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ZusammenfassungSysteme im Bereih der Mensh-Mashine-Interaktion (MMI) im Allgemeinen,und im Speziellen aktuelle Sprahdialogsysteme (SDS), die auf automatis-her Spraherkennung (ASR) basieren, haben De�zite bei natürliher und be-nutzerfreundliher Kommunikation. Problematish dabei ist, dass die meistenSysteme wihtige Informationsquellen über die Aktivität des Nutzers nihtin Betraht ziehen. Dies sind unter anderem die Motivation und Inten-tion sowie der emotionale Zustand des Nutzers. Detaillierte Analysen dieserEigenshaften können daher bedeutend zu Prinzipien der Entwiklung nutzer-freundliherer Systeme beitragen. Die Notwendigkeit der Emotionsanalysein der MMI liegt in den Beshränkungen der ASR: aktuelle, automatisheSpraherkennungssysteme können niht mit �exibler, spontaner, niht im Vok-abular eingeshränkter und emotional gefärbter, d.h. allgemein a�ektbetonterSprahe umgehen. Daher rükte in den letzten Jahren konsequenterweise dieAnalyse emotionaler Sprahe in den Fokus der ASR und darüber hinaus auhin das Blikfeld der Sprahsynthese. Beide Tehniken können einen Beitragfür eine intelligentere und nutzerbezogenere MMI leisten.In dieser Arbeit werden neue Ansätze zur nutzerbezogenen Interaktion ausder Siht der automatishen Emotions- und Intentionserkennung aus gesproh-ener Sprahe untersuht. Dabei liegt das Hauptziel auf der Bereitstellung einere�ektiven Emotionssprahverarbeitung (Emotionserkennung, Erkennung emo-tional gefärbter Sprahe). Der Beitrag dieser Arbeit ist die Beshreibung a�ek-tbetonter Spraherkennungsmethoden auf Basis von Hidden-Markov-Modellen(HMMs) mit Gauÿ'shen Mishverteilungsmodellen (GMMs). Der dazu ver-wendete Framework enthält Konzepte der ASR, die auf Aspekten der HMM-s/GMMs basieren: Auswahl von Wort-Untereinheiten und deren quantita-tiven und qualitativen De�nitionen, dem Erkennunsgsalgorithmus für spon-tane Sprahe und einem Sprahmodell, sowie Adaptationsverfahren zur ro-busten Emotionsspraherkennung. Im Speziellen werden Wort-Untereinheitendes Deutshen in der ASR beshrieben. Darüber hinaus werden phonologisheMuster mit detaillierten Spezi�kationen für Konsonanten, Vokale und Diph-thonge des Deutshen vorgestellt. Für die Beshreibung der Vokale und Diph-thonge wird das Vokal-Dreiek verwendet, anhand dessen die vershiedenenCharakteristiken von a�ektbetonter und neutraler Sprahe verdeutliht wer-den können. In dieser Arbeit wird gezeigt, dass auf Grund der Ähnlihkeitenin den Aussprahemustern von a�ektbetonter und neutraler Sprahe, emo-tionsabhängige Eigenshaften von existierenden Emotions-Korpora auf andereSprahkorpora übertragen werden können. Dabei werden die Modellparam-eter eines neutralen Modells durh geeignete Transformationen so verändert,



vidass ein akustishes Modell für emotionale Sprahe entsteht. Wir habendie Adaptionsmethoden anhand deutsher Sprahkorpora getestet und einenbeahtenswerten Genauigkeitszuwahs für die Emotionsspraherkennung erre-iht.Der zweite Teil der Arbeit beshreibt unsere vershiedenen Methodenzur Klass�kation von Emotionen in detaillierter Weise. In Kapitel 4 gebenwir einen Überblik über existierende Tehniken der Emotionserkennung ausSprahe und besprehen akustishe Features, die für die Untersheidung vonemotionalen Ereignissen am geeignetsten ersheinen. Zwei Klassi�kation-stehniken werden dabei näher vorgestellt: die statishe (turn-level) unddie dynamishe (frame-level) Methode. Zur Entwiklung der dynamishenEmotionserkennung verwenden wir Hauptkonzepte der aktuellsten Methodender Spraherkennung, die auf HMM/GMM Modellen basiert. Im Speziellenpräsentieren wir vershiedene Methoden der Emotionsklassi�kation basierendauf der Analyse untershiedliher Einheiten der Spraherkennung: Äuÿerun-gen, Satzteilen (Chunks) und Phonemen. Zwei Arten der Analyse aufPhonem-Ebene werden detailliert vorgestellt: emotionale Phonemklassen undFormant-Verfolgung von Vokalen. Darüber hinaus diskutieren wir zwei Artender Fusion von Klassi�kationsergebnissen. Diese sind: zweistu�ge Fusion undFusion auf mittlerem Abstraktionsniveau. Abshlieÿend werden die Erken-nungsleistungen für einheitenspezi�she (kontextabhängige) und allgemeine(kontextunabhängige) Modelle verglihen. Dabei können wir zeigen, dass dieEmotionserkennung auf Basis von einheitenspezi�shen Modellen solhe mitkontextunabhängigen in der Erkennungsleistung übertre�en, vorausgesetzt essteht pro Einheit genügend Trainingsmaterial zur Verfügung.Beide vorgestellten Ansätze werden auf vershiedenen Sprahkorporaevaluiert. Für die Experimente mit a�ektbetonter Sprahe werden unter-shiedlihe Strategien zur Veri�kation verwendet und diverse Erkennungsmaÿebenutzt. Durh Verwendung von Formantverfolgung auf Vokalebene kön-nen wir zeigen, dass unimodale, akustishe Merkmale (gemittelte F1 Werte)stark mit dem Grad der Erregung (arousal) eines Sprehers korreliert sind.Mit diesen Merkmalen, dem Neyman-Pearson Kriterium und einer kleinenMenge an Trainingsmaterial (1-2 Äuÿerungen pro Spreher) zur Adaption er-halten wir Ergebisse in der Emotionserkennung, die mit den auf a�ektbeton-ten Korpora trainierten Klassi�katoren vergleihbar sind. Mit unserer Meth-ode der Erkennung, basierend auf dynamisher Analyse, und der Verwendungvon spektralen Merkmalen (Mel-Frequeny Cepstral Coe�ients) konnten wireines der besten Klassi�kationsergebnisse auf spontaner, emotionaler Sprahewährend der INTERSPEECH 2009 Emotion Challenge erreihen.Einige der Resultate dieser Arbeit wurden in einem prototypishen Di-alogsystem, welhes vom Autor und einigen Kollegen unter fortdauernder Ko-



viioperation seit 2005 entwikelt wurde, umgesetzt. Hierbei wurde das Sys-tem so erweitert, dass es sih an den emotionalen Zustand des Nutzers an-passen kann. In Nutzertests fanden wir heraus, dass besonders in frustrieren-den Situationen, ein solhes System, mit Adaption an den emotionalen Zu-stand, erfolgreih Hilfestellungen und Lösungsvorshläge im Zusammenhangmit den aktuellen Aufgaben geben konnte. Spreheradaptive Sprahdialogsys-teme basierend auf akustisher Emotionserkennung in Kombination mit einera�ektbetonten Adaption des ASR Modells senken die Zeit, die zur Interaktionund zur Anpassung an das Vokabular benötigt wird, signi�kant, wodurh dieMMI benutzerfreundliher und nutzerbezogener wird.





AbstratGeneral human-mahine interation (HMI) systems, and in partiular ur-rent state-of-the-art spoken dialog systems (SDS) based on automati speeh-reognition (ASR) tehnology, have a number of de�ienies in ommuniatingwith a user in a natural and friendly way. One problem is that most of thesesystems do not take into aount important soures of the user's ativitiessuh as his/her motivation, intention and emotional state. Detailed analysisof these ativities ould, therefore, be an essential feature of a user-friendlyinteration interfae. The importane of user's emotional state analysis dur-ing HMI lies in existing limitations of ASR: urrent ASR methods still annotdeal with �exible, unrestrited user's language, spontaneous and emotionallyolored speeh. Consequentially, emotional speeh proessing is a topi thathas reeived a great deal of attention during the last deade within speehsynthesis as well as in ASR. Emotional speeh synthesis and reognition ofemotions within HMI an ontribute to more intelligent and user-enteredinteration.In this thesis, new approahes for user-entered interation are investigatedfrom the point of view of emotions and intentions automatially estimatedfrom speeh. The main researh goal of this thesis is to provide an e�etiveemotional speeh proessing (emotion reognition, emotional speeh reogni-tion). The �rst ontribution of this thesis is to desribe automati a�etive-speeh-reognition methods based on hidden Markov models (HMMs). Thisframework presents the main aspets of the HMM-/GMM-based ASR on-ept: a seletion of the sub-word units and their quantitative and qualitativespei�ation, the deoding algorithm for spontaneous speeh, a language mod-eling and the adaptation tehniques for a robust a�etive speeh reognition. Inpartiular, the sub-word units seletion for German ASR is desribed. After-wards, a German phoneti pattern with a detailed spei�ation of all onso-nants, vowels and diphthongs is presented. For spei�ation of the vowels anddiphthongs a vowel triangle is used. By generating vowels triangles for variousspeaker's emotional states we show the di�erent harateristis of the a�e-tive and neutral speeh. In this work, we prove that due to the pronuniationpattern similarity of a�etive and neutral speeh, emotion-spei� harater-istis an be aptured from existing emotional speeh orpora within adaptivetransformation of model parameters of the initial neutral speeh model toobtain an emotional speeh aousti model. We investigate the poteny ofadapting emotional speeh aousti models for the German language and weobtain a onsiderable performane gain for the emotional speeh reognition.



x The seond ontribution of this thesis is to provide a detailed desriptionof our various emotion-lassi�ation tehniques. In Chapter 4 we present anoverview of existing speeh-based emotion-reognition tehniques, and disussaousti feature sets, whih are the most informative for emotional events de-termination. Two di�erent emotion-lassi�ation tehniques, namely, stati(turn-level) and dynami (frame-level) are presented. We use the main on-epts of state-of-the-art speeh reognition based on HMM/GMM models fordeveloping our dynami emotion-reognition tehniques. In partiular, wepresent various emotion-lassi�ation tehniques with di�erent units of anal-ysis: utterane, hunk, and phoneme. Two di�erent phoneme-level emotion-lassi�ation tehniques, emotional phoneme lasses and vowel-level formantstraking, are desribed in detail. Two possible ombined emotion-lassi�ationmethods, two-stage proessing and middle-level fusion, are presented. Finally,we ompare emotion-reognition performanes for unit-spei� (ontext de-pendent) and general (ontext independent) models. We show that the in-trodued unit-spei� emotion-reognition models learly outperform generalmodels provided su�ient amount of training material per unit.The above two ontributions are evaluated on various speeh orpora. Forthe experiments with a�etive speeh orpora we use various types of evalu-ation strategies and reognition rate measures. With a vowel-level formantstraing tehnique we show that the unimodal aousti features (average F1values) extrated on a vowel-level are strongly orrelated with the level ofarousal of the speaker's emotional state. With these features, a straightfor-ward Neyman-Pearson riterion and a small amount of training data (1-2 neu-tral utteranes per speaker) we obtain omparable good emotion-reognitionresults. With our emotion-lassi�ation tehnique based on dynami anal-ysis we prove that only by using spetral features (Mel-frequeny Cepstraloe�ients (MFCC)) an we reah one of the best emotion-reognition per-formanes for spontaneous emotional speeh samples evaluated within theINTERSPEECH 2009 Emotion Challenge.Some of the �ndings desribed in this thesis have been inorporated intoa prototype dialog system speially developed by the author and olleagueswithin ongoing funded ollaborations (sine 2005) in order to demonstrateadaptation of the system to the user's emotional state. Within a usabilityexperiment we �nd that during frustrating situations in HMI, the SDS withemotional user state adaptation suessfully provides omprehensive help andexhaustive reommendations in the ontext of the urrent state of the task.The user-behavior-adaptive SDS built upon aousti emotion reognition inombination with a�etive-speeh-adapted ASR models signi�antly dereasesinteration and voabulary adaptation time, whih shows that HMI beomesmore friendly and user-entered.



Table of notationsGeneral Notation:
s a salar is denoted by a plain lowerase letter
v a olumn vetor is denoted by a bold lowerase letter
A a matrix is denoted by a bold upperase letter
Q(·|·) an auxiliary funtionMathematial notation:
p(·) probability density funtion
p(·|·) onditional probability density funtion
P (·) probability mass distribution
P (·|·) onditional probability mass distributionStandard HMM notation:
M parameter set of HMM
W hypothetial word sequene W = [w1, w2, . . . , wK ]

N number of HMM's states
ot observation vetor at time t
O observation vetors sequene O = [o1, o2, . . . , oT ]

st state at disrete time t
s state sequene s = [s1, s2, . . . , sT ]

aij disrete state transition probability from state i to j
bj(ot) state output distribution given state j at time t
bjm(ot) state output distribution given state j of m GMM omponent at time t
µ mean vetor
Σ ovariane matrix
µm mean vetor of the m Gaussian omponent
αj(t) forward variable in forward-bakward algorithm at time t
βj(t) bakward variable in forward-bakward algorithm at time t





AronymsABC Airplane behavior orpus, [Shuller et al., 2009b℄ASR Automati speeh reognitionASU Automati speeh understandingAVIC Audiovisual interest orpus, [Shuller et al., 2009b℄CMS Cepstral mean substrationCSDS Conventional spoken dialog systemsDA Dialog atDCT Disrete osine transformDES Danish emotional speeh orpus, [Engbert and Hansen, 1996℄DPP Dynami programming priniplesEM Expetation maximizationEMO-DB Berlin emotional speeh database, [Burkhardt et al., 2005℄F1 First formantF2 Seond formantFFT Fast Fourier transformFSO Features set optimizationG2P Grapheme-to-phonemeGBC Global base lassGEW Geneva emotion wheelGMM Gaussian mixture modelHMI Human-mahine interationHMM Hidden Markov modelHNR Harmonis-to-noise ratioHTK Hidden Markov model toolkitIVR Interative voie responseLLD Low-level desriptorsLOSO Leave-one-speaker-outLOSGO Leave-one-speakers-group-outMFCC Mel-frequeny epstral oe�ientsML Maximum likelihoodMLV Maximum length voteMSL Maximum lassi�er predition sore multiplied with the length voteMV Majority voteNIMITEK Neurobiologially inspired multimodal intention reognitionfor tehnial ommuniation systemsOOV Out-of-voabularyPDF Probability density funtionsPE Phoneme emotional



xivPLOI Phoneme level of interestPT Phoneti transriptionRCT Regression lass treeRHS Right-hand sideSAL Sensitive arti�ial listener orpus, [Wöllmer et al., 2008℄SCV Strati�ed ross-validationSD Speaker-dependentSDS Spoken dialog systemsSER Speeh emotion reognitionSI Speaker-independentSN Speaker normalizationSUSAS Speeh under simulated and atual stress,[Hansen and Bou-Ghazale, 1997℄SVM Support vetor mahineTASN Textual assoiations semanti networksTUM Tehnishe Universität MünhenUA Unweighted average reallUASDS User-adapted spoken dialog systemsVAD Valene-arousal-dominaneVAM Vera-am-mittag orpus, [Grimm et al., 2008℄WA Weighted average reallWER Word error rateWHG Word hypothesis graphWOZ Wizard of Oz



Glossary- Explanation of terms as they are used in this thesis.- Bold words refer to other entries in this glossary.Aousti model whih maps the aousti observation vetorsmodel to the phoneti units.Adaptation model based ompensation of aousti mismath.orretion of user's ommands set used duringinteration with a system.A�etive speeh emotional speeh.Annotation emotional spei�ation of a speeh sample.Arousal exitation level.Basi emotions primary or fundamental emotions de�ned byvarious psyhologist.Behavior model a-priory information about user's emotional state.Boundary prosody phrasing, aentuation or fous of attention, sentene moods.Chunk ontext-independent aousti signal segment obtainedwithin emotional segment detetion.Cirumplex one-shaped model (3D) or wheel model (2D) ofemotion representation.Clustering of lustering of emotions to a binary (positive/negative)emotions arousal and valene or 4 quadrants disrimination task.Companion a user-entred dialogi man-mahine-interation tehno-Tehnology logy, based on fundamental tehnial, informational,psyhologial and neurobiologial onepts. Investigatedby an ongoing researh projet, the TransregionalCollaborative Researh Centre SFB/TRR 62.



xviContext information about phoneti transription, word or sentene(to be understood as emotional ontext).Corpus dataset of speeh samples and orresponding tran-sriptions and/or annotations.Dialog speeh based interation between human and mahine.Domain limited set of textual information whih an beused for language modeling.Dominane apparent strength of the person. [Grimm et al., 2007℄Dynami analysis emotion proessing on frame level.Emotion short time user's reation bound to a spei� stimulus.Emotion word identi�er whih spei�es an emotionalategory user's state.Emotion user's emotional state spei�ation with emotiondesriptor ategories or numeri values in an emotion spae.Emotion spae two- or three-dimensional (e.g. valene-arousal-[dominane(poteny)℄) spae, where eah emotion anbe de�ned as a point with orresponding oordinates.Formant the spetral peaks of the speeh spetrum.Frame segment of aousti speeh signal (e.g. 25 ms length forautomati speeh reognition and utterane-level emotionlassi�ation).Fusion ombination of several lassi�ation tehniques.Geneva emotion wheel with 20 spokes ( emotion families), eah spoke iswheel assoiated with a type of emotion (10 negative and 10positive emotions) arranged on pleasure-dominane spae.Grammar spei�ation of a possible word sequene witha prede�ned word ourrene order.



xviiHuman-mahine strutured and themati domain-dependent interationinteration between a user and a system.Intelligent spoken system whih aommodates the speaker's emotionsdialog system in a proper way.Intention user's operational goal.Language model list of words that an follow eah word inluded in thevoabulary with assoiated disrete probability.Lexion phonetial transriptions for all words inluded inthe voabulary.Low-level aousti features applied for stati analysis, seedesriptors Table 4.2 on page 83.Mapping of funtional mapping of ategorial emotions onemotions valene-arousal dimensional spae.Middle-level ombination of two lassi�ation tehniques, whihfusion used lassi�ation sores of the �rst lassi�er as anadditional feature set of the seond lassi�er.Modality an information hannel used for lassi�ation.Motivation proess that initiates a reason or an interest thatauses a spei� ation or ertain behavior.Multimodal based on several information hannels.Phoneme smallest aousti omponent of speeh to form meaning-ful utteranes.Pluthik's oneptualization of the primary emotions in a olor-emotional wheel fashion � plaing similar emotions lose togetherwheel and opposites 180 degrees apart, like additional olors[Pluthik, 2001℄.



xviiiPoteny individual's sense of power or ontrol, for example"onentrated vs. relaxed attention", "dominane vs."submissiveness".Robust stable enough to be implemented in real-life appliation.Speeh aousti signal produed by a speaker.Stati analysis emotion proessing on turn level with statistialfuntionals.Statistial funtions whih projet uni-variate time series onto afuntionals salar feature independent of the length of the turn(e.g. mean, standard deviation, et.).Transription phoneti spei�ation of a speeh sample.Turn word or word sequene within ompleted speaker's ommand.Unimodal based on single information hannel.Unit spei� ontext dependent.User-behavior adaptive to the urrent user's emotional state.adaptiveUtterane word or word sequene within ompleted speaker's ommand.Valene represents the value � positive or negative � of the user'semotion.Voabulary list of words whih an be reognized by the system.Vowel triangle represents the extremes of vowel's formant loation in theF1/F2 spae.Wizard of Oz experiments whih are based on subjets' illusion thatexperiment they are interating with a omputer driven system,while a human operator simulates a omputing system.
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Chapter 1Introdution
Contents1.1 Motivation and aim . . . . . . . . . . . . . . . . . . . . 11.2 Pratial implementation of the researh . . . . . . . 51.3 Thesis struture . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Motivation and aimCurrently, automati reognition of emotions from speeh, mimis andother modalities has ahieved growing interest within the human-mahine interation researh ommunity and spoken dialog system designers.Emotion reognition is a guiding star on the path to making a ommuniationbetween humans and omputers more friendly and ooperative. With robustemotion reognition, we will be able to model a user's behavior within intera-tion with a omputer. At the same time, automati assessment of an a�etivespeeh will simplify speeh understanding and intention detetion tasks.The importane of human-behavior-based dialog strategies in human-mahine interation (HMI) lies in an existing limitations of automati speeh-reognition (ASR) tehnology. The urrent state-of-the-art ASR approahesstill annot deal with �exible, unrestrited user's language [Lee, 2007℄, [Benze-ghiba et al., 2007℄. Therefore, problems aused by a misunderstanding of auser who refuses to follow a prede�ned, and usually restriting, set of ommu-niational rules seems to be inevitable.It has been shown in [Bosh, 2003℄, that the "linguisti ontent" of spokenutterane goes beyond its "text" ontent. During human-to-human ommuni-ation, the listener extrats important information (semanti boundaries, a-ents, sentene mood, fous of attention, and emotional state of the user [Nie-mann et al., 1998℄) out of prosodi ues. Deteting and utilizing suh uesas a part of the user-behavior state desriptors is one of the major hallengesin the development of reliable human-mahine interfaes. Knowledge of theuser's emotional states an help to adjust system responses so that the user



2 Chapter 1. Introdutionof suh a system an be more engaged and have a more e�etive interationwith the system [Gnjatovi¢ and Rösner, 2008b℄.The speeh-reognition task beomes more and more di�ult, and enor-mous hallenging problems on aousti modeling arise. One of the hallengesis the diverse prosodi harateristis of the spontaneous speeh data. Forexample, di�erent non-lexial events, intonation variability, a speaker moodhange. Most ASR systems are designed not to be reeptive to intonation,user's emotional state, and loudness variability. It has been shown that ASRperformane depends on speaking style and level of formality [Weintraub et al.,1996℄. Adaptation tehniques an be used to inrease performane of a�etivespontaneous speeh reognition. By adapting an ASR model trained on neu-tral speeh on a sparse amount of a�etive speeh samples, we an provideso-alled 'statistial similarity' of training and test material [Ijima et al., 2009℄.Researh by neurosientists and psyhologists showed that a user's emo-tional state is losely related to the deision-making proess during the human-to-human ommuniation [Damasio, 1994℄, within a human-mahine intera-tion and thus, emotion plays an important role in the sensible human a-tions. Realizing the importane of emotions in a human ommuniation anda deision-making proess, it is desirable for an intelligent human-mahineinterfae to aommodate the human emotions in a proper way.1.1.1 Appliations of automati emotion reognitionEmotions perform an important funtion in human ommuniation and in-teration, allowing people to express themselves beyond the bounds of theverbal ommuniation. The ability to understand human emotions withinhuman-mahine interation is desirable in several appliations:� Expressive speeh synthesis, for a new generation of HMI systems whihan be used to inrease the naturalness of the human-mahine intera-tion.� Emotion reognition (e.g., for early misommuniation and frustrationdetetion in spoken dialog systems, suh as ommerial telephone-baseddialog systems)� Safety drive assistane, automati reognition and ontrol of emotionsfor in-ar interfaes,� Opinion mining and level of interest lassi�ation whih automatiallytraks ustomer's attitudes regarding a produt aross blog omments(Web 2.0),� A�etive monitoring for "lie detetion" systems like polygraph, fear de-tetion for surveillane purposes or anger detetion for on�it situationsdetetion,



1.1. Motivation and aim 3� Charater design and interation ontrol for games and virtual-realitysenarios,� Soial robots, suh as guide robots engaging with visitors (e.g., MEXIa Robot with Emotions, Fujitsu Servie Robot "ENON"),� Support for people with disabilities, suh as eduational programs forpeople with autism� Automati movie genre lassi�ation or episodes indexing (omedy, a-tion, drama and et.)1.1.2 Variety of modalitiesHumans-to-human interation is mainly based on voal ommuniation, butalso faial mimis and body gesture language. Both are used to emphasize aertain part of the speeh and display of emotions. An analysis of a gaze, aposture, gestures, faial expressions, an eye ontat, fae and lip movementsan support a user-behavior modeling. Likewise, the speeh signal may on-vey linguisti as well as paralinguisti information. It has been shown thatlinguisti properties an be used as an indiator of misommuniation situa-tions [Nöth et al., 2004℄. Furthermore, it has been shown that sentene moodin German an be indiated by prosody, lexial ontent, word order, and mor-phology [Batliner et al., 2003℄. Besides prosodi variation, speakers indeedemploy a number of di�erent linguisti features to express their emotions.There are some physiologial responses that an be used for the reogni-tion of the user's emotional state. These inlude blood pressure, blood volumepulse, respiration rate, heart rate, galvani skin response, ECG, EMG and oth-ers. It was proved that emotional states an be reognized automatially fromgeneri, and e�ient physiologial feature set design for eah physiologial sig-nal [Hönig et al., 2009℄.It is well-known that using automati lipreading in ombination with au-tomati speeh reognition leads to higher speeh-reognition performane. Inaddition, omparable to the silent visual ues from a system, faial expressionsof a user may indiate ommuniation problems even when the person is notspeaking, for instane when the user beomes aware of a misommuniationsituation during the system's prompts.Fusion of the user's speeh and visual ues analysis is beoming an ordinaryfeature in advaned multimodal spoken dialog systems. Combined audio low-level desriptors and video low-level desriptors time series analysis approahto an audiovisual behavior modeling proved to be highly promising [Shulleret al., 2007℄. The visual information may provide a useful soure for detetingmisommuniation or frustration, next to existing soures suh as linguistiand prosodi ues. Automati faial traking ould be bene�ial for improving



4 Chapter 1. Introdutionhuman-to-mahine interations in that audiovisual events indiate problematidialog events and allow the system to monitor the level of frustration of auser [Barkhuysen et al., 2005℄.1.1.3 Tehnial problems in realizationThe main problem of user emotional states lassi�ation within speeh is a dif-�ulty of data olletion. In most ases, ators simulate emotions aording tosome ertain senario usually in a perfet aousti ondition. These materialsare good for emotion-lassi�er developing and the most informative aous-ti feature set seletion in the ontext of an emotion-reognition task. Butthis ated data is not appliable for training robust models for spontaneousemotion reognition.An alternative to the prototypial expressions of "pure" emotions is touse experiments whih simulate human-omputer onversations with a so-alled Wizard of Oz (WOZ) senario. A questionnaire study onduted aftersome WOZ experiments showed that speakers may �rst be slightly frustrated,then beome really annoyed, and as they believe they are talking to a om-puter, they do not attempt to display their emotional state to their arti�-ial ommuniation partner at all. In most ases, emotional data olletedduring WOZ is less emotionally intensive in omparison to ated material.As a result, in most publiations related to emotional speeh proessing,performane of emotion lassi�ation on ated data outperforms evaluationresults of spontaneous emotions. Aoustially based emotion lassi�ationworks quite well for prompted a�etive speeh [Shuller et al., 2009℄, but isnot su�ient for the more realisti spontaneous emotions whih our in realsystems or WOZ senarios. It was demonstrated that spontaneous emotion-lassi�ation performane inreases if we add more knowledge soures, forinstane, syntati-morphologial parts of speeh (POS) information. Onean model and �nd misommuniation indiators better if one inorporateshigher linguisti-pragmati information, for instane, by reognizing repeti-tions [Batliner et al., 2003℄.Another signi�ant problem for the analysis of spontaneous emotional datais emotional hunks delimitation. The problem lies in de�ning the "referene"of a study; that is, determining whih part of a user's utterane should bemarked as emotional and whih as neutral. In most ases, within human-mahine interation speakers do not display single, pure, emotions in theirfull intensity within one utterane. At the same time, orret detetion ofpure saturated anger will ertainly be too late for the spoken dialog systemto reat in a way so as to �x a misommuniation problem. The main issueis not a detetion of over�ow anger, but lassi�ation of all forms of slight or



1.2. Pratial implementation of the researh 5medium irritation indiating a ritial phase in the dialog that may beomereal saturated anger if a wrong dialog strategy is applied.There are ongoing debates in the a�etive-speeh-proessing ommunityonerning how many emotion ategories exist and whih of them are applia-ble for intelligent spoken dialog systems, how to submit long-term (utterane,sentene, dialog at) properties, for example, moods with short-term a�etiveevents suh as full-blown emotions. Researh aimed at reognizing emotion re-quires databases that ontain as many as possible of the indiations by whiha given emotion an be expressed. Most of the publiations on aousti-basedemotion proessing is underpinned by "datasets" rather than "databases".They are relatively small-sale olletions of speeh samples, usually estab-lished to examine a single ase issue, and not publily available [Douglas-Cowieet al., 2003℄.One of the problems of automati emotion-lassi�ation researh is a non-standardized annotation methodology. Emotions annotation methodologyneeds to be standardized. Afterwards the speeh-proessing ommunity anstart a joint emotional speeh data olletion and annotation that solves theproblem of a sparse amount of well-annotated a�etive speeh data.1.1.4 Researh goalsThe primary aim of this researh is to present new a�etive speeh-proessingmethods and their possible appliation for user-friendly spoken dialog systems.Reognition of prosodi ues suh as emotional state and stress level of thespeaker may be deteted and used for an a�etive-behavior-adaptive dialogstrategy.An overview of existing a�etive-speeh-proessing methods is presentedin this thesis. The advantages and disadvantages of di�erent speeh-basedemotion-lassi�ation methods are disussed. Also, new methods of aoustiemotion lassi�ation and a�etive-speeh-adapted ASR models are desribed.Robustness and usability of the above-mentioned methods have been provedby evaluations on well-known emotional speeh orpora. Results of evaluationsare presented in our publiations and this thesis.1.2 Pratial implementation of the researhWithin well-known projets like VERBMOBIL and SMARTKOM [Herzoget al., 2004℄ a framework for building integrated natural-language understand-ing with multimodal dialog systems was reated. Both projets inlude theprosody module for boundary prosody analysis, sentene mood and phrase



6 Chapter 1. Introdutionaent lassi�ation. The prosody module integrated in the SMARTKOMdemonstrator is based on the Verbmobil prosody module [Batliner et al.,2000a℄. In ontrast to the Verbmobil version, few major hanges have beenmade onerning both implementation and lassi�ation models. The mostnotieable is a user state lassi�er. All existing lassi�ation models for thereognition of prominent words, phrase boundaries, and questions have beenretrained on the atual SMARTKOM Wizard of Oz data [Zeiÿler et al., 2006℄.My researh addresses aspets of design and implementation of user-behavior models in dialog systems for frustration detetion and user-intentionreognition, aimed to provide naturalness of human-mahine interation.For real-life evaluation, aousti emotion-lassi�ation methods, robust af-fetive automati speeh-reognition (ASR) methods, and user emotion or-related dialog management, a multimodal human-mahine interation sys-tem with integrated user-behavior model has been reated within the projet"Neurobiologially Inspired, Multimodal Intention Reognition for TehnialCommuniation Systems" (NIMITEK) [Wendemuth et al., 2008℄. Currentlythe NIMITEK demonstration system provides a tehnial demonstrator tostudy user-behavior-modeling priniples in a dediated task, namely solvingthe game "Towers of Hanoi". The user-behavior model integrated in theNIMITEK demonstrator based on emotion-lassi�ation methods will be de-sribed in this thesis. Within a usability test [Vlasenko and Wendemuth,2009a℄, we �nd that our system with user-behavior-adaptive dialog strategyprovides more ooperative human-to-mahine interation and redues inter-ation time required to omplete the game.1.3 Thesis strutureThe thesis is organized as follows.Chapter 2 presents the fundamental aspets of human-mahine intera-tion inluding automati spoken dialog systems, natural speeh harateris-tis (boundary prosody, emotional prosody), user-behavior modeling duringommuniation, a�etive speeh olletion and proessing. Then, lusteringof emotions and an adequate annotation strategy are desribed. Various eval-uation strategies and reognition rate measures are disussed at the end ofthe hapter.Chapter 3 reviews the fundamental issues of automati speeh reogni-tion, namely, feature extration, aousti modeling with HMMs, maximumlikelihood (ML) training, language modeling and searh algorithms withinreognition. Also, sub-word units seletion and adaptation on a�etive speehsamples are desribed.



1.3. Thesis struture 7Chapter 4 addresses various speeh-based emotion-reognition tehniques.An overview of existing emotion-lassi�ation methods, aousti feature setsspei�ation onepts and emotion desriptors harateristis are presented�rst. This hapter presents dynami and stati emotion-reognition methodswith orresponding aousti feature sets and possible optimization strategies.Our developed ombined emotion-lassi�ation methods are also disussedin detail. Finally, ontext-dependent and ontext-independent models areevaluated.Chapter 5 presents experimental results for a�etive speeh reognitionand speaker's emotional-state lassi�ation. Evaluation results for neutral anda�etive-speeh-reognition experiments are presented �rst. Also, this hapterpresents evaluation results of various emotion-lassi�ation methods desribedearlier in Chapter 4. Finally, evaluation results for our emotion-lassi�ationtehniques within the INTERSPEECH 2009 Emotion Challenge [Shulleret al., 2009℄ and ross-orpus aousti emotion reognition are presented.Chapter 6 desribes a prototype of the user-friendly spoken dialog systemintegrated into a NIMITEK demonstrator. The system dynamially selets adialog strategy aording to the urrent user's emotional state. This systeminorporate the �ndings desribed in previous hapters into a prototype dialogsystem espeially developed by the author and olleagues to demonstrate emo-tional user state adaptation. In this hapter we desribe the data olletionstrategy within the NIMITEK Wizard of Oz experiments, and the struture ofthe onventional and user-behavior-adaptive spoken dialog systems. Finallywe disuss the results of an interative usability test.Chapter 7 addresses the onlusions and diretion of future researh.
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2.1 IntrodutionIn this hapter we provide an overview of the several topis of interest inspoken dialog systems and human-mahine interation. We also provide abrief desription of spontaneous speeh harateristis, namely, boundary andemotional prosody. We also present an introdution to emotion theory, de-sribe di�erent emotion ategorization approahes and survey existing souresof emotional speeh. Finally, we desribe di�erent types of evaluation strate-gies and reognition-rate measures.2.2 Human-mahine interationCurrently we live in the Age of Information. Information olletion, searhing,and struturing are usual ativities in the everyday life of modern humans.We use eletroni devies (omputers, digital ameras, smartphones, mobile



10 Chapter 2. State of the artphones et.) for ommuniation, multimedia data olletion, entertainment,eduational purposes, information aess (Internet web resoures, travel as-sistane, ditionary et.), online shopping and other servies.Many existing human-mahine interfaes within multimedia systems arefar from being user-friendly, and only a few are based on a human-entered ap-proah [Jaimes and Sebe, 2007℄. Nowadays, omputers are quikly beomingintegrated into everyday devies, whih implies that e�etive natural human-mahine interation is beoming ritial. To make human-mahine intera-tion more ooperative and produtive, intelligent human-entered ommuni-ation features have to be integrated into mahine interfaes. The suess ofhuman-entered human-mahine interfaes has to take into aount two jointaspets [Jaimes et al., 2006℄:� the way humans interat with suh systems (speeh, prosodi harater-istis, mimi, gestures and et) to express emotions, mood, attitude, andattention,� the human fators that belong to multimedia data (human subjetivity,levels of interpretation).Whilst developing our intelligent human-entered human-mahine inter-fae we took into aount the fat that human-to-human ommuniation isusually soially situated and that humans use emotion to enhane their om-muniation. However, sine emotions are often expressed within ommuni-ation, proessing them is an important task for intelligent HMI. Our mainaim is the reation of an HMI system that an "feel" the a�etive states ofthe human and is apable of adapting and adequately responding to thesea�etive states.2.2.1 Spoken dialog systemsSystems, in whih human users use verbal ommuniation to ahieve a goal,are alled spoken dialog systems (SDS). Suh systems are some of the few re-alized examples of real-time, goal-oriented humans-to-omputer interation orhumans-to-human ommuniation with partiipation of omputers (real-timespoken language translation systems, see VERBMOBIL). Commerial auto-mati spoken dialog systems are quite popular in English-speaking ountries.Still ommerial automati spoken dialog systems have just started tosubjugate the German market. Some large projets like VERBMOBIL andSMARTKOM [Herzog et al., 2004℄ reated a framework for building inte-grated natural-language understanding with multimodal dialog systems. The-mati domain restrited automati dialog systems were reated by Sympalog.Sixt swithboard, Betri, Filtips represent Sympalog's onversational dialogue



2.2. Human-mahine interation 11tehnology and today's standard IVR (Interative Voie Response) tehnol-ogy [Nöth et al., 2004℄. Unfortunately these dialog systems do not take intoaount most of the ideas of human-entered/human-initiative onepts. Theyare still task- and mahine-entered.VERBMOBIL is a speaker-independent speeh-to-speeh translation sys-tem. It provides users with a speeh-to-speeh translation servie in mobilesituations with simultaneous dialog interpretation servies on restrited top-is. The system proesses dialogs in three themati domains, namely ap-pointment sheduling, travel planning, and remote PC maintenane, and itprovides ontext-sensitive translations between three languages (German, En-glish, Japanese) [Batliner et al., 2000a℄.SMARTKOM is a mixed-initiative dialog system that provides full sym-metri multimodality by ombining speeh, gesture, and faial expressions forboth user input and system output [Reithinger et al., 2003℄. The system aimsto provide an anthropomorphi and a�etive user interfae through its per-soni�ation of an embodied onversational agent. The interation metaphor isbased on the so-alled situated, delegation-oriented dialog paradigm [Zeiÿleret al., 2006℄.The Sixt swithboard appliation handles all inoming alls (approx. 1000per day) to the Sixt AG's entral telephone number. 90% of the reeived allsby Sixt AG are redireted automatially to the orret person, the rest of thealls are handed over to a human operator. The system's knowledge databaseonsists of more than 1000 employee names. Berti, whih is a football Bun-desliga information system, is now ommerially operated by a large Germanmedia ompany on a pay-per-all basis. Filmtips, whih is a movie informa-tion system, is operated by a inema ompany in the Nuremberg region [Nöthet al., 2004℄.2.2.2 Arti�ial ommuniation advantages anddisadvantagesReal-life and arti�ial ommuniation are urrently far away from being om-parable. A natural ommuniation system inludes a natural verbal languagewith the huge prosodi variability ombined with a nonverbal body and gesturelanguage. On the one hand, a boundary prosody indiates a fous of attention,a sentene struture, a speaker intention. On the other hand, an emotionalprosody shows a level of interest, a mood and a possible frustration during thehuman-to-human interation. Arti�ial ommuniations systems are those de-liberately invented, usually to serve spei� funtions or tasks, suh as bookingtikets, ontrolling bank aounts, or searhing for some information duringhuman-mahine interation. User-behavior modeling by emotion lassi�a-



