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SUMMARY 

Index insurance has been introduced as a solution to tackle several challenges that prevail in the 

agricultural insurance sector of developing countries. One of the major implementation challenges 
in these countries is the need for more reliable weather data for index insurance development and 

implementation. The increasing availability of satellite‐based data could ease the constraints of data 
access. However, the suitability of various satellite products for detecting weather extremes and 

crop yield variations across world regions must be thoroughly assessed. 

Therefore, the main subject of this dissertation centers on the potential of satellite‐based index 

insurance to mitigate climate risks in agricultural lands in the arid and semi‐arid zones of Central 
Asia and Mongolia. The overall objective of the dissertation is to investigate the feasibility and per‐
formance of various satellite and reanalysis‐based weather and vegetation data to design index in‐

surance products for agricultural producers.  

The dissertation consists of five chapters: The first chapter provides the general background of the 

dissertation and outlines its main research objectives. The following chapters 2, 3 and 4 represent 
three peer‐reviewed and published articles. The second chapter provides a comprehensive litera‐

ture review on the potentials and limitations of index insurance development in the study areas. 
Moreover, the second chapter illustrates the empirical findings on the relationship between 

weather data retrieved from satellite sources and weather stations. Additionally, this chapter inves‐
tigates the ability of satellite‐based weather data to detect extreme events for the design and im‐

plementation of weather‐based index insurance in arid and semi‐arid climatic zones of Central Asia. 
The third chapter delivers empirical evidence on the applicability and performance of various satel‐

lite‐based vegetation data to detect wheat yield variation. Moreover, this chapter studies the po‐
tential benefits of considering land use/cover classification in index insurance design in rainfed, 

mixed and irrigated land in the study area. The fourth chapter provides empirical evidence on the 
potential benefits of machine learning‐based downscaling of gridded climate data to improve risk 
reduction of index insurance products in Kazakhstan and Mongolia. Lastly, the fifth chapter con‐

cludes the findings presented in the dissertation. 

The findings of this dissertation are manifold. Those in the second chapter demonstrate that there 

are interests, ongoing initiatives and support from local governments and international organiza‐
tions to pilot and implement index insurance products in the region. However, there are significant 

limitations regarding in‐situ weather and crop yield data to design and operate index insurance 
products. Findings from this chapter illustrate the significant agreement between in‐situ and satel‐

lite‐based weather data that enable their applicability for index insurance design and operation. 
Moreover, there is evidence that the performance of satellite‐based weather data improves in semi‐

arid climatic zones during wet and rainy seasons as well as when higher temporal aggregation has 
been applied. The results of the third chapter show that less prominent satellite‐based vegetation 

data in the insurance industry has a higher precision for detecting wheat yield variations than well‐
known alternatives (e.g., NDVI). Moreover, there is evidence that designing indices based on land 

use/cover information noticeably increases the performance of indices for detecting wheat yield 



 
ii 

variation in rainfed and mixed lands. The findings of the fourth chapter indicate that designing index 
insurance products based on spatially downscaled (machine learning‐based) climate data signifi‐

cantly improves their risk reduction potential. Among other climate data, there are more improve‐
ments in risk reduction potential when the index insurance design is based on downscaled temper‐
ature and precipitation data.  

The fifth chapter summarizes the research findings, highlights the contribution of this dissertation 
to the scientific literature and presents general concluding statements. Based on the findings of the 

abovementioned chapters, it can be concluded that the studied satellite‐based weather and vege‐
tation data could serve as a good source to establish and implement index insurance products in the 

region. However, careful assessment and selection of index, temporal aggregation, and land 
use/cover classification remain essential. Additionally, as part of this dissertation, three open‐source 

web applications and one statistical package in R have been developed. They assist and ease the 
process of obtaining satellite‐based weather and vegetation data and analyzing the performance of 

index insurance products. 
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ZUSAMMENFASSUNG 

Indexversicherungen wurden als Lösung für verschiedene Herausforderungen im Agrarversiche‐

rungssektor von Entwicklungsländern eingeführt. Eine seiner größten Implementierungsherausfor‐
derungen in diesen Ländern ist der Bedarf an zuverlässigeren Wetterdaten für die Entwicklung und 

Umsetzung von Indexversicherungen. Die zunehmende Verfügbarkeit satellitengestützter Daten 
könnte die Beschränkungen des Datenzugangs lockern. Allerdings muss die Eignung verschiedener 

Satellitenprodukte für die Erkennung von Wetterextremen und Ernteertragsschwankungen in ver‐
schiedenen Regionen der Welt gründlich geprüft werden. 

Daher konzentriert sich das Hauptthema dieser Dissertation auf das Potenzial satellitengestützter 
Indexversicherungen zur Minderung von Klimarisiken in landwirtschaftlichen Gebieten in den ariden 
und semiariden Zonen Zentralasiens und der Mongolei. Das übergeordnete Ziel der Dissertation ist 

es, die Machbarkeit und Leistungsfähigkeit verschiedener Wetter‐ und Vegetationsdaten auf der 
Grundlage von Satelliten  und Reanalyse zu untersuchen, um Indexversicherungsprodukte für land‐

wirtschaftliche Erzeuger zu entwickeln.  

Die Dissertation besteht aus fünf Kapiteln: Das erste Kapitel liefert den allgemeinen Hintergrund der 

Dissertation und umreißt ihre wichtigsten Forschungsziele. In den darauffolgenden Kapitel 2, 3 und 
4 werden drei begutachtete und veröffentlichte Manuskripte vorgestellt. Das zweite Kapitel enthält 

eine umfassende Literaturübersicht über die Möglichkeiten und Grenzen der Entwicklung von In‐
dexversicherungen in den Untersuchungsgebieten. Darüber hinaus veranschaulicht das zweite Ka‐

pitel die empirischen Erkenntnisse der Beziehung zwischen Wetterdaten, die aus Satellitenquellen 
und Wetterstationen gewonnen werden. Des Weiteren untersucht dieses Kapitel die Fähigkeit sa‐

tellitengestützter Wetterdaten, Extremereignisse zu erkennen, um wetterbasierte Indexversiche‐
rungen in ariden und semiariden Klimazonen Zentralasiens zu konzipieren und zu implementieren. 

Das dritte Kapitel liefert empirische Evidenz für die Anwendbarkeit und Leistungsfähigkeit verschie‐
dener satellitengestützter Vegetationsdaten zur Erkennung von Ertragsschwankungen bei Weizen. 
Dieses Kapitel untersucht den potenziellen Nutzen, wenn die Klassifizierung der Landnutzung/Bo‐

denbedeckung bei der Gestaltung von Indexversicherungen für unbewässerte, gemischte und be‐
wässerte Flächen im Untersuchungsgebiet berücksichtigt wird. Das vierte Kapitel liefert empirische 

Evidenz für den potenziellen Nutzen der auf maschinellem Lernen basierten Herunterskalierung von 
gerasterten Klimadaten zur Verbesserung der Risikominderung von Indexversicherungsprodukten 

in Kasachstan und der Mongolei. Das fünfte Kapitel fasst schließlich die Ergebnisse aus der zugrun‐
deliegenden Dissertation zusammen. 

Die Erkenntnisse aus dieser Dissertation sind vielfältig. Die Ergebnisse des zweiten Kapitels zeigen, 
dass es Interesse, laufende Initiativen und Unterstützung von lokalen Regierungen und internatio‐

nalen Organisationen gibt, um Indexversicherungsprodukte in der Region zu erproben und umzu‐
setzen. Allerdings gibt es erhebliche Einschränkungen in Bezug auf Wetter‐ und Ernteertragsdaten 

vor Ort (in‐situ) für die Entwicklung und den Betrieb von Indexversicherungsprodukten. Die Ergeb‐
nisse dieses Kapitels verdeutlichen die signifikante Übereinstimmung zwischen in‐situ‐ und satelli‐
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tengestützten Wetterdaten, die ihre Anwendbarkeit für die Gestaltung und den Betrieb von In‐
dexversicherungen ermöglichen. Darüber hinaus gibt es Beweise dafür, dass sich die Leistung satel‐

litengestützter Wetterdaten in semiariden Klimazonen während der nassen und regnerischen Zeiten 
sowie bei höherer zeitlicher Aggregation verbessert. Die Ergebnisse des dritten Kapitels zeigen, dass 
weniger verbreitete satellitengestützte Vegetationsdaten in der Versicherungswirtschaft eine hö‐

here Genauigkeit bei der Erkennung von Weizenertragsschwankungen aufweisen als bekannte Al‐
ternativen (z. B. NDVI). Es gibt auch Anhaltspunkte dafür, dass die Entwicklung von Indizes auf der 

Grundlage von Informationen zur Landnutzung/Bodenbedeckung die Leistung von Indizes zur Er‐
kennung von Weizenertragsschwankungen in Regen‐ und Mischgebieten deutlich erhöht. Die Er‐

gebnisse des vierten Kapitels deuten darauf hin, dass die Entwicklung von Indexversicherungspro‐
dukten auf der Grundlage von räumlich herunterskalierten Klimadaten (Ansatz des maschinellen 

Lernens) deren Risikominderungspotenzial deutlich verbessert. Neben anderen Klimadaten ist das 
Risikominderungspotenzial höher, wenn die Indexversicherung auf der Grundlage von herunterska‐

lierten Temperatur‐ und Niederschlagsdaten konzipiert wird.  

Das fünfte Kapitel fasst die Forschungsergebnisse zusammen, hebt den Beitrag dieser Dissertation 

zur wissenschaftlichen Literatur hervor und gibt allgemeine Schlusserklärungen ab. Auf der Grund‐
lage der Ergebnisse des oben genannten Kapitels kann man insgesamt zu dem Schluss kommen, dass 

die untersuchten satellitengestützten Wetter‐ und Vegetationsdaten eine gute Quelle für die Ein‐
führung und Umsetzung von Indexversicherungsprodukten in der Region darstellen könnten. Eine 
sorgfältige Bewertung und Auswahl des Indexes, der zeitlichen Aggregation und der Klassifizierung 

der Landnutzung/Bodenbedeckung ist jedoch weiterhin unerlässlich. Zusätzlich wurden im Rahmen 
dieser Dissertation drei Open‐Source‐Webanwendungen und ein Statistikpaket in R entwickelt. 

Diese unterstützen und erleichtern den Prozess der Beschaffung von satellitengestützten Wetter‐ 
und Vegetationsdaten und die Analyse der Leistung von Indexversicherungsprodukten. 
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1. General introduction 

1.1. Problem statement and motivation 

During the last decades, climate change has increased the frequency of weather extremes such as 
floods and droughts (WMO, 2021). Climate change is thus putting agricultural production at risk and 

leads to the use of modern tools for an early detection of weather extremes in order to reduce and 
enable coping with climate change‐related consequences (FAO, 2015; Hellmuth et al., 2009; IPCC, 

2022). It is clear that a variable and unpredictable climate significantly restricts the options of agri‐
cultural producers, thus limiting their development (Niles et al., 2015; Rao, 2011), since they avoid 
taking a risk when there is a possibility of weather shocks (Benami et al., 2021). Moreover, creditors 

are also hesitant to lend if extreme events may happen, causing widespread defaults if the agricul‐
tural producers are not insured (Hellmuth et al., 2009). Agricultural producers who don’t have access 

to credit are also critically limited when it comes to agricultural inputs and technologies, and even 
if a drought or flood only happens once every five or six years, the threat of the phenomenon is 

sufficient to slow down economic development and wealth growth over all years (Hellmuth et al., 
2009). Moreover, these limitations may be an obstacle to meeting the current and future demand 

for crop production (Ray et al., 2015), which would significantly affect food security in many regions 
of the world where agriculture is a main source of food and income (FAO, 2015). 

 

 

Figure 1.1: (a) Current global surface temperature change (period 1986-2016 relative to 1901-
1960) and (b) global surface temperature change (increase relative to the period 1850-1900) 

Source: Retrieved and adjusted from (a) USGCRP (2017) and (b) IPCC (2022). 

 

Central Asia and Mongolia are located in one of the regions of the world where the effect of climate 
change is more severe than the global average (de Beurs et al., 2018; FAO and UNICEF, 2023; Haag 

et al., 2019). Agricultural production has a substantial contribution to the economy in this region, 
and between 20‐50% of the population are employed in this sector (Bobojonov et al., 2019; Hamidov 

et al., 2016; ILO, 2022). Meanwhile, due to climate change, systematic drought has become more 
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frequent and is putting agricultural production at risk (Hamidov et al., 2016; Zhang et al., 2019). 
Drought events during the critical period of crop growth have had a great effect on crop production 

and the socio‐economy of Central Asia and Mongolia during the last decades. The most recent wide‐
spread drought in Central Asia during the early growing season in 2021 caused dramatic water short‐
ages, in turn causing a mass decrease in the agricultural sector (Jiang and Zhou, 2023). Moreover, 

the most prolonged and widespread drought in Central Asia occurred in 2001 and led to below‐
average drops of 40‐60% for rainfall levels and 35‐40% for river flows. This drought event resulted 

in an income loss of 80% of rural households, which in turn led to increased poverty rates and neg‐
ative impacts on food security and public health (Patrick, 2017). The loss of agricultural production 

in that year was estimated at US$800 million for the entire region, which was a significant cost for 
all countries (World Bank, 2005). According to the literature, drought events in 2000‐2001, 2008 and 

2011 had a significant effect on agricultural production in Uzbekistan, and damages cost US$130 
million in 2000 and 2001 (Christmann et al., 2009; Rakhmatova et al., 2021; Tolipov and Solokov, 

2022). In the case of Kazakhstan, more than 50% of the country area were affected by droughts of 
various severity in the years 2000, 2008, 2010, 2011, 2012 and 2014; the most severe events were 

observed in 2012 and 2014, significantly decreasing agricultural production (Dubovyk et al., 2019). 
In the case of Tajikistan, drought events were experienced in the years 2000‐2001, 2003, 2008 and 

2011, and the total damage to the agricultural sector was estimated at US$63 million in 2001 and 
2011, impacting around 2.5 million people (Patrick, 2017; World Bank, 2023). In the case of Kyrgyz‐
stan, the gross agricultural output significantly decreased in 2009 and 2014 due to droughts in the 

preceding years that caused extreme climatic conditions and a deterioration of the economic situa‐
tion (Iliasov and Yakimov, 2009; Logistics Cluster, 2021). In the case of Mongolia, the most extended 

droughts during 2000 and 2010 caused major social and environmental changes like migration of 
population, drying‐up of grasslands and lakes, and die‐off of crops and livestock (Hessl et al., 2018). 

All of these implications indicate a need for effective strategies and financial instruments for risk‐
sharing and mitigating the effects of climate change and extreme events.  

To reduce climate‐related risks for agricultural producers, insurance could be an efficient tool that 
transfers agricultural production risks from farmers to insurance companies (Bobojonov et al., 2019; 

Giné et al., 2010). Nevertheless, in developing countries, conventional agricultural insurance, known 
as ‘named‐peril’ and ‘multi‐peril’ crop insurance, can’t effectively assist and mitigate all of the risks 

of agricultural producers, with the main obstacles and reasons being high costs of premiums, moral 
hazards and the adverse selection for the successful implementation of conventional crop insurance 

(Coleman et al., 2018). To overcome the challenges of conventional insurance in transition econo‐
mies and developing countries, index‐based agricultural insurance (the term “index insurance” will 
be used from here onwards) has been developed and suggested as a potential solution by various 

organizations and scholars (Coleman et al., 2018; Dick et al., 2011; World Bank, 2011). In index in‐
surance, payoffs are contingent on the value of a pre‐determined index (average yield of a unit, 

temperature, rainfall, soil moisture, vegetation, etc.), with one of the main requirements and ad‐
vantages of index insurance being that the index cannot be affected by agricultural producers, nor 

is it vulnerable to manipulation from third parties (Barnett et al., 2008). This approach is aimed at 
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reducing adverse selection and problems of moral hazard, which are frequent issues with conven‐
tional agricultural insurance (Miranda and Gonzalez‐Vega, 2011). Moreover, index insurance does 

not require a ground verification of the reported crop yield losses, thus significantly reducing ad‐
ministrative costs and consequently lowering the premium costs (Benami et al., 2021).  

Regarding the potential for implementation of index insurance in Central Asia, the governments of 

Tajikistan and Kyrgyzstan have already initiated and developed a law regarding the use of index 
insurance in the agricultural sector. Despite their aim to partially finance the insurance premiums, 

these initiatives are not being taken up, due to little interest from local insurance companies and 
farmers, as well as a lack of weather data for designing the index insurance. (Broka et al., 2016a, 

2016b). In Uzbekistan and Kazakhstan, governments support the implementation of traditional in‐
surances with the help of various mechanisms, but there are no orders or initiatives at the state 

level for the implementation of index insurance. However, big challenges in the implementation of 
traditional insurances create a bottleneck for the development of an insurance market in these 

countries (Bobojonov et al., 2019; Broka et al., 2016c; Muradullayev et al., 2015). To solve existing 
challenges in the traditional insurance markets, several international organizations have recom‐

mended the use of index insurance in the agricultural sector of Kazakhstan and Uzbekistan (Broka 
et al., 2016c; Sutton et al., 2013), and some feasibility studies and small‐scale piloting activities have 

started to emerge in recent years (Bobojonov et al., 2019; Bokusheva et al., 2016; Conradt et al., 
2015).  

 

 

Figure 1.2: Geographical distribution of meteorological stations in the croplands of Cen-

tral Asia and Mongolia 

Source: Own presentation based on data from Teluguntla et al. (2015) and NCEI (2019) 

 

It should be noted that index insurance is considered a potential solution, however, it is also not a 
panacea, as there are some issues regarding systematic risks, information asymmetry, financial lit‐
eracy of farmers, and quality and availability of crop yield data (Fisher et al., 2019; Greatrex et al., 

2015; World Bank, 2015). More importantly, index insurance requires sufficient correlation between 
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crop yields and the selected index in order to minimize the amount of basis risks (Norton et al., 
2015). Usually, data obtained from weather stations is used for index insurance design. Numerous 

studies have investigated the feasibility and financial efficiency of weather station‐based index in‐
surances, which have typically been low precipitation or drought indices for agricultural producers 
(Bobojonov et al., 2014; Bokusheva and Breustedt, 2012; Conradt et al., 2015; Kath et al., 2019). 

However, this approach is strongly dependent on weather stations, which are rarely available in 
developing countries (Barnett and Mahul, 2007). In the case of Central Asia and Mongolia, specifi‐

cally, according to the spatial analysis presented in Figure 1.2, the vast majority of croplands are 
located beyond a distance of 20 km from the nearest station. The figure demonstrates the low level 

of density and insufficiency of weather stations for designing index insurance, with the sparsely dis‐
tributed weather stations often failing to capture the wide spatial crop losses and showing an incli‐

nation to geographical basis risk (Makaudze and Miranda, 2010). Moreover, weather data from 
weather stations rarely correlates with crop yields due to a high basis risk (Smith and Watts, 2009). 

Setting up new weather stations has been promoted as a potential solution; however, the installa‐
tion and maintenance of new weather stations every 10‐20 km (as suggested by Hazell et al. (2010)) 

would be costly and significantly increase the prices of the insurance products, which is not the aim 
of the index insurance concept. Furthermore, the nonexistence of historical weather records also 

halts the development of adequate and accurate insurance products (Norton et al., 2012).  

As a potential solution to overcome the issues regarding weather data limitations, the use of satel‐
lite‐based weather and vegetation data has been tested and suggested for index insurance design 

and implementation (Coleman et al., 2018; Osgood et al., 2018; Tarnavsky et al., 2018). Satellite‐
based weather and vegetation data is provided almost in real time and is available free of charge for 

most locations worldwide (CHC, 2015; Didan, 2015). Numerous studies have investigated the poten‐
tial and applicability of satellite‐based data for index insurance design and implementation in devel‐

oping and emerging economies (Black et al., 2016a; Brahm et al., 2019; Collier et al., 2009; M 
Enenkel et al., 2018; Osgood et al., 2018; Tarnavsky et al., 2018).  

 

1.2. Problem statement and research objectives 

A literature review within the framework of this dissertation (chapters 2.1 and 2.2) has demon‐
strated that existing studies have not yet tested the applicability of satellite‐based weather data for 

index insurance development in Central Asia, even though the vast majority of it is publicly available 
and might be particularly suitable for developing and transformation countries. Moreover, none of 
the existing studies have tested the accuracy of satellite‐based precipitation and temperature esti‐

mates and their ability to detect weather extremes for index insurance development or other da‐
tasets for the Central Asian region. This study aimed to fill this gap by setting the following objective 

and conducting a study: 

• To analyze the performance of satellite‐based weather data and its ability to detect weather 

extremes for index insurance development in arid and semi‐arid zones in Central Asia 
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This study contributes to the literature by analyzing the performance of satellite‐based weather 
data, employing 14 statistical accuracy metrics and seven ground‐based weather stations in arid and 

semi‐arid zones of Central Asia. The specific satellite‐based weather products have been chosen 
after a comprehensive review of existing satellite‐based weather products in terms of their spatial 
and temporal coverage and resolution. Additionally, one of the novelties of this study was the ap‐

plication of the quantile regression method to analyze the relationship between ground‐ and satel‐
lite‐based weather information. Furthermore, the ability of satellite‐based weather data to detect 

weather extremes was analyzed using agronomically suitable Meteorological Drought Indices (MDI) 
during the vegetation and harvesting period of rainfed crops in the region. 

Moreover, a review of the existing literature (chapter 3.1) has identified the following gaps that 
need further investigation: Not all wheat‐producing regions worldwide are purely rainfed, but at 

least partially irrigated or fully irrigated. More specifically, around 35% of global wheat is produced 
in irrigated lands (Wang et al., 2021). However, no literature has focused on investigating the po‐

tential of satellite‐based data for index insurance development for wheat producers in irrigated and 
mixed lands. In real life, these regions also suffer from high variations in weather parameters, as 

climate change affects not only water availability but also the demand of crops for water. In addi‐
tion, based on the literature review, the research and industry spheres are using administrative 

boundaries of units to estimate regional index values for insurance design that omit the effects of 
crop rotation, diversity, allocation and land cover/use change. However, in regions with diverse land 
use/cover patterns, calculating a regional index value based on all pixels located within the admin‐

istrative boundaries may not have a good power for detection of crop yield variation and index in‐
surance design. Overall, the literature review outlines a need for comprehensive and comparative 

analyses of the applicability of more satellite‐based vegetation data for index insurance develop‐
ment among various farming types and land cover/use classifications. This study aimed to fill this 

gap by setting the following objective and conducting a study: 

• To analyze and compare the performance of well‐ and less‐known satellite‐based vegetation 

data to detect variation of wheat yield, taking the land use/cover information in rainfed, irri‐
gation and mixed farming systems allocated in arid and semi‐arid zones of Central Asia and 

Mongolia into account 

This study provides two critical contributions to the literature. Firstly, according to the literature 
review, this study is the first attempt to explore the effect of using land cover classification (e.g., 

croplands and wheat‐cultivated lands) in addition to administrative boundaries for data sampling 
and index insurance development. Second, within this study, the applicability of satellite‐based veg‐

etation indices, such as an Enhanced Vegetation Index (EVI), Green Chlorophyll Index (GCI) and Leaf 
Area Index (LAI), as well as a well‐known Normalized Difference Vegetation Index (NDVI) and Land 

Surface Temperature (LST) are compared for index insurance development in rainfed, irrigated and 
mixed lands.  

Furthermore, it should be noted that index insurance development and design require climate data 
with long historical records, global geographical coverage and fine spatial resolution simultaneously, 
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which is nearly impossible to satisfy, especially with open‐access satellite‐based data. According to 
the literature review (chapter 4.1), most satellite‐based weather data with fine resolution is only 

available for limited land areas or time periods, which significantly limits its applicability for index 
development and design. Overall, in order to effectively measure climate risks and design robust 
index insurance products, there is a need for long historical climate records with fine spatial resolu‐

tion covering the entire earth. For index insurance design, there is some potential re‐analysis‐based 
climate data that is produced by combining models with ground‐ and satellite‐based observations, 

such as ERA5‐based climate data from the European Centre for Medium‐Range Weather Forecasts 
(ECMWF) (Hersbach et al., 2020). Likewise, satellite‐based climate data from the European Space 

Agency (ESA) Climate Change Initiative (CCI)‐based soil moisture data (Dorigo et al., 2017) covers 
the entire earth and provides data from the 1980s until near real‐time. However, the spatial resolu‐

tion of these climate products is very low, around 25–30 kilometers, which limits their potential for 
index insurance design and implementation. Particularly, designing index insurance based on such 

coarse‐resolution climate data may lead to an increase in basis risk, specifically geographical basis 
risk. A potential solution, but still an under‐researched method to deal with the issue of spatial res‐

olution, could be to spatially downscale this climate data using statistical methods. Several studies 
have investigated and validated the capacity and precision of downscaling the spatial resolution of 

climate data sources using regression and machine learning (Bai et al., 2019; Hu et al., 2020; Im et 
al., 2016; Liu et al., 2020; Zhang et al., 2021; Zhu et al., 2017). However, possible advantages of 
spatially downscaling such coarse‐resolution climate data for index insurance design have not yet 

been investigated. This study aimed to fill this gap by setting the following objective and conducting 
a study: 

• To analyze the effect of index insurance products based on downscaled climate data (using 
satellite‐based data in finer spatial resolution and a machine learning algorithm) for hedging 

crop yield in arid and semi‐arid zones of Kazakhstan and Mongolia 

This study provides two main key contributions to the literature. Firstly, based on the literature re‐

view, this study is the first attempt to systematically evaluate and compare index insurance products 
with a design based on original coarse resolution and spatially downscaled climate data to reduce 

farmers’ financial downside risk exposure. The spatial downscaling of long‐term and coarse‐resolu‐
tion soil moisture, precipitation and temperature data has been done using a machine learning al‐
gorithm. Secondly, the best source of climate data for index insurance products has been identified 

for each county to maximize the climate risk reduction capacity. 

 

1.3. Structure and research contributions 

This dissertation contains three main, independent and non‐consecutive chapters (chapters 2, 3 and 

4) representing three peer‐reviewed and published articles. Table 1.1 lists the details of all research 
contributions. The second chapter offers empirical evidence on the accuracy and applicability of 

satellite‐based weather data to measure precipitation and temperature, and to detect extreme 
weather events for index insurance development. The third chapter analyzes potential accuracy 
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gains from land‐use classification that allow for the design of reginal indices specifically for croplands 
and wheatlands. It also investigates the potential benefits of employing less‐known indices for de‐

tecting the variation of crop yield and index insurance design. The fourth chapter empirically inves‐
tigates the effect of index insurance contracts based on spatially downscaled climate data for hedg‐
ing crop yield. Overall, all chapters focus on testing the applicability and performance of various 

satellite‐based data for index insurance design and operation in arid and semi‐arid zones of Central 
Asia and Mongolia. 

 

Table 1.1: List of research contributions 

Chapter Authors Title Publication outlet 

2 

Eltazarov, S., 
Bobojonov, I.,  
Kuhn, L. 
and Glauben, T. 

Mapping weather risk – A multi‐indicator 
analysis of satellite‐based weather data for 
agricultural index insurance development in 
semi‐arid and arid zones of Central Asia 

Climate Services, 23, 
100251 (2021) 

3 

Eltazarov, S., 
Bobojonov, I.,  
Kuhn, L. 
and Glauben, T. 

The role of crop classification in detecting 
wheat yield variation for index‐based agri‐
cultural insurance in arid and semiarid envi‐
ronments 

Environmental and 
Sustainability Indica‐
tors 18, 100250 
(2023) 

4 

Eltazarov, S., 
Bobojonov, I.,  
Kuhn, L. 
and Glauben, T. 

Improving risk reduction potential of 
weather index insurance by spatially 
downscaling gridded climate data ‐ a ma‐
chine learning approach 

Big Earth Data (2023) 
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2. Mapping weather risk:  A multi-indicator analysis of satellite-based weather data 

for agricultural index insurance development in semi-arid and arid zones of Central 

Asia1 

2.1. Introduction 

Agricultural insurance is a risk management tool that can assist with coping with climate risks in 

agricultural areas by protecting assets, opening access to credits, mitigating risk, maintaining the 
resilience of farmers, and supporting food security. However, because of high costs, moral hazard 

and adverse selection, traditional agricultural insurance, known as “loss‐indemnifying” insurance 
has not yet effectively assisted and mitigated all of the risks for farmers in developing countries.  

Index‐based insurance has been proposed and recommended as a solution by various organizations 
and scholars as a means for developing countries to overcome the challenges of traditional insur‐

ance (Bobojonov et al., 2014; Coleman et al., 2018; World Bank, 2011). The most common and 
widely used form of index insurance is weather index insurance, which makes use of the typically 

high correlation between weather data and crop yields (Bobojonov et al., 2014; Chantarat et al., 
2007; Coleman et al., 2018; World Bank, 2011). For the case of index‐based insurance, indemnity 
payments are determined by an index that is neither affected by farm‐individual production deci‐

sions nor vulnerable to manipulation by third parties. This approach is aimed at reducing adverse 
selection and problems of moral hazard, which are frequent issues in traditional agricultural insur‐

ances (Fisher et al., 2019; World Bank, 2015).  

Meanwhile, there are several challenges in the implementation of index insurance under real‐life 

conditions. One of the largest challenges is the availability of historical weather data for implement‐
ing such an insurance (Barnett et al., 2008; Kath et al., 2019). In many developing and transition 

economies, a complete lack or the poor quality of long‐term daily climate data with all the necessary 
parameters hinders large scale dissemination (Barnett and Mahul, 2007; Collier et al., 2009). More‐

over, requesting and obtaining weather data from data holders might be challenging, time consum‐
ing and costly; in many developing countries, high‐quality data has been commercialized.  

Additionally, an insufficient density of meteorological stations (the term “station” will be used from 
here onwards) in agricultural areas significantly affects the reliability of insurance products. Because 

of micro‐climatic factors, weather parameters may differ even between locations in close proximity 
(Tadesse et al., 2015). Existing studies have shown that using station data for index insurance leads 
to a very high basis risk (i.e., the correlation between index and yields is very low) when the station 

is located more than 20‐25 kms away (Gommes and Göbel, 2013; Osgood et al., 2007). Conse‐
quently, Hazell et al. (2010) have suggested keeping a distance of 10‐20 km between the station and 

farms in order to decrease basis risk.  

                                                           
1 This chapter was published as the following open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glau‐
ben, T. (2021): Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricul‐
tural index insurance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 
https://doi.org/10.1016/j.cliser.2021.100251; This chapter benefitted from the comments by the anonymous 
referees of Climate Services 
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Figure 2.1 illustrates the challenge of sufficient station density for the case of Central Asia. Here, 
stations are installed and regulated by governmental agencies,  but also recognized by the World 

Meteorological Organization (WMO) and included in the dataset of the Global Historical Climatology 
Network (GHCN) (NCEI, 2019). As presented by the spatial analysis in Figure 2.1, more than 94% of 
farmland in Central Asia is located beyond a distance of 20 km from the nearest station. Only 6% of 

the region’s cropland (highlighted in dark green) is situated close enough to a weather station to 
allow for reliable yield estimation along the weather station data. Any area that is not classified as 

cropland is shown as a transparent area (see also in Appendix 1.1). 

 

 

Figure 2.1: Geographical distribution of meteorological stations in the croplands of Cen-

tral Asia 

Source: Own presentation based on data from Teluguntla et al. (2015) and NCEI (2019). 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 

Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricultural index in‐

surance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 

 

In many high‐income countries, the installation of new weather stations at the farm level is pro‐
moted as a potential solution. However, starting from the above conclusion that accurate data for 

weather indices requires a density of one station every 10‐20 km, both the installation and mainte‐
nance of these stations would considerably increase the price of products relying on this data, which 
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is a problem for extensive or low‐yield production. Furthermore, the lack of historical records for 
these new stations will pose an additional problem for product design. 

