., users do neither need to know any code nor any
refactoring/transformation).

Researchers optimize high-level descriptions of (configurable) programs with re-
spect to NFPs [CDCv03, KPS08, RPB09]. In contrast to their work, we optimize
code. In contrast to work on compiler optimizations [DC94, Sch73, Sri92, WLQ09,
WS91] and platform-driven code generation [PMJ+05], we analyzed the configuration
of NFPs beyond footprint and performance (e.g., we configured code with respect to
its quality).

Removing style problems in stand-alone programs. Researchers propose refac-
torings [NSCP06] and generate sequences of refactorings [Pér08] to reduce the num-
ber of occurrences of well-known style problems in stand-alone programs. We dis-
cussed the generation of RFMs too but not to configure code quality (includes code
style). To configure code with respect to quality metrics, we proposed to define
refactorings (in RFMs) manually because generating these refactorings is controver-
sial [Opd92, RBJ97]. In contrast to the above work, we configure modules with
respect to NFPs and discussed NFPs beyond code style.

Alternative implementations. Researchers configure code with respect to NFPs by
selecting one out of many alternative implementations for the same required piece of
functionality [SRK+08, SSS07, ZJY03]. The researchers then maintain all alternative
implementations in parallel which we argue is laborious and error-prone. RFMs
transform a program towards a different structure so programmers must implement
and maintain a piece of functionality only once in Jak-like feature modules.

7.4. Related Work on Safe Composition

In Section 5.3, we discussed concepts that tools could implement to verify that every
product described in a feature model can be generated without error from feature
modules and can be compiled. Accordingly, we analyzed Jak-like feature modules and

120

7.4. Related Work on Safe Composition

RFMs and recorded in decision trees the effects of executing the modules on scoped
names of pieces of code. We derive composition constraints for feature modules from
these trees and verify these constraints with respect to the feature model using a
SAT solver.

SPL tests. Researchers check in one step that all products of SPLs can be gen-
erated without error and can be compiled. These researchers focus on SPLs in
which program transformations monotonically add code (in Jak-like feature mod-
ules) [AKGL10, DCB09, TBKC07] or monotonically remove code (in annotative SPL
approaches) [CP06, KA08, KKB08], and they focus on program transformations that
enumerate all the pieces of added or removed code. We follow the same goal but
focus on SPLs in which program transformations nonmonotonically add and remove
code, and in which program transformations do not always enumerate all the pieces
of code they transform.

In feedback-driven testing [MPY+04], researchers test SPLs incompletely but in a
structured process. Feedback-driven testing guides a programmer in the case when
an SPL product is found in error: The programmer is guided to test and correct
every product that is in error and all products that differ from a product in error
in exactly one feature; this becomes a recursive process which stops as soon as all
tested products are free of error. With feedback-driven testing, there is neither a
guarantee that the identified error has been corrected in every SPL product nor that
every SPL product is correct. Feedback-driven testing can help to detect compilation
errors and errors in functionality. In contrast, we investigated in safe composition.
Safe composition is an exhaustive search and verifies whether every product of an
SPL can be generated without error and can be compiled. In contrast to feedback-
driven testing, safe composition cannot detect errors in functionality in any product.
Further, our safe-composition approach does not generate any product of an SPL.

In incremental pairwise testing [OMR10], researchers test SPLs incompletely but
in a structured process. According to incremental pairwise testing, programmers gen-
erate and test some SPL products such that every pair of features is tested together
in at least one product. Incremental pairwise testing, thus, finds errors when (a) two
features together act erroneously in a tested SPL product, when (b) two features
together always act erroneously, or when (c) one feature on its own acts erroneously.
When two features together act erroneously but only in a product which was not
tested, this error goes unnoticed. In contrast, we investigated in safe composition.
Safe composition is an exhaustive search and verifies whether every product of an
SPL can be generated without error and can be compiled. In contrast to incremental
pairwise testing, safe composition cannot detect errors in functionality in any prod-
uct. Further, our safe-composition approach does not generate any product of an
SPL.

Researchers verify that every piece of code embraced in #ifdef directives can be
selected in a feature model for at least one SPL product [TSSPL09]. In contrast to
our work, these researchers do not focus on the configured code and so their work is

121

7. Related Work

not on compilability of products.
Researchers describe manually dependencies between modules using API definition

languages (cf. Sec. 2.1, p. 6), design rules [Bat05, BG97], and contracts [Mey92]; tools
can use these descriptions to prevent the selection of incorrect combinations of mod-
ules at program-generation time [Bat05, HKA10, vdS04, WSWN07]. A dependency
described manually can describe that a module depends on unknown modules (which
have particular properties). A dependency described manually can describe compi-
lability constraints and constraints in functionality. Our safe-composition approach
detects dependencies between feature modules automatically. The detected depen-
dencies are only on whether SPL products can be generated without error and can be
compiled; the dependencies do not guarantee that products provide a certain piece
of functionality. A dependency, which a tool can detect with safe-composition tech-
niques, can describe only that a module depends on other known modules. Manual
descriptions can be used to detect errors first at program-generation time, whereas
our safe-composition approach can detect errors already at the time the SPL is de-
veloped.

Program tests and program verification. Researchers analyze properties of in-
dividual program transformations [LJWF02] and of stand-alone programs [EM04,
SdML04] with model-checking techniques, and further analyze properties of stand-
alone programs with static-analysis techniques [APH+08, Eff11, EM04, LSH98]. In
contrast to their work, we verify a high number of programs (all products of an SPL)
simultaneously. Our analysis, however, is only on compilability. We used SAT-solver
technology.

Researchers formalized individual refactorings and preconditions of individual
refactorings in order to prove that these refactorings do not alter functional-
ity [Li06, MEDJ05]. Researchers verify with a functionality model, whether trans-
formations change the functionality of a stand-alone program [RCD09]. We rely on
refactorings to not alter functionality and verify that they can execute without error
inside a flexible sequence of refactorings (i.e., inside a sequence in which refactorings
might be selected but need not be selected). We verify with preconditions whether
refactorings change functionality in any product of an SPL.

Researchers apply unit tests to evaluate the functionality of programs. Unit tests
are samples and so programs still can fail when a unit test succeeds [TTS+08].
Researchers decompose tests with respect to features and synthesize them [OG09].
These approaches test individual products of an SPL one by one, but they so far do
not test all products of an SPL in one step. Our safe-composition approach verifies
all products of an SPL in one step. Our safe-composition approach does not evaluate
functionality but only compilability.

Researchers apply program-verification techniques to evaluate the functionality of
programs. Program-verification techniques commonly require programmers to man-
ually annotate their code with constraints; after this, tools can proof consistency
between a piece of code and its annotation. Researchers can reuse proof steps for

122

7.4. Related Work on Safe Composition

different SPL products [BKS10]. Recently, researchers investigated even the decom-
position of proofs [TSKA11]. While these approaches verify stand-alone programs,
they so far do not verify all products of an SPL in one step. Our safe-composition
approach verifies all products of an SPL in one step. Our safe-composition approach
does not evaluate functionality but only compilability. Those approaches further are
not on nonmonotonic, nonenumerative feature modules.

Nonmonotonic feature modules. Delta modules are nonmonotonic program trans-
formations used to implement SPLs [SBB+10, SD10]. Delta modules can generate
classes, remove classes, and change classes; to change a class, delta modules can alter
the superclass declaration and generate, remove, and rename members of the class
(renaming does not update references so it is not a refactoring [SBB+10]); delta
modules also can synthesize models [HRRS11]. Delta modules enumerate all the
pieces of code they transform, whereas RFMs do not (e.g., a Rename-Class RFM
does not enumerate all methods of which it changes the scoped name or the return-
type name). Delta modules do not need to maintain functionality and thus name
capture is not an issue for their safe composition; RFMs must maintain functionality
and so name capture was an issue (cf. Sec. 5.3.3). Researchers evaluate products of
SPLs, which involve delta modules, one by one with a constraint-based type system
without composing the products [SBD11]; that is, researchers extract data about
provided and required pieces of code from each delta module and test compositions
of these data one by one to test whether a respective product composes safely. Re-
searchers define a partial order for delta modules in an SPL, whereas programmers
define a total order for RFMs; the total order for RFMs however is only required for
the safe-composition approach, which does not exist for delta modules.

Flexible features are nonmonotonic program transformations that are used for
SPLs [EVV09]. Flexible features generate, remove, and modify code in their input
programs. Flexible features never cause dangling references in the programs they
generate because flexible features prune the code, which they aim to add, suitably at
program-generation time. As a result, the program which flexible features generate
will always compile but might contain no code or might contain useless code [EVV09].
Flexible features enumerate all the pieces of code they transform, whereas RFMs do
not. Safe composition of Jak-like feature modules and RFMs does only consider the
complete execution of a program transformation.

Programs as graphs. Researchers represent programs as graphs and enrich these
graphs to ease the implementation of refactoring types and according precondition
checks [EH07, JH06]; others enrich programming languages to ease the implementa-
tion of refactoring types [SVEd09]. These approaches are foundations for precondi-
tion checks but they do not verify sequences of selectable refactorings.

Correctness of programs. Verifying properties of a program (or multiple programs)
does not guarantee that this program works as intended [Smi85]. The reason is

123

7. Related Work

that always different aspects of the real world are neglected in the abstractions of
programs. Our approach to safe composition, thus, does not verify that SPL products
work as intended but only that they can be generated from feature modules without
error and that they can be compiled.

7.5. Related Work on Correcting Functionality Errors of
SPL Products

In Section 6.1, we discussed how programmers can detect and correct errors in func-
tionality in SPLs which involve nonmonotonic, nonenumerative feature modules. We
compared whether programmers should start at the level of feature modules or at
the level of single SPL products to detect and correct errors. We concluded that
starting at the level of single SPL products can be beneficial.

Connecting code at different levels of abstraction. Researchers can relate code of
program transformations to code of programs which these transformations generate;
these relations then allow programmers to detect errors of a program at the level of
the transformations [ARLS05, PMS06, Sun03, vDD94, vDKT93]. In contrast to the
work of these researchers, we compared for SPLs (a) error detection at the level of
feature modules with (b) error detection at the level of a single SPL product. In
addition, we compared for SPLs (a) error correction at the level of feature modules
with (b) error correction at the level of a single SPL product. The correction of SPLs
at the level of a single product has so far only been analyzed for SPLs implemented
with Jak-like feature modules [Bat06] or with frameworks [CFL03], whereas we fo-
cus on SPLs implemented with nonmonotonic, nonenumerative feature modules. We
analyzed how programmers can correct SPLs at the level of a single SPL product
when these SPLs involve Jak-like feature modules and nonmonotonic, nonenumera-
tive feature modules such as RFMs.

Researchers discovered problems for detecting errors in a program that was gener-
ated with aspect-oriented programming4; these problems are similar to some prob-
lems we discussed (they do not discuss error correction) [EAH+07]: For example,
when these researchers detected errors at the level of the base program (without
looking at aspect code), aspects caused unexpected control-flow jumps or caused the
display of incorrect code. As a result, these researchers suggest to detect errors at the
level of the generated SPL product, which includes the aspect code. We discussed
error detection and error correction for SPLs, which involve refinements (often times
similar to aspects [AKKL07, KRAL07]) and refactorings.

Researchers keep different artifacts such as models synchronized (e.g., with user-
defined bidirectional transformations) [CFH+09, FGM+05, HMT04, Kör10, Pie09].
We defined an algorithm to keep an SPL product synchronized with the feature

4Aspect-oriented programming separates code of a program into a base program and a set of
aspects; aspects mainly add code to the base program [KHH+01].

124

7.5. Related Work on Correcting Functionality Errors of SPL Products

modules, which generate the product. The particular use case of bidirectional trans-
formations being SPL feature modules has not been discussed before. Prior work
synchronizes a model with a second model, whereas we synchronize the code of a
product of an SPL (might correspond to a model) with feature modules of this SPL
(corresponds to model transformations). With respect to our discussion on
refactoring multi-language programs (cf. Sec. 6.3): Synchronization tasks in
the cited approaches have not been used to trigger refactorings among artifacts of a
multi-language program.

Compiler-optimized programs. Researchers detected errors in binaries of stand-
alone programs at the level of the source code (i.e., code that was used to generate the
binaries) [AT96, CIBR00, Fai98, FNP97, HCU92, Hen82, Str91, VRFS08, WGM08,
Zel83]. In contrast, we analyzed how programmers can detect errors in feature mod-
ules at the level of a single generated program; a program which was generated from
the feature modules before. In addition, we analyzed how programmers can correct
products at the level of these single SPL products.

Refactoring during error correction. Researchers detect and invert refactor-
ings which they executed during error correction of a stand-alone program; they
do so to simplify the manual merge of that program with a legacy version of
it [Dig07, DMJN07, DMJN08]; as a result, only the edits remain conflicts for the
merge. We do not invert refactorings before we identify a correction but afterwards
(to calculate good propagation targets). We do not propagate corrections to a stand-
alone program but to feature modules of an SPL. With respect to our discussion
on reducing the generation time of SPL products (cf. Sec. 6.2): We do not
reorder, fuse, and adapt refactorings to merge versions of a program but to reduce
the time a tool needs to execute these refactorings.

