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Titel: Die Rolle des anterioren cingulären Cortex (ACC) bei der Extinktion des 

Vermeidungslernens und beim Abruf des Extinktionsgedächtnisses 

 

Zusammenfassung 

Extinktionslernen führt zu einer Änderung des Verhaltens, d.h. zur Unterdrückung 

einer erlernten Reaktion, wenn ein vorher bedeutendes Signal nicht mehr relevant ist 

bzw. eine andere Bedeutung erlangt. Verschiedene Hirnregionen sind bei der 

Extinktion von Verhalten beteiligt, insbesondere der anteriore cinguläre Cortex 

(ACC). Während die Rolle des ACC bei der Extinktion von appetitiver Konditionierung 

anhand von Inaktivierungsexperimenten nachgewiesen wurde, ist noch wenig über 

seine Rolle bei der Extinktion von aversiver Konditionierung bekannt. In der 

vorliegenden Arbeit wird die Rolle des ACC bei der Extinktion des 

Vermeidungsverhaltens untersucht. Im ersten Experiment wurden Rennmäuse 

trainiert, einen Fußschock in einer Shuttle-Box durch Sprung über eine Hürde zu 

vermeiden, wenn ein Ton als bedingter Reiz (CS) gegeben wurde. Nach acht 

Konditionierungssitzungen und weiteren drei Tagen der Ruhe wurde eine ACC-

Läsion bzw. ACC-Scheinläsion durchgeführt. Nach einer Erholungspause von einer 

Woche erfolgte eine weitere Konditionierungssitzung, um die Gedächtnisfunktion 

nach der Läsion zu überprüfen. Danach erfolgten acht Extinktionssitzungen, in denen 

nur der Ton-CS, nicht aber der Fußschock gegeben wurde. Sieben Tage nach der 

letzten Extinktionssitzung wurde die spontane Erholung (Recovery) der früher 

gelernten bedingten Reaktion getestet. Eine Woche später wurde den 

Versuchstieren nur der Fußschock allein gegeben, um am folgenden Tag das 

Wiederauftreten (Reinstatement) der Reaktion zu prüfen. Es zeigte sich, dass die 

ACC-Läsion, die nicht zu perseverativem Verhalten führte, eine Abnahme der Anzahl 
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der erlernten Reaktionen während der Extinktionsphase und in der nachfolgenden 

Prüfung der Gedächtnisabrufung bewirkte.  

 

Im zweiten Experiment wurden Rennmäuse trainiert, in der Shuttle-Box zwei Töne 

mit unterschiedlicher Frequenz zu unterscheiden, d.h. sie mussten, um den 

Fußschock zu vermeiden, bei einem Ton über die Hürde springen, bei dem anderen 

Ton aber nicht springen (Go/No-Go Diskriminierung). Die Hälfte der Tiere wurde 

darauf trainiert, bei dem hohen Ton zu springen und bei dem tiefen Ton sitzen zu 

bleiben, für die andere Hälfte der Tiere erfolgte die umgekehrte Zuordnung der 

Verhaltensbedeutungen zu den Tönen. Ähnlich wie in Experiment 1 wurden zunächst 

acht Konditionierungssitzungen durchgeführt. Nach drei Tagen Ruhe erfolgte die 

ACC-Läsion bzw. –Scheinläsion und, ebenso wie in Experiment 1, erfolgte nach 

einer Erholungspause von einer Woche eine weitere Konditionierungssitzung, um die 

Gedächtnisfunktion nach der Läsion zu überprüfen. Danach erfolgten acht 

Extinktionssitzungen, in denen nur die Tonreize, nicht aber der Fußschock gegeben 

wurde. Sieben Tage nach der letzten Extinktionssitzung wurde die spontane 

Erholung (Recovery) der früher gelernten bedingten Reaktion geprüft und am 

nächsten Tag wurde die Erneuerung (Renewal) der Reaktion getestet. Im Renewal-

Test wurde die Shuttle-Box mit Papier bedeckt und um 90 Grad gedreht um einen 

anderen, d.h. von der Extinktionsphase verschiedenen, Kontext zu schaffen. Am 

folgenden Tag wurde der Fußschock allein im Extinktionskontext gegeben und einen 

Tag später wurde das Wiederauftreten der Reaktion (Reinstatement) geprüft. Die 

Ergebnisse zeigen, dass die ACC-Läsion nicht zu perseverativem Verhalten während 

der Extinktion des diskriminativen Vermeidungslernens führte, dass aber die 

Extinktionsleistung und die Abrufbarkeit im Renewal- und im Reinstatement-Test in 

Abhängigkeit von der Tonhöhe des Go-Reizes beeinflusst wurde: Tiere mit ACC-
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Läsion, die trainiert wurden, auf den tiefen Ton zu springen (und auf den hohen Ton 

nicht zu springen), zeigten eine höhere Diskriminationsrate als die Tiere mit 

umgekehrter Zuordnung der Töne bzw. als die Tiere mit Scheinläsion.  

Zusammengefasst sprechen die Ergebnisse für die Rolle des ACC bei der 

differenziellen Modulation der motivationalen Bedeutung des bedingten Reizes. Der 

konsistente Läsionseffekt im Test auf die spontane Recovery sowohl bei der 

einfachen als auch bei der diskriminativen Vermeidungsreaktion spricht für eine 

wesentliche Rolle des ACC bei der zeitlichen Verarbeitung. In zukünftigen Studien 

könnte geklärt werden, worin genau diese Rolle bei der zeitlichen Verarbeitung 

besteht: ist es die Verarbeitung des Intervalls zwischen den Trainingsereignissen, die 

Perzeption des Ablaufs der Zeit, oder aber die unterschiedliche Ausprägung der 

initialen und der späteren Bedeutung das bedingten Reizes wenn der zeitliche 

Kontext sich ändert. Weitere Studien sollten sich mit der Rolle des ACC bei 

autonomen Reaktionen während des Lernens (z.B. Aufzeichnung der Herzfrequenz) 

und mit den unterschiedlichen Aspekten der Bedeutung des bedingten Reizes in 

verschiedenen Lernsituationen beschäftigen.  
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Preface 

Behavioral extinction is an important learning process that allows an organism to 

adapt its behavior according to the relevance of present cues that would call for 

inhibition of prepotent responses. Insights into the different mechanisms of this 

behavioral process are of great clinical relevance given the prevalence of behavioral 

perseveration apparent in pathological fear and anxiety as well as drug abuse. 

Present work explores the neural mechanism involved in the extinction of avoidance 

response to an auditory cue that had been associated with footshock. Specifically, 

the role of the anterior cingulate cortex (ACC) in extinction learning of avoidance 

behaviour in a shuttlebox is investigated using an ibotenic acid lesioning technique in 

a gerbil model. Present written report of the work is comprised of four chapters that 

include a general introduction, the summaries of the two experiments and finally the 

general discussion of present findings and what they collectively suggest the role of 

the ACC may be.  

 

The first chapter of the current written work describes the behavioral definition of 

extinction along with the neural substrates that have been so far identified to be 

involved. While the generally used behavioral paradigm in studying extinction has 

been fear conditioning, avoidance behaviour is instead used here for reasons that 

are discussed in this chapter. Anatomical and functional definitions of the ACC are 

accounted as well. 

 

The second and third chapters start with a brief introduction followed by a summary 

of the methods, results and conclusions of the extinction of an active avoidance 

response and the extinction of discriminative avoidance behaviour, respectively. The 
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final chapter presents a general discussion of current findings and how they relate to 

results of other animal as well as human studies of the functional significance of the 

ACC. 
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Chapter 1 

GENERAL INTRODUCTION 
1.1 Extinction 

Much of optimal behavior calls for continuous monitoring and updating information 

considering the dynamics of our environment where the relevance of cues could 

change in any given time and place, even moment to moment. In retroactive 

inhibitory learning such as extinction for instance, a cue that once predicts danger 

thus calling for avoidance behavior, subsequently signals safety hence leading to 

response inhibition. Response inhibition has been pointed out to be a key 

determinant of successful cognitive and motor control (Chambers et al., 2009).  

Prepotent responses acquired from previously learned associations may lead to 

maladaptive behavior when there is a failure to suppress actions no longer 

appropriate or relevant.  While cues act as excellent signposts to the next course of 

action to take, they may consequently gain incentive salience and drive behavior as if 

they in themselves have biological significance. Inhibitory processes serve to 

maintain behavioral flexibility so that a dysfunction could translate to behavioral 

rigidity as those seen in anxiety disorders and even in substance use disorder. As a 

model of inhibitory learning, behavioral extinction bears clinical relevance for the 

intervention of psychiatric disorders.  

 

1.1.1. Definition of Extinction 

Extinction is a behavioral phenomenon in which the weakening of the expression of a 

conditioned response (CR) to a conditioned stimulus (CS) becomes apparent in the 

absence of the presentation of the unconditioned stimulus (US). In a typical 

Pavlovian fear conditioning, an organism is exposed to an initially neutral stimulus 
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(becoming the conditioned stimulus; CS), e.g. a tone, that is followed by an aversive 

stimulus (the unconditioned stimulus; US) which is usually a footshock. 

Subsequently, the pairing of the CS with the US leads to a CS-US association so that 

presentation of the CS elicits fear responses such as freezing or fear-potentiated 

startle. Typically, even after as few as one conditioning session, the CS can elicit a 

fear state of autonomic and behavioral responses that include changes in heart rate 

as well as skin conductance, and freezing responses. However, repeated 

presentation of the cue without the previously paired aversive stimulus will lead to 

extinction of fear or a reduction in fear responses.  The decline in the behavioral 

response reflects an inhibition of the initially learned association between the CS and 

US by the new mental representation of a subsequent meaning of the CS, i.e., the 

CS- no US association. Described as an example of retroactive inhibition 

phenomenon in which new learning inhibits old (Bouton, 2004), extinction has once 

been viewed as the erasure or the forgetting of the original CS-US association 

(McClelland and Rumelhart, 1985; McCloskey and Cohen, 1989; Rescorla and 

Wagner, 1972). However, the return of the CRs with the passage of time in the 

classical dog experiment of Pavlov (1927) together with subsequent studies that 

manipulated the extinction context¹ (Bouton, 1993; Rescorla and Heth, 1975) indicate 

that extinction is instead a new form of learning that is inhibitory in nature, allowing 

the original conditioned memory to remain intact. 

 

1.1.2. Extinction as New Learning 

Similar to most types of learning, extinction occurs in three phases: acquisition, 

consolidation and retrieval.  During acquisition, the CRs decline within an extinction  

___________________________________________________________________ 

¹ context – the surroundings and circumstances in which an event takes place (Dudai, 2004) 
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training session as the CS that used to be followed by the US is instead presented 

without the US. The CS-no US association starts to develop, which is then 

consolidated into long-term memory.  Subsequent presentation of the CS in the 

absence of the US will trigger retrieval of extinction memory that becomes apparent 

in the low rate of CRs displayed.  Further as a form of learning, extinction also shares 

similar molecular mechanisms as other types of learning such as the NMDA receptor 

that is involved in the initiation of synaptic strengthening (Baker and Azorlosa, 1996; 

Falls et al., 1992; Walker et al., 2002).  The adrenergic system also seems to be 

involved in extinction learning by playing a positive modulatory role (Cain et al., 2004) 

just as it facilitates other forms of learning. On the flip side of the coin, there are also 

differences between extinction and other forms of learning. For instance, the early 

phase of fear extinction learning seems to depend on L-type voltage-gated calcium 

channel activity (Cain et al., 2002; Suzuki et al., 2004) and on GABA(A) receptors 

(Harris and Westbrook, 1998) which are not necessary in the acquisition of excitatory 

learning. 

 

While it has been generally accepted that extinction is new inhibitory learning 

established in parallel with the original associative learning, some findings seem to 

imply that under certain circumstances, extinction may be deemed as erasure of the 

original learning or unlearning. It has been suggested that there may be differing 

mechanisms of extinction which may be determined by when extinction training is 

initiated (Barad, 2006). While L-type voltage-gated calcium channel antagonists have 

been found to block extinction when extinction started an hour or later after fear 

conditioning, the antagonists had no effect when extinction started shortly after 

conditioning (Cain et al., 2005).  Myers and colleagues (2006) demonstrated that 

when extinction training commenced ten minutes after fear conditioning, there was no 
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evident return of the extinguished fear when animals were later tested hence implying 

deletion of the conditioning memory.  However, conflicting human and rat studies 

have shown the return of fear responses of the subjects during tests for spontaneous 

recovery, renewal and reinstatement (later defined in subsection 1.1. 4.) despite 

immediate extinction training done after fear conditioning (Alvarez et al., 2007; LaBar 

and Phelps, 2005; Milad et al., 2005a; Schiller et al., 2008).  Using aversive and 

appetitive conditioning paradigms, the effects of immediate versus delayed extinction 

training were further investigated by Woods and Bouton (2008) whose results parallel 

those of older studies demonstrating that immediate extinction training instead 

produced poorer retention of extinction memory (Maren and Chang, 2006; Rescorla, 

2004b). In other words, while immediate extinction improves expression of the CS-no 

US memory, it does not necessarily improve its expression outside the extinction 

context. Better extinction learning does not translate into attenuated return of 

extinguished CRs. Considering that retrieval renders a memory labile until its 

reconsolidation, it is possible that extinction training done right after a conditioning 

session attenuates the expression of the primary associative memory by amending 

the existing memory representation with a more recent meaning of the CS. The 

updating then enables better expression of the secondary associative memory.  

Thus, the original associative memory is not necessarily erased but just transiently 

muted while in its labile state as evidenced by its subsequent expression in 

circumstances different from the extinction context. 

 

1.1.3. Reconsolidation versus extinction 

A fine line serves as a boundary between reconsolidation and extinction. Extinction of 

learned behavior requires retrieval of the conditioned memory.  During retrieval, two 

competing processes: reconsolidation or extinction (Eisenberg et al., 2003; Lee et al., 
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2006; Nader et al., 2000), may occur depending on the length of the memory 

reactivation triggered by exposure to reminder cues. Short retrieval sessions lead to 

reconsolidation of the original conditioned memory while extinction occurs when 

retrieval sessions are long (Myers and Davis, 2002; Pedreira and Maldonado, 2003; 

Suzuki et al., 2004). For example, after conditioning an animal is briefly exposed to a 

CS within a 2-minute session that then leads to reconsolidation compared to 10 CS 

presentations within a 20-minute session that results in extinction (Lee et al., 2006). 

Until reconsolidated, a retrieved memory enters and stays in a labile state that makes 

it susceptible to either enhancement or disruption (Nader et al., 2000; Tronson et al, 

2006) as in the case when new information is introduced during this state. This 

connotes an adaptive significance for reconsolidation as it allows updating of memory 

representation (Alberini, 2005; Hupbach et al., 2007; Nader et al., 2000).  Monfils and 

colleagues (2009) found that when extinction training was done within the lability 

window of 6 hours from the time retrieval occurred, freezing responses upon testing 

were significantly less than that of the control group as well as the groups given 

extinction training past the lability window. The authors explained that extinction done 

during the lability window updated the meaning of the CS with the new valence 

thereby weakening the initial valence associated with the conditioning session.   