Under these conditions, satellite remote sensing data (the term “satellite data” will be used from 
here onwards) is increasingly used for designing and operating index insurance programs. Numerous 
recent studies have investigated and proposed the use of agronomically suitable Meteorological 

Drought Indices (MDI) that do not require yield data for designing and implementing index‐based 
insurance, as yield data is often inaccurate or difficult to obtain at sufficient resolution (Bezdan et 

al., 2019; Bobojonov et al., 2014; Ghamghami et al., 2017; Okpara et al., 2017; Tarnavsky et al., 
2018). Many studies have found a significant correlation between MDIs and crop yields (Elhag and 

Zhang, 2018; Gunst et al., 2015; Salehnia et al., 2018; Todisco et al., 2008; Vicente‐Serrano et al., 
2012). Moreover, Musshoff et al. (2011) and Odening et al. (2007), found a higher risk reduction 

potential of index insurance based on MDIs rather than cumulative rainfall.  

Meanwhile, each of the available satellites differs in terms of resolution, coverage, quality and fre‐

quency of data collection. Therefore, one can expect differences in accuracy of the produced data 
for measuring weather parameters for each particular region. However, the question of how accu‐

rate the various satellite products actually are has not been studied to a sufficient extent in the 
region. Our study therefore provides two distinct contributions to the literature: First, the accuracy 

of two important satellite‐based weather products, as Global Satellite Mapping of Precipitation 
(GSMaP) and Global Land Data Assimilation System (GLDAS)2 have never been scientifically tested 
in the context of index insurance. This study undertakes the investigation of the accuracy of these, 

along with CHIRPS data, for various classification, quantitative and agreement statistic metrics. Sec‐
ondly, this is the first attempt at undertaking an accuracy assessment of selected satellite‐based 

temperature and precipitation data and calculation of MDIs based on satellite‐based weather prod‐
ucts for Central Asia. While region‐specific climate challenges need to be taken into account, the 

results of this case study may also provide insights relevant for arid and semi‐arid agricultural re‐
gions elsewhere in the world. 

This paper is structured as follows: The second chapter provides a review of the literature on the 
application of satellite data on index insurance in various countries. The third chapter discusses op‐

portunities for establishing index insurance in Central Asia, while the fourth chapter describes the 
process of in‐situ and satellite‐based data selection and acquisition. We report on methods selected 

for the accurate assessment of satellite‐based weather data and selected MDIs that examine the 
ability of satellite‐based weather data to detect droughts and floods. Chapter five provides the re‐

sults from our analyses followed by a comprehensive discussion. We conclude with an outlook on 
opportunities and limitations of satellite‐based data in the detection of drought and flood events. 

 

 

                                                           
2 Details about the selected satellite‐based weather products will be discussed in the following chapters. 
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2.2. Literature review of the application of Satellite Remote Sensing data to index in-

surance 

A number of studies in developing countries have investigated and proven significant accuracy, ap‐
plicability and the potential of satellite data for index insurance in the agricultural sector at various 

temporal and spatial scales. De Leeuw et al. (2014) conducted a systematic search of the available 
literature to review the potential and uptake of remote sensing in the insurance industry, concluding 

that there is particular scope for the application of remote sensing by the index insurance industry. 
They have also concluded that satellite‐based indices can be applied when there is a significant cor‐

relation with what is insured, as such indices serve to lower the cost of the insurance product and 
create new insurance markets and services3.  Therefore, this literature review focuses on research 

papers published after De Leeuw et al. (2014).  

Many existing research articles provide evidence of the suitability of satellite indices, such as the 

Normalized Difference Vegetation Index (NDVI); the Vegetation Condition Index (VCI); the Temper‐
ature Condition Index (TCI); and the Vegetation Health Index (VHI) (see Appendix 1.2 for detailed 

information) or Satellite‐based Precipitation Estimates (SPE), in selected countries and under vari‐
ous agro‐climatic conditions (Coleman et al., 2018; World Bank, 2015, 2011). Some studies have 

focused on assessing the accuracy of single indices: For example, Black et al. (2016a, 2016b) ana‐
lyzed the applicability of the Tropical Application of Meteorology Using Satellite Data (TAMSAT) SPE 
to develop an index insurance for cotton fields in Zambia. They found a significant relationship be‐

tween rainfall and soil moisture, and a strong association between cotton production losses and 
rainfall on a national scale. Enenkel et al. (2018) investigated the efficiency of using Climate Hazards 

Group InfraRed Precipitation with Station (CHIRPS) SPE for detecting drought and developing an 
advanced index insurance design in Ethiopia, Senegal and Zambia. By comparing drought years re‐

ported by farmers, they identified a high ‘‘hit rate’’, albeit with some limitations when it came to 
detecting moderate drought events.  

Other studies have conducted comparative analyses of two or more indices: Coleman et al. (2018) 
investigated the suitability of NOAA‐based African Rainfall Climatology Version 2 (ARC2) and TAM‐

SAT SPE to detect drought events and develop a village‐scale index insurance for groundnut, millet 
and maize in Senegal. Tarnavsky et al. (2018) tested three different SPE products, namely ARC2, 

CHIRPS and TAMSAT SPEs to monitor country‐level maize production in Tanzania, and analyzed their 
applicability for designing an index insurance. They discovered a higher correlation between SPE and 

maize when CHIRPS SPE was employed and suggest that CHIRPS SPE is more suitable for the appli‐
cation of index insurance. Osgood et al. (2018) tested the link between village‐level drought years 
in Ethiopia as reported by farmers and drought years detected by SPE products ARC2 and CHIRPS; 

they found evidence that events reported by farmers are independently reflected in satellite da‐
tasets. Brahm et al. (2019) conducted cross‐correlation analyses with Climate Hazards Group Infra‐

                                                           
3 A more detailed review of literature before 2014 can be found in DeLeeuw et al. 2014. 
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Red Precipitation (CHIRP), CHIRPS, Tropical Rainfall Measuring Mission (TRMM), Multisatellite Pre‐
cipitation Analysis (TMPA) and MODIS‐NDVI to test the accuracy of the newly released data source 

Historical Database for Gridded Daily Precipitation Dataset over Latin America (LatAmPrec). They 
also used a logistic regression approach with aggregated farmer‐reported data to check the ability 
of the LatAmPrec to detect drought events across regions in Latin America. Their results show that 

LatAmPrec performs better than other satellite data sources in Latin America and is able to satisfac‐
torily identify those yield losses that are relevant to insurances.  

As can be seen in this summary, existing studies have not yet tested the applicability of the GSMaP 
and GLDAS datasets, both of which might be particularly suitable for developing and transformation 

countries, as their data is publicly available and free of charge. Moreover, none of the existing stud‐
ies have tested the accuracy of precipitation estimates and the applicability of these to index insur‐

ance or other datasets for the Central Asian region. 

 

2.3. Development of index insurance in Central Asia 

Agricultural production has a substantial contribution to the economy and GDP of Central Asian 

countries. Between 20‐50% of the population is employed in the agricultural sector (Bobojonov et 
al., 2019; Hamidov et al., 2016). In the meantime, systematic extreme weather events due to climate 

change in Central Asia have become more frequent, putting agricultural production at risk (Hamidov 
et al., 2016; Zhang et al., 2019). Based on information provided in Christmann et al. (2009), 

Bobojonov and Aw‐Hassan (2014) reported that drought events during the critical period of rainfed 
crop growth in 2001 and 2008 had a great effect on crop production and the socio‐economy of 

Central Asia, particularly in Tajikistan where more than a third of the cropping area was damaged, 
costing US$63 million (Patrick, 2017). In the case of Kyrgyzstan, the gross agricultural output signif‐

icantly decreased in 2009 due to droughts in preceding years that caused extreme climatic condi‐
tions and a deterioration of the economic situation. Generally, in Central Asia, the drought of 2001 
was the most prolonged and widespread drought, resulting in below‐average drops of 40‐60% for 

rainfall levels and 35‐40% for river flows. This drought event contributed to a loss of 80% of rural 
households’ income, resulting in consequences of increased poverty rates and negative impacts on 

food security and public health (Patrick, 2017). In that year, the loss of agricultural production was 
estimated at US$800 million for the whole region, which was a significant cost for all countries 

(World Bank, 2005). All of these implications indicate a need for improving risk management strat‐
egies and especially agricultural insurance.  

Concerning the potential for the implementation of index insurance in Central Asia, the govern‐
ments of Tajikistan and Kyrgyzstan have already initiated and developed a law regarding the use of 

index insurance in the agricultural sector. However, because of little interest from insurance com‐
panies and farmers, and a lack of weather data for designing the index insurance, these initiatives 

are not being taken up by local insurance industries even though both states aim to partially finance 
the insurance premiums (Broka et al., 2016a, 2016b). In Uzbekistan and Kazakhstan, there are no 

orders or initiatives at the state level for the implementation of index insurance, while both states 
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support the implementation of traditional insurances with the help of various mechanisms. How‐
ever, big challenges in the implementation of traditional insurances create a bottleneck for the de‐

velopment of an insurance market in these countries (Bobojonov et al., 2019; Broka et al., 2016c; 
Muradullayev et al., 2015). Several international organizations have recommended the use of index 
insurance in the agricultural sector of Kazakhstan and Uzbekistan to solve existing challenges in the 

traditional insurance markets (Broka et al., 2016c; Sutton et al., 2013), and some feasibility studies 
and small scale piloting activities have started to emerge in recent years. For example, Bokusheva & 

Breustedt (2012) have proved the suitability of drought indices based on station data, while 
Bokusheva et al. (2016) have extended this analysis to the applicability of VCI and TCI in index insur‐

ance for wheat production in northern Kazakhstan. For the same location, Conradt et al. (2015) in‐
vestigated the applicability of station‐based cumulative rainfall data for designing an index insur‐

ance. Bobojonov et al. (2019) reported on the suitability of cumulative precipitation based on 
weather station data and MODIS‐based NDVI to identify shortfalls in wheat yields and index design 

in the Gallaral district, Uzbekistan. 

A number of international organizations and projects in cooperation with local governmental agen‐

cies are attempting to implement satellite‐based index insurance in Kazakhstan, Uzbekistan and Kyr‐
gyzstan. For example, the United Nations Development Programme (UNDP) and the Ministry of Ag‐

riculture of Kazakhstan (MAK) are introducing an NDVI‐based index insurance for croplands and live‐
stock in Kazakhstan (UNDP, 2016). Swiss insurance company SwissRE and Dutch company Vander‐
sat, in cooperation with MAK, have been working on introducing a satellite soil‐moisture‐based in‐

dex insurance since 2018 (Allinsurance, 2018). Moreover, the Leibniz Institute of Agricultural Devel‐
opment in Transition Economies (IAMO), together with local and international insurance companies, 

has been developing and piloting a satellite NDVI and precipitation‐based index insurance for 
croplands in Uzbekistan and Kyrgyzstan since 2018 (Bobojonov et al., 2019). 

The above‐mentioned studies and projects have not explored the accuracy of satellite‐based 
weather data for index development in Central Asia. Since farming systems are heterogeneous and 

risks are diverse, weather data could be important for measuring various climate‐related risks (a 
review on the need for satellite weather data usage in the region can be found in Appendix 1.3). 

 

2.4. Methods and materials 

2.4.1. Data sources 

2.4.1.1. Meteorological Data 

Whenever station proximity, historical records and general data quality are provided, weather sta‐
tion data remains the most accurate source of information for the design of weather indices. There‐

fore, we chose the daily precipitation and temperature data of six meteorological stations located 
in Uzbekistan as a benchmark for our accuracy assessment.  The selected weather stations provide 

information on a time period from January 1st, 2000 to December 31st, 2017, which is a sufficient 
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time horizon for comparison. Furthermore, we only compared data from a satellite that was in direct 
proximity4 to the selected stations.  

The meteorological data was provided by the Centre of Hydro‐meteorological Service at the Ministry 
of Emergency Situations of the Republic of Uzbekistan (Uzhydromet), which is responsible for all 
national hydro‐meteorological network stations (Uzhydromet, 2008). The Djizzakh, Gallaral and 

Lalmikor stations are located in the Djizzakh province. The Samarkand station is located in the Sa‐
markand province, and the Karshi station in situated in the Kashkadarya province of Uzbekistan (Fig‐

ure 2.2) (see Appendix 1.4 for detailed information). Among the selected stations, only Djizzakh, 
Samarkand and Karshi stations were used during the calibration of all selected satellite‐based 

weather products (CHC, 2021; Ji et al., 2015; Mega et al., 2019; NCEI, 2019). 

 

 

Figure 2.2: Selected meteorological stations 

Source: Own presentation based on data from Teluguntla et al. (2015) and NCEI (2019). 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 

Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricultural index in‐

surance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 

 

2.4.1.2. Satellite Remote Sensing precipitation and temperature data 

After a systematic review of available satellite‐based weather products (see Appendix 1.5 for a de‐

tailed review), we selected three satellite weather products for this study: Firstly CHIRPS, secondly 
GSMaP, and finally the satellite temperature product GLDAS. The selection was made based on the 

                                                           
4 Details about the spatial resolution of the selected satellite‐based weather products will be discussed in 
following chapters 
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coverage area of the case study region, spatial and temporal performances in terms of suitability for 
index insurance development (e.g., extreme large resolution may not be suitable due to high basis 

risk), as well as data accessibility, which would also be relevant for the sustainable application to 
insurance products. 

CHIRPS5 is a semi‐global precipitation product, covering latitudes 50°S‐50°N and all longitudes. The 

product is designed for drought monitoring and environmental analyses (Funk et al., 2015). CHIRPS 
data is available starting from 1981 to the near present, and the dataset consist of daily, pentadal, 

decadal and monthly temporal resolution data, which were completed and made available to the 
public in February 2015 by the Climate Hazards Group (CHC, 2015). CHIRPS integrates a 0.05o x 0.05o 

spatial resolution of satellite images and data from stations to produce a gridded precipitation time 
series. A detailed description of the CHIRPS dataset has been published in Funk et al. (2015). 

GSMaP is a semi‐global precipitation product with 0.1ox 0.1o spatial resolution and 1‐hour temporal 
resolution that uses multi‐band passive microwave and infrared radiometers from the GPM Core 

Observatory satellite and, with the assistance of a constellation of other satellites, covering latitudes 
60oS‐60oN and all longitudes. The product is designed for flood monitoring, meteorology and clima‐

tology analyses. GSMaP data is available starting from 2000 to the near present, and the dataset 
consist of hourly and daily data, which is available through the JAXA G‐Portal (2019). This study uses 

a gauge‐data (GG) band, which has adjusted precipitation rate to rain gauge. The dataset is pro‐
cessed using a GSMaP algorithm version 6 (product version 3). 

GLDAS is a global 3‐hourly climate product created by combining satellite and ground‐based obser‐

vation datasets, which apply multiple advanced land surface modelling and data assimilation meth‐
ods to generate optimal fields of land surface states and fluxes (Rodell et al., 2004). For this study, 

we used the Tair_f_inst (air temperature) band from 2.1 version of the GLDAS. GLDAS 2.1 is analo‐
gous to previous versions with upgraded models, which integrate GDAS, GPCP and AGRMET da‐

tasets. Data from the GLDAS 2.1 is available for the period from early 2000 to the near present. The 
spatial resolution of the product is 0.25o x 0.25o (Chen et al., 2013). The GLDAS data is archived and 

freely available through GSFC DISC (2019). 

In order to obtain daily updates on CHIRPS, GSMaP and GLDAS data, we developed an algorithm and 

programmed an automatic web platform (see Appendix 1.6 for details and information on the free 
data platform), which allows easy access to the related datasets. This web platform for data acqui‐

sition can be found under the following link: https://www.klimalez.org/srs‐export. A large number 
of existing studies that have assessed the accuracy of satellite products are characterized by deca‐

dal, monthly, seasonal and annual scales (e.g., Darand and Khandu (2020); Peng et al. (2020); Rivera 
et al. (2018); Yu et al. (2020)), especially studies in the field of index insurance design (e.g. Bobojonov 
et al. (2014); Odening et al. (2007); Osgood et al. (2007); Westerhold et al. (2018); Xu et al. (2008)). 

                                                           
5 Climate Hazards Group Infrared Precipitation (CHIRP) was not considered for this study since we already 
included CHIRPS, which is the improved version of CHIRP, providing higher accuracy than its predecessor, as 
pointed out by (Dinku et al., 2018; Funk et al., 2015; Shen et al., 2020) 

https://www.klimalez.org/srs-export
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To comprehend the pattern of the satellite precipitation and temperature measurements at differ‐
ent time scales and locations, this study assessed the satellite data in decadal and monthly aggrega‐

tion. The aggregation of hourly, 3‐hourly and daily data into decadal and monthly values cancels out 
errors observable in short‐term data, as mentioned for instance by Usman & Nichol (2020). Coleman 
et al. (2018) have stated that aggregated SPEs are more accurate than daily ones, as there is signifi‐

cant uncertainty in an individual precipitation measurement either by the satellite or the station.  

 

2.4.2. Accuracy measures 

To evaluate the accuracy of the GSMaP, CHIRPS and GLDAS data, we used a number of classification 
metrics, which are based on existing indices or adaptions of such as used in the existing research 
literature (Hu et al., 2013; C. Yu et al., 2020):  

Frequency Bias (BIAS), Critical Success Index (CSI), also known as Threat Score, Probability of Detec‐
tion (POD) and False Alarm Ratio (FAR) were used to  demonstrate the ability of remote sensing to 

precisely measure decadal and monthly precipitation and temperature (Schaefer, 1990; 
Stephenson, 2000). BIAS measures the tendency of a satellite to underestimate or overestimate 

events. POD measures the probability of a satellite to detect precipitation events. FAR indicates the 
probability of a satellite‐based precipitation event being detected by mistake. CSI represents the 

overall accuracy of a satellite in classifying precipitation events. CSI, POD and FAR are recommended 
and extensively used by the US National Weather Service to verify various weather events 

(Gerapetritis and Pelissier, 2004). The details of these statistics can be found in Table 2.1, where a 
represents correctly detected precipitation events by a satellite, b stands for precipitation events 

that are detected by the satellite but not confirmed by station data, and c denotes precipitation 
events that are not detected by satellite data but are observed by station data. 

Furthermore, we employed a number of quantitative metrics. In detail, these are 1) Percentage Bias 
(PBIAS), which measures the average tendency of satellite estimates to be larger or smaller than the 
benchmark; 2) Mean Bias Error (MBE), which measures the average satellite estimate error; 3) Mean 

Absolute Error (MAE), which measures the average magnitude of a satellite’s estimate; 4) Root 
Mean Square Error (RMSE), which measures the same as MBE but puts greater weight on higher 

errors than MBE. 

We also applied some agreement metrics such as 1) Spearman’s Rank‐order Correlation Coefficient 

(SC), which measures the strength of a monotonic relationship between estimations and observa‐
tions; 2) Pearson’s Correlation Coefficient (PC), which measures the linear correlation between es‐

timations and observations; 3) Determination Coefficient (R2), which measures how well data points 
fit in a regression line, as well as the predictability level of the observation data from satellite data; 

4) Index of Agreement (d), which solves certain problems associated with PC and R2 and measures 
the degree to which satellite estimation is free of error; it also measures how well a satellite esti‐

mate simulates station data (Willmott, 1981); 5) Linear Error in Probability Space (LEPS), which 
measures the mean absolute difference between the estimated cumulative distribution value and 

the observation (Potts et al., 1996); 6) Nash‐Sutcliffe Efficiency (NSE), which was first proposed by 
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Nash & Sutcliffe (1970) and originally used for assessing the predictive power of hydrological mod‐
els, but was later widely used for quantity accuracy assessment of various models. However, NSE is 

highly sensitive for data that has a high temporal volatility. Therefore, NSE has been used only for 
accuracy assessment of the temperature data. The details of these statistical indices can be found 
in Table 2.1, where 𝐸𝐸𝑖𝑖  and 𝑂𝑂𝑖𝑖 are satellite and station observations, respectively, at a specific time 

𝑖𝑖; 𝑂𝑂� is the average of the observed precipitation/temperature. 

 

Table 2.1: Details of accuracy measures 

Statistics Formula Range Unit Perfect Value 

Frequency Bias 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝑎𝑎 + 𝑏𝑏 
𝑎𝑎 + 𝑐𝑐

 0 to ∞ None 1 

Critical Success Index 𝐶𝐶𝐵𝐵𝐵𝐵 =
𝑎𝑎 

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐
 0 to 1 None 1 

Probability of Detection 𝑃𝑃𝑂𝑂𝑃𝑃 =
𝑎𝑎

𝑎𝑎 + 𝑐𝑐
 0 to 1 None 1 

False Alarm Ratio 𝐹𝐹𝐵𝐵𝐹𝐹 =
𝑏𝑏 

𝑎𝑎 + 𝑏𝑏
 0 to 1 None 0 

Percentage Bias 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ (𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ (𝑛𝑛
𝑖𝑖=1 𝑂𝑂𝑖𝑖)

 × 100% –∞ to ∞ % 0 

Mean Bias Error 𝑀𝑀𝐵𝐵𝐸𝐸 = �(𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 –∞ to ∞ mm or Co 0 

Mean Absolute Error 𝑀𝑀𝐵𝐵𝐸𝐸 =
1
𝑛𝑛
�|𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 0 to ∞ mm or Co 0 

Root Mean Square Error 𝐹𝐹𝑀𝑀𝐵𝐵𝐸𝐸 = �
1
𝑛𝑛
�(𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 0 to ∞ mm or Co 0 

Linear Error in Probability Space 𝐿𝐿𝐸𝐸𝑃𝑃𝐵𝐵 =
1
𝑛𝑛
�|𝐶𝐶𝑃𝑃𝐹𝐹𝑂𝑂(𝐸𝐸𝐼𝐼) −  𝐶𝐶𝑃𝑃𝐹𝐹𝑂𝑂(𝑂𝑂𝐼𝐼)|
𝑛𝑛

𝑖𝑖=1

 0 to 1 None 0 

Spearman’s Correlation 𝐵𝐵𝐶𝐶 =
1
𝑛𝑛∑ �𝑂𝑂𝑖𝑖 − 𝑂𝑂��𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑛𝑛

𝑖𝑖=1

�1
𝑛𝑛∑ �𝑂𝑂𝑖𝑖 − 𝑂𝑂�

2𝑛𝑛
𝑖𝑖=1 �1

𝑛𝑛∑ �𝐸𝐸𝑖𝑖 − 𝐸𝐸�
2𝑛𝑛

𝑖𝑖=1

 –1 to 1 None 1 

Pearson’s Correlation 𝑃𝑃𝐶𝐶 =
∑ �𝑂𝑂𝑖𝑖 − 𝑂𝑂��𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑛𝑛
𝑖𝑖=1

�∑ �𝑂𝑂𝑖𝑖 − 𝑂𝑂�
2𝑛𝑛

𝑖𝑖=1 �∑ �𝐸𝐸𝑖𝑖 − 𝐸𝐸�
2𝑛𝑛

𝑖𝑖=1

 –1 to 1 None 1 

Determination Coefficient 𝐹𝐹2 = 1−
∑ �𝐸𝐸𝑖𝑖 − 𝑂𝑂�

2𝑛𝑛
𝑖𝑖=1

∑ �𝑂𝑂𝑖𝑖 − 𝑂𝑂�
2𝑛𝑛

𝑖𝑖=1

 –1 to 1 
 None 1 

Index of Agreement 𝑑𝑑 = 1−
∑ (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ ��𝐸𝐸𝑖𝑖 −  𝑂𝑂� + �𝑂𝑂𝑖𝑖 − 𝑂𝑂��
2𝑛𝑛

𝑖𝑖=1

 0 to 1 None 1 

Nash-Sutcliffe Efficiency 𝑁𝑁𝐵𝐵𝐸𝐸 = 1 −
∑ (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ �𝑂𝑂𝑖𝑖 − 𝑂𝑂�
2𝑛𝑛

𝑖𝑖=1

 –∞ to 1 None 1 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 

Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricultural index in‐

surance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 

 

Additionally, we used Ordinary Least Squares (OLS) regression and Quantile Regression (QR) to 
measure the relationship between decadal and monthly weather measurements by station and sat‐

ellite. QR was used to assess the satellite decadal and monthly weather data in various quantiles of 
the station precipitation measurements, which is not possible in traditional regression methods. QR 
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has a number of advantages for measuring the relationship between variables compared to tradi‐
tional regression methods. QR measures the relationship between minimum and maximum re‐

sponse and provides a more detailed overview of the relationship (Cade and Noon, 2003). QR mini‐
mizes the sum of absolute residuals and is robust to outliers (Li, 2014). In our study, we focused on 
all lower, median and upper tile quantiles .05, .1, .25, .5, .75, .9, .95 to check the ability of SPE during 

drought/flood periods. All statistical calculations and figures were developed using the R project (R 
Development Core Team, 2018) and just the results of the QR analysis were generated with STATA 

15 (StataCorp, 2019).  

 

2.4.3. Meteorological drought indices and anomaly detection 

In order to check the ability of satellite‐based MDIs to detect weather shocks during the vegetation 

period of rainfed crops (March‐May) and irrigated crops (May, September, October), we calculated 
MDIs using both in‐situ weather and satellite data and applied correlation analyses. For the analyses, 

we selected two drought indices, namely the Standardized Precipitation Index (SPI) and the Stand‐
ardized Precipitation‐Evapotranspiration Index (SPEI). According to Wanders et al. (2017), the SPI 

and SPEI are among the most frequently used drought indices worldwide. Ghamghami et al. (2017) 
and Okpara et al. (2017) have found the SPI well‐suited for index insurance purposes. SPI is based 

on the conversion of precipitation data into probabilities using gamma distribution. The negative 
output value of SPI represents drought intensity, with the following categories: > 0 is no drought, 0 

to ‐0.99 is mild drought, ‐1.00 to ‐1.49 is moderate drought, ‐1.50 to ‐1.99 is severe drought and ≤ ‐
2.00 is extreme drought (McKee et al., 1993). The main advantages of the SPI are a simple calculation 

that uses only precipitation data and its multi‐temporal character. Meanwhile, the SPI measures 
only the water supply and does not take into account any temperature changes over the given pe‐

riod, thus ignoring the problem of evapotranspiration. In this regard, SPEI is an improvement of SPI, 
by taking into account both precipitation and Potential Evapotranspiration (PET) in defining drought 
(Vicente‐Serrano et al., 2010). Bezdan et al. (2019) have proposed the use of SPEI in decision‐making 

at both national and regional levels and in the agricultural insurance sector. In our calculations, the 
PET have been calculated according to the Hargreaves & Samani (1982) method, which has an option 

of calculating the PET using only Tmax and Tmin data. Categories of output values are similar to the 
SPI. A detailed explanation of the SPI index calculation can be found in McKee et al. (1993), and for 

SPEI calculation in Vicente‐Serrano et al. (2010). SPI and SPIE were calculated using the R package 
developed by Beguería & Maintainer (2017), who are the authors of SPEI itself. 

Additionally, we tested the ability of SPEs to detect the extreme weather events by using the per‐
centiles as a threshold for anomaly detection. We applied <10th and <20th percentiles for drought 

(March, April and May) and >80th and >90th percentiles for flood events (May, September, October) 
detection. Classification accuracy measures listed in Table 2.1 were applied to examine the perfor‐

mance of products.  
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2.5. Results  

2.5.1. Accuracy of satellite precipitation data 

Figure 2.3 provides a comparison of decadal and monthly precipitation levels as measured by satel‐
lites at the Djizzakh station in the period of March‐December 2017. A similar visualization for the 

remaining five stations can be found in Figure A.1.7.1 and 1.7.2. While both satellites did record the 
local precipitation events, we noticed that monthly precipitation, in comparison with our benchmark 

stations, was overestimated by CHIRPS, while it was underestimated by GSMaP.    

 

 

Figure 2.3: Decadal (a) and monthly (b) precipitation by stations, GSMaP and CHIRPS at 

the Djizzakh station 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 

Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricultural index in‐

surance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 

 

Table 2.2: Accuracy assessment of continuous monthly precipitation in selected loca-

tions (March 2000-December 2017) 

 Djizzakh  Gallaral  Lalmikor  Samarkand  Karshi  Takhtakupir  Average 
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BIAS 1.09 0.89  1.11 0.90  1.08 0.88  1.10 0.87  1.28 1.02  1.08 0.91  1.12 0.91 
CSI 0.91 0.89  0.90 0.86  0.91 0.86  0.91 0.86  0.78 0.91  0.89 0.82  0.88 0.87 
POD 0.99 0.89  1.00 0.88  0.99 0.87  1.00 0.87  1.00 0.97  0.98 0.86  0.99 0.89 
FAR 0.08 0.00  0.10 0.02  0.08 0.01  0.09 0.01  0.22 0.05  0.09 0.05  0.11 0.02 
PBIA

 
‐14.20 10.60  ‐9.10 18.00  ‐18.90 4.00  ‐12.90 4.90  ‐6.80 28.50  ‐13.90 9.50  ‐12.63 12.58 

MBE ‐4.68 3.50  ‐2.79 5.52  ‐6.48 1.37  ‐3.81 1.46  ‐1.22 5.11  ‐1.41 0.96  ‐3.40 2.99 
MAE 6.45 10.37  7.77 11.74  9.25 10.93  6.27 8.33  3.69 6.97  4.15 4.86  6.26 8.87 
RMS

 
11.13 15.76  12.37 16.98  14.11 15.71  10.64 12.77  6.59 11.57  7.58 7.26  10.40 13.34 

SC 0.97 0.92  0.94 0.91  0.95 0.91  0.98 0.94  0.96 0.95  0.84 0.84  0.94 0.91 
PC 0.96 0.90  0.93 0.88  0.93 0.89  0.95 0.92  0.96 0.91  0.79 0.80  0.92 0.88 
R2 0.93 0.81  0.86 0.78  0.87 0.79  0.91 0.84  0.92 0.84  0.63 0.65  0.85 0.79 
p 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
d 0.97 0.94  0.96 0.93  0.95 0.94  0.97 0.96  0.97 0.94  0.88 0.88  0.95 0.93 
LEPS 0.05 0.08  0.06 0.09  0.07 0.09  0.04 0.07  0.04 0.06  0.10 0.13  0.06 0.09 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 

Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricultural index in‐

surance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 
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To quantify this difference in precipitation data, Table 2.2 and Table A.1.8.1 provide the results of 
classification, quantitative and agreement statistics of continuous decadal and monthly precipita‐

tion for all six stations. The results obtained from BIAS show that GSMaP slightly overestimate the 
precipitation events while CHIRPS underestimates; mean values are equal to 1.12 and 0.91 for 
monthly scale and 1.24 and 0.91 for decadal scale, respectively. According to POD, GSMaP has al‐

most perfect values and significantly better probability to detect precipitation events than CHIRPS. 
Meanwhile, based on FAR results, CHIRPS has a lower probability of false positives in terms of pre‐

cipitation events than GSMaP. The values of CSI, which measures comprehensive detection proba‐
bility of satellite to precipitation events, vary from 0.78 to 0.91 on a monthly scale and from 0.71 

and 0.86 on a decadal scale for GSMaP; and from 0.82 to 0.89 on a monthly scale and from 0.82 to 
0.98 for CHIRPS. 

According to results from PBIAS and MBE in both temporal aggregations, GSMaP underestimates 
precipitation in all locations while CHIRPS overestimates. MBE and RMSE shows that GSMaP has a 

lower difference from benchmark measurements and a higher accuracy compared to CHIRPS in all 
locations. Results of SC, PC, R2, d and LEPS for GSMaP are close to perfect values in all locations, 

except for the Takhtakupir station, which is located in an arid zone. Meanwhile, these agreement 
metrics are also high for CHIRPS but slightly lower than GSMaP. As shown in Table 2.2 and Table 

A.1.8.1, the results of all statistical metrics for the Takhtakupir station are slightly lower in both SPEs. 
Overall, the results of all statistical metrics for all stations are on a satisfactorily accurate level. 
GSMaP showed a stronger ability to measure precipitation variance than CHIRPS in terms of most 

statistical metrics. 

