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Abstract

Quantum mechanics is currently the most extensively tested physical theory. However, the
underlying principles of quantum mechanics continue to puzzle physicists, leading to vari-
ous interpretations of quantum mechanics. One alternative perspective is Nelson’s stochas-
tic mechanics, which offers a stochastic quantization of classical mechanics to explain non-
relativistic quantum phenomena. The quantum Hamilton equations (QHE) were derived
recently by extending stochastic mechanics, offering a numerical approach to describe quan-
tum systems without the need to solve the Schrödinger equation.

This thesis extends the QHE to describe quantum stochastic processes on manifolds, al-
lowing for the study of systems in non-flat coordinates. The QHE provide a solvable frame-
work for studying non-relativistic quantum phenomena without relying on the Schrödinger
equation. Additionally, the thesis explores the Bopp-Haag-Dankel model, which treats spin
within the framework of stochastic mechanics, providing a physical picture beyond the ab-
stract representation of standard quantum theory. The coupling of spin to position is also
investigated, offering insights into idealized spin measurements and correlations. Over-
all, this thesis aims to deepen our understanding of non-relativistic quantum mechanics by
exploring alternative perspectives and expanding the toolbox of formalisms that describe
quantum mechanics.

Zusammenfassung

Die Quantenmechanik ist derzeit die am umfassendsten getestete physikalische Theorie.
Die zugrundeliegenden Prinzipien ebendieser geben jedoch weiterhin Rätsel auf, was zu
verschiedenen Interpretationen der Quantentheorie geführt hat. Eine alternative Perspek-
tive liefert die stochastische Mechanik von Nelson, die eine stochastische Quantisierung der
klassischen Mechanik bietet, um nichtrelativistische Quantenphänomene zu erklären. Vor
kurzem wurden die Quanten-Hamilton-Gleichungen (QHE) abgeleitet, die die stochastische
Mechanik erweitern. Sie bieten einen numerischen Ansatz zur Beschreibung von Quanten-
systemen ohne Lösung der Schrödinger-Gleichung.

Diese Arbeit erweitert die QHE, um stochastische Prozesse auf Mannigfaltigkeiten zu
beschreiben, was die Untersuchung von Systemen in krummlinigen Koordinaten ermöglicht.
Die QHE bieten einen lösbaren Rahmen für die Untersuchung nichtrelativistischer Quanten-
phänomene, ohne auf die Schrödinger-Gleichung zurückzugreifen. Darüber hinaus wird
in dieser Arbeit das Bopp-Haag-Dankel-Modell untersucht, das den Spin im Rahmen der
stochastischen Mechanik behandelt und ein physikalisches Bild liefert, das über die ab-
strakte Darstellung der Standard-Theorie der Quantenmechanik hinausgeht. Desweiteren
wird die Kopplung von Spin und Position untersucht und bietet damit Einblicke in ide-
alisierte Spinmessungen und Korrelationen. Insgesamt zielt diese Arbeit darauf ab, das
Verständnis der nichtrelativistischen Quantenmechanik zu vertiefen, indem alternative Per-
spektiven untersucht werden womit der Werkzeugkasten zur Beschreibung der Quanten-
mechanik erweitert wird.
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Chapter 1

Introduction

One should examine closely even the elementary and the satisfactory features of our
Quantum Mechanics and criticize them and try to modify them, because there may still
be faults in them. The only way in which one can hope to proceed on those lines is by
looking at the basic features of our present Quantum Theory from all possible points of
view. Two points of view may be mathematically equivalent and you may think for that
reason if you understand one of them you need not bother about the other and can neglect
it. But it may be that one point of view may suggest a future development which another
point does not suggest, and although in their present state the two points of view are
equivalent they may lead to different possibilities for the future. Therefore, I think that
we cannot afford to neglect any possible point of view for looking at Quantum Mechanics
and in particular its relation to Classical Mechanics. Dirac, 1951 [Dir51]

For various reasons, the word “quantum” has gained significant attention over the last
century. Firstly, quantum physics and its fundamental principles have paved the way for
groundbreaking advances in various scientific fields and technology and still evolve rapidly.
In this context, the term “quantum” is frequently associated with materials, sensing, com-
puting, cryptography, or communication, where especially the last three have captured the
attention of researchers, and the general public. This is evidenced by the recent Nobel Prize
in Physics [nob22], highlighting the significance and impact of the contributions in these
domains. Secondly, quantum physics has made its way into popular culture. Concepts
like quantum teleportation, parallel universes, and quantum superposition have become
intriguing subjects that captivate artists and authors. These concepts allow the artists and
authors to draw inspiration from quantum theory’s mysterious and mind-bending aspects
to create thought-provoking works.

The mystery surrounding quantum physics arises from its seeming departure from clas-
sical theories. Basic phenomena of QM such as energy quantization, tunneling, spin, de-
coherence, and superposition contribute to this mystique. For the latter, e.g., see figure 1.1
concerning the famous double-slit experiment which reveals wave-like behavior of quan-
tum particles. These phenomena baffle many people, as the fundamental concepts are dif-
ficult to grasp from a single interpretation. This has led to the formulation of memorable
quotations by famous physicists, with Richard Feynman’s statement that “nobody under-
stands quantum mechanics” being one of the most prominent examples.

In the historical context, the development of mathematical formalisms in quantum me-
chanics can be traced back to the contributions of Planck, Einstein, Bohr, Schrödinger, Heisen-
berg, Dirac, Born, von Neumann, Weyl, and others at the end of the 19th and beginning of
the 20th century. These advancements were a response to experimental observations re-
lated to atomic spectra, the radiation emitted by hot objects, the photoelectric effect, as well
as the stability of atoms and radioactivity. Nowadays, orthodox quantum mechanics typ-
ically refers to interpretations emerging from that era that utilize the wave function as the
fundamental quantity of the system. For instance, in the non-relativistic regime, the wave
function follows the Schrödinger equation, and its description proves to be highly power-
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Figure 1.1: The plot shows snapshots of the probability amplitudes in two dimensions for 5 differ-
ent times for an idealized double slit experiment associated with the wave function satisfying the
Schrödinger equation.

ful in explaining phenomena on a microscopic scale. On the other hand, in the relativistic
regime, the standard approach is quantum field theory, which incorporates the creation and
annihilation of particles.

There is no doubt that the standard quantum theory has proven to be very successful
in the prediction of measurement outcomes. Empirically, it is one of the most extensively
tested theories. However, despite the overwhelming success of the existing theory, quantum
physics still puzzled many physicists in the last 100 years. This is manifested in a very
active field of research on quantum foundations which deals with the underlying questions
regarding reality, ontology, or the relationship between quantum theory and other branches
of physics, such as general relativity.

Compared to fields like statistical mechanics, classical mechanics, or general relativity,
quantum mechanics surely has an extraordinary standing due to the multitude of interpre-
tations connected to it. For instance, the wave function is usually accompanied by a physical
interpretation, the so-called Copenhagen interpretation. The wave function is a state vector
in the Hilbert space that describes the physical system completely. In a closed system, it
evolves unitarily1 in time according to the Schrödinger equation. The state vector generally
describes a superposition of all possible measurement outcomes before the measurement.
After a measurement, however, we find the system to be in one specific state. As a result,
the evolution equation no longer describes the change of the state vector. Instead, the trans-
formation of the state vector is governed by the projection postulate, commonly referred to
as the collapse of the wave function. This collapse, characterized by its non-unitary and
discontinuous nature, exclusively occurs when the quantum system is under observation.

Consequently, a multitude of questions arise regarding the mechanics of measurement,
e.g., what exactly causes the state to collapse? Is it an objective process? What is the role of

1A unitary transformation preserves the inner product of two state vectors in the Hilbert space.
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the observer? Does the state vector change instantaneously, and if so, when does it happen?
Are there hidden variables that explain the randomness of the measurements? These ques-
tions are related to the measurement problem in quantum mechanics, and it is one of the
driving forces in the pursuit of a comprehensive interpretation of the subject.

Due to the empirical success of quantum theory, it is plausible to disregard these ques-
tions and come to a slightly provocative conclusion:

Without wasting time and effort on philosophical justifications and implications, we
write down the conditions for the Hamiltonian of a quantum system for rendering it
mathematically equivalent to a deterministic system. t’Hooft, 2020 [tH20]

Or, alternatively, following Mermin’s famous quote:

If I were forced to sum up in one sentence what the Copenhagen interpretation says to
me, it would be ’Shut up and calculate!’ Mermin, 1989 [DM89]

While it is possible to accept the effectiveness of the theory, there remains a desire to un-
derstand the underlying physics on a fundamental level to deepen our understanding of
quantum physics. Some even argue that an excessive focus on the mathematical framework
has hindered progress in physics in general [Hos18].

Given the seemingly non-classical nature and puzzling phenomena, quantum mechan-
ics has continuously challenged physicists to seek alternative perspectives based on a physi-
cally satisfying interpretation of its underlying principles. One such perspective is Nelson’s
stochastic mechanics [Nel66, Nel85], which offers a stochastic generalization of classical
mechanics. Stochastic mechanics proposes a framework for understanding non-relativistic
quantum phenomena by introducing Markov processes representing the coordinates of the
system. The considered stochastic process is governed by stochastic differential equations
featuring two velocity fields as the fundamental quantities. These equations describe a con-
servative Brownian motion with drift, extending the Newtonian mechanics.

The interest in studying quantum mechanics through the lens of stochastic processes
lies in the possible extension of fundamental classical concepts. This includes the notion of
trajectories and the treatment of the probabilities associated with stochastic processes.2 It,
thus, provides an alternative perspective on the behavior of quantum systems, offering reso-
lutions to certain peculiar properties associated with the traditional formulation of quantum
mechanics, such as the collapse of the wave function and quantum tunneling. For example,
the measurement of a quantum system can be simply described as the current state of the
stochastic process at the time of observation. Its subsequent evolution is then conditional on
the measurement outcome. Hence, there is no need for an additional measurement postu-
late.

The stochastic representation of quantum mechanics is certainly not among the popu-
lar interpretations of quantum systems, which is due to some misconceptions connected to
the theory, and, more prominently, due to the limitations of applicability. In most cases,
it is easier to use the common operator representation and then using the wave function
to deduce the velocity fields, for example. Recently, however, a generalization of the clas-
sical Hamilton equations of motion was established by Köppe [KGP17], which is built on
Nelson’s stochastic mechanics. This generalization is derived from the quantum version of
Hamilton’s principle [Pav95b], reformulated as a stochastic optimal control problem. As
a result, kinematic and dynamic stochastic differential equations for the quantum process,
known as quantum Hamilton equations (QHE), are obtained.

A key advantage of the quantum Hamilton equations lies in their solvability for quan-
tum systems through numerical methods [Köp18, BPGP19], which allows us to describe the

2However, it is worth noting that the reality of the paths suggested by Markov processes is questioned due to
the ambiguity in defining the stochastic mean acceleration, and the velocity fields may not necessarily describe
the mean velocity of the particle, particularly in discussions involving entangled states in the last chapter of the
thesis.
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behavior of quantum systems, including their dynamics and properties, without solving the
Schrödinger equation or variants thereof. In recent years, it has been shown that some of the
foundational examples of quantum phenomena can be described by QHE, including tunnel-
ing phenomena, the hydrogen atom, or energy quantization [KPGP18, KPB+20, BPGP19].

It is important to emphasize that the establishment of the quantum Hamilton equations
should not be viewed as a competitor to ordinary non-relativistic quantum theory. Instead,
it should be regarded as an extension of the toolbox of quantum mechanics, analogous to
the various formalisms employed in classical mechanics. For instance, in classical mechan-
ics, depending on the problem at hand, one may utilize the Lagrange formalism to handle
motion constraints, or we could describe the problem in phase space with Hamilton’s equa-
tions, or employ the Hamilton-Jacobi equation. Each of these classical descriptions provide
a distinct viewpoint of the same physics, with corresponding counterparts in quantum me-
chanics. For example, Feynman’s path integral formulation corresponds to the action prin-
ciple in classical mechanics, the Schrödinger equation corresponds to the Hamilton-Jacobi
equation, the Madelung equation corresponds to the dynamics of a classical fluid, and Nel-
son’s stochastic mechanics corresponds to Newton’s equation of motion. Thus, the QHE
establish an additional correspondence between quantum and classical mechanics, broad-
ening our understanding of the field.

This thesis focuses on an extension of the QHE by exploring further fundamental aspects
of non-relativistic quantum mechanics. Specifically, the QHE are extended to describe quan-
tum stochastic processes on (Riemannian) manifolds. This extension allows for studying
systems in non-flat coordinates, providing a broader framework for investigating quantum
phenomena in various physical contexts. A notable application of the extension considered
in this thesis is the description of a stochastically spinning particle in Nelson’s mechanics,
which is in contrast to the usual treatment of spin in quantum mechanics.

A concept of a magnetic moment in standard quantum mechanics was needed to de-
scribe effects that the Schrödinger equation alone could not account for, such as the anoma-
lous Zeeman splitting in the atomic spectra and, more famously, the quantized nature of the
Stern-Gerlach experiment. In quantum mechanics, the spin is an intrinsic property added
as a label to the particle itself. Classically motivated models have been proposed to explain
spin based on extended particles, but they were dismissed due to conflicts with special rel-
ativity. These models would require superluminal rotation velocities, e.g., of the electron’s
shell, to match its spin angular momentum magnitude. The stochastic theory, however,
avoids these conflicts by employing non-differentiable trajectories and undefined instanta-
neous velocities. Revisiting these models could be valuable as they offer a physical picture
beyond the abstract perspective of standard quantum theory. With open questions about the
fundamental nature of spin, exploring these models can enhance our quantum mechanics
toolbox and provide further insights.

Figure 1.2: The figure illustrates a stochastic pro-
cess regarding position and orientation.

The thesis, in particular, focuses on the
classical model introduced in the work of
Bopp, Haag [BH50] and Dankel [Dan70],
which provides a non-relativistic treatment
of spin within the framework of stochastic
mechanics. In this model, particles have
an assigned orientation and inertia, such as
an extended rigid rotor with a radius. The
associated angular velocities lead to spin
fields, driving the change in orientation, as
illustrated in figure 1.2.
It was shown that:

1) their expectations agree with quantum mechanics,

2) the time-averaged spins are quantized, and
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3) the associated partial differential equations to the orientational Markov process are
associated with the Pauli equation in the limit of vanishing inertia.

The first two points, however, relied on the use of eigenfunctions to the Laplace-Beltrami
operator. Dankel took these eigenfunctions, calculated the corresponding velocity fields,
and finally the state’s expectation values. The Bopp-Haag-Dankel (BHD) model is revisited
within the formalism of the QHE. Here, the stochastic velocity and spin fields are considered
as critical points of a stochastic optimal control problem. It is shown that the QHE for a
spinning symmetric top lead to the same results as discussed by Dankel in the free case
without referencing the Schrödinger equation on the considered manifold.

In a subsequent step, the coupling of spin to position is included, allowing for the dis-
cussion of idealized spin measurements and correlations. In orthodox quantum mechanics,
the coupling to the position is introduced by the superposition of the different spin states
represented as a spinor. If the beam of particles is sent into a field gradient, it splits into
distinct channels such that only one spinor component is apparent after observation of the
object. The measurement leads to a collapse of the quantum state where the ensemble of
particles produces probability amplitudes related to the wave function at the preparation
stage.

Thus, in the BHD model, the spins act as if they have an undefined direction until a
measurement is performed. This is fundamentally different in the context of a stochastically
spinning particle, where the spins and their expectation values have well-defined directions
that continuously change with time according to their dynamics. In the case of measure-
ment, the spins undergo a continuous but stochastic change during and after the magnetic
field gradient. Eventually, the expectation values of the spins become quantized after the
measurement. The thesis demonstrates that this behavior can be explained using the QHE,
which include additional torque terms to account for spin alignment.

In the final step, the thesis considers two-particle pairs entering two different Stern-
Gerlach (SG) devices based on the analysis of the QHE for a single SG experiment. This
allows us to discuss the famous Gedankenexperiment by Einstein, Podolsky, Rosen, and
Bohm [EPR35, Boh51], where a pair of particles that interacted in the past passes through
two space-like separated SG devices. By recording the coincidences of the resulting de-
flections of the particles for different measurement settings, the correlations of the spins
can be stronger for certain spin pair states in quantum mechanics that are not describ-
able by any ’classical’ probabilistic theory. Such correlations are only possible if the state
is entangled, where the ’non-classical’ correlations can be quantified with Bell’s inequal-
ity [Bel64, CHSH69]. The thesis discusses such a system using the QHE for a two-particle
system, examining the detailed behavior of the spins and highlighting the differences from
the standard approach with hidden variables, where the spins are quantized and not con-
tinuous as in stochastic mechanics.

The thesis is organized as follows: We begin by establishing the basics of stochastic me-
chanics. Next, we investigate variational principles in stochastic mechanics and derive the
quantum Hamilton equations. We then extend these equations to (Riemannian) manifolds,
enabling the study of quantum systems in curvilinear coordinates. Finally, as an illustra-
tive example, we apply the equations to the hydrogen atom using the system’s symmetry
in spherical coordinates. After that, we examine the model of a freely spinning particle.
This model allows us to study the implications of spin within the framework of the quan-
tum Hamilton equations. Moreover, we discuss the different nuances to spin measurements,
using these equations to gain a deeper understanding of the behavior and dynamics of spin-
ning particles.

In conclusion, this thesis seeks to contribute to our understanding of quantum mechan-
ics by considering the alternative viewpoint of Nelson’s stochastic interpretation. Further-
more, by revisiting the fundamental properties of spin and investigating spin measurements
within the framework of the quantum Hamilton equations, we aim to deepen our compre-
hension of quantum phenomena.
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Chapter 2

Quantum mechanics in terms of
stochastic processes: Nelson’s
stochastic mechanics

2.1 Overview

The behavior of matter on a microscopic scale, such as atoms and subatomic particles, is
described by quantum mechanics, a fundamental theory in physics. This theory is typically
discussed within the context of the Hilbert space, which permits the depiction of quantum
states and their evolution over time using operators. Since its inception, one of the main
challenges in quantum theory was the problem of explaining the measurement process, e.g.,
for a state which is in a superposition of all measurable outcomes. This is due to the instan-
taneous localization of a quantum state to a state associated with the measured outcome in
an experiment.

In the standard theory, no (physical) description explains the abrupt change of the state.
It is argued that the Copenhagen interpretation was favored over others in the early years,
like de-Broglie’s interpretation [DB27], since the measurement outcomes could be described
by a “simple” collapse of the state without the treatment of the measurement process [BV09].
To address this problem, the Born rule was introduced ad hoc, which gives a probabilistic
interpretation of the quantum states in terms of probability amplitudes (instead of distribu-
tions), which successfully describe quantum measurements.1

The acceptance of the interpretations related to the Schrödinger equation [Sch26b, Sch26a,
Sch26c], Heisenberg’s matrix mechanics [Hei25] and variants thereof [Dir26, Dir81] grew
rapidly since they could successfully describe most of the (non-relativistic) experiments.
However, due to the unintuitive nature of quantum systems, the attempt to combine an in-
herently probabilistic description of quantum mechanics began with the establishment of
standard quantum theory. Schrödinger himself was puzzled by the (not yet understood)
relationship between the wave mechanical equation and the Fokker-Planck equation of dif-
fusion [Sch31]. Whereas in classical systems, we deal with the probability density, the wave
function describes the quantum state in the Schrödinger equation. One may argue that it
seems to be a mathematical auxiliary function rather than a real physical quantity because,
on the one hand, the Schrödinger equation is not a wave function due to the first-order
time derivative. On the other hand, it is not directly connected to a diffusion due to the
occurrence of an imaginary time.

Notable steps towards a probabilistic interpretation were taken by Fürth’s uncertainty
relation for a diffusion process [Für33] and by Fényes [Fén52] later on. Nelson established
a rigorous mathematical formulation of quantum stochastic processes in 1966 [Nel66]. He

1It should be noted that quantum physics is more generally described by density matrices which allow the de-
scription of mixed states, including preparation, transmission, and measurement. See e.g., [Adl21] for a recent
overview on quantum foundations. The thesis focuses on pure states in non-relativistic quantum mechanics.
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Figure 2.1: The figure depicts the same plot as figure 1.1 with an overlay of an ensemble of 200
stochastic paths generated according to Nelson’s stochastic mechanics.

considered massive particles in an open system which are subject to a stochastic Newton-
law and an unspecified background field that is in permanent contact with the particles.
The resulting Brownian motion is non-dissipative, which is required for a time-reversible
stochastic process.

In Nelson’s stochastic mechanics, the wave function is replaced by two velocity fields
governing the motion of a stochastic process. Furthermore, the stochastic process evolves
in time according to stochastic differential equations such that the random realizations of
the process apparently result in a physical picture of the quantum fluctuations on small
scales. The noise is caused by the interaction of particles with a background field. Aside
from the physically satisfying elegance of the stochastic theory, it enables the definition of
real observables as stochastic processes, which include tunneling times or first hitting times,
as opposed to the operator theory. This is due to the sample paths and their corresponding
observables. Figure 2.1 depicts a number of stochastic realizations of a Nelson process (right
plot) moving from a double-slit on the left to a detection screen on the right. Apparently, the
paths avoid certain areas and agree with the probability amplitudes following Born’s rule
for the double-slit wave function on the left.

The measurement problem in the Copenhagen interpretation is not apparent in stochas-
tic mechanics since the stochastic process replaces the wave function. Thus, the collapse
of the wave function corresponds just to a measurement of the stochastic process’ current
state. In terms of the probability density associated to the quantum process, the measure-
ment leads to an update about the knowledge of the system, i.e., the further development
has to be described by a stochastic process conditioned on the measurement outcome.

It was shown by a variety of authors [Yas81b, Yas81a, Yas83, GM83, Zam85] that the
postulated Nelson-Newton-law can be derived from variational principles in analogy to
classical mechanics. Recently, the variational principles were reformulated as a stochastic
optimal control problem, which will be discussed in section 3. Attempts were also made
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regarding a generalization to field theories [Nel85, Nel73, Gue81]. Furthermore, stochastic
mechanics was extended to particles moving on a manifold [Nel85, DG79], which includes
the main topic of this thesis, the spin [Dan70, Dan77, Far82, Gar90].

Constructing a relativistic counterpart of stochastic mechanics on the Lorentzian man-
ifold poses challenges, as the creation of a relativistic Markov process is not a simple task
due to the existence of “no-go” theorems [Dud66, Lop53], which is elaborated on shortly.
They imply that the usual interpretation of the non-relativistic diffusion equation

(∂t −
σ2

2
∆)ρ(t, x) = 0 (2.1)

for the distribution ρ depending on t and position x has to be adjusted since time and posi-
tion should be put on an equal footing. One way to deal with this is by giving up Marko-
vianity which allows to consider the telegrapher’s equation [Kac74]

(τv∂
2
t + ∂t −

σ2

2
∆)ρ(t, x) = 0 (2.2)

with a relaxation time τv. This, in turn, is related to the Dirac equation [GJKS84], for exam-
ple. See also [DH09] for a good overview. Relativistic extensions of stochastic mechanics,
including stochastic field theory, were put forward by Guerra [GR73, GR78, Gue81] and
later rather sparsely by others [MV95, Pav01]. Recent work on a relativistic stochastic quan-
tization reformulates stochastic quantization in terms of a relativistic diffusion process on a
pseudo-Riemannian manifold [Kui21b, Kui21a, Kui22]. It is based on a complexified Wiener
process with complex velocity vq = v− iu and position Z = X +iY , which may be of interest
in the field of quantum gravity [Erl18].

In summary, stochastic mechanics is a valid description of non-relativistic quantum me-
chanics and has the ability to provide an intuitive explanation for quantum phenomena. As
with all interpretations and formulations of quantum mechanics, however, there are some
challenges to this approach, such as the unclear nature of the background field, the inequiv-
alence to the Schrödinger equation2 and the non-locality of the velocity fields. The latter
will be addressed in the thesis in more detail. Finally, it should be mentioned that Nelson
himself had problems with the theory [Nel12], although some of his arguments have been
resolved. Nonetheless, the stochastic theory can still inspire seminal work by offering dif-
ferent perspectives on certain quantum phenomena, making it a worthwhile consideration.

In the following subsection, some introductory information on stochastic processes will
be provided before delving into the details of Nelson’s postulates.

2.2 Stochastic processes and stochastic calculus

Nelson’s stochastic mechanics is a conservative Brownian motion characterized by forward-
backward stochastic differential equations (FBSDEs) that govern a stochastic process. Read-
ers familiar with these terms may proceed to Section 2.3.

This section mostly follows the notations in Øksendal [Øks03]. Additional literature on
stochastic processes and stochastic differential equations (SDEs) can be found in various
books, including [Pav14]. For important mathematical definitions related to probability,
please refer to Appendix A.

2The inequivalence between Nelson’s stochastic mechanics and the Schrödinger equation lies in the fact that
not every Nelson process, with its associated velocity fields, is a solution to the Schrödinger equation. However,
every wave function has a stochastic counterpart in Nelson’s theory, allowing for a wider range of solutions
compared to the Schrödinger equation [Wal94]. This property is also shared with the Madelung equations in
quantum hydrodynamics [Mad27, Tak52].
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Random variables

Random variables, or measurable functions, are given on a probability space denoted by a
tuple of a sample space, a σ-Algebra and a probability measure (Ω,F ,P). The sample space
Ω is the set of all possible outcomes of an event while the σ-algebra F is a certain collection of
subsets of the sample space depending on the interest of what is to be studied. For example,
consider a four-sided die with a focus on the outcome of 2. In this case, Ω = {1, 2, 3, 4} and
F = {∅, {2}, {1, 3, 4},Ω}. Assigning probabilities, represented by real numbers in the inter-
val [0, 1], to the possible outcomes in F gives rise to the definition of a probability measure
P : F → [0, 1] on the measurable space (Ω,F). For the chosen example, we have P(∅) = 0,
P(Ω) = 1, P({2}) = 1/4, and for the complement, P({1, 3, 4}) = 3/4.

A real random variable X : Ω → Rn induces a probability measure, also denoted as
distribution µX(B) = P(B) such that the expectation of X is

E[X] =

∫
Ω
X(ω)dP(ω) =

∫
Rn

xdµX(x) . (2.3)

X is said to be integrable if E[|X|] <∞. The variance is defined as

Var[X] = E
[
(X− E[X])2

]
. (2.4)

Likewise, if f is an appropriate function with E[|f(X)|] <∞, then

E[f(X)] =

∫
Rn

f(x)dµX(x) . (2.5)

In the remainder of the thesis the distribution associated with X will be denoted by ρ(x) =
µX(x).

Stochastic processes

In general, a stochastic process {Xt, t ∈ I} is defined as a set of random variables on a
given probability space that takes values in a measurable space (Ω̃, F̃), i. e. Xt : Ω → Ω̃ for
t ∈ I . For each t ∈ I , the function Xt(ω) is a random variable, i.e., each ω may refer to a
particle or a measurement, while t plays the role of time. In this thesis the index set I denotes
(continuous or discrete) time, Ω̃ = Rn (n ∈ N) and F = B(Rn) with the corresponding Borel
σ-algebra B(Rn).

A path or stochastic realization is described for fixed ω ∈ Ω with the varying parameter
t ∈ I . The considered processes in the thesis have (almost surely)3 continuous trajectories.
I.e., if we have an outcome ω in the given set of possible events Ω, the corresponding sample
path Xt(ω) is continuous in t. Note that for brevity, the shorthand notation Xt or X will be
used over (Xt)t>0 at some points for a stochastic process. X(t),Xt(ω) orX(t, ω) are different
notations used in the literature.

Depending on the accessible information about a process, it is useful to define sets of
σ-Algebras (subsets of F) for a stochastic process Xt at time t,

• Pt as the information generated in the past by Xs, s < t,

• Ft as the information generated in the future by Xs, s > t

• and Ct as the current information given by Xt.

E.g., if the future is unknown to the stochastic process, i.e., only the past Pt is accessible, the
process Xt is said to be non-anticipative with respect to Pt. Depending on the information
available on the stochastic process at a given instant, the predictability could be increased.

3If P(A ∈ Ω) = 1, then the outcome A is said to occur almost surely (a. s.). For convenience, this may not be
written throughout the thesis.
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Consider (Pt)t≥0 as a set of increasing sub-σ algebras Ps ⊂ Pt ⊂ F for all s < t. Then
(Pt)t≥0 is called a filtration. Filtrations are fundamental for the definition of adapted pro-
cesses: a stochastic process (Xt)t≥0 is adapted to a filtration (Pt)t≥0 if Xt is a Pt-measurable
random variable for each time t ≥ 0. This simply states that the value Xt is observable at
time t. Furthermore, if we assume that for every t ∈ [0, T ] the σ-algebra Pt is defined as
the smallest σ-algebra that contains the set (Xs)t≥s≥0, then, (Pt)t≥0 is called a natural fil-
tration of (Xt)t≥0 inheriting information that increases in time (Pt ⊂ Ps ⊂ P, ∀t ≤ s) and
can be viewed as a representation of all events that may be observed at a given time. There
is no future information available about the stochastic process under the assumption that
the stochastic process is forward-in-time. (Ft)t>0 accordingly describes a set of decreasing
sub-σ algebras which can be viewed as a time-reversed filtration.

To reduce the uncertainty about the outcome of Xt at time t > s one can make use of the
accessible information at time s and calculate the expectation value conditional on this in-
formation in terms of a σ-algebra Ps ⊂ F . This leads to the conditional expectation E[Xt|Ps]
which is defined for E[|Xt|] <∞ such that

(i) E[Xt|Ps] is Ps-measurable and

(ii)
∫
AXtdP =

∫
E[Xt|Ps]dP , ∀A ∈ Pt .

Point (ii) shows that the conditional expectation is a random variable in contrast to the ex-
pectation value. The advantage is that if, e.g., the information stored in Ps and Xt are cou-
pled, we can expect a better prediction about the values of Xt at t > s in comparison to the
expectation value that has “no” information. Roughly speaking, it is the best estimate of the
random variable Xt given the information stored in Ps at time s < t.

One of the most important stochastic processes is the Wiener process (Wt)t>0 [Wie23]. It
is the first mathematical description of Brownian motion, which is a random process de-
scribing the erratic movement of particles suspended in a fluid. It is characterized by the
continuous and irregular movement of particles, with their position changing in a random
and unpredictable manner. Einstein explained Brownian motion in 1905 [Ein05] as a result
of the random collisions between the particles and the fluid molecules.

The Wiener process is a continuous-time stochastic process that is defined by its mean
and variance, and has the property that the increment between any two points in time is
Gaussian distributed with mean zero and variance proportional to the time interval. Math-
ematically, the Wiener process (Wt)t>0 defined on the interval [0, T ] is defined as follows:

(i) ∀s, t ∈ [0, T ], with s < t the increments Wt −Ws are independent and homogeneous,

(ii) the increments are Gaussian distributed with mean 0 and variance |t− s|,
i.e., Wt −Ws ∼ N (0, |t− s|)∀t, s ∈ [0, T ],

(iii) W0 = 0 almost surely, and

(iv) (Wt)t≥0 is continuous in t with probability 1 .

It follows that the Wiener process has zero expectation E[Wt] = 0 for all t > 0. From the
independence4 (i) we have E[WtWs] = E[Wt]E[Ws] = 0 for t ̸= s.

Furthermore [Øks03],

E[Wt −Wr|Pr] = 0 , E
[
(Wt −Wr)

2|Pr] = t− r for 0 ≤ r < t ≤ T (2.6)

with (Pt)t≥0 as the filtration generated by the Wiener process. This definition results also
in other interesting properties of the Wiener process. E.g., the trajectories of (Wt)t≥0 are by
definition continuous, whereas they are nowhere differentiable [Doo53], which may seem

4If events {X ∈ A} and {Y ∈ B} are independent, the joint probability distribution of X and Y factors into
the product of their marginal distributions.
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odd later when stochastic processes for continuous paths of particles are stated which are
not differentiable.5

To give an idea why the Wiener process is not differentiable, consider that the incre-
ments Wt+∆t −Wt are Gaussian distributed with mean 0 and variance ∆t. Thus the process
increment is of order

√
∆t, so that informally

lim
∆t→0

Wt+∆t −Wt

∆t
∼ lim

∆t→0

1√
∆t

.

This leads to the fact that from the physical point of view, there exists no “classical” velocity
that can be related to the Wiener process, i.e., the particle is subjected to a sudden change of
its velocity at all times.

Stochastic calculus

Figure 2.2: The plot illustrates a stochastic process (Xt)t>0 governed by the SDE dXt = −Xtdt+dWt.
Three sample paths Xt(ωk) with solid lines, starting from X0 = 3, are numerically integrated and
displayed. The ensemble average E[Xt] is depicted with a black dashed line, while the gray band
represents the standard deviation. The rectangle on the right highlights the non-differentiability
caused by the noise, which becomes more apparent as ∆t→ 0.

The development of stochastic calculus was motivated by the need to provide a rigorous
mathematical framework for analyzing and modeling random processes such as the Brow-
nian motion with possible drift. A simple extension from ordinary differential equations
could look like

dXt

dt
= b(t,Xt) + σ(t,Xt)

dWt

dt
(2.7)

where the additional term in the differential equation can be viewed as the product of a dif-
fusion coefficient σ that may depend on t and x and the random perturbation dWt/dt, which
should mimic a white noise. However, the differential equation above is ill-defined due to

5Note that when speaking about properties like continuity of stochastic processes one has to add that this
is only valid w. r. t. the probability measure. Therefore, one should add ’with probability 1’ or P-almost surely.
However, this will be omitted here for the sake of simplicity.
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the non-differentiability of the Wiener process, i.e., dWt/dt does not exist. More generally, the
problem with any other comparable definition is that one runs into trouble because no such
process exists [Øks03]. That is the case where SDEs and, more precisely, stochastic integrals
come into play.

Itô [Itô51] introduced the concept of stochastic integration and stochastic differential
equations. If we rewrite (2.7) in differential notation, this yields the SDE with initial value
x0 (F-measurable)

dXt = b(t,Xt)dt+ σ(t,Xt)dWt , X0 = x0 . (2.8)

To make sense of (2.8) it has to be reformulated as an integral equation

Xt = X0 +

t∫
0

b(s,Xs)ds+

t∫
0

σ(s,Xs)dWs . (2.9)

The first integral is defined as a common integral on the paths, e.g., the Lebesgue-Stieltjes
integral. The second integral

∫ t
0 σ(s,Xs)dWs has to be treated differently from the usual

integral. Namely, it has to be interpreted as a stochastic integral.
The concept of stochastic integrals can be defined in different ways. First, one has to

admit a certain class of functions σ(t,Xt) [Øks03]. Then, by dividing a time interval [0, T ] =⋃
i∈I

[Tni , T
n
i+1) into 2n equal sub-intervals, the integral is defined as

T∫
0

σ(s,Xs)dWs = lim
n→∞

2n∑
i=0

σ(tni , Xtni
)
[
WTn

i+1
−WTn

i

]
(2.10)

with tni ∈ [Tni , T
n
i+1). The mid-point average tni = 1/2(Tni + Tni+1) gives the Stratonovich inte-

gral while the Itô integral is defined for tni = Tni , i.e., the left edge of the interval. The latter
definition is non-anticipating and is easier to solve numerically in (2.8). The Stratonovich
integral, on the other hand, is neither anticipating nor non-anticipating. It is very useful in
stochastic calculus, especially on manifolds, since it preserves the rules of ordinary calculus,
i.e., no second-order terms for a differential change of the process.

These two commonly used stochastic integral definitions possess different analytical
properties, and the choice between them depends on the specific problem being studied.
In most cases, the Itô integral is used herein. When used, the Stratonovich integral and
differential will be indicated with “◦”, e.g., Xt ◦ dYt.

Some useful properties of Itô’s calculus for measurable functions f, g:[0, T ] × Ω → Rn

adapted to the natural filtration generated by Wt and E
[ ∫ T

0 f2dt
]
<∞ are [Øks03]

(i) E
[ ∫ T

0 fdWs

]
= 0,

(ii) E
[( ∫ t

0 fdWs

)( ∫ t
0 gdWs

)]
= E

[ ∫ T
0 fgds

]
,

(iii) E[Mt|Ps] =Ms, ∀s, t ∈ [0, T ], s ≤ t .

Property (iii) refers to the definition of martingales stating that the expectation of the random
process Mt is determined by the information Ps. The interesting thing is that one can turn
this around and state that every martingale w.r.t. Pt can be represented as an Itô integral.

With the help of these properties, it is possible to state a chain-rule-like version for the Itô
integral and rewrite this in differential notation. Consider a stochastic process Xt fulfilling
(2.8). If f(t,Xt) is a sufficiently smooth function then Yt = f(t,Xt) is a stochastic process

15



and fulfills a SDE

dYt =∂tf(t,Xt)dt+ ∂Xtf(t,Xt)dXt +
1

2
dXT

t

(
∂2Xt

f(t,Xt)
)
dXt (2.11)

=

[
∂tf(t,Xt) + b(t,Xt) · ∂Xtf(t,Xt) (2.12)

+
1

2
Tr
[
σT (t,Xt)

(
∂2Xt

f(t,Xt)
)
σ(t,Xt)

]]
dt+ dWt · ∂Xtf(t,Xt) . (2.13)

This is Itô’s Lemma for a multidimensional drift-diffusion process. Informally speaking this
is simply a Taylor expansion of f where all terms of higher order O(dt3/2) are neglected. The
differential form in (2.13) is a shorthand notation and can only be understood again in form
of stochastic integrals. In this context it makes use of stochastic quadratic variations

[X,Y ]t = XtYt −X0Y0 −
∫ t

0
XsdYs −

∫ t

0
YsdXs . (2.14)

Here the product of two stochastic differentials has to be read as dXtdYt = d[X,Y ]t =
[X,Y ]t+dt−[X,Y ]t. The quadratic variation of the d-dimensional forward (backward) Wiener
processes follows property (iii) above

[W i,W j ]t = δijdt . (2.15)

Hence, dWt·dWt = dt and dW idt = O(dt3/2) ∀i ∈ 1, . . . , d. These shorthand expressions have
to be read in the integral sense. They are of big importance because they state that in Itô’s
integral formulation, second order effects are not negligible when dealing with Brownian
motion. These additional terms are a consequence of the non-anticipating choice of the Itô
integral defined above.

Stochastic processes that solve (2.8) are called Itô diffusions. These processes satisfy the
Markov property

E[Xt|Ps] = E[Xt|Xs] ∀s < t , (2.16)

where the conditional probability for a Markov process may be written as E[f(Xt)|Xs] =∫
dx′f(x′) p(t′, x′|s, x) with the transition probability p(t, x′|s, x) going from x at s to x′ at t.

Equation (2.16) states that the history of (Xt)t≥0 w.r.t. the information stream Ps up to time
s < t is irrelevant; it only depends on the state of the process at time s. Here, (Pt)t≥0 is the
filtration generated by (Wt)t>0 up to time t.

Backward stochastic differential equation

In the context of stochastic processes, it is also useful to consider the evolution backwards
in time depending on a condition in the future. For example, this approach is frequently
employed in finance, where one might seek to attain a particular value XT and wishes to
determine the necessary investment at time X0.

In deterministic theories the time-reversal is easily done since the configuration is deter-
mined. The stochastic integral in Itô’s sense may be defined following (2.10) by evaluation
at the end of the time interval tni = Tni+1. It describes a process that does not know anything
about the past. In terms of stochastic integrals the time direction is reversed

Xt = XT −
∫ T

t
b−(s,Xs)ds−

∫ T

t
σ(s,Xs)d−W

−
s , XT = xT (2.17)

and the backward Wiener process W−
t := W+

T−t is introduced. It has the same properties as
the forward Wiener process where t is replaced by T − t. The d− indicates that the integral
has to be interpreted backward-in-time. The backward Itô integral with respect to a Wiener
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process W−
t is an anticipating integral because the argument of the considered function

f(Xt) has to be evaluated at the end of a partition interval Tk+1 ∈ [Tk, Tk+1].
For such processes, the above definitions should be adapted to going backward in time,

e.g., a backward Wiener process that is non-anticipative w.r.t. the past. The shorthand nota-
tion for the backward SDE to (2.17) reads

dXt = b−(t,Xt)dt+ σ(t,Xt)d−W
−
t (2.18)

with dt > 0. The backward Itô formula for Yt = f(t,Xt) then yields a backward SDE

dYt =

[
∂tf(t,Xt) + bT−(t,Xt)∂Xtf(t,Xt) (2.19)

− 1

2
Tr
[
σT (t,Xt)

(
∂2Xt

f(t,Xt)
)
σt(Xt)

]]
dt+ dW−

t · ∂Xtf(t,Xt) . (2.20)

where dW−,k
t dW−,j

t = −δkjdt. In most cases, the distinction of the backward integrals and
differentials from the ones forward in time is clear from the context, e.g., as in dWt and
d−W

−
t . Hence, the index “−” is dropped, i.e., d = d−, in the remainder of the thesis.
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Figure 2.3: The plot displays the numerically integrated sample path of a stochastic process (Xs)[0,t]
starting from X0 = 3 and governed by dXs = −Xsds + dWs until time t = 1. Seven possible
future realizations are shown starting from Xt=1 = x. Since the path is not differentiable, a (forward)
velocity for a particle at Xt = x can only be defined as a mean of all possible future positions Xx

t+∆t

depending on the initial position x. Hence, the mean velocity at t depends on (t, x).

Consider a stochastic process (Xt)t>0 at time t with Xt = x. A time change by ∆t > 0
forward (or backward) in time according to (2.8) ((2.18)) leads toXt±∆t(ω). Due to the noise,
there are infinitely many possibilities for the new position as schematically shown in figure
2.3 for the integration forward-in-time. From the information of the current position it is
possible to calculate the expected velocity conditional on Xt = x

D+Xt = lim
∆t→0

1

∆t
E[Xt+∆t −Xt|Xt = x] . (2.21)

Nelson defined the rhs of this equation as a forward mean derivative of the stochastic pro-

17



cess D+Xt = b+(t,Xt) by using the martingale property of the Wiener process. The back-
ward mean derivative is defined accordingly

D−Xt = lim
∆t→0

1

∆t
E[Xt −Xt−∆t|Xt = x] = b−(t,Xt) . (2.22)

This allows us to make sense of (mean) velocities associated to non-differentiable processes.
These velocities, thus, allow an estimation of the new position forward or backward in time.

Relation to the Fokker-Planck equation

As already stated, we are dealing with stochastic processes (Xt)t≥0 characterized via SDEs
describing so called Itô processes. They are also called Itô diffusion because with them one is
capable to describe diffusions. That in turn is usually connected to probability distributions.
Therefore, the probability distribution ρ(t, x) associated with Xt at time t is governed by
a PDE as well, namely the Fokker-Planck equation. The Itô formula (2.13) bridges the path
between a SDE and a partial differential equation (PDE). Consider a smooth function f(Xt)
and the expectation conditional on the value Xt = x in shorthand notation Ex[·] = E[·|Xt =
x]. This yields

Ext [f(Xt + h)] =f(xt) + Ext
[ ∫ t+h

t
bT (s,Xs)∂xf(Xs)ds (2.23)

+
1

2

∫ t+h

t
Tr
[
σT (s,Xs)

(
∂2xf(Xs)

)
σ(s,Xs)

]
ds

]
. (2.24)

Rearranging (2.24) and taking the limit h→ 0 the dominated convergence theorem gives

Af(x) := lim
h→0+

1

h
(Ex[f(Xt + h)]− f(x)) . (2.25)

where A is the so-called generator of the time-homogeneous diffusion process (Xt)t≥0. With
p(x, t|y, 0) as the transition probability density and

u(s, y) = Exs [f(Xt)] =

∫
f(x)p(t, x|s, y)dx (2.26)

for s < t we get a backward-in-time differential equation for p with final state as Dirac
delta distribution in space. This allows to derive PDEs concerning the probability density
ρ(s, x) =

∫
p(s, x|T, y)ρ(T, y)dy, namely the Kolmogorov backward equation

−∂tρ(s, x) = bi(s, x)∂i [ρ(s, x)] +
1

2
σik(s, x)σjk(s, x)∂ij [ρ(s, x)] . (2.27)

Its counterpart forward-in-time is referred to as Fokker-Planck-equation;

∂tρ(t, x) = −∂i [bi(t, x)ρ(t, x)] +
1

2
∂ij [σik(t, x)σjk(t, x)ρ(t, x)] . (2.28)

This PDE describes the evolution of the probability density starting from the initial value
ρ(0, x) = ρ0(x). The backward-in-time Fokker-Planck equation

∂tρ(t, x) = −∂i [bi(t, x)ρ(t, x)]−
1

2
∂ij [σik(t, x)σjk(t, x)ρ(t, x)] (2.29)

carries a minus sign in front of the diffusion coefficient, which is due to the time reversal.
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Numerical solution of SDEs

In theory, there are two approaches for solving SDEs. One is based on the solution of as-
sociated PDEs, and the other based on the direct evaluation of the SDEs through numerical
integration. This report uses the latter approach, where a partition π = 0, t1, . . . , tnT = T
of the time axis with 0 < t1 < · · · < T is defined to approximate the stochastic process
(Xt)t>0 solving the SDEs. The approximated stochastic process (Xt

π)t>0 with respect to the
partition π is said to have a strong order of convergence α if

E[|Xπ
T −XT |] ≤ c|π|α, (2.30)

where |π| = max
i

|ti+1 − ti| and c is a constant. For instance, the simplest approximation

method, the Euler-Maruyama scheme, has a strong convergence order of 1/2, which is the
stochastic counterpart to the Euler method for ordinary differential equations. A more pre-
cise approximation is the stochastic Heun method, a two-step scheme that already has a
strong convergence order of 1. Depending on the required accuracy, either method was
used in this thesis.

These are some of the mathematical basics that are needed in the following chapters. For
a more detailed insight, e.g., including solvability of SDEs and uniqueness of solutions, the
reader may have a look at books on stochastic differential equations, e.g., [Øks03, GS69].

2.3 Nelson’s stochastic mechanics

In the usual practice of modeling natural phenomena, we begin by identifying a system,
described by its Hamiltonian as well as its environment and interaction. It is typically as-
sumed that the system’s interaction with its environment is small compared to the effects
of the system’s internal dynamics and, therefore, can be treated as a perturbation. This en-
ables us to simplify the model by reducing it to the system’s Hamiltonian and gain a better
understanding of the problem’s main characteristics.

Nelson’s 1966 paper departs from the conventional approach to modeling quantum phe-
nomena. According to Nelson, the traditional assumption that the interaction between a
quantum particle and its environment can be treated as a small perturbation does not hold
in the quantum world. Instead, Nelson proposes a model of conservative Brownian motion,
which posits that the interaction between a quantum particle and the universally present
background field is fundamental to the quantum system’s behavior. This assumption is
phenomenological in that the specific details of the background noise are unknown, but
only its statistical properties are relevant, as is typical in Brownian motion. 6

Three physical assumptions define the theory:

1. The quantum particle is driven by a Brownian motion where the coupling to the
stochastic background field is given by the diffusion coefficient D = σ2/2. For macro-
scopic objects, the diffusion coefficient is expected to be negligible. Thus, for a particle
with mass, one can assume that it is inversely proportional to the particle’s mass such
that σ2 = ℏ/m.

2. A properly defined stochastic acceleration of the particle is proportional to the classical
force F . This is a stochastic Newton law, also called the Nelson-Newton law, which
leads to a Brownian motion with drift.

3. The diffusion is non-dissipative and may be described by a time-reversible stochastic
process.

6One may think of some sort of background field permanently influencing the particle and, consequently,
the impossibility of isolating the particle from that. If we think of this background field as a summation of
infinitely unpredictable, minor disturbances, this leads to a summation of random variables. Due to the central
limit theorem, this leads to a Gaussian distributed perturbation leading to the diffusive motion of the particle.
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These assumptions are depicted in figure 2.4. Let us elaborate on the three points in more
detail.

Figure 2.4: The figure illustrates the fundamental principles of stochastic mechanics. A quantum ob-
ject, represented in position space with massm, is subjected to random perturbations with a diffusion
constant of σ2 = ℏ/m as shown in the upper left. The stochastic motion follows a modified version
of Newton’s law (upper right). The time reversibility of the probability density is demonstrated in
the bottom of the figure.

The first point states that the particle moves randomly. The configuration variable, e.g.,
the particle’s position, is then described by a stochastic process (Xt)t>0 ⊂ Rn. A forward Itô
SDE governs its kinematics

dXt = b+(t,Xt)dt+ σdWt, X0 = x0 , (2.31)

where b+(t, x) is the forward drift depending on the current configuration x = Xt, (Wt)t>0

is a n-dimensional Wiener process forward in time, σ is the square root of the diffusion
coefficient σ2 = 2D and x0 is a (F0 measurable) initial value distributed according to the
distribution ρ(t = 0, x).7 Taking the conditional expectation according to equation (2.21)
leads to D+Xt = b+(t,Xt) where the velocity (b+(t,Xt))t≥0 itself is a stochastic process.