 

1.1.4. Context-dependence of Extinction 

Extinction memories are widely accepted to be context-dependent (Bouton and 

Ricker, 1994; Bouton, 2002). The CS gains two meanings and the context therefore 

becomes the occasion-setter that determines which memory will be prevalently 

expressed. Noteworthy is the finding that after extinction training, retrieval of 

conditioning memories become context-dependent as well (Effting & Kindt, 2007; 

Harris et al., 2000). When a retention test for spontaneous recovery is done in the 
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extinction context that is different from the conditioning context, the CS-no US 

memory is activated (Herry and Garcia, 2002). Most studies have shown however 

that expression of the CS-no US association is more context-dependent than the 

original CS meaning. Context-specificity of extinction is not necessarily because of its 

nature of being inhibitory but has been suggested as perhaps due to being a 

secondary associative representation of the CS meaning (Bouton, 2004). Case in 

point, rats trained in feature-negative discrimination paradigm¹ showed transfer of 

inhibitory learning to a new context (Bouton and Nelson, 1994; Nelson and Bouton, 

1997).  In counterconditioning², Nelson (2002) found that regardless whether the 

conditioning was excitatory or inhibitory, the association easily transferred to different 

contexts. When the CS has been previously trained as an excitor or inhibitor, 

expression of the second opposing associative meaning becomes context-specific 

similar to that seen in extinction.   

 

The same context-dependence evident in extinction has been observed in other 

retroactive interference paradigms such as discrimination reversal learning and latent 

inhibition (Bouton and Peck, 1992; Bouton and Swartzentruber, 1989; Kraemer et al., 

1991; Peck and Bouton, 1990; Spear et al., 1980; Talk et al, 2005; Thomas et al., 

1984). These examples of the interference phenomena illustrate that when a CS 

becomes ambiguous by gaining more than one meaning, the particulars of the 

___________________________________________________________________ 

¹ feature-negative discrimination paradigm - a conditioning procedure in which a conditional 
stimulus is presented with the unconditional stimulus on some trials and without the 
unconditional stimulus on other trials; a second conditional stimulus is added to signal when 
the unconditional stimulus will not occur (Bouton, 2007).  
 
² counterconditioning - a conditioning procedure that reverses the organism’s response to a 
stimulus; for example, by pairing the stimulus with a positive event, an organism may be 
conditioned to respond positively to a stimulus that would otherwise conditionally or 
unconditionally elicit fear (Bouton, 2007). 
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context determine which associative memory becomes expressed. When an animal 

learns the first association, it makes an inference that the initial association is the rule  

and that the second association is considered an exception to that rule (Bouton, 

2004) taking into account under what circumstances the exception occurs. Retrieval 

of the secondary meaning of the CS therefore depends on the specifics of the 

context.  Expression of the extinction memory is highly context-sensitive so that the 

return of extinguished responses would even occur when there is a change in the 

usual temporal interval between sessions. 

 

Weak expression of extinction memory is reflected in the return of the extinguished 

CR evident when an animal is exposed to the CS under conditions dissimilar from the 

extinction training context. In fear conditioning studies, the three most cited 

phenomena that demonstrate the return of the extinguished CRs in a context that 

does not precisely match the extinction context are: Spontaneous recovery, renewal 

and reinstatement. Spontaneous recovery refers to a change in temporal context. 

Extinguished CRs reappear after a considerable passage of time between the last 

extinction session and the test session.  The degree of the recovery of the CRs is 

determined by the length of the interval so that higher return becomes evident the 

longer the lapse is between sessions (Robbins, 1990). Renewal refers to a change in 

spatial context. When an animal is presented with the CS alone in a spatial context 

different from where extinction training took place, the extinguished CRs reappear 

(Bouton and King, 1983; Bouton and Brooks, 1993). Reinstatement of the 

extinguished CRs occurs when an animal is given an extinction test session after 

being exposed to the US alone. The context where the US was presented becomes 

associated or conditioned with the US so that when the CS is presented in the 

relevant (same) context, reinstatement of the extinguished CRs is generated. 
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Otherwise, no reinstatement can be observed if the CS is tested in a different context 

or if an animal is given an extinction exposure to the relevant context after the 

reinstating US presentations have been given (Baker et al., 1991; Bouton and Bolles, 

1979).  

 

1.1.5. Basic Extinction Circuit 

Fear conditioning has been the commonly used behavioral paradigm for studying the 

neural mechanisms of emotional learning and behavioral extinction (e.g., LaBar and 

Phelps, 2005; La Bar et al., 1998; Norrholm et al., 2006; Schiller et al., 2008) since 

functional and neural mechanisms of conditioned fear are similar to that of anxiety 

disorders (Rosen and Schulkin, 1998).  Based on a number of studies, Quirk and  

 

 
 

Figure 1. Basic fear extinction circuit (and figure caption) based on a schematic diagram by 

Quirk and Mueller (2008). Conditioned fear and extinction memories are stored in the 

amygdala. CS presented within the extinction context is integrated with contextual 

information from the hippocampus, leading to IL inhibition of amygdala output that reduces 

Infralimbic mPFC: 
extinction retrieval 

Amygdala: 
Fear memory,  

acquisition of extinction 

Hippocampus: 
Contextual modulation 

of extinction 

Fear response
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expression of fear response. Otherwise, amygdala output is uninhibited when the CS is 

presented outside of extinction context. 

 

Mueller (2008) proposed a basic fear extinction circuit that includes the amygdala, 

hippocampus and the infralimbic cortex (IL; Fig.1). In the basolateral amygdala, 

administration of NMDA receptor antagonists and kinase inhibitors blocked extinction  

of fear memory (Falls et al., 1992; Lin et al., 2003; Lu et al., 2001) while its 

consolidation was modulated by the noradrenergic system (Berlau and McGaugh, 

2006) suggesting involvement of the amygdala in the acquisition and consolidation of 

extinction memory. Muscimol inactivation of the dorsal hippocampus before extinction  

training led to poor retrieval of extinction memory the following day (Corcoran et al., 

2005) and the MAPk cascade (Fischer et al., 2007) as well as actin rearrangement 

(Fischer et al., 2004) in the hippocampus were found to be essential in the extinction 

of contextual fear. Hippocampal inactivation before a renewal test disrupted 

extinction retrieval (Corcoran and Maren, 2001 and 2004; Hobin et al., 2006) 

although some studies found no renewal effect (Frohardt et al., 2000; Wilson et al., 

1995) suggesting that the hippocampus is essential for only some types of contextual 

processing of extinction memory. Projections from IL to amygdala (McDonald et al., 

1996; Chiba et al., 2001; Ghashghaei and Barbas, 2002) have been suggested to 

mediate its inhibition of amygdala output that determines expression of fear 

responses. Stimulation of the IL just before CS presentation reduced freezing 

responses to CS as if simulating extinction learning (Milad and Quirk, 2002). 

Retrieval of extinction memory is decided when the IL cortex integrates CS 

information with the contextual information from the hippocampus within the 

extinction context, leading to inhibition of amygdala output thus, the behavioral 

suppression (Quirk and Mueller, 2008).   

 



 10

Other neural substrates found to be involved in extinction include but not limited to: 

the ventrolateral periaqueductal gray, a site of expression of fear responses (De Oca 

et al., 1998; Le Doux et al., 1988) that has been implicated in the acquisition of 

extinction (McNally et al., 2004; 2005); the orbitofrontal cortex whose volume is 

correlated with the retention of extinction memory (Milad et al., 2005b; Rauch et al., 

2005) and whose inactivation  leads to behavioral perseveration (Butter et al., 1963) 

and uncoupling of conditioned behavioral and autonomic responses (Reekie et al., 

2008); and the prelimbic (PL) cortex whose neuronal activity correlates with extinction 

failure (Burgos-Robles et al., 2009).  To further elucidate the neural circuitry of 

extinction, the present work investigates the role of the anterior cingulate cortex 

(ACC) in the extinction of avoidance behavior and its expression outside the 

extinction context. Beyond mere fear conditioning, this paradigm allows us to probe 

into the subsequent development of instrumental avoidance behavior that is driven 

by the fear response. 

 

1.2. Avoidance Learning  

Avoidance conditioning is a signaled form of escape conditioning where an animal 

performs a behavior that terminates an unpleasant ongoing event. The early part of 

avoidance learning is similar to fear conditioning such that a response is elicited upon 

presentation of a once neutral cue (subsequently becoming a conditioned stimulus or 

CS) that has been associated with an unconditioned stimulus (e.g., shock), thus 

reflecting conditioning. Just like the US, the CS (e.g., tone) through classical 

conditioning elicits a conditioned emotional response, fear, thereby becoming 

aversive in itself.  The aversion towards the CS is then what drives the animal to 

make the instrumental avoidance response in order to escape the aversive internal 

state produced by the CS. In this regard, avoidance learning has been described as 
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a two-process learning (Mowrer, 1947). The theory explains the underlying learning 

phenomenon as an escape from conditioned fear which is what reinforces the 

behavior rather than the shock presentation that is absent in successful avoidance 

trials. D’Amato’s theory (1967) takes into account the notion that both pain and relief 

motivate avoidance. The CS elicits an anticipatory pain response that motivates an 

escape behavior which leads to the conditioning of an anticipatory relief response. In 

either sense, the study of avoidance learning and its extinction could provide 

theoretical implications as well to understanding drug-taking behavior (an approach-

related behavior that is counter to the action tendency of avoidance behavior) and its 

relapse after abstinence since drug use could be deemed as a form of avoidance 

response to a state of unpleasant emotions. 

 

Being a step or so beyond fear conditioning, more associative memory 

representations are formed during avoidance learning. In such a conditioning 

preparation, an animal forms a Pavlovian association of the CS with the US 

(stimulus-outcome association) that earns a CS the ability to elicit fear (stimulus - 

Pavlovian response) which is relieved as execution of the avoidance response turns 

the CS off (instrumental response -outcome association). Theoretically, a parallel 

stimulus – response association develops (White and McDonald, 2002) which 

becomes prevalently expressed over a number of sessions so that when the CS is 

presented, an automatic instrumental response is displayed. A cognitive, goal-

directed (action-outcome) behavior may be overruled by a stimulus-response 

strategy or habit learning with increased training (Chang and Gold, 2003; Hicks, 

1964; Noblejas, 2005; Packard and McGaugh, 1996; Ritchie et al., 1950). Thus, the 

general CS-US associative memory of the avoidance behavior may be multiply 

represented albeit in segments by the basic associations formed that interconnect to 
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lead to the behavioral outcome. Hypothetically, this may mean that disruption or 

alteration of one (or some) of its basic associative memory representation may be 

survived by the remaining others. Extinction of avoidance behavior might therefore 

command that closer attention be paid to what may be extinguished in a given 

extinction training preparation. 

 

1.3. Anterior Cingulate Cortex 

1.3.1. Anatomical Definition 

As part of the prefrontal cortex by definition of its connection with the mediodorsal 

thalamus, the anterior cingulate cortex (ACC) has been extensively studied for its role 

in learning and memory and classically associated with emotion. The ACC is the 

frontal part of the cingulate cortex located below the cingulate sulcus and above the 

corpus callosum.  It is a heterogeneous structure that has been anatomically 

subdivided into the dorsal part that has connections with lateral prefrontal cortex, 

parietal cortex and premotor and supplementary motor areas; and the ventral part 

that is interconnected with the amygdala, periaqueductal grey, nucleus accumbens, 

hypothalamus, anterior insula, hippocampus and orbitofrontal cortex (Carmichael and 

Price, 1994; Devinsky et al., 1995; Divac and Diemer, 1980; Sripanidkulchai, 

Sripanidkulchai & Wyss, 1984; Vogt and Miller, 1983). Corresponding connections of 

each of the anatomical subdivisions reflect functional differentiation between the two 

subdivisions. Cognitive functions of the dorsal aspect of the ACC include modulation 

of attention or executive functions, monitoring competition, novelty and error 

detection, motivation and working memory (Botvinick et al., 2001; Bush et al., 1999; 

Bush et al., 2000; Carter et al., 1999; Devinsky et al., 1995; Fan et al., 2003; Gehring 

& Fencsik, 2001; Mohanty et al., 2007; Polli et al., 2008; Posner and DiGirolamo, 
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1998; Swick & Turken, 2002; Vogt et al., 1992).  Affective processing of the ventral 

aspect involves assessing salience of emotional and motivational information as well 

as regulation of emotional responses (Devinsky et al., 1995; Drevets and Raichle, 

1998; Vogt et al., 1992; Whalen et al., 1998).   Imaging studies have shown that the 

ventral part of the ACC is activated in situations where healthy subjects are asked to 

imagine emotionally laden situations (Dougherty et al., 1999; Pardo et al., 1993). 

Damage to ACC has been found to disrupt generation of autonomic arousal 

responses (Critchley et al., 2003; Zahn et al., 1999) while its electrical stimulation in 

animals as well as humans could elicit autonomic responses (Burns and Wyss, 1985; 

Chefer et al., 1997; Kaada et al., 1949; Pool and Ransohoff, 1949; Ward, 1948).  

Critchley (2004) suggested rather cautiously that activity found in certain regions of 

the ACC may be a result of where the input is coming from. For example, input from 

somatosensory and motor cortices to the caudal region of the ACC may reflect the 

arousal found there during pain or physical effort.  Counter to this notion (hence his 

caution), a region such as the subgenual ACC which is more strongly anatomically 

connected to autonomic control centers than the dorsal ACC (Barbas et al., 2003; 

Kaada, 1951), has been found to be more active during baseline resting state or 

vegetative states such as sleep while the dorsal ACC has been found to be more 

active during effortful tasks. An inference that had been drawn from this is that the 

subgenual ACC underpins parasympathetic versus sympathetic autonomic drive. To 

sum it up, gaining insight into the functional role of the ACC would require 

understanding its anatomical connections and their respective functional implications.   

 

1.3.2. Putative Roles 

Considering the myriad of functional implications attributed to the ACC (see review by 

Bush et al., 2000), several hypotheses have been put forth to define the role of the 
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ACC from it being part of a cingulo-frontal network of working memory (Smith et al., 

1998); to being a part of a circuit used when effortful control is necessary in switching 

response pathways (Raichle et al., 1994); to error detection (Carter et al., 1998) that 

is separate from the competition monitoring hypothesis (Botvinick et al., 1999); to 

executive attention theory (Norman and Shallice, 1986). However, none of these 

hypotheses have explained an encompassing role of the ACC that integrates both its 

involvement in cognitive and emotional processing.   Ward (1948) had described the 

ACC as an autonomic effector region. Following ablation of the anterior cingulate 

area done in monkeys, he had observed behavioral changes that included tameness 

and loss of the usual fear towards humans.  Luu and Posner (2003) suggested that 

cognitive processes such as conflict and error monitoring which involve the ACC 

produce autonomic reactions that signal the need for behavioral modification. They 

further indicated that this is compatible with previous finding associating theta activity 

(an index of cognitive control), putatively generated by the ACC, with autonomic 

functions during sustained attention (Kubota et al., 2001). Moreover, other studies 

have shown that the ACC receives nociceptive information and plays a role in the 

coordination of autonomic responses (Fisk & Wyss, 1997; Hsu & Shyu, 1997; 

Neafsey et al., 1993).  