 

Table 2.3: Quantile regression results of satellite-based monthly precipitation estimates 

for the Djizzakh station (n = 214) 
  OLS QR0.5 QR 0.1 QR 0.25 QR 0.5 QR 0.75 QR 0.9 QR 0.95 
 Coef. 1.150*** 0.914*** 0.940*** 1.039*** 1.126*** 1.249*** 1.480*** 1.640*** 
Djizzakh-GSMaP SE 0.022 0.054 0.022 0.022 0.013 0.029 0.066 0.159 

 R2/pR2 0.925 0.605 0.6708 0.7529 0.8046 0.7897 0.7531 0.711 
 Coef. 0.876*** 0.558*** 0.535*** 0.681*** 0.900*** 1.044*** 1.168*** 1.137*** 
Djizzakh-CHIRPS SE 0.029 0.048 0.033 0.034 0.026 0.034 0.077 0.106 

 R2/pR2 0.807 0.3273 0.4044 0.5469 0.6408 0.6534 0.6123 0.5873 
Coef. = Coefficient; SE = standard error; R2 = R‐square for OLS; pR2 = pseudo R‐square for quantiles; * p<0.05, 

** p<0.01, *** p<0.001 

Note: A similar table for the remaining five stations can be found in Table A.1.9.2 and for decadal scale in 

Table A.1.9.4. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 

Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for agricultural index in‐

surance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 100251. 
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In both SPE products for the decadal and monthly scales, the quantile coefficients and their 95% 
confidence intervals do not lie within the 95% confidence interval (Figure 2.4, Figure A.1.9.3 and 

A.1.9.5); furthermore, there is a significant difference between coefficients in the upper and lower 
quantiles compared to OLS (Table 2.3, Table A.1.9.2 and A.1.9.4). This indicates a different relation‐
ship between precipitation by station and SPE along the quantiles, showing that the OLS regression 

slope is not sufficient to describe this relationship. Both Figure 2.4 and Table 2.3 show that the mag‐
nitude of coefficients is increasing as they approach the upper quantiles of the distribution of station 

precipitation. Coefficients of GSMaP in the lowest quantiles (low precipitation decades and months) 
are below one, as opposed to the quarter quantiles coefficients, which exceed one. Correspondingly, 

GSMaP overestimates the precipitation in lower quantiles, but starts underestimating after quarter 
quantiles. Structurally, the results for CHIRPS are similar; however, CHIRPS overestimates the pre‐

cipitation until about the median, after which it starts underestimating precipitation. Overall, both 
SPE products have a significant correlation with station precipitation measures, according to both 

OLS and quantile regression.  

 

 

Figure 2.4: Estimated results of quantile regressions for monthly scale precipitation by 
(a) GSMaP and (b) CHIRPS in Djizzakh station 

Note: A similar visualization for the remaining five stations can be found in Figure A.1.9.1 and for decadal 

scale in Figure A.1.9.3 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 
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Figure A.1.8.3 and Figure 2.5 illustrate the average results from all six stations for classification, 
quantitative and agreement accuracy metrics of the decadal and monthly precipitation records for 

each period from March 2000 to December 2017. This means that each month offers 18 periodic 
precipitation observations for analysis, except January to March, for which there are 17 periodic 

precipitation observations. According to the averaged results, GSMaP shows a significantly higher 
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accuracy than CHIRPS in most decades and months in all accuracy metrics. The values of classifica‐
tion accuracy metrics (BIAS, CSI, POD and FAR) for GSMaP are close to a perfect value in all months 

excluding the dry season (June to September), which indicates a higher classification accuracy for 
GSMaP in wet seasons (winter, spring and fall). Meanwhile, the classification accuracy metrics for 
CHIRPS are lower than GSMaP, while CHIRPS also has a significantly lower classification accuracy in 

the summer season, as compared to other seasons. Based on these results, the average values of 
PBIAS and MBE confirm that GSMaP underestimated precipitation levels in the vast majority of dec‐

ades and months; meanwhile, CHIRPS overestimated the amount of precipitation in decades and 
months from January to May and from October to December, even though for both satellite prod‐

ucts, the MAE and RMSE in summer season are significantly lower than in other seasons. GSMaP has 
higher and moderately close to perfect values in SC, PC, R2, d and LEPS than CHIRPS provides in all 

months, and a decrease of quantitative and agreement accuracy can be observed during the sum‐
mer season for both products. Overall, GSMaP has a significantly higher accuracy in terms of all 

statistics than CHIRPS, which can be observed from both continuous decadal and monthly precipi‐
tation analyses and analyses for each decades’ and months’ precipitation. 

 

 

Figure 2.5: Average results of classification, quantitative and agreement accuracy met-

rics of monthly precipitation for all stations, by (a) GSMaP and (b) CHIRPS  

Note: A similar visualization of results for decadal scale can be found in Figure A.1.8.3. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 
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2.5.2. Accuracy of satellite temperature data  

Using the Djizzakh station as an example, Figure 2.6 demonstrates the decadal and monthly average 

Tmax and Tmin estimates by GLDAS and the stations between January 2000 and December 2017. A 
similar visualization for the remaining five stations can be found in Figure A.1.7.3 and A.1.7.4. Ac‐

cording to results, GLDAS has a high ability to detect average Tmax and Tmin, and performs ex‐
tremely accurate measurements at the 1% level in both temporal aggregation for all periods and all 

locations.   

 

 

Figure 2.6: Decadal (a) and monthly (b) average Tmax and Tmin by stations and GLDAS 

for the Djizzakh station 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021): 
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Table 2.4: Accuracy assessment of continuous monthly average temperature in selected 

locations (January 2000-December 2017) 

 Djizzakh  Gallaral  Lalmikor  Samar-
kand  Karshi  Takhtakupir  Average 
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BIAS 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
CSI 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
POD 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
FAR 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
PBIA

 
3.40 4.60  2.80 28.60  1.30 ‐11.60  ‐3.70 2.30  0.10 11.60  ‐0.70 58.80  0.53 15.72 

MBE 0.73 0.43  0.58 1.86  0.25 ‐1.03  ‐0.81 0.21  0.03 1.21  ‐0.13 3.39  0.11 1.01 
MAE 1.11 1.13  0.95 2.14  0.89 1.42  1.34 1.02  0.88 1.95  0.72 3.40  0.98 1.84 
RMS

 
1.36 1.42  1.20 2.68  1.16 1.87  1.72 1.35  1.14 2.31  0.95 3.88  1.26 2.25 

SC 0.99 0.99  0.99 0.97  0.99 0.98  0.99 0.99  0.99 0.97  1.00 0.98  0.99 0.98 
PC 1.00 0.99  1.00 0.97  0.99 0.98  0.99 0.99  1.00 0.98  1.00 0.98  1.00 0.98 
R2 0.99 0.98  0.99 0.95  0.99 0.96  0.98 0.98  0.99 0.95  0.99 0.97  0.99 0.97 
p 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
d 1.00 0.99  1.00 0.97  1.00 0.99  0.99 0.99  1.00 0.98  1.00 0.97  1.00 0.98 
LEPS 0.04 0.05  0.03 0.07  0.03 0.06  0.05 0.04  0.03 0.07  0.02 0.09  0.03 0.06 
NSE 0.98 0.97  0.99 0.88  0.99 0.95  0.97 0.97  0.99 0.92  0.99 0.86  0.99 0.93 

Note: A similar table for the decadal scale analyses can be found in Table A.1.8.1. 

Source: compiled by the authors. 
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Table A.1.8.1 and Table 2.4 illustrate the results of classification, quantitative and agreement statis‐
tics of continuous decadal and monthly Tmax and Tmin in all six station locations between January 

2000 and December 2017, all in all 642 decades and 214 months. According to this data, GLDAS has 
perfect classification accuracy in all indices, which means that GLDAS captured Tmax and Tmin in all 

decades and months of the study period in selected locations. 

The obtained results from the quantitative statistic metrics demonstrate a satisfactory accuracy of 

both Tmax and Tmin measurements by GLDAS in both temporal aggregations according to Yu et al. 
(2020). According to PBIAS and MBE values, GLDAS slightly overestimated Tmax in four locations 

and underestimated in two locations. Similarly, GLDAS overestimated Tmin in five locations and un‐
derestimated in one location. Meanwhile, the results of MAE and RMSE values show that these over‐
/underestimations, as well as the difference between station and GLDAS measurements, can be dis‐

regarded. Overall, results of SC, PC, R2, d, LEPS and NSE for Tmax and Tmin are near to the perfect 
value of zero or one, respectively, which indicates the strong ability of GLDAS to measure variance 

of decadal and monthly mean Tmax and Tmin, even though agreement statistical metrics of Tmax 
are slightly and insignificantly higher than Tmin. 

 

 

Figure 2.7: Estimated results of quantile regressions for (a) GLDAS Tmax and (b) GLDAS 

Tmin in Djizzakh station  

Note: A similar visualization for the remaining five stations can be found in Figure A.1.9.1 and for decadal 

scale in Figure A.1.9.3. 

Source: compiled by the authors. 
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Table 2.5: Estimated results of OLS regressions for monthly GLDAS Tmax and GLDAS 

Tmin in all locations 

 Djizzakh  Gallaral  Lalmikor  Samarkand  Karshi  Takhtakupir 

 
GLDAS 

Tmax 
GLDAS 

Tmin 
 GLDAS 

Tmax 
GLDAS 

Tmin 
 GLDAS 

Tmax 
GLDAS 

Tmin 
 GLDAS 

Tmax 
GLDAS 

Tmin 
 GLDAS 

Tmax 
GLDAS 

Tmin 
 GLDAS 

Tmax 
GLDAS 

Tmin 

Coef. 0.947*** 1.255***  0.982*** 1.276***  0.979*** 1.253***  0.934*** 1.188***  0.945*** 1.155***  1.016*** 1.249*** 

SE 0.006 0.014  0.006 0.019  0.007 0.019  0.009 0.015  0.006 0.017  0.005 0.015 

R‐sq 0.991 0.973  0.991 0.953  0.989 0.954  0.981 0.967  0.992 0.954  0.995 0.972 

Note: A similar table for the remaining five stations can be found in 9.2 and for decadal scale in Table 

A.1.9.4. 

Coef. = Coefficient; SE = standard error; R‐square; * p<0.05, ** p<0.01, *** p<0.001 

Source: compiled by the authors. 
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Figure A.1.9.3 and Figure 2.7 show that OLS is sufficient to describe the relationship between tem‐
perature (decadal and monthly) measurements by satellite and station. The quantile slope estimates 
are not statistically different from the OLS estimate. Therefore, we conducted only OLS regression 

for satellite temperature data. The average R2 of Tmax is 0.99, ranging from 0.98 to 0.99, and Tmin 
varies from 0.95 to 0.98, with a mean of 0.97. P‐values in all locations are below 0.001, which means 

the results are statistically significant at the 1 % level. Coefficients of GLDAS Tmax in all locations are 
less than one, as opposed to GLDAS Tmin, which reach higher than one. Correspondingly, GLDAS 

slightly overestimates the decadal and monthly mean Tmax and underestimates the Tmin. Overall, 
both GLDAS Tmax and Tmin in all locations have a significant correlation with station temperature 

measurements according to both OLSs. 

Figure A.1.8.4 and Figure 2.8 illustrate the average results (from six stations) of classification, quan‐

titative and agreement accuracy metrics of decadal and monthly temperature records for each pe‐
riod between January 2000 and December 2017, which means each month has 18 periodic temper‐

ature data measurements. Both Tmax and Tmin have perfect values for all classification accuracy 
metrics in all decades and months, which means that GLDAS is capturing all decadal and monthly 

temperature events and there is no data missing in any of the locations. In quantitative and agree‐
ment accuracy metrics, Tmax has a slightly higher accuracy than Tmin in most periods. PBIASs of 
Tmax and Tmin are significantly higher during the winter season, as average Tmax and Tmin during 

the winter season are very close to zero, and a slight difference between measurements might cause 
high PBIAS values. The PBIAS values are 107.55% in January and ‐7.75% in February for Tmax. The 

PBIAS values of Tmin are 19.06%, 102.85%, 45.6%, 14.43%, 35.83% and ‐203.85% in January, Febru‐
ary, March, September, October and December, respectively. Despite this, the MBE, MAE and RMSE 

values of Tmax and Tmin during the winter season are lower than in other seasons, which demon‐
strates the low relevance of high PBIAS values to the overall quantitative and agreement accuracy. 

As shown in the figure, Tmax has higher and closer to perfect values in SC, PC, R2, d and LEPS than 
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Tmin in the majority of decades and months. Even though the SC, PC, d, LEPS and R2 values are lower 
in summer seasons, those do not significantly affect the MBE, MAE and RMSE. Overall, both Tmax 

and Tmin have significant classification, quantitative and agreement accuracy, which can be ob‐
served from both continuous decadal and monthly temperature analyses and analyses for each dec‐
ades’ and months’ temperature. Additionally, accuracy comparisons were performed over the sea‐

sonal scale for the Djizzakh station only and results can be found in Appendix 1.10. 

 

 

Figure 2.8: Average results of classification, quantitative and agreement accuracy met-

rics of monthly precipitation for all stations, for (a) GLDAS Tmax and (b) GLDAS Tmin 

Note: A similar visualization of results for the decadal scale can be found in Figure A.1.8.4 

Source: compiled by the authors. 
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2.5.3. Meteorological drought indices and anomaly detection 

In the previous two sections, we have assessed the accuracy of satellite‐based weather data. Our 

findings indicate the occurrence of considerable over‐ and underestimations. The following analysis 
illustrates the impact of these deficiencies on drought indices, as they might find application in in‐

dex‐based insurance products. In this chapter we focused on drought during the vegetation period 
of rainfed crops (March‐May), on flood during the seeding of irrigated crops (May) and on flood 



27 
 

during the harvesting of irrigated crops (September‐October). Figure 2.9 compares the SPI values 
during March, April, May, September and October based on precipitation data from stations, GSMaP 

and CHIRPS for the Djizzakh station (a similar visualization for the remaining five stations can be 
found in Figure A.1.11.1). In general, SPI values from both SPEs are able to detect drought and flood, 
and performed reasonably accurate measurements in most locations. The PC between GSMaP‐SPI 

and station‐SPI is slightly higher than CHIRPS‐SPI in all cases. Another finding is that the agreement 
between SPIs located in the semi‐arid agro‐climatic zone was higher than in the arid agro‐climatic 

zone.  

Moreover, Figure 2.9 illustrates the calculated SPEI values based on the data combinations station 

& station (M & M), GSMaP & GLDAS (G & G) and CHIRPS & GLDAS (C & G) for the months of March, 
April, May, September and October for the Djizzakh station (a similar visualization for the remaining 

five stations can be found in Figure A.1.11.2). Generally, SPEI values from satellite precipitation and 
temperature products are able to detect drought and gave reasonably accurate measurements in 

most locations. This was confirmed by the SPEI results. The weather data combination involving 
GSMaP has a slightly higher agreement than the C&G combination. In addition, the PC of SPEIs lo‐

cated in the semi‐arid agro‐climatic zone was higher than that in the arid agro‐climatic zone, in line 
with SPI results.  

 

Figure 2.9: Monthly values of Standardized Precipitation Index (SPI), Standardized Pre-

cipitation-Evapotranspiration Index (SPEI) and detected anomalies at 10th and 20th 

(March, April and May) percentiles for drought and 80th and 90th (May, September, Oc-

tober) percentiles for flood by stations, GSMaP and CHIRPS at the Djizzakh station 

Note: CHIRPS‐SPI for September was not calculated due to a lack of measurements in this month 

Source: compiled by the authors. 
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In addition, Figure 2.9, Table A.1.11.3 and Table A.1.11.4 illustrate the capacity of GSMaP and 
CHIRPS to detect precipitation anomalies at <10th and <20th (March, April and May) percentiles for 

droughts as well as >80th and >90th (May, September, October) percentiles for floods. The results 
show that in the vast majority cases, SPEs detected the anomalies correctly, but there are minor 

false alarms and gaps that exist in both products. The capacity of SPEs to detect drought is slightly 
better than flood detection. In both types of extreme events and temporal aggregations, the GSMaP 

showed slightly better performance than CHIRPS, which is clearly evident from Figure 2.9 and Table 
2.6. Regarding the accuracy of the applied temporal scales, we obtained ambiguous results since the 

classification accuracy varies across months and percentiles.  

Overall, both satellite‐based MDIs and detected anomalies align with the station‐based estimates, 
and have the potential to some extent to detect the drought and flood events in focused periods. 

However, MDIs provide a more clear picture of drought and flood events with its strength, which is 
not possible with an anomaly detection approach based on percentiles. It was reported that drought 

events during the critical period of rainfed crop growth in 2001 and 2008 had a significant effect on 
crop production and the socio‐economy of the region (Bobojonov and Aw‐Hassan, 2014). These 

drought events were also precisely detected by both station and satellite‐based MDIs, as well as 
anomaly detection. GSMAP itself, and in combination with GLDAS as MDIs, performed slightly better 

than CHIRPS in detecting these events. According to Figure 2.9, in 2001, drought was moderate in 
March and followed by more severe drought in April and May, while in 2008 severe drought in 

March was followed by mild drought in April and May. Also, we can see some months with drought 
in other years, but these drought events were not prolonged that mitigate the effect of them, which 

are not reported as extreme drought years in any publications. 

 

2.6. Discussion and conclusion 

The main aim of the study was to investigate the suitability of freely available satellite temperature 
and precipitation data for designing and implementing an index insurance in Central Asia by analyz‐

ing the satellites products’ accuracy and ability to detect droughts or floods using MDIs. For this 
assessment, the study used weather data acquired from six stations located in arid and semi‐arid 

agro‐climatic zones between 2000 and 2017. An accuracy analysis was conducted for those locations 
in pixel scale. Fourteen classification, quantitative and agreement statistical metrics were used to 

evaluate the accuracy and applicability of the satellite products in decadal and monthly time‐series 
as well as on a per‐decade and per‐month scale. Additionally, we investigated the ability of these 

satellite‐based weather products to detect drought and flood using SPI and SPEI. 

Our assessments of decadal and monthly precipitation data by GSMaP indicate a better accuracy for 

the selected locations than CHIRPS can offer. Additionally, GSMaP spatially covers the full region of 
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Central Asia. Nevertheless, we found a number of limitations, such as underestimation of precipita‐
tion during wet/rainy seasons and overestimation in the dry season, which have also been investi‐

gated by Trinh‐Tuan et al. (2019) in Vietnam, Reddy et al. (2019) in India and Fatkhuroyan & 
TrinahWati (2018) in Indonesia. Additionally, we observed a slight overestimation of precipitation 
events by GSMaP, caused by minor GSMaP precipitation records during the summer period that do 

not exist in station observations. Moreover, we found that GSMaP performs better SPE during 
wet/rainy seasons compared to the dry season, which is in line with Hu et al. (2013), Fu et al. (2011) 

and Thiemig et al. (2012). Nevertheless, in the region observed by us, GSMaP performs better meas‐
urements in the dry season compared to CHIRPS. A novel quantile regression analysis checking the 

relationship between SPE products and in‐situ weather data in various tiles confirms that both SPE 
products overestimate precipitation during low precipitation periods and underestimate it during 

high precipitation periods. GLDAS was in significant agreement with in‐situ temperature data in both 
time series and per period scale in all locations. Similar to GSMaP and CHIRPS, we found lower ac‐

curacy results during the dry season for GLDAS temperature estimates, which have also been inves‐
tigated by Wang et al. (2016) in China. Lower quantitative and agreement accuracy metrics for Tmax 

and Tmin by GLDAS during the summer season can be explained by a low diversity of average deca‐
dal and monthly Tmax and Tmin in the summer season. Overall, all three satellite products have 

shown slightly better accuracy in measuring weather parameters in the semi‐arid zones than in the 
arid zones. Additionally, we observed similar accuracy and performance for each climatic zone de‐
spite the fact that not all studied stations were used during the development of selected satellite‐

based weather products. 

After calculating various classifications, quantitative and agreement statistical metrics to test the 

accuracy of satellite‐based weather data, we found this combination of metrics to be useful and 
worth testing. Some of them, however, we found more useful than others and sufficient to assess 

the accuracy of satellite‐based weather data: these are BIAS, POD and FAR for classification metrics; 
MBE and RMSE for quantitative metrics; SC, PC and d for agreement metrics. This combination of 

metrics allows an assessment of the accuracy of event classification, bias and variation between 
station and satellite‐based weather data. In addition, for the first time, we could show the potential 

of using QR to access the accuracy of satellite‐based weather data: By applying QR we were able to 
observe the relationship between station and satellite‐based weather data among various quantiles, 

which cannot be achieved by using OLS. 

Over‐ and underestimations of SPEs observed from accuracy and QR analyses are likely to lead to 

missing triggers. Consequently, it introduces basis risk, which is when the developed index estima‐
tions do not match with actual losses of insured farmers. However, these limitations might be miti‐
gated or eliminated by the application of bias correction methods. As Yeh et al. (2020) for GSMaP 

particularly and Kimani et al. (2018) for CHIRPS demonstrated, significant improvements of SPE 
measures can be obtained after the application of bias correction methods.  

In general, the years with extreme events reported by publications and detected by satellite prod‐
ucts are matching, where the frequency is around once in eight years. As long as moderate fre‐

quency of risk serves to lower prices and premiums, making it affordable for farmers (Hazell et al., 
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2010), it may ease introducing index insurance in the region. Despite some limitations, GSMaP itself, 
and in a combination with GLDAS as MDIs and anomaly detection, performed better than CHIRPS 

not only in detecting drought but also in detecting floods during the vegetation period of rainfed 
and irrigated crops. Consequently, GSMaP data should increasingly be taken into account for index 
generation in Central Asia. Moreover, the obtained results demonstrate the potential of satellite‐

based weather data for designing and implementing index insurances focused on drought during 
the vegetation period of rainfed crops (March‐May), on floods during the seeding of irrigated crops 

(May) and on floods during the harvesting of irrigated crops (September‐October). Drought events 
from March‐May (the critical period for rainfed vegetation), for instance, have a significant influence 

on wheat, barley and potato yields and quality. Extended wet spells in May (the beginning of the 
cotton vegetation period) hit and damage the cottonseeds, significantly affecting cotton yields and 

requiring re‐seeding, which means additional technical efforts and expenses are needed. Floods 
during the cotton harvesting period significantly decrease the quality of the harvested cotton, which 

affects the price paid by buyers. 

Accuracy comparisons between decadal, monthly and seasonal precipitation measurements by 

GSMaP and CHIRPS show that the agreement among stations and SPE improved as higher aggrega‐
tion was applied. This finding shows the reasonability of using precipitation measurements in larger 

time intervals for better accuracy. Overall, globally available climate data could serve as a good 
source for establishing index insurance products in Central Asia; however, a careful selection of 
source and index is required. 

Our study is limited to stations located in the arid and semi‐arid climatic zones of Uzbekistan. It 
would be interesting to also investigate the accuracy of these and other satellite‐based weather 

data at stations located in similar and other climatic zones of neighboring countries. Nevertheless, 
the vast majority of Central Asian countries are located in arid and semi‐arid zones (Bobojonov et 

al., 2016). Moreover, there are limitations regarding crop quality, re‐seeding and yield data. For that 
reason, we think it would also prove interesting to investigate the relationship between SPE/MDIs 

and various crop quality, re‐seeding and yield data in the region.  
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3. The role of crop classification in detecting wheat yield variation for index-based 

agricultural insurance in arid and semiarid environments6 

3.1. Introduction 

Over the past two decades, the frequency of weather extremes such as floods and droughts has 
increased (WMO, 2021). Variable and unpredictable weather significantly limits agriculture and ag‐

ricultural development (Niles et al., 2015; Rao, 2011), since farmers avoid investments when there 
is a high risk of weather shocks and yield losses (Benami et al., 2021). Moreover, uninsured produc‐

tion risk also limits access to agricultural credits for producers, substantially hindering agricultural 
and rural development (Hellmuth et al., 2009). Moreover, these limitations may threaten global 
food security, in particular in societies where wheat is the main staple (FAO, 2015). Wheat (Triticum 

spp.) is one of the most important and strategic food crops for the majority of the world’s countries 
and populations, being the staple food of about 35% of the world’s population and accounting for 

20% of the food calories consumed globally (Breiman and Graur, 1995).  

Being the main source of wheat yield reduction and climatic variability (Ray et al., 2015), rising cli‐

mate risk creates need for new risk management and risk coping strategies in agriculture (FAO, 2015; 
Hellmuth et al., 2009; IPCC, 2022). One financial tool is agricultural insurance, which is intended to 

transfer agricultural production risks from farmers to insurance companies (Bobojonov et al., 2019; 
Giné et al., 2010). However, in developing countries, the hedging effectiveness of conventional ag‐

ricultural insurance (also known as ‘named‐peril’ and ‘multi‐peril’ crop insurance) is challenged by 
high premiums, moral hazards and problems of adverse selection (Coleman et al., 2018). To over‐

come some of these challenges, index‐based agricultural insurance (henceforth “index insurance”) 
has been suggested (Coleman et al., 2018; Dick et al., 2011; World Bank, 2011). In index insurance, 

payoffs are contingent on the value of a pre‐determined index (average yield of a unit, temperature, 
rainfall, soil moisture, vegetation, etc.), which cannot be manipulated by third parties (Barnett et 
al., 2008), therefore reducing adverse selection and problems of moral hazard (Miranda and 

Gonzalez‐Vega, 2011). Moreover, index insurance does not require a ground verification of the re‐
ported crop yield losses, thus significantly lowering administrative costs (Benami et al., 2021).  

The main challenge of index design is to achieve sufficient correlation between crop yields and the 
selected index (Norton et al., 2015). Previously, the most common and widely used form of index 

insurance was weather index insurance (WII). Meteorological station‐based WIIs have been the sub‐
ject of numerous feasibility and efficiency analysis (Bobojonov et al., 2014; Bokusheva and 

Breustedt, 2012; Conradt et al., 2015; Kath et al., 2019). While being a promising data source in high‐
income countries, meteorological stations are rarely available in developing countries (Barnett and 

Mahul, 2007). In Central Asia (CA) specifically, Eltazarov et al. (2021) demonstrate the low insuffi‐
ciency of meteorological stations for designing index insurance, with sparsely distributed weather 

                                                           
6 This chapter was published as the following open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glau‐
ben, T. (2023): The role of crop classification in detecting wheat yield variation for index‐based agricultural 
insurance in arid and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.  
https://doi.org/10.1016/j.indic.2023.100250; This chapter benefitted from the comments by the anonymous 
referees of Environmental and Sustainability Indicators 
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stations often failing at capturing wide spatial crop losses and contributing to geographical basis risk 
(Makaudze and Miranda, 2010). Thus, weather data from meteorological stations rarely correlates 

with crop yields due to high basis risk (Smith and Watts, 2009). The cost of installation and mainte‐
nance of new weather stations every 10‐20 km, as suggested for instance by Hazell et al. (2010), 
would significantly increase the prices of the insurance products. Finally, new weather stations can‐

not provide historical weather records, which is necessary for index design (Norton et al., 2012).  

To overcome these data limitations, scholars have proposed and tested the applicability of satellite‐

based weather products, especially precipitation data, for index insurance development and imple‐
mentation (Coleman et al., 2018; Osgood et al., 2018; Tarnavsky et al., 2018). Satellite products are 

provided in near‐real time and available free of charge for most locations worldwide (CHC, 2015; 
Didan, 2015). Numerous studies have investigated the potential and applicability of satellite‐based 

precipitation products for WII design and implementation in developing and emerging economies 
(Black et al., 2016a; Brahm et al., 2019; Collier et al., 2009; M Enenkel et al., 2018; Osgood et al., 

2018; Tarnavsky et al., 2018). While WII is only valid for rainfed farming systems, satellite‐based land 
surface information, in particular the Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Land Surface Temperature (LST), Actual Evapotranspiration (ETa) and Soil 
Moisture Index (SMI), have found to be more potential for crop loss detection and index insurance 

design (Coleman et al., 2018; Kölle et al., 2020; Vroege et al., 2021). Even though the sensitivity of 
vegetation indices significantly decreases at moderate‐to‐high densities of crop aboveground bio‐
mass (Li et al., 2014, 2010; Mistele and Schmidhalter, 2008), they are in fact rather suitable for in‐

surance products that primarily focus on detecting low biomass density. 

So far, only a limited number of satellite‐based products such as NDVI, LST and precipitation have 

been tested for application in index insurance design during the last two decades in majority of 
continents (Benami et al., 2021; Kölle et al., 2020). The most popular index is NDVI, which was first 

proposed by Vicente‐Serrano et al. (2006). Later, Makaudze & Miranda (2010) investigated the ap‐
plicability of an NOAA Advanced Very High Resolution Radiometer (NOAA AVHRR) based on an NDVI 

to design index insurance using 1980‐2001 rainfed maize and cotton yield data from Zimbabwe. 
They found that the NDVI index has higher correlation with crop yields and greater potential to 

protect smallholder farmers than the rainfall index.  

Later research however pointed out several practical challenges: Turvey & McLaurin (2012) investi‐

gated the applicability of NOAA AVHRR  for designing index insurance in the US by using yield data 
for rainfed corn and soybeans. Since their results were highly variable in terms of the relationship 

between NDVI and crop yields, they advise caution concerning the applicability and scalability of the 
NDVI without site‐specific calibration.  

The first weakness is the resolution of weather information: Bokusheva et al. (2016) examined the 

effectiveness of an NOAA AVHRR‐based Vegetation Condition Index (VCI) (NDVI‐based calculation) 
and Temperature Condition Index (TCI) (brightness‐temperature‐based calculation) to insure rain‐

fed wheat yield losses of farmers in five counties in Kazakhstan. They conclude that finer spatial 
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resolution would improve the effectiveness of the insurance products as well as the significant rela‐
tionship between Vegetation Heath Indices (VHI) and county‐level rainfed wheat yields has the po‐

tential to substantially improve risk‐sharing options. Bobojonov et al. (2014) analyzed medium‐res‐
olution satellite information (Moderate Resolution Imaging Spectroradiometer (MODIS) based on 
an NDVI) by comparing farm‐scale rainfed wheat yield data in Syria, concluding that also an NDVI 

based on medium‐resolution data has sufficient potential to detect yield losses and calculate insur‐
ance pay‐outs.  

Second, Valverde‐Arias et al. (2020, 2018) urge taking the variability of agro‐ecological zones into 
account while designing index insurance. They applied a MODIS‐based NDVI, finding that rice phe‐

nology and the relationship between NDVI and rice yields significantly differs through agro‐ecologi‐
cal zones. Using barley, wheat, sorghum and barley yield data as reported by 34 farmers, Eze et al. 

(2020) compared the feasibility of a MODIS‐based NDVI and satellite‐based precipitation products 
for designing index insurance in Ethiopia. Based on their findings, they contend the use of an NDVI 

based on area‐specific crop insurance indices rather than weather parameters that are currently in 
use in their study area.  

Thirds, as demonstrated by Turvey and McLaurin (2012), these well‐known indices may yet fail to 
detect variation in crop yields in all environments. Therefore, there remains fundamental need for 

exploring additional satellite‐based indices and develop specifications increasing their performance 
(Hazell et al., 2010; Hellmuth et al., 2009). Other, less prominent indices have not yet been taken 
into consideration for index insurance applications. Until just recently, a small number of studies 

investigated into the potential of EVI and LAI for index insurance (Báez‐González et al., 2002; Cheng, 
2006; Doraiswamy et al., 2002; Li et al., 2011; Wang and Lin, 2005). Dou et al. (2020), Shirsath et al. 

(2020) and Van Khanh Triet et al. (2018) suggest an EVI as a potential source of satellite data for the 
crop insurance industry. GCI has not been explored yet at all. Kölle et al. (2020) analyzed the effi‐

ciency of a MODIS‐based VCI (EVI‐based calculation), a TCI (land surface temperature‐based calcu‐
lation) and a VHI that included weather (temperature and precipitation) parameters for improving 

the hedging of yield risk for rainfed olives trees in Spain. They found that the VCI‐ and VHI‐based 
index insurance contracts outperform index insurance contracts based on precipitation and temper‐

ature, and can serve as a potential source for index insurance development. Setiyono et al. (2018) 
propose a MODIS‐based LAI as a possible source of data for area‐yield index insurance for rainfed 

rice in Vietnam. Later on, Raksapatcharawong et al. (2020) suggest using a MODIS‐based LAI in com‐
bination with other remote sensing and field data for index insurance design for rainfed rice in Thai‐

land.  

Finally, higher accuracy may also be reached by combining indices: Hochrainer‐Stigler et al. (2014) 
conducted a case study with teff yield data in Ethiopia and suggest a solution of an NDVI (same 

source as above) integrated with land surface temperature data as a Vegetation Health Index (VHI), 
concluding that VHI allows for trigger points to be identified and premiums to be calculated. More‐

over, one of the main requirements is that site‐specific calibration of the satellite‐based data to 
index‐based insurance product design and the variability of agro‐ecological zones should be taken 
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into account when designing index insurance (Turvey and McLaurin, 2012; Valverde‐Arias et al., 
2020, 2018).  

