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SUMMARY

Index insurance has been introduced as a solution to tackle several challenges that prevail in the
agricultural insurance sector of developing countries. One of the major implementation challenges
in these countries is the need for more reliable weather data for index insurance development and
implementation. The increasing availability of satellite-based data could ease the constraints of data
access. However, the suitability of various satellite products for detecting weather extremes and

crop yield variations across world regions must be thoroughly assessed.

Therefore, the main subject of this dissertation centers on the potential of satellite-based index
insurance to mitigate climate risks in agricultural lands in the arid and semi-arid zones of Central
Asia and Mongolia. The overall objective of the dissertation is to investigate the feasibility and per-
formance of various satellite and reanalysis-based weather and vegetation data to design index in-

surance products for agricultural producers.

The dissertation consists of five chapters: The first chapter provides the general background of the
dissertation and outlines its main research objectives. The following chapters 2, 3 and 4 represent
three peer-reviewed and published articles. The second chapter provides a comprehensive litera-
ture review on the potentials and limitations of index insurance development in the study areas.
Moreover, the second chapter illustrates the empirical findings on the relationship between
weather data retrieved from satellite sources and weather stations. Additionally, this chapter inves-
tigates the ability of satellite-based weather data to detect extreme events for the design and im-
plementation of weather-based index insurance in arid and semi-arid climatic zones of Central Asia.
The third chapter delivers empirical evidence on the applicability and performance of various satel-
lite-based vegetation data to detect wheat yield variation. Moreover, this chapter studies the po-
tential benefits of considering land use/cover classification in index insurance design in rainfed,
mixed and irrigated land in the study area. The fourth chapter provides empirical evidence on the
potential benefits of machine learning-based downscaling of gridded climate data to improve risk
reduction of index insurance products in Kazakhstan and Mongolia. Lastly, the fifth chapter con-

cludes the findings presented in the dissertation.

The findings of this dissertation are manifold. Those in the second chapter demonstrate that there
are interests, ongoing initiatives and support from local governments and international organiza-
tions to pilot and implement index insurance products in the region. However, there are significant
limitations regarding in-situ weather and crop yield data to design and operate index insurance
products. Findings from this chapter illustrate the significant agreement between in-situ and satel-
lite-based weather data that enable their applicability for index insurance design and operation.
Moreover, there is evidence that the performance of satellite-based weather data improves in semi-
arid climatic zones during wet and rainy seasons as well as when higher temporal aggregation has
been applied. The results of the third chapter show that less prominent satellite-based vegetation
data in the insurance industry has a higher precision for detecting wheat yield variations than well-
known alternatives (e.g., NDVI). Moreover, there is evidence that designing indices based on land

use/cover information noticeably increases the performance of indices for detecting wheat yield



variation in rainfed and mixed lands. The findings of the fourth chapter indicate that designing index
insurance products based on spatially downscaled (machine learning-based) climate data signifi-
cantly improves their risk reduction potential. Among other climate data, there are more improve-
ments in risk reduction potential when the index insurance design is based on downscaled temper-

ature and precipitation data.

The fifth chapter summarizes the research findings, highlights the contribution of this dissertation
to the scientific literature and presents general concluding statements. Based on the findings of the
abovementioned chapters, it can be concluded that the studied satellite-based weather and vege-
tation data could serve as a good source to establish and implement index insurance products in the
region. However, careful assessment and selection of index, temporal aggregation, and land
use/cover classification remain essential. Additionally, as part of this dissertation, three open-source
web applications and one statistical package in R have been developed. They assist and ease the
process of obtaining satellite-based weather and vegetation data and analyzing the performance of

index insurance products.



ZUSAMMENFASSUNG

Indexversicherungen wurden als Losung fir verschiedene Herausforderungen im Agrarversiche-
rungssektor von Entwicklungslandern eingefiihrt. Eine seiner grofSten Implementierungsherausfor-
derungen in diesen Landern ist der Bedarf an zuverldssigeren Wetterdaten fiir die Entwicklung und
Umsetzung von Indexversicherungen. Die zunehmende Verfligbarkeit satellitengestiitzter Daten
konnte die Beschrankungen des Datenzugangs lockern. Allerdings muss die Eignung verschiedener
Satellitenprodukte fir die Erkennung von Wetterextremen und Ernteertragsschwankungen in ver-

schiedenen Regionen der Welt griindlich geprift werden.

Daher konzentriert sich das Hauptthema dieser Dissertation auf das Potenzial satellitengestitzter
Indexversicherungen zur Minderung von Klimarisiken in landwirtschaftlichen Gebieten in den ariden
und semiariden Zonen Zentralasiens und der Mongolei. Das libergeordnete Ziel der Dissertation ist
es, die Machbarkeit und Leistungsfahigkeit verschiedener Wetter- und Vegetationsdaten auf der
Grundlage von Satelliten und Reanalyse zu untersuchen, um Indexversicherungsprodukte fir land-

wirtschaftliche Erzeuger zu entwickeln.