 

It has been conjectured that the autonomic responses that develop during classical 

conditioning tasks represent an early aspect of learning related to the attachment of 

emotional significance of the CS-US contingency (Buchanan and Powell, 1993; 

Gantt, 1960, Konorski, 1967).  Lesions of the ACC have been reported to attenuate 

conditioned heart rate decelerations involved in Pavlovian conditioning (Buchanan 

and Powell, 1982a, 1982b). Gabriel and colleagues (1991) found that lesions of the 

ACC in rabbits mildly retarded acquisition of learning. In a subsequent study (Gabriel, 
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1993), an absence of early- but not late-developing training induced neuronal activity 

(TIA) in the posterior cingulate cortex (PCC) was found which suggested that the 

ACC is a source of early-developing plasticity in the PCC. Gabriel (1993) described 

two phases of learning in a discriminative avoidance paradigm: During the early part 

of training, the ACC together with the mediodorsal thalamus, was found to encode 

training induced neuronal activity¹ (TIA) while the PCC together with the anteroventral 

thalamus, encoded TIA during the later stages of training. TIA in the ACC has been 

described as easily gained and modifiable in response to the new CS-US association 

while TIA in the PCC develops more slowly and not as flexible when obtained. Hence 

the implications of the ACC and PCC as part of the recency or primacy system 

respectively.  Their differential involvement during the early and later part of learning 

is not limited to discriminative avoidance learning, but may also be observed 

behaviorally in visual attention task (Bussey et al., 1996) and in spatial task (Meunier, 

Jaffard & Destrade, 1991).   

 

Implicated in reinforcement-guided decision making (Rushworth and Behrens, 2008), 

the ACC has been found to be involved in executive functions necessary for 

behavioral extinction such as inhibition of prepotent responses² and behavioral 

flexibility (Bussey et al., 1996; Ng et al., 2007) as well as affective aspects of 

behavior (Bush et al., 2000). Anatomical studies in rodents and primates have 

revealed ACC connections with the amygdala (Divac and Diemer, 1980; Ghashghaei  

___________________________________________________________________ 

¹ training induced neuronal activity – the occurrence of changes in the tone-elicited 

discharges that develops during learning or conditioning (Gabriel, 1993) 

² prepotent response – a predominant behavioral reaction acquired through its association 

with reinforcement 
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et al., 2007; Sripanidkulchai et al., 1984), a substrate involved in emotional 

conditioning as well as its extinction (Akirav et al., 2006; Davis, 1992; Falls et al., 

1992; Fanselow and LeDoux, 1999; Kim et al., 2007; Kim et al., 2008; LeDoux, 1993, 

LeDoux et al., 1988; Maren, 1999; McGaugh et al., 1993). Disruptions of the ACC 

have been found to retard acquisition of avoidance learning (Gabriel et al., 1991; 

Kimble and Gostnell, 1968; Peretz, 1960) and impair extinction of non-aversive tasks 

such as conditional visual discrimination (Bussey et al., 1996) and conditioned jaw 

movement (Griffin and Berry, 2004).   

 

1.3.3. Previous Extinction Studies  

Animal and human studies have reported a role of the ACC in extinction.  In a 

conditional visual discrimination task, excitotoxic lesions of the ACC of rats impaired 

extinction of lever press responses (Bussey et al., 1996).  In a differential context 

conditioning procedure, fMRI showed enhanced activation in the human ACC during 

extinction to the context that served as CS+ compared to the one that did not, the 

CS- (Barrett and Armony, 2009; Lang et al., 2009).  Griffin and Berry (2004) found  

that ACC inactivation led to a persistence of the conditioning-related hippocampal  

unit activity that would have otherwise be inhibited during extinction of conditioned 

jaw movement. Despite that there are no known direct anatomical connections 

between the ACC and the hippocampus, the ACC apparently have an inhibitory 

influence on the activity of the hippocampus, a substrate implicated in contextual 

processing as well as consolidation of extinction (Corcoran and Maren, 2004; Fisher 

et al., 2007; Hall et al., 2001; Heldt et al., 2007; Lang et al., 2009; Malin and  
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McGaugh, 2006). This in turn can affect expression of extinction memory especially  

when its expression is called for outside the context such as in tests for spontaneous 

recovery, renewal and reinstatement.  We therefore seek to explore the role of the 

ACC in extinction learning and its expression outside of the extinction training 

context. In the present work, lesions of the ACC were made after conditioning and 

before extinction since previous avoidance learning studies have shown that 

pretraining lesions of the ACC produced retardation in avoidance learning (Gabriel et 

al., 1991; Kimble and Gostnell, 1968; Peretz, 1960). Peretz (1960) found no 

difference between the sham and the cingulectomized groups in the extinction of 

avoidance learning.  This would most likely mean that no extinction learning deficits 

would be apparent that is in line with what Peretz (1960) had reported since the 

behavior to be extinguished is not robust to begin with. Non-aversive extinction 

studies have shown that ACC inactivation produced perseverative behavior which 

makes it reasonable to ask whether the same can be said in aversive studies given 

the ACC implication in the acquisition of associations. 
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Chapter 2 

Effects of Anterior Cingulate Cortical Lesions on 

Extinction, Spontaneous Recovery and Reinstatement of 

an Active Avoidance Response 
 

2.1. Introduction 

 
Avoidance behavior is a defense mechanism that an organism displays in order to 

escape or prevent unpleasant situations or feelings such as fear (Avoidance 

Behavior, the free dictionary.com, 2011). At best, it is adaptive such as using an 

umbrella to avoid getting wet or putting on sunglasses to keep the sunshine directly 

away from the eyes especially when driving and so on. However, such a behavioral 

strategy can become aberrant as sometimes brought about by traumatic events that 

consequently instill fear. Fear serves a biological purpose as it motivates one to 

observe safety practices for survival. But just as with anything else in excess, 

excessive feelings of fear or anxiety can become detrimental to normal daily 

functioning; or at worst, to one’s survival which the motivational component of fear 

has evolutionarily set to promote. An attack in an alley by a masked person wielding 

a knife should not keep the patient from allowing a masked person wielding a knife in 

an operating room to treat him. In this case, a healthy cognitive system would 

process the difference in context and subsequently, the final outcome (safety in the 

form of medical treatment) that would then result in modification and updating of the 

existing associative memory. 

 

Various manipulations of the ACC suggest that it plays a role in the acquisition of 

learning whether in excitatory or inhibitory learning that includes extinction and 
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passive avoidance (Bussey et al., 1996; Gabriel et al., 1991; Griffin and Berry, 2004; 

Riekkinen et al, 1995). Extinction studies of approach-related behavior¹ have shown 

that lesions of the ACC lead to impairment in extinction learning (Bussey et al., 1996; 

Griffin and Berry, 2004). Little is known about its role in the extinction of avoidant 

behavior which turns out to be pathological in patients suffering from anxiety 

disorders such as post-traumatic stress disorder (PTSD). Persistence of traumatic 

memories in such patients renders them sensitive (reactive) to trauma reminder 

stimuli despite that these are no longer threat-related, which is indicative of a failure 

of an executive function that putatively is mediated by the anterior cingulate cortex 

(see Hamner et al., 1999).  

 

Present study explores the role of the ACC in the extinction of an active avoidance 

behavior given its implications in action-outcome associations (Kennerley et al., 

2006; Matsumoto and Tanaka, 2004; Oliveira et al., 2007; Rushworth et al., 2004). 

Rushworth et al. (2004) had suggested that not only does the ACC encode the action 

that leads to a specific outcome and the likelihood that it will lead to an error, but also 

the cost-benefit of an action in relation to the value of its intended outcome. For 

instance, rats with ACC lesions would choose an easily accessible goal arm with 

fewer food pellets in a T-maze rather than the alternative arm that contained more 

pellets but required them to climb over a barrier to obtain the reward (Walton et al, 

2003).  In a monkey study, lesion-induced performance impairment in sustaining 

rewarded responses in a reward-guided choice task led to the suggestion of a role of  

___________________________________________________________________ 

¹ approach-related behavior – basic response associated with appetitive motivations that 

elicit an approach behavior compared to avoidance-related behavior associated with 

aversive motivations that elicit avoidance (Marsh et al, 2005) 
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the ACC in integration of reinforcement history to guide choice behavior (Kennerley 

et al., 2006). This suggests that the ACC is involved in processing the likelihood of 

choosing a correct response that involves calculating the value of a response based 

on how often it was previously reinforced. Thus, the present study sought to 

investigate the effects of lesions of the ACC on extinction learning where a previously 

learned action-outcome is no longer reinforced.  Lesions of the ACC would be 

expected to lead to behavioral perseveration during extinction of an avoidance 

behavior given that without the ACC, learning of the new meaning of the CS would 

be impaired. However present results show that ACC lesioned animals displayed 

better expression of extinction learning and its retrieval during retention test. This 

suggests a regulatory role of the ACC in the rate of expression of extinction memory 

that may depend on the motivational salience attached to the CS. 

 
2.2. Materials and Methods 
 
2.2.1. Subjects.   Subjects were 21 male Mongolian gerbils (Meriones unguiculatus) 

from Tumblebrook Farms, Westbrook, MA USA (65 - 85g, 3-6 months old), fed ad 

libitum and individually housed in a temperature-controlled environment on a 12-hour 

light-dark cycle with the lights on from 7 a.m. to 7 p.m. Of the 21, 13 were given 

lesions of the ACC while the rest were given sham surgery after conditioning.  

 

2.2.2. Surgical procedures.   Prior to surgery, the gerbils were anesthetized with a 

cocktail of Ketamine (500mg/10ml, Ratiopharm GmbH), Rompun (2%, Bayer Vital, 

GmbH) and isotonic NaCl (0.9%, Braun) with a ratio of 10: 9: 1 (dose of 0.30 ml/70g 

body weight) administered intraperitoneally.  Treatment of the animals and surgical 

procedures were in accordance with the rules of the Ethics Committee of the state of 

Sachsen-Anhalt, Germany.  Injections of ibotenic acid (Sigma, 0.3 μl per injection, 
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5mg/ml in PBS) were administered into both the right and left hemispheres of the 

ACC through a 28g, 5µl - Hamilton syringe. After the injection, the needle was left 

imbedded in each site for at least five minutes to allow for diffusion of the solution. 

The ACC lesion group had a total of 12 injection sites per gerbil with surgical 

coordinates derived from Paxinos and Watson (1998) since the existing gerbil atlas 

does not provide adequate coordinates for a skull oriented on a leveled plane. 

 

The brain coordinates for the ACC lesions were from bregma, anteroposterior (AP) = 

+0.9 mm, mediolateral (ML) = ±0.4 mm and dorsoventral (DV) = -1.0/-1.7 mm; AP = 

+0.1 mm, ML = ±0.4 mm and DV = -0.9/-1.3 mm; AP = -0.7 mm, ML = ±0.4 mm and 

DV = -0.7/-1.0 mm. The sham group did not receive any ibotenic injection but holes 

were drilled on the skull of the sham group where the coordinates for the anterior 

cingulate cortex lesions would be located.  

 

2.2.3. Apparatus.  Gerbils were trained in a two-compartment shuttlebox  

(38×19×22.5 cm, HASOmed GmBH) that had a hurdle (4 centimeters high) in the 

middle which the animal had to go over to avoid the electric shock delivered through 

the grid floor during the conditioning sessions.        

 

2.2.4. Behavioral Procedures. Gerbils were trained between 1:00 – 7:00 pm. Figure 

2a-b illustrate the schematic summary and the complete timeline of the training 

procedure. There were eight conditioning sessions that included sixty trials each. A 

session lasted for 25 minutes and was done one per day. A series of pure beeping 

tones (2 kHz, 65 dB, 200 ms per beep with an interval of 300 ms in between beeps) 

served as a conditioned stimulus (CS) that signaled the occurrence of the delivery of 

footshock (600 μA), the unconditioned stimulus (US), if a gerbil did not go over the  
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Figure 2a. Schematic diagram depicting the different phases of the behavioral training. 

Gerbils were trained for eight days to respond, by going over a hurdle, to a tone that predicts 

the delivery of a footshock. Three days after the last conditioning session, either sham or 

lesion surgeries were done on the animals. After a recovery period of about seven to ten 

days, animals were given a postoperative conditioning session to make sure the memory 

representation of the CS-US association remained intact. The following day, extinction 

training commenced and went on for a total of eight days where the gerbils were presented 

with just the tone in the same shuttlebox used during the conditioning sessions. Seven days 

after the last extinction session, the animals were given another extinction session to test for 

spontaneous recovery of the extinguished CR. The animals were then given presentations of 

shock alone followed by a test for reinstatement the following day.     

Session 1-8: 
Conditioning sessions 
CS + US presentations 

Surgery: 
Sham or ACC lesion 

Session 18: 
Test for Spontaneous Recovery 

Session 9: 
Post-operative conditioning session 

CS + US presentations 

Session 10-17: 
Extinction sessions 

CS presentations only 

Session 19: 
US presentation 

Session 20: 
Test for Reinstatement 
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Figure 2b. Schematic diagram depicting the complete timeline of the training. The timetable 

illustrates the duration of the different phases and the gaps (number of days) in between 

which altogether takes forty two days from start to finish.  

 
 
hurdle (the conditioned response; CR) during the six-second CS presentation. In 

such case, a 4 s footshock (600 uA) delivery would occur upon CS offset.  If the 
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gerbil responded before CS offset, CS presentation was terminated. Intertrial interval 

was 16 to 20 seconds. Three days after the last conditioning session, a gerbil was  

given either a lesion or sham surgery in the ACC. Recovery period was seven to ten 

days after which an animal was first given a postoperative conditioning session to 

ensure that the memory of the CS-US association remained intact. Extinction training 

commenced the following day where an animal was given a session of 60 trials of the 

CS presentation without the US. A gerbil went through extinction training one session 

a day for eight days. Seven days after the last extinction session, animals were 

tested for spontaneous recovery where gerbils were given 60 presentations of CS 

alone. After a week, animals were then exposed to a presentation of US (shock) 

alone for one session (60 trials). The following day, the animals were tested for 

reinstatement of the extinguished CRs in a session of 60 presentations of CS alone.   

 

2.2.5. Histology.   After the behavioral training, the gerbils were decapitated and the 

brains were taken out and frozen in liquid nitrogen (Linde, Germany) for 10 minutes. 

All brains were stored in a freezer at -80° Celsius. The brains were sliced into coronal 

sections of 40 μm thick which were stained with thionin, a Nissl stain for cell bodies to 

determine the extent of the ibotenic acid lesions. To quantify the size of lesion 

damage, a grid transparency was used and the number of grid squares covering the 

damaged portion of the ACC was divided by the number of squares of the intact 

targeted lesion area multiplied by 100. The targeted ACC areas were cingulate cortex 

area 1 and 2. 