Maintenance through transformation. Programmers can define program transfor-
mations (maintenance deltas) to correct a program [Bax90]. Design-maintenance
systems can execute these transformations consecutively to generate the corrected
program [Bax90, Bax92, BP97, BPM04]. The main focus of design-maintenance
systems is to record rationales for decisions which programmers consecutively make
to implement a program; these records then shall help programmers to understand
the finally generated program [Bax90]. In line with design-maintenance systems,
we use a transformation-history concept. Design-maintenance systems could ben-
efit from propagating corrections toward (legacy abstractions of) stand-alone pro-
grams [Bax90]; in contrast, we propagate corrections toward the feature modules of
an SPL. With respect to our discussion on the RFM concept (cf. Chap. 4):
In contrast to design-maintenance systems, we focus on SPLs, and SPLs do not in-
volve maintenance deltas and rationales but selectable features. With respect to
our discussion on optimizing NFPs of SPL products (cf. Sec. 4.3.2): Design-
maintenance systems can optimize a program for performance goals [Bax90, Bax92];

125

7. Related Work

we followed this research and gave precise guidelines for how to configure a pro-
gram with refactorings (in RFMs) with respect to NFPs. With respect to our
discussion on reducing the generation time of SPL products (cf. Sec. 6.2):
Design-maintenance systems reorder, update, and replace transformations to inte-
grate a new transformation with an existing sequence of program transformations
(the transformation history) [Bax90]; we reorder, update, and replace sequenced
transformations to reduce the time a tool needs to execute these transformations.
(The fusion of transformations was indicated for design-maintenance systems but no
precise rules were given.)

7.6. Related Work on Reducing the Program-Generation
Time

In Section 6.2, we analyzed how programmers can reduce the time a tool needs to
generate an SPL product with refactorings. To be precise, among other things, we
analyzed sequences of refactorings that are executed in the course of generating an
SPL product and fused refactorings where possible.

Fast execution of refactoring sequences. Researchers describe and fuse verifica-
tion phases of sequenced refactorings to reduce the time a tool needs to execute
these refactorings [CN00, KK04, Kni06, Rob99]. In contrast, we fused sequenced
transformation phases of refactorings to reduce the time a tool needs to execute
these refactorings. With respect to our discussion on safe composition of
nonmonotonic, nonenumerative feature modules (cf. Chap. 5): We do not
verify the preconditions of refactorings inside a fixed sequence of refactorings but
inside a flexible sequence of refactorings (in which refactorings might be selected or
might be not selected). Once we checked safe composition for an SPL, we could omit
precondition checks for the involved refactorings because we then checked that no
refactoring fails in any legal SPL product.

Researchers execute sequenced refactorings in parallel to reduce the time a tool
needs to execute this sequence [MTR07, Rob99]. In those approaches, dependency
graphs are calculated to reveal refactorings that can be executed in parallel. To avoid
undesired interactions between refactorings, which execute in parallel, the researchers
locked parts of the program for individual refactorings. In contrast, we proposed to
analyze the program to refactor before we execute RFMs in parallel and proposed
to detect sets of pieces of code of a program that each could contain all code a
refactoring transforms; we further proposed to determine whether two refactorings
interfere or whether they target different, distinct detected code sets; if they target
different distinct sets, both refactorings can be executed in parallel.

Researchers relate the execution of program transformations to arrows of category
theory [Bat07a, Bat07b, Bat08]. These researchers motivate that different sequences
of program transformations may generate equal programs but may differ in the time a
tool needs to execute either sequence. The work of these researchers is the foundation

126

7.6. Related Work on Reducing the Program-Generation Time

of our work because we defined a set of precise rules for how to generate sequences of
refactorings, which all generate equal programs but which all may differ with respect
to the time a tool needs to execute them.

Fast execution of a single program transformation. Researchers analyze how to
reduce the time a tool needs to execute a tree traversal [Fai98]. Researchers optimize
rewriting algorithms of composite transformations [JV01]. We also aim at executing
transformations faster. However, we analyze no individual transformations and no
composite transformations but sequences of transformations (refactorings).

Dependencies between program transformations. Researchers analyze dependen-
cies between program transformations or between refactorings to calculate possible
orders for their execution; orders in which either no transformation fails or only a
few [MKR06, MTR07, WS97]. We detect dependencies such that we can reorder
refactorings in a given sequence without changing the program this sequence gener-
ates. With respect to our discussion on safe composition of nonmonotonic,
nonenumerative feature modules (cf. Chap. 5): We do not look for the best
order to execute refactorings but we verify that refactorings execute safely for a given
order (in different combinations).

Query optimization in database management systems. Algebraic and cost-based
optimization of transformation sequences in SPLs is similar to algebraic and cost-
based optimization of data transformations, which answer user queries in relational
databases. That is, database users define queries; the database management sys-
tem translates these queries into sequences of data transformations; the database
management system rewrites these sequences to reduce the time a tool will need
to execute them; finally, the database management system executes the rewritten
sequences [Cha98, Hal76, SH99]. Database management systems rewrite sequences
of data transformations without analyzing the data in the database (researchers call
this algebraic optimization) and with analyzing the data in the database (researchers
call this cost-based optimization) [Hal76, JK84, SC75]. We gave rules for how to
rewrite user-defined sequences of program transformations; we proposed to rewrite
these sequences without analyzing the code to transform (we called this algebraic
optimization; cf. Sec. 6.2.1) and with analyzing the code to transform (we called this
cost-based optimization; cf. Sec. 6.2.1).

The relationship between transformation systems and database management sys-
tems with respect to optimization of user queries is well-known [Bat04]. In line
with our work, researchers transform and optimize user-defined sequences of pro-
gram transformations [Bat04]. However, while they aim to change (improve) the
generated program, we aim not to change the program but to reduce the time a tool
needs to generate this program (to execute the sequenced transformations).

Distributed database management systems can execute transformations of a single
sequence of data transformations in parallel on different computers to reduce the time

127

7. Related Work

they need to execute these transformations [AHY83, Cha98, JK84]. In contrast, we
discussed how tools can parallelize a sequence of program transformations to reduce
the time these tools need to execute these transformations.

7.7. Related Work on Multi-Language Support for RFMs

In Section 6.3, we reported on a study in which we applied refactorings and RFMs
to multi-language programs. We observed a number of problems such as the correct
prediction of method results.

Concurrent program descriptions. Researchers study the synchronous refactoring
of concurrent descriptions of one program (or a piece of code therein; e.g., different
UML models of one program) [BCPV07, COV06, GSMD03, Läm04, LP07, SPTJ01].
We analyze artifacts which do not describe the same piece of code of a program
but which describe different pieces of code of a program. Researchers automate
or analyze the synchronized transformation of related artifacts beyond refactor-
ing [AC08, CHH05, Läm04]. Researchers automate rename refactorings for multi-
language programs implemented with Java artifacts, SQL artifacts, and artifacts of
Hibernate-like modules [TTS+08]. We analyzed different languages and transfor-
mations (refactorings) than most of the above analyses did, and we found different
general problems for MLR than the above analyses did.

Researchers describe an impedance mismatch to describe the conceptual differences
between objects of an object-oriented program and tuples in a relational database
when both represent the same entities [IBNW09]. Impedance mismatch is the main
reason for most of our problems in implementing MLRs. Researchers identified in
part the same challenges before as we identified in our study; in contrast to their
work, we analyzed more than OOP languages and query languages of relational
databases. While they concentrated on how to establish relations between artifacts,
we concentrated on and faced problems for how to maintain these relations in refac-
torings.

Model integration. Researchers integrated meta-models of different lan-
guages [CJ08, GBP04, KWDE98, Mei06, SKL06, TDDN00]. The integrated meta-
models include the join of (relevant) single-language concepts or the intersection
of single-language concepts and related concepts, or researchers slightly altered at
least one language. Some of these researchers refactored multi-language programs
using their meta-model and some used their models only to present and understand
code [KWDE98, Lin95, LTP04]. We did not use these approaches, however, because
we see the following disadvantages:

(a) If we join language concepts, then every piece of code of a multi-language
program implements an element in the meta-model and we can change every
piece on behalf of a refactoring. The approach however does not scale well in the
number of languages because the more meta-models of languages we join, the

128

7.7. Related Work on Multi-Language Support for RFMs

more concepts must be concerned in a single refactoring-type implementation,
which is based on the meta-model.

(b) If we intersect language concepts then pieces of code, which do not implement
a meta-model concept, cannot be transformed with this meta-model on behalf
of a refactoring (can cause inconsistencies) [TDDN00]. The approach further
does not scale well in the number of languages because the more meta-models of
languages we intersect, the fewer concepts remain in the meta-model; striving
to nearly useless meta-models.

(c) If we alter at least one language, then we must rewrite at least one compiler,
too. A language alteration may further debase concepts that have been proven
useful.

In our study we found general problems of MLRs (defined in RFMs); problems that
were not reported so far or that were not related to refactorings so far.

Generalization of single-language refactorings. Generic refactorings [Läm02] de-
fine refactoring types in a language-independent way such that they can be instan-
tiated for different languages. We analyzed how to refactor a single program which
at the same time includes artifacts written in different languages.

Researchers explore preconditions of MLRs for programs written in languages of
OOP in general, or have implemented MLRs for such programs [DLT00, KKKS08a,
NSCP06, Mar05, TDDN00]. We evaluated a multi-language program which in-
volves artifacts of OOP languages and non-OOP languages. Furthermore, re-
searchers explore MLRs for multi-language programs that include artifacts writ-
ten in OOP languages and particular other languages, such as the hypertext
markup language [KKKS08a, KKKS08b, SKL06]; in these studies, all languages
were based on a common intermediate language. Researchers update artifacts when
database schemata changed [CHH05]. Researchers transform code without a stan-
dard database refactoring (according to [Amb03]) such that this code uses a differ-
ent database management system after the transformation [CHH05, Cle09]; these
researchers observed that analyses of method functionality was needed but was up
to impossible [Cle09]. Researchers evolve multi-language programs beyond refactor-
ing [VV08]. We executed standard refactorings (according to [Amb03, Fow99]) on a
multi-language program but still faced the problem of analyzing the functionality of
methods. Researchers execute refactorings on databases and update programs, which
used these databases [Cle09, CMZ08], but in contrast to our work, they did not use
object-relational mappers such as Hibernate and did not identify the problems we
identified for MLR.

129

8. Conclusion

Modules are beneficial when their code can be reused. To reuse the code of a module
as is, the functionality of this module is as important as its structure. If a programmer
requires a module to provide some functionality but the module does not provide it,
the programmer cannot reuse the module as is. If a programmer requires a module
to provide some structure but the module does not provide it, the programmer
cannot reuse the module as is, too. Researchers identified the dilemma that modules
frequently cannot be reused because they either provide an unsuitable functionality,
an unsuitable structure, or both (cf. Sec. 3.2). To tackle the problem of unsuitable
functionality, researchers proposed software product lines (SPLs) before (i.e., sets of
programs which differ in features (distinguishable program characteristics) and share
features; cf. Sec. 2.2).

In this thesis, we introduced a new approach that extends techniques of SPL engi-
neering to allow users to configure the structure (e.g., the names and allocations of
pieces of code) of a module in addition to its functionality. That is, our approach to
configure the structure of a module integrates well with approaches, which already
allow users to configure the functionality of a module. As a result, users can now con-
figure the functionality and the structure of a module. For this configuration, they
do not need any knowledge regarding the implementation of a module (i.e., we pro-
vide techniques that allow users to configure the structure of a module based on the
concept of features; techniques that allow users to configure functionality based on
features already exist). Our approach ensures that decisions regarding the function-
ality of a module do not affect decisions regarding the structure of this module, and
vice versa. We called this an integrated, feature-driven configuration of a module’s
functionality and structure. Henceforth, if a module provides unsuitable function-
ality, users can (as before) configure the module to provide suitable functionality;
if a module provides unsuitable structure, users can now configure the module to
provide suitable structure. Specifically, we extended techniques of SPL engineering
that allow users to synthesize a module from SPL modules, which are dedicated to
features (so-called feature modules); specifically, we extended these SPL-engineering
techniques to configure the structure of the synthesized modules. After this, we gen-
eralized different techniques, which work for common modules of SPLs to work with
the new SPL modules that we proposed.

8.1. Summary of the Thesis

In Chapter 3, we reported on preliminary studies in which we could not reuse a
module, which had suitable functionality, because this module had an unsuitable

131

8. Conclusion

structure. We reviewed the underlying dilemma of module scalability and summa-
rized descriptions of this dilemma in literature. Finally, we summarized existing
approaches, which tackle the dilemma of module scalability; we discovered strengths
and weaknesses for all of them.

In Chapter 4, we introduced a new approach that extends techniques of SPL en-
gineering to support an integrated, feature-driven configuration of modules. Specif-
ically, we integrated refactorings, which are program transformations that alter the
structure but not the functionality of modules, with feature modules of SPLs – we
called the resulting new feature modules refactoring feature modules (RFMs). We
discussed implementation approaches for RFMs by analyzing refactorings with re-
spect to other feature modules, algebraically. Finally, we discussed studies in which
we used RFMs (a) to integrate modules with programs and (b) to configure nonfunc-
tional properties of programs.

In Chapter 5, we discussed approaches of safe composition, which verify whether
all products of an SPL can be generated without error and can be compiled. These
approaches did not work when SPLs involved RFMs because the concepts of these
approaches assume feature modules to monotonically remove code or to monotoni-
cally add code, and to enumerate all pieces of code the modules transform (we called
these feature modules monotonic, enumerative feature modules). We generalized
existing concepts, which were used to verify safe composition for monotonic, enu-
merative feature modules before [TBKC07], to cover RFMs; that is, we extended the
concepts to cover feature modules that nonmonotonically add and remove code, and
that do not always enumerate all transformed pieces of code (we thus called RFMs
nonmonotonic, nonenumerative feature modules).