12 Chapter 2. State of the arttion within the human-mahine interation reeived a great deal of attentionduring the last few years in the spoken dialog developers ommunity.It is highly desirable in most HMI appliations suh as omputer-aidedtutoring and learning, that the response of the omputer takes into aountthe emotional or ognitive state of the human user. Emotions are displayed bymimis, body movements, speeh, linguisti and paralinguisti means. Moreand more researh in HMI on�rmed that emotional skills modeling is an im-portant part of the so-alled intelligent system. Spoken dialog systems todayan reognize muh of what is said, and to some extent, who said it. Still, theyare not able to proess the a�etive hannel of information [Jaimes and Sebe,2007℄. Intelligent systems with a�etive ommuniation features onsider howemotions an be lassi�ed and expressed during human-mahine interation.Three key points have to be applied during developing systems that proessa�etive information: embodiment (experiening physial reality), dynamis(mapping experiene and emotional state with its label), and adaptive in-teration (onveying emotive response, responding to a reognized emotionalstate) [Bianhi-Berthouze and Lisetti, 2002℄.Nowadays, one takes a human-to-human interation senario, and replaesone of the humans with an automated dialog system, then the a�etive om-muniation will disappear. It happens not beause people stop ommuniatinga�etively � e.g., a person expresses anger at dialog systems during misom-muniation situations. The problem arises beause the human-mahine inter-fae has no ability to detet when a human is stressed, frustrated, pleased,interested, or bored. A person ignoring the non-verbal elements in human-to-human ommuniation would be onsidered impolite or unintelligent. De-tetion and lassi�ation of emotions within arti�ial ommuniation are keyomponents of the intelligent system.Researh is therefore needed for new methods to ommuniate a�etivelythrough automated system ontrolled environments. Up-to-date spoken-dialog-system-driven ommuniation almost always has less a�etive band-width than natural human-to-human mahine interation. The appearaneof a�etive wearable dialog systems ould hange the nature and e�ieny ofhuman-mahine interation.2.3 Prosodi harateristis of spontaneousspeehLinguists de�ned prosody as rhythm, stress and intonation of speeh. Prosodyre�ets the following features of the speaker or the utterane: the emotionalstate; whether an utterane is a statement, a question, or a ommand; whether



2.3. Prosodi harateristis of spontaneous speeh 13the speaker is being ooperative or non-ooperative; the use of emphasis,ontrast, and fous; or other elements of language suh as paralinguisti eventsthat may not be enoded by grammar or hoie of voabulary. In terms ofan aousti theory, the prosody of speeh involves variation in syllable length,loudness, pith, formant frequenies, poses and word length within the speehsignal.Prosodi information is enapsulated within voalized phoneme, syllables,words, phrases, and whole turns of a speaker. To these units we asribepereived properties suh as pith, loudness, speaking rate, words and pauseduration, voie quality, rhythm, et. In human-to-human ommuniation, thelistener extrats multiple information from prosodi ues. Due to this fat, wean de�ne ertain funtions of the prosody phenomena. The prosodi fun-tions are the marking of boundaries, aents, the sentene mood, an intonationand the speaker's emotional state [Batliner and Nöth, 2003℄.2.3.1 Boundary prosodyAn appliation of prosody analysis is quite popular in automati speehproessing and dialog understanding. For example, many studies showedthat prosodi information may in�uene listeners' analysis of an ambiguousphrase [Clifton et al., 2002℄. In the real-life appliations, spoken dialog systemdesigners try to ombine word hypothesis graphs (WHG) with the prosodyanalysis for aentuation or prosodi boundaries reognition.The prosodi units an be very short � e.g. phoneme-level � or they anonstitute a whole utterane. Dialog units are longer than those of semantis.The �rst prosody feature is phrasing, i.e., prosodi boundaries that re�etsyntati boundaries whih, in turn, re�et dialog ats (DA) boundaries. As aseond feature omes aentuation or fous of attention, the most importantinformation in a semanti unit, e.g., in a sentene (fous). The third prosodyfeature is an ability to disambiguate between di�erent sentene moods/modal-ities. For example, prosody an be used to deide whether a sentene is astatement or a question [Nöth et al., 2002℄.In the ase of misommuniation detetion within human-mahine inter-ation, Batliner et al. found that some boundary prosodi features indiatetrouble in ommuniation [Batliner et al., 2003℄. These indiators are on-duted in the following prosodi harateristis:- pause at phrases;- strong artiulation;- strong emphasis;- pause at words;- ontrastive aent;



14 Chapter 2. State of the art- pause at syllable;- lengthening of syllable;- hyperartiulation;- laughter/sighing.An evaluation of the SMARTKOM [Zeiÿler et al., 2006℄ prosody module,whih is based on the Verbmobil prosody module [Batliner et al., 2000a℄,shows that boundary prosody analysis may provide higher performane ofAutomati Speeh Understanding (ASU).2.3.2 Emotional prosodyWhile listening to speeh, we rely on a variety of ongruent prosodi andverbal-semanti ues upon whih to base our interation inferene as to theommuniative intention of others. To interpret the meaning of the speeh,the way something is said may be as important as a linguisti ontent.The paralinguisti deoding is an essential issue in the emotional prosodyanalysis. The emotion within speeh may manifest itself on the semanti andaousti levels. A variety of aousti features were also explored in the ontextof speeh-based emotion lassi�ation and emotional speeh synthesis. Theseaousti features are as follows:- pith-related features;- voie level features: signal amplitude, energy;- formant frequenies;- timing features: phrase, word, phoneme, and feature boundaries;- voie-quality parameters;- spetral features;- artiulation parameters.Emotion SpeehRate PithAverage PithRange Inten-sity VoieQualityAnger slightlyfaster very muhhigher muh wider higher breathyJoy faster orslower muh higher muh wider higher blaringSadness slightlyslower slightlylower slightlynarrower lower resonantFear muh faster very muhhigher muh wider normal irregularDisgust very muhslower very muhlower slightlywider lower grumbledTable 2.1: Summary of human voal harateristis variations of a�etivespeeh ompared to neutral speeh [Murray and Arnott, 1993℄



2.3. Prosodi harateristis of spontaneous speeh 15Murray and Arnott [Murray and Arnott, 1993℄ desribed emotional voieharateristis for Ekman (see 2.5.2) basi emotions. Table 2.1 desribesmostly qualitative harateristis assoiated with the following fundamentalemotions. These spei�ations are based on a omparison of the a�etive voieto the neutral voie harateristis.Within our researh we �nd out that only by using spetral features (Mel-frequeny Cepstral oe�ients (MFCC)) analysis we an reah a good per-formane of emotion reognition for ated and spontaneous emotions sam-ples [Shuller et al., 2009, Vlasenko and Wendemuth, 2009b, Hübner et al.,2010℄. In the ase of spontaneous emotions, we have to extend our aoustifeatures set and use a multi-level proessing paradigm to reah omparablelassi�ation performane on the ated data. Also a ombination of aousti,linguisti and onversational analysis yielded better results on spontaneousemotions lassi�ation than the pure aousti analysis [Shuller et al., 2005b℄.2.3.3 InterationIn order to make spoken dialog systems more intelligent and user-friendly wehave to ombine automati speeh reognition with a reliable language model,boundary and emotional prosody analyzers, and a language-understandingmodule. In suh a way they will be able to detet and lassify user intentions.The basi struture of an intelligent SDS is shown in Figure 2.1.The �rst stage of an intelligent spoken dialog system is to reognize thespeeh signal and provide a word hypotheses graph (WHG) and orresponding
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16 Chapter 2. State of the artphoneti transription (PT). This proess is known as automati speeh reog-nition. To attain an aeptable performane of speeh reognition, the modulerequires language models, for example, n-grams. The WHG is direted to theboundary prosody analysis module, whih later generates the boundary labels,detets the fous of attention and misommuniation indiators. Semantinetwork modules based on the boundary labels and the WHG generate tex-tual assoiations semanti networks (TASN). Taking into aount TASN, PT,WHG and boundary labels, the spontaneous-speeh-understanding moduleestimates the user's request's lexial interpretation. The emotional prosodyanalysis module based on speeh signals, PT, WHG and misommuniationindiators lassi�es the urrent user's emotional state. An intention reogni-tion module takes into onsideration the deteted fous of attention, the user'semotional state and lexial interpretation of the user's request, and providesuser's intention lassi�ation.2.4 Emotion theoryIn summary an emotion is a transitory, valened experiene that is felt withsome intensity as happening to the self, generated in part by a ognitive ap-praisal of situations, and aompanied by both learned and innate physialresponses. Through emotion, people ommuniate their internal states andintentions to others. Emotion often disrupts thought and behavior, but it alsotriggers and guides ognitions and organizes, motivates, and sustains behaviorand soial relations (adopted from [Bernstein et al., 1997℄).In reent years onsiderable researh was arried out, both theoretial andempirial, on the pereption and prodution of a�etive speeh. Most ofthis researh e�ort is now being made in a �eld alled "a�etive omputing"[Piard, 1997℄. The main goal in a�etive omputing is to design automatispeeh-reognition and text-to-speeh algorithms that understand and reatto the human emotions.Klaus Sherer distinguished the following a�etive phenomena: emotions,feelings, moods and attitudes [Sherer, 2005℄. Also, he suggested that "feelingsintegrate the entral representation of appraisal-driven response organizationin emotion" [Sherer, 2004℄. The a�etive states aused by a salient attitudean be labeled using terms suh as desiring, respeting, hating, and loving. Inmost ases, attitude is a long-term a�etive event whih an make the our-rene of a short-term emotion episode more likely. For example, people in loveusually express positive emotions more often. Generally, mood is onsidereda di�use a�et state, haraterized by subjetive feelings that a�et the be-havior of a person. Moods are generally low-intensity a�et states whih an



2.4. Emotion theory 17last for days, weeks, or months. Within our researh we use the term a�et inits short-term nature, namely, emotional state. Also, from our point of view,a�etive phenomena like feelings, moods and attitudes are the usual ases forhuman-to-human ommuniation; in the ase of human-mahine interationmost of these phenomena do not our. As a onsequene, terms suh as"a�etive omputing" [Piard, 1997℄ and "a�etive speeh reognition" arequite popular in the speeh-proessing ommunity and human-mahine inter-ation researh groups. In this thesis, "a�etive" will in general refer to anynon-neutral short-term expression.A uniform de�nition of emotion in psyhology is very ontroversial. Ba-sially, emotions desribe subjetive sensations of shorter periods whih arerelated to ertain events, persons or objets. The word "emotion" omes fromLatin and means to move or to stir up. Generally, psyhologists use the word"emotion" to refer to the show of feelings that are produed when importantthings happen to us.Four di�erent theoretial approahes to the origins and nature of humanemotions have primarily rystallized:� Darwinian approah: Aording to the Darwinian perspetive [Dar-win, 1872℄ emotions are a result of general human evolution. They havean essential importane for the speies survival. As a onsequene, er-tain behaviors are diretly linked to the assoiated emotional feelings.Universal faial expression, infants, and basi emotions are evidenesupporting this theory.� Jamesian approah: This approah is well grounded owing to thework by James [James, 1884℄. James believed that the human per-eption of feelings are in response to events. Thus, an emotion ap-pears through the stimulation of sensory organs by an objet. The self-pereption takes plae through a�erent impulses leading to the brainuntil they reah the ortex. As a onsequene, internal organs and mus-les are stimulated by e�erent impulses. With the return in the form ofre-a�erent impulses from the organs and musles to the erebral ortex,eventually it appears in the desribed pereption of physial hangein the form of an emotion. An emotional feeling is possible only inombination with a sueeding physial response. Emotion is inferredor onstruted from instintive peripheral physiologial responses. Thefollowing is evidene in support of James:- patterns of autonomi hanges vary with di�erent emotional states;- people reliving emotional experienes show di�erent patterns of auto-nomi ativity;- spinal ord injuries redue peripheral responses � less intense emotion



18 Chapter 2. State of the art(following Hohmann [Hohmann, 1996℄).� Cognitive approah: This theory is similar to the Jamesian theoryas people label emotions using pereptions of their own somati ativ-ity. But labeling is a ognitive proess that re�ets the person's beliefsabout a situation. If people believe they have a reason to be angry theywill pereive their bodily symptoms as anger. The representatives ofthis theory Shahter [Shahter and Signer, 1962℄ and Arnold [Arnold,1960℄ assumed that emotions are the ause of body reations to ertainirumstanes and that they are traeable.� Soial onstrutivist approah: Averill [Averill, 1980℄ and Harré[Harré, 1986℄ argued that feelings re�et the result of learned soialrules of behavior. The deisive fator is the underlying ulture, beauseit implies signi�antly the assessment of the irumstanes whih lead toan emotion. Hene, the triggers for anger di�er inter-ulturally and eveninterpersonally. Following this model, the ultural ontext plays an im-portant role for the assessment of emotions. The soial-onstrutivistapproah is one of the youngest and most ontroversial psyhologialtheories about human feelings. It shows that some syndromes in di�er-ent ultures an be deteted as unambiguous emotions, while in otherirles this an be only onditionally true. This approah is in on�itwith the others, but within it the emotions are onsidered a produt ofevolution.After all, we need to establish that although these theories in parts an beaumulated, not one of them was examined orretly. Besides, a lot of e�ortswere made to ombine them. Within our researh we applied the basi ideasof Jamesian, ognitive and soial onstrutivist approahes.
2.5 Emotion ategorizationAn annotation of emotional episodes within a�etive speeh is a non-trivialtask. An essential problem for the analysis of spontaneous emotional speehis to determine what an emotional episode is, where it starts and where itends. Afterwards we have to provide a referene for the following episodes.Quite often, several emotions an be present at the same episode. Thereare two possible emotional annotation approahes based on multi-dimensionalrepresentation and lassial emotion ategories.



2.5. Emotion ategorization 192.5.1 Multi-dimensional representationThere are few ways of representing emotions in a multi-dimensional emo-tion spae. Emotions an be distinguished by the numeri values in two-or three-dimensional valene-arousal-(poteny or dominane) spaes [Wundt,1897℄, [Kehrein, 2002℄, [Grimm et al., 2007℄ or by meaning of their basi enti-ties within irumplex models [Pluthik, 2001℄, [Sherer, 2005℄. This hapterwill desribe in detail the most popular existing dimensional valene-arousal-(poteny or dominane) spae and irumplex models.The �rst multi-dimensional representation of emotions was proposed bythe German psyhologist Wilhelm Wundt [Wundt, 1897℄. He proposed to de-sribe an emotional experiene in terms of three dimensions: valene, arousal,and poteny. These dimensions an be interpreted as three orthogonal axes.Eah emotion an be haraterized be the three numerial values whih or-respond to the oordinates within the valene-arousal-poteny spae. Valene

Figure 2.2: Pluthiks's two- and three-dimensional irumplex emotionalwheel model desribes the relations among emotional lasses. Adopted from[Pluthik, 2001℄



20 Chapter 2. State of the artrepresents the value � positive or negative � of the user's emotion. Arousal/a-tivation represents the user's degree of exitation � from high to low, like"ative vs. passive", "high vs. low exitation". "Poteny" refers to the in-dividual's sense of power or ontrol, for example "onentrated vs. relaxedattention", "dominane vs. submissiveness".The multi-dimensional desription bene�ts from a higher-level of gener-ality. It provides a possibility for desribing the intensity of emotions. Inthe ase of mixed emotions within the same semanti unit (dialog at (DA),sentene, utterane, word), whih is quite often the ase in spontaneous a�e-tive speeh, the emotion spae onept allows for a more adequate desriptionof these a�etive samples. Nowadays, annotation of emotional events withinspeeh has led to the multi-dimensional emotion desriptor beoming moreand more popular. Kehrein [Kehrein, 2002℄ and Grimm et al. [Grimm et al.,2007℄ proposed the use of the following dimensions: appraisal (or valene,evaluation), ativation (or arousal, exitation) and dominane (or power).Another quite popular multi-dimensional representation of emotion isbased on the so-alled irumplex model. In 1980, Robert Pluthik reated awheel of emotions whih onsisted of 8 basi emotions: joy, aeptane, fear,surprise, sadness, disgust, anger, and antiipation. Pluthik found that the

Figure 2.3: Sample of the adapted Geneva emotion wheel applied for annota-tion purposes within the SEAT projet. Adopted from [GEW, 2008℄



2.5. Emotion ategorization 21primary emotions an be oneptualized in a olor-wheel fashion � plaing sim-ilar emotions lose together and opposites 180 degrees apart, like additionalolors. This so-alled irumplex model an be used as a tool for represen-tation of relation and nature of emotional ategories. Pluthik extended theirumplex model into a third dimension, modifying the intensity of emotions(see, di�erent olor intensity in Figure 2.2), so that the omplex so-alledstrutural model of emotions is shaped like a one.An alternative irular representation of emotions appearsnowadays, see Figure 2.3. This adapted Geneva emotion wheel(GEW) was applied for the digital questionnaire within the SEAT(http://www.wearable.ethz.h/researh/groups/ontext/seat/) projetby the ETH Zurih researh group [GEW, 2008℄. The GEW was developedin 2005 by Klaus Sherer. The GEW is a wheel with 20 spokes. Eah spokeis assoiated with a type of emotion (10 negative and 10 positive emotions).The spokes of the wheel are made up of �ve labels whih allow the annotatorto hoose the intensity for whih they felt that seleted emotion.2.5.2 Classial emotion ategoriesIn English there is an enormous amount of emotion words, some of themtend to fall into families based on similarity and some an be lassi�ed asopposites [Pluthik, 2001℄.How many emotions are present in human-to-human ommuniation? TheAuthor Basi Emotions BasisMDougall (1926) anger, disgust, elation, fear,subjetion, tender-emotion, wonder relation to instintsArnold (1960) anger, aversion, ourage, dejetion,desire, despair, fear, hate, hope,love, sadness relation to ationtendeniesPluthik (1980) aeptane, anger, antiipation,disgust, joy, fear, sadness, surprise relation to adaptivebiologial proessesEkman, Friesen&Ellsworth (1982) anger, disgust, fear, joy, sadness,surprise universal faialexpressionsTomkins (1984) anger, interest, ontempt, disgust,distress, fear, joy, shame, surprise distintive set ofbodily and faialreationsOatley&Johnson-Laird(1987) anger, disgust, anxiety, happiness,sadness do not requirepropositional ontentTable 2.2: Basi emotions sets, presented by di�erent emotion psyhologyresearhes [Ortony and Turner, 1990℄



22 Chapter 2. State of the artproposers of "lassial" disrete emotion theories, inspired by Darwin, havesuggested from 3 to 14 of basi emotions. Those emotions are also alledprimary or fundamental. A wide range of researh on identi�ation of basiemotions [Ortony and Turner, 1990℄ was presented to the emotion researhommunity, see Table 2.2.The disrepany of opinion about the quantity of primary emotions ismathed by the divergene of opinion about their identity. Some of the listsof basi emotions inlude ategories that are not inluded in other lists. OnlyArnold inluded ourage, Pluthik inluded aeptane and antiipation, alsoMDougall proposed that subjetion and "tender-emotion" are fundamentalemotions. Still, most of the lists inlude anger, disgust, fear, joy, sadness,and surprise ategories. Currently there is no standard basi emotions listaknowledged by all emotion psyhology researhers. Still, all of these basiemotions are dialing with "full-blown" [Sherer, 1999℄ emotions, in ontrastto low emotional saturation events within real-life ommuniation. In thisthesis we do not speify our own basi emotions set. Within our evaluationspresented in Chapter 5 we use di�erent set of emotions presented in publiavailable emotional orpora.
2.6 Emotional speeh dataColleting and annotating emotional speeh orpora is quite a di�ult andexpensive task. As a result, we deided to train and test our a�etive-speeh-proessing models on seleted well-known emotional orpora. Thehosen set of emotional orpora overs a broad variety of models reahingfrom ated (DES, EMO-DB) over indued (ABC, eNTERFACE) to naturalemotion (AVIC, SmartKom, SUSAS, VAM) ranging from stritly limited tex-tual ontent (DES, EMO-DB, SUSAS) over more variation (eNTERFACE) tofull variane (ABC, AVIC, SAL, SmartKom, VAM). Further human-to-human(AVIC, VAM) as well as human-to-omputer (SAL, SmartKom) interationare ontained. Referenes for the earlier-mentioned databases will be given insetion 2.6.2. Three languages (English, German, and Danish) are omprised.However, these languages belong to the same family of Germani languages.The speaker's ages and bakgrounds vary strongly, and so do of ourse miro-phones used, room aoustis, and oding (e.g., sampling rate reahing from
8 kHz to 44.1 kHz) as well as the annotators.



2.6. Emotional speeh data 232.6.1 Data olletionOur main goal is a su�ient modeling of the spontaneous speeh of ommonhuman beings in real-life human-omputer interation. Extrating data inreal-life senarios, usually, faes two main problems: Firstly, it is quite di�ultto ontrol and reord suh real-life onditions beause of ethial restritionsand due to the point that automati dialog systems are quite rare in everydayhuman life. Seondly, if we hange the themati domain of our dialog system,this an in�uene the linguisti and emotional behavior of the user.To simulate a real-life situation we an use the Wizard of Oz senario. Insuh a senario, subjets believe they are interating with a real automatedsystem while the system's interation interfae is manipulated by a human'wizard'. For suh kind of simulation, we need 'naive' users. But still, we donot know the range of the user's emotional behavior variation in a real-lifesenario. Also, human 'wizards' usually are not able to predit all possiblemisommuniation situations in real-life onditions whih an provoke frustra-tion and/or a�etive user's behavior. As a result, olleted data does not overall possible situations, where a dialog strategy an be implemented whih isadaptive to the user's behavior.2.6.2 A�etive speeh orporaOne of the major needs of the ommunity � perhaps even more than in manyrelated pattern reognition tasks � is the onstant need for datasets [Douglas-Cowie et al., 2003℄, [Ververidis and Kotropoulos, 2003℄. In the late 1990s, theearly days of emotion reognition, there were only a few datasets available,whih were small (500 turns) with few subjets (10), uni-modal, reordedin studio noise onditions, and ated. Furthermore, the spoken ontentwas mostly prede�ned (DES [Engbert and Hansen, 1996℄, Berlin EmotionalSpeeh-Database [Burkhardt et al., 2005℄, SUSAS [Hansen and Bou-Ghazale,1997℄). These were seldom made publi and few annotators � if any at all� usually labeled exlusively the pereived emotion. Additionally, these werepartly not intended for analysis, but for quality measurement of synthesis(e.g., DES, Berlin Emotional Speeh-Database). However, any data is bet-ter than none. Today we are happy to see more diverse emotions overed,more eliited or even spontaneous sets of many speakers, larger amounts ofinstanes (5k -10k) of more subjets (up to more than 100), multimodal datathat is annotated by more labelers (4 (AVIC [Shuller et al., 2009b℄) - 17(VAM [Grimm et al., 2008℄)), and that is made publily available. Therebyit lies in the nature of olleting ated data that equal distribution amonglasses is easily obtainable. In more spontaneous sets this is not given, whih
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Stateofth
eart Corpus Content #Emotion #Arousal #Valene #All hh:mm #Sub Type Freq- + - + [kHz℄ABC German�xed agr95 he105 int33 ner93 neu79 tir25 - 104 326 213 217 431 01:15 4m4 f atedstud 16AVIC Englishvariable bor553 neu2279 joy170 - - - - 553 2449 553 2449 3002 01:47 11m10 f sponnorm 44.1DES Danish�xed ang85 hap86 neu85 sad84 sur84 - - 169 250 169 250 419 00:28 2m2 f atednorm 20EMO-DB German�xed ang127 bor79 dis38 fea55 hap64 neu78 sad53 248 246 352 142 494 00:22 5m5 f atedstud 16eNTER-FACE English�xed ang215 dis215 fea215 hap207 sad210 sur215 - 425 852 855 422 1277 01:00 34m8 f atednorm 16SAL Englishvariable q1459 q2320 q3564 q4349 - - - 884 808 917 779 1692 01:41 2m2 f sponnorm 16Smart-Kom Germanvariable ang220 hel161 joy284 neu2179 pon643 sur70 uni266 3088 735 381 3442 3823 07:08 32m47 f spontnoisy 16SUSAS English�xed hst1202 mst1276 neu701 sr414 - - - 701 2892 1616 1977 3593 01:01 4m3 f mixednoisy 8VAM Germanvariable q121 q250 q3451 q4424 - - - 501 445 875 71 946 00:47 15m32 f sponnorm 16Table 2.3: Overview of the seleted emotion orporaContent: language, �xed/variable (spoken text). Number of turns per emotion ategory (# Emotion), binary arousal/va-lene, and overall number of turns (All). hh:mm : total duration. Number of subjets (Sub), number of female (f) and male(m) subjets. Type of material (ated/natural/mixed) and reording onditions (studio/normal/noisy) (Type). Freq [kHz℄: dis-retization frequeny. Abbreviations: agr - aggressive, ang - angry, bor - boredom, he - heerful, dis - disgust, hap - happy, hel -helplessness, hst - high stress, int - intoxiated, joy - joyful, mst - medium stress, ner - nervous, neu - neutral, pon - pondering,q1-q4 - quadrants in the arousal-valane plane, sad - sadness, sur - surprise, tir - tired, uni - unidenti�able



2.6. Emotional speeh data 25fores one to either balane data in the training or to shift from reportingof simple reognition rates to F-measures or unweighted reall values, bestper lass (e.g., FAU AIBO [Batliner et al., 2008℄, and the AVIC databases).However, some ated and eliited datasets with pre-de�ned ontent are stillseen (e.g., eNTERFACE [Martin et al., 2006℄), yet these also follow the trendof more instanes and speakers. The positive fat is, that transription isbeoming riher: additional annotation of spoken ontent and non-linguistiinterjetions (e.g., FAU AIBO, AVIC databases), multiple annotator traks(e.g., VAM orpus), or even manually orreted pith ontours (FAU AIBOdatabase) and additional audio traks in di�erent reordings (e.g., lose talkand room mirophone), syllable boundaries and manual syllable labeling (e.g.,EMO-DB database), di�erent hunking (e.g., FAU AIBO database) levels. Atthe same time, these are partly also reorded under more realisti onditions(or taken from the media). However, in future sets multilinguality and sub-jets of diverse ultural bakgrounds will be needed in addition to all namedpositive trends.For our evaluations, we hose nine orpora amongst the most popular.Only these available to the researh ommunity were onsidered. These shouldover a broad variety reahing from ated speeh (the Danish (DES, [Engbertand Hansen, 1996℄) and the Berlin Emotional Speeh (EMO-DB, [Burkhardtet al., 2005℄) databases), over story guided as the eNTERFACE orpus [Mar-tin et al., 2006℄ with �xed spoken ontent and the Airplane Behaviour Corpus(ABC, [Shuller et al., 2009b℄), to spontaneous with �xed spoken ontent rep-resented by the Speeh Under Simulated and Atual Stress (SUSAS, [Hansenand Bou-Ghazale, 1997℄) database, to more modern orpora with respet tothe number of subjets involved, spontaneity, and free language overed bythe Audiovisual Interest Corpus (AVIC, [Shuller et al., 2009b℄), the SensitiveArti�ial Listener (SAL, [Wöllmer et al., 2008℄), the SmartKom [Steiningeret al., 2002℄, and the Vera-Am-Mittag (VAM, [Grimm et al., 2008℄) datasets.An overview on properties of the hosen datasets an be found in Table2.3. Next, we will brie�y introdue the datasets.2.6.2.1 AIBOIt is a orpus with reordings of hildren interating with Sony's pet robotalled Aibo [Batliner et al., 2008℄. The orpus onsists of spontaneous,German speeh whih is emotionally olored. The data was olleted at twodi�erent shools, MONT and OHM, from 51 hildren (age 10 - 13, 21 male, 30female; about 9.2 hours of speeh without pauses). Speeh was transmittedwith a high quality wireless head set and reorded with a DAT reorder (16bit, 48 kHz down-sampled to 16 kHz). Five annotators (advaned students of



26 Chapter 2. State of the artset A E N P R NEG IDL Σtrain 881 2,093 5,590 674 721 3,358 6,601 9,959test 611 1,508 5,377 215 546 2,465 5,792 8,257Table 2.4: Number of instanes for 2-lass and 5-lass annotation shemawithin AIBO orpuslinguistis) listened to the turns and annotated eah word as neutral or as be-longing to one of ten other lasses. The data is labeled on the word-level. Weresort to majority voting (MV): if three or more labelers (�ve labelers in all)agreed, the label was attributed to the word. The number of ases with MVis given in parentheses: joyful (101), surprised (0), emphati (2,528), helpless(3), touhy, i. e. irritated (225), angry (84), "motherese" (1,260), bored (11),reprimanding (310), rest, i. e. non-neutral, but not belonging to the otherategories (3), neutral (39,169); 4,707 words had no MV; all in all, there were48,401 words.The whole orpus onsisted of 18,216 emotional hunks. The �ve-lassannotation shema overs the lasses Anger (subsuming angry, touhy, andreprimanding) Emphati, Neutral, Positive (subsuming motherese and joy-ful), and Rest and they are to be disriminated. The two-lass annotationshema onsists of the overed lasses NEGative (subsuming angry, touhy,reprimanding, and emphati) and IDLe (onsisting of all nonnegative states).The lasses within the whole orpus are highly unbalaned. The transrip-tions of spoken ontent within the training set are provided allowing for ASRtraining and linguisti feature omputation.2.6.2.2 Danish Emotional SpeehThe Danish Emotional Speeh (DES) [Engbert and Hansen, 1996℄ databasehas been hosen as the �rst set as one of the 'traditional representatives' forour study, beause it is easily aessible and well-annotated. The data used inthe experiments are nine Danish sentenes, with two words and hunks thatare loated between two silent segments of two passages of the �uent text.For example: "Nej" (No), "Ja" (Yes), "Hvor skal du hen?" (Where are yougoing?). The total amount of data adds up to more than 500 speeh utteranes(i. e., speeh segments between two silene pauses) whih are expressed by fourprofessional ators, two males and two females. All utteranes are equallyseparated for eah gender. Speeh is expressed in �ve emotional states: anger,happiness, neutral, sadness, and surprise. Twenty judges (native speakersfrom 18 to 58 years old) veri�ed the emotions with a sore rate of 67%.



2.6. Emotional speeh data 272.6.2.3 Berlin Emotional Speeh DatabaseA further well-known set hosen to test the e�etiveness of emotion lassi-�ation is the popular studio reorded Berlin Emotional Speeh Database(EMO-DB) [Burkhardt et al., 2005℄, whih overs anger, boredom, disgust,fear, joy, neutral, and sadness speaker emotions. The spoken ontent is againpre-de�ned by ten German emotionally neutral sentenes, suh as "Der Lap-pen liegt auf dem Eisshrank" (The loth is lying on the fridge.). As withDES, it thus provides a high number of repeated words in diverse emotions.Ten (�ve female) professional ators speak ten German emotionally unde�nedsentenes. While the whole set omprises of around 800 utteranes, only 494phrases are marked as a minimum 60% natural and minimum 80% assignableby 20 subjets in a listening experiment. 84.3% mean auray is the resultof this pereption study for this limited "more prototypial" set.2.6.2.4 eNTERFACEThe eNTERFACE [Martin et al., 2006℄ orpus is a further publi, yet audiovi-sual emotion database. It onsists of indued anger, disgust, fear, joy, sadness,and surprise speaker emotions. 42 subjets (eight female) from 14 nations areinluded. It onsists of o�e environment reordings of pre-de�ned spokenontent in English. Eah subjet was instruted to listen to six suessiveshort stories, eah of them eliiting a partiular emotion.They then had to reat to eah of the situations by uttering previously readphrases that �t the short story. Five phrases are available per emotion, suhas "I have nothing to give you! Please don't hurt me!" in the ase of fear. Twoexperts judged whether the reation expressed the emotion in an unambiguousway. Only if this was the ase, the sample was added to database. Overall,the database onsists of 1,170 samples.2.6.2.5 Airplane Behaviour CorpusAnother audiovisual emotion database is the Airplane Behaviour Corpus(ABC) [Shuller et al., 2009b℄, rafted for the speial target appliation ofpubli transport surveillane. In order to indue a ertain mood, a sriptwas used, whih led the subjets through a guided storyline: prereorded an-nounements by �ve di�erent speakers were automatially played bak andontrolled by a hidden test-ondutor. As a general framework a vaation�ight with return �ight was hosen, onsisting of 13 and 10 senes as thestart, serving of wrong food, turbulenes, falling asleep, onversation witha neighbor, or touh-down. The general setup onsisted of an airplane seatfor the subjet, positioned in front of a blue sreen. 8 subjets in gender



28 Chapter 2. State of the artbalane from 25�48 years (mean 32 years) took part in the reording. Thelanguage throughout the reording is German. A total of 11.5 hours videowas reorded and annotated independently after pre-segmentation by threeexperiened male labelers within a losed set. The average length of the 396lips in total is 8.4 seonds.2.6.2.6 Speeh Under Simulated and Atual StressThe Speeh Under Simulated and Atual Stress (SUSAS) database [Hansenand Bou-Ghazale, 1997℄ serves as a �rst referene for spontaneous reordings.As an additional hallenge, speeh is partly masked by �eld noise. We deidedfor the 3,663 atual stress speeh samples. Seven speakers, three of themfemale, in roller oaster and free fall atual stress situations are ontained inthis set. Next to neutral speeh and fear two di�erent stress onditions havebeen olleted: medium stress, and high stress, and sreaming. SUSAS is alsorestrited to a pre-de�ned spoken text of 35 English air ommands, suh as"brake", "help" or "no". Likewise, only single words are ontained similar toDES where this is also mostly the ase.2.6.2.7 Audiovisual Interest CorpusTo add spontaneous emotion samples of non-restrited spoken ontent, we de-ided to use the Audiovisual Interest Corpus (AVIC) [Shuller et al., 2009b℄,another audiovisual emotion orpus. In its senario setup, a produt presenterleads one of 21 subjets (10 female) through an English ommerial presen-tation. The level of interest is annotated for every sub-speaker turn reahingfrom boredom (subjet is bored with listening and talking about the topi,very passive, does not follow the disourse), over neutral (subjet follows andpartiipates in the disourse, it annot be reognized, if she/he is interestedor indi�erent in the topi) to joyful interation (strong wish of the subjet totalk and learn more about the topi). Additionally, the spoken ontent andnon-linguisti voalisations are labeled in the AVIC set. For our evaluationwe use the 996 phrases as, e.g., employed in [Shuller et al., 2009b℄.2.6.2.8 Sensitive Arti�ial ListenerThe Belfast Sensitive Arti�ial Listener (SAL) data is part of the �nal HU-MAINE database [Douglas-Cowie et al., 2007℄. We onsider the subset used,e.g., in [Wöllmer et al., 2008℄ whih ontains 25 reordings in total from 4speakers (2 male, 2 female) with an average length of 20 minutes per speaker.The data ontains audio-visual reordings from natural human-omputer on-versations that were reorded through an interation interfae designed to let



2.6. Emotional speeh data 29users work through a range of emotional states. The data was labeled ontin-uously in real-time by four annotators with respet to valene and ativationusing a system based on FEELtrae [Cowie et al., 2000℄: the annotators useda sliding ontroller to annotate both emotional dimensions separately whereasthe adjusted values for valene and ativation were sampled every 10 ms toobtain a temporal quasi-ontinuum. To ompensate linear o�sets that arepresent among the annotators, the annotations were normalized to zero meanglobally. Furthermore, to ensure ommon saling among all annotators, eahannotator's labels were saled so that 98% of all values are in the range from-1 to +1. The 25 reordings have been split into turns using an energy-basedVoie Ativity Detetion. A total of 1,692 turns is aordingly ontained inthe database. Labels for eah turn are omputed by averaging the frame-levelvalene and ativation labels over the omplete turn. Apart from the neessityto deal with ontinuous values for time and emotion, the great hallenge ofthe SAL database is the fat that one must deal with all data � as reorded� and not only manually pre-seleted 'emotional prototypes' as in pratiallyany other database [Shuller et al., 2009℄.2.6.2.9 SmartKomWe further inluded a seond audiovisual orpus of spontaneous speehand natural emotion in our tests: the SmartKom [Steininger et al., 2002℄multi-modal orpus onsists of Wizard of Oz dialogs in German. For ourevaluations we use German dialogs reorded during a publi environmenttehnial senario. As with SUSAS, noise is overlaid (street noise). Thedatabase ontains multiple audio hannels and two video hannels (fae,body from side). The primary aim of the orpus was the empirial studyof human-omputer interation in a number of di�erent tasks and tehnialsetups. It is strutured into sessions whih ontain one reording of ap-proximately 4.5 minutes length with one person. Utteranes are labeled inseven broader emotional states: neutral, joy, anger, helplessness, pondering,surprise are ontained together with unidenti�able episodes.2.6.2.10 Vera-Am-MittagThe Vera-Am-Mittag (VAM) orpus [Grimm et al., 2008℄ onsists of audio-visual reordings taken from a German TV talk show. The orpus ontains 947spontaneous and emotionally oloured utteranes from 47 guests of the talkshow whih were reorded from unsripted, authenti disussions. The topiswere mainly personal issues suh as friendship rises, fatherhood questions,



30 Chapter 2. State of the artor romanti a�airs. To obtain non-ated data, a talk show in whih theguests were not paid to perform as ators was hosen. The speeh extratedfrom the dialogs ontains a large amount of olloquial expressions as well asnon-linguisti voalisations and partly overs di�erent German dialets. Forannotation of the speeh data, the audio reordings were manually segmentedto the utterane-level, whereas eah utterane ontained at least one phrase.A large number of human labelers was used for annotation (17 labelers forone half of the data, six for the other).The labeling bases on a disrete �ve-point sale for three dimensionsmapped onto the interval of [-1,1℄: the average results for the standard de-viation are 0.29, 0.34, and 0.31 for valene, ativation, and dominane. Theaverages for the orrelation between the evaluators are 0.49, 0.72, and 0.61,respetively. The orrelation oe�ients for ativation and dominane showsuitable values, whereas the moderate value for valene indiates that thisemotion primitive was more di�ult to evaluate, but may partly also be aresult of the smaller variane of valene.2.7 Clustering of emotionsAlthough the ability to reognize a large variety of emotions is attrative, itmay not be neessary or pratial in the ontext of developing algorithms foronversational interfaes. Based on this assumption, some researh groupsfavor the notion of an appliation-dependent redued spae of emotions. Inpartiular, negative and non-negative emotions an be used for misommu-niation detetion tasks within automated spoken dialog systems [Lee andNarayanan, 2005℄.It is possible to map the diverse emotion groups onto the most populargeneral dimensions (valene, arousal) borrowed from the dimensional emotionmodel: arousal and valene, see Figure 2.4. The hosen mappings [Shulleret al., 2009℄ are depited in Table 2.5. Notably, these mappings are not straightforward. This would only be exatly true for the neutral emotion, whih ouldhave been hosen as a third state. Sadly, however, not all databases providesuh a state. Thus, the mapping an be seen as a ompromise in favor of bet-ter balane amongst the target lasses. We further disretized emotion valuesin the arousal-valene plane for the emotional orpora with multi-dimensionalannotation (SAL and VAM). We onsider only four quadrants obtained bydisretizing into binary tasks as desribed above, but now handling the prob-lem as a four-lass problem, see Figure 2.4. The aording quadrant's q1�q4(ounterlokwise, starting in positive quadrant, assuming valene as ordinateand arousal as absissa) an also be assigned emotion tags: "happy / exited"



2.7. Clustering of emotions 31
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sereneFigure 2.4: Spei�ation of the quadrant's q1�q4 in arousal-valene spaeCorpus Arousal ValeneNegative Positive Negative PositiveABC neutral, tired aggressive,heerful, nervous,intoxiated aggressive,nervous, tired heerful,intoxiated,neutralAVIC boredom neutral, joyful boredom neutral, joyfulDES neutral, sad angry, happy,surprise angry, sad happy, neutral,surpriseEMO-DB boredom,disgust,neutral,sadness anger, fear,happiness anger,boredom,disgust, fear,sadness happiness,neutraleNTER-FACE disgust,sadness anger, surprise,fear, happiness anger, disgust,fear, sadness happiness,surpriseSAL q2, q3 q1, q4 q3, q4 q1, q2Smart-Kom neutral,pondering,unidenti�able anger,helplessness, joy,surprise anger,helplessness, joy, pondering,neutral, surprise,unidenti�ableSUSAS neutral high stress,medium stress,sreaming high stress,sreaming medium stress,neutralVAM q2, q3 q1, q4 q3, q4 q1, q2Table 2.5: Mapping of emotions for the lustering to a binary (positive/neg-ative) arousal and valene disrimination task. Abbreviations: q - quadrants(q1), "angry / anxious" (q2), "sad / bored" (q3), and "relaxed / serene" (q4).