Based on this literature overview, following research gaps are identified: Many wheat producing 
regions worldwide are not purely rainfed, but at least partially irrigated or fully irrigated. According 
to Wang et al. (2021), around 35% of global wheat is produced in irrigated areas. Nevertheless, in 

practice, these regions also suffer from high variation in water availability, as surface water used for 
irrigation also reacts to variability in weather conditions. As can be seen in this summary, so far there 

are no studies focused on testing the applicability of the satellite data sources for index insurance 
development for wheat producers in irrigated and mixed lands. Additionally, in all of the above‐

mentioned studies, the satellite data samplings are determined by administrative regions, which 
omits the effects of crop rotation, diversity, allocation and land cover/use change on regional index 

values. Meanwhile, in areas with strong spatial heterogeneities in land use/cover, estimating re‐
gional index value based on all pixels from all land cover/use types within administrative boundaries 

may not have good power for detection of crop yield variation and index insurance design. All in all, 
this literature review shows a need for a comprehensive and comparative analyses of the applica‐

bility of various satellite‐based data to index insurance among various farming types and land 
cover/use classifications.  

The study thus provides several key contributions to the literature: Firstly, to the best of the authors’ 
knowledge, this study is the first to study the effect of using land cover classification (e.g. croplands 
and wheat cultivated lands, hereafter cropland and wheatland masks) in addition to administrative 

boundaries for index insurance design. Second, the applicability of MODIS‐based vegetation indices, 
such as an EVI, GCI and LAI, as well as a well‐known NDVI and LST (all five indices will from here on 

be referred to as “vegetation index” for convenience) are compared for index insurance develop‐
ment in rainfed, irrigated and mixed lands. To test the robustness of the findings across climatic 

zones, the sample includes districts across Central Asia and Mongolia. In these countries, frequent 
climate shocks in the past years have created particular need for financial instruments for risk shar‐

ing (Bobojonov et al., 2019). 

For this analysis, district level wheat yield data is used; this choice may admittedly lead to aggrega‐

tion biases that likely cause farm‐level risk underestimation. Nevertheless, the presented findings 
are valid for district scale index insurance and area‐yield insurance programs in the region. 

 

3.2. Methods and materials 

3.2.1. Study area and wheat yield data 

Central Asia was selected as case region for following reasons: For once, here the effect of climate 

change is above the global average (de Beurs et al., 2018; Haag et al., 2019). For instance, drought 
events during 2000‐2001 and 2007‐2008 had a great effect on crop production and the socio‐econ‐

omy of Central Asia (Bobojonov et al., 2014; Patrick, 2017). In 2000‐2001, the loss of agricultural 
production was evaluated at $800 million USD for the whole region and contributed to a loss of 80% 
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of rural households’ incomes. The consequences of this were increased poverty rates and a negative 
impact on food security and public health (Patrick, 2017; World Bank, 2005) as well as a decline in 

grassland productivity and a loss of lakes, resulting in a huge migration of herders to the capital city 
and adverse effects on food security in Mongolia (Densambuu et al., 2015; Hessl et al., 2018). 

This study covers wheat growing regions in Kazakhstan (KAZ), Kyrgyzstan (KYR), Mongolia (MON) 

and Uzbekistan (UZB) (Figure 3.1), where wheat is one of the most strategic crops. It is grown on 
irrigated land in the vast majority of Uzbekistan (Khalikulov et al., 2016) and mostly on rainfed lands 

in Kazakhstan and Mongolia (Fehér et al., 2017; Tuvdendorj et al., 2019), and mixed lands in Kyrgyz‐
stan (ADB, 2013). The heterogeneity of farming systems (e.g., irrigated, rainfed, mixed), frequent 

weather events and high variability among harvests in this region provide a unique environment for 
comparing the suitability of indices across farming systems, which has not yet been tackled within 

the international literature yet. Three provinces from Kazakhstan were selected, particularly Akmola 
(Akm), Kostanay (Kos) and the North Kazakhstan (N. Kaz) provinces (oblasts), which together ac‐

count for around 70% of wheat production in the country (Fehér et al., 2017). For Kyrgyzstan, the 
province Chuy covers the vast majority of national cropland (Dzunusova et al., 2008). The Mongolian 

provinces of Bulgan (Bul), Darhan Uul (Dar), Dornod (Dor), Huvsgul (Huv), Selenge (Sel) and Tuv are 
main steady cultivation regions of spring wheat (FAO, 2020). The Uzbek provinces of Djizzakh (Djiz), 

Kashakadarya (Kash), Khorezm (Khor) and Navai (Nav) were chosen as this combination of provinces 
covers all three varieties of farming systems that exist in the country. Overall, the analysis used 
annual district‐level spring wheat yield data for 50 districts in Kazakhstan, and winter wheat yield 

data for 8 districts in Kyrgyzstan, spring wheat yield data for 43 districts in Mongolia and 41 districts 
in Uzbekistan. Figure A.2.1.1 exhibits the location of croplands in the study area and in vast majority 

of lands wheat is being cultivated continuously or in rotation with other crops (USDA, 2022).  Figure 
3.2 presents the cropping calendars for wheat in the three countries. While cropping calendars may 

locally vary by a few days according to local weather conditions and farm management strategies, 
unbiased results over the whole sample can be expected due to the large numbers of observations.   

All wheat yield data was obtained from local state statistical organizations and is reported in tons 
per hectare (ton/ha). Wheat yield data was obtained for the years 2000–2015 in Kazakhstan, for 

2007–2017 in Kyrgyzstan, for 2000–2018 in Mongolia, and for 2007–2017 in Uzbekistan. The data 
was checked for outliers by using a Grubbs’s test (Grubbs, 1950)7. In total 2,060 yield observations 

from 152 districts across Central Asia and Mongolia were employed. The average record length is 
15.9 years for Kazakhstan, 11 years for Kyrgyzstan, 17.7 years for Mongolia and 10.2 years for Uz‐

bekistan. Descriptive statistics of wheat yield data can be found in Table A.2.1.2. 

                                                           
7 Initially, 2,063 yield observations were obtained. After checking for outliers using a Grubbs’s test (Grubbs, 
1950) only three outliers (p‐values = 0.0035, 0.0196, 0.025) were detected and eliminated from the Mongo‐
lian dataset.  
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Figure 3.1: Locations of the study regions and farming systems (a) and climate classes (b) 

Source: Authors’ presentation based on data from Trabucco and Zomer (2019). 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

 

Figure 3.2: The cropping calendar of spring wheat in Kazakhstan and Mongolia and win-
ter wheat in Uzbekistan and Kyrgyzstan 

Source: Authors’ illustration based on data adapted from Conrad et al. (2014), the FAO (2021, 2020) and 

Shamanin et al. (2016) 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

3.2.2. Satellite data  

This study employs data produced by a Moderate Resolution Imaging Spectroradiometer (MODIS), 

which is an instrument that’s been installed in the board of the Terra and Aqua satellites since the 
2000s for observing the earth’s surface and making images on a daily basis. For the analyses, Nor‐

malized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) layers from a 
MOD13Q1 V6 product were used. Both vegetation indices have a 250 meter spatial resolution with 
a composite of 16 days (Didan, 2015). Moreover, the Leaf Area Index (LAI) product has a 500 meter 

spatial resolution with a 4‐day composite dataset from MCD15A3H V6 (Myneni et al., 2015), while 
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the Land Surface Temperature (LST)8 product from the MOD11A2 V6 dataset has a pixel size of 1 
kilometer and 8‐day averaged images (Wan et al., 2015). Additionally, the analysis employs the 

Green Chlorophyll Index (GCI), which was calculated according to Gitelson et al. (2005) who em‐
ployed an NIR and GREEN bands. The underlying data was obtained from the MOD09A1 V6, which 
provides 500 meter resolution with an 8‐day composite (Vermote, 2015). Temporal and spatial rev‐

olution as well as historical range of data availability is listed in Table 3.1.  

 

Table 3.1: Summary of MODIS based land surface metrics 

Metric Equation Available 
since 

Temporal 
resolution 

Spatial reso-
lution Data reference Data 

NDVI (NIR‐RED)/(NIR + Red) 2000 16 days 250 meters Didan (2015) MOD13Q1 V6 

EVI 2.5×(NIR‐RED)/(NIR+6×RED‐
7.5×BLUE+1) 2000 16 days 500 meters Didan (2015) MOD13Q1 V6 

GCI NIR/GREEN ‐ 1 2000 8 days 500 meters Vermote (2015) MOD09A1 V6 
LST (Day) See reference for algorithm 2002 8 days 1,000 meters Wan et al. (2015) MOD11A2 V6 

LAI See reference for algorithm 2002 4 days 500 meters Myneni et al. (2015) MCD15A3H V6 

LCU See reference for algorithm 2001 1 year 500 meters Friedl & Sulla‐
Menashe (2019) MCD12Q1 V6 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

3.2.3. Spatial scales of index value extraction 

The index values for each study site were extracted in three spatial scales: 1) the entire area of the 
districts, 2) cropland and 3) wheatland. The area of croplands was obtained from an open access 

yearly Land Cover and Use (LCU) product. The location of the wheatlands in each district were iden‐
tified by us based on cropping calendars and wheat phenology (Edlinger et al., 2012; Hao et al., 

2016; Zhang et al., 2011); details of the cropland and wheatland masks are provided in the following 
sections. 

  

3.2.3.1. Cropland classification 

The croplands were masked using the land cover and ‐use product MODIS‐MCD12Q1 V6, which pro‐
vides yearly information on global land cover types since 2001 (Friedl and Sulla‐Menashe, 2019). For 

this study, the cropland mask used is a merge of all‐time series croplands generated by MCD12Q1‐
V6 during 2001‐2019. Specifically, the “Annual International Geosphere‐Biosphere Programme 

(IGBP) classification” sub‐model was employed. In order to capture all possible croplands in the se‐
lected areas, layers 12 and 14, as well as all years since 2001 until 2019 were combined in order to 

produce a single mask for croplands. The used cropland mask from the MCD12Q1‐V6 (500 meter 

                                                           
8 Following Zhang et al. (2022), daytime LST were employed. Also according to Chen et al. (2019) daytime 
temperature has greater and consistent effect on wheat yield. 
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pixel size) product has an overall accuracy of approximately 75‐80 percent (Friedl and Sulla‐
Menashe, 2019).  

There are some alternative land cover/use products like the European Space Agency based World‐
Cover (Zanaga et al., 2021) and the Copernicus Global Land Service (Buchhorn et al., 2020). However, 
these products only provide data for the most recent years, which makes them unsuitable for this 

study. In the end, MOD13Q1‐V6 based on NDVI images was chosen for wheatland classifications due 
to their large spatial coverage and the shortage of continuous cloudless images for the long‐time 

period in Landsat images. 

 

3.2.3.2. Wheat classification 

Following the Knowledge‐Based Detection method suggested by Edlinger et al. (2012), the data on 

wheat areas for each year and district were classified and extracted based on the cropping calendar 
(Figure 3.2) and the phenology of spring wheat in Kazakhstan and Mongolia, and winter wheat in 

Kyrgyzstan and Uzbekistan. Additionally, croplands mask from MCD12Q1‐V6 product, high resolu‐
tion images from Google Earth and ground truth data (38 locations) from the Bukhara province (Uz‐

bekistan) were employed to clarify the wheatland classification parameters. For phenology detec‐
tion, the MOD13Q1 V6‐based NDVI was employed. For avoiding to mistakenly classifying grasslands, 

which have similar phenology with winter wheat,  as winter wheat in Kyrgyzstan and Uzbekistan’s 
hilly and mountainous areas, a surface slope map was calculated based on The Shuttle Radar Topog‐
raphy Mission (SRTM) digital elevation dataset (Jarvis et al., 2008). The 90‐meter spatial resolution 

of SRTM dataset was considered sufficient for this study, as the spatial resolution of the tested veg‐
etation indices varies from 250 to 1000 meters.  

Equations 1‐3 classify and mask the wheat cultivated lands from selected vegetation indices: 

Spring wheat lands in Kazakhstan = (NDVI81‐96 < 0.1) AND ((NDVI193‐208 > 0.35) OR (NDVI209‐224 > 

0.35)) AND (NDVI273‐288 < 0.30)      (3.1) 

Spring wheat lands in Mongolia = (NDVI97 < 0.25) AND (NDVI129 < 0.25) AND ((NDVI209 > 0.35) OR 

(NDVI225 > 0.35)) AND (NDVI289‐305 < 0.35) AND (SLOPE < 5)     (3.2) 

Winter wheat lands in Kyrgyzstan and Uzbekistan = (NDVI17‐32 < 0.1) AND (NDVI97‐128 > 0.40) AND 

((NDVI161‐176 < 0.30) OR (NDVI177‐193 < 0.30)) AND (SLOPE < 4)    (3.3) 

where SLOPE is the inclination of land surface of measured in degrees and NDVI are the NDVI values 

within the indicated time period during which wheat has a specific phonological pattern. This defi‐
nition was developed based on the respective region’s cropping calendar as presented in Figure 3.2 

and NDVI‐based phenology dynamics of winter and spring wheat. Based on these specific phenology 
dynamics at specified times, it is possible to precisely distinguish spring or winter crop lands from 
other crops.  

A similar classification method showed approximately 90 percent accuracy using Landsat images 
that have 30 meter spatial resolution (Edlinger et al., 2012). Conrad et al. (2011) obtained 75‐96 
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percent accuracy for wheatland classification using the same MODIS images. The wheatland classi‐
fication accuracy for this study was tested for a subsample in Bukhara province (Uzbekistan) based 

on ground truth data from 2019, reaching accuracy levels of 79 percent accuracy, which is within 
the range of above studies’ accuracy. 

 

3.2.4. Satellite data processing and acquisition platform 

One of the main disadvantages of using satellite products in index insurance is the fact that the 
acquisition and processing of satellite products requires special technical skills. Therefore, a user‐

friendly web platform was established that allows users free convenient access to satellite products. 
For accessing above‐mentioned MODIS‐based products, a unique automatic web platform using the 
Google Earth Engine (GEE) was developed for this project (Gorelick et al., 2017). This Satellite Data 

Extractor can be accessed under the following link: https://www.klimalez.org/satellite‐indices. All 
of the satellite‐based data processing and extractions within this study are based on the GEE plat‐

form.  

 

3.2.5. Correlation and regression of wheat yields with vegetation indices 

One of the key requirements for applying satellite‐based products for the development of agricul‐
tural index insurance is that the index should be highly correlated with crop yields (Barnett and 
Mahul, 2007; Siebert, 2016) in order to increase the hedging efficiency of the resulting insurance 

product (Breustedt et al., 2008; Kölle et al., 2021; Norton et al., 2012). In order to check the applica‐
bility and potential of the selected vegetation indices, correlation and regression analyses between 

wheat yield data and satellite‐based indices are performed. Borrowing from Turvey and McLaurin 
(2012), the mean and maximum values of indices during the vegetation period are the best predic‐

tors of crop yields and the most widely used temporal aggregation method in the index insurance 
industry. Adapted from Markus Enenkel et al. (2018); Kogan et al. (2018) and Wang et al. (2014), 

time series Pearson’s correlation analyses between wheat yields and each periodical record of the 
indices for each district were conducted. Pearson’s correlation is a suitable measure for linear rela‐

tionship between continuous data (vegetation indices and wheat yield data), whereas Spearman’s 
correlation is rather used for monotonic relationships between ordinal variables. Along Pearson’s 

correlation, the time periods with the strongest correlation between index and wheat yield data 
were chosen as the timespan for the mean value calculation for each index and country (Panek and 

Gozdowski, 2020). In cases of max index value calculation, the entire vegetation period of wheat in 
the respective country was used, which was 1‐274 days for Kazakhstan; 1‐290 days for Mongolia; 1‐
220 days for Kyrgyzstan; and 1‐162 days for Uzbekistan. In the following, the max and mean tem‐

poral aggregations were calculated, and correlation analyses between them and wheat yields con‐
ducted.  

In order to investigate the potential of the selected satellite data sources for modelling the wheat 
yields, linear regression analyses were applied, using the index values within the period that was 

https://www.klimalez.org/satellite-indices
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identified to exhibit the strongest correlation with wheat yields. Despite the availability of time se‐
ries, panel data analysis was not an option, as this approach would assume the same marginal re‐

sponse to indices in every district (Turvey and McLaurin, 2012), whereas this study sought to under‐
stand how marginal effects differ by districts and the overall ability of the variables to model the 
actual wheat yields.  

The detailed estimation model is adapted from Kogan et al. (2018) in terms of indices and the strong‐
est correlated time periods (critical stages of crop growth). The application of a similar model was 

suggested for index insurance development by Xu et al. (2008), which employed time series precip‐
itation and temperature data. 

𝑑𝑑𝑑𝑑 =  𝛽𝛽0 + 𝛽𝛽1𝑉𝑉𝐵𝐵1 +  𝛽𝛽2𝑉𝑉𝐵𝐵2 + 𝛽𝛽3𝑉𝑉𝐵𝐵3 +  … + 𝑒𝑒     (3.4) 

where 𝑑𝑑𝑑𝑑 is the district‐scale wheat yield data, VI is the value of the respective vegetation index in 

the period that has high correlation between yield and indices. 𝛽𝛽0 is a constant, 𝑒𝑒 the error term. 
This method has been applied for all selected indices and mask types. 

Additionally, the Wilcoxon test (Bauer, 1972) was performed to compare the group of correlation 
coefficients and to check for improvements in the significance of the relationship between indices 

and wheat yields after the application of land cover and use masks.  

 

3.2.6. Wheat yield loss detection 

To evaluate the ability of the indices to capture the wheat yield losses among various correlation 

coefficients, two categorical metrics were applied, namely Probability of Detection (POD) and False 
Alarm Ration (FAR). POD measures the probability of an index to capture the yield losses, while FAR 

indicates the probability of falsely detecting yield losses. These metrics were estimated based on 
the contingency matrix shown in Table 3.2 and the equation of the selected metrics, which are ex‐

hibited in Table 3.3. 

 

Table 3.2: Contingency table for comparing indices and crop yields 

 Yield ≤ Trigger Yield > Trigger 
Index ≤ Trigger a b 
Index > Trigger c d 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

The equation for estimating the trigger value was adapted from Turvey and McLaurin (2012), which 

is defined as 𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 𝑑𝑑𝑖𝑖𝑒𝑒𝑌𝑌𝑑𝑑 − (0.25𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑𝑒𝑒𝑎𝑎𝑖𝑖𝑎𝑎𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛). Actual yield and modelled yield values 
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with district masks from all selected indices and locations were used for categorical metric estima‐
tions.  

 

Table 3.3: Formulas of categorical metrics 

Statistics Formula Range Perfect value 

Probability of detection 𝑃𝑃𝑂𝑂𝑃𝑃 =
𝑎𝑎

𝑎𝑎 + 𝑐𝑐
 0 to 1 1 

False Alarm Ratio 𝐹𝐹𝐵𝐵𝐹𝐹 =
𝑏𝑏 

𝑎𝑎 + 𝑏𝑏
 0 to 1 0 

Note: Where a=number of hits; b=number of false alarms; and c=number of misses. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

Based on the trigger equation, the yield loss cases were identified for each study location and index. 

In the next step, the data were filtered and grouped according to their correlation level with actual 
yield data. For each grouped dataset, the identified yield loss cases were compared with the POD 

and FAR matrices. In total 18,848 observations were used for calculations. All statistical calculations 
and figures for this study were developed using the R project (R Development Core Team, 2018). 

 

3.3. Results 

Figure 3.3 indicates the time periods of strongest correlation between vegetation indices and wheat 
yields (for exact coefficient values see Appendix 2.2). For the majority of indices, no large differences 

can be observed between district areas, cropland masks and wheatland masks.  

As assumed, the periods with the strongest correlation between indices and wheat yields differ 

among countries. It can be observed that these differences in periods among countries and indices 
are caused by a variety of climate conditions and are consequently due to different cropping calen‐

dars, farming systems and types of wheat (Figure 3.2). At the same time, some similarities between 
the correlated periods for spring wheat in Kazakhstan and Mongolia can be observed. For all vege‐

tation indices in Kazakhstan and Mongolia, the strongest correlation occurred at the second half of 
the developing crop phase, which was July and the first half of August. Meanwhile, there are re‐

markable differences between the correlated periods for Kyrgyzstan and Uzbekistan, even though 
both of them produce winter wheat. In Kyrgyzstan, the strongest correlation between vegetation 

indices and winter wheat yields exists for April and May, which are in the second half of the devel‐
oping crop phase. In terms of Uzbekistan, apart from the vegetation period, the strongest correla‐
tion with the wheat yields was during the first half of the developing crop phase, which was the 

months of February and March. Figure 3.3 and Appendix 2.2 present how there is not a strong rela‐
tionship between vegetation indices and wheat yields during the sowing and resting period in all 
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four study countries. Overall, results show that the highest correlation between the vegetation in‐
dices and wheat yields are in second half of the development period of crops, except for Uzbekistan, 

where this is the beginning of the crop’s development period. 

 

 

Figure 3.3: Strongest correlated time periods of satellite-based indices with wheat yields 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

Figure 3.4 presents the results of correlation analyses between the mean and max values of the 
indices with wheat yields for individual districts. The figure demonstrates, which type of mask and 

index has better relationships in each country and wheat type. The figure also shows the correlation 
coefficients, which was used to describe the relationship between insurance index and crop yields 

by Eze et al. (2020). For yield estimation purposes, the positive correlation coefficient represents 
the ability of an index to detect wheat yield variations with the following categories: 0.0‐0.2 is very 

weak; 0.2‐0.4 is weak; 0.4‐0.6 is moderate; 0.6‐0.8 is strong; and 0.8‐1.0 is very strong (Eze et al., 
2020). Additionally, Pietola et al. (2011) found that demand for the index insurance remains strong 

when the correlation between index and yields is greater than 0.6, but it starts to decrease when 
correlation is lower than 0.5.  
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Figure 3.4: Correlation Heatmap between wheat yields and mean/max values of indices 

for entire district areas, croplands and wheatlands 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

The results show that the strengths of indices capturing the variation in wheat yields differs among 
countries when various masks were applied. It can be observed that index values from entire district 
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areas and croplands have similarly strong correlations with wheat yields in Kazakhstan. The Wil‐
coxon test (Figure A.2.3.1) also showed insignificant differences between the groups of correlation 

coefficients. Determining which of them result in better performance is complex, as in both masks 
the indices in most cases are strongly correlated with wheat yields except for a few districts. For the 
districts under the numbers 13, 17, 21, 36 and 50 (Figure 3.3), masking croplands have improved 

relationships between vegetation indices and wheat yields and vice versa; the relationship increased 
when the value from an entire district was used in districts under the numbers 11, 15, 34 and 44. In 

the case of Mongolia, cropland could not be masked as MODIS‐MCD12Q1 does not provide the lo‐
cation of croplands in this area. Moreover, cropland masks do not exist for the district under the 

number 141 from Uzbekistan. It can be seen that the index values for the entire district areas have 
higher correlation coefficients than the wheatland mask (Figure A.2.3.2). However, in the case of 

district numbers 59, 81, 82 and 85 (Figure 3.3), the application of wheatland masks significantly 
improved the correlation between index values and wheat yields. For Kyrgyzstan, using all three 

masks showed sufficient correlation coefficients between the vegetation indices and wheat yields. 
However, the strongest relationship for the vegetation indices was observed when cropland masks 

were applied, which improved the vast majority of the correlation values from moderate‐strong to 
strong‐very strong compared to entire district area and wheatland mask. The statistical significance 

of the improvement after the application of cropland and wheatland masks was confirmed by a 
Wilcoxon test (see Figure A.2.3.3).  In the case of Uzbekistan, the performance of vegetation indices 
was ambiguous due to the large proportion of irrigated and mixed farming systems. Vegetation in‐

dices were mostly moderately correlated just for over half of districts in irrigated lands, while the 
relationship between indices and wheat yields were below weak except for a few cases of mixed 

agricultural lands in Uzbekistan. For rainfed lands, noticeably higher relationships between indices 
and wheat yields could be observed. Even though this was not proven by the Wilcoxon test, for the 

case of rainfed agricultural lands, the application of cropland and wheatland masks narrowed the 
range of correlation coefficients and slightly increased the correlation between indices and wheat 

yields (see Figure 3.4 and Figure A.2.3.6). In general, index means were found to correlate stronger 
with wheat yields than max values in the vast majority of districts. While all indices showed the 

potential to detect wheat yield variation in the majority of the study areas, a slightly higher perfor‐
mance was found for LAI and GCI in Kazakhstan and Mongolia, LAI, GCI and LST in Kyrgyzstan, as well 

as NDVI and EVI in Uzbekistan (seen in Appendix 2.3).  
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Figure 3.5: R2 Heatmap between wheat yields and modelled yields based on indices using 

cropland and wheatland masks in the selected areas 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   
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From Figure 3.5, it can be seen that the application of the modelling approach notably improved the 
relationship between indices and wheat yields in all countries and farming systems. Even the dis‐

tricts that had been weakly or negatively correlated in the mean/max approach now upgraded to 
be highly correlated. In addition, remarkable improvements can be seen for the case of irrigated and 
mixed agricultural land in Uzbekistan. Overall, among the vegetation indices, LAI and GCI showed 

better correlation with wheat yields once again in all countries, farming systems and masks. 

Figure 3.6 provides results from the categorical accuracy assessment, which demonstrate the dy‐

namic of POD and FAR values over the various correlation coefficients (CC). Overall, the results 
clearly show that the accuracy of indices to correctly detect the yield losses, represented by POD 

and FAR, improves with an increasing correlation coefficient indicated on the x‐axis. According to 
both graphs shown in the Figure 3.6, the classification accuracy slowly increases until a 0.5 correla‐

tion coefficient, when it then begins to rise sharply from this point. 

As demonstrated in Figure 3.7 and 3.8, the results of this study show that almost all indices have 

potential for index insurance design under suitable conditions. However, in majority of the cases, 
the LAI and GCI slightly outperforms other indices. 

 

   

Figure 3.6: Results of the categorical accuracy assessment between yield loss events by 

indices and wheat yield data over the various correlation coefficients 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

 

 

 



47 
 

 

 

Figure 3.7: Percentage of districts having satisfactory correlation (>0.5) and sufficient cor-

relation (>0.6) between indices and wheat yields (Pietola et al., 2011); mean value of in-

dex approach 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   

 

 

 

Figure 3.8: Percentage of districts having satisfactory correlation (>0.5) and sufficient cor-

relation (>0.6) between indices and wheat yields (Pietola et al., 2011); regression ap-

proach 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

The role of crop classification in detecting wheat yield variation for index‐based agricultural insurance in arid 

and semiarid environments. Environmental and Sustainability Indicators, 18, 100250.   
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3.4. Discussion  

In the vast majority of study locations, there was a moderate to strong relationship between wheat 

yields and indices. However, there are differences between the individual regions in terms of those 
stages of vegetation periods that are most closely linked to the wheat yields. These differences are 
due to the wheat type and their cropping calendar, which depends on climatic conditions and farm‐

ing systems. The strongest correlation between indices and wheat yields was found mainly for the 
second half of the developing crop phase, which is in line with Kogan et al. (2018), Panek and 

Gozdowski (2020) and Wang et al. (2014).  

One important aim of this study was the incorporation of cropland and wheatland masks. Generally, 

it can be contended that the application of cropland and wheatland masks has different effects on 
the precision of indices for detecting wheat yield variation depending on location, climate and agri‐

cultural practice. As Figures 3.4‐3.5 and Appendix 2.3 display, in all selected districts the application 
of cropland and wheatland masks noticeably improves the ability of indices to detect wheat yield 

variation for mixed lands of Kyrgyzstan and rainfed lands of Uzbekistan. These improvements might 
be due to high topographic variety in these regions, which contain mountains and foothills, thus 

significantly affecting index values. Moreover, in some cases of mixed agricultural lands in Uzbeki‐
stan, the application of cropland and wheatland masks improves the association between vegeta‐

tion index and wheat yields, where there is some degree of positive correlation using index values 
from entire district areas. In cases of Kazakhstan, the index values from croplands and the entire 
district area outperform indices calculated from wheatlands only. This may be due to monotone 

agricultural practices, a wide breadth in the geographical location of croplands and low topological 
variety in these areas. However, in some areas the application of cropland and wheatland masks 

significantly improves the correlation between vegetation indices and wheat yields. Meanwhile, in‐
dex values from the entire district area show the highest performance in Mongolia, since using 

wheatland mask may capture only the areas with regular phenology and a cropping calendar, which 
may result in missing the abnormal areas due to crop delays because of climate or human factors. 

However, there are some cases when wheatland mask improved the ability of indices to detect the 
wheat yield variety. Moreover, there is not a monotonous positive relationship between indices and 

the wheat yields of irrigated and mixed agricultural lands. The weak relationship of irrigated and 
mixed agricultural lands might be caused by a geographical situation, topographic types and crop 

varieties in the areas (Dick et al., 2011; Kölle et al., 2020). Further investigations should be conducted 
on irrigated lands by using farm and village scale wheat yield data.  

It is important to mention that the mean values from indices show noticeably higher correlation 
with wheat yields than the max values among the vast majority of districts. Moreover, the wheat 
yield modelling approach using highly correlated periods of satellite data (critical stages of crop 

growth), as suggested by Kogan et al. (2018), demonstrates vital enhancements on the relationship 
between indices and wheat yields in all of the study sites and farming systems. These improvements 

can especially be observed for irrigated and mixed agricultural lands of Uzbekistan (see Figure 3.7 
and 3.8).  
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Further results concern the suitability of novel indices as compared to conventional solutions like 
NDVI. Several prior studies found NDVI and precipitation to be most successful for capturing crop 

yield conditions, and as a data source for index insurance design and development (Bobojonov et 
al., 2014; Hochrainer‐Stigler et al., 2014b; Makaudze and Miranda, 2010). However, in the presented 
case GCI and LAI indices slightly outperform and have higher correlation with wheat yields and a 

greater potential for index insurance development and implementation, even though these indices 
were not investigated and taken into account by other authors as a potential source for index insur‐

ance development.  

Moreover, it is clear that the increase in correlation between the index and crop yields leads to a 

reduction in design and basis risk (Breustedt et al., 2008; Kölle et al., 2021; Norton et al., 2012), 
which are crucial during the index insurance design and implementation phases (Norton et al., 

2015). According to the study conducted by Pietola et al. (2011), the critical threshold of index in‐
surance from the demand side is situated at a correlation coefficient of 0.5‐0.6.  These findings are 

also in line with the results of this study, in which the precision of crop loss detection rises abruptly 
from a level of 0.5 correlation coefficient onwards (see Figure 3.6). 

 

3.5. Conclusions  

The main aim of the study was to explore the potential gains of using land use classification for 
designing and implementing an index insurance by comparing the suitability of multiple well‐known 
and less prominent satellite‐based indices in various wheat farming systems located in Central Asia 

and Mongolia. For this assessment, the study used 2,060 yield observations from 152 districts across 
Central Asia and Mongolia with irrigated, mixed and rainfed wheat farming systems.  

The results of this study highlight the importance of testing cropland and wheatland masks during 
the process of index insurance design and development. Moreover, Lai and GCI indices was found 

to slightly outperform other well‐known indices in detecting wheat yield variation and thus have 
greater potential for index insurance design. Overall, globally available MODIS‐based indices could 

serve as a suitable source for establishing index insurance products in Central Asia and Mongolia; 
however, a careful selection of sources, boundaries, indices and methods is required.  