In Chapter 6, we discussed RFMs in three respects: First, we discussed how pro-
grammers can correct SPL products when these products were generated with RFMs.
Second, we discussed how tools can reduce the time which (other) tools will need to
execute sequenced RFMs (i.e., the time which these tools will need to generate an
SPL product with RFMs). Finally, we discussed the refactoring of programs, which
involve artifacts that are written in multiple languages.

In Chapter 7, we related all approaches presented in this thesis and all discussions
of this thesis to approaches and discussions presented elsewhere.

8.2. Contribution

Most importantly, we extended an SPL approach to configure the structure of mod-
ules, we generalized an approach to verify safe composition for SPLs, and we evalu-
ated practical issues of configuring the structure of modules with our new technique.

Extension of SPL approach to configure the structure of modules. We discussed
a new approach that extends techniques of SPL engineering, which already allow SPL
users to configure the functionality of a module, to support an integrated, feature-
driven configuration of a module’s functionality and structure. In our approach,

132

8.2. Contribution

essentially, we integrate feature modules of SPLs with refactorings (i.e., with pro-
gram transformations which alter the structure but not the functionality of modules).
We called this approach refactoring feature modules (RFMs). We implemented a pro-
totype to integrate monotonic, enumerative feature modules and RFMs. In studies
we observed that RFMs can help to remove incompatibilities between a module and
a program, and to configure nonfunctional properties of programs/modules.

Generalized approach to verify safe composition for SPLs. We generalized the
concepts of an existing approach, which verifies safe composition of an SPL, to sup-
port SPLs with more expressive feature modules (i.e., we generalized the concepts
of an approach which verifies that all products of an SPL can be generated with-
out error and can be compiled). The concepts of existing approaches yet support
only SPLs implemented with monotonic, enumerative feature modules. We general-
ized the concepts of one of these approaches, to support SPLs with nonmonotonic,
nonenumerative feature modules.

We observed that we were hardly able to verify safe composition manually for
SPLs with nonmonotonic, nonenumerative feature modules. The reason was that
dependencies between nonmonotonic, nonenumerative feature modules became com-
plex more rapidly than we expected. For example, in an SPL with nonmonotonic,
nonenumerative feature modules, a single feature module may depend at the same
time on that a sequence of feature modules executes before, that a sequence of feature
modules does not execute before, that individual feature modules execute before, and
that individual feature modules do not execute before. In the end, we realized that
we depended ourselves on the prototype, which we developed, to verify safe compo-
sition of the studied SPLs. Nevertheless, we argue that RFMs are useful (e.g., to
integrate modules with programs; cf. Sec. 4.3) and that complexity can be brought
under control using tools.

Evaluation of practical issues of using RFMs. We were able to describe abstract
requirements for tools that allow programmers to execute arbitrary object-oriented
refactorings in monotonic, enumerative feature modules of SPLs; this analysis is im-
portant because it provides programmers of (future) refactoring tools with abstract
descriptions of cases they must attend (it further helped us with our own imple-
mentation decisions). We compared approaches to detect and correct errors in the
functionality of products of SPLs, which involve nonmonotonic, nonenumerative fea-
ture modules; surprisingly, the detection and correction of errors at the level of the
feature modules did not outperform the detection and correction of errors at the
level of a single product. We were able to prototypically implement a tool, which
propagates changes from an SPL product to the feature modules of its SPL. We
investigated an approach that optimizes sequenced refactorings to reduce the time
a tool needs to execute these refactorings. We were able to prototypically automate
the approach and to reduce the time a tool needed to execute sequences of refactor-
ings. Finally, we investigated the refactoring of programs written with artifacts in

133

8. Conclusion

more than one language; surprisingly, the functionality became difficult to maintain
and the refactoring actions depended on tools, which the refactored program used.
We were able to identify new problems of the refactoring of programs written with
artifacts in more than one language, and to present a partial, automated solution for
refactoring these programs.

8.3. Future Work

We did not focus on the graphical representation of RFMs so far (e.g., in user in-
terfaces). We believe that a number of the unexpected errors we detected in our
discussion on safe composition (cf. Chap. 5) were caused by the insufficient graphical
support to represent RFMs. Future work could investigate such graphical concepts
for RFMs. One option could be to represent the decision trees graphically, which
we proposed during our investigation on safe composition. Predictable challenges to
tackle then are how to represent the possibly high number of decision trees at the
same time, or how to select important trees.

We did not evaluate in which cases, module reuse becomes less important than
complexity, and to what extend, tools as we prototypically implemented to check
for safe composition are suitable to bring complexity under control. An answer to
this question certainly must take the preferences of programmers into account. A
possible direction for future work would be to investigate in user studies and metrics
which relate the worthiness of reusing a module (e.g., using the numbers of reused
lines of code) to the complexity of reusing it (e.g., using the number of decisions
exposed by a module regarding its structure). This balance between the importance
of reuse and complexity certainly also could be evaluated with industrial partners.

We concentrated on standard refactorings according to catalogues and the compo-
sition of these refactorings. It remains to be shown whether nonstandard refactor-
ings are beneficial or even required in RFMs. An answer to this research question
also could answer whether nonstandard refactorings are practically important and
whether to automate them pays off. To answer this question, again costs could be
taken into account for (a) implementing nonstandard refactorings and for (b) saving
a programmer’s effort of applying these refactorings. Meaningful cost analyses again
can better be undertaken with industrial partners and user studies.

We reduced the time a tool needs to execute sequenced refactorings (e.g., we fused
sequenced refactorings; cf. Sec. 6.2). This goal could also be investigated for other
tools that execute sequenced program transformations. That is, future work could
investigate the optimization of sequences of arbitrary program transformations to
reduce the time a tool needs to execute these sequences.

We refactored programs written with more than one language (cf. Sec. 6.3). One
problem we faced was that functionality preservation had a different meaning for
different languages. For example, the functionality of a database is only preserved
when refactorings update runtime entities of this database (tuples) [Amb03], whereas
functionality of a program is preserved without updating runtime entities of this

134

8.3. Future Work

program (e.g., objects for programs of object-oriented programming) [Fow99]. Future
work thus could integrate different models of functionality (preservation) though we
do not expect a refactoring approach which covers arbitrary languages and arbitrary
refactorings.

We showed that RFMs do not fit into existing algebras of feature-oriented software
development (cf. Sec. 4.2.2). Future work thus could extend the algebras to cover
RFMs and other nonmonotonic or nonenumerative feature modules. Predictable
challenges to tackle then for RFMs are to encode relations between pieces of code
algebraically. In the same discussion, we formulated challenges that programmers
face when they implement refactoring tools for SPLs; to overcome those challenges
(i.e., to implement a general refactoring tool for SPLs), might also be worth future
investigations.

We faced problems when we refactored artifacts of languages such as Clojure that
allow variables to have no types (cf. Sec. 6.3). Specifically, we could not automatically
relate pieces of code unambiguously to each other and thus could not automate a
decision on whether one piece of code should be updated on behalf of the refactoring
of another piece of code. Future work thus could investigate semantic models for
artifacts of these languages in order to support refactoring safely.

We observed that different modules in one program might demand a single module
to have different, conflicting interfaces (cf. Sec. 4.3.1). Future work might generate
wrappers from RFMs to emulate alternative structures for a single module at the
same time. This line of research also might investigate, what is a good balance
between refactorings and wrappers. User studies again would be helpful.

135

A. Appendix

Further Cases of the Proof Regarding Distributivity [from
KKAS11]

Case #3 ((Q1 ∩Q3 = Q3), (Q1 ∩Q4 = ∅), (Q2 ∩Q4 6= ∅)):

RQ3 7→Q4
(〈(Q1 ∪Q2);X〉)

= ((〈(Q1 ∪Q2);X〉 ⊖Q3)⊕Q4) (4.5)
= (〈((Q1 ∪Q2)\Q3);X〉 ⊕Q4) (4.4)
= 〈((Q1 ∪Q2)\Q3); ǫ 〉 (4.2)
E

Case #4 ((Q2 ∩Q3 = Q3), (Q1 ∩Q4 6= ∅), (Q2 ∩Q4 = ∅)):

RQ3 7→Q4
(〈(Q1 ∪Q2);X〉)

= ((〈(Q1 ∪Q2);X〉 ⊖Q3)⊕Q4) (4.5)
= (〈((Q1 ∪Q2)\Q3);X〉 ⊕Q4) (4.4)
= 〈((Q1 ∪Q2)\Q3); ǫ 〉 (4.2)
E

Case #5 ((Q1 ∩Q3 = Q3), (Q2 ∩Q3 = Q3), Q3 = Q4):

RQ3 7→Q4
(〈(Q1 ∪Q2);X〉)

= ((〈(Q1 ∪Q2);X〉 ⊖Q3)⊕Q4) (4.5)
= (〈((Q1 ∪Q2)\Q3);X〉 ⊕Q4) (4.4)
= 〈(((Q1 ∪Q2)\Q3) ∪Q4);X〉 (4.2)
= 〈(((Q1\Q3) ∪ (Q2\Q3)) ∪Q4);X〉
= 〈(((Q1\Q3) ∪Q4) ∪ ((Q2\Q3) ∪Q4));X〉
= (〈((Q1\Q3) ∪Q4);X〉 • 〈((Q2\Q3) ∪Q4);X〉) (4.3)
= ((〈(Q1\Q3);X〉 ⊕Q4) • 〈((Q2\Q3) ∪Q4);X〉) (4.2)
= (((〈Q1;X〉 ⊖Q3)⊕Q4) • 〈((Q2\Q3) ∪Q4);X〉) (4.4)
= (((〈Q1;X〉 ⊖Q3)⊕Q4) • (〈(Q2\Q3);X〉 ⊕Q4)) (4.2)
= (((〈Q1;X〉 ⊖Q3)⊕Q4) • ((〈Q2;X〉 ⊖Q3)⊕Q4)) (4.4)

= (RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉)) (4.5)
�

137

A. Appendix

Case #6 ((Q1 ∩Q3 = Q3), (Q2 ∩Q3 = Q3), Q3 6= Q4, ((Q1\Q3) ∩Q4 6= ∅)):

(RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉))

= (((〈Q1;X〉 ⊖Q3)⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.5)

= ((〈(Q1\Q3);X〉 ⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.4)

= (〈(Q1\Q3); ǫ〉 • RQ3 7→Q4
(〈Q2;X〉)) (4.2)

= (〈(Q1\Q3); ǫ〉 • 〈Q5; e1〉) (RQ3 7→Q4
(〈Q2;X〉) = 〈Q5; e1〉)

= 〈(Q1\Q3); ǫ 〉 (4.3)
E

Case #7 ((Q1 ∩ Q3 = Q3), (Q2 ∩ Q3 = Q3), Q3 6= Q4, ((Q1\Q3) ∩ Q4 =
∅), ((Q2\Q3) ∩Q4 6= ∅)):

(RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉))

= (((〈Q1;X〉 ⊖Q3)⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.5)

= ((〈(Q1\Q3);X〉 ⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.4)

= (〈((Q1\Q3) ∪Q4);X〉 • RQ3 7→Q4
(〈Q2;X〉)) (4.2)

= (〈((Q1\Q3) ∪Q4);X〉 • ((〈Q2;X〉 ⊖Q3)⊕Q4)) (4.5)
= (〈((Q1\Q3) ∪Q4);X〉 • (〈(Q2\Q3);X〉 ⊕Q4)) (4.4)
= (〈((Q1\Q3) ∪Q4);X〉 • 〈(Q2\Q3); ǫ〉) (4.2)
= 〈((Q1\Q3) ∪Q4); ǫ 〉 (4.3)
E

Case #8 ((Q1 ∩ Q3 = Q3), (Q2 ∩ Q3 = Q3), Q3 6= Q4, ((Q1\Q3) ∩ Q4 =
∅), ((Q2\Q3) ∩Q4 = ∅)):

(RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉))

= (((〈Q1;X〉 ⊖Q3)⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.5)

= ((〈(Q1\Q3);X〉 ⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.4)

= (〈((Q1\Q3) ∪Q4);X〉 • RQ3 7→Q4
(〈Q2;X〉)) (4.2)

= (〈((Q1\Q3) ∪Q4);X〉 • ((〈Q2;X〉 ⊖Q3)⊕Q4)) (4.5)
= (〈((Q1\Q3) ∪Q4);X〉 • (〈(Q2\Q3);X〉 ⊕Q4)) (4.4)
= (〈((Q1\Q3) ∪Q4);X〉 • 〈((Q2\Q3) ∪Q4);X〉) (4.2)
= 〈(((Q1\Q3) ∪Q4) ∪ ((Q2\Q3) ∪Q4));X〉 (4.3)
= 〈(((Q1\Q3) ∪ (Q2\Q3)) ∪Q4);X〉
= 〈(((Q1 ∪Q2)\Q3) ∪Q4);X〉
= (〈((Q1 ∪Q2)\Q3);X〉 ⊕Q4) (4.2)
= ((〈(Q1 ∪Q2);X〉 ⊖Q3)⊕Q4) (4.4)

= RQ3 7→Q4
(〈(Q1 ∪Q2);X〉) (4.5)

�

138

Case #9 ((Q2 ∩Q3 6= Q3)):

(RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉))

= (RQ3 7→Q4
(〈Q1;X〉) • ((〈Q2;X〉 ⊖Q3)⊕Q4)) (4.5)

= (RQ3 7→Q4
(〈Q1;X〉) • (〈Q2; ǫ〉 ⊕Q4)) (4.4)

= (RQ3 7→Q4
(〈Q1;X〉) • 〈Q2; ǫ〉) (4.2)

= (〈Q5; e1〉 • 〈Q2; ǫ〉) (RQ3 7→Q4
(〈Q1;X〉) = 〈Q5; e1〉)

= 〈Q5; ǫ 〉 (4.3)
E

Case #10 ((Q1 ∩Q3 6= Q3)):

(RQ3 7→Q4
(〈Q1;X〉) • RQ3 7→Q4

(〈Q2;X〉))

= (((〈Q1;X〉 ⊖Q3)⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.5)

= ((〈Q1; ǫ〉 ⊕Q4) • RQ3 7→Q4
(〈Q2;X〉)) (4.4)

= (〈Q1; ǫ〉 • RQ3 7→Q4
(〈Q2;X〉)) (4.2)

= (〈Q1; ǫ〉 • 〈Q5; e1〉) (RQ3 7→Q4
(〈Q2;X〉) = 〈Q5; e1〉)

= 〈Q1; ǫ 〉 (4.3)
E

139

Bibliography

[AC08] M. Antkiewicz and K. Czarnecki. Design space of heterogeneous syn-
chronization. In Proceedings of the Summer School on Generative
and Transformational Techniques in Software Engineering II (GTTSE),
pages 3–46. Springer Verlag, 2008.