 

2.2.6. Data Analysis. Analyses were done using the statistical program Statistical 

Program for the Social Sciences (SPSS), USA. The rate of CRs (related to the total 

number of trials), the number of CRs and response latencies during conditioning, 
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Figure 3. Coronal sections of the lesion area. Representative photographs of ACC 

lesions (left panel) with the corresponding schematic diagrams on the right, depicting 

ACC lesion placements at from top to bottom: AP +1.1 mm, +0.1 mm and -0.4 mm from 

bregma. Gray-shaded areas represent the extent of damage in the gerbil brain with the 

smallest lesion damage while areas with hatched bars plus the gray-shaded areas represent 

the gerbil brain with the largest lesion damage.  
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extinction training as well as the test for SR were analyzed by using general linear 

model repeated measures ANOVA. The reinstatement test was analyzed using 

unpaired t-test.  

 

2.3. Results 
 
2.3.1. Histological Analysis.   

Targeted lesion area of the ACC (Fig. 3) was from AP +1.1 mm to –0.4 mm from 

bregma according to the gerbil atlas (Loskota et al., 1973). Bilateral lesions in the 

ACC were mainly on the Cg1 and Cg2 area with minimal damage to M2 in some 

gerbil brains. One gerbil brain had damage extending slightly to the PL cortex. The  

extent of damage measured in the gerbil with the smallest ACC lesion was 69% while 

the largest ACC lesion was 92%. 

 

2.3.2. Behavioral Analyses 

2.3.2.1 Conditioning.  Repeated measures ANOVA showed a main effect of session 

(F (7, 133) = 41.925, P = .000) in the rate of CRs displayed which was indicative of 

the learning acquisition (fig. 4A). There was no main effect of group (F (1, 19) = .840, 

P = .371) or session by group interaction effect (F (7, 133) = .257, P = .969). There 

was also a main effect of session in the response latencies displayed by both groups 

(F(7, 133) = 6.791, P = .000; fig. 4B).  No main effect of group (F(1, 19) = 1.819, P = 

.193) or session by group interaction effect (F(7, 133) = .440, P = .875) was 

apparent.  

 

2.3.2.2. Postoperative conditioning. There was a main effect of session (F (1, 19) = 

4.768, P = 0.042) but no significant session by group interaction effect (F (1, 19) = 

3.055, P = 0.097) or main group effect (F (1, 19) = 0.002, P = 0.965) was evident 
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Figure 4.  Performance summary of Sham versus ACC groups during conditioning. Line 

graphs showing the (A) rate of conditioned responses and (B) response latencies displayed 

by the sham (n=8) and ACC (n=13) groups (mean ± SEM). Black diamonds with solid lines 

illustrate the performance displayed by the sham group in each session while gray squares 

with broken lines illustrate that displayed by the ACC group. Analyses of the performance 

and response latencies showed a significant main effect of session indicating learning 

acquisition. 
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Figure 5.  Conditioning sessions before and after surgery. Bar graphs showing the average 

performance displayed by the sham and ACC groups (mean ± SEM) on the last conditioning 

session before- and the conditioning session after surgery. Solid gray bars illustrate the 

performance of the sham while diagonally striped gray bars illustrate the performance of the 

ACC group. (A) There was no significant difference between the sham and ACC groups in 

the CRs displayed on pre-operative session 8 and post-operative session 9. (B) However, 

analysis of the response latencies showed a significant group by session interaction effect 
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indicating that the lesioned animals responded slower than their regular pre-lesion response 

time to the CS even prior to extinction training.   

when CRs displayed by the two groups during the last conditioning session and the 

postoperative conditioning session were compared (Fig. 5A). Interestingly, there was 

a significant session by group interaction effect when the response latencies of the 

two groups were compared (F(1, 19) = 7.555, P = .013; Fig. 5B). This was from the 

lesioned group responding slower during the post-operative conditioning session 

compared to their performance on the last conditioning session. No main effect of 

session (F(1, 19) = 3.949, P = .062) or group (F(1, 19) = .015, P = .905) was found. 

This indicated that the disruptive effect of the lesion was relatively minor so that it did 

not render the lesioned group to respond slower than the sham group. 

 

2.3.2.3. Extinction learning. There was no session by group interaction effect (F (7, 

133) = 1.925, P = 0.070) but main effects of session (F (7, 133) = 49.465, P = 0.000) 

and group (F (1, 19) = 5.190, P = 0.034) were evident. Gerbils with lesions of the 

ACC displayed less CRs compared to the sham group although it did not necessarily 

facilitate a faster extinction learning rate (Fig. 6A). 

 

Analysis of response latencies showed no main effect of session (F (7, 133) = 1.219, 

P = .297) or session by group interaction effect (F (1, 133) = 1.038, P = .408).  There 

also was no significant difference between the groups in their response latencies (F 

(1, 19) = 3.981, P = .061). However, considering that the difference approached 

significance, it reflects a tendency of the lesioned group to respond slower than the 

sham group (Fig. 6B).  This tendency of the lesioned animals to respond slower leads 

to the question of whether it is possible that the lesioned animals jumped more in 

response to the CS, but may not have been apparent due to the delay in response by 

a few milliseconds after CS offset. To determine this, the jumps an animal displayed  
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Figure 6.  Performance summary of Sham versus ACC Groups during extinction training. 

Line graphs with black diamonds and solid connecting lines depict the performance of the 

sham group while line graphs with gray squares and broken lines depict the performance of 

the lesioned group. (A) Lesioned animals displayed better performance (rate of CRs) than 

the sham group as indicated by a significant main group effect in the CRs but did not 

necessarily learned faster as indicated by a lack of significant interaction effect between the 
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two groups. (B) The difference in their response latencies approached significance (p = 

0.061) indicating that the lesioned animals had a tendency to respond slower than the sham. 
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Figure 7. Jump summary of the Sham and ACC groups upon CS presentation and within CS 

onset up to 0.5s after CS offset. Bars with solid black or gray color represent the CRs 

displayed by the sham and lesioned group, respectively. Bars with black or gray diagonal 

stripes represent the jumps displayed by the sham and lesioned groups respectively within 

CS onset up to 0.5s after CS offset. Performance displayed by the lesioned group remained 

significantly weaker than the sham group even when comparing the recorded jump response 

0.5s after CS offset. 

 

upon CS presentation plus 500 milliseconds after tone offset were compared 

between groups. There was no significant difference between the CRs and the jumps 

displayed by the lesion group recorded up to 500 milliseconds after tone offset (F(1, 

24 = 0.188, P = 0.668).  There was a significant main effect of session (F(7, 133) = 

51.954, P = 0.00) and group (F(1,19 = 4.989, P = 0.038) just like the group 
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comparison of the CRs indicating that the jump displayed by the lesioned group 

remained significantly less than the sham group (Fig. 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Conditioned responses displayed during the first five trials of all the extinction 

training sessions as well as during the retention test for spontaneous recovery and 

reinstatement.  Line graph with black diamonds and solid connecting lines represents the 

performance (number of CRs) of the sham group while line graph with gray squares and 

broken lines represents the performance of the lesioned group. A main effect of session 

during extinction training indicated that improvement in performance between sessions 

occurred even at the start of the following session. There was a significant difference 

between the groups during Rei seemingly indicating greater contextual conditioning in the 

sham group compared to the lesioned group.  

 

Analysis of the first five trials of all the sessions allows us insight into whether the 

animals are able to maintain the benefit of the previous training session despite the 

passage of time that occurs between sessions. A main effect of session (F (7, 133) = 

34.625, P=.000) as well as group (F (1, 19) = 6.120, P=.023) was evident indicating 
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that both groups responded less and less as the training progressed; and that the 

lesioned group responded less than the sham group during the first five trials (Fig. 8). 

Both groups are able to benefit from the previous training as reflected in a decrease 

in number of jumps during the first five trials of the following extinction session.  

 

Performance evaluation during the 60 trials of the first extinction session allows a 

comparative analysis of the behavioral acquisition between the two groups. This can 

reveal whether the responses on the first day of extinction learning taper off or 

otherwise. The 60 trials of the first extinction session were grouped into four blocks of 

15 trials to allow for a within session analysis (Fig. 9). Repeated measures ANOVA 

showed a main effect of block (F(3,57) = 16.400, P = .000) and a significant block by 

group interaction effect (F(3, 57) = 15.057, P = .030). These indicate a decrease in 

the response of both groups to the CS presentation, but with the lesioned group 

learning faster than the sham group.  

 

 

 

 

 

 

 

 

 

 
Figure 9. Conditioned responses in blocks of fifteen trials displayed during the first extinction 

training session. Line graph with black diamonds and solid connecting lines represents the 

performance of the sham group while line graph with gray squares and broken lines 
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represents the performance of the lesioned group. Lesioned animals learned faster than the 

sham group during the first extinction session as indicated by a significant block by group 

interaction effect. 

2.3.2.4. Spontaneous recovery.  There was a significant session by group interaction 

effect (F (1, 19) = 6.253, P = 0.022) when retrieval of extinction memory of the gerbils 

was tested seven days after the last extinction session (Fig. 10). Tests of within-

subjects effects showed a main effect of session (F (1, 19) = 5.529, P = .030) while 

tests of between-subjects effects showed a main effect of group (F (1, 19) = 5.184, P 

= .035). While the sham group showed SR when the temporal context changed, the 

lesioned group showed a lack of SR of the extinguished CRs despite the passage of 

time. There was no significant difference between groups in their response latencies 

(F(1, 19) = .084, P = .775) 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Conditioned responses during SR. Solid gray bars represent the performance of 

the sham group while marbled gray bars represent the performance of the lesioned group. 

Lesioned animals displayed significantly less return of extinguished CRs compared to the 

sham animals. 
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2.3.2.5. Reinstatement. Conditioned responding displayed by the ACC group was 

significantly less than that displayed by the Sham group (t (19) = 2.444, p = 0.024) 

when tested after exposure to shock (US) alone in the shuttlebox  (Fig. 11). There 

was no significant difference in the latency to respond (t (19) = -.186, p = 0.855).  

  

 

 

 

 

 

 

 

 

 

 

Figure 11. Conditioned responses during Reinstatement. Solid gray bar represent the score 

of the sham group while densely spotted gray bar represent the score of the lesioned group. 

Lesioned animals displayed significantly less return of extinguished CRs compared to the 

sham animals. 

 

The ACC lesioned group displayed significantly less CRs than the sham group (t (19) 

= 2.227, p = .038) during the first five trials of this session (Fig. 12) suggesting that 

the contextual conditioning of the lesioned group with the shock alone exposure in 

the shuttlebox was weak. Paired t-test analysis of the CRs displayed by the ACC 

group during the test of SR and reinstatement showed a significant difference (t (13) 

= -4.882, p= 0.020) indicating that the lesioned animals still conditioned. 
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Figure 12. Conditioned responses in blocks of 5 trials during the reinstatement session. Line 

graph with black diamonds and solid connecting lines represent the performance of the sham 

group while gray squares with broken connecting lines represent the performance of the 

lesioned group. Significant main effect of group indicated that the lesioned animals displayed 

less return of extinguished CRs than the sham animals.  

 

2.4. Conclusion 
 
Present findings show that lesions of the ACC lead to better expression of the 

extinction memory of an active avoidance behavior and its subsequent retrieval in 

tests of SR and reinstatement. Earlier lesion and imaging studies have shown 

involvement of the ACC in behavioral flexibility when there is a change in the 

relevance of existing information such as during extinction learning (Barrett and 

Armony, 2009; Bussey et al, 1996; Griffin and Berry, 2004; Yaguez et al., 2005), 

switching strategies (Ragozzino et al, 1999) as well as reversal learning (Ragozzino 

and Rozman, 2007). Based on previous electrophysiological studies, Gabriel (1993) 

has proposed that the ACC is part of the recency network that updates the meaning 

of current CS-US relationships. Thus, ablation of the ACC should lead to a deficit in 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12

Blocked Trials of 5

N
um

be
r o

f C
R

s

Sham

ACC



 37

the acquisition of extinction learning. Results of the present study were unexpected 

since these indicate that under certain conditions, ACC inactivation could lead to 

better performance instead of a deficit during learning. Similarly, this was evident as 

well when ACC-lesioned rats learned faster in appetitive conditioning tasks (Bussey 

et al., 1996; Peretz, 1960).  Given that the ACC has been implicated in assigning 

emotional valence and motivational assessment (Devinsky, 1995), disruption of the 

ACC may have attenuated the negative motivational salience of the CS so that in the 

absence of the US, the lesioned group displayed less CRs compared to the sham 

group. That the lesioned group also showed less CRs during the postoperative 

conditioning session compared to how the group performed prior to surgery may also 

reflect this attenuation which is further supported by an increase in response latency 

during this session and a tendency to respond slower during extinction training. The 

attenuated salience may be related to a reduced arousal level which is consistent 

with Critchley’s (2004) suggestion of a role of the ACC in generating arousal.  

Despite the attenuated display of CRs, the apparent progressive decline in the 

expression of CRs during extinction training suggests that the lesioned animals were 

still capable of learning. This was evident as well when the lesioned animals showed 

contextual conditioning, i.e., the lesioned animals jumped significantly more during 

the reinstatement test than they did when tested for SR. Thus, while better 

expression of extinction learning during training and retention tests may be mediated 

by an attenuated level of arousal, it would not be due to a general anxiolytic effect 

since the lesioned animals still displayed a capacity to learn.  

 

Consistent with earlier implication of ACC involvement during the early phase of 

learning, the lesioned animals displayed faster learning rate only during the first 

extinction session compared to the sham group. Better performance displayed by the 
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lesioned group compared to the sham even though there was no difference in their 

overall learning rate may have come from this initial faster learning rate revealed by 

the trial by trial analysis. This is in line with previous electrophysiological implications 

of the ACC in the acquisition of the CS-US relationship (Gabriel, 1993). Gabriel had 

described how neurons in the ACC would display rapid development of discriminative 

training-induced activity (TIA; greater firing to CS+ than to CS-) that is evident in the 

first conditioning session and a rapid decline of excitatory TIA (greater firing of CS 

during conditioning compared to its pretraining activity) early in training. The initial 

facilitation of learning during the first extinction session may reflect an initial influence 

of ACC processing (that otherwise would be there) on autonomic modulation that 

corresponds with the acquisition of the new meaning of the CS. 