Moreover, it is important to note that the usage of district level data can induce an aggregation 
biases, which means farm‐level risks are likely underestimated. Nevertheless, the featured results 

are still informative for district scale index insurance and area‐yield insurance programs in the region 
(e.g., which may be applied by industry or farmer co‐operatives). It would be interesting to also 

analyze the relationship between indices and wheat yields at the farm and county scale, which 
would allow us to more deeply investigate the capacity of satellite data for index insurance devel‐
opment and implementation. Additionally, there are limitations regarding crop diversity, cultivated 

area, crop quality, fertilizers and re‐seeding data, and it would also be interesting to examine the 
effects of these factors on the relationship between indices and wheat yields. 
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The lack of high‐quality weather and yield data is a dominant limiting factor in developing countries 
for the implementation of index insurance. These findings are therefore relevant for improving in‐

surance markets in Central Asia and Mongolia, being a potential source of data for index insurance 
design and operation. Moreover, the results of this study are also important for improving know‐
how of policymakers and farmers within the region on index insurance. There are, however, few 

start‐up projects focused on piloting the implementation of index insurance in the region (see 
Eltazarov et al. (2021)). It should be also mentioned that, based on the initial results of this study, 

385 farmers and 22,338 ha in Mongolia have been insured based on a MODIS‐NDVI. 

Future advances in satellite technology could further increase precision of crop loss prediction. For 

once, the correlation between vegetation indices and wheat yields obviously depends on the pro‐
portion of wheatland per pixel of the satellite images. Furthermore, data availability also limits the 

generation of cropland mask for each year individually. One disadvantage of MCD12Q1‐V6 is that 
the delay of the land cover product is 1‐1.5 years, which is not practical in terms of the index insur‐

ance establishment. Furthermore, MCD12Q1‐V6 does not provide the areas of cropland located in 
Mongolia. For that reason, open source satellite data with a higher spatial resolution, such as Senti‐

nel 2 or Landsat satellite series, could improve the accuracy of cropland and wheatland identifica‐
tion. Additionally, using state developed cadaster maps would lead to further improvements in cor‐

relation and reduction of basis risk of spatial resolution. 
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4. Improving risk reduction potential of weather index insurance by spatially 

downscaling gridded climate data - a machine learning approach9  

4.1. Introduction 

Extreme weather events are major drivers of volatility of agricultural production (Powell and 
Reinhard, 2016). Drought in particular causes low crop yields that can lead to substantial financial 

instability (Webber et al., 2018). Climate change is expected to increase the frequency and magni‐
tude of extreme weather events, resulting also in increased agricultural production risks (FAO, 2015; 

IPCC, 2022). Therefore, coping with droughts is essential for safeguarding against volatility in agri‐
cultural production and guaranteeing farmers’ income stability. Activities such as using drought‐
tolerant crops, crop diversification and rotation, improving irrigation systems, and minimum tillage 

may mitigate some drought risks. However, they may still fail during wide‐spread extreme drought 
events (Olesen et al., 2011). Complementary to these adaptation measures, crop insurances offer 

the opportunity of risk‐sharing and hedging against the risk of yield defaults caused by drought, hail, 
flood, etc. However, traditional crop insurances are challenged by a high administrative cost of crop 

loss assessment, adverse selection and moral hazard issues. As an alternative, weather index‐based 
insurance (from here onwards used as “index insurance”), formally known as weather derivatives 

or parametric insurance (Collier et al., 2009; Vedenov and Barnett, 2004; Xu et al., 2008), has been 
recognized as a promising financial risk management tool (Collier et al., 2009; Giné et al., 2010; 

World Bank, 2011). In index insurance, the payout is based on a pre‐determined index, and when 
the value falls below or exceeds a certain threshold value, insurers make a payment without any 

physical check‐up. This approach is intended to reduce administrative costs, reduce the problem of 
information asymmetry, and promises rapid and efficient determination of payouts (Fisher et al., 

2019; Greatrex et al., 2015; World Bank, 2015).  

Commonly, index insurances for crops draw on climate data from weather stations for the calcula‐
tion of precipitation and temperature aggregates. However, the performance of index insurance 

based on weather stations significantly decreases when the distance between farm and weather 
station is higher than 20‐25 kilometers (Gommes and Göbel, 2013; Osgood et al., 2007). Thus, index 

insurances based on data from weather stations are, particularly in developing countries, inhibited 
by the low density of weather stations. Installment of new weather stations might be a solution, but 

installing and maintaining a new weather station every 10‐20 kilometers would significantly affect 
the price of the insurance premium and also still not provide the historical data required for index 

design. 

Besides data from weather stations, gridded climate data can also be used for index insurance. Its 

suitability for index design was confirmed for precipitation data (Black et al., 2016b; Brahm et al., 
2019; Osgood et al., 2018; Tarnavsky et al., 2018), temperature data (Bokusheva et al., 2016; 

                                                           
9 This chapter was published as the following open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glau‐
ben, T. (2023): Improving risk reduction potential of weather index insurance by spatially downscaling grid‐
ded climate data ‐ a machine learning approach. Big Earth Data. 
https://doi.org/10.1080/20964471.2023.2196830; This chapter benefitted from the comments by the anon‐
ymous referees of Big Earth Data 
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Hellmuth et al., 2009; Kölle et al., 2020; Möllmann et al., 2019), soil moisture data (Enenkel et al., 
2017; Markus Enenkel et al., 2018; Vroege et al., 2021) and evapotranspiration indices (Coleman et 

al., 2018; Markus Enenkel et al., 2018; Ndegwa et al., 2022). In contrast to weather station data, 
gridded climate data are mostly open source and near‐real time. However, the vast majority of grid‐
ded climate data with fine resolution is only available for limited land areas or time periods 

(Eltazarov et al., 2021), which significantly limits their applicability for index design. For instance, 
Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) provides a gridded precip‐

itation data since 1982, but it only snaps latitudes between 50°S‐50°N (Funk et al., 2015). Global 
Satellite Mapping of Precipitation (GSMaP) and Integrated Multi‐satellite Retrievals for GPM 

(IMERG) cover the whole earth, but have only provided data since 2000 (Mega et al., 2019). Tropical 
Application of Meteorology Using Satellite Data (TAMSAT) and NOAA‐based African Rainfall Clima‐

tology Version 2 (ARC2) do provide gridded climate data since 1983, but only for the African conti‐
nent (Maidment et al., 2014; Novella and Thiaw, 2012). Moreover, Global Land Data Assimilation 

System (GLDAS) provides gridded temperature data across the globe, but only since 2000 (Rodell et 
al., 2004). Modern‐Era Retrospective analysis for Research and Applications version 2 (MERRA‐2) 

provides long‐term temperature data since 1980, but the spatial resolution is around 60 km. Fur‐
thermore, NASA‐USDA Enhanced SMAP Global soil moisture data provides soil moisture information 

for the whole world at 10‐km spatial resolution, but only since 2015. 

All in all, there is a need for long historical climate records with fine spatial resolution covering the 
whole earth in index insurance industry, in order to assess the risk and design well‐functioning crop 

insurances. There is some potential re‐analysis based climate data for index insurance design such 
as ERA5‐based climate data from the European Centre for Medium‐Range Weather Forecasts 

(ECMWF) (Hersbach et al., 2020). Similarly, satellite base climate data from the European Space 
Agency (ESA) fed into the Climate Change Initiative (CCI)‐based soil moisture data (Dorigo et al., 

2017) that covers the whole earth and has available data from the 1980s onwards. Nevertheless, 
the spatial resolution of these datasets is very low, approximately 25‐30 kilometers, which signifi‐

cantly decreases the potential of these data sources in their application for index design and imple‐
mentation. Especially designing index insurance based on such coarse‐resolution climate data may 

lead to an increase of basis risk.  

One potential and so far under‐researched method to deal with the issue of spatial resolution could 

be to spatially downscale gridded climate data using statistic methods. A number of studies have 
investigated and demonstrated the ability and accuracy of downscaling the spatial resolution of 

gridded climate data sources using regression and machine learning methods (Bai et al., 2019; Hu 
et al., 2020; Im et al., 2016; Liu et al., 2020; Zhang et al., 2021; Zhu et al., 2017). For instance, Shen 
and Yong (2021) and Yan et al. (2021) systematically compared the accuracy of various machine 

learning methods to downscale gridded precipitation data from 10 km to 1 km and were able obtain 
a significant agreement between downscaled and gauge observations. Meanwhile, Alexakis and 

Tsanis (2016) and Sharifi et al. (2019) compared multiple linear regression, machine learning models 
and interpolation techniques to downscale gridded precipitation data, and have concluded that ma‐
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chine learning methods slightly outperform other methods in downscaling precipitation data. More‐
over, Bai et al. (2019) and Liu et al. (2020) compared various downscaling methods and various com‐

bination of features to find optimal setups to downscale low resolution (10 km and 35 km) soil mois‐
ture data to fine resolution (1 km). dos Santos (2020) and Zhang et al. (2021) compared machine 
learning and regression models to downscale temperature data and were able to create 1‐km long‐

term daily temperature data.  

In general, the existing literature mainly focuses on the accuracy of various downscaling methods 

and combination of features. Only a few studies have worked on real‐world applications of 
downscaled climate data. For example, López López et al. (2018) used the downscaled gridded pre‐

cipitation data for river discharge modelling and found a better agreement with ground observations 
when the model was run using the downscaled precipitation data. Seyyedi et al. (2014) demon‐

strated improvements in runoff simulations and flood modelling when downscaled precipitation 
data compared to the coarse precipitation product. Bastola and Misra (2014) studied the applicabil‐

ity of dynamically downscaled precipitation data for hydrological simulations and found that 
downscaled data was superior to other meteorological datasets. Ha et al. (2013) did an extensive 

review of downscaling methods of coarse gridded evapotranspiration (ET) data for irrigation sched‐
uling purposes and found that downscaled ET improves the estimation of crop water requirements. 

Srivastava et al. (2013) found that downscaled soil moisture data improves the estimates of hydro‐
logical modelling for a local and regional scale compared to the original coarse resolution. Hrisko et 
al. (2021) estimated heat storage in urban areas using multispectral satellite data and found that 

heat storage can be stably downscaled from lower to higher spatial resolution and monitored over 
time. Meanwhile, the potential of downscaled climate data for index insurance design, as well as 

the ability to detect shortfalls and their downside risk reduction capacity, have not yet been studied. 
Even so, downscaling is an effective approach to convert coarse climate data to a finer spatial reso‐

lution (Abbaszadeh et al., 2019), and downscaled climate data have a better accuracy than the orig‐
inal coarser resolution (F. Chen et al., 2019; Chu et al., 2011; Fang et al., 2022), which is essential to 

improve the quality of index insurance and decrease basis risk. Moreover, based on our literature 
review, there are only a few number of studies (Markus Enenkel et al., 2018; Petropoulos and Islam, 

2017; Vroege et al., 2021) that explore the potential of satellite‐retrieved soil moisture data for in‐
dex insurance design and operation. 

We provide two key contributions to the literature. Firstly, we systematically evaluate and compare 
index insurance products with a design based on original coarse resolution and spatially downscaled 

climate data to reduce farmers’ financial downside risk exposure. We spatially downscale long‐term 
and spatially coarse resolution soil moisture, precipitation and temperature data using machine 
learning algorithms. Second, for each county we identify the best source of climate data for index 

insurance products to maximize the climate risk reduction capacity. We test the robustness of our 
findings in the case of wheat produces in Kazakhstan and Mongolia. Since systematic drought is 

becoming more frequent and putting agricultural production at risk (de Beurs et al., 2018; Haag et 
al., 2019), there is an increased demand for financial instruments and social security mechanisms in 

these regions (Bobojonov et al., 2019). 
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This paper is structured as follows: In the second chapter, we report on the study area, machine 
learning methods and features for downscaling the gridded climate data. Moreover, we provide 

details on index insurance design and measuring the risk reduction capacity of index insurance based 
on original coarse resolution and downscaled climate data. The third chapter provides the results 
from our analyses and a comprehensive discussion. Lastly, we wrap up our article with conclusions 

retrieved from the study.  

 

4.2. Methods and materials 

4.2.1. Study area and yield data 

Wheat is one of the most strategic crops for Kazakhstan and Mongolia, and it is grown mostly on 

rainfed lands (Fehér et al., 2017; Tuvdendorj et al., 2019). Figure 4.1 illustrates our case study con‐
sisting of rainfed spring wheat producing counties in Kazakhstan (34 counties) and Mongolia (22 

counties). Figure 4.2 shows the cropping calendar of spring wheat in the study areas. The reasons 
for using these regions for our analysis are: (1) In these regions, spring wheat is steadily being culti‐

vated, and they are the main wheat producing regions (FAO, 2020; Fehér et al., 2017); (2) Frequent 
drought events in the regions have happened in the beginning of the century and in recent years; 

(3) There is a homogenous climate, crop management and cropping calendar (FAO, 2020; Shamanin 
et al., 2016); (4) There is a low density of weather stations (NCEI, 2019); (5) In the region, climate‐

oriented financial instruments and social mechanisms are in high demand (Bobojonov et al., 2019); 
(6) There is a lack of traditional insurance markets due to a large land area and low population den‐

sity. The study counties are located in a semi‐arid climatic region (Trabucco and Zomer, 2019). 

 

 

Figure 4.1: Location of study regions and counties in Kazakhstan and Mongolia  
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Note: Each number on the map refers to unique counties. County names are provided in Table A.3.1. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  

 

It is important to note that in our study we used county‐scale spring wheat yield and index data, and 

we considered counties as farm co‐operatives who purchase an insurance contract as a group of 
farmers. It’s true that the calibration of the index by county‐scale yield data might omit farm‐level 

management differences (Finger 2012). However, typically commercial index insurances do not take 
these management differences into account anyway, in order to avoid moral hazard. Moreover, a 

recent study by Paliwal and Jain (2020) reported that self‐reported farm scale crop yield data is 
actually inaccurate for calibrating satellite‐based remote sensing data. As a consequence, regional 

aggregation is practiced in particular in areas with relative spatial homogeneity (Kath et al., 2019). 

In order to check the robustness of the proposed method to design index insurance, this paper uses 
spring wheat yield data from two countries and in total 56 counties, involving a total of 1337 yield 

observations (Table A.3.1). Taking into account the technological progress in the wheat production 
industry between 1982 and 2018, and removing the deterministic trends in historical spring wheat 

yields, yield observations were de‐trended. Failing to do so would have led to an overestimation of 
yield variability and biased the strike level and risk‐reduction potentials for insurance applications. 

To capture technological trends, country‐level yield data between 1991 and 2019 was employed 
(FAO, 2022). Following Finger (2013) and Bucheli et al. (2021), this approach applied an M‐estimator 

to identify linear trends, which was found to equal 𝛽𝛽 = 0.123 in Kazakhstan and 𝛽𝛽 = 0.26 in Mon‐
golia. In the next step, county‐individual de‐trended yields were identified using the following equa‐

tion by using slope coefficient for each country and 𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒 = 2015 for counties in Kazakhstan and 
𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒 = 2018 for counties in Mongolia. Moreover, 𝑖𝑖 refers to county and 𝑠𝑠 indicates time. 

𝑦𝑦𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑑𝑑 =  𝑦𝑦𝑖𝑖𝑖𝑖 + (𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒 − 𝑠𝑠) ∗  𝛽𝛽    (4.1) 

 

 

Figure 4.2: The cropping calendar of spring wheat in Kazakhstan and Mongolia  

Source: Authors’ presentation based on data adapted from the FAO (2021, 2020) and Shamanin et al. (2016). 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  
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4.2.2. Gridded climate data 

After a systematic review of available gridded climate products based on geographical coverage and 

availability of long‐term historical weather records, we selected two gridded climate products and 
three climate parameters to check the robustness of proposed method: ERA5 as a source of precip‐

itation and temperature data, and ESA‐CCI as a source of soil moisture data. ERA5 is the fifth gener‐
ation ECMWF atmospheric reanalysis of the global climate (Hersbach et al., 2020). Reanalysis com‐

bines model data with in‐situ and satellite observations from across the world into a globally com‐
plete and consistent dataset. ERA5 provides large numbers of atmospheric, ocean‐wave and land‐

surface quantities on an hourly, daily and monthly scale with ≈30 km spatial resolution. We only 
used monthly temperature and precipitation data in this study. ESA‐CCI was initiated by ESA to mon‐
itor the earth surface variables corresponding to climate change (Markus Enenkel et al., 2018).  

Among others, the program aims at long‐time monitoring soil moisture with ≈30 km spatial resolu-
tion by integrating and synthesizing both active and passive microwave remote sensing sensors. For 

our analyses, we used monthly aggregations and volumetric unit (𝑚𝑚3/𝑚𝑚−3) of the version 03.3 of 
ESA‐CCI SM.  

As discussed earlier, only very few satellite products spatially cover the whole earth with long his‐
torical records at near‐real time velocity. For downscaling ERA5 and ESA‐CCI data, which is of coarser 

resolution, this study employs optical bands and indices from the NOAA Climate Data Record (CDR) 
of the Advanced Very High Resolution Radiometer (AVHRR), and the digital elevation model from 

The Shuttle Radar Topography Mission (SRTM). NOAA CDR of AVHRR is a dataset that contains grid‐
ded surface reflectance, brightness temperatures (BT) and NDVI derived from the AVHRR sensors 
onboard eight NOAA polar orbiting satellites. The dataset spans from 1981 to the present on a daily 

temporal scale with ≈5 km spatial resolution.  

 

4.2.3. Spatial downscaling 

In general, there are two types of spatial downscaling techniques, namely dynamic and statistic. 
Dynamic downscaling employs a regional climate model or a numerical climate model to produce 

climate parameters in finer spatial resolution by simulating the physical processes of the linked land‐
atmosphere system (Sharifi et al., 2019). The statistic technique, on the other hand, is modelling the 
statistical relationship between high and low scale covariates. This technique adopts climate param‐

eters based on auxiliary data such as vegetation index, land surface temperature, elevation, soil 
type, etc. (Sharifi et al., 2019).  

 

4.2.3.1. Random forest method 

During the last decade, various statistical downscaling methods have been developed. According to 
the literature, random forest (RF) is a very suitable machine learning algorithm in term of accuracy 

and simplicity for downscaling climate parameters is (Chen et al., 2021; Hu et al., 2020; Im et al., 
2016; Liu et al., 2020, 2018; Yan et al., 2021). For instance, Shen and Yong (2021), Yan et al. (2021) 
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and C. Chen et al. (2021) investigated the accuracy of RF to downscale coarse precipitation data and 
came into conclusion that RF‐based downscaled precipitation have high spatial correspondence 

with original coarse data. Yang et al. (2017), Bartkowiak et al. (2019) and Tang et al. (2021) studied 
the applicability of RF to downscale coarse temperature and confirmed the strong potential of RF 
for producing improved and high spatial resolution temperature data. Hu et al. (2020), Hongyan 

Zhang et al. (2022) and Q. Chen et al. (2020) examined the suitability of RF to downscale soil mois‐
ture and found that RF‐based downscaling is able to capture the variation of soil moisture, even 

downscale soil moisture have higher correlation with in situ observations than the original coarse 
data. 

RF is a tree‐based ensemble method, meaning that data patterns are predicted according to an ag‐
gregation of the predictions of several decision trees, with each tree depending on a collection of 

random variables for classification and regression. Furthermore, the prediction performance is im‐
proved by bootstrap aggregation, which reduces the variance of predictions by drawing (with re‐

placement) a fixed number of samples from the training set (Breiman, 2001). For the constructing 
of each tree, features are selected randomly at each decision node. For obtaining the final output, 

i.e. the classification or prediction output, RF uses a majority vote to aggregate the predictions of 
each individual tree.  

 

4.2.3.2. Downscaling process 

Initially, all satellite‐based datasets used in this study were aggregated to a monthly scale10 for com‐

parability. In order to develop a RF based downscaling model, NOAA and SRTM products with fine 
spatial resolution were reaggregated to a resolution of ≈30 km. Then, following Chen et al. (2021) 

and Yan et al. (2021), we used NDVI and BT obtained from NOAA AVHRR as well as elevation, slope 
and aspect data generated from SRTM to train RF model to estimate ERA5‐based precipitation data. 

𝑃𝑃𝐶𝐶𝑃𝑃 = 𝑓𝑓(𝑁𝑁𝑃𝑃𝑉𝑉𝐵𝐵,𝐵𝐵𝐵𝐵, 𝑒𝑒𝑌𝑌𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛, 𝑠𝑠𝑌𝑌𝑑𝑑𝑠𝑠𝑒𝑒, 𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑠𝑠) (4.2) 

Following Zhang et al. (2021), we utilized the same features to train the RF model to estimate the 

ERA5‐based temperature data. 

𝐵𝐵𝐸𝐸𝑀𝑀𝑃𝑃 = 𝑓𝑓(𝑁𝑁𝑃𝑃𝑉𝑉𝐵𝐵,𝐵𝐵𝐵𝐵, 𝑒𝑒𝑌𝑌𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛, 𝑠𝑠𝑌𝑌𝑑𝑑𝑠𝑠𝑒𝑒,𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑠𝑠) (4.3) 

In addition, NDVI, BT, Red, Near‐Infrared (NIR) from NOAA AVHRR as well as elevation and slope 
from SRTM were employed to train a RF model to estimate the ESA‐CCI‐based soil moisture data, as 

also suggested by Hu et al. (2020) and Liu et al. (2018). 

𝐵𝐵𝑀𝑀 = 𝑓𝑓(𝑁𝑁𝑃𝑃𝑉𝑉𝐵𝐵,𝐵𝐵𝐵𝐵,𝐹𝐹𝐸𝐸𝑃𝑃,𝑁𝑁𝐵𝐵𝐹𝐹, 𝑒𝑒𝑌𝑌𝑒𝑒𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛, 𝑠𝑠𝑌𝑌𝑑𝑑𝑠𝑠𝑒𝑒,𝑎𝑎𝑠𝑠𝑠𝑠𝑒𝑒𝑐𝑐𝑠𝑠)  (4.4) 

                                                           
10 Earliest tests of our study showed slightly better performance of index insurance when they were de‐
signed based on monthly scale weather parameters than 10day scale. Moreover, the gridded weather pa‐
rameters have a better agreement between in‐situ observations when a higher temporal aggregation 
(monthly, seasonal, etc.) is used (Coleman et al., 2018; Eltazarov et al., 2021; Usman and Nichol, 2020). 
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In the following, the RF models trained to estimate climate parameters at coarse spatial resolution 
were applied to feature at 5 km resolution to obtain climate data at fine resolution. The same pro‐

cedure was repeated for each of June and July months from 1982 to 2015 for study sites in Kazakh‐
stan and from 2000 to 2018 for study sites in Mongolia (reasons for the selection of these months 
are given in the results section). The training, estimating and downscaling processes were done for 

each selected month, study site and climate parameter separately, as combining them would as‐
sume the same marginal response of features to climate parameters in all months and study sites. 

A total of 2264 and 780 samples (all pixels from study sites) were extracted from selected features 
for each of selected months and climate parameters for sites in Kazakhstan and Mongolia, respec‐

tively, and used to develop the RF models. In each RF model, we set the number of trees parameter 
to 50, as further increase in number of trees did not demonstrate significant improvement in the 

cross validation accuracy.  

 

 

Figure 4.3: Procedure of relevant data processing and climate data downscaling 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data. 

 

4.2.3.3. Cross validation 

In order to assess the performance of the RF models, a cross‐validation was conducted at the coarse 

spatial resolution. The trained RF models obtained from the coarse spatial resolution were used to 
estimate climate parameters at coarse spatial resolution. To measure the performance of the RF 
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models in estimating the climate parameters for our sample, we used three accuracy measures, 
namely root mean square error (RMSE), percent bias (PBIAS) and correlation coefficient (CC) (Chen 

et al., 2021).  

𝐹𝐹𝑀𝑀𝐵𝐵𝐸𝐸 = �1
𝑛𝑛
∑ (𝐸𝐸𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (4.5) 

𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∑ (𝐸𝐸𝑖𝑖−𝑂𝑂𝑖𝑖)𝑛𝑛
𝑖𝑖=1
∑ (𝑛𝑛
𝑖𝑖=1 𝑂𝑂𝑖𝑖)

 × 100% (4.6) 

𝐶𝐶𝐶𝐶 = ∑ �𝑂𝑂𝑖𝑖−𝑂𝑂��𝐸𝐸𝑖𝑖−𝐸𝐸�𝑛𝑛
𝑖𝑖=1

�∑ �𝑂𝑂𝑖𝑖−𝑂𝑂�
2𝑛𝑛

𝑖𝑖=1 �∑ �𝐸𝐸𝑖𝑖−𝐸𝐸�
2𝑛𝑛

𝑖𝑖=1

 (4.7) 

General stages of process flow are illustrated by Figure 4.3. All of the gridded climate and satellite‐
based data processing and machine learning analysis within this study was carried out using the 

Google Earth Engine platform. For statistical analyses and graph visualization we used R Project (R 
Development Core Team, 2018). 

 

4.2.4. Design of index insurance products 

Intra‐seasonal climate data typically outperform season‐long data in detecting crop yield variation 
(Ortiz‐Bobea et al., 2019; Schierhorn et al., 2021). The most critical vegetation period is in this case 

identified along the Spearman correlation coefficient11 between the respective climate parameter 
and spring wheat yield for each county (Möllmann et al., 2019). Climate parameters are then aver‐

aged over this most critical vegetation period.  

For building the index, we combined indicators of original coarse resolution and downscaled precip‐

itation, temperature and soil moisture data. Higher precipitation and soil moisture decrease the 
likeliness of drought events, while high temperature increases drought occurrence.  

In the index insurance contract, the payout 𝑃𝑃𝑂𝑂𝑖𝑖,𝑖𝑖 is determined based on whether the index falls 

below a certain threshold in county 𝑖𝑖, which is called strike level 𝐵𝐵𝑖𝑖 as shown in Equation (7). In our 

study, the strike level is determined by the 30 percent quantile of the index value (Bokusheva et al., 
2016; Kölle et al., 2020). 

𝑃𝑃𝑂𝑂𝑖𝑖,𝑖𝑖 = max (𝐵𝐵𝑖𝑖 − 𝐵𝐵𝑖𝑖,𝑖𝑖, 0) × 𝑉𝑉𝑖𝑖     (4.8) 

where 𝐵𝐵𝑖𝑖,𝑖𝑖  corresponds to the index of climate parameter calculated for time period 𝑠𝑠 for county 𝑖𝑖. 
The relevant time periods were identified using time‐series correlation analysis for each index and 
county. 𝑉𝑉𝑖𝑖 represents the tick size, which determines the indemnity payout per unit of the difference 

between the strike level 𝐵𝐵𝑖𝑖. The tick size 𝑉𝑉𝑖𝑖 corresponds to the slope coefficient 𝛽𝛽𝑖𝑖 from the following 
regression model (8).  

𝑦𝑦𝑖𝑖 = 𝑐𝑐𝑖𝑖 + 𝛽𝛽𝑖𝑖𝐵𝐵𝑖𝑖,𝑖𝑖 + 𝜀𝜀𝑖𝑖       (4.9) 

                                                           
11 We employed Spearman’s correlation coefficient as the relationship between weather and crop yield is 
non‐linear (Konduri et al., 2020; Semenov and Porter, 1995). 
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where 𝑦𝑦𝑖𝑖  is the wheat yield of the county 𝑖𝑖,  𝐵𝐵𝑖𝑖,𝑖𝑖  stands for the index value in period 𝑠𝑠, 𝛽𝛽𝑖𝑖 is the slope 

coefficient of the regression equation, 𝑐𝑐𝑖𝑖 is a constant, and error term 𝜀𝜀𝑖𝑖  is the variation of wheat 

yield that cannot be explained by the index value. Following Bucheli et al. (2021) and Conradt et al. 
(2015), in order to estimate the 𝛽𝛽𝑖𝑖 and 𝑐𝑐𝑖𝑖 we applied quantile regression (QR). QR is typically reduc‐

ing the basis risk of index insurance as compared to Ordinal Least Squares (OLS), due to its property 
of estimating coefficients separately for each quantile of the outcome variable rather than at the 
population mean. Thus, QR minimizes the sum of absolute residuals and is more robust to outliers 

(Koenker and Bassett, 1978). As we are focused on the lower tail of the yield distribution, we chose 
the 30 percent quantile, following literature (Bokusheva et al., 2016; Bucheli et al., 2021; Kölle et 

al., 2021, 2020; Möllmann et al., 2019). Furthermore, for this study we assume the case of an actu‐
arily fair insurance, where premiums are calculated based on an average of payouts for each county 

over the time period, excluding surcharges resulting from administrative costs and business margins. 
Using this simplistic pricing method allows us to identify the risk‐reduction potential of insurance 

products without being inhibited by any mis‐specified insurance premiums (Bucheli et al., 2021).  

 

4.2.5. Estimation of the hedging effectiveness 

Due to this study’s focus on climate‐related production risk, the indemnities and fair premiums are 

measured in quantity units of wheat yield. To assess the risk reduction potential of each insurance 
product based on original coarse resolution and downscaled climate parameters, the hedging effec‐

tiveness of insurance contracts (the degree to which yield losses are offset by the hedging instru‐
ment’s payouts) was estimated by comparing net incomes from uninsured vs. insured yields. Ac‐

cording to Bokusheva (2018), we calculated the insured wheat yield 𝑦𝑦𝑖𝑖,𝑖𝑖
𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 as follows: 

𝑦𝑦𝑖𝑖,𝑖𝑖
𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑦𝑦𝑖𝑖,𝑖𝑖 + 𝑃𝑃𝑂𝑂𝑖𝑖,𝑖𝑖 − 𝐹𝐹𝑃𝑃𝑖𝑖      (4.10) 

where 𝑦𝑦𝑖𝑖,𝑖𝑖  refers to the wheat yield for producer i at time t, 𝑃𝑃𝑂𝑂𝑖𝑖,𝑖𝑖 is the indemnity payout, and 𝐹𝐹𝑃𝑃𝑖𝑖 
indicates the fair premium. 

Following Vedenov and Barnett (2004), we estimate the hedging effectiveness of insurance con‐
tracts by comparing downside risk measure semi‐variance (SV) of uninsured yields with the SV of 

insured yields. The downside risk measure SV is calculated as follows: 

𝐵𝐵𝑉𝑉𝑖𝑖 = 1
𝑁𝑁
∑ [min�𝑦𝑦𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖 , 0�]2𝑁𝑁
𝑖𝑖=1      (4.11) 

where 𝑦𝑦𝑖𝑖,𝑖𝑖  indicates the insured or uninsured wheat yield, 𝑦𝑦𝑖𝑖  stands for uninsured average wheat of 

the respective study area, and N denotes the number of yield observations. Consequently, we iden‐

tify the hedging effectiveness12 (HE) of the index insurance product by comparing the SV of wheat 
yield without insurance contract with the SV of wheat yields with insurance contract, as shown in 

Equation (11). 

𝐻𝐻𝐸𝐸 = 1 − 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
     (4.12) 

                                                           
12 Higher hedging effectiveness corresponds to a lower basis risk and a higher potential for risk reduction. 
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To test for significant differences between the hedging effectiveness of the designed index insurance 
based on original and downscaled climate data, we applied non‐parametric Wilcoxon rank sum tests 

for improved cases. The Wilcoxon rank sum test examines the null hypothesis that ranks of paired 
two groups are not significantly different. In contrast to the t test, Wilcoxon rank sum test does not 
require the data to be normally distributed (Möllmann et al., 2019). 

All statistical calculations have been developed using the R project (R Development Core Team, 
2018). In order to support practical applications of this work, the authors developed an R package 

that includes calculation of hedging effectiveness and other statistical indicators to analyze the per‐
formance of index insurance. Details about the R package “climate‐insurance” can be found under 

the following link https://github.com/klimalez/climate‐insurance. Additionally, the authors devel‐
oped an open‐source web application based on this R package, the “Climate Risk Insurance Design 

and Performance Analysis” that helps to test the performance of selected index for insurance de‐
sign: https://klimalez.org/climate‐insurance. 

 

4.3. Results and Discussion  

4.3.1. Climate data validation 

We find that RF estimated climate data at coarse spatial resolution has a good correlation with the 
climate data in original spatial resolution. The cross validation between original climate data and 
data estimated by the RF models at original spatial resolution demonstrates a good performance, 

with a 0.99 correlation coefficient for all climate parameters, which is in line with the performance 
achieved for instance by Shen & Yong (2021) and Yan et al. (2021). For study sites in Kazakhstan we 

find average RSME of 0.59 mm, 0.058 oC, 0.0006 m3/m3 and PBIAS 1.19%, 0.25%, 0.27% for precip‐
itation, temperature and soil moisture, respectively, which are in line with the existing literature (Hu 

et al., 2020; Liu et al., 2020; Yan et al., 2021). Furthermore, we find similar results for study sites in 
Mongolia with average RMSE 0.72 mm, 0.059 oC, 0.0006 m3/m3 and PBIAS 0.71%, 0.31% and 0.27% 

precipitation, temperature and soil moisture, respectively. 