[ADT07] F.I. Anfurrutia, O. Díaz, and S. Trujillo. On refining XML artifacts.
In Proceedings of the International Conference on Web Engineering
(ICWE), pages 473–478. Springer Verlag, 2007.

[AGM+06] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lu-
cena. Refactoring product lines. In Proceedings of the Conference on
Generative Programming and Component Engineering (GPCE), pages
201–210. ACM Press, 2006.

[AHY83] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms
for distributed queries. IEEE Transactions on Software Engineering
(TSE), 9(1):57–68, 1983.

[AKB08] S. Apel, C. Kästner, and D. Batory. Program refactoring using func-
tional aspects. In Proceedings of the Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 161–170. ACM
Press, 2008.

[AKGL10] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type safety for
feature-oriented product lines. Automated Software Engineering – An
International Journal, 17(3):251–300, 2010.

[AKKL07] S. Apel, C. Kästner, M. Kuhlemann, and T. Leich. Pointcuts, advice,
refinements, and collaborations: Similarities, differences, and synergies.
Innovations in Systems and Software Engineering (ISSE), 3(4):281–289,
2007.

[AKL06] S. Apel, M. Kuhlemann, and T. Leich. Generic feature modules: Two-
staged program customization. In Proceedings of the International Con-
ference on Software and Data Technologies (ICSOFT), pages 127–132.
INSTICC Press, 2006.

[AKL09] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
independent, automated software composition. In Proceedings of the

141

Bibliography

International Conference on Software Engineering (ICSE), pages 221–
231. IEEE Computer Society, 2009.

[AKLS07] S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect refinement -
Unifying AOP and stepwise refinement. Journal of Object Technology
(JOT), 6(9):13–33, 2007. Special Issue. TOOLS EUROPE 2007.

[ALMK10] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebraic founda-
tion for automatic feature-based program synthesis. Science of Com-
puter Programming (SCP), 75(11):1022–1047, 2010.

[ALS08] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE
Transactions on Software Engineering (TSE), 34(2):162–180, 2008.

[Amb03] S.W. Ambler. Agile database techniques: Effective strategies for the
agile software developer. John Wiley & Sons, Inc., 2003.

[APH+08] N. Ayewah, W. Pugh, D. Hovemeyer, J.D. Morgenthaler, and J. Penix.
Using static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.

[ARLS05] S. Apel, M. Rosenmüller, T. Leich, and G. Saake. FeatureC++: On the
symbiosis of feature-oriented and aspect-oriented programming. In Pro-
ceedings of the Conference on Generative Programming and Component
Engineering (GPCE), pages 125–140. Springer Verlag, 2005.

[Aßm98] U. Aßmann. Optimix - A tool for rewriting and optimizing programs.
In Handbook of Graph Grammars and Computing by Graph Transfor-
mation. Volume 2: Applications, Languages and Tools, pages 307–318.
World Scientific Publishing, 1998.

[AT96] A.-R. Adl-Tabatabai. Source-level debugging of globally optimized code.
PhD thesis, Carnegie Mellon University of Pittsburgh, USA, 1996.

[BAS08] D. Batory, M. Azanza, and J. Saraiva. The objects and arrows of com-
putational design. In Proceedings of the Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 1–20. Springer
Verlag, 2008.

[Bat04] D. Batory. The road to Utopia: A future for generative programming.
In Proceedings of the Seminar on Domain-Specific Program Generation,
pages 211–250. Springer Verlag, 2004.

[Bat05] D. Batory. Feature models, grammars, and propositional formulas. In
Proceedings of the Software Product Line Conference (SPLC), pages
7–20. Springer Verlag, 2005.

[Bat06] D. Batory. A tutorial on feature oriented programming and the AHEAD
tool suite. In Proceedings of the Summer School on Generative and

142

Bibliography

Transformational Techniques in Software Engineering (GTTSE), pages
3–35. Springer Verlag, 2006.

[Bat07a] D. Batory. From implementation to theory in product synthesis. In
Proceedings of the Symposium on Principles of Programming Languages
(POPL), volume 42, pages 135–136. ACM Press, 2007.

[Bat07b] D. Batory. A modeling language for program design and synthesis.
In Proceedings of the Lipari Summer School on Advances in Software
Engineering, pages 39–58. Springer Verlag, 2007.

[Bat07c] D. Batory. Program refactoring, program synthesis, and model-driven
development. In Proceedings of the Conference on Compiler Construc-
tion (CC), pages 156–171. Springer Verlag, 2007.

[Bat08] D. Batory. Using modern mathematics as an FOSD modeling language.
In Proceedings of the Conference on Generative Programming and Com-
ponent Engineering (GPCE), pages 35–44. ACM Press, 2008.

[Bat09] D. Batory. On the importance and challenges of FOSD, 2009. Keynote
at Workshop on Feature-Oriented Software Development [Available
online: http://www.infosun.fim.uni-passau.de/cl/staff/apel/-
FOSD2009/BatoryFOSDKeynote2.pdf; accessed: July 16,2011].

[Bax90] I.D. Baxter. Transformational maintenance by reuse of design histories. PhD
thesis, University of California at Irvine, USA, 1990.

[Bax92] I.D. Baxter. Design maintenance systems. Communications of the ACM
(CACM), 35(4):73–89, 1992.

[BB08] D. Batory and E. Börger. Modularizing theorems for software product lines:
The Jbook case study. Journal of Universal Computer Science (J.UCS),
14(12):2059–2082, 2008.

[BCK06] L. Bass, P. Clements, and R. Kazman. Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., 2nd edition, 2006.

[BCL10] T.T. Bartolomei, K. Czarnecki, and R. Lämmel. Swing to SWT and back:
Patterns for API migration by wrapping. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 1–10. IEEE Computer
Society, 2010.

[BCLvdS10] T.T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm. Study of
an API migration for two XML APIs. In Proceedings of the Conference on
Software Language Engineering (SLE), pages 42–61. Springer Verlag, 2010.

[BCPV07] P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled schema transfor-
mation and data conversion for XML and SQL. In Proceedings of the Sympo-
sium on Practical Aspects of Declarative Languages (PADL), pages 290–304.
Springer Verlag, 2007.

143

Bibliography

[BCS00] D. Batory, R. Cardone, and Y. Smaragdakis. Object-oriented frameworks
and product lines. In Proceedings of the Software Product Line Conference
(SPLC), pages 227–247. Kluwer Academic Publishers, 2000.

[BCVM02] A. Bryant, A. Catton, K. De Volder, and G.C. Murphy. Explicit programming.
In Proceedings of the Conference on Aspect-Oriented Software Development
(AOSD), pages 10–18. ACM Press, 2002.

[BDN05] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the scope
of change in Java. In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 177–189.
ACM Press, 2005.

[BEA03] BEA Systems, Inc. JSR-000173 Streaming API for XML Specification 1.0,
2003. [Available online: http://jcp.org/aboutJava/communityprocess/-

final/jsr173/; accessed: July 16,2011].

[BG97] D. Batory and B.J. Geraci. Composition validation and subjectivity in
genvoca generators. IEEE Transactions on Software Engineering (TSE),
23(2):67–82, 1997.

[Big98] T.J. Biggerstaff. A perspective of generative reuse. Annals of Software Engi-
neering, 5:169–226, 1998.

[Big04] T.J. Biggerstaff. A new architecture for transformation-based generators.
IEEE Transactions on Software Engineering (TSE), 30(12):1036–1054, 2004.

[BKS10] D. Bruns, V. Klebanov, and I. Schaefer. Verification of software product
lines: Reducing the effort with delta-oriented slicing and proof reuse. In Pro-
ceedings of the Conference on Formal Verification of Object-oriented Software
(FoVeOOS), pages 61–75. Springer Verlag, 2010.

[BKVV08] M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT
0.17. A language and toolset for program transformation. Science of Computer
Programming (SCP), 72(1-2):52–70, 2008.

[BLO07] A. Bergel, C. Lewerentz, and L. O’Brien. Classboxes: Supporting unantici-
pated variation points in the source code. In Proceedings of the Workshop on
Aspect-Oriented Product Line Engineering (AOPLE), pages 8–13. Lancaster
University, UK, 2007.

[BMMB00] J. Bosch, P. Molin, M. Mattsson, and P. Bengtsson. Object-oriented
framework-based software development: Problems and experiences. ACM
Computing Surveys (CSUR), 32(1 es):3, 2000.

[BO92] D. Batory and S. O’Malley. The design and implementation of hierarchical
software systems with reusable components. ACM Transactions on Software
Engineering and Methodology (TOSEM), 1(4):355–398, 1992.

[Bos98] J. Bosch. Design patterns as language constructs. Journal of Object-Oriented
Programming (JOOP), 11(2):18–32, 1998.

144

Bibliography

[BOT07] G. Botterweck, L. O’Brien, and S. Thiel. Model-driven derivation of prod-
uct architectures. In Proceedings of the Conference on Automated Software
Engineering (ASE), pages 469–472. ACM Press, 2007.

[BP97] I.D. Baxter and C.W. Pidgeon. Software change through design mainte-
nance. In Proceedings of the International Conference on Software Main-
tenance (ICSM), pages 250–259. IEEE Computer Society, 1997.

[BPM04] I.D. Baxter, C. Pidgeon, and M. Mehlich. DMS R©: Program transformations
for practical scalable software evolution. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 625–634. IEEE Computer
Society, 2004.

[BS07] D. Batory and D. Smith. Finite map spaces and quarks: Algebras of program
structure. Technical Report TR-04-66, University of Texas at Austin, USA,
2007.

[BSR04] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement.
IEEE Transactions on Software Engineering (TSE), 30(6):355–371, 2004.

[BSST93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable software libraries.
In Proceedings of the Symposium on Foundations of Software Engineering
(FSE), pages 191–199. ACM Press, 1993.

[BSTR07] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA: Tooling a
framework for the automated analysis of feature models. In Proceedings of the
Workshop on Variability Modelling of Software-intensive Systems (VaMoS),
pages 129–134. Lero-University of Limerick, Ireland, 2007.

[BTF05] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class library migra-
tion. In Proceedings of the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 265–279. ACM Press,
2005.

[BTR05] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning on
feature models. In Proceedings of the Conference on Advanced Information
Systems Engineering (CAiSE), pages 491–503. Springer Verlag, 2005.

[CAK06] K. Czarnecki, M. Antkiewicz, and C.H.P. Kim. Multi-level customization in
application engineering. Communications of the ACM (CACM), 49(12):60–65,
2006.

[CB74] D.D. Chamberlin and R.F. Boyce. SEQUEL: A structured english query
language. In Proceedings of the Workshop on Data description, Access and
Control, pages 249–264. ACM Press, 1974.

[CBS+07] F. Calheiros, P. Borba, S. Soares, V. Nepomuceno, and V. Alves. Product
line variability refactoring tool. In Proceedings of the Workshop on Refactoring
Tools (WRT), pages 33–34. TU Berlin, Germany, 2007.

[CDCv03] M. Critchlow, K. Dodd, J. Chou, and A. van der Hoek. Refac-
toring product line architectures. In Proceedings of the Workshop on
Refactoring: Achievements, Challenges, Effects (REFACE), pages 23–26,

145

Bibliography

2003. [Available online: http://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.2.1385&rep=rep1&type=pdf; accessed: July 26,2011].

[CE99a] K. Czarnecki and U.W. Eisenecker. Components and generative programming
(invited paper). In Proceedings of the European Software Engineering Con-
ference/Symposium on Foundations of Software Engineering (ESEC/FSE),
pages 2–19. Springer Verlag, 1999.

[CE99b] K. Czarnecki and U.W. Eisenecker. Synthesizing objects. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), pages
18–42. Springer Verlag, 1999.

[CE00] K. Czarnecki and U.W. Eisenecker. Generative programming: Methods, tools,
and applications. Addison-Wesley Longman Publishing Co., Inc., 2000.

[CFH+09] K. Czarnecki, J.N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J.F. Terwilliger.
Bidirectional transformations: A cross-discipline perspective. In Proceedings
of the International Conference on Theory and Practice of Model Transfor-
mations (ICMT), pages 260–283. Springer Verlag, 2009.

[CFL03] M. Cortes, M. Fontoura, and C. Lucena. Using refactoring and unification
rules to assist framework evolution. ACM Software Engineering Notes (SEN),
28(6):1–1, 2003.