32 Chapter 2. State of the art2.8 Data assessmentFour main issues need to be onsidered in aquiring an emotional orpora;the sope, the level of naturalness and ontext of the ontent; and the type oforresponding desriptors [Douglas-Cowie et al., 2003℄.� SopeIt overs the amount of speakers presented in orpora; language spoken;gender variability of speakers; types of emotional state onsidered; levelof annotation (word-level, utterane-level, ontext-independent timealignment); soial/ultural setting (human-to-human interation, task-oriented human-mahine interation). Real-life emotions in general areontrolled by strong ultural in�uenes [Harré, 1986℄. Sine speeh isa ultural human ativity, emotional events within speeh may be re-lated to ultural in�uenes. Usually, within real-life verbal interation,humans show less expressive emotions rather than full-blown.� Level of the naturalnessThe simplest way to ollet a�etive speeh is to ask ators to simulateemotions within pronouned utteranes. The main problem with thisapproah is that no in-depth researh about relationships between atedmaterial and spontaneous emotional speeh has been done. It is ofourse true that preseleted ators an generate speeh that listenerslassify reliably within a pereption test. Still it is hard to measure howlosely the prompted a�etive speeh re�ets spontaneous expression ofemotion.From the other side, the prie of high-level naturalness is a lak of on-trol on the lexial and phoneti ontent of the material. For indued orspontaneous emotions it is di�ult to ollet samples in a target emo-tional state due to the unpreditability of the olleting proess (usersare able to use natural language for system interation). A lot of appli-ations (emotional speeh synthesis, phoneme-level emotion modeling,et.) require phonetially balaned datasets, whih is hard to ahievewithin a truly natural speeh interation session.� ContextThree di�erent types of ontext an be disriminated [Douglas-Cowieet al., 2003℄.- Semanti ontext:Sinere emotional speeh is likely to ontain words with a di�erent levelof emotionality. And this level of emotionality has a semanti nature.An example of emotionally signi�ant words are emotive words (like"good", "lovely", "aggression" , et.) that are part of some utterane.- Strutural ontext:



2.8. Data assessment 33Emotional events depend on the syntati struture of the utterane:fous of attention, sentene stress, intonation variability, et. Struturalharateristis of the utteranes (repetitions, rephrasing, interruptionsand long pauses) an be used as indiators of hange in the emotionalstate of the user. The sentene "I really, really like this" is an exampleof ontextual ampli�ation by repetition the word "really".- Temporal ontext:Spontaneous speeh ontains distintive haraters of hange as emotionebbs and �ows during time. Due to their temporal nature, some wordswithin an utterane an be more expressive in omparison with theirneighbor words. By interpreting nearby utteranes and words we anresolve loal ambiguity in emotional state lassi�ation. The sentene"This was a great failure" ontains positive in general but negative inontext the word "great".� DesriptorsDesribing the para-linguisti and emotional ontent on one hand, andtransribing the speeh on the other is an important issue of onstrut-ing a high-standard database. The requirements for orret labeling ofemotional events may be a onern to the level of naturalness. Atedemotions an be adequately desribed with emotion ategory labels froma basi emotions list. Corpora with spontaneous emotions, though, anrequire a gradation of the emotion (old angry, hot angry, et.) andindiation of the most expressive peaks within an utterane.There are two main issues in terms of speeh desriptors: First, thefull range of features responsible for the voal expression of emotionshould be taken into aount. This range of features should inludeat least the prosodi desription, non-linguisti features like breathing,latter, laughter, and rying. Seond, it is important to desribe theattributes that de�ne emotional states and their dynami spei�ation(intensity variability in the time domain). As disussed in setion 2.5.1and setion 2.5.2, emotions an be desribed with emotion ategoriesor numeri values within a two- or three-dimensional spae, namelyvalene-arousal-(dominane) VA(D).Providing "ground truth" measures within emotional ontent annota-tion is an important issue. De�ning "ground truth" measures for emo-tions desribed in numerial values in VA(D) spae is a non-trivial task.It an also be problemati to measure "ground truth" for real-life emo-tions de�ned with disrete emotion ategories whih have a mixed natureor low-intensity.To be able to measure the quality of the emotional annotation, inter-



34 Chapter 2. State of the artrater reliability measures as an alternative to the "ground truth" havebeen introdued. To estimate the inter-rater agreement, it is ommonto use the Kappa oe�ient κ [Carletta, 1996℄:
κ =

PA − P0

1− P0
(2.1)where PA orresponds to the proportion of the raters that assigned thesame lass label, P0 is an estimation of the proportion where raters agreeby hane.A desription of our annotation strategy with an example of the adequateannotation of spontaneous emotions will be given in setion 2.8.1.2.8.1 An adequate annotation strategyAn annotation proess is the most expensive and time-onsuming part withinprosodi speeh orpora development. Two of the key points identi�ed in theprevious setion � sope and level of naturalness � are desribed in Table 2.3.This table is designed to provide some brief information about existing emo-tional speeh orpora. Sope desribes the language spei�ation, number ofspeakers, and emotions onsidered. Under level of naturalness, we onsiderseveral ategories: ated, spontaneous, mixed (ontain both ated and spon-taneous samples); and the type of material (e.g., sentenes, utteranes, shortommands).As one an see, just �ve (AVIC, EMO-DB, ENTERFACE, SmartKom,VAM) from nine datasets ontain the su�ient amount of speakers. To beable to model inter-subjet variability, orpora should ontain enough femaleand male speakers (at least 5 speakers for eah gender).A good example of a reliable and lose to "natural" ated emotional speehdatabase is the Berlin Emotional Speeh Database [Burkhardt et al., 2005℄.The emotion reognizability level, and the level of naturalness estimatedwithin a pereption test for eah utterane, are presented in this database.To provide reliable measures, twenty pereption-test evaluators took part inthis test. Eah "rater" heard all of the utteranes in a random order. Theywere allowed to listen to eah utterane only one before the pereption-testevaluator had to deide in whih emotional state the speaker had been andhow persuasive the performane was. Within our reognition evaluations, seeChapter 5, we used utteranes with a minimum 60% level of naturalness andminimum 80% reognizability level. In pratie, the pereption test imple-mented for evaluation of the Berlin Emotional Speeh Database [Burkhardtet al., 2005℄ with estimation of the levels of naturalness and reognizability



2.8. Data assessment 35
I   [hm]   do   <breathing>  really  like  this.

focus of 

intention

emotional

expression 

I   [hm]   do   <breathing>  really  like  this.

focus of 

intention

emotional

expression 

neutral

neutral

joy

joy

I   [hm]   do   <breathing>  really  like  this.

focus of 

intention

emotional

expression 

neutral       joyFigure 2.5: An example of reliable spontaneous a�etive speeh annotationfor eah emotional utterane an be used as a "ground truth" measure of thelevel of naturalness.In ase of appliable a�etive speeh annotation, two issues stand out:Firstly, transription needs to aknowledge the full range of features in-volved in the aousti expression of emotion, inluding voie quality, bound-ary prosody and non-linguisti features suh as laughter, rying, latter, andbreath. Seondly, it needs to desribe the attributes (e.g., linguisti, dialog atsspei�ation) that are relevant to emotion. An example of reliable a�etivespontaneous speeh annotation is presented in Figure 2.5.As one an see, the strutural ontext (fous of attention, sentene stress,intonation variability, et.) should be arefully annotated. There is a highorrelation between boundary and emotional prosody. Annotators should beextremely areful with distinguishing between these two di�erent events. Anexample of a possible on�it between fous of attention (boundary prosodyevent) and emotional events is presented in Figure 2.5. Eah of these ut-teranes have slightly di�erent semanti aents whih should be taken intoaount by human-distinguishable boundary prosody and emotional prosodyevents. Afterwards, we will be able make annotation proess faster and reahhigher quality of annotation within the spontaneous a�etive speeh desrip-tion task [Siegert et al., 2011℄.In real-life ommuniation humans use a number of di�erent variationsto denote emphasis in speeh. Speakers may render emphasis with di�erent



36 Chapter 2. State of the artombinations and even individuals may hange their strategies for variousprosodi ues (boundary prosody and emotional prosody). In the �rst twosentenes presented in Figure 2.5 the words the "really" and "like" an bepronouned with emphasis. At the same time only one word is pronounedemotionally. In the �rst sentene the speaker points out that his emotionsare real, not simulated. In the seond sentene the speaker plaes an aenton the ation ("like"). It is quite important to distinguish emphasis whihrepresents two di�erent paralinguisti phenomena. As one an see, from thethird sentene these phenomena an be mixed. In this ase both words "really"and "like" are pronouned with emphasis and emotional prosody ue. Corretinterpretation of those sentenes an provide system information about thespeaker's intentions.Most datasets evaluated in our reognition experiments and desribed inTable 2.3 used a desription of emotion with de�ned emotion ategories list.Only two databases (VAM, SAL) implemented the VA(D) dimensional ap-proah. From our point of few, both types of emotional state desriptorshave advantages and disadvantages. In a ase of emotion-ategories-baseddesriptors, we an model di�erent dialog strategies for di�erent emotionalstate subsets in ontrast to the emotions de�ned by VA(D) dimensions. Also,it is muh easier to organize pereption evaluation with a de�ned or "open"emotion ategories list in ontrast to emotion pereption evaluation with theVA(D) spae, where "raters" should be preliminarily trained to be able tomake reliable emotional annotations. As desribed earlier, it is easier to pro-vide "ground measures" for ated emotions annotated with a set of emotionategories. From the other side, VA(D) dimension-based annotation providesa higher-level of disrimination. As a onsequene, mixed emotions and emo-tions with light exlusivity an easily be de�ned with numeri values in VA(D)spae. Of ourse, standard mapping of ategorial emotions on VA(D) di-mensional spae will be appreiated. Due to the huge variability of "rater"-dependent measures of ategorial emotions within VA(D) spae, no standardmapping tehnique exist. Grimm et al. in [Grimm et al., 2007℄ proposedevaluator weighted estimator (EWE). They introdued evaluator-dependentweights whih measure the orrelation between the listener's responses, andthe average ratings of all evaluators. These weights an be used as a possiblenormalization tehnique for the variable "rater"-dependent measures.Our emotion-lassi�ation engine, integrated into the NIMITEK (Neurobi-ologially Inspired, Multimodal Intention Reognition for Tehnial Commu-niation Systems) demonstrator [Wendemuth et al., 2008℄, has been trainedon the EMO-DB database whih is annotated with emotion ategories de-sriptors. A detailed introdution to various types of speeh-based emotion-lassi�ation tehniques will be given in Chapter 4. A NIMITEK demon-



2.9. Evaluating reognition results 37strator's dialog module supports di�erent strategies based on an atual user'semotional state. More details on this an be found in Chapter 6.2.9 Evaluating reognition resultsOne the test material has been proessed by the reognizer, the next stepis to analyze the results. The main aim of this analysis is a representationof reognition performane of evaluated lassi�ers. Also, this analysis anbe used for omparison of reognition performanes during iterative lassi�erparameters tuning. Within our researh we use di�erent measures to har-aterize performane of ASR and emotion reognition from speeh. Thesemeasures will be desribed in this setion.2.9.1 Automati speeh reognitionFor estimating the performane of automati speeh reognition we use stan-dard measures inluded in the HTK tool [Young et al., 2009℄. The HResultstool has been used to estimate ASR performane. It ompares the transrip-tions output from the ASR engine with the original referene transriptionsand then generates various statistial measures. HResults mathes eah ofthe reognized and referene label sequenes by retrieving an optimal stringmath using dynami programming.One the optimal alignment has been found, the number of deletion errors(D), substitution errors (S) and insertion errors (I) an be estimated [Younget al., 2009℄. The perentage of orret reognized labels is alled orretnessand is given by
Corr =

N −D − S

N
× 100% (2.2)where N is the total number of labels presented in the referene tran-sriptions. This measure ignores insertion errors. Taking into onsiderationinsertion errors, the perentage of so-alled auray is de�ned as

Acc =
N −D − S − I

N
× 100% (2.3)whih is a more representative �gure of ASR performane. For the evalu-ations of our ASR engine we will use both measures.2.9.2 Emotion reognitionAs lasses are often unbalaned in the emotional speeh datasets, see Ta-ble 2.3, we deided to use two di�erent evaluation measures for presenta-



38 Chapter 2. State of the arttion of emotion-reognition performanes: unweighted average reall (UA) andweighted average reall (WA).Unweighted average reall (UA) is the sum of all lass auraies, dividedby the number of lasses, without onsidering the number of instanes perlass. Weighted average reall (WA), also known as auray, is the aurayper lass, inluding onsideration of the number of instanes per lass. Inother words WA (auray) is the number of instanes with orretly lassi�edlasses, divided by the total number of lassi�ed instanes. For estimatingWAwe simply alulate Acc presented in equation 2.3. For this purpose we usethe HResults tool.To show the di�erene between UA and WA measures, let's onsider anexample. We have an emotional speeh dataset with 99 joy samples and 1anger sample. That is to say, we have heavily unbalaned lass distributionswithin our dataset. If our lassi�er reognizes all 100 samples as joy, anauray of emotion reognition WA = 99%, whih is a really good result.At the same time, our lassi�er was not able to lassify an anger sample. Toshow "real" emotion-reognition performane of our lassi�er it is better touse UA rate. For our example it an be alulated as
UA =

99
99

+ 0
1

2
× 100% = 50% (2.4)Now we an resume that our lassi�er has WA = 99% whih is a reallygood performane from one side, and has UA = 50% whih is equal to se-letion "by hane" of a possible emotional state for two emotional lassesreognition task.While tuning our lassi�ers we should use the most reliable measures. Ifwe have balaned lass distributions within an emotional speeh dataset wean useWA, in the other ase it is better to use UA. If the lassi�er parametersare optimized on the measure of WA (number of aurately lassi�ed samplesby total number of tested samples), it will likely reognize only a few of thedominant emotional lasses aurately. Unweighted average reall provides amethod for estimating the performane of a lassi�er in emotionally biaseddatasets. For the estimation of UA we use our own Perl sript whih providesa detailed omparison of reognized and referene emotional labels.2.10 Evaluation strategiesThe most general parameters for evaluating the performane of a lassi�erare its general reognition rates (UA, WA, A, Corr), and they have to beestimated on the soure dataset S. Usually the number of lass instanes



2.10. Evaluation strategies 39in dataset S is quite small. Limited availability of the data soure or highexpenses of data olletion are the main reasons for a sparse amount of thedata.A ommon methodology for evaluating the reognition rates is to split thesoure dataset into two subsets: training and test set. The training set is usedfor training purposes and the test set is applied to estimate the reognition rateof the earlier trained lassi�er. This proess is usually repeated multiple times(with di�erent random or preseleted subunits of the dataset into training andtest sets), and the average of all estimated reognition rates gives an estimationof the general reognition rate.2.10.1 Speaker-dependent evaluationWithin a N-fold ross-validation strategy, a dataset S is �rst randomly di-vided into n disjoint subsets S1, S2, . . . , SN , whih have an equal or quasi-equal amount of instanes per lass. Eah of the n subsets is then one afteranother applied as the test set, while the remaining n− 1 subsets are appliedas the training set. A lassi�er is then trained on the training set material,and its auray is estimated on the test set material. This proess is repeated
n times, with a di�erent subset applied as the test set. The evaluated gen-eral reognition rates by this method is the average over the n subsets. Anextension to ross-validation is a strati�ed ross-validation. Within a N-foldstrati�ed ross-validation strategy, a dataset S is divided into n subsets insuh a way that eah lass is uniformly distributed among the n subsets [Zengand Martinez, 2000℄.For our speaker-dependent evaluations we applied a 10-fold strati�ed ross-validation (SCV) strategy. Suh strategy is used for datasets whih have asmall amount of data per lass instane and/or per speaker presented in aorpus (SUSAS, DES).2.10.2 Speaker-independent evaluationTo address speaker independene (SI) within our evaluations we applied leave-one-speaker-out (LOSO) or leave-one-speakers-group-out (LOSGO) strategies.In suh a way we simulate lose to real-life appliation onditions. For thesestrategies, evaluation material should ontain a su�ient amount of instanes(emotional samples, utteranes) per eah speaker presented in the dataset.Within LOSO strategy the number of folds n presented in the previous se-tion is equal to the number of speakers presented in orpora. In the ase ofLOSGO strategy n is a number of speaker groups. In ontrast to a randompartitioning proess within a ross-validation strategy we divided a dataset S



40 Chapter 2. State of the artinto n folds in suh a way that eah fold ontains samples of only one speaker(within LOSO) or only one speaker group (LOSGO). An additional advantageof these methods is a possibility to onentrate on inter-speaker variation andnot to deal with aousti hannel hanges. For presentation of the reognitionperformane within an evaluation based on LOSO strategy we estimate theaverage evaluation measures (UA, WA, Corr, A). For this purpose we de-veloped a Perl sript whih analyzes the reognition results for eah speaker(leave-one-speaker-out trial) within the omplete evaluation yle.2.10.3 Cross-orpora evaluationWithin the previously desribed strategies we onlude a simpli�ation thatharaterizes that most of the urrent speeh-proessing researh is that las-si�ers are usually trained and tested using the same datasets. By using twodi�erent datasets for training and testing we an simulate that, in partiulardevelopment tasks, orpora may not be available whih over all emotionsof speaker in a given appliation domain. This type of experiments alledross-orpora evaluation. Speaker-independent evaluations (LOSO, LOSGO)have beome quite ommon, still other mismathes between training and testdatasets, suh as di�erent reording onditions (inluding di�erent aoustienvironment, aousti hannel harateristis, mirophone types, signal-to-noise ratios, et.), are often not onsidered. Addressing suh typial souresof mismath, however, we believe that an impression about the generalizationability of speeh-based emotion reognition and automati speeh-reognitionengines an be obtained by ross-orpora evaluations. A onsiderably morerealisti impression an be gathered by interset evaluation: We therefore use aross-orpora evaluation experiment, whih ould also be helpful for learningabout hanes to add resoures for training and overoming the typial sparse-ness in the �eld. By using ross-orpora evaluation for emotion-reognitionexperiments we want to estimate emotion-reognition performane in ondi-tions whih are lose to real-life development tasks.2.11 SummaryThis hapter reviews the fundamentals of the user-entered human-mahineinteration. The variety of existing spoken dialog systems with German in-teration language is desribed �rst. Charateristis of the natural humanspeeh, namely boundary and emotional prosody, are then presented. Theemotion theory and existing emotion-ategorization shemes are presented indetail. Di�erent soures of emotional speeh data are then introdued. Also,



2.11. Summary 41a possible emotion lustering tehnique is then introdued. Then, the mainissues of adequate annotation of the a�etive speeh are presented. Finally, avariety of reognition rate measures and evaluation strategies are disussed.In the next hapter we will desribe the general arhiteture of the au-tomati speeh-reognition (ASR) system. Some ASR methods will be usedfor our phoneme-level emotion-reognition methods. Methods desribed inthe next hapter have been used to reate an ASR module integrated in ourNIMITEK demonstration prototype of a spoken dialog system (SDS). Also,we need the ASR system for time alignment within phoneme-level emotionlassi�ation. Finally, the ASR module an be used for semi-automati tran-sription of the data olleted during a Wizard of Oz senario.





Chapter 3Spontaneous a�etive speehreognition
Contents3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . 433.2 General ASR models/arhiteture . . . . . . . . . . . 433.3 Constrution of robust ASR models for Germanspontaneous a�etive speeh . . . . . . . . . . . . . . . 663.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1 IntrodutionIn this hapter an introdution to automati spontaneous speeh-reognition system with aousti model based on hidden Markov models(HMMs) is given. Main aspets of the onept presented in Figure 3.1 aredesribed in this hapter, namely feature extration, the mathematial de-sription of an HMMs-based algorithm, a seletion of the sub-word units andtheir quantitative and qualitative spei�ation, the deoding algorithm forspontaneous speeh, a language modeling and the adaptation tehniques fora robust a�etive speeh reognition.3.2 General ASR models/arhitetureAutomati speeh reognition (ASR) is a task of onverting aousti waveformautomatially to a word sequene. The basi struture of an ASR system ispresented in Figure 3.1.Converting of an aousti speeh signals into stream of aousti fea-tures, referred to as observations is the �rst stage of speeh reognition. So-alled, front-end proessing or feature extration have to generate ompataousti observation vetors with su�ient information appliable for e�ient
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Sequence of words 

hypothesis

Speech signal

Figure 3.1: General struture of a standard ASR systemreognition. Three types of omponents are required for a standard speeh-reognition system: the lexion (or ditionary), language model and aoustimodel. The lexion is usually used to map phoneti units (monophones, tri-phones, et), from whih the aousti models are built, to the hypothesis wordpresent in the lexion and language model. The language model representsa-priory information about syntati and semanti struture of the utteredsentenes, whih inlude the possibility of eah possible word sequene. Theaousti model maps the aousti observation vetors to the phoneti units.A detailed desription to various omponents in Figure 3.1 will be given laterin Chapter 3.Statistial analysis is the most popular speeh-reognition algorithms todetermine word sequene hypothesis given the information presented in Fig-ure 3.1. The main deision riterion to �nd the most likely word sequenehypothesis Ŵ for the sequene of observation vetors O = [o1 . . .oT ] is theBayesian deision rule [Young, 1995℄:
Ŵ = argmax

W

P (W|O) = argmax
W

{

p(O|W)P (W)

p(O)

} (3.1)Take into aount that the most likely word sequene is independent of thelikelihood of the observation
Ŵ = argmax

W

{p(O|W)P (W)} (3.2)where P (W) is the prior probability of a partiular sequene of words pre-sented by a language model. p(O|W) is estimated by the aousti modelwhih is in most ases implemented as hidden Markov models (HMMs).



3.2. General ASR models/arhiteture 453.2.1 Feature extrationFor e�etive speeh reognition, the speeh signal is usually onverted into aseries of disrete time aousti features. These aousti features are supposedto present speeh variability in a ompat form. In the speeh-proessing om-munity these features are often referred to as feature vetors or observations.The most widely used feature extration sheme applied in ASR systems is aMel-frequeny Cepstral oe�ient (MFCC).The MFCC extration is based on epstral analysis. Firstly, the aoustisignal is split into disrete frames usually with a 10 ms shifting step and a25 ms window length. These parameters were estimated based on the quasi-stationarity property of the speeh signals [Rabiner and Juang, 1993℄. Thesedisrete fragments are usually referred to as frames. The feature extrationis applied for eah frame. A �rst-order pre-emphasizing tehnique in ombi-nation with a Hamming smoothing window are used. The pre-emphasizing isimplemented with high-frequeny ampli�ation to ompensate for the attenu-ation produed by the radiation from the lips [Young, 1995℄. Using a windowfuntion like Hamming, is useful for a boundary e�et redution. A fastFourier transform (FFT) is performed on the time-domain aousti signal foreah individual frame, generating speeh representation in omplex frequenydomains. Afterwards, the frequeny warping methods are used [Young et al.,2009℄:� Mel-frequeny warping:Within psyhophysial experiments it has been shown that human per-eption of the frequeny ontent of aousti signals does not follow alinear sale. Therefore the frequeny is warped using the Mel-frequenysale, with following frequeny axis saling. Estimation of the magni-tude of eah FFT omplex value will be proessed in a saled magnitude-frequeny domain.� Down-sampling with triangular �lter bank:By using the mel triangle �lter bank we an down-sample the warpedmagnitude-frequeny domain. The magnitude oe�ients are multi-plied by �lter gains, afterwards the results are aumulated as theamplitude value, see Figure 3.2. As a onsequene, one amplitude valuewas alulated for eah �lter. As a next step the logarithm of eah�lter amplitude value is alulated, later referred as mj , where j is a�lter number. For our evaluations we used the lower ut-o� equal to300 Hz and the upper ut-o�s equal to 3,400 Hz.� Disrete Cosine transform (DCT):ADCT is onduted on the log �lter-bank amplitudes, to redue the spa-
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Figure 3.2: Triangular mel-sale �lter banktial orrelation within �lter bank amplitudes. The DCT oe�ients al-ulated by equation 3.3 are referred as Cepstral oe�ients, also knownas MFCC oe�ients.
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) (3.3)where Nch is the number of triangle �lter bank hannels.Within our evaluations the 12 oe�ients and the zero-order Cepstral o-e�ient are used. Hene a 13-dimensional feature vetor is onstruted foreah frame.By adding dynami oe�ients the performane of ASR system an begreatly enhaned. These time derivative features represent the orrelationwithin stati features for the di�erent time instanes. The delta oe�ients,
∆ot, are omputed using the following linear regression formula:

∆ct =

∑K
k=1 k(ct+k − ct−k)

2
∑K

k=1 k
2

(3.4)where ∆ct is a delta oe�ient at the disrete time t with respet to the statioe�ients ct−k and ct+k; K is the width over whih delta oe�ients are al-ulated. Within our evaluations we applied K = 2. The delta-delta oe�ient
∆(∆ct), or so-alled aeleration features or seond-order delta oe�ients,is de�ned in equation 3.4. In this ase the stati oe�ients ct−k and ct+k inequation 3.4 are replaed by the �rst-order delta oe�ients ∆ct−k and ∆ct+k.For our evaluations we used both: delta and aeleration oe�ients in addi-tion to the 13-dimensional MFCC feature vetor. As a result a 39-dimensionalaousti feature vetor is onstruted for eah window of analysis.



3.2. General ASR models/arhiteture 473.2.2 Aousti modelNow to be able to evaluate on observation vetors sequenes, we need anaousti model. The most robust and general aousti tehnique in automatispeeh reognition are hidden Markov models (HMM). The �rst appliationsof HMMs for the aousti modeling were used in the mid-1970s [Baker, 1975℄.Currently, the HMMs-based aousti models are presented in the HTK toolkit[Young et al., 2009℄ an extremely popular in speeh-proessing ommunity. Forour evaluations we used this toolkit, to reate and test our German aoustimodels.The main goal of the aousti model is to supply a method of estimationof the likelihood of any observation feature vetors sequene O given a hy-pothetial word sequene W. For small voabulary speeh-reognition tasks,HMMs an be used to model single words. However, for speeh-reognitionappliation with large voabularies, it is impossible to aquire su�ient train-ing material for eah word inluded in the voabulary. One possible solutionto this problem is to use HMMs to model sub-word (phoneti) units, insteadthe words themselves. More details about this deomposition and type of thesub-word unit seletion an be found in setion 3.3.2.The HMM is a generative statistial model where eah sub-word unit issupposed to be generated by a �nite state mahine. This state mahine, ouldhange an ative state at some disrete time with a prede�ned probability.When an emitting state is ativated, an observation vetor is generated atthat disrete time instane with a de�ned probability funtion. A left-rightHMM with three emitting and two non-emitting states is the most populartopology applied for monophone-based ASR system, see Figure 3.3. The entryand exit states are produed to failitate sub-word models onnetions. Theexit state of one sub-word model an be joined with the entry state of the
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48 Chapter 3. Spontaneous a�etive speeh reognitionnext sub-word model to arrange omposite HMM.To be able to use a HMM, two assumptions should be true:� The stationarity assumption:The speeh waveform an be divided into stationary fragments, whihorrespond to the same hidden states. It is required that observationvetors within the same fragments have similar aousti harateristis.Transations from one state to another are supposed to be instanta-neous.� The observation independene assumption:A generation of a urrent observation is statistially independent of theprevious and following generated observations. From that assumptionthe following equation an be formed:
p(O|s1, s2, . . . , sT ,M) =

T
∏

t=1

p(ot|st,M) (3.5)where O is an observation sequene O = [o1, o2, . . . , oT ], st is an ativestate at the disrete time t, M is an HMM's parameter set.Suppose O is an observation vetors sequene O = [o1, o2, . . . , oT ] orre-sponding to some sample of a partiular phoneti unit (monophone, triphone,et), where T is the length of the vetor sequene or in other words theduration in disrete time samples. The generation begins from the �rst non-emitting state. At eah disrete time, an ative state an be swithed withthe probability given by the model. The transition probability, is de�ned asa disrete distribution aij for the possible transitions from state i to state j.During the emitting state ativation proess, an observation vetor is gen-erated at the disrete time with either disrete or ontinuous density bj(ot),where j is an ative state number. Let's assume that s = [s1, s2, . . . , sT ] isthe state sequene assoiated with the observation vetors sequene. Withinmodeling, only the observation vetor sequene an be observed and the or-responding state sequene s is unknown. This is the reason why the model isalled the hidden Markov model.The HMM's parameter set M onsists of the following parameters [Ra-biner, 1989℄:� π - Initial state distributionThe initial state distribution is expressed as:
πi = P (s1 = i),

N
∑

i=1

πi = 1, π ≥ 0 (3.6)



3.2. General ASR models/arhiteture 49where N is the number of sates, st is an ative state number at thedisrete time t.� A - State transation probability matrixThe state-transation probability matrix A inludes the following ele-ments:
aij = P (st+1 = j|st = i),

N
∑

j=1

aij = 1, aij ≥ 0 (3.7)� B - Observation generation probability distributionEvery emitting state k is assoiated with an output probability distri-bution, whih is responsible for the observation vetors generation ateah disrete time instane. The following distribution is expressed as
bk(ot) = p(ot|st = k) (3.8)The state output probability distribution an be de�ned with a dis-rete distribution or a ontinuous density distribution funtion. For ourevaluations we use the ontinuous density distribution ase.In ontext of the ASR task, there are three following basi problems forHMMs [Rabiner and Juang, 1993℄:� Probability evaluationGiven the observation vetors sequene O = [o1, o2, . . . , oT ], and aHMM's model M = (π,A,B), how an we estimate p(O|W,M). Thisproblem an be solved with the forward-bakward algorithm.� Optimal state sequene deodingGiven the observation vetors sequene O = [o1, o2, . . . , oT ], and themodel M, what is the optimal state sequene s = [s1, s2, . . . , sT ]. TheViterbi algorithm an be used to solve this problem [Viterbi, 1967℄.� Parameters EstimationHow do we estimate the model parameters M = (π,A,B) whih max-imize p(O|W,M)? The Baum-Welh re-estimation algorithm an beused as a solution for the following problem [Baum et al., 1970℄.3.2.3 Probability evaluationLet's say we have the observation vetor O = [o1, o2, . . . , oT ] whih or-responds to some hypothetial word sequene W . We wish to alulatethe likelihood of the observation vetor O = [o1, o2, . . . , oT ], for the givenHMM model M = (π,A,B). As mentioned earlier the state sequene

s = [s1, s2, . . . , sT ] is hidden. As a onsequene, the most straightforwardway of likelihood p(O|W,M) estimation is through enumerating all possible



50 Chapter 3. Spontaneous a�etive speeh reognitionstate sequenes, whih an generate an observation vetors sequene O oflength T . We should take into aount NT possible state sequenes.Take into aount the observations independene assumption (see equation3.5), the likelihood of the observation vetors sequene O generation by thegiven state sequene s may be expressed as:
p(O|s1, s2, . . . , sT ,W,M) =

T
∏

t=1

bst(ot) (3.9)The likelihood of suh a state sequene s = [s1, s2, . . . , sT ] an be estimatedby:
p(s1, s2, . . . , sT |W,M) = πs1

T
∏

t=2

ast−1st (3.10)By using equations 3.9, 3.10 the likelihood p(O|W,M) may be estimatedby aumulating the joint likelihood ofO and s over all possible state sequene
s = [s1, s2, . . . , sT ]

p(O|W,M) =
∑

∀s

p(O, s|W,M)

=
∑

∀s

p(s|W,M)p(O|s,M)

=
∑

∀s

πs1

T
∏

t=1

bst(ot)ast−1st (3.11)where as0s1 is an initial transition probability from the �rst non-emitting stateto the emitting state, is equal to 1.To estimate the likelihood expressed in equation 3.11, we should be ableto model the distribution bj(ot). One of a possible ontinuous density HMMtehnique is based on a multivariateGaussian mixture model (GMM). Besides,the bj(ot) an be represented as a multivariate GMM [Yu, 2006℄:
bj(ot) =

Mj
∑

m=1

cjmbjm(ot) (3.12)where Mj is the number of Gaussian mixture omponents related to the state
j , cjm is a weight oe�ient of m omponent of the state j. Eah ompo-nent bjm(ot) is the D-dimensional multivariate Gaussian distribution with thefollowing parameters N (

ot|µjm,Σjm

) :
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bjm(ot) =

1
√

(2π)D|Σjm|
exp{−1

2
(ot − µjm)

T
Σjm

−1(ot − µjm)

} (3.13)where µjm is a mean vetor of m omponent and j HMM's state, and Σjm isa ovariane matrix of m omponent and j HMM's state.3.2.3.1 The forward proessConsider the forward variable αj(t), is de�ned as the joint likelihood of thepartial observation vetors from orresponding disrete time interval from 1to t with the �nal ative state st = j:
αj(t) = p(o1, o2, . . . , ot, st = j|W,M) (3.14)The forward variable of the partial observation vetors sequene

o1, o2, . . . , ot and an ative state i at the disrete time t an be e�ientlyalulated using a reursive formula:
αj(t+1) = bj(ot+1)

N
∑

i=1

αi(t)aij (3.15)
1 ≤t ≤ T − 1, 1 ≤ j ≤ Nwhere N is the total number of HMM's states (emitting and non-emitting).The initialization ondition for equation 3.15 is:

αj(1) = πjbj(o1), 1 ≤ j ≤ N (3.16)By using the forward variable, equation 3.11 in setion 3.2.3 an be rewrit-ten as:
p(O|W,M) =

N
∑

i=1

αi(T ) (3.17)Calulation of the forward variable is based on the lattie traking. Thegeneral model of the lattie an N state HMM is presented in Figure 3.4. Atthe initial disrete time t = 1, we need to ompute forward variables αj(1),
1 ≤ j ≤ N . Afterwards, we need only ompute forward variables αj(t),
1 ≤ j ≤ N at the disrete time 2 ≤ t ≤ T . Eah alulation uses just the Nprevious forward variables αj(t − 1) beause eah of N lattie nodes an bereahed from only the N lattie nodes at the previous disrete time slot [Ra-biner and Juang, 1993℄. Calulation of all αj(t) forward variables requires onthe order of N2T alulation, in omparison with 2TNT alulations requiredby the diret omputation method.
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Figure 3.4: General representation of the series of operations required forestimation forward variable αi(t)3.2.3.2 The bakward proessIn a similar way, we an an de�ne a bakward variable, βt(j), as
βj(t) = p(ot+1, ot+2, . . . , oT |st = j,W,M) (3.18)that, is the probability of the partial observation vetors sequene from dis-rete time t+ 1 to the end, with an ative state j at the disrete time t.The bakward variable an be alulated using the following reursion:

βj(t) =
N
∑

i=1

ajibi(ot+1)βi(t+ 1) (3.19)
1 ≤t ≤ T − 1, 1 ≤ j ≤ NAn initial ondition of reursion 3.19 is:
βj(T ) = 1, 1 ≤ j ≤ N (3.20)Hene the onditional probability p(O, st = j|W,M) an be alulated as:

p(O, st = j|W,M) = αj(t)βj(t) (3.21)3.2.4 An optimal state sequene deodingThe seond basi problem for the HMM is to �nd an optimal state sequeneassoiated with the given observation vetors sequene. There are several



3.2. General ASR models/arhiteture 53possible optimality riteria: A simple possible optimality riterion is to hoosethe states st, whih are the most likely at eah disrete time t. This riteriamight be appliable for some simple tasks, but the most suitable riterion is to�nd the one optimal state sequene s that is, to maximize p(s|O,M), whihan be interpreted to maximizing p(O, s|M). The Viterbi algorithm [Viterbi,1967℄ is one of the possible tehniques for �nding one optimal state sequene.It is based on dynami programming methods. A detailed disretion of theViterbi algorithm applied for isolated word reognition will be disussed inthis setion. A desription of the Viterbi deoding within ontinuous speehreognition will be given in setion 3.2.8.3.2.4.1 Viterbi algorithmTo �nd one optimal state sequene s = [s1, s2, . . . , sT ], for some observationvetors sequene O = [o1, o2, . . . , oT ], we have to de�ne the maximum likeli-hood variable χj(t) of the partial observation vetors sequene [o1, o2, . . . , ot]and an ative state j at the disrete time t:
χj(t) = max

∀s1,s2,...,st−1

p(s1, s2, . . . , st−1, st = j,O|W,M) (3.22)Take into aount dynami programming priniples (DPP) [Bellman,1957℄, [Bertsekas, 2000℄, to �nd the optimal state sequene from disrete time
1 to disrete time t+1 any intermediate state must be the optimal state (loaloptima) within the optimal partial state sequenes before and after that state.As the result of the DPP, we an express χj(t+ 1) by the indution:

χj(t+ 1) =

{

max
1≤i≤N

χj(t)aij

}

bj(ot+1) (3.23)To determine an optimal state sequene we need an additional variable
ψt(j) to store the argument that maximized equation 3.23. The algorithm of�nding an optimal state sequene an be presented as follows:� Initialization

χi(1) = πibi(o1), 1 ≤ i ≤ N (3.24a)
ψ1(i) = 0, 1 ≤ i ≤ N (3.24b)
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χj(t) = max

1≤i≤N
{χi(t− 1)aij} bj(ot) (3.25a)

2 ≤t ≤ T, 1 ≤ j ≤ N

ψt(j) = argmax
1≤i≤N

{χi(t− 1)aij} (3.25b)
2 ≤t ≤ T, 1 ≤ j ≤ N� Termination
ŝT = argmax

1≤i≤N

{χi(T )} (3.26)� State sequene baktraking
ŝt = ψt+1(ŝt+1) (3.27)
t = T − 1, T − 2, . . . , 1The Viterbi algorithm is almost similar (baktraking step is an exeption)in realization to the forward variable estimation 3.15 - 3.17 within forward-bakward algorithm. The main di�erene is the maximization in equation3.25a instead the summing in equation 3.15.3.2.5 Maximum likelihood trainingMaximum likelihood (ML) training is the most often used approah for es-timation of the HMM parameters. The main task is to ompute the modelparameters that maximize the likelihood of the observation vetors sequenegiven the de�ned transriptions and the model parameters. The general MLriterion an be expressed as:

M̂ML = argmax
M

p(O|W,M) (3.28)Where W is the de�ned training word sequene (or sub-word unit level tran-sription), M is the HMM parameter set.It is often more onvenient to maximize the logarithm of the likelihoodfuntion in order to derease required omputational power. In this aseequation 3.28 an be expressed as:
M̂ML = argmax

M

log p(O|W,M) (3.29)One possible solution for maximum likelihood training task is an expeta-tion maximization (EM) algorithm.