The Itô SDE (2.31) is to be read forward in time. I.e., as time moves forward the pro-
cess starting at X0 ∼ ρ(0, x) will be at Xt ∼ ρ(t, x). Most of the stochastic processes de-
scribed by SDE (2.31), like the Ornstein-Uhlenbeck or the Black-Scholes process, are dis-
sipative diffusions, where energy is transferred between the system and its environment.
The density distribution will expand with time, and mathematically this is manifested by a
parabolic differential equation, e.g., in the case of a Brownian motion, the probability den-
sity evolves according to the heat equation. The same applies to physical systems, where
a diffusion is usually associated with a dissipative process. For example, the Einstein-
Smoluchowski [Ein05, VS06] diffusion describes a steady loss of the particle’s energy due

7Note that in this case, σ does not depend on the position or the time as it is generally possible for Itô
processes. This is if we consider the quantum SDE on manifolds, as discussed later.
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to constant friction in a fluid.
However, standard quantum mechanics requires the energy transfer between the sys-

tem and its environment to be zero on average, i.e., it is a closed system. Additionally, the
distribution in quantum mechanics has to be reversible in time with given distributions at
initial and final times. Regarding stochastic mechanics, the system is open, but the system’s
expected energy loss is zero.

For that, Nelson introduced a time-reversed evolution equation depending on the future.
Consider the example of the double slit shown in figure 2.1 problem again: the forward-in-
time propagation of the stochastic process leads to a spreading of the density with its wave-
like interference. When moving backward in time, it is necessary to ensure that the process
ultimately leads from the observed interference pattern back to the initial configuration of
the two slits. Thus, in general, the backward drift b−(t, x) ̸= b+(t, x).

Consider a backward SDE for the same stochastic process (Xt)t>0,

dXt = b−(t,Xt)dt+ σdW−
t , XT = xT ∼ ρ(T, x) (2.32)

with increments dW−
t , which are independent of the past, i.e., all Xs, s < t.8 The diffu-

sion coefficient is the same as in the forward SDE due to the invariance of fluctuations with
respect to t. A backward-in-time process with xT distributed according to a marginal dis-
tribution ρ(T, x) at t = T should properly describe the transition to the initial distribution
ρ(0, x) at t = 0.9 The backward velocity is, again, the mean derivative D− (2.22) of the
stochastic process D−Xt = b−(t,Xt).

On the level of probability distributions ρ, the forward and backward SDEs are equiv-
alent to the two Fokker-Planck equations given by (2.28) and (2.29). The sum of the two
Fokker-Planck equations gives the continuity equation

∂tρ(t, x) +∇ [v(t, x)ρ(t, x)] = 0 , (2.33)

with the defintion

v(t, x) = (b+(t, x) + b−(t, x))/2 . (2.34)

The field v(t, x) is called the current velocity and represents the particle’s mean velocity. Fur-
thermore, for a smooth function f(t, x) we have

D±f(t,Xt) =

[
∂t + b±∇+

σ2

2
∆

]
f(t,Xt) . (2.35)

If we set f(t,Xt) = Xt, use the product rule E[gD+f ] + E[fD−g] = D[fg] and integrate by
parts this results in [Nel66]

b− = D−x = b+ − σ2
∇ρ
ρ
. (2.36)

Hence, it is reasonable to define a second velocity, namely the osmotic velocity u(t, x)

u :=
1

2
(b+ − b−) . (2.37)

The osmotic velocity appears whenever the forward and backward equation drift velocities
do not coincide. It is related to the gradient of the probability distribution by

u(t, x) =
σ2

2

∇ρ(t, x)
ρ(t, x)

= σ2∇R(t, x) , (2.38)

8Note that σdW−
t = σd−W

−
t has to be read as backward Itô integral.

9Note that the stochastic process for one realization, i.e., ω ∈ Ω, has to describe the same path.
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where we wrote the probability as ρ(t, x) = exp{2R(t, x)}. The osmotic velocity of a particle
subjected to an external force balances the osmotic force ∝ ∇ρ in equilibrium [Nel66]. Equa-
tion (2.38) can also be derived by subtracting the two Fokker-Planck equations (2.28), (2.29).

The two coupled forward-backward stochastic differential equations for the position
process thus read

dXt = [v(t,Xt) + u(t,Xt)] dt+ σdWt, (2.39)
dXt = [v(t,Xt)− u(t,Xt)] dt+ σdW−

t . (2.40)

These equations are Nelson’s coupled FBSDEs and describe the kinetics of a time reversible
diffusion process with two unknown velocities v and u.10 Note that this formulation de-
scribes Markov processes. Up to now, they are coupled solely through the continuity equa-
tion; therefore, some additional constraint is needed to fix them.

For that, Nelson proposed a definition of the mean acceleration (postulate 2)

ma(t,Xt) :=
m

2
(D+D− +D−D+)Xt = F (t,Xt) . (2.41)

which is proportional to the force F acting on the particle. The definitions of the two velocity
fields v, u together with Nelson-Newton law (2.41) equation leads with

(D+D− +D−D+)Xt = D+b− +D−b+

to the partial differential equation

∂tv + (v · ∇)v − (u · ∇)u− σ2

2
∇2u = F (t,Xt) . (2.42)

The set of partial differential equations (2.33) and (2.42) is a system of nonlinear coupled
differential equations that characterize the two needed velocity fields v and u and can be
referred to as conservative Brownian motion. If we know the initial values X0, v(0, x) and
u(0, x) of the Markov process, the system of (2.40) and (2.33), (2.42) determines the complete
process and of course its state at time t0. Hence, the two velocity fields are at the core of the
description of stochastic mechanics.

The acceleration may be rewritten in terms of [dlPCVH15]

a = Dcv −Dsu (2.43)

with a classical Dc = ∂t + v · ∇ and a stochastic contribution Ds = u · ∇ + σ2/2∇2 to the
derivative w.r.t. time. These definitions are used in stochastic mechanics emerging from
a zero-point field [dlPCVH15] with Dc = 1/2 (D+ +D−) as a time-symmetric average and
Ds = 1/2 (D+ −D−) as the subtraction of Nelson’s mean derivatives such that

v = DcXt, and u = DsXt . (2.44)

A similar form for the acceleration was also used by Faris [Far82].

Recovering the Schrödinger equation

The derived equations (2.33), (2.42) can be linked to quantum theory by a proper choice of
σ (postulate 1). Assume that we can define another scalar field S(t, x) so that

v(t, x) =
1

m
∇S(t, x) . (2.45)

10For differentiable curves as in classical mechanics we have D+Xt = D−Xt = ẋ(t) = v(t) so that the
equations reduce to Ẋt = v(t,Xt).
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The analogy to classical analytical mechanics suggests the prefactor and identifies S(t, x) as
the action. Note that this demands no closed flows for the two velocities when dealing with
multidimensional problems.

Using the Itô formula (2.13) for R(t,Xt) and S(t,Xt), we obtain

∂tS =
mσ4

2
∇2R+

mσ4

2
(∇R)2 − 1

2m
(∇S)2 − V

∂tR = − 1

2m
∇2S − 1

m
(∇R) · (∇S)

(2.46)

For a more detailed account see [Nel85, PB13]. These equations recover the Madelung equa-
tions [Mad27] if the diffusion coefficient is defined as

σ2 =
ℏ
m
. (2.47)

The diffusion coefficient should vanish for macroscopic objects, so one can assume that it is
inversely proportional to the mass of the particle.11

Equations (2.46) are so-called Nelson-Madelung equations since they are the stochastic
generalization of the hydrodynamic equations of classical mechanics. The quantum terms
depending on the strength ℏ/m can be seen as additional stochastic forces, where for ℏ/m→
0, the classical Hamilton-Jacobi equations are recovered. The first of these two equations is
associated with the momentum balance, while the second corresponds to the conservation
of probability.

Finally, let ψ(t, x) = exp{R(t, x) + i
ℏS(t, x)}. This definition allows us to recover the

Schrödinger equation for solutions R and S of the Madelung equations [Mad27]. How-
ever, it should be noted that the Madelung equations allow for a broader range of solu-
tions [Tak52, Wal94], and thus the transformation does not guarantee complete equivalence
between the two theories. The true equivalence is only guaranteed in the case of node-free
ψ(t, x), which is valid for the ground state of a stationary system. Section 3.2.2 will dis-
cuss the variational principles to understand how this limitation to the ground state arises.
The limited equivalence between the Madelung equations and the Schrödinger equation
raises questions about the existence of Nelson diffusions for excited states and their be-
havior around nodes. Carlen [Car84] demonstrated that such diffusion processes exist for
excited states and called them singular diffusions.

Nelson’s stochastic processes are related to the Madelung equations, which can be trans-
formed into a Schrödinger equation. It is also possible to go the other way, where the
Schrödinger equation implies a system of differential equations characterizing the veloc-
ity fields and the Markov process according to (2.40). That is, Nelson’s ansatz recovers a
quantum mechanical system described by the Schrödinger equation but, in his case, as a
generalization of classical mechanics. That this is done without referencing the Schrödinger
equation is intriguing. It should be noted that the velocity fields v and u can be determined
for any solution of the Schrödinger equation by

v =
ℏ
m
∇ [ℑ{lnψ(t, x)}] (2.48)

u =
ℏ
m
∇ [ℜ{lnψ(t, x)}] . (2.49)

11The definition of σ is ambiguous depending on the definition of the stochastic acceleration as shown
in [Dav79]. We will stick here to the proposed definition of Nelson.
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Hence, for the momentum operator, we have

p̂ψ(t, x) = m(v − iu)ψ(t, x) (2.50)

p̂2ψ(t, x) = p̂ (m(v(t, x)− iu(t, x))ψ(t, x))

=
[
m2(v2(t, x)− u2(t, x))− ℏm∇ · (u(t, x)− iv(t, x))

]
ψ(t, x) . (2.51)

If the wave function has nodes, this leads to singularities in the osmotic velocity resulting in
a set of points in configuration space that is never reachable for the quantum particle within
finite time.

Conservative diffusion

Carlen [Car84] shows that in a given potential V (x) with a corresponding finite energy solu-
tion to the Schrödinger equation, there exists a corresponding non-dissipative or frictionless
diffusion. Hence, these are called conservative diffusions. This also includes singular veloc-
ity fields, which arise due to zeros in the wave function. Thus, the diffusion generator is
singular in general. In terms of constant of motion, this refers to the expectation of the sum
of kinetic and potential energy

d

dt
E [T (t,Xt) + V (t,Xt)] = 0 . (2.52)

The finite energy condition on a time interval [0, T ] reads∫ T

0

(
u2 + v2

)
ρ(t, x)dxdt =

∫ T

0
|∇ψ(t, x)|dt <∞ (2.53)

which requires the time integral of the quantum mechanical energy to be finite.

Observables

Every (physical) theory has to comply with the outcomes in an experiment, e.g., the position
x(t) measurement of an object at time t. As is well-known, the wave function satisfying
the Schrödinger equation is not measured itself, it is rather a tool needed to calculate an
expectation of the observable, i.e., in the example above, the outcome is predicted as

⟨x̂⟩ψ(t) = ⟨ψ(t)| x̂ |ψ(t)⟩ (2.54)

where we used the braket notation. The time evolution of a particle’s position x(t) can be
seen as a random path and is subsequently a random variable Xt for every t. It has an
associated probability distribution ρ(t, x) for all t. Since the wave function ψ satisfying the
Schrödinger equation and ρ are related,

ρ(t, x) = |ψ(t, x)|2 , (2.55)

it follows that Born’s probability interpretation of the wave function is intrinsic to the picture
of stochastic mechanics.

In Nelson’s formalism, observables A are typically linked to position measurements,
meaning that A(Xt) are also stochastic variables. As a result, the measurement at time t
produces an outcome associated with the probability distribution. This is also true in the
Schrödinger picture, although it is described differently. In the Copenhagen interpretation,
the measurement problem arises due to the localization of the wave function.

Coming back to observables in general the outcomes are not predictable in both cases,
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the expected values however, coincide if ⟨ψ|Â|ψ⟩ = ⟨ψ|A(x)|ψ⟩,

E[A(x)] =

∫
dxA(x)ρ(t, x) =

∫
dxA(x)|ψ(t, x)|2 = ⟨ψ|Â|ψ⟩ . (2.56)

This is not true for all operators, in general. E.g., for the square of the momentum operator
p̂, we have (e.g., see [PB13])

⟨ψ|p̂|ψ⟩ = mE[v − iu] = mE[v] (2.57)

with E[u] = 0. If we define the stochastic analog of the momentum operator as p = m(v−iu),
we get E[p] = E[m(v− iu)] = ⟨p̂⟩ψ. Considering the second moment, however, one can show
that

⟨ψ|p̂2|ψ⟩ = m2E[u2] +m2E[v2] , (2.58)

where E[p2] = m2E[v2−u2] ̸= m2E[v2+u2]. Here we used that E[v·u] = 0. The correct second
moment is recovered if the momentum is defined as the real momentum pR = m(v+u), such
that E[p2R] = ⟨p̂2⟩ψ.
Furthermore, the Schwarz inequality leads to

Var[Xt]Var[mu] ≥ Cov2[Xt, u] = |E[(Xt − E[Xt])(mu− E[mu])]|2 = ℏ2 (2.59)

since

E[Xtu] =
ℏ
m

∫
x∇ρ dx = − ℏ

m
. (2.60)

Hence [Gol85],

Var[Xt]Var[mu] ≥
ℏ2

4
. (2.61)

This is exactly Heisenberg’s uncertainty relation which in the stochastic picture originates
from the variance of the osmotic velocity that vanishes in the limit of classical systems. In
addition, we see that u contributes to the total energy

E(t, x) =
m

2
(v2(t, x) + u2(t, x)) + V (t, x) (2.62)

which can be defined by analogy to the classical energy of a particle. The average energy

Ē = E
[m
2
(v2 + u2) + V

]
=

∫
dxρ(t, x)

[m
2
(v2(t, x) + u2(t, x)) + V (x)

]
(2.63)

is conserved in the sense that [Nel85]

dĒ

dt
= (∂t + v · ∇)Ē = 0 . (2.64)

The latter equation is another form of the Hamilton-Jacobi-like equation in (2.42). Note that
Ē = ⟨Ĥ⟩ψ.

The stochastic energy E(t,Xt) given in (2.62) along two sample paths and the numer-
ically calculated ensemble expectation Ē = E[E(t,Xt)] for 105 realizations are shown in
figure 2.5 for the harmonic oscillator in the ground state. The energy E(t,Xt) along sample
paths is not constant, but its expectation is. It is important to note that for a node-free prob-
ability distribution, the ensemble average E[E] of the energy agrees with the time-averaged
energy ⟨E⟩T = lim

T→∞
T−1

∫ T
0 E(t,Xt)dt for one sample path. This does not hold, however, if

the probability distribution has nodes. In those cases, the velocity fields are singular such
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Figure 2.5: The left plot shows the energy calculated along two sample paths (grey and black) of a
particle in the ground state of the Harmonic oscillator. The blue line is the numerically calculated
ensemble average as a function of time. The plot on the right depicts the ground state’s potential and
energy expectation.

that the process cannot access the whole configuration space in general.
Equation (2.64) together with (2.38) leads to an average energy that depends on the prob-

ability density non-linearly. This contrasts classical particles described in statistical descrip-
tions with only one velocity v. Here the term with the gradient of the probability may be
seen as the additional energy needed to localize the particle [Smo86].

The expectation value of the energy is conserved, although the system is not isolated
like in ordinary quantum mechanics. E.g., there it is possible to have particles bound in
a potential fixed at a certain energy value with non-vanishing wave functions in regions
where the particle’s energy is lower than the external potential. These regions are considered
(classically) forbidden since the energy law is violated. In the stochastic picture, conversely,
a definition of a forbidden region is not reasonable. Due to the fluctuations - represented by
the Gaussian white noise in the SDEs - the particles can overcome any finite potential barrier
with a certain probability. This formalism does not contradict the description in the Hilbert
space since the expectation value of the energy over time in Nelson’s stochastic mechanics
corresponds to the quantized values for the energy.

The role of the velocity fields

The forward (backward) velocity field gives the best possible prediction on how the config-
uration will change (was changing), conditional on the information of the past (future) at
the current time t. In the context of Nelson, the properties of interest are the velocity fields
v(t, x) and u(t, x). Hence, their combination in the SDE as drift terms v ± u is crucial for
the movement of the considered quantum object. It is important to recall that these veloc-
ity fields are not instantaneous velocities of the stochastic process Xt. They are defined as
conditional expectations, i.e., averages over the configuration variable x.

The velocities in a system with conservative diffusion can be derived from the stochastic
Newton law expressed in equation (2.41), where the classical force F acts on the particle’s
mean acceleration. The current velocity corresponds to the expected (semiclassical) velocity,
while the osmotic velocity is proportional to the gradient of the probability distribution
and localizes the particle. This phenomenon is illustrated in figure 2.6, which depicts the
double-slit experiment. In this experiment, the current velocity steers the particle towards
the screen. The osmotic velocity is mostly perpendicular to the particle’s average motion
from the slits to the screen and aims to keep the particle at positions of higher likelihood.
This is manifested by their expectations E[u] = 0 and E[v] ̸= 0 and E[v · u] = 0.
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Figure 2.6: A stochastic realization (turquoise) is shown at a time t > 0 after passing the double slit
in the big figure to the left. It is accompanied by the 2d vector field of v (blue arrows) and u (red
arrows), as well as the current probability distribution (gray) associated with the stochastic process.
The two plots on the rhs depict a detailed view of the same figure for each velocity field.

The osmotic velocity is a consequence of the diffusive motion and vanishes in the classi-
cal limit and under expectation since it is the gradient of the probability distribution. Hence,
it does not contribute to the expectation value of the stochastic momentum p = m(v + u).
Regarding the second moments, however, the osmotic velocity is crucial for the uncertainty
relations and the discrete values as given from ordinary quantum mechanics, e.g., the en-
ergy expectations as shown in figure 2.5 or the spin expectations values as discussed in
section 5.3.

Furthermore, there is a subtle but important difference between v(t, x), u(t, x) and
v(t,Xt), u(t,Xt) from a physical point of view. Consider, e.g., the current velocity v. Then
v(t, x) gives an estimate of the velocity, which is described for the whole configuration space
x at t. It is, thus, a global field, i.e., non-local, which describes current knowledge about the
particle from which predictions are made. The velocity described by v(t,Xt), on the other
hand, describes the mean velocity given by a conditional expectation along the stochastic
trajectoryXt at t. One may argue that if, at least, only v(t,Xt) has a physical meaning [Kui23]
since it describes the (average) velocity of a quantum particle. The fields v(t, x), u(t, x), how-
ever, can be seen as mathematical fields, e.g., comparable to the action S(t, x) in the classical
Hamilton-Jacobi theory, which do not represent physical properties. The same applies to
the wave function ψ(t, x), which is non-local and represents the best knowledge about the
non-relativistic quantum system until measurement.

Applications of stochastic mechanics

The formalism of stochastic mechanics usually involves solving the Schrödinger equation
and using the principles of stochastic mechanics to compute additional properties. This
approach has been applied to generate and analyze sample paths of conservative diffusions
described by the wave function, resulting in intriguing numerical applications as described
in references such as [Zam85, MR88, NK07, NK08, KN13, Pau12]. One particularly valuable
application is determining the time required for certain quantum processes. Since quantum
mechanics does not have a time operator, it is impossible to directly compute the duration
of a process using the expectation value of a self-adjoint operator. However, it is natural to
inquire about the time it takes for a diffusion process to cross a barrier [IOY95] or move from
the plane of a double-slit to the measurement screen [NK08, DDKS22]. In Section 3.2.2, we
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will revisit the issue of barrier traversal, also known as tunneling times.

Multiple particles in stochastic mechanics

The theory of stochastic mechanics may be extended to include electromagnetic interac-
tion [Nel66] and to many particles [Nel85]. For a system of multiple particles with position
xj ∈ R3 for the jth particle, the velocity fields may be defined for each particle individually
so that for the jth particle, there is vj and uj . The probability distribution ρ(t, x1, x2, ...) de-
pends on the position of all particles and fulfills the continuity equation. The relation of the
osmotic velocity in (2.38) of particle j to the distribution is defined as

uj =
ℏ

2mjρ
∇jρ . (2.65)

If one assumes that the general probability distribution is not factorizable

ρ(t, x1, x2, ...) ̸≈
n∏
j=1

ρj(t, xj) , (2.66)

it follows that uj(t, x1, x2, ...), i.e., the osmotic velocities of different are interdependent. This
may be true even in the case of space-like separated particles. Consider, for example, the
correspondence to the Hilbert space formulation of quantum mechanics. Since there is a
stochastic process to each wave function ψ solving the Schrödinger equation with ρ = |ψ|2,
the immediate reduction of ψ in a measurement of particle j leads to an instantaneous
change of the (osmotic) velocities of all other particles independent of their distances. This
fact is revisited in the context of criticism on stochastic mechanics in section 2.5 and in the
paradox put forward by Einstein, Podolsky, Rosen [EPR35] and Bohm [Boh51] discussed in
section 6.5.

2.4 Connection to other interpretations of quantum mechanics

Stochastic mechanics is often compared to other interpretations and formalisms of quan-
tum mechanics due to possible similarities. E.g., Pavon [Pav00] studied the relation of the
stochastic trajectories to the sample paths in Feynman’s path integral formulation. The fol-
lowing considers three other closely related formalisms in more detail.12

2.4.1 Hydrodynamic model

The Madelung equations occur on the path to show the correspondence of the Schrödinger
equation and the conservative diffusion defined by Nelson in both ways. They are a hy-
drodynamical description of quantum mechanics and follow from the Schrödinger equa-
tion by the polar substitution of the wave function [Mad27] ψ =

√
ρe

i
ℏS with amplitude√

ρ(t, x) =
√
ψ∗(t, x)ψ(t, x) and argument 1/ℏS(t, x).

The Schrödinger equation then decomposes into two separate but coupled partial differ-
ential equations, its real part,

∂tS +
1

2m
(∇S)2 + V − ℏ2

2m

∇2√ρ
√
ρ

= 0 (2.67)

12Note that the stochastic quantization due to Parisi and Wu [PW81] on the other hand is a stochastic field
theory that differs from the field theories suggested in the framework of stochastic mechanics, e.g., see [Nel85].
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and its imaginary part

∂tρ+
1

m
∇ · (ρ∇S) = 0 . (2.68)

Equation (2.68) is similar to a continuity equation, whereas (2.67) is a Hamilton-Jacobi-like
equation with an additional term

VQ = − ℏ2

2m

∇2√ρ
√
ρ

(2.69)

depending on the inhomogeneity of the probability density distribution. This term disap-
pears in the classical limit because of the ℏ coupling. Thus, in some theories like Bohmian
mechanics, it is called the quantum potential.

The Madelung equations are considered as a hydrodynamical description of quantum
mechanics where the particles are subject to a fluid [Tak55]. The velocity field is the gradient
of a flow S in continuum mechanics.

2.4.2 De Broglie-Bohm mechanics

De Broglie-Bohm’s theory [DB27, Boh52a, Boh52b] is often referred to as causal interpretation
of quantum mechanics. This is because it describes a deterministic time development of a
quantum object where a local velocity v is driving the system. This also allows for the cal-
culation of paths of quantum systems. In contrast, however, the wave function Ψ, governed
by the Schrödinger equation, is essential to the theory and serves as a guiding wave. Since
the guiding wave is known at all times and all places, the system’s dynamics may change
with any change of distant other particles. Thus, the Bohm theory is also non-local.

The main difference to the Schrödinger formalism is the particle-like picture. Here, the
quantum configuration may be described by some variable x(t), e.g., the position, that is
governed by the dynamical law

v(t, x(t)) =
dx(t)

dt
=

ℏ
m
ℑ
{
∇Ψ(t, x)

Ψ(t, x)

∣∣∣∣
x=x(t)

}
. (2.70)

The deterministic trajectories follow a path in a potential which is a combination of the
classical potential V and a so-called quantum potential

VQ = − ℏ
2m

∇2|ψ|
|ψ| . (2.71)

This quantum potential vanishes in the classical limit, i.e., it is crucial for the non-classical
behavior that accounts for the quantum phenomena. The uncertainty of the measurements
is then solely due to the system’s initial (or final) conditions: if a particle’s position is mea-
sured at the end of an experiment, its trajectory can be determined exactly, hence “causal
interpretation”.

The de Broglie-Bohm formalism is often thrown into one pot with Nelson’s stochastic
mechanics, since the velocity v in (2.70) may be rewritten as v = 1

m∇S for ψ = eR+i/ℏS . I.e.,
it is the same as the current velocity in stochastic mechanics. The definition of the velocity
and the momentum here are motivated from the hydrodynamic formulation as in section
2.4.1 by neglecting the ℏ2 terms in the Madelung equations (2.67) in a WKB approximation
of the Schrödinger equation [BH89]. The crucial difference in stochastic mechanics is that
quantum systems are represented by diffusion processes where the wave function has no
fundamental role. This is established by the osmotic velocity u added to the current velocity
v in stochastic mechanics. It is the quantity that makes the process “quantum”, and it has a
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direct connection to the quantum potential in De Broglie-Bohm’s theory through

VQ = −m
2
u2 − ℏ

2
∇ · u . (2.72)

Under expectation, there is

E[VQ] = E
[m
2
u2
]
. (2.73)

Hence, it is related to the osmotic part of the kinetic energy which is of significance for the
various Lagrangians used in the variational principles in stochastic mechanics. This is also
reflected in the case of a spinning particle where the osmotic part leads to a quantum torque
that causes the splitting of particle trajectories depending on their spin in a Stern-Gerlach
experiment.

A more unsatisfactory interpretation in pilot-wave theory follows in the case of station-
ary bound eigenstates, where the argument S of the wave function is constant for some
states like the eigenstates of the harmonic oscillator or the s states of the hydrogen atom.
It follows that v ∝ ∇S = 0, and with that, the particle is at rest. This is explained by the
quantum force balancing the classical force on the particle. However, this static behavior
does not occur in stochastic mechanics due to the osmotic velocity. The example of the hy-
drogen atom is discussed in sections 3.3.2 and 4.4, including visualizations of orbitals in the
stochastic interpretation.

2.4.3 Optimal transport theory

Nelson’s approach is associated with the field of optimal transport theory [vR12, CGP16].
It can be seen as a transport problem with an addition of potential energy and the Fisher
information. The stochastic variational problem

inf
b

{∫ T

0
E
[m
2
Ẋt

2 − V (Xt)
]
dt : dXt = b+(t,Xt)dt+ σdWt,

X0 ∼ ρ(x, 0), XT ∼ ρ(x, T )

}
(2.74)

may be used to derive the Schrödinger equation. Here Xt is a stochastic process with fixed
initial and final probability densities, b+(t, x) is the usual forward drift, Wt is a standard
Brownian motion, and σ determines the strength of the noise. It is possible to show that∫ T

0
E

[
Ẋt

2

2
− V (Xt)

]
dt =

∫ T

0
E
[m
2
b+(t,Xt)

2 + σ2∇ · b+(t,Xt)− V (Xt)
]
dt . (2.75)

The expectation in terms of the probability density function allows rewriting (2.75) into a
variational problem of deterministic nature

inf
b+

{∫ T

0

∫
Rn

[
m

2
b2+ρ+

σ2

2
∇ · b+ρ− V ρ

]
dxdt

}
=

inf
v

{∫ T

0

∫
Rn

[
m

2
v2ρ− σ4

8
(∇ ln ρ)2ρ− V ρ

]
dxdt

}
(2.76)

with respect to the current velocity v(t, x) = b+(t, x) − σ2

2 ∇ ln ρ(t, x) in the latter equation.
The probability density function satisfies the (forward) Fokker-Planck equation with drift b
or rewritten with v the continuity equation

∂tρ+∇(ρv) = 0 (2.77)
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with fixed initial and final densities given. The second term in (2.76) is also referred to as
Fisher information

I =
∫
Rn

(∇ ln ρ)2ρdx . (2.78)

A closely related deterministic variational problem was proposed by Guerra and Mo-
rato [GM83, Mor22], where the critical point satisfies the Madelung equations, which in turn
can be recast via the complex Hopf-Cole transformation ψ =

√
ρei/ℏS into the Schrödinger

equation.

2.5 Criticism on/Controversies in stochastic mechanics

The stochastic interpretation of quantum mechanics in terms of conservative diffusions is
not very popular and was even considered dead by Nelson [Nel12] himself. This is mainly
due to some controversies and open questions based on the underlying classical picture
of stochastic mechanics, e.g., non-locality, or the formal inequivalence to the excited states
predicted by the Schrödinger equation. This subsection tries to address the most prominent
among them.

Non-locality

Non-locality arises in Nelson’s theory, e.g., for multi-particle systems where the change of
position of one particle changes the velocity fields of all other particles. Those velocity
fields contain information at every point x for each time t in the form of averaged quantities
defined through conditional expectations. I.e., those statistical averages cover the whole
space in this model, which is resembled via the velocity fields.

Starting from wave mechanics, this is clearly visible for the connection of the drift term
to the wave function, see also chapter 8 in [dlPCVH15]. E.g., for two particles, the forward
velocity of particle 1 derived from the Schrödinger equation reads

b1(t, x1, x2) =
ℏ
m

(
ℑ
{∇1Ψ(t, x1, x2)

Ψ(t, x1, x2)

})
. (2.79)

In general, the drift term may depend on the position of the other particle. In that case,
particles that are no longer interacting locally are subjected to a change in the velocity field.
Non-locality is also apparent in the case of spin as will be shown later in chapter 6.4. Nelson
himself [Nel85] argued that this might be due to the Markovian nature. However, in a
review in 2012 [Nel12], he considered this point as a flaw in his model since the motivation
of a classically motivated theory that describes quantum phenomena surely is thought to
accept local interaction only.

Correlated measurements

Related to the non-locality is the controversy around successive measurements of a quantum
system. As argued by Grabert [GHT79] or Nelson [Nel85] the example of two dynamically
uncoupled harmonic oscillators with frequency ω0 was considered to show that the corre-
lation in stochastic mechanics differs from standard quantum mechanics in general. This
would stand in contrast to the claim that the stochastic mechanics and standard quantum
mechanics lead to the same measurement outcomes, since correlations are generally mea-
surable.

The considered oscillators are assumed to have the same frequency ω0. Thus, it is easier
to solve for one oscillator only. The stationary ground state of the harmonic oscillator can be
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derived from the wave function

Ψ0 = N exp

(
−iω0t+

ω0mx
2

2ℏ

)
, (2.80)

and the corresponding forward (backward) SDE from Nelson read

dXt = ∓ω0Xtdt+

√
ℏ
m
dW±

t . (2.81)

The solution to the forward SDE in (2.81) is known as the Ornstein-Uhlenbeck process which
may be found by multiplying with e−ω0t and integrating over time

Xt = exp−ω0tX0 +

√
ℏ
m

∫ t

0
e−ω0(t−s)dW+

s . (2.82)

The first term in (2.82) mimics the exponential decay from the initial condition to 0 while
the second part describes the randomness of the process in terms of a Brownian motion that
depends on past values13.

The expectation value of Xt shows the exponential loss of information regarding the
starting configuration E[Xt] = e−ω0tE[X0] with increasing t. Its correlation is

E[XtX0] = e−ω0tE
[
X2

0

]
. (2.83)

According to this example, the correlation in stochastic mechanics is exponentially decaying,
which contrasts the quantum mechanical prediction from the Heisenberg picture. In the case
of the two-time correlation of the quantum system, the position measurement x(0) at time
0 and a successive measurement of the system’s position at time t > 0, x(t) leads to an
expectation

⟨x̂(0)x̂(t)⟩ψ(t) = ⟨ψ(t)| x̂(0)x̂(t) |ψ(t)⟩ (2.84)

in the Heisenberg model which is periodic in time. This follows from the commutator

[x̂(0), x̂(t)] = iℏ
sinω0t

mω0
(2.85)

where x̂(t) = exp( i
ℏĤt)x̂(0) exp(− i

ℏĤt). For times t as multiples of π
ω0

the commutator (2.85)
vanishes and thus ⟨x̂(0)x̂(t)⟩ψ(t) is alternating between ±ω0m

2ℏ .
These results seem to be in contradiction with each other. However, in stochastic me-

chanics, the velocity fields depend on all the information known about the system at a cer-
tain time. This includes particularly any kind of measurement. Hence, one has to take into
account the update of the knowledge about the system. In standard QM this is described by
the collapse of the wave function at time t = 0 in form of a delta distribution. The measure-
ment of the starting position x0 = X0 at t = 0 thus leads to a change of the wave function,
or in terms of stochastic mechanics, to the change of the velocity field. A new process has to
be considered depending on the positional measurement Xx0

t with new drift depending on
x0 as demonstrated in [BGS86] or [PM00]

x

tanωt
− x0

sinωt
. (2.86)

The related stochastic drift after the “exact” measurement is clearly different from the ground
state solution. It finally gives the same correlation predictions as given in the Heisenberg
picture above.

13If one wishes to solve the backward SDE of (2.81) the fluctuation term would depend on future values of
the stochastic process.
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The key point to consider is the non-locality of quantum mechanics and the implica-
tions of the stochastic formalism when applying the single harmonic oscillator correlation
to two locally separated and uncoupled harmonic oscillators. In such cases, measuring one
oscillator results in a reduction of the wave function, which in turn changes the knowledge
about the second oscillator. This change in knowledge must be reflected in the stochastic
mechanical distribution, as it contains the updated information on the system. This aspect
differs from standard diffusions, where conditioning the probability density yields the same
result for all starting distributions before a measurement. The non-local nature of the the-
ory, as exemplified by the osmotic velocity, plays a crucial role in this process, as it changes
with the measurement, implicitly altering the probability density. For a more detailed de-
scription, refer to [PM00]. A similar problem arises in the Einstein-Podolsky-Rosen-Bohm
Gedankenexperiment discussed in Section 6.5, where a system of two entangled spins is
considered.

Quantization and inequivalence to the Schrödinger equation

As shown by Wallström [Wal94], stochastic mechanics is not necessarily equivalent to the
Schrödinger equation. This is especially true for excited states with non-vanishing angular
momentum. Here the stochastic approach seems to allow for any real values, whereas the
wave function requires the momentum to be quantized in order to be single valued. The
constraint of single valuedness of the wave function is lost and has to be restored ad-hoc
in the Madelung equations or stochastic mechanics, respectively. The first mention of this
fact in the context of a hydrodynamical picture was given by Takabayashi [Tak52]. There are
several proposals that solve this issue by including the Zitterbewegung of a particle [Der17]
or the inclusion of the singular term in the stochastic Lagrangian of the variational princi-
ple [Kui22].

Origin of the background field

The underlying physical nature of the fluctuations is not fully understood in the picture
of stochastic mechanics. Nelson’s conjecture is based on the electromagnetic background
field that interacts with any quantum particle [Nel85]. This is possible within this formalism
since the considered systems are open as opposed to the Schrödinger picture. Other possible
explanations include an interaction with a stochastic zero-point field, e.g., see [dlPCVH15].
The possible underlying picture of the fluctuations, however, will not be discussed in further
detail in this thesis.
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Especially the wave function has proven to be very convenient in describing quantum
phenomena since it seems to comprise all information needed to describe a system. How-
ever, other mathematical structures may be used to describe quantum systems depending
on the field of application. In the remainder of the thesis, we will focus on a recently derived
theory of the quantum Hamilton equations.
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Chapter 3

Quantum Hamilton equations

The quantum Hamilton equations are a set of coupled Forward-Backward Stochastic Dif-
ferential Equations, which were derived by Köppe [KGP17] as a generalized version of the
Hamilton equations of motion for quantum systems. These equations are derived using
the calculus of stochastic optimal control theory and enable the description of a quantum
system through kinematic and dynamic equations. Moreover, their derivation and numer-
ical solution are independent of the Schrödinger equation, making them a valuable tool to
investigate quantum systems from a different perspective.

Stochastic control theory and optimal feedback controls have been extensively studied
in recent decades, which enabled the development of the stochastic Hamilton equations by
drawing an analogy to the deterministic optimal control problem. To illustrate the simi-
larities between the two approaches, the derivation of Hamilton’s equation of motion from
Hamilton’s principle is discussed. The variational principles in stochastic mechanics are
also covered. This chapter’s last part is dedicated to the derivation and application of the
QHE in Euclidean space.

This section follows in parts review [BP21]. An in-depth description of the maximum
principles used to derive the Quantum Hamilton equations can be found in the following
publications [KGP17, Köp18, BPGP19].

3.1 Variational principles in stochastic mechanics

Nelson’s stochastic formalism is built upon a generalized Newton law for the mean acceler-
ation of a particle, as expressed in equation (2.41). The expectation term becomes irrelevant
in the classical limit, and Newton’s second law is restored. From classical mechanics, it
is known that these dynamic differential equations can be reformulated in different ways,
including integral equations based on Hamilton’s principle. According to this principle of
stationary action, the system’s dynamics are determined by the extremization of a functional
known as the action,

S[x] =

∫ T

0
L(x, ẋ, t)dt . (3.1)

It is stationary with respect to a critical path x = (x(t))t∈[0,T ] with fixed end points x(0),
x(T ), where the Lagrangian L(x, ẋ, t) = m

2 ẋ
2 − V (t, x) contains the physical information of

the system.
Short notations such as x = x(t), ẋ = ẋ(t), and X = Xt may be used throughout this sec-

tion for brevity. A functional derivative of the action with respect to x is denoted as δxS[x],
and a vanishing functional derivative evaluated at x = x∗ is represented as δxS[x]|x=x∗ = 0.
This condition leads to the Euler-Lagrange equations:

∂L
∂x∗

− d

dt

∂L
ẋ∗

= 0 . (3.2)
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Variational principles and optimal control problems in the stochastic framework gen-
erally involve searching for criticality among non-differentiable paths. These principles
should include classical variational principles as special cases. While a cost functional’s
criticality cannot control the path itself due to the noise term, it is possible to adjust the
mean of the stochastic behavior, i.e., the expectation value.

In the 1980s, suggestions were made in the framework of stochastic mechanics by Ya-
sue [Yas80, Yas81a, Yas83, Zam85] and Guerra and Morato [GM83]. The time-reversibility
of the diffusion and the smoothed mean forward and backward derivatives introduced by
Nelson are two important aspects here. Yasue’s “Lagrangian approach” considers a cost
functional of the form

S[X] = E

[∫ T

0
L(Xt, b+, b−, t)dt

]
, (3.3)

The suitably defined Lagrangian L involves the two conditional smooth velocities D+Xt =
b+(t,Xt) and D−Xt = b−(t,Xt) with respect to the present. Due to the stochasticity, the
functional tries to extremize an expectation value w.r.t. the probability density ρ(t, x) asso-
ciated to (Xt)t≥0 denoted by E.

When considering a critical process X∗ for which the action functional S is minimized,
any variation of the functional around X∗ by a stochastic process Z must satisfy the condi-
tion S[X∗ + Z] − S[X∗] = O(|Z|) with fixed endpoints X0 and XT . This condition leads to
the stochastic Euler-Lagrange equations

∂L
∂X

−D+

(
∂L

∂D−X

)
−D−

(
∂L

∂D+X

)
= 0 . (3.4)

These stochastic Euler-Lagrange equations resemble their deterministic counterparts,
where D+Xt = D−Xt = ẋ(t). The choice of L = LY = 1

4((D+Xt)
2 + (D−Xt)

2) − V for
the Lagrangian leads to the Nelson-Newton law (2.41) for (3.4). Written in terms of the
current and osmotic velocities, the Lagrangian, in that case, is similar to the classical one

LY = T − V =
m

2
(v2 + u2)− V (3.5)

with an additional kinetic energy due to the osmotic velocity.

Unlike the Yasue approach, which uses stochastic calculus, Guerra and Morato [GM83]
utilized stochastic control theory. In this approach, the goal is to optimize the cost functional
with respect to the smoothed forward velocity b+(t,Xt) = D+Xt (this works similarly for
D−Xt), subject to the control equation dXt = b+(t,Xt)dt + σdW+

t , and fixed initial proba-
bility density ρ(·, 0) and final probability density ρ(·, T ). Thus, this approach is based on the
fluid dynamics picture. Their Lagrangian is defined as

LG = L(Xt, D+Xt, D−Xt) =
m

2
D+Xt ·D−Xt − V (t,Xt) , (3.6)

where the variation of the cost functional w.r.t. a deviation from the critical velocity cor-
responds here to a variation of the critical drift b∗+ by a stochastic process Z. Note that
although Guerra’s [GM83] approach is a control problem, it still seeks to find critical points
of the action, i.e., δS = 0. The quantum Hamilton-Jacobi-like Equation (2.46) for the veloci-
ties v = 1

2(D+Xt+D−Xt) and u = 1
2(D+Xt−D−Xt) is derived once again. Their derivation

also states that both velocity fields are gradients of scalar functions.

It is worth noting that the Lagrangians LG and LY differ by a sign in front of the osmotic
energy when comparing their definitions,

LG =
m

2
(v2 − u2)− V . (3.7)
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The special role of this additional (kinetic) term can be explained by taking the expectation

E
[m
2
u2(t, x)

]
=

∫ (
ℏ
2m

∇2ρ(t, x)

ρ(t, x)

)
ρ(t, x)dx = E[VQ] , (3.8)

where we used equation (2.38). Thus, taking the expectation shows the equivalence be-
tween the osmotic energy and Bohm’s postulated quantum potential VQ in the pilot-wave
theory [BST55]. This implies that the fluctuation of the kinetic energy with the minus sign
−m

2 u
2 in (3.7) can be interpreted as an additional contribution to the potential V , without the

need to postulate an additional potential. Furthermore, in (3.8), the gradient of the Fisher in-
formation (functional) appears, which is used in the theory of optimal mass transport. It has
been shown that the nonrelativistic evolution of quantum systems, namely the Madelung
fluid equations, can be derived from the optimal interpolation of flows in the so-called
Wasserstein space between fixed initial and final measures [vR12], see also Section 2.4.3.
The sign of the dissipation term and the sign of the osmotic energy in the Lagrangian is ex-
plained by the underlying particle formulation. The particle formulation proposed by Yasue
TU = mu2/2 describes the osmotic kinetic energy. In contrast, the formulation proposed by
Guerra can be interpreted to describe fluid dynamics since −TU represents the interaction
of the particle with an effective potential in the fluid [CP18].

Many of the suggested variational principles recover the Hamilton-Jacobi-like equation,
including the quantum correction terms, which is one of the Madelung equations. In ad-
dition, the continuity equation is satisfied due to the assumption of time-reversibility. The
quantum Hamilton equations, however, are built on two variational principles introduced
by Pavon [Pav95b].

He introduced the so-called quantum Hamilton principle, which is based on two vari-
ational principles that recover both Madelung equations. The proposed method involves
searching for saddle-points for the current and osmotic velocity, i.e., two controls, with the
help of Lagrangian functionals. As shown in Equation (3.7), the Lagrangian is convex in
v and concave in u. Pavon suggests using this Lagrangian and considers it as a zero-sum
stochastic differential game for two players, where the player controlling the current veloc-
ity aims to minimize the cost, while the one controlling the osmotic part tries to maximize
it. Thus, the cost functional can be written as follows

J1[X
∗, u∗, v∗] = max

X
min
v

max
u

E

 T∫
0

LG(X,u, v, t)dt+ S1(XT )

 . (3.9)

The stochastic controls vt and ut are denoted by small letters, and a given continuous func-
tion S1(·) is used as a final constraint. It is worth noting that initial conditions could also
be used instead of final conditions. In addition, a second variational principle based on the
system’s entropy is proposed. This principle relies on the configurational entropy of the
system, which is defined as SE(t) = −

∫
ρ(t, x) ln ρ(t, x)dx. This principle aims to increase

the entropy in the diffusion process,

J2[X
∗, u∗, v∗] = max

X
max
v

min
u
E

 T∫
0

[
−σ−2 v · u

]
dt+R1(XT )

 , (3.10)

where R1(·) is a continuous given function. The saddle-point entropy production principle
is related to the continuity equation and leads to a time-reversible diffusion. In the zero-sum
case we have J1[X∗, u∗, v∗] + J2[X

∗, u∗, v∗] = 0.
Recently, these variational principles have been reformulated as stochastic optimal con-

trol problems using the mathematical theory developed over the past few decades, includ-
ing optimal feedback controls for Nelson’s diffusion processes [KGP17, BPGP19, KPB+20,
ØS14, BG10]. By analogy to the deterministic optimal control problem, where a stochas-
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tic Hamiltonian is pointwise extremized, this approach allows the derivation of stochastic
Hamilton equations. Additionally, these variational principles can be combined into a single
principle using complex numbers, known as the quantum Hamilton principle, which Pavon
introduced. This reformulation provides an elegant way to represent the quantum process
more concisely, as discussed in subsection 3.2.2.

3.2 Quantum Hamilton equations

3.2.1 Deterministic optimal control: Pontryagin principle

Hamilton’s principle given in (3.1) is expressed through the action functional, denoted as
S[x], which is defined as the integral of the Lagrangian, L(x, ẋ, t), over time from 0 to T,
where the Lagrangian contains the physical information of the system. To link this to a
stochastic optimal control problem, Hamilton’s principle can be reformulated as a determin-
istic optimal control problem. This is achieved by introducing a new quantity, v(t), called
the control, which has the same dimension as ẋ(t) and is restricted to a set of physically rea-
sonable admissible controls. The action is then a functional with respect to v. The optimal
control problem can be expressed as minimizing the action functional over the admissible
set of controls subject to a set of differential equations that relate v and x. The optimal control
problem can be written as

S[v] =

∫ T

0
L(x, v, t)dt+ ϕ(x(T )), (3.11)

ẋ(t) = v(t), x(0) = x0 (3.12)

Here, the control v replaces ẋ in the functional, and the controlled equation relates v and x.
The objective is to find the optimal control v that minimizes the action.

The control Hamiltonian H is constructed similarly to the introduction of Lagrange mul-
tipliers for constraints as

H(x, v, p, t) = p · v − L(x, v, t) , (3.13)

where p(t) is the costate variable and the canonical momentum in Hamiltonian mechanics.
Pontryagin’s maximum principle states that the optimal state trajectory x∗, the optimal con-
trol v∗, and the associated costate p∗ have to pointwise maximize this Hamiltonian. In other
words,

H(x∗(t), v∗(t), p∗(t), t) ≥ H(x∗(t), v(t), p∗(t), t) (3.14)

for all t ∈ [0, T ] and all admissible controls v. This implies that

∂vH(x∗(t), v(t), p∗(t), t) = 0 . (3.15)

In addition, there is an ordinary differential equation that has to be satisfied:

ṗ = −∂xH(x∗, v∗, p, t) p(T ) = ∂xϕ(x(T )) , (3.16)

where ϕ is a scalar function that encodes the desired terminal state. If we set ϕ(x(T )) = 0,
we obtain the case of the ’classical’ Hamilton principle, where the final state is fixed, and
there is no terminal condition on the costate vector. Using

ẋ = ∂pH(x, v, p, t) , (3.17)

we obtain Hamilton’s equations of motion for the optimal pair of canonical coordinates
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(x∗, p∗)

ṗ∗ = −∂xH|x=x∗ (3.18)
ẋ∗ = ∂pH|p=p∗ . (3.19)

The stochastic generalization of the deterministic control problem is discussed in the follow-
ing subsection.

3.2.2 Stochastic optimal control

Stochastic optimal control theory has a broad area of applications, mainly focused on finance
and engineering. The connection to quantum mechanics has been outlined in a few publi-
cations recently, e.g., [BSS21, CPV17, Ohs19, LL19], and it also gained interest in theories
focused on quantum gravity [Erl18, Ans22]. The quantum Hamilton equations originally
derived by Köppe [KGP17] fit into the development in the last years.

Assume that we are concerned with a particle moving in d dimensions characterized by
the position Xt at time t ∈ [0, T ] where X = (Xt)0≤t≤T is a stochastic process in Rd in a
probability space. The stochastic process X follows Nelson’s FBSDEs (2.40) with the current
and osmotic velocity acting as optimal controls v = (vt)t>0 and u = (ut)t>0, respectively.
At this point, there is no assumption of the Nelson-Newton law. These kinematic equations
serve as constraints in the optimization problem of the quantum Hamilton principle, which
combines two saddle-point principles in stochastic optimal control theory. The goal is to
derive an equivalent to the Schrödinger equation using this principle.

The idea is to find the saddle-point of two functionals within optimal control theory. The
first cost function

J1[u
∗, v∗] = min

v
max
u

E

 T∫
0

L(Xt, ut, vt, t)dt+ S(XT )

 (3.20)

is based on (3.9). It is subject to Nelson’s FBSDEs (2.40) for the path Xt. We seek to find
solutions for the velocities ut, vt which are optimal feedback controls to Xt denoted by v, u,
i.e.,

ut = u(t,Xt) , vt = v(t,Xt) . (3.21)

It is important to note that only square integrable velocities over the time interval [0, T ] are
considered admissible controls. Because if the square of the velocity were not integrable,
the functional and subsequent functionals will not be well-defined. More specifically, if the
integral of the square of a velocity does not exist over the finite time interval, the optimal
path would either reach a repulsive singularity, which is a contradiction, or an attractive one
with an indefinitely increasing absolute value of velocity. Therefore, from a physical stand-
point, this constraint ensures that only finite-energy diffusions are admissible as optimal
controls [Pav95b]. This is also reflected in the Lagrange function

L(t,Xt, ut, vt) = LG(t,Xt, D+Xt, D−Xt) =
m

2

(
v2t − u2t

)
− V (t,Xt) (3.22)

suggested by Pavon where m represents the mass of the particle. Note that the choice of
the Lagrangian is related to Guerra’s L = LG, see subsection 3.1. The second variational
principle

J2[u
∗, v∗] = max

v
min
u

E

 T∫
0

[
−σ−2 vt · ut

]
dt+R(XT )

 (3.23)
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represents a saddle-point entropy production principle. It tries to maximize the configura-
tional entropy of the system. There are two approaches to tackling the saddle-point prin-
ciples. One option is to solve both principles simultaneously by identifying a Nash equi-
librium, as suggested in [ØS14]. This method requires the use of Lagrangian multipliers in
problem-solving [Köp18].