[CG94] B. Calder and D. Grunwald. Reducing indirect function call overhead in C++
programs. In Proceedings of the Symposium on Principles of Programming
Languages (POPL), pages 397–408. ACM Press, 1994.

[Cha98] S. Chaudhuri. An overview of query optimization in relational systems. In
Proceedings of the Symposium on Principles of Database Systems (PODS),
pages 34–43. ACM Press, 1998.

[CHH05] A. Cleve, J. Henrard, and J.-L. Hainaut. Co-transformations in informa-
tion system reengineering. In Proceedings of the Workshop on Metamodels,
Schemas, and Grammars for Reverse Engineering (ATEM), pages 5–15. El-
sevier B. V., 2005.

[Chr04] H.B. Christensen. Frameworks: Putting design patterns into perspective.
ACM SIGCSE Bulletin, 36(3):142–145, 2004.

[CHSV97] W. Codenie, K. De Hondt, P. Steyaert, and A. Vercammen. From custom
applications to domain-specific frameworks. Communications of the ACM
(CACM), 40(10):70–77, 1997.

[CIBR00] D.L. Curreri, A.K. Iyengar, R.A. Biesele, and M.A. Ruscetta. Debugging
optimized code using data change points, 2000. US patent #6,091,896.

[CJ08] N. Chen and R. Johnson. Toward refactoring in a polyglot world: Extending
automated refactoring support across Java and XML. In Proceedings of the
Workshop on Refactoring Tools (WRT), pages 1–4. ACM Press, 2008.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering (TSE), 20(6):476–493, 1994.

146

Bibliography

[CK02] P. Clements and C. Krueger. Point/counterpoint: Being proactive pays off/e-
liminating the adoption barrier. IEEE Software, 19(4):28–31, 2002.

[CL01] R. Cardone and C. Lin. Comparing frameworks and layered refinement. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 285–294. ACM Press, 2001.

[Cle09] A. Cleve. Program analysis and transformation for data-intensive system
evolution. PhD thesis, University of Namur, Belgium, 2009.

[CM07] J.S. Cuadrado and J.G. Molina. A phasing mechanism for model transfor-
mation languages. In Proceedings of the Symposium on Applied Computing
(SAC), pages 1020–1024. ACM Press, 2007.

[CMZ08] C.A. Curino, H.J. Moon, and C. Zaniolo. Graceful database schema evolution:
The PRISM workbench. Proceedings of the VLDB Endowment (PVLDB),
1(1):761–772, 2008.

[CN00] M. Ó Cinnéide and P. Nixon. Composite refactorings for Java programs.
In Proceedings of the Workshop on Formal Techniques for Java Programs
(FTfJP), pages 129–135, 2000.

[CN06] P. Clements and L. Northrop. Software product lines: Practices and patterns.
Addison-Wesley Longman Publishing Co., Inc., 2006.

[COV06] A. Cunha, J. Oliveira, and J. Visser. Type-safe two-level data transformation.
In Proceedings of the Symposium on Formal Methods (FM), pages 284–299.
Springer Verlag, 2006.

[CP06] K. Czarnecki and K. Pietroszek. Verifying feature-based model templates
against well-formedness OCL constraints. In Proceedings of the Conference
on Generative Programming and Component Engineering (GPCE), pages 211–
220. ACM Press, 2006.

[CR96] A. Colmerauer and P. Roussel. The birth of Prolog. In History of programming
languages—II, pages 331–367. ACM Press, 1996.

[CRB04] A. Colyer, A. Rashid, and G. Blair. On the separation of concerns in program
families. Technical Report COMP-001-2004, University of Lancaster, UK,
2004.

[CW07] K. Czarnecki and A. Wasowski. Feature diagrams and logics: There and back
again. In Proceedings of the Software Product Line Conference (SPLC), pages
23–34. IEEE Computer Society, 2007.

[DC94] J. Dean and C. Chambers. Towards better inlining decisions using inlining
trials. ACM SIGPLAN Lisp Pointers, VII(3):273–282, 1994.

[DCB09] B. Delaware, W. Cook, and D. Batory. A machine-checked model of safe com-
position. In Proceedings of the Workshop on Foundations of Aspect-Oriented
Languages (FOAL), pages 31–35. ACM Press, 2009.

147

Bibliography

[Dev09] P. Deva. Explore refactoring functions in Eclipse JDT, 2009. [Avail-
able online: https://www.ibm.com/developerworks/opensource/libra-

ry/os-eclipse-refactoring; accessed: July 16,2011].

[Dig07] D. Dig. Automated upgrading of component-based applications. PhD thesis,
University of Illinois at Urbana-Champaign, USA, 2007.

[Dij69] E.W. Dijkstra. Structured programming (EWD268), 1969. [Available
online: http://userweb.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF;
accessed: July 16,2011].

[Dij82] E.W. Dijkstra. On the role of scientific thought (EWD447). In Selected
writings on computing: A personal perspective, pages 60–66. Springer Verlag,
1982.

[DK76] F. DeRemer and H.H. Kron. Programming-in-the-large versus programming-
in-the-small. In Proceedings of the International Conference on Reliable Soft-
ware, pages 114–121. ACM Press, 1976.

[DLT00] S. Ducasse, M. Lanza, and S. Tichelaar. MOOSE: An extensible language-
independent environment for reengineering object-oriented systems. In Pro-
ceedings of the Symposium on Constructing Software Engineering Tools
(COSET), pages 24–30. University of Limerick, Ireland, 2000.

[DMJN07] D. Dig, K. Manzoor, R. Johnson, and T.N. Nguyen. Refactoring-aware con-
figuration management for object-oriented programs. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 427–436.
IEEE Computer Society, 2007.

[DMJN08] D. Dig, K. Manzoor, R.E. Johnson, and T.N. Nguyen. Effective software
merging in the presence of object-oriented refactorings. IEEE Transactions
on Software Engineering (TSE), 34(3):321–335, 2008.

[DNMJ08] D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA: Refactoring-aware
binary adaptation of evolving libraries. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 441–450. ACM Press,
2008.

[EAH+07] M. Eaddy, A.V. Aho, W. Hu, P. McDonald, and J. Burger. Debugging aspect-
enabled programs. In Proceedings of the Symposium on Software Composition
(SC), pages 200–215. Springer Verlag, 2007.

[EBLSP10] C. Elsner, G. Botterweck, D. Lohmann, and W. Schröder-Preikschat. Vari-
ability in time – Product line variability and evolution revisited. In Proceed-
ings of the Workshop on Variability Modelling of Software-intensive Systems
(VaMoS), pages 131–137. University of Duisburg-Essen, Germany, 2010.

[Eff11] S. Efftinge. openArchitectureWare 4.1: Check – Validation language. ope-
nArchitectureWare.org, 2011. [Available online: http://www.openarchi-

tectureware.org/pub/documentation/4.1/r30_checkReference.pdf; ac-
cessed: July 16,2011].

148

Bibliography

[EH07] T. Ekman and G. Hedin. The JastAdd system – Modular extensible compiler
construction. Science of Computer Programming (SCP), 69:14–26, 2007.

[EM04] D.R. Engler and M. Musuvathi. Static analysis versus software model check-
ing for bug finding. In Proceedings of the Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI), pages 191–210. Springer Ver-
lag, 2004.

[ESWH04] S.H. Edwards, M. Sitaraman, B.W. Weide, and J. Hollingsworth. Contract-
checking wrappers for C++ classes. IEEE Transactions on Software Engi-
neering (TSE), 30(11):794–810, 2004.

[EVV09] P. Ebraert, J. Vallejos, and Y. Vandewoude. Flexible features: Making fea-
ture modules more reusable. In Proceedings of the Symposium on Applied
Computing (SAC), pages 1963–1970. ACM Press, 2009.

[Fai98] R.E. Faith. Debugging programs after structure-changing transformation. PhD
thesis, University of North Carolina at Chapel Hill, USA, 1998.

[FCDR95] I.R. Forman, M.H. Conner, S.H. Danforth, and L.K. Raper. Release-to-release
binary compatibility in SOM. ACM SIGPLAN Notices, 30(10):426–438, 1995.

[FGM+05] J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Com-
binators for bi-directional tree transformations: A linguistic approach to the
view update problem. In Proceedings of the Symposium on Principles of Pro-
gramming Languages (POPL), pages 233–246. ACM Press, 2005.

[FKK07] R.M. Fuhrer, M. Keller, and A. Kieżun. Advanced refactoring in the Eclipse
JDT: Past, present, and future. In Proceedings of the Workshop on Refactoring
Tools (WRT), pages 30–31. TU Berlin, Germany, 2007.

[FNP97] R.E. Faith, L.S. Nyland, and J.F. Prins. KHEPERA: A system for rapid
implementation of domain specific languages. In Proceedings of the Conference
on Domain-Specific Languages on Conference on Domain-Specific Languages
(DSL), pages 243–255. USENIX Association Berkeley, USA, 1997.

[For08] N. Ford. The productive programmer. O’Reilly & Associates, Inc., 2008.

[Fow99] M. Fowler. Refactoring: Improving the design of existing code. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[FTK04] R. Fuhrer, F. Tip, and A. Kieżun. Advanced refactorings in Eclipse. In Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), page 8. ACM Press, 2004.

[GA07] V. Gasiunas and I. Aracic. Dungeon: A case study of feature-oriented pro-
gramming with virtual classes. In Proceedings of the Workshop on Aspect-
Oriented Product Line Engineering (AOPLE), pages 32–37. Lancaster Uni-
versity, UK, 2007.

[GBP04] M. Grechanik, D. Batory, and D.E. Perry. Design of large-scale polylingual
systems. In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 357–366. IEEE Computer Society, 2004.

149

Bibliography

[Ger09] J. Gerdes Jr. User interface migration of Microsoft Windows applications.
Software Maintenance and Evolution: Research and Practice, 21(3):171–187,
2009.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[Gho04] D. Ghosh. Generics in Java and C++: A comparative model. ACM SIGPLAN
Notices, 39:40–47, 2004.

[GJ05] I. Godil and H.-A. Jacobsen. Horizontal decomposition of Prevayler. In Pro-
ceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), pages 83–100. IBM Press, 2005.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification.
Addison-Wesley Longman Publishing Co., Inc., 3rd edition, 2005.

[Gog96] J.A. Goguen. Parameterized programming and software architecture. In Pro-
ceedings of the International Conference on Software Reuse (ICSR), pages
2–10. IEEE Computer Society, 1996.

[GP09] S. Götz and M. Pukall. On performance of delegation in Java. In Proceedings
of the Workshop on Hot Topics in Software Upgrades (HotSWUp), pages 1–6.
ACM Press, 2009.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The language and its implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[Gri00] M.L. Griss. Implementing product-line features by composing aspects. In
Proceedings of the Software Product Line Conference (SPLC), pages 271–289.
Kluwer Academic Publishers, 2000.

[Gro04] Object Management Group. Common object request broker architecture: Core
specification (Version 3.0.3), 2004. [Available online: http://www.omg.org/-
spec/CORBA/3.0.3/PDF; accessed: July 14,2011].

[GSF+05] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von
Staa. Modularizing design patterns with aspects: A quantitative study.
In Proceedings of the Conference on Aspect-Oriented Software Development
(AOSD), pages 3–14. ACM Press, 2005.

[GSMD03] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automating
source-consistent UML refactorings. In Proceedings of the Conference on the
Unified Modeling Language, Modeling Languages and Applications (UML),
pages 144–158. Springer Verlag, 2003.

[HA09] O. Hummel and C. Atkinson. The Managed Adapter pattern: Facilitating
glue code generation for component reuse. In Proceedings of the International
Conference on Software Reuse (ICSR), pages 211–224. Springer Verlag, 2009.

[Hal76] P.A.V. Hall. Optimization of single expressions in a relational data base
system. IBM Journal of Research and Development, 20(3):244–257, 1976.

150

Bibliography

[HC02] F. Hunleth and R. Cytron. Footprint and feature management using aspect-
oriented programming techniques. In Proceedings of the Joint Conference
on Languages, Compilers, and Tools for Embedded Systems & Software and
Compilers for Embedded Systems, pages 38–45. ACM Press, 2002.

[HCU92] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with
dynamic deoptimization. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), pages 32–43. ACM Press, 1992.

[Hen82] J. Hennessy. Symbolic debugging of optimized code. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4(3):323–344, 1982.

[Hen08] M. Henning. The rise and fall of CORBA. Communications of the ACM
(CACM), 51(8):52–57, 2008.

[Her08] S. Herrmann. Gradual encapsulation. Journal of Object Technology (JOT),
7(9):47–68, 2008.

[HKA10] F. Heidenreich, J. Kopcsek, and U. Aßmann. Safe composition of transforma-
tions. In Proceedings of the International Conference on Theory and Practice
of Model Transformations (ICMT), pages 108–122. Springer Verlag, 2010.

[HKR+07] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. An algebraic
view on the semantics of model composition. In Proceedings of the European
Conference on Model Driven Architecture – Foundations and Applications
(ECMDA-FA), pages 99–113. Springer Verlag, 2007.

[HM07] S. Herrmann and M. Mosconi. Integrating Object Teams and OSGi: Joint
efforts for superior modularity. Journal of Object Technology (JOT), 6(9):105–
125, 2007.

[HMT04] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing
structured documents based on bidirectional transformations. In Proceedings
of the Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM), pages 178–189. ACM Press, 2004.

[HO93] W. Harrison and H. Ossher. Subject-oriented programming: A critique of
pure objects. In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 411–428.
ACM Press, 1993.

[Höl93] U. Hölzle. Integrating independently-developed components in object-oriented
languages. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 36–56. Springer Verlag, 1993.