Figure 4.4 graphically illustrates differences between original coarse data (column 1 “Original”) and 

estimated climate data by RF model at original spatial resolution (RF Estimated) along one example 
region and year, as well as downscaled climate data at ~5 km spatial resolution (RF Downscaled). 

The column RF estimated shows the initial cross‐validation of the performance of the RF models, 
where climate parameters are estimated at the same spatial resolution as the original coarse climate 

data sources.     

 

https://github.com/klimalez/climate-insurance
https://klimalez.org/climate-insurance
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Figure 4.4: Original coarse resolution, random forest based estimated and downscaled 

climate parameters, Northern Mongolia in June 2015. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  

 

4.3.2. Assessment of risk reduction potential of index insurance products 

Moreover, primary tests of our study showed a slightly better performance of index insurance when 
they were designed based on monthly scale climate parameters rather than on 10‐day scale (aver‐

age for temperature and soil moisture, cumulative for precipitation). Figure 4.5 graphs the mean CC 
between wheat yield and climate parameters for each month by country. For both countries, spring 
wheat yields showed the highest correlation with all climate parameters in the months of June and 

July, which was also found by other recent studies (Möllmann et al., 2019; Schierhorn et al., 2021).  

Table 4.1 summarizes the hedging effectiveness on a national level. For Kazakhstan, the hedging 

efficiency was 18% for soil moisture, 14% for precipitation, and 24% temperature, based on the 
original spatial resolution. For the same country, downscaled data increased the hedging efficiency 

to 18% for precipitation, and 25% for temperature‐based index insurance, however, it had no nota‐
ble effect on the hedging effectiveness of soil moisture. For Mongolia, indices based on original spa‐

tial resolution data delivered an average hedging effectiveness of 18% for soil moisture, 12% for 
precipitation, and 12% for temperature; downscaling increased these values to 22% for soil mois‐

ture, 21% for precipitation, and 14% for temperature‐based index insurance. In summary, 
downscaled climate data improved the risk reduction capacity of index insurance for most index 
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products. While hedging efficiency was higher on average in Kazakhstan, the improvements of 
downscaling were higher in Mongolia. In particular, we observed a noticeable improvement of 

downscaling for precipitation data.  Overall, the hedging efficiency of index insurances based on 
both original coarse resolution and downscaled data was higher than the results obtained by 
Möllmann et al. (2019).  

 

 

Figure 4.5: Dynamics of the Spearman correlation coefficient between spring wheat 
yield and monthly scale ERA5-based precipitation and temperature, and ESA-based soil 

moisture  

Note: Counties in (a) Kazakhstan and (b) Mongolia 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  

 
 

Table 4.1: Mean hedging effectiveness of index insurance products based on original 

coarse resolution and downscaled climate data 

Hedging effective-
ness 

Kazakhstan  Mongolia 
Original Downscaled  Original Downscaled 

Soil moisture 18% 18%  18% 22% 
Precipitation 14% 18%  12% 21% 
Temperature 24% 25%  12% 14% 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  

 

However, it should be pointed out that the hedging effectiveness fluctuates considerably among 
indices and regions. In particular the regional variation in the hedging effectiveness of wheat index 

insurance was already noted in previous studies (Bokusheva et al., 2016; Kölle et al., 2021). Figure 
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A.3.4 reports on the hedging effectiveness of index insurance based on the original coarse resolution 
and downscaled soil moisture, precipitation and temperature data across counties.  

 

 

Figure 4.6: Change of hedging effectiveness of index insurances after using downscaled 

climate data  

Note: Counties in (a) Kazakhstan and (b) Mongolia. Numbers represent the number of counties. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  

 

Our previous analysis demonstrated that designing index insurance based on downscaled climate 

data lowers the basis risk in the majority of our cases. Figure 4.6 presents the exact number of coun‐
ties where hedging effectiveness of index insurances were improved and not improved due to use 

of downscaled climate data. In the case of Kazakhstan, designing an index insurance based on 
downscaled soil moisture increased hedging effectiveness in 21 counties out of 34, downscaled pre‐

cipitation improved hedging effectiveness in 24 counties out of 34, and downscaled temperature 
enhanced hedging effectiveness in 24 counties out of 34. Meanwhile, in Mongolia, index insurance 

based on downscaled soil moisture improved hedging effectiveness in 18 counties out of 22, 
downscaled precipitation increased hedging effectiveness in 21 counties out of 22, and downscaled 
temperature increased hedging effectiveness in 8 counties out of 22. 

Consequently, Wilcoxon test’s results and boxplot of hedging effectiveness per country and index 
(Figure 4.7) also demonstrate that improvements in hedging effectiveness are significant in both 

countries after using downscaled climate data for index insurance design.  

Since a higher hedging effectiveness corresponds to a lower basis risk and a higher potential for risk 

reduction, it can be concluded that index insurance products based on downscaled climate data 
have a lower basis risk and a higher potential for risk reduction than the original coarse spatial scale 

climate data. With reference to these results, the first objective of our study is addressed. With an 
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increasing spatial resolution of gridded climate data using machine learning, the hedging effective‐
ness of index insurance increases. Earlier similar outcomes were assumed by Möllmann et al. (2019), 

and similar results were obtained in the study conducted by Kölle et al. (2021), in which hedging 
effectiveness of index insurance based on medium and high resolution NDVI data were compared. 
Due to the increased number of pixels per area, a more accurate representation of climate condi‐

tions is possible, which is important for lowering the basis risk. 

 

 

Figure 4.7: Boxplot and Wilcoxon test results for the hedging effectiveness of index in-

surance design based on original coarse resolution and downscaled climate data  

Note: Counties in (a) Kazakhstan and (b) Mongolia. Statistical significance is indicated by the following p‐val‐

ues: *p≤0.05, ** p≤0.01, ***p≤0.001. 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data 

‐ a machine learning approach. Big Earth Data.  

 

As noted above, the hedging effectiveness of our three indices fluctuated considerably on a county 
level despite similar environmental conditions, a phenomenon that was also observed by Bucheli et 

al. (2021). These difference between the areas in term of most suitable index insurance can be due 
to variety of reasons, such as the type of farming systems, the intensity of crop management, man‐

agement strategy and soil/seed quality (Kölle et al., 2021). Figure 4.8 demonstrates which source of 
climate data is the best for index insurance design to mitigate climate risk. According to our results, 

in Kazakhstan, the majority of counties have a higher hedging effectiveness when the index insur‐
ance design is based on downscaled temperature. Moreover, downscaled precipitation and original 
coarse resolution temperature have the highest hedging effectiveness in some cases, but the rest 
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only in a few cases. In the case of Mongolia, index insurance design based on downscaled precipita‐
tion and soil moisture data have the highest risk reduction potential in the majority of counties. The 

remaining data sources have demonstrated their potential only in rare cases.  

 

 

Figure 4.8: The best index insurance for each county according to hedging effectiveness  

Note: Counties in (a) Kazakhstan and (b) Mongolia 

Source: compiled by the authors. 

Retrieved from the published open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2023): 

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data ‐ 

a machine learning approach. Big Earth Data.  

 

We see a potential to further refine the procedure of downscaling climate data for increasing hedg‐

ing efficiency illustrated in this paper. For instance, including land cover/use information into index 
insurance design can obtain a significantly higher risk reduction capacity. However, the non‐exist‐
ence of long term and open source land cover/use information limits any potential benefits that 

might be obtained. Actually, there is a MODIS‐based global scale land cover/use product. However, 
it has provided information since 2002 and has an accuracy of approximately 75‐80 percent (Friedl 

and Sulla‐Menashe, 2019). Moreover, our investigations showed that in the MODIS land cover/use 
product, the croplands identification has yet to be calibrated for Mongolia. Possible solution could 

be classifying land cover/use based on satellite images or requesting data from state cadaster or‐
ganizations. 

Furthermore, estimating agronomically suitable meteorological drought indices based on 
downscaled climate data and using them for index insurance design should also be considered for 

future studies, as they also can substantially improve the risk reduction potential of index insurance. 
The effectiveness of using meteorological drought indices for index insurance design have already 
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been confirmed by using weather station data by Bobojonov et al. (2014) and Finger (2013). Addi‐
tionally, for future studies, it would also be interesting to compare the accuracy of index insurance 

product designs based on downscaled climate data with other climate data in fine spatial resolution 
with short historical records. Moreover, it would also be interesting to find at which points increases 
in hedging effectiveness are only marginal and not proportional in terms of findings training da‐

tasets. 

It should be also noted that for our analysis we used county scale yield data. It would be also very 

interesting to shift the level of analysis to village or even farm level, as variation and heterogeneity 
of village‐scale climate data increased after spatially downscaling them to finer resolution, according 

to our results from Local Moran’s I13 (see Table A.3.5 and A.3.6). Specifically, village and farm scale 
yield data could be based on ground level sensors from harvester combines. That would allow us to 

more deeply study the benefits of machine learning‐based downscaling models for index insurance. 
Furthermore, having information about crop‐cultivated areas, crop diversity, crop quality, fertilizers 

and re‐seeding data would be also interesting, in order to inspect these factors on the hedging ef‐
fectiveness of index insurance.  

Moreover, descriptive statistics of variation of validation metrics and Wilcoxon test of county‐wise 
validation metrics between improved and not improved insurance cases did not show significant 

differences (Figure A.3.7‐11 and Table A.3.12‐15). These results indicate that in our case the spatial 
accuracy of RF models do not influence the variation of improvements of hedging effectiveness. 
However, we believe having more detailed information about the study area, for instance on varia‐

tion of topography, crop diversity, land use/cover and portion of croplands in the region would help 
to understand in more detail why effect of designing index insurance product based on downscaled 

climate parameters vary. 

 

4.4. Conclusion 

In this paper, we examined and compered the climate risk‐reduction potential of index insurance 

design using machine learning‐based spatially downscaled precipitation, temperature and soil mois‐
ture data with the original spatial resolution of gridded climate sources. We found that in the vast 

majority of cases, using downscaled climate data for index insurance design has increased their 
hedging effectiveness. These improvements are statistically significant for a case study of spring 

wheat in Kazakhstan and Mongolia. In general, index insurance design based on downscaled tem‐
perature in Kazakhstan and downscaled precipitation in Mongolia has the greatest risk‐reduction 

potential. Additionally, our study demonstrates that each area has an individual most suitable un‐
derlying source of index to minimize basis risk. There is no single universal source of index that may 

assist well everywhere. Our results underline that an insurer should test multiple sources of indices 
during index insurance design and operation.  

                                                           
13 Moran’s I measures the spatial autocorrelation of a dataset that helps to identify how an object is similar 
to others surrounding it.  
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Moreover, within the framework of our study we have developed two R‐packages, namely “climate‐
insurance” and web platform “Climate Insurance Design and Performance Analysis”, which help to 

rapidly design index insurance and to analyze the performance of index insurance using multiple 
statistical indicators. Since a web platform does not require any knowledge of statistics and only 
requires users to enter the data, we hope that it will ease further dissemination and implementation 

of index insurance for non‐scientists who are in interested in the field of index insurance. 

 

  



69 
 

5. General concluding remarks and perspectives for future research 

5.1. Summary of main findings 

In general, weather extremes caused by climate change, which have occurred in the last decades 
have significantly affected the socio‐economy of the region. Due to this, the governments of all 

countries are interested in introducing agricultural insurance schemes and have already initiated 
various activities towards this goal. However, the realization and dissemination of such plans are 

hindered by the high cost of traditional insurance and issues related to information asymmetry. In‐
troducing index insurance in the region may assist in mitigating issues related to price and infor‐
mation asymmetry and secure agricultural producers against unexpected weather extremes. How‐

ever, long‐term and accurate weather data is required to design index insurance products and min‐
imize the basis risk. Spatial analyses show that the density of weather stations in the region is insuf‐

ficient to monitor weather variation in croplands and establish index insurance products in the vast 
majority of croplands in the region. Therefore, within the framework of this dissertation, the poten‐

tial and feasibility of satellite‐based data for index insurance development and implementation in 
the region have been investigated. 

In the second chapter, the performance of satellite‐based weather data to measure temperature 
and precipitation and their ability to detect extreme weather events has been studied. Our analysis 

indicates that selected satellite sources may provide the necessary data for an accessible and ade‐
quate climate service to develop and implement index insurance in the region. However, a consid‐

erable risk of overestimation and underestimation depending on the source of satellite data may 
exist, especially for precipitation data in the conditions of arid zones. Among the tested datasets, 

GSMaP showed a relatively better performance than CHIRPS in precipitation estimation for drought 
and flood detection. In order to reduce detection inaccuracy, the application of satellite weather 
products for index insurance is possible when temporal aggregation (e.g., monthly, seasonal) is con‐

sidered.  

In the third chapter, the potential accuracy gains from land‐use classification that allow designing 

indices specifically for croplands and wheatlands have been analyzed. Moreover, the performance 
of less‐recognized compared with well‐known satellite‐based indices to detect the variation of 

wheat yield in various farming systems was tested. The results show that the majority of selected 
indices are suitable for detecting wheat yield variations in rainfed and mixed agricultural lands, alt‐

hough they remain ambiguous for irrigated lands. Land‐use classification and the design of indices 
based on croplands and wheatlands noticeably increase the relationship between indices and wheat 

yields in rainfed and mixed lands. Notably, the LAI and GCI outperform other well‐known indices in 
detecting wheat yield variation.  

In the fourth chapter, the effect of index insurance contracts based on spatially downscaled climate 
data for hedging crop yield has been investigated. Climate data with spatially coarse‐resolution have 

been downscaled using finer‐resolution satellite‐based data and machine learning algorithms. The 
results show that in most cases (70%), the hedging effectiveness of index insurances increases when 
climate data is spatially downscaled. These improvements are statistically significant (p≤0.05). 
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Among other climate data, more improvements in hedging effectiveness have been observed when 
the insurance design is based on downscaled temperature and precipitation data. 

 

5.2. Conclusions, policy implications and further research 

Rising climate variability and unpredictability caused by climate change have been determined as 

key limitations for agricultural production and food security. To reduce climate‐related risks for ag‐
ricultural producers, index insurance could efficiently transfer risks from farmers to insurance com‐

panies. So far, in Central Asia and Mongolia, only limited research on index insurance has been con‐
ducted, which means that government policymakers and insurance companies still have a relatively 

low comprehension of index insurance. Moreover, farmers in the region also have a significant lack 
of awareness of how index insurance could assist them in mitigating and managing climate‐related 

financial losses. This study illustrates the potential and feasibility of various index insurance products 
in many crop‐growing regions of Central Asia and Mongolia. In general, the findings of this study are 

essential for improving the index insurance know‐how of policymakers, insurance companies and 
farmers in the region. 

The lack of high‐quality weather and yield data is a dominant limiting factor for introducing and 
implementing index insurance in developing countries, which is also true for Central Asia and Mon‐
golia. Therefore, the findings of this study are also relevant for insurance companies and interna‐

tional research communities, as they demonstrate the applicability of satellite‐based data sources 
for index insurance design and operation in the region. Generally, satellite‐based weather and veg‐

etation data could serve as a good source to establish index insurance products in the region. Nev‐
ertheless, a careful assessment and selection of index, temporal aggregation, and land use classifi‐

cation by insurance companies remain essential. This study demonstrates that these criteria are 
sometimes regional specific and may differ significantly. The positive results from testing various 

less‐known satellite‐based data in the index insurance industry can encourage international re‐
search communities to discover and test other alternative satellite‐based data sources to design and 

establish more accurate and reliable index insurance products. Moreover, this study highlights the 
reasonability and the benefits of downscaling climate data for insurance design and operation that 

needs to be taken into consideration by researchers and insurance companies in data‐limited re‐
gions worldwide. 

Index insurance is suggested as a solution for managing climate variability in agricultural production 
under climate change. However, this study highlights that there is lack of correlation between vari‐
ous indices and crop yield in some areas. In those areas, index insurance might not be a feasible 

solution to mitigate climate variability. Thus, in addition to index insurance, it would be more effi‐
cient and successful if policymakers also focused on alternative nature‐based risk‐management and 

climate adaptation solutions such as crop diversification, improving water‐use efficiency, zero/re‐
duced tillage farming, etc.  

Moreover, within the framework of this dissertation, three web platforms and one R‐package have 
been developed, which may help researchers and insurance companies to rapidly obtain satellite‐
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based data and design index insurance as well as analyze the performance of index insurance using 
multiple statistical indicators. Since web platforms do not require any knowledge of remote sensing 

and statistics and only require users to enter the data, there is hope that they will ease further dis‐
semination and implementation of index insurance by insurance companies. Moreover, there is 
hope that the novel functions of these web platforms, such as data extraction only from croplands 

and analyzing the performance of index insurance products, will further disseminate the finding and 
outputs of this dissertation.   

It is important to note that this study is limited to areas located in the arid and semi‐arid climatic 
zones of Central Asia and Mongolia. It would also be interesting to investigate the accuracy and 

performance of this and other satellite‐based data in similar and other climatic zones of neighboring 
countries. Moreover, within this study, the district/county scale crop yield data has been employed 

that may induce an aggregation bias, which means farm‐level risks are likely underestimated. It 
would also be interesting to analyze the relationship between indices and crop yields at village or 

farm scale. Specifically, village and farm‐scale yield data could be based on ground‐level sensors 
from combine harvesters. This would allow for a deeper investigation of the capacity of satellite 

data for index insurance development and implementation. Furthermore, with sufficient infor‐
mation about crop‐cultivated areas, crop diversity, crop quality, fertilizers and re‐seeding data, it 

would also be interesting to examine the effects of these factors on the performance of satellite‐
based index insurance for climate risk reduction in the region. 
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Appendix 

Appendix 1: Mapping weather risk:  A multi-indicator analysis of satellite-based weather 
data for agricultural index insurance development in semi-arid and arid zones of Central 
Asia14 

 

Appendix 1.1: Distance from meteorological station to crop fields 

The figure also demonstrates the distance from the cropland to the station where non‐active sta‐

tions were removed from the dataset. There are 252 active stations with various historical records 
in Central Asia, and the majority of the active stations are located in croplands. Nevertheless, as it 

is demonstrated in Figure A.1.1.1, the diversity of stations is very low: only 0.4% of croplands are 
located within a 5‐kilometer distance to a station, 1.1% of croplands are located within a 5‐ to 10‐

kilometre distance, 1.7% of croplands are located within a 1‐ to 15‐kilometre distance, and 2.2% of 
croplands are located within a 15‐to 20‐kilometre distance to stations. 

 

Figure A.1.1.1. Percentage of cropland located at different distances from meteorologi-

cal stations. Source: author’s calculation 

 

Appendix 1.2: Literature review on application of satellite-based land cover data 

Hochrainer‐Stigler et al. (2014) have explored the applicability and usefulness of index insurance for 

smallholder farmers in North Shewa, Ethiopia. They found a satisfactory relationship between NOAA 
Advanced Very High Resolution Radiometer (NOAA AVHRR)‐based Vegetation Health Index (VHI) 

and crop yield that allows for the identification of trigger points for claim payments and premium 

                                                           
14 This appendix was published as part of the following open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, 
L., Glauben, T. (2021): Mapping weather risk – A multi‐indicator analysis of satellite‐based weather data for 
agricultural index insurance development in semi‐arid and arid zones of Central Asia. Climate Service, 23, 
100251. https://doi.org/10.1016/j.cliser.2021.100251  
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calculation on a promotion and protection‐level. Bokusheva et al. (2016) have analyzed the applica‐
bility of NOAA AVHRR‐based Vegetation Condition Index (VCI) and Temperature Condition Index 

(TCI) to insure yield losses of wheat‐producing farms in Kazakhstan; they employed different capula 
approaches and concluded that VH indices can be a solid basis for detecting drought‐related yield 
losses and implementing index insurance on a district scale. Sinha & Tripathi (2016) have investi‐

gated the usefulness of hybrid satellite agriculture drought indices to improve rice index insurance 
in Thailand; they combined LANDSAT‐based Normalized Difference Vegetation Index (NDVI), Land 

Surface Temperature (LST) and Temperature Vegetation Index (TVI) to produce a unique hybrid in‐
dex and identified significant potential to assess drought impact on a district scale when there is a 

shortage of long‐term historical data. Flatnes & Carter (2016) have used plot‐level rice yields in Tan‐
zania to analyze the efficiency contract, by using a Moderate Resolution Imaging Spectroradiometer 

(MODIS)‐based NDVI‐based index insurance as a primary index which also contains the possibility 
for famers to request an audit if the primary index fails to predict yields; according to the results, by 

using this method it is possible to eliminate design risk at a very modest cost, which is useful for the 
future of index‐based insurance in developing countries. Coleman et al. (2018) have used village‐

scale groundnut, millet and maize yield data in Senegal to review and examine the applicability and 
ways of using European Remote Sensing (ERS)‐based Soil Moisture, METOP Advanced Scatterome‐

ter (ASCAT)‐based Soil Water Index (SWI), MODIS‐based Actual Evapotranspiration (ETa), METE‐
OSAT‐based Relative Evapotranspiration (ETr), SPOT/PROBA‐based NDVI and SPOT/PROBA‐based 
Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) in designing index insurance; they 

concluded that satellites are operationally feasible for agricultural index insurance and developed 
several recommendations to deal with challenges and improve the quality of the index insurance. 

Osgood et al. (2018) have tested the cross‐consistency of community‐level farmers‐reported 
drought years in Ethiopia against independent satellite data sources such as MODIS‐NDVI, MODIS‐

based Enhanced Vegetation Index (EVI), The Atmosphere Land Exchange Inverse (ALEXI)‐based 
Evapotranspiration (ET), and European Space Agency (ESA)‐based Soil Moisture; they found evi‐

dence that events reported by farmer are independently reflected in satellite datasets. Eze et al. 
(2020) have examined MODIS‐NDVI to design area‐specific yield index insurance in Ethiopia; their 

results demonstrated that designed indexes performed very well when payout conditions were eval‐
uated in recent drought years. 

 

Appendix 1.3: Need for satellite weather data usage 

Introducing low‐cost insurance schemes like index insurance or other types of agricultural index‐
based insurances in the region would help to make small farmers more resilient to climate variabil‐

ities and uncertainties.  A variable and unpredictable climate significantly restricts the options of 
farmers and so limits their development (Rao, 2011). As farmers avoid taking risks, there is a possi‐

bility of weather shocks. Moreover, creditors are also uneasy to lend if droughts or floods could 
cause widespread defaults, and when farmers are not insured. For farmers, not having access to 

credits critically limits their use of agricultural inputs and technologies. Even if a drought or flood 
happens only once in five or six years, the threat of the phenomenon is sufficient to slow down the 
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economic development and wealth growth in all those years. Therefore, based on our study, we 
recommend the implementation of satellite‐based index insurance in the regions, which might solve 

some of the existing issues for farmers regarding credits and investment into improved seeds and 
fertilizers. Using satellite products for design and implementation will significantly lower the price 
of the insurance and decrease the issues related to weather data, as weather data is an essential 

component of index insurance design and its sustainability. Moreover, satellite‐based index insur‐
ance will improve the information asymmetry between the insurance company and the insured 

farmer, as none of them can influence the pre‐defined index. This minimizes adverse selection and 
problems of moral peril frequently encountered in traditional agricultural insurances (Fisher et al., 

2019; World Bank, 2015). In addition, there is a great basis risk when the density of stations is very 
low, as is the case in Central Asia. Using satellite‐based weather data for index insurance design will 

minimize the basis risk. Employing satellite‐based weather data will also significantly reduce product 
and administrative costs, which offers the potential for lower premiums, as satellite‐based weather 

data is free of charge, and index insurance does not require field visits to assess losses reported by 
farmers.  

 

Appendix 1.4: Location of selected meteo stations  

The agro‐climatic class of the locations was identified according to De Pauw (2008); accordingly, 
stations are located either in arid or semi‐arid agro‐climatic zones. All data has been received in 

paper form and manually digitized. 

Table A.1.4.1: List and details of meteorological stations   

Name Province Country Latitude Longitude Elevation Agro-climatic 
Zone 

Djizzakh Djizzakh Uzbekistan 40.117 67.833 345 SA‐C‐W15 
Gallaral Djizzakh Uzbekistan 40 67.6 571 SA‐K‐W16 
Lalmikor Djizzakh Uzbekistan 39.9 67.5 744 SA‐K‐W16 

Samarkand Samarkand Uzbekistan 39.57 66.95 485 SA‐C‐W15 
Karshi Kashkadarya Uzbekistan 38.8 65.717 376 A‐K‐VW17 

Takhtakupir Karakalpakstan 
Republic Uzbekistan 43.01 60.27 59 A‐K‐W18 

 

 

Appendix 1.5: Review of existing globally available precipitation data 

Every satellite‐based precipitation estimate (SPE) product has its own advantages and disadvantages 
in terms of accuracy, near‐real time data availability, spatial resolution, temporal resolution, histor‐

ical time coverage, land surface coverage, complexity of acquisition and processing of the satellite 
data. For the most part, weather data from satellite products is freely available in 5 to 50 kilometre 

                                                           
15SA‐C‐W:  Semi‐arid, cool winter, warm summer 
16SA‐K‐W:  Semi‐arid, cold winter, warm summer 
17A‐K‐VW: Arid, cool winter, very warm summer 
18A‐K‐W:  Arid, cool winter, warm summer 
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spatial resolution and in daily, decadal, monthly, seasonal and annual scales. For example, the Trop‐
ical Application of Meteorology Using Satellite Data (TAMSAT) produces daily rainfall estimates for 

the entire African continent at 4 km spatial resolution, and its archive spans a period from 1983 to 
the delayed present (Maidment et al., 2014; Tarnavsky et al., 2014). The NOAA‐based African Rain‐
fall Climatology Version 2 (ARC2) consist of daily rainfall estimates from 1983 to nearly real time at 

0.1o spatial resolution for the whole African continent (Novella and Thiaw, 2012). The Historical Da‐
tabase for Gridded Daily Precipitation Dataset over Latin America (LatAmPrec) provides daily rainfall 

estimates for the entire South American continent at 0.25o spatial resolution, and has a temporal 
coverage from 2000 to the near present (Vila et al., 2009). The Tropical Rainfall Measuring Mission 

(TRMM) generates 3‐hourly rainfall estimates from 2000 to the near present at 0.25o spatial resolu‐
tion for the latitudes 60S ‐ 60N (Kummerow et al., 2000).  The Precipitation Estimation from Re‐

motely Sensed Information using Artificial Neural Networks ‐ Cloud Classification System (PER‐
SIANN‐CCS) contains daily rainfall estimates from 1983 until the near present at 0.25o spatial reso‐

lution for the latitudes 60S ‐ 60N (Ashouri et al., 2014; Sorooshian et al., 2000). The NOAA CDR 
Climate Prediction Center morphing technique (CMORPH) produces daily rainfall estimates for the 

latitudes 60S ‐ 60N from 2002 to the present at a 30‐minute temporal resolution and 0.07o spatial 
resolution. The Global Precipitation Climatology Project (GPCP) provides monthly rainfall estimates 

from 1979 to the delayed present for the whole world, at 2.5o spatial resolution (Huffman et al., 
1997). The CPC Merged Analysis of Precipitation (CMAP) produces monthly and pentadal rainfall 
estimates at 2.5o spatial resolution from 1978 to the delayed present for the whole world (Xie and 

Arkin, 1997) . The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) provides 
semi‐global daily, pentadal, decadal and monthly rainfall estimates, covering the 50°S‐50°N latitudes 

at 0.05o spatial resolution from 1981 to the near present (Funk et al., 2015). The Global Satellite 
Mapping of Precipitation (GSMaP) generates global 1‐hourly precipitation estimates at 0.1o spatial 

resolution from 2000 to near real time (Ushio et al., 2009). 

 

Appendix 1.6:  Satellite Remote Sensing data acquisition, online free platform 

One of the main disadvantages of using satellite products in index insurance is the fact that acquisi‐

tion and processing of satellite products require special technical skills that are highly problematic 
for the insurance market. In this study, we therefore aimed to develop a user‐friendly web platform 

which allows obtaining data from satellite products for everyone who has an access to the internet. 
In order to obtain CHIRPS, GSMaP and GLDAS data on a daily scale, we developed an algorithm and 

programmed one unique automatic web platform using the Google Earth Engine (GEE). GEE is an 
open source platform for satellite imagery analysis and geospatial datasets on a planetary scale. GEE 

aims to increase quality and time efficiency of spatial analyses for research, business and govern‐
ment users (Gorelick et al., 2017). This platform allows for satellite image analysis in the cloud sys‐

tem of the server, which in turn allows for the minimalization of several steps in satellite image 
analyses and the production of final outputs.  
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Figure A.1.6.1: Flowchart of the developed automatic web platforms for extracting daily 

remote sensing data from (a) CHIRPS, (b) GSMaP and (c) GLDAS. Source: Authors’ own 

presentations  

Figure demonstrates the algorithm for how data is obtained from existing daily GSMaP precipitation 

data from original hourly data, daily GLDAS maximum temperature (Tmax) and minimum tempera‐
ture (Tmin) data from original 3‐hourly data, and CHIRPS data originally in daily scale. 

A web platform was developed for an automatic point scale daily data acquisition process and to be 
made available for interested parties in open access, as it does not require any knowledge of remote 

sensing data acquisition and processing. The web platform requires the user to enter a time period 
and the desired coordinates. The coordinates can be inserted by entering them manually or by click‐
ing the area of interest on the map. The web platform produces the daily GSMaP precipitation data 

from the original hourly data, daily GLDAS maximum temperature (Tmax) and minimum tempera‐
ture (Tmin) data from the original 3‐hourly data, and CHIRPS data originally in daily scale. The GLDAS 

air temperature data are originally in Kelvin units. The unit was converted to Celsius to be in line 
with the meteorological data. Decadal and monthly data were produced from daily data.   
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Appendix 1.7: Visualization of monthly precipitation and temperature data for remain-

ing 5 stations.  

