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Zusammenfassung 

Eine typische natürliche Alltagsszenerie umfasst eine schier überwältigende 

Fülle sensorischer Informationen. Unser Gehirn ist jedoch nur in der Lage einen 

begrenzten Teil dieses sensorischen Inputs simultan mit hinreichend großer Präzision 

zu verarbeiten. Aus diesem Grund müssen relevante Informationen priorisiert und von 

irrelevantem Input separiert werden um einen Überschuss an Information zu 

vermeiden. In diesem Zusammenhang spielt Aufmerksamkeit eine Grundlegende 

Rolle, da sie einen der grundlegenden Mechanismen darstellt, welcher uns hilft unsere 

Ressourcen auf die relevanten Aspekte eines Ereignisses zu fokussieren und 

irrelevanten Input dabei zu ignorieren. Wichtig ist hierbei, dass dieser 

Selektionsprozess auf Grundlage von räumlichen Gegebenheiten, nicht-räumlichen 

Stimulusattributen wie z.B. Farbe oder Bewegung, oder sogar aufgrund eines ganzen 

Objektes als holistischer Entität (d.h. als integriertes Ganzes aus seinen 

Einzelmerkmalen) erfolgen kann. Die Zielsetzung der vorliegenden Arbeit war es vor 

diesem Hintergrund zu untersuchen wie räumliche und merkmalsbasierte 

Selektionsmechanismen die perzeptuelle Verarbeitung im visuellen System 

beeinflussen. Darüber hinaus sollte in einem weiteren Experiment auch erforscht 

werden wie die Steuerung dieser Selektionsprozesse neuronal implementiert ist. 

In den ersten beiden Experimenten der vorliegenden Arbeit wurde mittels 

funktioneller Magnetresonanztomographie (fMRT; Experiment 1) bzw. mittels 

simultaner Elektro-/ Magnetoenzephalographie (EEG/MEG; Experiment 2) untersucht, 

wie die neuronale Verarbeitung sich bewegender transparenter Oberflächen durch 

merkmalsbasierte Aufmerksamkeitsallokation beeinflusst wird. Dabei sollte unter 

anderem überprüft werden ob die vom „Feature-Similarity Gain Model“ prädizierten 

multiplikativen Modulationen infolge merkmalsbasierter Aufmerksamkeitsallokation auf 

der Ebene neuronaler Populationsantworten nachweisbar sind. Zu diesem Zweck 

wurde in Experiment 1 ein Paradigma verwandt, in welchem die Aufmerksamkeit der 

Probanden auf eine von zwei möglichen Bewegungsrichtungen gelenkt wurde und die 

nachfolgend präsentierten „random-dot“ Stimuli dabei in ihrer Bewegungsrichtung und 

in ihrer Kohärenz variierten. Dies ermöglichte es den Einfluss von 

richtungsspezifischer Aufmerksamkeit auf die Verarbeitung von Stimuli 

unterschiedlicher Kohärenz zu untersuchen, welche sich entweder in oder 

entgegengesetzt zur attendierten Richtung bewegten. Die Ergebnisse zeigen, dass 

die Höhe der hämodynamischen Aktivierungen in hMT positiv mit der 

Bewegungskohärenz der Stimuli korreliert wenn die Bewegungsrichtung der Stimuli 
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attendiert wurde und spiegelte damit die Verhaltensperformanz der Studienteilnehmer 

wider. Bewegten sich die Stimuli jedoch entgegengesetzt zur attendierten Richtung 

waren auch die hämodynamischen Aktivierungen entgegengesetzt: Die Modulationen 

in hMT zeigten einen inversen Zusammenhang mit der Stimuluskohärenz. Dieses 

spezifische Aktivierungsmuster fand sich ausschließlich in hMT. Im Fundus des 

intraparietalen Sulkus (fIPS) und im Thalamus fand sich demgegenüber eine positive 

lineare Korrelation zwischen Aktivierungshöhe und Stimuluskohärenz welche 

unabhängig von merkmalsbasierter Aufmerksamkeit zu beobachten war. Attentionalen 

Kontrollstrukturen zeigten schließlich ein dem in hMT entgegengesetztes 

Aktivierungsmuster: Die höchsten Aktivierungen wurden infolge Stimuli niedriger 

Kohärenz beobachtet, d.h. sie korrelierten mit der jeweiligen Aufgabenschwierigkeit. 

Zusammengenommen unterstützen somit die Ergebnisse aus Experiment 1 die 

innerhalb des „Feature-Similarity Gain Models“ formulierte Annahme, dass 

merkmalsbasierte Aufmerksamkeit neuronale Aktivierungen auch auf 

Populationsebene in multiplikativer Weise moduliert. 

In Anlehnung an das erste Experiment wurde in Experiment 2 der räumlich-

zeitliche Verlauf merkmalsbasierter Aufmerksamkeitseffekte mittel EEG und MEG 

untersucht. Dabei war es die Aufgabe der Probanden auf die Bewegungsrichtung 

einer transparenten Oberfläche im linken visuellen Feld zu achten und eine kurzzeitig 

erhöhte Bewegungsgeschwindigkeit zu detektieren. Im rechten visuellen Feld wurde 

eine zweite transparente Oberfläche präsentiert welche sich periodisch in 

verschiedene Richtungen bewegte. Alle diese Stimulusbewegungen im rechten 

visuellen Feld waren dabei völlig Aufgabenirrelevant. Die durch diese Bewegungen 

ausgelösten ereigniskorrelierter Potentiale (EKPs) und Magnetfelder (EKMFs) wurden 

nun hinsichtlich ihrer Amplitude und Latenz miteinander verglichen. Dabei zeigte sich 

eine parametrische Negativierung der EKP- und EKMF-Amplituden im Zeitbereich 

zwischen 200 und 400 ms in Abhängigkeit der Ähnlichkeit der Bewegungsrichtung des 

evozierenden Stimulus zu jener des attendierten Stimulus. Somit zeigen diese Daten 

eine parametrische, richtungsselektive Modulation evozierter Potentiale infolge 

merkmalsbasierter, attentionaler Selektion. Damit liefern sie, wie schon Experiment 1, 

einen weiteren Beweis für die Gültigkeit des „Feature-Similarity Gain Models“ auf 

neuronaler Populationsebene und unterstreichen darüber hinaus die globale 

Wirksamkeit merkmalsbasierter Aufmerksamkeit. Allerdings zeigten die hier 

beschriebenen Modulationen eine relativ späten Beginn (~ 200 ms) im Vergleich zu 



 

v 

vorherigen Studien was möglicherweise auf die Aufgabenanforderungen bzw. die 

Stimuluseigenschaften zurückzuführen ist.  

 Im dritten Experiment wurde der Untersuchungsgegenstand um den Bereich 

der räumlichen Aufmerksamkeit erweitert. Um die funktionelle Beziehung zwischen 

orts-/ und merkmalsbasierter Aufmerksamkeit zu untersuchen wurden 

hämodynamische Modulationen zwischen Situationen verglichen, in welchen 

Aufmerksamkeit auf die räumliche Position eines Stimulus, eines seiner Merkmale, 

oder auf beides gerichtet war. Hierbei fanden sich die höchsten Aktivierungen wenn 

die Selektion auf der Stimulusposition beruhte, unabhängig von seiner 

Merkmalszusammensetzung. Geringere Modulationen zeigten sich für die 

merkmalsbasierte Selektion von Objekten die innerhalb des Aufmerksamkeitsfokus 

präsentiert wurden. Merkmalsselektive Aktivierungen für Stimuli die räumlich nicht 

attendiert waren konnten jedoch nur in bewegungs- jedoch nicht in farbsensitiven 

Arealen nachgewiesen werden. Zusammengefasst zeigen diese Daten, dass 

innerhalb der visuellen Domäne räumliche Aufmerksamkeit den effizientesten 

Selektionsmechanismus darstellt. Sie legen darüber hinaus Nahe, dass das 

Objektmerkmal „Bewegung“ ein besseres Ziel für die merkmalsbasierte Selektion 

eines Stimulus darstellt als seine Farbe.  

Das letzte Experiment der vorliegenden Arbeit (Experiment 4) widmete sich 

schließlich der Untersuchung der neuronalen Mechanismen, welche die volitionale 

bzw. stimulusinduzierte Aufmerksamkeitsverschiebung zwischen Objekten bzw. 

räumlichen Koordinaten kontrollieren. Die Resultate dieses Experimentes zeigen, 

dass die verschiedenen Arten von Aufmerksamkeitsverschiebungen (willkürlich/ 

stimulusinduziert und räumlich/ objekt-basiert) alle ein gemeinsames Netzwerk fronto-

parietaler Areale rekrutieren. Dabei Unterschieden sich die verschiedenen 

Bedingungen lediglich in der Höhe ihrer Modulationen innerhalb verschiedener Teile 

dieses fronto-parietalen Netzwerkes: In dorsalen Arealen fanden sich die höchsten 

Modulationen wenn Aufmerksamkeit willkürlich kontrolliert wird, während ventrale 

Regionen ein entgegengesetztes Bild zeigten. Ähnlich wie im ventralen fronto-

parietalen Kortex fanden sich auch in Regionen des „Default-Mode-Network“ die 

höchsten hämodynamischen Antworten, wenn Aufmerksamkeit exogen getriggert 

räumlich umorientiert wurde, wohingegen sie mit einer Deaktivierung reagierten, wenn 

Aufmerksamkeit volitionaler Kontrolle unterlag. Zusammengefasst zeigen diese 

Ergebnisse, dass verschiedene Aufmerksamkeitsprozesse durch ein komplexes 

Zusammenwirken innerhalb eines einheitlichen Netzwerkes von ventralen und 
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dorsalen fronto-parietalen sowie „Default-Mode-Network“ Regionen gesteuert wird, 

wobei Verarbeitungsressourcen je nach Aufgabenanforderungen dynamisch innerhalb 

dieses Netzwerkes distribuiert werden können. 
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Summary 

The aim of the present thesis was to investigate how location-, feature-, and 

object-based attentional selection affects perceptual processing in the visual system 

and how these selection processes are controlled. Experiments 1 and 2 employed 

fMRI (Exp. 1) and EEG/MEG (Exp. 2) to investigate how activity elicited by motion-

stimuli is modulated by feature-based attention, thus testing the validity of the feature-

similarity gain model at the population level. The results from Experiment 1 show, that 

feature-based attention modulates hemodynamic activity in area hMT in a direction-

selective manner, while attentional control regions displayed the opposite pattern. In 

continuation of the first experiment, Experiment 2 revealed a parametric direction-

selective modulation of ERP/ERMF amplitudes by feature-based attention starting as 

early as 200 ms after stimulus-onset. In Experiment 3 the subject of investigation was 

extended into the spatial domain: Hemodynamic modulations were compared when 

attentional selection was based on a stimulus’ location, its constituent features, or 

both. The highest activations were observed when attentional selection was based on 

a stimulus’ spatial location. Relatively smaller modulations were observed when 

stimuli presented at the attended location were selected based on their constituent 

features, while for stimuli presented at unattended locations increased feature-

selective activity was only visible in motion- but not in color-sensitive regions. These 

data suggest that spatial attention appears to be the most efficient selection-

mechanism in vision, and indicate that a stimulus’ motion is more efficiently targeted 

by feature-based attention than its color. Experiment 4, finally, was conducted to 

elucidate the mechanisms of attentional control during voluntary and stimulus-driven 

attention-shifts between objects and locations. The results show that different types of 

shifts recruit a common fronto-parietal network, in which modulations only differ in 

magnitude. In dorsal fronto-parietal regions increased activity was observed during 

goal-directed orienting, while ventral fronto-parietal areas showed a partially opposing 

pattern. Similar to ventral fronto-parietal cortex, default-mode network regions showed 

the highest responses during stimulus-driven spatial reorienting, while they were 

consistently deactivated when attention was under voluntary control. Taken together, 

these results imply that attention is controlled by a complex interplay within one unitary 

network of fronto-parietal and default-mode network regions, in which processing-

resources are dynamically distributed in dependence of the particular attentional 

demands.
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1. General Introduction 

Our interaction with the environment generally appears to us as a coherent and 

continuous process: We experience what has been detected by our senses and 

respond to it by acting in accordance with our particular aims, needs, and goals. The 

perception of our physical surroundings, however, is not a simple bottom-up process, 

but itself already shaped according to our experiences and expectations (von 

Helmholtz, 1867). For example, stimuli can be ambiguous in that they can be 

perceived in more than one way (impressive examples are optical illusions as, e.g. the 

Necker cube or the Kanizsa triangle; Necker, 1832; Kanizsa, 1955), or they can even 

remain unnoticed despite being of high saliency (e.g. during change blindness or in 

the attentional blink; Kim and Blake, 2005). Although many of these phenomena have 

already been described before the end of the 19th century, their characterization, at 

that time, only occurred on the basis of introspection. However, with the development 

of psychophysiology and the later invention of modern neuroscientific methods, their 

analysis became a subject of empirical research. Therein, among the mechanisms 

affecting our perception one of the most extensively studied in modern psychology 

and cognitive neurosciences is attention. The following chapters will give an overview 

on the general scientific concepts of attention and on the underlying 

neurophysiological mechanisms that have been described. 

 

1.1. Principles of attention 

William James, in his monumental book Principles of psychology, remarked: 

“Everyone knows what attention is. It is the taking possession by the mind, in clear 

and vivid form, of one out of what seem several simultaneously possible objects or 

trains of thought. Focalization, concentration, of consciousness are of its essence. It 

implies withdrawal from some things in order to deal effectively with others” (James, 

1890). While this statement might be ultimately true in a phenomenological sense, it 

also illustrates the problems scientists are faced with, when trying to operationalize 

attention to make it accessible to empirical research. During the past century, multiple 

concepts describing and subdividing attention have been formulated. A very coarse 

taxonomy that is widely accepted today divides attention into alertness, orienting, and 

executive attention (Posner and Petersen, 1990; Raz and Buhle, 2006; Posner, 2008). 

Within this framework, alerting describes a state of increased readiness to execute an 

upcoming task. Several terms that are commonly used in the literature (e.g. vigilance, 
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alertness and arousal) can therein be subsumed under this definition, since they all 

refer to an amplified task-performance due to occurrence of a warning-signal (a 

temporal cue) that precedes a target-event. Neurophysiologically this alerting signal is 

accompanied by release of the neuromodulator norepinepherine from the locus 

coeruleus and the adjacent ascending reticular formation (Kinomura et al., 1996; 

Aston-Jones and Cohen, 2005), and concomitant alterations in the scalp-recorded 

EEG (e.g. a broad negative shift termed contingent negative variation; CNV) and in 

fMRI activations within the so-called ‘alerting network’ (Walter, 1964; Oken and 

Salinsky, 1992; Raz, 2004; Fan et al., 2005).   
During attentional orienting, as opposed to arousal/alerting, a cue-signal 

preceding the task not only provides information about when (alerting), but also where 

or what kind of target will subsequently appear. Due to this directed nature of the cue, 

it enables an observer to focus onto the relevant aspects of the sensory input, thereby 

separating it from irrelevant information. In everyday life, such visual orienting 

responses result into the foveation of the stimulus (overt orienting/attention), while, 

conversely, it is also possible to prioritize the processing of the stimulus by attending 

to its location covertly without changing the gaze or head position (Moore et al., 2003). 

The majority of experiments on attentional orienting during the last decades employed 

paradigms that manipulated attention in such a covert manner. Therein, the classical 

paradigmatic approach uses a spatial cue that improves the processing of stimuli 

appearing at the cued location (Posner, 1980). The neural network controlling 

attentional orienting has been shown to encompass dorsal posterior parietal and 

frontal cortical areas (Corbetta and Shulman, 2002; Corbetta et al., 2008), as initially 

indicated by severe orienting deficits (hemi-neglect) in stroke-patients with structural 

damage in these regions (Damasio et al., 1980; Mesulam, 1981). 

The third aspect within this taxonomy, executive attention, is believed to 

mediate more cognitive aspects of attentional control and coordination, including 

various distinct processes like response inhibition, task-switching, conflict resolution 

and task planning (Fernandez-Duque et al., 2000; Raz and Buhle, 2006). Thus, 

executive attention is typically involved in the realization of complex cognitive 

operations, such as changing task-requirements between trials (as e.g. during task-

switching; Kiesel et al., 2010; Vandierendonck et al., 2010), or conflicts between task 

instruction and stimulus material like in the Stroop-task (Stroop, 1935). 

Neurophysiologically, these processes have been suggested to rely on signals 
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originating from anterior cingulate, medial prefrontal, and dorsolateral prefrontal 

regions, which are commonly referred to as “executive network” (Posner and Raichle, 

1994; Botvinick et al., 2004; Egner and Hirsch, 2005). 

 While this taxonomy provides a general reference frame for the different 

aspects that are encompassed by the term attention as outlined above, it does not 

provide a sufficiently detailed conceptualization concerning the modulatory effects of 

attention on perceptual processing in (early) sensory cortex. Therefore, more detailed 

classifications regarding attentional orienting have evolved over the past decades. On 

one hand, these classifications subdivide orienting based on the particular units that 

are selected for preferential processing and include orienting towards a stimulus’ 

spatial location, towards one (ore more) of its constituent features, or towards entire 

objects as integrated feature-ensembles (Duncan, 1984; Duncan et al., 1997; 

Kanwisher and Wojciulik, 2000). Following this scheme, the subsequent chapters will 

cover the effects attention exerts on behavioral performance and perceptual 

processing due to space-based (Chapter 1.1.1.1), feature-based (Chapter 1.1.1.2), 

and object-based (Chapter 1.1.1.3) attentional selection. On the other hand, 

attentional orienting also needs to be mediated by control signals that bias these 

selection processes. Conceptually, two separate but interconnected mechanisms of 

attentional control are broadly distinguished: attentional selection that is driven 

voluntarily based on the current goals and expectations of an observer (top-

down/goal-directed/endogenous), or involuntarily by the appearance of a highly salient 

or unexpected event (bottom-up/stimulus-driven/exogenous; Corbetta and Shulman, 

2002; Corbetta et al., 2008). In line with this classification, the last chapters of the 

general introduction will discuss the neural mechanisms that mediate attentional 

control during goal-directed (Chapter 1.1.2.1) and stimulus-driven (Chapter 1.1.2.2) 

orienting. 

Before these specific models outlined above will be discussed in detail, Chapter 

1.1.1 will give a general overview of the theoretical developments concerning 

attentional selection during recent decades. 

 

1.1.1. Attentional modulations of behavioral performance and perceptual 

processing 

The necessity for attentional selection has originally been proposed by 

behavioral psychologists, which observed that we possess a merely limited capacity to 
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process perceptual information (Broadbent, 1958; Shiffrin and Schneider, 1984; 

Tsotsos, 1990). These limitations have been first outlined by several experiments 

conducted in the early 1950’s. Welford discovered that when subjects are faced with 

two subsequent tasks, their response times to the second one increase dramatically if 

it has to be executed in close temporal succession to the prior task (an effect he 

termed psychological refractory period; Welford, 1952). The following year, Colin 

Cherry published his findings from several dichotic listening experiments, in which 

subjects were presented with independent streams of speech, one into each ear. After 

attending to one of the streams (whose content they were required to repeat aloud) 

subjects were asked to recall the content of both auditory streams. Unsurprisingly, 

from today’s perspective, participants showed a very poor recognition performance for 

information presented to the unattended ear (Cherry, 1953). Based on these results in 

conjunction with his own findings (split-span-paradigm; Broadbent, 1954), Broadbent 

formulated his influential filter model (Broadbent, 1958) which proposes that 

perceptual analysis proceeds in two sequential stages. In the first stage, all physical 

characteristics of the sensory input (the stimuli’s locations and their constituent 

features) are extracted in parallel, while in the second stage more abstract aspects 

(like the semantic content of the input) become available. Due to the presumed 

limitation in the processing capacity of the brain, as indicated by the aforementioned 

findings, he assumed that only a subset of the information can enter the second stage 

at any given point in time. According to Broadbent, this information has to be selected 

at an early pre-categorical level based on the simple physical characteristics of the 

sensory input that are already available at the first processing stage.  

 While some evidence initially supported Broadbent’s filter theory, numerous 

findings contradicted the idea of an early selection mechanism. For example, as we all 

know from our every-day experience, our attention might be captured by the sudden 

onset of a highly salient event (e.g. the sound of an explosion) despite being deeply 

focused onto an ongoing task. Moreover, important or well-trained information (e.g., 

the auditory presentation of one’s own name; Moray, 1959) might be consciously 

perceived regardless of the concurrent attentional demands. These simple 

observations, alongside with other phenomena, were apparently at odds with the 

notion of an all-or-none filter acting at early stages of perceptual processing. 

Therefore, in opposition to Broadbent, an alternative framework arguing for late 

selection has been proposed, which depends on the response-requirements of the 
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task at hand (see for example Deutsch and Deutsch, 1963). Within these models, all 

input is suggested to undergo a high level of processing, while it rapidly decays and 

thus will not be consciously perceived, unless attention prolongs the representation of 

relevant information for more detailed analysis. Therein, relevance is defined by the 

semantic meaning or task-relevance of the input, in contrast to the basic stimulus-

characteristics as supposed by early selection theories.   

However, numerous findings could neither be adequately explained by early 

nor by late selection mechanisms. Inspired by this clash of conflicting views, several 

further attempts have been made to incorporate the partially opposing notions into a 

unified framework. For example, in her attenuation theory, Anne Treisman also 

suggested the existence of a filter-instance, which, however, does not work in an all-

or-none fashion, but rather flexibly adjusts the threshold between the attended and 

ignored channels (Treisman, 1960). Accordingly, the filter does not completely block 

unwanted information, but rather amplifies important (attended) and attenuates 

unwanted (unattended) perceptual information in dependence of the stimulus 

characteristics and concomitant task-demands. With this account it became possible 

to explain why stimuli can sometimes still be processed (e.g., if they are of particular 

importance) even when they are unattended. This framework was later extended and 

refined by Nilli Lavie in her load theory of selective attention. In a series of 

experiments she could demonstrate that the extent to which irrelevant input is 

processed critically depends on the resources that remain available after perceptual 

analysis of the relevant information (Lavie and Tsal, 1994; Lavie et al., 2004; Lavie, 

2005). Thus, the particular task-demands (attentional load) determine to which degree 

the available processing-capacity will be distributed between the relevant and 

irrelevant aspects of the task.  

 Most of these initial theoretical accounts as outlined above were primarily 

based on findings from behavioral experiments. However, the development of 

intracerebral recording techniques and functional neuroimaging methods provided 

novel experimental data that had to be incorporated into these established concepts. 

One central aspect in this respect was the characterization of the functional 

organization of the visual system. In most visual cortical regions, the incoming 

information is represented within a spatial (retinotopic) reference frame, but also within 

different feature-specific modules, in which different feature-dimensions (e.g. color and 

orientation) are processed in parallel. According to these principles, Treisman 
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developed her feature integration theory of visual attention (Treisman and Gelade, 

1980; Treisman, 1998). In much the same fashion as Broadbent’s early selection 

model, this theory proposes a pre-attentive stage in which features are processed in 

parallel within their particular specialized modules (termed feature-maps). The 

corresponding locations of the features are also extracted in parallel, but they are 

separately stored in a ‘master-map of locations’. Attention now serves to conjoin the 

separate features (each stored in its specific feature-map) into holistic objects. This 

process, however, is suggested to proceed in a serial manner, whereby only one 

location (stored in the master-map of locations) can be selected at a time. The 

sequence of particular locations that are selected can either be determined 

exogenously (e.g., when certain stimuli are highly salient) or in a top-down manner, 

i.e., when attention is voluntarily shifted across locations stored in the master-map, or 

towards locations that have been prioritized by instruction.    