Die Dissertation besteht aus fiinf Kapiteln: Das erste Kapitel liefert den allgemeinen Hintergrund der
Dissertation und umreilt ihre wichtigsten Forschungsziele. In den darauffolgenden Kapitel 2, 3 und
4 werden drei begutachtete und veroffentlichte Manuskripte vorgestellt. Das zweite Kapitel enthalt
eine umfassende Literaturiibersicht tiber die Moglichkeiten und Grenzen der Entwicklung von In-
dexversicherungen in den Untersuchungsgebieten. Dariiber hinaus veranschaulicht das zweite Ka-
pitel die empirischen Erkenntnisse der Beziehung zwischen Wetterdaten, die aus Satellitenquellen
und Wetterstationen gewonnen werden. Des Weiteren untersucht dieses Kapitel die Fahigkeit sa-
tellitengestltzter Wetterdaten, Extremereignisse zu erkennen, um wetterbasierte Indexversiche-
rungen in ariden und semiariden Klimazonen Zentralasiens zu konzipieren und zu implementieren.
Das dritte Kapitel liefert empirische Evidenz fiir die Anwendbarkeit und Leistungsfahigkeit verschie-
dener satellitengestiitzter Vegetationsdaten zur Erkennung von Ertragsschwankungen bei Weizen.
Dieses Kapitel untersucht den potenziellen Nutzen, wenn die Klassifizierung der Landnutzung/Bo-
denbedeckung bei der Gestaltung von Indexversicherungen fir unbewasserte, gemischte und be-
wasserte Flachen im Untersuchungsgebiet berlicksichtigt wird. Das vierte Kapitel liefert empirische
Evidenz fiir den potenziellen Nutzen der auf maschinellem Lernen basierten Herunterskalierung von
gerasterten Klimadaten zur Verbesserung der Risikominderung von Indexversicherungsprodukten
in Kasachstan und der Mongolei. Das flinfte Kapitel fasst schlieRlich die Ergebnisse aus der zugrun-

deliegenden Dissertation zusammen.

Die Erkenntnisse aus dieser Dissertation sind vielfaltig. Die Ergebnisse des zweiten Kapitels zeigen,
dass es Interesse, laufende Initiativen und Unterstiitzung von lokalen Regierungen und internatio-
nalen Organisationen gibt, um Indexversicherungsprodukte in der Region zu erproben und umzu-
setzen. Allerdings gibt es erhebliche Einschrankungen in Bezug auf Wetter- und Ernteertragsdaten
vor Ort (in-situ) fur die Entwicklung und den Betrieb von Indexversicherungsprodukten. Die Ergeb-

nisse dieses Kapitels verdeutlichen die signifikante Ubereinstimmung zwischen in-situ- und satelli-



tengestitzten Wetterdaten, die ihre Anwendbarkeit fiir die Gestaltung und den Betrieb von In-
dexversicherungen ermaoglichen. Darliber hinaus gibt es Beweise dafiir, dass sich die Leistung satel-
litengestlitzter Wetterdaten in semiariden Klimazonen wahrend der nassen und regnerischen Zeiten
sowie bei hoherer zeitlicher Aggregation verbessert. Die Ergebnisse des dritten Kapitels zeigen, dass
weniger verbreitete satellitengestiitzte Vegetationsdaten in der Versicherungswirtschaft eine ho-
here Genauigkeit bei der Erkennung von Weizenertragsschwankungen aufweisen als bekannte Al-
ternativen (z. B. NDVI). Es gibt auch Anhaltspunkte dafiir, dass die Entwicklung von Indizes auf der
Grundlage von Informationen zur Landnutzung/Bodenbedeckung die Leistung von Indizes zur Er-
kennung von Weizenertragsschwankungen in Regen- und Mischgebieten deutlich erhéht. Die Er-
gebnisse des vierten Kapitels deuten darauf hin, dass die Entwicklung von Indexversicherungspro-
dukten auf der Grundlage von rdaumlich herunterskalierten Klimadaten (Ansatz des maschinellen
Lernens) deren Risikominderungspotenzial deutlich verbessert. Neben anderen Klimadaten ist das
Risikominderungspotenzial hoher, wenn die Indexversicherung auf der Grundlage von herunterska-

lierten Temperatur- und Niederschlagsdaten konzipiert wird.

Das flinfte Kapitel fasst die Forschungsergebnisse zusammen, hebt den Beitrag dieser Dissertation
zur wissenschaftlichen Literatur hervor und gibt allgemeine Schlusserklarungen ab. Auf der Grund-
lage der Ergebnisse des oben genannten Kapitels kann man insgesamt zu dem Schluss kommen, dass
die untersuchten satellitengestiitzten Wetter- und Vegetationsdaten eine gute Quelle fir die Ein-
fihrung und Umsetzung von Indexversicherungsprodukten in der Region darstellen kdnnten. Eine
sorgfaltige Bewertung und Auswahl des Indexes, der zeitlichen Aggregation und der Klassifizierung
der Landnutzung/Bodenbedeckung ist jedoch weiterhin unerlasslich. Zus&tzlich wurden im Rahmen
dieser Dissertation drei Open-Source-Webanwendungen und ein Statistikpaket in R entwickelt.
Diese unterstiitzen und erleichtern den Prozess der Beschaffung von satellitengestiitzten Wetter-

und Vegetationsdaten und die Analyse der Leistung von Indexversicherungsprodukten.
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1. General introduction

1.1. Problem statement and motivation

During the last decades, climate change has increased the frequency of weather extremes such as
floods and droughts (WMO, 2021). Climate change is thus putting agricultural production at risk and
leads to the use of modern tools for an early detection of weather extremes in order to reduce and
enable coping with climate change-related consequences (FAO, 2015; Hellmuth et al., 2009; IPCC,
2022). It is clear that a variable and unpredictable climate significantly restricts the options of agri-
cultural producers, thus limiting their development (Niles et al., 2015; Rao, 2011), since they avoid
taking a risk when there is a possibility of weather shocks (Benami et al., 2021). Moreover, creditors
are also hesitant to lend if extreme events may happen, causing widespread defaults if the agricul-
tural producers are not insured (Hellmuth et al., 2009). Agricultural producers who don’t have access
to credit are also critically limited when it comes to agricultural inputs and technologies, and even
if a drought or flood only happens once every five or six years, the threat of the phenomenon is
sufficient to slow down economic development and wealth growth over all years (Hellmuth et al.,
2009). Moreover, these limitations may be an obstacle to meeting the current and future demand
for crop production (Ray et al., 2015), which would significantly affect food security in many regions

of the world where agriculture is a main source of food and income (FAO, 2015).