 

 

Figure A.1.7.1: Monthly precipitation by stations, GSMaP and CHIRPS in selected loca-

tions (a) Gallaral, (b) Lalmikor, (c) Samarkand, (d) Karshi and (e) Takhtakupir 
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Figure A.1.7.2: Decadal precipitation by stations vs GSMaP and CHIRPS in selected loca-

tions  
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Figure A.1.7.3: Monthly average Tmax and Tmin by stations and GLDAS in selected loca-

tions (a) Gallaral, (b) Lalmikor, (c) Samarkand, (d) Karshi and (e) Takhtakupir 
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Figure A.1.7.4: Decadal precipitation by stations vs GLDAS Tmax and Tmin in selected lo-

cations  
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Appendix 1.8: Results of accuracy assessment for decadal precipitation measurements 

 

Table A.1.8.1: Accuracy assessment of continuous decadal precipitation in selected loca-

tions (March 2000-December 2017) 

 Djizzakh  Gallaral  Lalmikor  Samarkand  Karshi  Takhtakupir  Average 
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BIAS 1.17 0.89  1.19 0.90  1.16 0.88  1.24 0.87  1.40 1.02  1.26 0.91  1.24 0.91 
CSI 0.84 0.89  0.83 0.86  0.86 0.86  0.81 0.86  0.71 0.91  0.72 0.82  0.80 0.87 
POD 1.00 0.89  1.00 0.88  1.00 0.87  1.00 0.87  1.00 0.97  0.95 0.86  0.99 0.89 
FAR 0.15 0.00  0.16 0.02  0.14 0.01  0.19 0.01  0.29 0.05  0.25 0.05  0.20 0.02 
PBIAS ‐14.2 10.60  ‐9.10 18.00  ‐18.9 4.00  ‐12.90 4.90  ‐6.80 28.5  ‐13.9 9.50  ‐12.63 12.58 
MBE ‐4.68 3.50  ‐2.79 5.52  ‐6.48 1.37  ‐3.81 1.46  ‐1.22 5.11  ‐1.41 0.96  ‐3.40 2.99 
MAE 6.45 10.37  7.77 11.74  9.25 10.93  6.27 8.33  3.69 6.97  4.15 4.86  6.26 8.87 
RMSE 11.13 15.76  12.37 16.98  14.11 15.71  10.64 12.77  6.59 11.6  7.58 7.26  10.41 13.34 
SC 0.97 0.92  0.94 0.91  0.95 0.91  0.98 0.94  0.96 0.95  0.84 0.84  0.94 0.91 
PC 0.96 0.90  0.93 0.88  0.93 0.89  0.95 0.92  0.96 0.91  0.79 0.80  0.92 0.88 
R2 0.93 0.81  0.86 0.78  0.87 0.79  0.91 0.84  0.92 0.84  0.63 0.65  0.85 0.78 
p 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
d 0.97 0.94  0.96 0.93  0.95 0.94  0.97 0.96  0.97 0.94  0.88 0.88  0.95 0.93 
LEPS 0.05 0.08  0.06 0.09  0.07 0.09  0.04 0.07  0.04 0.06  0.10 0.13  0.06 0.09 
 

 

 

Table A.1.8.2: Accuracy assessment of continues decadal average temperature in se-

lected locations (January 2000 – December 2017) 

 Djizzakh  Gallaral  Lalmikor  Samarkand  Karshi  Takhtakupir  Average 
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BIAS 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
CSI 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
POD 1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
FAR 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
PBIAS 3.40 4.60  2.80 28.60  1.30 ‐11.6  ‐3.70 2.20  0.20 11.6  ‐0.70 58.7  0.55 15.68 
MBE 0.73 0.43  0.58 1.86  0.26 ‐1.03  ‐0.81 0.20  0.04 1.21  ‐0.13 3.39  0.11 1.01 
MAE 1.26 1.41  1.12 2.40  1.09 1.53  1.46 1.18  1.02 2.07  0.92 3.44  1.14 2.00 
RMSE 1.57 1.76  1.43 3.03  1.41 2.02  1.89 1.58  1.31 2.46  1.22 4.02  1.47 2.48 
SC 0.99 0.98  0.99 0.96  0.99 0.98  0.99 0.98  0.99 0.97  1.00 0.98  0.99 0.98 
PC 0.99 0.98  0.99 0.96  0.99 0.98  0.99 0.98  0.99 0.97  1.00 0.98  0.99 0.98 
R2 0.99 0.97  0.99 0.93  0.98 0.96  0.98 0.97  0.99 0.95  0.99 0.96  0.99 0.95 
p 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
d 1.00 0.99  1.00 0.97  1.00 0.99  0.99 0.99  1.00 0.98  1.00 0.96  1.00 0.98 
LEPS 0.04 0.05  0.03 0.08  0.03 0.05  0.04 0.04  0.03 0.07  0.02 0.09  0.03 0.06 
NSE 0.98 0.95  0.98 0.86  0.98 0.94  0.97 0.96  0.99 0.92  0.99 0.86  0.98 0.91 
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Figure A.1.8.3: Average results of classification, quantitative and agreement accuracy 

metrics of decadal precipitation for all stations, by (a) GSMaP and (b) CHIRPS 

 

 

 

Figure A.1.8.4: Average results of classification, quantitative and agreement accuracy 

metrics of decadal temperature for all stations, for (a) GLDAS Tmax and (b) GLDAS Tmin
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Appendix 1.9: Visualization of quantile regressions results for GSMaP, CHIRPS and 

GLDAS in selected locations 

 

  

Figure A.1.9.1: Estimated results of quantile regressions for GSMaP and CHIRPS for re-

maining 5 stations (monthly scale) 
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Table A.1.9.2: Quantile regression results of satellite-based precipitation estimates for 

remaining 5 stations (monthly scale) (n = 214) 

  OLS 0.5 0.1 0.25 0.5 0.75 0.9 0.95 

Gallaral‐
GSMaP 

Coef. 1.063*** 0.684*** 0.728*** 0.902*** 1.044*** 1.268*** 1.488*** 1.541*** 
SE ‐0.029 ‐0.077 ‐0.037 ‐0.024 ‐0.029 ‐0.041 ‐0.053 ‐0.088 

R2/pR2 0.861 0.359 0.474 0.621 0.690 0.702 0.712 0.713 

Gallaral‐
CHIRPS 

Coef. 0.833*** 0.461*** 0.499*** 0.602*** 0.808*** 1.007*** 1.153*** 1.171*** 
SE ‐0.03 ‐0.043 ‐0.03 ‐0.03 ‐0.03 ‐0.046 ‐0.071 ‐0.072 

R2/pR2 0.779 0.280 0.371 0.507 0.594 0.615 0.634 0.651 

Lalmikor‐
GSMaP 

Coef. 1.120*** 0.805*** 0.839*** 0.998*** 1.181*** 1.333*** 1.420*** 1.516*** 
SE ‐0.030 ‐0.048 ‐0.045 ‐0.035 ‐0.025 ‐0.037 ‐0.073 ‐0.159 

R2/pR2 0.871 0.436 0.528 0.646 0.711 0.701 0.666 0.641 

Lalmikor‐
CHIRPS 

Coef. 0.891*** 0.539*** 0.570*** 0.695*** 0.912*** 1.098*** 1.166*** 1.237*** 
SE ‐0.031 ‐0.042 ‐0.043 ‐0.025 ‐0.034 ‐0.046 ‐0.1 ‐0.103 

R2/pR2 0.795 0.350 0.410 0.548 0.611 0.607 0.590 0.584 

Samarkand‐
GSMaP 

Coef. 1.105*** 0.801*** 0.831*** 0.920*** 1.127*** 1.327*** 1.519*** 1.579*** 
SE ‐0.024 ‐0.033 ‐0.018 ‐0.022 ‐0.023 ‐0.022 ‐0.066 ‐0.06 

R2/pR2 0.909 0.607 0.647 0.711 0.766 0.785 0.776 0.777 

Samarkand‐
CHIRPS 

Coef. 0.940*** 0.478*** 0.573*** 0.718*** 0.979*** 1.137*** 1.220*** 1.307*** 
SE ‐0.028 ‐0.047 ‐0.042 ‐0.029 ‐0.031 ‐0.03 ‐0.041 ‐0.061 

R2/pR2 0.842 0.306 0.392 0.555 0.660 0.718 0.746 0.749 

Karshi‐
GSMaP 

Coef. 1.059*** 0.723*** 0.785*** 0.924*** 1.062*** 1.181*** 1.335*** 1.614*** 
SE ‐0.022 ‐0.038 ‐0.043 ‐0.025 ‐0.014 ‐0.019 ‐0.085 ‐0.122 

R2/pR2 0.916 0.459 0.532 0.674 0.786 0.799 0.755 0.720 

Karshi‐
CHIRPS 

Coef. 0.792*** 0.404*** 0.416*** 0.594*** 0.771*** 0.984*** 1.122*** 1.186*** 
SE ‐0.024 ‐0.031 ‐0.038 ‐0.026 ‐0.021 ‐0.026 ‐0.041 ‐0.054 

R2/pR2 0.835 0.287 0.356 0.530 0.682 0.727 0.733 0.729 

Takhtakupir
‐GSMaP 

Coef. 0.926*** 0.524*** 0.614*** 0.761*** 0.956*** 1.197*** 1.260*** 1.088 
SE ‐0.049 ‐0.074 ‐0.042 ‐0.03 ‐0.033 ‐0.056 ‐0.126 ‐0.553 

R2/pR2 0.626 0.166 0.288 0.435 0.521 0.522 0.460 0.358 

Takhtakupir
‐CHIRPS 

Coef. 0.990*** 0.470*** 0.431*** 0.621*** 0.849*** 1.083*** 1.312*** 1.550*** 
SE ‐0.05 ‐0.047 ‐0.048 ‐0.062 ‐0.046 ‐0.054 ‐0.157 ‐0.296 

R2/pR2 0.647 0.079 0.154 0.301 0.458 0.523 0.502 0.468 
Coef. = Coefficient; SE = standard error; R2 = R‐square for OLS; pR2 = pseudo R‐square for quantiles; * p<0.05, 

** p<0.01, *** p<0.001 
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Figure A.1.9.3: Estimated results of quantile regressions for GSMaP and CHIRPS in se-

lected locations (decadal scale)
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Table A.1.9.4: Quantile regression results of satellite-based precipitation estimates for 

the selected stations (decadal scale) (n = 642) 

  OLS 0.5 0.1 0.25 0.5 0.75 0.9 0.95 

Djizzakh‐
GSMaP 

Coef. 1.165*** 0.805*** 0.835*** 0.980*** 1.13*** 1.299*** 1.478*** 1.612*** 
SE 0.014 0.064 0.028 0.040 0.026 0.029 0.035 0.189 

R2/pR2 0.906 0.335 0.467 0.627 0.761 0.799 0.787 0.760 

Djizzakh‐
CHIRPS 

Coef. 0.885*** 0.166** 0.333*** 0.515*** 0.798*** 1.065*** 1.335*** 1.376*** 
SE 0.023 0.060 0.069 0.039 0.028 0.046 0.128 0.115 

R2/pR2 0.693 0.043 0.111 0.305 0.504 0.568 0.542 0.539 

Gallaral‐
GSMaP 

Coef. 1.0458*** 0.365*** 0.578*** 0.807*** 1.054*** 1.343*** 1.489*** 1.577*** 
SE 0.019 0.083 0.056 0.045 0.036 0.043 0.071 0.124 

R2/pR2 0.827 0.175 0.282 0.474 0.638 0.694 0.705 0.700 

Gallaral‐
CHIRPS 

Coef. 0.831*** 0.088* 0.241*** 0.458*** 0.747*** 1.068*** 1.246*** 1.322*** 
SE 0.022 0.052 0.056 0.037 0.031 0.033 0.076 0.125 

R2/pR2 0.682 0.026 0.092 0.272 0.473 0.547 0.550 0.554 

Lalmikor‐
GSMaP 

Coef. 1.122*** 0.47*** 0.624*** 0.906*** 1.14*** 1.439*** 1.572*** 1.738*** 
SE 0.02 0.059 0.075 0.041 0.032 0.049 0.118 0.184 

R2/pR2 0.826 0.218 0.309 0.494 0.643 0.687 0.680 0.674 

Lalmikor‐
CHIRPS 

Coef. 0.925*** 0.182*** 0.324*** 0.581*** ***0.864 1.164*** 1.300*** 1.334*** 
SE 0.023 0.050 0.043 0.039 0.034 0.052 0.099 0.127 

R2/pR2 0.719 0.056 0.133 0.319 0.511 0.569 0.553 0.573 

Samarkand‐
GSMaP 

Coef. 1.092*** 0.661*** 0.746*** 0.881*** 1.104*** 1.311*** 1.564*** 1.719*** 
SE 0.017 0.075 0.035 0.025 0.033 0.022 0.063 0.088 

R2/pR2 0.868 0.338 0.447 0.593 0.712 0.763 0.752 0.722 

Samarkand‐
CHIRPS 

Coef. 0.930*** 0.135** 0.253*** 0.573*** 0.894*** 1.174*** 1.297*** 1.259*** 
SE 0.022 0.052 0.038 0.054 0.031 0.038 0.050 0.091 

R2/pR2 0.738 0.028 0.097 0.288 0.522 0.608 0.620 0.617 

Karshi‐
GSMaP 

Coef. 1.059*** 0.413*** 0.58*** 0.857*** 1.058*** 1.186*** 1.554*** 1.726*** 
SE 0.017 0.117 0.057 0.048 0.019 0.024 0.094 0.168 

R2/pR2 0.857 0.143 0.286 0.503 0.701 0.772 0.757 0.730 

Karshi‐
CHIRPS 

Coef. 0.815*** 0.085* 0.187*** 0.399*** 0.771*** 1.034*** 1.216*** 1.387*** 
SE 0.018 0.042 0.048 0.040 0.038 0.036 0.093 0.088 

R2/pR2 0.752 0.003 0.064 0.252 0.515 0.651 0.674 0.672 

Takhtakupir‐
GSMaP 

Coef. 0.933*** 0.077* 0.215* 0.64*** 0.987*** 1.309*** 1.554*** 1.551*** 
SE 0.029 0.034 0.090 0.057 0.070 0.058 0.077 0.078 

R2/pR2 0.624 0.023 0.064 0.260 0.470 0.573 0.551 0.489 

Takhtakupir‐
CHIRPS 

Coef. 0.834***   0.18*** 0.608*** 1.175*** 1.49*** 1.678*** 
SE 0.036   0.043 0.076 0.067 0.084 0.180 

R2/pR2 0.451   0.056 0.234 0.383 0.426 0.425 
Coef. = Coefficient; SE = standard error; R2 = R‐square for OLS; pR2 = pseudo R‐square for quantiles; * p<0.05, 

** p<0.01, *** p<0.001
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Figure A.1.9.5: Estimated results of quantile regressions for GLDAS Tmax and Tmin in se-

lected locations (monthly scale) 
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Figure A.1.9.6: Estimated results of quantile regressions for GLDAS Tmax and Tmin in se-

lected locations (decadal scale) 
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Table A.1.9.7: Estimated results of OLS regressions for GLDAS Tmax and GLDAS Tmin in 

all locations (decadal scale) 

  Djizzakh Gallaral Lalmikor Samarkand Karshi Takhtakupir 

  
GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

GLDAS 
Tmax 

GLDAS 
Tmin 

Coef. 0.948*** 0.901*** 0.982*** 0.888*** 0.983*** 0.983*** 0.938*** 0.916*** 0.946*** 0.898*** 1.015*** 0.984*** 
SE 0.004 0.007 0.004 0.009 0.005 0.008 0.006 0.006 0.004 0.008 0.004 0.008 
R2 0.987 0.965 0.987 0.926 0.984 0.959 0.977 0.969 0.989 0.95 0.992 0.959 

Coef. = Coefficient; SE = standard error; R2 = R‐square for OLS; pR2 = pseudo R‐square for quantiles; * p<0.05, 

** p<0.01, *** p<0.001 

 

Appendix 1.10: Results of accuracy assessment for seasonal precipitation measurements 

 

Figure A.1.10.1: Results of classification, quantitative and agreement accuracy metrics of 

seasonal precipitation for the Djizzakh station, first row is GSMaP and second row is 

CHIRPS (legends are same as in above Figure A.1.7.1) 

 

Table A.1.10.2: Accuracy assessment of continuous decadal and seasonal precipitation at 

the Djizzakh station 

 BIAS CSI POD FAR PBIAS MBE MAE RMSE SC PC R2 p d LEPS 
GSMaP 1.01 0.99 1 0.01 ‐14.2 ‐13.91 622.1 24.94 0.98 0.97 0.93 0.000 0.97 0.07 
CHIRPS 0.9 0.9 0.9 0 10.6 10.41 822.1 28.67 0.96 0.94 0.88 0.000 0.96 0.09 
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Appendix 1.11: Visualization of MDIs and classification accuracy assessment of anomaly 

detection for remaining 5 stations 

 

 

Figure A.1.11.1: Monthly values of Standardized Precipitation Index by stations, GSMaP 

and CHIRPS in selected locations (a) Gallaral, (b) Lalmikor, (c) Samarkand, (d) Karshi and 
(e) Takhtakupir 
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Figure A.1.11.2: Monthly values of Standardized Precipitation-Evapotranspiration Index 

by the combinations of MS & MS, GSMaP & GLDAS and CHIRPS & GLDAS in selected lo-
cations (a) Gallaral, (b) Lalmikor, (c) Samarkand, (d) Karshi and (e) Takhtakupir 
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Table A.1.11.3: Detailed classification accuracy assessment of anomaly detection at 

<10th and <20th (March, April and May) percentiles for drought and >80th and >90th 

(May, September, October) percentiles for flood by GSMaP and CHIRPS at the Djizzakh 

station.  
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Table A.1.11.4: Overall classification accuracy assessment of anomaly detection at <10th 

and <20th (March, April and May) percentiles for drought and >80th and >90th (May, 

September, October) percentiles for flood by GSMaP and CHIRPS for remaining 5 sta-

tions 
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Appendix 2: The role of crop classification in detecting wheat yield variation for index-
based agricultural insurance in arid and semiarid environments19 

Appendix 2.1: Location of croplands and descriptive stations of wheat yield data 

 
Figure A.2.1.1: Location of croplands, wheat cultivated areas and average wheat yield in 
Central Asia and Mongolia. Source: Authors’ presentation based on data from Yu et al. 
(2020) 

                                                           
19 This appendix was published as part of the following open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, 
L., Glauben, T. (2021): The role of crop classification in detecting wheat yield variation for index‐based agri‐
cultural insurance in arid and semiarid environments. Environmental and Sustainability Indicators, 18, 
100250. https://doi.org/10.1016/j.indic.2023.100250 
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Table A.2.1.2: Descriptive statistics of wheat yield data (ton/ha) 

Num-
ber Country Province District Farming 

system 
Period of 
yield data MAX  MEAN MIN SD RSD

(%) 
1 Kazakhstan Akmola Akkol rainfed 2000‐2015 1.27 0.85 0.40 0.26 30.5 
2 Kazakhstan Akmola Arshaly rainfed 2000‐2015 1.26 0.93 0.63 0.20 21.3 
3 Kazakhstan Akmola Astrakhan rainfed 2000‐2015 1.26 0.84 0.39 0.22 26.7 
4 Kazakhstan Akmola Atbasar rainfed 2000‐2015 1.50 0.91 0.51 0.26 28.6 
5 Kazakhstan Akmola Bulandy rainfed 2000‐2015 1.58 0.96 0.63 0.28 28.9 
6 Kazakhstan Akmola Burabay rainfed 2000‐2015 1.79 1.13 0.66 0.29 25.9 
7 Kazakhstan Akmola Egindykol rainfed 2000‐2015 1.20 0.78 0.43 0.22 28.6 
8 Kazakhstan Akmola Enbekshilder rainfed 2000‐2015 1.58 1.09 0.41 0.38 34.6 
9 Kazakhstan Akmola Ereymentau rainfed 2000‐2015 1.14 0.67 0.37 0.22 33.2 

10 Kazakhstan Akmola Esil rainfed 2000‐2015 1.94 0.85 0.31 0.37 43.3 
11 Kazakhstan Akmola Korganzhyn rainfed 2000‐2015 1.04 0.63 0.37 0.21 33.0 
12 Kazakhstan Akmola Sandyktau rainfed 2000‐2015 1.81 1.15 0.75 0.27 23.5 
13 Kazakhstan Akmola Shortandy rainfed 2000‐2015 1.25 0.95 0.42 0.23 24.3 
14 Kazakhstan Akmola Tselinograd rainfed 2000‐2015 1.11 0.83 0.42 0.20 23.7 
15 Kazakhstan Akmola Zerendi rainfed 2000‐2015 2.22 1.20 0.51 0.37 31.1 
16 Kazakhstan Akmola Zhaksy rainfed 2000‐2015 2.04 1.08 0.51 0.39 36.1 
17 Kazakhstan Akmola Zharkayyk rainfed 2000‐2015 1.69 0.88 0.44 0.30 33.9 
18 Kazakhstan Akmola Kokshetau city rainfed 2000‐2015 1.68 0.63 0.16 0.37 59.0 
19 Kazakhstan Akmola Stepnogor city rainfed 2000‐2015 1.16 0.52 0.00 0.36 69.8 
20 Kazakhstan Kostanay Altynsarin rainfed 2000‐2015 1.91 1.15 0.55 0.36 31.4 
21 Kazakhstan Kostanay Amangeldi rainfed 2000‐2015 1.39 0.80 0.35 0.27 33.7 
22 Kazakhstan Kostanay Auliekal rainfed 2000‐2015 1.64 0.88 0.35 0.31 35.2 
23 Kazakhstan Kostanay Denisov rainfed 2000‐2015 1.92 1.08 0.48 0.38 35.6 
24 Kazakhstan Kostanay Fedorov rainfed 2000‐2015 2.29 1.46 1.00 0.34 23.4 
25 Kazakhstan Kostanay Kamysty rainfed 2000‐2015 1.31 0.88 0.34 0.27 31.1 
26 Kazakhstan Kostanay Karabalyk rainfed 2000‐2015 2.01 1.31 0.82 0.32 24.6 
27 Kazakhstan Kostanay Karasu rainfed 2000‐2015 1.97 1.06 0.55 0.35 33.0 
28 Kazakhstan Kostanay Kostanay rainfed 2000‐2015 2.21 1.33 0.82 0.39 29.0 
29 Kazakhstan Kostanay Mendykara rainfed 2000‐2015 1.98 1.29 0.81 0.29 22.7 
30 Kazakhstan Kostanay Nauryzym rainfed 2000‐2015 1.29 0.80 0.29 0.27 34.2 
31 Kazakhstan Kostanay Sarykol rainfed 2000‐2015 2.16 1.28 0.64 0.39 30.6 
32 Kazakhstan Kostanay Taran rainfed 2000‐2015 1.90 1.03 0.52 0.35 33.6 
33 Kazakhstan Kostanay Uzynkol rainfed 2000‐2015 2.06 1.27 0.79 0.35 27.6 
34 Kazakhstan Kostanay Zhangeldin rainfed 2000‐2015 1.25 0.65 0.20 0.24 36.4 
35 Kazakhstan Kostanay Zhitikarin rainfed 2000‐2015 1.18 0.76 0.28 0.23 30.2 
36 Kazakhstan Kostanay Arkalyk city rainfed 2000‐2015 1.60 0.89 0.35 0.31 34.6 
37 Kazakhstan Kostanay Kostanay city rainfed 2000‐2015 1.98 0.75 0.00 0.56 74.5 
38 Kazakhstan N. Kazakhstan Akkayyn rainfed 2000‐2015 2.17 1.46 0.94 0.34 23.6 
39 Kazakhstan N. Kazakhstan Akzhar rainfed 2000‐2015 1.58 1.05 0.57 0.33 31.3 
40 Kazakhstan N. Kazakhstan Ayyrtau rainfed 2000‐2015 2.30 1.26 0.77 0.38 30.2 
41 Kazakhstan N. Kazakhstan Esil rainfed 2000‐2015 2.34 1.44 1.00 0.35 24.0 

42 Kazakhstan N. Kazakhstan Gabil 
Musirepov rainfed 2000‐2015 2.25 1.25 0.72 0.39 31.0 

43 Kazakhstan N. Kazakhstan Kyzylzhar rainfed 2000‐2015 2.37 1.58 1.21 0.34 21.6 
44 Kazakhstan N. Kazakhstan M. Zhambaev rainfed 2000‐2015 2.19 1.44 0.99 0.34 23.6 
45 Kazakhstan N. Kazakhstan Mamlyut rainfed 2000‐2015 2.10 1.43 1.08 0.28 19.8 
46 Kazakhstan N. Kazakhstan Shal.Akyna rainfed 2000‐2015 1.91 1.18 0.78 0.30 25.5 
47 Kazakhstan N. Kazakhstan Taiynsha rainfed 2000‐2015 1.91 1.20 0.57 0.30 25.4 
48 Kazakhstan N. Kazakhstan Timiryazev rainfed 2000‐2015 2.55 1.22 0.76 0.45 36.9 
49 Kazakhstan N. Kazakhstan Ualikhanov rainfed 2000‐2015 1.51 1.01 0.58 0.32 31.5 
50 Kazakhstan N. Kazakhstan Zhambyl rainfed 2000‐2015 1.94 1.23 0.76 0.33 27.2 
51 Kyrgyzstan Chuy Alamudun mixed 2007‐2017 2.95 2.48 1.77 0.46 18.5 
52 Kyrgyzstan Chuy Chui mixed 2007‐2017 2.87 2.46 1.93 0.36 14.5 
53 Kyrgyzstan Chuy Jaiyl mixed 2007‐2017 2.76 2.09 1.09 0.58 27.7 
54 Kyrgyzstan Chuy Kemin mixed 2007‐2017 2.93 2.23 1.42 0.46 20.8 
55 Kyrgyzstan Chuy Moscow mixed 2007‐2017 2.70 2.11 1.18 0.52 24.5 
56 Kyrgyzstan Chuy Panfilov mixed 2007‐2017 2.36 1.92 1.11 0.45 23.4 
57 Kyrgyzstan Chuy Sokuluk mixed 2007‐2017 2.97 2.38 1.48 0.50 21.1 
58 Kyrgyzstan Chuy Ysyk.Ata mixed 2007‐2017 3.30 2.67 1.88 0.42 15.8 
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Table A.2.1.2 (continued) 

59 Mongolia Bulgan Bayan.Agt rainfed 2000‐2018 3.07 1.14 0.08 0.71 62.0 
60 Mongolia Bulgan Bugat rainfed 2000‐2018 2.00 1.25 0.75 0.41 33.0 
61 Mongolia Bulgan Bureghangai rainfed 2000‐2018 1.84 0.94 0.18 0.49 52.4 
62 Mongolia Bulgan Dashinchilen rainfed 2006‐2018 2.72 1.32 0.00 0.89 66.9 
63 Mongolia Bulgan Hangal rainfed 2000‐2018 2.57 1.51 0.72 0.46 30.3 
64 Mongolia Bulgan Hishig.Undur rainfed 2000‐2018 2.67 1.14 0.14 0.68 59.6 
65 Mongolia Bulgan Hutag.Undur rainfed 2000‐2018 1.83 1.16 0.61 0.39 33.6 
66 Mongolia Bulgan Orhon rainfed 2000‐2018 1.91 1.09 0.45 0.37 34.3 
67 Mongolia Bulgan Selenge rainfed 2000‐2018 1.88 1.15 0.80 0.29 24.9 
68 Mongolia Bulgan Teshig rainfed 2000‐2018 1.85 1.26 0.57 0.43 34.0 
69 Mongolia Darhan Uul Hongor rainfed 2009‐2018 1.76 1.14 0.26 0.44 38.8 
70 Mongolia Dornod Halhgol rainfed 2000‐2018 1.86 1.01 0.35 0.49 48.8 
71 Mongolia Dornod Tsagaan Ovoo rainfed 2000‐2018 2.80 1.09 0.00 0.82 74.9 
72 Mongolia Huvsgul Erdenebulgan rainfed 2000‐2018 1.52 0.99 0.29 0.37 37.2 
73 Mongolia Huvsgul Rashaant rainfed 2000‐2018 2.39 1.30 0.31 0.61 47.2 
74 Mongolia Huvsgul Tarialan rainfed 2000‐2018 1.98 1.24 0.52 0.45 36.1 
75 Mongolia Orhon Jargalant rainfed 2000‐2018 3.11 1.55 0.51 0.77 49.4 
76 Mongolia Selenge Altanbulag rainfed 2000‐2018 1.80 1.10 0.39 0.44 40.1 
77 Mongolia Selenge Baruunburen rainfed 2000‐2018 1.60 0.83 0.02 0.48 58.1 
78 Mongolia Selenge Bayangol rainfed 2000‐2018 1.68 0.95 0.12 0.45 46.8 
79 Mongolia Selenge Huder rainfed 2000‐2018 1.72 1.05 0.20 0.38 36.3 
80 Mongolia Selenge Hushaat rainfed 2000‐2018 2.40 1.18 0.15 0.62 52.2 
81 Mongolia Selenge Javhlant rainfed 2000‐2018 1.81 0.99 0.17 0.46 46.5 
82 Mongolia Selenge Mandal rainfed 2000‐2018 1.82 1.08 0.22 0.46 42.5 
83 Mongolia Selenge Orhon rainfed 2000‐2018 1.56 0.89 0.14 0.44 49.8 
84 Mongolia Selenge Orhontuul rainfed 2000‐2018 2.12 1.02 0.19 0.55 54.0 
85 Mongolia Selenge Saihan rainfed 2000‐2018 1.90 1.20 0.20 0.54 44.7 
86 Mongolia Selenge Sant rainfed 2000‐2018 2.15 0.97 0.15 0.64 66.2 
87 Mongolia Selenge Shaamar rainfed 2000‐2018 1.98 0.87 0.27 0.44 51.0 
88 Mongolia Selenge Tsagaannuur rainfed 2000‐2018 2.09 1.27 0.54 0.48 37.6 
89 Mongolia Selenge Tushig rainfed 2000‐2018 2.66 1.42 0.37 0.70 49.1 
90 Mongolia Selenge Yeruu rainfed 2000‐2018 2.11 1.20 0.36 0.49 40.7 
91 Mongolia Selenge Zuunburen rainfed 2000‐2018 1.95 1.23 0.32 0.49 39.9 
92 Mongolia Tuv Argalant rainfed 2000‐2018 2.05 0.91 0.01 0.71 78.2 

93 Mongolia Tuv Bay‐
anchandmani rainfed 2001‐2016 2.00 1.05 0.65 0.39 37.0 

94 Mongolia Tuv Bayantsogt rainfed 2000‐2018 1.60 0.76 0.10 0.50 66.5 
95 Mongolia Tuv Bornuur rainfed 2000‐2018 1.70 0.95 0.01 0.45 47.5 
96 Mongolia Tuv Erdenesant rainfed 2000‐2018 2.12 0.95 0.03 0.61 64.3 
97 Mongolia Tuv Jargalant rainfed 2000‐2018 1.96 0.94 0.20 0.48 51.4 
98 Mongolia Tuv Sumber rainfed 2000‐2018 1.78 1.01 0.09 0.53 52.7 
99 Mongolia Tuv Tseel rainfed 2000‐2018 2.67 1.27 0.08 0.70 55.3 

100 Mongolia Tuv Ugtaal rainfed 2000‐2018 2.16 1.07 0.06 0.76 70.7 
101 Mongolia Tuv Zaamar rainfed 2000‐2018 1.46 0.64 0.07 0.45 69.7 
102 Uzbekistan Djizzakh Arnasai irrigated 2007‐2018 4.55 3.71 2.92 0.53 14.3 
103 Uzbekistan Djizzakh Mirzachol irrigated 2007‐2018 1.85 1.42 0.94 0.33 23.4 
104 Uzbekistan Djizzakh Pakhtakor irrigated 2007‐2018 5.74 3.85 3.10 0.92 23.8 
105 Uzbekistan Djizzakh Zafarabad irrigated 2007‐2018 6.49 5.38 2.75 1.19 22.2 
106 Uzbekistan Djizzakh Zarbdar irrigated 2007‐2018 0.82 0.59 0.09 0.21 36.1 
107 Uzbekistan Kashkadarya Karshi irrigated 2007‐2018 1.35 0.90 0.41 0.27 30.0 
108 Uzbekistan Kashkadarya Kasbi irrigated 2007‐2018 5.76 4.68 4.23 0.48 10.2 
109 Uzbekistan Kashkadarya Mirishkor irrigated 2007‐2018 6.15 5.08 4.64 0.44 8.7 
110 Uzbekistan Kashkadarya Mubarak irrigated 2007‐2018 1.43 0.86 0.14 0.33 38.2 
111 Uzbekistan Kashkadarya Nishan irrigated 2007‐2018 5.26 3.98 2.64 0.65 16.2 
112 Uzbekistan Khorezm Bagat irrigated 2007‐2018 2.76 2.28 1.79 0.30 13.4 
113 Uzbekistan Khorezm Gurlen irrigated 2007‐2018 4.56 3.76 2.73 0.56 14.8 
114 Uzbekistan Khorezm Khanka irrigated 2008‐2016 5.41 2.93 1.98 1.04 35.6 
115 Uzbekistan Khorezm Khazarasp irrigated 2009‐2016 6.10 1.85 1.00 1.89 101.7 
116 Uzbekistan Khorezm Khiva irrigated 2008‐2016 5.70 4.79 4.05 0.58 12.2 
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Table A.2.1.2 (continued) 

117 Uzbekistan Khorezm Kushkupir irrigated 2008‐2016 5.70 4.44 3.78 0.66 14.8 
118 Uzbekistan Khorezm Shavat irrigated 2008‐2016 6.20 5.91 5.23 0.31 5.3 
119 Uzbekistan Khorezm Urgench irrigated 2008‐2016 6.29 5.48 4.23 0.72 13.2 
120 Uzbekistan Khorezm Yangiarik irrigated 2008‐2016 6.50 5.78 2.97 1.11 19.3 
121 Uzbekistan Khorezm Yangibazar irrigated 2008‐2016 8.06 5.09 3.74 1.42 27.9 
122 Uzbekistan Navai Kanimekh irrigated 2008‐2016 6.16 5.17 4.25 0.61 11.9 
123 Uzbekistan Navai Karmana irrigated 2008‐2016 6.02 5.24 4.59 0.47 8.9 
124 Uzbekistan Navai Khatirchi irrigated 2008‐2016 6.20 5.30 4.60 0.54 10.3 
125 Uzbekistan Navai Kiziltepa irrigated 2008‐2016 8.78 6.12 4.94 1.17 19.0 
126 Uzbekistan Navai Navbahor irrigated 2008‐2016 6.84 5.14 4.00 1.01 19.7 
127 Uzbekistan Navai Nurota irrigated 2007‐2017 4.83 4.41 3.73 0.32 7.4 
128 Uzbekistan Djizzakh Djizzakh mixed 2007‐2017 4.95 4.47 3.35 0.44 9.8 
129 Uzbekistan Djizzakh Dustlik mixed 2007‐2017 5.05 4.46 3.65 0.46 10.3 
130 Uzbekistan Kashkadarya Chirakchi mixed 2007‐2017 5.32 4.45 3.78 0.46 10.4 
131 Uzbekistan Kashkadarya Guzar mixed 2007‐2017 4.79 4.42 3.99 0.28 6.3 
132 Uzbekistan Kashkadarya Kamashi mixed 2007‐2017 4.87 4.14 2.88 0.62 15.0 
133 Uzbekistan Kashkadarya Kasan mixed 2007‐2017 4.79 3.99 2.44 0.72 17.9 
134 Uzbekistan Kashkadarya Shakhrisabz mixed 2007‐2017 5.03 4.46 3.63 0.39 8.8 
135 Uzbekistan Kashkadarya Yangibag mixed 2007‐2017 4.80 4.20 2.95 0.52 12.5 
136 Uzbekistan Djizzakh Bakhmal rainfed 2007‐2017 4.81 4.49 3.59 0.36 8.0 
137 Uzbekistan Djizzakh Farish rainfed 2008‐2017 4.65 4.13 3.69 0.28 6.8 
138 Uzbekistan Djizzakh Gallaral rainfed 2008‐2017 6.25 5.01 4.44 0.60 12.0 
139 Uzbekistan Djizzakh Yangiabad rainfed 2008‐2017 5.61 5.34 4.98 0.22 4.1 
140 Uzbekistan Djizzakh Zamin rainfed 2008‐2017 5.62 4.70 3.63 0.58 12.3 
141 Uzbekistan Kashkadarya Dekhkanabad rainfed 2008‐2017 5.70 4.78 1.64 1.25 26.2 
142 Uzbekistan Kashkadarya Kitab rainfed 2008‐2017 4.43 2.09 1.01 0.98 47.0 
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Appendix 2.2: Correlation time series between indices and wheat yield  

Table A.2.2.1: Correlation time series between NDVI and wheat yield per country and 

mask type 
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Table A.2.2.2: Correlation time series between EVI and wheat yield per country and 

mask type 
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Table A.2.2.3: Correlation time series between GCI and wheat yield per country and 

mask type 
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Table A.2.2.4: Correlation time series between Lai and wheat yield per country and mask 

type 
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Table A.2.2.4 (continued) 
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Table A.2.2.5: Correlation time series between LST and wheat yield per country and 

mask type 
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Appendix 2.3: Statistical significance of Wilcoxon test and boxplots 

 

Figure A.2.3.1: Boxplot of correlation coefficients between rainfed wheat yields in Kazakh-

stan and mean/max values of satellite vegetation indices for the entire district area, 

croplands and wheatlands; Note: Statistical significance of Wilcoxon test is indicated by 
following p-values: *p≤0.05, ** p≤0.01, ***p≤0.001 

 

Figure A.2.3.2: Boxplot of correlation coefficients between rainfed wheat yields in Mon-

golia and mean/max values of indices for the entire district area, croplands and wheat-

lands; Note: Statistical significance of Wilcoxon test is indicated by following p-values: 

*p≤0.05, ** p≤0.01, ***p≤0.001 
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Figure A.2.3.3: Boxplot of correlation coefficients between mixed wheat yields in Kyrgyz-

stan and mean/max values of indices for the entire district area, croplands and wheat-

lands; Note: Statistical significance of Wilcoxon test is indicated by following p-values: 

*p≤0.05, ** p≤0.01, ***p≤0.001. 