Another option, as proposed by Pavon [Pav95b], is to utilize the complex quantum
Hamilton principle. This approach combines the two stochastic optimal controls into a sin-
gle control. The problem is reformulated using a complex velocity known as the quantum
velocity, represented as vq = v − iu, resulting in a dense formulation of the problem. The
stochastic optimal control problem can then be rewritten with the cost functional

J [vq] = E

 T∫
0

L(t,Xt, v
q
t )dt+ΦT (XT )

 (3.24)

which is to be extremized w.r.t. vq [KGP17, BPGP19]. Here, the terminal value of the cost
function is represented by ΦT (XT ) = −iℏR(T,XT )+S(T,XT ), whereR(·, x(·)) and S(·, x(·))
are differentiable functions in x. With L = m

2 (v
q
t )

2 − V , the real and imaginary parts of the
functional refer to J1 and J2. The functional J [vqt ] is subject to the controlled stochastic
differential equation

dXt = vqt dt+
1

2
σ
(
(1− i)dW+

t + (1 + i)dW−
t

)
, X0 = x0 , (3.25)

where the quantum velocity is eventually considered as feedback control (3.21). This com-
plex SDE is obtained by combining the FBSDEs of Nelson [Pav95b]. It is called a doubly
backward SDE because it involves a forward and a time-reversed Wiener process, denoted
by W+

t ,W
−
t ⊂ Rd, respectively. Pavon defined the quantum noise

dW q
t := 1/2

(
(1− i)dW+

t + (1 + i)dW−
t

)
(3.26)

which has a complex covariance dW q
t dW

q
t = −idt so that the complex Itô formula for a

smooth function f(t,Xt) w.r.t. to SDE (3.25) reads [Pav95b]

df =

[
∂t + vqt · ∇ − i

σ2

2
∆

]
fdt+ ∂xf · dW q

t . (3.27)

The corresponding integral notation to (3.25) includes both, forward and backward Itô inte-
grals, as follows

Xt = x0 +

∫ t

0
vqsds+

σ

2

∫ t

0

(
(1− i)dW+

s + (1 + i)dW−
s

)
. (3.28)

The cost functional has a structure similar to that of Hamilton’s principle, which can
be rewritten as an optimal control problem. Therefore, one can proceed by analogy to the
classical problem. In the deterministic case, one can use Pontryagin’s maximum principle.
This principle states that the control should be selected such that the associated Hamiltonian
is minimized, which is necessary for the solution of the optimal control problem.

However, since we are dealing with complex numbers, we are not trying to minimize
the Hamiltonian but rather find its critical points. This corresponds to finding the roots of
the complex functional. Hence, it is necessary to identify an associated stochastic optimal
control Hamiltonian to (3.24). E.g., from [BG10] we get

H(t,Xt, v
q
t , Pt,Πt) = −L(t,Xt, v

q
t ) + Pt · vqt −

1 + i

2
σTr[Πt] . (3.29)

In this particular problem, the stochastic costate variables Pt ∈ Cd and Πt ∈ Cd×d are intro-
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duced to account for the randomness of the terms in the cost functional. These stochastic
processes play the role of the costate variables or Lagrange multipliers in the determinis-
tic case and are necessary to find the optimal trade-off considering the uncertainty of the
system. The SDEs describing the evolution of Pt and Πt can be derived based on Peng’s
maximum principle in stochastic control theory [Pen90] and are provided in the paper by
Bahlali [BG10] for backward doubly SDEs as follows

dPt = −∂xH dt+Πt dW
−
t , PT = ∂xΦT (XT ) , (3.30)

where the derivatives are taken along the optimal paths Xt = X∗
t , for example, ∂xH =

∂xH(t,X∗
t , v

q
t
∗
, Pt,Πt)|x=X∗

t
.

Equation (3.30) represents the adjoint equation, which is solved backwards in time to
the constraint (3.25). It is worth noting that (1) for a non-euclidean metric space, typically a
(pseudo-)Riemannian manifold, the value of σ depends on the metric and can be a function
of generalized coordinates, and (2) that the SDE for Pt is backward in time according to
the Hamilton function’s definition and the given final conditions. One could also define a
costate process P (t), which satisfies a forward SDE, depending on initial conditions given
by Φ0(X0) in the cost function (3.24). This is in accordance with the derivation from the Nash
equilibrium, where forward and backward SDEs for the costate process appear [Köp18].

The critical points of the Hamiltonian correspond to finding the roots of the complex
functional with respect to vqt , leading to the equation

Pt = mvqt , (3.31)

such that Pt may be associated with the quantum canonical momentum to the quantum
velocity. Hence, for critical vq∗, we have P ∗

t = mvqt
∗. From here, Pt = P ∗

t , vqt = vqt
∗ and

Xt = X∗
t denote critical processes for brevity.

In summary, the Quantum Hamilton equations in terms of the stochastic processesXt, Pt,
Πt are given by (3.25) and (3.30) as follows

dXt =
1

m
Ptdt+ σdW q

t , X0 = x0

dPt = −∂xH dt+Πt dW
−
t , PT = ∂xΦT (XT ) ,

(3.32)

where Xt denotes the stochastic process regarding the position, Pt is the costate process
which can be identified with the canonical momentum and Πt is a stochastic matrix needed
to balance the noise for the pointwise extremization of the Hamiltonian. Equations (3.32) are
generalized Hamilton equations of motion since in the classical limit (σ, |u| → 0), we have a
real momentum Pt = mvt with equations

ẋ = ∂pH = v , Ṗt = mv̇ = −∂xH . (3.33)

As we seek for a solution of the form vqt = v(t,Xt), the identification (3.31) allows to
write (3.32) with the feedback velocities (3.21) as

dXt = [v(t,Xt)− iu(t,Xt)]dt+ σdW q
t , (3.34)

d[v(t,Xt)− iu(t,Xt)] = − 1

m
∂xHdt+ σ∂x[v(t,Xt)− iu(t,Xt)]dW

−
t , (3.35)

with X0 = x0 and m[v(T,XT ) − iu(T,XT )] = ∂x(ST (XT ) − iℏRT (XT )). The term for the
stochastic process Πt is identified with

Πt = mσ∂xvq(t,Xt) (3.36)

following the complex Itô’s formula (3.27) applied to vq(t,Xt) and comparing the terms in
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front of the noise. The comparison of the drift terms in (3.35) lead to[
∂t + vq · ∇ − iσ2

2
∆

]
vq = − 1

m
∇H (3.37)

where ∇ = ∂x and vq = vq(t, x). If the potential on H does not depend on the velocity, we
have ∇H = ∇V . Separating real and imaginary parts leads to

∂tv + (v · ∇)v − (u · ∇)u− σ2

2
∆u = − 1

m
∇V

∂tu+ (v · ∇)u+ (u · ∇)v +
σ2

2
∆v = 0 .

(3.38)

The first equation is the Nelson-Newton law (2.41), while the second equation refers to the
gradient of the continuity equation. Hence, the same partial differential equations for the
velocities v and u can be derived by applying Itô’s formula to P (t,Xt) = mvq(t,Xt) = Pt in
(3.32) and comparing the drift terms.

This means that the quantum Hamilton equations (3.34)-(3.35) recover

1) Nelson’s forward backward SDEs, and

2) the postulate of the mean acceleration (2.41).

In other words, the formalism allows to derive a set of kinematic and dynamical equations in
terms of SDEs describing quantum systems that is equivalent to the Schrödinger equation,
at least in the case of node-free functions, i.e., the ground state for stationary problems.

The QHE can also be written as real FBSDEs. The separation of the real and imaginary
parts of equations (3.35) leads to

dXt = [v(t,Xt) + u(t,Xt)]dt+ σdW+
t

dXt = [v(t,Xt)− u(t,Xt)]dt+ σdW−
t

mdv(t,Xt) = −∂xV (t,Xt)dt+ σ∂x
[
v(t,Xt)

]
dW−

t

mdu(t,Xt) = σ∂x
[
u(t,Xt)

]
dW−

t .

(3.39)

If we add the latter two stochastic differential equations we get a backward SDE for the (real)
physical momentum defined by p(t,Xt) = m[v(t,Xt) + u(t,Xt)]

dp(t,Xt) = −∂xV (t,Xt)dt+ σ∂xp(t,Xt)dW
−
t . (3.40)

Note that the expectations of the real momentum p(t, x) agrees with the expectations in
standard quantum mechanics E[p] = ⟨p̂⟩ and E[p2] = ⟨p̂2⟩.

The first two equations in (3.39) are Nelson’s FBSDEs that were used to derive the con-
straint for the control problem (3.25). The last two equations have been discussed in [KGP17,
BPGP19] in more detail. However, the problem with these real equations is that they do not
lead to (3.38) in the non-stationary case by a straightforward application of the Itô formula.

At this point, it should be mentioned that in a follow-up paper [Pav95a] to the quantum
Hamilton principle [Pav95b], Pavon derived a set of SDEs, including one for the quantum
velocity vq by using his variational approach as follows

dXt = vq(t,Xt)dt+ σdW q
t

mdvq(t,Xt) = −∂xV dt+mσ∇vq(t,Xt)dW
q
t .

(3.41)

These equations are similar to (3.35) with another backward doubly SDE for the quantum
velocity, i.e., forward- and backward-in-time Wiener processes occur in one SDE. Opposite
to that, in Köppe’s original derivation, there is a backward Wiener process only. The differ-
ence to the present formalism is not yet fully understood.
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Interestingly equations (3.41) can be derived from the same stochastic optimal control
problem considered here with initial conditions ψ0(X0) if we allow for two costate processes
Pt, P t and two corresponding matrices Πt,Πt with a stochastic control Hamiltonian

H(t,Xt, v
q
t , Pt,Πt, P t,Πt) =− L(t,Xt, v

q
t ) + (Pt + P t) · vqt

− 1 + i

2
σTr[Πt] +

1− i

2
σTr[Πt] . (3.42)

Then we get equations (3.32) together with an additional forward SDE for

dP t = −∂xH dt+Πt dW
+
t , P 0 = ∂xϕ0(X0) . (3.43)

The SDE for Pt, P t can then be combined to give (3.41), which also shares similarities with
finding the Nash equilibrium for the real processes [Köp18]. Hence, there are several ver-
sions of quantum Hamilton equations.

In the thesis, we will mostly refer to the version with the feedback controls (3.35). The
numerical schemes based on conditional expectation [KGP17, Köp18] that solve the SDE
usually consider both the stochastic processes, e.g., Pt, ut, etc., in combination with their
feedback fields P (t, x), u(t, x). See also appendix B for more details on the numerical treat-
ment. The important point here is to distinguish between the stochastic process ut and the
feedback control u(x) in the numerical simulation.

Energy in the QHE

The quantum Hamilton equations describe a conservative motion. Hence, the energy ex-
pectation should match the quantized energies given in Schrödinger’s theory. The Hamil-
ton operator determines the energy of a normalized quantum state as EQ = ⟨ψ|Ĥ|ψ⟩. In
contrast, the stochastic analog is described by the stochastic Hamiltonian H, as shown in
equation (3.42). In the optimal control problem, the Hamiltonian should be extremized
pointwise. Therefore, for an optimal control vqt , H should correspond to EQ. In fact, if
we express H in terms of the feedback controls, we obtain

H =
m

2
v2q (t, x) + V (t, x) + i

ℏ
2
∇ · vq(t, x) (3.44)

The gradient term with respect to the quantum velocity is derived from the stochastic ma-
trices, which are given in equation (3.36).

Now, consider an eigenstate of the Hamilton operator, i.e., Ĥψ = EQψ. The phase S
of the wavefunction ψ = eR+iS/ℏ is constant with S = −EQt and the Hamilton-Jacobi-like
equation in the Madelung equations (2.46) reduces to an equation for the system’s energy

EQ = − ℏ2

2m
∇2R(x)− ℏ2

2m
(∇R(x))2 + V (x) . (3.45)

Consider this eigenstate ψ in stochastic mechanics. It corresponds to a stationary process
with v = 0 such that the stochastic Hamiltonian (3.44) is real with

H = −m
2
u2(x) + V (x)− ℏ

2
∇ · u(x) . (3.46)

Using u = ℏ∇R/m we end up with (3.45). Hence, the stochastic optimal control Hamil-
tonian is constant for a critical process (Xt, u(Xt)) if the corresponding quantum state is
an eigenstate of the Hamilton operator. Then, we have EQ = H. It should be noted that
along any stochastic realization Xt(ω), equation (3.46) is constant. This is different from
the general case where the stochastic theory provides equality for the classical Hamiltonian
Hc = m/2[v2(t, x) + u2(t, x)] + V (t, x) such that under expectation, we have EQ = E [Hc].
The difference is due to the sign in front of the osmotic kinetic energy and the additional
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gradient term of the osmotic velocity.

Semiclassical limit

At first glance, the drift terms in the momentum equations of (3.35) or (3.32) appear to depict
the motion of a classical point particle in a force field. Hence, one may be tempted to con-
clude that these equations only contain classical motion with some added noise, whereas in
hydrodynamics (Section 2.4.1) or in the theory of Bohm (Section 2.4.2), a quantum potential
occurs. So the question is: What makes these QHE “quantum”?

To understand the quantum nature of these equations, one can examine the stochastic
optimal control problem where the classical Lagrangian is modified to include the osmotic
velocity. The diffusive part of the kinetic energy in this formulation corresponds to the quan-
tum potential (2.71) under expectation. The QHE (3.32) with the Itô formula lead to (3.37),
where the real part obeys

(∂t + (v · ∇))v − (u · ∇+
σ2

2
∇2)u = − 1

m
∇V . (3.47)

Note that the equation above is Dcv −Dsu = −1/m∇V . Rearranging leads to

(∂t + (v · ∇))v = − 1

m
∇V + (u · ∇+

σ2

2
∇2)u (3.48)

Thus, using the classical definition of the total time derivative dcl/dt = ∂t + v · ∇ with the
current velocity v, we can define an effective potential

Veff = V − m

2
u2 − ℏ

2
∇ · u (3.49)

so that equation (3.48) may be written as

m
dclv

dt
= − 1

m
∇Veff . (3.50)

This effective potential incorporates the osmotic velocity and is analogous to the potential
in the pilot-wave theory proposed by Bohm, Veff = V + VQ. Hence, the osmotic velocity
implicitly accounts for the quantum behavior in the QHE as in (3.35). Since the osmotic ve-
locity is the gradient of the probability, any non-trivial initial distribution leads to quantum
effects that are driven by the osmotic velocity.

Stationary systems

Stationary systems refer to time-independent distributions ρ(x). Hence, one of the two FB-
SDEs for Xt can be omitted since it inherits no additional information on the process. The
quantum Hamilton equations can be derived from the saddle point principle J1 since v = 0
for the ground state [KGP17] and reduce to

dXt = u(t,Xt)dt+ σdW+
t (3.51)

mdu(t,Xt) = −∂xV (t,Xt)dt+ σ∂x
[
u(t,Xt)

]
dW−

t . (3.52)

They are easier to solve and can be used to numerically determine the ground state of a
quantum state. As already stated, the ground state wave functions are node-free; thus,
the corresponding diffusions are non-singular. The excited states can be determined with
the help of partner potentials calculated from the node-free states [Gri91, KPGP18]. For
example, consider a ground state solution u0(x) to a given potential V0(x). The first partner
potential reads V1(x) = V0(x)−ℏ∂xu0(x). The solution u1(x) w.r.t. to potential V1(x) is again
a ground state to V1(x) with expected energy E1 matching the energy of the first excited
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state when using the Schrödinger equation.1 The following excited energy states can then
be determined iteratively to the potentials Vn+1(x) = Vn(x)−ℏ∂xun(x). This scheme is valid
for unidimensional problems and can be extended to multiple dimensions [BPGP19]. This
can be used to calculate excited states, e.g., for the hydrogen atom (see section 4.4) or the
spin eigenstates (see section 5.3).

Concluding remarks

The QHE equations offer a direct method for describing quantum systems in phase space
without resorting to non-linear partial differential equations like (2.41). Equation (3.33)
confirms that the generalization of Hamilton’s equations of motion to stochastic mechanics
holds for the QHE. While classical mechanics predicts the same outcomes as, for example,
Hamilton-Jacobi theory, it does so from a different perspective. Given the analogy between
the derivation of QHE and classical Hamilton equations, we can argue that the latter can
be regarded as a special case of (3.32). Notably, we can draw conceptual parallels between
classical and quantum mechanics based on their mathematical formulations. For instance,
while the Hamilton-Jacobi equation corresponds to the Schrödinger equation, the classical
action principle corresponds to Pavon’s quantum Hamilton principle. Consequently, the
quantum Hamilton equations represent the stochastic generalization of their classical coun-
terparts. Each set of equations can be independently solved within their respective frame-
works, while being associated with one another.

The departure of the stochastic formalism from the standard theory in quantum mechan-
ics allows to consider systems from a different perspective [NK08, IOY95, Pau12], especially
in areas such as tunneling times, dynamics of quantum systems, and non-equilibrium sys-
tems. The theory of QHE enhances the formalisms in the stochastic picture. They have been
applied to some systems, including the harmonic oscillator [KGP17, KPB+20], the double-
well potential [KPGP18] or the two-body problem [BPGP19]. It was shown that the QHE can
be solved by directly evaluating the SDE without taking a detour to the Schrödinger equa-
tion. The results have been used to analyze tunneling time distributions [KPGP18], e.g.,
and the theory was also extended to include the determination of excited states [BPGP19].
Currently, a disadvantage of the formalism is rooted in the complexity of the numerical for-
malism used to solve high dimensional quantum systems and the lack of a reliable algorithm
for non-stationary systems. Additionally, the theory in its current form can only be applied
to pure quantum states, i.e., an extension to mixed states is needed [GL81, JP84]. This is still
a work in progress.

3.3 Examples

3.3.1 Harmonic oscillator

The problem of the stationary one-dimensional harmonic oscillator with potential V0(x) =
mω2

2 x2 leads to QHE for the stochastic processes Xt and ut, which are described by the
coupled FBSDEs given by

dXt = u(Xt)dt+ σdW+
t

dut = −ω2Xtdt+ΠtdW
−
t .

(3.53)

Here, the current velocity vt is zero. Taking the expectation values of (3.53), the averages
Xcl
t = E[Xt] and uclt = E[ut] follow classical paths. In other words, if (Xt, ut) is a solution,

then (Xt + Xcl
t , ut + uclt ) is also a solution. This is similar to the coherent states for the

quantum harmonic oscillator. The coupled FBSDEs can be solved numerically using an

1The actual excited state which corresponds to a singular diffusion is calculated by application of an opera-
tor [KPGP18].
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iterative scheme to determine u(x). This scheme includes a forward-backward integration
of (3.53) such that each Xt has an associated ut. The solution can also be found analytically
using the Itô formula. Both methods lead to the ground state solution u0(x) = −ωx, denoted
by index 0. To plot the feedback control over all realizations and time steps w.r.t. x, we use
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Figure 3.1: The plot displays the numerical solution for the ground state of the harmonic oscillator,
using a solution scheme for a backward SDE [BD07], see appedix B. In the left plot, the stochastic
control u0,t associated with the current position X0,t is depicted in blue, which is calculated from
the stochastic backward integration for an iteration close to convergence. The right plot shows the
averaged osmotic velocity as a feedback control u0(x) of position x. The exact solution is depicted in
red in both plots.

the iterative solution of the QHE (3.53). This yields stochastic processes for each realization
ωi at time t in the form of a pair of values (Xt(ωi), ut(ωi)). We plot these values with blue
crosses for 103 realizations over 100 time steps. After an iteration run, we average all the
blue points with respect to a bin size ∆x to obtain a step function for the feedback control
u(x). The left plot in figure 3.1 shows the iterative solution of (3.53), while the right plot
shows the averaged feedback control over all realizations and time steps depending on x.

The stochastic process X0,t associated with u0(x) represents the ground state process,
with a stationary distribution of ρ0(x) = Ne−

mω
ℏ x2 , where N is the normalization constant.

Therefore, according to Born’s rule, it corresponds to the Gaussian ground state probability,
which is determined by the wave function for the harmonic oscillator. The energy is cal-
culated from the stochastic Hamiltonian for the ground state H0 given in equation (3.46) as
follows,

E0 = H0 = −m
2
u20 + V0 −

ℏ
2
∇u0 =

ℏ
2
ω . (3.54)

This result is identical to the energy expectation value of the classical Hamiltonian, i.e., E0 =
E
[
m
2 u

2
0(x) + V0(x)

]
= 1

2ℏω.

In the stationary case, the excited states cannot be obtained directly from the optimal
control formulation as the ground state produces the optimal control for the energy in Equa-
tion (3.46). However, it is possible to determine the complete bound spectrum using the
supersymmetric construction. This well-known formalism dates back to a mathematical
concept for a special type of differential equations. This construction involves adjusting the
potentials to obtain partner Hamiltonians, which leads to quantized raising or lowering of
the mean energy. In stochastic mechanics, this adjustment is made iteratively by modify-
ing the partner potential Vn, which is obtained from Vn−1 by subtracting ℏ∂xu0n−1, where
u0n−1 is the ground state of the (n − 1)-th partner potential. For example, the first partner
potential obtained from the ground state u00 = u0 = −ωx is shifted by a constant ℏω, i.e.,
V1 = V0 + ℏω, resulting in an averaged energy shift of ℏω. Furthermore, the ground state
solution to V1 equals the ground state solution of V0 as shown in Equation (3.53). The n-th
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partner potential is Vn = V0 + nℏω, and the corresponding mean energy is given by

En = Hn = −m
2
(u0n(x))

2 + Vn(x)−
ℏ
2
∂xu

0
n(x) =

(
1

2
+ n

)
ℏω . (3.55)

Note that the ground state solutions to the partner potential do not correspond to excited
states, as they are node-free. To calculate the actual excited states of the harmonic oscillator,
including nodes in the probability distribution, one can use an iterative method based on the
osmotic velocities without using the wave function. The method is described in [BPGP19]
from what follows

un0 (x) = un−1
0 (x) +

ℏ
m

∂x
[
u00(x) + un−1

0 (x)
]

u00(x) + un−1
0 (x)

, (3.56)

For instance, the first excited state of the original partner potential is given by

u10(x) = −ωx+
2ℏω
mx

. (3.57)

This drift field has a singularity at x = 0, which corresponds to the node of the antisym-
metric wave function of the first excited state of the harmonic oscillator. Thus, by using
the quantum Hamilton equations, it is possible to determine the energy spectrum and the
bound states of the system in their entirety.

3.3.2 Two-body problem

Consider a quantum mechanical two-body system consisting of a proton and an electron
with masses mn and me and opposite charges e and −e. They interact through the Coulomb
potential V (r) = − e20

|rn−re| , where rn, re are the position of the nucleus and the electron and

e20 = e2

4πϵ0
. In the stochastic picture, the positions of the particles are subject to random

fluctuations with diffusion coefficients σ2n = ℏ/mn, σ2e = ℏ/me such that we are dealing with
stochastic processes denoted by Rnt , Ret .

Analogous to the Kepler problem in classical mechanics, this system possesses two Gali-
lean symmetries: (1) translational and (2) rotational symmetry.2 In terms of QHE, the first
symmetry leads to the conservation of the center of mass momentum Rcmt =

mnRn
t +meRe

t
mn+me

,
i.e., E[dRcmt ] = 0, which results in a free 3d Brownian motion with constant drift [BPGP19].
The relative coordinate Rt = Rnt − Ret between the nucleus and the electron, on the other
hand, can be treated separately from the center of mass. This leads to stationary stochastic
differential equations [BPGP19].

dRt = vq(Rt)dt+

√
ℏ
µ
dW+

t

µdvq(Rt) =
e2

4πϵ0|Rt|3
Rtdt+

√
ℏ
µ
∇R vq(Rt) dW

−
t ,

(3.58)

where µ is the reduced mass and the diffusion coefficient σ2 = ℏ/µ. This is a quantum-
mechanical version of the Kepler problem. Under expectation, the equations of motion for
the relative coordinate Rt and velocity vq are given by

dE[Rt] = E[vqt ]dt

µdE[vqt ] = E

[
e20

|Rt|3
Rt

]
dt ,

(3.59)

which are analogous to the classical equations of motion for the Kepler problem. This cor-

2There is one more symmetry due to the Lenz-Runge vector.
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respondence manifests Ehrenfest’s theorem, which states that the time derivative of the ex-
pectation values of the position and momentum operators obey the corresponding classical
equations of motion. In classical mechanics, the proton would trap the electron for zero
angular momentum. However, in the quantum-mechanical version, the 3d fluctuations are
crucial in “stabilizing” the system.
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Figure 3.2: The plot on the left shows a sample path obtained from the solution to the QHE for the
hydrogen atom. The corresponding normalized visiting histogram as a function of the radial distance
of this path is presented on the right, depicted by gray columns. Additionally, the blue dashed line
in the same graph shows the exact radial probability density that corresponds to the ground state of
the Schrödinger equation.

The QHE (in Rydberg units) for the relative coordinate can be discretized according to
the numerical scheme in the appendix B

Rπti+1
= Rπtiuti∆t+

√
2∆W+

ti
(3.60)

uπti = E[uπti+1
|Rπ(ti)]−

4

|Rπti |3
Rπti∆t . (3.61)

The numerical solution to equation (3.61) yields a ground state with zero angular momen-
tum, given by the feedback control u(R) = − ℏ

a0µ
R
|R| . The corresponding average energy can

be calculated from the stochastic Hamiltonian H0 given in equation (3.46) E0 = H0 = −µe40
2ℏ2 ,

or similarly from E0 = E
[
m
2 u

2
0(R) + V (R)

]
= −µe40

2ℏ2 . This is in agreement with the ground
state following the Schrödinger theory.

The osmotic velocity allows us to visualize a sample path of the hydrogen atom in the
ground state, as shown in figure 3.2. In this state, the electron moves diffusively in the
ground state around the proton, corresponding to the s orbital. The most probable distance
between the electron and proton is the Bohr radius a0. However, unlike in the Bohr model,
there is no Kepler-like elliptic motion of the electron due to the lack of an angular velocity
in the mean.

3.3.3 Tunneling

Quantum tunneling is the phenomenon where a particle can cross an energy barrier, despite
having an energy lower than the height of the barrier. In terms of the wave function, the
wave can propagate through the barrier, resulting in a probability of finding the particle
inside the barrier, which is classically forbidden. However, in the stochastic description,
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the concept of tunneling is not required since the system is driven by noise. For instance,
consider a stationary state in a double-well potential with energy lower than the barrier
height. In this case, the trajectories of the system are expected to remain most of the time
within one of the two wells. Eventually, the system will hop from one well to the other,
depending on the strength of the noise. The minimum amount of energy required for the
state Xt to overcome the energy deficit concerning the potential barrier is provided by the
noise.

One can calculate mean hopping or mean first passage times, which measure the average
time required for a process to end up on the other side of the barrier. The mathematical
theory involved in this calculation works with the definition of a stopping time

τxA = inf{t ≥ t0 : X
x
t /∈ A} (3.62)

where Xx
t is the process Xt starting at X0 = x in a domain A. Note that τxA is a stochas-

tic process. The mean first passage time can be calculated as the conditional expectation,
depending on the starting point of the process x [Pav14]

tm(x) = E [inf{t ≥ t0 : X
x
t /∈ A}|X0 = x] . (3.63)

If one is interested in an ensemble of starting points leaving the domain A with respect to a
probability distribution ρ0(x), the expected ensemble exit time is given by

⟨tm(x)⟩ =
∫
A
tm(x)ρ(x)dx . (3.64)

Tunneling times are a long-standing issue in quantum mechanics and concern the time
spent by particles in classically forbidden regions [Mac32]. This problem has gained new
relevance with the advent of attosecond experiments in recent years. Various papers have
proposed different tunneling times, which range from instantaneous tunneling [SXW+19] to
finite time tunneling [RSRS20]. The lack of a time operator in standard quantum mechanics
and the non-local behavior of the wave function allow for multiple interpretations of tunnel-
ing times, as suggested by different studies [Wig55, BL82, Baz66]. As an example, let us con-

Figure 3.3: The left figure shows a sample path of the stochastic process X in the ground state of
the double-well potential driven by fluctuations, while the blue line represents the ensemble mean
of 104 paths. The graphic on the right shows the corresponding double-well potential V (x) (solid
black) with parameters V0 = 2 and a = 1.5 and the osmotic velocity u0(x) (dashed red). The dotted
black line depicts the ‘diffusive potential’ according to Kramers’ theory ln 1

ρ0(x)
∝ VK(x) (dotted

black) based on the ground state probability ρ0(x) of the system.
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sider a stationary system with a quartic double-well potential given by V (x) = V0
a4
(x2−a2)2,

where V0 is the barrier height and ±a denote the locations of the potential minima [KPGP18].
Using the quantum Hamilton equations, one can obtain the ground state osmotic velocity
u0(x) and excited states numerically in analogy to the subsection 3.3.1- 3.3.2. This enables
simulation of the time required for a particle starting from a position x in a well to reach
a defined exit point xt after crossing the barrier. Figure 3.3 shows a sample path for the
stationary ground state of the double-well potential with V0 = 2 and a = 1.5, exhibiting
diffusive motion and transition between the two wells.

The diffusive motion observed in this system is similar to the thermally activated cross-
ing of a barrier in Kramer’s theory, where ln 1

ρ0(x)
acts as the diffusion potential and u0(x) ∝

−∇ ln 1
ρ0(x)

is proportional to the negative gradient of the diffusion potential, as shown on
the right-hand side of figure 3.3.

Figure 3.4: The big figure shows the ground state ρ0 (solid blue) first excited state ρ1 (solid red)
probability, the corresponding first two mean energies E0 (dashed black) and E1 (dashed red) and
the potential V (solid black). The inset compares the ratio of predicted and exact energy splitting
∆E = E1 − E0 of the mean first passage time (solid black) and an instanton approximation (dashed
red) depending on the barrier height V0.

The mean first passage time tm for a stationary problem can be expressed in terms of
probability densities only as [PB13]

tm(x) =
2m

ℏ

∫ xt

x

dx′

ρ0(x′)

∫ x′

−∞
ρ0(x

′′)dx′′ , (3.65)

where m is the particle mass, ℏ is the reduced Planck constant, and xt is the exit point. The
average ⟨tm(x)⟩ can predict the energy splitting, denoted by ∆E := E1 − E0, between the
ground and first excited state, as noted by Koppe [KPGP18], where

∆E = c
ℏπ
⟨tm⟩

, (3.66)

with c ≈ 2
π being a constant independent of the barrier parameters. Here, E0 and E1 are the

expected energies of the ground and first excited state, respectively. Figure 3.4 shows the
energy splitting for V0 = 2, a = 1.5, along with numerical results. The inset demonstrates
that the stochastic approach provides better agreement with the exact solution than the in-
stanton method proposed in [VZNS82], where the energy splitting due to tunneling effects
is approximated starting from the harmonic ground state.

50



Chapter 4

Quantum Hamilton equations on
manifolds

The upcoming sections focus on the extension of the Markovian stochastic process char-
acterized by the QHE from the previous section to include a rotation degree of freedom
in configuration space. The aim is to analyze the conservative diffusion as introduced by
Dankel [Dan70], which results in a continuously changing random variable for the canonical
angular velocities denoted by st, the spin of the particle. The values of the spin components
are quantized in the stochastic sense, which can be measured as expectation values of the
angular velocities.

Consequently, the model of a rigid rotating particle in space in the target manifold M is
expanded to describe translations together with rotations in space in R3 × SO(3). This ap-
proach requires familiarity with stochastic processes on the relevant manifold to ensure that
the configuration remains on the manifold. The following sections provide the necessary ge-
ometrical background to describe stochastic processes and stochastic differential equations
on a manifold and derive Quantum Hamilton equations on manifolds.

This chapter primarily focuses on the mathematical background rather than physics and
is, therefore, intentionally kept short. It should be seen as a preparation for the two following
chapters regarding a freely spinning particle in chapter 5 and its measurements in chapter 6.

The first section provides a rough overview of stochastic processes on manifolds. After-
ward, a stochastic optimal control problem on the manifold is proposed, which allows us to
derive the QHE on a manifold. Finally, we apply these equations to the hydrogen atom in
curvilinear coordinates in Section 3.3.2.

4.1 Stochastic differential equations on a manifold

The construction of a stochastic process on a manifold needs some intermediate steps. A few
fundamental basics of differential geometry are covered in appendix C. For more details, one
may see, e.g., [Éme12, Kui21b].

Nelson’s FBSDEs on manifolds

A manifold M can be covered by a collection of charts. E.g., the earth is often represented in
the form of flat maps where the sphere is projected onto Euclidean space via the charts. A
stochastic process on M is a random variable for each t on the measurable space (M,B(M)),
and it is adapted to the (forward) filtration (Pt)t>0. If (Zt)t>0 ⊂M , one has to make sense of
a stochastic differential dZt. Especially in the case of numerical calculations of (stochastic)
processes on manifolds according to the SDE, the state is in danger of leaving the manifold.

The desired stochastic process (Zt)t>0 is assumed to take values in the d-dimensional
manifold M ⊂ Rn. In other words, we consider submanifolds M embedded in Euclidean
space Rn. Formally a process (Zt)t>0 on the manifold may be defined through a stochastic
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differential equation, for example, see the construction of Elworthy [Elw82], Émery [Éme12]
or Hsu [Hsu02],

dZt = Bs(t, Zt)dt+Hi(t, Zt) ◦ dW i
t , (4.1)

with Bs(t, z) ∈ TzM, z ∈ M as a vector field on M , the n-dimensional Wiener process
(Wt)t>0 ∈ Rn with increments independent of the future, ◦ denoting the Stratonovich in-
tegral and the map Hi(t, z) : Rd → TzM taking the Wiener process to the tangent space of
the manifold. The Stratonovich integral has the advantage of preserving an analogy to stan-
dard geometric calculus since the mid-point average ensures that the process does not “fall
off” the manifold. E.g., for a smooth vector-valued function f : M → Rk with drift Bs = 0
the projected process obeys similarly to geometric calculus

df(Zt) = df [Hi(t, Zt)] ◦ dW i
t (4.2)

with df [Hi(t, x)] as directional derivative of f at point x ∈M in the direction Hi(t, x).
In the context of Nelson’s stochastic mechanics on a manifold, equation (4.1) refers to the

forward SDE, i.e., dZt = Zt+dt − Zt, with the drift field Bs being composed of the current
and osmotic velocity on M , denoted by Vs(t, z) and Us(t, z) [Nel85], respectively. Consider,
e.g., the current and osmotic angular velocity fields in the tangent space so(3) = TeSO(3)
of the rotation group SO(3). They are the key components to describe the change in orien-
tation and may be represented as a vector ωu,v ∈ R3 acting on a ∈ R3 as ωv,u × a, see, e.g.,
appendix D.

The problem with the extension to manifolds is that the Stratonovich form leads to
E[Hi(t, Zt) ◦ dW i

t ] ̸= 0. If we define the (forward) mean velocity B(t, Zt) of Zt according
to Nelson’s conditional expectation, it follows that

B(t, Zt) = D+Zt = lim
∆t→0

1

∆t
E [Zt+∆t − Zt|Zt] (4.3)

does not transform as a vector under coordinate changes. Hence, B(t, Zt) = D+Zt ̸=
Bs(t, Zt) in equation (4.1). In the context of stochastic mechanics, this problem was encoun-
tered by Dankel [Dan70], where it was shown that the first-order definition of the stochastic
mean derivative on a field does not suffice to describe a stochastic process on the manifold.
The first-order derivative essentially describes parallel transport along the stochastic path.
Dohrn and Guerra [DG79] later added a second-order correction to the parallel transport,
which includes the notion of geodesic deviation. A more detailed introduction to the math-
ematical details, especially related to the stochastic processes by Nelson, can be found in the
book by Nelson [Nel85], or more recently in the work by Kuipers [Kui21b].

This exemplifies that stochastic calculus on manifolds, in general, needs an extension
that includes some kind of second-order geometry, see [Éme12, Hsu02]. Consider a (Rie-
mannian) manifold M with a chart at point z ∈ M . The (first-order) velocity fields on the
tangent space TzM are denoted by vi w.r.t. to basis vectors ei and on the cotangent space
T ∗
zM by vi w.r.t. to ei.1 One can define second order velocity fields on the second order (co-

)tangent spaces T̃ (∗)
z M . This leads to additional contributions to the velocities in the form of

viei + vijeij and viei + vije
ij with additional second-order contributions to the bases eij , eij .

In Euclidean space, these second-order terms appear in the Itô formulation of SDE (4.1). For
that, the SDE (4.1) and its corresponding Brownian motion defined on M will be transferred
to an SDE on d-dimensional Euclidean space.

This thesis considers Riemannian manifolds, which consist of smooth manifolds M and
a smooth metric tensor g. Consider a local coordinate chart with local or generalized coor-
dinates x = (x1, ..., xd) where points on the manifold are represented as z = z̃(x) ∈ M . By
embedding the manifold in Euclidean space, the metric tensor g in local coordinates denoted
by gij is the induced positive definite metric with the corresponding Christoffel symbols of

1The basis vectors are usually defined as ei = ∂i = ∂xi and ei = dxi. This gives v = vi∂i ∈ TzM and
ṽ = vidx

i ∈ T ∗
z M such that v · ṽ = vivi = gijvivj = gijv

ivj .

52



the second kind Γijk. The forward Itô SDE for the corresponding stochastic process of the
component Xi

t in Euclidean space then reads (cf. [Éme12])

dXi
t =

[
bi(t,Xt)−

1

2
Γijk(t,Xt)h

j
l (t,Xt)h

k
l (t,Xt)

]
dt+ hik(t,Xt)dW

k
t . (4.4)

Here bi(t, x) and hik(t, x) are the forward drift and the diffusion tensor, respectively, in terms
of the generalized coordinates. Moreover, (Wt)t>0 ⊂ Rd is the forward Wiener process. It
is important to note that the treatment in local coordinates is only valid until the process
leaves the local coordinate chart, which is relevant to the numerical investigation of these
SDEs.

The additional drift term wi = −1/2Γijkh
j
lh
k
l in equation (4.4) follows from the construc-

tion of a Brownian motion on the manifold. Here, the infinitesimal generator of the Brow-
nian motion is half the Laplace-Beltrami operator on M as 1

2∆M . Defining the map hik in
equation (4.4) as the symmetric square root of the inverse metric times the diffusion coeffi-
cient, hjlh

k
l = σ2gjk [Ito62], yields

wi = −σ
2

2
Γijkg

jk , (4.5)

which agrees with the additional second-order term in the Laplace-Beltrami operator C.9

∆Mf = gij∂ijf − gijΓkij∂kf . (4.6)

As explained above, the terms wi do not transform as a vector under change of coordi-
nates [DG79, DG85] and are of second order due to the non-anticipating definition of the
Itô integral. They are necessary to keep the stochastic process (or Brownian motion) on the
manifold. However, they lead to non-covariant drift fields.

Consequently, they also follow by taking the expectation of the Stratonovich integral
with the Wiener process. In local coordinates, there is

E[hkj (t, Zt) ◦ dW j
t ] = −1

2
gijΓkij . (4.7)

In general, the diffusion matrix hik does not have to be related to the metric gij , especially
for gravitational or relativistic Brownian motions where the metric gij may not be positive
semi-definite [DG85]. In this thesis, however, the metric is always chosen such that hilh

j
l =

σ2gij . E.g., in the flat case gij = δij in R3 leads to Γkij = 0 and thus to the known FBSDEs
established by Nelson [Nel66].

Note that Nelson’s stochastic mechanics is postulated as conservative Brownian motion,
which manifests in Zt also obeying a backward SDE [Nel85]

Zt − Zt−dt = dZt = B−
s (t, Zt)dt+H−

i (t, Zt) ◦ dW
−,i
t , (4.8)

with a backward drift B−
s ( ̸= Bs in general), a map H−

i and a time-reversed Wiener process
W−
t ∈ Rd with increments independent of the past. Notice that the index “−” is used in the

context of backward SDE, and “+” or no index is used for the SDE forward in time. The
backward SDE for the generalized coordinates reads accordingly

dXi
t =

[
bi−(t,Xt) +

σ2

2
Γijk(t,Xt)g

jk(t,Xt)

]
dt+ hik(t,Xt)dW

−,k
t . (4.9)

With this, one may define a second-order osmotic velocity as

ũi = ui − σ2

2
gjkΓijk (4.10)
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in addition to the usual definition of current and osmotic velocity vi = 1
2(b

i
+ + bi−) and

ui = 1
2(b

i
+ − bi−). These second-order terms enter the quantum stochastic control principle

where the quantum velocity vq = v − iu is replaced by ṽq = v − iũ. This is discussed in
section 4.3. The following section is a refresher on Lagrangian mechanics in curvilinear
coordinates in classical mechanics.

4.2 Classical dynamics on manifolds

Consider a classical particle moving on a manifold M with mass m and charge q. The parti-
cle’s position is described by local coordinates x = (x1, . . . , xd) and we seek a solution to its
trajectory (x(t))0≤t≤T ⊂M with given initial and final endpoints.

In a variational treatment, the classical Lagrangian L is defined onM×TxM× [0, T ] → R
and given by

L = T − V =
1

2
gij(x)v

ivj + qviAi(t, x)− V (t, x) , (4.11)

where T is the kinetic energy, V is the scalar potential, gij is the metric tensor, vi are the
(contravariant) components of the velocity, Ai are the covariant components of the vec-
tor potential. The control problem corresponding to the action integral is given by S[x] =∫ T
0 L(x, v, t) dt. The canonical momentum is defined as

pj =
∂L

∂vj
= gijv

i + qAj , (4.12)

and the velocities in terms of the momenta are given by

vj = gij(pi − qAi) . (4.13)

Then, the classical Hamiltonian is obtained as

Hc =v
ipi − L (4.14)

=
1

2
gij(x)pipj − qgij(x)piAj(t, x) +

q2

2
gij(x)Ai(t, x)Aj(t, x) + V (t, x) . (4.15)

Finally, the equations of motion are given by

ẋj =
∂Hc

∂pj
= gjk(pk − qAk) = vj

ṗj = −∂Hc

∂xj
= −1

2
∂j(g

kl)(pk −Ak)(pl −Al)− gkl∂jAk(pl −Al)− ∂jV

(4.16)

with initial conditions xj(0) = xj,0 and pj(0) = gij(x0)v
i
0 + qAj(0, x0) and where ∂j = ∂

∂xj
.

All the derivatives should be taken with respect to x = x(t) and p = p(t), i.e., along the
paths. The second equation rewritten in terms of the velocity (A = 0)

mv̇j + Γjkl(x)v
kvl = −∂jV (4.17)

includes the fictitious forces due to the curvilinear coordinates. It should be noted that the
derivative with respect to spatial variables includes curvature terms due to the metric.

4.3 Quantum Hamilton equations on manifolds

A stochastic variation approach is needed to obtain the quantum Hamilton equations for a
Riemannian manifold. Among the several principles suggested in the literature, e.g., see sec-
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tion 3.1, we use the straightforward generalization to manifolds based on the complex cost
functional suggested by Pavon [Pav95b]. This is in analogy to the presentation in section 3.
The main difference is the occurrence of the metric gij in local coordinates and the introduc-
tion of the vector field Aj(t, x). Note that the charge q is included in the vector potential Aj
for brevity and to avoid confusion with the quantum velocity index in this section.

The cost function of the quantum Hamilton principle established in [Pav95b] may be
generalized to a manifold (in analogy to [ADG92])

J [vq,t] = E

 T∫
0

(
1

2
gijv

i
q,tv

j
q,t + vjq,tAj − V

)
dt+ΦT (XT )

 . (4.18)

Here, E[] denotes, again, the ensemble average with respect to the probability distribution
of the stochastic process Xt, and ΦT (x) is a terminal cost function. The Lagrangian in the
cost function is the classical one given in (4.11) with vi replaced by the complex velocity
composed of current and osmotic velocity viq,t = vit − iuit. The quantum Hamilton principle
then states that (4.18) is to be extremized with respect to the so-called quantum velocity viq,t
while equation

dXi
t =

[
viq,t + i

σ2

2
Γijk(Xt)g

jk(Xt)

]
dt+

1

2
hik(Xt)

(
(1− i)dW+,k

t + (1 + i)dW−,k
t

)
(4.19)

serves as the control equation with Xi
T distributed according to |ΦT |. The quantum velocity

serves as optimal feedback control vq,t = vq(t,Xt). Thus, the real components vit and uit are
the optimal controls representing the generalized velocities associated with the stochastic
process Xt in local coordinates. Note that dXi

tdX
j
t = −iσ2gijdt.

For this problem, a stochastic Hamiltonian H = H(t,Xt, vq,t, Pt,Πt) [Bis78, BG10] can be
defined as

H = −gkj
2
vkq,tv

j
q,t −Ajv

j
q,t + V + Pt,j

(
vjq,t +

i

2
σ2gklΓjkl

)
− (1 + i)

2
Tr{ΠtHT } (4.20)

where shorthand notation is used and the matrix H = (hij) is introduced.2 The stochastic
Hamiltonian has to be extremized point-wise. In comparison to the classical equations, we
see that in addition to the trace term in equation (4.20), there is

iPt,jσ
2gklΓjkl/2 . (4.21)

The term (4.21) follows from the second-order correction to the Brownian motion on a man-
ifold and is zero in the flat case.

The stochastic processes Pt,j ∈ Cd and Πt ∈ Cd×d introduced in this study, again, satisfy
corresponding backward SDEs similar to the classical Pontryagin principle for the costate.
Specifically, we have

dPt,j = −∂jHcdt+Πt,ijdW
i
− PT,j = ∂jΦ(x)|x=XT

. (4.22)

The maximum principle requires that

Pt,j = gkj(v
k
t − iukt ) +Aj , (4.23)

which implies that Pt,j serves as the canonical momentum in the maximum principle. Here,
the real part of the momentum is related to the current velocity, given by Re{Pt,j} = gkjv

k
t +

Aj , while the osmotic velocity appears in the imaginary part, −Im{Pt,j} = gkju
k
t .

We are interested in finding feedback solutions vjq,t = vjq(t,Xt). Using the complex Itô

2Recall that hi
lh

j
l = σ2gij .
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formula [Pav95b] for a smooth function f on the manifold, we obtain

df =

[
∂t +

(
vjq,t +

i

2
σ2gklΓjkl

)
∂j − i

σ2

2
gjk∂2jk

]
fdt+ ∂jfh

j
kdW

q,k
t (4.24)

=

[
∂t + vjq∂j − i

σ2

2
∆

]
fdt+ ∂jfdW

q,j
t . (4.25)

Then considering the feedback momentum

Pj(t, x) = gkj(x)(v
k(t, x)− iuk(t, x)) +Aj(t, x), (4.26)

and applying the complex Itô formula (4.25), the feedback matrix reads

Πt,kl =
1 + i

2
hjl ∂j(Pk). (4.27)

Equations (4.22) and (4.23) together with Nelson’s FBSDEs (4.19) are the quantum Hamil-
ton equations. In the classical limit, the stochastic terms vanish, and the terms, including the
osmotic velocity, i. e. viq,t = vit − iuit → vit. The complex stochastic Hamiltonian H reduces to
the real classical Hamiltonian Hcl = vjpj −L in equation (4.15) with pj = gijv

i +Aj and the
classical equations of motion are obtained

dqj =
∂Hcl

∂pj

dpj = −∂Hcl

∂qj
.

(4.28)

Relation to the Schrödinger equation

The equations at hand give rise to the Schrödinger equation

iℏ∂tψ = −ℏ2

2
∆Mψ + V ψ (4.29)

on the manifold M with ∆M as the Laplace-Beltrami operator. Note that ∆M , as written
here, includes the system’s structure through the metric g. E.g., for a particle with mass
m we define gij = mδij so that ∆M = δij/m∂ij . In general, −ℏ2∆M should be replaced by
gkl(−iℏ∇k −Ak)(−iℏ∇l −Al) [Dan70]. The vector potential, A = 0, is set to zero for brevity.

The osmotic and current velocity associated to ψ are calculated as

uj = σ2gkjℜ{∂kψ/ψ} and vj = σ2gkjℑ{∂kψ/ψ}. (4.30)

I.e., with σ2 = ℏ for the quantum momentum3

Pj = gkj(v
j − iuj) = (P vj − iP uj ) = −iℏ

∂jψ

ψ
. (4.31)

Putting this into the rhs of equation (4.29) gives

1

ψ

(
−ℏ2

2
∆Mψ + V ψ

)
=

1

2
gkjPkPj −

iℏ
2
gklΓjklPj +

iℏ
2
gkj∂kPj + V . (4.32)

If we compare this with the stochastic Hamiltonian (4.20) with the feedback processesP (t, x),

3As written here, σ2 is a constant, while the diffusion coefficient matrix is given by σ2g−1.
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Π(t, x) from equations (4.26) and (4.27) we arrive at (4.32), i.e.,

H(t,x, vq(t, x, P ), P (t, x),Π(t, x)) =
1

ψ

(
−ℏ2

2
∆Mψ + V ψ

)
. (4.33)

Hence, there is a direct relation between the Hamilton operator Ĥ on the manifold to the
stochastic Hamiltonian. Moreover, the terms in H(t, x, vq(t, x, P ), P (t, x),Π(t, x)) involving
the imaginary unit i correspond to the second-order terms outlined in equation (39) of ref-
erence [HZ23]. These terms are introduced to derive a similar version stochastic Hamilton’s
equations from the so-called stochastic geometric mechanics.