 

Lesioned animals did not show recovery in the expression of extinguished CRs when 

given an extinction test session seven days after the last one suggesting a lack of 

perception of the passage of time. Spontaneous recovery is defined as restoration, 

albeit partial, of the extinguished CRs evident in a delayed subsequent testing 

(Rescorla, 2004). Significance of the phenomenon of SR may bear survival value 

when an organism is back in the same precarious spatial context after a given period 

of absence during which conditions may have changed and the presentation of the 

once predictive cue then signals some inconspicuous threat that may be lurking. On 

the surface, the return of extinguished CRs with the passage of time suggests the 

decay of extinction memory, reflected by its instability with time. However, Quirk 

(2002) found that rats re-extinguish significantly faster than they extinguished on the 

first day of extinction training thereby, implying savings of extinction memory. The 

increase in CRs when an animal is tested for SR may instead be explained as a 

failure to retrieve extinction memories outside its temporal context (Bouton, 1993; 
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2004).  In the present study, the ACC-lesioned animals displayed a lack of 

spontaneous recovery indicating that the ACC is involved in processing temporal 

context which is in line with its previous implications in the temporal organization of 

behavior (Meunier et al., 1991; Sutherland et al., 1988) What is unclear however is if 

the effect reflects a role of the ACC in encoding the interval between training 

sessions so that a longer interval is recognized as a change in temporal context, or if 

the ACC is involved in the ability of an animal to sense the amount of time that has 

passed.  

 

Current finding further provides additional support that extinction memory does not 

dissipate over time and that an otherwise intact ACC mediates the expression of 

extinguished CRs with the passage of time. While one may argue that the lack of 

responding may instead represent the decay of the CS-US memory representation 

induced by lesions of the ACC, return of the extinguished CRs in the reinstatement 

test although weak proves otherwise. Existing parallel memory representations of 

CS-US and CS-no US associations may thus be inferred from the finding. Notably, 

the lack of SR may go beyond a mere inability to sense the passage of time. It may 

represent another facet of the ACC such as a possible gating role on which 

associative memory, whether the primary or the recent association of CS, is 

selectively expressed when the context has changed.  

 

In a reinstatement test, US reexposure with the relevant spatial context bestows upon 

it an excitatory property that then produces reinstatement (Bouton, 2004) as the 

conditioned strength of the context summates with that of the CS (Bouton and Bolles, 

1979). Reinstatement was evident in the sham group in the present study as 

expected, but was attenuated in the ACC group which could be explained in terms of 
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ACC involvement in affective processing (Bush et al., 2000; Devinsky et al., 1995; 

Vogt et al., 1992). Although the lesioned group displayed significantly less CRs than 

the sham, it was evident nonetheless that the group still experienced contextual 

conditioning as revealed by their display of more CRs during the first five trials of the 

Rei test compared to the first five trials of the SR test. Malin and McGaugh (2006) 

found that infusion of a muscarinic agonist into the ACC after footshock training 

enhanced retention latencies in rats in an inhibitory avoidance task. A damaged ACC 

would presumably then compromise information processing of the US (footshock) 

and the context (the occasion-setter). Without an intact ACC that assigns emotional 

valence to stimuli and assesses motivational information (Devinsky et al., 1995), the 

reinstating footshocks would fail to attach motivational significance to the context, 

rendering a lesioned animal less likely to respond to a CS once predictive of danger. 

This implies that the ACC, with its modulatory influence on the autonomic nervous 

system (Matthews et al., 2004), may play a role in strengthening the association 

between the footshock and context representation.  
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Chapter 3  

Effects of Anterior Cingulate Cortical Lesions on 

Extinction, Spontaneous Recovery, Renewal and 

Reinstatement of Discriminative Avoidance Behavior 
 

3.1. Introduction 

Tasks are better performed when attention is allocated to relevant cues which at 

times can be characteristically similar but may behaviorally require competing 

responses such as a green traffic light that signals a go response versus a red traffic 

light that signals a no-go response. This is attained through discrimination learning 

that trains an organism to differentially respond to cues by their association with 

reinforcement such as in a Go/No Go training paradigm. Such type of learning 

paradoxically engages opposing mechanisms: differentiation and unitization. 

Differentiation involves separating similar stimuli into different categories or isolating 

perceptual components psychologically fused together; while unitization involves 

creating perceptual units by grouping stimuli or combining object components that co-

occur (Goldstone, 2004). Transfer of learning may thus be gained so that what is 

learned in one context may be transferred to another; from simple tasks such as 

applying the basic concept of using the dictionary when using the phonebook, to 

more complex tasks such as when special operations forces are trained to distinguish 

between innocent civilians versus the hostiles and their undercover cohorts.  

 

The ability to distinguish and selectively respond to cues would suggest the need for 

error detection and conflict monitoring in information processing which the ACC has 

both been implicated in (Botvinick et al., 2001, Braver et al, 2001; Carter et al., 1998; 
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Wang et al., 2005). In an attentional set-shifting task, lesions of the ACC in rats have 

produced deficits in intradimensional shifting, i.e., shifting attention between stimuli of 

the same perceptual dimension that is associated with reward (Ng et al., 2007).  

Electrophysiological studies have demonstrated differential training-related activity in 

the ACC of rabbits in response to presentation of CS+ or CS- in a running wheel 

avoidance task (Foster et al., 1980; Gabriel, 1993); and that lesions of the ACC 

disrupted extinction-related inhibition of neural activity in the hippocampus underlying 

conditioned jaw movement (Griffin and Berry, 2004). Moreover, it has been shown 

that inactivation of the ACC impaired reversal learning in an odor discrimination task 

and that irrelevant stimuli were more likely to interfere in the performance of an 

organism (Ragozzino and Rozman, 2007). These indicate that the ACC is engaged 

when distinguishing the meaning or significance of multiple stimuli and prepotent 

responses need to be overruled. Thus in the present experiment, the role of the ACC 

is investigated in the extinction of competing conditioned avoidance behavior.   

 

Unlike most Go/No go paradigm, the No go trials in the current paradigm are 

reinforced such that an animal is required to make a passive response such that an 

animal will receive a footshock if it would display a Go response in such a trial (false 

alarm in signal detection theory). The CS presented in No go trials does not serve as 

a safety signal, i.e., an absence of an aversive reinforcement regardless if an animal 

goes over the hurdle or stays put. Thus to solve the discriminative task, an animal 

must learn to discriminate between two CSs of different tone frequency and form 

associations as to which avoidance behavior, excitatory or inhibitory, is required to 

avoid the shock outcome. Animals in the present discriminative avoidance paradigm 

therefore concurrently learned active and passive avoidance behaviors that elicit 

competing responses, the monitoring of which has been suggested to involve the 
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ACC (Posner and Digirolamo, 1998). Although lesions of the ACC in the earlier study 

(Chapter 2) did not lead to behavioral deficits, we have hypothesized that the same 

lesions would disrupt extinction of a more challenging avoidance task that required 

an animal to discriminate between cues in order to determine which of the competing 

response to make to avoid shock.  

 

3.2. Materials and Methods: 

3.2.1. Subjects.   Subjects were 22 male gerbils from Tumblebrook Farms, West 

Brookfield, MA (73 - 91g, 3-6 months old) fed ad libitum and individually housed in a 

temperature-controlled environment on a 12-hour light-dark cycle with the lights on 

from 7 a.m. to 7 p.m. The animals were divided into a sham group of 10, and an ACC 

lesion group of 12 gerbils.  

 

3.2.2. Surgical procedure.   This is similar to Chapter 2, so please refer to subsection 

2.2.2. 

 

3.2.3. Apparatus.  This is similar to Chapter 2, so please refer to subsection 2.2.3. 

 

3.2.4. Behavioral Procedure.  Gerbils were trained between 1:00 – 7:00 pm. Figure 

13a-b illustrate the schematic summary and the complete timeline of the training 

procedure. There were eight conditioning sessions that included sixty trials each. The 

sixty trials consisted of thirty Go trials and thirty No Go trials which are presented 

according to a randomized schedule of Gellerman (1933). A session lasted for 25 

minutes and was done one per day. A gerbil was trained to discriminate between two 

tones. A high tone served as a conditioned stimulus (CS) that signaled the 

occurrence of the delivery of electric shock, the unconditioned stimulus (US), if a 
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gerbil did not go over the hurdle within a certain time window (Go trial). The CS was a 

series of beeping pure tones (4 kHz, 65 dB, 200 ms per beep with a 300 ms interval 

in between beeps) that would last for six seconds upon which a 4 s footshock (600 

μA) would be given in the event of a lack of the required response from the animal. 

Termination of the CS occurred if a gerbil went over the hurdle. A second tone (1 

kHz, 65 dB, 200 ms per beep with a 300 ms interval in between beeps) that served 

as another CS required a gerbil to withhold the response of going over the hurdle (No 

Go trial). Otherwise if a gerbil jumps during this trial (false alarm), shock would be 

presented for 1.5 ms. Intertrial interval was 16 to 20 seconds. The tone assignment of 

the two CSs was counterbalanced with the respective required responses so that in 

approximately half of either the sham or lesion group, gerbils were trained to go over 

the hurdle in response to a low tone and to stay put when a high tone was presented. 

Three days after the last conditioning session, a gerbil was given either a sham or 

lesion surgery in the ACC. Recovery period was seven to ten days after which an 

animal was first given a postoperative conditioning session to ensure that the 

memory of the CS-US association remained intact. Extinction training commenced 

the following day where a gerbil was given a session of 60 trials of the CS 

presentation without the US. A gerbil went through extinction training one session a 

day for eight days. Seven days after the last extinction session, gerbils were tested 

for spontaneous recovery in one session of 60 presentations of CS alone. Gerbils 

were tested for renewal the following day, again in a session of 60 CS presentations. 

During the renewal session, the shuttlebox where a gerbil was tested, was turned 90° 

from its usual location, and the sides of the box were covered with white sheets of 

paper that had blue pasted geometric figures. Animals were then exposed to a 

presentation of US (shock) alone for one session (60 trials) the day after. The 

following day, the animals were tested for reinstatement of the extinguished CRs.   
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Figure 13a. Schematic diagram depicting the different phases of the behavioral training. 

Gerbils were trained for eight days to respond, by going over a hurdle, to a tone that predicts 

the delivery of a footshock. Three days after the last conditioning session, either sham or 

lesion surgeries were done on the animals. After a recovery period of about seven to ten 

days, animals were given a postoperative conditioning session to make sure the memory 

representation of the CS-US association remained intact. The following day, extinction 

training commenced and went on for a total of eight days where the gerbils were presented 

with just the tone in the same context used during the conditioning sessions. Seven days 

after the last extinction session, the animals were given another extinction session to test for 

spontaneous recovery of the extinguished CR. Renewal test was done the next day. The 
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animals were then given presentations of shock alone followed by a test for reinstatement 

the following day.     

 

 

 

Figure 13b. Schematic diagram depicting the complete timeline of the training. The 

timetable illustrates the duration of the different phases and the gaps (number of days) in 

between which altogether takes thirty seven days from start to finish.  
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3.2.5. Histology.   After the behavioral training, the gerbils were decapitated and the 

brains were taken out and frozen in liquid nitrogen (Linde, Germany) for 10 minutes. 

All brains were stored in a freezer at -80° Celsius. The brains were sliced into coronal 

sections of 40 μm thick which were stained with thionin, a Nissl stain for cell bodies to 

determine the extent of the ibotenic acid lesions. To quantify the size of lesion 

damage, a grid transparency was used and the number of grid squares covering the 

damaged portion of the ACC was divided by the number of squares of the intact 

targeted lesion area multiplied by 100. The targeted ACC areas were cingulate cortex 

area 1 and 2. 

 

3.2.6. Data Analysis. Analyses were done using the statistical program Statistical 

Package for the Social Sciences (SPSS) version 16.0, USA. The rate of conditioned 

discriminative responses during conditioning or extinction training sessions was 

analyzed by using general linear model repeated measures ANOVA. SR, Ren and 

Rei tests were analyzed using univariate analysis. d value is calculated by 

subtracting the number of incorrect responses during No Go trials from the correct 

responses during the Go trials and then multiplied by a 100.  

 
3.3. Results 
 
3.3.1. Histological Analysis  Targeted lesion area of the ACC was from AP +1.1 mm 

to –0.4 mm from bregma according to the gerbil atlas (Loskota et al., 1973). Bilateral 

lesions in the ACC were mainly on the Cg1 and Cg2 area with minimal damage to M2 

in some gerbil brains. There were five animals that had lesions extending more 

anterior than the intended area but still within Cg1. Two of those animals had been 

trained with high tone as CSgo while the other three with low tone as CSgo. The  
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Figure 14. Coronal sections of the lesion area. Representative photographs of ACC 

lesions (left panel) with the corresponding schematic diagrams on the right, depicting 

ACC lesion placements at, from top to bottom: AP +1.1 mm, +0.1 mm and -0.4 mm from 

bregma. Gray-shaded areas represent the extent of damage in the gerbil brain with the 

smallest lesion damage while areas with hatched bars plus the gray-shaded areas represent 

the gerbil brain with the largest lesion damage.  
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extent of damage measured in the gerbil brain with the smallest ACC lesion was 66% 

while the largest ACC lesion was 93% (Fig. 14). 

 
3.3.2. Behavioral Analyses. Analyses of the jumps during the Go trials and the No Go 

trials showed no significant tone or group effects in the ANOVA but a session effect 

during the conditioning Go trials (F (7, 12) = 74.966, P = .000) and extinction training 

Go trials  (F (7, 12) = 7.885, P = .001) as expected. The following results are the 

analyses of the discriminative responses (d value) displayed by the groups.  

 
3.3.2.1. Conditioning. As expected, the only significant difference found was a main 

effect of session (F (7, 12) = 54.052, P = .000; Fig.15) indicating the acquisition of 

learning. There was no significant interaction effect of session by group (F (7, 12) = 

.362, P = .908) session by tone (F (7, 12) = 1.036, P = .456) or session by group by 

tone (F (7, 12) = .918, P = .525). There was no main effect of group (F (1, 18) = .042, 

P = .841) or tone (F (1, 18) = .489, P = .493) and no significant group by tone 

interaction effect (F (1, 18) = .069, P = .796).  

 

3.3.2.2. Postoperative Conditioning. There was a main effect of session (F (1, 18) = 

9.971, P = .005) but no interaction effect of session by group (F (1, 18) = .007, P = 

.935), session by tone (F (1, 18) = 0, P = .985) or session by group by tone (F (1, 18) 

= 1.161, P = .295) when performance on the last conditioning session and the 

postoperative session between the ACC and Sham groups were compared (Fig. 15). 

This may reflect a transient side effect of the surgery on the performance of the 

animals. There was no main effect of group (F (1, 18) = .210, P = .652) or tone (F (1, 

18) = .007, P = .936) or group by tone interaction effect (F (1, 18) = .397, P = .537). 
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Figure 15. Group performance summary according to tone frequency used as CSgo and 

CSno- go during conditioning. Data points with black geometric shapes and lines represent 

the scores of the Sham subgroups (n=5 for each subgroup) while points with gray geometric 

shapes and lines represent the ACC subgroups (n=6 for each subgroup). Data points with 

solid lines represent scores of gerbils trained with high tone as CSgo and low tone as CSno-

go and vice versa for points with broken lines. Only a main effect of session was found 

during conditioning indicating the acquisition of learning. There was also a main effect of 

session when performance during the last conditioning session (C8) and the postoperative 

session (PO9) were compared seemingly indicating a transient effect of the surgery on the 

performance of the animals. 