 

 
Figure A.2.3.4: Boxplot of correlation coefficients between irrigated wheat yields in Uz-

bekistan and mean/max values of indices for the entire district area, croplands and 

wheatlands; Note: Statistical significance of Wilcoxon test is indicated by following p-val-

ues: *p≤0.05, ** p≤0.01, ***p≤0.001 
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Figure A.2.3.5: Boxplot of correlation coefficients between mixed wheat yield in Uzbeki-

stan and mean/max values of indices for entire district area, croplands and wheatlands; 

Note: Statistical significance of Wilcoxon test is indicated by following p-values: *p≤0.05, 

** p≤0.01, ***p≤0.001 

 

 

 
Figure A.2.3.6: Boxplot of correlation coefficients between rainfed wheat yield in Uzbeki-

stan and mean/max values of indices for entire district area, croplands and wheatlands; 

Note: Statistical significance of Wilcoxon test is indicated by following p-values: *p≤0.05, 

** p≤0.01, ***p≤0.001 
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Appendix 3: Improving risk reduction potential of weather index insurance by spatially 
downscaling gridded climate data - a machine learning approach20 

Table A.3.1: Descriptive statistics of spring wheat yield data 

№ Country Province County Period of 
yield obser-
vation 

MAX MEAN MIN STD 

1 Kazakhstan Akmola Akkol 1991‐2015 1.47 0.77 0.33 0.33 
2 Kazakhstan Akmola Arshaly 1991‐2015 1.43 0.90 0.48 2.33 
3 Kazakhstan Akmola Astrakhan 1991‐2015 1.45 0.80 0.36 2.89 
4 Kazakhstan Akmola Atbasar 1991‐2015 1.50 0.85 0.27 3.18 
5 Kazakhstan Akmola Bulandy 1991‐2015 1.72 0.93 0.44 3.21 
6 Kazakhstan Akmola Burabay 1991‐2015 1.79 1.12 0.49 3.18 
7 Kazakhstan Akmola Egindykol 1991‐2015 1.72 0.76 0.32 3.17 
8 Kazakhstan Akmola Enbekshilder 1991‐2015 1.58 0.91 0.17 4.46 
9 Kazakhstan Akmola Ereymentau 1991‐2015 1.56 0.68 0.32 2.89 

10 Kazakhstan Akmola Esil 1991‐2015 1.94 0.77 0.29 3.45 
11 Kazakhstan Akmola Korganzhyn 1991‐2015 1.60 0.62 0.27 2.97 
12 Kazakhstan Akmola Sandyktau 1991‐2015 1.81 1.08 0.59 3.41 
13 Kazakhstan Akmola Shortandy 1991‐2015 1.95 0.96 0.41 3.40 
14 Kazakhstan Akmola Tselinograd 1991‐2015 1.75 0.85 0.42 2.80 
15 Kazakhstan Akmola Zerendi 1991‐2015 2.22 1.12 0.48 3.95 
16 Kazakhstan Akmola Zhaksy 1991‐2015 2.04 0.94 0.31 4.10 
17 Kazakhstan Akmola Zharkayyk 1991‐2015 1.69 0.81 0.22 3.80 
18 Kazakhstan Kostanay Altynsarin 1985‐2015 1.91 1.02 0.37 4.02 
19 Kazakhstan Kostanay Amangeldi 1997‐2015 1.39 0.74 0.18 3.08 
20 Kazakhstan Kostanay Auliekal 1982‐2015 1.64 0.84 0.16 3.63 
21 Kazakhstan Kostanay Denisov 1982‐2015 1.92 0.96 0.13 4.21 
22 Kazakhstan Kostanay Fedorov 1982‐2015 2.29 1.32 0.50 4.30 
23 Kazakhstan Kostanay Kamysty 1982‐2015 1.65 0.85 0.10 3.70 
24 Kazakhstan Kostanay Karabalyk 1982‐2015 2.01 1.22 0.29 4.13 
25 Kazakhstan Kostanay Karasu 1982‐2015 1.97 0.97 0.26 3.96 
26 Kazakhstan Kostanay Kostanay 1982‐2015 2.21 1.23 0.46 4.60 
27 Kazakhstan Kostanay Mendykara 1982‐2015 1.98 1.16 0.35 4.20 
28 Kazakhstan Kostanay Nauryzym 1982‐2015 1.36 0.74 0.15 3.06 
29 Kazakhstan Kostanay Sarykol 1982‐2015 2.16 1.16 0.45 4.17 
30 Kazakhstan Kostanay Taran 1982‐2015 1.90 0.90 0.18 4.00 
31 Kazakhstan Kostanay Uzynkol 1982‐2015 2.06 1.09 0.48 3.74 
32 Kazakhstan Kostanay Zhangeldin 1982‐2015 1.25 0.62 0.11 2.49 
33 Kazakhstan Kostanay Zhitikarin 1982‐2015 1.55 0.75 0.06 3.32 
34 Kazakhstan Kostanay city.Arkalyk 1982‐2015 1.60 0.85 0.33 3.37 
35 Mongolia Bulgan Bayan.Agt 2000‐2018 3.07 1.14 0.08 7.05 
36 Mongolia Bulgan Bugat 2000‐2018 2.00 1.25 0.75 4.12 
37 Mongolia Bulgan Bureghangai 2000‐2018 1.84 0.94 0.18 4.90 
38 Mongolia Bulgan Dashinchilen 2006‐2018 2.72 1.44 0.11 8.19 
39 Mongolia Bulgan Hangal 2000‐2018 2.57 1.51 0.72 4.57 
40 Mongolia Bulgan Hishig.Undur 2000‐2018 2.67 1.14 0.14 6.80 
41 Mongolia Bulgan Hutag.Undur 2000‐2018 1.83 1.16 0.61 3.91 
42 Mongolia Bulgan Orhon 2000‐2018 1.91 1.09 0.45 3.73 
43 Mongolia Bulgan Selenge 2000‐2018 1.88 1.15 0.80 2.86 
44 Mongolia Bulgan Teshig 2000‐2018 1.85 1.26 0.57 4.29 
45 Mongolia Huvsgul Erdenebulgan 2000‐2018 1.52 0.99 0.29 3.68 
46 Mongolia Huvsgul Rashaant 2000‐2018 2.39 1.30 0.31 6.11 
47 Mongolia Huvsgul Tarialan 2000‐2018 1.98 1.24 0.52 4.46 
48 Mongolia Tuv Argalant 2000‐2017 2.05 0.91 0.01 7.13 
49 Mongolia Tuv Bayantsogt 2000‐2017 1.60 0.76 0.10 5.03 

                                                           
20 This appendix was published as part of the following open‐access article: Eltazarov, S., Bobojonov, I., Kuhn, 
L., Glauben, T. (2023): Improving risk reduction potential of weather index insurance by spatially downscal‐
ing gridded climate data ‐ a machine learning approach. Big Earth Data. 
https://doi.org/10.1080/20964471.2023.2196830 
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Table A.3.1 (continued) 

50 Mongolia Tuv Bornuur 2000-2017 1.70 0.95 0.01 4.52 
51 Mongolia Tuv Erdenesant 2000‐2018 2.12 0.95 0.03 6.11 
52 Mongolia Tuv Jargalant 2000‐2017 1.96 0.94 0.20 4.81 
53 Mongolia Tuv Sumber 2000‐2017 1.78 1.01 0.09 5.34 
54 Mongolia Tuv Tseel 2000‐2017 2.67 1.27 0.08 7.04 
55 Mongolia Tuv Ugtaal 2000‐2017 2.16 1.07 0.06 7.55 
56 Mongolia Tuv Zaamar 2000‐2017 1.46 0.64 0.07 4.45 

  

 

Table A3.2: Cross validation of RF estimated climate data for each month for study site 

in Kazakhstan 

Date 
Precipitation  Temperature  Soil moisture 

cor rmse pbias  cor rmse pbias  cor rmse pbias 
June, 1982 0.99 0.58 1.40  0.99 0.058 0.20  0.99 0.000569 0.30 
July, 1982 0.99 0.58 1.10  0.99 0.057 0.20  0.99 0.000582 0.30 
June, 1983 0.99 0.58 1.20  0.99 0.059 0.30  0.99 0.000575 0.30 
July, 1983 0.99 0.57 1.30  0.99 0.057 0.20  0.99 0.000577 0.30 
June, 1984 0.99 0.59 1.10  0.99 0.057 0.30  0.99 0.000575 0.30 
July, 1984 0.99 0.57 1.60  0.99 0.057 0.20  0.99 0.000583 0.30 
June, 1985 0.99 0.58 1.50  0.99 0.058 0.30  0.99 0.000577 0.30 
July, 1985 0.99 0.58 0.70  0.99 0.058 0.20  0.99 0.000577 0.30 
June, 1986 0.99 0.58 1.20  0.99 0.058 0.30  0.99 0.000571 0.20 
July, 1986 0.99 0.58 1.00  0.99 0.058 0.20  0.99 0.000587 0.30 
June, 1987 0.99 0.58 1.90  0.99 0.058 0.30  0.99 0.000579 0.30 
July, 1987 0.99 0.57 0.80  0.99 0.057 0.20  0.99 0.000577 0.30 
June, 1988 0.99 0.57 2.50  0.99 0.057 0.20  0.99 0.000586 0.30 
July, 1988 0.99 0.60 0.70  0.99 0.057 0.20  0.99 0.000583 0.30 
June, 1989 0.99 0.58 1.60  0.99 0.057 0.30  0.99 0.000582 0.30 
July, 1989 0.99 0.58 2.30  0.99 0.058 0.20  0.99 0.000574 0.30 
June, 1990 0.99 0.58 1.30  0.99 0.058 0.20  0.99 0.000583 0.30 
July, 1990 0.99 0.58 0.50  0.99 0.059 0.30  0.99 0.000573 0.20 
June, 1991 0.99 0.57 2.40  0.99 0.058 0.20  0.99 0.000577 0.30 
July, 1991 0.99 0.57 1.00  0.99 0.058 0.20  0.99 0.000573 0.30 
June, 1992 0.99 0.58 0.90  0.99 0.058 0.30  0.99 0.000581 0.20 
July, 1992 0.99 0.58 0.70  0.99 0.059 0.30  0.99 0.000572 0.20 
June, 1993 0.99 0.59 0.80  0.99 0.058 0.30  0.99 0.000573 0.20 
July, 1993 0.99 0.58 0.60  0.99 0.059 0.30  0.99 0.000582 0.20 
June, 1994 0.99 0.58 1.70  0.99 0.057 0.20  0.99 0.000576 0.30 
July, 1994 0.99 0.57 0.60  0.99 0.059 0.30  0.99 0.000586 0.20 
June, 1995 0.99 0.58 1.80  0.99 0.058 0.30  0.99 0.000582 0.30 
July, 1995 0.99 0.57 0.80  0.99 0.058 0.20  0.99 0.000567 0.30 
June, 1996 0.99 0.58 1.40  0.99 0.058 0.20  0.99 0.000581 0.30 
July, 1996 0.99 0.58 0.80  0.99 0.060 0.20  0.99 0.000587 0.30 
June, 1997 0.99 0.57 2.00  0.99 0.057 0.30  0.99 0.000583 0.30 
July, 1997 0.99 0.58 1.20  0.99 0.062 0.30  0.99 0.000583 0.30 
June, 1998 0.99 0.58 1.50  0.99 0.058 0.20  0.99 0.000576 0.30 
July, 1998 0.99 0.57 1.30  0.99 0.057 0.20  0.99 0.000583 0.30 
June, 1999 0.99 0.58 0.80  0.99 0.058 0.30  0.99 0.000568 0.20 
July, 1999 0.99 0.60 0.80  0.99 0.058 0.20  0.99 0.000568 0.30 
June, 2000 0.99 0.57 0.90  0.99 0.057 0.30  0.99 0.000585 0.30 
July, 2000 0.99 0.58 1.40  0.99 0.058 0.20  0.99 0.000569 0.30 
June, 2001 0.99 0.58 0.80  0.99 0.059 0.30  0.99 0.000582 0.30 
July, 2001 0.99 0.58 0.80  0.99 0.059 0.30  0.99 0.000573 0.30 
June, 2002 0.99 0.58 0.70  0.99 0.059 0.30  0.99 0.000584 0.20 
July, 2002 0.99 0.59 1.20  0.99 0.058 0.30  0.99 0.000581 0.20 
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Table A.3.1 (continued) 

June, 2003 0.99 0.65 0.90  0.99 0.058 0.30  0.99 0.000577 0.20 
July, 2003 0.99 0.58 0.80  0.99 0.058 0.30  0.99 0.000589 0.20 
June, 2004 0.99 0.59 1.30  0.99 0.060 0.20  0.99 0.000566 0.30 
July, 2004 0.99 0.58 1.10  0.99 0.058 0.20  0.99 0.000570 0.30 
June, 2005 0.99 0.61 1.10  0.99 0.057 0.20  0.99 0.000579 0.30 
July, 2005 0.99 0.58 1.00  0.99 0.057 0.20  0.99 0.000583 0.30 
June, 2006 0.99 0.58 0.90  0.99 0.058 0.20  0.99 0.000574 0.30 
July, 2006 0.99 0.59 1.00  0.99 0.057 0.30  0.99 0.000577 0.30 
June, 2007 0.99 0.57 1.20  0.99 0.058 0.30  0.99 0.000578 0.20 
July, 2007 0.99 0.58 0.70  0.99 0.059 0.20  0.99 0.000582 0.20 
June, 2008 0.99 0.88 1.30  0.99 0.057 0.30  0.99 0.000578 0.30 
July, 2008 0.99 0.58 1.00  0.99 0.057 0.20  0.99 0.000575 0.30 
June, 2009 0.99 0.59 1.50  0.99 0.058 0.30  0.99 0.000580 0.30 
July, 2009 0.99 0.57 0.80  0.99 0.058 0.30  0.99 0.000569 0.30 
June, 2010 0.99 0.58 2.30  0.99 0.058 0.20  0.99 0.000580 0.30 
July, 2010 0.99 0.58 1.20  0.99 0.057 0.20  0.99 0.000576 0.30 
June, 2011 0.99 0.58 0.80  0.99 0.060 0.30  0.99 0.001443 0.20 
July, 2011 0.99 0.63 0.80  0.99 0.058 0.20  0.99 0.000618 0.30 
June, 2012 0.99 0.58 1.10  0.99 0.058 0.20  0.99 0.000575 0.30 
July, 2012 0.99 0.57 1.10  0.99 0.057 0.20  0.99 0.000573 0.30 
June, 2013 0.99 0.57 2.40  0.99 0.058 0.30  0.99 0.000577 0.30 
July, 2013 0.99 0.58 0.60  0.99 0.060 0.30  0.99 0.000584 0.20 
June, 2014 0.99 0.58 2.10  0.99 0.057 0.20  0.99 0.000581 0.30 
July, 2014 0.99 0.58 0.70  0.99 0.058 0.30  0.99 0.000581 0.20 
June, 2015 0.99 0.58 1.50  0.99 0.057 0.20  0.99 0.000567 0.20 
July, 2015 0.99 0.57 1.00  0.99 0.057 0.20  0.99 0.000572 0.30 
average 0.99 0.59 1.19  0.99 0.058 0.25  0.99 0.000591 0.27 
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Table A3.3: Cross validation of RF estimated climate data for each month for study site 

in Mongolia 

Date 
Precipitation  Temperature  Soil moisture 

cor rmse pbias  cor rmse pbias  cor rmse pbias 
June, 2000 0.99 0.72 0.80  0.99 0.056 0.30  0.99 0.000587 0.30 
July, 2000 0.99 0.70 0.50  0.99 0.057 0.30  0.99 0.000557 0.20 
June, 2001 0.99 0.70 0.70  0.99 0.059 0.30  0.99 0.000575 0.30 
July, 2001 0.99 0.72 0.70  0.99 0.057 0.30  0.99 0.000597 0.30 
June, 2002 0.99 0.71 0.90  0.99 0.058 0.30  0.99 0.00058 0.30 
July, 2002 0.99 0.72 0.70  0.99 0.058 0.30  0.99 0.000578 0.30 
June, 2003 0.99 0.69 1.00  0.99 0.057 0.30  0.99 0.000579 0.30 
July, 2003 0.99 0.69 0.40  0.99 0.059 0.30  0.99 0.00059 0.30 
June, 2004 0.99 0.71 0.70  0.99 0.059 0.30  0.99 0.000571 0.30 
July, 2004 0.99 0.70 0.50  0.99 0.058 0.30  0.99 0.000586 0.30 
June, 2005 0.99 1.29 0.70  0.99 0.057 0.30  0.99 0.000568 0.30 
July, 2005 0.99 0.69 0.70  0.99 0.056 0.30  0.99 0.00059 0.30 
June, 2006 0.99 0.71 0.90  0.99 0.058 0.30  0.99 0.000596 0.30 
July, 2006 0.99 0.68 0.40  0.99 0.058 0.30  0.99 0.000572 0.20 
June, 2007 0.99 0.71 0.70  0.99 0.057 0.30  0.99 0.000585 0.30 
July, 2007 0.99 0.70 0.70  0.99 0.057 0.30  0.99 0.000562 0.30 
June, 2008 0.99 0.69 0.40  0.99 0.057 0.30  0.99 0.000577 0.30 
July, 2008 0.99 0.72 0.60  0.99 0.116 0.30  0.99 0.000575 0.20 
June, 2009 0.99 0.71 0.60  0.99 0.059 0.40  0.99 0.00057 0.30 
July, 2009 0.99 0.71 0.60  0.99 0.058 0.30  0.99 0.000594 0.30 
June, 2010 0.99 0.70 0.80  0.99 0.058 0.30  0.99 0.000581 0.30 
July, 2010 0.99 0.71 0.70  0.99 0.058 0.30  0.99 0.000592 0.30 
June, 2011 0.99 0.71 0.70  0.99 0.057 0.30  0.99 0.000577 0.30 
July, 2011 0.99 0.69 0.60  0.99 0.058 0.30  0.99 0.000571 0.20 
June, 2012 0.99 0.69 0.60  0.99 0.057 0.30  0.99 0.000577 0.20 
July, 2012 0.99 0.69 0.40  0.99 0.057 0.30  0.99 0.000589 0.20 
June, 2013 0.99 0.71 0.80  0.99 0.058 0.40  0.99 0.000577 0.30 
July, 2013 0.99 0.71 0.60  0.99 0.059 0.30  0.99 0.000572 0.20 
June, 2014 0.99 0.73 0.80  0.99 0.057 0.40  0.99 0.000581 0.30 
July, 2014 0.99 0.70 0.80  0.99 0.058 0.30  0.99 0.000584 0.20 
June, 2015 0.99 0.71 1.50  0.99 0.055 0.30  0.99 0.000592 0.30 
July, 2015 0.99 0.72 0.60  0.99 0.058 0.30  0.99 0.000595 0.30 
June, 2016 0.99 0.68 0.60  0.99 0.057 0.30  0.99 0.000588 0.20 
July, 2016 0.99 0.71 0.60  0.99 0.057 0.30  0.99 0.00057 0.20 
June, 2017 0.99 0.70 1.40  0.99 0.057 0.30  0.99 0.000589 0.30 
July, 2017 0.99 0.71 0.90  0.99 0.057 0.30  0.99 0.000588 0.30 
June, 2018 0.99 0.70 0.80  0.99 0.057 0.30  0.99 0.000576 0.30 
July, 2018 0.99 0.73 0.40  0.99 0.059 0.30  0.99 0.000571 0.20 
average 0.99 0.72 0.71  0.99 0.059 0.308  0.99 0.000581 0.27 

 

 



127 
 

 

Figure A.3.4: Hedging effectiveness of index insurance products for each county based 
on original and downscaled climate parameters, counties in (a) Kazakhstan and (b) Mon-

golia  
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Table A.3.5: Results of Local Moran’s I statistic for original climate data 

Year PCP 
(June) 

PCP 
(July) 

TEMP 
(June) 

TEMP 
(July) 

SM 
(June) 

SM 
(July) 

1982 0.41 0.70 0.60 0.61 0.55 0.66 
1983 0.30 0.64 0.53 0.67 0.25 0.13 
1984 0.46 0.80 0.52 0.63 0.73 0.14 
1985 0.67 0.68 0.68 0.67 0.10 0.16 
1986 0.30 0.39 0.60 0.48 0.07 0.49 
1987 0.11 0.76 0.60 0.46 0.59 0.57 
1988 0.79 0.63 0.71 0.72 ‐ ‐ 
1989 0.74 0.73 0.65 0.69 ‐ ‐ 
1990 0.75 0.72 0.57 0.62 ‐ ‐ 
1991 0.54 0.68 0.67 0.70 ‐ ‐ 
1992 0.37 0.62 0.68 0.60 0.78 0.13 
1993 0.51 0.25 0.58 0.47 0.15 0.05 
1994 0.61 0.60 0.64 0.56 0.15 0.10 
1995 0.69 0.22 0.54 0.51 0.24 0.29 
1996 0.70 0.75 0.67 0.70 0.48 0.25 
1997 0.79 0.71 0.63 0.74 0.52 0.38 
1998 0.64 0.43 0.72 0.63 0.20 0.23 
1999 0.16 0.77 0.67 0.70 0.18 0.24 
2000 0.60 0.67 0.68 0.74 0.66 0.22 
2001 0.53 0.75 0.64 0.72 0.35 0.27 
2002 0.73 0.39 0.73 0.69 0.72 0.76 
2003 0.57 0.67 0.70 0.69 ‐0.04 0.03 
2004 0.67 0.70 0.68 0.71 ‐0.04 0.06 
2005 0.65 0.71 0.64 0.63 0.77 0.54 
2006 0.72 0.73 0.65 0.72 0.64 0.01 
2007 0.70 0.34 0.74 0.72 0.72 0.70 
2008 0.38 0.57 0.64 0.71 0.69 0.56 
2009 0.28 0.76 0.61 0.70 0.60 0.59 
2010 0.06 0.02 0.63 0.68 0.68 0.56 
2011 0.68 0.63 0.70 0.73 0.63 0.65 
2012 0.26 0.33 0.64 0.61 0.52 0.12 
2013 0.73 0.70 0.72 0.69 0.01 0.11 
2014 0.53 0.66 0.62 0.69 0.20 0.28 
2015 0.80 0.59 0.64 0.65 0.19 0.08 
2016 0.49 0.75 0.61 0.72 0.01 0.33 
2017 0.60 0.57 0.68 0.72 0.37 0.45 
2018 0.17 0.35 0.66 0.65 0.19 0.02 
2019 0.67 0.66 0.68 0.71 0.33 0.25 

average 0.54 0.60 0.65 0.66 0.39 0.31 
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Table A.3.6: Results of Local Moran’s I statistic for downscaled climate data 

Year PCP 
(June) 

PCP 
(July) 

TEMP 
(June) 

TEMP 
(July) 

SM 
(June) 

SM 
(July) 

1982 0.60 ‐0.03 0.37 0.17 0.03 0.53 
1983 0.11 0.64 0.52 0.68 0.50 0.74 
1984 0.09 0.17 0.47 0.24 0.51 0.41 
1985 0.19 0.32 0.43 0.04 0.19 0.34 
1986 0.39 0.37 0.11 0.37 0.01 ‐0.10 
1987 0.66 0.44 0.30 0.22 0.28 0.35 
1988 0.62 0.64 0.66 0.67 0.72 0.73 
1989 ‐0.05 0.62 0.43 0.42 0.04 0.48 
1990 0.23 0.45 0.48 0.21 0.10 0.50 
1991 0.66 0.28 0.53 0.36 0.43 0.06 
1992 0.41 0.08 0.33 0.41 0.61 0.06 
1993 ‐0.06 0.15 0.14 0.50 ‐0.02 0.42 
1994 0.64 0.22 0.43 0.18 0.49 0.36 
1995 0.35 0.31 0.32 0.56 0.52 0.53 
1996 0.17 0.05 0.36 0.35 0.51 0.33 
1997 0.56 0.12 0.29 0.48 0.35 0.36 
1998 0.59 0.27 0.42 0.55 0.39 0.49 
1999 0.47 0.28 0.38 0.44 0.25 0.22 
2000 0.07 0.20 0.43 0.18 0.36 0.43 
2001 ‐0.04 0.24 0.42 0.12 0.30 0.50 
2002 0.56 0.55 0.70 0.35 0.35 0.74 
2003 0.21 0.08 0.29 0.33 0.32 0.39 
2004 0.59 ‐0.01 0.31 0.17 0.48 0.17 
2005 0.39 0.36 0.45 0.40 0.60 0.63 
2006 0.19 0.25 0.54 ‐0.01 0.18 0.19 
2007 0.68 0.31 0.23 0.43 0.66 0.58 
2008 0.09 0.70 0.11 0.31 0.30 0.47 
2009 0.46 0.48 0.48 0.32 0.79 0.67 
2010 0.09 0.46 0.31 0.29 0.51 0.47 
2011 0.09 0.24 0.11 0.32 0.18 0.61 
2012 0.13 0.31 0.57 0.22 0.40 0.16 
2013 0.57 0.32 0.27 0.41 0.22 0.13 
2014 0.49 0.46 0.55 0.34 0.43 0.64 
2015 0.52 ‐0.01 0.43 0.07 0.31 0.69 
2016 0.37 0.33 0.54 0.00 0.44 0.51 
2017 0.69 0.55 0.43 0.65 0.55 0.70 
2018 0.57 0.18 0.63 0.14 0.43 ‐0.02 
2019 ‐0.08 0.23 0.61 ‐0.07 0.43 ‐0.01 

average 0.35 0.31 0.40 0.31 0.37 0.41 
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Figure A.3.7: Time-series cross validation (PBIAS) of RF models to estimate the precipita-
tion in coarse resolution. June-July months of 1985-2015 and 2000-2019 for (a) Kazakh-

stan and (b) Mongolia, respectively 

 

 

 

Figure A.3.8: Time-series cross validation (RMSE) of RF models to estimate the precipita-

tion in coarse resolution. June-July months of 1985-2015 and 2000-2018 for (a) Kazakh-

stan and (b) Mongolia, respectively  
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Figure A.3.9: Time-series cross validation (PBIAS) of RF models to estimate the soil mois-
ture in coarse resolution. June-July months of 1985-2015 and 2000-2018 for (a) Kazakh-

stan and (b) Mongolia, respectively 

 

 

 

Figure A.3.10: Time-series cross validation (RMSE) of RF models to estimate the soil 
moisture in coarse resolution. June-July months of 1985-2015 and 2000-2018 for (a) Ka-

zakhstan and (b) Mongolia, respectively 
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Figure A.3.11: Time-series cross validation (PBIAS) of RF models to estimate the temper-
ature in coarse resolution. June-July months of 1985-2015 and 2000-2018 for (a) Kazakh-

stan and (b) Mongolia, respectively 

 

 

 

Figure A.3.12: Time-series cross validation (RMSE) of RF models to estimate the temper-
ature in coarse resolution. June-July months of 1985-2015 and 2000-2018 for (a) Kazakh-

stan and (b) Mongolia, respectively 
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Table A.3.13: Wilcoxon test between county-wise RMSE of improved and not improved 

cases in Kazakhstan 

 Climate variable Improved HE Number of 
cases p-value 

1 Precipitation 
No 10 

0.5895 Yes 24 

2 Temperature No 10 0.8091 Yes 24 

3 Soil moisture 
No 13 

0.8871 
Yes 21 

 

Table A.3.14: Wilcoxon test between county-wise PBIAS of improved and not improved 

cases in Kazakhstan 

 Climate variable Improved HE Number of 
cases p-value 

1 Precipitation No 10 0.2866 
Yes 24 

2 Temperature 
No 10 

0.650 Yes 24 

3 Soil moisture 
No 13 

0.06007 
Yes 21 

 

Table A.3.15: Wilcoxon test between county-wise RMSE of improved and not improved 
cases in Mongolia 

 Climate variable Improved HE Number of 
cases p-value 

1 Precipitation 
No 1 

0.6364 Yes 21 

2 Temperature No 14 0.1653 Yes 8 

3 Soil moisture 
No 4 

0.6094 
Yes 18 

 

Table A.3.16: Wilcoxon test between county-wise PBIAS of improved and not improved 

cases in Mongolia 

 Climate variable Improved HE Number of 
cases p-value 

1 Precipitation No 1 0.5278 
Yes 21 

2 Temperature 
No 14 

0.863 Yes 8 

3 Soil moisture No 4 0.0738 Yes 18 
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