Again, if ψ is in an eigenstate, i.e., −ℏ2
2 ∆Mψ + V ψ = EQψ, the stochastic Hamiltonian

along the optimal feedback controls is constant, H = EQ, contrary to the stochastic energy

E(t,Xt) =
gij

2
(P vj (t,Xt) + P uj (t,Xt))(P

v
i (t,Xt) + P ui (t,Xt)) + V (t,Xt) , (4.34)

where E[E(t,Xt)] = EQ.
The QHE (4.22) are closely related to the Schrödinger equation due to the close relation-

ship between the stochastic Hamiltonian and the Schrödinger equation. Consider the drift
term in the momentum equations (4.22),

−∂iH = −∂iV +
1

2
∂i(g

kj)gklgjmPlPm − i

2
ℏ
[
∂i

(
gklΓjkl

)
Pj + (∂ig

kl)∂kPl

]
. (4.35)

The classical equations in curvilinear coordinates contain the first two terms on the right-
hand side of the equation, which can be regarded as an effective potential when taken to-
gether. Section 5.3 demonstrates this for the spinning particle, while Section 4.4 explores
their application in the context of the hydrogen atom, where these terms contribute to the
effective potential associated with the angular momentum expectations. Finally, it is worth
noting that the terms multiplied by ℏ vanish in the classical limit.

Assuming the existence of scalar potentials S and R such that the feedback processes
P vj = ∂jS and P uj = ℏ∂jR for Pj = P vj − iP uj , the drift term of the complex Itô formula (4.25)
applied to Pj = ∂jS − iℏ∂jR should be equal to equation (4.35). By separating the real and
imaginary parts, we obtain a set of coupled partial differential equations for the fields S and
R.

To establish the connection between the quantum hydrodynamics equations and the
Madelung equations, we apply ∂j to (4.29), where ψ is replaced by (4.31). This yields the
same set of partial differential equations as the approach using the complex Itô formula, as
both methods lead to the Madelung equations. A detailed derivation of these partial differ-
ential equations on the manifold in local coordinates can be found in section 3 of [Dan70].
However, the connection between these formalisms is only established if the momentum
fields are gradients of scalar fields, for example, if ∂jP ui = ℏ∂j∂iR = ℏ∂i∂jR = ∂iP

u
j .

The following section will apply the derived quantum Hamilton equations in curvilinear
coordinates, specifically spherical coordinates. Finally, we will use them to describe the
hydrogen atom by utilizing the rotation symmetry, which allows a solution to the two-body
problem similar to the Schrödinger theory. This concludes this relatively dry chapter on
stochastic quantum mechanics on manifolds.

4.4 Example: Hydrogen atom

The hydrogen atom was discussed in section 3.3.2 using momentum conservation, which
allowed to separate the motion of the center of mass from the relative coordinate Rt. In
analogy to classical mechanics, this two-body problem can be further simplified under a
coordinate transformation due to the isotropy of the system, which refers to the conservation
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of the total angular momentum

Ltotal
t =

∑
i
miRit × (vi(t, Rit) + ui(t, Rit))

under expectation E[dLtotal
t ] = 0, where Rit denotes the position of particle i. This allows

us to further reduce the dimension of the two-body problem, where the angular part can be
treated separately from the radial part.

We may introduce spherical coordinates (r, ϑ, φ) ∈ (0,∞) × (−π/2, π/2) × [0, 2π) with
corresponding stochastic processes (X1

t , X
2
t , X

3
t ) = (rt,Θt,Φt) = (r(Rt), ϑ(Rt), φ(Rt)) in

local coordinates. The induced metric g is diagonal with grr = µ, gϑϑ = µr2, gφφ = µr2 sin2 ϑ
such that the matrix

H = (hjk) =

 σ̃ 0 0

0 σ̃
r 0

0 0 σ̃
r sinϑ

 (4.36)

with the diffusion coefficient σ̃ =
√

ℏ/µ. This leads to forward (backward) SDE according
to (4.4) as follows,

drt =

(
vr ± ur ± ℏ

µrt

)
dt+ σ̃ dW r

±,t

dΘt =

(
vϑ ± uϑ ± ℏ

2µr2t
cotΘt

)
dt+

σ̃

rt
dW ϑ

±,t

dΦt = (vφ ± uφ) dt+
σ̃

rt sinΘt
dWφ

±,t .

(4.37)

Equations (4.37) contain additional drift terms that are a consequence of constructing the
Brownian motion in curvilinear coordinates following section 4.1. For example, the term
ℏ/µrt induces a probabilistic drift that arises from fluctuations in three dimensions. These
fluctuations tend to push the particle away from the center r = 0.

Generally, these drift terms emerge due to the non-zero variance of the stochastic process
associated with the particle’s position in the mean square limit. Consequently, they vanish in
the classical limit. As a result of these random fluctuations, the ground state of the hydrogen
atom is stable in the stochastic picture.

The stochastic optimal control problem discussed in section 4.3 leads to the definition of
a stochastic Hamiltonian

H =
1

2µ

(
P 2
r +

1

r2t
P 2
ϑ +

1

r2t sin
2Θt

P 2
φ + i

ℏ
r2t

cotΘt Pϑ + i
2ℏ
rt
Pr

)
+
e20
rt

+
1 + i

2
Tr[ΠtH

T ] ,

(4.38)

where we used shorthand notation Pj = Pt,j for the stochastic processes. This Hamiltonian
incorporates the classical terms, including the dependency on the metric as well as non-
classical terms involving ℏ. The comparison to the Laplace operator in spherical coordinates

∆ =

[
∂2r +

1

r2
∂2ϑ +

cotϑ

r2
∂ϑ +

1

r2 sin2 ϑ
∂2φ +

2

r
∂r

]
(4.39)

shows that the two approaches exhibit similarities. In particular, the non-classical terms
with ℏ are essential for the correspondence between Pj and −iℏ∂j to hold. This connection
is critical for understanding the relationship between stochastic and quantum mechanics, as
it emphasizes the importance of fluctuation terms in describing physical systems.

The Hamiltonian given in equation (4.38) is associated with backward stochastic differ-
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ential equations (4.22) for the costate process Pt = (Pr, Pθ, Pϕ)

dPr =

(
−e

2
0

r2t
+ i

ℏPr
r2t

+
1

µr3t

[
P 2
ϑ +

P 2
φ

sin2Θt
+ iℏ cotΘt Pϑ

]
+ i

σ̃

r2t

[
Πϑϑ +

Πφφ
sinΘt

])
dt

+ (Πt dW
−
t )r

dPϑ =
1

µr2t sin
2Θt

(
cotΘt P

2
φ + i

ℏ
2
Pϑ + irtσ̃ cotΘtΠφφ

)
dt+ (Πt dW

−
t )ϑ

dPφ = (Πt dW
−
t )φ ,

(4.40)

with the matrix-values stochastic process

Πt =

Πrr Πrϑ Πrφ
Πϑr Πϑϑ Πϑφ
Πφr Πφϑ Πφφ

 and ΠtdW
−
t =

(Πt dW
−
t )r

(Πt dW
−
t )ϑ

(Πt dW
−
t )φ

 . (4.41)

According to the maximum principle, the canonical momenta are given byPj = gjk(v
k
t−iukt ).

The classical equations do not include drift terms involving i or ℏ. In the stationary
state, the current velocity v, which represents the real part of the momentum Pt, is zero
in the ground state and only contributes to the z-component of the angular momentum
Pφ = µgφφv

φ = Lz for excited states. This property is reflected in the SDE (4.40), where a
constant feedback process

Pφ(t,Xt) = m ∈ R (4.42)

satisfies the QHE. From Schrödinger’s theory, we know that m ∈ Z. However, at this point,
the QHE lack the same additional quantization condition as the Madelung equations men-
tioned by Wallström [Wal89], so there is no restriction on the angular momentum being
quantized under expectation. The quantization in the framework of the QHE is restored by
constructing the states with partner Hamiltonians.

For this, we can define the real-valued momentum denoted with a small letter as pj =
gjk(v

k
t + ukt ) = P vj + P uj and the angular momentum as Lt = µ(rt × (vt + ut)). Using partial

integration in the calculation of E[L2
t ], we obtain

E[L2
t ] = E

[
p2ϑ +

p2φ

sin2Θt

]

= E

[
−p2ϑ − ℏ cotΘt pϑ +

p2φ

sin2Θt
− ℏ

(
∂ϑpϑ +

∂φpφ

sin2Θt

)]
= E[L̃2

t ], (4.43)

where we defined a reformulated version of the square of the angular momentum L̃2
t . If we

assume that the angular part can be treated separately from the radial part, we can rewrite
the SDE (4.40) for the real-valued processes rt and pr = µur(rt)

drt =

(
ur(rt) +

ℏ
µrt

)
dt+

√
ℏ
µ
dW+

t

dur(rt) =
1

µr2t

(
e20 + ℏur(rt) +

L̃2
t

µrt

)
dt+

√
ℏ
µ
∂rur(rt) dW

−
t .

(4.44)

The solution to (4.44) for the ground state with zero mean angular momentum leads to
L̃t = 0 and can be solved numerically [BPGP19]. It is isotropic, where the radial projection
of the osmotic velocity is constant, namely ũr = − ℏ

a0µ
as shown in figure 4.2. It agrees with

the solution in section 3.3.2, which corresponds to the s orbital. See figure 3.2.
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Figure 4.1: The picture depicts sample paths n = 3, l = 2 and m = 2, 1, 0. These plots correspond
to the radial ground states u(2)r,0 to the second partner potential V2, i.e., EQ

n=3. The top row depicts a
sample path viewed from two different perspectives for n = 3, l = 2,m = 2. The second row depicts
two sample paths from different angles for n = 3, l = 2,m = 1. Here the z = 0 is repulsive, such
that the particles can not cross the z plane. The bottom row depicts n = 3, l = 2,m = 0 for three
sample trajectories, where the stochastic realizations of the azimuthal angle Θt for the sample paths
on the bottom right illustrate three disjoint regions depending on ϑ. Note that the radial probability
densities of all the states shown here are node-free as they describe the ground state to V2.

In standard quantum mechanics, the excited states of the radial part can be determined
very elegantly with the SUSY approach [VMB90], where the Hamilton operator has to be
factorized, leading to partner Hamiltonians sharing the same energy spectrum. Similarly,
the excited states for the hydrogen atom in the QHE (4.44) can be determined with the help
of partner potentials if the choice of the radial osmotic velocity is appropriate. See e.g.,
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section 3.3.1 or ref. [BPGP19] for more details.
Consider an adjusted osmotic velocity

ũr := ur +
ℏ
µr

, (4.45)

which is exactly the drift term in (4.44) for drt. This is in analogy to the transformation of
the radial wave function ψ̃r(r) = rψr(r) when solving the Schrödinger equation. It allows
us to find a (SUSY-)decomposition of the adjusted Hamilton operator. Note that in this case
ũr = ℏ/µ ∂r lnψr.

We denote the potential of the problem under consideration as V0, namely the Coulomb
potential. Then, the first partner potential w.r.t. the definition of ũr is given by

V1 = V0 − ℏ ∂rũ
(0)
r,0 = V0 +

ℏ2

µr2
(4.46)

Here, u(0)0,r is the radial osmotic velocity of the ground state, denoted by superscript
(0), with respect to the potential V0, denoted by subscript 0. If we use the exact solution
u
(0)
0,r = − ℏ

µa0
, where a0 is the Bohr radius, then V1 becomes the effective potential with an-

gular momentum quantum number l = 1. This is seen by separating the radial part from
the angular parts in the solution of the Schrödinger equation, which leads to the effective
potential

V l
eff(r) = V0 +

ℏ2

2µ

l(l + 1)

r2
(4.47)

for the radial part. Therefore, the first partner potential in the stochastic picture V1 gives the
spectrum for l = 1. It should be noted that the ground state energy of this potential is equal
to the first excited state of V0. This is also valid for the second partner potential

V2 = V1 − ℏ ∂rũ
(1)
r,0 = V0 + 2

ℏ2

µr2
− ℏ ∂r

[
− ℏ
2µa0

+
ℏ
µr

]
︸ ︷︷ ︸

u
(1)
r,0

= V0 + 3
ℏ2

µr2
. (4.48)

In general, the ground state velocities for the partner potential Vl = V0 + l(l+1)ℏ2
2µr2

, where

l ∈ N0, are given by u(l)r,0 = −ℏ/(l+1)µa0+ l ℏ/µr. These ground-state velocities are non-singular
(r > 0), corresponding to node-free radial wave functions. The energy of these states can be
calculated via the expectation value with respect to time t as

E[En,l=n−1] = lim
T→∞

1

T

∫ T

0

(
µ

2

(
u
(n−1)
r,n−1(rt))

)2
+ Vn−1(rt)

)
dt = EQn , (4.49)

where EQn = −ERyd/n
2 with the Rydberg energy ERyd denotes the quantized eigenvalues

from non-relativistic quantum mechanics. Hence, we see that the radial osmotic velocity
unl = u

(l)
r,n−l−1 corresponds to the radial eigenstates ψr,nl with quantum numbers n, l in

Hilbert space.
The process for determining the osmotic velocities within the presented formalism is

illustrated schematically in figure 4, ref. [BPGP19]. It is worth noting that the states with l =
n− 1 are the ground states of the partner potentials Vl and thus node-free. The singularities
in the osmotic velocities of states like u(0)r,1 (n = 2, l = 0) or u(1)r,1 (n = 2, l = 1) depicted
in figure 4.2 arise due to the operators that are explicitly written in [BPGP19]. The state
corresponding to n = 2, l = 0 is also shown in figure 4.3.

The supersymmetric procedure for the QHE leads to a constant expectation value of the
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Figure 4.2: The picture depicts the radial osmotic velocities of selected states of the hydrogen atom.
The numerical results calculated from the partnerpotentials within the QHE are shown as circles.
The analytical solutions derived from the wave functions are depicted as lines. The inset depicts the
associated radial probability distributions.

(n, l, m) = (2, 0, 0)
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Figure 4.3: The figure depicts a finite time span of two sample trajectories in the first excited state
with zero angular momentum, i.e., n = 2, l = 0,m = 0. The plot to the right shows the histogram
as a function of the distance for the black and pink sample path in comparison with the exact prob-
ability density in blue (dashed). The inset shows that r = 2 is repulsive. Hence, the black particle
starting within 0 < r < 2 stays close to the origin, which leads to the different visiting histogram in
comparison with the probability distribution.

square of the angular momentum in (4.44)

E[L2
t ] = ℏ2l(l + 1) (4.50)

so that due to E[L2
t ] = L̃2

t we have

L̃2
t = −p2ϑ − ℏ cotΘt pϑ +

p2φ

sin2Θt
− ℏ

(
∂ϑpϑ +

∂φpφ

sin2Θt

)
= ℏ2l(l + 1) . (4.51)
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Hence, the equation above is a condition on the angular momenta pφ and pϑ. With pφ =
m ∈ Z fixed, also pϑ is determined by the equation above. This allows us to determine the
corresponding angular velocities to the hydrogen atom for the quantum numbers n, l and
m, which are used to generate the sample paths for a few orbitals shown in figure 4.1.

Consider the second partner potential, for example. The ground state for the radial part
u
(l=2)
r,n−l−1=0 to V2 from equation (4.48) is unique. However, the identification L̃2

t = ℏ22(2 + 1)
allows for multiple solutions concerning the angular momenta pϑ and pφ. Figure 4.1 shows
the solutions for three different choices of Lz = m, namelym = 0, 1, 2, as calculated from the
QHE and (4.43).4 While the radial probability is node-free, the diffusion may still be singular
due to the azimuthal angle ϑ as shown for (n, l,m) = (3, 2, 1) and (n, l,m) = (3, 2, 0). Here
the orbitals agree with the hydrogen atom orbitals as determined from the wave function.

The relation between the stochastic quantity L̃2
t and a constant is analogous to the rela-

tion between the stochastic Hamiltonian and the energy for eigenstates. For an eigenstate ψ
of L̂2, i.e. L̂2ψ = ℏl(l + 1)ψ, we have

L̂2ψ = L̃2
tψ . (4.52)

This brings us back to the discussion of the effective potential in the stochastic theory, where
the Hamiltonian (4.38) can be rewritten as

H =
1

2µ

(
P 2
r + i

2ℏ
rt
Pr

)
+ V l

eff(rt) . (4.53)

The effective potential described by equation (4.47) applies to eigenstates where the angu-
lar and radial parts are decoupled. It should be noted that in this case, the matrix terms
contribute to the effective potential from equation (4.47) if it is identified with

V l
eff =

1

µr2t

(
e20 + ℏur +

L̃2
t

µrt

)
. (4.54)

Additionally, the energy EQn along the critical stochastic path can be obtained from the
Hamiltonian (4.53) and depends on n, similar to the analysis in the previous section. These
energies agree with quantum predictions.

In conclusion, the treatment of the QHE presented in this chapter enables us to describe the
stochastic motion in curvilinear coordinates, as illustrated by the hydrogen atom in spher-
ical coordinates. Moreover, it allows solving the hydrogen atom in analogy to the classical
Kepler problem. The next chapter will introduce the orientation degree of freedom.

4For example, if Lz = pφ = 2, then the partial differential equation L̃2
t = 6ℏ2 is fulfilled for pϑ = 2 cotΘt.
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Chapter 5

Rotating bodies in quantum Hamilton
equations

Spin is one of the fundamental concepts in quantum mechanics, which describes an intrinsic
angular momentum of a particle. It is a quantum mechanical property that can take on dis-
crete values, and it plays a crucial role in many quantum phenomena, including the stability
of atoms, the behavior of magnetic materials, and the structure of (sub-)atomic particles.

Although the term spin is commonly associated with the rotation of a physical object, in
quantum mechanics, it is usually referred to as an intrinsic property of a quantum particle
that has no classical counterpart. The prevailing perspective nowadays is due to quantum
field theory, see, e.g., [IZ12], which successfully describes relativistic quantum mechanics.
From there, one usually constructs representations of the Lorentz group, which are gen-
erated by rotation and boost operators fulfilling the usual commutation relations. Then,
depending on the representation, one ends up with a scalar or spinor or a vector. From that,
the spin is added as an intrinsic label due to the properties of the mathematical group. In
the case of electrons, for example, the representation is a bispinor, i.e., a vector in C4 from
where it is inferred that the particle is a fermion with spin ℏ

2 . In the limit of small velocities,
the non-relativistic descriptions of quantum mechanics are recovered, e.g., the Schrödinger
equation or the Pauli equation [Pau25].

In the early days of quantum mechanics, classical models have been proposed that de-
scribe the properties of quantum spin based on extended and solid particles. These mod-
els, including those developed by Goudsmith and Uhlenbeck [UG25], Reiche [Rei26], Kro-
nig [KR27]1, can reproduce the well-known properties of spin. However, they were dis-
missed early on due to their inconsistencies with special relativity. For instance, if elemen-
tary particles were extended rather than point-like, the shell of an electron would have to
rotate superluminally to match the magnitude of its spin angular momentum. In contrast,
the stochastic theory avoids conflicts with special relativity due to non-differentiable trajec-
tories from a technical perspective.2 Therefore, one may argue that it is able to provide a
physical picture of quantum spin.

The classical generalization of quantum spin in terms of a rotational stochastic pro-
cess was put forward by Dankel [Dan70]. It builds on Bopp and Haag’s [BH50] postu-
lated Hamiltonian for a charged ball with radius R. In the limit R → 0, the Hamilto-
nian divides into copies of the regular Pauli-Hamiltonian [Wal90]. Based on that model,
Dankel [Dan70, Dan77] showed that each sufficiently smooth wave function, derived from
the eigenfunctions of the Schrödinger equation on the manifold, corresponds to an associ-
ated Markov process on the manifold R3×SO(3), which has the same quantum expectation
values. In this case, the spin is a continuous random variable, and the values of the spin
components, which are measurable as the expectation values of the angular velocities, are
quantized.

1Kronig apparently developed a similar model compared to Uhlenbeck in 1924 which he dismissed at first.
2The (mean) velocity fields, however, would have to surpass the speed of light.
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This chapter focuses on the derivation of the quantum Hamilton equations that are asso-
ciated with a model of a rotating extended particle. To achieve this, a Lagrangian is proposed
in analogy to classical theory of a rotating charge, and the stochastic variational principle in
section 4.3 is applied to the group of rotation SO(3). This allows to study the relation be-
tween stochastic spin representation and the non-relativistic limit of the representations of
quantum spin.

The chapter is organized as follows. We first introduce the spin models proposed in
stochastic mechanics, especially the one put forward by Dankel. Then, we revisit a classical
Lagrangian and derive the equations of motion. Next, we transfer the classical Lagrangian to
the stochastic picture and derive the QHE for a freely spinning particle. Finally, we discuss
the spin states that follow from the calculation of the QHE by analyzing its expectation
values.

5.1 The model of a rotating particle in stochastic mechanics

5.1.1 Spin in quantum mechanics

The spin angular momentum in quantum mechanics is typically associated with a vector
operator ŝi, defined similarly to the orbital angular momentum through commutation rela-
tions given by [

ŝi, ŝj
]
= iℏϵijkŝk and

[
ŝ2, ŝi

]
= 0 . (5.1)

The eigenstates of the two operators, denoted by |jm⟩ in Dirac notation, satisfy the following
conditions

ŝ2|jm⟩ = ℏ2j(j + 1)|jm⟩
ŝz|jm⟩ = ℏm|jm⟩

(ŝx ± iŝy)|jm⟩ = ℏ
√
j(j + 1)−m(m± 1)|j(m± 1)⟩ ,

(5.2)

where j is the spin quantum number and m the spin projection onto the z axis. Conse-
quently, the spin’s expectation values can be seen as a vector quantity with a fixed magni-
tude and quantized direction. Unlike the orbital angular momentum, however, half-integer
values are allowed for the spin.

The spin itself is not accessible directly, but its coupling to position in space, for exam-
ple. This is due to the magnetic moment associated with the particle, which follows in the
classical model of a rotating charged particle. The magnetic moment, however, differs by
a factor g ̸= 1 from the classical model. For a particle with uniform and equal charge and
mass distribution, the classical gyromagnetic factor is given by γ = q

2mg with g = 1. From
experiments, it is well-known that the g factor generally has different values. Hence, from a
classical point of view, a non-trivial g-factor arises if the charge and mass distributions are
not the same for a particle with charge q and mass m.3

For instance, consider the electron, where g = 2 in the non-relativistic limit. This value
follows from the relativistic description of the electron in quantum mechanics, namely the
Dirac equation [Dir26, LL67]. This is associated with a Clifford algebra for the linear oper-
ators that have to be represented by 4× 4 dimensional complex-valued matrices, which act
on a 4-component wave function ψ = (ϕT , χT )T . When considering particles in an external
magnetic field and introducing minimal coupling, one can eliminate one of the bispinors,
namely χ, and obtain the Pauli equation for spinor ϕ in the non-relativistic limit[

iℏ∂t − eΦ− 1

2m
(p̂+ eA)2 − ℏe

2m
σ̂ ·B

]
ϕ = 0 .

3More generally, g ̸= 1 if the back interaction of the moving charges with their Maxwell fields is taken into
account. See [Spo04] for more details.
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Here, σ̂ = (σ̂x, σ̂y, σ̂z) represents the vector of the Pauli matrices, q = −e is the electron’s
charge,A is the vector potential,B is the magnetic field and Φ is the electric potential. Hence,
the Pauli equation introduces a term that couples the spin to the magnetic field in addition to
the Schrödinger equation. The magnetic moment of a particle can be defined as µ̂ = eℏ

2m ŝ =

µB ŝ, where ŝ = σ̂
2 is the actual spin-1/2 operator, and µB is the Bohr magneton. This leads

to a factor of 2 in the electron’s gyromagnetic ratio. The spinor ϕ = (ϕ1, ϕ2) can usually be
considered as a superposition of ϕ1 = |j = 1/2,m = 1/2⟩ and ϕ2 = |j = 1/2,m = −1/2⟩. This is
generalized to higher spins accordingly.

The basic properties of the spin described here can be described by a classical model of
spin in stochastic mechanics for non-relativistic systems. This is shown in the following.

5.1.2 Spin in stochastic mechanics

Generalizing the formalism and interpretation of classical mechanics, stochastic mechanics
describes a quantum system in terms of a Markovian stochastic process in the configuration
space. Thus, in analogy, the classical generalization in the case of quantum spin would then
require a rotational stochastic process based on the assumption of the classical counterpart.

In our model, we assume that diffusion takes place on the manifold M = R3 × SO(3)
(instead of M̃ = R3 × SU(2) in quantum mechanics), where R3 covers the translational and
SO(3) the orientational degrees of freedom. The velocity for the translation in R3 describes
the motion of the particle’s center of mass (COM). The angular velocity describes the change
of orientation with respect to the COM. It is an element of the Lie algebra so(3), which is the
tangent space of the Lie group SO(3).

Figure 5.1: The diagram illustrates extension of the point particle concept by giving it an orientation.
The particle’s orientation undergoes random fluctuations over time in response to its interaction with
the surrounding governed by a SDE.

The Bopp-Haag-Dankel model [BH50, Dan70] gives a more intuitive explanation of as-
serting a moment of inertia Im > 0 to the considered particle than to a point particle in
Nelson’s suggestions later [Nel85]. Either way, both consider the limit of a vanishing mo-
ment of inertia Im → 0, which in Dankel’s case is due to the radius going to zero. The value
of Im does not influence the spin expectation values.

Furthermore, Dankel showed that to each sufficiently smooth wave function on the man-
ifold R3×SU(2), there is an associated Markov process on the manifold R3×SO(3) leading to
the same quantum averages. The random variable for the spin is continuous, as opposed to
the discrete values of spin components that are measurable, i.e., the expectation values of the
angular velocities are quantized. Note that the wave function is defined on SU(2), whereas
the diffusion is defined on SO(3).4 The spin for fermions in quantum mechanics starting
from the Dirac equation, e.g., is associated with SU(2) and not SO(3). The unitary group
SU(2), a simply connected space, is the double cover of the rotation group SO(3), which is
not simply connected. 5 The use of SU(2) is important in the case of 2π rotations. Consider,

4It should be noted that the stochastic diffusions can be defined on SU(2) as shown by Faris [Far82].
5For more details on SO(3) and its connection to SU(2), see appendix D.1.
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e.g., the wave function ψ(x,Θ), where Θ denotes the orientation dependency. A 2π rotation
in SU(2) is associated with −Θ, while on SO(3) we end up with Θ again. The wave function
is then split in two classes, namely ψ(x,Θ) = ψ(x,−Θ) for bosons and ψ(x,Θ) = −ψ(x,−Θ)
for fermions [Nel85]. This is different in stochastic mechanics, where the velocity fields are
defined on SO(3) for both cases.

Approaches of rotating charge distributions [dlPA71, CdlPA71] similar to Dankel’s model
can be found in the literature related to stochastic electrodynamics, see, e.g., the book of Peña
and Cetto [dlPCVH15] for an overview, where spin is a result of the interaction with the zero-
point field [DAJL82]. There is also work based on a discrete configuration space for spin-12
particles [GM84, DAJL82], where spin is treated as a discrete random variable, e.g., consid-
ering a Markov process ξ(t) = (Xt, St) ∈ R3 × {−1, 1}. In these, there is no construction
of a model proposed. They rather start from the Pauli equation, knowing that the random
variables are discrete. This thesis will rely on the model proposed by Bopp and Dankel.

5.1.3 Construction of the stochastic process

The rotational diffusion introduced by Dankel [Dan70] is discussed in analogy to the trans-
lational Brownian motion, where the system is subject to a background field that changes its
position and orientation, thus its angular momentum. Mathematically, this can be tracked
via an element Rt representing the orientation at time t in the group of rotations SO(3). It
is important to note that the rotational process Rt does not describe a rotation at time t, but
rather the change in the body’s orientation that occurs between time 0 and t. The change of
orientation then describes the particle’s spin and is described by the SDE

dRt = Rt[ω]×dt+RtσI h̃i ◦ dW i
t , (5.3)

where [ω]× denotes an element of the Lie algebra so(3) and ω is the corresponding vector
representation in R3; see appendix D.1. Furthermore, h̃i is a suitable function depending on
the considered metric in local coordinates, Wt is a 3-dimensional Wiener process, and σI is
the coupling constant to the background field.

In analogy to Nelson’s construction in flat space, the drift field in the form of the vector
representation ω = ωv + ωu is the sum of current and osmotic angular velocity, respectively.
They are the counterparts of the two velocity fields concerning translation. Similarly, the
diffusion constant σ2I has to be the quotient of ℏ and something with the unit of moment of
inertia to give it a physical meaning. The simplest choice would be to define σ2I =

ℏ
Im

where
Im > 0 is the moment of inertia of the particle, and to assume that the particle’s Im is the
same for all principal axes. In the general case σI = ℏIm−1 would be a matrix. Hence, in this
model, the inertia associated with the mass distribution Im steps in the role of the mass and
determines the strength of the random kicks to the particle’s orientation. In summary, we
have the correspondences

Xt, m→ Rt, Im

v, u→ ωv, ωu (5.4)

σ2 =
ℏ
m

→ σ2I =
ℏ
Im

.

As illustrated in figure 5.1, instead of using Rt ∈ SO(3), it is also possible to assign an
orientation to the particle in the form of a vector Nt ∈ R3, allowing the above SDE to be
rewritten as

dNt = Nt × [(ωv + ωu)dt+ σIdWt] , (5.5)

where the cross-product ensures that only the direction of the orientation is changed. In this
case, we can visualize the change of orientation by tracing the tip of the orientation vector
on the sphere in R3.
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Since the considered configuration space SO(3) is not flat, the stochastic analysis follows
the formalism used in section 4.3. Due to the dimension of SO(3), the charts are mostly
based on three parameters.6 Here we use Euler angles denoted by θ = (ϑ, φ, χ) ∈ [0, π] ×
[−π, π]2 as local coordinates in flat euclidean space.

Describing the rotation with Euler angles

Think of a laboratory frame with axes x1, x2, x3 fixed and the body fixed frame x̃1, x̃2, x̃3
into which the rotation would take the reference frame. The three angles describe three
consecutive rotations in the 3 1 3 or zxz-convention (see figure 5.2):

• rotation around x3-axis by angle φ (x1 → x′1, x2 → x′2, x3 → x3)

• rotation around x′1-axis by angle ϑ (x′1 → x′1, x
′
2 → x

′′
2 , x3 → x̃3)

• rotation around x′3-axis by angle χ (x′1 → x̃1, x
′′
2 → x̃2, x̃3 → x̃3)

so that θ = (ϑ, φ, χ) denotes the orientation of the objects in the laboratory frame. This
rotation is intrinsic, which means that the rotations are carried out about the axes of the
rotating coordinate system.

Figure 5.2: The three consecutive rotations in the zxz-convention of the Euler angles are shown from
left to right. The first rotation is about the z axis by the precession angle φ. The second rotation
is carried out about the x′ axis by the nutation angle ϑ. The intrinsic rotation around the z′ axis is
quantified by χ.

The metric on SO(3) for the considered Euler angles is given by

(gij) =

1 0 0
0 1 cosϑ
0 cosϑ 1

 with its inverse (gij) =

1 0 0

0 1
sin2 ϑ

− cosϑ
sin2 ϑ

0 − cosϑ
sin2 ϑ

1
sin2 ϑ

 . (5.6)

Given a vector (vϑ, vφ, vχ)T in the reference frame, the corresponding vector in cartesian
coordinates reads

(v1, v2, v3)T = JL(v
ϑ, vφ, vχ)T =

(
eϑ eφ eχ

)
(vϑ, vφ, vχ)T (5.7)

where JL is the left Jacobian given in (D.3) with the basis vectors eϑ = (cosφ, sinφ, 0)T ,
eφ = (0, 0, 1)T and eχ = (sinφ sinϑ,− cosφ sinϑ, cosϑ)T pointing along each axes of rotation
of the corresponding angle. Analogously for the body fixed frame denoted by prime, there
is

(v′
1
, v′

2
, v′

3
)T = JR(v

′ϑ, v′
φ
, v′

χ
)T =

(
e′ϑ e′φ e′χ

)
(v′

ϑ
, v′

φ
, v′

χ
)T (5.8)

6In some cases, it is better to consider four parameters with an additional constraint, e.g., quaternions which
represent SU(2). This can be helpful in the numerical treatment of rotations.
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where JR is the right Jacobian given in (D.4) with e′ϑ = (cosχ,− sinχ, 0)T , e′χ = (0, 0, 1)T

and e′φ = (sinϑ sinχ, sinϑ cosχ, cosϑ)T .
This allows us to write the SDE for the stochastic processes Θt = (Θt, Φt,Xt) in local

coordinates given in equation (4.4) and (4.9) for the corresponding orientation angles θ =
(ϑ, φ, χ) as follows

dΘt =

[
ωϑv ± ωϑu ∓ σ2I

2
cotΘt

]
dt+ hϑj dW

j
±,t

dΦt = [ωφv ± ωφu ] dt+ hφj dW
j
±,t (5.9)

dXt = [ωχv ± ωχu ] dt+ hχj dW
j
±,t ,

where W j
±,t are the components of a three-dimensional forward/backward Wiener process,

and the matrix elements hij are associated with the J−1
L given in (D.5)

(hij) = (hϑ hφ hχ) = σI

cosφ − cotϑ sinφ sinφ
sinϑ

sinφ cotϑ cosφ − cosφ
sinϑ

0 1 0

 (5.10)

so that hi(ϑ, φ) · hj(ϑ, φ) = σ2Ig
ij(ϑ). The components ωj = ω · ej denote the angular ve-

locities projected onto the basis vectors of the three consecutive rotations. These equations
demonstrate that as the moment of inertia decreases, and Im → 0, the Brownian motion of
the orientation becomes increasingly jiggly, with σI → ∞.

The FBSDEs for the local coordinates (5.9) represent the conservative diffusion on the
group of rotations. They will be used as a constraint for the stochastic optimal control prob-
lem, allowing the derivation of SDEs for the canonical angular momenta. In line with Nel-
son’s postulate for a stochastic Newton law, on the other hand, the angular velocity fields
ωv(t, θ) and ωu(t, θ) obey coupled partial differential equations, which are related to the
Madelung equations on SO(3) [Dan70].

Moreover, in the deterministic term of dΘt in equations (5.9), there is also a divergent
term that tends to keep ϑ away from the second rotation axis x1′. This is due to the singu-
larity of the coordinate description in Euler angles. If the ϑ-rotation has the value 0 or π,
the φ and χ rotations rotate around the same axis, and thus one loses a degree of freedom,
which is also known as the gimbal lock. Hence, it is necessary to point out that, e.g., similar
to spherical coordinates where the radius r > 0, if Θt=0 = 0 or Θt=0 = π a different set of
coordinates has to be used.

The following section considers the classical limit for rigid bodies with non-vanishing
inertia (σ2I , ωu → 0) and derives the differential equations for the canonical angular momenta
corresponding to the Euler angles given here. Together with the differential equations given
in (5.9) in the classical limit, they describe a classically rotating particle.

5.2 Spinning bodies in classical mechanics

In this thesis, it is assumed that the mass ρm and charge distribution ρc are strongly localized
compared to the typical distance traveled [BH50, Spo04] and that the rotor is symmetric,
such that the moments of inertia along the principal axes of the body are equal. This results
in the inertia for the mass being Imass = ImI and the inertia for the charge distribution being
Icharge = IcI, with the identity matrix I.7

In classical mechanics, the magnetic moment M ′ associated with the spinning ball of
charge and corresponding inertia Ic is given byM ′ = Icω

′. In contrast, the mass distribution
with inertia Im is related to an angular momentum Σ′ = Imω

′, where ω′ is the angular veloc-

7In a more general, even relativistic, scenario, a moment of inertia can be defined for the mass distribution
ρm and the charge distribution ρc , including non-symmetrical distribution. In this case, we have two different
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ity in the body’s reference frame. The assumption in this model is that of a spinning particle,
such that the magnetic moment in the reference frame is related to its angular momentum
and angular velocity ω by M = γΣ in the reference frame. The gyromagnetic factor γ = Ic

Im
depends on the ratio of Ic and Im.

The system can be described via a Lagrangian, where the kinetic term of the rotation
and the interaction with an external magnetic field B are given by Ts = 1

2Imω
2 and Vs =

−M ·B = −Icω ·B, respectively. The rotational kinetic energy reads

T spin =
1

2
gIijω

iωj (5.13)

with the metric gIij = Imgij , g
ij
I = gij/Im as defined in equations (5.6). If we allow an external

field to act on the system, we get the Lagrangian L :M × TxM × R

Ls = Ts − Vm =
1

2
gIijω

iωj + Icω
iBi (5.14)

where the magnetic field is given by Bi = ε kli ∂kAl = (∇×A)i and A is the vector potential.
The canonical angular momentum is then defined as

Ωj =
∂L
∂ωj

= gIijω
i + IcBj , (5.15)

with the angular velocities in terms of the momenta above

ωj = gijI (Ωi − IcBi) . (5.16)

Then the classical Hamiltonian is obtained as

Hs = ωiΩi − L (5.17)

=
1

2Im
gijΩiΩj − γgijΩiBj +

Imγ
2

2
gijBiBj . (5.18)

From that, it is straightforward to derive Hamilton’s equation of motion in the classical case.
The equations of motion (cf. (5.9)) concerning the change of orientation read

dϑ =

[
Ωϑ
Im

− γBϑ

]
dt

dφ =

[
Ωφ − cosϑΩχ

Im sin2 ϑ
− γgφjBj

]
dt (5.19)

dχ =

[
Ωχ − cosϑΩφ

Im sin2 ϑ
− γgχjBj

]
dt ,

moments of inertia, given by

Im =

∫
R3

ρm(r)(Ir − rrT )dr (5.11)

Ic =

∫
R3

ρc(r)(Ir − rrT )dr, . (5.12)

However, to account for such a scenario, one needs to include the particle’s interaction with the field generated
by its own motion, as discussed in [Spo04, IKS15].
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while the change of canonical angular momentum is governed by

dΩϑ =

[
1

Im sin3 ϑ

(
cosϑ(Ω2

χ +Ω2
φ)− (1 + cos2 ϑ)ΩχΩφ

)
+ γ csc2 ϑ(Ωφ − cosϑΩχ)(Bx cosφ−By sinφ)

]
dt

dΩφ =γ
[
Ωϑ(sinφBx − cosφBy) + cscϑΩχ(− sinφBy − cosφBx)

+ cotϑΩφ(sinφBy − cosφBx)
]
dt

dΩχ =0 .

(5.20)

Solving the equations of motion for a classically spinning particle is a complex task that
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Figure 5.3: The left plot shows the effective potential for different values of the angular velocities
Ωφ and Ωχ, plotted against the angle ϑ. The nutation angle is also shown in the inset. To the right
of the figure, two spheres depict an example trajectory of a rotation when Ωφ ̸= Ωχ, represented by
the tip of a body-fixed unit vector from two different perspectives. The particle’s orientation has two
classical turning points, denoted as ϑ1 and ϑ2.

heavily depends on the chosen parameters. Despite this, some valuable observations can
be made. For example, the Lagrangian in Euler angles gives rise to an effective rotation
potential,

V rot
eff (ϑ,Ωφ,Ωχ) =

1

2Im sin2 ϑ
(Ω2

φ +Ω2
χ − 2 cosϑΩχΩφ) . (5.21)

similar to the potential barrier encountered in the central potential problem. This poten-
tial, denoted by V rot

eff (ϑ,Ωφ,Ωχ) in equation (5.21), illustrates the behavior of the orientation
angles ϑ, φ, χ and their role in describing rotations in a stochastic context. From equations
(5.19) and (5.20), it follows that the canonical momentum for χ is a constant of motion in-
dependent of the magnetic field, as it describes the intrinsic rotation around the body-fixed
z̃ axis. Moreover, when the magnetic field has only a z component, the canonical momen-
tum for φ is also a constant of motion. Although the rotation itself can be complex, the
momentum relations in equation (5.20) simplify for B = Bzez as follows

dΩϑ =∂ϑV
rot
eff (ϑ,Ωφ,Ωχ)dt (5.22)

dΩφ =0 , dΩχ = 0 . (5.23)

Since Ωφ,Ωχ are constants, the change of ϑ is described by the shape of the effective poten-
tial, which depends on the initially chosen values of Ωφ and Ωχ. Some V rot

eff are depicted in
figure 5.3 for different choices of canonical angular momenta Ωφ,Ωχ.

For Ωφ ̸= Ωχ the angle ϑ follows an oscillatory movement as shown in the inset of
figure 5.3. This behavior is a consequence of the shape of the effective potential illustrated
in orange. For the other two combinations, the potentials lead to a parallel or antiparallel

72



alignment of the particle’s orientation w.r.t. to the chosen z-axis8 since the effective potential
has minima at nutation angles ϑ = 0 and ϑ = π in some cases. The effective potential will
play a similar role in the subsequent discussion of the QHE for a freely spinning top, where
the values of Ωφ and Ωχ are critical to the determination of the spin projections. Finally,
analytic solutions and a discussion for a classically spinning object can be found in more
depth in [BBM92].

Returning to Cartesian coordinates, we can express the angular momentum Σ = Imω
using (5.16) as follows

Σx + IcBx = cosφΩϑ +
sinφ

sinϑ
Ωχ −

sinφ cosϑ

sinϑ
Ωφ

Σy + IcBy = sinφΩϑ −
cosφ

sinϑ
Ωχ +

cosφ cosϑ

sinϑ
Ωφ (5.24)

Σz + IcBz = Ωφ .

The equations presented above allow us to define the terms on the right-hand side as the
canonical angular momenta s = Σ + IcB, similar to the classical canonical momentum. In
this case, the jth component of the spin momentum in Cartesian coordinates is given by
sj = (JL)

j
ig
ik
I Ωk. For example, dΩφ = γ(s × B)zdt = dsz . It is important to note that the

spin s defined here is not only the kinetic angular momentum Σ but also the external fieldB
multiplied by coupling constants, i.e., the canonical spin angular momentum. By converting
the momentum equations (5.20) to Cartesian coordinates, we obtain the classical precession
equation for a spinning particle,

ds = γ [s×B] dt (5.25)

or equivalently

Imdω = Ic

[
ω ×B − Ḃ

]
dt . (5.26)

The Hamiltonian expressed in terms of the canonical angular momentum is given by

Hcl
s =

s2

2Im
− γs ·B +

Imγ
2

2
B2. (5.27)

When considering a constant magnetic field along the z-axis, the z-component of s remains
constant, leading to the precession of the spin s around the magnetic field. It is also possible
to demonstrate, using Poisson brackets, that s2 is a constant of motion, that s precesses with
ṡ = s×B, and that {si, sj} = εijksk [BBM92].

5.3 Quantum Hamilton equations of spinning particles

Let us examine the stochastic processes Θt = (Θt, Φt,Xt), which represent the continuously
changing orientation of the particle. In the case of pure rotation, Nelson’s forward-backward
SDEs can be expressed using the selected Euler angles (5.9). The combination into a single
complex SDE as shown in equation (4.19) results in the following set of equations

dΘt =

[
ωϑq + i

σ2I
2

cotΘt

]
dt+ hϑj dW

j
q,t

dΦt = ωφq dt+ hφj dW
j
q,t

dXt = ωχq dt+ hχj dW
j
q,t

(5.28)

8Note that the orientation angles, including the nutation ϑ, describe the orientation of the particle and not
necessarily its spin, which is related to the change of the orientation.
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Here, W j
q,t denotes independent quantum Wiener processes for each j, and, again, hil rep-

resents the left Jacobian JL given in the appendix D.2 with hilh
j
l = σIg

ij . The components
ωjq = ωjv − iωju denote the quantum angular velocities.

For the cost function given in equation (4.18), we take the classical Lagrangian L from
equation (5.14) and introduce the quantum angular velocity ωq,t = ωv,t − iωu,t as stochastic
control, instead of the classical velocity ω. The aim is to find solutions in the form of feedback
controls, i.e., ωq,t = ωq(t, θ).

The corresponding stochastic Hamiltonian from equation (4.20) in Euler angles reads

Hs = −
gIkj
2
ωkq,tω

j
q,t − IcBjω

j
q,t +Ωjv

j
q,t + i

σ2I
2

cotΘtΩj −
(1 + i)

2
Tr{ΠtHT } , (5.29)

where we introduce the costate processes Ωt and Πt
9 and use shorthand Ωj = Ωj,t = gIijω

j
q,t+

IcBj . The latter equality follows from the extremization of the Hamiltonian w.r.t. ωq,t.

The QHE (4.22) for the canonical angular momenta depending on Euler angles can be
written in a compact form as follows

dΩϑ =

[
∂ϑV

rot
eff (Θt,Ωφ,Ωχ) +

γ

sin2Θt
(Ωφ − cosΘtΩχ)(Bx cosΦt −By sinΦt)

+ i
ℏΩϑ

2Im sin2Θt
+

1 + i

2 sin2Θt
σIfϑ(Θt, Φt,Πt)

]
dt+ΠϑjdW

j
−,t

dΩφ =

[
γ[s×B]z +

1 + i

2 sinΘt
σIfφ(Θt, Φt,Πt)

]
dt+ΠφjdW

j
−,t

dΩχ =ΠχjdW
j
−,t

(5.30)

with the rotational effective potential (5.21) from the classical analysis. In addition we intro-
duce the functions fϑ, fφ as follows

fϑ(ϑ, φ,Πt) = sinφ(Πϑφ −Πϑχ cosϑ) + cosφ(Πφχ cosϑ−Πφφ cscϑ)

fφ(ϑ, φ,Πt) = cosφ(Πϑχ −Πϑφ cosϑ+Πφϑ cscϑ)

− sinφ(Πϑϑ cscϑ+Πφφ cosϑ−Πφχ) .

(5.31)

The momentum equations (5.30) may be written in terms of the Cartesian spin vector st as

dst = γ[st ×B]dt+ σ2IT (Θt, Φt, Π̃t)dt+ st × (Π̃tdW−,t) , (5.32)

where Π̃t = J−1
L Πt. T is an additional quantum torque depending on ϑ, φ and Π̃t following

fϑ, fφ in equation (5.30) and has only x and y components. Hence, the classical equations
are recovered for σ2I → 0, where Πt, Π̃t vanish, and the spin st = s(t) is a real quantity. Note
that in the present case, “classical limit” refers to ℏ/Im → 0 with Ωj = Ωvj − iΩuj → Ωvj , since
the diffusive behavior disappears, i.e., Ωuj → 0.

The final step in the derivation of the quantum Hamilton equations is related to the
constraint that the controls for the momenta should be feedback controls, i.e., Ωt = Ω(t, θ).
Assuming that the momenta depend on time t and on the orientation variables θ, there is
due to the complex Itô formula (4.25)

Πjl =
1 + i

2
hkl ∂kΩj =

1 + i

2
(Jϑ,φ,χΩ H)jl (5.33)

with Jϑ,φ,χΩ as Jacobi matrix for the rotational momentum Ωj . Note that the feedback mo-
mentum here is still complex, i.e., Ωj(t, θ) = gIjk(ω

k
v (t, θ)− iωku(t, θ)) + Bj(t, θ). Then fϑ and

9Ωt = Pt in this case.
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fφ in equations (5.30) may be rewritten with the partial derivatives

fϑ(ϑ, φ) =
(1 + i)σI
4 sinϑ

(∂φΩχ + 2∂χΩφ − 2(∂φΩφ + ∂χΩχ) cosϑ+ ∂φΩχ cos(2ϑ)) (5.34)

fφ(ϑ, φ) =
(1 + i)σI

2
(∂ϑΩχ − ∂χΩϑ + cosϑ(∂φΩϑ − ∂ϑΩφ)) (5.35)

In the next subsection, we consider freely spinning particles, which allows us to simplify,
e.g., fϑ = fφ = 0, and solve the QHE (5.28) and (5.30) for a freely spinning particle. Before
that, we will consider the associated spin operators.

Correspondence to spin operators

The stochastic Hamiltonian (5.29) in terms of the feedback momenta reads

Hs =
Ω2

2Im
− γΩ ·B +

Imγ
2B2

2
+ i

σ2I
2

cotϑΩϑ + iσ2Ig
kl∂kΩl

=
1

2Im
gijΩiΩj + i

σ2I
2

cotϑΩϑ − γgijΩiBj +
Imγ

2

2
gijBiBj + iσ2Ig

kl∂kΩl . (5.36)

Similar to the Schrödinger quantization of a classical Hamiltonian, it is possible to quantize
the classical part of Hamiltonian (5.36), i.e., with σI → 0 and by replacing Ωj → −iℏ∂j in
(5.24) there is

ŝ2 = −ℏ2(gij∂2ij + cotϑ∂ϑ) ≡ −ℏ2∆ . (5.37)

We see a direct correspondence if we set B = 0 in the stochastic Hamiltonian (5.36). The
considered Laplace Beltrami operator ∆ has eigenfunctions for eigenvalues j(j + 1), where
j ∈ {n2 |n ∈ N0}. Bopp & Haag [BH50] and also Rosen [Ros51] showed that, in general
two-valued, representations Ds

µν(ϑ, φ, χ) form a complete orthonormal basis, |µ|, |ν| ≤ js.
Two valued here refers to one of the two angles φ or χ taking values in [−2π, 2π) instead
of [−π, π). By restricting the eigenfunctions to the subgroup of single-valued function, i. e.
φ, χ ∈ [−π, π), these describe only integer j. This means if j is half an odd-integer, then
the eigenfunctions are double-valued. Similar explanations were found in earlier works by
Phillips [PT27] for integer spins on SO(3) and Casimir [Cas32] including half-integer spins
on SU(2).
For example, the eigenfunctions for ∆ on SO(3) can be expressed as

D
1
2
µν(ϑ, φ, χ) = exp(i(µφ+ νχ))i

1
2
+µ cos

ϑ

2
. (5.38)

for B = 0, j = 1
2 , and µ = ν = ±j. These eigenfunctions can be utilized to return to the

stochastic formalism, where the osmotic velocities are determined using the wave function’s
standard form through the potentials R(ϑ) and S(φ, χ) in the exponent. Specifically, we
define

ωiu = gijI 2ℏ∂jR (5.39)

ωiv = gijI 2ℏ∂jS . (5.40)

Finally, for µ = ν = ±1/2, we obtain

ωu = − ℏ
2I

tan
ϑ

2
eϑ E[Iωu] = 0 (5.41)

ωv = ± ℏ
2I

1

1 + cosϑ
(eφ + eχ) E[Iωv] = ±ℏ

2
eφ (5.42)
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and

E[I2(ωu + ωv)
2] =

3ℏ2

4
. (5.43)

Here, eφ denotes the rotation around the z axis in the reference frame, and the average E[]
is taken as an ensemble average. In these particular cases, the ensemble average of the spin
is directed along the φ rotation axis. Therefore, spin up corresponds to E[Iωv] =

ℏ
2eφ, and

spin down corresponds to E[Iωv] = −ℏ
2eφ. It is worth noting that the inertia Im does not

factor into the expectation values. Moreover, higher values of the spin quantum number s
are also compatible with the anticipated values from quantum mechanics [Dan77]. These
states can be recovered in the numerical solutions to the QHE for a freely spinning particle,
see section 5.3.