 While the feature integration theory provides a useful description on how 

particular features and locations are processed with regard to the structural 

composition prevailing in visual cortex, it lacks a sufficient explanation on how the 

coding ambiguities that result from the massive convergence along the visual 

hierarchy may be resolved (for a brief review of the organization of the visual cortex 

and its implications for theories on attention see Kastner and Ungerleider, 2000). This 

is of special importance considering the fact that natural visual scenes normally 

comprise multiple objects, which - due to the limited processing capacity of the visual 

system - have to compete for neuronal representation. This can be exemplified by a 

simple conjunction search experiment: If an observer is presented with two objects 

and required to identify one feature of each stimulus at the same time (e.g. the color of 

one and the motion-direction of the other), task-performance will dramatically 

decrease in comparison to situations in which the same task (identification of two 

features) has to be performed on only one object at a time (Treisman, 1969; Duncan, 

1980, 1984). This competition can be affected in a bottom-up fashion (e.g., by a 

stimulus’ salience), or by top-down factors as, e.g., by selective attention. Based on 

the results from numerous electrophysiological investigations in primates and 

functional neuroimaging studies in humans, two models were recently introduced to 

explain how selective attention modulates activity in early visual cortex to resolve this 

competition. The first concept (biased competition model) proposes that attention 

biases neural activity towards attended items by narrowing the receptive fields 
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covering the attended location, whereby the afferent input of irrelevant (unattended) 

stimuli is concurrently suppressed. This hypothesis was originally formulated by 

Duncan and Humphreys (1989) and transferred to the neurophysiological domain by 

Desimone and colleagues (Duncan and Humphreys, 1989; Desimone and Duncan, 

1995; Desimone, 1998). A more recent model, the feature-similarity gain hypothesis, 

in turn suggests that the responses of neurons in extrastriate cortex whose feature-

preference matches the attended stimulus are scaled in a multiplicative manner 

(Treue, 2001; Maunsell and Treue, 2006).  

The following chapters will review the behavioral, neurophysiological, and 

neuroimaging evidence that has been put forward to elucidate how behavioral 

performance and perceptual processing is affected by location-, feature-, and object-

based attentional selection.  

 

1.1.1.1. Effects of space-based attentional selection 

1.1.1.1.1. Psychophysical evidence 

In everyday life a visual scene is typically analyzed by foveation of one spatial 

location after another. Therefore, it comes as no surprise that space-based 

mechanisms were the first that have been systematically addressed by empirical 

research. In analogy to the overt eye-movements during analysis of a visual scene 

during free vision, Posner and colleagues suggested that covert visual attention also 

could be focused in a location-based manner in terms of a spotlight that is directed to 

a unitary contiguous region of visual space. This spotlight will enhance the processing 

of all stimuli that fall within its focus, but it has to be shifted whenever stimuli located at 

a different part of the visual field need to be analyzed in more detail (Posner, 1980). 

Experimentally the spotlight metaphor was based on findings from a letter 

identification task in which attention was spatially cued to one location (a bright flash in 

the left or the right visual field; exogenous cueing), while the target letters 

subsequently were presented either at the attended or unattended location. This 

experiment demonstrated that target identification proceeds faster and more accurate 

at the cued location. This result was later generalized to situations in which attention 

was controlled endogenously (a central cue directed the location to attend), in that 

subjects were faster and more accurate in response to validly cued targets, whereas 

performance was worse upon invalidly in comparison to neutrally cued targets (Posner 

et al., 1984). These findings have been extended by multiple other psychophysical 
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experiments, which reported an increased discrimination- and contrast-sensitivity 

(Hawkins et al., 1990; Luck et al., 1996; Lu and Dosher, 1998; Cameron et al., 2002), 

a reduced distractor interference (Shiu and Pashler, 1995), and enhanced spatial 

resolution (Yeshurun and Carrasco, 1998) within the focus of attention.  

While the original spotlight model proposed the existence of one spatial focus in 

which processing is enhanced, other evidence also indicated that the focus of 

attention can be split into disjunctive areas in terms of multiple spotlights (Shaw and 

Shaw, 1977; Juola et al., 1991). Supporting this view, several studies found that 

attention can enhance processing (in terms of faster and more accurate responses or 

lower detection thresholds) across non-contiguous locations (Castiello and Umilta, 

1992; Kramer and Hahn, 1995; Hahn and Kramer, 1998; Schmidt et al., 1998; Bichot 

et al., 1999; Awh and Pashler, 2000), whereby performance is markedly impaired at 

intervening parts of space (Awh and Pashler, 2000). 

 Both the single and the multiple spotlight hypotheses regarded the focus (foci) 

of attention as uniform and invariant spots that might be deployed at distinct locations 

throughout the visual field. In extension to these accounts, Eriksen and colleagues 

introduced the ‘zoom-lens model’, which posits that the spotlight of attention does not 

possess a uniform distribution, but that it can vary in size and shape (Eriksen and Yeh, 

1985; Eriksen and St James, 1986). This notion was based on size estimations that 

ranged from about 1° to over 10° of visual angle in dependence on the particular task-

demands (Eriksen and Hoffman, 1973; LaBerge, 1983; Hughes and Zimba, 1985). 

The size of the attentional focus, however, is inversely related to processing efficacy, 

suggestive of a limited amount of resources that can be distributed over a given 

spatial region (Eriksen and St James, 1986; Castiello and Umilta, 1990).  

Although the zoom lens model takes into account that the distribution of 

processing resources is flexible with regard to the size of the attentional focus, it 

assumes that resources are evenly distributed across the attended region, or that they 

at least display a gradual decrease with eccentricity to the attended location. This 

notion was fostered by findings that distractor interference gradually decreases with 

distance to the target (Eriksen and Hoffman, 1973) and that reaction times to targets 

increase with growing distance between an exogenous cue (or probe) and a 

subsequently presented target (Shulman et al., 1985; Henderson and Macquistan, 

1993; Handy et al., 1996), or between two targets presented in rapid succession 

(LaBerge, 1983). However, recent computational models predict that the spatial profile 
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of the attentional focus might be more complex than such a simple gradient, but 

instead comprises a suppressive zone that surrounds the actual focus of attention 

(Tsotsos, 1990; Cutzu and Tsotsos, 2003). While originally motivated by the structural 

and functional properties of the primate visual system (Tsotsos, 1990), this center-

surround (or Mexican hat) shaped profile was supported by a number of 

psychophysiological findings. In agreement with other theoretical accounts on spatial 

attention, psychophysiological performance was highest within the immediate focus of 

attention. However, probe-detection at locations close to a search target is slowed 

relative to more distant locations (Cave and Zimmerman, 1997) and the discrimination 

of a probe presented in close proximity to an exogenous cue is diminished in 

comparison to probe locations farther away (Mounts, 2000a, b). 

 

1.1.1.1.2. Neurophysiological and functional neuroimaging evidence 

In single-cell recording studies, effects of space-based attentional selection 

have been assessed by comparing conditions in which an animal’s attention was 

directed towards a stimulus presented within the receptive field of a neuron, or 

directed towards a location outside the particular receptive field. With this approach 

numerous studies have shown that attending to a stimulus inside the receptive field 

typically enhances the response strength of the respective neuron. Given the 

spatiotopic organization of most visual areas it comes as no surprise that such spatial 

attention effects have been observed across multiple regions along the visual 

hierarchy starting from primary visual cortex (Motter, 1993; Luck et al., 1997), across 

ventral areas like V2 (Motter, 1993; Luck et al., 1997) and V4 (Moran and Desimone, 

1985; Spitzer et al., 1988; Motter, 1993; Luck et al., 1997; McAdams and Maunsell, 

1999), but also in dorsal extrastriate cortex as in MT (Treue and Maunsell, 1996, 

1999) and LIP (Bushnell et al., 1981; Colby et al., 1996). This attentional gain 

enhancement increases with task difficulty (Spitzer et al., 1988; Spitzer and 

Richmond, 1991), but also when multiple stimuli compete for representation, i.e., if 

they are simultaneously presented within the receptive field (Moran and Desimone, 

1985; Motter, 1993; Luck et al., 1997; Treue and Maunsell, 1999). Importantly, spatial 

attentional modulations have not only been observed when a neuron’s activity was 

driven by a stimulus within its receptive field, but also in absence of direct visual 

stimulation (Colby et al., 1996; Luck et al., 1997; Reynolds et al., 1999). Finally, one 

very recent study also provided support for center-surround models of spatial attention 
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by demonstrating gain amplification of V1 neurons whose receptive fields covered the 

focus of attention and a suppressed firing rate when their receptive field surrounded it 

(Chen et al., 2008). 

Similar results to those of single-cell electrophysiological studies have also 

been observed on a larger scale with fMRI in human observers. These studies 

demonstrated spatial attention effects correspondent to the sensory retinotopy of 

many striate and extrastriate cortical regions (O'Craven et al., 1997; Hadjikhani et al., 

1998; Tootell et al., 1998; Brefczynski and DeYoe, 1999; Gandhi et al., 1999; Martinez 

et al., 1999; Martinez et al., 2001), which even could be observed in absence of direct 

visual stimulation (Chawla et al., 1999; Kastner et al., 1999; Muller et al., 2003b; 

Serences and Boynton, 2007). Moreover, fMRI studies provided evidence for spotlight 

adaptivity according to the zoom-lens model (Muller et al., 2003b; McMains and 

Somers, 2005), but also for the existence of multiple spotlights of attention (McMains 

and Somers, 2004, 2005; Brefczynski-Lewis et al., 2009). Finally, functional 

neuroimaging research could show that all items that fall into an attended part of 

visual space become enhanced regardless of their relevance to the task, and that this 

gain enhancement occurs in those brain regions that process the physical attributes of 

the attended stimuli (Heinze et al., 1994; Schoenfeld et al., 2007). 

In addition to the findings from neurophysiological investigations in primates 

and functional neuroimaging studies in humans, non-invasive electrophysiological 

techniques (EEG/MEG) contributed important insights related to the timing of the 

space-based modulations and also concerning the spatial profile of the focus of 

attention. Most ERP studies indicated that space-based selection enhances sensory 

processing in early sensory cortex as reflected by increased P1- and N1-amplitudes 

(the first major positive and negative deflections in the canonical ERP), which are 

believed to index early visual cortical activity (Harter et al., 1982; Hillyard and Munte, 

1984; Hillyard and Mangun, 1987; Heinze et al., 1990; Luck and Hillyard, 1994; 

Hillyard et al., 1998). Since these amplitude modulations occurred in absence of 

significant alterations in the onset-latency or scalp topography of the P1- and N1-

components, space-based selection was considered to rely primarily on sensory gain 

amplification (Hillyard and Mangun, 1987; Hillyard et al., 1998). This gain amplification 

has been shown to decline with increasing distance between the focus of attention 

and the location at which stimuli were actually presented (Hillyard and Mangun, 1987), 

congruent with the gradient hypothesis concerning the profile of the focus of attention. 
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Recent studies, however, could nicely demonstrate that the profile of the attentional 

spotlight does not follow this simple gradient but instead shows a center-surround 

shaped profile as indicated by computational theories (Hopf et al., 2006a; Boehler et 

al., 2009). Finally, some recent electrophysiological studies also provided evidence for 

the zoom lens (Eimer, 2000; Hopf et al., 2006b; Song et al., 2006) and split spotlight 

hypotheses (Muller et al., 2003a; Malinowski et al., 2007) as outlined above. 

  

1.1.1.2. Effects of feature-based attentional selection 

Most attentional models suggest that space plays a unique role in attentional 

processing: Spatial selection is believed to be an inevitable prerequisite for processing 

of featural information, or to accomplish the binding of independent features into 

holistic objects when stimuli compete for processing resources (Treisman and Gelade, 

1980; Treisman and Sato, 1990; Cave and Bichot, 1999). Stimulus features, however, 

are not only passive recipients of attentional resources that are deployed based on 

prior spatial selection, but can - according to theories of visual search - themselves 

guide the allocation of spatial attention to potential target objects (Wolfe et al., 1989; 

Treisman and Sato, 1990; Wolfe, 1994; Cave, 1999). Given that feature information 

thus might also be the target of attentional selection, numerous studies have 

addressed the behavioral and neural effects of feature-selection, which will be outlined 

in the following sections.  

 

1.1.1.2.1. Psychophysical evidence  

Similar to pre-knowledge about a stimulus’ location improves its detection, 

feature-based attention also enhances behavioral performance. For example, the 

detection of a moving object is remarkably improved by prior knowledge of its motion-

direction or speed (Sekuler and Ball, 1977; Britten et al., 1992; Liu et al., 2007a) and 

similar facilitatory effects have also been observed for other features like a stimulus’ 

color (Saenz et al., 2003), size (Vickery et al. 2005), spatial frequency (Davis et al., 

1983; Rossi and Paradiso, 1995), or orientation (Spitzer et al., 1988; Rossi and 

Paradiso, 1995; Baldassi and Verghese, 2005; Vickery et al., 2005). Moreover, such 

improvements are not confined to objects that are presented at spatially attended 

locations, but can spread to stimuli at unattended regions of visual space if they share 

a common feature with the target in comparison to stimuli comprising 

different/opposing features (Saenz et al., 2003). Conversely, task performance (in a 
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variety of tasks) is reduced if attention is captured by the occurrence of stimuli (at 

unattended locations) that match the (featural) attentional set of the observer 

(contingent capture; Folk et al., 1992; Gibson and Kelsey, 1998; Theeuwes et al., 

2010).  

Moreover, while early theories on attentional selection suggested that multiple 

stimulus-features could be extracted in parallel (e.g. Treisman and Gelade, 1980), 

recent evidence indicates that only one individual feature-value can be selectively 

attended at a time (Morales and Pashler, 1999). This notion has recently been 

supported by an elegant study showing that the perception of the colors of two objects 

was significantly improved by successive compared with simultaneous presentation, 

whereas perception of their locations was not (boolean-map theory; Huang et al., 

2007). 

 

1.1.1.2.2. Neurophysiological and functional neuroimaging evidence 

One of the first demonstrations of feature-selective attentional effects at the 

single-neuron level has been provided by Moran and Desimone (Moran and 

Desimone, 1985). In their study, two stimuli were presented within the receptive fields 

of neurons located in macaque regions V4 and IT. One of the stimuli matched the 

feature-selectivity of the recorded neuron, while the other stimulus was ineffective in 

driving its response. If attention now was directed towards the neurons’ preferred 

stimulus it reacted with an increase in its firing rate, while the response strength was 

reduced if the non-effective stimulus was attended (Moran and Desimone, 1985). 

While in the study by Moran and Desimone attention was directed towards a target’s 

location and not explicitly towards one of its particular stimulus features, the results 

nevertheless clearly show that a neuron’s response critically depends on the degree of 

overlap between the features of an attended stimulus and the feature-selectivity of the 

respective neuron (for comparable studies see e.g. Haenny and Schiller, 1988; Spitzer 

et al., 1988). Similar modulations have been observed for multiple different features 

within many visual areas including color-selective modulations in V2, V4, and IT 

(Motter, 1994; Luck et al., 1997; Reynolds et al., 1999), orientation-specific effects in 

V1, V2, and V4 (Motter, 1993; McAdams and Maunsell, 1999), motion-selective 

effects in MT (Treue and Maunsell, 1996, 1999), and modulations based on complex 

objects in V4 and IT (Chelazzi et al., 1993; Chelazzi et al., 1998; Chelazzi et al., 

2001).  
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Based on these findings researchers proposed the biased competition model 

(Desimone and Duncan, 1995; Reynolds et al., 1999), which asserts that 

simultaneously presented objects activate competing neural populations, and that this 

competition may be biased in favor of neurons that are selective for an attended 

stimulus’ features, at advantage over neurons that represent the unattended stimulus. 

This bias signal is believed to induce a narrowing of the receptive fields of neurons 

that are selective for the attended features, whereby inhibitory interactions would 

concomitantly eliminate the influence of the unattended stimuli. More recent data, 

however, indicate that a neurons’ response can also be directly modulated if attention 

is deployed to a particular stimulus’ feature. By recording activity from single neurons 

located in the macaque MT region, Treue and co-workers could demonstrate that the 

response profile of direction-selective neurons scales in a multiplicative manner when 

attention is directed towards a stimulus’ motion-direction (Treue and Martinez Trujillo, 

1999; Martinez-Trujillo and Treue, 2004). More generally speaking, neurons whose 

feature-preference closely match the attended feature-value (e.g. a specific motion-

direction) increase their firing rate, while responses of neurons tuned to opposite 

feature-values (e.g. opposed to the attended direction) are suppressed. These 

findings gave rise to the ‘feature-similarity gain model’, which postulates that an 

individual neuron’s response depends on the feature-similarity between a behaviorally 

relevant target and the feature-preference of that neuron. Importantly, these feature-

specific modulations were observed even when attention was directed towards a 

stimulus located outside the neurons’ receptive field, demonstrating that feature-based 

attention operates in a spatially global manner (Martinez-Trujillo and Treue, 2004). 

Similar results have recently also been obtained for orientation stimuli in primate area 

V4 (McAdams and Maunsell, 2000) and for spectral tuning of V4 neurons during 

natural vision (David et al., 2008). 

In agreement with neurophysiological investigations in primates, previous fMRI 

and PET studies in humans showed similar feature-selective activations based on a 

stimulus’ color, shape, orientation, or motion-direction. These modulations have been 

described across multiple regions of the human visual cortex as, e.g., in V1 (Huk and 

Heeger, 2000; Kamitani and Tong, 2005; Liu et al., 2007b), V2 (Kamitani and Tong, 

2006; Liu et al., 2007b), V3 (Buchel et al., 1998; Chawla et al., 1999; Saenz et al., 

2002), V4/V8 (Corbetta et al., 1990; Saenz et al., 2002; Liu et al., 2007b), IT (Corbetta 

et al., 1990), and MT (Corbetta et al., 1990; O'Craven et al., 1997; Buchel et al., 1998; 
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Chawla et al., 1999; Huk and Heeger, 2000; Saenz et al., 2002). In analogy to the 

data from primate neurophysiology, these feature-selective activations occurred even 

in absence of direct visual stimulation, evident as baseline-increases in anticipation of 

the features to be presented (Chawla et al., 1999; Kastner et al., 1999; McMains et al., 

2007; Serences and Boynton, 2007; Shibata et al., 2008). Moreover, these 

modulations appeared in a spatially global manner, in that all stimuli whose feature-

content matches the attended feature are amplified throughout the visual field (Saenz 

et al., 2002; Serences and Boynton, 2007). While conventional neuroimaging studies 

have repeatedly demonstrated changes of activity related to feature-based selection, 

none of the studies specifically investigated attentional modulations within a single 

feature dimension. To date, with the exception of three recent studies that employed 

classifiers for fMRI analysis (Kamitani and Tong, 2006; Serences and Boynton, 2007; 

Serences et al., 2009), functional neuroimaging research thus far has failed to 

demonstrate direction-selectivity in human visual cortex. With this said, it is important 

to note that the feature-selective activations observed in these pattern-classification 

studies were not confined to those cortical regions that are known to process the 

physical attributes of the presented stimuli, as evident from primate neurophysiology. 

Within these studies feature-selective activity, in fact, could be decoded across 

multiple stages along the visual hierarchy (Kamitani and Tong, 2006; Serences and 

Boynton, 2007). Thus, their results do not necessarily imply the existence of direction-

selective neuronal populations within all of these visual areas (Serences and Boynton, 

2007), since the response profile across a neural population within a given voxel could 

also reflect feedforward/feedback activity from lower/higher order visual regions (Sillito 

et al., 2006) instead of a true direction-selective population-response.  

Although PET and fMRI investigations have been particularly successful in 

defining the anatomical structures that are activated during feature-based deployment 

of attention, their temporal resolution is too limited to reveal a precise pattern of the 

timing of the underlying attentional modulations. Fine-grained information about the 

time course of feature-based selection has therefore been determined primarily based 

on data from noninvasive EEG/MEG recordings in humans. By this means it has been 

demonstrated that the selection of task-relevant features (such as the spatial 

frequency, orientation, color, motion-direction or shape of a stimulus) is initiated in the 

time range between 120 and 180 ms after stimulus onset (Harter and Aine, 1984; 

Kenemans et al., 1993; Motter, 1994; Anllo-Vento and Hillyard, 1996; Smid et al., 
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1999; Torriente et al., 1999; Kenemans et al., 2000; Martinez et al., 2001; Beer and 

Roder, 2004, 2005), which (in most cases) is reflected by a broad negativity over 

centro-posterior electrodes in the ERP (the so-called selection-negativity, SN; for 

review see Harter and Aine, 1984; Hillyard and Anllo-Vento, 1998). The SN can be 

observed in difference potentials, in which the ERP elicited by a stimulus whose 

features are unattended is subtracted from the ERP due to the same stimulus when its 

constituent features are attended. Dipole modeling and source analyses on the SN 

suggest that these modulations can be attributed to the same neural generators as 

observed in corresponding fMRI investigations (Hillyard and Anllo-Vento, 1998). While 

the configuration of the SN is highly similar across studies, its onset latencies differed 

substantially between them. This has been suggested to result from paradigmatic 

differences between studies. For example, if a spatially attended feature dimension 

(e.g., a stimulus’ motion) has to be selected from another one (e.g., a stimulus’ color), 

the attentional enhancement begins as early as 100 ms after stimulus onset 

(Schoenfeld et al., 2007). If, on the other hand, the selection occurs within a single 

feature dimension (e.g., selecting one motion direction from another) the 

enhancement starts about 50 ms later (Hillyard and Munte, 1984; Anllo-Vento and 

Hillyard, 1996; Karayanidis and Michie, 1996; Lange et al., 1998). Thus, the signs of 

feature-based attentional selection due to features presented within the spotlight of 

attention can be observed quite early (100-180 ms after stimulus onset).  These 

modulations only seem to vary according to the difficulty of the discrimination process: 

selection between feature-dimensions proceeds faster than within a single dimension. 

If, in contrast, a feature is task-irrelevant and is selected only by virtue of being part of 

an attended object, feature-selective activity starts around 230-240 ms if the irrelevant 

feature belongs to an object presented at an attended location (Schoenfeld et al., 

2003b), and not until 270 ms after stimulus onset if the irrelevant feature is confined to 

an object located in the unattended visual field (Boehler et al., 2010). While the latter 

findings together with other ERP data and results from studies using steady-state 

visual ERPs (e.g. Hopf et al., 2004; Muller et al., 2006; Andersen et al., 2009; 

Andersen et al., 2011) again emphasize the global nature of feature-based attention, 

they also imply that the timing of these modulations depends on the particular 

selection process that is engaged. 

Temporal flexibility of attentional selection has also been observed for the 

comparison of space- and feature-based attentional modulations. Under most 
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circumstances location-based selection might play a special role in attentional 

orienting, given that all studies except one (which demonstrated feature-selective 

modulation of the P1 amplitude under conditions of increased stimulus competition; 

Zhang and Luck, 2009) revealed a modulation of the initial feed-forward flow of 

information along the visual hierarchy (as indexed by the P1 wave) only during 

location-based attentional selection (for review on the timing attentional selection see 

Hopf et al., 2005). However, a recent study using combined EEG/MEG recordings 

also demonstrated that even this general temporal priority of location-based over 

feature-based selection might depend on the particular stimulus characteristics and 

task demands. This study could demonstrate that feature-selective effects precede the 

indices of correspondent spatial modulations in visual search (Hopf et al., 2004), 

which is well in accordance with visual search models proposing that feature 

information may be used to guide the allocation of resources to spatial locations that 

are likely to contain a target (Treisman and Sato, 1990; Wolfe, 1994; Cave and Bichot, 

1999). 