3.2. General ASR models/arhiteture 553.2.5.1 Expetation maximization algorithmThe expetation maximization (EM) is a general statisti method of �nding themaximum likelihood estimate of the parameters of an underlying distributionfrom a given data set when the data is inomplete or has missing values.The EM algorithm has two main appliations: The �rst takes plae whenthe data has some missing values, due to problems with or restritions of theobservation proess. The seond takes plae when optimizing the likelihoodfuntion is analytially quite di�ult but when the likelihood funtion an besimpli�ed by assuming the presene of and values for additional but hidden ormissing parameters. The seond ase is more ommon in the omputationalpattern reognition �eld [Bilmes, 1998℄.The EM algorithm is a well-known method of �nding maximum likelihoodestimates of parameters in various statistial models. The Baum-Welh algo-rithm [Baum et al., 1970℄ is a prominent instane of Expetation Maximizationalgorithm.The basi idea of the algorithm is to iteratively ompute the maximumlikelihood estimation when the observations an be onsidered as inompletedata. Eah iteration of the algorithm inludes an expetation step followedby a maximization step. The term "inomplete data" implies the existeneof two sample spaes X and Y . We assumed that observation feature vetors
x are realization from X . The orresponding state sequenes y in Y are notobserved diretly, but only indiretly through observation feature vetors x.We suppose that a omplete data set exists Z = (X, Y ). Then the jointdensity funtion p(z|M) an be spei�ed as:

p(z|M) = p(x, y|M) = p(y|x,M)p(x|M) (3.30)First, the EM algorithm �nds the expeted value of the omplete dataset log-likelihood log p(X, Y |M) with respet to the hidden data Y given theobserved data X and the atual parameters estimates. We an de�ne thefollowing auxiliary funtion Q(M,M̂k−1):
Q(M,M̂k−1) = E

[

log p(X, Y |M)|X,M̂k−1

] (3.31)Where M̂k−1 are the atual parameters estimates that we used to estimatethe expetation and M̂k are the new parameters that we optimize to inreasethe auxiliary funtion Q.To �nd the optimal parameters estimates, two main steps are taken:� Expetation: The evaluation of the auxiliary funtion Q(M,M̂k−1).The �rst argument M represents the parameters estimates that willbe optimized in an attempt to maximize the likelihood [Bilmes, 1998℄.



56 Chapter 3. Spontaneous a�etive speeh reognitionThe seond argument M̂k−1 represents the urrent parameters estimatesthat have available to estimate the expetation.� Maximization: The next step of the EM algorithm is to maximize theexpetation we omputed in the previous step:
M̂k = argmax

M

Q(M,M̂k−1) (3.32)This is the reason why the algorithm is alled expetation maximization(EM) algorithm.3.2.6 Parameters re-estimationTo desribe the iterative proess for re-estimation of HMM parameters we �rstde�ne variables ξij(t) and γj(t). The variable ξij(t), is de�ned the probabilitybeing an ative state i at the disrete time t, and state j at the disrete time
t+ 1:

ξij(t) = p(st = i, st+1 = j|O,W,M) (3.33)From the de�nitions of forward and bakward variables, we an express
ξij(t) as:

ξij(t) =
p(st = i, st+1 = j,O|W,M)

p(O|W,M)

=
αi(t)aijbj(ot+1)βj(t+ 1)

p(O|W,M)
(3.34)

=
αi(t)aijbj(ot+1)βj(t + 1)

∑N

i=1

∑N

j=1 αi(t)aijbj(ot+1)βj(t+ 1)

=
αi(t)aijbj(ot+1)βj(t+ 1)

∑N

i=1 αi(t)βi(t)The variable γj(t), is de�ned as:
γj(t) = p(st = j|O,W,M) (3.35)It is the probability of being ative state j at the disrete time t, givenobservation vetors sequene O, the word sequene hypothesis W, and themodel M. We an alulate γj(t) in suh a way:
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γj(t) = p(st = j|O,W,M)

=
p(O, st = j|W,M)

p(O|W,M)
(3.36)

=
p(O, st = j|W,M)

∑N
i=1 p(O, st = i|W,M)Bu using equation 3.21, we an express γt(j) as:

γj(t) =
αj(t)βj(t)

∑N
i=1 αi(t)βi(t)

(3.37)Re-estimation formulas for HMM parameters M̂ = (π̂, Â, B̂) an be de-rived by evaluating equation 3.32. By using variables ξij(t) and γj(t), we anexpress re-estimation formulas as:
π̂j = γj(1) (3.38a)
âij =

∑T−1
t=1 ξij(t)

∑T−1
t=1 γi(t)

(3.38b)GMM is the most popular type of ontinuous density funtion within ontin-uous HMM. To alulate parameters of the observation generation ontinuousdensity funtion bjm(ot), expressed in equation 3.13, we should de�ne a vari-able γjm(t). The Gaussian omponent posterior variable γjm(t) is related tothe m-th Gaussian omponent, and the ative state j an be estimated by:
γjm(t) =

cjmbjm(ot)βj(t)
∑N

i=1 αi(t− 1)aij
∑N

i=1 αi(t)βi(t)
(3.39)where bjm(ot) is the D-dimensional multivariate Gaussian distribution withthe following parameters N (

ot,µjm,Σjm

).The re-estimation equation for GMM parameters for an ative state j aregiven by [Yu, 2006℄:
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ĉjm =

∑T

t=1 γjm(t)
∑Mj

m=1

∑T
t=1 γjm(t)

(3.40a)
µ̂jm =

∑T
t=1 γjm(t)ot
∑T

t=1 γjm(t)
(3.40b)

Σ̂jm =



















∑T
t=1 γjm(t)(o1t−µ̂1

jm)2

∑Mj
m=1 γjm(t)
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0
∑T

t=1 γjm(t)(o2t−µ̂2
jm)2

∑Mj
m=1 γjm(t)

0 . . . 0
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∑Mj
m=1 γjm(t)

















(3.40)The alulation of the full ovariane matrix Σ̂jm requires a lot of omputationpower and memory for the seond-order statistis. Take into aount, thatmost ASR systems are using a large number of Gaussian omponents, onlythe estimation of the diagonal elements of ovariane matries are done inequation 3.40.3.2.7 Language modelingA language model is an important soure of priory information, namely, theprobability of a hypothesized sequene of K words, W = w1, w2, . . . , wk. Foreah word presented in the voabulary, the language model de�nes the listof words that an follow it with assoiated disrete probability. Those priordisrete probabilities an be fatorized into a produt of onditional probabil-ities:
P (W) = P (w1, w2, . . . , wk)

= P (w1)P (w2|w1)P (w3|w2, w1) . . . P (wk|wk−1, . . . , w1)

=
K
∏

k=1

P (wk|wk−1, . . . , w1) (3.41)where wk is the k-th word of the hypothesized word sequene. The estimationof the disrete probability of any word sequene using equation 3.41 demandsestimating the probability of all of it is possible omplete sequenes. In thease of large voabulary tasks, the number of possible omplete sequenes istoo big. As a result it is hard to provide an aurate estimate of every pos-sible word sequene. N-gram language models is a possible solution for this



3.2. General ASR models/arhiteture 59problem. This type of language model restrits the length of the ompletesequene required to alulate the onditional probability. This method isthe most widely used for statistial language modeling in automati speehreognition. The following simpli�ation of probability estimation of the hy-pothesized sequene of K words an be expressed as:
P (W) = P (w1, w2, . . . , wk)

=
K
∏

k=1

P (wk|wk−1, . . . , w1)

≈
K
∏

k=1

P (wk|wk−1, . . . , wk−N+1) (3.42)where N is the �xed size of word history. N usually has a small value, forexample: N = 2 so it is alled a bigram language model, N = 3 is a trigramlanguage model. Taking into aount this assumption, it is easy to use theML estimate for N-gram by using the word sequene frequeny ounts withlength N
P (wk|wk−1, . . . , wk−N+1) =

f(wk, wk−1, . . . , wk−N+1)

f(wk−1, . . . , wk−N+1)
; (3.43)where f(wk, wk−1, . . . , wk−N+1) indiates the number of times the N-gramword sequene wk, wk−1, . . . , wk−N+1 appears in the training dataset and

f(wk−1, . . . , wk−N+1) is the number of times the (N − 1)-gram word sequene
wk−1, . . . , wk−N+1 appears.Sine the voabulary of datasets we onsider in this thesis is su�ientlylimited, we use bak-o� bigram language models for evaluation of our ASRengine. The bigram language model is a table whih inludes the probabilityof a given word being followed by another word. This able is estimated basedon a training dataset.So-alled zero-gram model is the simplest language model, whih assumes
P (wk|wi) = 1 for all k and i, so that every word from the voabulary issupposedly apable of being followed by any other word from the voabulary.Zero-gram language models an be performed as �nite state networks, so-alled word networks. In suh a form they an be integrated simply into areognition deoding proess.For onstrution of a word network from a spei�ed reognition grammarwe used HParse tool from HTK 3.4 [Young et al., 2009℄. HParse formatgrammars are an easy way of de�ning a spei� themati domain grammarfor IVR tehnologies. An example of a reognition grammar in HParse format



60 Chapter 3. Spontaneous a�etive speeh reognition$s imple_objet = Ring | Sheibe ;$ a r t i  l e s = d i e | der | den | s i l ;$type1 = k l e i n s t e | m i t t l e r e | m i t t e l g r o s s e | g r o s s e |g r o e s s t e | naehste ;$type2 = k l e i n s t e n | m i t t e l g r o s s en | m i t t l e r en |g ro s s en | g r o e s s t en | naehsten ;$ l i_reh = l i n k s | r e h t s ;$num = e in s | zwei | d r e i ;$num2 = e r s t e | zwe i te | d r i t t e ;$ob j e  t = $ a r t i  l e s $type1 $s imple_objet |$ a r t i  l e s $type2 $s imple_objet |$ a r t i  l e s $type1 | $ a r t i  l e s $type2 ;$ d i r e  t i o n = auf d i e Nummer $num | auf Nummer $num |auf d i e $num | auf $num | auf Pos i t i on $num |nah $ l i_reh | $ l i_reh | nah ganz $ l i_reh |zu $num | in d i e Mitte | auf d i e Mitte | zur Mitte ;$a t i on = l e g e | l e g en | bewege | s e t z en |h in l egen | runte r l egen | p o s i t i o n i e r e n ;$ input = $ob j e  t | $ d i r e  t i o n | $ommands | X ;(< $input | s i l >)Listing 3.1: Simple Tower of Hanoi task (with 3 disks) grammaris presented in listing 3.1. This grammar is suitable for an ASR system forspeeh-based ontrol within solving a simple logi game "Tower of Hanoi"with 3 disks.Listing 3.1 shows an example of a grammar for "Tower of Hanoi" gamewith 3 disks. As an be notied, the grammar ontains the following wordgroups: objet spei�ation (simple_objet, type1, type2, num, num2, artiles,objet), diretion spei�ation (li_reh, num, diretion), ation spei�ation(ation) and a so-alled"garbage" model (X).The ditionary entry for X would referene out-of-voabulary (OOV) wordsor a so-alled "garbage" model. The simplest way of "garbage" modeling isto inlude phoneti transriptions of the most frequently used task-unrelatedwords to the X word-related-lexion entries.



3.2. General ASR models/arhiteture 613.2.8 Viterbi deoding and ontinuous speehreognitionWithin reognition, the aousti sore is omputed with equation 3.11 whihis presented in setion 3.2.3. As desribed in setions 3.2.3.1 and 3.2.3.2,the likelihood p(O|W,M) an be estimated using the forward-bakward al-gorithm [Baum et al., 1970℄. However, it is unpratial for the real-timeontinuous speeh reognition sine:� bakward iteration is needed, hene the whole utterane has to be bu�ered�rst� the sum over states takes a lot of time and omputational reourses,hene it is approximated by the maximumThe Viterbi algorithm [Viterbi, 1967℄, desribed in setion 3.2.4.1, is themost widely used approah in the ontinuous speeh reognition applied to �ndthe single best state sequene that has the highest probability to generatethe observation vetors sequenes. In suh a way, the maximum likelihoodof the observation vetors sequene uses only one hidden state sequene toapproximate the marginal likelihood over all possible state sequenes [Yu,2006℄.
p(O|W,M) =

∑

∀s

p(O, s|W,M)

≈ max
∀s

p(O, s|W,M) (3.44)Taking into aount equation 3.25a, the maximum likelihood of the obser-vation vetors sequene an be expressed as:
p(O|W,M) ≈ χN(T ) = max

1≤i≤N
{χi(T − 1)aiN} bj(oT ) (3.45)where T is the length of the observation vetors sequene. As one an notie,in equation 3.45 the bakward proessing is not applied. Hene, real-timeproessing beomes possible.The Viterbi algorithm an be applied for isolated word reognition tasks.Continuous speeh reognition is a omplex task. Sine an average ontinuous-speeh-reognition system deals with a huge number of possible word se-quenes, it is not appliable for suh a system to onstrut a single ompositeHMM for eah potential word sequene. In this ase, a Viterbi-beam searhwith a token passing algorithm [Young, 1995℄ is usually used.To understand the omplexity of the ontinuous speeh-reognition task,suppose that a branhing word network tree is built suh that at the startthere is a branh to every possible start word. All start words are linked to all



62 Chapter 3. Spontaneous a�etive speeh reognitionpossible following words and so forth. At the end, this branhing word networktree will be quite big and represents all of the possible word sequenes withina losed themati domain. After onstrution of the word network tree, leteah word be replaed by the sequene of orresponding phoneti models. Ina ase of multiple phoneti transriptions for the same word, these models anbe ombined in parallel. As one an notie, the onstruted branh networkis very large. As a onsequene, a pruning of the searh spae is required.Any path from the start point to some node in the network tree an bepresented as a movable token plaed in the node at the end of the path [Young,S. J. et al., 1989℄. The token is haraterized by the likelihood of the partialpath χj(t) (token sore) and a path history. As a starting point of the tokenpassing algorithm, a single token is set in the start node of the network tree.At eah disrete time, tokens are dupliated in onneted HMM states oronneted network tree nodes and their sores are re-estimated. Within thewords transation, the language model sore is added to the orrespondingtoken sore. When the last observation vetor is proessed, the token withthe highest sore is traed bak to show the most likely sequene of HMMsand orresponding lexial interpretation.3.2.9 Adaptation tehniques in ASRThe training approahes desribed earlier use an assumption that trainingand test datasets have similar aousti harateristis (speaking rate, aoustienvironment, voal trats variability, emotional speeh, et.). However, inreal-life appliations, it is usually not the ase. The aousti harateristismismath may signi�antly derease the reognition performane omparedto the ASR systems build on data with mathed aousti harateristis. Toompensate the mismath of aousti harateristis between test and trainingdatasets, adaptation tehniques are usually applied. A simpli�ed shema ofthe speaker adaptation tehnique as used in HMM-based speeh-reognitionmodels is presented in Figure 3.5.As one an see from Figure 3.5, adaptation tehniques use informationprovided in an adaptation material to adjust the HMM/GMM parameters(i.e. mean and diagonal elements of the ovariane matrix (variane) of themultivariate Gaussian mixture models) of the basi model to re�et spei�aousti harateristis (aoustial environment, speaker-dependent modeling,et.). In our researh we use adaptation approahes for ompensation the mis-math of aousti harateristis between neutral speeh samples and a�etivespeeh material.One of the most popular adaptation tehniques applied within ASR sys-tems are model-based transforms: Maximum Likelihood Linear Regression
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Figure 3.5: General struture of an adaptation ASR models(MLLR) andMaximum a Posteriori (MAP). The Maximum Likelihood LinearRegression (MLLR) and Maximum a Posteriori (MAP) adaptation tehniqueswill be desribed in this setion.3.2.9.1 Maximum a Posteriori (MAP) AdaptationThe Maximum a Posteriori (MAP) [Gauvain and Lee, 1994℄ approah (some-times referred as the Bayesian adaptation) maximizes the posteriori probabil-ity using a prior HMM parameter distribution.
M̂MAP = argmax

M

{ p(O|W,M) p(M|Otrn,Wtrn)} (3.46)where p(M|Otrn,Wtrn) is the prior distribution of the HMM models param-eters estimated on training data Otrn and Wtrn.To evaluate the HMM model parameter estimate using the MAP trans-formation, an iterative EM algorithm is applied. If the prior mean estimatefor state j and Gaussian mixture omponent m is µ̃, then the MAP estimatefor the adapted mean of the m Gaussian mixture omponent µ̂jm an beexpressed as:
µ̂jm =

τ µ̃jm +
∑T

t=1 γjm(t)ot
ad

τ +
∑T

t=1 γjm(t)
(3.47)



64 Chapter 3. Spontaneous a�etive speeh reognitionwhere τ is a hyper-parameter whih regulates the balane between the max-imum likelihood estimate of the mean value and its prior value; ot
ad is theadaptation observation feature vetor at the disrete time t; γjm(t) is the mGaussian omponent of the probability of being ative state j at the disretetime t. Usually the hyper-parameter is in the range 2 ≤ τ ≤ 20.The MAP adaptation requires more adaptation data to be present. Whenthe amount of adaptation data inreases, so the MAP estimate onverges tothe maximum likelihood estimate. If su�ient amount of adaptation data be-ome available, the MAP approah begins to perform better than the MLLR.3.2.9.2 Maximum Likelihood Linear Regression (MLLR)The Maximum Likelihood Linear Regression (MLLR) is the best-known lin-ear transformation method applied for speaker adaptation. It uses the MLriterion to estimate a linear transformation whih may be applied to adaptGaussian parameters of HMMs.

µ̂m = Aµm + b = Wξm (3.48)where µ̂m is the MAP estimate for the adapted mean of the m Gaussianmixture omponent; ξm is an extended mean vetor ξm = [1µm
T ] and W =

[bA]Equation 3.48 an be deonstruted as follows:
ŵd = Gd

−1
kd (3.49a)
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T
∑
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γm(t)

σm,dd

ξm ξm
T (3.49b)

kd =

Mj
∑

m=1

T
∑

t=1

γm(t) ot,d
σm,dd

ξm (3.49)where matrix elements ŵd onstrut the matrix W = [w1, . . . ,wD]
T , ot,d isthe d-th feature value from observation feature vetor ot; σm,dd is the d-thdiagonal element of ovariane matrix Σm.3.2.9.3 Base lass spei�ationsIn the previous setion we desribed the MLLR adaptation tehnique. Spe-ifying the set of the HMMs whih share the same transformation is the �rstrequirement to allow adaptation. One of the possible spei�ations is ahieved



3.2. General ASR models/arhiteture 65~b ' ' g loba l ' '<MMFIDMASK> Kie l *<PARAMETERS> MIXBASE<NUMCLASSES> 1<CLASS> 1 {* . s t a t e [2 −4 ℄ .mix [1−18℄}Listing 3.2: Global base lass (GBC) spei�ationusing a base lass. For base lass de�nitions, the HMMs must always be spe-i�ed. A global transformation for all HMMS is the simplest form of transfor-mation used for adaptation. An example of a base lass spei�ation for theglobal transformation an be found in listing 3.2The base lass spei�ed in listing 3.2 de�nes a global transformation forHMMs whih ontain up to 3 emitting states and up to 18 Gaussian mixtureomponents per state.With base lasses spei�ation it is possible to de�ne several lasses ofHMMs. An example of a base lass spei�ation with three lasses an befound in listing 3.3~b ' ' g loba l ' '<MMFIDMASK> Kie l *<PARAMETERS> MIXBASE<NUMCLASSES> 1<CLASS> 1 {( s i l , sp ) . s t a t e [2 −4 ℄ .mix [1−18℄}<CLASS> 2 {(a , ai1 , at , au1 , e , er , e1 , i , i1 , o , oe , o1 , o1y , u , u1 , y ) .s t a t e [2 −4 ℄ .mix [1−18℄}<CLASS> 3 {(b , 1 , d , f , g , h , j , k , l ,m, n , n1 , p , r , s , s1 , t , v , x , z ) .s t a t e [2 −4 ℄ .mix [1−18℄}Listing 3.3: Three base lasses spei�ationThe base lass spei�ed in listing 3.3 de�nes three di�erent lasses: lass1whih represents long and short pauses, lass2 whih represents vowels, andlass3 whih represents onsonants. Also, the HMMs ould be grouped intothe broad phone lasses: silene, vowels, stops, glides, nasals and friatives,et. [Gales, 1996℄.These base lasses an be used to de�ne whih HMMs share a separatetransformation. A more general approah based on a regression lass treeswill be desribed in the next setion.



66 Chapter 3. Spontaneous a�etive speeh reognition3.2.9.4 Regression lasses tree shemeTo make an adaptation proess more �exible it is possible to speify the on-venient set of base lasses aording to the amount of adaptation materialthat is obtainable. The global adaptation transformation presented in theprevious setion an be used when a small amount of adaptation materialis available. As more adaptation material beomes available, inreasing thenumber of base lasses for advaned adaptation is possible. For eah baselass we use a di�erent transformation.Instead de�ning stati HMMs lasses, it is possible to use a dynamimethod for the generation of further transformations as more adaptation ma-terial beomes available. A regression lass tree [Gales, 1996℄ is used to groupGaussian omponents so that the number of transformations to be estimatedan be dynamially seleted aording to the amount of available adaptationmaterial. Automati lustering of Gaussian omponents whih are similar inaousti spae is used for onstruting the regression lass tree. The regressionlass tree should be extrated before adaptation.3.3 Constrution of robust ASR models forGerman spontaneous a�etive speehIn this setion we present the main aspets of developing German sponta-neous a�etive speeh-reognition methods: sub-word units seletion and lex-ion onstrution, German phoneti pattern, spontaneous speeh variability,omparison of a�etive and neutral speeh and Emotional speeh aousti mod-eling.3.3.1 Emotional neutral German speeh datasetFor a natural speeh orpus we used part of The Kiel orpus of Read Speeh[KIE, 2002℄. The Kiel Corpus is a growing olletion of read and spontaneousGerman speeh whih has been olleted and labeled segmentally sine 1990.For our evaluation, we used speeh samples from 6 female and 6 male speakers.The list of speakers is k01,...,k10, k61 (also de�ned as kko), k62 (also de�ned asrtd). To reah a qualitative aousti parameters estimation, seleted materialfrom Kiel's read speeh orpus were manually freed from tehnial noise andbreathing. 1041 utteranes for female speakers and 1033 utteranes for malespeakers were used for our experiments presented in this hapter. The numberof vowel instanes presented in seleted material from the Kiel dataset an befound in Table 3.3 on page 74.



3.3. Constrution of robust ASR models for German spontaneousa�etive speeh 673.3.2 Sub-word units seletion and lexion onstrutionIn the real-life appliation, it is not possible to obtain su�ient training datafor eah individual word whih an our during a natural human-mahineinteration. The possible solution to this problem is to use HMMs to modelsub-word units, rather than the whole word inluded in the voabulary. Thephoneme is the smallest aousti omponent of speeh and it is widely usedas the sub-word unit for an automati speeh-reognition task. The mainadvantage of using phonemes as the sub-word unit is that there is a standardset of phoneti rules to map words to phonemes. In suh a way, words an berepresented as a sequene of phonemes. The number of phonemes is usuallyonsiderably smaller than the number of words in a voabulary. In a state-of-the-art ASR system used in this work, we use 39 distint German phonemes(modi�ed ompat SAM-PA list). German phoneti pattern used in our ASRsystem will be desribed in detail in the next setion.To map the word sequene to a phoneti sequene we require a lexion.The lexion, also referred to as the ditionary, is a standard part in an ASRsystem. The ditionary maps phoneti units, from whih the aousti mod-els are built, to the present words inluded in the voabulary and languagemodel. The training and reognition proesses are exeuted at the phonetiunits level. Finally, within the reognition proess, the phoneti units se-quene is transformed bak to the word sequene. It is ommon to use twodi�erent lexions within he same ASR system. The �rst is responsible formapping the word sequene to the unique phoneti sequene within the train-ing proess, and it ontains only one possible phoneti transription for eahword. The seond extrats the word sequene from phoneti sequenes withinthe reognition proess, and it supports variable phoneti transriptions foreah word inluded in the voabulary.Two main types of phoneme unit sets are widely used in modern ASRsystems: ontext-independent phonemes, namely mono-phones, and ontext-dependent phonemes, suh as: bi-phones, tri-phones, and quin-phones. Witha mono-phones set, we do not take into aount the ontext of eah partiu-lar phoneme. Still, due to the o-artiulation e�et, the artiulation of mostphonemes is highly dependent on their neighboring phonemes. The mostommon ontext-dependent phoneme unit sets are tri-phones. For example,with 39 phonemes there are 393 = 59319 possible tri-phones, but not all ofthem an have a plae due to the phonotati onstrains of the German lan-guage. To train robust tri-phones-based ASR models we need more data inomparison to the mono-phones. Also this data should be well-annotated,beause eah annotation error will have a triple e�et in omparison to themono-phone-based model. To the best of our knowledge, to date there is no



68 Chapter 3. Spontaneous a�etive speeh reognitionpublily available orpus for the German language whih an provide a su�-ient amount of training material with a high-standard phoneti transriptionwhih an be used for e�etive tri-phones-based HMM modeling. For example,Kiel, SmartKom, Verbmobil databases do not provide detailed transriptionof paralinguisti ues, also lexions attahed to these orpora ontain a lot ofinorret phoneti transriptions and do not provide lists of all possible pro-nuniation forms. An example of inomplete phoneti transription of Germanword "Abend" will be desribed in the next setion. In the ase of tri-phoneHMM models eah inorret phoneme will ause us threefold inorret mod-eling. Take into aount sparse amount of instanes for some tri-phones thisthreefold error ould be ruial. As a result, we use the mono-phone set forour ASR system.3.3.2.1 German phoneti patternThe number of phonetially distinguishable phonemes in a language is oftena matter of judgment. Table 3.2 and Table 3.1 present lists of German vow-els and onsonants, their orresponding IPA and SAM-PA symbols [SAM,1996℄. There are 39 phonemes in the German language, inluding 13 unre-dued vowels, 2 redued vowels, 3 diphthongs, 6 plosive onsonants, 9 friativeonsonants, 3 nasal onsonants, and 2 liquid onsonants.The German language ontains a standard set of strit phoneti rules tomap words to phonemes. The amount of these rules and exeptions are sig-ni�antly smaller in omparison with English. Still there is no rule-basedgrapheme-to-phoneme (G2P) open-soure toolkit available for the Germanspeeh proessing researh ommunity. There is a data-driven G2P open-soure toolkit [Bisani and Ney, 2008℄ available, but this method requires ahuge amount of training material to train reliable models. Also, it is not ableto generate reliable phoneti transription alternatives for words whih anbe pronouned in di�erent ways.It is also possible to use existing German lexions inluded in publilyavailable orpora (Kiel, SmartKom, Verbmobil). Still, there are some over-sights in existing German lexions. For example, in phonetis transriptionsditionary Duden 6 "Das Aussprahewörterbuh" [Mangold, 1990℄ the word"Abend" is transribed as [’a:bnt℄. It is the so-alled "hohdeutsh" pronun-iation standard. On the other hand, Kiel lexion ontains slightly di�erenttransription [’a:b@nt℄. Both versions are aeptable for olloquial Germanlanguage. Adequate lexions inluded in orpora should ontain both vari-ations of transription, whih is not the ase with urrent publily availableGerman speeh databases. Hene, even existing lexia need further re�nementbefore they an be used.



3.3. Constrution of robust ASR models for German spontaneousa�etive speeh 69However, it is possible to determine the atual pronuniations used in theutteranes used to train ASR model with fored alignment. Fore alignmentis presented in HTK [Young et al., 2009℄ toolkit. It is a tehnique whihan generate the words and phonemes boundaries on utterane-level based ontextual transriptions of the orresponding utterane and reliable mono-phoneHMM models.3.3.2.2 ConsonantsThere are few lasses of onsonant present in German language: plosives,friatives, nasals, liquids [Pompino-Marshall, 1992℄. Those lasses speifyphysial harateristis of the generation proess. The list of all Germanonsonants with their orresponding lass desription are presented in Table3.1. IPA name IPAsymbol SAM-PAsymbol IPA name IPAsymbol SAM-PAsymbolPlosivesLower-ase P p p Lower-ase B b bLower-ase T t t Lower-ase D d dLower-ase K k k Lower-ase G g gFriativesLower-ase F f f Lower-ase V v vLower-ase S s s Lower-ase Z z zEsh S S Yogh Z ZC Cedilla C C Lower-ase J j jLower-ase X x x Lower-ase H h hNasalsLower-ase M m m Lower-ase N n nEng N N LiquidsLower-ase L l l Lower-ase R r rTable 3.1: German ConsonantsFor our ASR engine based on mono-phones HMM we used all of the on-sonants presented in Table 3.1. Some of the SAM-PA IDs have been hangedto enable the use of the HTK [Young et al., 2009℄ toolkit for ASR modeling.Converting non-aeptable SAM-PA IDs will be desribed later in this setion.3.3.2.3 VowelsMost existing ASR systems rely heavily on robust vowel reognition to reah ahigh performane. The vowels aousti segments are usually long in duration(in omparison to onsonants) and are spetrally well represented. As suh,



70 Chapter 3. Spontaneous a�etive speeh reognitionIPA name IPAsymbol SAM-PAsymbol IPA name IPAsymbol SAM-PAsymbolUnreduedLower-ase A a (a:) a (a:) Slashed O 2 (2:) 2 (2:)Lower-ase E e (e:) e (e:) O-E Digraph 9 9Epsilon E (E:) E (E:) Lower-ase U u: (u:) u (u:)Lower-ase I i (i:) i (i:) Upsilon U USmall Capital I I I Lower-ase Y y (y:) y (y:)Lower-ase O o (o:) o (o:) Small Capital Y Y YOpen O O O ReduedShwa @ � Turned A 6 6DiphthongsLower-ase A,Small Capital I aI aI Open O, SmallCapital Y OY OYLower-ase A,Upsilon aU aUTable 3.2: German vowels. The symbol ":" orresponds to the Length Markthey are generally reliably and easily reognized by human beings and by ASRsystems [Rabiner and Juang, 1993℄.There are 18 vowels in the German phoneti alphabet [Pompino-Marshall,1992℄. Three di�erent lasses of vowels (unredued, redued, diphthongs) andtheir representatives SAM-PA and IPA symbols an be found in Table 3.2For our ASR engine based on mono-phones HMM we used all of the vowels(unredued, redued, diphthongs) presented in Table 3.1. Some of the SAM-PAIDs have been hanged to enable the use of HTK [Young et al., 2009℄ toolkitfor ASR modeling. Converting non-aeptable SAM-PA IDs will be desribedlater in this setion.There are several ways to lassify and haraterize vowels, inluding thetypial artiulatory on�guration required to produe the sounds, typial spe-tral representation, et. In 1952, Gordon Paterson and Harold Barney [Pa-terson and Barney, 1952℄ reated a lassi plot of measured values of the �rst(F1) and seond (F2) formant for 10 English vowels spoken by a wide range ofmale and female talkers. They proposed to represent eah vowel by a entroidin the formant spae.Instead of representing of eah vowel by a entroid, we represent eah vowelby the means of the average F1 and F2 values. In Figure 3.6 one an seeGerman vowels mapped into F1/F2 spae and the outline of the general voweltriangle for male and female speakers whih are inluded in seleted materialfrom Kiel read speeh orpus [KIE, 2002℄. To reah a qualitative aoustiparameters estimation, seleted material from Kiel read speeh orpus were
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unredued redued diphthongsFigure 3.6: The vowel triangle with mean values positions of the all Germanvowels. Male speakers (top), female speakers (bottom)manually freed from tehnial noise and breathing.On the vowel triangles presented in Figure 3.6, one an see an absoluteand relative position of 13 unredued, 2 redued and 3 diphthongs in the�rst (F1) and seond (F2) formants spae. The vowel triangle representsthe extremes of formant loation in the F1/F2 spae, as represented by [i℄(low F1, height F2), [o℄ (low F1, low F2), [a℄ (height F1, middle F2), withthe other vowels appropriately disposed with respet to the triangle sidesand verties. As one an see the relative position of vowels within the voweltriangle are relatively stable for both genders. Still, female speakers use thelarger frequeny sale intervals during vowels artiulation 381.2Hz ≤ F1 ≤
812.5Hz and 1, 059.1Hz ≤ F2 ≤ 2, 333.5Hz in ontrast to the male speakers
364.9Hz ≤ F1 ≤ 636.3Hz and 1, 073.0Hz ≤ F2 ≤ 2, 004.7Hz.



72 Chapter 3. Spontaneous a�etive speeh reognition3.3.2.4 DiphthongsA diphthong is a gliding monosyllabi speeh sound, and it refers to twoadjaent vowel sounds ourring within the same syllable. There are threediphthongs in German, namely [aI℄ (as in "zwei"), [aU℄ (as in "Bauh"), [OY℄(as in "neun"). Diphthongs are generated by varying the vowel trat shapesmoothly between vowel shapes that are appropriate to the diphthong. Thisnon-trivial smoothing produes a new set of voalized phonemes. In supportof the omplexity of smoothing one an see that a diphthong ould not berepresented as a linear ombination of ompound vowels, see Figure 3.6.3.3.2.5 HTK format lexion generationTo be able to use lexion enoded in extended SAM-PA symbols for an HTK-base [Young et al., 2009℄ ASR system we should provide some modi�ationof the lexion �les. First of all, HTK do not allow the use of symbols like[�℄, ['℄ for the HMM spei�ation. Also, vowels with an additional symbol [:℄(Length Mark) an be replaed with orresponding vowels without a lengthmark. It an be done due to the robust dynami HMM modeling of thetemporal harateristis of phonemes.The transformed HTK ompatible lexion format will be used forour speeh-reognition experiments and for our ASR system integrated inNIMITEK [Wendemuth et al., 2008℄ demonstrator. More details aboutNIMITEK demonstrator an be found in Chapter 6.3.3.3 Spontaneous speeh variabilityThe speeh signal not only represents the linguisti ontent but also a lot ofadditional information about the speaker: age, gender, soial status, aent(foreign aent, dialets, et.), emotional state, health, level of reliability, et.Charaterization of the in�uene of some of these speeh signal variations,together with related methods to improve ASR performane, is an importantresearh �eld [Benzeghiba et al., 2007℄.It is possible to assign three main lasses of e�ets aused by the sponta-neous speeh variability. The �rst is the modi�ation of the voie quality byphysiologial or behavioral fators. The seond is the long-term modulation ofthe voie for transmission of non-emotional high level information events likeemphasizing or questioning. The third is pronuniation variability like foreignaents, dialets, and olloquial speeh. A detailed desription of spontaneousspeeh harateristis has been presented in setion 2.3.



3.3. Constrution of robust ASR models for German spontaneousa�etive speeh 733.3.3.1 Comparison of a�etive and neutral speehFor the omparison of a�etive and neutral speeh, vowel triangles have beenestimated for seleted EMO-DB's [Burkhardt et al., 2005℄ utteranes. We usedutteranes whih represent low-arousal emotions (boredom, sadness), neutral,and high-arousal emotions (anger, fear, and joy).
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fea joy ang bor sad neuFigure 3.7: Classial vowel triangle form for di�erent speaker's emotionalstates. Male speakers (top), female speakers (bottom)As one an see from Figure 3.7, the vowel triangles form and their positionare di�erent for di�erent emotional states of the speaker. This variability isone of the reasons why ASR models trained on neutral speeh are not able toprovide a reliable performane in a�etive speeh reognition. Adaptation ona�etive speeh samples of the aousti model will be presented in the nextsetion.