Connection to Wigner functions

Consider the common set of eigenvectors or pure spin states |jm⟩ given in (5.1) and (5.2).
These eigenvectors can be rotated with a matrix R described with the zxz Euler angles
(ϑ, φ, χ) in order to get the so-called Wigner-D-functions [Wig31]

Dj
m′m(ϑ, φ, χ) = ⟨jm′|R(ϑ, φ, χ)|jm⟩ (5.44)

in the zxz convention. The matrix Dj itself is unitary, and it is an irreducible representation
of SU(2), with j ∈ {n/2|n ∈ N}, and of SO(3), with j ∈ N.

The elements Ds
m′m are functions of the Euler angles θ = (ϑ, φ, χ) and form a complete

set
∫
dθDj′

l′m′D
j
lm = δl′lδm′mδj′j . Hence, for each wave function |ψ⟩ in the Hilbert space

M = R3 × SO(3) we can expand

|ψ⟩ =
∑
j,m

cmj D
j
ml , (5.45)

which is referred to as Peter-Weyl Decomposition [PW27]. Here l is fixed, cmj may depend on
time and position andDj

ml = ⟨θ|jm⟩. Then the Wigner-D functions associate the momentum
representation |jm⟩ to the orientation representation |θ⟩ [Hol95]. For j (and l) fixed, for
example, we end up with the 2j + 1 functions Dj

ml associated to the spinor representation
for a non-relativistic spin-j particle.

Take the canonical angular momentum from (5.24), namely s = Σ + IcB. Now replace
Ωj by iℏ∂j . This operator, Ĵ , acting on the Euler angles ϑ, φ, χ has the eigenvalues

ĴzD
j
m′m

∗
(ϑ, φ, χ) = ℏm′Dj

m′m

∗
(ϑ, φ, χ) (5.46)

Ĵ2Dj
m′m

∗
(ϑ, φ, χ) = ℏ2j(j + 1)Dj

m′m

∗
(ϑ, φ, χ) , (5.47)

where Dj
m′m

∗
is the complex conjugate of Dj

m′m and

Ĵx = −iℏ
(
cosφ∂ϑ +

sinφ

sinϑ
∂χ −

sinφ cosϑ

sinϑ
∂φ

)
Ĵy = −iℏ

(
sinφ∂ϑ −

cosφ

sinϑ
∂χ +

cosφ cosϑ

sinϑ
∂φ

)
(5.48)

Ĵz = −iℏ ∂φ
Ĵ2 = −ℏ2(gij∂ij + cotϑ∂ϑ) .

The operator Ĵ is the same as the one proposed by Bopp and Haag [BH50] and fulfills the
usual commutation relations (5.1) for angular momentum operators. Moreover, the Wigner-
D representations Dj

m′m

∗
are the same eigenfunctions as given in (5.38) and will be used as
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a reference in the numerical calculation of the QHE for the freely spinning particle.

5.4 Freely spinning particle

This section focuses on the numerical solution to the QHE (5.28) and (5.30) for a freely ro-
tating particle. Specifically, we aim to find stationary processes (Θt,Ω(t,Θt)) that satisfy
equations (5.28), (5.30) and minimize the energy of the system.

Without any assumption about the external field, we have E[dΩχ] = 0, meaning that
the particle’s eigenrotation is constant on average. By assuming optimal feedback controls,
namely Ωχ = Ωχ(t, θ), a trivial solution to the backward equation is a constant ℏν ∈ C.

In a second step, we can choose B = Bez such that (s × B)z = 0. Furthermore, we
assume that the feedback solutions for the canonical angular momenta are decoupled, i.e.,
Ωϑ(ϑ),Ωφ(φ), so that fφ = fϑ = 0; see equation (5.31). Then, the drift term for dΩφ is zero.
Hence, a similar argument holds for constant Ωφ = Ωφ(t, θ). This is due to the specific
choice of symmetry in the zxz Euler angle parametrization and the fact that the magnetic
field is inherited in the canonical angular momentum Ωφ = gIφjω

φ
q + IcBz . Note that in

cases of constant Ωφ,Ωχ, the contravariant angular velocity components ωφq = 1
Im sin2 ϑ

(Ωφ−
cosϑΩχ) − γBz and ωχq = 1

Im sin2 ϑ
(Ωχ − cosϑΩφ) depend on ϑ, for example. Hence, the

drift terms in equations (5.28) for dφ and dχ are not constant for constant canonical angular
momenta Ωφ,Ωχ.

The properties of the real-valued current and osmotic angular velocities, i.e., the corre-
sponding angular momenta Ωvi and Ωui imply that Ωuφ = Ωuχ = 0. This is because ωiu ∼
∇i log ρ, and thus the expectation value of the osmotic velocity E[Imω

u] = E[I(ωuϑeϑ+ω
u
φeφ+

ωuχeχ)] = 0 must vanish. We can conclude that the angular momenta Ωχ = ℏν and Ωφ = ℏµ
with real-valued constants µ, ν ∈ R are solutions of the QHE for the momenta (5.30) as feed-
back controls. The constant µ corresponds to the precession around the z-axis in the lab
frame, while ν corresponds to the eigenrotation in the body frame, according to the defini-
tions of the Euler angles.

In the final step, we can separate the real and imaginary parts of equations (5.30) and
express the SDE for the canonical angular momentum in real space as Ωvj +Ωuj . This gives

dΘt =
1

I
[Ωvϑ ± Ωuϑ ∓

ℏ
2
cotΘt]dt+ hϑj · dW j

±,t

d(Ωvϑ +Ωuϑ) =

[
∂ϑV

rot
eff (Θt, µ, ν) +

σ2I
2 sin2Θt

(Ωuϑ − Ωvϑ)

]
dt+ hkj∂k(Ω

u
ϑ +Ωvϑ)dW

j
−,t (5.49)

Ωvφ = ℏµ
Ωvχ = ℏν .

If both µ and ν are zero, the trivial feedback solution for the ϑ component is Ωuϑ(ϑ) = Ωvϑ(ϑ) =
0. Otherwise, a numerical solution can be obtained for the QHE.

The assumptions presented for a spinning particle under a constant magnetic field along
z in this section enable a solution to the QHE in the stationary case where the probability
distribution is time-independent. Furthermore, in the stationary case, we can make the
assumption that Ωvϑ = 0, which simplifies equations (5.9) and (5.30) to effectively describe a
one-dimensional problem, as follows

dΘt =
1

Im
[±Ωuϑ ∓ ℏ/2 cotϑ]dt+ hϑj dW

j
t ±

dΩuϑ =

[
∂ϑV

rot
eff (Θt, µ, ν) +

ℏ
2Im sin2Θt

Ωuϑ

]
dt+ hkj∂kΩ

u
ϑdW

j
−

Ωvφ = ℏµ, Ωvχ = ℏν .

(5.50)

This coupled system of FBSDEs can be solved numerically in line with the algorithm given
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in the appendix B. The detailed numerical description is given in the following subsection.

5.4.1 Numerical solution

Our objective is to determine a feedback control function Ωϑ(ϑ) for given Ωφ = ℏµ,Ωχ = ℏν.
To obtain the stationary solution of the coupled stochastic differential equations (5.50), we
can use either the forward or backward SDE for the angle Θt. In this numerical solution, we
use the forward equation for dΘt coupled to the backward SDE for the canonical angular
momentum.

We introduce dimensionless variables with a time scale ct, such that t = ctt̃, ωj = ω̃j/ct,
and dW =

√
ctdW̃ . Since the unit of Ωj is the same as [Imωj ] = Js, we define the canonical

angular momentum as multiples of the reduced Planck constant, Ωj = ℏΩ̃j . This gives us
the following equations

dΘt = [Ω̃uϑ − 1/2 cotΘt]
ℏct
Im

dt̃+

√
ℏct
Im

h̃ϑj dW̃
j
t,+

dΩ̃uϑ =

[
∂ϑV

rot
eff (Θt, µ, ν) +

Ω̃uϑ
2 sin2 ϑ

]
ℏct
Im

dt̃+

√
ℏct
Im

h̃kj∂kΩ̃
u
ϑdW̃

j
− . (5.51)

Thus, the natural choice for the time scale is ct = Im/ℏ. This eliminates other fundamental
constants from the equations of motion for a freely spinning particle. Furthermore, when
Im → 0, the time scale also goes to zero.

The Euler-Maruyama discretization of equation (5.51) for timestep n ∈ {0, ..., N} is given
by

Θn+1 = Θn + [Ω̃uϑ,n − 1/2 cotΘn]∆t̃+ h̃ϑj∆W̃
j
+,n

Ω̃uϑ,n =
sin2Θn

sin2Θn + 2∆t̃

[
Ω̃uϑ,n+1 + ∂ϑV

rot
eff (Θn, µ, ν)∆t̃+ h̃ϑj ∂kΩ̃

u
ϑ∆W̃

j
−,n

]
. (5.52)

Here, an implicit scheme for the backward equation was used. Equations (5.52) can be
simplified by taking into account that the feedback process Ω̃uϑ(ϑ) depends only on ϑ, but
not on ϕ and χ. This leads to:

Θn+1 = Θn + [Ω̃uϑ,n − 1/2 cotΘn]∆t̃+∆W̃+,n

Ω̃uϑ,n =
sin2Θn

sin2Θn + 2∆t̃

[
Ω̃uϑ,n+1 + ∂ϑV

rot
eff (Θn, µ, ν)∆t̃+ ∂ϑΩ̃

u
ϑ∆W̃−,n

]
. (5.53)

For the numerical treatment, one can use either equation in (5.53) as is or rewrite it by taking
conditional expectation with respect to the filtration Pn generated by the forward process
Θn up to time-step n

Ω̃uϑ,n =
sin2Θn

sin2Θn + 2∆t̃

(
∂ϑV

rot
eff (Θn, µ, ν) +

[
Ω̃uϑ,n+1

∣∣∣∣Pn]∆t̃) . (5.54)

The initial value of Θt, denoted by Θ0, is chosen randomly from a uniform distribution
over the interval (0, π). The final value of the feedback process Ω̃uϑ at time T , denoted by
Ω̃uϑ,T , is calculated iteratively using the angle ϑ as input to the osmotic angular velocity
function Ω̃uϑ(ϑ).

To numerically compute the solution, a Euler-Maruyama discretization of (5.51) with a
time-step ∆t̃ = 0.01 and N = 100 time-steps is used. We generate 105 sample paths per
iteration using the conditional expectation. Results are shown in figures 5.4 and 5.7.
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Figure 5.4: The plot compares the numerically calculated velocity fields (circles) and the correspond-
ing “exact” fields obtained from the eigenfunctions (dashed lines) for the rigid spin operator [BH50]
for three different combinations of µ and ν, as given in equation (5.38).

5.4.2 Results

The figure 5.4 displays numerical results for the optimal feedback control of the osmotic
canonical angular momentum Ωuϑ. It shows three different choices of constants µ and ν
as points, while the dashed lines represent the exact velocities calculated from the Wigner
functions Dµ

µν for the rigid spin operator. These Wigner functions are derived in ref. [BH50]
and explained in section 5.3. The calculated velocities are in perfect agreement with those
obtained from the Wigner functions.

For example, consider the two cases µ = ν = 1
2 (black) and µ = 1, ν = 0 (red). In the

latter case, Ωuϑ keeps the nutation angle of the particle’s orientation between 0 and π. The
black curve, on the other hand, shows that the osmotic velocity tries to keep the orientation
parallel to the z axis, i.e., ϑ = 0.

The Wigner-D representationsDj
µν generally have nodes where µ, ν ≤ j, and j is the spin

quantum number. However, for |µ| = j or |ν| = j, the Wigner functions are node-free except
for the boundaries ϑ = 0, π. This property allows the determination of the critical processes
in the numerical treatment of the QHE. It corresponds to the system’s lowest energy given
the initial (or final) conditions, i.e., Ωφ = ℏµ and Ωχ = ℏν. This suggests that the QHE given
in (5.51) give rise to spin states where the spin quantum number and the spin projection
number are the same, i.e., µ = j = m. The ground state should describe the non-singular
diffusion that corresponds to the Wigner functions.

Spin-12 process

Consider the numerical solution to µ = −ν = 1
2 in (5.50). After sufficient iteration runs

in the numerical algorithm, one can visualize a sample trajectory Θt of the orientation and
the canonical angular momentum st. The change of orientation for a particle in terms of
the Euler angles is visualized in the left of figure 5.5. It shows the trace of the tip of the
unit vector (black arrow) along the x-axis in the body frame over time. The rotation of the
vector (and the particle) is characterized by the Euler angles (ϑ, φ, χ), namely their stochastic
processes (Θt, Φt,Xt) for a realization, as shown to the right of figure 5.5. The Euler angles
were calculated by numerically integrating the forward SDEs (5.9).

The φ-component is stochastically periodic due to an additional constant drift that de-
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Figure 5.5: The plots presented here are based on a realization of the stochastic process Θt in an
external field ofB = Bez together with the backward integration for the canonical angular momenta,
obtained from the numerical solution of the QHE (5.50) with µ = −ν = −1/2. The plot on the left
shows the change in orientation as a unit vector (black arrow) fixed in the body frame, with the trace
visualizing the path of the vector. The three stacked graphs on the right display the corresponding
Euler angles ϑ, φ, χ ∈ [0, π]× [−π, π]2 as a function of time, calculated from equation (5.50).

pends on the magnitude of the external magnetic field, since ωφv = gφjI
ℏ
Im

Ωvj − γB. The
characterization of this state can be done easily by calculating the spin

st = svt + sut = Im(ω
v
t + ωut ) = gklI (Ω

u
k +Ωvk)el (5.55)

as the sum of current and osmotic angular velocity. The time-dependent components of
the stochastic process st are illustrated in figure 5.6. It is evident that the x (black) and y
(blue) components of the spin in stochastic mechanics are clearly stochastic, whereas the z
(magenta) component is constant at −ℏ

2 .10 By using the angular velocities Ωuϑ = −ℏ
2 cot

ϑ
2

(also shown in figure 5.4) and Ωvφ = −Ωvχ = −ℏ
2 , we can calculate the spin fields as feedback

control as follows

s(ϑ, φ) = sv(ϑ, φ) + su(ϑ, φ) =
ℏ
2

− cot ϑ2 (cosφ+ sinφ)

cot ϑ2 (sinφ− cosφ)
−1

 , (5.56)

which represents a spin-down state.
To further confirm this, compare the expectation values of the stochastic process with the

usual eigenvalues of a pure spin state |jm⟩ in Dirac notation with the spin quantum number
j and the spin projection number m. In this context, ⟨ŝz⟩jm = ℏm and ⟨ŝ2⟩jm = ℏ2j(j + 1),
where ⟨·⟩jm denotes the quantum expectation with respect to the state |jm⟩. The stochastic
analogue of these values are the ensemble averages given by

E[s] = E[sv + su],

E[s2] = E[(sv + su)
2].

(5.57)

10The spin components of st in the figure are plotted from the numerical evaluation of the BSDE for Ωt and
not from the feedback fields s(t,Θt).
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Figure 5.6: The top plot shows the components of the spin st as a function of time for the same
sample path as shown in figure 5.5. It is apparent that the z component of the spin is constant. (The
barely visible small scale fluctuations of the sz component are due to the numerical accuracy in the
calculation.) The lower plot shows the squares of the current and osmotic spins s2v (blue) and s2u
(magenta), as well as the total spin s2 = (sv + su)

2 (black). The dotted lines show the ensemble
average of 1000 sample paths, indicating constant expectation values of the spins.

For the example shown in figure 5.6, this leads to E[su] = 0 and E[sv] = −ℏ
2ez , indicating that

there is no osmotic contribution to E[s]. However, this is not the case for the magnitude of
the spin shown in the lower plot in figure 5.6. Unlike sz(ϑ, φ), the stochastic process s2(ϑ, φ)
is not constant. It is a combination of the current angular velocity proportion E[s2v] =

ℏ2
2

(dotted blue) and the non-vanishing contribution of the osmotic angular velocity E[s2u] =
ℏ2
4

(dotted magenta). Therefore, the expected magnitude is E[s2] = 3
4ℏ

2, which leads to an
energy

Hs = E[Es] = E

[
s2

2Im
− γs ·B +

Imγ
2B2

2

]
=

3ℏ2

8Im
+ γ

ℏ
2
Bz +

Imγ
2B2

2
, (5.58)

where the stochastic Hamiltonian for the spin Hs is defined in equation (5.36). We see, that
Im does not enter the spin expectations E[s] and E[s2], but it does so for the energy, where
the limit Im → 0 leads to a singular term of the particle’s energy due to the spin.
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Spin expectations in the general case

The presented results of equations (5.50) demonstrate that the stochastic expectation values
of the spin are determined by the parameter µ. In particular,

E[s] = E[Im(ωv + ωu)] = E[gkl(Ωuk +Ωvk)el] = ℏµeφ
E[s2] = E[Im

2(ω2
u + ω2

v)] = E[(gkl(Ωuk +Ωvk)el)
2] = ℏ2|µ|(|µ|+ 1) ,

(5.59)

where s denotes the spin vector, and eφ is the unit vector in the azimuthal direction. Note
that the parameter ν determines the spin projection in the body frame, while µ is related to
the reference frame.

The above results imply that the numerical solutions of the spin QHE (5.50), illustrated
in figure 5.4, are solely determined by the constant µ. These solutions correspond to spin
states with j = |m|. For instance, for a spin-1/2 particle in a magnetic field oriented along the
z-axis, the spin down eigenstate corresponds to µ = −1

2 , i.e. E[s] = −ℏ
2ez , whereas µ = 1

2
corresponds to the spin up state.

At this point there are two open questions emerging from the discussed solutions. The
first is related to the quantization of the values for µ (and ν). Secondly, states with j > |m|
cannot be evaluated directly from the QHE. Certain spin states, such as j = 2 and m = 0,
cannot be determined without additional restrictions or rules. This is because the QHE only
provide a means to solve an optimization problem that leads to the node-free ground state of
the problem [BPGP19]. These questions are adressed in the following in more detail.

The quantization condition

In this model there is no argument to restrict µ (and ν) to quantized values. E.g., any real
µ ∈ R leads to a solution of the QHE (5.30). However, the QHE describe a process for
which also a description in terms of the Schrödinger equation exist, i.e., the Hamilton-Jacobi
formulation of this process. While all of the spin diffusions are defined on SO(3), the cor-
responding wave functions ψ(ϑ, φ, χ) are properly defined for integer and half-integer µ, ν
only, where the integral values lead to wave functions defined on SO(3). The half-integer
values lead to wave functions on the covering space SU(2) [Nel66].
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Figure 5.7: The numerical results for Ωu
ϑ/tan(ϑ/2) as a function of the rotation angle ϑ, for various values

of µ = ν, are displayed in the figure on the left. These results suggest that Ωu
ϑ can be represented as

−µ tan(ϑ/2). On the right side of the figure, the results for Ωu
ϑ/cotϑ are shown for different values of µ

with ν set to 0. These results indicate that Ωu
ϑ can be expressed as µ cotϑ (noting that cotϑ equals 0

at ϑ = π/2).

In more detail, from the functions Dj
µν(ϑ, φ, χ) = N exp i(µφ+ νχ)djµν(ϑ), we can see

that for (φ, χ) ∈ [−π, π]2 and µ, ν ∈ Z, the wave function is single-valued. However, if we
consider the double cover of SO(3), which can be described by the Euler angles ϑ, φ, χ if
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(φ, χ) ∈ [−2π, 2π], then exp i(µ+ ν) allows half-integer values for µ and ν [BH50]. If we
rotate around the z-axis by 2π, i.e., φ → φ + 2π, the wave function picks up a minus sign.
On the other hand, for (φ, χ) ∈ [−π, π]2, the wave function remains unchanged under 2π
rotation. By using the single- and double-valued eigenfunctions to the Laplace-Beltrami
operator on SO(3), we end up with the usual boson and fermion symmetries for the wave
function related to the simply connected double cover of SO(3).

From the QHE alone the velocity fields for the considered eigenstates show no sign of
single or double valuedness. The diffusions are defined on SO(3) since there is no need
to extend (φ, χ) ∈ [−π, π]2 to (φ, χ) ∈ [−2π, 2π]2 at this point. The numerical solution to
the QHE allows any real constant for µ and ν. This is illustrated in figure 5.7 where we
have solutions to pairs of µ, ν which are not described by single- or even double-valued
eigenfunctions, e.g., µ = ν = 2/3. Taking into account the wave functions corresponding to
the stochastic velocity fields, however, leads to the usual quantization of µ, ν to half-integers
for single- and double-valued wave functions [BH50].

This is in line with the argument by Takabayashi and Wallström as discussed in sec-
tion 2.5, where an additional quantization condition has to be added ad-hoc for a closed-loop
integral of the current (angular) velocity. An alternative for the quantization is offered by
the use of partnerpotentials considering the spin in stochastic mechanics. This is discussed
in the following.

5.4.3 Quantization of the spin states

It has been shown that the eigenfunctions of the Laplace-Beltrami operator on the rotation
group SO(3) and SU(2) share the same eigenvalues as the spin operator [BH50]. Further-
more, stochastic processes based on these eigenfunctions yield the same expected values for
the spin [Dan70]. Previous sections have also demonstrated that the stochastic Hamiltonian
equations, derived from the Madelung equations, are related to the Schrödinger equation.

Nevertheless, the solutions to the QHE and the Schrödinger equation generally differ.
As previously mentioned, the Madelung equations produce a broader set of solutions that
can be constrained to those of the Schrödinger equation by imposing an additional ad-hoc
“quantization rule” associated with the phase factor of the wave function [Wal94]. There-
fore, it is unsurprising that the QHE also yield a more general set of solutions than those of
the Schrödinger equation.

To introduce quantization in the spin QHE, we can use supersymmetric Hamiltonian the-
ory, which can be incorporated into the framework of stochastic mechanics [Gri91, KPGP18,
BPGP19]. This allows us to generate higher spin states.

Integer spin

For instance, consider the trivial ground state of the freely spinning top, Ωuϑ,0 = 0, which
serves as our reference value and corresponds to a spin-0 state with quantum numbers j =
0,mj = 0. Recall that

dΘt = [Ωuϑ − ℏ/2 cotΘt]dt/Im + hϑk · dW k
+,t . (5.60)

To determine the supersymmetric partner, we can follow a similar approach to that used for
the hydrogen atom in section 4.4 or ref. [BPGP19] and define

Ω̃uϑ = Ωuϑ −
ℏ
2
cotϑ , (5.61)

which is related to how we factorize the Hamilton operator.
To calculate the first partner potential, we start with V0 = 0, the ground state potential,
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and obtain

V1 = V0 −
ℏ
Im
∂ϑΩ̃

u
ϑ,0 =

ℏ2

2Im sin2 ϑ
. (5.62)

Comparing V1 with the effective potential

Veff(ϑ) =
1

2Im sin2 ϑ
(Ωvφ

2 +Ωvχ
2 − 2 cosϑΩvχ

2Ωvφ
2), (5.63)

we find that

V1 = Veff (5.64)

for either

Ωvφ,1 = ±ℏ,Ωvχ,1 = 0 or Ωvφ,1 = 0,Ωvχ,1 = ±ℏ . (5.65)

This suggests that the new partner potential V1 obtained from the ground state Ωuϑ,0 = 0
leads to the effective potential of a spin state with corresponding quantum numbers j =
1,mj = 1.

Further progress can be made by solving the QHE using the potential V1 or the Laplace-
Beltrami operator’s corresponding eigenfunction. Both methods yield Ωuϑ,1 = ℏ cotϑ for the
first excited state. This, in turn, enables the calculation of the next partner potential

V2 = V1 −
ℏ
Im

2∂ϑΩ̃
u
ϑ,1 =

4ℏ2

2Im sin2 ϑ
(5.66)

Comparison with the effective potential yields

Veff = V2 if Ωvφ,2 = ±2ℏ,Ωvχ,2 = 0 or Ωvφ,2 = 0,Ωvχ,2 = ±2ℏ

with Ωuϑ,1 = 2ℏ cotϑ. Generally speaking, choosing Ω̃uϑ = Ωuϑ − ℏ/2 cotϑ gives the eigenstates
for integer spin eigenvalues n ∈ Z

Ωvφ,n = nℏ,Ωvχ,n = 0 or Ωvφ,n = 0,Ωvχ,n = nℏ (5.67)

with Ωuϑ,n = nℏ cotϑ. Similar to the hydrogen atom in section 4.4, the ground state solutions
to the partner potentials lead to different quantized spin eigenstates. The choice of Ω̃uϑ here
gave a way to determine the integer spin eigenstates.

Half-integer spin

It is also possible to generate the half-integer spin values starting from the trivial zero
ground state by using a different decomposition, namely Ω̃uϑ = Ωuϑ − ℏ

4 tan
ϑ
2 . Then, the

first partner potential is given by

V1 = V0 −
ℏ
Im
∂ϑΩ̃

u
ϑ,0 =

ℏ2

8Im cos2 ϑ2
(5.68)

Comparing this to the effective potential gives

Veff = V1 for Ωvφ,1 = Ωvχ,1 = ±ℏ
2
. (5.69)
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This can be generalized for the eigenstates n ∈ 1
2Z in analogy to the integer case. By choosing

Ω̃uϑ = Ωuϑ − ℏ
4 tan

ϑ
2 , the nth supersymmetric partner has the following eigenvalues

Ωvφ,n = ±nℏ, Ωvχ,n = ±nℏ (5.70)

with Ωuϑ,n = −nℏ tan ϑ
2 .

Jumping between different spin projection values mj with constant value j

The two subsections established a way to determine states from the QHE for a freely spin-
ning particle leading to quantized values of µ and ν. These states correspond to node-free
Wigner-D functions Dj

mjm′
j
= Dµ

µν . Using the operator Ĵ defined in equations (5.48), one

can transition between certain states with different values of mj by applying the ladder op-
erators

Ĵ± = (Ĵx ± iĴy)D
s
mjm′

j

∗ = ℏ
√
j(j + 1)−mj(mj ± 1)Dj

(mj±1)m′
j

∗
(5.71)

In analogy to the canonical angular momentum in equation (5.24), it is possible to define the
stochastic equivalent of Ĵ± as

s±(ϑ, φ,Ω
v
φ,Ω

v
χ) = sx ± isy = e±iφ

(
Ωuϑ ±

1

sinϑ

(
Ωvχ − cosϑΩvφ

))
. (5.72)

Using equation (5.71), it can be inferred that the values of Ωuϑ,j,mj±1 can be calculated from
Ωuϑ,s,m using

Ωuϑ,j,mj±1 = ℏ
∂ϑs±
s±

+Ωuϑ,j,mj
, (5.73)

provided that s± ̸= 0. However, if s± = 0, then |mj ± 1| > j.
In summary, the aforementioned states that follow from the QHE for a freely spinning

particle lead to quantum numbers j = |m| or, in other terms, to E[s2] = ℏ2|mj |(|mj |+1) and
E[s] = ℏmjeφ. Take for example j = mj = 1 which state is determined with the QHE (5.50)
by choosing µ = ν = ℏ leading to Ωuϑ,(j=)1,(mj=)1 = −ℏ tan(ϑ/2). With (5.73) for going ’down’
this yields

Ωuϑ,1,0 = ℏ
∂ϑ
(
− ℏ tan(ϑ/2) + 1/sinϑ(1− cosϑ)

)
−ℏ tan(ϑ/2) + 1/sinϑ(1− cosϑ)

− ℏ tan(ϑ/2) = cotϑ , (5.74)

which is by the way equivalent to the result when µ = 1 and ν = 0 in (5.50). From the latter
result, it is also possible to determine

Ωuϑ,1,−1 = cot
ϑ

2
(5.75)

In the end, it is possible to determine the same set of states that follow from the Laplace-
Beltrami operator with the help of the quantum Hamilton equations only. Putting all to-
gether, the (complex) spin field in the reference frame reads

s =
ℏ
2

 −(j +mj) tan
ϑ
2 e

−iφ + (j −mj) cot
ϑ
2 e

iφ

i
(
(j +mj) tan

ϑ
2 e

−iφ − (j −mj) cot
ϑ
2 e

iφ
)

2mj

 (5.76)

where j is the spin quantum number and mj = −j, j + 1, ..., j is the z projection of the spin
field.

Figure 5.8 shows a stochastic realization of a spin-1 particle with mj = 0. Here the z
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Figure 5.8: The plot shows the stochastic spin corresponding to a j = 1,mj = 0 state similar to
figure 5.6. The z component of the spin (magenta) is zero. The lower plot shows the squares of the
current and osmotic spin, s2v (blue) and s2u (magenta), as well as the total spin s2 = (sv + su)

2 (black).
The dotted lines show the ensemble average of 1000 sample paths, indicating constant expectation
values of the spin with E[s2v] ≈ ℏ2, E[s2u] ≈ ℏ2 and E[s2] ≈ 2ℏ2.

component of the stochastic spin is 0 so that E[st] = 0. The ensemble average of the square
of the stochastic spin yields E[s2t ] = 2ℏ2 with E[s2u,t] = E[s2v,t] = ℏ2.

5.4.4 Relation to the Pauli equation

Before discussing the coupling of spin to position in space, we relate the spin states derived
in this section to the standard treatment in quantum mechanics, where spin is commonly de-
scribed using spinors. The spinors are column vectors of complex functions ψi(t, x), where
the number of components depends on the particle’s spin or the specific model being used.
For example, a spin-12 particle is typically described by a two-component spinor, which can
be used to derive the Pauli equation in the non-relativistic limit. In contrast, the Lorentz-
invariant 4-spinor by Dirac is used to describe relativistic particles.

The depiction in the form of a spinor is comparable with a superposition of different
quantum states Ψ =

∑
i ψi |i⟩ with basis |i⟩ = (0, ..., 0, 1, 0, ...)T . There is no information on

the spin in ψi(t, x) only, hence by writing

Ψ(t, x) =
∑
i

ψi(t, x) |i⟩ (5.77)
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there is a factorization of the spatial and spin-dependent part for each spinor component.
However, the information about the particle’s spin is not contained in the individual com-
ponents of the spinor but rather in the matrix operators in the Hamiltonian that couple the
spin to the translational motion.

In this discussion, the non-relativistic stochastic formalism is related to the eigenvectors
|i⟩, represented by the corresponding eigenfunctions calculated from the freely spinning
model in the QHE. For instance, when Ωφ = Ωχ = ℏ/2,Ωϑ = −iℏ/2, tan ϑ/2, an associated
eigenfunction e1(ϑ, φ, χ) = Nei(φ+χ)/2 cos ϑ/2 exists such that Ωk = −iℏ∂ke1, where N is a
normalization factor. Depending on the Euler angles, the eigenfunctions ei(ϑ, φ, χ) and |i⟩
have the same eigenvalues:

ŝz |i⟩ = ℏmi |i⟩ (5.78)
ŝzei(ϑ, φ, χ) = ℏmiei(ϑ, φ, χ). (5.79)

With ŝ2 |i⟩ = ℏ2j(j+1) |i⟩, the basis vector |i⟩ and the eigenfunctions ei(ϑ, φ, χ) are identified
with the momentum representation |jmi⟩. For instance, a new basis for spin-12 particles in
the Pauli-equation, represented by a two-component spinor

Ψ =
(
ψ1 ψ2

)
(5.80)

can be represented as

Ψ̃ = ψ1e1(ϑ, φ, χ) + ψ2e2(ϑ, φ, χ) . (5.81)

Note that the eigenfunctions are the elements of the Wigner-D matrix ei = Dj
il for j = l = 1

2
(cf. equation (5.45)).

According to the definition used here, two different spin (expectation) values can be
calculated. The first one is the orientational average s̄(t, x) associated with the spin field
s(t, x, θ) = Imω(t, x, θ) + γImB(t, x), as introduced in [Hol95],

s̄ =
1

ρ̄

∫
dθs ρ =

1

ρ̄

∫
dθΨ̃∗ŝΨ̃ =

1

Ψ†Ψ
Ψ†ŝΨ (5.82)

Here, dθ = sinϑdφdϑdχ and ρ̄ =
∫
dθρ =

∫
dθΨ̃∗Ψ̃.11 The correspondence to the spin

matrices follows from the orthogonality of ei, given by∫
dθe∗i (ϑ, φ, χ)ej(ϑ, φ, χ) = δij . (5.83)

The second expectation value, denoted by ⟨ŝ⟩, refers to the integration over the whole space
at a time t and is given by

⟨ŝ(t)⟩ =
∫

dxΨ†ŝΨ =

∫
dxdθΨ̃∗ŝΨ̃ . (5.84)

The stochastic picture here suggests a more detailed understanding of the actual (ran-
dom) behavior of the orientation, where the (measurable) spin represented by spinors can
be viewed as the orientational average. The spin operator acting on the spinors is then the
marginal spin at a position x in space as a result of the ensemble average over all possible
orientations with respect to ρ(t, x, θ).

This approach is justified by considering the translational and rotational diffusion time
scales. In particular, the orientation changes rapidly compared to the changes in position.
This is why stochastic models of eigenrotation usually consider a limit where the orien-
tation is averaged out [BH50, Dan70, Nel85, Wal90]. These orientational averages will be

11For a given field f(t, x, θ), we have f̄ = 1
ρ̄

∫
dθfρ accordingly.
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used in the stochastic analysis of the Stern-Gerlach experiment and the EPRB paradox in the
upcoming chapter
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Chapter 6

Spinning particles moving in space

In most experiments, it is impossible to determine a particle’s orientational degree of free-
dom directly. However, this information can be inferred through methods such as a Stern-
Gerlach experiment, in which the particle’s spin is indirectly measured by its coupling to
translation in space. This also applies to measurements of the spin of entangled objects.

A stochastic process is required to describe these experiments, which combines space
and rotation diffusion. For a single particle, the stochastic process Yt ∈ M = R3 × SO(3)
is augmented, Yt = (Xt(Yt), Rt(Yt)), where Xt represents the position in space and Rt rep-
resents a rotation of the body as introduced in section 5.1.3. Nelson’s construction of the

Yt = (Xt, Rt)m, Im

σ2
m =

ℏ
m

σ2
I =

ℏ
Im

ma(t, Xt, Rt) = F (t, Xt, Rt)

Figure 6.1: The figure illustrates the combination of a stochastic process regarding position and ori-
entation. A quantum object with mass m and inertia Im is subjected to random perturbations with
diffusion constants σ2 = ℏ/m and σ2 = ℏ/Im as shown to the left. The stochastic motion is governed
by an adjusted version of Newton’s law, as shown on the right.

conservative diffusion system consists of forward-backward SDEs for dXt and dRt, which
are provided in the previous sections

dXt = [v(t, Yt)± u(t, Yt)] dt+ σmdW±,t (6.1)

dRt = Rt[ωv(t, Yt)± ωu(t, Yt)]×dt+RtσIhi ◦ dW i
±,t . (6.2)

The stochastic process is described by the velocity fields v, ωv and u, ωu. These are the current
and osmotic (angular) velocities, respectively. They obey a set of partial differential equa-
tions following the stochastic definition of the Newton law for a classical force F [Dan70].
The diffusion constant is split into σm and σI , corresponding to diffusion in R3 and rotation
in SO(3). The definition of σI , as given in section 5.1.3, is analogous to σ2m = ℏ

m , which con-
siders the diffusion of a particle with mass m. The difference between the two constructions
is related to the definition of the diffusion constant, where σI leads to an increasingly fast
wiggling spin diffusion as the moment of inertia Im approaches 0.

The coupling of the two processes in the framework of the QHE is a combination of the
flat case in section 3.2.2 and the analysis for the rotating body in section 5. It is assumed that
there is a time-reversible stochastic process that covers the spatial space and the space of ro-
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tations. This process couples the orientation to the position, even in cases where the classical
coupling terms are absent. This enables the discussion of the quantized spin properties of
a particle after interacting with a magnetic field, as in the Stern-Gerlach experiment. In this
experiment, a non-classical torque term is related to the osmotic contribution of the velocity
fields, which aligns the spins in the field-free region. This behavior is more apparent in the
case of entangled particles, where the particle pairs cannot be described as single particles
anymore. As a consequence of the non-separability of the probability distribution, this leads
to non-local velocity fields.

In the context of M = R3 × SO(3), two distinct timescales are evident for the diffusions.
The timescale for translation depends on the particle’s mass and the typical distance it trav-
els, denoted by l. Specifically, τtrans = m

ℏ l
2. Meanwhile, rotational diffusion scales with the

moment of inertia Im, such that τrot = Im
ℏ . For a classical, spherically symmetric distribu-

tion, Im ≈ mR2, where R represents the classical radius of the particle. Typically, R or its
upper bound is several orders of magnitude smaller than the translational length scale, i.e.,
R≪ l. Consequently, the jittery rotational diffusion can be approximated by taking the limit
as Im → 0 [Wal90, Nel85], whereby one deals with averaged values.

The implications of this limit are illustrated in the simulation of one spin measurement,
namely the Stern-Gerlach (SG) experiment, and in the discussion of simultaneous measure-
ments on spin pairs, which addresses the Einstein-Podolsky-Rosen-Bohm (EPRB) thought
experiment. These examples show that considering averaged quantities of the spin to ac-
count for the measurement results suffice.

The structure of this chapter is as follows: First, we derive the classical Hamilton equa-
tions for a rigid rotor moving in space. Then, we generalize to the quantum Hamilton equa-
tions. Subsequently, we apply the QHE, where the spin is coupled to the position, which
includes the system of a charged particle in a constant magnetic field and the idealized
Stern-Gerlach experiment. Finally, we analyze the EPRB thought experiment in the frame-
work of quantum mechanics.

6.1 Hamilton equations of motion

The discussion of the classical problem follows section 5.2. In addition to the spinning par-
ticle with magnetic moment M , the Lagrangian includes the spatial motion in the kinetic
energy as follows

T = T trans + T spin =
1

2
mijv

ivj +
1

2
gIijω

iωj (6.3)

where the mass metric is given by (mij) = mI, and the system’s Lagrangian is enhanced as
L :M × TxM × R

L = T − V =
1

2
mijv

ivj + qviAi +
1

2
gIijω

iωj + γImω
iBi − V (6.4)

where Ai are the covariant components of the vector potential, the magnetic field is given
by Bi = ε kli ∂kAl = ∇ × A, and V is the potential. The canonical momenta are defined as
follows

pj =
∂L
∂vj

= mijv
i + qAj

Ωj =
∂L
∂ωj

= gIijω
i + IcBj ,
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and the velocities in terms of the momenta above read

vj = mij(pi − qAi)

ωj = gijI (Ωi − IcBi) . (6.5)

Then, the classical Hamiltonian is obtained as

H =vipi + ωiΩi − L

=
1

2
mijpipj − qmijpiAj +

q2

2
mijAiAj

+
1

2Im
gijΩiΩj − γgijΩiBj +

γ2

2
gijI BiBj

=
(p− qA)2

2m
+

s2

2Im
− γs ·B +

γ2Im
2

B2 .

(6.6)

The equations of motion for the rotational part remain unchanged compared to the spin-
only case, so the classical momentum equations read

dp = [q(E + v ×B) + Ic∇(ω ·B)] dt

ds = γs×Bdt− IcdB .
(6.7)

It is assumed that the external field depends only on the spatial variables and not on the
body’s orientation for simplicity. Then, the coupling term between translational and rota-
tional motion is given by Ic∇(ω · B) where ∇ acts on B. This requires an inhomogeneity
in the external magnetic field as in Stern-Gerlach-like experiments. When a constant mag-
netic field is applied along the z axis, the sz component remains constant, which results in a
precession of the spin s around the magnetic field.

The following section derives the generalized Hamilton equations in the stochastic set-
ting based on the classical given in this section. After that, a constant and an inhomogeneous
magnetic field are discussed based on these QHE.

6.2 Quantum Hamilton equations

We generalize the deterministic optimal control problem from the previous section by re-
placing the classical velocities v, ω with the quantum velocities vq = v − iu, ωq = ωv − iωu
in the classical Lagrangian (6.4). The velocity fields serve again as stochastic optimal con-
trols vq = vqt , ωq = ωqt . For an analogy to the derivation of the QHE on a manifold in
section 4.3, we redefine the quantum velocity ṽqt = (vqt , ω

q
t ) and the vector field correspond-

ingly Ã = (qA, IcB). The metric g̃ij is then composed of a metric concerning the mass, i.e.,
gmij = mI, and concerning the inertia gIij = Imgij defined in section 5.6 for the zxz Euler
angles, as follows

g̃ij =

(
mI3×3 0

0 gIkl

)
. (6.8)

The usual procedure allows setting up the cost function (4.18) and the stochastic Hamilto-
nian (4.20)

Hc = − g̃kj
2
ṽkq,tṽ

j
q,t − Ãj ṽ

j
q,t + V + P̃t,j(ṽ

j
q,t − ig̃klΓ̃

j
kl/2)− 1 + i

2
Tr{Π̃H̃T } (6.9)

with matrix H̃ = (σhij) for the generalized coordinates are x̃ = (x, θ) = (x, y, z, ϑ, φ, χ).
The corresponding momentum equations given in equations (4.22) for the costate variables
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P̃t = (Pt,Ωt) with Π̃t =

(√
ℏ/mΠxxt

√
ℏ/ImΠxθt√

ℏ/mΠθxt
√

ℏ/ImΠθθt

)
⊂ C6×6 for each of the components read

dPj =
[
FLor
j − Ic∇j(ω

q
t ·B)

]
dt+ dAj

+

√
ℏ
m
Πxxij dW

i
− +

√
ℏ
Im

ΠxθkjdW
k
−

dΩϑ =
[
∂ϑV

rot
eff (Θt,Ωφ,Ωχ) +

γ

sin2Θt
(Ωφ − cosΘtΩχ)(Bx cosΦt −By sinΦt)

+ i
ℏΩϑ

2Im sin2Θt
+

1 + i

2 sin2Θt
σIfϑ(Θt, Φt, Π̃t)

]
dt

+

√
ℏ
m
ΠθxϑjdW

j
− +

√
ℏ
Im

ΠθθϑkdW
k
−

dΩφ =

[
γ[s×B]z +

1 + i

2 sinΘt
σIfφ(Θt, Φt, Π̃t)

]
dt

+

√
ℏ
m
ΠθxφjdW

j
− +

√
ℏ
Im

ΠθθφkdW
k
−

dΩχ =

√
ℏ
m
ΠθxχjdW

j
− +

√
ℏ
Im

ΠθθχkdW
k
− ,

(6.10)

with the maximum principle leading to Pt = mvqt +qA and Ωt,k = gIklω
l
q,t+IcBk. The indices

i, j ∈ {x, y, z} and k, l ∈ {ϑ, φ, χ}, and Fj is the Lorentz force Fj = −∂jV −∂tAj−εjingin(pi−
Ai)Bn. Here, it is assumed that the potential V does not depend on the orientation and B
may depend on spatial coordinates, but for simplicity, not on time.

Note that the drift terms of the SDE for the components of Ωt are the same as in the case of
a freely rotating particle (5.30). This suggests that it is possible to search for solutions to the
QHE where we assume that the particles are in a spin eigenstate decoupled from translation
as described in section 5.4 if B = Bzez . This is the basis in the spinor representation, where
each entry ψi(t, x) of the spinor Ψ(t, x) = (ψ1(t, x), ψ2(t, x), ...) can be associated with a
product wave function ψi(t, x)ei(θ). The function ei(θ) denotes eigenfunction of the spin
eigenstate with spin quantum numbers j and mi, i.e., ŝ2ei = ℏ2j(j + 1)ei, ŝzei = ℏmiei;
cf. section 5.4.4. Hence, the spinor representation can be viewed as a linear combination of
freely spinning particle eigenstates which is a special case of the QHE (6.10).

We can point out two differences to the treatment given in the previous section for a
freely spinning particle 5.3:

1) The gradient −Ic∇j(ω
q
t · B) = gkl(IcBk − Ωk)Ic∂jBl describes the classical coupling

term.

2) There are “mixed” noise terms like
√

ℏ
mΠθxϑjdW

j
−+

√
ℏ
Im

ΠθθϑkdW
k
− which describe a pos-

sible coupling of the feedback fields vq(t, x, θ) to the orientation and ωq(t, x, θ) to the
position without any external field.

The first point reflects the classically expected deflection of a magnetic moment in a field
gradient B, which is the basic need for the description of the Stern-Gerlach experiment.
This term alone, however, cannot account for the beam splitting into “quantized” channels,
as will be discussed in section 6.4.

The second point refers to the occurrence of the rotational diffusion coefficient σI =√
ℏ/Im in the SDEs for the translational momentum and the coefficient σm =

√
ℏ/m in the

SDEs for the angular momentum. If we consider the momenta as feedback controls P (t, x, θ)
and Ω(t, x, θ) depending on the time t and on the spatial and orientational variables, there is

Πxxji = ∂iPj (6.11)

Πxθjk =
1

σI
hlk∂lPj (6.12)

92



for the momentum Pj and

Πθθkl =
1

σI
hnl ∂nΩk (6.13)

Πθxkj = ∂jΩk . (6.14)

for the rotational momentum Ωl where i, j ∈ {x, y, z} and k, l, n ∈ {ϑ, φ, χ}. Hence, Πxθ =
∇θP and Πθx = ∇Ω do not vanish if the feedback momentum P (t, x, θ) depends on the
orientation and Ω(t, x, θ) depends on the position in space. Such coupling terms are required
to describe non-classical interactions in the Stern-Gerlach experiment or the entanglement
of spins, for example.

Semiclassical limit

The limit ℏ → 0 in (6.10) leads to the classical equations of motion (6.7) of a rigid charge.
Similar to the discussion in section 3.2.2, we may also consider the semiclassical limit in the
sense of the total time derivative dcl

dt = ∂t + v · ∇ + ωv · ∇θ, where ∇θ describes the nabla
operator acting on the angle variables. The real part of the QHE (6.10) in combination with
the complex Itô formula (4.25) leads to an equation for the current velocity v of the center of
mass

m
dclv

dt
=FLor − Ic∇(ω ·B) (6.15)

+ (u · ∇+
ℏ
2m

∆)u (6.16)

+ (ωu · ∇θ +
ℏ

2Im
∆θ)u . (6.17)

The terms in the second and third row are related to ∇ acting on the osmotic kinetic en-
ergies E

[
−m

2 u
2
]

and E
[
−m

2 ω
2
u

]
in the stochastic Lagrangian. Hence, the angular velocity

contributes similarly to the semiclassical effective potential

Veff = V − m

2
u2 − ℏ

2
∇ · u− Im

2
ω2
u −

ℏ
2
∇θ · ωu

= V + VQ + VQs ,
(6.18)

where VQ = −m
2 u

2− ℏ
2∇·u and VQs = − Im

2 ω
2
u− ℏ

2∇θ ·ωu. In a similar fashion, we can derive
the total time derivative for the current angular velocity ωv

dclωv
dt

= γωv ×B − γḂ − 1

Im
∇θ(VQ + VQs) . (6.19)

See also appendix E for more details.
These semiclassical equations reveal a strong coupling between the motion of the center

of mass, including the particle’s orientation. The coupling can occur without external fields
due to osmotic velocity fields. If the (angular) osmotic velocity does not depend on the ori-
entation (position) variables, the two diffusions are decoupled in the field-free regions. This
decoupling is described by a separable distribution ρ(t, x, θ) = ρx(t, x)ρθ(t, θ). Again, the
osmotic velocity implicitly accounts for the quantum behavior in the QHE. Consequently,
any non-trivial initial distribution results in quantum effects driven by the osmotic velocity
since it is the gradient of the probability.