 

1.1.1.3. Effects of object-based attentional selection 

1.1.1.3.1. Psychophysical evidence  

Inspired by the concepts of Gestalt psychology, assuming that objects are 

perceived as holistic entities instead of just as a collection of simple features, cognitive 

psychologists provided evidence for object-based selection mechanisms in visual 

attention. Object-based accounts suggest that pre-attentive processing not only 

operates on the individual attributes of a stimulus, but also involves grouping 

mechanisms such as closure, proximity, common fate and similarity (Wertheimer, 

1923; Neisser, 1967). Features that are bound into objects in this way can be targeted 

by attention, whereby the selection of one particular object-attribute will also enhance 

processing of all other of its constituent features (for detailed review see Kanwisher 

and Driver, 1992; Driver and Baylis, 1998; Scholl, 2001).  

Some of the first demonstrations of object-based selection came from Neisser 

and colleagues (Neisser, 1967; Neisser and Becklen, 1975). In their experiments 

subjects were required to attend to one out of two spatially superimposed movies and 

to count particular actions that took place within the attended scenery. When engaged 

in this task the subjects were completely unaware of changes occurring within the 

unattended movie, even if these changes were of high visual salience. While by 
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today’s methodological standards these early studies were confounded to some 

degree, they nevertheless intriguingly demonstrate that attentional selection can also 

operate in an object-based rather than location-based manner, since the two scenes 

were globally superimposed. 

Following the experimental basis established by Neisser and co-workers, 

Duncan also used a paradigm in which subjects were presented with two 

superimposed objects (a box and a single line drawn through it). Both objects could 

vary on two dimensions: the box was either tall or small and contained a small gap on 

either its left or the right side, while the line was either tilted to the left or right from the 

vertical meridian and was either dashed or dotted. The subject task was to judge 

either two dimensions of a single object (e.g. the box’ size and the location of its gap) 

or one of each object (e.g. the size of the box and the orientation of the line). With this 

approach Duncan could demonstrate that the subjects’ performance was much better 

when the two target dimensions were part of the same than when they were 

distributed across two separate objects (an effect termed “same-object advantage”; 

Duncan, 1984). In fact, the subjects’ performance on the single-object condition was 

equivalent to a control condition, in which only a single object-attribute (e.g., the line’s 

orientation) had to be discriminated. While the same-object advantage was subject to 

considerable debate due to putative methodological confounds, numerous studies 

have replicated the effect with alterations to the task-instructions and the stimulus 

material that has been employed (Duncan, 1993a, b; Egly et al., 1994; Vecera and 

Farah, 1994; He and Nakayama, 1995; Duncan and Nimmo-Smith, 1996; Kramer et 

al., 1997; Vecera and Farah, 1997; Lamy and Tsal, 2000). 

Many of the object-based findings still have been controversial, in particular 

with respect to possible explanations based on space-based accounts (Gibson, 1994; 

Lavie and Driver, 1996). However, the use of superimposed moving transparent 

surfaces for the investigation of object-based attention has rebutted these concerns to 

some degree. In analogy to the same-object advantage obtained by the use of 

concrete objects, Valdes-Sosa and colleagues showed that simultaneous judgments 

on the speed and direction of two superimposed moving transparent surfaces were 

more accurate when they had to be performed on only one of the surfaces than when 

they involved both objects (Valdes-Sosa et al., 1998a). Similarly, two brief directional 

changes were discriminated accurately when both occurred within the same surface, 

but poorly if they affected different surfaces (Valdes-Sosa et al., 2000).  
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Similar results (refusing space-based explanations) have been obtained in a 

very elegant study by Blaser, Pylyshyn, and Holcombe, in which subjects were 

presented with one circular patch that dynamically changed its orientation, spatial 

frequency and color (Blaser et al., 2000). Importantly, due to these gradual feature-

changes the patch was perceived as being composed of two individual ‘Gabor’ stimuli 

that were transparently superimposed onto each other. The subjects’ were asked to 

track one of these patches solely based on its changing appearance (in terms of its 

changing color, orientation, and spatial frequency), while small discontinuities could 

occur in the otherwise smoothly changing feature-trajectories within each of the two 

objects. The subjects’ task was to judge the direction of these discontinuities (e.g., the 

direction of a color change). In this way discrimination-performance could be 

compared between conditions in which such judgments were made within a single 

patch (e.g., reporting the direction of the color and orientation change for a particular 

Gabor), and conditions where both judgments had to be performed on separate 

objects (e.g., reporting the direction of the color change for one Gabor, and the 

orientation change for the other). Similar to the aforementioned results, subjects 

showed an increased discrimination performance when both judgments had to be 

performed on feature-changes within only one compared to within both objects. 

Moreover, these results extended the hitherto existing object-definition (which so far 

only included items with well-defined spatio-temporal trajectories) to include 

items/stimuli that are assembled based on coherent featuro-temporal trajectories. 

 

1.1.1.3.2. Neurophysiological and functional neuroimaging evidence 

While numerous psychophysiological studies indicated that objects might be 

represented as integrated feature-ensembles within the visual system, evidence from 

primate neurophysiology is rather sparse. Some early experiments were based on 

certain visual illusions to show object-based processing in early visual cortex. In modal 

and amodal completion, for example, the presentation of object-fragments induces a 

vivid perception of the object as a whole, even if particular contours of the object have 

no physical representation within the image that is shown (modal completion), or if an 

object is partially occluded by another (amodal completion). Neurons in monkey area 

V1 increase their firing to such modally or amodally completed contours when they are 

presented within their receptive field, indicating that an endogenous representation of 

a holistic object has been build within the brain (Sugita, 1999; Lee and Nguyen, 2001). 
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Similar results have been obtained with experiments using the so-called ‘barber-

diamond’ display, in which the perceived motion of a grating (induced by the depth of 

the grating relative to bounding regions in the display) is signaled by single neurons in 

area MT that are selective for the perceived direction, even when the particular parts 

of the stimulus that induce the illusion are presented outside the neurons’ receptive 

fields (Duncan et al., 2000).  

In 1998, Roelfsema and colleagues were the first providing direct 

neurophysiological evidence for object-based attentional selection. They recorded 

activity from neurons in area V1 while the monkeys performed in a curve-tracing task, 

in which one curve had to be attended and an overlapping curve needed to be 

ignored. With this approach they demonstrated that the firing of neurons whose 

receptive fields covered parts of the attended curve was enhanced, which was not the 

case for neurons with receptive fields covering parts of the distractor curve 

(Roelfsema et al., 1998). More recently, the elegant paradigm developed by Valdes-

Sosa and colleagues described in section 1.1.1.3.1 (Valdes-Sosa et al., 1998b; 

Valdes-Sosa et al., 1998a, 2000), was employed to investigate the neurophysiological 

signs object-selection completely unconfounded by spatial attention. In one study, 

monkeys were biased to attend to one of two superimposed transparent surfaces 

(composed of rotating dots) due to a delayed motion onset of one of the surfaces. By 

this means it could be demonstrated that V4 neurons increased their firing if the 

attended surface’s color matched the neurons’ color-preference, while it was 

suppressed when it was of the neurons’ non-preferred color (Fallah et al., 2007). 

These results clearly demonstrate that the processing of task-irrelevant features can 

be facilitated solely by being part of the attended object. A similar cross-featural 

spread of attentional enhancement has recently also been described for cells located 

in primate area V5/MT (Katzner et al., 2009). 

A cross-featural enhancement by object-based attention with fMRI has first 

been demonstrated by O’Craven and colleagues (O'Craven et al., 1999), who 

presented subjects with superimposed transparent pictures of houses and faces, one 

of which was moving while the other image remained stationary. While subjects were 

cued to attend either to the houses, faces, or the stimulus’ motion, increased 

hemodynamic activations were observed in those cortical regions that processed the 

attended stimulus attribute (e.g., in the fusiform area for faces or in area hMT for 

motion), but more importantly also in the respective regions selective for the task-
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irrelevant feature of the attended object. Similar results have been obtained in an 

attention-shifting study by Serences and colleagues (Serences et al., 2004). While the 

stimuli used in the study by O’Craven et al. were globally superimposed, some 

researches nevertheless questioned the interpretation of an object-based mechanism 

by arguing that subjects might still have used a space-based selection strategy (e.g., 

due to differences in local-contrast between the face- and house-images). This 

explanation, however, has been refuted by several fMRI studies conducted during the 

last decade. First, it has been shown that activity in early visual cortex not only was 

enhanced at retinotopic coordinates covering the spatial focus of attention, but also at 

retinotopic representations of other locations covered by an object of which only one 

specific part has been attended (Muller and Kleinschmidt, 2003; Shomstein and 

Behrmann, 2006). Moreover, hemodynamic modulations by object-based selection 

have also been observed using transparent moving surfaces as previously employed 

in psychophysical studies (Schoenfeld et al., 2003b; Safford et al., 2010; Ciaramitaro 

et al., 2011). Finally, purely object-based modulations of hemodynamic activity have 

also been demonstrated to spread across features that belong to different modalities 

(e.g. enhanced processing of a sound that is perceived as belonging to an attended 

visual stimulus; Busse et al., 2005) and across spatially non-contiguous location (i.e. 

the object-based enhancement occurs in a spatially gobal manner, similar as during 

simple feature-based attentional selection; Busse et al., 2005; Sohn et al., 2005). 

Similar (if not the same) paradigms that were used to investigate object-based 

accounts of attentional selection psychophysically or with fMRI have been employed 

to assess the timing of object-based attention with non-invasive electrophysiological 

methods. Valdes-Sosa and colleagues used the same paradigm by means of which 

they provided psychophysical evidence for object-based selection (Valdes-Sosa et al., 

1998a) to investigate the underlying temporal correlates (Valdes-Sosa et al., 1998b; 

Pinilla et al., 2001). When attention was endogenously directed to one of two 

superimposed counter-rotating transparent surfaces, brief translational movements of 

this surface elicited higher P1 and N1 amplitudes than the same movements if they 

occurred within the unattended object. In a follow-up study Rodriguez and Valdes-

Sosa used current source localization to demonstrate that this object-based 

enhancement (i.e., the associated N200 component) is likely to originate from hMT 

(Rodriguez and Valdes-Sosa, 2006). Similar results have been obtained in two more 

recent studies from the same group. For one they could demonstrate that the N1 
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amplitude to brief translations of an attended versus unattended surface also was 

enhanced when it had been cued exogenously (Khoe et al., 2005). On the other hand 

it has been shown that the ocular dominance during binocular rivalry could be 

sustained by cueing one of two superimposed counter-rotating surfaces by a brief 

translational movement before a subsequent switch to dichoptic presentation of the 

surfaces (Mitchell et al., 2004). This behavioral effect was accompanied by an 

increase in P1 and N1 amplitudes to a second translational movement subsequent to 

the cue if it occurred within the attended (cued) in comparison to the unattended 

surface (Khoe et al., 2008). Importantly, this object-based effect was only evident 

during dichoptic but not during monocular viewing conditions and was interpreted to 

reflect object-based selection mechanisms that occur at early processing stages 

during dichoptic viewing. Accordingly, Mishra and Hillyard could demonstrate highly 

similar object-based modulations using the same experimental paradigm, but with 

endogenous instead of exogenous cueing (Mishra and Hillyard, 2009). While all these 

studies demonstrated that attended objects are preferentially processed in comparison 

to ignored ones, they were paradigmatically restricted in that they could not reveal 

signs of the same-object advantage as indicated by psychophysiological studies.    

This question was recently addressed by a study that combined 

electrophysiological and hemodynamic recordings, while participants were presented 

with two transparent surfaces that moved into opposite directions. The subjects were 

cued to attend one of the motion directions, while a task-irrelevant color change could 

either occur within the attended or the unattended surface (Schoenfeld et al., 2003b). 

When the color-changes occurred in the attended surface, increased hemodynamic 

activity was observed in color selective visual region V4, relative to trials in which the 

color of the unattended surface changed. More importantly, electrophysiological signs 

in terms of this same-object advantage also were observed in the EEG and MEG data. 

These were evident as amplitude increases starting around 220-240 ms after a color 

change appeared in the attended in comparison to its occurrence in the unattended 

surface. In agreement with the pattern of hemodynamic activations, the neural 

generators of this object-based feature-enhancement were localized on identical sites 

within visual area V4. This amplification of task-irrelevant feature information was 

concluded to participate in the feature-binding process underlying the formation of an 

integrated perceptual object according to the integrated competition model (Duncan et 

al., 1997; Desimone, 1998; Driver and Baylis, 1998). 
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1.1.1.4. Summary 

As outlined in prior chapters, attention is an important mechanism by which the 

overwhelming amount of sensory input can be selected with regard to its relevance 

within given circumstances. This selection process can be based on spatial locations 

(Posner, 1980), particular features such as color, motion, or shape (Corbetta et al., 

1990; Maunsell and Treue, 2006), or entire objects as integrated feature-ensembles 

(Duncan, 1984; Egly et al., 1994; Schoenfeld et al., 2003b). Space-based models 

propose different modes of operation, suggesting the focus of attention to be 

sequentially deployed like a spotlight (Posner, 1980), to possess an adaptive shape 

like a zoom lens (Eriksen and St James, 1986), and to involve a profile that enhances 

perceptual processing in a graded or center-surround shaped manner (Tsotsos, 1990; 

Hopf et al., 2006a). Feature-based theories, in contrast, suggest that visual attention 

enhances processing of distinctive stimulus attributes (Corbetta et al., 1990; 

Desimone, 1998; Maunsell and Treue, 2006), and that this improvement occurs in a 

location-independent manner (Motter, 1994; Saenz et al., 2002; Martinez-Trujillo and 

Treue, 2004). Object-based accounts, finally, assume that attention might select entire 

objects as integrated feature-ensembles leading to an enhanced processing of all their 

constituent features (Duncan, 1984; Egly et al., 1994; O'Craven et al., 1999; 

Schoenfeld et al., 2003b). While empirical evidence has supported all of these 

accounts, many aspects are still unresolved. Therein, the open questions that have 

been addressed in the present work will be outlined in Chapter 1.2.  

 

1.1.2. Neural mechanisms of attentional control 

The first part of the General Introduction (Chapter 1.1.1 and the respective 

subchapters) dealt with the behavioral and neural consequences of attentional 

orienting. In contrast to the effects that attention exerts on behavioral performance and 

perceptual processing in early visual cortex, the following sections will summarize 

recent knowledge on the neural mechanisms which control how and whereon 

attentional resources are deployed. Following a scheme commonly used in the 

literature, two general mechanisms of attentional control will be distinguished: 

orienting based on internal goals or expectations (top-down/goal-

directed/endogenous) and reorienting towards unexpected salient or behavioral 

relevant events (bottom-up/stimulus-driven/exogenous). Over the past decades it has 

become clear that these two mechanisms are controlled by two largely separate but 
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functionally interconnected cortical networks located in ventral and dorsal fronto-

parietal cortex (Corbetta and Shulman, 2002; Corbetta et al., 2008). The dorsal part of 

this network (dorsal fronto-parietal system) is believed to control the allocation of 

attentional resources in a goal-directed fashion, while the ventral fronto-parietal 

system is involved in the detection of salient or relevant events, towards which 

attention then is reflexively reoriented (Corbetta and Shulman, 2002; Corbetta et al., 

2008). Evidence from neuroimaging, neuropsychology, and neurophysiology on the 

role of the dorsal network during goal-directed orienting will be discussed.  

 

1.1.2.1. Goal-directed allocation of attention 

Before the mechanisms of attentional control have been investigated with 

neurophysiological and neuroimaging methods, patient studies showed that lesions to 

certain areas within posterior parietal (Heilman and Watson, 1977; Bisiach and Vallar, 

1988; Marshall and Halligan, 1988; Petersen et al., 1989; Marshall and Halligan, 1995; 

Heilman et al., 2000), superior frontal (Heilman and Valenstein, 1972; Damasio et al., 

1980), and cingulate cortex (Watson et al., 1973), as well as in the pulvinar and 

(Watson and Heilman, 1979; Healton et al., 1982; Petersen et al., 1987; Rafal and 

Posner, 1987) in the superior colliculi (Mesulam, 1981), led to pronounced attention 

deficits referred to as neglect or hemi-neglect. Based on these findings and additional 

evidence from animal studies, it has been proposed that these regions are 

differentially involved during orienting (Mesulam, 1981; Posner and Petersen, 1990). 

The posterior parietal cortex (i.e., regions in the superior parietal lobe (SPL) and 

intraparietal sulcus (IPS)) has been suggested to entail a representation of extra-

personal space and to mediate the disengagement of attention from the current focus. 

Moreover, parietal areas convey signals about the particular spatial representations to 

the superior colliculi (mediating spatial shifts of attention) and to the pulvinar 

(controlling the final re-engagement at a new location). Superior frontal regions 

(commonly referred to as frontal eye field (FEF) and supplementary motor area 

(SMA)) and the anterior cingulate cortex (ACC), in contrast, were proposed to mediate 

more cognitive aspects of attentional control, i.e. they are involved in the detection of 

relevant events and to control the planning/coordination of appropriate actions 

(sometimes these areas are therefore also termed executive network). While this early 

classification prepared the ground for later neurophysiological and neuroimaging 

studies in the intact (non-lesioned) brain, it has recently been argued that lesions to 
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the ventral rather to the dorsal fronto-parietal network might be the actual cause for 

neglect symptoms (Corbetta et al., 2008). Evidence for this notion will be reviewed in 

the chapter on the neural mechanisms of stimulus-driven attentional orienting 

(Chapter 1.1.2.2), while the following paragraphs will discuss recent 

neurophysiological and neuroimaging advances concerning the control of goal-

directed orienting (for detailed review see Corbetta and Shulman, 2002; Corbetta et 

al., 2008).   

The first body of neuroimaging work that used positron emission tomography 

(PET) and fMRI to investigate the neural substrates of attentional control used block 

designs in which attentional control signals could not be separated from activity that 

reflects the processing of target stimuli and modulations related to motor responses. 

These studies, nevertheless, consistently observed increased activations within 

parietal (SPL and IPS) and frontal  (FEF and SMA) areas across diverse detection and 

discrimination tasks (Corbetta et al., 1993; Corbetta et al., 1995; Vandenberghe et al., 

1997; Corbetta et al., 1998; Gitelman et al., 1999; Wojciulik and Kanwisher, 1999; 

Corbetta et al., 2000). Later on, studies employed rapid event-related fMRI to 

disentangle activity upon cues to which subjects voluntarily directed their attention in 

anticipation of upcoming stimuli from the modulations elicited by their actual 

appearance. Sustained periods of focused spatial attention therein were shown to 

evoke sustained hemodynamic activity within the IPS, FEF and SMA (Hopfinger et al., 

2000; Sereno et al., 2001; Bisley and Goldberg, 2003; Serences and Yantis, 2007), 

while more transient responses time-locked to the actual attention shifts between 

locations were observed within the SPL (Hopfinger et al., 2000; Yantis et al., 2002; 

Kelley et al., 2008; Shulman et al., 2009). Similar results were obtained when subjects 

were not required to shift their attention across locations but between particular 

features (Liu et al., 2003), objects (Serences et al., 2004; Shomstein and Behrmann, 

2006), or sensory modalities (Macaluso et al., 2002; Shomstein and Yantis, 2004). 

The respective activated regions have been suggested to be the homologues of 

monkey areas LIP and FEF (Paus, 1996; Van Essen et al., 2001) and have been 

found to increase their firing rate when the monkeys anticipated an upcoming 

stimulus-onset (Bushnell et al., 1981; Colby et al., 1996; Nakamura and Colby, 2000; 

Bisley and Goldberg, 2003). Finally, the magnitude of this anticipatory activity has 

been shown to be predictive for the performance in the detection of subsequently 

presented targets, which further underscores the importance of the dorsal-
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frontoparietal system in voluntary orienting of attention [(Sapir et al., 2005; Giesbrecht 

et al., 2006), for an opposite account see (Sadaghiani et al., 2009)]. 

Additional evidence for the existence of an unitary domain-general system that 

mediates voluntary orienting comes from some recent studies that employed within-

subject designs to demonstrate that different types of attention shifts recruit similar 

brain regions, e.g., by comparing shifts between colors and locations (Giesbrecht et 

al., 2003), objects and locations (Shomstein and Behrmann, 2006), or voluntary and 

stimulus-driven shifts of attention (Peelen et al., 2004). However, considerable 

evidence also favors the existence of several domain-specific or at least of a 

compartmentalized cortical network for voluntary attentional control (Rushworth et al., 

2001). A functional parcellation of fronto-parietal regions has been indicated by within-

subjects comparisons of spatial orienting and cue–symbol interpretation (Woldorff et 

al., 2004), shifts between features and locations (Slagter et al., 2007), spatial shifts 

and remapping of attentional priorities (Molenberghs et al., 2007), and for attention-

shifts and decoupling attention from fixation (Kelley et al., 2008). While these results of 

an at least partial separation of attentional control processes were obtained by use of 

conventional univariate statistical procedures, recent studies corroborated this notion 

with multivariate pattern classification methodology for fMRI analysis. Thereby it could 

be demonstrated that specific spatiotemporal activation patterns within distinct 

neuronal subpopulations in dorsal fronto-parietal cortex are associated with different 

aspects of attentional control across perceptual domains (Chiu and Yantis, 2009; 

Esterman et al., 2009; Greenberg et al., 2010; Liu et al., 2011). 

 

1.1.2.2. Stimulus-driven allocation of attention 

As outlined above, earlier work considered spatial neglect symptoms to be 

caused by structural damage to regions located in dorsal fronto-parietal cortex. With 

the development of methods that provided a higher spatial resolution for the analysis 

of structural deficits, it became evident that the classical neglect symptoms might be 

based on lesions to ventral rather than dorsal fronto-parietal regions (Husain and 

Kennard, 1996; Mort et al., 2003; Karnath et al., 2004). These ventral lesions in turn 

lead to a physiological imbalance of activity between left and right dorsal parietal 

cortex, which has been suggested to be the final cause of the classical spatial neglect 

symptoms (Corbetta et al., 2005; He et al., 2007). By this means the ventral attention 

system might indirectly influence the goal-directed allocation of resources. However, 
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the primary role that has been attributed to the ventral system is the detection of 

salient and behaviorally relevant events and the generation of signals controlling the 

subsequent (re-)orienting processes (Corbetta et al., 2008). 

Reorienting has been suggested to occur reflexively, based on the inherent 

sensory salience of the unexpectedly appearing events (Jonides and Yantis, 1988), 

but certain objects may also attract attention more effectively based on their particular 

relevance to the task (Yantis and Egeth, 1999). In this respect, it is still controversial to 

what extent particular events may capture attention based on their relevance given the 

current attentional set of an observer (Jonides and Yantis, 1988; Folk et al., 1992; 

Gibson and Kelsey, 1998; Yantis and Egeth, 1999; Theeuwes et al., 2010) or just 

passively, i.e., based on their “general” salience or biological importance 

(Rauschenberger, 2003). Therein, enhanced responses within the right 

temporoparietal junction (TPJ) and right inferior frontal gyrus (IFG), which are 

suggested to be the core regions of the ventral network, have been described under 

many different circumstances as, e.g., to presentation of infrequent or invalidly cued 

targets (McCarthy et al., 1997; Linden et al., 1999; Corbetta et al., 2000; Marois et al., 

2000; Macaluso et al., 2002; Kincade et al., 2005; Vossel et al., 2006), to stimuli 

comprising target-defining features (Kincade et al., 2005; Indovina and Macaluso, 

2007), to abrupt changes within a given context as, e.g., auditory event-boundaries 

(Sridharan et al., 2007), or even to unattended/unexpected stimuli that appear within 

the focus of attention (Asplund et al., 2010).  

However, recent evidence converges to the notion that task-relevance rather 

than the pure salience of a stimulus determines whether an object is capable to 

activate the ventral network (for recent review see Corbetta et al., 2008). For example, 

presentation of exogenous cues has been shown to activate the dorsal attention 

system and to concurrently affect behavioral performance, but to spare the ventral 

attention network (Corbetta et al., 2005). Similar results have been obtained by 

presentation of salient but task-irrelevant distracters that diminished performance and 

activated dorsal but not ventral fronto-parietal areas (de Fockert et al., 2004). 