5
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Figure 1.1: (a) Current global surface temperature change (period 1986-2016 relative to 1901-
1960) and (b) global surface temperature change (increase relative to the period 1850-1900)

Source: Retrieved and adjusted from (a) USGCRP (2017) and (b) IPCC (2022).

Central Asia and Mongolia are located in one of the regions of the world where the effect of climate
change is more severe than the global average (de Beurs et al., 2018; FAO and UNICEF, 2023; Haag
et al., 2019). Agricultural production has a substantial contribution to the economy in this region,
and between 20-50% of the population are employed in this sector (Bobojonov et al., 2019; Hamidov

et al.,, 2016; ILO, 2022). Meanwhile, due to climate change, systematic drought has become more



frequent and is putting agricultural production at risk (Hamidov et al., 2016; Zhang et al., 2019).
Drought events during the critical period of crop growth have had a great effect on crop production
and the socio-economy of Central Asia and Mongolia during the last decades. The most recent wide-
spread drought in Central Asia during the early growing season in 2021 caused dramatic water short-
ages, in turn causing a mass decrease in the agricultural sector (Jiang and Zhou, 2023). Moreover,
the most prolonged and widespread drought in Central Asia occurred in 2001 and led to below-
average drops of 40-60% for rainfall levels and 35-40% for river flows. This drought event resulted
in an income loss of 80% of rural households, which in turn led to increased poverty rates and neg-
ative impacts on food security and public health (Patrick, 2017). The loss of agricultural production
in that year was estimated at US$800 million for the entire region, which was a significant cost for
all countries (World Bank, 2005). According to the literature, drought events in 2000-2001, 2008 and
2011 had a significant effect on agricultural production in Uzbekistan, and damages cost US$130
million in 2000 and 2001 (Christmann et al., 2009; Rakhmatova et al., 2021; Tolipov and Solokov,
2022). In the case of Kazakhstan, more than 50% of the country area were affected by droughts of
various severity in the years 2000, 2008, 2010, 2011, 2012 and 2014; the most severe events were
observed in 2012 and 2014, significantly decreasing agricultural production (Dubovyk et al., 2019).
In the case of Tajikistan, drought events were experienced in the years 2000-2001, 2003, 2008 and
2011, and the total damage to the agricultural sector was estimated at US$63 million in 2001 and
2011, impacting around 2.5 million people (Patrick, 2017; World Bank, 2023). In the case of Kyrgyz-
stan, the gross agricultural output significantly decreased in 2009 and 2014 due to droughts in the
preceding years that caused extreme climatic conditions and a deterioration of the economic situa-
tion (lliasov and Yakimov, 2009; Logistics Cluster, 2021). In the case of Mongolia, the most extended
droughts during 2000 and 2010 caused major social and environmental changes like migration of
population, drying-up of grasslands and lakes, and die-off of crops and livestock (Hessl et al., 2018).
All of these implications indicate a need for effective strategies and financial instruments for risk-

sharing and mitigating the effects of climate change and extreme events.

To reduce climate-related risks for agricultural producers, insurance could be an efficient tool that
transfers agricultural production risks from farmers to insurance companies (Bobojonov et al., 2019;
Giné et al., 2010). Nevertheless, in developing countries, conventional agricultural insurance, known
as ‘named-peril’ and ‘multi-peril’ crop insurance, can’t effectively assist and mitigate all of the risks
of agricultural producers, with the main obstacles and reasons being high costs of premiums, moral
hazards and the adverse selection for the successful implementation of conventional crop insurance
(Coleman et al., 2018). To overcome the challenges of conventional insurance in transition econo-
mies and developing countries, index-based agricultural insurance (the term “index insurance” will
be used from here onwards) has been developed and suggested as a potential solution by various
organizations and scholars (Coleman et al., 2018; Dick et al., 2011; World Bank, 2011). In index in-
surance, payoffs are contingent on the value of a pre-determined index (average yield of a unit,
temperature, rainfall, soil moisture, vegetation, etc.), with one of the main requirements and ad-
vantages of index insurance being that the index cannot be affected by agricultural producers, nor

is it vulnerable to manipulation from third parties (Barnett et al., 2008). This approach is aimed at



reducing adverse selection and problems of moral hazard, which are frequent issues with conven-
tional agricultural insurance (Miranda and Gonzalez-Vega, 2011). Moreover, index insurance does
not require a ground verification of the reported crop yield losses, thus significantly reducing ad-

ministrative costs and consequently lowering the premium costs (Benami et al., 2021).

Regarding the potential for implementation of index insurance in Central Asia, the governments of
Tajikistan and Kyrgyzstan have already initiated and developed a law regarding the use of index
insurance in the agricultural sector. Despite their aim to partially finance the insurance premiums,
these initiatives are not being taken up, due to little interest from local insurance companies and
farmers, as well as a lack of weather data for designing the index insurance. (Broka et al., 2016a,
2016b). In Uzbekistan and Kazakhstan, governments support the implementation of traditional in-
surances with the help of various mechanisms, but there are no orders or initiatives at the state
level for the implementation of index insurance. However, big challenges in the implementation of
traditional insurances create a bottleneck for the development of an insurance market in these
countries (Bobojonov et al., 2019; Broka et al., 2016c; Muradullayev et al., 2015). To solve existing
challenges in the traditional insurance markets, several international organizations have recom-
mended the use of index insurance in the agricultural sector of Kazakhstan and Uzbekistan (Broka
et al.,, 2016c; Sutton et al., 2013), and some feasibility studies and small-scale piloting activities have
started to emerge in recent years (Bobojonov et al., 2019; Bokusheva et al., 2016; Conradt et al.,
2015).
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Figure 1.2: Geographical distribution of meteorological stations in the croplands of Cen-

tral Asia and Mongolia

Source: Own presentation based on data from Teluguntla et al. (2015) and NCEI (2019)