 

 

3.3.2.3. Extinction Learning. Analysis of extinction learning using repeated measures 

ANOVA showed a significant main session effect (F (7, 12) = 8.295, P = .001) and a 

session by group by tone interaction effect (F (7, 12) = 3.613, P = .025). There was 

no session by group (F (7, 12) = .717, P = .660) or session by tone effect (F (7, 12) = 

2.009, P = .138) or group by tone effect (F (1, 18) = 1.882, P = .187). There was no 

main effect of group (F (1, 18) = .010, P = .920) or tone (F (1, 18) = .004, P = .948) 
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indicating that by themselves, the lesions or the type of tone frequency used as CSgo 

or CSno-go did not have an effect on extinction learning. However, the effect of the 

lesion depends on the tone frequency used.  As evident from the graph (Fig. 16), 

lesioned animals trained with high tone as CSgo displayed less discriminative 

responses on average during extinction training than their Sham counterpart did. 

Lesioned animals trained with low tone as CSgo displayed more discriminative 

responses on average compared to their Sham counterpart.  

 

-10

0

10

20

30

40

50

60

70

80

90

100

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 Ex 7 Ex 8

Extinction Session

d
 v

al
ue

 (%
) Sham Hi

ACC Hi
Sham Lo
ACC Lo

 
Figure 16. Group performance summary according to tone frequency used as CSgo and 

CSno-go during extinction training. Data points with black geometric shapes and lines 

represent the scores of the Sham subgroups while points with gray geometric shapes and 

lines represent the ACC subgroups. Data points with solid lines represent scores of gerbils 

trained with high tone as CSgo and low tone as CSno-go and vice versa for points with 

broken lines. Significant session by group by tone interaction effect indicated that 

performance of the groups was affected by the tone assignment each had.  
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3.3.2.4. Spontaneous Recovery. Univariate analysis showed no significant group by 

tone interaction effect (F (1, 18) = .367, P= .552) but a significant main effect of group 

(F (1, 18) = 5.346, P = .033) and of tone (F (1, 18) = 4.777, P= .042) when gerbils 

were tested seven days after the last extinction session. The ACC group displayed 

less extinguished discriminative CRs compared to the sham group regardless if they 

were either conditioned to jump when the high or low tone is presented (Fig. 17). This 

effect is consistent with the ACC lesion effect on the spontaneous recovery of an 

extinguished active avoidance response in a detection task. Interestingly, ACC 

animals conditioned to jump when a low tone is presented displayed more 

extinguished discriminative response compared to their high tone counterpart. 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 17. Discriminative CRs of ACC versus Sham groups during the test for spontaneous 

recovery. Solid black bars represent the scores of the Sham subgroups while the two-toned 

black-gray bar represents the score of an ACC subgroup. The average score of the ACC 

high tone subgroup is less than one thus, its representative bar is not evident. Lesioned 

animals displayed significantly less return of extinguished discriminative CRs compared to 

their sham counterpart. 
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3.3.2.5 Renewal.  Univariate analysis showed a significant group by tone interaction 

effect (F (1, 18) = 7.782, P  = .012) but no main effect of either group (F (1, 18) = 

.120, P = .733) or tone (F (1, 18) = 3.859, P  = .065) when the gerbils were tested in 

a different spatial context. ACC -lesioned animals trained to jump when a high tone is 

presented showed less return of discriminative responses on average compared to 

their sham counterpart while lesioned animals that were trained to jump when a low 

tone is presented showed more discriminative responses compared to their sham 

counterpart (Fig. 18). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Discriminative CRs of ACC versus Sham groups during the test for renewal. Bars 

with black and gray diagonal stripes represent the Sham subgroups while bars with grayish 

black spots represent the ACC subgroups. There was no main effect of group nor tone but a 

group by tone interaction effect. On average, the ACC subgroup trained to jump when a high 

tone is presented responded less than its sham counterpart while the ACC subgroup trained 

to jump when a low tone is presented responded more than its sham counterpart when the 

spatial context is changed.  

Renewal

-20

0

20

40

60

80

100

Hi Lo

Tone Frequency

d
 v

al
ue

 (%
)

Sham
ACC



 54

 

3.3.2.6. Reinstatement. Univariate analysis showed a significant group by tone 

interaction effect (F (1, 18) = 9.411, P = .007) but no main effect of group (F (1, 18) = 

.002, P = .962) or tone (F (1, 18) = 3.940, P = .063) when gerbils were tested after 

being exposed to shock alone the day before. On average, ACC-lesioned animals 

that were trained to jump when the high tone is presented responded more than their 

sham counterpart while lesioned animals trained to jump when the low tone is 

presented displayed more extinguished discriminative behavior than their sham 

counterpart (Fig. 19). 

 

 

 

 

 

 

 

 

 
 
Figure 19. Discriminative CRs of ACC versus Sham groups during the reinstatement test. 

Bars with black and gray diagonal stripes represent the score of the Sham subgroups while 

bars with light gray spots represent the scores of the ACC subgroups. There was a group by 

tone interaction effect. On average, the ACC subgroup trained to jump when a high tone is 

presented responded less than its Sham counterpart while the ACC subgroup trained to jump 

when a low tone is presented responded more than its Sham counterpart.  
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3.4. Conclusion 

Apparently, lesions of the ACC have a modulatory effect on the discriminative 

responses displayed by the animals depending on the type of frequency tone used 

as CSgo and CSnogo during concurrent training of active and passive avoidance.  

This was evident during extinction training and subsequent retrieval tests. To our 

knowledge, this is the first time that lesions of the ACC displayed such an effect on 

the expression of extinguished discriminative behavior based on the tone frequency 

type used as a signal for an aversive event.  Relevant literature that could help 

explain such results are lacking and thus, the simplest explanation could be that it 

implies a role of the ACC in modulating the acquired motivational property of a 

sensory cue to reduce irrelevant responding. It has been noted that unlike high 

frequency sounds that attenuate with distance, low frequency sounds travel far 

(Morgan and Hanson-Abbott; 2008) so it is possible that motivational salience of a 

low frequency tone may need to be modulated so that an organism is less likely to 

react to it inappropriately. Considering that its source may come from a distance, the 

probability of an immediate threat would most likely be low unlike when a high tone 

presentation is perceived.  After an extended training such as in avoidance learning, 

an animal would theoretically display an S-R strategy to solve a task (Packard and 

McGaugh, 1996). This would mean that once an animal has been well-trained to 

respond to a CS, its behavior would tend to be more rigid and insensitive to changes 

in the reinforcer status. So that when the CS is presented, an animal would be more 

likely to be governed by its habit of responding and thus be more prone to irrelevant 

responding if left unmodulated by a parallel but competing cognitive system. It has 

been previously suggested in a CVD study that in the absence of the ACC, an S-R 

strategy could preside over a more purposeful stimulus-reinforcement strategy 

(Bussey et al., 1996) which the ACC has been implicated (Bussey et al., 1996; 
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Bussey et al., 1997, Schweimer and Hauber, 2005) in guiding behavior. In the 

present experiment, the action tendency of a lesioned animal to ‘flee’ upon a low tone 

presentation was specifically training-related since an animal trained with a low tone 

to stay did not display the same propensity for a flight response.  This implication of 

the ACC modulating the acquired salience with regards to a physical property of a 

sensory cue is a degree or so away from implications of previous electrophysiological 

findings that showed increased training-induced activity (TIA) in the ACC when the 

duration of a CS+ used in a previous training was shortened from 500 ms to 200 ms 

compared to the TIA in response to a 5000 ms CS (Gabriel, 1993). The author has 

explained the increase in TIA as a compensatory mechanism for a possible loss of 

salience due to its diminished duration. Current and latter findings when taken 

together imply an involvement of the ACC in processing the salience of a CS with 

consideration to the physical properties of the CS and how these properties can 

interact with the expression of the associated behavior.  

 

Another explanation could be that association of high frequency sounds with a flight 

response could be more biologically relevant to the survival of gerbils, thus inherent 

neural wiring are organized so that responsivity to low frequency sounds are 

selectively suppressed presumably by a system that involves the ACC. Evolutionary 

adaptation endows organisms with inherent behavioral predispositions that are 

compatible with their natural habitat, reflective of how they live. For example, 

comparative studies have found that marmosets are more likely to discount rewards 

spatially compared to tamarins who are more likely to discount rewards temporally 

(Stevens et al., 2005a, 2005b). This was explained in terms of the appropriate 

behavioral strategies adapted by the species that support the foraging opportunities 

afforded by their environment. Marmosets subsist on a spatially localized resource 
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that is replenished at regular intervals while tamarins feed on insects that are 

spatially distributed. Thus similarly, it is then possible that the present results may 

reflect biological adaptations as far as the efficiency in how gerbils respond to sounds 

that signal danger. In their natural habitat, high frequency sounds may have come to 

serve as cues for a flight response, thus a behavioral predisposition to do so may 

have developed accordingly. The interaction effect found during the renewal and 

reinstatement tests seem to allude to this. While the ACC trained with low tone as 

CSgo displayed more discriminative CRs than its sham counterpart as well as its 

high-tone counterpart, it is remarkable how the sham counterpart displayed negative 

discriminative scores during these tests.  This means that the sham group trained 

with low tone as CSgo jumped more in response to the high- than to the low tone. 

When the context has become ambiguous such that some unfamiliar elements have 

been introduced to the situation, the performance of the sham-low group may reflect 

a competition between a propensity to ‘flee’ when a high tone is presented and its 

conditioned behavior to ‘flee’ when a low tone is presented. The behavioral 

predisposition wins since the conditioned behavior to ‘flee’ when a low tone is 

presented has not been well-trained yet in a renewal or reinstatement context. This 

effect seems to occur when there is an obvious change in context and insensitive to 

the passage of time with time being an abstract concept which may be why the test 

for SR did not yield the same outcome. 

 

Consistent with the detection experiment, lesioned animals in the present study 

showed significantly less return of extinguished (discriminative) CRs compared to the 

Sham despite the passage of time when tested for SR. This lends further support to a 

role of the ACC in the expression of extinguished CRs when temporal context has 

changed. It is rather curious to note that whereas the lesioned animals displayed 
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significantly less discriminative CRs during SR, this effect was not evident during Ren 

or Rei, thereby reflecting a diverging mechanism between SR and Ren as well as 

Rei. Despite that all three phenomena are variants of contextual change, the effect of 

a change in temporal context in this case, is different from that produced by a change 

in spatial context or by Rei. The weak return of extinguished CRs displayed here by 

the lesioned animals that was not only found in the first experiment but in another 

ACC study that is yet to be completed may be representative of a vital involvement of 

the ACC in the expression of extinguished CRs when temporal context has changed. 

By comparison, the lesion effect found during Ren or Rei might instead reflect an 

incidental ACC function.  
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Chapter 4 
General Discussion 

 

4.1. The role of the ACC in extinction learning  

4.1.1. Implications of present findings: Involvement of the ACC in the extinction of 

avoidance behavior 

Current findings suggest a role of the ACC in regulating the expression of extinction 

memory and its retrieval by modulating the motivational salience of the conditional 

stimuli. Though the two experiments shared a common lesion technique and 

behavioral paradigm, the similarities and differences of the results may illustrate the 

nuances of ACC functioning in the expression of extinction memory of avoidance 

behavior. Both experiments showed a lack of perseverative behavior that otherwise 

were apparent in other extinction studies and both have consistently demonstrated 

ACC involvement in processing the passage of time as a contextual cue. However, 

though neither showed lesion effects of perseverative behavior, the lesion produced 

differential effects during extinction learning and the subsequent retrieval of extinction 

memory. In the extinction of a simple active avoidance behavior, the results showed 

that without the ACC, expression of behavior deviates from the norm in the negative 

direction, i.e., the CRs were less than that displayed by the intact animals. 

Performance of the lesioned animals appeared to not have been weighted by 

expectancies derived from the previous experience of the animals with the initial CS-

US association.  Lesioned animals seemed to display a lack of regard for the risk or 

probability of being shocked. On the other hand, extinction performance of the 

lesioned animals during extinction of discriminative avoidance responses was 

comparable to that of the sham animals. It thus cannot be said that ACC lesions 
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generally produce diminished drive or emotionality that becomes evident during 

extinction of avoidance behavior. In the extinction of discriminative avoidance 

behavior using tone frequencies as auditory cues, disruption of the ACC made 

apparent the differential influence of tone frequency assignment on extinction 

learning and its memory retrieval during renewal and reinstatement tests. The results 

of both experiments when taken together indicate a role of the ACC in processing the 

motivational salience of a CS during extinction of avoidance behavior which carries 

over to retrieval of its memory when the context has changed. Disruption of the ACC 

did not lead to any cognitive deficits as at least evidenced by the capacity of the 

lesioned group to display normal learning during extinction training; or even in 

contextual conditioning which was tested during reinstatement. These results 

illustrate situations where the ACC is not critical in stimulus-reinforcement association 

and updating of CS-US contingency, both of which it has been previously implicated 

in. What remains to be clarified is how the ACC regulates CS salience.  

 

4.1.2. Implications of earlier findings: Modulatory role of the ACC in emotional 

processing and motivated behavior 

Behavioral changes in terms of emotionality have been observed in animals given 

lesions in the ACC such as tameness, loss of fear as well as aggression and even 

dysregulation of autonomic functions (Glees et al., 1950; Smith, 1945; Ward, 1948). 

However, it should be noted that Pribram and Fulton (1954) reported contradicting 

results when cingulectomy was done in their monkey study. Later study of patients 

treated with cingulotomy for intractable pain reported a role of the ACC in modulating 

emotional experience (Cohen et al., 2001). Disruption of ACC functioning decreased 

the subjective experience of chronic pain but leaving unimpaired the objective 

perception of stimulus location and intensity of the pain (Foltz and White, 1962; Hurt 
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and Ballantine, 1974). This is further supported by a rodent pain assay. Johansen 

and colleagues (2001) have found that although ACC-lesioned rats still displayed 

formalin-induced nociceptive behavior such as paw lifting, licking and flinching, they 

however displayed weak formalin-induced conditioned place avoidance.  An imaging 

study by Yaguez and colleagues (2005) has shown activation of the mid-ACC during 

a learning phase where a visual cue was paired with an aversive event, a painful 

esophageal distention. When situations are associated with expectations of 

decreased pain, Koyama and colleagues (2005) found a reduction in the subjective 

experience of pain and ACC activation. These illustrate a role of the ACC in 

regulating basic arousal and the affective processing of sensory stimuli. While 

disruption of the ACC retarded acquisition of avoidance learning (Gabriel, 1991; 

Kimble and Gostnell, 1968; McCleary, 1961; Peretz, 1960; Thomas and Slotnick, 

1962), it however facilitated appetitive conditioning (Bussey et al., 1996; Peretz, 

1960). Interestingly, food deprivation ameliorated the deleterious effect of the lesion 

on avoidance learning so that the avoidance performance of the lesioned group was 

comparable to the control group (Thomas and Slotnick, 1963). The authors explained 

that heightened activity of the animals due to hunger countered their tendency to 

freeze that then led to a normal acquisition of avoidance learning. Increased 

anticipatory responding was observed by Bussey and colleagues (1996) in their food-

restricted lesioned rats which could suggest hyperactivity. It should be noted that 

lesions of the ACC though do not necessarily produce hyperactivity or enhance its 

effects on behavior. Lack of perseverative behavior during extinction in the present 

study contradicts a notion of a general hyperactivity produced by the lesions. Instead, 

contradictory results reported by various studies of ACC lesions seem to be in line 

with the response-modulating hypothesis put forth by McCleary (1961, 1966) that 

refers to the role of the ACC in response initiation and facilitation. 
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The differential effects produced by lesions of the ACC on avoidance and appetitive 

learning may provide a clue behind the lack of perseveration found during extinction 

learning in the present study that is contrary to lesion effects on the extinction of 

approach-related behavior.  The valence of the reinforcement involved in the 

conditioning may determine the autonomic influence the ACC may exert. Buchanan 

and Powell (1993) had listed the various classes of autonomic responses 

(gastrointestinal motility, papillary dilatation and constriction, thermoregulatory and 

skin conductance response) evoked by stimulation of the ACC and medial prefrontal 

cortex (mPFC) as shown by earlier studies (Bailey and Sweet, 1940; Darrow, 1937; 

Delgado and Livingston, 1948; Kaada, 1951; Hurley-Guis and Neafsey, 1986; Smith, 

1945; Ward, 1948; Wilcott, 1968). Critchley (2009) has suggested a close 

relationship between dorsal ACC activity and enhancement of autonomic arousal. 