Conversely, ventral network activations by targets or target-like stimuli of very low 

salience are much higher than to highly salient but task-irrelevant distractors 

(Serences et al., 2005; Indovina and Macaluso, 2007). Taken together these data 

imply that the ventral attention system is not recruited during voluntary orienting or by 

salient but irrelevant events, but rather during reorienting towards stimuli that comprise 
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target-defining features, suggestive of a particular task-relevance within the given 

context. 

 

1.1.2.3. Summary 

Evidence from lesion-studies as well as neurophysiological and neuroimaging 

investigations over the past decades converges to the common view that attentional 

control is mediated by two partially separate but interacting systems (Corbetta et al., 

2008). The dorsal fronto-parietal system generates the endogenous signals that bias 

the processing of particular features, objects or spatial locations, according to 

expectations and current goals (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger 

et al., 2000), while the ventral part of the system is not activated by expectations or 

task preparation, but is recruited when attention is involuntarily oriented towards 

behaviorally relevant events as targets or target-like stimuli (Kincade et al., 2005; 

Indovina and Macaluso, 2007; Asplund et al., 2010). Beyond this general framework it 

has recently been argued that the interplay between these two networks controls the 

allocation of attentional resources regardless of the particular perceptual domain 

(Corbetta et al., 2008; Chiu and Yantis, 2009). This notion is based on recent 

observations that different attention-shifts (e.g. between features (Liu et al., 2003), 

objects (Serences et al., 2004), or locations (Hopfinger et al., 2000; Yantis et al., 

2002)) recruit fronto-parietal regions in a similar manner. However, other evidence 

favors the existence of several domain-specific or at least one compartmentalized 

network for attentional control (Rushworth et al., 2001; Giesbrecht et al., 2003; Peelen 

et al., 2004; Woldorff et al., 2004; Shomstein and Behrmann, 2006; Molenberghs et 

al., 2007; Slagter et al., 2007; Kelley et al., 2008). Novel multivariate analysis methods 

for fMRI analysis emphasize this notion by demonstrating that specific spatiotemporal 

activation patterns within distinctive voxels are associated with different aspects of 

attentional control, even within regions that have been shown to be commonly 

activated across perceptual domains (Chiu and Yantis, 2009; Esterman et al., 2009; 

Greenberg et al., 2010; Liu et al., 2011). 

 

 

 



General Introduction 

28 

1.2. Aims of the thesis 

As outlined in the first part of the General Introduction, numerous studies 

investigated by which modes of operation attention may influence neural processing of 

perceptual information and concurrent behavioral performance. Traditional theories 

viewed the attentional selection process in a spatial framework (Posner, 1980), while 

recent models accentuate the importance of objects (Duncan, 1984; Desimone, 1998) 

or individual stimulus features (Maunsell and Treue, 2006) as the units of attentional 

selection. One of these models, the feature-similarity gain hypothesis, is primarily 

based on the neurophysiological finding that the firing of single neurons scales in a 

multiplicative manner when attention is directed towards their preferred stimulus-

attribute (Treue and Martinez Trujillo, 1999; Martinez-Trujillo and Treue, 2004). This is 

observed even in cases when the attended feature is presented outside the focus of 

attention (Martinez-Trujillo and Treue, 2004). While conventional neuroimaging studies 

have corroborated this view (Corbetta et al., 1990; O'Craven et al., 1997; Buchel et al., 

1998; Chawla et al., 1999; Huk and Heeger, 2000; Saenz et al., 2002; Liu et al., 

2007b), they did not address the influence of feature-based attention on perceptual 

processing within a single feature dimension (a hallmark of neurophysiological 

investigations in primates that modulated the feature-values in a parametric fashion). 

This lack of direct experimental evidence was addressed in Experiment 1, which 

aimed to validate the predictions from the feature-similarity gain model at the level of 

integrated population responses as measured by fMRI. For this purpose, the 

coherence of a moving transparent surface and direction-selective attention were 

concurrently manipulated, allowing for the investigation of hemodynamic activations as 

a function of feature-selective attention and motion-coherence, and thus to test the 

predictions drawn from the feature-similarity gain hypothesis at the population level. In 

continuation of Experiment 1, the timing of global feature-based attentional selection 

was investigated by means of simultaneous electro-encephalographic (EEG) and 

magneto-encephalographic (MEG) recordings in Experiment 2. To this end, the 

magnitude and latency of ERPs and ERMFs evoked by a spatially unattended surface 

was compared in dependency of the similarity between its motion-direction and the 

direction of an attended surface. Experiment 3 finally extends the subject of 

investigation into the spatial domain. While independent demonstrations of both 

spatial and feature-specific modulations are numerous, direct evidence regarding the 

functional relation between both selection mechanisms is rare. This issue was 
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addressed by comparing the hemodynamic modulations to physically identical stimuli 

when attentional selection was based on spatial locations, features, or both. 

While Experiments 1-3 primarily focused on the effects attentional selection 

exerts on the processing of particular stimulus attributes in early sensory cortex, the 

last experiment (Experiment 4) was conducted to elucidate the mechanisms that 

control the allocation of attentional resources during voluntary and stimulus-driven 

shifts of attention between objects and locations using fMRI. The neural substrates, 

which control such goal-directed and reflexive orienting, have already been 

investigated over the past decade, but none of the studies directly compared multiple 

types of attention-shifts in a within-subjects design. Thus it comes as no surprise that 

it is still a controversial issue whether attentional control is mediated by separate 

domain-specific networks (Rushworth et al., 2001), or by one unitary domain-general 

system (Yantis and Serences, 2003; Corbetta et al., 2008). Experiment 4 was 

specifically designed to address this question. 
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2. Experiment 1 - Feature-based attention modulates 

direction-selective hemodynamic activity in human MT 1 

2.1. Introduction 

As described in detail in the General Introduction, feature-based attention 

modifies the firing-rate of individual neurons selective for an attended feature in a 

multiplicative manner (Treue and Martinez Trujillo, 1999; Martinez-Trujillo and Treue, 

2004). These multiplicatively scaled responses of individual neurons have been 

suggested also to result in an improved selectivity for the attended feature at the 

population level. Such feature-based attentional modulations have previously been 

observed with fMRI for moving stimuli presented within or outside the focus of spatial 

attention (O'Craven et al., 1997; Saenz et al., 2002). However, parametric direction-

selective modulations thus far have only been demonstrated using pattern 

classification methods for fMRI data analysis (Kamitani and Tong, 2006; Serences and 

Boynton, 2007). In these studies, direction-selective information could be decoded 

from multiple stages across the visual hierarchy. These findings, however, do not 

necessarily imply the actual existence of direction-selective neural populations within 

all of these regions (Serences and Boynton, 2007), since the response profile of a 

given voxel also could reflect feedforward/feedback activations instead of true 

direction-selective population-activity (Sillito et al., 2006).  

Experiment 1 was designed to test the validity of the feature-similarity gain 

hypothesis using conventional fMRI analysis techniques for stimulus-features that are 

presented within the focus of spatial attention. Therefore, direction-selective attention 

and the coherence of a moving transparent surface were concurrently manipulated. In 

this way attention could either be directed into or opposed to the motion-direction of 

the surface, while its coherence was parametrically varied. This approach allowed to 

investigate hemodynamic activations in motion responsive regions as a function of 

attention and motion-coherence under identical physical conditions and thus to test 

the predictions from the feature-similarity gain hypothesis at the population level.  

                                            
1 The chapter is partially based on an article by Stoppel CM, Boehler CN, Strumpf H, Heinze HJ, 
Noesselt T, Hopf JM, and Schoenfeld MA. Feature-based attention modulates direction-selective 
hemodynamic activity within human MT. Hum Brain Mapp. 2011; 32(12):2183-92. 
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2.2. Methods 
2.2.1. Subjects  

Twelve students of the University Magdeburg (9 females; mean age: 25.0 

years; all right-handed) participated as paid volunteers in Experiment 1. All subjects 

were neurologically normal, had normal or corrected-to-normal visual acuity and gave 

written informed consent before participation. 

 
Fig. 1: Schematic illustration of the paradigm from Experiment 1. At the beginning of each block an 
arrow indicated the motion-direction that had to be attended by the subjects (left- or rightward motion). 
During the inter-stimulus interval the dots remained stationary, while during each trial they moved either 
left- or rightward for 300 ms. These movements could occur in three alternative coherence-levels for 
both motion-directions (100, 85, and 70% coherence). On some of the trials, the dots moved with a 
higher velocity, and subjects were required to make a button-press response if those movements 
occurred in the attended direction independent of the motion-coherence of the dots. 
 

2.2.2. Stimuli and experimental design 

One hundred white dots (200 cd/m2) were presented against a dark background 

(45 cd/m2) within a square region (8° x 8°) that was located above a central fixation 

cross (4° to the lower edge of the square) and centered on the vertical meridian (see 

Fig. 1). During the inter-trial intervals all dots remained stationary. During each trial a 

certain fraction of the dots (100, 85, and 70%) moved coherently in the same direction 

(either left- or rightward) for 300 ms and thus was perceived as a transparent surface. 

All remaining dots were randomly displaced with the same motion speed as the 

transparent surface. The motion velocity of the transparent surface could either be 

Cue

100% Coherence

Static (ISI)

85/ 70% Coherence
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slow (4 °/s) or fast (6 °/s) predefined on a pseudo-random basis. The inter-trial interval 

varied randomly between 1 and 7 s following a gamma function to allow trial 

separation in an event-related analysis (Hinrichs et al., 2000). Subjects received six 

scanning runs of 8 min, which consisted of 10 blocks of 20 trials each, resulting in 

212–233 trials per condition. Before each block, a central cue (a white arrow pointing 

to the left or right) replaced the fixation cross for 2 s, thereby indicating which direction 

of motion had to be attended by the subjects. Upon the detection of a fast movement 

of the transparent surface into the attended direction subjects were required to make a 

speeded button-press response. Such target-trials occurred in 20% of the cases while 

in the remaining 80% the movements were slow (standards). Thus the neuronal 

modulations elicited by moving transparent surfaces of variable coherence (100, 85, 

and 70%) could be compared, while their motion direction was either attended or 

opposed to the attended direction.  

 

2.2.3. fMRI acquisition and analysis 

2.2.3.1. Data acquisition 

fMRI data were acquired at a 3-Tesla MR scanner (Siemens Magnetom Trio, 

Erlangen, Germany) using an 8-channel head coil. Stimuli were back-projected onto a 

screen positioned behind the head coil and viewed by the subjects via a mirror 

attached to the coil reflecting the images displayed on the screen. Functional data 

were acquired with T2*-weighted echo planar imaging (EPI) in an odd-even 

interleaved sequence (TR = 2000 ms, TE = 30 ms, flip angle = 80°, 30 slices, 

thickness = 4 mm, in plane resolution 64 x 64 mm, FoV 224 x 224 mm, no gap, 

resulting voxel size = 3.5 x 3.5 x 4 mm, AC-PC oriented). Each experimental session 

consisted of 205 volumes. Before functional data acquisition a sagittal whole-head T1-

weighted high-resolution image was collected from each subject (48 slices, thickness 

= 4 mm, 64 x 64 matrix, FoV 224 x 224 mm, gap = 0.8 mm, spatial resolution = 0.9 x 

0.9 x 4 mm, TE = 4.9 ms, TR = 15000 ms). 

 

2.2.3.2. Image processing and statistical analysis 

The functional data were analyzed using SPM5 software (Wellcome 

Department of Cognitive Neurology, University College London, UK) and MATLAB 7.4 

(The Mathwork Inc.). The EPI volumes were corrected for differences in slice 

acquisition time, realigned to the first volume and spatially normalized to the standard 

EPI template provided by SPM5. Finally, the images were resliced to a final voxel size 
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of 2 × 2 × 2 mm and spatially smoothed using an 8-mm full-width at half-maximum 

isotropic Gaussian kernel. For statistical analysis blood-oxygen level-dependent 

(BOLD) responses were separately modeled for each condition of interest by delta 

functions time-locked to the onsets of the respective stimuli. The resultant event-

regressors were entered into a general linear model and convolved with the standard 

hemodynamic-response function implemented in SPM5, including the movement 

parameters derived from the realignment procedure as covariates (Friston et al., 

1998). Contrasts of parameter estimates comparing trials of different motion 

coherence levels vs. baseline were calculated for both attention conditions and the 

corresponding contrast images were subsequently entered into a random-effects 

group-analysis treating inter-subject variability as a random effect to account for inter-

individual variance. Stereotactic coordinates for voxels with maximal F-values within 

activation clusters are reported in MNI standard space (the significance threshold was 

set at a whole-brain corrected false discovery rate (FDR) of p < 0.01 with a minimum 

cluster extent of k = 20 contiguous voxels). For data visualization, the resultant 

activation maps for each contrast were superimposed onto a semitransparent surface-

based representation of the MNI canonical brain using the SPM surfrend toolbox 

(http://spmsurfrend.sourceforge.net) and NeuroLens 

(http://www.neurolens.org/NeuroLens/Home.html). 

To directly compare the magnitude of hemodynamic modulations induced by 

the different conditions, a region of interest (ROI) analysis was performed using the 

MarsBar toolbox in SPM5 (Brett et al., 2002). The ROIs were functionally defined 

based on the local activation maxima given by the overall effects of interest F-contrast 

of a second-level 2 x 3 factorial analysis of variance (ANOVA) including all 6 condition 

of interest (2 attention conditions x 3 motion coherence levels; see Tab. 1 for 

activation-maxima of the effect of interest F-contrast and Tab. 2 for ROI-coordinates). 

For all ROIs (anterior cingulate cortex (ACC), fundus of the intraparietal sulcus (fIPS), 

human analogue of the middle temporal area (hMT), lateral parietal cortex (LPC), 

superior frontal gyrus (SFG), superior parietal lobe (SPL), thalamus and V3a) mean 

beta values were extracted from the individual subjects’ data. These data were 

subjected to a repeated-measures ANOVA (RANOVA) with the factors region, 

hemisphere (left vs. right), attention condition (direction attended vs. anti-direction 

attended), and motion coherence (100, 85, and 70%). The significance threshold was 

set to p < 0.05 following Greenhouse-Geisser correction for non-sphericity if 

http://spmsurfrend.sourceforge.net/
http://www.neurolens.org/NeuroLens/Home.html
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necessary. No significant main effect or interactions were observed for the factor 

hemisphere, thus data were collapsed over both hemispheres before further analysis. 

Finally, these collapsed data from each ROI were separately analyzed by RANOVAs 

with the factors attention condition and motion coherence. 

 

Tab. 1: Peak activation foci to motion-stimuli in the group random-effects analysis 

Anatomical structure Cluster-size 
(voxels) 

FDR-corrected 
p-value 

Hemi-
sphere 

Maximum 
F-value MNI- coordinates (x, y, z) 

ACC 143 
274 

<0.01 
<0.01 

L 
R 

15.13 
18.10 

       -10       40       32 
         4        38       38 

Cuneus 213 
231 

<0.001 
<0.001 

L 
R 

32.20 
36.66 

       -10      -78        2 
        16      -76        4 

Dorsolateral PFC 96 
185 

<0.005 
<0.005 

L 
R 

22.86 
22.89 

       -42       10       30 
        42        4        30 

FEF 148 
173 

<0.001 
<0.001 

L 
R 

38.60 
27.12 

       -48       -4        58 
        36       -4        54 

FG 476 
498 

<0.001 
<0.001 

L 
R 

92.21 
95.33 

       -44      -70       -4 
        34      -76       -2 

fIPS 36 
215 

<0.005 
<0.001 

L 
R 

24.64 
32.14 

       -24      -70       42 
        26      -72       42 

hMT 512 
514 

<0.001 
<0.001 

L 
R 

261.33 
437.43 

       -42      -74       22 
        42      -68       18 

IFG 229 <0.001 L 38.24        -48       40       10 

LPC 283 
178 

<0.001 
<0.001 

L 
R 

28.55 
29.78 

       -38      -66       54 
        52      -70       40 

SFG 102 
265 

<0.01 
<0.001 

L 
R 

17.45 
34.60 

       -14       36       52 
        16       22       60 

SMA 156 
71 

<0.005 
<0.001 

L 
R 

24.43 
26.56 

       -10       12       44 
         8        14       52 

SMG 229 
311 

<0.001 
<0.001 

L 
R 

35.61 
56.35 

       -54      -30       26 
        50      -26       28 

SPL 143 
397 

<0.001 
<0.001 

L 
R 

38.75 
84.34 

       -22      -38       70 
        22      -40       72 

Thalamus 240 
158 

<0.001 
<0.001 

L 
R 

32.93 
39.86 

       -10      -14        2 
        16      -14        6 

V3a 439 
417 

<0.001 
<0.001 

L 
R 

73.46 
62.74 

       -10      -90       30 
        10      -90       26 

FDR-corrected cluster p-value < 0.01; extent threshold k = 20 voxels. Abbreviations: ACC, anterior cingulate 
cortex; FEF, frontal eye field; FG, fusiform gyrus; fIPS, fundus of the intraparietal sulcus; hMT, human analogue 
of the middle temporal area; IFG, inferior frontal gyrus; LPC, lateral parietal cortex; PFC, prefrontal cortex; SFG, 
superior frontal gyrus; SMA, supplementary motor area; SMG, supramarginal gyrus; SPL, superior parietal lobe. 
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2.3. Results 

2.3.1. Behavioral results 

On target trials subjects responded correctly in 73.1% of the trials (standard 

error of the mean; SEM: 6.3%) with a mean reaction time (RT) of 701 ms (SEM: 46 

ms). To investigate the influence of motion coherence on the subjects’ behavioral 

responses, RTs and the percentage of correct responses were separately submitted 

to RANOVAs with the factor motion coherence (100, 85, and 70% coherence). These 

analyses revealed a significant main effect of motion coherence on the hit rate 

(F(2,22) = 8.7, p < 0.005), but not on the RTs of the subjects (F(2,22) = 1.6, p > 0.2), 

consistent with a speed-accuracy trade-off under increased perceptual demands (low 

coherence-levels). The main effect of motion coherence on the subjects’ hit rates 

resulted from significantly more correct responses on full coherent stimuli in 

comparison to 70% coherent motion (p < 0.01) and an almost significantly higher hit 

rate on 85% coherent stimuli in comparison to 70% coherent motion (p = 0.07). 

 

Tab. 2: MNI-coordinates of the ROIs 

Anatomical 
structure 

MNI coordinates (left hemisphere) 
 x             y             z 

MNI coordinates (right hemisphere) 
x             y             z 

ACC -10 ± 4     40 ± 4     32 ± 4   4 ± 4    38 ± 4     38 ± 4 

fIPS -24 ± 4    -70 ± 6     39 ± 5 27 ± 5   -72 ± 6     38 ± 6 

hMT -43 ± 5    -73 ± 5     21 ± 5 45 ± 5   -71 ± 7     15 ± 5 

LPC -46 ± 4    -66 ± 4     52 ± 4 46 ± 4   -62 ± 4     42 ± 4 

SFG -14 ± 4     36 ± 4     52 ± 4 16 ± 4    22 ± 4     60 ± 4 

SPL -22 ± 4    -38 ± 4     70 ± 4 22 ± 4   -40 ± 4     72 ± 4 

Thalamus -10 ± 4    -15 ± 7       3 ± 5 15 ± 3   -15 ± 3       2 ± 4 

V3a -20 ± 4    -82 ± 4     32 ± 4 12 ± 4   -92 ± 4     24 ± 4 

Abbreviations: ACC, anterior cingulate cortex; fIPS, fundus of the intraparietal sulcus; hMT, 
human analogue of the middle temporal area; LPC, lateral parietal cortex; SFG, superior frontal 
gyrus; SPL, superior parietal lobe. 

 

2.3.2. fMRI results 

2.3.2.1. Group random-effects analysis 

In the effects of interest contrast from the 2 x 3 factorial ANOVA group analysis 

clusters of significant attention and/ or coherency-dependent activations were 

identified within fronto-parietal (ACC, frontal eye-field (FEF), LPC, SFG, 

supplementary motor area (SMA) and SPL), extrastriate visual (fusiform gyrus (FG), 

hMT, fIPS and V3a) and thalamic regions (see Tab. 1 for MNI coordinates and F-

values). ROIs were centered on the local maxima within several of these fronto-
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parietal, extrastriate and thalamic regions (see Tab. 2 for the corresponding MNI 

coordinates) to directly assess the influence of feature-based attention on the 

magnitude of neural modulations induced by stimuli of different coherence-levels.  
 

    
Fig. 2: A) Activation map from the group random-effects analysis of Experiment 1. The activation map shows 
regions that are more active during (non-target) motion-trials than during presentation of stationary dots. The 
significance threshold for visualization was set at a (corrected) family-wise error level of p < 0.05. B) Attentional 
modulation of neural activations to visual motion coherence within extrastriate and thalamic regions. The 
mean beta values for all coherence-level are separately depicted for both attention conditions. Beta parameter 
estimates are averaged over subjects (n=12) and hemispheres for each ROI. Note that hMT displays an inverse 
linear relationship between motion-coherence and the magnitude of the signal estimates for attended and 
unattended conditions, which is in contrast to all other regions. Abbreviations: fIPS, fundus of the intraparietal 
sulcus; hMT, human analogue of the middle temporal area.  
 

2.3.2.2. Region of interest analyses 

Analysis of the ROI-data by a RANOVA with the factors region (ACC, fIPS, 

LPC, SFG, SPL, thalamus, V3a, hMT), hemisphere (left vs. right), coherence (100, 85, 

and 70% coherence) and attention condition (direction attended vs. anti-direction 

attended) showed significant main effects for the factors region (F(7,77) = 66.9, p < 

0.001) and attention (F(1,11) = 6.1, p < 0.05), as well as a significant 3-way interaction 

between the factors region, coherence, and attention condition (F(6,66) = 4.9, p < 

0.005). No significant main effect, or interactions were observed for the factor 

hemisphere. Thus data were collapsed over hemispheres before data for each ROI 

were separately subjected to RANOVAs with the factors attention condition and 

motion coherence. 

The analyses from the individual ROIs revealed remarkable differences in the 

activation pattern between lower-tier regions of the visual cortex (fIPS, thalamus, V3a, 

and hMT; see Fig. 2) and higher-tier attentional control structures (ACC, LPC, SPL, 

and SFG; see Fig. 3). For the fIPS and the thalamic ROIs a nearly linear relationship 

A B

m
ea

n 
be

ta
-v

al
ue 0.8

0.6

0.4

0.2

Motion Coherence

10
0%

85
%

70
%

10
0%

85
%

70
%

Direction Attended

hMT
V3a

fIPS
Thalamus

Opposite Direction 
Attended

hMTV3a

fIPS



Experiment 1 

37 

between the magnitude of the hemodynamic response and the coherence of the 

moving transparent surface was observed (see Fig. 2B), which was independent of 

attention. This was reflected by a significant main effect for the factor motion 

coherence (fIPS: F(2,22) = 7.2, p < 0.005; thalamus: F(2,22) = 10.1, p < 0.001) in 

absence of a main effect of attention, or an interaction between both factors, while for 

V3a no significant main effects or interactions were observed. In contrast, hMT 

showed a significant main effect for the factor attention (F(1,11) = 28.9, p < 0.001) and 

a significant attention x motion coherence interaction (F(2,22) = 5.5, p < 0.05), which 

was due to an opposite near-linear coherence-dependency for the attended and 

unattended motion direction: hemodynamic activity in hMT showed a positive linear 

relationship with motion coherence when the direction of the moving transparent 

surface was attended, while it was inversely correlated with the stimulus’ coherence 

when its motion-direction had to be ignored (see Fig. 2B).  