[HRRS11] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer. Delta modeling for software
architectures. In Proceedings of the Workshop on Model-Based Development
of Embedded Systems (MBEES), pages 1–10. fortiss GmbH, 2011.

[HS08] S.S. Huang and Y. Smaragdakis. Expressive and safe static reflection with
MorphJ. In Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), pages 79–89. ACM Press, 2008.

151

Bibliography

[HZS05] S.S. Huang, D. Zook, and Y. Smaragdakis. Statically safe program generation
with SafeGen. In Proceedings of the Conference on Generative Programming
and Component Engineering (GPCE), pages 309–326. Springer Verlag, 2005.

[HZS07] S. Huang, D. Zook, and Y. Smaragdakis. Morphing: Safely shaping a class
in the image of others. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 399–424. Springer Verlag, 2007.

[IBNW09] C. Ireland, D. Bowers, M. Newton, and K. Waugh. A classification of object-
relational impedance mismatch. In Proceedings of the Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA), pages 36–43.
IEEE Computer Society, 2009.

[IKI04] T. Ishio, S. Kusumoto, and K. Inoue. Debugging support for aspect-oriented
program based on program slicing and call graph. In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM), pages 178–187. IEEE
Computer Society, 2004.

[Int07] Intermetrics, Inc. Ada reference manual, ISO/IEC 8652:2007(E), 3rd edi-
tion, 2007. [Available online: http://www.adaic.com/standards/05rm/-

RM-Final.pdf; accessed: July 14,2011].

[JF88] R.E. Johnson and B. Foote. Designing reusable classes. Journal of Object-
Oriented Programming (JOOP), 1(2):22–35, 1988.

[JH06] N. Juillerat and B. Hirsbrunner. FOOD: An intermediate model for automated
refactoring. In Proceedings of the Conference on Software Methodologies, Tools
and Techniques (SoMeT), pages 452–461. IOS Press, 2006.

[JK84] M. Jarke and J. Koch. Query optimization in database systems. ACM Com-
puting Surveys (CSUR), 16(2):111–152, 1984.

[JMS07] J. Järvi, M.A. Marcus, and J.N. Smith. Library composition and adaptation
using C++ concepts. In Proceedings of the Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 73–82. ACM Press,
2007.

[Jon03] S.P. Jones. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, 2003.

[JS03] S. Jarzabek and L. Shubiao. Eliminating redundancies with a "Composition
With Adaptation" meta-programming technique. In Proceedings of the Sym-
posium on Foundations of Software Engineering (FSE), pages 237–246. ACM
Press, 2003.

[JV01] P. Johann and E. Visser. Fusing logic and control with local transformations:
An example optimization. Electronic Notes in Theoretical Computer Science
(ENTCS), 57:144–162, 2001.

[KA08] C. Kästner and S. Apel. Type-checking software product lines - A formal ap-
proach. In Proceedings of the Conference on Automated Software Engineering
(ASE), pages 258–267. IEEE Computer Society, 2008.

152

Bibliography

[KAB07] C. Kästner, S. Apel, and D. Batory. A case study implementing features using
AspectJ. In Proceedings of the Software Product Line Conference (SPLC),
pages 223–232. IEEE Computer Society, 2007.

[KAK08] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software product
lines. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 311–320. ACM Press, 2008.

[KAK09] C. Kästner, S. Apel, and M. Kuhlemann. A model of refactoring physically
and virtually separated features. In Proceedings of the Conference on Gen-
erative Programming and Component Engineering (GPCE), pages 157–166.
ACM Press, 2009.

[KARL08] M. Kuhlemann, S. Apel, M. Rosenmüller, and R.E. Lopez-Herrejon. A multi-
paradigm study of crosscutting modularity in design patterns. In Proceedings
of the Conference on Objects, Models, Components, Patterns (TOOLS EU-
ROPE), pages 121–140. Springer Verlag, 2008.

[KAT+09] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Guaranteeing
syntactic correctness for all product line variants: A language-independent
approach. In Proceedings of the Conference on Objects, Models, Components,
Patterns (TOOLS EUROPE), pages 175–194. Springer Verlag, 2009.

[KBA08] M. Kuhlemann, D. Batory, and S. Apel. Refactoring feature modules. Tech-
nical Report FIN-15-2008, University of Magdeburg, Germany, 2008.

[KBA09] M. Kuhlemann, D. Batory, and S. Apel. Refactoring feature modules. In
Proceedings of the International Conference on Software Reuse (ICSR), pages
106–115. Springer Verlag, 2009.

[KBK09] M. Kuhlemann, D. Batory, and C. Kästner. Safe composition of non-
monotonic features. In Proceedings of the Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 177–186. ACM Press,
2009.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, Carnegie Mellon University of Pittsburgh, USA, 1990.

[KH98] R. Keller and U. Hölzle. Binary component adaptation. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP), pages
307–329. Springer Verlag, 1998.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G. Griswold.
An overview of AspectJ. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 327–353. Springer Verlag, 2001.

[KK04] G. Kniesel and H. Koch. Static composition of refactorings. Science of Com-
puter Programming (SCP), 52(1-3):9–51, 2004.

[KKA10] M. Kuhlemann, C. Kästner, and S. Apel. Reducing code replication in
delegation-based Java programs. In Java Software and Embedded Systems,
pages 171–183. Nova Science Publishers, Inc., 2010.

153

Bibliography

[KKAS11] M. Kuhlemann, C. Kästner, S. Apel, and G. Saake. An algebra for refac-
toring and feature-oriented programming. Technical Report FIN-006-2011,
University of Magdeburg, Germany, 2011.

[KKB07] C. Kästner, M. Kuhlemann, and D. Batory. Automating feature-oriented
refactoring of legacy applications. In Proceedings of the Workshop on Refac-
toring Tools (WRT), pages 62–63. TU Berlin, Germany, 2007.

[KKB08] C.H.P. Kim, C. Kästner, and D. Batory. On the modularity of feature in-
teractions. In Proceedings of the Conference on Generative Programming and
Component Engineering (GPCE), pages 23–34. ACM Press, 2008.

[KKKS08a] M. Kempf, R. Kleeb, M. Klenk, and P. Sommerlad. Cross language refactoring
for Eclipse plug-ins. In Proceedings of the Workshop on Refactoring Tools
(WRT), pages 1–4. ACM Press, 2008.

[KKKS08b] M. Klenk, R. Kleeb, M. Kempf, and P. Sommerlad. Refactoring support
for the Groovy-Eclipse plug-in. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 727–728. ACM Press, 2008.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), pages 220–
242. Springer Verlag, 1997.

[KLS10a] M. Kuhlemann, L. Liang, and G. Saake. Algebraic and cost-based optimiza-
tion of refactoring sequences. In Proceedings of the Workshop on Model-Driven
Product Line Engineering (MDPLE), pages 37–48. CEUR-WS.org, 2010.

[KLS10b] M. Kuhlemann, L. Liang, and G. Saake. Algebraic and cost-based optimiza-
tion of refactoring sequences. Technical Report FIN-005-2010, University of
Magdeburg, Germany, 2010.

[Kni99] G. Kniesel. Type-safe delegation for run-time component adaptation. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 351–366. Springer Verlag, 1999.

[Kni06] G. Kniesel. A logic foundation for program transformations. Technical Report
IAI-TR-2006-1, University of Bonn, Germany, 2006.

[Kör10] A.-T. Körtgen. New strategies to resolve inconsistencies between models of
decoupled tools. In Proceedings of the Workshop of Living with Inconsistencies
in Software Development (LWI), pages 21–38. CEUR-WS.org, 2010.

[KPRS01] H. Klaeren, E. Pulvermueller, A. Rashid, and A. Speck. Aspect composition
applying the design by contract principle. In Proceedings of the Symposium
on Generative and Component-Based Software Engineering (GCSE), pages
57–69. Springer Verlag, 2001.

[KPS08] J. Kim, S. Park, and V. Sugumaran. DRAMA: A framework for domain
requirements analysis and modeling architectures in software product lines.
Journal of Systems and Software (JSS), 81(1):37–55, 2008.

154

Bibliography

[KR05] H. Krahn and B. Rumpe. Techniques enabling generator refactoring. Tech-
nical Report TR-CCTC/DI-36, Universidade do Minho of Braga, Portugal,
2005.

[KRAL07] M. Kuhlemann, M. Rosenmüller, S. Apel, and T. Leich. On the duality of
aspect-oriented and feature-oriented design patterns. In Proceedings of the
Workshop on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS), page 5. ACM Press, 2007.

[KRT97] A. Karhinen, A. Ran, and T. Tallgren. Configuring designs for reuse. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 701–710. ACM Press, 1997.

[Kru06] C.W. Krueger. New methods in software product line practice. Communica-
tions of the ACM (CACM), 49(12):37–40, 2006.

[KS06] M. Keith and M. Schincariol. Pro EJB 3: Java persistence API (Pro). Apress,
2006.

[KS10a] M. Kuhlemann and M. Sturm. Debugging product line programs. Technical
Report FIN-006-2010, University of Magdeburg, Germany, 2010.

[KS10b] M. Kuhlemann and M. Sturm. Patching product line programs. In Proceedings
of the Workshop on Feature-Oriented Software Development (FOSD), pages
33–40, 2010.

[KSA10] M. Kuhlemann, N. Siegmund, and S. Apel. Using collaborations to encap-
sulate features? An explorative study. In Proceedings of the Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), pages 139–142.
University of Duisburg-Essen, Germany, 2010.

[KWDE98] B. Kullbach, A. Winter, P. Dahm, and J. Ebert. Program comprehension in
multi-language systems. In Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 135–143. IEEE Computer Society, 1998.

[Lad03] R. Laddad. AspectJ in action: Practical aspect-oriented programming. Man-
ning Publications Co., 2003.

[Läm02] R. Lämmel. Towards generic refactoring. In Proceedings of the Workshop on
Rule-Based Programming (RULE), pages 15–28. ACM Press, 2002.

[Läm04] R. Lämmel. Coupled software transformations (extended abstract). In Pro-
ceedings of the Workshop on Software Evolution Transformations (SET),
pages 31–35, 2004.

[LB04] J. Liu and D. Batory. Automatic remodularization and optimized synthesis
of product-families. In Proceedings of the Conference on Generative Program-
ming and Component Engineering (GPCE), pages 379–395. Springer Verlag,
2004.

[LBL06] J. Liu, D. Batory, and C. Lengauer. Feature-oriented refactoring of legacy
applications. In Proceedings of the International Conference on Software En-
gineering (ICSE), pages 112–121. ACM Press, 2006.

155

Bibliography

[LGS09] Y.A. Liu, M. Gorbovitski, and S.D. Stoller. A language and framework for
invariant-driven transformations. In Proceedings of the Conference on Gener-
ative Programming and Component Engineering (GPCE), pages 55–64. ACM
Press, 2009.

[LHB01] R.E. Lopez-Herrejon and D. Batory. A standard problem for evaluating
product-line methodologies. In Proceedings of the Symposium on Generative
and Component-Based Software Engineering (GCSE), pages 10–24. Springer
Verlag, 2001.

[LHB05] R.E. Lopez-Herrejon and D. Batory. Improving incremental development
in AspectJ by bounding quantification. In Proceedings of the Workshop
on Software Engineering Properties of Languages and Aspect Technolo-
gies (SPLAT), 2005. [Available online: http://www.cs.utexas.edu/ftp/-

predator/SPLAT2005.pdf; accessed: July 26,2011].

[LHBC05] R.E. Lopez-Herrejon, D. Batory, and W.R. Cook. Evaluating support for
features in advanced modularization technologies. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), pages 169–194.
Springer Verlag, 2005.

[Li06] H. Li. Refactoring Haskell programs. PhD thesis, University of Kent at Can-
terbury, UK, 2006.

[Lia99] S. Liang. The JavaTMnative interface: Programmer’s guide and specification.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[Lia10] L. Liang. Optimizing sequences of refactorings. Master thesis,
University of Magdeburg, Germany, March 2010. [Available on-
line: http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/-

auto/thesisLiang.pdf; accessed: July 16,2011].

[Lin95] P.K. Linos. PolyCARE: A tool for re-engineering multi-language program
integrations. In Proceedings of the International Conference on Engineering
of Complex Computer Systems (ICECCS), pages 338–341. IEEE Computer
Society, 1995.

[LJWF02] D. Lacey, N.D. Jones, E. Van Wyk, and C.C. Frederiksen. Proving correct-
ness of compiler optimizations by temporal logic. In Proceedings of the Sympo-
sium on Principles of Programming Languages (POPL), pages 283–294. ACM
Press, 2002.

[LLM99] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual com-
ponents. Technical Report NU-CCS-99-01, Northeastern University of Boston,
USA, 1999.

[LO06] R. Lämmel and K. Ostermann. Software extension and integration with type
classes. In Proceedings of the Conference on Generative Programming and
Component Engineering (GPCE), pages 161–170. ACM Press, 2006.

[LP07] F. Loesch and E. Ploedereder. Optimization of variability in software product
lines. In Proceedings of the Software Product Line Conference (SPLC), pages
151–162. IEEE Computer Society, 2007.

156

Bibliography

[LSH98] J. Laski, W. Stanley, and J. Hurst. Dependency analysis of Ada programs. In
Proceedings of the Conference on Ada (SIGAda), pages 263–275. ACM Press,
1998.

[LTP04] T.C. Lethbridge, S. Tichelaar, and E. Ploedereder. The Dagstuhl middle
metamodel: A schema for reverse engineering. In Proceedings of the Workshop
on Meta-Models and Schemas for Reverse Engineering (ateM), pages 7–18.
Elsevier B. V., 2004.