Solving the quantum Hamilton equations derived in this section is generally challeng-
ing. Nonetheless, we can solve the QHE under certain assumptions, as demonstrated in the
following examples. First, we examine a constant magnetic field in the symmetric gauge to
recreate the Landau levels. Subsequently, we will discuss the spin measurement. Finally,
the chapter concludes with a discussion on the measurement of (entangled) particle pairs.
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6.3 Anomalous Zeeman effect

Consider the simplest case of (anomalous) Zeeman splitting first. The energy of a particle is
contributed by both translational and rotational motion, given by the equation

E = Etrans + Erot = E
[m
2
(v2 + u2) + qv ·A

]
+ E

[
1

2Im
s2 − γs ·B

]
(6.20)

This energy expression highlights the Zeeman splitting of energies caused by the interaction
between an external field and the particle’s dynamical magnetic moment. In the case of a
constant magnetic field, using the symmetric gauge where ∇ · A = 0 and ∇× A = Bez , the
classical coupling term in the QHE (6.10) vanishes. Thus, the translation is decoupled from
the spin. The stochastic Hamiltonian given in (4.20) can be expressed in terms of canonical
momenta (Pρ,t, Pϕ,t) = (mvρt ,mρ

2(ωB + vϕt )) in polar coordinates (ρ, ϕ), where ωB = eB
2m and

the z component of the angular momentum Lz = Pϕ,t. The QHE for the translational motion
read

dρt =

[
Pρ,t
m

+
ℏ

2mρ2t

]
dt+

√
ℏ
m
dW ρ

+,t (6.21)

dϕt =

[
Lz
mρ2t

− ωB

]
dt+

1

ρt

√
ℏ
m
dW ϕ

+,t (6.22)

dPρ,t =

[
−mω2

Bρt +
L2
z

mρ2t
− i

ℏPρ,t
2mρ2t

+
σm
ρ2t

Πϕϕ

]
dt+ΠρjdW

j
−,t (6.23)

dPϕ,t = ΠϕjdW
j
−,t . (6.24)

We can immediately deduce that a constant feedback momentum Pϕ,t = Lz = const is a
solution to (6.24). This effectively describes a symmetric harmonic oscillator in the x − y
plane due to the presence of −mω2

Bρ in (6.23) which results from the field term A2. As a
result, Landau levels emerge, where the angular momentum Lz and its expectation value
E[Lz] remain constant.
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Figure 6.2: The graphs display the z = 0 plane for two sample trajectories, represented by blue and
red lines. These paths are superimposed on a contour map illustrating the corresponding probability
distribution for a perpendicular uniform magnetic field in the symmetric gauge. In the left plot, the
state exhibits an energy expectation value of E[E] = ℏωB + E[

p2
z

2m ] + Erot, along with an angular
momentum of E[Lz] = −ℏ. On the other hand, the right graph represents an energy state with
E[E] = 2ℏωB + E[

p2
z

2m ] + Erot and E[Lz] = −ℏ. Here, ωB = eB
2m .

Figure 6.2 illustrates the lowest two non-trivial states in the x − y plane for an electron
with charge q = −e in atomic units, where ℏ = m = e = 1. The sample paths were ob-
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tained by numerically solving the stochastic differential equations (6.21)-(6.24) for the polar
coordinates (ρ, ϕ).

By neglecting the coupling to any orbital angular momentum, the system under con-
sideration is analogous to the free case discussed earlier. Therefore, the solutions for the
QHE described by equation (5.50) regarding the spin are applicable. Consequently, for a
spin-1/2 particle with potential spin projections E[sz] = ±ℏ/2, the interaction term γs · B in
equation (6.20) introduces an additional energy splitting of ∆EZeeman = ±ℏωB , where the
gyromagnetic factor of the electron is given by γ = Im

Ic
= e

m .
It should be noted that the graphs presented in figure 5.5 also pertain to this problem.

However, the timescales in those figures differ due to the chosen timescale for rotation,
τrot = Im

ℏ ≈ mr2e
ℏ ≈ 10−34 s, where re denotes an upper bound on the electron’s radius of

1 am. This timescale is considerably smaller than the timescale in atomic units, τtrans ≈
10−17 s, employed here. The coupling between position and orientation becomes evident
in the presence of an inhomogeneous external field, as exemplified by the Stern-Gerlach
experiment, which will be further discussed in the subsequent section.
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6.4 Stern-Gerlach experiment

A particle’s orientation and spin can only be measured indirectly, e.g., via position measure-
ments, when the magnetic moment interacts with the measurement fields in such a way
that the position is changed depending on the orientation of the magnetic moment. It is,
therefore, necessary to study the coupling of the particle’s position to its magnetic moment
to gain information about the spin. In the stochastic model, the stochastic change of the
orientation is the underlying variable that gives rise to the magnetic moment. Unlike the
standard treatment in quantum mechanics, the stochastic model allows for the description
of the motion of individual particles and their spins during the measurement. This is stud-
ied with the help of the QHE (6.10) derived earlier.

6.4.1 Experimental setup

y

z

magnet

source

screen

+ℏ
2

−ℏ
2

slit

Figure 6.3: The two-dimensional sketch illustrates an idealized Stern-Gerlach experiment for a beam
of spin- 12 particles. Quantum mechanics predicts a bimodal distribution of particles at the screen
(solid grey) for randomly oriented spins, which contrasts the classically expected statistics (dashed
grey).

The first experimental confirmation of a quantized magnetic moment of silver atoms
carried out by Stern and Gerlach in 1922 [GS22b] will serve as a reference to study the
coupling in the context of the QHE. An idealized version of the Stern-Gerlach (SG) experi-
ment is shown in figure 6.3. The parameters are close to the experiment by Stern and Ger-
lach [GS22b, GS22a] as given in Table 6.1. The emission of silver atoms from an oven creates
a beam of particles with random spin expectation values. They enter a magnet through a
Gaussian slit with width σ0 at, say, time t = 0. The momentum in y direction E[py] is as-
sumed to follow from the thermal velocity distribution conform to the oven’s temperature.
The atom’s transversal momentum in z direction is E[pz] = 0. The inhomogeneous magnetic
field B = bxex + (B0 + bz)ez acts along the y axis from 0 to d1. A detector screen is put at a
distance d2 from the end of the magnet.

The strength of the magnetic field is mostly determined through B0. It is strong enough
to lead to a rapid precession of the spin around the magnetic field with frequency ωB = qB0

2m
compared to the translation in space. The gradient term bz ≪ B0 of the magnetic field
accounts for the momentum gain in z direction depending on the particle’s spin and thus the
separation of the spins at a detector after the magnet. The third dimension perpendicular to
the translation in y, and the magnetic field are neglected. Since bx ≪ B0 and thus Bx ≪ Bz
on may set

B ≈ (B0 + bz)ez . (6.25)
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E.g., in terms of the spinor describing the SG experiment in the magnetBx leads to a rapidly
oscillating phase in each spinor component. Note thatB in (6.25) violates the Maxwell equa-
tion ∇ · B ̸= 0 and that the magnetic field is assumed to vanish outside the magnet. These
simplifications are accepted in the following since they are not significant to the discussion
of the beam splitting from the perspective of the QHE.

Classical description

From a classical point of view, the direction of the magnetic moment w.r.t. the inhomogene-
ity of the magnetic field determines the deflection of the particle. The net magnetic moment
of the silver atom is due to the 5s electron, where the orbital angular momentum is 0. Hence,
from classical mechanics we expect a broad distribution at the screen for random spin ori-
entations due to the high temperature. The interesting point about the experiment is that
the deflection seems to show only magnetic moments with distinct quantized projections
along the measured axis prior to the measurement, e.g., parallel and antiparallel to the field
for a spin 1/2 particle. A change of the measurement axis leads to the same splitting while
the preparation of the atoms is unchanged. The deflection into separate beams is also unaf-
fected by the starting configuration of spins, e.g., if the magnetic moments are preselected
by another SG experiment.

The transverse momentum pz in the classical picture is changed due to the acceleration
Mz∂zBz , where M is the particle’s magnetic moment. On the other hand, the motion for the
spin leads to a precession of the magnetic moment around Bz in the field. I.e., the projection
of the magnetic moment Mz (or sz) is constant, leading to a splitting of the classical beam
according to the maximal transverse momenta in each direction

pmax = |Mz|
∫ Tm

0
∂zBzdt . (6.26)

The integral (6.26) covers the time spent in the magnetic field Tm. Since Mz(0) = Mz(t) =
const the spin projection sz at t = 0 determines the deflection of the particles. I.e., a beam
of silver atoms with randomly distributed spins at the entrance of the magnetic field would
lead to a broadening of the incident beam according to the transverse momentum distribu-
tion pclassicalz ∈ [−pmax, pmax].

Standard description in non-relativistic quantum mechanics

The prevailing view among physicists in non-relativistic quantum mechanics is that when
an atom with net spin enters an inhomogeneous magnet, its state is in a superposition of
spin-up and spin-down states. The probability of the atom being deflected either parallel
or anti-parallel to the magnetic field gradient is defined by the squared magnitude of the
associated coefficients. The detection of the atom in one of the channels is accompanied by
the wave function collapse onto the corresponding component of the linear combination.

In textbooks this experiment is usually described by the Pauli-spinor ψ =

(
ψ+

ψ−

)
z

. The

(·)z indicates that the basis of ψ corresponds to the measurement axis chosen as z. The
spinor components in this experiment are associated with the strength of the up and down
spin states w.r.t. to the measurement axis so that the squared modulus of each component
may be read as probabilities. The Pauli-Hamiltonian in the magnet reads

Ĥ =
p̂2

2m
− γŝz(B0 + bz) . (6.27)

The inclusion of theBx component to satisfy the Maxwell equations would give rise to rapid
oscillations which can be put into the phase factor [Pla92]. In terms of Pauli matrices, the
operator ŝz is diagonal and hence the components ψ± of the spinor decouple in (6.27). The
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magnetic energy reads ∓|Mz|(B0 + bz) where Mz = ⟨γŝz⟩ and ⟨·⟩ denotes expectation w.r.t.
ψ. Thus, ψ+ is subject to a force Mzb while ψ− is subjected to a force −Mzb so that the beams
will split according to the probabilities associated with the spinor components.

The mean trajectories for the particles may be calculated within the Heisenberg picture.
Since Ĥ in (6.27) commutes with ŝz , the expectation ⟨ŝz⟩ is a constant of motion

d

dt
⟨ŝz⟩ = 0 . (6.28)

The commutator [Ĥ, p̂z] = γbŝz leads to the constant mean force

d

dt
⟨p̂z⟩ = −γb⟨ŝz⟩ (6.29)

in the magnetic field. Here the time evolution of a time-dependent operator Ô is given
by Heisenberg’s equation of motion ℏ

i
d
dtÔ = [Ô, Ĥ]. The transverse displacement ẑ(t) and

momentum p̂(t) follow [SSE88]

ẑ(t) = ẑ(0) + p̂z(0)
t

m
+

2ŝz(0)

ℏ

[
t

m
∆pz(t) + ∆z(t)

]
(6.30)

p̂z(t) = p̂z(0) +
2ŝz(0)

ℏ
∆pz(t) (6.31)

where ∆z(t) = − 1
m

∫ t
0 Mzbt

′dt′ and ∆pz(t) =
∫ t
0 Mzbdt

′ for 0 ≤ t ≤ Tm in the magnetic
field. After the magnetic field, i.e., t > Tm, the transversal displacement and momentum
read ∆z = ∆z(Tm) and ∆pz = ∆pz(Tm), respectively. It follows from (6.30)-(6.31) that the
(mean) trajectories will depend on the initial spin which is determined by the weighting of
the spinor components. These equations are compared with the trajectories calculated from
the QHE in the following sections.

While the z component of the spin is conserved in expectation, the x, y components
oscillate in the magnetic field. For example,

ŝ+(t) = ŝx(t) + iŝy(t)

= exp

{
−i(

∫ t

0
MzBz(t

′)dt′ + 2ẑ(0)∆pz(t)/ℏ− 2p̂z(0)∆z(t)/ℏ)
}
ŝ+(0) , (6.32)

where the term including Bz = B0 + bz ≈ B0 is the leading contribution to the phase factor.
The resulting rapid oscillations do not contribute to the deflection of the particles and are
therefore not investigated in detail.

The spin measurement in the pilot wave theory, see section 2.4.2, allows a deterministic
description of the configuration variables. The spin projection, for example, is not fixed
and changes throughout the experiment. The crucial hidden variable in this formalism that
fixes the outcome on the screen is the initial position of the particles prior to entering the
magnet [Hol95, DHKV88]. The following subsection focuses on the hidden variables of
the stochastic model: stochastic processes associated with position and orientation. They
allow the determination of probabilities depending on the initial configuration only. I.e., the
outcomes depend on both initial position and spin.

6.4.2 Stochastic description

The stochastic model follows the QHE derived in section 6.2 where equations (6.10) con-
cerning the spin are simplified when the magnetic field has a z component only. Note that
z component refers to the chosen symmetry axis of the experiment. The coupling in the drift
terms of the orientational part to the spatial part is then only due to the inhomogeneity of
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the magnetic field

Fmag = −γ∇(Imω ·B) . (6.33)

With B = Bz(z)ez from (6.25), the QHE given in (6.10) for the momentum equations read

mdvkq =γIm∂k(ωq ·B)dt+ Π̃kjdW
k
− (6.34)

dΩϑ =

[
∂ϑV

rot
eff + i

ℏΩϑ
2Im sin2Θt

+
1 + i

2 sin2Θt
σIfϑ

]
dt+ Π̃ϑjdW

j
−

dΩφ =
1 + i

2 sin2Θt
σIfφdt+ Π̃φjdW

j
− (6.35)

dΩχ =Π̃χjdW
j
− .

Hence, the BSDEs concerning the angular momenta in this case yield the drift terms of a
freely spinning particle. The coupling of the particle’s position to its orientation in the QHE
is due to the matrix Π̃ since, for example, the feedback momenta p = p(t, x, θ) can gener-
ally depend on all variables. This implies a dependence of Π̃jk(t, x, θ) ∝ ∂jpk(t, x, θ) on all
configuration coordinates. For instance, such a coupling follows in the stochastic picture if
the expectation values of the spins are not aligned with the measurement setup, as will be
shown later.

Solutions to constant sz expectation

In order to solve the problem at hand, a simplified version of constant spin projection is con-
sidered in a first step. We assume that the orientation variables decouple from the motion in
space. The discussion of the solutions to the angular momentum equations (6.35) then fol-
lows the section regarding the freely spinning particle 5.3. For spin 1

2 particles the stochastic
processes fulfill E

[
s2
]
= 3ℏ2

4 and E[s] = ±ℏ
2ez for the two eigenstates. The feedback controls

for the angular momenta read Ωφ = Ωχ = ℏ
2 and Ωϑ = −iℏ2 tan

ϑ
2 for the spin up particle,

and Ωφ = −Ωχ = −ℏ
2 , Ωϑ = −iℏ2 cot

ϑ
2 for the spin down state, respectively. In terms of the

spin vector in the reference frame, e.g., the spin up vector from (5.76), there is

s =
ℏ
2
(tan ϑ/2 e−iφ,−i tan ϑ/2 e−iφ, 1)T . (6.36)

It follows that the feedback field of the spin along the measurement axis z is constant. Hence,
the solutions to (6.34) may be found approximately since the only coupling term in (6.34) is
due to the z component of the magnetic field and the angular velocity. With that, the force
acting on the particle in the magnetic field is constant, simplifying the search for a solution
of the quantum velocity with the help of the QHE.

Quantity Value
standard atomic weight silver m 1.79× 10−25 kg

temperature oven ≈ 1500 K
strength magnetic field B0 5 T

gradient b ≈ −1.5× 103 T
m

standard deviation of Gaussian beam σ0 4× 10−5m
length magnet d1 0.03 m

RMS of velocity vy 680 m
s

time spent in magnet Tm 5.15× 10−5 s
distance magnet to screen d2 0.06 m

Table 6.1: The table lists the experimental data used as a basis for the numerical simulation. The
values are partly taken from the experiment by Stern and Gerlach [GS22b, GS22a].
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The further discussion of the Stern-Gerlach experiment by means of the QHE is based on
some simplifications. According to the table 6.1, the beam of silver atoms moves at t = 0 in
the y direction through a slit of Gaussian width σ0. This fixes the width of the initial distri-
bution in y, z so that the osmotic velocity is u(t = 0, x) = 1

τ0
(0,−y,−z), where τ0 =

mσ2
0

ℏ . The
momentum in the y direction is assumed to stem from the Maxwell-Boltzmann distribution,

where the root mean square vy =
√

4kBT
m serves as the semiclassical propagation velocity,

i.e., it is the current velocity in the y direction. The other components of v are initially set to
0. The current velocity vy is assumed to remain constant throughout the experiment. This
neglects any spreading effects due to the distribution of the beam in the propagation direc-
tion. The length d1 of the magnet leads semiclassically to an interaction time Tm = d1

vy
of the

beam with the inhomogeneity. After that the field is assumed to vanish, i.e., the motion is
field free.

With a constant force acting on the atom, the velocity in the magnet is easy to deter-
mine. In the inhomogeneous field the particle with constant sz = ±ℏ

2 gains a transverse
momentum which leads to a time-dependent z-component of the quantum velocity

vq,mz (t, z) = vcl(t)−
i

τ0σt
(−z + zcl(t)) (6.37)

with the definition of a classical velocity

vcl(t) =
γszb

m
t (6.38)

and a classical displacement

zcl(t) =
γszb

2m
t2 . (6.39)

The quantum velocity given in (6.37) is a solution to the QHE for a constant spin projection
sz . Spreading effects of the distribution depend on the timescale of the experiment, where
τ0 =

mσ2
0

ℏ depends on σ0 and m and σt = 1 + i tτ0 .

At the exit of the magnet at time t = Tm the current velocity has an additional contribu-
tion in the z direction vm = vcl(Tm) =

γszb
m Tm and the probability distribution is displaced

by zm = zcl(Tm) =
γszb
2m T 2

m. This leads to a quantum velocity after the magnet

vq,az (t′, z) = vm − i

τ0σt′

(
−z + zm + vmt

′) (6.40)

where t′ = t − Tm. The spreading of the distribution is related to t
τ0

and higher orders may
be neglected if σtσ0 ≪ |vm|t. This implies that the interaction time with the magnetic field’s
inhomogeneity should fulfill bT ≫ 1

γσ0
such that the change in transversal momentum is

large compared to the spreading of the distribution. In this case, one may neglect any higher
orders terms in

1

σt
= 1− i

t

τ0
+O

((
t

τ0

)2
)
. (6.41)

The feedback solutions given in (6.37) and (6.40) may be verified by applying the complex Itô
formula (4.25) to the quantum velocities vq,·z and comparing the drift terms in the momentum
equations of the QHE. On average the particles pick up a transversal momentum in the
magnet according to their initial spin projection sz which can be read from the real part
in equations 6.37 and (6.40). This is the current velocity. The osmotic velocity encoded in
the imaginary part of these equations, ensures that the particle stays close to the classically
expected path. Hence, in the special cases of constant spin projections, i.e., the spin states
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are aligned with the direction of the field gradients, the stochastic mechanics’ description
is similar to that expected from classical mechanics. The same interpretation is used in the
superposition of the spin eigenstates with Pauli spinors where from a semiclassical point
of view each component is deflected as if the spins are either aligned up or down w.r.t. the
magnetic field. The conceptual differences to the classical picture and the ordinary treatment
in quantum mechanics appear when the spins are randomly oriented before the interaction
with the magnetic field.

Randomly oriented initial spins

When the spin-12 particles have z projections |E[sz]| < ℏ
2 , the differences between the two

approaches become more pronounced. I.e., the spin expectations are tilted w.r.t. the mea-
surement axis,

E[s] = ±ℏ
2
e(δ0, ϕ0)

E
[
s2
]
=

3ℏ2

4

(6.42)

where the new spin projection axis is along the unit vector

e(δ0, ϕ0) = (cosϕ0 sin δ0, sinϕ0 sin δ0, cos δ0) . (6.43)

Classically, the magnetic moment precesses around the measurement axis in the magnetic
field. The z projection, however, is unchanged. Hence, the stochastic description must
account for the additional transverse momentum or change of the spin projection onto the
measurement axis.

The spin expectations (6.42) imply

E[s] =

∫
sρdθ ̸=

∫
sρ±dθ (6.44)

where ρ is the probability distribution to the rotated spin state and ρ± are the probability dis-
tributions of the spin-up s+ and spin-down s− states with expectations E[s±] =

∫
s±ρ

±dθ =
±ℏ

2ez . So the rotation of the angular velocity expectation is accompanied by a change in the
probability distributions from ρ± to ρ. In the following, the stochastic process of the spin-up
state is considered, which is rotated so that E[s] = ℏ

2e(δ0, ϕ0). This follows by analogy with
the combination of two known solutions of the QHE as described in the appendix F with
constants c1 = cos (δ0/2) e−iϕ0/2 and c2 = sin (δ0/2) eiϕ0/2. In terms of matrix multiplication, the
jth component of the rotated canonical angular momentum reads

Ωj =
1

ρ

(
cos2 δ02 ρ+

1
2 sin δ0

√
ρ+ρ−e

− i
ℏ (S−−S+)−iϕ0

1
2 sin δ0

√
ρ+ρ−e

i
ℏ (S−−S+)+iϕ0 sin2 δ02 ρ−

)(
Ω+,j

Ω−,j

)
, (6.45)

where the two spin angular momenta Ω+,j and Ω−,j correspond to spin up and down states
for a spin-12 particle from section 5.4. Correspondingly, the orientational probability distri-
bution

ρ = cos2
δ0
2
ρ+ + sin2

δ0
2
ρ− + sin δ0

√
ρ+ρ− cos ((S−−S+)/ℏ + ϕ0) (6.46)

is the new probability distribution, and the functions S± must satisfy Ω±,j = −iℏ∂jS±.1

Carrying out the calculation given in (6.45), the rotated canonical angular momenta as

1The combination in equation (6.45) ensures that the QHE for the rotational part - and the associated partial
differential equations - are satisfied. This matrix multiplication is the stochastic counterpart to the linear su-
perposition of two solutions to the Schrödinger equation, where it is apparent that in the stochastic theory, the
combination is not a simple superposition but a non-linear combination due to the non-linearity of the QHE.
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feedback controls of the Euler angles read

Ωϑ =
ℏ
2ρ

(i cos δ0 sinϑ+ sin δ0(cos(ϕ0 + φ)− i cosϑ sin(ϕ0 + φ)))

Ωφ =
ℏ
2ρ

(cos δ0 + cosϑ− i cos(ϕ0 + φ) sin δ0 sinϑ)

Ωχ =
ℏ
2

(6.47)

with ρ = (1 + cos δ0 cosϑ + sin δ0 sinϑ sin(ϕ0 + φ)). The intrinsic rotation Ωχ in (6.47) is
unaffected, whereas the z projection is no longer constant. The corresponding spin vector in
the reference frame is thus given by

s =
ℏ
2ρ

 (cosϕ0 − i cosϑ sinϕ0) sin δ0 + sinϑ(i cos δ0 cosφ+ sinφ)
−i cosϕ0 cosϑ sin δ0 − sinϕ0 sin δ0 − sinϑ(cosφ− i cos δ0 sinφ)

(cos δ0 + cosϑ− i cos(ϕ0 + φ) sin δ0 sinϑ)

 . (6.48)

The expectation values associated with the spin angular momentum s obey equations (6.42).
The latter equations also show that the motion of orientation and position is coupled in
the QHE for the momenta (6.34)-(6.35). E.g., the z-component of the spin sz(θ, δ0, ϕ0) de-
pends in general on the Euler angles θ = (ϑ, φ, χ), while the expectation along the z axis
is E[sz] =

ℏ
2 cos δ0. Thus, sz is not a constant field, so the description of the SG experiment

has to include the coupling of the random orientational variables to the translational motion
due to classical force term −γsz(t, x, θ, δ0, ϕ0)b. Unfortunately, it is not trivial to derive so-
lutions to the QHE in an analytic form for position and orientation in space. It is, however,
possible to describe the present experiment using the solutions for the cases with E[sz] = ±ℏ

2
discussed earlier in this section.

The solutions for constant spin projections lead to velocity fields in the magnet and after the
magnet (6.37)-(6.40). Depending on the spin projections for a spin-12 particle, there are two
known solutions to the QHE: one for spin up and the other for the down state. According
to the appendix F, these solutions may be combined to describe solutions in the stochas-
tic picture for random orientations of spin expectations according to (6.47) or (6.48). This
combination of the corresponding spin-12 particles gives a velocity in the magnetic field of

vq,mz (t, z,Ωq,mφ (t)) =
2

ℏ
vcl(t)Ω

q,m
φ (t)− i

τ0σt

(
−z + 2

ℏ
zcl(t)Ω

q,m
φ (t)

)
. (6.49)

Here the feedback angular momentum Ωq,mφ (t) = Ωq,mφ (t, z, θ) is written in short-hand nota-
tion. The expressions for the angular momenta Ωq,mj (t) = Ωq,mj (t, z, θ) in the magnet read

Ωq,mϑ (t) =
ℏe−C1

4|σt|2ρm
(
i cos δ0 coshC2 sinϑ− i sin δ0(cosC3 + i cosϑ sinC3)

− sinϑ sinhC2

)
Ωq,mφ (t) =

ℏ
2

(
−1 +

1

1− ieC2+iC3 tan (ϑ/2) tan (δ0/2)

)
Ωq,mχ (t) =

ℏ
2

(6.50)
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where the probability distribution

ρm(t, z, θ) =
1

|σt|2
e−C1

(
2e−C2 cos2 (ϑ/2) cos2 (δ0/2) + 2eC2 sin2 (ϑ/2) sin2 (δ0/2)

+ sinϑ sin δ0 sinC3

)
(6.51)

and C1 = C1(t, z) =
z2+z2cl(t)

σtσ2
0

, C2 = C2(t, z) = 2z zcl(t)
σtσ2

0
and C3 = C3(t, z, φ) = ϕ0 + φ +

2
ℏmvcl(t)z + ωBt. Here ωB = γ

2B0 describes the oscillation in the magnetic field due to the
strength of the homogeneous field B0 where 2

ℏmvcl(t)z ≪ ωBt since bz ≪ B0.

After the magnet, the translational and positional velocities are still coupled and evolve
with the transversal quantum velocity

vq,az (t, z,Ωq,aφ (t)) =
2

ℏ
vmΩ

q,a
φ (t)− i

τ0σt

(
−z + 2

ℏ
(zm + vmt)Ω

q,a
φ (t)

)
(6.52)

where the time-dependent classical quantities zcl(t), vcl(t) are replaced by the classically ex-
pected displacement with constant transversal velocity zm + vmt and vm, respectively. The
angular momenta in the field-free region are similar to those in the magnet

Ωq,aϑ =
ℏe−C4

4|σt′ |2ρa

(
i cos δ0 coshC2 sinϑ− sin δ0(cosC6 + i cosϑ sinC6)

− i sinϑ sinhC5

)
Ωq,aφ =

ℏ
2

(
−1 +

1

1 + ieC5−iC6 tan (ϑ/2) tan (δ0/2)

)
Ωq,aχ =

ℏ
2

where the probability distribution

ρa(t
′, z, θ) =

1

2|σ′t|2
e−C4

(
2e−C5 cos2 (ϑ/2) cos2 (δ0/2) + 2eC5 sin2 (ϑ/2) sin2 (δ0/2)

+ sinϑ sin δ0 sinC6

)
(6.53)

with C4(t
′, z) = z2+(zm+vmt′)2

σt′σ
2
0

, C5(t
′, z) = 2z (zm+vmt′)

σt′σ
2
0

and C6(z, φ) = ϕ0 + φ + 2
ℏmvmz +

ϕB . The comparison of the quantum velocity fields from the QHE (6.49)-(6.52) with the
equations in the Heisenberg picture (6.30)-(6.31) show similar terms. E.g., in the magnet the
transversal velocity 2ŝz(0)

ℏ ∆pz(t) reappears in the stochastic velocity field as 2
ℏvcl(t)Ω

q,m
φ (t)

where the complex angular momentum Ωq,mφ (t) takes the role of the operator ŝz(0). The
terms multiplied with i in (6.49) are related to the shape of the probability distribution, i.e.,
the localization of the ensemble.

Consider now a scenario where the initial spin component Ωqφ is a continuous random
variable with vanishing expectation value. The spin-12 particle should have an equal prob-
ability of moving up or down after the interaction with the apparatus. The initial random
value of that spin component at t = 0 influences the direction the particle is moving as given
in equation (6.37). Thus, the probability of ending up in one of the two channels, depends
on the direction of the spin. This will be shown in the following subsection w.r.t. the spin
average in more detail.

The field equations for the angular momenta (6.50)-(6.53) have no counterpart in the
spinor description of quantum mechanics since Ωqj(t, z, θ) depend on the orientation vari-
ables. Hence, the stochastic description offers additional information on the change in the
particle’s orientation. However, the detailed information on θ and the associated stochastic
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spin s is not necessary to describe phenomena in the stochastic picture, which is due to the
different timescales of the stochastic processes in position and orientation which is discussed
in the explicit numerical solution of the stochastic processes.

In the following subsection, these solutions of the momentum equations allow the solu-
tion of Nelson’s forward SDE for the configuration variables.

Numerical solution

The evolution of the particles will be given by Nelson’s FBSDEs with the derived feedback
velocities in the previous subsection. For example, the forward SDE, see equations (2.40)
and (5.9), in the magnetic field for the stochastic processesXt = (X1

t , X
2
t ) and Yt = (Θt, Φt,Xt)

concerning the position x = (y, z) and orientation θ = (ϑ, φ, χ) follow from the velocity
fields (6.49)-(6.50),

dX1
t =

[
v0 +

v0t−X1
t

τ0

]
dt+

√
ℏ
m
dW 1

+

dX2
t =

[
2

ℏ
(vcl(t) + zcl(t)/τ0) Ω

v+u
φ − X2

t

τ0

]
dt+

√
ℏ
m
dW 2

+

dΘt =
Ωv+uϑ

Im
dt+

√
ℏ
Im
hϑkdW

θ,k
+

dΦt =

[
Ωv+uφ − cosΘtΩ

v+u
χ

Im sin2Θt
− γBz

]
dt+

√
ℏ
Im
hφkdW

θ,k
+

dXt =
Ωv+uχ − cosΘtΩ

v+u
φ

Im sin2Θt
dt+

√
ℏ
Im
hχkdW

θ,k
+ .

(6.54)

The real angular momenta Ωv+uj = Ωvj + Ωuj = ℜ (Ωj) − ℑ (Ωj) are used in the calculation

and the drift terms O
(
( 1
τ0
)2
)

in (6.54) have been neglected. It is important to mention that
the y component does not exhibit any spreading effects over the course of the experiment.

The numerical solution requires choosing a characteristic time tc and length lc. As men-
tioned before, the mass inertia Im ≈ mR2, depending on the radius of the modeled extended
mass distribution, fixes the time scale trot

c = Im
ℏ of the rotational diffusion. Compared to the

time scale tc = m
ℏ d

2
1 suggested by the length of the magnet

trot
c ≈ m

ℏ
R2 ≪ m

ℏ
d21 = tc , (6.55)

it follows that the change of the orientation is rapid compared to the motion in space. There-
fore, during a time step ∆t ≫ trot

c (but ∆t ≪ tc) in the simulation of the atoms in the SG
experiment, all reachable orientation angles are visited according to their current probability
distribution.2 E.g., for the spin field s(t,Xt, Yt) the average

⟨s(t,Xt, Yt)⟩∆t =
1

∆t

∫ t+∆t

t
s(t,Xt, Yt)dt (6.56)

corresponds approximately to the expectation of the spin at (t, x), if Xt ≈ Xt+∆ = x is
assumed to be constant during the timespan ∆t. This, in turn, allows for a simplification of
the diffusion from R3 × SO(3) to R3 by taking the orientational averages of the considered
quantities. For example,

f̄(t, x) =
1

ρ̄(t, x)

∫
f(t, x, θ)ρ(t, x, θ)dθ (6.57)

2If the orientational distribution has no zeros the accessible regions of the orientation angles are not sepa-
rated.
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where ρ̄(t, x) =
∫
ρ(t, x, θ)dθ and the integral is meant to cover the whole configuration

space concerning the orientation. The averaging simplifies the numerical solution of the
SDE (6.54) at the cost of lost details in spin dynamics. From here, averages concerning the
orientation variables are used. Hence,

dX̄1
t =

[
v0 +

v0t− X̄1
t

τ0

]
dt+

√
ℏ
m
dW 1

+

dX̄2
t =

[
2

ℏ

(
vcl(t) +

zcl(t)

τ0

)
Ω̄v+uφ − X̄2

t

τ0

]
dt+

√
ℏ
m
dW 2

+ .

(6.58)

The orientational average of the spin angular momentum in z direction s̄m,v+uz (t, z) =
Ω̄m,v+uφ (t, z) in the magnet (similarly for the field-free region) reads

Ω̄m,v+uφ (t, z) =
1

ρ̄(t, z)

∫
Ωm,v+uφ (t, z, θ)ρ(t, z, θ)dθ

= −ℏ
2

(
1− 2(1 + cos δ0)

1 + exp (4zcl(t)z/σtσ2
0) (1− cos δ0) + cos δ0

)
. (6.59)

The spin average thus depends on the initial spin expectation value through δ0. The two
cases of spin up (δ0 = 0) and down (δ0 = π) again lead to Ω̄m,v+uφ (t, z) = ±ℏ/2.

Last but not least, with the considerations of orientational averages it is apparent that
the stochastic theory including SO(3) hints at a more detailed description of spin dynam-
ics where the orientation is a continuous random variable. As opposed to the translational
motion the spin space is considered to be discrete in the standard treatment of spin. The
theory of the spin as an intrinsic property of the particle is confirmed by many experiments.
Putting the orientation on an equal footing in the stochastic theory, however, it seems that
the standard treatment of spin is sufficient to explain experiments related to spin phenom-
ena at this point. In some specific examples the considered stochastic model of a spinning
top might reveal details on the spin orientations, which may include possible bound states
for multiple particles with spin.

Results

With this at hand, the experiment by Stern-Gerlach may be recovered in the stochastic pic-
ture of a spinning particle by randomly choosing the incident spin projection δ0 of each
simulated particle. As shown in figure 6.4, the paths of the particles split into two channels
independently of the initial spin expectation, and the spin expectations change accordingly.
This contrasts with the classical prediction (dashed lines) in figure 6.4, where the deflection
depends on the initial magnetic moment on the measurement axis only.

The averaged spins s̄(t) for each particle are represented as arrows in the same graph.
The orientational average of the z component s̄z(t) is shown in more detail in figure 6.5 dur-
ing the numerical simulation. Finally, the spins will be fully aligned along the measurement
axis. Thus, outside the magnet, the spins are subject to a torque that cannot be explained by
a classical torque. In the stochastic picture, the osmotic velocity and osmotic spin angular
momentum drive the change.

It should be noted that, in general, the averaged spins s̄z(t) do not align within the
magnetic field. Figure 6.5 reveals that some spins are not yet fully aligned when they enter
the field free region (right of the dashed vertical line). Again, the osmotic contribution to
the velocity and the spin are responsible for the change in the field-free region. This is
similar to the discussion of the double-slit experiment. Given the boundary conditions, the
osmotic velocity (and the current velocity) ensures that the diffusion is conservative. Under
expectation, there is a quantum torque acting on the spins

ds̄ = (γs̄×B + Tu) dt (6.60)
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Figure 6.4: Spin- 12 particles entering the magnet of length 3 cm with random spin expectation values
are shown. The numerical solutions of 8 trajectories of the SG experiment in the stochastic approach
are shown. The stochastic trajectories in the y− z plane with arrows attached to selected positions of
the realizations are shown as solid lines. The arrows represent the direction of the orientational mean
of the spin vector s̄. The dashed lines show the classically expected paths depending on the initial
position and spin expectation. The right plot shows the paths and spins throughout the proposed SG
device, where the vertical dashed line separates the field-free region from the magnet. The left plot
depicts a zoomed-in version of the right plot, focusing only on the inside of the magnet.

where the averaged torque Tu = s̄ × (ℏ/2m∆s̄+ (ū · ∇)s̄) implies nontrivial changes of the
expectation value of the spin, even in the absence of a magnetic field. Equation (6.60) follows
again by comparing the drift terms of the complex Itô formula (4.25) applied to s̄(t, x) to the
classically expected precession γs̄×Bdt.3

As long as the beams are not separated, the stochastic particle has some reasonable prob-
ability of changing the beam it enters. Hence, as the assignment of a particle having a mo-
mentum pointing (anti-)parallel to the field in the experiment can only be made when the
beams are disjoint, i.e., the distance to the recording screen is big enough, the same applies
to the particle’s spin expectation. Therefore, if the probability distributions are separated,
so are the spin expectations. This can be seen in the left plot of figure 6.8 in the following
subsection where s̄ is shown as a function of (t, z) for an initial spin E[s(t = 0)] = ℏ

2ey.

Polarization of the initial spin expectations

What happens in the Stern-Gerlach experiment if consecutive measurements are made, i.e.,
what if the spins have a certain polarization before entering the SG apparatus? The measure-
ment outcome should depend on the position z(t = 0) and the spin orientation s̄z(t = 0).
This is illustrated in figure 6.6 for three different incident angles δ0.

The initial spin expectation is crucial to the experiment’s outcome, as illustrated by the
plots in figure 6.6. If the spins are parallel to the measurement axis δ0 = 0, all particles will
choose to go up, regardless of their initial position. For δ0 ∈ (0, π), the dependence on the
initial position seems to show some correlation with the outcome of the spin measurement.
For example, consider the plots for δ0 = π/4. The only particle in the subensemble shown in

3In other causal theories of quantum mechanics such torque terms appear as well. E.g., in [dlPCVH15] the
torque term follows from the stochastic derivative Ds from eq. (2.43) such that Tu = s̄×Dss̄. In Bohm’s quan-
tum mechanics, there is the so-called quantum torque [DHKV88, Hol95]. From the viewpoint of the quantum
Madelung fluids, the quantum torque Tu results from the particle’s interaction with the polarizable fluid [Tak52].
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Figure 6.5: The graph depicts the same color-coded stochastic realizations as in figure 6.4 for s̄z(t) as
a function of the time. The vertical dashed line indicates the transition from the inhomogeneity of
the field to a vanishing field. Tm is the time spent in the magnet.

the figure that is measured to be in a spin-down state is the one with the lowest z(t = 0). A
similar implication is drawn by looking at δ0 = π/2.4

The numerical results should give the same predictions as the standard approach with
the Pauli spinor. In general, the two-component spinor in the basis Ψz′ of a z′ axis tilted by
the angle δ0 w.r.t. the z axis, is given by

Ψz′ =

(
cos δ02 e

−iϕ0/2ψ+

sin δ0
2 e

iϕ0/2ψ−

)
. (6.61)

The probability for a spin to enter the up (down) channel is then ρQM+ = cos2 δ0/2 (ρQM− =
sin2 δ0/2). The comparison with the stochastic picture is shown in figure 6.7. The probabilities
ρ± were approximated by the share of particles going up/down N±/Ntotal, so that ρ± ≈ N±

Ntotal
.

For all measurement angles, the number of particles was Ntotal = 106. The stochastic model
predicts the same results as in the Pauli theory. This will be used to discuss the Einstein-
Podolsky-Rosen-Bohm “paradox” in the next section.

From the stochastic model we may infer that the inclusion of internal orientation coor-
dinates points at a more detailed view on the phenomena considered around the concept
of quantum spin. In this regard the description of Pauli is just like Occam’s razor; it is the
minimal amount of structure added to the ordinary Schrödinger equation which is able to
describe the statistical phenomena related to spin.

Spin expectations and the velocity fields

The figures 6.8 and 6.9 show the particle paths for two specific angles δ0 associated with the
initial spin expectations E[s̄(t = 0)] with a focus on spin expectation values and the role of
the velocity fields.

Figure 6.8 shows 100 stochastic processes for E[sz(t = 0)] = 0 (left, δ0 = π
2 ) and E[sz(t =

0)] = ℏ
2
√
2

(right, δ0 = π
4 ). The black arrows indicate the averaged spin expectation values

s̄(t, z) for the two initial settings. At the exit time t = Tm, it is visible that the spins are gen-
erally not aligned along the measurement axis. The spin average depends on the coordinate
z, e.g., sz(Tm) → ±ℏ/2 for z(Tm) → ±∞. The plot on the right in figure 6.8 shows an upward
bias due to the initial spin polarization.

4A larger ensemble of paths is shown in figure 6.8.
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Figure 6.6: The figure shows stochastic paths of three different spin polarizations at the entrance of
the SG magnet. The plots on the left depict the (z, y)-plane of 8 stochastic realizations entering the
inhomogeneous magnetic field at t = 0 and leaving the magnetic field of length 0.03m at t = Tm.
The plots on the right show the associated spin averages s̄z(t). The chosen incident angles are δ0 = 0
(top row), δ0 = π/4 (second row) and δ0 = π/2 (bottom row).

The role of the two velocity fields is shown in more detail in figure 6.9 with the same
initial spin expectations as in 6.8. The realizations (blue) are shown together with vector
plots for the averaged current velocity v̄ (black) and osmotic velocity ū (red). Note that due
to simplicity this figure covers a magnetic field of length d1 = 0.09m as opposed to the usual
d1 = 0.03m in the previous figures. Again the current velocity (black arrows) is the driving
force for the propagation of the particle ensemble. In contrast, the osmotic velocity, shown
in red, is responsible for the localization of the ensemble beam.

The discussion of the Stern-Gerlach experiment shows similarities to the explanations
given in the pilot wave theory [Hol95]. In [DHKV88], the deterministic paths are analyzed
for fixed initial spin expectations. There, the incident position z0 = z(t = 0) of the particle
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Figure 6.7: The plot shows the normalized probabilities for z polarized spin-12 particles entering a SG
device to choose one of the two possible beams depending on the measurement angle δ0. The prob-
abilities following from the Pauli-equation (dashed) are compared to the approximated probabilities
from the numerical simulations based on the quantum Hamilton equations for the orientational av-
erage (dots).

determines the outcome of the individual particle, i.e., z0 is the hidden variable. This led to a
discussion about the possible reality of non-crossing paths when the beams are recombined
because of singularities of the (current) velocity v, see e.g., [ESSW92, MRF+16, FDBS22]. In
the stochastic picture, the velocity v has the same properties. The hidden variables, however,
are stochastic. Hence, the initial position z0 of the process does not predetermine the outcome
but is rather an indicator of the probability of the measurement outcome. This is captured in
figures 6.8 and 6.9 where it apparent that the conditional probability of moving up depends -
in the case of the spin averages - on the initial position. The particles with Z̄t=0 > 0 are more
likely to end up in the upper channel in figure 6.8 for spin expectation values perpendicular
to the measurement axis, for example. From the plots in figure 6.6 on the other hand we
know that the initial spin orientation in general has an impact on the movement of the
particle, too. Hence, there is an interplay of the random initial positions and spins of the
particle giving rise to the probabilities of ending up being measured as spin up of spin
down particle.

Futher investigations

The further discussion of the SG experiment may be extended from here in the framework of
stochastic mechanics. This includes the description of consecutive SG measurements. In the
context of deterministic hidden variables where the particle’s spins have a definite z projec-
tion before they enter the magnet, i.e., either up or down for a spin-1/2 particle, the outcome
for each atom is predetermined for each particle. From that point of view, one Stern-Gerlach
experiment may be explained, but not multiple consecutive ones in general. For example,
consider three SG devices where the second measurement axis is perpendicular to the first,
and the third measurement axis matches the first. If you only pass the up particles in the
first two measurements, the third measurement shows a 50/50 splitting of the beam. In
Heisenberg terms, this is described by the uncertainty principle where two spin projections,
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Figure 6.8: The graphs depict the (z, t)-dependency entering the inhomogeneous magnetic field at
t = 0 and leaving the magnetic field of length 0.03m at t = Tm. 100 Stochastic realizations are shown
in blue for the initial spin expectations E[s(t = 0)] = ℏ
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2
√
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The vector fields of the corresponding spin averages s̄ for the two initial spin expectations are shown
in black arrows.
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Figure 6.9: Both graphs show the vector fields of the current velocity v̄ (black arrows) and the osmotic
velocity ū (red arrows) as functions of (t, z) in the magnet of length 0.09m for two different initial
spin expectations E[s(t = 0)] = ℏ

2 ey (left) and E[s(t = 0)] = ℏ
2
√
2
(ey + ez) (right). 100 realizations of

the stochastic process z(t) as given in (6.58) are shown in blue on top of the vector mesh for the two
different initial spin expectations.

e.g., sx and sz , cannot be known simultaneously. In terms of the two spinor in the Pauli the-
ory, the selection of up beams leads to a collapse of the spinor after the first measurements.
The ’up’ particles in the first experiment, thus, do not always ’choose’ the upward direc-
tion in the third experiment in general. Hence, the measurement apparatus alters the states.
Therefore, the particle’s hidden variables must be adjusted to describe those experiments
in a deterministic theory. For example, the theory should describe hidden variables which
change with each measurement. The latter is related to the measurement in the stochastic
picture, which leads to an update of the knowledge of the system. Hence, the probability
distribution and v and u have to be adjusted after the measurement. The calculations are
not carried out here, but they should be straightforward.

Another interesting example involves the recombination of a separated beam of atoms
proposed in theory in [Boh51] and experimentally realized recently [MDZ+21]. Addition-
ally, one could study the time of arrival as in the double slit experiment [NK08, KH23]
depending on the initial settings. One may get similar effects in the time-of-arrival dis-
tributions as in the field free case for a spin-12 particle [DD19] where the velocity fields
change with the measurement angles δ0. The following subsection, however, will focus
on the Einstein-Podolsky-Rosen-Bohm Gedankenexperiment.
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6.5 Einstein-Podolsky-Rosen-Bohm experiment

The theory of quantum mechanics allows for the description of a system of separated parti-
cles with interrelated, so-called entangled, properties in such a way that measuring the prop-
erties of one particle would instantaneously affect the properties of the other particle(s),
regardless of the distance between them. This idea contradicts the classical understand-
ing of physics, which suggests that any interaction cannot violate causality.5 This finding
challenged the traditional view of reality and was a driving force in the search for different
interpretations of quantum mechanics. These include the Copenhagen interpretation, the
many-worlds interpretation, the pilot-wave theory, or Nelson’s stochastic mechanics. For
instance, within ordinary quantum interpretation, the superposition of states describing the
wave function collapses instantaneously in the measurement.

The following section addresses the foundational aspects of entanglement exemplified
by the model of two stochastic spins associated with the QHE derived in the previous sec-
tions. We derive feedback solutions for the QHE for both separable and entangled mod-
els using the usual construction using spin eigenstates. The corresponding trajectories and
spins of the two particles are studied, including their treatment before and after interaction
with the measurement devices. The essential point is that both particles act on each other’s
properties such as position and orientation, even though the two separated systems do not
interact classically. The resulting correlations are analyzed in the context of Bell inequali-
ties, which reveal that the stochastic model can describe correlations beyond any classical
treatment. Some more background on the EPR paradox and the associated Bell tests is given
beforehand.

6.5.1 The EPR, Bell’s inequality, and Bell separability

In 1935, The New York Times turned the first impactful publication on the foundations of
quantum mechanics [EPR35] into a headline “Einstein Attacks Quantum Theory”, which, of
course, was not intended by Einstein, Podolsky, and Rosen. The EPR paper raised funda-
mental questions about the theory developed to describe quantum mechanics at that time. It
claimed to have found a paradox in quantum theory that suggested it might be incomplete,
or simply put, that the wave function may not contain all the system’s information. Hence,
they asked: Can quantum mechanics be considered a complete theory?

In more detail, they introduced a gedankenexperiment involving a system of two parti-
cles “permit[ted] to interact” initially, before they are locally separated, such that “there is no
longer any interaction between the two parts” [EPR35]. The system should be described by a
unique quantum state, which is not a product but rather an entangled state. The wave func-
tion and the distribution are not factorizable. In the moment of a momentum measurement
on particle A, the wave function will reduce so that the momentum of the second particle
B is changed depending on the measurement on A. This occurs despite no interaction term in
the system’s Hamiltonian. That is, even in the case of large distances, where the particles
cannot exchange information due to space-like separation, the measurement of particle A
influences the state of particle B instantaneously. This contradicts the idea of locality, where
objects are influenced by their local surroundings and seems to disagree with special rela-
tivity, which refers to causality since the speed of information transfer from A to B cannot
exceed the speed of light.

The EPR paradox seems to arise when the position of B is measured instead of its mo-
mentum since the Heisenberg uncertainty states that two complementary properties can-
not be known simultaneously. To resolve these conceptual problems, the authors of the
EPR paper inferred that the “missing” information to the wave function should be added
through hidden variables. However, another possible explanation, supported by Bohr and
now widely accepted in quantum mechanics, is that a quantum system can be in multiple

5While the information stored in the entangled particle pairs can be utilized in various aspects, the informa-
tion transfer between two space-like separated points cannot exceed the speed of light.
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states simultaneously, where each specific outcome in a measurement appears with a certain
probability. Hence, the wave function reduces to the observed state in measurement.

Figure 6.10: The figure shows a schematic of Bohm’s version of the EPR experiment. A pair of
objects with antiparallel spins in an entangled state is space-like separated. The spin of particle A
depicted on the right is measured along some axis a (red arrow), e.g., giving spin-up state for A. The
measurement on A fixes spin B to be in a spin-down state without any measurement on B. The EPR
“paradox” arises if the measurement axis b on B (blue arrow) is not parallel to A: the spin sB seems
to have two definite known spin projections due to the preparation of the two-particle state.

The EPR paradox describes characteristics of an entangled pair of objects when one ap-
plies measurements where the operators do not commute. To simplify the gedankenex-
periment, Bohm restricted the variables to discrete measurements of spin. In his proposed
experiment, depicted schematically in figure 6.10, he considered a system of two initially
anti-correlated spins in a singlet state. The singlet state guarantees that measurements of the
spin pair are always antiparallel, regardless of the measurement axis. When the particles are
space-like separated, measuring the spin A, sAz , along the z-axis determines or “unveils” sBz
immediately. The paradox arises when a different measurement axis for sB is chosen when
measuring sAz , for example, when measuring the x component of B, sBx , simultaneously with
sAz . This scenario appears to violate Heisenberg’s uncertainty relation for non-commutative
quantities, as sBz and sBx cannot be measured simultaneously.