Analyses of the ROI-data from fronto-parietal attentional control regions 

revealed an entirely different pattern: the SPL showed main effects of attention 

(F(1,11) = 16.3, p < 0.005) and motion coherence (F(2,22) = 16.5, p < 0.001), but no 

attention x motion coherence interaction. The attentional main effect was due to higher 

modulations to unattended than attended stimulus motion, whereas the main effect of 

motion coherence was reflected by an inverse linear dependency of the modulation 

magnitude on the coherence of the stimuli, irrespective of attention. The other fronto-

parietal regions (ACC, SFG, and LPC), in contrast, showed no main effects for the 

factors attention or motion coherence but a significant interaction between both factors 

(ACC: F(2,22) = 24.1, p < 0.001; SFG: F(2,22) = 9.3 p < 0.001 ; LPC: F(2,22) = 4.5, p 

< 0.05). The hemodynamic modulations within these regions were opposed to the 

pattern observed for area hMT: When the direction was attended, the highest 

modulations occurred for the least coherent stimuli, while for stimuli moving opposed 

to the attended direction the modulation magnitude showed a positive linear 

relationship with stimulus-coherence (see Fig. 3B).  
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Fig. 3: A) Activation map showing activated regions that are more active during presentation of attended 
incoherent (70% coherence) than attended coherent (100% coherence) motion-trials. The significance 
threshold for visualization was set at p < 0.001 (uncorrected). B) Attentional modulation of neural activations to 
visual motion coherence within fronto-parietal attentional control structures. The mean beta values to all 
coherence-levels are separately depicted for both attention conditions. Beta parameter estimates are averaged 
over subjects (n=12) and hemispheres for each ROI. Abbreviations: ACC, anterior cingulate cortex; LPC, lateral 
parietal cortex; SFG, superior frontal gyrus; SPL, superior parietal lobe.   
 

2.4. Summary 
The results of Experiment 1 demonstrate that activity in hMT is positively 

correlated with a stimulusʼs coherence when its motion-direction is attended, mirroring 

the subjectsʼ behavioral performance. In contrast, hMT activation magnitude is 

inversely related to the motion-coherence of the stimuli if their predominant motion-

direction is opposed to the attended one. It is important to note that hMT was the only 

region that exhibited this specific pattern, while in the fIPS and the thalamus the 

positive linear correlation with motion-coherence occurred irrespective of feature-

based attention. Attentional control regions, on the other hand, displayed an activation 

pattern opposed to the one observed in hMT: In accordance with a signal-detection 

theory perspective, their activation magnitude varied in dependence of the particular 

task-demands, i.e., higher hemodynamic activity was observed when the stimuli were 

of lower coherence. Taken together, these results provide strong support for the 

validity of the feature-similarity gain hypothesis at the level of entire neural populations 

(Martinez-Trujillo and Treue, 2004) and suggest that feature-based attention improves 

behavioral performance by modulation of direction-selective population-activity within 

area hMT. 
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3. Experiment 2 - Global feature-based attention 

parametrically modulates direction-selective 

electromagnetic responses in humans 2 

3.1. Introduction 

Using fMRI, Experiment 1 provided evidence that the multiplicative gain 

enhancement observed in single-cell recordings indeed results in an improved 

selectivity for the attended feature at the level of an integrated population response, 

within the cortical module that is specialized in processing the respective feature 

attributes. Besides these feature-based modulations for spatially attended stimuli, 

feature-based selection also has been shown to modulate the firing-rate of neurons in 

an entirely location-independent manner:  a neuron’s response is modified even if it is 

not directly driven by a stimulus within its spatial receptive field (Treue and Martinez 

Trujillo, 1999; Martinez-Trujillo and Treue, 2004; Bichot et al., 2005). Recently, such 

spatially global feature-selective modulations have also been described at the 

population-level using fMRI (Saenz et al., 2002; Kamitani and Tong, 2006; Serences 

and Boynton, 2007) and recordings of steady-state visual evoked potentials (SSVEPs) 

in humans (Andersen et al., 2009; Andersen et al., 2011). However, these studies did 

not address the timing of the attentional modulations for features presented at spatially 

unattended locations. 

In Experiment 2, electroencephalographic (EEG) and magneto-

encephalographic (MEG) activity was simultaneously recorded time-locked to the 

motion-onset of a spatially unattended random-dot kinematogram (RDK) to investigate 

the time-course and the neural substrates of global feature-based attentional selection 

at the population level. Participants were required to attend a moving transparent 

surface to perform in a motion-discrimination task in one visual field, while a second 

surface presented to the opposite visual field moved into 8 varying directions. This 

design permitted the quantification of the magnitude and latency of event-related 

potentials (ERPs) and event-related magnetic fields (ERMFs) evoked by the 

unattended surface, in dependence of the similarity between its motion-direction and 

the direction of the attended surface in the opposite visual field. 

  

                                            
2 The chapter is partially based on a manuscript by Stoppel CM, Boehler CN, Strumpf H, Krebs RM, 
Heinze HJ, Hopf JM, and Schoenfeld MA. Spatio-temporal dynamics of feature-based attention spread: 
Evidence from combined EEG and MEG recordings. J Neurosci. In Revision. 
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3.2. Methods 

3.2.1. Subjects  

Sixteen right-handed neurologically normal subjects (mean age: 27.0 years, 4 

males), all with normal or corrected-to-normal visual acuity, participated as paid 

volunteers in the study. The local ethics committee of the Otto-von-Guericke 

University Magdeburg approved the experiment and all subjects gave written informed 

consent before participation. 

 

3.2.2. Stimuli and experimental design 

Stimuli were presented against a dark background (0.5 cd/m2) within two 

square apertures (4.2° x 4.2°) centered 5.7° to the left and right of a central fixation 

cross (0.8° x 0.8°, see Fig. 4). Each aperture contained 100 randomly distributed 

isoluminant white dots (brightness 200 cd/m2; dot size 0.08°). All dots within the left 

aperture moved either coherently up- (during even runs) or downward (during odd 

runs; velocity: 10°/s) and thus were perceived as a transparent surface. The subjects’ 

task was to attend this surface and to make a speeded button-press response after 

detecting an accelerated movement of the attended surface (velocity: 22°/s for 300 

ms). Within the right aperture all dots remained stationary throughout the experiment 

except during probe trials in which all of them coherently performed a short 

displacement into one of the eight cardinal or ordinal directions (velocity: 10°/s for 200 

ms). These probe movements thus deviated from the motion-direction of the attended 

surface by 0°, 45°, 90°, 135°, or 180° (see Fig. 4) and were completely irrelevant to 

the task. All trials (target and probe trials) were presented equally often throughout the 

experiment in a predefined pseudo-random sequence. The inter-trial interval randomly 

varied between 1250 and 1750 ms (mean 1500 ms). Subjects received seven 

scanning runs of 385 seconds, which consisted of 252 trials each, resulting in 294 

trials per condition. Throughout the experiment subjects were instructed to keep 

accurate fixation, which was monitored by electro-oculogram (EOG, see below). 
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Fig. 4: Schematic illustration of 
the paradigm from Experiment 2. 
Subjects viewed two squared 
apertures presented to the left and 
right visual field. In the left aperture 
all dots moved either coherently up- 
(during even runs) or downward 
(during odd runs) and thus were 
perceived as a transparent surface. 
On some trials, this surface moved 
with a higher velocity, and subjects 
responded to those as targets. 
Within the right aperture all dots 
remained stationary during the 
inter-stimulus interval. On probe 
trials, all dots within the right 
aperture performed a short 
coherent displacement into one of 
the eight cardinal or ordinal 
directions, thus deviating from the 
motion-direction of the attended 
surface by 0°, 45°, 90°, 135° or 
180°. These movements in the 
unattended aperture were 
completely irrelevant to the task and 
had to be ignored by the subjects. 
 

 

3.2.3. EEG/MEG data acquisition and analysis 

3.2.3.1. Data acquisition 

Event-related potentials (ERP) and event-related magnetic fields (ERMF) were 

simultaneously recorded using a Magnes 3600 whole-head MEG-system (4-D 

Neuroimaging/Biomagnetic Technologies Inc., San Diego, CA) with 248 

magnetometers and 32 EEG-channels (NeuroScan, Inc., Herndon, VA). The signals 

were digitized at a rate of 508 Hz with an online bandpass of DC to 200 Hz. The 

horizontal EOG was recorded using a bipolar montage with 2 electrodes behind the 

lateral orbital angles, whereas the vertical EOG was recorded from an electrode below 
the right orbital limb. Impedances were kept below 5 kΩ and an electrode placed at 

FPZ served as ground. MEG signals were submitted to online and offline noise 

reduction (Robinson, 1989), and an artifact rejection was applied with peak-to-peak 

limits of 2-4 pT for the MEG and 80-200 µV for the EOG signal (thresholds individually 

adjusted for each subject, but constant over all experimental conditions). Individual 

head shapes were co-registered with the sensor coordinate system by digitizing 

(Polhemus 3Space Fastrak system, Polhemus Inc., Colchester, VT) skull landmarks 

(nasion, left, and right pre-auricular points) and determining their locations relative to 
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sensor and electrode positions using signals from 5 spatially distributed coils attached 

to the subjects’ heads.  

 

3.2.3.2. ERP/ERMF analyses 

Separate ERP and ERMF average waveforms were computed time-locked to 

the motion onset for each of the 5 probe conditions. Attention effects were quantified 

in these average waveforms as mean amplitude measures within latency intervals of 

110-210 and 210-310 ms after stimulus onset (with respect to a 200 ms pre-stimulus 

baseline) at the sensor/electrode sites showing the largest amplitudes. Statistical 

analysis of the data was performed using within-subjects RANOVAs (Greenhouse-

Geisser correction was applied when necessary). To determine the time of onset of 

the attention effects, amplitude measures were taken over successive 10-ms intervals 

and tested for significant differences between conditions with a criterion of p < 0.05. 

The earliest significant interval followed by 5 (or more) successive significant intervals 

was taken as the onset latency (Guthrie and Buchwald, 1991; Schoenfeld et al., 

2003b; Schoenfeld et al., 2007) 

 

3.2.3.3. Source Localization 

For source localization, current source density estimates were computed by 

means of standardized low-resolution electromagnetic tomography (sLORETA, 

Pascual-Marqui, 2002) as implemented in the neuroimaging software Curry 6.01 

(Compumedics Neuroscan, El Paso, TX). The sLORETA represents an extension of 

the minimum norm least square (MNLS) method (Hamalainen and Ilmoniemi, 1994; 

Fuchs et al., 1999), where current estimates at each source location are weighted by 

their measurement error, yielding a pseudo-F-value distribution of currents over the 

cortical surface, called source density estimates (SDEs). Source localization results 

provided in Figs. 5 and 6 represent such estimates. All inverse computations were 

constrained by realistic anatomical models of the volume conductor and source 

compartment derived by 3-dimensional surface reconstructions of the head, 

cerebrospinal fluid space, and cortical surface, respectively (boundary element 

method, Hamalainen and Sarvas, 1989). The anatomical basis for the source analysis 

was the MNI brain (average of 152 T1-weighted stereotactic volumes). 
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Fig. 5: Global feature-based attentional modulations between 210 and 310 ms after stimulus onset. Time 
courses and mean amplitudes (210-310 ms after stimulus onset) of the probe-related ERP (left column) and ERMF 
(right column) responses. Recording sites are indicated as black dots within the field distribution maps. Note that 
the magnitude of the ERP and ERMF amplitudes parametrically depends on the deviation of the probesʼ motion 
direction from the direction of the attended surface. The topographical field distributions show a maximal positivity 
over midline central electrode sites for the ERPs (left topography maps) and one maximum/minimum pair located 
over left occipito-temporal sensors for the ERMFs (right topography maps). The estimated current source density 
distribution 250 ms after stimulus onset (displayed in the middle of the figure) shows one maximum located in the 
left middle occipito-temporal cortex. 
 

3.3. Results 
3.3.1. Behavioral results 

Subjects were accurate at detecting the faster moving targets, with a mean hit 

rate of 95.5% (SEM: 1.0%) and a false alarm rate of 2.9% (SEM: ± 0.7%). Mean 

reaction times (RTs) ranged from 414 to 501 ms (mean ± SEM: 458 ± 31 ms).  
 

3.3.2. ERP/ERMF results 
The effects of feature-based attention on direction-selective neural activity were 

assessed, by comparing the ERP/ERMF waveforms elicited by the different probe 

stimuli. This comparison revealed that the magnitude of the ERP/ERMF amplitudes in 

the time-range between 210-310 ms depended on the similarity between the motion 

direction of the probes and the direction of the attended surface, with more negative 

ERP (F(4,60) = 10.8; p < 0.0001; see Fig. 5, left column) and ERMF amplitudes 

(F(4,60) = 3.6; p < 0.05; see Fig. 5, right column) for probe stimuli more closely 

matching the attended direction. In contrast, the magnitude of ERP/ERMF amplitudes 
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within the time-range of the N1-component (110-210 ms) was not significantly 

modulated by the similarity between the motion directions of the attended surface and 

that of the moving probe stimuli (ERPs; F(4,60) = 2.0; p > 0.4; see Fig. 6, left column; 

ERMFs; F(4,60) = 2.0; p > 0.4; see Fig. 6, right column).  
 

 
Fig. 6: No global feature-based attention effects in the time-range of the N1-component (110-210 ms after 
stimulus onset). Time courses and mean amplitudes of the probe-related ERP (left column) and ERMF (right 
column) responses in the time-range between 110 and 210 ms after onset of the probe stimuli. Recording sites are 
indicated as black dots within the field distribution maps. The magnitude of ERP and ERMF amplitudes shows no 
dependency on the motion-direction of the attended surface. A minimum in the ERP field distribution can be seen 
over left parieto-occipital electrode sites (left topography maps), accompanied by one maximum/minimum pair for 
the field distribution of the ERMFs, which is located over left occipital sensors (right topography maps). The 
estimated current source density distribution 150 ms after stimulus onset shows one maximum located in left 
ventro-lateral extrastriate cortex. 
 

To illustrate these effects, mean ERP and ERMF amplitudes within the 110-210 

and 210-310 ms intervals are separately depicted for each probe condition as bar 

graphs at the bottom of the left and right columns in Figs. 5 and 6. Note that the 

magnitude of the ERP and ERMF amplitudes between 210 and 310 ms parametrically 

depends on the deviation of the probesʼ motion direction from that of the attended 

surface. Statistical comparison in successive 10 ms epochs indicated that these 

differences between probe conditions became significant around 200 ms post-probe. 

In the N1 time-range, the corresponding topographical field distributions for all probe 

conditions showed a maximal negativity over left parieto-occipital electrodes in the 

ERPs (Fig. 6, left topography maps) and one maximum/minimum pair located over left 
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occipital sensors for the ERMFs (Fig. 6, right topography maps). In the subsequent 

interval between 210 and 310 ms, the ERP field distribution map showed a maximal 

positivity over midline central electrode sites (Fig. 5, left topography maps), 

accompanied by one maximum/minimum pair located over left occipito-temporal 

sensors for the ERMFs (Fig. 5, right topography maps). The corresponding current 

source distribution (sLORETA estimates, see Materials and Methods) within the N1 

time-range (at 150 ms after stimulus onset) showed a single clear source-activity 

maximum located in the left lateral ventral extrastriate cortex, while the later time 

range (at 250 ms after stimulus onset) was dominated by a single maximum in left 

middle occipito-temporal cortex, most likely corresponding to region hMT. 

 

3.4. Summary 

The data from Experiment 2 demonstrate a global feature-based attentional 

modulation of ERP and ERMF amplitudes, which depends on the similarity between 

the motion-directions of an attended and an unattended surface. Attempts to localize 

the cortical generators of these modulations using current-source reconstruction and 

inspection of the underlying field distributions suggest them to originate from occipito-

temporal cortex, probably correspondent to area hMT. The analysis of the time-

courses of ERP and ERMF waveforms indicates that these modulations, in terms of a 

graded negativity (selection negativity, SN), occur comparatively late, starting at 

around ≈ 200 ms after the motion-onset. A comparison of N1-component magnitudes, 

in contrast, reveals no significant differences between ERPs and ERMFs elicited by 

the motion-probes of varying directionality. Source localization estimates suggest 

these modulations to originate from regions located in lower-tier regions along the 

visual hierarchy, as the source maxima can be observed over lateral occipital cortex. 

Taken together, these results demonstrate a parametric direction-selective attentional 

modulation of ERP and ERMF amplitudes, in support for the validity of the feature 

similarity gain hypothesis on the population-level (Treue and Martinez Trujillo, 1999) 

and further emphasize the global nature of feature-selective attention. The onset 

latency of these attentional modulations, however, was comparatively late (see 

General Discussion), with earliest effects starting around 200 ms after stimulus-onset. 
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4. Experiment 3 - Neural mechanisms of spatial- and feature-

based attention: A quantitative analysis 3 

4.1. Introduction 

The results from Experiments 1 and 2 convincingly demonstrate a parametric 

direction-selective modulation of fMRI and MEG/EEG activity, which is well in line with 

findings from previous fMRI and ERP studies in humans (Anllo-Vento and Hillyard, 1996; 

Saenz et al., 2002; Kamitani and Tong, 2006; Schoenfeld et al., 2007), and 

neurophysiological investigations in primates (Treue and Martinez Trujillo, 1999; Stoppel 

et al., 2011). The data from Experiment 2 moreover emphasize the global nature of 

feature-based selection (Treue and Martinez Trujillo, 1999; Saenz et al., 2002; Hopf et al., 

2004), since these modulations even were observed in response to stimuli presented at 

unattended locations. However, in addition to its non-spatial properties, a stimulus can 

also be selected based on its spatial location. Common analogies of location-based 

selection include the spotlight or zoom lens models (Posner, 1980; Eriksen and St James, 

1986), which propose that the spatial focus of attention is shifted across the visual field. 

Thereby enhanced processing resources are assigned to all items that fall into that spatial 

region regardless of their relevance to the task (Heinze et al., 1994). While convincing 

evidence indicates that attentional selection can be based on both the spatial and non-

spatial properties of a stimulus, the direct functional relation between both (location- and 

feature-based) selection mechanisms has only rarely been investigated.  

To test for such a direct functional relationship, Experiment 3 sought to directly 

compare the neuronal modulations to physically identical stimuli, while the attentional 

selection was directed to a stimulus’ spatial location, it’s constituent features, or both. For 

this aim subjects were presented with two squared apertures located in the left and right 

visual field, each consisting of two different-colored dot-populations (see Fig. 7). During 

the task subjects were concurrently cued to attend one particular feature-value (red vs. 

green dot color) within one of the two apertures (left vs. right), while during each trial one 

dot-population (red or green) within one of both apertures executed a brief coherent 

movement. This design permitted to directly compare the magnitude of attentional 

modulations during space- and/or feature-based attentional selection to physically 

identical stimuli (standards).  

                                            
3 The chapter is partially based on an article by Stoppel CM, Boehler CN, Sabelhaus C, Heinze HJ, Hopf 
JM, and Schoenfeld MA. Neural mechanisms of spatial- and feature-based attention: a quantitative analysis. 
Brain Res. 2007; 21;1181:51-60. 
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4.2. Methods 

4.2.1. Subjects  

Fifteen right-handed neurologically normal subjects (11 females; mean age: 24.1), 

all with normal or corrected-to-normal vision, participated as paid volunteers in the study. 

All gave informed consent and the local ethics committee of the Otto-von-Guericke 

University Magdeburg approved the study. 

 

4.2.2. Stimuli and experimental design 
 

Fig. 7: Schematic illustration of the 
paradigm from Experiment 3. A central cue 
(red or green arrow) indicated the color (red 
vs. green) and the location (left vs. right) that 
had to be attended by the subjects. In the 
upper left and right visual field two 
superimposed transparent surfaces (each 
formed by 50 red and 50 green dots) were 
continuously present during the experiment. 
Within these transparent surfaces, fast as 
well as slow movements could occur at the 
attended as well as the unattended location 
in the attended or unattended surface 
(defined by its color). Subjects were required 
to press a button upon the detection of a fast 
movement of the attended surface at the 
attended location.  
 

 

 

Subjects were presented with two square apertures (2° x 2°), located in the upper 

left and right visual quadrant at 8° eccentricity (inner edge) of a central fixation cross (see 

Fig. 7). Each aperture contained 50 red and 50 green randomly distributed isoluminant 

dots (200 cd/m2), which were presented against a grey background (luminance set at 45 

cd/m2). The fixation cross and the dots were continuously present on the screen during 

every run. Before each block, a central cue was presented for 1 s (red or green arrow 

pointing to the left or right), thereby directing the subject’s attention to a particular subset 

of dots (either red or green) at a particular location (left or right aperture). During the inter-

trial intervals all dots remained stationary, while during each trial either the red or green 

dots within one of the apertures moved coherently up- or downward for 500 ms. The 

velocity of these movement could be either slow (4°/sec) or fast (6°/sec). The sequence of 

the transparent surfaces’ movements (the respective color, location, and speed) was 

predefined on a pseudo-random basis. Subjects were instructed to press a button as 

rapidly as possible when detecting a fast movement of the attended subset of dots (red or 
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green) within the attended location (either within the left or right aperture). Such fast 

movements (targets) occurred in 10 % of the cases while 90 % of the movements were 

slow (standards). The inter-trial interval varied randomly between 1 and 7 s following a 

gamma function to allow for trial separation in an event-related analysis (Hinrichs et al., 

2000). Data acquisition consisted of six scanning runs of 7.5 - 8.2 minutes, including 11-

12 blocks of 16-24 trials each, resulting in ~180 trials for each of the non-target conditions. 

For quantification of the modulation magnitudes during space- and/ or feature-based 

deployment of attention the following contrasts were formed: 

 

S+F+: Attended feature at attended location vs. unattended feature at unattended location (reflecting 

attentional modulations during concomitant feature- and location-based selection). 

S+: Attended feature at attended vs. unattended location (reflecting solely space-based 

attentional modulations). 

F+: Attended vs. unattended feature at attended location (reflecting feature-based attentional 

modulations within the focus of spatial attention). 

RFE: Attended vs. unattended feature at unattended location (reflecting feature-based attentional 

modulations outside the focus of spatial attention). 
 

RFE: relevant feature effect. 

 

The magnitudes of these location- and/ or feature-based modulations were 

compared using a ROI-analysis in which the activity was separately assessed for stimuli 

presented to the ipsilateral (e.g., iS+F+) as well as the contralateral visual field (e.g., 

cS+F+) concerning the ROIs’ locations. For the RFE the ipsilateral and contralateral 

values were averaged resulting in only one RFE value per ROI.  

 

4.2.3. fMRI acquisition and analysis 

4.2.3.1. Data acquisition 

During functional data acquisition, stimuli were presented via a projector-mirror 

system. fMRI data were collected using a 3-Tesla MR scanner (Siemens Magnetom Trio, 

Erlangen, Germany) equipped with an 8-channel head coil. Functional images were 

acquired with a T2*-weighted EPI-sequence (TR = 2000 ms, TE = 30 ms, flip angle = 80°). 

Thirty axial (AC-PC oriented) slices were acquired in an odd-even interleaved sequence 

(thickness = 3.5 mm, in-plane resolution 64 × 64 mm, no gap, resulting voxel size = 
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3.5 x 3.5 x 3.5 mm3) for 245 volumes during each of the 6 functional sessions. In a 

structural session, sagittal whole-head T1-weighted images (spatial resolution, 1 x 1 x 1 

mm3; 256 x 256 matrix; 192 slices, no gap) were acquired using an MP-RAGE sequence 

(TR = 2500 ms, TE = 3.82 ms, TI = 1100 ms, flip angle = 7°). 