Based on imaging and electrocardiograph (ECG) studies that linked autonomic 

arousal to mental tasks (Critchley et al., 2003; 2005) he suggested that the ACC 

mediates changes in sympathetic arousal (including cardiovascular and 

electrodermal responses) coupled to cognitive processing. It is then plausible that 

when aversive or appetitive reinforcement is involved, ACC would enhance 

sympathetic activity to promote a ‘fight or flight’ response or parasympathetic activity 

to promote a ‘rest and digest’ state of learning. Hence when the ACC is ablated, an 

animal would experience reduced arousal during avoidance conditioning leading to 

retardation of learning and better extinction performance; and increased arousal 

leading to facilitation of learning an appetitive task and perseveration during 

extinction of the behavior. Arguably, these are very simplistic explanations of the 

contradicting effects produced by the lesions on aversive and appetitive conditioning 

together with their behavioral extinction. Reduced or increased arousal does not 
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necessarily lead to impairment or facilitation of learning. For instance, ACC-lesioned 

rats displayed normal conditioned freezing behavior when fear conditioned (Cardinal 

et al., 2003). Discrimination studies that require animals to discriminate which CS is 

associated with reward (Cardinal et al., 2002; Parkinson et al., 2000; Bussey et al., 

1997) have shown that ACC-lesioned animals displayed learning deficits by 

responding to the irrelevant stimuli (CS-) as much as the relevant stimuli (CS+). 

Cardinal and colleagues (2003) had emphasized that this was not particularly due to 

a decrease in responding to CS+. This is a rather significant detail since it clarifies 

that the learning deficit produced by the lesion is not necessarily the inability of the 

animals to learn the relevance of a (reinforced) CS but to discriminate which feature 

of presented cues is predictive of reinforcement. This leads to a question of what the 

basis is of the failure to discriminate when the ACC is disrupted considering its 

implications in cognitive and emotional processing. Does the lesion produce a failure 

to attend to the different features of a CS which facilitates discrimination? Or is it 

possible that the lesion induces an exaggeration of the motivational salience of the 

reinforced CS so that other cues that share some of its features also become imbued 

with a reinforcing quality? A similar phenomenon has been found apparent in drug 

use when Henry, a heroin addict who has been going through treatment, would crave 

to get high at the sight of any white powder even as innocuous as confectioner’s 

sugar (Friedman and Rusche, 1999).   

 

Counter to lesion effects on discrimination learning revealed in appetitive 

conditioning, the lesion-induced learning deficit found in avoidance learning was a 

matter of diminished avoidance responding and not a failure to refrain from 

responding to an irrelevant stimulus (Gabriel, 1993). While this could be easily 

interpreted as a failure to learn CS-US contingency, this could alternatively be due to 
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an induced state of ‘non-action’ that could be related to behavioral initiation which the 

ACC has been implicated in (Devinsky et al., 1995). This lesion effect is compatible 

with the freezing responses associated with fear-conditioning which could be the 

reason why there is no apparent learning deficit displayed by the ACC-lesioned rats 

when fear-conditioned (Cardinal et al., 2003). This additional piece of descriptive 

information regarding the ACC lesion effect on aversive conditioning further alludes 

to plausible antagonistic functional influence of the ACC on appetitive versus 

aversive conditioning.  

 

An enigma, which would provide the tone in planning future studies, is how ACC 

functions to regulate CS-driven motivated behavior. Expression of extinguished 

discriminative CRs in the present study even suggests that salience depending on 

the physical attributes of a cue and the behavioral significance it has earned may be 

modulated by the ACC. This was shown as well in an earlier study (Gabriel, 1993) 

that suggested ACC engagement of compensatory mechanism to promote salience 

of a behaviorally relevant cue that otherwise would not be so prominent or 

conspicuous due to its short duration. The implied role of the ACC in the modulation 

of motivational salience and regulation of motivated behavior in the present study is 

in line with similar implications in earlier studies.     

 

4.1.3. Motivation and emotions – impetuses to behavior 

Through association, neutral cues gain relevance that enables them to direct 

motivated behavior. Motivation is a driving force that directs goal-oriented behavior. 

Clark Hull explained motivation in terms of drive reduction or homeostasis that refers 

to self-regulation of biological variables within a set-point or normal range as 

explained by Cannon (1939). Sensations such as hunger, thirst and pain motivate 
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behavior that in turn reduces the drive, thereby placing an organism in an optimal 

state.  Besides sharing a common Latin root word ‘movere’ which means to move, 

motivation and emotion are closely linked in that emotions have been defined as 

precursors of motivational phenomena (Parkinson & Colman, 1995) which is 

exemplified in how reduction of fear, an emotion, drives avoidance behavior. Thus, 

an emotion can motivate you to perform behaviors based on the valence of the 

consequences such as an avoidance behavior towards something repulsive or an 

approach behavior towards something rewarding. A neutral cue that is paired with a 

consequence (reinforcement) not only serves to predict an event but subsequently 

earns an emotional quality that is associated with the event. The motivational 

salience of a cue becomes embedded into the cue so that an animal would even 

approach the cue predictive of reinforcement despite that its behavior does not 

influence the occurrence of the reinforcement as seen in autoshaping tasks (Bussey 

et al., 1997). In pathological cases, exposure to cues associated with the pleasurable 

experience of drug use could produce intense craving that has been found to activate 

the thalamo-orbital circuit and the ACC (Volkow et al., 1999). 

 

Emotion has more or less remained an abstract term as it implies a subjective 

experience that sometimes is not directly or immediately observable. Difficulties exist 

in distinguishing a raw experience of emotion versus an emotional experience that is 

colored by the context and its relative meaning to a subject. Different theories of 

emotions abound but the three more known ones include those of James-Lange, 

Cannon-Bard, and the unhyphenated Schachter and Singer.  William James (1884) 

and Carl Lange separately arrived at a similar position, now known as the James-

Lange theory, regarding how emotions arise. Their view proposes that as the 

physiological responses to an event arise, one physically reacts and then feels the 
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emotion so that one is afraid because he is running away from the bear contrary to 

the common sense view that one runs because s/he is afraid. Their view was 

countered by Walter Cannon (1927) and Philip Bard saying that the physical event 

evokes physiological responses and the emotion at the same time. Cannon (1929) 

explained that visceral reactions that constitute emotions are non-specific so that 

based on physiological responses, one cannot distinguish between fear and anger 

since both have identical visceral responses. Schachter and Singer (1962) proposed 

that with the physiological responses to the event, the feeling is labeled based on 

what is happening at the time. This was derived from their epinephrine study where 

the arousal induced by the drug led to an emotional experience (and self-

interpretation) that was congruent with the situation they were currently in: subjects 

that were in a room with an angry actor interpreted their arousal as anger while those 

who were in a room with a euphoric actor interpreted their arousal as euphoria.  A 

further support of this theory, Dutton and Aron (1974) had shown that men who were 

interviewed by an attractive woman while they were swaying on a rope bridge 

mistook the arousal they felt at the time as attraction towards the woman so that 60% 

of them called her back versus the 30% of the men who were interviewed on solid 

ground. A fourth theory, the Lazarus theory (1991) builds on the Schachter and 

Singer theory by stating that an emotion follows after the cognitive appraisal of an 

event.  

 

Despite all the different theories on what emotions are, it is at least generally agreed 

that emotions are made up of physiological responses, physical (behavioral) 

response and the subjective feeling. Biologically, emotion is defined as the complex 

psychophysiological experience of an individual's state of mind as interacting with 

biochemical (internal) and environmental (external) influences (Emotion, 2011). 
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Papez (1937) proposed an underlying neural circuit involved in the integration of 

emotion and cognition that included the hypothalamus, cingulate gyrus, cingulate 

bundle, hippocampus, fornix, mamillary bodies, mamillothalamic tract, and anterior 

thalamic nuclei. MacLean later expanded this circuit to include the limbic lobe (1949) 

and finally labeling them collectively as the limbic system (1952) which is 

 associated with learning and memory. Being part of the limbic system, the ACC has 

been considerably implicated in emotional processing. Cingulectomy done in 

primates led to diminished expression of negative emotions such as loss of 

aggression and fear (Glees, 1950; Smith, 1945; Ward, 1948). Additionally, the ACC 

has been implicated in pain processing by electrophysiology (Rios et al., 1999; Sikes 

and Vogt, 1992; Tarkka and Treede, 1993), imaging (Casey et al., 2001; Coghill et 

al., 1999; Craig et al., 1996; Davis et al., 1997; Derbyshire et al, 1998; Ploner et al., 

2002; Rainville et al. 1997; Tolle et al., Vogt et al., 1996) and inactivation studies 

done in rats (Johansen et al., 2001; Vaccarino and Melzack, 1989) as well as 

ablation done on human patients for pain relief (Ballantine et al., 1967; Corkin, 1980; 

Hurt and Ballantine 1974).  Suffice it to say that implication of the ACC in the 

subjective experience of pain and affective responses to noxious stimuli therefore 

extends to avoidance learning since the former produces the latter. A cue that signals 

a painful event would elicit affective responses that are modulated by the ACC. In the 

extinction of what has been conditioned during avoidance learning, engagement of 

the ACC would include the cognitive and the emotional updating of the available 

information considering its previous implications in both processes. But this dual 

processing attributed to the ACC would suggest an interplay between the two that in 

turn provides a challenge in characterizing its role more specifically. 
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4.2. Extinction of Avoidance Behavior – What is extinguished?  

The formation of an association during conditioning and extinction training has been 

basically defined as CS-US memory representation and inhibitory CS-US (CS-no US) 

memory representation, respectively. Simply put, presenting the CS in temporal 

proximity with the US endows the CS a predictive property that conditions an animal 

to make the appropriate response to avoid the unpleasant event. In a subsequent 

training, presenting the CS without the US leads to extinction that is evident in the 

decline of the display of CRs; thereby indicating a modification of the CS-US memory 

representation. Perhaps because of its utility in explaining avoidance behavior in 

terms of the influence of negative affect, Mowrer’s two-factor theory remains to be 

influential despite criticisms raised against it. The theory takes into account the 

interplay of two types of conditioning, Pavlovian and instrumental, that occur during 

avoidance learning which helps explain the persistence of behavioral response 

despite the absence of concrete reinforcement in successful trials. Through its 

association with an aversive event, the CS gains a motivational property as it induces 

fear. Thus the resulting avoidance behavior has been explained as being reinforced 

by a reduction of fear.  However, since successful avoidance trials keep an animal 

from experiencing fear, it becomes questionable to what extent this holds true. 

Further, the behavior may be more out of habit than fear since an animal would 

develop a more automatic S-R behavior with continued practice. This is not far-

fetched since it is compatible with the theory of parallel memory systems (White and 

McDonald, 2002) and findings that illustrated a shift from a goal-oriented cognitive 

behavioral strategy during the early phase of training towards an automatic S-R 

strategy as an animal is given extended training (Chang and Gold, 2003; Hicks, 

1964; Noblejas, 2005; Packard and McGaugh, 1996; Ritchie et al., 1950) even in 

nonmotor learning such as a verbal response selection task (Raichle et al., 1994). It 
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has been pointed out that an S-R strategy bears adaptive significance in terms of 

saving cognitive resources in procedural tasks which do not require much mental 

effort. Moreover, it serves functional efficacy when a delay in response or reaction 

time could prove fatal had one resorted to a slow(er), calculating cognitive strategy. 

For example, as one sits in the middle of an intersection waiting for his turn to turn 

left, a fast(er) S-R strategy will help a motorist take advantage of the soonest opening 

he could get to make his turn. In this case, even a few milliseconds of delay can spell 

disaster (accident) at the very worst or angry honking by fellow motorists at the very 

least.  

 

Considering the two types of conditioning involved in avoidance behavior, it is rather 

a reasonable question to ask whether both types of CRs, an emotional Pavlovian 

response (fear) and a mechanistic instrumental response (avoidance behavior) to the 

CS get extinguished in any given extinction paradigm. Dissonance between cognition 

and the related autonomic conditioning have been illustrated in a study where the 

galvanic skin response (GSR) of subjects previously conditioned to a tone-shock 

contingency, actually increased during extinction when the CS and the US were 

unpaired (see Gray, 1975). Despite that the subjects were cognizant of the unpairing, 

the related autonomic response seem to belie that. In another tone-shock 

conditioning study, a similar result was found where there was a lack of discriminative 

GSR displayed by the subjects in response to two different control stimuli, a stimulus 

that was randomly paired with the US and another that was not paired at all (Furedy 

et al., 1977). There was a difference in the performance of the subjects (as measured 

by the subject contingency index that indicates their expectation of the occurrence of 

the US) in their response to the two control stimuli yet their corresponding GSRs did 

not differ. These studies illustrate dissociation between autonomic and cognitive 
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processes that justifies examination whether the memory representation of both 

types of CRs in avoidance learning do get modified during any given extinction 

training paradigm.    