Quantum theory describes the initially antiparallel spins of the entangled pair using the
singlet (−) or triplet (+) state in Dirac notation

|Ψ±⟩ =
1√
2
(|↑↓⟩ ± |↓↑⟩) , (6.62)

where the spatial part is usually not explicitly considered. Measuring the spin of particle A
along some direction a causes the wave function to collapse to one of the two-state vectors
in eq. (6.62). Figure 6.10 shows perfect anticorrelation for the spin expectation values if B
measures the same axis b = a. However, if the second measurement axis is different, b ̸= a,
as shown in figure 6.11, the expected correlation yields

4

ℏ2
⟨(sA · a) (sB · b)⟩Ψ− = −a · b . (6.63)

Figure 6.11: A schematic of Bohm’s version of the EPR experiment is shown, similar to figure 6.10.
While the measurement axis on A to the right is parallel to a (red arrow), the measurement on B
to the left is carried out along a different direction b ̸= a (blue arrow). Bell’s inequality is derived
for three different measurement axes. The solid gray line symbolizes the entanglement before the
measurement.
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Bell’s inequality

John Bell [Bel64] recognized the significance of the correlation (6.63) and derived an inequal-
ity for one of Bohm’s versions of the EPR paradox. Starting from a singlet spin state, Bell
added hidden parameters λ connected with a probability density function ρ(λ) indepen-
dent of the measurement axes. The measurement of sA(a, λ) and sB(b, λ) depends both on
λ and on the measurement axes a and b. Each measurement, however, does not depend on
the setting of the other measurement, which refers to local hidden variables. The possible
normalized outcomes are A(a, λ) = ±1 and B(b, λ) = ±1. The expectation

P (a, b) =

∫
dλρ(λ)A(a, λ)B(b, λ) . (6.64)

gives the corresponding correlation in Bell’s model of hidden variables, which leads to the
inequality

|P (a, b)− P (a, c)| ≤ 1 + P (b, c) . (6.65)

This inequality is violated by (6.63) for specific angles, e.g., for a ⊥ b and a · c = b · c = 1√
2

there is 1√
2
≤ 1− 1√

2
.

As of today, numerous experiments conducted over the last few decades, such as those
described in references [FC72, FT76, AGR81, AGR82, TRO94], have confirmed the existence
of entangled states that defy local realism. Moreover, these experiments demonstrate that
entangled states can produce stronger correlations than any local and realistic model, thus
violating Bell’s inequality (6.65) under specific circumstances.

Most of these experiments involve the use of photons and rely on the Clauser-Horne-
Shimony-Holt (CHSH) inequality [CHSH69] or generalized versions, e.g., [CH74, Bel04].
The CHSH inequality is a redefinition of (6.65) that is easier to verify in experiment and,
more importantly, does not rely on “Bell’s experimentally unrealistic restriction that for
some pair of parameters [b and c] there is perfect correlation” [CHSH69]. The CHSH in-
equality depends on four measurement settings a, a′ at A and b, b′ at B, such that Bell’s
inequality is transformed into

|P (a, b) + P (a, b′)− P (a′, b) + P (a′, b′)| ≤ 2 . (6.66)

Most of these experiments rely on the entanglement of photons. Connected to that, there is
a properly filled timeline of experiments searching for the resolution of so-called loopholes
in Bell tests, e.g., those associated with detector efficiency [RKM+01] and/or locality of the
measurements [HBD+15]. Another loophole is associated with the assumption that the mea-
surement on A is always correlated to the measurement settings on B, which is supported
by the theory of superdeterminism and variants thereof [Bra88, Hal10, Hal16, DH22]. The
group of Zeilinger, for example, addressed this problem in an experiment [RHH+18].

The Nobel Prize Committee recently [nob22] emphasized the importance of the empiri-
cal verifications of Bell’s inequalities over the last decades for the physics community as they
added another checkmark to the validity of the current description of the quantum theory.
The traditional view of reality is, thus, challenged by the experiments in combination with
the standard theory regarding its foundations. This led to decades of controversy about
how to understand the theory and its results. The entanglement phenomenon, for example,
are often misinterpreted as “non-local” or “spooky action at a distance”. This, however, de-
pends on the interpretation of quantum mechanics. Another misconception is that there is
no possibility of describing those effects with causal theories.

Nevertheless, quantum mechanics and Bell’s inequality leaves room for realistic descrip-
tions. The discussion of the EPRB gedankenexperiment and related to that, the search for
alternative interpretations of quantum mechanics continues to be an active area of research
even today since there is no decline in the number of papers referencing the papers by
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EPR [EPR35] or Bell [Bel64] in the field of quantum foundations. In general, the funda-
mental discussion of possible quantum theories that violate Bell’s inequality must include
relaxations on the assumptions given in its derivation [Bel64]. Hence, the following question
arises: What does it take to violate Bell’s inequality?

Bell-separability

The use of non-locality to describe the EPRB is ambiguous, as noted by Hall [Hal16]. Instead,
Hall suggests using the term Bell-separability. In this framework, an experiment is defined
by a preparation procedure U , a measurement m = (a, b) with submeasurements a and
b, and corresponding outcomes M = (A,B). The joint probability density ρ(A,B|a, b, U)
represents the statistical correlations of the outcomes of repeated measurement procedures.
If there exist hidden variables λ, then the joint probability density can be written as the
integral of the product of the conditional probability densities of A and B given λ, and the
probability density of λ given a and b, as follows from Bayes’ theorem

ρ(A,B|a, b, U) =

∫
dλρ(A,B|λ, a, b, U)ρ(λ|a, b, U) . (6.67)

Bell’s inequality for the correlations between three measurement angles a, b, c (given by
Equation (6.65)) can be expressed as a basic stochastic inequality for three subprocedures
of the measurement settings a, b, c. For example, three different measurement axes a, b, c
and their corresponding outcomes A,B,C. Specifically, the inequality relates the joint prob-
ability densities of measurement outcomes as follows

ρ(A, B̄|a, b, U) + ρ(B, C̄|b, c, U) ≥ ρ(A, C̄|a, c, U) . (6.68)

where B̄, C̄ denotes the complement to the outcome B,C. In stochastic mechanics, the un-
derlying variables are, e.g., the position in space, λ = x, with the associated probability dis-
tribution, ρ(λ|a, b) = ρ(x|a, b), depending on the initial preparation and the measurement.
We will omit the preparation procedure U from here on for brevity.

Given this, a probabilistic model must satisfy the following properties to obey Bell’s
inequality:

1) Statistical completeness:
The measurement outcomes are predetermined in the form of hidden variables λ in a
way that the joint probability distribution factorizes as follows

ρ(A,B|λ, a, b) = ρ(A|λ, a, b)ρ(B|λ, a, b) , (6.69)

which is true for a deterministic model.

2) Statistical locality:
The two subprocedures a and b are not correlated with each other’s outcome probabil-
ity density,

ρ(A|λ, a, b) = ρ(A|λ, a) and ρ(B|λ, a, b) = ρ(B|λ, b). (6.70)

This ensures that space-like separated measurements do not alter the outcome proba-
bility distributions. In other words, changing the measurement settings on A cannot
affect anything outside its future light cone.

3) Measurement independence:
The hidden variable λ entails no information on the future measurements such that

ρ(λ|a, b) = ρ(λ). (6.71)
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This property ensures that the (stochastic) hidden variable is independent of the future
measurement settings a, b.

It was known to Bell already [Bel76] that one of these properties must be violated in
quantum mechanics. Standard quantum mechanics in the Hilbert space disobeys statistical
completeness. A linear combination of solutions to the Schrödinger equation leads already
to a non-factorizable probability density. The same holds, of course, for associated density
matrices and entangled states. Hence, any theory with the same probability density asso-
ciated with the wave function violates requirement 1), which is not directly connected to
the locality but rather the separability of the probability. Suppose a quantum mechanical
distribution is not separable. In that case, the Nelson processes derived from the associated
wave functions do not fulfill statistical completeness. Nevertheless, the theory, in that case,
is statistically local.

This type of locality, however, does not translate to local velocity fields, which are the
physical entities in the trajectory pictures. Consider the quantum velocity fields vq(1), v

q
(2) of

two particles 1, 2. Now assume that the system may be described by a non-factorizable
probability distribution ρ(t, x(1), x(2)), the osmotic velocity of particle 1 reads

u(1)(t, x(1), x(2)) =
ℏ
2m

∇(1)ρ(t, x(1), x(2))

ρ(t, x(1), x(2))
. (6.72)

Hence, u(1) depends on the configuration of particle 2 independent of any local interaction
between the particles. The non-locality follows in the sense that the Lagrangian in the cost
function or the corresponding stochastic Hamiltonian do not contain any interaction terms
to explain the correlation. Hence, the measurement of one particle can affect the velocity of
a space-like separated other particle.6

Finally, note that there are other possible interpretations of quantum mechanics pre-
serving reality. One of them is Everett’s many worlds interpretation, accompanied by the
branching of realities. I.e., local realism comes at the cost of multiple realities where all pos-
sible outcomes occur in different universes [DeW70]. Another local realistic and determin-
istic theory assumes that everything is predetermined by a common cause in the past, the
so-called superdeterminism, e.g., see [Bra88, DH22]. The latter is related to the relaxation
of the measurement independence 3) so that the measurement settings in an experiment
cannot be chosen independently.

6.5.2 Stochastic description of a non-interacting particle pair

The discussion of the EPRB experiment schematically shown in figure 6.10 refers to massive
and non-relativistic particles with spin, contrary to the common experiments using photons.
For that the theory in section 6.2 is extended to two particles with positions x(1), x(2) including
rotational degree of freedom denoted by θ(1), θ(2) as given in the appendix G. For simplicity, it
is assumed that there are no external potentials until measurement, the two particles carry
no net charge q = 0, and that their masses m and inertias Im, Ic are identical. Generally,
the interaction of the two magnetic moments related to their angular velocities may not be
neglected at the experiment’s preparation state, which from a purely classical point view, is
dominant over the Coulombic interaction on short scales. The dipole interaction, however, is
negligible on the distances considered in the EPRB gedankenexperiment due to their space-
like separation later on.7

6Locality was also discussed in stochastic mechanics in more detail. On the one hand, the change of mea-
surement settings on A cannot affect anything outside its future light cone, i.e., no instantaneous effect on the
space like separated system B. This was labeled as active locality by Nelson [Nel86]. Passive locality, on the other
hand, demands that the dependence between simultaneous and distant measurements must be explainable in
the preparation state prior to the measurements. For a more detailed view of passive and active locality in terms
of stochastic picture, see the appendix by Faris in [Wic12].

7A discussion of possible bound states of two interacting magnetic moments is an open question to the QHE.
For one, the degrees of freedom for two diffusively rotating and interacting magnetic moments exceeds the
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The quantum Hamilton equations for the canonical momenta p(k) = mvq(k) + q(k)A(k) and
s(k) = Im(k)ω

q
(k)+Ic(k)B(k) of particle k are then the momentum equations (6.34) and (6.35) given

in the Stern-Gerlach chapter. Hence, we can write them as discussed in (G.3)-(G.4)

dp(k) = −γIm∇(k)

(
ωq(k) ·B(k)

)
dt+ dA(k) +Πp(k)dW− (6.73)

ds(k) =

[
γs(k) ×B(k) +

ℏ
Im
T(k)

]
dt+ s(k) ×Πs(k)dW− (6.74)

where B(k) are the magnetic fields generated by the Stern-Gerlach devices for each particle
and T(k) is a purely quantum torque term which vanishes in the classical limit. The coupling
of the particle’s orientational degrees of freedom to their motion in space is apparent in
equation (6.73), which includes an inhomogeneity in the magnetic field. In the absence of a
magnetic field, i.e., before and after the particles interact with the Stern-Gerlach magnets, the
classical force ∇

(k)
(ωq(k) ·B(k)) vanishes. The drift term in the momentum equations shows no

sign of coupling between orientation and position. Thus, the rotational motion of the two
particles moving in opposite directions can be treated separately from a classical point of
view. Similarly, the orientational motions of the two particles are decoupled such that the
evolution of the spins s(1) and s(2) are independent from a classical perspective. By adding
uncorrelated random kicks to each particle’s orientation, perfectly antiparallel spins will
decorrelate rapidly. This does, however, not apply to the spin QHE (6.74) in general, where
the spins may be correlated depending on the preparation of the initial state.

In general, the coupling depends on the initial (or final) settings in the formulation of
the QHE for the momenta p(k), s(k). It can be explained by the current and osmotic velocity
fields. They are feedback controls, i.e., in general vq(k)(t, x(1), x(2), θ(1), θ(2)) = v(k) − iu(k) and
ωq(k)(t, x(1), x(2), θ(1), θ(2)) = ω(l),v − iω(l),u. The canonical momenta p(k) = mvq(k) + qA(k) and s(k) =
Im(ωq(k) + γ(k)B(k)) with p(k) = p(l),v − ip(l),u and s(k) = s(l),v − is(l),u can be viewed as feedback
controls as well. E.g., the Itô formula for the momentum p(k)(t, x(1), x(2), θ(1), θ(2)) as feedback
control depending on all configuration variables leads to a partial differential equation

∂tp(k) +
2∑

k=1

(
vq(k) · ∇(k) + ωq(k) · ∇θ(k)

− iℏ
4

2∑
j=1

(
1

m
∇(j) · ∇(k) +

1

Im
∇θ(j) · ∇θ(k) +

1√
mIm

∇(k) · ∇θ(j)

))
p(k)

= −γIm∇(k)
(ωq(k) ·B(k)) (6.75)

concerning the drift term in (6.73). Thus, even if the rhs of (6.75) is zero, there may be
solutions to p(k)(t, x(1), x(2), θ(1), θ(2)) depending on all the configuration variables. Such cases
arise especially when the joint probability distribution cannot be written in the form of a
product.8 Furthermore, considering the stochastic integrals in (6.73), the matrix

Πp(k) = (σm∇(1), σm∇(2), σI∇θ(1) , σI∇θ(2))P(k) (6.76)

is multiplied with a 12-dimensional Wiener process W−
t . Hence, the stochastic contribu-

capabilities of the currently used numerical algorithms. Secondly, this system may need generalization to a
relativistic stochastic theory following [Spo04].

8Consider, for example, the coupling of translation to spin in the Stern-Gerlach experiment, especially the
case where the field setup leads to not yet fully aligned spins at the end of the magnet. The corresponding
probability distribution is not spatially separated into two parts. Eventually, the spins align, and the probability
distributions separate in the field-free part. This is due to the influence of the magnetic field so that at the end
of the magnet, the probability distribution cannot be written as a product of probabilities w.r.t. position and
orientation ρ(x, θ, t) ̸= ρx(x, t)ρθ(θ, t). It follows that u(x, θ) = ℏ

2mρ
∇ρ(x, θ) and su(x, θ) =

ℏ
2Imρ

∇θρ(x, θ) are
fields depending on orientation and position. See appendix E for a discussion of these phenomena about the
quantum potentials in the pilot-wave theory.
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tion to the change of momentum, say P(1), is coupled to the position of particle 2 and the
orientation of both particles in general.

Something similar holds for the spin fields. In the field free case, one may assume that
s(1) and s(2) are decoupled from their positions before the measurement. Both can, however,
depend on the other’s orientational variable s(1)(t, θ(1), θ(2)) and s(2)(t, θ(1), θ(2)) due to the prepa-
ration of the particle pair. Assume, e.g., we have two feedback solutions s(1),t = s(1)(t, θ(1), θ(2))
and s(2),t = s(2)(t, θ(1), θ(2)) to the QHE. With the Itô formula the stochastic term in equa-
tion (6.74) may be written as gradients w.r.t. to x(k) and θ(k), where σ∇(1)s(k) = σ∇(2)s(k) = 0
due to the assumption that s(k) does not depend on the positions. The gradients σI∇θ(1)s(2)
and σI∇θ(1)s(2), however, do not vanish in general which leads to possible couplings in the
two stochastic spin trajectories, even in the absence of drift terms.

The model of two decoupled particles with spin is considered first, where each particle’s
velocity field is independent of the other such that the probability distribution is separable.
Using this classically motivated approach, we show that the stochastic picture of the EPRB
paradox does not violate Bell’s inequality, as this problem is Bell separable. After that, the
entangled state of the gedankenexperiment is taken into account, leading to non-local drift
fields that are necessary to explain the strongly correlated stochastic realizations.

6.5.3 Bell separable particle pairs

Consider two spin-12 particles, i.e., E[s2(1)] = E[s2(2)] =
3ℏ2
4 , with Gaussian distributed starting

positions. According to the EPRB experiment, both spins should be antiparallel at t = 0, i.e.,
under expectation

E[s(1)(t = 0)] = −E[s(2)(t = 0)]. (6.77)

Here, s(k)(t) = s(k)(t, y(1), y(2)) is shorthand for the spin field solutions to the QHE depending
on the configuration variables y(k) = (x(k), θ(k)). For t > 0 they move in opposite directions
until they enter two space-like separated Stern-Gerlach-devices at t = T with tilted mea-
surement axes as shown in figure 6.11.9 The spin of particle 1 at magnet 1 is measured along
z1 := zδ11 , which is rotated by an angle δ1 w.r.t. the z-axis around the y axis. The beam of
particle 2 splits along the z2 := zδ22 -axis which is tilted by an angle δ2 w.r.t. the z-axis.

In the separable model, it is assumed that the (angular) velocities for each particle
vq(1)(y(1), t) and vq(2)(y(2), t) do not depend on the configuration variable of the other particle.
This is associated with a factorizable probability distribution ρ(y(1), y(2), t) = ρ1(y(1), t)ρ2(y(2), t)
for all t. Before the measurement, it is also assumed that the orientation for each particle is
not coupled to its position, so the discussion of the rotational diffusion follows the freely
spinning top in section 5.4. The considered uncorrelated solutions to the QHE equations lead
to spin fields s(1)(θ(1)) and s(2)(θ(2)) which are not explicitly time dependent. For a pair of
spin-12 particle with antiparallel expectations along the z axis in particular, the feedback so-

lutions Ωq(1)ϑ = −ℏ
2 tan

ϑ(1)
2 and Ωq(2)ϑ = −ℏ

2 cot
ϑ(2)
2 from section 5.3 to µ(1) = −µ(2) = 1/2 and

ν(1) = ν(2) = 1/2 in the QHE (5.50) are used.
The measurement procedure leads then to a coupling of the particle’s orientation to its

position. This follows from the stochastic description of the Stern-Gerlach experiment in
section 6.4 where the coupling of the rotation to the translation is analyzed with the orien-
tational averages, e.g., s̄(k)(t, z(k)). Repetitive measurements of the particle pairs will show a
splitting into two Gaussian beams along the corresponding field axes at each magnet where
the particle’s spin expectation and position at the entrance slit of the inhomogeneous field
B = Bz(z)ez are correlated with the outcome as seen in figure 6.4, for example.

9Note that this state is not an entangled state as demanded in the EPRB. We consider the entangled state later.
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Figure 6.12: The figure displays the time evolution of the z component of the spin components of
two antiparallel spin-pairs in each row. The spin components of particle 1 are denoted by s(1)(θ(1)t) in
the right column, while the spin components of particle 2 are denoted by s(2)(θ(2)t) in the left column.
The spins are initially prepared in a spin-up and a spin-down state. The figure shows the stochastic
realizations of θ(k)t in the field-free region before entering the Stern-Gerlach magnets. The top row of
the figure displays the z components of the spins as measured by the Stern-Gerlach magnets along
their z1 = z2 = z axis (δ1 = δ2 = 0). The bottom row shows the spin components as viewed from
a coordinate system defined by the measurement axes of the Stern-Gerlach devices. In the bottom
right, the components of s(1) are shown for a rotation around the y axis by an angle δ1 = π

4 . In the
bottom left, a stochastic realization of s(2) for δ2 = π

2 is depicted. It is important to note that the time
axis for the second particle (left column) is reversed.

Spin (de-)correlations

From the QHE for a freely spinning particle, it follows that the ensemble expectations
E[s(1)] = E[s(1),v] and E[s(2)] = E[s(2),v] remain constant until measurement. The product of
the spins

E[s(1) · s(2)] = E(1)[s(1),v + su(1)] · E(2)[s(2),v + s(2),u] = E(1)[s(1),v] · E(2)[s(2),v] = −ℏ2

4
(6.78)

remains constant too. Here it is used that the expectations can be calculated separately for
each particle

E[A(y(1))] =

∫
A(y(1))ρ(1)(y(1))dy(1)

∫
ρ(2)(y(2))dy(2)︸ ︷︷ ︸

=1

=: E(1)[A(y(1))] , (6.79)

since the probability distribution and the spin fields are separable. From this we can calcu-
late E[s2tot] = E[(s(1) + s(2))

2] = E[s2(1)] + E[s2(2)] + 2E[s(1) · s(2)] = ℏ2. The stochastic correlation
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−1 ≤ C(s(1), s(2)) ≤ 1 of the two spin system

C(s(1), s(2)) =
E[s(1) · s(2)]− E[s(1)] · E[s(2)]√

E[s2(1)]− (E[s(1)])
2

(6.80)

vanishes for the separable model C(s(1), s(2)) = 0. Although the particles are anti-correlated
under expectation w.r.t. the chosen preparation axis according to equation (6.78), they are
statistically uncorrelated according to equation (6.80).

As illustrated in figure 6.12, the stochastic spins are not anti-correlated. The plots show
the particles’ stochastic spin fields as functions of time of the separable model depending
on the z-axes of Stern-Gerlach magnets tilted by δ1, δ2. The two rows show particle 1 in
the spin-up state and particle 2 in a spin-down state where the z-component for both par-
ticles is perfectly anti-correlated (top row) when viewed along the same z axis. The other
spin components are not anti-correlated. The bottom row shows the spin components of a
pair for two different measurement angles δ1 = π/4 and δ2 = π/2 with corresponding spin
expectations

E[s(1)] =
ℏ
2
(sin δ1ex1 + cos δ1ez1) =

ℏ
2
√
2
(ex1 + ez1) and (6.81)

E[s(2)] =
ℏ
2
(sin δ2ex2 + cos δ2ez2) =

ℏ
2
ex2 , (6.82)

respectively. Here exl denotes the unit vector along the x direction in the δl tilted reference
frame. From that, it can be assumed that the incident spin of the particles in the Stern-
Gerlach experiments will not give perfect anticorrelations except for measuring along the
preparation axis z, i.e., angles δ1 = δ2 = 0.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t/τrot

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

s
1
(t

)·
s
2
(t

)
|s

1
(t

)|
|s

2
(t

)|

〈s1 · s2〉 separable

s1 · s2 separable

〈s1 · s2〉 triplet

s1 · s2 triplet

〈s1 · s2〉 singlet

s1 · s2 singlet

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t/τrot

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C
(s

1
(t

),
s 2

(t
))

separable

triplet

singlet

Figure 6.13: The spin fields as a function of the stochastic realizations of the orientation variables for
independent spins (black) are analyzed. The plots include the spin fields for entangled spins in the
triplet (blue) and singlet (purple) state, as considered in the next subsection. The left plot depicts the
normalized dot product −1 ≤ s(1)(t)·s(2)(t)/|s(1)(t)||s(2)(t)| ≤ 1 of the two spin vector fields for a single
path (dashed lines) and the ensemble average (solid lines) where the dashed purple line connected
to the singlet state is hidden behind the solid purple line. The initial orientation variables for the two
particles were chosen so that the stochastic spin fields s(1)(0) = −s(2)(0) were initially antiparallel. The
ensemble averages are calculated from 104 numerical realizations of the orientational process w.r.t. to
a timescale τrot = Im

ℏ depending on the inertia Im. (Right plot) The numerical approximation of the
stochastic correlation C(s(1)(t), s(2)(t)) as given in equation (6.80) is calculated from the same sample
trajectories. The correlations for the separable and the triplet model have starting values that differ
from their expectation due to the boundary condition of antiparallel spins.

The decorrelation of the spins is a natural consequence of the two uncoupled systems
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in the stochastic theory, i.e., the two independently rotating tops. This is also true for t > 0
if the spin fields s(1)(0, θ(1),t=0) = −s(2)(0, θ(2),t=0) are chosen to be antiparallel at t = 0. They
decorrelate exponentially due to the interaction with the background field as shown in fig-
ure 6.13. The black and gray graphs depict the correlation in terms of the normalized dot
product s(1)(t)·s(2)(t)

|s(1)(t)||s(2)(t)|
10 for a single trajectory (gray dashed) and an ensemble average (black

solid) in the Bell separable model. The initially chosen perfect anticorrelation for a single
pair is highly volatile. The ensemble average, on the other hand, decays to a value close
to −1/4 since the z components of the spin pair are constant. Hence, the anticorrelation of
the spins holds only under expectation in the considered model E[s(1)] = −E[s(2)]. The un-
derlying uncorrelated randomness leads to spin states which cannot describe a total spin
expectation E[s2tot] < ℏ2 in the separable model. A perfectly anti-correlated spin pair is
shown in purple in the same plot, and will be discussed in the following subsection for the
entangled singlet spin. Only stochastically correlated states have a stochastic correlation
C(s(1)(t), s(2)(t)) ̸= 0 as shown in the right plot of figure 6.13 for the two entangled states.
These stochastic processes are not independent, i.e., the spins are coupled. These states are
discussed in subsection 6.5.4.
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Figure 6.14: Two stochastic realizations (blue and black) of Bell separable antiparallel pairs entering
the two identical Stern-Gerlach magnets at time t = 0 after being locally separated. The paths (top
row) and spin averages (bottom row) of particle 1 (right column) and particle 2 (left column) are
plotted as a function of time where Tm is the time spent in the magnet. The x (dashed) and y (dash-
dotted) components of the spins are also depicted in the bottom plots. Particles 1 and 2 enter magnets
tilted by an angle δ1 = δ2 = π

4 w.r.t. to the initial polarizations of the antiparallel spins along the z
direction. The top row also shows the z1 (z2) projections of s̄(1) (s̄(2)) indicated by arrows along the
paths.

10Here we use shorthand s(k)(t) = s(k)(t, θ(k)t).
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Measurement

Figure 6.13 reveals a timescale τrot = Im
ℏ for the decorrelation in the Bell separable model.

It is, again, much smaller than the timescale determined by the interaction with the mea-
surement devices τtrans = Tm. Due to the particle’s rapid rotational motion, the orientation
averages are sufficient to study the motion of the particles in the measurement processes.
Therefore, the averaged values for position and spin are sufficient to analyze the measure-
ments as in section 6.4. When the particles are measured along the z axis they show perfect
anticorrelation since the fully aligned spin expectation leads (almost surely) to a single de-
flection, as shown in the top plot of figure 6.6. The more interesting cases arise when the
magnetic fields are not aligned with the spins at the preparation stage.

Two such stochastic realizations (blue and black) are shown in figure 6.14 for the mea-
surement angles δ1 = δ2 = π/4 for particle 1 (right) and 2 (left) starting from the moment of
entry into the magnets. The time t = 0 in the plots corresponds to the moment the particles
simultaneously enter the two SG devices. The z1 and z2 averages of the spins at t = 0 comply
with the spin expectation E[s(1)(t = 0)·ez1 ] = ℏ cos δ1/2 = −E[s(2)(t = 0)·ez2 ] = −ℏ cos δ2/2 = ℏ/

√
8

before the interaction with the magnets. The plots show that particles will be deflected and
that the spins seem to align to the new zk axes. It is also visible that the two selected particle
pairs are correlated but not anti-correlated. The probability of correlated coincidences thus
does not vanish for the different measurement angles in the separable model.

The correlation of the particles can be compared to the inequality for local hidden vari-
able theories given by the Bell inequality (6.68)

ρAB̄(0, δ) + ρBC̄(δ, 2δ) ≥ ρAC̄(0, 2δ) (6.83)

where the joint probabilities are defined as

ρAB̄(δ1, δ2) := ρ
(
A = +, B̄ = −

∣∣∣a = zδ11 , b = zδ22

)
. (6.84)

The probabilities ρAB̄(0, δ) ≈ NAB̄

Ntotal
can be approximated by the coincidences of particle 1

ending up in the + channel and particle 2 in the − channel after the respective SG devices
1 and 2. In that specific case, the beams of particle 1 are split along the zδ1=0

1 = z direction
while the ensemble for particle 2 splits along the zδ2=δ2 direction which is tilted by an angle δ
w.r.t. z. Figure 6.15 reveals that the uncoupled model does not violate Bell’s inequality since
ρAB̄ + ρBC̄ ≥ ρAC̄ for all angles. The singlet state in quantum mechanics, however, yields
ρAB̄Q + ρBC̄Q ≤ ρAC̄Q for δ < π/2 and thus violates the inequality. In the stochastic model, the
joint probability ρBC̄ = ρBC̄(δ, 2δ) (green circles) deviates heavily from the prediction of the
singlet state ρBC̄Q (green dashed). It shows a weaker anticorrelation than the entangled state
since the measurements of the stochastic spins are only perfectly anti-correlated when the
measurement axes of both Stern-Gerlach devices are aligned with the initial spin expecta-
tion, i.e., δ1 = δ2 = 0. In the singlet state, the same measurement angles δ1 = δ2 ̸= 0 are
sufficient to give perfectly anti-correlated results. Hence, it does not matter what measure-
ment direction is used for a singlet state if the measurements are along the same axis.11

The issue with the discussed local stochastic model is illustrated in figure 6.14 for δ1 =

11Note that the direction of the initially antiparallel spins in (6.77)

E[s(1)] = E[s(1),v] = −E[s(2)] = −E[s(2),v] =
ℏ
2
e(θ0, ϕ0) , (6.85)

should depend on a chosen projection axis e(θ0, ϕ0) = (cosϕ0 sin θ0, sinϕ0 sin θ0, cos θ0) for each pair of parti-
cles in the preparation procedure in general. Since the expectation of the spins at the preparation stage over all
simulated particle paths should be 0, an adjusted expectation, denoted by Ẽ[], has to take into account the ran-
domness of the initial projection, so that Ẽ[s(k)] = Eg [E[s(k)]] = 0. This is accomplished within this model via the
random choice of θ0, ϕ0 according to a distribution g(θ0, ϕ0) so that Eg[s(k)] = ℏ/2

∫
e(θ0, ϕ0)g(θ0, ϕ0)dθ0dϕ0 = 0.

Aa uniform distribution of angles δ0 with ϕ0 = 0, for example, leads to rescaled probabilities Eg[ρ
AB ] = 1

2
ρAB or

Eg[ρ
BC ] = 1

2
ρBC . Hence, it cannot describe statistically correlated processes needed to violate Bell’s inequality.
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spin model (circles) as a function of angle δ as defined in equation (6.68). The uncoupled QHE model
obeys Bell’s inequality ρAB̄ + ρBC̄ ≥ ρAC̄ . Since ρAB̄

Q = ρBC̄
Q the pink dotted line is not visible.

δ2 = π/4. The particles enter the magnets with spin expectations |E[s(k) · ezk ]| < ℏ/2 and thus
have probabilities of going up and down. As a result, neither of the two pairs shown in
the figure 6.14 may be anti-correlated in the measurement, which would be impossible for a
singlet state.

Speaking of separable states, it should be noted that perfect anticorrelations for any mea-
surement axis in the stochastic picture can be achieved if the measurement angle δ1 was
known to particles 1 and 2 at the preparation stage. In this case, the spins could be arranged
to be antiparallel w.r.t. the angle δ1 initially. This relaxes the requirement for the Bell separa-
bility property 3) regarding measurement independence, thus enabling a violation of Bell’s
inequality. This idea is related to the superdeterministic interpretation of quantum mechan-
ics, which posits that everything has a common cause in the past light cone [Hal16]. This,
however, is not in line with the formalism in Nelson’s stochastic mechanics.

The following subsection explains how non-local velocity fields in the stochastic picture
enter the description of the quantum correlation as dependent stochastic processes.

6.5.4 Entangled spin states

An idealized antiparallel two-particle state in quantum mechanics, i.e., the quantum expec-
tations ⟨ŝ(1)⟩ = −⟨ŝ(2)⟩, can be described by the superposition

|ψ⟩ϵ,ϕ =
1√
2

(
cos

ϵ

2
|+(1)⟩ |−(2)⟩ − eiϕ sin

ϵ

2
|−(1)⟩ |+(2)⟩

)
(6.86)

where |±(k)⟩ denotes the spin-up/down eigenstate of particle l in the z basis. For ϵ = 0 and
ϵ = π (6.86) reduces to the Bell separable two particles states |+(1)⟩ |−(2)⟩ and |−(1)⟩ |+(2)⟩.

For ϵ ∈ (0, π) the state |ψ⟩ϵ,ϕ does not fulfill the properties of Bell separability anymore.
These states are entangled, i.e., they cannot be written as a tensor product of single particle
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states. Maximally entangled states are described for ϵ = π/2. For example, Bell’s original
inequality [Bel64] addresses a singlet state (ϵ = π/2, ϕ = 0)

|ψs⟩ = |ψ⟩π
2
,0 =

1√
2
(|+(1)⟩ |−(2)⟩ − |−(1)⟩ |+(2)⟩) , (6.87)

which is one of the four so-called Bell states for a two-level system. Another Bell state is
described by |ψ⟩π/2,π which is the triplet state.12

The specific property of an entangled spin state is related to the fact that these states
cannot be understood only from the viewpoint of individual particles. For example, the
expectation values w.r.t. to the state (6.86) of the total spin operator ŝ = ŝ(1) + ŝ(2) read

⟨ŝ⟩ = 0 ⟨ŝ2⟩ = ℏ2(1− cosϕ) (6.88)

while for the single spin operators

⟨ŝ(k)⟩ = 0 ⟨ŝ2(k)⟩ =
3ℏ2

4
. (6.89)

The expectation of the single particle spin is zero, although the magnitude of the single
particle spin does not vanish. Hence, each spin-12 particle has an undefined quantization
axis in these entangled states.

Consider the singlet state where ϕ = 0 in more detail. The magnitude of the total spin
in (6.88) is zero under expectation. In the stochastic picture this translates to the ensemble
expectations E[stot] = 0 and E[s2tot] = 0 where

0 = E[s2tot] = E[s2(1)] + E[s2(2)] + 2E[s(1) · s(2)] =
3ℏ2

2
+ 2E[s(1) · s(2)] . (6.90)

The dot product of the two spins thus has to fulfill E[s(1) · s(2)] = −3ℏ2
4 , so that

E[s(1) · s(2)] = E[sv(1) · sv(2)] + E[su(1) · su(2)] + E[sv(1) · su(2)] + E[su(1) · sv(2)] = −3ℏ2

4
(6.91)

As mentioned in the discussion of the separable model, such a state is impossible to con-
struct in stochastic mechanics if the angular velocity fields of the particles are independent
of each other’s orientation variables.

For example, take E[s(1) · s(2)] = −E[s2(1)] = −E[s2(2)]. Then, E[stot] = 0 leads to E[sv(1)] =
−E[sv(2)] since E[su(k)] = 0. These expectations state that the spins along all possible stochastic
orientation trajectories have to be antiparallel s(1) = −s(2) for t > 0 until one of them enters
a measurement device. Hence, there is perfect anticorrelation without any decorrelation in
the stochastic setting. This is also depicted in the correlation plots 6.13 for the singlet state.
As shown in the following, such dependencies are also valid feedback solutions to the QHE
in the field-free case, where the drift and the stochastic term vanish in the QHE for the total
spin.

Considering the definition in (6.86), the singlet (and triplet state) in the field free regime
can be derived by a combination of two solutions to a pair of spin-12 particles with antipar-
allel expectations along the z axis:

(±): µ(1) = −µ(2) = 1/2, ν(1) = ν(2) = 1/2, such that E[s(1)] = −E[s(2)] =
ℏ
2ez and

(∓): µ(2) = −µ(1) = 1/2, ν(2) = ν(1) = 1/2, such that E[s(2)] = −E[s(1)] =
ℏ
2ez .

As discussed in the previous subsection, both two-particle states address the Bell separable
model. Thus they are product states of spin-up and spin-down particles with distributions
ρ(±)(t, θ(1), θ(2)) = ρ+(θ(1))ρ−(θ(2)) and ρ(∓)(t, θ(1), θ(2)) = ρ−(θ(1))ρ+(θ(2)) and can be seen as the
stochastic analog to |+(1)⟩ |−(2)⟩ and |−(1)⟩ |+(2)⟩.

12There are two more maximally entangled states of a two-level system, which are not considered here.
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Figure 6.16: The spin components of each particle in a singlet (top row) and triplet state (bottom row)
are shown w.r.t. time along a stochastic realization of the stochastic orientations θ(l),t in the field free
region before entering the magnets similar to figure 6.12.

The combination of the 2 two-particle solutions (±) and (∓) then follows appendix F
with the constants

c1 =
1√
2
cos

ϵ

2
and c2 =

−eiϕ√
2

sin
ϵ

2
(6.92)

in reference to equation (6.86). The procedure is similar to the one given in equation (6.45)
for a rotation of a single spin. Carrying out the calculations yields a spin field of particle 1
for a maximally entangled state (ϵ = π/2)

s(1) =
1

ρ

−2iA
(
ei(ϕ+φ(2))c

ϑ(1)
2 s

ϑ(2)
2 + eiφ(1)s

ϑ(1)
2 c

ϑ(2)
2

)(
A∗c

ϑ(1)
2 c

ϑ(2)
2 − s

ϑ(1)
2 s

ϑ(2)
2

)
−sϑ(2)(c(ϕ+ φ(2)) + icϑ(1)s(ϕ+ φ(2))) + sϑ(1)(cφ(1) + icϑ(2)sφ(1))

−isϑ(1)sϑ(2)s(ϕ− φ(1) + φ(2)) + cϑ(1) − cϑ(2)

 (6.93)

with shorthand notations c = cos and s = sin, zxz-Euler angles (ϑ(k), φ(k), χ(k)) for the ori-
entation of particle l, the definition of A = e−i(ϕ+φ(1)+φ(2)) and the probability distribution
ρ = 1

8(2 sinϑ(1) sinϑ(2) cos(ϕ− φ(1) + φ(2))− cos(ϑ(1) − ϑ(2))− cos(ϑ(1) + ϑ(2)) + 2).
In the singlet state (ϕ = 0) the spin fields s(2)(θ(1), θ(2)) = −s(1)(θ(1), θ(2)) are perfectly an-

tiparallel. A sample trajectory of the spin fields as a function of the stochastic orientations
is shown in the top row of figure 6.16, i.e., the spin field s(k) from equation (6.93) is used to
numerically integrate the FSDE (5.9) for the orientation variable θ(k) of particle k. Note that
the stochastic process of the total spin st = s(1),t + s(2),t as a critical feedback process to the
spin QHE neccessarily leads to dst = 0, i.e., the drift and the stochastic terms vanish in the
SDE vanish. In terms of the single spin QHE we have ds(1) = −ds(2).
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For the triplet state (ϕ = π) the x, y components of the feedback fields coincide and
s(1)z = −s(2)z as shown in the bottom row of figure 6.16. Note that these quantities are not
ensemble expectations but the drift fields of the stochastic processes for each orientation.
This is also manifested in the corresponding spin correlation matrix of the spin pair. The
expected correlation depending on ϵ, ϕ reads

E
[
s(1)is(2)j

]
=

ℏ2

4

− sin ϵ cosϕ sin ϵ sinϕ 0
sin ϵ sinϕ − sin ϵ cosϕ 0

0 0 −1

 (6.94)

where i, j ∈ {x, y, z}. As expected, the uncoupled spins (ϵ = 0) can be maximally (anti-
)correlated for one axis, the z axis in the example. The entangled states (0 < ϵ < π), on the
other hand, show additional correlations between other components, e.g., the triplet (sin-
glet) state shows perfect (anti-)correlation under expectation w.r.t. to the x, y components.
Under this aspect, one can deduce that the stochastic spin fields for the singlet state violate
Bell’s inequality (before the measurement) but not a generalized Schwarz inequality

−E[(a · s(1))(b · s(2))]− E[(a · s(1))(c · s(2))] ≤
3ℏ2

8
− E[(b · s(1))(c · s(2))] (6.95)

for continuous random variables. This follows the discussion in chapter 6 of [Far82], where
it was pointed out that Bell’s inequality only holds for discrete random variables. The treat-
ment after the particles couple to the position in the measurement process is analyzed in the
following subsection.

The spin fields for the separable (ϵ = 0), the singlet, and the triplet state were used
to numerically integrate the SDE for the orientations θ(1) and θ(2). Figure 6.13 in the previous
subsection shows the corresponding numerical calculations of the spin correlation quantities
as a function of time under the constraint s(1)(θ(1), θ(2)) = −s(2)(θ(1), θ(2)) at t = 0. Since the
initial probability density in that specific case does not necessarily comply with the one
associated with the spin fields, the spins’ ensemble decay exponentially into the stationary
distribution. For example, the left plot shows the decorrelation of the triplet and separable
spin correlation to the values, which in approximation, agree with the trace of the matrix
given in (6.94). Note that the numerically calculated values for separable and triplet state in
the left plot of figure 6.13 are slightly off from the exact values ±1/4 following equation (6.94)
due to the inaccuracy in the numerical integration related to regions where the orientational
variables ϑ(k), φ(k) are close to singularities of the drift fields.

Simultaneous measurement

The coupling of space-like particles also shows up in the description of the measurement
procedures for the EPR pair. As discussed in the Bell separable model, the starting points
are two uncoupled particles entering two space-like separated inhomogeneous magnets.
The Bell separable (±) and (∓) pairs are augmented to describe the coupling to the posi-
tion with the corresponding (angular) velocities v±(1),q = v+(1),q, v

±
(2),q = v−(2),q and v∓(1),q = v−(1),q,

v∓(2),q = v−(2),q. Since these models are still product states, the velocity field of each particle can
be described independently in analogy to the Stern-Gerlach description in section 6.4. To
describe entangled states, the enhanced velocity fields for each particle (l), namely v±(k) and
v±(k), are now combined with the same coefficients given in (6.92).

The equations (6.58) given in the Stern-Gerlach section were used for each particle l with
the corresponding orientation averages of the forward drift fields

v̄(l)(t, z1, z2, Ω̄(l),φ) + ū(l)(t, z1, z2, Ω̄(l),φ)

depending on theφ component of the spin angular average. E.g., for particle 1 in the magnet,

125



δ1 =
π

4
δ2 =

π

4

singlet

Figure 6.17: The plot depicts a sample of 5 numerically calculated particle pairs prepared in a singlet
state entering the magnets simultaneously with measurement angles δ1 = δ2 = π

4 .

denoted by the superscript m, the averaged spin along the measurement direction zδ1 reads

s̄m(1),z =Ω̄m(1),φ(t, z1, z2)

=− ℏ
2ρ̄

(
cos2

ϵ

2
(− cos δ1 − (cos δ1 + 1)A(z1) + 1) (− cos δ2 + (cos δ2 − 1)A(z2)− 1)

− sin2
ϵ

2
(cos δ1 + (cos δ1 − 1)A(z1) + 1) (− cos δ2 + (cos δ2 + 1)A(z2) + 1)

− sin ϵ cosϕ sin δ1 sin δ2 (A(z1)− 1) (A(z2)− 1)

)
(6.96)

where A(zl) = exp
(
−4mzlzcl(t)

τ0ℏ

)
and

ρ̄m =cos2
ϵ

2
(A(z1)(cos δ1 + 1)− cos δ1 + 1)(A(z2)(cos δ2 − 1)− cos δ2 − 1)

+ sin2
ϵ

2
(A(z1)(cos δ1 − 1)− cos δ1 − 1)(A(z2)(cos δ2 + 1)− cos δ2 + 1)

+ 2 sin δ1 sin δ2 sin ϵ cosϕ(A(z1)− 1)(A(z2)− 1) . (6.97)

E.g., the SDE for the z component of particle l denoted by the stochastic process Z̄(l),t in
the magnet (t < Tm) read

dZ̄(l),t =

[
2

ℏ

(
vcl(t) +

zcl(t)

τ0

)
Ω̄m(l),φ(t, Z̄(1),t, Z̄(2),t)−

Z̄(l),t

τ0

]
dt+

√
ℏ
m
dW(l),t (6.98)

where vcl(t) = γℏb
2m t and a classical displacement zcl(t) = γℏb

4m t
2 are defined similar to equa-

tions (6.38)-(6.39). After the magnet the spin average s̄a(1),z is a copy of (6.96) with terms
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Figure 6.18: The plot depicts a sample of 5 numerically calculated particle pairs prepared in a triplet
state entering the magnets simultaneously with measurement angles δ1 = δ2 = π

4 .

including zcl(t) being replaced by zm + vmt. Note that the drift terms including O
(
( 1
τ0
)2
)

have been neglected as in section 6.4.
For measurement angles δ1 = δ2 = 0, anti-correlated coincidences would be measured

for the triplet and the singlet state similar to the separable model. The spin fields (6.96) in
the magnet in z direction are independent of the phase ϕ. They simplify to

s̄m(z),1 = −s̄m(z),2 =
ℏ
2
tanh

(
2m(z1 − z2)zcl(t)

τ0ℏ

)
. (6.99)

In contrast to the separable model, the averaged spin components are 0 before entering the
magnet due to zcl(0) = 0 and acquire zl components for t > 0. If Z̄(1),t > Z̄(2),t, the first of
the two drift terms in equation (6.98) are positive for particle 1 while negative for the other.
Eventually, sm(z),l approaches ±ℏ/2 for large times depending on the difference Z̄(1),t − Z̄(2),t on
both particle positions, which leads to an opposite deflection for the two-particle positions in
the direction of measurement. Although the positions Z̄(1),t ̸= −Z̄(2),t for each particle pair are
not exactly anti-correlated, the spin averages are, which is a feature of the entangled states
considered here. The averaged x and y components of the spins remain 0 throughout the
experiment.

A sample of trajectories for 5 particle pairs moving in opposite directions and entering
a magnetic field is shown in figure 6.17 for the singlet pairs and in figure 6.18 for the triplet
state. The measurement angles for the Stern-Gerlach devices are δ1 = δ2 = π

4 in these fig-
ures. The spin averages of the individual particles along the measured zl( ̸= z) axes are also
0 at the entrance of the magnets according to (6.89), in contrast to the trajectories shown in
figure 6.14 for the separable model where the spin averages depend on the measurement
angles. Eventually, each particle chooses one of the two possible spin channels, and the
spin aligns accordingly. In the moment of the measurement of a particle at a detector after
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the magnet, one can assign a spin state for a single particle. Hence, the particles gradu-
ally disentangle in the stochastic picture until they choose one of the two distinct channels
where the particle properties in terms of expectations can be described for uncoupled par-
ticles again. This mechanism is the counterpart to the collapse (or decoherence) of the state
function in the Copenhagen interpretation given in (6.86) to one of the two states |+(1)⟩ |−(2)⟩
or |−(1)⟩ |+(2)⟩.
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Figure 6.19: The plot compares the joint probability distributions from the singlet state wave function
in quantum mechanics (solid) to the numerically calculated probabilities associated with the singlet
spin model (circles) depending on the angle δ as defined in equation (6.68). The non-local velocity
fields in the QHE model lead to the violation of Bell’s inequality ρAB̄ + ρBC̄ ≥ ρAC̄ for δ < π/2. Since
ρAB̄
Q = ρBC̄

Q the pink dotted line is not visible.

For the singlet state, the spin pairs in figure 6.17 give anti-correlated outcomes since the
measurement angles are the same δ1 = δ2. This agrees with the state’s definition of perfect
anticorrelation independent of the measurement axis where the probability of (positively)
correlated outcomes, i.e., measuring ++ or −− coincidences, only depends on the differ-
ence of the measurement angles δ1 − δ2. According to the Bell inequality (6.83) with the
definition (6.84) figure 6.19 depicts the joint probabilities in magenta and green

ρAB̄(δ1 = 0, δ2 = δ) ≈ ρBC̄(δ1 = δ, δ2 = 2δ) . (6.100)

The plot shows that the stochastic model (circles) agrees with the predictions from quan-
tum mechanics and, thus, violates Bell’s inequality. This is not surprising since the model
is based on the definition of the singlet wave function with the corresponding expected val-
ues. Moreover, the stochastic model’s drift fields are non-local, allowing us to describe the
strong correlations between the two particles. This is a result of the non-separability of the
probability distribution, and thus relaxes argument 1) regarding Bell separability.

In the stochastic description, a local description of the measurement of entangled parti-
cles in a singlet state would need additional assumptions. As already suggested, one may
constrain the averages of the continuous random spin variables of the two spin-12 particles to
be opposite at all times, including the interaction with the measurement devices. Hence, in
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order to violate Bell’s inequalities, the constraint has to be extended so that the continuous
spin random variables should be anti-correlated at all times including the measurements.

As pointed out by Faris [Far82], Bell’s inequality for the stochastically spinning particle
is violated, since, before the measurement, the components of the spins are not necessarily
constant. After traversing the apparatus, the spin components in the direction of the field
gradient can be considered as discrete random variables where the experimental settings
are encoded in the probability distributions of the particles through the coupling of the spin
and velocity fields of both particles.

Partial measurement
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Figure 6.20: The plots show a singlet state where only particle 1 is measured while particle 2 does
not enter a magnet for δ1 = δ2 = 0. The spin orientation average of particle 2 in the stochastic
picture is changed in a non-local manner in accordance with the measurement of particle 1 and
the corresponding change of the spin average s̄(1). A torque acts on s̄(2) while the momentum in z2
direction is unchanged.