74 Chapter 3. Spontaneous a�etive speeh reognition3.3.4 Emotional speeh aousti modelingThe simplest way to ahieve emotional speeh aousti modeling for reliableASR performane is to train aousti models for eah possible user's emo-tional states. Training emotional speeh aousti models for eah possibleuser emotional state is not feasible beause olleting a�etive speeh in largeenough amounts to train a robust ASR aousti model is quite an expensiveand time-onsuming proess. Nevertheless, due to the pronuniation patternsimilarity of a�etive and neutral speeh, emotion-spei� harateristis anbe aptured from existing emotional speeh orpora within adaptive transfor-mation of model parameters of the initial neutral speeh model to obtain anemotional speeh aousti model.For the neutral speeh ASR model we used mono-phones HMM trained onseleted material from Kiel read speeh orpus. For adaptation on a�etivespeeh samples we used material from the EMO-DB [Burkhardt et al., 2005℄database. Vowels an be reliably and easily reognized by human beingsand by ASR systems [Rabiner and Juang, 1993℄. The total amount of vowelinstanes presented in seleted speeh datasets are presented in Table 3.3.An interpretation of the emotional lass name abbreviations an be found inTable 2.3 on page 24.# EMO-DB Kielfear joy anger boredom sadness neutral reada 144 172 348 211 148 207 3357e 74 80 166 100 59 105 1239E 42 55 98 64 46 58 1403i 73 68 159 89 54 101 1323I 115 125 244 171 124 146 2315o 24 24 52 34 22 33 535O 15 17 40 25 22 24 767u 4 6 11 9 9 7 674U 33 42 73 48 31 45 1273y 12 18 22 14 4 14 363Y 10 14 30 18 12 16 2902 0 0 0 0 0 0 1889 5 7 14 7 6 6 209� 177 222 436 274 201 254 43406 66 66 138 85 49 91 3462aI 22 25 43 36 22 33 1313aU 16 15 36 23 15 26 528OY 5 7 14 7 6 6 289Table 3.3: Number of instanes per vowel in EMO-DB and Kiel datasets



3.4. Summary 75As one an see from Table 3.3 aousti form of the vowel [2℄ is not presentedin EMO-DB reordings. Also, EMO-DB speeh material ontains quite smallnumber of instanes for some vowels [u, 9, OY℄. For adaptation of a�etivespeeh samples we used MAP and MLLR adaptation tehniques. WithinMLLR adaptation we used the following HMMs groups spei�ations:� Regression lass tree� Two Base lasses: phonemes, silene� Three Base lasses: vowels, onsonants, sileneConsequently, we investigated the poteny of adapting emotional speehaousti models for German language and we obtained a onsiderable perfor-mane gain as will be disussed in setion 5.2.3.3.4 SummaryThis hapter reviews the automati speeh-reognition methods based onhidden Markov models (HMMs). The feature extration approah, namely,MFCC is disussed �rst. The hidden Markov models (HMMs), the most fre-quently used aousti models, are then presented. The maximum likelihood(ML) training of HMM parameters and the expetation maximization (EM)algorithm are disussed. In this hapter we presented detailed desription ofGerman phoneti patterns whih will be used later for detailed phoneme-levelemotion reognition. N-gram language models and generation word networkswith HParse grammar format are desribed. Extensively used Viterbi de-oding for spontaneous speeh is presented in detail. Standard adaptationapproahes like MAP and MLLR are presented. Results of the evaluation ofour German ASR models will be presented in Chapter 5. Methods desribedin this hapter have been used to reate an ASR module integrated in ourNIMITEK spoken dialog system prototype.In the next hapter we will desribe di�erent lassi�ation tehniquesapplied for automati emotion reognition from speeh. The HMM/GMMmodels presented in this setion will be used for our phoneme-level emotion-reognition methods. Fore alignment presented in setion 3.3.2.1 will beused in the next hapter for time alignment within phoneme-level emotionlassi�ation.





Chapter 4Emotion reognition from speeh
Contents4.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . 774.2 An overview of existing methods . . . . . . . . . . . . 774.3 Emotion desriptors . . . . . . . . . . . . . . . . . . . . 804.4 Developed emotion-lassi�ation tehniques . . . . . 824.5 Context-dependent and ontext-independent models 994.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1 IntrodutionT o be able to design a user-entered spoken dialog system, we set upa framework that should be robust enough to detet emotional eventswithin human-mahine interation. In this hapter we o�er an overview ofexisting speeh-based emotion-reognition tehniques, and disuss aoustifeature sets whih are the most informative for emotional events determi-nation. Two di�erent tehniques of emotion lassi�ation, namely, stati(turn-level analysis) and dynami (frame-level analysis) are presented. Af-terwards, two possible ombined emotion-lassi�ation methods: two-stageproessing and middle-level fusion are desribed. Finally, we ompare emotion-reognition performanes for unit-spei� (ontext-dependent) and general(ontext-independent) models.4.2 An overview of existing methodsSine the beginning of emotional speeh proessing [Sripture, 1921℄, [Skinner,1935℄, [Fairbanks and Pronovost, 1939℄, [Williams and Stevens, 1972℄, [Sherer,1986℄, [Whissell, 1989℄, the usefulness of automati reognition of emotion inspeeh seems inreasingly agreed given the large amount of appliations for



78 Chapter 4. Emotion reognition from speehuser-entered human-mahine interfaes. Most of these expet su�ient ro-bustness, whih may not be given yet [Piard, 1997℄, [Cowie et al., 2001℄,[Shriberg, 2005℄, [Lee and Narayanan, 2005℄, [Shröder et al., 2007℄, [Wende-muth et al., 2008℄, [Shröder et al., ℄, [Zeng et al., 2009℄. When evaluatingthe auray of emotion-reognition engines, attainable performanes are usu-ally overrated sine usually ated, prompt or eliited emotions are onsideredinstead of spontaneous, real-life ase emotions, whih are harder to reognize.Speeh-based emotion lassi�ers used in the researh publiations inludea broad variety [Ververidis and Kotropoulos, 2006℄. Depending on the typeof aousti feature extration level, either dynami analysis [Fernandez andPiard, 2003℄ for proessing on a frame-level or stati analysis for higher-levelstatistial funtionals [Ververidis and Kotropoulos, 2004℄ are established.Among dynami analysis, hidden Markov models are dominant (f., e.g., [Nwe et al., 2003℄, [Shuller et al., 2003℄, [Lee et al., 2004℄, [Vlasenkoet al., 2007a℄). Also, a "bag-of-frames" approah for multi instane learningis used within dynami analysis [Shami and Verhelst, 2006℄. A rarely usedalternative is a dynami time warping, supporting easy adaptation. Also,dynami Bayesian network arhitetures [Lee et al., 2009a℄ ould help to om-bine features on di�erent time levels as spetral on a frame-level basis andsupra-segmental prosodi.Relative to stati analysis, the list of possible lassi�ation tehniquesseems endless: Bayes lassi�er [Ververidis and Kotropoulos, 2004℄, multi-layerpereptrons or other types of neural networks [Shuller et al., 2004℄, Baysiannetworks [Fernandez and Piard, 2003℄, [Cohen et al., 2003℄, Gaussian mix-ture models [Slaney and MRoberts, 1998℄, [Lugger and Yang, 2007℄, randomforests [Iliou and Anagnostopoulos, 2009℄, deision trees [Lee et al., 2009b℄, k-nearest neighbor distane lassi�ers [Dellaert et al., 1996℄, and support vetormahines (SVM) [Fernandez and Piard, 2003℄, [Batliner et al., 2006℄, [Eybenet al., 2009℄ are applied most often.Also, a seletion of ensemble tehniques [Shuller et al., 2005a℄, [Morrisonet al., 2007℄ has been used, as bagging, boosting, multi-boosting, and stak-ing with and without on�dene sores. New developing tehniques as hiddenonditional random �elds [Wöllmer et al., 2008℄, long-short-term-memory re-urrent neural networks [Wöllmer et al., 2008℄, tandem Gaussian mixturemodels with support vetor mahines [Kokmann et al., 2009℄ ould furtherbe seen more frequently in near future. Table 4.1 presents the most popu-lar existing lassi�ation tehniques with representative researh publiationreferenes.In the past, within the speeh emotion-lassi�ation researh ommunity,the fous was lain on prosodi features extrated on the turn-level. In par-tiular, these feature sets (from 10�100 features) inlude durations, intensity



4.2. An overview of existing methods 79Classi�er Seleted refereneNaive Bayes [Dellaert et al., 1996℄ , [Batliner et al., 2010℄, [Metze et al.,2010℄, [Shuller et al., 2010℄, [Yildirim et al., 2011℄Bayesian logistiregression [Lee et al., 2009b℄Deision tree [Yaoub et al., 2003℄, [Litman and Forbes, 2003℄Support vetor mahine [MGilloway et al., 2000℄, [Yu et al., 2001℄, [Yaoub et al.,2003℄, [Lee et al., 2009b℄, [Polzehl et al., 2009℄, [Metze et al.,2010℄, [Seppi et al., 2010℄, [Shuller et al., 2009a℄, [Yildirimet al., 2011℄Linear disriminantlassi�er [MGilloway et al., 2000℄, [Batliner et al., 2000b℄, [Litmanand Forbes, 2003℄, [Lee and Narayanan, 2005℄K-nearest neighborhood [Dellaert et al., 1996℄, [Yu et al., 2001℄, [Yaoub et al.,2003℄, [Lee and Narayanan, 2005℄, [Yildirim et al., 2011℄Gaussian mixturemodels [Breazeal and Aryananda, 2002℄, [Kokmann et al.,2009℄, [Dumouhel et al., 2009℄, [Kim et al., 2010℄Hidden Markov model [Nogueiras et al., 2001℄, [Shuller, 2002℄, [Shuller et al.,2010℄, [Metallinou et al., 2010℄Arti�ial neuralnetworks [MGilloway et al., 2000℄, [Yu et al., 2001℄, [Yaoub et al.,2003℄, [Polzehl et al., 2009℄Table 4.1: Classi�ation tehniques applied for speeh emotion lassi�ationand pith, et. [Cairns and Hansen, 1994℄, [Banse and Sherer, 1996℄, [Li andZhao, 1998℄, [Zhou et al., 1998℄, [Nwe et al., 2003℄, [Shuller et al., 2003℄, [Leeet al., 2004℄. Only a few studies applied low-level feature modeling on a frame-level as an alternative: usually by hidden Markov models (HMM) or Gaussianmixture models (GMM) [Shuller et al., 2003℄, [Nwe et al., 2003℄, [Vlasenkoand Wendemuth, 2007℄. The higher suess of stati feature vetors derivedby mapping of the low-level ontours like energy or pith by desriptive sta-tistial funtional appliation like lower order moments (mean, standard de-viation) or extremal values spei�ation [Ververidis and Kotropoulos, 2004℄is probably proved by the supra-segmental nature of the phenomena appear-ing with respet to emotional ontent within a speeh signal [Shuller et al.,2009b℄, [Shuller et al., 2009℄. In urrent speeh emotion-lassi�ation re-searh, voie quality features suh as shimmer, jitter or harmonis-to-noiseratio (HNR) and spetral and epstral features suh as formants and MFCChave beome the "new standard" feature sets [Barra et al., 2006℄, [Shulleret al., 2007a℄, [Lugger and Yang, 2007℄, [Shuller et al., 2009d℄. Traditionallyprosodi aousti features, whih an be lassi�ed in di�erent ways, have beenapplied for a�etive speeh proessing. One of the possible emotional prosodyfeatures ategorization was proposed by Anton Batliner in [Batliner et al.,2011℄.The �rst ategorization riterion lies in the feature set seletion ap-



80 Chapter 4. Emotion reognition from speehproah. The 'seletive' approah is based on phoneti and linguisti knowl-edge, [Kieÿling, 1996℄; it is also well-known as 'knowledge-based'. It has a stritsystemati strategy for generating the features; a onstant set of funtions,whih are applied to time series of di�erent aousti features. This approahnormally results in more than 1 k features per set. Another approah is basedon brute-foring of features (1,000 up to 50,000) by analytial feature genera-tion, partly also in ombination with evolutionary generation [Shuller et al.,2008℄. The di�erene between the two approahes lies in the feature seletionstep: in the seletive approah, the seletion takes plae on an empirial levelbefore putting the features into the lassi�ation proess; in the brute-foreapproah an automati feature seletion is required.The seond ategorization riterion is related to feature extration staging.There is a "two-layered" approah, where �rstly features are omputed on thewords level; seondly, funtionals suh as mean values and the average valueare omputed for all words within one utterane. An alternative is a "single-layered" approah, where features are omputed for the omplete utterane.In [Batliner et al., 2006℄, authors ombined for the �rst time features extratedat di�erent sites. By ombining features from all sites, authors ahieved up to2.1 % absolute improvement for emotion-lassi�ation auray. These resultswill be disussed in more detail in setion 4.4.4.4.3 Emotion desriptorsOne of the most important problems for the analysis of emotional speehis the seletion on optimal unit of analysis. It is quite important to segmentspontaneous speeh signal into units that are disriminative for emotions [Vogtet al., 2008℄. These are usually linguistially ompleted speeh segments suhas words, turns and/or utteranes. However, the approval of the seleted unitof analysis is an open researh topi within the emotion-reognition researhommunity. In most prototypial ated emotional speeh datasets, subjetshave to pronoune a omplete utterane with some prompted emotional state.Most emotion-reognition experiments have been realized on datasets whihontain ated emotions. As a result, the hoie of an optimal unit of analysis isobviously just one utterane, a linguistially ompleted unit with no hange ofspeaker's emotional state within this ase. However, in spontaneous a�etivespeeh this kind of linguistially ompleted middle-length unit (utterane) isquite rare. Even the straight-forward extration of linguistially ompletedsegments like utteranes do not guarantee a onstant emotional state withinthe same utterane. An optimal unit of analysis of emotional speeh has toful�ll ertain requirements:



4.3. Emotion desriptors 81� long enough to provide a su�ient amount of material for the alulationof aousti features based on statistial funtions� short enough to provide stable aousti properties with respet to emo-tions within the same unitFor most aousti features alulated from global statistis over an ex-trated speeh signal, these units should have a minimum length. The emo-tion units analysis beome more expliit as it is used more statistial aoustifeatures. On the other hand, all hanges of the emotional state within onespeeh segment should be distinguishable, so the unit of analysis should beshort enough that no alteration of emotion is likely to our. Also, it shouldbe so short that the aousti properties of the unit of analysis with respet tospeaker's emotional state are stable, so that informative aousti features anbe extrated. This is important for the extration of aousti features basedon statistial measures, sine, e.g., the mean value of a non-uniform unit ofanalysis indues an insu�ient desription. So the length of the optimal unitof analysis for emotional speeh has to be hosen for these two on�itingrequirements.Just a few researh evaluations have been performed to ompare di�erenttypes of units of analysis of emotional speeh. Comparisons of utteranes,words, words in ontext and �xed time intervals have been presented in [Vogtand Andre, 2005℄. Authors have found that longer, linguistially ompletedsegments tended to be better. Batliner et al. [Batliner et al., 2003℄ establishtheir aousti features on words with a di�erent number of ontext words.Further to simple word-level emotion reognition, they also mapped word-level results onto utteranes and on hunks within the utteranes. Withintheir evaluation authors found both advantages and disadvantages of shorterunits than utteranes, but they have not further quantitatively analyzed thisaspet of emotional speeh proessing. In [Vogt et al., 2008℄ authors pointedout that the seletion of the unit of analysis strongly depends on the typeof emotional speeh data. Most ommonly dialog ats, utteranes and turnsas, e.g., in [Devillers et al., 2005℄, [Fernandez and Piard, 2005℄, [Oudeyer,2003℄, [Shuller et al., 2005b℄ have been used as unit of analysis of emotionalspeeh, but also words [Batliner et al., 2003℄, [Niholas et al., 2006℄. In thepaper of Fragopanagos [Fragopanagos and Taylor, 2005℄ et. al. it is pointedout that most researh e�orts were made in order to investigate the a�etivespeeh proessing on omplete utterane, word-level or ontext-independenthunks. Only a few researh groups provided a vowel- or syllable-level anal-ysis during emotional speeh proessing. Goudbeek and others [Goudbeeket al., 2009℄ presented their investigation of the e�et of emotion dimensionson formant plaement in individual vowels. In a�etive speeh synthesis,



82 Chapter 4. Emotion reognition from speehInanoglu [Inanoglu and Young, 2009℄ developed a set of fundamental fre-queny (F0) onversion methods on a syllable-level whih utilized a smallamount of expressive training data (approximately 15 minutes) and whihhad been evaluated for three target emotions: anger, surprise and sadness.Furthermore, an emotion-lassi�ation test showed that onverted utteraneswith either F0 generation tehnique were able to onvey the desired emotionabove hane level. Researh of Busso and others [Busso et al., 2007℄ showedthat the mean and the variane of the likelihood sore for emotional speehdi�er from the results observed in neutral speeh, espeially for emotions witha high level of arousal and observed in some broad phoneti lasses (frontvowels and mid/bak vowels) whih present stronger di�erenes than others.Lee and others [Lee et al., 2004℄ showed quite a good speeh-based emotion-reognition performane by using phoneme-lass-dependent HMM lassi�erswith short-term spetral features. It has been shown by Vlasenko [Vlasenkoand Wendemuth, 2009a℄ that a ombination of a robust emotion-lassi�ationengine with a user-behavior-adaptive dialog model an make a spoken dialogsystem more friendly and user-entered.4.4 Developed emotion-lassi�ation teh-niquesIn this setion we desribe two pre-dominant paradigms of emotion las-si�ation: modeling on a frame-level by means of hidden Markov modelsand suprasegmental modeling by systemati feature brute-foring. The se-ond paradigm whih an also be lassi�ed as stati analysis has been intro-dued by our researh partner Björn Shuller from Tehnishe UniversitätMünhen (TUM). In this setion we will provide a detailed desription ofthe lassi�ers whih have been used for evaluations presented in our om-mon publiations [Vlasenko et al., 2007a℄, [Shuller et al., 2007℄, [Vlasenkoet al., 2008b℄, [Vlasenko et al., 2008a℄, [Shuller et al., 2008℄, [Shuller et al.,2009℄, [Shuller et al., 2010℄.4.4.1 Aousti featuresWithin stati analysis state-of-the-art emotion reognition we use a set of 1406systematially generated aousti features based on 37 low-level desriptors(LLD) as seen in Table 4.2 and their �rst-order delta oe�ients. These 37×2desriptors are then smoothed by low-pass �ltering with a simple movingaverage �lter. Statistis have been estimated on the turn-level by a projetionof eah uni-variate time series of the low-level desriptors onto a salar feature



4.4. Developed emotion-lassi�ation tehniques 83Low-level desriptors Funtionals(∆) Pith mean, entroid, standard deviation(∆) Energy Skewness, Kurtosis(∆) Envelope Zero-Crossing-Rate(∆) Formant 1�5 amplitude quartile 1/2/3(∆) Formant 1�5 bandwidth quartile 1 � min., quart. 2 � quart. 1(∆) Formant 1�5 position quartile 3 � quart. 2, max. � quart. 3(∆) MFCC 1�16 max./min. value,(∆) HNR max./min. relative position(∆) Shimmer range max. � min.(∆) Jitter position 95% roll-o�-pointTable 4.2: Overview of low-level desriptors (2× 37) and funtionals (19) forstati supra-segmental modelingindependent of the length of the turn. This is done by using 19 di�erentfuntionals. The list of the funtionals an be found in Table 4.2.Two optimization strategies an be also applied: First, speaker normal-ization (SN) by feature normalization taking into aount speaker ontext.Seond, feature-spae optimization by removing highly orrelated aoustifeatures (FS).Within dynami analysis, speeh input is proessed using a 25ms Hammingwindow, with a frame rate of 10ms. As in typial speeh reognition, weemploy a 39-dimensional feature vetor per eah frame onsisting of 12 MFCCand log frame energy plus speed and aeleration oe�ients. Spei�ation ofthe MFCC features is disussed in detail in setion 3.2.1.To haraterize vowels quality, �rst two resonant frequenies (formants)are used. The formants haraterize the global shape of the immediate voiespetrum and are mostly de�ning the phoneti ontent and emotional prosodyof the vowels [Benzeghiba et al., 2007℄. For our evaluations, formant ontourswere extrated using PRAAT speeh analysis software [Boersma and Weenink,2008℄ and the Burg algorithm with the following parameters: the maximumnumber of formants traked (�ve), the maximum frequeny of the highestformant (set to 6,000 Hz), the time step between two onseutive analysisframes (0.01 seonds), the e�etive duration of the analysis window (0.025seonds) and the amount of pre-emphasis (50 Hz).4.4.1.1 Normalization and standardizationTo help ope with hannel harateristis, the epstral mean substration(CMS) an be applied. In our publiation [Vlasenko et al., 2007a℄ we inves-tigate the bene�ts of speaker normalization (SN), as we proposed to analyzeemotion independent of the speaker, herein. SN is realized by a normalization



84 Chapter 4. Emotion reognition from speehof eah aousti feature by its mean and standard deviation for eah speakerindividually. Thereby the whole speaker ontext is used. This has to be seenas an upper benhmark for ideal ases, where a speaker ould be observedwith a variety of emotional states. Yet, it is not essential to know the atualemotional state of observed utteranes at the urrent moment.4.4.1.2 Feature set optimizationIt is ommon to use a high number of features for stati modeling. A featurespae optimization (FSO) is an important issue for inreasing performane andreal-time-apability. In order to optimize a set of aousti features rather thanombining the attributes of a single high relevane, we use a orrelation-basedanalysis, herein [Vlasenko et al., 2007a℄. Thereby aousti features of high-lass orrelation and low inter-feature orrelation are kept [Witten and Frank,2005℄. This does not employ the target stati lassi�er in the loop. Likewise,it mostly redues orrelation within the aousti feature spae rather thanan evaluation of in�uenes on an improvement of single attributes. Still, thisonduts to a very ompat representation of the aousti feature spae whihusually improves auray of the emotion lassi�ation while reduing featureextration e�ort at the same time.4.4.2 Stati analysisAs pointed out earlier in setion 4.2 mapping of the LLD ontours by de-sriptive statisti funtionals is justi�ed by the supra-segmental nature of theemotional ontent ourring in spontaneous speeh [Shuller et al., 2009b℄,[Shuller et al., 2009℄. For suprasegmental modeling of the speaker's emo-tional state we use a stati analysis in ombination with systemati fea-ture brute-foring. In order to represent a typial state-of-the-art emotion-reognition engine operating on a turn level, we use a set of 1, 406 aoustifeatures basing on 37 low-level desriptors (LLD) as seen in Table 4.2 andtheir �rst-order delta oe�ients [Shahin, 2006℄. These 37× 2 LLDs are nextsmoothed by low-pass �ltering with an SMA �lter. The stati analysis derivesstatistis per utterane by a projetion of eah uni-variate time series, respe-tively the low-level desriptors, X onto a salar feature x independent of thelength of the utterane. This is realized by use of a funtional F , as depitedin equation 4.1.
F : X → x ∈ R

1 (4.1)19 funtionals presented in Table 4.2 are applied to eah ontour on theturn-level overing extremes, ranges, positions, �rst four moments and quar-



4.4. Developed emotion-lassi�ation tehniques 85tiles, et. support vetor mahines (SVM) with linear kernel and pairwisemulti-lass disrimination have been used for lassi�ation purposes. Oneould onsider the use of GMM here, as well. Yet, SVM provides bettermodeling of stati aousti feature vetors [Shuller et al., 2007b℄.4.4.2.1 OpenEARIn this setion, we desribe on�guration parameters of a Munih open A�etReognition Toolkit (openEAR) [Eyben et al., 2009℄ whih have been used forour evaluations.Feature Group Features in GroupRaw Signal Zero-rossing-rateSignal energy logarithmiPith Fundamental frequeny F0 in Hz via Cepstrum and Autoorre-lation (ACF).Exponentially smoothed F0 envelope.Voie Quality Probability of voiing (ACF (T0)
ACF (0) )Spetral Energy in bands 0 - 250Hz, 0 - 650Hz, 250 - 650Hz, 1 - 4 kHz25%, 50%, 75%, 90% roll-o� point, entroid, �ux, and rel. pos.of spetrum max. and min.Mel-spetrum Band 1-26Cepstral MFCC 0-12Table 4.3: 33 low-level desriptors (LLD) used in aousti analysis with ope-nEARThe OpenEAR is a toolkit for aousti emotion reognition, whih is basedon stati analysis. It is publily available to anybody under the terms of theGNU General Publi Liense (http://soureforge.net/projets/openear).For our evaluations we use the openEAR toolkit with 6,552 aousti fea-tures extrated as 39 funtionals of 56 aousti low-level desriptors (LLD)and orresponding �rst- and seond-order delta regression oe�ients.Table 4.4 lists the statistial funtionals, whih were applied to the LLD asshown in Table 4.3 to map a time series of variable length onto a stati featurevetor. The lassi�er of hoie is support vetor mahines with polynomialkernel and pairwise multi-lass disrimination based on sequential minimaloptimization.



86 Chapter 4. Emotion reognition from speehFuntionals, et. #Respetive rel. position of max./min. value 2Range (max.-min.) 1Max. and min. value - arithmeti mean 2Arithmeti mean, Quadrati mean 2Number of non-zero values 1Geometri, and quadrati mean of non-zero values 2Mean of absolute values, Mean of non-zero abs. values 2Quartiles and inter-quartile ranges 695% and 98% perentile 2Std. deviation, variane, kurtosis, skewness 4Centroid 1Zero-rossing rate 1# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks- overall arth. mean 4Linear regression oe�ients and orresp. approximation error 4Quadrati regression oe�ients and orresp. approximation error 5Table 4.4: 39 funtionals applied to LLD ontours and regression oe�ientsof LLD ontours4.4.3 Dynami analysisIn our researh we also applied a low-level feature modeling on a frame-level foremotion reognition from speeh. The hidden Markov models (HMM) withGaussian mixture models (GMM) have been used for this purpose. Threedi�erent units of analysis an by used for dynami analysis: utterane, hunk,and phoneme. In this setion we desribe utterane-, hunk-, and phoneme-level dynami analysis models for the reognition of emotions within speeh.4.4.3.1 Utterane-level lassi�ationWe onsider using a statistial analysis applied for ASR to reognize emotionfrom speeh in the �rst plae [Vlasenko and Wendemuth, 2009b℄. Likewise,instead of the usual task to dedue the most likely word sequene hypothesis
Ωk from a given vetor sequene O of M aousti observations o, we willreognize the urrent speaker's emotional state. This is solved by a stohastiapproah similar to the approah presented in equation 3.1, with a di�erentargument interpretation:

Ωk = argmax
Ω

logP (Ω|O) = argmax
Ω

P (O|Ω)P (Ω)
P (O)

(4.2)where P (O|Ω) is alled the emotion aousti model, P (Ω) is the prior user-behavior information and Ω is one of all system known emotions.



4.4. Developed emotion-lassi�ation tehniques 87In a ase of turn-level analysis, the emotion aousti model is designed by
s state HMMs. Eah state is assoiated with an output probability distri-bution bk(ot) = p(ot|st = k). The model distribution bj(ot) is based on themultivariate Gaussian mixture model (GMM), see equation 3.13. One emo-tion is assigned for a omplete utterane. In other words within the trainingand testing observation feature vetors sequene O ontains all feature vetorsextrated within one utterane.In simple ases the priors in the user-behavior model P (Ω) are hosen as anequal distribution among emotion lasses. It is possible to provide ontext andan emotional-state-history-dependent omplex user-behavior model. Withinour evaluations presented in Chapter 5 we used a simple user-behavior model.During the reognition phase the emotion that results in the highest GMMsore is hosen.The HMM/GMM parameters are estimated by the EM-algorithm usingspeaker-independent training, namely leave-one-speaker-out strategy (LOSO)(see setion 2.10.2), and a number of 1 to 120 Gaussian mixture omponents toapproximate the original probability density funtions (PDFs) [Young et al.,2009℄. However, we also onsider multiple states HMM/GMM s = 1, 2, . . . , 5

Figure 4.1: Emotion-reognition auray (WA) depending on the number ofGaussian mixtures and number of HMM states, LOSO evaluation, databaseEMO-DB



88 Chapter 4. Emotion reognition from speehto better model dynamis. These are trained aordingly.As an be seen in Figure 4.1 single-state HMM/GMM models show themost stable and robust results [Vlasenko et al., 2007b℄. Within all emotion-lassi�ation evaluations presented in Chapter 5 based on utterane-level andhunk-level analysis we use single-state HMM/GMM models.4.4.3.2 Chunk-level lassi�ationThis setion desribes another possible simple oneptual model of dynamispeaker's emotional state reognition. For lassi�ation purpose we an useHMM/GMM parameters estimated for utterane-level lassi�ation, see pre-vious setion. Instead of using turn-level lassi�ation, the time-synhronousone-pass Viterbi-beam searh and the token passing algorithm with diretontext-free grammar are used for deoding [Young et al., 2009℄. This methodis an integral omponent of ontinuous speeh-reognition system based onHMM models, see setion 3.2.8. To apply ontext-free grammar as onstraintswithin the token passing sheme, these grammar rules are ompiled into a setof linked syntax networks of the form illustrated in Figure 4.2. There are threetypes of the nodes of eah syntax network: links, terminals and non-terminals.Link nodes are used to store tokens and are the points where reognition de-isions are reorded. Terminal nodes orrespond to emotion aousti modelsand non-terminal nodes refer to separate sub-syntax networks representing theright-hand side (RHS) of the orresponding grammar rule. For our hunk-levelemotion lassi�ation we did not use non-terminal nodes.

Figure 4.2: Automati hunking by aousti properties and one-pass Viterbibeam searh with token passingThe three types of node are merged in suh a way that every ar onnetseither a terminal or a non-terminal to a link node, or the other way around.



4.4. Developed emotion-lassi�ation tehniques 89The syntax network presented in Figure 4.2 has exatly one entry, one exitand zero or more internal link nodes. Every terminal and non-terminal nodeould only have one ar leading into it, whereas eah link node may have fewars leading into it. Link nodes an thus be onsidered as �lters, whih removeall but lowest ost tokens passing through them [Young, S. J. et al., 1989℄.More details about Viterbi-beam searh with a token passing algorithm anbe found in setion 3.2.8.The main idea is that tokens propagate through the networks just as in the�nite state ase: when a token node enters a terminal node, it is transferredto the entry node of the orresponding emotional state model.This method an be used for detetion of ontext-independent emotionalhunks. Also this method an be modi�ed for ontext-dependent emotionalhunks detetion. In this ase the syntax network presented in Figure 4.2should be ombined with the user's emotional-state-driven language model.In setion 4.4.4 we will present the two-stage emotion-lassi�ation tehniquewhih uses hunk-level lassi�ation as a �rst step of analysis.4.4.3.3 Phoneme-level lassi�ationFinally, the smallest possible units of analysis of emotional speeh, namelyphonemes have been hosen, as these should provide the most �exible basisfor unit-spei� models: if the emotion is feasible on a phoneme basis, thenthese sub-word units ould be most easily re-used for any further ontent,and high numbers of training instanes ould be obtained [Vlasenko et al.,2008a℄, [Shuller et al., 2008℄. Two di�erent methods an be used for thephoneme-level emotion lassi�ation: emotional phoneme lasses and vowel-level formants traking.Emotional phoneme lasses: We use a simple oneptual model of dy-nami emotional-state reognition on phoneme-level analysis: the full list of36 phonemes (all phonemes whih presented in EMO-DB dataset) is mod-eled for neutral and anger emotion speaking style, independently. As a �rststep of developing an emotion-lassi�ation module we deided that reog-nition of neutral and negative (anger) speaker's states is appropriate for anemotion adaptive dialog management. We integrated suh speaker's emotion-reognition module in a prototype of the NIMITEK demonstrator [Wende-muth et al., 2008℄. Within an interative usability test we �nd that modelingonly two speaker's emotional states, namely negative and neutral, is su�ientfor development a user-friendly spoken dialog system. More details aboutan interative usability test an be found in Chapter 6. Hene 2 × 36 = 72phoneme emotion (PE) models are trained [Vlasenko et al., 2008a℄.
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Figure 4.3: Phoneme-level emotion reognitionIn the ase of phoneme-level emotion analysis we an restate equation 4.2in suh a way:
Ω is a possible emotional word (emotional phones sequene) from a de�nedvoabulary,
P (X|Ω) is an emotion aousti model for word Ω,
P (Ω) is the a�etive speeh language model.Emotional phonemes are modeled by training three emitting states HMMmodels with 16 Gaussian mixture omponents. There is not enough materialin a seleted part of EMO-DB database to train robust monophone models.Hene, in ontrast to the previous models [Vlasenko et al., 2008a℄, [Vlasenkoand Wendemuth, 2009a℄ we are using Kiel-trained monophones models asa bakground HMM/GMM model. The HTK toolkit was used for MLLRadaptation of the bakground model on two phoneme emotion subsets: neutraland anger. Neutral and anger samples from EMO-DB database were used foradaptation. In the ase of phoneme-level emotion reognition we are using anASR engine adapted for a�etive speeh to reognize on word-level as a startpoint.After this we are generating possible emotional phoneti transriptions forsensible utteranes by using an emotional phoneme set, see Figure 4.3. In ourase, two transriptions for neutral and anger speaking styles are generated.Emotional phoneme models whih provide the highest reognition sore areseleted.In the ase of the Interspeeh 2009 Emotion Challenge we used 72 phonemeemotion models for two emotional lasses evaluation, and 180 phoneme emo-



4.4. Developed emotion-lassi�ation tehniques 91tion models for �ve emotional lasses. Results of the Interspeeh 2009 EmotionChallenge will be presented in setion 5.3.4.Vowel-level formants traking: It is also possible to lassify emotionswith an average formants value extrated from vowel segments [Vlasenko et al.,2011a℄, [Vlasenko et al., 2011b℄. The phoneme boundaries estimation wasbased on a fored alignment, see setion 3.3.2.1, provided by the HTK [Younget al., 2009℄. Within our evaluation we use a simpli�ed version of a BAS SAM-PA [SAM, 1996℄ with a set of 39 phonemes (18 vowels and 21 onsonants).Table 3.2 and Table 3.1 present lists of German vowels and onsonants, withtheir orresponding IPA and BAS SAM-PA symbols [SAM, 1996℄. A listof vowels with their orresponding instanes number an be found in Table3.3. To reeive the most reliable phoneme boundaries alignment mono-phoneHMMs have been trained on eah orpora independently.Taking into aount automatially extrated phoneme borders, we esti-mate an average �rst formant (F1) and seond formant (F2) value for eahvowel instane. Formant ontours were extrated by using PRAAT speehanalysis software [Boersma and Weenink, 2008℄ and the Burg algorithm. Asone an see from Figure 3.7, the vowel triangles form and their position aredi�erent for di�erent emotional states of the speaker. Now we want to �nd outif there are any disriminative hanges to the average vowel's formant valuesas a funtion of the level of arousal of the speaker's emotional state. One ansee that all emotional vowel triangles expand along the F1 axis more thanalong the F2 axis. As a onsequene, we deided to use only the average F1values for our evaluations.Taking into aount the entral limit theorem, the mean of a su�ientlylarge number of vowel-level disrete estimations of �rst formant values, whihde�nitely have a �nite mean and a �nite variane, will be approximately nor-mally distributed. We de�ne a new variable X whih orresponds to an av-erage F1 value estimated on vowel-level. The value of X an be alulatedby:
X =

1

tk

tk
∑

i=1

fi
1 (4.3)where tk is a number of disrete estimations of �rst formant values withina vowel segment, fi1 is an estimation of the �rst formant value at disretetime i. The random variable X an be represented as N (x|µ, σ2) with thefollowing probability density funtion:

f(x) =
1

σ
√
2π
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Figure 4.4: Mean of the entralized F1 values for high-arousal emotions (fear,anger, joy). Speakers: male (top), female (bottom)To haraterize the vowels quality hanges under the in�uene of the dif-ferent speaker's emotional state, we estimated the mean of the entralized F1values for eah vowel individually. For this evaluation, we use all vowels whihontain a su�ient amount of instanes for low and high-arousal emotions.To speify the vowel quality variation, we use the mean of the entralized
F1 value. The entralized F1 value shows the di�erene between the estimatedaverage F1 value on an emotional vowel segment, and the mean of the average
F1 value of the same vowel pronouned in a neutral way. Figures 4.4 and 4.5display the mean of the entralized F1 values for the 12 vowels presented inthe EMO-DB database. Due to the sparse amount of instanes, we do notestimate the mean of the entralized F1 values for the following list of vowels[2,u,Y,9,OY℄ with orresponding IPA symbols [2,u,Y,9,OY℄.As one an see from Figures 4.4 and 4.5, the most indiative vowels are [a,e, E, �, 6, aI, aU℄ with the orresponding IPA symbols [a, e E, @, 6, aI, aU℄. Nowwe want to �nd out if it is possible to build a reliable simple emotion lassi�erbased on the Neyman-Pearson riterion whih will use the average F1 valueas a parameter. This riterion is quite often used for speaker lassi�ation,identi�ation and authorization tasks [Roberts et al., 2005℄. The average F1value will be extrated within the alignment boundaries of the most indiativevowels.
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Figure 4.5: Mean of the entralized F1 values for low-arousal emotions (bore-dom, sadness) in omparison with neutral speeh. Speakers: male (top), fe-male (bottom)We pointed out earlier that the random variable X de�ned in equation 4.3is approximately normally distributed. As a result, it an be represented by
N (x|µ, σ2). Now we shall ompute the normal distribution parameters foreah indiative vowel pronouned in a neutral speaking style. Due to the highvariability of speaker voal trat lengths for male and female voies we deidedto alulate the pair of estimations (µ, σ) for eah gender individually. Foralulating the mean value estimations µ, we use two neutral speeh sentenesper speaker for the EMO-DB dataset and one utterane per speaker withthe smallest absolute arousal value for the VAM dataset. These senteneshave been removed from the test sets. For gender-dependent σ estimationsof seven of the most indiative vowels we use the Kiel orpus. It is learthat there is not enough material within two sentenes to alulate a reliablestandard deviation estimation. To solve this problem, instead of using speaker-dependent σ estimations we use gender-dependent (male,female) estimationsalulated on the Kiel orpus [Vlasenko et al., 2011a℄. The list of normaldistribution parameters for indiative vowels an be found in Table 4.5.For our evaluation we generate male and female (µ, σ) estimations pools.Mean and standard deviation values from these pools will be adopted for eahutterane aording to speaker's gender. This an be expressed as follows:



94 Chapter 4. Emotion reognition from speehVowel EMO-DB VAM KielID male
µ [Hz℄ female

µ [Hz℄ male
µ [Hz℄ female

µ [Hz℄ male
σ [Hz℄ female

σ [Hz℄a 644.1 749.4 658.8 769.8 62.0 119.4e 443.7 439.1 488.9 607.5 67.6 88.1E 440.8 439.2 579.2 623.0 66.1 111.1� 509.1 475.0 555.2 584.5 123.6 124.66 547.8 584.1 594.6 690.7 89.5 127.1aI 610.6 731.7 615.5 756.0 48.7 78.1aU 514.7 594.1 684.9 694.4 48.1 77.6Table 4.5: Estimations of the normal distribution parameters alulated onKiel, EMO-DB and VAM orpus material
µik = µig(k), σik = σig(k), where i is an index of an indiative vowel, k isan utterane index, g(k) is a funtion whih spei�es a speaker's gender ofutterane k.For lassi�ation purposes we use the Neyman-Pearson riterion:

Λ(U) =
L(Θ0|U)
L(Θ1|U)

≤ η (4.5)In our ase, Θ0 is a hypothesis that all indiative vowels inluded in ut-terane U are being pronouned with high-arousal emotion, and Θ1 is a hy-pothesis that all vowels inluded in utterane U are being pronouned withneutral or low-arousal emotion.Now we estimate L(Θ0|U) and L(Θ1|U). The umulative distribution fun-tion (CDF) for the random variable Xi whih orresponds to the average F1value of an indiative vowel i is de�ned by:
P (Xi ≤ x) = FXi

(x) =
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f(xi)dxi (4.6)Taking into aount that the random variableXi has a normal distribution,equation 4.6 an be expressed as:
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) (4.7)where erf is a Gauss error funtion:
erf {x} =

2√
π

∫ x

0

e−t2dt (4.8)Taking into aount equation 4.6, our onditional likelihoods L(Θ0|U) and
L(Θ1|U) an be expressed as:
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L(Θ1|Uk) = Nk − L(Θ0|Uk) (4.9b)where i is an index of an indiative vowel, g(k) is a funtion whih spei�esa speaker's gender of the utterane k, k is an index of utterane, and Nk isthe number of indiative vowels in the utterane Uk.As a onsequene, the Neyman-Pearson riterion an be estimated as:

Λ(Uk) =
Nk

P (Θ1|Uk)
− 1 ≤ η (4.10)Equation 4.10 an be used for estimation of Λ(Uk) during training andtest stages. During training we should estimate the optimal η value. Also,the riterion threshold η an be estimated with leave-one-speaker-out (LOSO)strategy or by using some a-priory value η = 1 (it is a ase when we simplyselet the hypothesis with higher likelihood). Within the test stage all ut-teranes Uk with Λ(Uk) ≤ η will be lassi�ed as utteranes pronouned inlow-arousal emotional or neutral state. In other ases they will be lassi�edas utteranes artiulated by the speaker with a high-arousal emotional state.4.4.4 Combined analysisMost parts of emotion-lassi�ation tehniques usually employ stati featurevetors extrated on a turn or linguistially ompleted sub-turn entities [Bat-liner et al., 2011℄. Dynami proessing on the short-term frame-level is a lesspopular tehnique applied for the emotion reognition from speeh [Polzin andWaibel, 1998℄, [Shuller et al., 2003℄. In [Shuller et al., 2003℄, [Shuller et al.,2009℄ the latter has also been shown superior to dynami modeling. Thisderives mostly from the fat, that by statistial funtional appliation to thelow-level desriptors (LLD) an important information redution takes plae,whih avoids phoneti (respetively spoken-ontent) over-modeling. Yet, it isalso onsidered that thereby important temporal information is lost due to ahigh degree of abstration [Vlasenko et al., 2007a℄. This led to the �rst su-essful attempts to integrate information on di�erent proessing levels [Murrayand Arnott, 1993℄, [Li and Zhao, 1998℄, [Jiang and Cai, 2004℄, [Shuller andRigoll, 2006℄.