It should be noted that index insurance is considered a potential solution, however, it is also not a
panacea, as there are some issues regarding systematic risks, information asymmetry, financial lit-
eracy of farmers, and quality and availability of crop yield data (Fisher et al., 2019; Greatrex et al.,

2015; World Bank, 2015). More importantly, index insurance requires sufficient correlation between
3



crop yields and the selected index in order to minimize the amount of basis risks (Norton et al.,
2015). Usually, data obtained from weather stations is used for index insurance design. Numerous
studies have investigated the feasibility and financial efficiency of weather station-based index in-
surances, which have typically been low precipitation or drought indices for agricultural producers
(Bobojonov et al., 2014; Bokusheva and Breustedt, 2012; Conradt et al., 2015; Kath et al., 2019).
However, this approach is strongly dependent on weather stations, which are rarely available in
developing countries (Barnett and Mahul, 2007). In the case of Central Asia and Mongolia, specifi-
cally, according to the spatial analysis presented in Figure 1.2, the vast majority of croplands are
located beyond a distance of 20 km from the nearest station. The figure demonstrates the low level
of density and insufficiency of weather stations for designing index insurance, with the sparsely dis-
tributed weather stations often failing to capture the wide spatial crop losses and showing an incli-
nation to geographical basis risk (Makaudze and Miranda, 2010). Moreover, weather data from
weather stations rarely correlates with crop yields due to a high basis risk (Smith and Watts, 2009).
Setting up new weather stations has been promoted as a potential solution; however, the installa-
tion and maintenance of new weather stations every 10-20 km (as suggested by Hazell et al. (2010))
would be costly and significantly increase the prices of the insurance products, which is not the aim
of the index insurance concept. Furthermore, the nonexistence of historical weather records also

halts the development of adequate and accurate insurance products (Norton et al., 2012).

As a potential solution to overcome the issues regarding weather data limitations, the use of satel-
lite-based weather and vegetation data has been tested and suggested for index insurance design
and implementation (Coleman et al., 2018; Osgood et al., 2018; Tarnavsky et al., 2018). Satellite-
based weather and vegetation data is provided almost in real time and is available free of charge for
most locations worldwide (CHC, 2015; Didan, 2015). Numerous studies have investigated the poten-
tial and applicability of satellite-based data for index insurance design and implementation in devel-
oping and emerging economies (Black et al.,, 2016a; Brahm et al., 2019; Collier et al., 2009; M
Enenkel et al., 2018; Osgood et al., 2018; Tarnavsky et al., 2018).

1.2. Problem statement and research objectives

A literature review within the framework of this dissertation (chapters 2.1 and 2.2) has demon-
strated that existing studies have not yet tested the applicability of satellite-based weather data for
index insurance development in Central Asia, even though the vast majority of it is publicly available
and might be particularly suitable for developing and transformation countries. Moreover, none of
the existing studies have tested the accuracy of satellite-based precipitation and temperature esti-
mates and their ability to detect weather extremes for index insurance development or other da-
tasets for the Central Asian region. This study aimed to fill this gap by setting the following objective

and conducting a study:

e To analyze the performance of satellite-based weather data and its ability to detect weather

extremes for index insurance development in arid and semi-arid zones in Central Asia



This study contributes to the literature by analyzing the performance of satellite-based weather
data, employing 14 statistical accuracy metrics and seven ground-based weather stations in arid and
semi-arid zones of Central Asia. The specific satellite-based weather products have been chosen
after a comprehensive review of existing satellite-based weather products in terms of their spatial
and temporal coverage and resolution. Additionally, one of the novelties of this study was the ap-
plication of the quantile regression method to analyze the relationship between ground- and satel-
lite-based weather information. Furthermore, the ability of satellite-based weather data to detect
weather extremes was analyzed using agronomically suitable Meteorological Drought Indices (MDI)

during the vegetation and harvesting period of rainfed crops in the region.

Moreover, a review of the existing literature (chapter 3.1) has identified the following gaps that
need further investigation: Not all wheat-producing regions worldwide are purely rainfed, but at
least partially irrigated or fully irrigated. More specifically, around 35% of global wheat is produced
in irrigated lands (Wang et al., 2021). However, no literature has focused on investigating the po-
tential of satellite-based data for index insurance development for wheat producers in irrigated and
mixed lands. In real life, these regions also suffer from high variations in weather parameters, as
climate change affects not only water availability but also the demand of crops for water. In addi-
tion, based on the literature review, the research and industry spheres are using administrative
boundaries of units to estimate regional index values for insurance design that omit the effects of
crop rotation, diversity, allocation and land cover/use change. However, in regions with diverse land
use/cover patterns, calculating a regional index value based on all pixels located within the admin-
istrative boundaries may not have a good power for detection of crop yield variation and index in-
surance design. Overall, the literature review outlines a need for comprehensive and comparative
analyses of the applicability of more satellite-based vegetation data for index insurance develop-
ment among various farming types and land cover/use classifications. This study aimed to fill this

gap by setting the following objective and conducting a study:

e To analyze and compare the performance of well- and less-known satellite-based vegetation
data to detect variation of wheat yield, taking the land use/cover information in rainfed, irri-
gation and mixed farming systems allocated in arid and semi-arid zones of Central Asia and

Mongolia into account

This study provides two critical contributions to the literature. Firstly, according to the literature
review, this study is the first attempt to explore the effect of using land cover classification (e.g.,
croplands and wheat-cultivated lands) in addition to administrative boundaries for data sampling
and index insurance development. Second, within this study, the applicability of satellite-based veg-
etation indices, such as an Enhanced Vegetation Index (EVI), Green Chlorophyll Index (GCI) and Leaf
Area Index (LAI), as well as a well-known Normalized Difference Vegetation Index (NDVI) and Land
Surface Temperature (LST) are compared for index insurance development in rainfed, irrigated and

mixed lands.