[Lyn06] I. Lynagh. An algebra of patches, 2006. [Available online: http://-

urchin.earth.li/∼ian/conflictors/paper-2006-10-30.pdf; accessed:
July 16,2011].

[Mar05] R. Marticorena. Analysis and definition of a language independent refactoring
catalog. In Proceedings of the Conference on Advanced Information Systems
Engineering (CAiSE), pages 8–16. Springer Verlag, 2005.

[MB97] M. Mattsson and J. Bosch. Framework composition: Problems, causes and
solutions. In Proceedings of the Conference on Technology of Object-Oriented
Languages and Systems (TOOLS), pages 203–214. IEEE Computer Society,
1997.

[McC76] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engi-
neering (TSE), 2:308–320, 1976.

[MEDJ05] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens. Formalizing refac-
torings with graph transformations. Software Maintenance and Evolution:
Research and Practice, 17(4):247–276, 2005.

[Mei06] E. Meijer. There is no impedance mismatch (language integrated query in
Visual Basic 9). In Companion to the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 710–711.
ACM Press, 2006.

[Mey92] B. Meyer. Applying "Design by Contract". IEEE Computer, 25(10):40–51,
1992.

[Mey97] B. Meyer. Object-oriented software construction. Prentice Hall PTR, 2nd
edition, 1997.

[MF04] M.P. Monteiro and J.M.L. Fernandes. Object-to-aspect refactorings for fea-
ture extraction. In Industry track of the Conference on Aspect-Oriented Soft-
ware Development (AOSD), 2004. [Available online: http://aosd.net/-

2004/archive/Monteiro.pdf, accessed: July 14,2011].

[MF05] M.P. Monteiro and J.M. Fernandes. Towards a catalog of aspect-oriented
refactorings. In Proceedings of the Conference on Aspect-Oriented Software
Development (AOSD), pages 111–122. ACM Press, 2005.

[MHM09] P. McGachey, A.L. Hosking, and J.E.B. Moss. Classifying Java class transfor-
mations for pervasive virtualized access. In Proceedings of the Conference on
Generative Programming and Component Engineering (GPCE), pages 75–84.
ACM Press, 2009.

157

Bibliography

[MHQB05] E.R. Murphy-Hill, P.J. Quitslund, and A.P. Black. Removing duplication from
java.io: A case study using traits. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 282–291. ACM Press, 2005.

[MKD03] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and optimization
model for aspect-oriented programs. In Proceedings of the Conference on
Compiler Construction (CC), pages 46–60. Springer Verlag, 2003.

[MKR06] T. Mens, G. Kniesel, and O. Runge. Transformation dependency analysis -
A comparison of two approaches. In Proceedings of Langages et Modèles à
Objets (LMO), pages 167–184. Hermes Science Publishing, 2006.

[ML98] M. Mezini and K. Lieberherr. Adaptive plug-and-play components for evo-
lutionary software development. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 97–116. ACM Press, 1998.

[MMZ+01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the Conference on
Design Automation (DAC), pages 530–535. ACM Press, 2001.

[MO02] M. Mezini and K. Ostermann. Integrating independent components with
on-demand remodularization. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 52–67. ACM Press, 2002.

[Mos11] S. Moschinski. The impact of refactoring on non-functional software prop-
erties. Master thesis, University of Magdeburg, Germany, March 2011.
[Available online: http://wwwiti.cs.uni-magdeburg.de/iti_db/publi-

kationen/ps/auto/thesisMoschinski.pdf; accessed: July 16,2011].

[MPY+04] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and B. Natara-
jan. Skoll: Distributed continuous quality assurance. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 459–468.
IEEE Computer Society, 2004.

[MSL00] M. Mezini, L. Seiter, and K. Lieberherr. Component integration with plug-
gable composite adapters. In Proceedings of the Symposium on Software Ar-
chitectures and Component Technology: The State of the Art in Research and
Practice, pages 325–356. Kluwer Academic Publishers, 2000.

[MT04] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering (TSE), 30:126–139, 2004.

[MTR07] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies us-
ing graph transformation. Software and Systems Modeling (SoSyM), 6(3):269–
285, 2007.

[MWC09] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT-based analysis of fea-
ture models is easy. In Proceedings of the Software Product Line Conference
(SPLC), pages 231–240. Carnegie Mellon University of Pittsburg, USA, 2009.

158

Bibliography

[Mye88] B.A. Myers. A taxonomy of window manager user interfaces. IEEE Computer
Graphics and Applications, 8(5):65–84, 1988.

[Nat06] National University of Singapore and Netron Inc. XML-based variant con-
figuration language (XVCL): Specification version 2.10, 2006. [Available on-
line: http://sourceforge.net/projects/fxvcl/files/XVCL%20Specifi-

cation/Version%202.10/XVCL spec 2 10.pdf, accessed: July 14,2011].

[Nov95] G.S. Novak Jr. Creation of views for reuse of software with different data
representations. IEEE Transactions on Software Engineering, 21(12):993–
1005, 1995.

[Nov97] G.S. Novak Jr. Software reuse by specialization of generic procedures through
views. IEEE Transactions on Software Engineering, 23(7):401–417, 1997.

[NSCP06] C. López Nozal, R. Marticorena Sánchez, Y. Crespo, and F.J. Pérez. Towards
a language independent refactoring framework. In Proceedings of the Inter-
national Conference on Software and Data Technologies (ICSOFT), pages
165–170. INSTICC Press, 2006.

[Ode10] M. Odersky. The Scala language specification (version 2.8, November 9,2010),
2010. [Available online: http://www.scala-lang.org/; accessed: Novem-
ber 11,2010].

[OG09] E.M. Olimpiew and H. Gomaa. Reusable model-based testing. In Proceed-
ings of the International Conference on Software Reuse (ICSR), pages 76–85.
Springer Verlag, 2009.

[OMR10] S. Oster, F. Markert, and P. Ritter. Automated incremental pairwise testing of
software product lines. In Proceedings of the Software Product Line Conference
(SPLC), pages 196–210. Springer Verlag, 2010.

[Opd92] W.F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, University
of Illinois at Urbana-Champaign, USA, 1992.

[Ora05] Oracle Corporation. Oracle R©C++ call interface, Programmer’s guide,
10g release 2 (10.2), B14294-02, 2005. [Available online: http://down-

load.oracle.com/docs/cd/B19306 01/appdev.102/b14294.pdf, accessed:
July 14,2011].

[OT00] H. Ossher and P. Tarr. On the need for on-demand remodularization.
In Proceedings of the Workshop on Aspects and Dimensions of Concern,
2000. [Available online: http://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.26.4713&rep=rep1&type=pdf; accessed: July 20,2011].

[OT01] H. Ossher and P. Tarr. Using multidimensional separation of concerns
to (re)shape evolving software. Communications of the ACM (CACM),
44(10):43–50, 2001.

[Par72] D.L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM (CACM), 15(12):1053–1058, 1972.

159

Bibliography

[Par76] D.L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering (TSE), 2(1):1–9, 1976.

[Par78] D.L. Parnas. Designing software for ease of extension and contraction. In
Proceedings of the International Conference on Software Engineering (ICSE),
pages 264–277. IEEE Computer Society, 1978.

[PBvdL05] K. Pohl, G. Böckle, and F. van der Linden. Software product line engineering:
Foundations, principles and techniques. Springer Verlag, 2005.

[Pér08] J. Pérez. Enabling refactoring with HTN planning to improve the design
smells correction activity. In BElgian-NEtherlands software eVOLution work-
shop (BENEVOL), pages 48–51, 2008.

[Pie09] B.C. Pierce. Foundations for bidirectional programming. In Proceedings of the
International Conference on Theory and Practice of Model Transformations
(ICMT), pages 1–3. Springer Verlag, 2009.

[PMJ+05] M. Püschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W.
Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, 93(2):232–275, 2005.

[PMS06] Z. Porkoláb, J. Mihalicza, and Á. Sipos. Debugging C++ template metapro-
grams. In Proceedings of the Conference on Generative Programming and
Component Engineering (GPCE), pages 255–264. ACM Press, 2006.

[PR01] J. Philipps and B. Rumpe. Roots of refactoring. In Proceedings of the Work-
shop on Behavioral Semantics, pages 187–199. Northeastern University of
Boston, USA, 2001.

[PR03] J. Philipps and B. Rumpe. Refactoring of programs and specifications.
In Practical Foundations of Business System Specifications, pages 281–297.
Kluwer Academic Publishers, 2003.

[Pre97] C. Prehofer. Feature-oriented programming: A fresh look at objects. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 419–443. Springer Verlag, 1997.

[PRT08] J. Pérez, O. Runge, and G. Taentzer. Specifying and analyzing program refac-
torings with AGG. In Proceedings of the Workshop on Graph-Based Tools:
The Contest (GraBaTs), 2008. [Available online: http://fots.ua.ac.be/-

events/grabats2008/submissions/grabats2008 submission 23.pdf; ac-
cessed: July 26,2011].

[RBJ97] D.B. Roberts, J. Brant, and R. Johnson. A refactoring tool for Smalltalk.
Theory and practice of object systems - Special issue object-oriented software
evolution and re-engineering, 3:253–263, 1997.

[RC07] C.K. Roy and J.R. Cordy. A survey on software clone detection research.
Technical Report 2007-541, Queen’s University of Kingston, Canada, 2007.

160

Bibliography

[RCD09] C. Reichenbach, D. Coughlin, and A. Diwan. Program metamorphosis. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 394–418. Springer Verlag, 2009.

[Rob99] D.B. Roberts. Practical analysis for refactoring. PhD thesis, University of
Illinois at Urbana-Champaign, USA, 1999.

[RPB09] P.O. Rossel, D. Perovich, and M.C. Bastarrica. Reuse of architectural knowl-
edge in SPL development. In Proceedings of the International Conference on
Software Reuse (ICSR), pages 191–200. Springer Verlag, 2009.

[RS10] M. Rosenmüller and N. Siegmund. Automating the configuration of multi
software product lines. In Proceedings of the Workshop on Variability Mod-
elling of Software-intensive Systems (VaMoS), pages 123–130. University of
Duisburg-Essen, Germany, 2010.

[SB98] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin
layers. In Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 550–570. Springer Verlag, 1998.

[SBB+10] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented
programming of software product lines. In Proceedings of the Software Product
Line Conference (SPLC), pages 77–91. Springer Verlag, 2010.

[SBD11] I. Schaefer, L. Bettini, and F. Damiani. Compositional type-checking for delta-
oriented programming. In Proceedings of the Conference on Aspect-Oriented
Software Development (AOSD), pages 43–56. ACM Press, 2011.

[SC75] J.M. Smith and P.Y.-T. Chang. Optimizing the performance of a relational al-
gebra database interface. Communications of the ACM (CACM), 18(10):568–
579, 1975.

[SC92] H. Spencer and G. Collyer. #ifdef considered harmful, or portability experi-
ence with C news. In Proceedings of the USENIX Conference, pages 185–198.
USENIX Association Berkeley, USA, 1992.

[Sch73] P.B. Schneck. A survey of compiler optimization techniques. In Proceedings
of the ACM annual conference (ACM), pages 106–113. ACM Press, 1973.

[Sch10] H. Schink. Sprachübergreifende Refactoring Feature Module. Master thesis
(Diplomarbeit), University of Magdeburg, Germany, August 2010. [Avail-
able online: http://wwwiti.cs.uni-magdeburg.de/iti_db/publikatio-

nen/ps/auto/thesisSchink.pdf; accessed: July 16,2011].

[SD10] I. Schaefer and F. Damiani. Pure delta-oriented programming. In Proceedings
of the Workshop on Feature-Oriented Software Development (FOSD), pages
49–56. ACM Press, 2010.

[SdML04] G. Sittampalam, O. de Moor, and K.F. Larsen. Incremental execution of
transformation specifications. ACM SIGPLAN Notices, 39(1):26–38, 2004.

[SH99] G. Saake and A. Heuer. Datenbanken: Implementierungstechniken. MITP-
Verlag, 1999.

161

Bibliography

[SK10] H. Schink and M. Kuhlemann. Hurdles in refactoring multi-language pro-
grams. Technical Report FIN-007-2010, University of Magdeburg, Germany,
2010.

[SKAP10] N. Siegmund, M. Kuhlemann, S. Apel, and M. Pukall. Optimizing non-
functional properties of software product lines by means of refactorings. In
Proceedings of the Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 115–122. University of Duisburg-Essen, Germany,
2010.

[SKL06] D. Strein, H. Kratz, and W. Löwe. Cross-language program analysis and
refactoring. In Proceedings of the Workshop on Source Code Analysis and
Manipulation (SCAM), pages 207–216. IEEE Computer Society, 2006.

[SKR+08] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, and G. Saake. In-
tegrated product line model for semi-automated product derivation using non-
functional properties. In Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 25–23. University of Duisburg-
Essen, Germany, 2008.

[SKS+08] S. Sunkle, M. Kuhlemann, N. Siegmund, M. Rosenmüller, and G. Saake. Gen-
erating highly customizable SQL parsers. In Proceedings of the Workshop on
Software Engineering for Tailor-made Data Management (SETMDM), pages
29–34. ACM Press, 2008.

[SKSL11] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel. Hurdles in multi-
language refactoring of Hibernate applications. In Proceedings of the Inter-
national Conference on Software and Data Technologies (ICSOFT), pages
129–134. SciTePress, 2011.

[SLMD96] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing
the evolution of reusable assets. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 268–285. ACM Press, 1996.