 

4.2.3.2. Image processing and statistical analysis 

Image pre-processing and statistical analysis of the data was performed using 

SPM99 software (Wellcome Department of Cognitive Neurology, University College 

London, UK) and MATLAB 7.4 (The Mathwork Inc.). Following correction for differences in 

slice acquisition time, EPI volumes were realigned and resliced using sinc interpolation 

and then spatially normalized to stereotactic space of the MNI brain (for normalization the 

standard EPI volume included in the SPM99 software package was employed as 

template). The normalized functional images were spatially smoothed with a 6-mm 

isotropic Gaussian kernel. For statistical analysis BOLD responses were separately 

modeled for each condition of interest by delta functions time-locked to the onsets of the 

respective stimuli. The data for each attention condition were collapsed over both colors 

used in the experiment. The resultant event-regressors were convolved with the standard 

hemodynamic-response function implemented in SPM99 in an event-related design for 

each subject, including the movement parameters derived from the realignment procedure 

as covariates (Friston et al., 1998). Group data were analyzed with a random-effects 

analysis. Stereotactic coordinates for voxels with maximal T-values within activation 

clusters are reported in MNI standard space (p < 0.001 (uncorrected) with a minimum 

cluster extent of 10 contiguous voxels). 

To directly compare the magnitude of attentional modulations between the different 

attention conditions, a ROI analysis was performed using the MarsBar toolbox in SPM99 

(Brett et al., 2002). Six ROIs (see Figs. 8 and 9) were functionally defined for each 

hemisphere based on the local activation maxima given by the overall effects of interest 

F-contrast of a second-level ANOVA including all conditions of interest (each condition vs. 

baseline). The ROIs were located in the anterior IPS, FEF, fIPS, FG, hMT, and lingual 

gyrus (LG). Mean beta values for the functionally defined ROIs were extracted from the 

individual subjects’ data for each attention condition. These values were subjected to a 

RANOVA with the factors region (anterior IPS, FEF, FG, fIPS, hMT, and LG), hemisphere 

(left vs. right) and attention condition (cS+F+, iS+F+, cS+, iS+, cF+, iF+, and RFE). The 

significance threshold was set to p < 0.05 following Greenhouse-Geiser correction for 
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non-sphericity. For evaluation of differences in the magnitude of the attentional 

modulations, the data for each ROI were separately subjected to a RANOVA with the 

factor attention condition. If statistical significance (p < 0.05) was obtained, a paired t-test 

(Bonferroni corrected if necessary) was applied for post hoc comparison between the 

attention conditions. 

 

Tab. 3: Local maxima from the group random-effects analysis 

Anatomical 
structure 

MNI coordinates  
(left hemisphere) 

       x            y           z 

Maximum 
T-value 

MNI coordinates  
(right hemisphere) 

x         y          z 

Maximum 
T-value 

FEF      -38         20         28 5.86       34          6         20 7.27 

LG      -12        -14        -14 6.14        8        -78        -14 5.22 

FG      -40        -12        -12 6.57       32       -76        -12 8.71 

Anterior IPS      -32         38         44 3.57       30       -70         38 5.73 

fIPS      -34         14         16 5.57       26       -80         14 7.65 

hMT      -44         -6          -2 5.56       48       -74         -6 10.02 

Local maxima of ROIs showing significant attentional modulations. Values represent coordinates in mm in MNI-space 
and max. T-values. Abbreviations: IPS, intraparietal sulcus; FEF, frontal eye field; FG, fusiform gyrus; fIPS, fundus of 
the intraparietal sulcus; hMT, human analogue of the middle temporal area; LG, lingual gyrus.  

 

4.3. Results 

4.3.1. Behavioral results 

Mean RTs (mean ± SEM: 1.6 ± 0.02 s) and hit rates (mean ± SEM: 90.4 ± 1.6%) 

were separately submitted to RANOVAs with the factors cued color (green vs. red) and 

cued location (left vs. right). For the RTs this analysis revealed a significant main effect of 

the cued location (F(1,14) = 13.8, p < 0.001), but not of the cued color (F(1,14) = 0.9, p > 

0.3), as well as a significant interaction between both factors (F(1,14) = 22.8, p < 0.001). 

Analysis of the subjects’ hit rates, in contrast, showed a significant main effect for the 

factor color (F(1,14) = 5.3, p < 0.05), but not for the cued location (F(1,14) = 1.7, p > 0.2), 

and revealed a significant color x location interaction (F(1,14) = 9.0, p < 0.01). Post hoc 

comparisons of cued color/ location pairs indicated that the main effect for the RTs was 

due to faster responses upon stimuli presented to the right visual field regardless of the 

stimulus color, whereas significantly higher hit rates were only observed upon green 

stimuli presented to the right visual field. 
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4.3.2. fMRI results 
4.3.2.1. Group random-effects analysis 

  

 
 
 
 
Fig. 8: Activation maps 
from the group random-
effects analysis of 
Experiment 3. The figure 
shows foci of significant 
activations from the effects 
of interest F-contrast from 
the group random-effects 
analysis. 
 

In the effects-of-interest F-contrast from the group analysis significant 

activations were identified in several brain regions located in ventral (FG and LG) and 

dorsal (anterior IPS, hMT and fIPS) visual stream regions, as well as in the FEF (see 

Fig. 8 for illustration and Tab. 3 for MNI coordinates and maximum T-values).  
 

 
 
Fig. 9: Graphical illustration of the ROIs. y-coordinates in MNI-space are depicted below each slice. 
Abbreviations: FEF, frontal eye field; FG, fusiform gyrus; fIPS, fundus of the intraparietal sulcus; hMT, human 
analogue of the middle temporal area; IPS, intraparietal sulcus; LG, lingual gyrus; L/R, left/right hemisphere. 

 

4.3.2.2. Region of interest analyses 
To directly compare the magnitude of hemodynamic modulations between the 

different attention conditions, ROIs were centered at the local activation maxima from 

the effects-of-interest F-contrast from the group random-effects analysis, and beta 

values were extracted from the individual subjectsʼ data (see Fig. 9 for a graphical 

illustration of the ROIs and Tab. 4 for the corresponding MNI coordinates). Attentional 

modulations for each ROI are depicted in Fig. 10 (anterior IPS and hMT), Fig. 11 (FEF 

and fIPS), and Fig. 12 (FG and LG).  
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Tab. 4: MNI-coordinates of the ROIs 

  Anatomical 
  structure 

MNI coordinates (left hemisphere) 
           x               y                z 

MNI coordinates (right hemisphere) 
          x               y               z 

FEF      -41 ± 7         3 ± 5        30 ± 4      41 ± 9        -2 ± 8       30 ± 14 

FG      -39 ± 7      -76 ± 12     -13 ± 7      40 ± 4      -71 ± 9      -16 ± 4 

LG      -20 ± 4      -71 ± 3       -10 ± 4      22 ± 6      -68 ± 8      -10 ± 4 

Anterior IPS      -34 ± 8      -61 ± 9        45 ± 9      28 ± 8      -63 ± 9       43 ± 9 

fIPS      -24 ± 10    -82 ± 10      18 ± 10       27 ± 7      -81 ± 11     21 ± 7 

hMT      -45 ± 7      -73 ± 9         -7 ± 9      47 ± 7      -69 ± 9        -3 ± 13 

Values represent coordinates in mm in MNI-space. Abbreviations: FEF, frontal eye field; FG, 
fusiform gyrus; fIPS, fundus of the intraparietal sulcus; hMT, human analogue of the middle 
temporal area; IPS, intraparietal sulcus; LG, lingual gyrus. 

 

 
Fig. 10: Attentional modulation of neuronal activity in the anterior IPS and hMT by the different attention 
conditions. The bar color indicates the particular attention condition [white: attended feature at the attended 
location > unattended feature at the unattended location (S+F+); light grey: attended feature at the attended > at 
the unattended location (S+); dark grey: attended > unattended feature at the attended location (F+); black: 
attended > unattended feature at the unattended location (relevant feature effect, RFE)]. Abbreviations: IPS, 
intraparietal sulcus; hMT, human analogue of the middle temporal area; L/R, left/right hemisphere.  
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Statistical evaluation of the ROI analysis data by a RANOVA with the factors 

region (anterior IPS, FEF, FG, fIPS, hMT, and LG), hemisphere (left vs. right), and 

attention condition (cS+F+, iS+F+, cS+, iS+, cF+, iF+, and RFE) showed significant 

main effects for the factor region (F(5,65) = 12.4, p < 0.001), whereas a very strong 

trend towards significance was observed for the factors hemisphere (F(1,13) = 4.2, p = 

0.06) and attention condition (F(6,78) = 2.6, p = 0.076). Moreover the analysis 

revealed a significant 3-way interaction between the factors region, hemisphere, and 

attention condition (F(30,390) = 10.2, p < 0.001). For direct comparison of the 

magnitude of attentional modulations within each ROI, RANOVAs with the factor 

attention condition were separately applied to the data of each ROI. If statistical 

significance (p < 0.05) was assured, paired t-tests were applied for post hoc 

comparison (Bonferroni corrected if necessary).  
 

 
Fig. 11: Modulation of hemodynamic activity in the frontal eye field (FEF) and the fundus of the 
intraparietal sulcus (fIPS) by the different attention conditions. The bar color indicates the particular attention 
condition [white: attended feature at attended location > unattended feature at unattended location (S+F+); light 
grey: attended feature at attended > at unattended location (S+); dark grey: attended > unattended feature at 
attended location (F+); black: attended > unattended feature at unattended location (relevant feature effect, RFE)]. 
Abbreviations: FEF, frontal eye field; fIPS, fundus of the intraparietal sulcus; L/R, left/right hemisphere.  
 

For the anterior IPS the RANOVA revealed a significant main effect within the 

right hemisphere (F(6,78) = 3.2, p < 0.05), but none of the post hoc comparisons 

between the conditions remained significant after Bonferroni correction (for illustration 

of the data from the anterior IPS see Fig. 10).  The RANOVA applied on the ROI data 
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from the FEF also showed a significant main effect only for the right hemisphere 

(F(6,78) = 6.5, p < 0.001), which was due to significantly higher attentional 

modulations upon the cS+F+, cS+, and iS+F+ conditions in comparison to the RFE 

(see Fig. 11 for illustration). 

Analysis of the beta parameter estimates from the hMT-ROIs revealed 

significant main effects for both hemispheres (left hMT: F(6,78) = 12.6; right hMT: 

F(6,78) = 6.0; p < 0.001 for both ROIs). Pairwise comparisons showed that within both 

hMT ROIs the highest attentional modulations occurred to the cS+F+ and cS+ 

contrasts. Within the right hMT, both conditions differed significantly from all other 

conditions except each other, while the left hMT was modulated in a similar manner 

whereas both cS+F+ and cS+ conditions were not significantly different from the iF+ 

contrast (see Fig. 10 for illustration of the hMT data). 

 

 
Fig. 12: Attentional modulation of neuronal activity in the fusiform gyrus (FG) and lingual gyrus (LG) by the 
different attention conditions. The bar color indicates the particular attention condition [white: attended feature at 
the attended location > unattended feature at the unattended location (S+F+); light grey: attended feature at the 
attended > at the unattended location (S+); dark grey: attended > unattended feature at the attended location (F+); 
black: attended > unattended feature at the unattended location (relevant feature effect, RFE)]. Abbreviations: FG, 
fusiform gyrus; LG, lingual gyrus; L/R, left/right hemisphere.  

3
1

-1
-3

3
1

-1
-3

3
1

-1
-3

3
1

-1
-3

3

1
0

-1

2
3

1
0

-1

2
3

1
0

-1

2
3

1
0

-1

2

Fusiform Gyrus

Lingual Gyrus
LG L - attend L LG L - attend R LG R - attend L LG R - attend R

FG L - attend L FG L - attend R FG R - attend L FG R - attend R

S+F+ S+ F+ RFE



Experiment 3 

55 

Significant main effects for both hemispheres were observed in RANOVAs applied 

to the fIPS as well as the LG data (left fIPS: F(6,78) = 10.0; right fIPS: F(6,78) = 13.2; left 

LG: F(6,78) = 19.6; right LG: F(6,78) = 8.2; p < 0.005 for all ROIs). Post hoc analysis 

showed that in both fIPS ROIs and in the left LG neural activity increased if spatially 

attended stimuli were presented to the contralateral visual field (cS+F+ and cS+, differing 

significantly from all other contrasts but not from each other), whereas it decreased for 

stimulus presentations to the ipsilateral visual field (iS+F+ and iS+, differing significantly 

from all other contrasts but not from each other). For illustration of the data from the fIPS 

see Fig. 11 and for the LG data see Fig. 12). 

Statistical evaluation of the FG data showed a significant main effect for both 

hemispheres (left FG: F(6,78) = 11.1; right FG: F(6,78) = 6.0, p < 0.001 for both ROIs). 

Pairwise comparison revealed that the highest attentional modulations occurred upon 

spatially attended stimuli presented to the contralateral visual hemifield (cS+F+ and cS+; 

see Fig. 12 for illustration of the FG data). For the left hemisphere the cS+F+ condition 

differed significantly from all conditions except cS+, which in turn showed higher 

modulations in comparison to the cF+, iS+F+, and RFE contrasts. The right FG showed 

the highest attentional modulations upon the cS+ (differing significantly from all ipsilateral 

conditions and the RFE). 

 

4.4. Summary 

In Experiment 3, hemodynamic activations elicited by physically identical stimuli 

were compared, while attention was either directed towards or opposed to their spatial 

location and constituent features. The highest hemodynamic modulations were observed 

when attentional selection was based on the stimulus’ spatial location, regardless of 

whether its color was attended or not. Positive, though relatively smaller, modulations 

could also be seen for purely feature-based attentional selection within the focus of 

attention, i.e., for spatially attended stimuli that also comprise the attended relative to the 

unattended color. However, feature-selective activity to stimuli presented at unattended 

locations was only evident in motion- but not in color-sensitive regions. In summary, these 

data suggest that spatial attention appears to be the more efficient selection-mechanism 

in vision. Moreover, they also indicate that a stimulus’ motion is more efficiently targeted 

by feature-based attention than its color, emphasizing the high biological priority of 

moving stimuli.  
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5. Experiment 4 - Overlapping networks control the 

voluntary and stimulus-driven shifts of attention between 

objects and locations 4 

5.1. Introduction 

Experiments 1-3 investigated how feature- and/or location-based attention 

affects neural activity within regions that process the perceptual attributes of the 

presented stimuli. Therefore the subjects were cued to deploy their attention to a 

particular feature and/or location, while neural activity in response to subsequent 

stimulus-presentation was assessed. However, conceptually, it is important to 

distinguish these modulations of neural activity within target regions located in striate 

and extrastriate visual cortex, from the attentional control signals that bias this 

selection process. Experimentally, this distinction is achieved by temporal separation 

of the preparatory control signals from the responses elicited by the subsequently 

presented stimuli. Although this prerequisite was generally fulfilled within Experiments 

1-3 (the cues were temporally separated from the targets/standards), the particular 

experimental designs did not allow for a detailed investigation of these control signals 

that bias the selection of particular features, objects, or locations. 

Besides the distinction based on the particular units that are selected for 

preferential processing (e.g., particular features, locations, or objects), attentional 

control can also be characterized based on the origin of this guidance process: thus, 

attentional selection can be driven by endogenous (voluntary/goal-directed) as well as 

exogenous (involuntary/stimulus-driven) factors. The neural mechanisms underlying 

such voluntary and stimulus-driven mechanisms of attentional control have been 

extensively investigated using neurophysiological recordings in primates and 

functional neuroimaging in humans (for recent reviews see: Maunsell and Treue, 

2006; Corbetta et al., 2008; Reynolds and Heeger, 2009). However, it is still a matter 

of debate whether attentional control is mediated by separate domain-specific 

networks (Rushworth et al., 2001), or by one unitary domain-general system (Yantis 

and Serences, 2003; Corbetta et al., 2008).  

Experiment 4 was conducted to investigate the neural correlates of these 

attentional control signals during voluntary and stimulus-driven shifts of attention 

                                            
4 The chapter is partially based on a manuscript by Stoppel CM, Boehler CN, Strumpf H, Krebs RM, 
Heinze HJ, Hopf JM, and Schoenfeld MA. Distinct representations of attentional control during voluntary 
and stimulus-driven shifts across objects and locations. Cereb Cortex, In Revision.  
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between objects and locations. Therefore, subjects were explicitly cued to (i) maintain 

their attention at a currently attended surface, (ii) switch to another surface at the 

same location, or (iii) to switch to a surface located in the opposite visual field. In 

addition, the subjects’ attention could be involuntarily captured (iv) by target-like 

movements of the unattended surface at the attended location or (v) of an unattended 

surface located in the opposite visual field (see also Fig 13). This design permitted to 

directly compare the neural modulations to voluntary and stimulus-driven shifts of 

attention between objects and locations in the absence of sensory confounds. 

 

5.2. Methods 

5.2.1. Subjects  

Sixteen neurologically normal right-handed subjects (9 females), all with normal 

or corrected-to-normal vision, participated as paid volunteers in the study (mean age: 

25.9 years). All gave written informed consent before participation and the local ethics 

committee approved the study. To ensure high performance, all subjects completed 

three practice sessions outside and one inside the scanner before participating in the 

main experiment. 

 

5.2.2. Stimuli and experimental design 

Two square apertures (4.0° x 4.0°) centered 6.8° to the left and right of, and 4.0° 

above, a central fixation cross (0.7° x 0.7°, see Fig. 13) were presented against a dark 

background (0.5 cd/m2). Each aperture contained 100 randomly distributed 

isoluminant white dots (brightness 200 cd/m2; dot size 0.1°), of which each half 

continuously moved coherently into opposite directions (horizontal in the left and 

vertical in the right aperture; velocity: 8.7°/s). In this way, two transparent moving 

surfaces located in the same region of visual space were generated within each 

aperture.  
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Fig. 13: Schematic illustration of the paradigm from Experiment 4. Within two apertures located in the left and 
right visual field two overlapping transparent surfaces continuously moved into opposite horizontal (left aperture) 
and vertical (right aperture) directions. At the start of each run (and every 10th trial thereafter) a central cue 
indicated the surface to be attended (2nd screenshot). Green arrows and white circles illustrate the surfaces to be 
attended before onset (green arrows) and after completion (white circles) of the trial. Red arrows indicate the cue 
sequences instructing the subjects to either voluntarily maintain (7th screenshot), or shift their attention between 
surfaces presented at the same (5th screenshot) or at different spatial locations (3rd screenshot). The cue 
sequences consisted of two short displacements orthogonal to the predominant motion-direction of the attended 
surface. Orange arrows symbolize fast movements in this predominant motion-direction, which served as targets 
(fast movement of an attended surface; bottom screenshot), or involuntarily captured the subjectsʼ attention across 
surfaces (fast movement of unattended object at attended location; 6th screenshot) or across spatial locations (fast 
movement of unattended object at unattended location; 4th screenshot).  
 

At the beginning of each run, a central cue (a white double-arrow pointing into 

one of the four standard movement directions of the transparent surfaces for 1.5 s) 

indicated which of the surfaces had to be attended initially by the subjects. During 

subsequent trials, beside target (fast movements in the attended surface) and non-

target (fast movements in the unattended surfaces) stimuli, one out of four simple 

motion sequences (cue sequences) could also occur within the attended surface (for 

an illustration of the task see Fig. 13). Each of these cue sequences consisted of a 

combination of two short subsequent displacements orthogonal to the standard 

movement direction of the surface (each displacement lasted for 300 ms and was 

separated by an interval of 200 ms; velocity 21.2 °/s). Intense training prior to the 

Central Cue
(Arrow)

Switch Space

Capture Across
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Capture Across
Objects

Switch Objects
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scanning session ensured that upon these motion sequences subjects either 

maintained their attention at the same surface, switched their attention to the other 

surface within the same aperture, or switched their attention to one specific surface 

located in the opposite visual field (a detailed description of the individual motion 

sequences that were used to guide the subjects’ attention voluntarily is given in Figure 

14A). Thus, the instructional cue sequences resulted in three attention conditions 

upon which the subjects voluntarily directed their attention to one of the presented 

surfaces (Hold Attention, Switch Object, Switch Space). 

The subjects’ task was to deploy attention according to the instructional cue 

sequences and to perform a button press response whenever they detected the 

occurrence of a fast coherent movement (21.2 °/s) in the predominant motion direction 

of the currently attended surface. In addition, fast movements also could occur within 

one of the non-attended surfaces, thereby capturing the subjects’ attention in a 

stimulus-driven manner (a detailed description of the target- and the capture-trials is 

given in Figure 14B). These capture-trials either could occur within the unattended 

surface at the attended location (attentional capture within space across objects) or 

within one of the surfaces located in the unattended visual field (attentional capture 

across space). Thus, the fast movements not only served as targets, but resulted in 

two additional attention conditions, in which the subjects’ attention was reallocated in a 

stimulus-driven manner (Capture Across Objects, Capture Across Space). To 

guarantee that the task-performance was high throughout the entire experiment, a 

central cue was presented every 10th trial (a white arrow pointing into the motion-

direction of the currently to-be-attended surface for 1.5 s), allowing the subjects to re-

engage in the task, in case that they had lost the currently to-be attended surface. All 

experimental manipulations (arrow cues, targets, capture trials, and instructional cue 

sequences) were considered as trials of independent conditions. The interval between 

the trials randomly varied between 3 and 8 s (mean inter-trial interval: 3.7 s) following 

a gamma function to allow for trial separation in an event-related analysis (Hinrichs et 

al., 2000). Subjects performed seven scanning runs of 6.3 min, each consisting of 12 

blocks (time between arrow presentations) of nine trials, resulting in 51-65 trials per 

condition.  
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Fig. 14: Schematic 
illustration of the A) 
instructional cue 
sequences and B) target 
and capture trials. The 
particular surfaces that had 
to be attended at particular 
trial onsets are shown within 
the left column. The right 
column indicates the 
respective surfaces that had 
to be attended after 
completion of a particular 
trial. A) Red arrows (middle 
column) indicate the motion-
directions of the cue 
sequence that guided the 
subjectsʼ attention 
voluntarily. B) Orange 
arrows in the middle column 
indicate the particular 
surface that executed a fast 
movement. Target-trials 
were defined as fast 
movements in the 
predominant motion-
direction of the attended 
surface, while fast 
movements of the 
unattended surfaces 
involuntarily captured the 
subjectsʼ attention across 
objects (fast movement of 
the unattended object at the 
attended location) or across 
spatial locations (fast 
movement of an unattended 
object at the unattended 
location). 
 

 
5.2.3. fMRI acquisition and analysis 
5.2.3.1. Data acquisition 

MR data were acquired on a 3-Tesla MR scanner (Siemens Magnetom Trio, 

Erlangen, Germany) using an 8-channel head coil. An LCD projector back-projected 

the stimuli on a screen positioned behind the head coil, which was viewed by the 

subjects via a mirror attached to the coil. Functional images were acquired with a T2*-

weighted EPI sequence (32 AC-PC oriented slices, thickness = 3.5 mm, in plane 
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resolution 64 x 64 mm, FoV 224 x 224 mm, no gap, resulting voxel size = 3.5 x 3.5 x 

3.5 mm, TR = 2000 ms, TE = 30 ms, flip angle = 80°) in an odd-even interleaved 

sequence. Each scanning session consisted of 190 volumes. In a structural session, 

whole-head T1-weighted images of each subject’s entire brain were collected using an 

MP-RAGE sequence (96 sagittal slices, thickness = 2 mm, FoV 256 x 256 mm, no 

gap, spatial resolution = 1 x 1 x 2 mm, TR = 1650 ms, TE = 5 ms, TI = 1100 ms). 

 

5.2.3.2. Image processing and statistical analysis 

Pre-processing and statistical analysis of the fMRI data were performed using 

the SPM5 software package (Wellcome Department of Cognitive Neurology, 

University College London, UK) and MATLAB 7.4 (The Mathwork Inc.). The functional 

volumes were corrected for slice-acquisition time, realigned to the first volume, and 

spatially normalized to an EPI template in standard MNI space. After re-sampling to a 

final voxel size of 2 x 2 x 2 mm, the normalized images were smoothed with an 

isotropic 8-mm full-width at half-maximum Gaussian kernel and highpass-filtered (cut-

off 128 s). 