96 Chapter 4. Emotion reognition from speehIn this setion we desribe two possible ombined speeh-based emotion-lassi�ation tehniques: two-stage proessing and middle-level fusion.Two-stage proessing: As the standard unit of emotional speeh analysisa whole turn an be named [Polzin and Waibel, 1998℄, [Li and Zhao, 1998℄,[Shuller et al., 2003℄, [Jiang and Cai, 2004℄, [Batliner et al., 2006℄. Froman appliation point of view, this seems appropriate in most ases: a hangeof speaker's emotional state during a turn seems to our seldom enoughfor many appliations. However, from a lassi�ation point of view, it wasoften reported that sub-timing levels seem to be advantageous [Jiang and Cai,2004℄, [Murray and Arnott, 1993℄, [Shuller and Rigoll, 2006℄. Still, apart froma few attempts to reognize speaker's emotions within speeh dynamially[Polzin and Waibel, 1998℄, [Shuller et al., 2003℄, urrent approahes usuallyemploy stati feature vetors derived on a utterane-, turn-, word-, or hunk-level [Shuller et al., 2007b℄. In [Shuller et al., 2003℄ suh stati modeling hasalso been shown superior to dynami modeling. In this setion we thereforeinvestigate a two-stage approah to aousti modeling for the reognition ofemotion from speeh: a �rst stage segments utteranes into hunks whih areanalyzed in detail in a seond stage.The two-stage approah is implemented to provide a higher temporal res-olution by hunking of utteranes aording to their aousti properties, andmulti-instane learning for the turn mapping after an individual hunk analy-sis. For the hunking fast pre-segmentation into emotionally quasi-stationarysegments the HMMs-/GMM-based one-pass Viterbi beam searh with tokenpassing is used. The hunk analysis is realized by brute-fore large featurespae onstrution with subsequent subset seletion, support vetor mahineslassi�ation, and speaker normalization.For the �rst stage we use the hunk-level analysis desribed in setion4.4.3.2. We train the hunk-level emotion-reognition models in a speaker-independent manner with LOSO strategy (see setion 2.10.2) by using theBaum-Welh re-estimation algorithm presented in Chapter 3 and 50 Gaus-sian mixture omponents. Afterwards eah original utterane is hunked byappliation of the one-pass Viterbi beam searh as desribed. For the latterproessing, only the obtained hunk boundaries are used from this stage. Themotivation behind this proessing is to �nd an aoustially motivated sub-turnsplitting.For the seond stage we use the turn-level analysis desribed in setion4.4.2. In order to map the stati analysis results of eah hunk onto the turn-level, we onsider three strategies known from multi-instane learning for eahhunk:



4.4. Developed emotion-lassi�ation tehniques 97� an un-weighted majority vote (MV),� a maximum length vote (MLV),� a maximum lassi�er predition sore multiplied with the length vote(MSL)Likewise, we omputed the majority label of eah turn based on the hunk-level. In the ase of a weighted vote, the length of the hunk in frames isused as a multipliative weighting funtion. In the MSL ase we also usethe lassi�er predition sore for eah lass as additional weight. Note thatin the ase of an unweighted majority vote, turns may our that annotbe uniquely assigned to an emotional lass. This happens, if two or moreemotional lasses, whih are the majority of lasses, have the same number ofhunks. This ase will be separately denoted in the ongoing. In the ase oftime-based weighting this ase an almost be ignored, as the majority of lasses� if there are several � will rarely have an equal number of frames [Shulleret al., 2007℄. This is even more likely, if length and predition sores are usedfor weighting (MSL). As a disadvantage it has to be mentioned that temporalinformation is thereby lost. Alternatively, the duration of eah hunk an beused as weight. Also, the time order of appearane of hunks is lost. However,we suppose that this information an be negleted under the preondition ofonstant emotion throughout an utterane. Employing majority voting (MV)we an observe two ases: utteranes that are learly assignable, and suhthat have two or more emotions assigned due to a draw. In the seond ase,a further disrimination an be onsidered: utteranes that have the orretemotion among the majority lasses, and suh that are simply inorretlyassigned. Evaluation results of a two-stage speeh-based emotion-lassi�ationtehnique will be presented and disussed in Chapter 5.Middle-level fusion: To reeive higher lassi�ation performane it is pos-sible to use independent lassi�ation results for middle-level fusion. In mostases, with this method we an obtain a omposite lassi�ation performanewhih is higher than that of the individual lassi�ers. As presented in [Bat-liner et al., 2006℄, with ROVER framework [Fisus, 1997℄, authors showed anabsolute improvement of up to 5.8 % of emotion-reognition auray on fourlass problems on AIBO [Batliner et al., 2008℄ dataset with respet to thebest independent site result. Within early fusion, when ombining aoustifeatures from all sites, authors ahieved still a 2.1 % absolute improvement.So far the two individual approahes to emotion reognition based on in-formation proessing diretly on the frame level, or on a higher turn level, havebeen presented. In order to fuse these two approahes it seems bene�ial tokeep utmost amounts of information for the �nal deision proess. However,



98 Chapter 4. Emotion reognition from speeh
X

Lowpass Filtering

application
x

x'

Speech

Figure 4.6: Proessing �ow for the middle-level fusion of frame- and turn-levelanalysisan early fusion (aousti features fusion) is not feasible, due to the di�er-ent aousti feature sets (frame-level vs. turn-level) [Vlasenko et al., 2007b℄.We therefore deided to inlude the �nal HMM/GMM sores (logP (Ω|X))within the stati aousti feature vetor x, forming an argument vetor x′,and provide a middle-level fusion. The proess of speaker normalization andfeature spae optimization is extended to the likewise obtained new featurevetor x′. Overall feature seletion having the HMM/GMM sores within thespae reveals their high importane, as they are kept among high ranks. Fig-ure 4.6 depits the overall proessing �ow from an input speeh signal via thetwo streams to the �nal lassi�ation result [Vlasenko et al., 2007a℄.



4.5. Context-dependent and ontext-independent models 994.5 Context-dependent and ontext-independent modelsUsually emotion reognition from speeh uses spoken ontent independentaousti models. One general model per speaker's emotional state is trainedindependent of the phoneti struture of a�etive speeh samples. Given su�-ient training samples, this approah provides aeptable emotion-reognitionperformane on test material whih has similar phoneti ontent [Shulleret al., 2009℄. This setion tries to answer the question of whether emotionreognition from speeh strongly depends on the ontent, and if models tai-lored for the spoken unit an lead to higher auraies [Vlasenko et al., 2008a℄.We therefore evaluate phoneme-, word-, utterane-models by use of a largeprosodi, spetral, and voie quality feature spae, HMM/GMM models andSVM.Pratially every approah to the emotion reognition from speeh ig-nores the spoken ontent when it omes to aousti modeling (see [Polzinand Waibel, 1998℄, [Li and Zhao, 1998℄, [Shuller et al., 2003℄, [Jiang and Cai,2004℄, [Batliner et al., 2006℄). A general model is trained for eah speaker'semotional state, and applied on test-utteranes whih have a similar pho-neti ontent. While this is a ommon pratie, it seems surprising how wellthis works, espeially onsidering that many aousti features highly dependon phoneti struture, suh as spetral and epstral features whih have be-ome very popular reently [Batliner et al., 2006℄. It is ommon to provide ahigh redution of information: e.g., rather than using the original time-series,higher order statistis, suh as means, deviations, extremes, et., are used.Another possible solution is to use dynami modeling, e.g., by the HMM,of low-level desriptors (MFCC, et.) extrated on the frame-level [Shulleret al., 2003℄, [Vlasenko et al., 2007a℄.We �rst investigate the in�uene of spoken ontent variation on the turn-level. We use dynami analysis (see setion 4.4.3) with utterane-level las-si�ation. Test runs on EMODB and SUSAS datasets for utterane mod-els are arried out speaker independently by leave-one-speaker-out (LOSO)evaluation. Table 4.6 reports average among all speakers and all utteranesauraies for three ases to address ontext-independent evaluation. A totalof 10 di�erent utteranes are found in EMODB and 35 in SUSAS databases,respetively. We inluded all utteranes from training set for general modeltraining. In other ases we left out all samples with target or non-targetutterane from training set.From 4.6 it is lear that removal of target utterane from training setfundamentally redue auray of emotion reognition in omparison with re-



100 Chapter 4. Emotion reognition from speehWA EMO-DB SUSASGeneral model 77.1 46.0Non-target utterane left out 75.9 45.4Target utterane left out 72.7 44.2Table 4.6: Weighted average realls (WA) [%℄ for turn-level modeling onEMODB and SUSAS. Dynami analysis with utterane-level lassi�ation,LOSO evaluationmoval non-target utterane. Random removal non-target utteranes preservesthe ontext, whih results in the higher auray than removing the target ut-terane, whih makes the training data ontext-independent.Yet, the question is if phoneti ontent variane in�uenes emotion-reognition performane negatively, and if models trained spei�ally on thephoneti unit at hand, an help. In this setion, we aim to shed light on thisquestion by training phoneme-, syllable-, and word-models for the emotionreognition in the following appliation. Unit-de�nite models require knowl-edge of the phoneti ontent, opposing "blind" sub-turn entities, as introduedin (see [Murray and Arnott, 1993℄, [Polzin and Waibel, 1998℄, [Li and Zhao,1998℄, [Jiang and Cai, 2004℄, [Shuller and Rigoll, 2006℄).Likewise, reognition of the spoken ontent beomes essential, in order tohoose the orret unit-de�nite model. Faing real-world ases, we do not re-port on transribed ontent, as, e.g., in [Batliner et al., 2006℄, but do inludethe HMM-based state-of-the-art approah to ASR. The HMM of three emit-ting states and 16 Gaussian mixture omponents was built for eah phonemeemotion (PE) and phoneme-level of interest (PLOI) models. The HTK toolkitwas used to build these models, using standard tehniques suh as forward-bakward and Baum-Welh re-estimation algorithms [Young et al., 2009℄. Wealso use an automati speeh-reognition (ASR) engine adapted with MLLRand regression lass tree on a�etive speeh samples to reognize linguistiunits (sentene, word) [Vlasenko et al., 2008a℄. We report results onsideringsuperiority of unit-de�nite models over general models, and ombine speehand emotion reognition in a real system.Next, word-de�nite emotion models have to be seleted for emotion reog-nition. This may lead to a downgrade, if word insertions, deletions or sub-stitutions our, provided the spoken ontent does in�uene emotion reog-nition [Vlasenko et al., 2008a℄. Therefore, we test emotion reognition inmathed and mismathed word ondition (that is piking the orret or anyother word model at a time) in omparison to a general model trained on allwords. Note that for mismathed ondition one vs. one training and testingof eah word vs. eah other is neessary.



4.5. Context-dependent and ontext-independent models 101Model desription Conditions G1 G2 AllEMO-DB mathed 57.2 46.9 48.9mismathed 36.6 37.7 37.4SUSAS mathed 64.6 60.3 60.7mismathed 52.4 54.4 55.2AVIC mathed 79.7 57.8 60.9mismathed 49.2 51.3 50.1Table 4.7: Weighted average realls (WA) [%℄ at word level for word emotionmodels in mathed and mismathed ondition. Stati features, SVM, LOSO.Investigated are "worth-it" words (G1) and "non-worth-it" andidates (G2),as well as all (All) termsIn total 73 di�erent words are pronouned in EMO-DB database[Burkhardt et al., 2005℄. From these we selet only those that have a minimumfrequeny of ourrene of 3 within eah emotion (likewise having 50 plus in-stanes per word) omprising a total of 41 words with roughly 200 instanesper word. Then, we employ stati aousti features and SVM lassi�ationfor word emotion models after seletion of aording words by ASR. Table 4.7visualizes the results reeived by two groups of frequeny of ourrene in theorpus:Group 1 (G1) are high frequeny of ourrene words. For the EMO-DBdataset these words (10 out of 41) are "abgeben (give away), am (on), auf (ontop of), besuht (visits), gehen (walk), ih (I), sein (to be), sih (oneself), sie(her), and sieben (seven)". For the AVIC dataset these words (7 out of 50)are "ah, but, is, it, mh, not, and you". For the SUSAS dataset this word (1out of 11) is "�fty".In ontrast, group 2 (G2) is "not worth it" due to low ourrene in thedataset. Likewise emotion unit-de�nite models for these words annot betrained su�iently. Besides, results of emotion reognition for all words areshown (All). Our evaluations are realized in a speaker-independent (SI) man-ner using LOSO strategy (see setion 2.10.2). In the following, we stik towords as unit of analysis, whih allow for inremental emotion reognition.First, mathed vs. mismathed onditions are examined: spoken ontentlearly does in�uene auray throughout word-model omparison in anyase, as an be seen in Table 4.7. In fat, detailed analysis of omplete resultsshows that the length of words and phoneti distane are the main in�ueningfators.Considering results of word-level analysis for ated and spontaneous emo-tion and spontaneous level of interest, we disovered notable di�erenes be-tween mathed and mismathed ondition for words presented in group G1



102 Chapter 4. Emotion reognition from speehTraining size fator 1% 2% 5% 10% 100%EMO-DB 43.1 44.7 49.1 51.7 55.5SUSAS 50.6 56.1 60.7 61.5 64.7AVIC 58.0 62.6 65.2 68.6 68.6Table 4.8: Weighted average realls (WA) [%℄ at word level for word emotionmodels for general models at diverse relative sizes of training orpora. Statifeatures, SVM, LOSOand G2. As an be seen from Table 4.7, in mathed ases word-de�nite modelsfor words from the group G1 provide better performane in omparison withgeneral emotion models.As mis-seletion of word-de�nite emotion models would evidently signi�-antly downgrade performane, we next address the question of how a generalmodel trained on the whole dataset would perform.We set this in relation to the amount of training data available for eahword-de�nite emotion model by the relative training size fator by randomdown-sampling preserving emotion lass-balane, see Table 4.8Aousti material for the eah word orrespond from 1.0% to 2.0% ofomplete aousti material presented in EMO-DB, SUSAS, AVIC datasets.It an be seen that for all databases a general model with that training sizefator will perform between mathed and mismathed onditions for all words.With more training material available, the general model outperforms themathed ase piking "All" and approahes the "G1" mathed ase. Without"G1" seletion it seems preferable to use the general emotion model, simplyas more training data is available. With "G1" mathed ases auray ofemotion reognition with word-de�nite emotion models outperform generalmodels with a 100% training size fator.However, the introdued unit-spei� emotion-reognition models learlyoutperformed ommon general models provided su�ient amount of trainingmaterial per unit. Appearane of word-level-labeled orporas an improveurrent performane of phoneme- and word-level emotion and level of interestmodels. We found that emotional and level of interest ativity is distributedirregularly among words within a sentene. For example in AVIC dataset,auray of level of interest reognition for the words "ah, but, is, it, mh, not,you" by word depended models exeeds auray of level of interest detetionby general models. More details about this dataset an be found in setion2.6.2.7 on page 28. This is not the ase for other evaluated datasets.



4.6. Summary 1034.6 SummaryThis hapter reviews existing speeh-based emotion-reognition methods andprovides a desription of our developed emotion-reognition approahes. A va-riety of emotion desriptors is disussed �rst. Two di�erent types of emotionalspeeh analyses are applied for speeh-based emotion reognition: frame-level and turn-level, are then presented. First of all we desribed the setof aousti features whih an be applied for di�erent emotion-lassi�ationtehniques. Two di�erent optimization tehniques applied on feature extra-tion level, namely normalization and standardization and feature set optimiza-tion have been presented afterwards. Stati analysis applied for speeh-basedemotion-lassi�ation developed by our partners from TUM has been pre-sented �rst. Then we introdued utterane-, hunk-, phoneme-level dynamianalysis models for the reognition of emotions within speeh. During de-sription of utterane-level dynami analysis we determined the optimal HM-M/GMM arhiteture. As a result within our evaluations of utterane-, hunk-level dynami analysis we will use the single-state HMM/GMM arhite-ture for emotion-lassi�ation models. Two di�erent phoneme-level emotion-lassi�ation methods are desribed. The �rst is emotional phoneme lasses.It provides ontext-dependent emotion lassi�ation and an be easily om-bined with automati speeh reognition for a user-behavior-adaptive spokendialog system. Results of emotional phoneme lasses evaluations an be foundin Chapter 5. Also a prototype spoken dialog system with a user-behavior-adaptive spoken dialog system reated within NIMITEK, whih inludes thistehnique will be disussed in Chapter 6. The seond is vowel-level formantstraking. This method is our new tehnique, whih showed appliable resultsof emotion reognition based on an extremely small aousti feature set.Within this hapter, we desribed two possible information integrationtehniques whih use di�erent proessing levels. The �rst is a two-stage pro-essing approah whih is used to provide higher temporal resolution by hunk-ing of utteranes aording to aousti properties, and multi-instane learningfor turn mapping after individual hunk analysis. The seond is middle-levelfusion. Within this method we integrate important information on tempo-ral sub-layers as the frame-level within turn-level feature spae. Finally, thishapter addresses the question on whih phonetial level there is the onsetof emotions and level of interest. We therefore ompare phoneme-, word-and sentene-level analysis for emotional sentene lassi�ation by use of alarge prosodi, spetral, and voie quality feature spae for SVM and MFCCfor HMM/GMM. Results of evaluations of our stati and dynami emotionlassi�ers will be presented in Chapter 5.





Chapter 5Reognition experiments
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5.1 IntrodutionIn this hapter we present results of experiments onerning our emotion-reognition and automati speeh-reognition methods. All experimentswere onduted on The Kiel Corpus of Read Speeh [KIE, 2002℄ and on thea�etive speeh datasets presented in Table 2.3 on page 24. Building of theaousti models and speeh-reognition evaluation setup for neutral and a�e-tive speeh samples, and adaptation on a�etive speeh samples for aoustimodels trained on neutral speeh samples are presented in setion 5.2. Se-tion 5.3 disusses evaluation results of various emotion-lassi�ation methodspresented earlier in Chapter 4. Then, we present our results within INTER-SPEECH 2009 Emotion Challenge [Shuller et al., 2009℄ and ross-orpusaousti emotion reognition.5.2 Evaluation of our ASR methodsThis setion presents the development of experiments on the German speehreognition with HMM/GMM models. All HMM/GMM models presented inthis setion are onstruted as 18 Gaussian mixture omponents per state.ASR models presented in this setion are evaluated with the bigram languagemodel and a grammar sale fator s = 5. A larger number of the Gaussianmixture omponents and a higher grammar sale fator ould improve perfor-mane of a de�ned themati domain (system known �xed textual ontent ofthe evaluated database) � oriented automati speeh reognition.



106 Chapter 5. Reognition experimentsThe main issue of this setion is to show that training ASR models onneutral speeh, and subsequent adaptation on a�etive speeh samples, doeshave an impat on the reognition performane within emotional speeh reog-nition. Two di�erent HMM/GMM models sets are presented and evaluated.First, we desribe our non-adapted HMM/GMM models, trained indepen-dently on neutral speeh samples and a�etive speeh samples. Afterwards,we desribe our a�etive-speeh-adapted ASR models and present evaluationresults on the EMO-DB database.5.2.1 CorporaAs an emotionally neutral speeh orpus we used part of The Kiel Corpus ofRead Speeh (PHONDAT90 and PHONDAT92: Kiel-CD #1, 1994) [KIE,2002℄. The Kiel Corpus is a growing olletion of read and spontaneousGerman speeh whih has been olleted and labeled segmentally sine 1990.For our ASR engine evaluation we used speeh samples from 12 female (1801utterane in all) and 13 male (2000 utterane in all) speakers. The list ofspeakers is k01,...,k12, k61 (also de�ned as kko), k62 (also de�ned as rtd),k63,...,k70, dlm, hpt, uga. Within speeh reording sessions a Neumann U87ondenser mirophone (ardioid settings) was plaed approximately 30 mfrom the speaker's mouth. The mirophone signals were ampli�ed by a JohnHardy M1 pre-ampli�er and reorded on a SONY PCM 2500 DAT-reorder ata sampling rate of 44.1 kHz for PHONDAT90 and of 48 kHz for PHONDAT92,respetively, with 16 bit quantization. Afterwards, olleted speeh sampleswere then digitally transferred to a omputer hard disk and downsampled to16 kHz as well as high-pass �ltered at 40 Hz.For a�etive speeh orpora we deided to use the popular studio reordedBerlin Emotional Speeh Database (EMO-DB) [Burkhardt et al., 2005℄.Speeh material reordings took plae in the anehoi hamber of the Teh-nial University Berlin, Tehnial Aoustis Department using a SennheiserMKH 40 P 48 mirophone and a Tasam DA-P1 portable DAT reorder.Reordings were taken with a sampling frequeny of 48 kHz and later down-sampled to 16 kHz. The mirophone was plaed approximately 30 m fromthe speaker's mouth. 10 professional ators (5 male and 5 female) spoke 10German emotionally unde�ned sentenes. One of these sentenes is "b03: Anden Wohenenden bin ih jetzt immer nah Hause gefahren und habe Agnesbesuht. (At the weekends I have always gone home now and seen Agnes.)".To provide reliable measures twenty evaluators took part in a pereption-test.Eah "rater" heard all of the utteranes in a random order. They were allowedto listen to eah utterane only one before the pereption-test evaluator hadto deide in whih emotional state the speaker had been and how natural the



5.2. Evaluation of our ASR methods 107performane was. During pereption test raters provided rates of naturalnessand reognizability for eah performane. An average rates of naturalness andreognizability have been inluded in dataset material. In total we used 494utteranes: 416 a�etive speeh samples and 78 neutral speeh samples. Eahof these utteranes has a level of naturalness not less than 60% and a level ofreognizability not less than 80%.5.2.2 Evaluation of non-adapted ASR modelsIn our ASR models, only diagonal ovariane GMM matrix systems are on-sidered where the features in eah feature vetor are assumed unorrelated.The monophone set onsists of 39 HMMs inluding silene and short pause(sp). Within our ASR evaluations we use a standard 39-dimensional featurevetor whih inludes 12 MFCC oe�ients, zero-order Cepstral oe�ients,and their delta and aeleration oe�ients.The parameters of the models are re-estimated in 2 onseutive runs of theBaum-Welh algorithm (see setion 3.2.6) using the monophone transriptionof the training data. To handle impulsive noises in the training speeh samples,additional transitions are added from state seond to forth and from stateforth to seond in the silene HMM model. The bakward transition providesa tehnique to assimilate impulsive noises without exiting the silene model.Besides, in order to deal with ontinuous speeh, a one state short pause (sp)model was reated whose emitting state is tied to the third state (entralemitting state) of the silene model. This short pause model has a direttransition from entry to exit state. Then two more iterations of the Baum-Welh algorithm are run.Finally, we onvert the single-Gaussian omponent models to 18 mixturesGaussian omponent models. After eah mixture omponent inrement, theresulting HMM models are re-estimated with 4 onseutive iterations of theBaum-Welh algorithm. During training of our HMM parameters we addedone mixture per 4 onseutive runs of the Baum-Welh algorithm. For lan-guage modeling we used a bigram language model trained on transriptionsof the omplete training set.Test-runs on EMO-DB, Kiel for non-adapted ASR models are arried outin leave-one-speaker-out (LOSO) manner to address speaker independene(SI), as required by most appliations. For eah speaker presented in EMO-DBor Kiel we trained a speaker-independent ASR system based on speeh samplesfrom other speakers presented in the orresponding database. As a result wetrained 10 ASR HMM/GMM models for the EMO-DB database and 25 ASRHMM/GMM models for the Kiel database. Within our evaluations on non-adopted models we also used epstral mean subtration (CMS), whih is the



108 Chapter 5. Reognition experimentsSpeaker With CMS Without CMSID [%℄ A Corr A Corrk01 96.15 96.15 96.72 96.92k02 92.37 93.32 92.75 93.32. . . . . . . . . . . . . . .k08 99.00 99.40 98.60 99.20. . . . . . . . . . . . . . .k61 87.93 90.13 87.78 89.82k62 87.72 89.86 87.56 89.78. . . . . . . . . . . . . . .dlm 79.29 81.02 78.73 80.69hpt 85.38 86.60 85.00 86.41uga 91.85 93.02 91.61 92.83Total 90.20 91.58 90.04 91.47Table 5.1: Reognition rates [%℄ for non-adapted ASR HMM/GMM modelstrained and evaluated on the Kiel database with LOSOsimple method applied for the ompensation of the long-term spetral e�etssuh as those indued by di�erent mirophones and audio hannels [Younget al., 2009℄.Reognition rates of the HMM/GMM models trained on the Kiel datasetand evaluated with the bigram language model an be found in Table 5.1.In general, it an be seen that the performane of German a�etive speehreognition for speaker-independent models are substantially di�erent. Forexample, we obtained the speeh-reognition auray rate for speaker k08 upto Acc = 98.6% (aousti features without CMS) at the same time the au-ray rate for speaker dlm was only Acc = 78.73% (aousti features withoutCMS). Suh a high performane variation an be explained by low-level tex-tual ontent annotation in the Kiel dataset. Some speakers do not pronounethe orresponding prompted text within reordings, also paralinguisti events(like breathing and et.) have not been transribed. However, we will use Kieldatasets for training our basi ASR models for German emotionally neutralspeeh.Reognition rates of the HMM/GMM models trained on speeh samplesfrom the EMO-DB dataset and evaluated with bigram language model an befound in Table 5.2. In general, it an be seen that the performane of Germana�etive speeh reognition for speaker-independent models are omparable.Only for speaker 10 we obtained a omparable low a�etive-speeh-reognitionauray rate Acc = 83.55% (aousti features without CMS). Suh ompara-ble low performane an be explained by very spei� voal trat harateris-tis of speaker 10 and a high-level of intensity of the simulated emotions.Reognition rates of the ASR models trained on the Kiel database and eval-



5.2. Evaluation of our ASR methods 109Speaker With CMS Without CMSID [%℄ A Corr A Corr03 98.09 98.09 98.33 98.3308 98.14 98.52 98.70 99.0709 97.12 97.12 96.07 96.6010 84.84 86.77 83.55 86.4511 97.43 97.82 97.03 97.6212 97.23 97.63 96.84 97.2313 98.11 98.11 98.11 98.1114 98.62 99.23 98.31 98.9215 97.44 97.44 97.44 97.4416 95.49 95.80 95.33 95.80Total 96.70 97.06 96.49 96.99Table 5.2: Reognition rates [%℄ for non-adapted ASR HMM/GMM modelstrained and evaluated on the EMO-DB database with LOSODatabase With CMS Without CMS[%℄ A Corr A CorrKiel 85.99 86.97 87.37 88.27Table 5.3: Reognition rates [%℄ for non-adapted ASR HMM/GMM modelstrained on the Kiel database, evaluated on the EMO-DB databaseuated with bigram language model on the EMO-DB database an be found inTable 5.3. As one an see from Table 5.3, HMM/GMM models trained on theomplete Kiel dataset without epstral mean subtration (CMS) provides thebest German speeh-reognition rates within ross-orpora ASR evaluation.As a result we deided to use HMM/GMM models trained on aousti fea-tures extrated from the Kiel dataset without CMS. In the next setion we willdesribe a�etive-speeh-adaptation tehniques whih have been applied forthese ASR models, referred to as basi ASR models for German emotionallyneutral speeh.5.2.3 Evaluation of a�etive-speeh-adapted ASRmodelsAs one an see from Table 5.3, HMM/GMM models trained on neutral speehsamples from the Kiel database ould not provide su�ient reognition perfor-mane on a�etive speeh material from the EMO-DB database. Therefore,in order to obtain robust aousti models that an perform well with a�etivespeeh, we adapted the speaker-independent HMM/GMM models trained onnatural speeh data from the Kiel dataset. Various adaptation tehniques have



110 Chapter 5. Reognition experimentsSpeaker GBC 3 base lasses RCTID [%℄ A Corr A Corr A Corr03 94.02 94.50 94.02 94.26 95.22 95.2208 83.67 84.23 82.93 83.30 85.71 86.0909 81.15 83.25 83.77 85.86 81.94 84.2910 82.26 82.90 82.26 83.87 83.23 83.8711 90.50 90.89 89.70 90.10 90.89 91.2912 90.12 90.51 89.72 90.12 93.68 93.6813 92.28 92.45 91.94 92.28 92.97 92.9714 90.00 90.92 89.69 90.77 90.62 91.6915 93.29 93.49 93.89 94.08 94.08 94.2816 73.87 74.34 73.56 74.34 73.72 74.34Total 86.95 87.56 86.91 87.62 87.87 88.43Table 5.4: ASR reognition rates [%℄ for HMM/GMM models trained on theKiel database, MLLR adapted on EMO-DB neutral speeh samples, evaluatedon the EMO-DB database with LOSObeen used for this purpose: Maximum Likelihood Linear Regression (MLLR)(see setion 3.2.9.2) with global base lass (GBC) presented in listing 3.2 onpage 65, 3 base lasses (silene with short pause, vowels and onsonants inthree di�erent base lasses) presented in listing 3.3 on page 65 and regressionlass tree (RCT), Maximum a Posteriori (MAP) (see setion 3.2.9.1) and om-bined MLLR(RCT)+MAP. For the MLLR, optimal performane was obtainedwith 39 regression lasses where only means are transformed. For the MAP,optimal performane was obtained with τ = 10 whih is the MAP parameterwhih ontrols the impat of the MAP prior, see equation 3.47 on page 63.First, we used for adaptation only neutral speeh samples from the EMO-DB database for aousti hannel adaptation. We applied the MLLR adap-tation tehnique with global base lass (GBC), three base lasses and theregression lass tree (RCT).Reognition rates of the basi ASR models adapted with MLLR on neutralspeeh samples and evaluated with bigram language model an be found inTable 5.4. As one an see from Table 5.4, adaptation on neutral speeh samplesfrom EMO-DB does have an insu�ient impat on the reognition of thea�etive speeh samples from the same database (reorded within the sameaousti hannel). This has been found to yield a slight gain (about 0.5%) overthe basi ASR models (auray 87.37%) trained on neutral speeh samplesfrom the Kiel database.Seondly, we used for adaptation a�etive samples from the EMO-DBdatabase. We applied LOSO strategy and the MLLR adaptation tehnique forbasi ASR models trained on neutral speeh samples from the Kiel database.Reognition rates of the basi ASR models adapted with MLLR on a�e-



5.2. Evaluation of our ASR methods 111Speaker GBC 3 base lasses RCTID [%℄ A Corr A Corr A Corr03 94.50 94.74 94.74 94.74 96.41 96.4108 87.38 88.13 87.57 87.94 94.25 94.2509 87.43 88.74 87.96 89.01 93.19 93.9810 85.16 85.81 85.16 85.81 87.10 87.7411 90.89 91.29 91.09 91.49 94.85 95.2512 94.07 94.07 94.07 94.07 96.44 96.4413 95.20 95.37 94.17 94.17 98.63 98.6314 90.31 90.92 90.00 90.92 95.69 96.0015 94.67 94.67 94.28 94.28 95.86 95.8616 82.12 82.43 82.58 83.83 91.29 91.91Total 90.00 90.44 89.96 90.46 94.57 94.84Table 5.5: ASR reognition rates [%℄ for HMM/GMM models trained on theKiel database, MLLR adapted on EMO-DB a�etive speeh samples, evaluatedon the EMO-DB database with LOSOtive speeh samples and evaluated with the bigram language model an befound in Table 5.5. As one an see from Table 5.5 adaptation on the a�etivespeeh from EMO-DB does have a su�ient impat on the reognition of thea�etive speeh samples. In ontrast to the ASR models trained on the neu-tral speeh samples from the Kiel database the auray of a�etive speehreognition with the MLLR (RCT) adapted HMM/GMM models was about
7.2% absolute better than that of the basi ASR models (auray 87.37%).It is well-known that MLLR and MAP an be e�etively ombined to im-Speaker MAP MLLR+MAPID neutral speeh a�etive speeh a�etive speeh[%℄ A Corr A Corr A Corr03 94.02 94.26 95.93 95.93 96.89 96.8908 84.97 85.71 91.28 91.47 96.85 96.8509 82.98 85.08 91.36 91.88 96.60 96.8610 83.23 83.55 83.87 84.52 85.16 86.7711 92.08 92.08 94.46 94.65 95.64 95.8412 92.89 93.28 96.05 96.05 96.84 96.8413 94.00 94.17 96.74 96.74 98.63 98.6314 88.62 89.69 93.54 94.46 98.00 98.6215 94.48 94.67 95.27 95.27 96.25 96.2516 76.36 77.14 87.87 88.65 96.73 96.89Total 88.10 88.71 92.73 93.09 96.24 96.49Table 5.6: ASR reognition rates [%℄ for HMM/GMM models trained on theKiel database, MAP or MLLR(RCT)+MAP adapted on EMO-DB a�etivespeeh samples, evaluated on the EMO-DB database with LOSO



112 Chapter 5. Reognition experimentsprove speeh-reognition performane [Wong and Mak, 2000℄ by using MLLRtransformed mean values as the priors for the MAP adaptation method. Asa result we deided to use ombined MLLR with regression lass tree and theMAP method for adaptation on a�etive speeh material.Reognition rates of the basi ASR models adapted with MAP or ombinedMLLR(RCT)+MAP on a�etive speeh samples from EMO-DB database andevaluated with bigram language model an be found in Table 5.6. As onean see from Table 5.6 the auray of a�etive speeh reognition with theombined MLLR(RCT)+MAP adapted HMM/GMM models was about 8.9%absolute better than that of the basi ASR models (auray 87.37%).For our ASR engine integrated into the NIMITEK demonstrator we usedthe HMM/GMM models trained on the Kiel database material and adaptedwith MLLR(RCT) on a�etive speeh samples from the EMO-DB database.Also, for phoneme-level emotion reognition we use ASR models adapted withMLLR(RCT). Our �rst results of a�etive-speeh-reognition evaluations withASR models adapted on emotional speeh data an be found in [Vlasenko andWendemuth, 2009b℄.5.3 Emotion-reognition methods evaluationThis setion presents the development of experiments on emotion reognitionfrom speeh. We present experiments on all emotion-lassi�ation methodspresented earlier in Chapter 4. Speeh-based emotion reognition is a om-parably new researh �eld. In omparison with aousti segments (words,phonemes) used as unit of analysis for automati speeh reognition, emo-tional lasses used for speeh-based emotion lassi�ation do not have so highdisriminative harateristis. Providing "ground truth" measures for emo-tional ontent annotation (espeially for spontaneous emotions) is a way moreomplex task in omparison to the reliable textual transription of ASR speehorpora. Hene, in some ases of multi-lass emotion lassi�ation we obtainedresults whih are just slightly higher than lassi�ation by hane.5.3.1 Phoneme-level lassi�ationIn this setion we desribe the evaluation results for two di�erent meth-ods whih an be used for phoneme-level emotion lassi�ation: emotionalphoneme lasses and vowel-level formants traking.