Furthermore, it should be noted that index insurance development and design require climate data

with long historical records, global geographical coverage and fine spatial resolution simultaneously,



which is nearly impossible to satisfy, especially with open-access satellite-based data. According to
the literature review (chapter 4.1), most satellite-based weather data with fine resolution is only
available for limited land areas or time periods, which significantly limits its applicability for index
development and design. Overall, in order to effectively measure climate risks and design robust
index insurance products, there is a need for long historical climate records with fine spatial resolu-
tion covering the entire earth. For index insurance design, there is some potential re-analysis-based
climate data that is produced by combining models with ground- and satellite-based observations,
such as ERA5-based climate data from the European Centre for Medium-Range Weather Forecasts
(ECMWEF) (Hersbach et al., 2020). Likewise, satellite-based climate data from the European Space
Agency (ESA) Climate Change Initiative (CCl)-based soil moisture data (Dorigo et al., 2017) covers
the entire earth and provides data from the 1980s until near real-time. However, the spatial resolu-
tion of these climate products is very low, around 25-30 kilometers, which limits their potential for
index insurance design and implementation. Particularly, designing index insurance based on such
coarse-resolution climate data may lead to an increase in basis risk, specifically geographical basis
risk. A potential solution, but still an under-researched method to deal with the issue of spatial res-
olution, could be to spatially downscale this climate data using statistical methods. Several studies
have investigated and validated the capacity and precision of downscaling the spatial resolution of
climate data sources using regression and machine learning (Bai et al., 2019; Hu et al., 2020; Im et
al., 2016; Liu et al., 2020; Zhang et al., 2021; Zhu et al., 2017). However, possible advantages of
spatially downscaling such coarse-resolution climate data for index insurance design have not yet
been investigated. This study aimed to fill this gap by setting the following objective and conducting
a study:

e To analyze the effect of index insurance products based on downscaled climate data (using
satellite-based data in finer spatial resolution and a machine learning algorithm) for hedging

crop yield in arid and semi-arid zones of Kazakhstan and Mongolia

This study provides two main key contributions to the literature. Firstly, based on the literature re-
view, this study is the first attempt to systematically evaluate and compare index insurance products
with a design based on original coarse resolution and spatially downscaled climate data to reduce
farmers’ financial downside risk exposure. The spatial downscaling of long-term and coarse-resolu-
tion soil moisture, precipitation and temperature data has been done using a machine learning al-
gorithm. Secondly, the best source of climate data for index insurance products has been identified

for each county to maximize the climate risk reduction capacity.

1.3. Structure and research contributions

This dissertation contains three main, independent and non-consecutive chapters (chapters 2, 3 and
4) representing three peer-reviewed and published articles. Table 1.1 lists the details of all research
contributions. The second chapter offers empirical evidence on the accuracy and applicability of
satellite-based weather data to measure precipitation and temperature, and to detect extreme

weather events for index insurance development. The third chapter analyzes potential accuracy
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gains from land-use classification that allow for the design of reginal indices specifically for croplands
and wheatlands. It also investigates the potential benefits of employing less-known indices for de-
tecting the variation of crop yield and index insurance design. The fourth chapter empirically inves-
tigates the effect of index insurance contracts based on spatially downscaled climate data for hedg-
ing crop yield. Overall, all chapters focus on testing the applicability and performance of various
satellite-based data for index insurance design and operation in arid and semi-arid zones of Central

Asia and Mongolia.

Table 1.1: List of research contributions

Chapter Authors Publication outlet

Eltazarov, S., Mapping weather risk — A multi-indicator

5 Bobojonov, I., analysis of satellite-based weather data for Climate Services, 23,
Kuhn, L. agricultural index insurance development in 100251 (2021)
and Glauben, T. semi-arid and arid zones of Central Asia
Eltazarov, S., The role of crop classification in detecting Environmental and

3 Bobojonowv, I., wheat yield variation for index-based agri- Sustainability Indica-
Kuhn, L. cultural insurance in arid and semiarid envi-  tors 18, 100250
and Glauben, T. ronments (2023)
Eltazarov, S., Improving risk reduction potential of
Bobojonov, I., weather index insurance by spatially .

4 Kuhn, L. downscaling gridded climate data - a ma- IR PELE) (PA0PEY

and Glauben, T.  chine learning approach




2. Mapping weather risk: A multi-indicator analysis of satellite-based weather data
for agricultural index insurance development in semi-arid and arid zones of Central

Asial
2.1. Introduction

Agricultural insurance is a risk management tool that can assist with coping with climate risks in
agricultural areas by protecting assets, opening access to credits, mitigating risk, maintaining the
resilience of farmers, and supporting food security. However, because of high costs, moral hazard
and adverse selection, traditional agricultural insurance, known as “loss-indemnifying” insurance
has not yet effectively assisted and mitigated all of the risks for farmers in developing countries.
Index-based insurance has been proposed and recommended as a solution by various organizations
and scholars as a means for developing countries to overcome the challenges of traditional insur-
ance (Bobojonov et al., 2014; Coleman et al., 2018; World Bank, 2011). The most common and
widely used form of index insurance is weather index insurance, which makes use of the typically
high correlation between weather data and crop yields (Bobojonov et al., 2014; Chantarat et al.,
2007; Coleman et al., 2018; World Bank, 2011). For the case of index-based insurance, indemnity
payments are determined by an index that is neither affected by farm-individual production deci-
sions nor vulnerable to manipulation by third parties. This approach is aimed at reducing adverse
selection and problems of moral hazard, which are frequent issues in traditional agricultural insur-
ances (Fisher et al., 2019; World Bank, 2015).