 

Standard extinction training involves the presentation of the CS without the 

subsequent US presentation versus the random pairing (unpairing) of the CS and the 

US. The omission of the US has been considered non-associative and deemed as an 

inadequate extinction procedure when addressing the extinction of Pavlovian CRs 

since the absence of the US does not allow the loss of the motivational property of 

the US (Rescorla, 1967). In a Pavlovian conditioning preparation, the strength of the 

extinction memory acquired by the omission of the US has been challenged by the 

more durable representation of the extinction memory acquired by the subsequent 

unpairing of the CS-US. Frey and Butler (1977) have shown in eyeblink conditioning 

experiments that while the former paradigm results in a faster rate of response loss 

compared to the latter during extinction training, it also brought about greater 

responding during reacquisition compared to the latter design. The result was robust 

even when the CS-US interval was increased from 400 ms during the conditioning 

phase to 1000 ms during the reacquisition phase after extinction training. The study 

demonstrated that explicit unpairing of the CS and US was more effective in 

weakening the motivational salience of the CS even when the original temporal 

interval was manipulated. However, while it may seem like a more sophisticated 

approach to weakening the initial CS-US memory representation, its applicability to 

clinical applications is for obvious ethical reasons null. Besides, it may not yield 

comparable results when the degradation of the initial CS-US memory representation 

is tested outside of the extinction training context that in a natural setting does not 

include the US. Perhaps then, this would serve as a true test of the superiority of the 
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unpairing paradigm if the same weaker display of CRs would be evident as well. In 

any case, the comparative study gives one pause for thought. The phenomenon may 

depict a distinction between true updating of the CS-US association that occurs 

during the subsequent unpairing of the CS-US versus new learning that occurs in the 

presentation of the CS alone. This may spell a difference in how each is neurally 

represented. In the unpairing extinction preparation, the original memory trace of the 

CS-US association may have been modified, hence effectively undermining the initial 

CS-US relationship resulting in weaker retrieval. In the CS-alone extinction 

preparation, a parallel CS-no US memory trace is formed that may explain the faster 

decline of CRs during extinction training compared to the unpaired design.  

 

4.3. Contextual modulation of extinction memory retrieval – but 

what about the CS? 
The power of cueing is illustrated in so many situations, sometimes even subtle in its 

assertion yet effecting an undeniable impact. For example, food intake of college 

students seated at unbussed tables (wing bones left on the table)  were less than 

those seated at bussed tables in a sports bar that served chicken wing buffet 

(Wansink and Payne, 2007).  Apparently, a representation of food consumption is 

enough to modulate the drive to eat which may reflect the activation of a personal 

memory representation of a similar experience and what it stands for. Despite being 

immersed in an ambience of dining, discrete cues that represent completion of the 

intended behavior apparently dampened the drive. A key factor that drives behavior 

is the associative valence a cue earns that is modulated by context. In extinction, 

much focus has been given to the contextual control of the expression of the 

extinction memory. The generally accepted notion of the context-dependence of 

extinction memories as the limiting factor in its retrieval has been supported by its 
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weak expression evident when extinguished responses return in tests such as 

spontaneous recovery, renewal and reinstatement.  Despite that a conditioning 

memory after extinction training also becomes context-dependent, not much attention 

has been directed towards the significance of this finding (Harris and Westbrook, 

1998; Effting and Kindt, 2007). For example, when conditioning is done in context A, 

extinction in context B, and retrieval test in context B, the CS-no US is activated 

(Herry and Garcia, 2002) despite that there is a change in temporal context that could 

impede its retrieval. This leaves room for questioning whether it means that 

information about the spatial context carries more weight than the temporal context in 

governing behavior; or if it is enough that only one cue that is familiar with the 

extinction context be present during a retention test for the extinction memory to be 

expressed. In another situation of contextual change, comparative analysis of a 

difference in a renewal design has revealed a weaker return of the extinguished CRs 

in an ABC design compared to an ABA design. As a secondary associative memory, 

if retrieval of extinction memory is indeed inferior to that of conditioning memory and 

is context-dependent, then there should not be a difference in the magnitude of the 

return of extinguished CRs during a renewal test in a specially unfamiliar context that 

an ABC design is. In still another example, the effect of reinstatement may only be 

apparent if the test is done in the same context as where the US is presented (Baker 

et al., 1991; Bouton and Bolles, 1979).  This means that mere exposure to the US 

alone does not retrieve the associative memory linked to the US (the conditioning 

memory) despite that the alternative associative memory (the extinction memory) has 

no direct link to the US. These findings indicate that the conditioning memory is just 

as context-dependent as the extinction memory; and that the well documented 

context-dependence of the extinction memory may perhaps be partly due to the lack 
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of sensitivity of the task design to detect the context-dependence of a conditioning 

memory.  

 

Performance of an animal during retrieval tests of extinction memory reflects the 

influence of its prior experience with the CS, both the excitatory and inhibitory 

associations. Recognizing the context as an occasion-setter and investigating the 

effects of contextual change on the expression of extinction memory have provided 

us insights into how to manipulate aspects of the extinction context to improve 

retrieval of extinction memory. For instance, widely spacing extinction trials during 

extinction treatment of conditioned fear has been found to weaken the effect of SR 

and Ren (Urcelay et al., 2009). An overlooked issue however, is how the CS and its 

different properties may influence performance. Emphasis on contextual modulation 

of behavioral expression has inadvertently taken away much needed attention to 

understanding how a conditioned cue could drive behavior. In autoshaping for 

instance, repeated pairing of a lever CS with a food US would lead an animal to act 

to a lever like it would to food: grasping the lever with its paws, licking and chewing it 

as if it were food (Tomie et al., 1989); and this is despite that US presentation is 

independent of its behavior towards the CS. Moreover, CS presentation has been 

found to elicit feeding in sated rats within five seconds in a test that allowed ad lib 

access to food (Weingarten, 1983), thereby countering the drive reduction theory of 

behavior. A cue becomes endowed with motivational salience that is apart from its 

predictive attribute. By association, a CS gains a signaling property as it becomes 

predictive of an event and an affective property that is determined by the valence of 

the reinforcement it has been associated with. Dissociating these properties and how 

these could influence performance in a new situation could provide better 

understanding on how to manipulate aspects of the CS or counter its effects for 
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better retrieval of extinction memory when the context has changed. Perchance we 

could identify the wing bones that could dampen the expression of conditioned 

memories no longer adaptive. 

 

4.4. Study Proposal 

4.4.1. When the avoidance conditioning model is used, do both the Pavlovian and 

instrumental conditioned responses get extinguished in any given extinction 

paradigm?  

The decline in the display of CRs during extinction training is indicative of extinction 

of the instrumental behavior but inferences can only be made that the same holds 

true of the physiological Pavlovian responses which are involuntary and internally 

generated. In the first experiment, the ACC-lesioned group consistently displayed 

less CRs compared to the sham group during extinction training and even during 

retrieval tests, thus suggesting attenuation of the negative motivational salience of 

the CS evident in different contexts. However in the second experiment, ACC-

lesioned gerbils displayed a weak return of the extinguished CRs during the test of 

SR in contrast to their performance during extinction learning and other retrieval 

tests. The differential influence of the extinguished CS on the behavior of the animals 

suggests that the extinguished CS may bear different degrees of emotional salience. 

To address this query, a future study will be conducted that measures autonomic 

responses during avoidance learning, extinction training and subsequent memory 

retrieval tests. Specifically, an autonomic index of interest is heart rate (HR) which 

can be recorded by an ECG. While it has been shown that HR CRs are reduced 

when the CS is presented alone in fear conditioning preparation (Burhans et al., 

2010), it would be of interest how the HR CRs may be characterized not only during 

extinction but during avoidance training as well. While fear reduction is posited to 
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drive the avoidance behavior at least perhaps initially, an animal may subsequently 

develop cognizance of its control over the experience of shock exposure through its 

avoidance response. This would degrade the role of fear (reduction) as a primary 

motivator. Moreover with extended training, an S-R memory (habit-driven) system 

theoretically may prevail in governing behavior thus there may be a difference in the 

quality of HR CRs during the early and latter part of training. This may be relevant in 

examining the decline of HR CRs during extinction and its return during subsequent 

extinction memory retention tests.  

 

Another set of information that ECG recordings could afford us is the analysis of 

heart rate variability (HRV) during training. The different components of HRV such as 

the high frequency and the very low frequency have been found to be markers of 

parasympathetic and sympathetic activity, respectively. With the aid of electrical 

stimulation, this will allow us to elucidate the kind of autonomic influence the ACC 

may have on appetitive and aversive conditioning that may be differential as 

suggested by the lesion effects revealed in earlier studies. 

 

4.4.2.  How do the different properties of a CS influence performance when placed in 

an unfamiliar context where the previously experienced CS is presented? 

The enigma that the return of extinguished behavior presents whenever an animal 

experiences the CS in a context different from the extinction context may be related 

to a form of transfer of learning. Previous findings have shown that disruption of the 

ACC would lead to deficits in discrimination where lesioned animals would respond to 

irrelevant stimuli which share some characteristics with the relevant stimuli. 

Moreover, it has been shown that human participants are quick to respond to a target 

that has a color recently associated with reward (Hickey et al., 2010). These findings 



 76

suggest that perceptual features or properties of the CS may become imbued with 

motivational salience that enables the CS to elicit a similar reinforcement-related 

response when the CS is presented in a novel or unfamiliar context. Characterizing 

the different properties of a CS merits investigative consideration since it gains not 

only a signaling property related to its perceptual features but also an affective 

property which is related to its motivational significance.  A variant of a Pavlovian to 

instrumental transfer (PIT) paradigm could prove to be helpful in assessing which of 

the CS properties would guide behavior of an animal in a new learning situation. The 

two stages of learning in this paradigm will allow an opportunity to investigate which 

property of the previously experienced CS during the first stage will an animal use 

when faced in a new learning situation in the second stage. For example, a high tone 

will be used as CS+ which upon presentation will lead to an automatic dispensing of 

food pellets while presentation of CS- will be of no consequence. Once an animal 

reliably shows discriminative approach it will be exposed to another outcome (this 

time unsignaled), i.e. shock, in a different context. After which the animal will be given 

signaled trials with the CSs that it had previously experienced in the first stage of 

training. A group of animals will be trained to jump to the CS that used to be 

predictive of food but now will be a signal for a different event, i.e. shock, while the 

CS- is of no consequence. Another group of animals will be trained to jump to the 

previous CS- that used to be of no consequence while the previous CS+ will now be 

of no consequence. This paradigm will allow us to examine if an animal will use the 

predictive or the affective property of the CS to guide its behavior in a new learning 

situation that uses the same CSs it had previous experience with. If the first group 

learns faster, then it indicates that an animal when presented with previously 

conditioned stimuli in a new context, will use the predictive property of the CS; i.e., 

the memory representation of the CS+ as predictive of an event no matter the 
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outcome. If the second group learns faster, then it indicates that an animal will use 

the affective property of the CS; the positive valence attached to the former CS+ 

which is now CS- serves as a signal for a positive event which in this training stage 

means safety while the negative valence (the absence of food) attached to the former 

CS- which is now CS+ serves as a signal for a negative event which in this training 

stage is a shock presentation. 

 

It is possible that there may be no difference between the two groups. But after a 

subsequent extinction training, we can examine if the same CS property that drove 

behavior during learning transfer would also do the same during retrieval of extinction 

memory. Would the animals that used the signalling property of the CS to guide its 

behavior in a new learning context show greater return of extinguished CRs during 

Ren? Would the animals that used the affective property of the CS to guide its 

behavior in a new learning context show greater return of extinguished CRs during 

Rei?   
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Figure 20. Schematic diagram of a proposed Pavlovian to Instrumental Transfer (PIT) 

paradigm. A PIT variant would be used to examine which CS property influences behavioral 

response of an animal in a new learning situation (please refer to 4.4.2 for further 

explanation). 

 

 

4.5. Summary 

Extinction learning allows modification of behavior, i.e. response suppression, when a 

previously relevant cue later gains a second meaning of being no longer relevant. 

One group: 
CS1 -> shock presentation 

CS2 -> no event 

One group: 
CS1 -> no event 

CS2 -> shock presentation 

Extinction 

SR 

Reinstatement 

Renewal 

Pavlovian training: 
CS1 -> food delivery 

CS2 -> no event 

Unsignaled shock presentation 

Lesion surgery: 
Sham or ACC 
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Various brain structures have been identified to be involved in behavioral extinction 

including the anterior cingulate cortex (ACC). However, while the role of the ACC in 

the extinction of appetitive conditioning has been explored through its inactivation, 

little is known about its role in the extinction of aversive conditioning. The present 

study explores the role of the ACC in the extinction of avoidance behavior. In the first 

experiment, gerbils were first conditioned to avoid footshock in a shuttlebox by 

jumping over the hurdle when a CS is presented. After eight conditioning sessions, 

gerbils were given three days of rest before either sham or ACC lesion surgery was 

done. After a week of recovery period, gerbils were first given a conditioning session 

to ensure the conditioning memory remained intact before extinction training was 

commenced. During the extinction training, the CS is presented again but this time 

without the subsequent shock presentation. Gerbils were trained for eight extinction 

sessions. Spontaneous recovery was tested seven days after the last extinction 

session and the following week, gerbils were exposed to shock alone before being 

tested for reinstatement the next day.  Lesions of the ACC did not lead to 

perseverative behavior but instead to less hurdle jumping during extinction of an 

active avoidance task as well as during its subsequent memory retrieval tests.  

 

In the second experiment, gerbils were trained in a shuttlebox to discriminate 

between two pure tones (of high or low tone frequency) that signaled them to either 

jump over the hurdle or stay depending on the tone assignment, to avoid footshock 

(Go/No Go discrimination). The tone assignment was counterbalanced so that half of 

the gerbils were trained to jump when a high tone was presented and to stay when a 

low tone was presented while the other half were trained to jump when a low tone 

was presented and to stay when a high tone was presented. Gerbils were given eight 

conditioning sessions and three days of rest afterwards before either sham or ACC 
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lesion surgery was done. After a week of recovery, gerbils were first given a 

conditioning session before extinction commenced the next day. Extinction training 

went on for eight sessions where the two tones were presented without the 

subsequent shock presentation. Seven days after the last extinction session, gerbils 

were tested for spontaneous recovery then renewal the following day. During the 

renewal test, the shuttlebox was covered with paper and turned 90º to create a 

context different from the extinction training context. The following day, gerbils were 

presented with footshock in the same context as that during extinction training to test 

for reinstatement the next day. Results indicate that effects of ACC lesions on the 

extinction of discriminative avoidance responses did not include perseverative 

behavior but however differentially modulated extinction performance and its memory 

retrieval during the renewal and reinstatement tests depending on the tone 

assignment. Animals trained to flee when low tone is presented and to stay when 

high tone is presented tend to display more discriminative CRs on average than their 

high CSgo - low CSnogo counterpart or sham counterpart. The results taken together 

imply a role of the ACC in differentially modulating the motivational salience of CSs. 

The consistent lesion effect during the test of SR of both simple avoidance and 

discriminative avoidance behavior indicates a significant role of the ACC in temporal 

processing. However, it remains to be examined what its role is in temporal 

processing: whether it is in encoding the interval between training events, the 

perception of the passage of time or a gating role in the expression of the initial or 

secondary meaning of a CS when temporal context has changed. Future studies will 

delve more into the role of the ACC in the autonomic aspect of learning by recording 

heart rate and in learning transfer as the CS gains more than one meaning, paying 

closer attention to delineating the different properties of a CS that would guide 

behavior in a different learning situation. 
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