5.3. Emotion-reognition methods evaluation 1135.3.1.1 Emotional phoneme lassesFirst, we used ASR models adapted on a�etive speeh samples withMLLR(RCT) to reognize a unit (sentene, word). Seondly, we generatedall possible emotional or level of interest phoneti transriptions for the re-ognized sentene or words by using the orresponding phoneme set (PE orPLOI), more details an be found in setion 4.4.3.3. In the ase of EMO-DBwe onsidered 7 phoneme emotion models (PE) transriptions, 5 phonemeemotion models (PE) transription for SUSAS and 3 phoneme level of inter-est (PLOI) transriptions for AVIC. Emotional phoneme or level of interestmodels whih provide the highest reognition sore are hosen.Test-runs on EMO-DB, SUSAS and AVIC for phoneme-level models arearried out in leave-one-speaker-out (LOSO) manner to address speaker in-dependene (SI), as required by most appliations. Reognition rates of theemotional phoneme models evaluated with the bigram language model an befound in Table 5.7.lassi�ation unit EMO-DB SUSAS AVICword 51.0 49.5 45.8sentene 66.2 49.5 54.1Table 5.7: Weighted average realls (WA) [%℄ of emotion and level of interestreognition on sentene-, word-level applying phoneme-level analysis, MFCC,HMM/GMM, LOSO. Databases EMO-DB, SUSAS, AVICIn the ase of the SUSAS dataset we have just one word per sentene.Detailed results from EMO-DB and AVIC evaluations show that some wordswithin a sentene are lassi�ed wrong when the whole sentene is lassi�edright. This means that emotional and level of interest ativity is distributedirregularly among words inside a sentene. As a result phonemes whih belongto the di�erent words within a sentene have diverse emotions and levels ofinterest ativity.In Table 5.8 results are shown for emotion reognition on a word-, andphoneme-level in diverse onstellations. Zero-gram for word-level analysisLanguage model WAword-level zero-gram 32.1phoneme-level bigram 38.8Table 5.8: Weighted average realls (WA) [%℄ of emotion reognition onword-, and phoneme-level applying phoneme emotion models, dynami fea-tures, HMM, LOSO. Evaluated on the EMO-DB database



114 Chapter 5. Reognition experimentsshows many insertions, hene low auray. Bi-gram LM an balane theinsertions by grammar sale fator, hene higher auray. This is also thereason why phoneme-level auray is only reported with the bi-gram languagemodel: zero-gram leads here to too-high insertion rates.5.3.1.2 Vowel-level formants trakingFor a�etive speeh we deided to use the popular studio reorded BerlinEmotional Speeh Database (EMO-DB) [Burkhardt et al., 2005℄ and TheVera am Mittag (VAM) orpus [Grimm et al., 2008℄. The EMO-DB ontainsated emotional speeh samples. 10 professional ators (5 male and 5 female)spoke 10 German emotionally unde�ned sentenes. Within our evaluation weused only 20 neutral utteranes for training (2 utteranes per speaker). TheEMO-DB test set inluded neutral (rest 58 utteranes), low-arousal emotions(boredom (79), sadness (53)) and high-arousal emotions (anger (127), fear(55) and joy (64)). In total we used 456 utteranes. Eah of these utteraneshas a level of naturalness not less than 60% and a level of reognizability notless than 80%, as indiated by the raters.The VAM database onsists of 12 hours of audio-visual reordings takenfrom a German TV talk show. The orpus ontains 947 utteranes withspontaneous emotions from 47 guests of the talk show whih were reordedfrom unsripted, authenti disussions. A large number of human labelers wereused for annotation (17 labelers for one half of the data, six for the other). Thelabeling is based on a disrete �ve-point sale for three dimensions (valene,arousal, dominane) mapped onto the interval of [-1,1℄. For our evaluationswe use only arousal measures reeived with an evaluator weighted estimator.For training we seleted one utterane per speaker with smallest absolutearousal value (19 negative and 28 positive arousal emotional utteranes at all).The VAM test set inluded 483 negative and 417 positive arousal emotionalutteranes.In order to exeute a vowel-level analysis a phoneme-level ASR transrip-tion is needed, whih requires a orresponding lexion ontaining phonetitransription of words presented in a orpus. Unfortunately, the VAM or-pus does not provide suh a lexion, so we reated it by ourselves using aombined approah. The major part of the word transriptions (1216 items)was taken from other German orpora, namely Verbmobil [Hess et al., 1995℄and SmartKom [Shiel et al., 2002℄. For the rest (688 words) we reatedtransriptions using grapheme-to-phoneme onversion with a Sequitur G2Ponverter [Bisani and Ney, 2008℄. The onverter was trained on a joined lexi-on based on SmartKom and Verbmobil lexions (12460 German words at all).Prior to applying the G2P software to the missing VAM lexion, we tested it



5.3. Emotion-reognition methods evaluation 115on the onstruted united lexion, where 1% of randomly seleted words weremoved into the test set. The phoneme error rate was 5.33% (56 from 1050),the word error rate was 29.13% (37 from 127). In later experiments (forealignment for vowel boundaries extration) the quality of the vowel bound-aries spei�ation annot be expeted to be absolutely reliable beause of theword error rate (WER) about 29.13% whih is intrinsially due to the tran-sription proess. We deided to use this inaurate method, beause furthertransription improvement required professional phonetiian expert to reliabletransription and additional development expenses. In addition, we use theSequitur G2P onverter only for one-third of words presented in required lex-ion, another two-third words transription have been adopted from availablelexions.As evaluation measures we employ the weighted (WA, i.e. auray) andunweighted (UA) average of lass-wise reall rates. For estimation of the
η values, whih is only one parameter of our lassi�er, we applied a leave-one-speaker-out (LOSO) strategy. We used two di�erent optimization rite-ria: maximum unweighted and maximum weighted average reall. For eahspeaker we estimated the optimal η values based on utteranes from otherspeakers presented in the orresponding database.In Figure 5.1 and Figure 5.2 one an see the UA and WA rates of our two
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ηweighted average reall unweighted average reallFigure 5.1: Reognition rates of the two-lass emotion lassi�er. Blak - EMO-DB, gray - VAM
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ηfalse aeptane false rejetionFigure 5.2: Reeiver operating harateristis urve, for high-arousal emotiondetetion task. Blak - EMO-DB, gray - VAMlass emotion lassi�er and reeiver operating harateristis (ROC) whihrepresent the false aeptane (FA) and false rejetions (FR) rates for thehigh-level arousal emotions detetion task as a funtion of η.In Table 5.9 one an see performanes of the two lass emotion lassi�er for
η = 1 and η values estimated within LOSO (with UA and WA as optimizationriteria).With LOSO strategy and UA optimization riteria we found the optimal ηvalue for eah speaker; these values are in range 1.01 ≤ η ≤ 1.23 (EMO-DB)and 1.37 ≤ η ≤ 1.63 (VAM). In the ase of WA optimization riteria optimal
η values are follows: 0.62 ≤ η ≤ 1.01 (EMO-DB) and η = 1.63 (VAM).By using gender-dependent models instead of speaker-dependent modelsEMO-DB VAMUA WA FA FR UA WA FA FRUA 81.3 80.6 13.1 24.2 60.2 61.8 18.7 60.8WA 79.4 79.3 19.5 21.7 61.4 63.0 16.4 60.8

η = 1 81.8 81.3 14.2 22.1 58.7 58.2 48.9 33.7Table 5.9: Reognition rates [%℄ of vowel-level emotion lassi�er with di�erentoptimization strategies (UA,WA, η = 1) evaluated on EMO-DB and VAMorpora



5.3. Emotion-reognition methods evaluation 117we an provide a statistially su�ient number of instanes for the alulationof µig(k) estimations. Due to more aurate mean values estimations we im-prove our results presented in [Vlasenko et al., 2011a℄, [Vlasenko et al., 2011b℄.The presented results an be ompared with the results presented in [Shulleret al., 2009℄. In this artile, we presented benhmark evaluation results fortwo-lass emotion-reognition task (positive/negative arousal) with a HM-M/GMM general model desribed in detail in setion 4.4.3.1. We reahed UArates of up to 91.5% for EMO-DB and 76.5% for VAM. In our urrent researh,instead of using 39 MFCC we used only one average F1 value. In ontrastto HMM/GMM we used a straightforward Neyman-Pearson riterion. In thease of a priory de�ned η our lassi�er does not require any a�etive speehsamples for training. Within pratial appliation of our simple method the
η value an be seleted based on task-oriented balane between FA and FRrates, see Figure 5.2.These results an be also ompared with the results presented earlier in ourpaper [Shuller et al., 2008℄. In this paper, we reahed an emotion-reognitionauray rate on EMO-DB database with phoneme-level analysis (see setion4.4.3.3) of up to 66.2%. Instead of using 41 phonemes for emotion reognition,we used only 7 indiative vowels. In the urrent approah we used only oneGaussian for eah phoneme model instead of 3 × 32 = 96 Gaussians usedin [Shuller et al., 2008℄. Also our results an be improved by using more thantwo neutral utteranes for the estimation of the mean values. Starting fromour simple lassi�er, we an develop a more omplex lassi�ation tehniqueand provide better results.We showed that the average F1 values extrated on a vowel-level arestrongly orrelated with the speaker's level of arousal. We estimated theoptimal riteria thresholds for ated and spontaneous emotions. It has beenshown that spontaneous emotions required higher η values. Most of the state-of-the-art emotion reognizers required su�ient amount of a�etive speehsamples within the training phase. In the ase of a priory de�ned η (for ex-ample η = 1) value within the training phase we require only one or twoneutral (or lose to "neutral" for VAM dataset) speaking style samples. As aresult our method an be easily implemented for speaker-independent emotionlassi�ation.5.3.2 Utterane-level emotion lassi�ation withdynami and stati analysisIn this setion we provide results of the benhmark omparison [Shuller et al.,2009℄ under equal onditions on nine standard emotional speeh orpora inthe �eld using the two pre-dominant paradigms: dynami analysis on a frame-



118 Chapter 5. Reognition experimentsCorpus All Arousal ValeneUA WA UA WA UA WAABC 48.8 57.7 71.5 74.7 81.1 81.2AVIC 65.5 66.0 74.5 77.5 74.5 77.5DES 45.3 45.3 82.0 84.2 55.6 58.0EMO-DB 73.2 77.1 91.5 91.5 78.0 80.4eNTERFACE 67.1 67.0 74.9 76.8 78.7 80.5SAL 34.0 32.7 61.2 61.6 57.2 57.0SmartKom 28.6 47.9 58.2 64.6 57.1 68.4SUSAS 55.0 47.9 56.0 68.0 67.3 67.8VAM 38.4 70.2 76.5 76.5 49.2 89.9Mean 50.7 56.9 71.8 75.0 66.5 73.4Table 5.10: Reognition rates [%℄ for benhmark evaluation of the dynami-analysis-based emotion-reognition enginelevel by means of hidden Markov models and stati analysis (supra-segmental)by systemati feature brute-foring. The orpora investigated were the ABC,AVIC, DES, EMO-DB, eNTERFACE, SAL, SmartKom, SUSAS, and VAMdatabases. To provide better omparability among sets, we additionally lus-ter eah of the database's emotions into binary valene and arousal disrimi-nation tasks, see setion 2.7.For all databases, test-runs are arried out in the leave-one-speaker-out(LOSO) or leave-one-speakers-group-out (LOSGO) manner to fae speakerindependene, as required by most appliations. In the ase of 10 or fewerspeakers in one dataset we applied the LOSO strategy; otherwise, namelyfor the AVIC, eNTERFACE, SmartKom, and VAM databases, we seleted 5speaker groups with almost equal amount of male and female speakers andsamples per group for LOSGO evaluation. For evaluation measures we em-ployed weighted (WA, i. e. auray) and unweighted (UA, thus better re�et-ing unbalane among lasses) average reall.The results for frame-level (Table 5.10) and supra-segmental modeling (Ta-ble 5.11) with openEAR toolkit desribed in setion 4.4.2.1 are found for allemotion lasses ontained per database and for the lustered two-lass tasksof binary arousal and valene disrimination as desribed in setion 2.7.Note that for supra-segmental modeling SVM with speaker standardiza-tion in onstant parameterization are used for the given results. The delta ofthe mean in Table 5.11 to the mean of the best-performing individual on�g-urations is 1.7% (UA) and 0.7% (WA) for lass-wise results, 0.2% (UA) and1.8% (WA) for arousal and 9.4% (UA) and 9.5% (WA) for valene (mostlydue to variations on SAL).Among the two result tables, very similar trends an be observed: the



5.3. Emotion-reognition methods evaluation 119Corpus All Arousal ValeneUA WA UA WA UA WAABC 55.5 61.4 61.1 70.2 70.0 70.0AVIC 56.5 68.6 66.4 76.2 66.4 76.2DES 59.9 60.1 87.0 87.4 70.6 72.6EMO-DB 84.6 85.6 96.8 96.8 87.0 88.1eNTERFACE 72.5 72.4 78.1 79.3 78.6 80.2SAL 29.9 30.6 55.0 55.0 50.0 49.9SmartKom 23.5 39.0 59.1 64.1 53.1 75.6SUSAS 61.4 56.5 63.7 77.3 67.7 68.3VAM 37.6 65.0 72.4 72.4 48.1 85.4Mean 53.5 59.9 71.1 75.4 64.5 68.3Table 5.11: Reognition rates [%℄ for benhmark evaluation of the stati-analysis-based emotion-reognition enginebest performane is ahieved on the datasets ontaining ated, prototypialemotions, where only emotions with high inter-labeler agreement were se-leted (EMO-DB, eNTERFACE datasets). A little exeption here is the DESdatabase, where performane is well behind EMO-DB database, even thoughthe DES dataset also ontains ated, prototypial emotions. This di�erene isnot so obvious for the arousal task as it is for the full lassi�ation task. Onereason for this might be that no seletion of high inter-labeler agreements weredone on the DES dataset and labelers may agree more upon arousal than onthe emotion ategories. The remaining six orpora are more hallenging sinethey ontain non-ated or indued emotions. On the lower end of reognitionperformane the SAL, SmartKom, and VAM orpora an be found, whih on-tain the most spontaneous and naturalisti emotions, whih in turn are alsothe most hallenging to label. However, the SmartKom database ontainslong pauses with a high noise level, and it inludes system output ross-talksegments and annotations that are multi-modal, i.e. mimi and audio based,thus the target emotion might not always be detetable from speeh. Theresults for the SAL orpus are only marginally above hane level, whih isdue to speaker-independent evaluation on highly naturalisti data with onlyfour speakers in total.When omparing the dynami analysis with stati analysis an interest-ing onlusion an be drawn: dynami analysis seems to be slightly superiorfor orpora ontaining variable ontent (AVIC, SAL, SmartKom, VAM), i.e.the subjets were not restrited to a prede�ned sript, while stati analysisoutperforms frame-level modeling on orpora where the topi/sript is �xed(ABC, DES, EMO-DB, eNTERFACE, SUSAS), i.e. where there is an overlapin verbal ontent between test and training set. This an be explained by the



120 Chapter 5. Reognition experimentsnature of supra-segmental modeling: in orpora with non-sripted ontent,turn lengths may strongly vary. While frame-level modeling is mostly inde-pendent of highly varying turn length, in supra-segmental modeling eah turngets mapped onto one feature vetor, whih might not always be appropriate.5.3.3 Combined analysisIn this setion we desribe evaluation results for two possible ombined speeh-based emotion-lassi�ation tehniques: two-stage proessing and middle-levelfusion.5.3.3.1 Two-stage proessingWithin this setion we present a number of results for the two-stage pro-essing method presented in setion 4.4.4. Evaluation test-runs are realizedin leave-one-speaker-out (LOSO) manner for speaker-independent tests. Forevaluation we used the EMO-DB database.WA [%℄ SN FS EMO-DBTurn - - 74.9Turn ✓ - 79.6Turn ✓ ✓ 83.2Table 5.12: Baseline results by turn-level analysis. Weighted average re-alls [%℄ for EMO-DB, turn-wise feature extration, onsidering speaker-normalization (SN), and feature seletion (FS) for optimization, speaker-independent (SI) LOSO evaluation with SVMIn Table 5.12 we present the baseline results for speaker-independent las-si�ation on the turn-level desribed in setion 4.4.2 employing standard turn-wise derived aousti features presented in Table 4.2 on page 83.[#℄ Turns Chunks Syllablesanger 127 269 1,843boredom 79 225 1,151disgust 38 173 516fear 55 160 794joy 64 179 927neutral 78 213 1,093sadness 53 143 823sum 494 1,362 7,147Table 5.13: Distribution among emotions, database EMO-DB. Considered areturns, automatially extrated hunks and syllables



5.3. Emotion-reognition methods evaluation 121[#℄ Chunks Syllables1 167 -2 86 -3 95 -4 65 -5-9 78 9410-14 3 13515-19 - 15620-29 - 109Table 5.14: Number of automatially extrated hunks and syllables per ut-terane. Database EMO-DBTable 5.13 presents a detailed number of automatially extrated hunksand syllables per emotion obtained by HMMs-/GMM-based one-pass Viterbibeam searh with token passing within the �rst stage of proessing. As onean see, automatially extrated hunks omparably longer than syllables.Note that an almost onstant fator of hunks per emotion resembling 3 isobtained [Shuller et al., 2007℄. Disgust, however, shows a slightly di�erentbehavior. Apart from the mean number of hunks and syllables per emotion,Table 5.14 depits their frequenies of appearane in more detail.Table 5.15 below presents the emotion-reognition results for hunks andsyllables, aimed at sub-turn entities. As for the base-line turn-level features,speaker normalization and feature spae optimization are applied for optimiza-tion. Finally, we present results for the mapping of hunks or syllables ontoturns by the diverse strategies: an un-weighted majority vote (MV), a max-imum length vote (MLV), a maximum lassi�er predition sore multipliedwith the length vote (MSL) introdued in setion 4.4.4. The seond stageof proessing, based on the hunk analysis, is realized by brute-fore largefeature spae onstrution with subsequent subset seletion, support vetorWA [%℄ SN FS EMO-DBChunk - - 42.6Chunk ✓ - 46.7Chunk ✓ ✓ 51.4Syllable - - 42.1Syllable ✓ - 44.6Syllable ✓ ✓ 47.6Table 5.15: Results by hunk-level analysis. Weighted average realls [%℄ forEMO-DB, hunk-wise feature extration, onsidering speaker-normalization(SN), and feature seletion (FS) for optimization, speaker-independent LOSOevaluation with seond-stage stati analysis



122 Chapter 5. Reognition experimentsStrategy Corret Corret*Chunk MV 45.3 64.2Chunk MLV 60.1 64.2Chunk MLS 70.6 70.6Syllable MV 42.8 60.1Syllable MLV 56.9 60.1Syllable MLS 67.8 67.8Table 5.16: Results by turn-level mapping. Weighted average realls[%℄ for EMO-DB, hunk-wise features with speaker-normalization and fea-ture seletion, onsidering Corret and Corret* ases, by addition of non-unique winning-lasses, speaker-independent LOSO evaluation with seond-stage stati analysismahines (SVM) lassi�ation, and speaker normalization.Thereby only the optimal ases with speaker normalization and featurespae optimization are onsidered, as hunk-level auray is ruial for theoverall suess. First, we desribe the speaker-independent evaluation resultspresented in Table 5.16. Thereby the three strategies: majority vote (MV),maximum length (MLV) and maximum length times predition sore (MLS)are onsidered.As an be seen form Table 5.16, we disriminate between orret assign-ment (olumn Corret) and ases, where the orret lass has been the winninglass among one or more other emotional lasses (olumn Corret). The mainoutomes of these results are that the proposed hunking seems superior toannotation-based syllable hunking. However, reognition results with turn-level aousti features annot be reahed. This holds even after mapping onthe turn-level by the investigated three di�erent strategies.The introdued two-stage proessing approah was superior to syllablesspeaker-independent analysis. This may be due to the fat that it produesroughly 5 times longer segments, though at the same time 5 times fewer in-stanes are obtained for robust training. Still, results for both of these sub-turn entities learly fall behind those for turn-level analysis. We seondlyinvestigated mapping of these ontext-independent hunks on the turn levelby multi-instane learning. Yet, as a result for the evaluated database noadvantage over diret turn-level aousti feature extration an be reported.However, no turn-level feature information was integrated, whih may leadto an advantage as reported in [Shuller and Rigoll, 2006℄, where hunk- andturn-level features were integrated in one super-vetor.



5.3. Emotion-reognition methods evaluation 1235.3.3.2 Middle-level fusionWith this ombined method we integrated frame-level information withina state-of-the-art large feature spae stati analysis for speaker's emotionreognition [Vlasenko et al., 2007a℄. In order to fuse this information withturn-based modeling, output sores are added to a super-vetor ombinedwith stati aousti features. Thereby a variety of low-level desriptors andfuntionals to over prosodi, speeh quality, and artiulatory aspets areonsidered. Starting from 1,406 aousti features presented in Table 4.2 weseleted optimal on�gurations inluding and exluding emotion-reognitionsores from HMM-/GMM-based lassi�er. The �nal deision task is realizedby use of SVM. Extensive test-runs are arried out on two popular publidatabases, namely EMO-DB and SUSAS, to investigate ated and sponta-neous data.Emotion-reognition results are presented for eah modeling tehnique in-dividually (turn-level (TL) and frame-level (FL)), and for the ombinationof these two. Thereby the e�ets of speaker normalization (SN) and featurespae optimization (FS) as desribed in setion 4.4.1 are shown, too. Forthe EMODB database, we provide results of a leave-one-speaker-out (LOSO)evaluation to fae the hallenge of speaker independene. For the SUSASdatabase we used 10-fold strati�ed ross-validation (SCV), as only 7 speakersare ontained in the hosen spontaneous emotional speeh subset. On theother hand, this is possible, as roughly 500 phrases are available per speaker.During feature seletion the original 1,406 features have been redued to76 for the EMODB dataset. For the SUSAS 71 features have been seletedon the whole dataset, and 33�107 features were observed as optimum for theindividual speakers. This underlines the brute-fore nature of the reation offeature spae with more than 1,000 aousti features in order to �nd a veryWA [%℄ SN FS EMO-DB SUSASTL - - 74.9 80.8TL ✓ - 79.6 80.8TL ✓ ✓ 83.2 80.8FL - - 77.1 67.1TL+FL ✓ - 81.6 81.3TL+FL ✓ ✓ 89.9 83.8Table 5.17: Combination of turn-level and frame-level analysis, databasesEMODB with LOSO evaluation and speaker-dependent 10-fold SCV forSUSAS. TL and FL abbreviate turn and frame levels. SN and FS representspeaker normalization and feature spae optimization. (✓) indiates that thetehnique has been applied



124 Chapter 5. Reognition experimentsompat robust �nal set. Table 5.17 shows the summarized results.As one an see from Table 5.17, speaker normalization and feature spaeoptimization both learly help to improve overall results. Thereby it hasto be noted that less than 10% of the original feature spae su�es to getan optimum performane. The highest auray is however obtained by thesuggested fusion of both approahes. This is partiularly true for the EMODBdataset. For the SUSAS dataset it is not too lear whether the extra e�ort isjusti�ed or not.5.3.4 Interspeeh 2009 Emotion ChallengeA CEICES initiative [Batliner et al., 2006℄ was the �rst ooperative emotion-reognition experiment, where seven sites ompared their lassi�ation resultsunder exatly the same onditions and fused their aousti features togetherfor a ombined emotion indiative aousti features seletion proess. Thishallenge was not publi, whih motivates the INTERSPEECH 2009 EmotionChallenge [Shuller et al., 2009℄ to be organized with strit omparability, us-ing the same emotional speeh database. Three sub-hallenges are addressedusing non-prototypial �ve or two emotion lasses (inluding a garbage model):Open Performane Sub-Challenge, Classi�er Sub-Challenge, and the FeatureSub-Challenge. We partiipated in the Open Performane Sub-Challenge,where we evaluated our developed aousti features and lassi�ation algo-rithm.Due to the unbalaned number of the emotional lass instanes inluded intraining and test sets, the primary emotion-reognition measure to optimizeis unweighted average (UA) reall, and seondly the weighted average (WA)reall (i.e. auray). For tuning our lassi�er we used a�etive speeh samplesfrom the training set and the LOSO strategy. Afterwards we used an optimalLevel of analysis Classes [#℄ UA WAUtterane 2 69.21 70.36Phonemes 2 68.09 73.26Combined 2 68.45 70.35Baseline 2 67.7 65.5Utterane 5 41.40 47.44Phonemes 5 35.21 52.78Combined 5 40.62 49.38Baseline 5 38.2 39.2Table 5.18: Reognition rates [%℄ on test set of FAU AIBO database withinINTERSPEECH 2009 Emotion Challenge. Baseline results are taken from[Shuller et al., 2009℄



5.3. Emotion-reognition methods evaluation 125[#/%℄ NEG IDLNEGative 1,635 830IDLe 1,617 4,175NEGative 66.3% 33.7%IDLe 27.9% 72.1%All [#℄ 2,465 5,792Table 5.19: Confusion matrix for the two-lasses emotion-reognition task andauraies for eah lass individually and omplete test setemotion lassi�er on�guration with orresponding aousti features set forhallenge trials on test set material. The best results obtained on the hallengetest set and baseline results provided by organizers are presented in Table 5.18.Baseline results were adopted from [Shuller et al., 2009℄, they represent thebaseline of emotion-reognition performane for stati modeling. Baselineresults for dynami modeling presented by organizers were omparably lower.The best results for two lasses (NEGative and IDLe) were ahieved withutterane-level analysis with the feature set whih inluded 12 MFCC oe�-ients normalized with gender-dependent voal trat length normalization, en-ergy and their deltas and aeleration. For the �ve lasses (Anger, Emphati,Neutral, Positive and Rest) emotion-reognition task the best results werereeived with 13 MFCC oe�ients normalized by gender-dependent voaltrat length normalization after CMS inluded zero oe�ient instead of en-ergy and their delta and aeleration. Confusion matries for the best resultsfor two-lass and �ve-lass task are presented in Tables 5.19 and 5.20.As one an see from Table 5.19 for NEG lass false aeptane error isquite high. This onfusion an be explained by low disriminative aoustidiversity of some NEG and IDL sublasses (i.e. emphati vs. motherese). Listof all sublasses overed by emotional ategories (NEGative and IDLe) anbe found in setion 2.6.2.1.In the ase of the �ve emotion lasses evaluation, lasses are unbalanedin the training set, see Table 2.4 on page 26. As a result, we have to be veryareful with over tuning of sparse emotional lasses like Positive, Rest. Asone an see from Table 5.20, there is quite high onfusion among the leadersof the emotion lassi�ation: Anger, Emphati and Neutral. At the sametime Positive and Rest have a high level of onfusion with all other emotionallasses. We suppose that the main reason of so a high level of onfusionamong all �ve emotional lasses lies in unreliable emotional annotation. Wethink that students, like any other adult who is not a natural relative to thehild, ould not provide reliable emotional annotation of the hild's emotionalspeeh even thought they are advaned students of linguistis.



126 Chapter 5. Reognition experiments[#/%℄ A E N P RAnger 315 189 67 9 31Emphati 202 944 276 10 76Neutral 592 1,551 2,485 217 532Positive 17 17 90 53 38Rest 95 108 176 47 120Anger 51.6% 30.9% 11.0% 1.5% 5.0%Emphati 13.4% 62.6% 18.3% 0.7% 5.0%Neutral 11.0% 28.8% 46.3% 4.0% 9.9%Positive 8.0% 8.0% 41.8% 24.6% 17.6%Rest 17.4% 19.8% 32.2% 8.6% 22.0%All [#℄ 611 1,508 5,377 215 546Table 5.20: Confusion matrix for the �ve-lasses emotion-reognition task andauraies for eah lass individually and omplete test setThe results of the hallenge were presented at a speial session of theonferene Interspeeh 2009. A ranking list of the best results an be foundin Table 5.21.As one an see from Table 5.21, we got seond plae for the two emotionlasses task and forth plae for the �ve emotion lasses task over 33 researhRank UA[%℄ WA[%℄ Authorstwo emotion lasses task1 70.29 68.68 [Dumouhel et al., 2009℄2 69.21 70.36 [Vlasenko and Wendemuth, 2009b℄3 68.33 65.84 [Kokmann et al., 2009℄4 67.90 63.03 [Bozkurt et al., 2009℄5 67.19 63.26 [Luengo et al., 2009℄6 67.55 72.67 [Polzehl et al., 2009℄7 67.06 62.29 [Barra-Chiote et al., 2009℄8 66.40 66.56 [Vogt and André, 2009℄�ve emotion lasses task1 41.65 44.17 [Kokmann et al., 2009℄2 41.59 44.17 [Bozkurt et al., 2009℄3 41.57 39.87 [Lee et al., 2009b℄4 41.40 47.44 [Vlasenko and Wendemuth, 2009b℄5 41.38 43.35 [Luengo et al., 2009℄6 39.40 52.08 [Dumouhel et al., 2009℄7 39.40 41.12 [Vogt and André, 2009℄8 38.24 36.68 [Barra-Chiote et al., 2009℄Table 5.21: Results and ranking list for two emotion lasses and �ve emotionlasses INTERSPEECH 2009 Emotion Challenge. Data for ranking list aretaken from [Shuller et al., 2011℄



5.3. Emotion-reognition methods evaluation 127groups registered to get aess to the data [Shuller et al., 2011℄. In total ourlassi�ation results (sum of unweighted average realls for two tasks) are thebest. With our emotion-lassi�ation tehnique we prove that only by usingspetral features (Mel-frequeny Cepstral oe�ients (MFCC)) with dynamianalysis we an reah one of the best emotion-reognition performanes forspontaneous emotional speeh samples [Vlasenko and Wendemuth, 2009b℄.5.3.5 Cross-orpus aousti emotion reognitionA great advantage of ross-orpora evaluations is the well de�nedness of testand training datasets and thus the easy reproduibility of the results. Sinemost emotion orpora, in ontrast to speeh orpora for automati speehreognition or speaker identi�ation, do not provide �xed training, devel-opment, and test sets, individual splitting and ross-validation are mostlyfound, whih makes it hard to reprodue the results under equal onditions.In ontrast to this, ross-orpus experiments are well de�ned and thus easyto reprodue and ompare.In Table 5.22 one an �nd a list of all 23 di�erent training and test setombinations whih have been used for evaluation in our ross-orpus ex-periments. A�etive speeh samples from the SUSAS and AVIC databasesare only used for training, sine they do not over the su�ient overlapping"basi" emotions for the testing. Furthermore, we omitted ombinations forwhih the number of emotion lasses ourring were lower than tree in boththe training and the test dataset (e.g. we did not evaluate training on AVICdatabase material and testing on DES database a�etive speeh samples, sineonly neutral and joyful our in both orpora � see also Table 2.3 on page24). In order to obtain ombinations for whih up to six emotion lasses ourin the training and test set, we inluded evaluations in whih more than onedataset was used for training (e.g. we ombined eNTERFACE and SUSASdatabases for training in order to be able to model six lasses when testingon the EMO-DB database). Depending on the maximum number of di�erentemotion lasses that an be modeled in a ertain experiment, and dependingon the number of lasses we atually use (two to six) for evaluation, we gota ertain number of possible emotion lass permutations aording to Table5.22. For example, if we aimed to model two emotion lasses when testingon the EMO-DB database and training on the DES dataset, we obtained sixpossible permutations. Evaluating all permutations for all of the 23 di�erenttraining-test ombinations leads to 409 di�erent evaluations (sum of the lastline in Table 5.22). Additionally, we evaluated the disrimination betweenpositive and negative arousal as well as the disrimination between high andlow valene for all 23 ombinations, leading to 46 additional evaluations.



128 Chapter 5. Reognition experimentsTest set Training set number of lasses2 3 4 5 6EMO-DB AVIC 3 1 0 0 0DES 6 4 1 0 0eNTERFACE 10 10 5 1 0SmartKom 3 1 0 0 0eNTERF.+SUSAS 15 20 15 6 1eNTERF.+SUSAS+DES 15 20 15 6 1DES EMO-DB 6 4 1 0 0eNTERFACE 6 4 1 0 0SmartKom 6 4 1 0 0EMO-DB+SUSAS 6 4 1 0 0EMO-DB+eNTERFACE 10 10 5 1 0eNTERFACE DES 6 4 1 0 0EMO-DB 10 10 5 1 0SmartKom 3 1 0 0 0EMO-DB+SUSAS 10 10 5 1 0EMO-DB+SUSAS+DES 15 20 15 6 1SmartKom DES 6 4 1 0 0EMO-DB 3 1 0 0 0eNTERF. 3 1 0 0 0EMO-DB+SUSAS 3 1 0 0 0EMO-DB+SUSAS+DES 6 4 1 0 0eNTERF.+SUSAS 6 4 1 0 0eNTERF.+SUSAS+DES 6 4 1 0 0Total 163 146 75 22 3Table 5.22: Number of emotion lass permutations dependent on the usedtraining and test set ombination and the total number of lasses used in therespetive experimentTo summarize the results of permutations over ross-training datasets andemotion lasses groupings, box-plots indiating the unweighted average reall(UA) are shown (see Figures 5.3(a) to 5.3(d)). All reognition rates are aver-aged over all onstellations of ross-orpus training to provide a raw generalimpression of performanes to be expeted. The plots show the median, thelower and upper quartile, and the extremes for a varying number (from twoto six) of emotion lasses and the binary valene and arousal tasks. In a aseof DES dataset (5 lasses evaluation) and eNTERFACE dataset (6 lassesevaluation) we have only one permutation, as a result in the orrespondingbox plot's olumns one an see only medians.First, the DES dataset is hosen for testing, as depited in Figure 5.3(a).For training, �ve di�erent ombinations of the remaining datasets are used(see Table 5.22). As expeted the weighted (i. e., auray � not shown) andunweighted reall monotonously drop on average with an inreased number of
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(a) DES, UA (b) EMO-DB, UA

() eNTERFACE, UA (d) SMARTKOM, UAFigure 5.3: Box-plots for unweighted average reall (UA) in % for ross-orpora testing on four test orpora. Results obtained for varying numberof lasses (2�6) and for lasses mapped to high/low arousal (A) and posi-tive/negative valene (V)lasses. For the DES experiene holds: arousal disrimination tasks are 'easier'on average. While the average results are onstantly found onsiderably abovehane level, it also beomes lear that only seleted groups are ready forreal-life appliation � of ourse allowing for some error tolerane. These aretwo-lass tasks with an approximate error of 20%. An interpretation of theresults in multi-lass reognition is given below.A very similar overall behavior is observed for the EMO-DB dataset inFigure 5.3(b). This seems no surprise, as the two databases have very similarharateristis. For the EMO-DB a more or less additive o�set in terms ofreall is obtained, whih is owed to the known lower 'di�ulty' of this dataset.