[SMC74] W.P. Stevens, G.J. Myers, and L.L. Constantine. Structured Design. IBM
Systems Journal, 13(2):115–139, 1974.

[Smi85] B.C. Smith. The limits of correctness. ACM SIGCAS Computers and Society,
14,15:18–26, 1985.

[Smi90] D.R. Smith. KIDS: A semiautomatic program development system. IEEE
Transactions on Software Engineering (TSE), 16(9):1024–1043, 1990.

[Smi91] D.R. Smith. KIDS: A knowledge-based software development system. In
Automating Software Design, pages 483–514. AAAI/MIT Press, 1991.

[Sny86] A. Snyder. Encapsulation and inheritance in object-oriented programming
languages. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 38–45. ACM Press,
1986.

162

Bibliography

[Sof08] Software Systems Generator Research Group. The jampack composi-
tion tool, 2008. AHEAD tool suite v2008.07.22, manual [Available
online: http://www.cs.utexas.edu/users/schwartz/ATS/fopdocs/Jam-

Pack.html, accessed: July 14,2011].

[SPTJ01] G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel. Refactoring UML
models. In Proceedings of the Conference on the Unified Modeling Language,
Modeling Languages, Concepts, and Tools (UML), pages 134–148. Springer
Verlag, 2001.

[SR02] K.C. Sekaraiah and D.J. Ram. Object schizophrenia problem in modeling
Is-Role-Of inheritance. In Proceedings of the Inheritance Workshop, pages
88–94, 2002. [Available online: http://www.cs.jyu.fi/∼sakkinen/inhws/-
papers/Sekharaiah.pdf; accessed: July 18,2011].

[ŞR07] I. Şavga and M. Rudolf. Refactoring-based support for binary compatibility
in evolving frameworks. In Proceedings of the Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 175–184. ACM Press,
2007.

[Sri92] A. Srivastava. Unreachable procedures in object-oriented programming. ACM
Letters on Programming Languages and Systems, 1(4):355–364, 1992.

[SRK+08] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and G. Saake.
Measuring non-functional properties in software product lines for product
derivation. In Proceedings of the Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 187–194. IEEE Computer Society, 2008.

[SSS07] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat. On the configuration
of non-functional properties in software product lines. In Proceedings of the
Software Product Line Conference (SPLC), pages 167–173. IEEE Computer
Society, 2007.

[Str91] B. Stroustrup. The C++ programming language. Addison-Wesley Longman
Publishing Co., Inc., 2nd edition, 1991.

[Stu10] M. Sturm. Debugging Generierter Software nach Anwendung von
Refactorings. Master thesis (Diplomarbeit), University of Magde-
burg, Germany, March 2010. [Available online: http://wwwiti.cs.-

uni-magdeburg.de/iti_db/publikationen/ps/auto/thesisSturm.pdf;
accessed: July 16,2011].

[Sun03] Sun Microsystems, Inc. JSR-000045 Debugging support for other languages
1.0 FR, 2003. [Available online: http://jcp.org/aboutJava/community-

process/final/jsr045/index.html; accessed: July 14,2011].

[Sun06] Sun Microsystems, Inc. JSR-000221 JDBCTM4.0 Specification Final Release,
2006. [Available online: http://jcp.org/aboutJava/communityprocess/-

final/jsr221/index.html; accessed: July 14,2011].

[SVEd09] M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor. Stepping stones over
the refactoring rubicon. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 369–393. Springer Verlag, 2009.

163

Bibliography

[TB01] L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings.
Automated Software Engineering, 8(1):89–120, 2001.

[TBD06] S. Trujillo, D. Batory, and O. Díaz. Feature refactoring a multi-representation
program into a product line. In Proceedings of the Conference on Genera-
tive Programming and Component Engineering (GPCE), pages 191–200. ACM
Press, 2006.

[TBD07] S. Trujillo, D. Batory, and O. Díaz. Feature oriented model driven develop-
ment: A case study for portlets. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), pages 44–53. IEEE Computer Society,
2007.

[TBKC07] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of prod-
uct lines. In Proceedings of the Conference on Generative Programming and
Component Engineering (GPCE), pages 95–104. ACM Press, 2007.

[TC98] M. Tatsubori and S. Chiba. Programming support of design patterns with
compile-time reflection. In Proceedings of the Workshop on Reflective Pro-
gramming in C++ and Java, pages 56–60. University of Tsukuba, Japan,
1998.

[TCKI00] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A class-
based macro system for Java. In Proceedings of the Workshop on Reflection
and Software Engineering, pages 117–133. Springer Verlag, 2000.

[TDDN00] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. A meta-model for
language-independent refactoring. In Proceedings of the International Sym-
posium on Principles of Software Evolution (ISPSE), pages 154–164. IEEE
Computer Society, 2000.

[Tho05] D.A. Thomas. Refactoring as meta programming. Journal of Object Technol-
ogy (JOT), 4(1):7–12, 2005.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton Jr. N degrees of separa-
tion: Multi-dimensional separation of concerns. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 107–119. ACM
Press, 1999.

[Tor04] M. Torgersen. The expression problem revisited. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), pages 123–143.
Springer Verlag, 2004.

[TSKA11] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel. Proof composition for de-
ductive verification of software product lines. In Proceedings of the Workshop
on Variability-intensive Systems Testing, Validation & Verification (VAST),
pages 270–277. IEEE Computer Society, 2011.

[TSSPL09] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann. Dead or
alive: Finding zombie features in the Linux kernel. In Proceedings of the
Workshop on Feature-Oriented Software Development (FOSD), pages 81–86.
ACM Press, 2009.

164

Bibliography

[TTS+08] Z. Tatlock, C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Deep typecheck-
ing and refactoring. In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 37–52.
ACM Press, 2008.

[vDD94] A. van Deursen and T.B. Dinesh. Origin tracking for higher-order term rewrit-
ing systems. In Proceedings of the Workshop on Higher-Order Algebra, Logic,
and Term Rewriting (HOA), pages 76–95. Springer Verlag, 1994.

[vDKT93] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic
Computation, 15(5-6):523–545, 1993.

[vdLSR07] F.J. van der Linden, K. Schmid, and E. Rommes. Software product lines
in action: The best industrial practice in product line engineering. Springer
Verlag, 2007.

[vdS04] T. van der Storm. Variability and component composition. In Proceedings
of the International Conference on Software Reuse (ICSR), pages 86–100.
Springer Verlag, 2004.

[VEd06] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A scripting language
for refactoring. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 172–181. ACM Press, 2006.

[Vit03] M. Vittek. Refactoring browser with preprocessor. In Proceedings of the
European Conference on Software Maintenance and Reengineering (CSMR),
pages 101–110. IEEE Computer Society, 2003.

[VRB00] J. Viega, P. Reynolds, and R. Behrends. Automating delegation in class-based
languages. In Proceedings of the Conference on Technology of Object-Oriented
Languages and Systems (TOOLS), pages 171–182. IEEE Computer Society,
2000.

[VRFS08] H. Venturini, F. Riss, J.-C. Fernandez, and M. Santana. A fully-non-
transparent approach to the code location problem. In Proceedings of the
Workshop on Software & Compilers for Embedded Systems (SCOPES), pages
61–68. ACM Press, 2008.

[VS10] L. VanderHart and S. Sierra. Practical Clojure. Apress, 2010.

[VV08] S. Vermolen and E. Visser. Heterogeneous coupled evolution of software lan-
guages. In Proceedings of the Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pages 630–644. Springer Verlag, 2008.

[WB95] M.P. Ward and K.H. Bennett. Formal methods to aid the evolution of soft-
ware. International Journal of Software Engineering and Knowledge Engi-
neering (IJSEKE), 5:25–47, 1995.

[WDS09] J. White, B. Dougherty, and D.C. Schmidt. Selecting highly optimal archi-
tectural feature sets with filtered cartesian flattening. Journal of Systems and
Software (JSS), 82(8):1268–1284, 2009.

165

Bibliography

[Weg90] P. Wegner. Concepts and paradigms of object-oriented programming. ACM
SIGPLAN OOPS Messenger, 1(1):7–87, 1990.

[WGM08] H. Wu, J. Gray, and M. Mernik. Grammar-driven generation of domain-
specific language debuggers. Software–Practice and Experience (SP&E),
38(10):1073–1103, 2008.

[Wid07] T. Widmer. Unleashing the power of refactoring. Eclipse Corner Articles,
2007. [Available online: http://www.eclipse.org/articles/printable.-

php?file=Article-Unleashing-the-Power-of-Refactoring/index.html;
accessed: July 14,2011].

[WLQ09] J.J. Willcock, A. Lumsdaine, and D.J. Quinlan. Reusable, generic program
analyses and transformations. In Proceedings of the Conference on Generative
Programming and Component Engineering (GPCE), pages 5–14. ACM Press,
2009.

[Woo97] B. Woolf. The Null Object pattern. In Proceedings of the Conference on
Pattern Languages of Program Design (PLOPD), pages 5–18. Addison-Wesley
Longman Publishing Co., Inc., 1997.

[WS91] D. Whitfield and M.L. Soffa. Automatic generation of global optimizers. In
Proceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI), pages 120–129. ACM Press, 1991.

[WS97] D.L. Whitfield and M.L. Soffa. An approach for exploring code improving
transformations. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(6):1053–1084, 1997.

[WSWN07] J. White, D.C. Schmidt, E. Wuchner, and A. Nechypurenko. Automating
product-line variant selection for mobile devices. In Proceedings of the Soft-
ware Product Line Conference (SPLC), pages 129–140. IEEE Computer So-
ciety, 2007.

[WT09] S. Wehr and P. Thiemann. JavaGI in the battlefield: Practical experience
with generalized interfaces. In Proceedings of the Conference on Generative
Programming and Component Engineering (GPCE), pages 65–74. ACM Press,
2009.

[XMEH04] B. Xin, S. McDirmid, E. Eide, and W.C. Hsieh. A comparison of Jiazzi
and AspectJ for feature-wise decomposition. Technical Report UUCS-04-001,
University of Utah, USA, 2004.

[Zel83] P.T. Zellweger. An interactive high-level debugger for control-flow optimized
programs (summary). In Software Engineering Symposium on High-Level De-
bugging, pages 159–171. ACM Press, 1983.

[ZGJ05] C. Zhang, D. Gao, and H.-A. Jacobsen. Towards Just-In-Time middleware
architectures. In Proceedings of the Conference on Aspect-Oriented Software
Development, pages 63–74. ACM Press, 2005.

[Zim95] W. Zimmer. Relationships between design patterns. In Proceedings of the
Conference on Pattern Languages of Program Design (PLOPD), pages 345–
364. ACM Press/Addison-Wesley Publishing Co., 1995.

166

Bibliography

[ZJ03] C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms.
In Proceedings of the Conference on Aspect-Oriented Software Development
(AOSD), pages 130–139. ACM Press, 2003.

[ZJ04] C. Zhang and H.-A. Jacobsen. Resolving feature convolution in middle-
ware systems. In Proceedings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 188–205.
ACM Press, 2004.

[ZJ05] H. Zhang and S. Jarzabek. A bayesian network approach to rational architec-
tural design. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), 15(4):695–718, 2005.

[ZJY03] H. Zhang, S. Jarzabek, and B. Yang. Quality prediction and assessment for
product lines. In Proceedings of the Conference on Advanced Information
Systems Engineering (CAiSE), pages 681–695. Springer Verlag, 2003.

167

	List of Abbreviations
	Introduction
	Who Should Read this Thesis?
	Contribution
	Disclaimer
	Outline

	Background
	Modular Programming
	Domain Engineering and Software Product Lines
	Domain Analysis
	Domain Implementation

	Refactoring
	Summary

	The Dilemma of Module Scalability
	Motivating Studies
	Defining the Dilemma of Module Scalability
	Related Work on Module Integration
	Summary and Goals

	Refactoring Feature Modules
	Concept
	The Scope of RFMs During Program Generation
	RFM Refinement

	Algebraic Properties of Refactorings Influence the RFM Tools
	Cases of Nondistributivity of Refactorings
	Formal Proof of Algebraic Properties of Refactorings
	Design of the RFM Composer Tool

	Case Studies
	Integration of Modules
	Configuration of Nonfunctional Properties

	Summary

	Managing the Variability of Module Structure
	Safe Composition of Jak-Like Feature Modules
	Analysis of RFMs for Safe Composition
	Safe Composition of Nonmonotonic, Nonenumerative Modules
	Basic Concept
	Computing Input Programs that Encapsulate Scoped Names
	Preconditions on Inheritance Hierarchies

	Case Studies
	Discussion on Possible Future Extensions
	Preconditions on Method Bodies
	The Influence of the Feature Order

	Summary

	Practical Issues of Using RFMs
	Correcting Errors in the Functionality of SPL Products
	Comparison of Approaches for Detecting & Correcting Errors
	Propagation of Error Corrections to Feature Modules
	Prototype & Demonstration
	Summary

	Reducing the Program-Generation Time
	Optimizing Refactoring Sequences
	Case Studies
	Summary

	Multi-Language Support for RFMs
	Analyzing MLR for a Hibernate Application
	Case Studies
	Summary

	Summary

	Related Work
	Related Work on RFM Concept
	Related Work on Algebraic-Property Analysis
	Related Work on NFP Configuration
	Related Work on Safe Composition
	Related Work on Correcting Functionality Errors of SPL Products
	Related Work on Reducing the Program-Generation Time
	Related Work on Multi-Language Support for RFMs

	Conclusion
	Summary of the Thesis
	Contribution
	Future Work

	Appendix