Meanwhile, there are several challenges in the implementation of index insurance under real-life
conditions. One of the largest challenges is the availability of historical weather data for implement-
ing such an insurance (Barnett et al., 2008; Kath et al., 2019). In many developing and transition
economies, a complete lack or the poor quality of long-term daily climate data with all the necessary
parameters hinders large scale dissemination (Barnett and Mahul, 2007; Collier et al., 2009). More-
over, requesting and obtaining weather data from data holders might be challenging, time consum-

ing and costly; in many developing countries, high-quality data has been commercialized.

Additionally, an insufficient density of meteorological stations (the term “station” will be used from
here onwards) in agricultural areas significantly affects the reliability of insurance products. Because
of micro-climatic factors, weather parameters may differ even between locations in close proximity
(Tadesse et al., 2015). Existing studies have shown that using station data for index insurance leads
to a very high basis risk (i.e., the correlation between index and yields is very low) when the station
is located more than 20-25 kms away (Gommes and Gobel, 2013; Osgood et al., 2007). Conse-
qguently, Hazell et al. (2010) have suggested keeping a distance of 10-20 km between the station and

farms in order to decrease basis risk.

! This chapter was published as the following open-access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glau-
ben, T. (2021): Mapping weather risk — A multi-indicator analysis of satellite-based weather data for agricul-
tural index insurance development in semi-arid and arid zones of Central Asia. Climate Service, 23, 100251.
https://doi.org/10.1016/j.cliser.2021.100251; This chapter benefitted from the comments by the anonymous
referees of Climate Services
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Figure 2.1 illustrates the challenge of sufficient station density for the case of Central Asia. Here,
stations are installed and regulated by governmental agencies, but also recognized by the World
Meteorological Organization (WMO) and included in the dataset of the Global Historical Climatology
Network (GHCN) (NCEI, 2019). As presented by the spatial analysis in Figure 2.1, more than 94% of
farmland in Central Asia is located beyond a distance of 20 km from the nearest station. Only 6% of
the region’s cropland (highlighted in dark green) is situated close enough to a weather station to
allow for reliable yield estimation along the weather station data. Any area that is not classified as

cropland is shown as a transparent area (see also in Appendix 1.1).
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Figure 2.1: Geographical distribution of meteorological stations in the croplands of Cen-

tral Asia

Source: Own presentation based on data from Teluguntla et al. (2015) and NCEI (2019).

Retrieved from the published open-access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021):
Mapping weather risk — A multi-indicator analysis of satellite-based weather data for agricultural index in-

surance development in semi-arid and arid zones of Central Asia. Climate Service, 23, 100251.

In many high-income countries, the installation of new weather stations at the farm level is pro-
moted as a potential solution. However, starting from the above conclusion that accurate data for
weather indices requires a density of one station every 10-20 km, both the installation and mainte-

nance of these stations would considerably increase the price of products relying on this data, which



is a problem for extensive or low-yield production. Furthermore, the lack of historical records for

these new stations will pose an additional problem for product design.

Under these conditions, satellite remote sensing data (the term “satellite data” will be used from
here onwards) is increasingly used for designing and operating index insurance programs. Numerous
recent studies have investigated and proposed the use of agronomically suitable Meteorological
Drought Indices (MDI) that do not require yield data for designing and implementing index-based
insurance, as yield data is often inaccurate or difficult to obtain at sufficient resolution (Bezdan et
al., 2019; Bobojonov et al., 2014; Ghamghami et al., 2017; Okpara et al., 2017; Tarnavsky et al.,
2018). Many studies have found a significant correlation between MDIs and crop yields (Elhag and
Zhang, 2018; Gunst et al., 2015; Salehnia et al., 2018; Todisco et al., 2008; Vicente-Serrano et al.,
2012). Moreover, Musshoff et al. (2011) and Odening et al. (2007), found a higher risk reduction

potential of index insurance based on MDIs rather than cumulative rainfall.

Meanwhile, each of the available satellites differs in terms of resolution, coverage, quality and fre-
quency of data collection. Therefore, one can expect differences in accuracy of the produced data
for measuring weather parameters for each particular region. However, the question of how accu-
rate the various satellite products actually are has not been studied to a sufficient extent in the
region. Our study therefore provides two distinct contributions to the literature: First, the accuracy
of two important satellite-based weather products, as Global Satellite Mapping of Precipitation
(GSMaP) and Global Land Data Assimilation System (GLDAS)? have never been scientifically tested
in the context of index insurance. This study undertakes the investigation of the accuracy of these,
along with CHIRPS data, for various classification, quantitative and agreement statistic metrics. Sec-
ondly, this is the first attempt at undertaking an accuracy assessment of selected satellite-based
temperature and precipitation data and calculation of MDlIs based on satellite-based weather prod-
ucts for Central Asia. While region-specific climate challenges need to be taken into account, the
results of this case study may also provide insights relevant for arid and semi-arid agricultural re-

gions elsewhere in the world.

This paper is structured as follows: The second chapter provides a review of the literature on the
application of satellite data on index insurance in various countries. The third chapter discusses op-
portunities for establishing index insurance in Central Asia, while the fourth chapter describes the
process of in-situ and satellite-based data selection and acquisition. We report on methods selected
for the accurate assessment of satellite-based weather data and selected MDIs that examine the
ability of satellite-based weather data to detect droughts and floods. Chapter five provides the re-
sults from our analyses followed by a comprehensive discussion. We conclude with an outlook on

opportunities and limitations of satellite-based data in the detection of drought and flood events.