For statistical analysis, BOLD responses were modeled by delta functions at 

the time of stimulus onsets. For each subject, the resultant event-regressors were 

entered into a general linear model and convolved with the standard hemodynamic-

response function implemented in SPM5, including the movement parameters derived 

from the realignment procedure as covariates (Friston et al., 1998). The parameter 

estimates for each of the 10 conditions of interest per subject (Hold Attention left/right, 

Switch Objects left/right, Switch Space to the left/right, Capture Across Objects 

left/right, Capture Across Space to the left/right) were then entered into a second-

level, random-effects group-analysis treating inter-subject variability as a random 

effect to account for inter-individual variance. Individual maxima within contiguous 

activation-clusters are reported if they are separated by more than 16 mm. 

Stereotactic coordinates for voxels with maximal z-values within significant activation 

clusters are reported in the MNI standard space (corrected at a whole-brain FDR of p 

< 0.01 with a minimum cluster extent of k = 20 contiguous voxels).  
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For visualization of the data, activation maps were superimposed on a 

semitransparent surface-based representation of the MNI canonical brain using the 

SPM surfrend toolbox (http://spmsurfrend.sourceforge.net) and the open source 

application NeuroLens (http://www.neurolens.org), as well as MRIcron software 

(http://www.sph.sc.edu/comd/rorden/MRicron/main.html). In addition, to visualize the 

activation overlap between conditions, SPM activation maps for each condition 

(collapsed across both sides of stimulus presentation) were superimposed onto an 

anatomical template image using the MRIcro software package 

(http://www.sph.sc.edu/comd/rorden/mricro.html). The resultant color-coded maps 

indicate the activation density (number of overlapping statistical parametric maps) 

within each region (whole-brain FDR corrected threshold of p < 0.01, with a minimum 

cluster size of k = 20 contiguous voxels). 

 

Tab. 5: Peak activation foci from the main effect of the group random-effects analysis 

Anatomical structure Hemisphere MNI coordinates (x,y,z) Maximum z-value 

FEF L 
R 

           -24               6             64 
            28              -8             52 

7.32 
7.00 

FG L 
R 

           -18            -70              4 
            22            -70              0 

> 8 
> 8 

fIPS L 
R 

           -20            -78             32 
            24            -78             32 

> 8 
> 8 

IFG R             44             22             22 4.81 

LPC L 
R 

           -48            -62             44 
            50            -52             40 

5.88 
7.08 

MPFC -               2             42             40 > 8 

hMT L 
R 

           -42            -76             24  
            46            -72             16 

> 8 
> 8 

PCC L 
R 

             -4            -44             46 
              6            -50             42 

6.95 
> 8 

SMA L 
R 

             -8              6              52 
              8             -6              66 

5.00 
6.78 

SPL L 
R 

           -12            -62             58 
            16            -64             58 

> 8 
> 8 

Temporal Pole L 
R 

           -40             20            -32 
            34             20            -30 

6.85 
6.65 

Coordinates represent the peak activation foci from the main effect of the group random-effects 
analysis including all attention conditions. Values represent coordinates in mm in MNI-space and 
maximum z-values. Abbreviations: FEF, frontal eye field; FG, fusiform gyrus; fIPS, fundus of the 
intraparietal sulcus; IFG, inferior frontal gyrus; LPC, lateral parietal cortex; MPFC, medial prefrontal 
cortex; hMT, human analogue of the middle temporal area; PCC, posterior cingulate cortex; SMA, 
supplementary motor area; SPL, superior parietal lobe;  

 

http://spmsurfrend.sourceforge.net/
http://www.neurolens.org/
http://www.sph.sc.edu/comd/rorden/MRicron/main.html
http://www.sph.sc.edu/comd/rorden/mricro.html
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In addition to the analysis of their spatial distribution, the magnitude of the 

hemodynamic modulations elicited by the individual attention conditions was directly 

compared in a ROI-analysis using the MarsBar toolbox in SPM5 (Brett et al., 2002). 

For this purpose, spherical ROIs with a radius of 4 mm were centered based on the 

local activation maxima given by the main effect of interest F-contrast of a second-

level random-effects analysis including all 10 condition of interest (Hold Attention 

left/right, Switch Objects left/right, Switch Space to the left/right, Capture Across 

Objects left/right, Capture Across Space to the left/right; see Tab. 5 for the coordinates 

of activation maxima/ROIs and corresponding z-values). An additional ROI was 

defined in the right temporo-parietal junction (TPJ) on the basis of a local activation 

maximum in the conjunction-analysis of the 10 attention conditions (see Tab. 6 for the 

local activation maximum within the right TPJ) indicating that this area was activated 

by more than one condition. For all ROIs [FEF, FG, fIPS, right inferior frontal gyrus 

(IFG R), LPC, medial prefrontal cortex (MPFC), hMT, posterior cingulate cortex (PCC), 

SMA, SPL, temporal pole, and right TPJ] mean beta values were extracted from the 

individual subjects’ data for all conditions. The values for the bilateral ROIs were 

subjected to a RANOVA with the factors region (FEF, FG, fIPS, LPC, hMT, PCC, 

SMA, SPL, and temporal pole), hemisphere (left vs. right), side of attentional allocation 

(ipsi-/contralateral to the respective ROI), and attention condition (Hold Attention, 

Switch Objects, Switch Space, Capture Across Objects, Capture Across Space). 

Since no significant main effect was observed for the factor hemisphere (F(1,15) = 

0.5, p > 0.4), the data were collapsed over hemispheres before further analysis. For 

direct comparison of the attentional modulations, the data were separately analyzed 

for each ROI by two-way RANOVAs with the factors side of attention (ipsi-

/contralateral to the respective ROI) and attention condition (Hold Attention, Switch 

Objects, Switch Space, Capture Across Objects, Capture Across Space). Given that 

only one ROI had been defined within the right IFG, MPFC, and right TPJ, the factor 

“side of attention” constitutes the absolute (left vs. right visual field) instead of the 

relative attended visual field (ipsi-/contralateral to the respective ROI). The 

significance threshold for all RANOVAs was set to p < 0.05 and significance levels 

were corrected using the Greenhouse–Geyser correction when appropriate; however, 

original degrees of freedom are reported. 
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5.2.3.3. Analysis of eye-tracking data 

Eye-movements were monitored during data acquisition using a custom-built 

MR-compatible eye-tracking device (for a detailed description of the eye-tracking 

system see Kanowski et al., 2007). Recordings were performed using a modified 

version of the “Pupiltracker” software package (HumanScan AG, Erlangen). Before 

each run, an elliptic part of the monitored eyes’ image was defined as the template for 

tracking. During data-acquisition, the software stored the pupils’ position as X- and Y-

coordinates by computing the best match of each actual image (each lasting for 20 

ms) with the template image within an adjustable search area. Data of four subjects 

had to be excluded from the analysis due to overly frequent mismatches between the 

template-location and the actual pupil-position during task-performance. For statistical 

evaluation, the data were subjected to a 6 x 2 (condition vs. side of stimulus-

presentation) within-subject RANOVA. The significance threshold for the RANOVA 

was set to p < 0.05 following Greenhouse-Geisser correction for non-sphericity. 

 

5.3. Results 

5.3.1. Behavioral results 

Average target-detection performance across all subjects was high during the 

functional runs (mean ± SEM: 96.2 ± 0.7%), while false alarms were rare (mean ± 

SEM: 2.4 ± 0.6%). On average, the subjects’ RT was 825 ms (SEM: ± 30 ms) ranging 

from 646-1024 ms. One-way RANOVAs with the factor side of target presentation (left 

vs. right visual field) were separately performed on the RT data and on the subjects’ 

hit rate. These analyses revealed neither a significant main effect of the side of target 

presentation for the hit rate (F(1,15) = 2.6, p > 0.1) nor for the RTs (F(1,15) = 0.1, p > 

0.7) of the subjects. 

 

5.3.2. Eye-tracking results 

Analysis of the eye-movement data revealed a very low occurrence of saccades 

with an average percentage of saccades across all conditions of 2.1% (range: 1.4-

3.2%). Analysis of these data by a two-way RANOVA with the factors attention 

condition (Targets, Hold Attention, Switch Objects, Switch Space, Capture Across 

Objects and Capture Across Space) and side of stimulus-presentation (left vs. right 

visual field) did neither reveal any significant main effects of the experimental 

condition (F(5,55) = 1.0, p > 0.3) or of the side of stimulus-presentation (F(1,11) = 2.2, 
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p > 0.1), nor a significant interaction between both factors (F(5,55) = 0.3, p > 0.7). 

Because the percentage of eye-movements were considerably low and did not differ 

between conditions, activations observed in the fMRI analysis cannot be attributed to 

eye-movements made by the participants.  

 

5.3.3. fMRI results 

5.3.3.1. Group random-effects analysis 

First, it was qualitatively explored if hemodynamic activations elicited by the 

different attention conditions occurred within the same or distinct brain-regions. 

Significant activations to all conditions were observed in several fronto-parietal, 

extrastriate visual, cerebellar, and thalamic regions (see Tab. 6 for MNI-coordinates 

and corresponding z-values). By superposing their SPM activation maps, the patterns 

of neural activations to the individual attention conditions (Hold Attention, Switch 

Objects, Switch Space, Capture Across Objects, and Capture Across Space; 

collapsed over both sides of stimulus-presentation) could be directly compared. The 

resultant color-coded maps (see Fig. 15) illustrate the number of conditions by which a 

particular region was significantly activated, thereby indicating an extensive activation-

overlap between conditions within fronto-parietal areas. The local activation maxima of 

the different attention conditions lay in close proximity to each other (see Tab. 6), 

within those regions that showed the maximal activation overlap between conditions 

(illustrated in red in Fig. 15). With increasing eccentricity from these maxima the 

activation-densities declined, indicating a rather quantitative (in terms of activation 

magnitude), than qualitative difference between conditions. In line with this 

observation, a conjunction analysis revealed that the majority of regions that were 

activated by an individual attention condition were also significantly activated by the 

other conditions (see Tab. 6). Thus, the magnitude of these attentional modulations 

between conditions was compared in a ROI analysis. ROIs were centered within 

several fronto-parietal, extrastriate visual, and default-mode network regions at the 

local activation maxima observed in the overall effects of interest F-contrast of the 

group random-effects analysis that included all conditions of interest (see Tab. 5 for 

MNI-coordinates and corresponding z-values). 
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Fig. 15: ROI-density map showing the activation-overlap between conditions. SPM activation maps for all 
conditions (collapsed across stimulus-presentations to both visual fields) were concomitantly superimposed onto an 
anatomical template image. The resultant color-coded map indicates the activation density (number of overlapping 
statistical parametric maps) within each region (whole-brain FDR-corrected at p < 0.01). Numbers below slices 
represent z-coordinates in the MNI reference-frame. The extensive overlap between conditions highlights a 
common fronto-parietal network of attentional control. 
 

5.3.3.2. Region of interest analyses 

5.3.3.2.1. Modulations in dorsal fronto-parietal regions 

To compare the activation magnitudes of the different attention conditions 

within source regions of top-down attentional control, activation estimates (beta-

parameters) were extracted from ROIs located in the FEF, SMA, and SPL. The beta-

parameters for each ROI were submitted to RANOVAs with the factors side of 

attention (ipsi-/contralateral to the ROIs) and attention condition (Hold Attention, 

Switch Objects, Switch Space, Capture Across Objects, and Capture Across Space).  

The analysis of the data from the FEF and the SMA yielded similar results (for 

illustration see Fig. 16) in that both regions showed a main effect for the side of 

attention (FEF: F(1,15) = 11.5, p < 0.001; SMA: F(1,15) = 20.8, p < 0.001) indicating 

higher activity when attention was allocated contralateral to the ROIsʼ location. This is 

in line with previous reports of relatively small but consistent modulations within fronto-

parietal regions, when stimuli are placed close to the fovea (Serences et al., 2005), 

while stimulation in the far periphery leads to more pronounced lateralization effects 

(Serences and Yantis, 2007). The present stimulus distance of 6.8° lateral from 

fixation lies in between of the eccentricities used in the aforementioned studies, which 

1 3 5

0 10 20

30 40 50

z  =

z  =
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might explain the rather small laterality effects observed here. In addition, both regions 

showed a main effect of attention condition (FEF: F(4,60) = 13.5, p < 0.001; SMA: 

F(4,60) = 9.9, p < 0.001), which did not interact with the side to which attention was 

directed (FEF: F(4,60) = 0.4, p > 0.8; SMA: F(4,60) = 0.8, p > 0.5). In the SPL (see 

Fig. 16), there was no significant effect of the side of attention (F(1,15) = 0.7, p > 0.4) 

but a main effect of attention condition (F(4,60) = 19.7, p < 0.001), which was 

significantly modulated by the side to which attention was directed (F(4,60) = 6.2, p < 

0.005).  

In summary, all dorsal fronto-parietal ROIs exhibited comparable patterns (see 

Fig. 16) for the different conditions: The modulations were higher for voluntary (Switch 

Space, Switch Objects) than for stimulus-driven attentional shifts (Capture Across 

Objects, Capture Across Space), with interjacent modulation-magnitudes during the 

maintenance of attention (Hold Attention).  

 

5.3.3.2.2. Modulations in ventral fronto-parietal regions 

Beta-parameter estimates were extracted from ROIs located in the right TPJ 

and the right IFG. Analysis of the data from the right IFG showed a significant main 

effect for the factor attention condition (F(4,60) = 6.6, p < 0.001), but not for the side to 

which attention was directed (F(1,15) = 2.4, p > 0.1) and no interaction between both 

factors (F(1,15) = 2.0, p > 0.1). The main effect for the factor attention condition was 

due to higher modulations during stimulus-driven (involuntary) reorienting towards an 

unattended surface (regardless whether the surface was located within the attended 

or unattended visual field; see Fig. 16). In contrast, for the right TPJ the analysis did 

not reveal any significant main effects (side of attention: F(1,15) = 2.3, p > 0.1; 

attention condition: F(4,60) = 2.8, p > 0.05) or interactions between factors (F(1,15) = 

1.4, p > 0.2). 

 

5.3.3.2.3. Modulations in extrastriate visual cortex 

To compare the modulations within target regions of attentional control, beta-

parameter estimates were extracted from ROIs located in extrastriate visual cortex, 

including FG, fIPS, and hMT. As for the fronto-parietal ROIs, activation estimates were 

analyzed by RANOVAs with the factors side of attention and attention condition. 
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Fig. 16: Group-contrasts for the individual attention conditions and beta-parameter estimates of the fronto-
parietal and extrastriate visual ROIs. For visualization purposes, statistical parametric maps for each attention 
condition (collapsed across both sides of attentional allocation) were superimposed on semitransparent surface-
based representations of the MNI canonical brain. Activations are displayed at a whole-brain FDR-corrected 
threshold of p < 0.01, with a minimum cluster extent of k = 20 voxels. The bar charts depict the magnitude of the 
hemodynamic modulations to the different attention conditions. Mean beta-parameter estimates (± SEM) are 
separately depicted for attentional allocation ipsilateral and contralateral to the respective ROIs, except for the right 
TPJ and the right IFG, for which the absolute (left vs. right visual field) instead of the relative attended visual field is 
displayed (data averaged over subjects and both hemispheres for each ROI). The bar colors indicate the particular 
attention conditions. Abbreviations: FEF, frontal eye field; FG, fusiform gyrus; fIPS, fundus of the intraparietal 
sulcus; hMT, human analogue of the middle temporal area; IFG R, right inferior frontal gyrus; SMA, supplementary 
motor area; SPL, superior parietal lobe; TPJ R, right temporo-parietal junction. 
 

For all ROIs, these analyses revealed significant main effects for the factors 

side of attention (FG: F(1,15) = 109.6; fIPS: F(1,15) = 67.1; hMT: F(1,15) = 35.0; p < 

0.001 for all regions), and attention condition (FG: F(4,60) = 10.0, p < 0.001; fIPS: 

F(4,60) = 7.2, p < 0.001; hMT: F(4,60) = 5.8, p < 0.005), as well as significant 
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interactions between the factors (FG: F(4,60) = 34.4; fIPS: F(4,60) = 30.4; hMT: 

F(4,60) = 16.0; p < 0.001 for all regions). When separately analyzed for each side of 

attentional allocation (ipsi-/contralateral to the ROI), all regions showed a significant 

main effect for the factor attention condition when the contralateral visual field to the 

ROI was attended (FG: F(4,60) = 10.9, p < 0.001; fIPS: F(4,60) = 11.9, p < 0.001; 

hMT: F(4,60) = 16.0, p < 0.001). However, when attention was deployed to the 

ipsilateral aperture, a significant main effect of the attention condition was observed 

for the FG (F(4,60) = 34.5, p < 0.001) and the fIPS (F(4,60) = 15.6, p < 0.001), but not 

for hMT (F(4,60) = 0.8, p > 0.5).  

In summary, all extrastriate visual regions showed a comparable activation 

pattern when attention was directed to the contralateral visual field (see Fig. 16), in 

that voluntary and stimulus-driven orienting towards an unattended object at the 

attended location elicited hemodynamic activations of comparable size. Smaller 

modulations were however observed when attention was initially in the ipsilateral and 

then captured to the contralateral visual field (Capture Across Space). A different 

pattern emerged when attention was directed to the ipsilateral visual field: While for 

MT all attentional modulations were of comparable magnitude, they differed 

significantly between conditions within the FG and fIPS. Increased activations were 

only observed when attention was involuntarily reoriented towards the ROIs’ ipsilateral 

visual field (Capture Across Space), while almost no modulation was apparent during 

voluntary spatial orienting (Switch Space).  

 

5.3.3.2.4. Modulations in the default-mode network  

Increased activity to voluntary deployment of attention was observed within 

fronto-parietal and extrastriate regions, while default-mode network structures were 

more active during stimulus-driven orienting of attention (see Tab. 7 for MNI-

coordinates and z-values and Fig. 17 for corresponding activation maps). The clusters 

of significant activation for both contrasts were located in close proximity to the local 

activation maxima identified in the effects of interest F-contrast from the group 

random-effects analysis (compare Tabs. 5 and 7). For direct comparison of 

modulations across attention conditions, a ROI analysis was performed within regions 

located in the LPC, MPFC, PCC, and bilateral temporal poles (see Tab. 5 for MNI-

coordinates of activation maxima/ROIs and corresponding z-values).  
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Fig. 17: Group-contrasts comparing stimulus-driven and goal-directed allocation of attention and beta-
parameter estimates derived from the default-mode network ROIs. Warm colors (red-orange) depict regions 
that are more active during voluntary orienting, while cold colors (blue-green) depict regions that are more active 
during stimulus-driven attention. The scale at the right shows the corresponding t-values. Bar diagrams depict the 
magnitude of the hemodynamic modulations to the different attention conditions. Abbreviations: LPC, lateral 
parietal cortex; MPFC, medial prefrontal cortex; PCC, posterior cingulate cortex. 
 

Analysis of these data revealed a main effect for the side of attention only for 

the MPFC (F(1,15) = 9.6, p < 0.01), which was due to slightly more negative 

parameter estimates when attention was directed to the left in comparison to the right 

visual field (for illustration see Fig. 17). The other regions were not modulated by the 

attended side (LPC: F(1,15) = 0.2, p > 0.6; PCC: F(1,15) = 2.3, p > 0.1; and temporal 

pole: F(1,15) = 0.4, p > 0.5). Furthermore, all default-mode network regions showed a 

main effect for the factor attention condition (LPC: F(4,60) = 19.7; MPFC: F(4,60) = 

20.4; PCC: F(4,60) = 21.2; and temporal pole: F(4,60) = 16.7; p < 0.001 for all 

regions), which did not interact with the attended side (LPC: F(4,60) = 2.6, p > 0.05; 

MPFC: F(4,60) = 1.6, p > 0.1; PCC: F(4,60) = 1.2, p > 0.3; and temporal pole: F(4,60) 

= 1.2, p > 0.3). 
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Tab. 7: Peak activation foci to in the group random-effects analysis 

Anatomical 
structure 

Hemi- 
sphere 

Endogenous > Exogenous Exogenous > Endogenous 

MNI coordinates (x,y,z) Max. 
z-value MNI coordinates (x,y,z) Max. 

z-value 

FEF L 
R 

      -24      -6       62     
       28      -8       50 

> 8 
7.75 

        -         -         - 
        -         -         - 

- 
- 

fIPS L 
R 

      -18     -60      40 
       22     -56      30 

5.23 
6.35 

        -         -         - 
        -         -         - 

- 
- 

IFG R         -         -         - 5.49       44      22       22 5.49 

LPC L 
R 

        -         -         - 
        -         -         - 

- 
- 

     -46     -60       42 
      50     -52       40 

6.66 
7.18 

Medial PFC L         -         -         - -        2       38       42 > 8 

hMT L 
R 

      -50     -62      10 
       46     -58      16 

3.68 
4.88 

        -         -         - 
        -         -         - 

- 
- 

PCC L 
R 

        -         -         - 
        -         -         - 

- 
- 

      -8      -46       38 
       8      -50       42 

6.12 
7.42 

SMA L 
R 

      -12       -6      62 
         8       -6      66 

> 8 
7.28 

        -         -         - 
        -         -         - 

- 
- 

SPL L 
R 

      -12     -62      58   
       14     -64      58 

> 8 
> 8 

        -         -         - 
        -         -         - 

- 
- 

Temporal Pole L 
R 

        -         -         - 
        -         -         - 

- 
- 

     -42      20      -24 
      32      20      -30 

6.78 
6.83 

Cerebellum L 
R 

      -34     -64     -24 
       68     -30      22 

3.53 
4.88 

        -         -         - 
        -         -         - 

- 
- 

Lateral PFC L       -42      30      36 5.34         -         -         - - 

Anterior Insula L       -28      18        4 4.59         -         -         - - 

Posterior PFC L 
R 

      -50        2      20 
       58        4      28 

> 8 
6.15 

        -         -         - 
        -         -         - 

- 
- 

Anterior IPS L 
R 

      -36    -48       50 
       40      -3       42 

> 8 
5.32 

        -         -         - 
        -         -         - 

- 
- 

Thalamus L       -10     -12       4 3.73         -         -         - - 

Precuneus L 
R 

      -40     -52      26 
       22     -56      30 

4.74 
> 8 

        -         -         - 
        -         -         - 

- 
- 

Striatum L 
R 

      -20        8       6 
       20      14      -4 

6.21 
4.45 

        -         -         - 
        -         -         - 

- 
- 

Abbreviations: ACC, anterior cingulate cortex; FEF, frontal eye field; FG, fusiform gyrus; fIPS, fundus of the 
intraparietal sulcus; PFC, prefrontal cortex; SFG, superior frontal gyrus; SMA, supplementary motor area; 
SMG, supramarginal gyrus; SPL, superior parietal lobe; hMT, human analogue of the middle temporal area. 

 

Summarizing, the response pattern in default-mode regions differed 

substantially from fronto-parietal and extrastriate cortex (compare Figs. 16 and 17): 

For one, the attentional modulations were mainly independent of the attended side 

and the highest modulations were observed during involuntarily orienting towards a 

previously unattended spatial location (Capture Across Space), while all other 
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conditions elicited negative beta-parameter estimates (deactivation of the default-

mode network). Moreover, within MPFC, LPC, and temporal pole, these deactivations 

were significantly stronger when attention was under voluntary control. Finally, the 

PCC exhibited higher modulations when attention was oriented towards an 

unattended spatial location but not towards a different object at the same location, and 

was deactivated stronger during voluntary maintenance of attention.  

 

5.4. Summary 

In Experiment 4, hemodynamic activations were observed within several fronto-

parietal, extrastriate visual, and default-mode network regions that showed an 

extensive overlap between the different attention conditions. Within dorsal fronto-

parietal cortex the modulations were of higher magnitude when attention was oriented 

in a goal-directed fashion. A partially opposing pattern was found for ventral fronto-

parietal regions, whose activations either were higher during stimulus-driven orienting 

(IFG), or which were not differentially modulated across the attention conditions (TPJ). 