130 Chapter 5. Reognition experimentsSwithing from ated to mood-indued, we provide results on the eNTER-FACE dataset in Figure 5.3(). However, the piture remains the same, apartfrom lower overall results: again a known fat from experiene, as eNTER-FACE database is not a 'gentle' dataset, partially for being more natural thanthe DES orpus or the EMO-DB database.Finally, onsidering testing on spontaneous a�etive speeh with non-restrited varying spoken ontent and natural emotion, we note the hallengearising from the SmartKom dataset in Figure 5.3(d): as this set is � due to itsnature of being reorded in a user-study � highly unbalaned, the mean un-weighted reall is again mostly of interest. Here, rates are found only slightlyabove hane level. Even the optimal groups of emotions are not reognized ina su�iently satisfying manner for a real-life usage. Though one has to bearin mind that SmartKom was annotated multimodally, i. e., the emotion is notneessarily re�eted in the speeh signal, and overlaid environment noise isoften present due to the setting of the reording, this shows in general thatthe reah of our results is so far restrited to ated data or data in well-de�nedsenarios: the SmartKom results learly demonstrate that there is a long wayahead for emotion reognition in user studies (f. also [Shuller et al., 2009℄)and real-life senarios. At the same time, this raises the ever-present and inomparison to other speeh analysis tasks unique question on ground truthreliability: while the labels provided for ated data an be assumed to bedouble-veri�ed, as the ators usually wanted to portray the target emotionwhih is often additionally veri�ed in pereption studies, the level of emotion-ally valid material found in real-life data is mostly unlear due to the relianeon few labelers with often high disagreement among them [Shuller et al.,2010℄.5.4 SummaryThis hapter reviews results of experiments onerning our developed emotion-reognition and automati speeh-reognition methods. Afterwards, wepresent results of evaluations on non-adapted and adapted ASR models. Insetion 5.2, we showed that the ombined MLLR(RCT)+MAP adapted HM-M/GMM models was about 8.9% absolute better than that of the basi ASRmodels (auray 87.37%) trained on emotionally neutral speeh samples.In setion 5.3 we present evaluation results for various speeh emotion-lassi�ation tehniques. As a starting point for our experiments we hosephonemes, as these should provide the most �exible basis for unit-spei�models: if emotion reognition is feasible on phoneme basis, these units ouldmost easily be integrated into a user-behavior-adaptive spoken dialog sys-



5.4. Summary 131tem [Vlasenko et al., 2008a℄. However, the introdued unit-spei� (phoneme-,word-level) emotion models learly outperformed ontext-independent gen-eral models provided enough training material per unit. Appearane of high-standard word-level-labeled emotional speeh orpora an improve the urrentperformane of phoneme and word-level emotion models. A prototypial spo-ken dialog system with a user-behavior-adaptive spoken dialog system reatedwithin NIMITEK ollaboration, whih inludes phoneme-level emotion reog-nition, will be disussed in Chapter 6. With a vowel-level formants traingtehnique we showed that the average F1 values extrated on a vowel-level arestrongly orrelated with the level of arousal of the speaker's emotional state.We estimated the optimal riteria thresholds for ated and spontaneous emo-tions. It was shown that spontaneous emotions required higher η values inomparison with optimal η values for ated emotions. We showed that thelist of the most indiative German vowels [Vlasenko et al., 2011a℄, [Vlasenkoet al., 2011b℄ within the task of measuring the level of arousal of the speaker'semotional state an be used for spontaneous emotion lassi�ation.When omparing the dynami analysis with the stati analysis an inter-esting onlusion an be drawn: frame-level modeling seems to be slightlysuperior for orpora ontaining variable ontent (AVIC, SAL, SmartKom,VAM), i.e. the subjets were not restrited to a prede�ned sript, whilesupra-segmental modeling (turn-level analysis) slightly outperforms frame-level modeling on orpora where the topi is �xed (ABC, DES, EMO-DB,eNTERFACE, SUSAS), i.e. where there is an overlap in textual ontent be-tween training and test dataset [Shuller et al., 2009℄. This an be explainedby the nature of stati analysis: in orpora with non-�xed ontent, turnlengths may strongly vary. While dynami analysis is mostly independentof highly varying turn length, in supra-segmental modeling eah turn getsmapped onto one feature vetor, whih might not always be appropriate. Insetion 5.3.4, we present our results within the INTERSPEECH 2009 EmotionChallenge [Shuller et al., 2009℄. With our emotion-lassi�ation tehniquebased on dynami analysis we prove that only by using spetral features (Mel-frequeny Cepstral oe�ients (MFCC)) we an reah one of the best emotion-reognition performanes for spontaneous emotional speeh samples [Vlasenkoand Wendemuth, 2009b℄.Finally, in setion 5.3.5 we present evaluation results for ross-orpusaousti emotion reognition. To sum up, we have shown results for intra-and inter-orpus speeh-based emotion reognition. By that we have learntthat the reognition rates highly depend on the spei� sub-group of emotionsonsidered. In any ase, emotion-reognition performane dereases dramati-ally when operating ross-orpora-wise. As long as onditions remain similar,ross-orpus training and testing seems to work to a ertain degree: the DES,



132 Chapter 5. Reognition experimentsEMO-DB, and eNTERFACE datasets led to partly useful results [Shulleret al., 2010℄. These are all rather prototypial, mood-indued or ated withpre-de�ned spoken ontent. The fat that three di�erent languages � Danish,English, and German � are ontained, seems not to generally disallow inter-orpus testing: these are all Germani languages, and a highly similar ulturalbakground may be assumed. However, the ross-orpus testing on a sponta-neous dataset (SmartKom) learly showed limitations of the urrent systems.Here only a few groups of emotions stood out in omparison to hane level.To better ope with the emotional orpora's di�erenes, we evaluated di�er-ent normalization approahes, whereas speaker normalization led to the bestresults. For all experiments we had used stati analysis based on a broadvariety of prosodi, voie quality, and artiulatory features (see Table 4.3 onpage 85) and SVM lassi�ation.
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6.1 IntrodutionThis hapter is not dealing with the full spei�ation of tehniques fordeveloping a spoken dialog system (SDS). For this topi, the reader isreferred to the exellent survey material [Gnjatovi¢, 2009,Gnjatovi¢ and Rös-ner, 2008a,Gnjatovi¢ and Rösner, 2008℄. The fous is on the inorporation ofthe �ndings desribed earlier in this thesis into a prototype dialog system espe-ially developed by the author and olleagues to demonstrate the adaptationof the system to the user's emotional state. In this hapter we present a proto-type of the user-friendly spoken dialog system integrated into the NIMITEKdemonstrator. The NIMITEK (Neurobiologially inspired, multimodal inten-tion reognition for tehnial ommuniation systems) demonstrator is a spo-ken dialog system prototype whih provides an "intelligent" support for userswhile they solve tasks in a graphis system interfae (e.g., Towers-of-Hanoipuzzle). The "intelligent" feature of the system is a user-behavior-adaptive



134 Chapter 6. User-behavior-adaptive dialog managementdialog management. The system dynamially selets a dialog strategy a-ording to the urrent user's emotional state. In this hapter we desribe thedata olletion strategy within the NIMITEK Wizard of Oz experiment, andthe struture of the onventional and user's behavior adaptive dialog systems.Finally we disuss the results of an interative usability test.6.2 Framework: NIMITEK demonstratorThis hapter presents a part of the work in the framework of the NIMITEKprojet [Wendemuth et al., 2008℄ in the period from 2005 to 2010 that inludesan interdisiplinary researh on human-mahine interation. Various ogni-tive aspets of user-friendly interfaes were investigated within the urrentprojet. Also, this interdisiplinary researh ombines the �elds of eletrialengineering, omputer siene and neuro-biology to arry out the study intoproessing of an audio-visual user's interation interfaes, the development ofa task-oriented knowledge representation and modeling di�erent dialog situa-tions.The NIMITEK projet has various researh goals: multimodal emotionreognition from the user's speeh (i.e., prosodi ues and spetral featuresanalysis), mimi and text-based analysis; developing robust a�etive-speeh-

Figure 6.1: Prototype of a multimodal spoken dialog system, NIMITEKDemonstrator



6.3. Interfae, hosen tasks and WOZ experiments 135reognition models; analysis of the task-oriented interation experiments;modeling of the adaptive dialog management; developing neuro-biologial per-eption, ognitive and behavior models. The NIMITEK spoken dialog sys-tem prototype presented in Figure 6.1 was developed to demonstrate researhahievements in emotion reognition and user's emotion adaptive dialog man-agement.6.3 Interfae, hosen tasks and WOZ experi-mentsIn this setion we speify the main issues in developing the NIMITEK spokendialog system prototype: �exibility and adaptivity, interfae design and taskseletion for evoking user's emotions.6.3.1 Flexibility and adaptivityThe importane of the user-behavior-driven dialog strategies in human-mahine interation (HMI) lies in the existing limitations of automatispeeh-reognition tehnologies. Current state-of-the-art automati speeh-reognition (ASR) methods still annot deal with �exible, unrestrited user'slanguage and emotionally olored speeh [Lee, 2007℄. Therefore, problemsaused by misunderstandings of a user during interation with SDS with a pre-de�ned, and usually restrited set of interation rules seems to be inevitable.In our spoken dialog system we want to provide a �exible interation speeh-based interfae. In suh a way the user will be able to �nd out suitableommands by himself.In the domain of human-mahine interation [Gnjatovi¢ and Rösner,2008a℄, we witness the rapid inrease of researh interest in a�etive userbehavior. However, some aspets of the a�etive user behavior during HMIstill turns out to be a hallenge for SDS developers. Deteting and utilizingnon-lexial or paralinguisti ues as part of the user-behavior state desriptorsis one of the major hallenges in the development of reliable human-mahineinterfaes. Knowing the urrent user's emotional state an help to adjust sys-tem responses so that the user of suh a system an be more engaged and havea more e�etive interation with the system [Shuller et al., 2007b℄, [Bussoet al., 2007℄. To make our system user-entered we implemented an intentionreognition module, whih is dealing with motivational intention. Psyhol-ogist also distinguish a funtional intention [Ansombe, 2000℄. But for ourpratial implementation we deided to onentrate on motivational aspetsof intention. Examples will be given in setion 6.5 below.



136 Chapter 6. User-behavior-adaptive dialog managementIn this setion we present the implementation of adaptive dialog manage-ment in the NIMITEK prototype spoken dialog system for supporting userswhile they solve the Towers-of-Hanoi puzzle whih is displayed in Figure 6.1.Within the human-mahine interation users are able to follow the ASRreognition results. When the garbage model was not able to enapsulateout-of-voabulary words, the users were able to see misreognized system per-eptible ommands. We expet that users will try to adapt their ommandsvoabulary to ontribute to the right system reation.6.3.2 Interfae design and task seletion for evokinguser's emotionsIt is quite di�ult to motivate naïve users to experiene, express and utilizeemotions while using any graphial appliation. We deided to use a graphialsystem with a verbal interation interfae to simulate an intelligene test. Insuh a way, we expeted to ahieve a strong user's motivation and emotionalinvolvement. For modeling user behavior during human-mahine interationwe deided to develop a spoken dialog system for simple logial games (i.e.Towers-of-Hanoi, Tangram) with system users support while they use a graph-ial tool. This graphial tool has been developed using an existing softwarepakage1 that implements visual re�etion, alteration and movement of dif-ferent graphial objets.In the NIMITEK demonstration system, users are allowed only to use averbal interation interfae (i.e., mouse or keyboard interation interfaes arenot supported by system).Two di�erent prototypial graphial tasks were implemented in theNIMITEK demonstrator prototype: Towers-of-Hanoi and Tangram. TheTowers-of-Hanoi puzzle (3-disks version) was introdued by Édouard Luasin 1883. The puzzle onsists of three pegs and three disks (small, middle andlarge). At the beginning of the game, the disks are staked in order of sizeon the left peg, as one an see in Figure 6.2 [Gnjatovi¢ and Rösner, 2008℄.The aim of the game is to move the omplete stak to the right peg shiftingdisks aording to the following rules: only one disk an be shifted at a time,all three pegs an be used, and no disk an be loated on the top of a smallerdisk.Another prototypial graphial task is the Tangram puzzle. It is a famousChinese puzzle. Its origins are lost in time. It was introdued to the westernworld by a Captain M. Donaldson in 1815. The goal of this graphial task is1This graphial engine was developed at the Fraunhofer Institute for Fatory Operationand Automation IFF, Magdeburg, Germany.
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Figure 6.2: Towers-of-Hanoi Puzzle: Sreen shot of the NIMITEK demon-strator

Figure 6.3: Tangram: Sreen shot of the NIMITEK demonstratorto seamlessly form a spei� onstrution by using seven Tangram two dimen-sional objets (e.g., triangles, quadrant, rhombus). Two kinds of ation overorresponding objets were possible: reloation and rotation. In Figure 6.3one an see a sreen shot of the desktop representing the NIMITEK demon-strator with an ative Tangram puzzle. These two game appliations wereused for the experiments desribed below.



138 Chapter 6. User-behavior-adaptive dialog management6.3.3 NIMITEK Wizard of Oz experimentsA�etive speeh orpora provide an important empirial foundation for inves-tigation when researhers aim at implementing emotion-aware spoken dialogsystems [Gnjatovi¢ and Rösner, 2010℄. In this setion we desribe the appliedWizard of Oz (WOZ) tehnique in order that a senario designed to extratemotional speeh within human-mahine interation ould result in useful andnatural data. This data an be used for the development of a user-friendlydialog strategy. Corresponding Wizard of Oz experiments were ondutedin the framework of the NIMITEK projet. The shema of the laboratorysettings used for the NIMITEK dataset olletion is presented in Figure 6.4.

Figure 6.4: Shema of the NIMITEK WOZ laboratory settingsAs usual for WOZ studies [Fraser and Gilbert, 1991℄, subjets believe theyare interating with a real spoken dialog system driven by the omputer, whilethe assumed instrutions and system's support is atually provided by a hu-man "wizard". We used two di�erent rooms for our experiment to hide the"wizard". A simulated spoken dialog system was installed on the subjet'somputer. The "wizard" pretends to have automati speeh reognition, re-motely ontrols the interation interfae of the system, and delaims speehoutput of the dialog system. The video sreen shots from the subjet's om-puter desktop and the video reordings of subjet (faial expressions, gesturesand body movements) are displayed on two di�erent monitors in the wizard'sroom.Ten native German subjets (7 female, 3 male) aged 18 to 27 (mean 21.7)partiipated in the WOZ experiments. None of them had user experiene orengineering knowledge related to state-of-the-art spoken dialog systems. TheNIMITEK orpus ontains 15 hours of speeh and video reordings olletedduring the Wizard-of-Oz experiments speially designed to provoke user'semotional reations. More tehnial details about a�etive data olletionstrategy an be found in [Gnjatovi¢ and Rösner, 2008,Gnjatovi¢, 2009,Gnja-



6.4. Arhiteture I: Conventional spoken dialog system 139tovi¢ and Rösner, 2010℄. The used NIMITEK dataset ontains approximately3 hours reordings whih are related to the Towers-of-Hanoi game.Gnjatovi¢ et al. [Gnjatovi¢, 2009℄ analyzed all 6798 ommands presentedin the NIMITEK dataset. They found that users do not follow a prede�nedgrammar during interation with the system. Still, by using the grammar-based language model presented in listing 3.1 on page 60 we developed thesystem whih an reognize and proess users' ommands of di�erent synta-ti forms: elliptial ommands, verbose ommands (i.e., the ommands thatwere only partially reognized by the speeh-reognition module), and ontext-dependent ommands.6.4 Arhiteture I: Conventional spoken dialogsystemIn this setion we present the possible arhiteture of a spoken dialog system,later referred to as the onventional spoken dialog system (CSDS). In Figure6.5 one an see the interation of the submodules of the CSDS.The interation within CSDS submodules an be presented as follows. Thepossible textual meaning of the user's utteranes is delivered to the naturallanguage understanding module. This module detets the ommand and for-Speeh InputSpeehReognitionTaskManager Natural LanguageUnderstanding AttentionalStatestate ofthe task user'sommand fous ofattentionDialogStrategy History ofInterationSystem outputFigure 6.5: Shema of the onventional spoken dialog system (CSDS)



140 Chapter 6. User-behavior-adaptive dialog managementwards it:� to the attentional state module for updating the fous of attention,� to the history of the interation module to save the urrent values ofother interation features and proess the ontext-dependent user's om-mands,� to the task manager module (inluding the graphial platform) for exe-uting the deteted ommand, update of the state of the task, and appro-priate graphial display,A new entry is added to the history of the interation, ontaining: updatedstate of the task, the deteted ommand, and the urrent fous of attention.For real-time automati speeh reognition (ASR) within the onventionalspoken dialog system, we used the ATK and HTK [Young et al., 2009℄.Monophones ASR models are designed by training three emitting state hid-den Markov models (HMM) with 16 Gaussian mixture omponents for eahphoneme model. We use a short version of German SAMPA whih inludesthe 39 phonemes presented in setion 3.3.2. ASR models have been trainedon the emotionally neutral speeh samples from the Kiel dataset.6.5 Arhiteture II: User-behavior-adaptivespoken dialog systemDuring the WOZ experiments we have seen that users employ several outputmodalities (mimis, speeh, prosody) to ommuniate with a omputer. Inthe NIMITEK demonstrator prototype [Wendemuth et al., 2008℄, we inludereognition of the user's emotional state. The emotion lassi�er integratedin the NIMITEK demonstrator prototype uses three modalities: emotionalprosody within spoken ommuniation, literal meaning of user's utteranesand user mimis. For the urrent usability test we evaluate the NIMITEKdemonstrator prototype with speeh-based emotion lassi�ation [Vlasenkoet al., 2010℄. We provide two di�erent dialog strategies for two onerneduser's emotional states (neutral and negative).In Figure 6.6 one an see a spoken dialog system whih is adaptive tothe user's behavior, later referred to as user-behavior-adaptive spoken dialogsystem (UASDS). Figure 6.7 presents an interation of submodules of theUASDS.Phoneti transriptions and the hypothesis word sequene generated bythe speeh-reognition module is transferred to the natural language under-standing (NLU) and emotion-reognition module. Later, based on phonetitransriptions and the speeh signal, the emotion lassi�er reognizes the ur-



6.5. Arhiteture II: User-behavior-adaptive spoken dialog system141Speeh InputSpeehReognitionTaskManager Natural LanguageUnderstanding AttentionalState EmotionClassi�erstate ofthe task user'sommand fous ofattention emotional stateof the userMotivationalIntentionReognition DialogManagement History ofInterationSystem outputFigure 6.6: Shema of the user-behavior-adaptive spoken dialog system(UASDS)rent speaker's emotional state. The NLU module interprets the ommand andforwards it:� to the attentional state module for updating the fous of attention,� to the history of the interation module to save the urrent values ofother interation features and proess the ontext-dependent user's om-mands,� to the motivational intention reognition module for de�ning the user'smotivational intention based on his last ommand and urrent state ofthe task,� from motivational intention reognition to the task manager module (in-luding the graphial platform) for exeuting the deteted ommand, up-date of the state of the task, and appropriate graphial display,Then, a new entry is added to the history of the interation, ontaining: theupdated state of the task, deteted ommand, urrent fous of attention, andthe deteted user's emotional state. For delimitation of type of frustration(ommuniation inomprehension or task related) we take into aount theurrent state of the fous and history of interation. When the user's gamemanipulations are far away from solving the Towers-of-Hanoi task the systemindiates a task related frustration. Then, the system provides user supportaording to the urrent state of the task, and the emotional and motivational



142 Chapter 6. User-behavior-adaptive dialog managementTaskManager AttentionalStatestate ofthe task ontent ofsupport fous ofattentionemotional state,motivational intention DialogStrategy History ofinterationSystem supportFigure 6.7: System support proessing within UASDSintentional state of the user. The proessing of a user's ommand in theNIMITEK prototype UASDS is presented in Figure 6.7.The adaptive dialog management designed to support the user addressesthe negative user state on two traks: (i) to help a frustrated user to overomeproblems that our within the interation, and (ii) to motivate a disouragedor apatheti user. The reognized user's motivational intention determinesthe diretion of system support: for a ooperative user, the next logial stepis explained; for an explorative user, omprehensive overage of possible stepsis given; for a destrutive user, the limitations of the next steps are explained.Generally, the support information may ontain a proposed move, an audiosystem support and various animations. In the ase when system supportontains only the audio system message or the animation, this informationis delivered to the task manager module for appropriate display. If supportontains also a proposed move, this information is sent:� to the task manager module for a performane of the proposed ommandand an update of the state of the task,� to the attentional state module for an update of the fous of attention.More tehnial details of the dialog management model an be found in [Gn-jatovi¢ and Rösner, 2008a,Gnjatovi¢, 2009,Gnjatovi¢ and Rösner, 2008℄ andother publiations of Gnjatovi¢.Like in CSDS, for real-time automati speeh reognition (ASR) withinthe user adaptive spoken dialog systems, we used the ATK and HTK [Younget al., 2009℄. Monophones ASR models are designed by training three emittingstate hidden Markov models (HMM) with 16 Gaussian mixture omponentsfor eah phoneme model. We use a short version of German SAMPA whihinludes the 39 phonemes presented in setion 3.3.2. The HMM/GMM models



6.6. Experiment 143have been trained on the Kiel database material and, in addition to CSDS,adapted with MLLR(RCT) on a�etive speeh samples from the EMO-DBdatabase. The emotion lassi�er integrated into UASDS based on emotionalphoneme lasses method, the full list of 36 phonemes (all phonemes whihpresented in EMO-DB dataset) is modeled for neutral and negative speaker'sstates.
6.6 ExperimentFor our experiments we established two di�erent SDS systems: onventional(CSDS) and user-behavior-adaptive (UASDS) with emotion adaptive dialogstrategy and a�etive-speeh-adapted ASR models. Other systems' tehnialharateristis are idential: voabulary, language model, and a garbage modelfor OOV words.For the usability test we hired 8 students (4 female and 4 male). Half ofthe test persons played the Towers-of-Hanoi game with UASDS inluding abehavior-based dialog management strategy and the remaining testers usedthe CSDS system with standard support, i.e. repeating the rules of the gameor asking for the ommand to be repeated. The UASDS varies the answersdepending on the behavior of the user like asking for a spei� peg or disk,repeating the rules, or giving general hints.All together, we olleted audio material whih in total lasts 16:21 minutesfor the UASDS system and 27:40 minutes for the CSDS system. These reord-ings also inlude the time the system support reommendations or provideshelp to the user and the silenes aused by the user. This data is not relatedto the NIMITEK orpus disussed earlier and desribed in detail in [Gnjatovi¢and Rösner, 2008℄.The main point of interest are interation time and required number of thedialog turns to solve the task. Also interesting values whih were olletedare measures related to user adaptation (number of the dialog turns requiredfor adaptation and their total duration) to the systems "ommand list" as aresponse of ASR's textual output. When the user starts using ommands fromthe system voabulary at the beginning of the HMI, we set duration of theadaptation time to 00:00. As a start point we did not provide any informationto subjets about ASR ative voabulary and grammar struture, other thanthe rules of the game. In the ase of support requirements, users are able toask the SDS system for "help".



144 Chapter 6. User-behavior-adaptive dialog management6.7 ResultsThe experimental results of the spoken dialog systems evaluation are presentedin Table 6.1. Comparing the numbers of dialog turns whih are neessaryto solve the puzzle, the UASDS performs better [Vlasenko et al., 2010℄. Onaverage, using the CSDS the user needs a. 18 dialog turns more (47.4% more)to �nish the game.Trial UASDS CSDSComplete task Adaptation Complete task AdaptationTurns Time Turns Time Turns Time Turns Time1. 34 05:43 1 00:00 44 05:40 1 00:002. 31 03:37 10 01:36 61 06:05 30 03:433. 34 02:44 10 01:04 81 11:48 10 01:514. 55 04:17 1 00:00 41 04:07 7 00:52Mean 38.5 04:05 5.5 00:40 56.75 06:55 12 01:37Table 6.1: Number of turns [#℄, interation time [mm:ss℄ for the ompletetask, and number of turns [#℄ with time intervals [mm:ss℄ required for uservoabulary adaptation for CSDS and UASDSConsidering the overall time whih inludes pauses and the system support,the UASDS shows the better average results (04:05 vs. 06:55 minutes (40.9%less) absolute talk time). In the ase of CSDS, independently of the user'sbehavior a standard output is given. This provides evidene that behaviordependent dialog strategies may provide better user support. Also, withininteration with the UASDS, users are more onsiderate to the ASR output.As a result they are adapting their ommands voabulary faster (00:40 vs.1:37 minutes (58.7% less)).Finally, we analyzed the dialog turns struture and ommands voabulary.The adaptation values given in Table 6.1 were ounted until the �rst word,whih is in the system's voabulary, ourred. A total adaptation of theuser ould not be observed, but we would not expet this. In most ases,system spei� and additional words are ombined, e.g., "the smallest diskup" where "up" is not part of the (hidden) ommand set. Moreover, almostall users varied in words, but the longer the experiment lasted, the voabularyused beame more stable. Due to the behavior-based dialog management theuser ould get the right ommands faster, beause the strategy is direted toprovide adequate information at any time.In both versions, the user swithes between two ommand forms: ompletestatements (e.g., "the smallest disk from one to the right peg") and ontext-dependent ommands (e.g., "smallest disk" - pause - "to three"). In thereording we found a signi�ant relation between the system version, dialog



6.8. Conlusions and transition to Companion tehnology 145management type, and the ommand form. In the UASDS almost all usersuttered omplete statements whereas in the CSDS the most ommon form isontext-dependent separate ommands. Moreover, due to the neutral behaviorof the system the testers were not stimulated to hange their strategy, beausethey mentioned that they thought they were interating with an arti�ialsystem. In the other ase, the users said that they think the system interatsmore intuitively.6.8 Conlusions and transition to CompaniontehnologyWithin the usability experiment we found out that during human-mahineommuniation frustration situations, the UASDS provides omprehensivehelp and exhaustive reommendations in ontext of the urrent state of thetask. The user-behavior-adaptive spoken dialog system built upon aous-ti emotion reognition in ombination with a�etive-speeh-adapted ASRmodels dereases interation time by 40.9%. During usability tests we foundout that the a�etive-speeh-adapted ASR models provide better spontaneousspeeh-reognition performane in real appliations. At the same time user-behavior-based dialog management stimulates the user for a more ooperativeinteration with the omputer. As a result the user's ommands voabularyadaptation time is dereased by 58.7%. Methods developed and investigatedin the NIMITEK projet will lay the foundations for a tehnology whih helpsto provide a lose to natural way of human-mahine interation.In Figure 6.8 one an see the main researh goals within the ongoing re-searh projet, the Transregional Collaborative Researh Centre SFB/TRR62 "A Companion-Tehnology for Cognitive Tehnial Systems", started at01.01.2009 (http://www.informatik.uni-ulm.de/ki/sfb-trr-62/).The SFB/TRR 62 is an interdisiplinary (Computer Siene, Eletrialand Information Engineering, Psyhology, and Neurosienes) researh ativ-ity to investigate and optimize the interation between human users and teh-nial systems. It is partiularly speialized on the onsideration of so-alledCompanion-features - properties like adaptivity, aessibility, individuality, o-operativity, trustworthiness, and the ability to reat to the user's emotionalstate appropriately and individually. The researh program omprises of thefundamental and experimental investigation as well as the pratial implemen-tation of advaned ognitive proesses in order to ahieve Companion - likebehavior of tehnial systems with an integrated human-entered multimodal(speeh, mimis, gestures, biologial signals) interation interfae. Withinthis interdisiplinary researh ativity we will integrate our methods (user-
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Figure 6.8: Main researh ativities in the Transregional Collaborative Re-searh Centre SFB/TRR 62 Companion-Tehnology for Cognitive TehnialSystemsbehavior-adaptive dialog management, multimodal user's emotion proessing)initiated within the NIMITEK projet into a new Companion tehnology sys-tem. With that, it will lay the foundations for a tehnology whih opens aompletely new dimension of human-mahine interation.



Chapter 7Conlusion and future work
Emotional speeh analysis is a powerful instrument applied for developmentof a user-entered spoken dialog system. The fundamentals of the user-entered human-mahine interation, harateristis of the natural humanspeeh, namely boundary and emotional prosody and emotion theory havebeen reviewed in Chapter 2. The main ontributions of this work have beendesribed in Chapter 3 and Chapter 4. The �rst ontribution, desribedin Chapter 3, is to use an adaptation tehnique to inrease the a�etive-speeh-reognition rate. A onept of the adaptation on emotional speehsamples of the ASR models trained on the emotionally neutral speeh withMLLR(RCT)+MAP methods is proposed. This ontribution will be summa-rized in setion 7.1. The seond ontribution, desribed in Chapter 4, providesa detailed desription of our various emotion-lassi�ation tehniques. Thesummarized desription of our developed emotion-lassi�ation tehniques ispresented in setion 7.2. Phoneme-level user's emotion reognition has beenintegrated into a prototype dialog system espeially developed by the authorand olleagues to demonstrate adaptation of the system to the user's emo-tional state. Pratial appliation of the previously desribed ontributionis summarized in setion 7.3. Finally, possible future researh diretions aredisussed in setion 7.4.7.1 ASR model adaptation on a�etive speehdataSine we want to develop a spoken dialog system whih will be able to pro-ess �exible, unrestrited user's language, spontaneous and emotionally ol-ored speeh, the aousti model that is trained on emotionally neutral speehdata is tailored to the voal variability of the a�etive speeh. In Chapter3, we investigate the poteny of adapting emotional speeh aousti modelsfor German language. By the omparison of the vowel triangles for a�etiveand neutral speeh, we showed the vowel's pronuniation pattern similarityof non emotional read speeh and a�etive speeh samples. Within evalua-tions presented in Chapter 5, we proved that due to the pronuniation patternsimilarity of a�etive and neutral speeh, emotion-spei� harateristis an



148 Chapter 7. Conlusion and future workbe aptured from existing emotional speeh orpora within adaptive transfor-mation of model parameters of the initial neutral speeh model to obtain anemotional speeh aousti model. The appliation of the maximum a posteri-ori (MAP) adaptation for the maximum likelihood linear regression (MLLR)transformed models gives a tremendous boost in emotional speeh-reognitionperformane. The auray of a�etive speeh reognition with the ombinedMLLR(RCT)+MAP adapted HMM/GMM models was about 8.9% absolutebetter than that of the ASR models trained on emotionally neutral speehsamples (baseline auray 87.37%). This resulted in remarkable performanegain.By using emotional speeh adapted ASR methods we an provide betterspontaneous-speeh-reognition performane. This assumption has been on-�rmed by the usability experiment. Detailed results of this experiment anbe found in setion 6.7.7.2 Reognition of the user's emotional stateTo be able to design a user-entered spoken dialog system, we set up in Chap-ter 4 a speeh-based emotion-reognition framework that should be robustenough to detet emotional events within human-mahine interation. A va-riety of emotion desriptors is disussed �rst. Two di�erent types of emotionalspeeh analyses are applied for speeh-based emotion reognition: frame-level(dynami analysis) and turn-level (stati analysis) are presented. First of allwe desribed the set of aousti features whih an be applied for di�erentemotion-lassi�ation tehniques. Two di�erent optimization tehniques ap-plied on feature extration level, namely normalization and standardizationand feature set optimization have been presented afterwards. Then we in-trodued utterane-, hunk-, phoneme-level dynami analysis models for thereognition of emotions within speeh. Within experimental evaluations of theutterane-level dynami analysis we determined the single-state HMM/GMMas an optimal arhiteture. In this framework we try to answer the questionif phoneti ontent variane in�uenes emotion-reognition performane neg-atively, and if models trained spei�ally on the phoneti unit at hand anhelp. During evaluation experiments we found out that the introdued unit-spei� emotion-reognition models learly outperformed ommon ontext-independent general models provided su�ient amount of training materialper unit. Appearane of word-level labeled emotional orpora an improveurrent performane of phoneme and word-level emotion-reognition models.In setion 5.3.2 we provide results of the benhmark omparison underequal onditions on nine standard emotional speeh orpora presented in Ta-



7.2. Reognition of the user's emotional state 149ble 2.3 in the �eld using the two pre-dominant paradigms: dynami analysison a frame-level by means of hidden Markov models and stati analysis (supra-segmental) by systemati feature brute-foring. To provide better ompara-bility among sets, we additionally luster eah of the database's emotions intobinary valene and arousal disrimination tasks (positive, negative), see setion2.7. When omparing the dynami analysis with stati analysis an interestingonlusion an be drawn: dynami analysis seems to be slightly superior forspontaneous speeh orpora ontaining variable textual ontent (AVIC, SAL,SmartKom, VAM), i.e. the subjets were not restrited to a prede�ned sript,while stati analysis outperforms frame-level modeling on orpora where thetextual ontent is �xed (ABC, DES, EMO-DB, eNTERFACE, SUSAS), i.e.where there is an overlap in verbal ontent between test and training set. Thisan be explained by the nature of supra-segmental modeling: in orpora withnon-sripted ontent, turn lengths may strongly vary. While frame-level mod-eling is mostly independent of highly varying turn length, in supra-segmentalmodeling eah turn gets mapped onto one feature vetor, whih might notalways be appropriate.To show the robustness of our emotion-lassi�ation tehniques, we pre-sented in setion 5.3.4 results of the INTERSPEECH 2009 Emotion Chal-lenge [Shuller et al., 2009℄. With our emotion-lassi�ation tehnique basedon dynami analysis we proved that only by using spetral features (Mel-frequeny Cepstral oe�ients (MFCC)) and utterane-level analysis we anreah one of the best emotion-reognition performanes for spontaneous emo-tional speeh. We got seond plae for the two emotion lasses task and forthplae for the �ve emotion lasses task over 33 researh groups registered toget aess to the data.Finally, in setion 5.3.5 we present evaluation results for ross-orpus eval-uation for intra- and inter-orpus speeh-based emotion reognition. Weshowed that the reognition rates highly depend on the spei� sub-groupof emotions onsidered. Emotion-reognition performane dereases dra-matially when operating ross-orpora-wise. As long as onditions remainsimilar, ross-orpus training and testing seems to work to a ertain de-gree: the DES, EMO-DB, and eNTERFACE datasets led to partly usefulresults. However, the ross-orpus testing on a spontaneous emotions dataset(SmartKom) learly showed limitations of the urrent ontext-independentemotion-reognition systems. As a result, in setion 4.4.3.3 we proposed touse a new ontext-dependent emotion-lassi�ation tehnique whih is basedon vowel-level formants traking. By evaluating this tehnique we showedthat the average F1 values extrated on a vowel-level are strongly orrelatedwith the level of arousal of the speaker's emotional state. We de�ned the listof the most indiative German vowels within the task of measuring the level



150 Chapter 7. Conlusion and future workof arousal of the speaker's emotional state. Also, we estimated the optimalNeyman-Pearson's riteria thresholds for ated and spontaneous emotions. Ithas been shown that spontaneous emotions required higher η values in om-parison with optimal η values for ated emotions. We showed that the list ofthe most indiative German vowels within the task of measuring the level ofarousal of the speaker's emotional state an be used for spontaneous emotionlassi�ation.To summarize the overall results, the best emotion-reognition perfor-mane is ahieved on the databases ontaining ated, prototypial emotions,where only emotions with high inter-labeler agreement were seleted (EMO-DB, eNTERFACE, DES). The remaining emotional orpora are more hal-lenging sine they ontain non-ated or indued emotions. On the lower endof reognition performane the SAL, SmartKom, and VAM orpora an befound, whih ontain the most spontaneous and naturalisti emotions, whihin turn are also the most hallenging to label. In this thesis we presented a va-riety of task-oriented suitable emotion-reognition methods. For example theontext-independent utterane-level emotion-reognitionmethod an be easilyimplemented for HMI systems whih do not require textual interpretation ofthe user's speeh. In ontrast to the "brute-fore" emotion-lassi�ation teh-niques we develop methodologially simple methods, whih are universallyusable for professional appliations.7.3 Appliation of the previously desribedontributionsA prototypial spoken dialog system with a user-behavior-adaptive spokendialog system was reated within the NIMITEK2 ollaboration. This sys-tem inludes phoneme-level emotion reognition and ASR models adaptedwith MLLR(RCT) tehnique on emotional speeh data. To prove an appro-priateness of appliation of the previously desribed ontributions we orga-nized interative usability experiments for our prototype spoken dialog system.Within the usability experiment we ould show that during human-mahineommuniation frustration situations, the user-behavior-adaptive spoken dia-log system (UASDS) provides omprehensive help and exhaustive reommen-dations in ontext of the urrent state of the task. The UASDS built uponaousti emotion reognition in ombination with a�etive-speeh-adaptedASR models dereases interation time by 40.9%. During usability tests2Neurobiologially Inspired, Multimodal Intention Reognition for Tehnial Communi-ation Systems, 2005-2010, [Wendemuth et al., 2008℄



7.4. Future work 151we found out that the a�etive-speeh-adapted ASR models provide betterspontaneous-speeh-reognition performane in real appliations. At the sametime user-behavior-based dialog management stimulates the user for a moreooperative interation with the omputer. As a result the user's ommandsvoabulary adaptation time is redued by 58.7%.7.4 Future workThe researh on a�etive-speeh-adapted ASR models and emotion reogni-tion from speeh may be further arried out in a number of diretions:� Colletion of emotional speeh material with reliable textualand emotional annotation:Creation of new well-annotated emotional orpora an help us to makea more detailed emotional speeh analysis. Within the annotation pro-ess we should take into aount two main issues: Firstly, transriptionneeds to aknowledge the full range of features involved in the aous-ti expression of emotion, inluding voie quality, boundary prosodyand non-linguisti features suh as laughter, rying, latter, breath, et..Seondly, it needs to desribe the attributes (e.g., linguisti, dialog atsspei�ation) that are relevant to emotion. Within the TransregionalCollaborative Researh Center SFB/TRR 62 "Companion-Tehnologyfor Cognitive Tehnial Systems" funded by the German Researh Foun-dation (DFG) we are olleting a new speeh orpus with spontaneousemotions. Well transribed data with reliable emotion annotation willbe an important dataset for detailed ontext-dependent spontaneous-emotion-reognition experiments.� Improvement of ASR performane by reation of more reliablelexia:In this work, the gain of emotion speeh adapted ASR and ontext-dependent emotion reognition is limited due to the various errors in-luded in existing German lexions. To improve reognition perfor-manes, the lexia should be modi�ed. All wrong phoneti transrip-tions should be orreted; in a ase of various phoneti transriptionswhih are representative for the same word, all transriptions should beinluded in the new lexion.� More detailed fundamental ontext-dependent analysis of emo-tion indiative aousti features:Within our researh we proved that the vowel an be used as the smallestemotional unit of analysis. We �nd out that using vowel-level analysis,namely formants traking, an be an important issue during developing



152 Chapter 7. Conlusion and future worka robust emotion lassi�er. We are pretty sure, that there exists someother qualitative and temporal harateristis of the smallest phonetiunits whih an be used for robust ontext-dependent emotion reogni-tion. Future researh may be arried out to speify this qualitative andtemporal measures.� A Companion-Tehnology for Cognitive Tehnial Systems:Within this interdisiplinary researh ativity of the Transregional Col-laborative Researh Centre SFB/TRR 62 we will integrate our methods(user-behavior-adaptive dialog management, multimodal user's emotionproessing) initiated within the NIMITEK projet into a new Compan-ion tehnology system.� Dialog-state-dependent emotion reognition:Combination of the speeh-based emotion lassi�ation and dialog atfeatures analysis ould improve performane of misommuniation de-tetion during HMI. For example, �nding repetitions of the same dialogmight ontribute in addition to the aousti-based emotion lassi�ationto the detetion of trouble in ommuniation.� Multimodal emotion reognition:In future we want to ombine audio, video emotion analysis with pro-essing of some physiologial responses (blood pressure, blood volumepulse, respiration rate, heart rate, galvani skin response, ECG, EMG,et.). In suh a way we want to develop our own multimodal emotion-lassi�ation tehnique within ongoing Transregional Collaborative Re-searh Center SFB/TRR 62. For fusion of these various proessingstreams we should take into aount orresponding emotion indiativeresponses delays. For example, some physiologial responses ould in-diate an emotional user's state slightly later than mimi expression.� Seletion of suitable emotion ategorization tehnique:In future we would like to work on essential problems for the analysis ofspontaneous emotional speeh. For instane, we want to determine whatan emotional episode is, where it starts and where it ends (emotionalevents loalization) and whih emotional annotation approah (multi-dimensional representation or lassial emotion ategories) to hoosefor annotation purposes.
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