2 Details about the selected satellite-based weather products will be discussed in the following chapters.
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2.2. Literature review of the application of Satellite Remote Sensing data to index in-

surance

A number of studies in developing countries have investigated and proven significant accuracy, ap-
plicability and the potential of satellite data for index insurance in the agricultural sector at various
temporal and spatial scales. De Leeuw et al. (2014) conducted a systematic search of the available
literature to review the potential and uptake of remote sensing in the insurance industry, concluding
that there is particular scope for the application of remote sensing by the index insurance industry.
They have also concluded that satellite-based indices can be applied when there is a significant cor-
relation with what is insured, as such indices serve to lower the cost of the insurance product and
create new insurance markets and services®. Therefore, this literature review focuses on research

papers published after De Leeuw et al. (2014).

Many existing research articles provide evidence of the suitability of satellite indices, such as the
Normalized Difference Vegetation Index (NDVI); the Vegetation Condition Index (VCI); the Temper-
ature Condition Index (TCl); and the Vegetation Health Index (VHI) (see Appendix 1.2 for detailed
information) or Satellite-based Precipitation Estimates (SPE), in selected countries and under vari-
ous agro-climatic conditions (Coleman et al., 2018; World Bank, 2015, 2011). Some studies have
focused on assessing the accuracy of single indices: For example, Black et al. (2016a, 2016b) ana-
lyzed the applicability of the Tropical Application of Meteorology Using Satellite Data (TAMSAT) SPE
to develop an index insurance for cotton fields in Zambia. They found a significant relationship be-
tween rainfall and soil moisture, and a strong association between cotton production losses and
rainfall on a national scale. Enenkel et al. (2018) investigated the efficiency of using Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS) SPE for detecting drought and developing an
advanced index insurance design in Ethiopia, Senegal and Zambia. By comparing drought years re-
ported by farmers, they identified a high “hit rate”, albeit with some limitations when it came to

detecting moderate drought events.

Other studies have conducted comparative analyses of two or more indices: Coleman et al. (2018)
investigated the suitability of NOAA-based African Rainfall Climatology Version 2 (ARC2) and TAM-
SAT SPE to detect drought events and develop a village-scale index insurance for groundnut, millet
and maize in Senegal. Tarnavsky et al. (2018) tested three different SPE products, namely ARC2,
CHIRPS and TAMSAT SPEs to monitor country-level maize production in Tanzania, and analyzed their
applicability for designing an index insurance. They discovered a higher correlation between SPE and
maize when CHIRPS SPE was employed and suggest that CHIRPS SPE is more suitable for the appli-
cation of index insurance. Osgood et al. (2018) tested the link between village-level drought years
in Ethiopia as reported by farmers and drought years detected by SPE products ARC2 and CHIRPS;
they found evidence that events reported by farmers are independently reflected in satellite da-

tasets. Brahm et al. (2019) conducted cross-correlation analyses with Climate Hazards Group Infra-

3 A more detailed review of literature before 2014 can be found in DelLeeuw et al. 2014.
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Red Precipitation (CHIRP), CHIRPS, Tropical Rainfall Measuring Mission (TRMM), Multisatellite Pre-
cipitation Analysis (TMPA) and MODIS-NDVI to test the accuracy of the newly released data source
Historical Database for Gridded Daily Precipitation Dataset over Latin America (LatAmPrec). They
also used a logistic regression approach with aggregated farmer-reported data to check the ability
of the LatAmPrec to detect drought events across regions in Latin America. Their results show that
LatAmPrec performs better than other satellite data sources in Latin America and is able to satisfac-

torily identify those yield losses that are relevant to insurances.

As can be seen in this summary, existing studies have not yet tested the applicability of the GSMaP
and GLDAS datasets, both of which might be particularly suitable for developing and transformation
countries, as their data is publicly available and free of charge. Moreover, none of the existing stud-
ies have tested the accuracy of precipitation estimates and the applicability of these to index insur-

ance or other datasets for the Central Asian region.

2.3. Development of index insurance in Central Asia

Agricultural production has a substantial contribution to the economy and GDP of Central Asian
countries. Between 20-50% of the population is employed in the agricultural sector (Bobojonov et
al., 2019; Hamidov et al., 2016). In the meantime, systematic extreme weather events due to climate
change in Central Asia have become more frequent, putting agricultural production at risk (Hamidov
et al.,, 2016; Zhang et al., 2019). Based on information provided in Christmann et al. (2009),
Bobojonov and Aw-Hassan (2014) reported that drought events during the critical period of rainfed
crop growth in 2001 and 2008 had a great effect on crop production and the socio-economy of
Central Asia, particularly in Tajikistan where more than a third of the cropping area was damaged,
costing US$63 million (Patrick, 2017). In the case of Kyrgyzstan, the gross agricultural output signif-
icantly decreased in 2009 due to droughts in preceding years that caused extreme climatic condi-
tions and a deterioration of the economic situation. Generally, in Central Asia, the drought of 2001
was the most prolonged and widespread drought, resulting in below-average drops of 40-60% for
rainfall levels and 35-40% for river flows. This drought event contributed to a loss of 80% of rural
households’ income, resulting in consequences of increased poverty rates and negative impacts on
food security and public health (Patrick, 2017). In that year, the loss of agricultural production was
estimated at USS800 million for the whole region, which was a significant cost for all countries
(World Bank, 2005). All of these implications indicate a need for improving risk management strat-

egies and especially agricultural insurance.