In analogy to the pattern observed in the IFG, default-mode network regions showed 

the highest hemodynamic response during stimulus-driven spatial reorienting, while 

they were consistently deactivated during voluntary orienting.  
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6. General discussion 

The results from Experiments 1-4 will be discussed in separate chapters, one 

devoted to each experiment (Chapters 6.1-6.4), while a general summary and a 

correspondent outlook will be given in the final chapter of this General discussion 

(Chapter 6.5).  

 

6.1. Feature-selective modulation of hemodynamic activity in hMT 

Experiment 1 aimed to investigate the validity of the feature-similarity gain 

hypothesis at the population-level by analyzing hemodynamic modulations as a 

function of feature-based attention and motion coherence. Therein, the results from 

Experiment 1 provide support for the feature-similarity gain hypothesis by 

demonstrating that activity in hMT is positively correlated with a stimulus’ coherence 

when its motion-direction is attended (resembling the subjects behavioral 

performance), while it displays an inverse relationship when the stimulus’ motion is 

opposed to the attended direction. Importantly, out of all investigated regions, hMT is 

the only to exhibit this specific pattern: Activity in the fIPS and the thalamus shows a 

positive linear correlation with motion-coherence irrespective of feature-based 

attention, while attentional control regions display an activation pattern opposed to the 

one observed in hMT.  

In agreement with neurophysiological investigations in primates, previous fMRI 

studies in humans have also demonstrated feature-based attentional modulations in 

hMT. These modulations were observed when a moving transparent surface was 

attended as opposed to an overlapping stationary stimulus (O'Craven et al., 1997), or 

even in absence of direct visual stimulation (Chawla et al., 1999). Furthermore, 

feature-based attention can spread to moving stimuli outside the focus of spatial 

attention if they match the attended feature (Saenz et al., 2002). These neuroimaging 

studies have repeatedly demonstrated attention-related changes of activity in area 

hMT; nevertheless, none of the studies specifically investigated attentional 

modulations as a function of individual changes within a single feature dimension. To 

date, with the exception of two studies that employed classifiers (Kamitani and Tong, 

2006; Serences and Boynton, 2007), fMRI studies have failed to show direction 

selectivity, a hallmark of MT neurons in neurophysiological measurements. The most 

plausible explanation is that the native responses of hMT neurons to different motion-

directions are too small in view of the spatial and temporal resolution of the employed 
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methods. The two recent fMRI studies that used pattern-classification algorithms could 

show that attention influences direction-selective activity within multiple stages of the 

visual cortex (Kamitani and Tong, 2006; Serences and Boynton, 2007). The 

interpretation of these results, however, requires some caution because the neural 

processes underlying classification accuracy are not entirely understood (Bartels et 

al., 2008). It has to be kept in mind that although direction-selective information could 

be decoded from multiple stages throughout the visual hierarchy, the results do not 

necessarily imply the existence of direction-selective neuronal populations within all of 

these visual areas (Serences and Boynton, 2007).  

The results from Experiment 1, however, clearly demonstrate such direction-

selective modulations using conventional fMRI analysis techniques. The results are 

consistent with the feature-similarity gain hypothesis, which posits that an individual 

neuron’s response is modulated according to the similarity between a currently 

attended feature and the feature-preference of that neuron (Treue and Martinez 

Trujillo, 1999; Martinez-Trujillo and Treue, 2004). The present results strongly support 

this notion, by demonstrating that feature-based attention also enhances direction-

selective activity within cortical area hMT on the level of an integrated population-

response. Notably, responses to stimuli moving in the attended direction are 

enhanced, while for opposite directions they are suppressed (see Fig. 2). In this way 

the difference between stimuli moving into the attended versus opposite to the 

attended direction is increased in relation to native hMT-responses when no direction 

is specifically attended. Thus, the current results suggest that the integration of 

direction-selective responses (multiplicatively scaled by feature-based attention) 

occurs in cortical area hMT in dependence of the signal-to-noise characteristics of the 

presented stimuli, thereby enhancing their neural representations according to the 

current perceptual goals of the observer.  

The pattern of hemodynamic modulations in fronto-parietal, in contrast, is 

opposed to the one observed in hMT regions (see Fig. 3B): their activations correlate 

negatively with motion-coherency when the direction of the stimulus is attended, while 

it shows a positive linear relationship with stimulus-coherence for stimuli moving 

opposed to the attended direction. From a signal-detection point of view, stimuli of 

lower coherence contain more noise, thus imposing increased perceptual demands on 

identifying the prominent direction of a movement. Within this framework, the 

activation-pattern from fronto-parietal regions is consistent with earlier observations 
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that their activation magnitude varies as a function of the attentional requirements of a 

task (Culham et al., 2001; Jovicich et al., 2001; Lavie, 2005). Thus, endogenous 

signals about the subjects’ current goals (e.g., the attended motion-direction) are 

complemented with information about actual stimulus-contingencies to provide optimal 

top-down signals to bias the processing of appropriate stimulus features and locations 

in early visual regions (Corbetta et al., 2008). 

In conclusion, the results from Experiment 1 demonstrate that feature-based 

attention modulates hemodynamic activity within hMT in a direction-selective manner. 

These modulations and corresponding behavioral performance were positively 

correlated with motion-coherency, whereas intraparietal and thalamic activations were 

independent of the attended feature. Attentional control regions, in contrast, displayed 

an activation pattern opposed to the one observed in hMT, matching the predictions 

drawn from a signal-detection theory perspective. These results provide strong 

support for the feature-similarity gain hypothesis (Martinez-Trujillo and Treue, 2004) 

and suggest that feature-based attention improves behavioral performance by 

modulation of direction-selective population-activity within area hMT. 

 

6.2. The timing of global direction-selective modulations 

Experiment 2 used simultaneous EEG/MEG recordings to quantify the 

magnitude and latency of ERPs and ERMFs in dependence of the similarity between 

the motion-direction of a spatially unattended in relation to that of an attended surface. 

In line with the results from Experiment 1, the data from Experiment 2 demonstrate a 

feature-based attentional modulation of ERP and ERMF amplitudes that 

parametrically depends on the similarity between the motion-directions of the attended 

and unattended surfaces. The field distributions and the current-source 

reconstructions of these activations suggest them to originate within left middle 

occipito-temporal cortex, likely corresponding to area hMT. Moreover, the time 

courses of the ERP and ERMF waveforms indicate that this attentional enhancement 

occurs comparatively late, not starting before ≈ 200 ms after stimulus onset. These 

findings once more provide support for the feature-similarity gain hypothesis by 

demonstrating that feature-based attention parametrically modulates direction-

selective population activity in a global manner, and that it does so within the cortical 

module that processes the physical attributes of the presented stimuli. 
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Previous studies indicated that the selection of task-relevant features is initiated 

in the time range between 120 and 180 ms after stimulus onset (Harter and Aine, 

1984; Kenemans et al., 1993; Motter, 1994; Anllo-Vento and Hillyard, 1996; Smid et 

al., 1999; Torriente et al., 1999; Kenemans et al., 2000; Martinez et al., 2001; Beer 

and Roder, 2004, 2005). Within the motion-domain this selection process is reflected 

by an enhanced negativity over centro-posterior electrodes in the ERP (the so-called 

selection-negativity) starting around 150-160 ms after stimulus onset (Anllo-Vento and 

Hillyard, 1996; Torriente et al., 1999; Beer and Roder, 2004, 2005). In accordance 

with these results, the current study also observed an enhanced negativity over 

centro-posterior electrodes within the EEG, whose magnitude parametrically 

depended on the similarity between the motion directions of the attended and the 

unattended surfaces (see Fig. 5). This graded negativity was accompanied by 

corresponding modulations of ERMF amplitudes over occipito-temporal sensors. 

Comparisons of the field distributions and source analyses nevertheless suggest that 

these modulations could be attributed to the same neural generators located in middle 

occipito-temporal cortex (most likely corresponding to area hMT) as described before 

(Schoenfeld et al., 2003a; Beer and Roder, 2005; Schoenfeld et al., 2007). 

The onset latency of the feature-selective modulations within the current study 

was slightly later (≈ 200 ms) than previously reported. One possible explanation for 

this inconsistency relies on the paradigmatic differences in the experimental designs. 

For example, if a spatially attended feature dimension (e.g., a stimulus’ motion) has to 

be selected from another one (e.g., a stimulus’ color), the attentional enhancement 

begins as early as 100 ms after stimulus onset (Schoenfeld et al., 2007). If, on the 

other hand, the selection occurs within a single feature dimension (e.g., selecting one 

motion direction from another), the enhancement starts about 50 ms later (Hillyard and 

Munte, 1984; Anllo-Vento and Hillyard, 1996; Karayanidis and Michie, 1996; Lange et 

al., 1998). Thus, the electrophysiological signs of feature-selection within the focus of 

attention can be observed quite early, i.e., in the range of the N1-component (100-180 

ms after stimulus onset). If, in contrast, a feature is task-irrelevant and is selected only 

because it is part of an attended object, the feature-specific modulations occur 

considerably later. Such modulations have been shown to start within 230-240 ms 

when the irrelevant feature belongs to an object presented at an attended location 

(Schoenfeld et al., 2003b), and not until 270 ms after stimulus-onset if it is part of an 

attended object presented to the unattended visual field (Boehler et al., 2010). The 
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onset-latencies in the present study lie in between the ones described above, with the 

earliest modulations starting around 190-200 ms (see Fig. 5). These data suggest that 

the access to feature information within its specific cortical processing module 

proceeds at different speeds in dependence of the particular selection-process 

engaged. The fastest modulations are observed when relevant features are presented 

within the spotlight of attention, i.e. ≈ 100 ms for attentional selection between feature-

dimensions and ≈ 150 ms for selection between feature-values. These results further 

highlight the outstanding importance of spatial selection, which can bias the 

processing of other visual attributes (Hillyard and Munte, 1984; Klingstone and Klein, 

1991; Handy et al., 2001) and leads to higher attentional modulations than feature-

based selection alone (Stoppel et al., 2007). If, in contrast, attention operates on 

features presented at unattended locations (as in the present study), this selection-

process takes somewhat longer (≈ 200 ms). While demonstrating that feature-based 

attention operates in a spatially global manner, the current data thus also show that 

the spread of feature-selective modulations to the unattended visual field is a time-

consuming process.  

In conclusion, the results of Experiment 2 demonstrate a parametric direction-

selective modulation of ERP and ERMF amplitudes by feature-based attention, 

supporting the validity of the ‘‘feature similarity gain model’’ on the level of an 

integrated population response (Treue and Martinez Trujillo, 1999; Stoppel et al., 

2011). Since these direction-selective modulations (localized to cortical area hMT) 

occurred in response to spatially unattended stimuli, the current data also put further 

emphasis on the global nature of feature-based attentional selection (Treue and 

Martinez Trujillo, 1999; Saenz et al., 2002; Kamitani and Tong, 2006; Serences and 

Boynton, 2007). However, a comparison of onset latencies between studies suggests, 

that the timing of the feature-based attentional modulations might vary in dependence 

of the particular attentional demands during task-execution.  

 

6.3. Interaction between space- and feature-selective modulations 

While Experiments 1 and 2 specifically addressed the neuronal substrates, as 

well as the timing of feature-based selection within a single feature-dimension, 

Experiment 3 was conducted to investigate the functional relationship between 

feature-based and location-based selection using fMRI in human observers. To this 

end, hemodynamic activity elicited by physically identical stimuli (colored moving 
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transparent surfaces) was compared, while attention was either directed towards or 

opposed to their spatial location and their constituent features. The highest 

hemodynamic activations were observed when attentional selection was based on a 

stimulus’ spatial location, regardless of whether its color was attended or not. Positive, 

though relatively smaller, modulations also were seen for stimuli comprising the 

attended relative to the unattended color when their spatial location was attended, 

while - for stimuli presented at unattended locations - an increased feature-selective 

response was only observed in motion- but not in color-sensitive regions.  

More precisely, robust attentional modulations of hemodynamic activity 

occurred in ventral (FG and LG) and dorsal (hMT, anterior IPS and fIPS) visual stream 

areas, as well as in the FEF (see Fig. 8). These findings are in line with the literature 

reporting that regions that process the physical attributes of the presented stimuli 

exhibit increased neuronal activity regardless of the particular selection mechanism 

(space or feature-based) that is engaged (Kastner and Ungerleider, 2000; Corbetta 

and Shulman, 2002; Yantis and Serences, 2003; Maunsell and Treue, 2006). The 

highest modulations were found during space-based attentional selection, i.e., when 

stimuli were presented contralateral to the location of the particular cortical regions 

(either in the cS+ or cS+F+ contrast). This result, in accordance with previous findings, 

highlights the outstanding importance of spatial attentional selection. Previous 

electrophysiological investigations clearly point out that spatial selection is faster than 

feature-based (Schoenfeld et al., 2007), and studies using combined expectancies 

have shown that location-based selection not only precedes but also biases the 

processing of other visual attributes (Hillyard and Munte, 1984; Kingstone, 1992; 

Handy et al., 2001). Thus, spatial attention appears to be the fastest and most efficient 

selection-mechanism in vision.  

Given that in the current study spatial selection led to the highest attentional 

modulations, it is important to note that the hemodynamic activations were of 

comparable magnitude, regardless of whether the particular stimuli comprised the 

attended (cS+F+) or unattended feature (cS+). At first glance this finding seems to 

contradict the intuitive assumption that a concurrent modulation by space- and 

feature-based selection should have an additive effect, and therefore elicit higher 

modulations than space-based selection on its own. In view of these results, it is 

tempting to speculate that location-based selection leads to a ceiling effect, thus 

preventing a further response increase by concomitant occurrence of an attended 
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feature. This would be well in line with the idea that increased processing resources 

are assigned to all features presented to spatially attended locations, regardless if 

their specific feature-value is attended or not (Heinze et al., 1994).  

In contrast to the present results, however, a recent SSVEP study – which 

employed a similar design as the present one – found that concurrent manipulation of 

spatial and color-selective attention had independent and largely additive effects on 

the magnitude of SSVEPs recorded from early visual areas (Andersen et al., 2009). 

One possible explanation for this inconsistency relies on one major paradigmatic 

difference in the experimental designs that were employed. Within the current 

experiment, attended and ignored features were presented one at a time (i.e., only 

one of the dot populations executed a short coherent movement during each trial), 

which minimized the direct competition between both feature values. In the study by 

Andersen and colleagues, in contrast, only trials that did not include the presentation 

of a motion-onset were analyzed. Thus, SSVEPs to the four RDKs (each flickering at 

an individual frequency) were compared under conditions of simultaneous competition 

between the attended and ignored feature-value, while trials only differed with respect 

to the particular feature (color) and location that were attended. Such direct 

competition between stimuli has been shown to markedly affect attentional selection: 

The magnitude of both spatial (Luck et al., 1997) and feature-based modulations 

(Saenz et al., 2003; Zhang and Luck, 2009) is increased if attended, and ignored 

stimuli must compete for access to perceptual processing resources. The absence of 

direct competition between stimuli within the current study thus might have diminished 

such independent and additive modulations during concurrent manipulation of spatial 

and feature-based attention, rendering them to small to be resolved with classical 

fMRI analysis techniques.  

Besides the spatial attentional modulations discussed above, feature-based 

selection on its own (i.e., comparison of attended vs. unattended feature-values both 

presented at a spatially attended location; F+) led to a robust response increase 

throughout all ROIs. This finding is in line with the literature reporting enhanced 

hemodynamic activations or an increased gain of single feature-selective neurons 

upon the occurrence of an attended feature (Kastner and Ungerleider, 2000; Corbetta 

and Shulman, 2002; Yantis and Serences, 2003; Maunsell and Treue, 2006; 

Schoenfeld et al., 2007), thus also resembling the observations from Experiment 1. At 

unattended locations, however, feature-selective modulations (RFE) could only be 
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observed in motion- but not in color-sensitive regions (compare Figs. 10 and 12). 

While this finding further supports the global nature of feature-based attentional 

selection (as already highlighted in Experiment 2), it also indicates that at unattended 

locations a stimulus’ motion might either be of higher bottom-up saliency (Treue and 

Martinez Trujillo, 1999; Nothdurft, 2002), or able to capture attention to a much higher 

degree than a stimulus’ color (Hillstrom and Yantis, 1994; Abrams and Christ, 2003; 

Franconeri and Simons, 2003; Rauschenberger, 2003). Both possibilities, however, fit 

well into the concept of a higher biological relevance of moving stimuli in the visual 

world, since motion onset might yield a substantial survival benefit (as a powerful cue 

to animacy) by indicating the appearance of a living and perhaps dangerous being. 

 

6.4. One unitary network for the control of goal-directed and 

stimulus-driven attention-shifts between objects and locations  

The first three Experiments examined how stimulus processing is modulated by 

feature- and/or location-based attentional selection. Experiment 4, in contrast, sought 

to investigate the control signals that bias attentional orienting during voluntary and 

stimulus-driven shifts between objects and locations. For this purpose, observers were 

cued to either voluntarily maintain their attention at a currently attended object, switch 

to another object presented at the same spatial location, or to shift their attention to an 

object located in the opposite visual field. Besides these voluntary conditions, target-

like movements occurring within one of the unattended objects (either within the 

attended or the unattended aperture) captured the subjects’ attention in a stimulus-

driven manner.  

Consistent with current theories on attentional control, hemodynamic 

activations to the different attention conditions were observed within several fronto-

parietal, extrastriate visual, and default-mode network regions. Since these activations 

showed an extensive overlap between conditions (see Fig. 15), these results support 

the hypothesis that a distributed network of fronto-parietal regions controls the 

allocation of attentional resources regardless of the particular perceptual domain 

(Corbetta et al., 2008; Chiu and Yantis, 2009). This domain-independent account has 

originally been postulated based on the observation that different attention-shifts (e.g., 

between features (Liu et al., 2003), objects (Serences et al., 2004), or locations 

(Hopfinger et al., 2000; Yantis et al., 2002)) recruit a common network of fronto-

parietal regions across studies. Recently, this notion has repeatedly been supported 



General discussion 

82 

by studies that employed within-subject designs to directly compare the mechanisms 

of attentional control between different types of attentional operations (Giesbrecht et 

al., 2003; Peelen et al., 2004; Shomstein and Behrmann, 2006; Greenberg et al., 

2010). The current results further add to this notion by showing a substantial 

activation-overlap between multiple types of attention-shifts, in which modulations only 

differ in magnitude between conditions.  

A more detailed look at these differences in the magnitude of hemodynamic 

modulations between the individual attention conditions revealed substantial 

differences in the activation-pattern between the ventral and the dorsal part of the 

attention-network. These findings are in line with current theories on attentional control 

postulating two interacting systems that mediate the allocation of attentional resources 

to environmental events (Corbetta et al., 2008). Within the dorsal part of the network 

higher modulations were observed for voluntary orienting, which is in accordance with 

its well-known role in the generation of endogenous signals that bias the processing of 

particular features, objects, or spatial locations, according to the expectations and 

current goals of an observer (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et 

al., 2000). The ventral fronto-parietal cortex, in contrast, is recruited when attention is 

involuntarily oriented towards behaviorally relevant events (e.g. targets or target-like 

stimuli) that occur outside the focus of attention (Kincade et al., 2005; Indovina and 

Macaluso, 2007), whereas it usually remains inactive during voluntary attentional 

orienting or task preparation. Consistent with this notion, the present data show that 

target-like movements elicited increased activity within the right IFG if they were 

executed by an object located in the unattended visual field, but also – and more 

importantly – if these movements occurred within an unattended object that was 

presented at a spatially attended location. These data once more support the notion 

that the IFG is one of the core regions of the so-called “saliency network” (Sridharan et 

al., 2008), which initiates the key control signals in response to salient unexpected 

events (as e.g. infrequent/invalidly cued targets; Linden et al., 1999; Kincade et al., 

2005), even if they occur within the focus of spatial attention (Asplund et al., 2010).  

Besides these modulations within dorsal and ventral fronto-parietal cortex, foci 

of significant activation also were observed within several default-mode network 

areas. The functional connectivity of this network is known to correlate negatively with 

the activation state of attentional control regions located in dorsal fronto-parietal cortex 

(He et al., 2007). On this account, a push-pull relationship between the two networks 
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has been suggested (Sridharan et al., 2008). The current findings are in line with this 

proposal, in that default-mode regions were deactivated during voluntary deployment 

of attention, in contrast to the increased activations observed within dorsal fronto-

parietal cortex. More importantly, however, the highest response across all default-

mode regions occurred during stimulus-driven spatial orienting. One possible 

explanation for this pattern is that the detection of stimuli matching the current 

attentional set (contingent capture) might be accomplished automatically through 

activation of ventral fronto-parietal cortex, sparing the redistribution of processing 

resources between dorsal fronto-parietal and default-mode network regions. On the 

other hand, a lack of deactivation within the default-mode network during stimulus-

driven spatial orienting (and concurrent activation of dorsal fronto-parietal cortex) 

might also simply reflect a failure to suppress distractive information and thus to 

deploy attentional resources to the current task (Rule et al., 2002). This view is 

supported by the observations that attentional capture induces performance costs 

(Folk et al., 2002; Serences and Yantis, 2007) and that reduced default-mode 

deactivations are associated with momentary lapses in attention (Weissman et al., 

2006) or slower and less accurate performance in other tasks (Lawrence et al., 2003; 

Polli et al., 2005). 

Taken together the results of Experiment 4 suggest that the allocation of 

attentional resources is mediated by a complex interplay within one unitary network of 

fronto-parietal and default-mode network regions, in which processing-resources are 

dynamically distributed in dependence of the particular attentional demands. 

 

6.5. Summary 

Testing the validity of the feature-similarity gain hypothesis at the population 

level with fMRI and EEG/MEG, Experiments 1 and 2 could demonstrate that feature-

based attention modulates hemodynamic activity in hMT (Experiment 1) and 

comparable electromagnetic indices (Experiment 2) in a direction-selective manner. 

Concerning the timing of the electromagnetic activity-modulations, Experiment 2 

showed that these feature-selective effects arise comparatively late, i.e., not until 200 

ms after stimulus-onset. Thus, the data from both Experiment 1 and 2 provide strong 

support for the validity of the feature-similarity gain hypothesis on the level of an 

integrated population response. By investigating the direct functional relationship 

between feature-/ and space-based attentional selection, thereby extending the 
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subject of investigation into the spatial domain, Experiment 3 revealed that spatial 

selection leads to higher hemodynamic modulations than feature-based attention. 

These location-based effects were independent of the concurrent feature-content of 

the particular stimuli. Moreover, feature-selective modulations for stimuli presented at 

unattended locations were only observed in motion- but not in color-sensitive regions. 

These finding supports the notion that space-based attentional selection appears to 

be the most efficient selection-mechanism in vision. Furthermore, they indicate that 

global feature-based attention is more effectively directed towards a stimulus’ motion 

than to its particular color, thus highlighting the high biological priority of moving stimuli 

in natural biological settings. Finally, by investigating how the control of voluntary and 

stimulus-driven re-/orienting between objects and locations is implemented within the 

human brain, Experiment 4 indicates that different types of attentional transitions are 

mediated by a complex interplay within one unitary network of fronto-parietal and 

default-mode network regions, in which processing-resources are dynamically 

distributed in dependence on the particular attentional demands. 

Taken together the present data in concert with findings from previous studies 

show that attentional selection operates in a highly flexible manner. For one, the units 

that are selected for preferential processing encompass spatial as well as non-spatial 

(feature- and object-based) attributes of our visual world. On the other hand, visual 

attention is also flexible within the temporal domain, in that the timing of object-, 

location- and feature-based selection can be adaptively adjusted in dependence of the 

particular situational requirements. 
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