The apparently “non-local”13 Quantum phenomena become strongly visible when a
measurement is made on one particle only. Example paths are shown in figure 6.20 where
only particle 1 is deflected. With that, the spin average of particle 1 eventually aligns. Al-
though the second particle is locally separated from the other particle, its spin is changed
according to the measurement of particle 1. The position of particle 2 is unaffected, but its
spin changes over the course of the measurement of particle 1 due to the non-local quantum

13The term non-local may be misleading since, in the case of entanglement, it does not state that information
can be transferred between the two space-like separated observers. Statistically, one cannot gain information on
the other particle by doing local measurements on one particle [GGRW88].
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torque

T(k),u = s̄(k) ×
∑
l

(
ℏ
2m

∆(l)s̄(k) + (ū(l) · ∇(l))s̄(k)

)
(6.101)

acting on the two-particle system.
This follows the treatment of a wave function, where the pair is said to be in a superpo-

sition of states. However, the physical intuition in the stochastic interpretation of this model
crumbles due to the additional torque depending on the events in space-like separated re-
gions, i.e., the measurement of particle 1. At this point, it seems reasonable to ask if that
model of the spins actually describes the real changes of the spins or if it is a mathematically
valid description for the empirical results.

If we shift the physically motivated picture of the drift fields of the processes to the case
where they describe mean velocities only, the experiment could also be understood if one
considers that a total spin state describes the system instead of two separate spins. The
total spin is 0 before the measurement, and the individual particle properties in those cases
cannot be described separately from the other particle. This changes if a measurement on at
least 1 particle is taken where the changes of the one particle from zero average to ±ℏ/2 leads
to a complementary change in the spin average of 2 since the total spin state should be 0.14

Then, statistically, the measurement of particle 1 along z allows us to deduce the likelihood
of outcomes on a possible measurement on the other subsystem. Empirically, the stochastic
model cannot be distinguished from the ordinary quantum theory. The strange behavior
of the individual spins in terms of instantaneous connections reflects the (mathematical)
description of individual processes for a statistically correlated system of multiple particles.
Thus, in the stochastic model, “non-local” means that the individual particles change their
properties, although they are not necessarily interacting through classical fields.

CHSH inequalities
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Figure 6.21: The plot shows the numerically calculated absolute values of the functions S and S̃
from equations (6.66) and (6.103) from stochastic realizations as a function of the measurement angle
δ. The CHSH inequality is violated for the singlet (black), triplet (blue), and partially entangled
(magenta) where |S(δ)| > 2 or |S̃(δ)| > 2. The Bell separable model (purple) satisfies the inequality.

14For the individual spin pair this is only true if the measurement directions z1 = z2 are the same.
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The triplet state is maximally entangled but cannot violate Bell’s original inequality since
it is not perfectly anti-correlated. For these cases, it is possible to use one of the generalized
versions of Bell’s inequality, which are usually subsumed as CHSH-inequalities [CHSH69].
E.g., consider the functions

S = C11 − C12 + C21 + C22 (6.102)

S̃ = C11 + C12 − C21 + C22 (6.103)

for a system of two spins with correlations Ckl = E [(ak · s(1))(bl · s(2))] along measurement
directions ak and bl. Statistically, any locally realistic theory with independent measurement
selections, see the subsection Bell-separability 6.5.3 for more details, with possible single
particle outcomes ±1 has to fulfill the inequalities

|S| ≤ 2, |S̃| ≤ 2 . (6.104)

Quantum mechanics predicts a violation of these inequalities with a maximum upper bound
of 2

√
2 > 2 [Cir80] for specific choices of measurement angles.

The inequalities (6.104) in the stochastic model for the singlet, the separable and the
partially entangled model (ϵ = π/8, ϕ = 0) are analyzed for S from equation (6.102) with
measurement angles a1 = 0, a2 = 2δ and b1 = δ, b2 = 3δ. The triplet state is analyzed for
S̃ (6.103) with measurement angles a1 = 0, a2 = 2δ and b1 = δ, b2 = −δ. The numerical
correlations are approximated by counting the number of coincidences of the particle pairs

Ckl ≈
1

Ntot
(N++ +N−− −N+− −N−+) (6.105)

where Ntot is the number of sample trajectories. Figure 6.21 shows the numerically calcu-
lated values of |S| and |S̃| as a function of the angle δ for Ntot = 105. The stochastic singlet
and triplet model violate the CHSH boundary set by 2 for a range of angles δ, whereas the
separable model cannot exceed the boundary. The plot also shows that partially entangled
states, as exemplified by the circles in magenta, can violate the CHSH inequality. Again,
this emphasizes that the velocity fields have to be non-local to describe violations of Bell or
CHSH inequalities.

Concluding remarks

In summary, the stochastic model of a spinning top allows a consistent stochastic description
of the EPRB with spins as continuous random variables contrary to the intrinsic property of
a constant and discrete spin in standard quantum mechanics. Before the measurement, the
spin fields of the particles may depend on the configuration of the two-particle system. The
measurement leads to joint spin distributions, which depend on the chosen measurement
axes and the configuration variables of both particles which lead to a clear violation of the
Bell (CHSH) inequality. The spin components along the measured axes approach discrete
values.

The drawback is that the underlying hidden variables, i.e., the stochastic positions and
orientations of the particles, allow non-local changes due to the velocity fields. The origin
in the stochastic formalism lies mainly in the postulate of a conservative Brownian motion
which leads to specific dependencies between the forward and backward processes, i.e.,
the noise terms of the forward-backward processes are correlated to the osmotic velocity
and its position. The physical explanation for such a specific correlation remains baffling.
Gaeta [Gae93] suggested considering the system of particles being in permanent interaction
with the “background noise field”, which then produces the quantum phenomena. Hence,
within the formalism of the QHE one needs the violation of statistical completeness, i.e.,
violation of statistical independence of the variables of the two particles. Although there is
no physical interaction this leads to correlated changes on one of the particles depending on
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the properties of the other due to the wonders of the osmotic velocity field associated to the
background field interaction.

The findings in this section align with those discussed by Faris [Far82]. The study ex-
amined continuous random variables on SU(2) derived from the covering’s group repre-
sentations, including spin measurements and correlations. However, the analysis at hand
is focused on the underlying physical picture, especially on the changes of the spins and
positions during the measurements. Thereby, it is noted that the analysis presented in this
report also shares similarities with other causal descriptions of quantum mechanics, notably
Dewdney’s work in the 1980-90s, e.g., see [DHKV88, Hol95], on spin measurements, which
served as inspiration for some of the plots. Notably, this discussion’s unique aspect is using
solutions to the QHE for spinning particles to deduce the velocity fields.
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Chapter 7

Conclusion

The stochastic quantization associated with the Quantum Hamilton equations (QHE) can
be summarized as follows: One begins by formulating the classical Lagrangian and sub-
sequently replaces the velocity with the quantum velocity. Then, by searching for critical
points of a stochastic Hamiltonian corresponding to the action function, we end up with
kinematic and dynamic stochastic differential equations for the position and the momen-
tum of the stochastic process.

The QHE are embedded into Nelson stochastic mechanics, sharing the fundamental
quantities of stochastic mechanics. In that context, the role of the velocity fields, the con-
nections to other similar interpretations of quantum mechanics, and the criticisms and con-
troversies with them were addressed. The thesis discussed the variational principles of
stochastic mechanics, including the quantum Hamilton principle. This is reformulated as
a stochastic optimal control problem, ultimately resulting in the derivation of the QHE.
These stochastic differential equations can be solved numerically, leading to results in per-
fect agreement with standard quantum mechanics.

The thesis extends the QHE to describe stochastic processes on manifolds, revealing the
emergence of second-order terms in the drifts due to the stochastic nature of the system.
The specific application of the hydrogen atom in curvilinear coordinates shows how these
second-order terms explain the stability of the ground state, for example. Additionally, the
QHE and the partner potentials in the SUSY approach determine the excited spectrum using
symmetries analogous to classical mechanics.

Furthermore, the thesis discussed a model of a spinning object within the framework of
the QHE, demonstrating the emergence of the familiar quantum spin states. This is verified
through the calculation of expectation values. A key distinction between this model and
standard quantum mechanics is the assumption that the quantum object has a randomly
changing direction, leading to stochastic and continuous changes in the spin components
over time, in contrast with the quantized values.

The thesis also investigated the measurement of spin. It showed that it is sufficient to
consider orientational averages of the rotating particle for treating spin coupled to position,
where, in this context, the Pauli equation is a suitable approximation. Moreover, the QHE
allow for visualizing particle paths, where the resulting ensemble averages lead to predic-
tions consistent with those of the Pauli theory. Additionally, the alignment of spin was
discussed, revealing that individual spin expectation values are not predetermined before
entering magnets. Instead, the spin expectations change due to an additional torque acting
on the spins alongside the precession caused by the magnetic field.

Finally, the analysis of a single Stern-Gerlach experiment was extended to a pair of parti-
cles entering two devices. It is demonstrated that if the system is not Bell separable, the spin
fields of the particles can not be described as independent of each other’s configuration vari-
ables, leading to non-local velocity fields for entangled states in agreement with predictions
from standard quantum mechanics. This leads to the violation of Bell’s inequality within
this model.
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Outlook

Considering the Stern-Gerlach experiment, the study of detection times [DD19] could en-
hance the discussion for spin. Furthermore, the search for systems where detailed orienta-
tional dynamics play a significant role beyond orientational averages would be a valuable
avenue of research. In that context, searching for bound states of a system of two spinning
particles would be interesting, for example.

Further, studies of the quantum Hamilton equations could focus on multi-particle sys-
tems, particularly in the search for an algorithm similar to the treatment in density func-
tional theory. It may be beneficial to approach quantum problems from a particle picture for
high-dimensional systems once again. This problem is then related to the development of a
reliable and fast algorithm for solving the QHE. Currently, the quantum Hamilton equations
are an extension of the analytical tools available in quantum mechanics, mainly used to re-
produce well-known quantum phenomena. However, they cannot be viewed as powerful
tools for solving most state-of-the-art problems in quantum mechanics yet.

Additionally, extending the QHE to Lorentzian manifolds is one of the next natural steps
to investigate relativistic phenomena like spin-orbit coupling in more detail. This could
be conducted in line with the recent work by Kuipers [Kui21b] related to quantum grav-
ity [Erl18]. It would also be valuable to investigate further the quantization in the varia-
tional principle, particularly the equivalence between an additional term in the stochastic
Hamiltonian and the ad-hoc quantization condition proposed by Wallström as suggested
in [Kui22].

Overall, this thesis hopefully contributes to a deeper understanding of the quantum
Hamilton equations and, more generally, to Nelson’s stochastic mechanics, its connection
to quantum mechanics, and its applications in various scenarios. In addition, the future di-
rections outlined here offer promising topics for further investigation and expansion of the
field.

134



Appendix A

Basic definitions of probability theory

The following chapter is dedicated to a few basic definitions of probability theory needed in
the thesis.

Definition A.1 Sigma algebra
A sigma algebra over a given set Ω is a set Σ(Ω) = {A|A ⊆ Ω} with the following prperties

• Ω ∈ Σ

• ∀A ∈ Σ : Ω\A ∈ Σ

•
⋃
i∈I

Ai ∈ Σ if Ai ∈ Ω∀i ∈ I

Definition A.2 Borel sigma algebra
Given a topological space (X ,S), a Borel set is a set that can be obtained by taking countable unions
and intersections and complements of the sets in the topology S. The collection of all Borel sets is the
Borel sigma algebra B(X ).

Definition A.3 Measurable space
Given a set Ω, a measurable space is a tuple (Ω,Σ), where Σ = Σ(Ω) is a sigma algebra over Σ.

Definition A.4 Probablity measure
Given a measurable space (Ω,Σ), a probability measure is a function P : Σ → [0, 1], such that

• P(Ω) = 1,

• P (
⋃
iAi) =

∑
i P(Ai) for any countable collection {Ai ∈ Σ|i ∈ N} of pairwise disjoint sets.

Definition A.5 Borel measurable function
Given two topological spaces T and R, a function f : S → R is called Borel measurable, if
f−1(U) := {x ∈ T |f(x) ∈ U} ∈ B(S) ∀U ∈ B(R).

Definition A.6 Random variable
A S-valued random variable X : (Ω,Σ,P) → (S,B(S)) is a measurable function on a given proba-
bility space (Ω,Σ,P) with a measurable space (S,B(S)). X(ω) denotes a sample or an outcome for
an event ω ∈ Ω.

Definition A.7 Distribution
A random variable X : (Ω,Σ,P) → (S,B(S)) induces a probability measure µX = P ◦ X−1 on
B(T ).

Definition A.8 Expectation value
For an integrable random variable X : (Ω,Σ,P) → (S,B(S)), i.e., the Lebesgue integral∫

Ω
|X(ω)|dP(ω)
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converges, and a smooth function f ∈ C∞(S), the expectation value of f(X) is denoted by

E[f(X)] =

∫
Ω
f [X(ω)] dP(ω) . (A.1)

If the function f is Borel measurable and a scalar function f : S → R, then the expectation
is calculated as follows

E[f(X)] =

∫
S
f(x)dµX(x) , (A.2)

where dµX is the distribution of X on S.

Definition A.9 Probability density on a manifold
Given a Manifold M with a Riemannian metric g, a Borel-measurable function ρX : S → R+ is a
probability density for an integrable random variable X : Ω → S as defined above, for all B ∈ B(S)
there is

µX(B) =

∫
B
ρX(x)

√
|det g(x)|dx . (A.3)

Definition A.10 Independence
Two random variables X and Y defined on a probability space (Ω,F ,P) are said to be independent if
for any Borel subsets A and B of Ω, we have

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Definition A.11 Filtration
A forward (backward) Filtration is family F = {Ft|t ∈ I} on a measurable space (Ω,Σ,P) with an
index set I ⊂ R, where {∅,Ω} ⊂ Fs ⊂ Ft ⊂ Σ for all s > t ∈ I (s < t ∈ I).

Definition A.12 Adapted stochastic process
A stochastic process (Xt) : I × (Ω,Σ,P) → (S,B(S)) is adapted to a Filtration F on the given
measurable space (Ω,Σ,P)

Definition A.13 Markov Process
A stochastic process (Xt) : I × (Ω,Σ,P) → (S,B(S)) is a Markov process, if it is adapted to the
forward filtration F such that

E[Xt|Fs] = E[Xt|Xs] ∀s < t ∈ I.
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Appendix B

Numerical solution of stationary
quantum Hamilton equations

The determination of stationary solutions to the QHE (3.52) requires a method for solv-
ing coupled FBSDEs with three unknown stochastic processes Xt, ut, Πt in Rd, Rd, and
Rd×d. The primary objective is to find the optimal feedback control u(x) associated with
these stochastic processes (Xt, ut,Πt). Several approaches have been suggested in the lit-
erature [MY99, MT07, BS12], most of which are based on iterative schemes. Some of these
methods are studied in detail in [Bey18], where the starting point is an initial estimate for
the osmotic velocity u(0)(x) ≈ u(x) and use it for the equation concerning Xt. The forward
equation is then solved, and the new u(1)(x) is calculated. This cycle is repeated by replacing
u(0) with u(1) until convergence criteria are met.

To solve a system of coupled FBSDEs, a two-step scheme is needed: (1) solution methods
for the forward SDE and (2) solution methods for the backward SDE. The forward integra-
tion is achieved by discretizing the time axis π = {ti|0 < t1 < · · · < tm = T}. A variety of
forward step schemes can be used, such as the Euler-Mayurama scheme with a convergence
order of 1/2, which is the simplest one. The approximated solution regarding the chosen
time partition is denoted by Xπ

ti , with constant time step ti+1− ti = ∆t. Here, π is used as an
index to clarify that this is the approximated solution regarding the chosen time partition.
Additionally, we denote ∆W+

ti
=W+

ti+1
−W+

ti
as the Wiener increments.

On the other hand, the solution to the backward stochastic differential equation (BSDE)
coupled to a forward stochastic differential equation (FSDE) in (3.52) is quite complicated.
Evaluating the BSDE directly often involves a two-step process: first, a time discretization
is performed, which includes a reformulation via conditional expectations, and second, an
estimation of the conditional expectation is made [BT04]. Directly evaluating a BSDE us-
ing this two-step scheme requires the same partition, denoted by π. The Euler-Maruyama
method for the backward equation in the j-th iteration is given by

uπ,j(Xπ,j
T ) = uπ,j−1(Xπ,j

T ),

Ππ,jT = 0,

u(Xπ,j
ti

) ≈ uπ,jti = uπ,jti+1
− 1

m̃
∂xV (Xπ,j

ti
)∆t− 1

m̃
Ππ,jti ∆W−

ti
, (B.1)

where ∆t > 0 and the backward Wiener increments ∆W−
ti

= W−
ti+1

−W−
ti

. There are two
unknown processes: Πt and ut. At this stage, we use the conditional expectation with respect
to Pti , where (Pti)ti≥0 is the filtration generated by the forward process Xπ,j

ti
up to time ti.

Then, if
(
ft
)
t≥0

,
(
g(Xπ

t )
)
t≥0

⊂ Rn are adapted to (Ft)t≥0, we can write

E
[
fti∆Wti

∣∣Pti] = E
[
fti∆Wti

∣∣Xti

]
= 0, (B.2)

E
[
g(Xπ

ti)
∣∣Pti] = E

[
g(Xπ

ti)
∣∣Xπ

ti

]
= g(Xπ

ti), (B.3)
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where we used the Markov property of Xπ
ti . Since the stochastic process Πt must be adapted

to the stochastic process, it is possible to avoid the calculation of Πt. Specifically, taking the
conditional expectation in (B.1) with respect to Pti yields

uπ,jti = E
[
uπ,jti+1

∣∣Xπ,j
ti

]
− ∂xV (Xπ,j

ti
)∆t . (B.4)

An alternative method to calculate Ππ,jt is through conditional expectation. This allows for
computing the matrix elements km of Ππ,jt using conditional expectation as follows

Ππ,jkm,ti =
1

∆t
E
[
uπ,jk,ti+1

∆W+
m,ti

∣∣Xπ,j
ti

]
. (B.5)

Equations (B.4) and (B.5) rely on numerical estimation of conditional expectations, which
is often a critical aspect in solving coupled FBSDEs or BSDE directly. This issue has been
widely discussed in mathematical finance over the years, as seen in the literature [BD07,
JYC09]. In this work, the authors propose using a least-square Monte Carlo method, ini-
tially presented in [LS01] and later expanded upon in [GLW+05, BS12]. This method aims
to provide the best estimate through least-square minimization. It is achieved by minimiz-
ing the expectation of the square of the difference between an admissible function and the
considered stochastic variable over the set of admissible functions.

To numerically determine the conditional expectations, additional expansions and ap-
proximations are necessary. First, a number of forward paths, denoted by an index l, must
be generated for each iteration step, typically N sample paths. For clarity, we will omit the
indices for partition and iteration step in the following equations. In [LS01], it is demon-
strated that the conditional expectation at time step ti can be expressed as a linear combina-
tion of Fti-measurable functions. Therefore, in the second step, a functional basis must be
selected for numerical estimation. In this work, a multidimensional step-function u(x) with
L (hyper-)cubes or intervals Ij in space within the range [a, b] =

⋃d
i=1[αi, βi] =

⋃L
j=1 Ij ⊂ Rd

was chosen as the functional basis [BS12]. This yields for the l-th generated sample path

Πlkm,ti ≈
1

#(X l
ti+1

)∆t

N∑
n=1

δ(X l
ti −Xn

ti+1
)unk,ti+1

∆Wn
m,ti (B.6)

where the first subscript k is the row number and the second m is the column number of
the matrix Π. The function δ gives 1 if both positions X l

ti , X
n
ti+1

are in the same interval and
otherwise 0. The cardinality #(X l

ti+1
) indicates the number of times allN sample paths visit

the interval Ij ∋ X l
ti at step ti. Therefore, this estimate is proportional to the average over all

products of the velocity from the future time step ti+1 with the Wiener increment, where the
position of the particle at ti+1 falls within a certain interval that overlaps with the position
of particle l at ti. Similarly, for (B.4) there is

ulti = E
[
ulti+1

∣∣X l
ti

]
− ∂xV (X l

ti)∆t

≈ 1

#(X l
ti+1

)∆t

N∑
n=1

[
δ(X l

ti −Xn
ti+1

)unti+1

]
− ∂xV (X l

ti)∆t. (B.7)

At each iteration step, the estimate of the conditional expectation is required as per (B.5)
or (B.4). At the end of an iteration step, all ulti in the same hyper-cube with respect to X l

ti
are averaged for all l ∈ {1, . . . , N} and i ∈ {0, . . . , nT − 1}, allowing the next iteration to
start with the previously calculated step function u(x). The choice of N , L, and nT must
be carefully considered, depending on the time partition ∆t. For a detailed overview of
the convergence criteria related to the numerical estimation of the conditional expectation,
please refer to [BS12]. For the unidimensional case, typical values are N ∼ 104, 50 ≤ nT ≤
500, and L ∼ 1000. In higher dimensions, the number of intervals L must be significantly
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reduced due to the exponential increase in d. This requires higher values for N and nT and,
therefore, more computational effort.

In summary the iteration scheme including the initial and final values for the used ap-
proach to calculate the approximation of Xπ and uπ(Xπ) concerning the partition π is given
below.

Iteration method

0 Set uprev(x) ≡ 0.

1 Set uπprev = uπnew and use uπprev to generate N paths (index l) with nt time steps

Xπ,l
0 = x0

Xπ,l
ti+1

= Xπ,l
ti

+ uπprev
(
Xπ,l
ti

)
∆t+ σ∆Wti . (Euler-Mayurama)

2 Integrate the BSDE numerically, e.g., with the help of conditional expectation ac-
cording to (B.7)

uπ,l(T ) = uπprev
(
Xπ,l(T )

)
uπ,lti =

1

#(Xπ,l
ti+1

)∆t

N∑
n=1

[
δ(Xπ,l

ti
−Xπ,n

ti+1
)uπ,nti+1

]
− ∂xV (Xπ,l

ti
)∆t .

3 Average over all values of
{
uπ,lti |1 ≤ l ≤ N, 0 ≤ i ≤ nT − 1

}
w. r. t. the positions{

Xπ,l
ti

|1 ≤ l ≤ N, 0 ≤ i ≤ nT − 1
}

of the sample paths

unew(x) = ⟨uπ,·(t·)⟩cube .

4 If
∑

i |unew(xi)− uprev(xi)| > ε go to 1.
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Appendix C

Basics of geometry

A vector in Cartesian coordinates x ∈ Rn can in general parameterized by an array of pa-
rameters qi denoted as q ∈ Rn, where x = x̃(q). Their curves are related by the metric tensor
G(q) = JT (q)AJ(q) ∈ Rn×n (

dx

dt

)2

=
dqT

dt
G(q)

dq

dt
(C.1)

where J is the Jacobian matrix

J(q) = (∂1x, ..., ∂nx) (C.2)

and A is a diagonal matrix that scales the distances for the different coordinates. In the
coordinate formulation physicists often use the usual tensor notation gij for the metric G(q)
and use Einstein’s sum convention. Then the inverse of the metric G−1(q) = gij .

In the case of m-dimensional manifolds M ⊂ Rn, the array of parameters denoted as
a vector q ∈ Rm leads then to a metric tensor with m2 entries. A m-dimensional manifold
M is a subset of Rn that can be covered in full by charts ϕi : Rm → M , i. e. some lower
dimensional generalized vector q ∈ Rm in the flat Euclidean space may represent the pos-
sible non-flat subset of Rn. While distances on a surface are measured with the metric, the
changes of direction of a curve on a surface in comparison to a straight (Euclidean) line are
related to the curvature of a hyper-plane M . The curvature in general depends on the point
of the surface as well as the direction and in general is given in the form of the Riemannian
curvature tensor

Rijkl = −∂lΓijk + ∂kΓ
i
jl − ΓmkjΓ

i
ml + ΓmjlΓ

i
mk . (C.3)

Here the Christoffel symbols of the second kind Γkij are introduced

Γijk =
1

2
gil(∂kglj + ∂jglk − ∂lgjk) . (C.4)

Directly related to Rijkl is the Ricci curvature Rjl = Rijil and the scalar curvature R = gjlRjl.

The basis vectors ei = ∂ix form a tangent hyper-plane at each point p ∈ M , denoted by
TpM and w. r. t. to the Euclidean inner product

ei · ej = gij . (C.5)

The gradient ∇q of a function f is calculated as

∇qf = gij
∂f

∂qj
ei (C.6)
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and the divergence of a vector field F = Fie
i on M

∇ · F =
1√
det g

∂

∂qi

(√
det gFi

)
. (C.7)

The divergence and the gradient are connected via

(∇f, F ) = −(f,∇ · F ) (C.8)

where (f, h) =
∫
Rd f(q)h(q) det(g)dq, F is a vector field on M and the scalar function f has

compact support on M or is rapidly decaying to zero outside a compact region. Addition-
ally, they define the Laplace-Beltrami operator ∆M , often referred to as Laplacian,

∆Mf = ∇ · (∇f) = 1√
det g

∂i

(√
det(g)gij∂jf

)
= gij

(
∂ijf − Γkij∂kf

)
. (C.9)

In the case of the flat Cartesian coordinates in Rn the metric is diagonal gij = gij = δij
and there is no curvature and thus Γkij = 0 for all i, j, k. For a vector field F , one usually
considers the Laplace-Beltrami-de Rahm operator

(∆̃MF )
j = ∆MF

j +RjiF
i (C.10)

which includes the Ricci curvature tensor Rij in local coordinates.

142



Appendix D

The rotation group SO(3)

D.1 Relation of SO(3) to SU(2)

The classical description of rotation is connected to the group of rotations in R3

SO(3) = {R ∈ R3×3|RTR = I,detR = 1} .

SO(3) is a Lie group, which is a closed subgroup of invertible linear transformations. The
Lie algebra so(3) is its associated vector space with the Lie Bracket [·, ·]. so(3) is the tangent
space at the identity of the Lie group, and it is the structure that locally determines the
Lie group. In this specific case, the elements of so(3) consist of all skew-symmetric 3 × 3
Matrices and represent the angular velocities associated with the orientation of the body
(just like velocity is related to the position of a body). By representing them as vectors
ω = (ω1, ω2, ω3)T via the right-hand rule, the Lie bracket is the cross product. The relation
between a matrix Ω ∈ so(3) and ω ∈ R3 is given by

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = Ω

with ω × v = Ωv for v ∈ R3. Since this representation in R3 is isomorphic to the skew-
symmetric matrices, the Lie group SO(3) is a three-dimensional manifold. Thus, the repre-
sentation of SO(3) needs at least three parameters. Euler was the first to show that any ro-
tation in 3-space can be represented with three consecutive (intrinsic or extrinsic, or mixed)
rotations along the axes. This is helpful for analytical reasons. In application, one often
uses unit quaternions - having four parameters plus the additional unity constraint - be-
cause there are no singularities like when dealing with Euler angles. In addition, two dif-
ferent quaternions represent the same rotation in SO(3), so one has to allow only one-half
of it to have a 1-to-1 correspondence. As a third example, one may use an axis with unit
vector eϑ and an angle ϑ. Then the vector ϑeϑ is the angle-axis representation of a rota-
tion. In the latter case the corresponding rotation in SO(3) is given by the exponential map
exp(ϑeϑ) = I+ sinϑ[eϑ]× + (1− cosϑ)[eϑ]

2
×, were the mapping is not unique, cf. a π rotation

around axes ±eϑ.
The symmetry group of a fermion in quantum mechanics is the Lie group of unitary

transformations in C2

SU(2) = {A ∈ C2×2|A∗A = I, detA = 1} .

Its Lie algebra su(2) is isomorphic to so(3), i.e., there is a one-to-one representation of el-
ements of the algebras. That is the reason why there is the spinning ball analogy when
describing a particle like the electron. On the other hand, SU(2) is only locally isomorphic to
SO(3) - in the sense of infinitesimal rotations. Technically, SU(2) is the universal covering
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group of the rotation group, which simply states that the space SU(2) is a simply connected
space that covers SO(3) with a covering map. This map is 2 to 1, because two elements
of the unitary group can represent an element of the rotation group. Since we already had
a 2-to-1 representation in the case of unit quaternions to rotation matrices in 3-space, the
quaternions are actually a representation of SU(2). In quantum mechanics, the irreducible,
unique representations of SO(3) are only able to describe bosons, whereas those of SU(2)
can describe fermions, see, for example, [KR27, BH50, Wal94].

To explain why the rotation group in R3 is not simply connected, recall the axis-angle
representation ϑeϑ. The rotation angle can vary between 0 ≤ ϑ ≤ π. As already pointed out,
for ϑ = π, the unit vectors ±eϑ give the same rotation. So SO(3) can be pictured as a ball
with radius π. Every point in the ball represents a rotation along the axis going through that
point and the origin by the angle, which equals the distance of the point from the origin.
The antipodal points on the ball’s outer shell give the same rotations. If you go from one
point from the shell to the antipodal point, the path forms a loop. It is not possible to shrink
this path to one point without tearing the loop in parts.

Things change if the suggested loop fulfills a 4π rotation, i.e., two complete rotations.
This path is contractable. In general, it follows that if there is a closed loop with even rota-
tions, the loop can be shrunken to a point. Otherwise, it is not possible. Since SO(3) is not
simply connected, two distinct paths cannot be smoothly transformed into another in gen-
eral, so one has to keep track if a path is in one of the angle classes of even or odd multiples
of 2π. Hence, one could include the “full” topology associated with the orientational state
in SU(2) instead of using the geometric orientation SO(3) only [DGR05].

To avoid this multi-valuedness in physics, a Spin group spin(3) is defined such that it is
the smallest simply connected space, including SO(3). Here spin(3) = SU(2) is the univer-
sal covering space of SO(3) and Z2 = {−1, 1} is the fundamental group of SO(3). i.e., the
kernel of the group homomorphism φ : SU(2) → SO(3) is Kernφ = {±1SU(2)}. This means
that there is an isomorphism between SU(2) and SO(3)/Z2, so a 2-to-1 correspondence. In a
simply connected group, every path is only determined by its endpoints (when considering
unitary transformations). An element A of SU(2) can be represented by

A = aI2×2 + i(b, c, d)T · σ a, b, c, d ∈ R

where σ are the Pauli matrices. Thus, it can be seen as the sphere S3 = {(a, b, c, d) ∈ R4| a2+
b2 + c2 + d2 = 1}. Similar to the axis-angle representation, we can also write A(ϑeϑ) =
exp(−iϑ2 eϑ · σ) = cos ϑ2 − ieϑ · σ sin ϑ

2 . If we set ϑ = 2π then A → −A but the map elements
corresponding to A and −A in SO(3) are the same.

D.2 Parametrizations of SO(3)

The choice of charts or parametrization of a group element of SO(3) is huge, see for exam-
ple [Chi00]. One can describe rotation around a certain axes in space which may change
with the direction of translation (velocity). One may use the matrix exponential, which is
useful in the limit of infinitesimal motions. Then the element in tangent space (v, [ω]×) ∈
TM = R3 × so(3) may be represented by a vector (v, ω) ∈ R3 × R3 where the elements of
the Lie algebra so(3) are anti-symmetric matrices with vanishing diagonal, so it is common
to use only 3 parameters for the rotation itself.

Consider a rotation R(t) depending on time t describing the orientation of a rigid body.
If x0 is a fixed vector in the body frame the vector in the lab frame x(t) = R(t)x0 and since
RRT = I there is x0 = RT (t)x(t). The change of rate of x in the lab frame is

ẋ = Ṙx0 = ṘRTx = ωL × x . (D.1)

Here it is used that ṘRT is antisymmetric and the definition of the instant angular velocity
vector in the lab frame ωL = [ṘRT ]×. The angular velocity in the rotating body fixed frame

144



is ωR = RTωL. L and R indicate the angular velocity where Ṙ is multiplied from the left
(L) or right (R) w. r. t. RT . In terms of the parameterization x(t) used for the rotation R(t) =
R̃(x(t))

ωL =
(
[(∂1R̃)R

T ]×, [(∂2R̃)R
T ]×, ...

)
q̇ = JL(R̃(x))q̇ . (D.2)

In the same way the body fixed angular velocity is written ωR = JR(R̃(x))ẋ with the Jacobi
matrix defined for the right multiplication.

Euler angles

The thesis will mainly use Euler angels in the zxz-convention, i.e., the rotation is carried
around body fixed axes z′ then x′ and z′ again consecutively. Written in terms of the rotation
matrix R̃(ϑ, φ, χ) = Rz(φ)Rx(ϑ)Rz(χ), the Jacobians are

JL(ϑ, φ, χ) = (Rz(φ)ex, ez, Rz(φ)Rx(ϑ)ez) =

cosφ 0 sinφ sinϑ
sinφ 0 − cosφ sinϑ
0 1 cosϑ

 (D.3)

and

JR(ϑ, φ, χ) = R̃TJL = (Rz(φ)ex, Rz(φ)Rx(ϑ)ez, ez) =

cosχ sinϑ sinχ 0
sinχ sinϑ cosχ 0
0 cosϑ 1

 . (D.4)

The inverse matrices read

J−1
L =

 cosφ sinφ 0
− cotϑ sinφ cosφ cotϑ 1

sinφ
sinϑ − cosφ

sinϑ 0

 and

J−1
R =

 cosχ − sinχ 0

− sinχ
sinϑ

cosχ
sinϑ 0

− cotϑ sinχ − cosχ cotϑ 1

 . (D.5)

In general, the angular velocity of a rigid body can be calculated via the rate of change of
the local coordinates (or parameters) [Chi00] ωi = Jij(R(x))ẋj with the help of the Jacobian
J. R(x) is the rotation matrix in terms of the parameters xi. The integral over SO(3) is then∫

SO(3)
f(R)dR =

1∫
Q |det(J(R(x)))|dq

∫
Q
f(R(x))| det(J(R(x)))|dq (D.6)

with the parameter space Q. In the case of the euler angles used within the thesis this leads
to

∫
SO(3)

f(R)dR =
1

8π2

2π∫
0

π∫
0

2π∫
0

f(ϑ, φ, χ) sinϑdφdϑdχ . (D.7)

The thesis uses a prime for body fixed quantities, i. e. ω′ = ωR, and unprimed for the lab
frame if not further specified.

Quaternions

Due to the singularity problems with 3-parameter representations of rotations, i. e. also the
Euler angles, quaternions may be numerically superior. William R. Hamilton generalized
the concept of complex numbers to a higher dimension in the sense that the imaginary part
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is has a basis of three {i, j, k} with i2 = ijk = −1. They are often denoted as q = q0 + iq1 +
jq2 + kq3 = (q0, q) where q = iq1 + jq2 + kq3 is subsumed as a vector and is a so called pure
quaternion. For two quaternions q and p the multiplication gives

qp = (q0, q)(p0,p) = (q0p0 − qTp, q0p+ p0q + q × p) . (D.8)

Due to the cross product it is apparent that qp ̸= pq. The inverse of a quaternion is defined
as q−1 = q∗

qq∗ . The constraint of a unit norm |q|2 = qq∗ = (q0, q)(q0,−q) =
∑3

l=0 q
2
l = 1 leads

to the S3 manifold, the quaternion sphere in R4. Then for a pure quaternion v = (0,v) the
multiplication

v′ = (0,v′) = qvq∗ (D.9)

leads to a new vector v′ with |v′| = |v| that has been rotated. The corresponding rotation
about an axis with unit vector n by an angle ϑ is q = (cos ϑ/2,n sin ϑ/2). Considering rotations
in R3 with quaternions in (D.9) we see that q and −q lead to the same outcome v′. Thus there
is a 2-to-1 representation in the case of rotation by unit quaternions. In physics one usually
encounters the Pauli matrices σ̂i ∈ SU(2) ⊂ C2×2 where each Pauli matrix can be related to
one basis of the imaginary part {i, j, k}. In the same manner a rotation of a position vector,
represented as X = x1σ1 + x2σ2 + x3σ3, by a unitary matrix U ∈ SU(2) is described as

X ′ = UXU † . (D.10)

Here U † is the complex conjugate and transpose of U . Again to each rotation R ∈ SO(3)
correspond two unitary matrices ±U ∈ SU(2).

The Jacobian matrices read (q0, q1, q2, q3)

(
0
ωL

)
= 2


q0 q1 q2 q3
−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 q̇ and J−1
L =

1

4
JTL . (D.11)
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Appendix E

The role of the osmotic kinetic energy
terms

In the absence of a magnetic field, the osmotic velocity occurs in the kinetic part of the
quantum Lagrangian L = T − V

L =
m

2
v2q +−V =

m

2
(v2 − u2) +

Im
2
(ω2
v − ω2

u)− i(mv · u+ Imωv · ωu)− V . (E.1)

Let us neglect the angular velocity at first and focus on the translation only. The minus sign
in the osmotic kinetic energy term is often interpreted as an additional contribution to the
potential. In fact, this term can be related to the quantum potential VQ = − ℏ2

4m
∆ρ
ρ , as used

in fluid dynamics and the Pilot-wave theory [Tak52, Boh51]. The quantum potential may be
written in terms of the osmotic velocity

VQ = −m
2
u2 − ℏ

2
∇ · u , (E.2)

which arises in the corresponding stochastic Hamiltonian (4.20) to the quantum Lagrangian
when the costate momentum process in the flat space is replaced by the maximum principle
P = m(v − iu) and the costate matrix by the Jacobian of the momentum Π = σ∇(v − iu).
The latter follows from the comparison of the SDE of the costate (4.22) to the SDE for the
feedback field m(v− iu) by applying the complex Itô formula. The real part of the stochastic
Hamiltonian then reads

ℜ{H} =
m

2
v2 − m

2
u2 − ℏ

2
∇ · u+ V =

m

2
v2 + VQ + V (E.3)

The inclusion of the spin to this problem goes by analogy. An additional spin quantum
potential

VQs = −Im
2
ω2
u −

ℏ
2
∇θ · ωu (E.4)

appears in the stochastic Hamiltonian. These two terms in the Hamiltonian are thus relevant
to the time evolution of the stochastic process. The osmotic velocity takes the role of the
quantum potential. This leads to the partial differential equations for the momentum

∂tv + (v · ∇)v + (ωv · ∇θ)v

−(u · ∇)u− ℏ
2m

∆u−(ωu · ∇θ)u− ℏ
2m

∆u− ℏ
2Im

∆θu

= −γIm
m

∇(ωv ·B) (E.5)
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which can be related to classical time derivative dcl
dt = ∂t + (v · ∇) + (ωv · ∇θ) of the current

velocity as

dclv

dt
= −γIm

m
∇(ωv ·B)− 1

m
∇VQ(u)−

1

m
∇VQs(ωu) (E.6)

where it can be shown that

1

m
∇VQ(u) = (u · ∇)u+

ℏ
2m

∆u, (E.7)

1

m
∇VQs(ωu) = (ωu · ∇θ)u+

ℏ
2Im

∆θu . (E.8)

This equivalence of the PDE associated with the QHE for the spinning particles to the de-
scription in fluid mechanics with the quantum potentials, see, e.g., chapter 10.3 in [Hol95], is
given if the velocity fields are gradients of a scalar function S (for the current velocity) and
of the logarithm of the probability distribution ln ρ (for the osmotic velocity). In the book
of Pena [dlPCVH15] they use similar definitions for a classical derivative Dc = dcl

dt and an
additional stochastic derivative Dsu = − 1

m∇VQ(u).
In more detail, one may consider the Hamilton-Jacobi-like equation only, which is the

real part of (6.75) The quantities VQ and VQs arise herein from the osmotic part of the kinetic
energy E[m2 u

2] = E[VQ] and E[ Im2 ω
2
u] = E[VQs ] and are the so-called quantum (spin) poten-

tials. In the Pilot-wave theory, they lead to the quantum phenomena and are also present
without any external field. Hence, in the stochastic theory, all of this information is stored in
the contributions associated with the osmotic velocity. Something similar holds for the an-
gular velocities ωv and ωu, where in the Hamilton-Jacobi-Bellmann equation of the angular
momentum

dclωv
dt

= γωv ×B − γḂ − 1

Im
∇θ(VQ(u) + VQs(ωu)) (E.9)

the additional quantities corresponding to the osmotic velocity appear. Therefore, it is vital
to note that the equations (6.73) and (6.74) are strongly influenced by the general configura-
tion of the system, which also includes the preparation of the experiment and thus the initial
velocities.
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Appendix F

Superposition of solutions

This section addresses the combination of possibly multiple solutions in the theory of the
Quantum Hamilton equations. It differs from the linear superposition when dealing with
solutions to the Schrödinger equation. E. g., suppose that ψ1 and ψ2 are solutions to the
Schrödinger equation, then ψ = ψ1 +ψ2 is also a solution to the Schrödinger equation. Sup-
pose now that the quantum velocity fields vq1(t, x) and vq2(t, x) with associated probability
distributions ρ1(t, x) and ρ2(t, x) are two solutions to the QHE equation. Both velocities
solve the associated partial differential equation by applying the complex Itô formula (4.25)
to vqj (t, x). Comparing the drift terms yields the Nelson-Madelung-equations in complex
form (

∂t + (vqj · ∇)− iσ2
∆

2

)
vqj (t, x) = −∇V

m
(F.1)

where ∇ is the nabla and ∆ the Laplace-Beltrami(-deRham) [DG79] operator acting on
scalars and vector fields associated to the chosen metric. Note that the coupling to a vec-
tor field is omitted here for simplicity, but can be extended straight-forwardly to include the
coupling to a electromagnetic field, for example. A simple superposition of

ρnewv
q
new = ρ1v

q
1 + ρ2v

q
2 (F.2)

with ρ = ρ1 + ρ2 does not solve the QHE in general since (F.1) is not linear. An example is
the double slit experiment, where the velocities for each slit may be solved independently at
first and combined afterwards. With the simple addition of the two processes the quantum
interference pattern does not appear. The sum (F.2) is only approximately valid in cases
where the probability distributions ρ1 and ρ2 are well separated, i.e., ρ1(t, x) ≈ 0 for x ∈ M
where ρ2(t, x) ̸= 0. Hence, the combination of two known solution requires additional
terms. In general the newly generated velocity vqnew has to fulfil ρnewv

q
new =

∑
j
Cjv

q
j where

Cj = |cj |2ρj +
∑
k ̸=j

cjc
∗
k
√
ρkρje

−i(Sj−Sk)/ℏ . (F.3)

Here cj are complex constants with
∑

j |cj |2 = 1 and the scalar fields Sj(t, x) are the poten-

tials of the current velocity vj = ℑ
(
vqj

)
= 1

m∇Sj .1 The validity of summation with coeffi-

cients given in (F.3) may be verified by the superposition of wave functions ψj =
√
ρje

iSj/ℏ

corresponding to vqj , e.g., see equations (7) and (8) in [NK08].

1Note that the latter equation does not define the function Sj uniquely.
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Appendix G

Extension to multiple spins

Extending the quantum Hamilton theory of stochastic rigid bodies to multiple particles is
straightforward. We can start again with the classical Lagrangian for n particles with masses
m(k), charges q(k), inertias Im(k), Ic(k) and velocities v(k), ω(k)

L =

n∑
k=1

(
1

2
m(k)v

2
(k) +

1

2
Im(k)ω

2
(k) + q(k)v(k) ·A(k) − γIc(k)ω(k) ·B(k)

)
− V , (G.1)

where V is the sum of the external and all Coulombic interaction potentials of the particles.
In the model of rotating charged rotors, each particle k is subject to the fields A(k) and B(k)

depending on external fields and the fields generated by the dynamics of the other particles
in the system. The magnetic moment γIm(k)ω(k) generated by particle k at position x(k) ∈ R
interacts with the spinning particle j ̸= k at position x(j) via

VkjSI = −γIm(k)ω(k) ·B(j) (G.2)

where the field B(j), and the associated vector field A(j), is due to the magnetic moment of
particle j. The sum over j ̸= k in (G.2) leads to the effective field B(k) acting on particle k.

Setting up the stochastic Lagrangian associated to (G.1) with quantum (angular) veloci-
ties vq(k) (ωq(k)) in the quantum Hamilton principle leads to the corresponding QHE. Consider,
for example, the canonical momenta of particle k

dp(k) =

−∇(k)V + FLor
(k) − γIm(k)∇(k)

∑
j

ωq(k) ·B(j)

dt+ dA(k) +Πp(k)dW− (G.3)

ds(k) =

[
γs(k) ×B(k) +

ℏ
Im(k)

T(k)

]
dt+ s(k) ×Πs(k)dW− (G.4)

where W− is a 6n-dimensional stochastic process, Πp(k),Πs(k) ∈ C6n×3, FLor
(k) denotes the Lorenz

force depending on the quantum velocity vq(k) and T(k) is the additional torque term acting
introduced in equation (5.32) acting on particle k. The momentum equation (G.3), as well as
the spin dynamics (G.4), contains the classically expected coupling terms to other particles.
However, the coupling of the angular velocities, and with that, the particles’ spins, is not
only due to the classical coupling terms. This is studied in section 6.5 regarding the EPRB
paradox where the classical coupling terms are neglected. That spins system is highly cou-
pled due to the preparation of the entangled states where the probability distribution w.r.t.
to the orientation variables of the two particles is not factorizable, which leads to non-local
dependencies of the angular velocity fields.

Due to the complexity, a detailed discussion of these terms is not given here. However,
a remark on the dipole interaction is given in the following.
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Dipole-dipole interaction

The magnetic field generated by a magnetic moment M follows Ampère’s law for the corre-
sponding vector field ∇2A = −µ0J where µ0 is the vacuum magnetic permeability, and J is
the current of the rotating charge. For large distances compared to the size of the object, the
dominant term in the multipole expansion is the dipole vector field

Adip =
µ0
4π

M × x

|x|3 (G.5)

with magnetic field

Bdip =
µ0

4π|x|5 [3(M · x)x−Mx2] . (G.6)

Given (G.6), the spin-spin interaction in the limit of two separated magnetic dipoles mod-
eled as point particles enters the corresponding Lagrangian

VkjSI =
µ0γ(k)γ(j)
4π|xkj |3

(
ω(k) · ω(j) − 3(ω(i) · exkj )(ω(j) · exkj )

)
(G.7)

where xkj = x(k) − x(j). The magnetic moment interaction generally leads to a coupling of
position and spin, which is not trivial to solve in classical mechanics. If the distances are
large enough, the dipole interaction is small compared to the Coulomb interaction. The
magnetic interaction, however, dominates on short scales comparable to the size of nuclei.
Hence, it would be worthwhile to study if there are stable states in the stochastic theory of
two rotating charges in the non-relativistic limit. Unfortunately, this is beyond the current
scope of the numerical treatment regarding the QHE due to the dimensions of the problem.
Additionally, it is unclear if that would need an extension to relativistic theory.
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Appendix H

Spin orbit coupling in the hydrogen
atom

We consider the interaction between an electron’s spin and orbital angular momentum in a
central potential ϕ(|r|). This spin-orbit interaction is significant in relativistic equations of
quantum mechanics, such as the Dirac equation for a spin-12 particle and the Pauli equation.
To model this interaction in a semi-relativistic limit, we consider the nucleus moving relative
to the electron’s rest frame [Tho26, Fre26]. By applying a Lorentz transformation to the
electric field of the nucleus, denoted as E = −∇ϕ(|r|)er we obtain an effective magnetic
field at the electron’s position, given by Beff =

1
c2
v × E, up to first order in terms of v

c . It is
important to note that this approximation assumes the electron’s rest frame is non-inertial.
We also neglect a possible spin of the nucleus in the following. In principle, formulating a
Lagrangian for the particles interacting with the electromagnetic fields generated by their
motion, as demonstrated in [IKS15], would be necessary. However, such considerations lie
beyond the scope of this thesis.

The Lagrangian for this system may be chosen as

L =
m

2
v2 + eϕ(|r|) + Im

2
ω2 +

aSOC(|r|)
m

ω · l (H.1)

where the vector field A = 0, aSOC(|r|) = Icϕ′(|r|)
c2|r| and the orbital angular momentum is

defined as l = (r ×mv). The last term in (H.1) is the spin-orbit interaction. The transition
to the variational approach discussed in section 3.1 requires the replacement of the classical
velocities v, ω by the quantum velocities vq = v − iu, ωq = ωv − iωu. The corresponding
stochastic momenta follow from the maximum principle of the Hamiltonian defined in (4.20)

P = mvq + aSOC(|r|)(ωq × r)

S = Imωq + aSOC(|r|)(r × vq) ,
(H.2)

with shorthand P = Pt, S = St, .... The canonical angular momentum S above thus is the
sum of the dynamical eigenrotation and the orbital angular momentum.

The QHE concerning the canonical momenta read

dP =
[(
−eϕ′(|r|) + a′SOC(|r|)ωq · (r × vq)

)
er + aSOC(|r|)(vq × ωq)

]
dt+ P̃dW−

dS = aSOC(|r|) [S × (r × vq)] dt+ S × S̃dW−
(H.3)

where dW− ∈ R6 is the backward Wiener process and P̃ , S̃ are stochastic processes in
R3×6. Due to the coupling of translation and rotation, the SDEs at hand are not easily
solvable. However, the following quantity is conserved in the limit |v| ≪ c, i.e., it has a
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time-independent expectation value:

E[dS + d(r × P )] = O(
1

c4
) . (H.4)

Here r × P is the canonical angular momentum L = r × [mvq + aSOC(ωq × r)]. Thus, these
equations describe the conservation of the sum of the canonical orbital momentum and the
spin. This corresponds to the conservation of the total angular momentum operator ĵ = l̂+ ŝ
in the operator based formulation of quantum mechanics.
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