Concerning the potential for the implementation of index insurance in Central Asia, the govern-
ments of Tajikistan and Kyrgyzstan have already initiated and developed a law regarding the use of
index insurance in the agricultural sector. However, because of little interest from insurance com-
panies and farmers, and a lack of weather data for designing the index insurance, these initiatives
are not being taken up by local insurance industries even though both states aim to partially finance
the insurance premiums (Broka et al., 2016a, 2016b). In Uzbekistan and Kazakhstan, there are no

orders or initiatives at the state level for the implementation of index insurance, while both states
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support the implementation of traditional insurances with the help of various mechanisms. How-
ever, big challenges in the implementation of traditional insurances create a bottleneck for the de-
velopment of an insurance market in these countries (Bobojonov et al., 2019; Broka et al., 2016c;
Muradullayev et al., 2015). Several international organizations have recommended the use of index
insurance in the agricultural sector of Kazakhstan and Uzbekistan to solve existing challenges in the
traditional insurance markets (Broka et al., 2016¢; Sutton et al., 2013), and some feasibility studies
and small scale piloting activities have started to emerge in recent years. For example, Bokusheva &
Breustedt (2012) have proved the suitability of drought indices based on station data, while
Bokusheva et al. (2016) have extended this analysis to the applicability of VCl and TCl in index insur-
ance for wheat production in northern Kazakhstan. For the same location, Conradt et al. (2015) in-
vestigated the applicability of station-based cumulative rainfall data for designing an index insur-
ance. Bobojonov et al. (2019) reported on the suitability of cumulative precipitation based on
weather station data and MODIS-based NDVI to identify shortfalls in wheat yields and index design

in the Gallaral district, Uzbekistan.

A number of international organizations and projects in cooperation with local governmental agen-
cies are attempting to implement satellite-based index insurance in Kazakhstan, Uzbekistan and Kyr-
gyzstan. For example, the United Nations Development Programme (UNDP) and the Ministry of Ag-
riculture of Kazakhstan (MAK) are introducing an NDVI-based index insurance for croplands and live-
stock in Kazakhstan (UNDP, 2016). Swiss insurance company SwissRE and Dutch company Vander-
sat, in cooperation with MAK, have been working on introducing a satellite soil-moisture-based in-
dex insurance since 2018 (Allinsurance, 2018). Moreover, the Leibniz Institute of Agricultural Devel-
opment in Transition Economies (IAMO), together with local and international insurance companies,
has been developing and piloting a satellite NDVI and precipitation-based index insurance for

croplands in Uzbekistan and Kyrgyzstan since 2018 (Bobojonov et al., 2019).

The above-mentioned studies and projects have not explored the accuracy of satellite-based
weather data for index development in Central Asia. Since farming systems are heterogeneous and
risks are diverse, weather data could be important for measuring various climate-related risks (a

review on the need for satellite weather data usage in the region can be found in Appendix 1.3).

2.4. Methods and materials
2.4.1. Data sources

2.4.1.1. Meteorological Data

Whenever station proximity, historical records and general data quality are provided, weather sta-
tion data remains the most accurate source of information for the design of weather indices. There-
fore, we chose the daily precipitation and temperature data of six meteorological stations located
in Uzbekistan as a benchmark for our accuracy assessment. The selected weather stations provide

information on a time period from January 1st, 2000 to December 31st, 2017, which is a sufficient
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time horizon for comparison. Furthermore, we only compared data from a satellite that was in direct

proximity* to the selected stations.

The meteorological data was provided by the Centre of Hydro-meteorological Service at the Ministry
of Emergency Situations of the Republic of Uzbekistan (Uzhydromet), which is responsible for all
national hydro-meteorological network stations (Uzhydromet, 2008). The Djizzakh, Gallaral and
Lalmikor stations are located in the Djizzakh province. The Samarkand station is located in the Sa-
markand province, and the Karshi station in situated in the Kashkadarya province of Uzbekistan (Fig-
ure 2.2) (see Appendix 1.4 for detailed information). Among the selected stations, only Djizzakh,
Samarkand and Karshi stations were used during the calibration of all selected satellite-based
weather products (CHC, 2021; Ji et al., 2015; Mega et al., 2019; NCEI, 2019).
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Figure 2.2: Selected meteorological stations

Source: Own presentation based on data from Teluguntla et al. (2015) and NCEI (2019).

Retrieved from the published open-access article: Eltazarov, S., Bobojonov, I., Kuhn, L., Glauben, T. (2021):
Mapping weather risk — A multi-indicator analysis of satellite-based weather data for agricultural index in-

surance development in semi-arid and arid zones of Central Asia. Climate Service, 23, 100251.

2.4.1.2. Satellite Remote Sensing precipitation and temperature data

After a systematic review of available satellite-based weather products (see Appendix 1.5 for a de-
tailed review), we selected three satellite weather products for this study: Firstly CHIRPS, secondly

GSMaP, and finally the satellite temperature product GLDAS. The selection was made based on the

4 Details about the spatial resolution of the selected satellite-based weather products will be discussed in
following chapters
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coverage area of the case study region, spatial and temporal performances in terms of suitability for
index insurance development (e.g., extreme large resolution may not be suitable due to high basis
risk), as well as data accessibility, which would also be relevant for the sustainable application to

insurance products.

CHIRPS’® is a semi-global precipitation product, covering latitudes 50°S-50°N and all longitudes. The
product is designed for drought monitoring and environmental analyses (Funk et al., 2015). CHIRPS
data is available starting from 1981 to the near present, and the dataset consist of daily, pentadal,
decadal and monthly temporal resolution data, which were completed and made available to the
public in February 2015 by the Climate Hazards Group (CHC, 2015). CHIRPS integrates a 0.05° x 0.05°
spatial resolution of satellite images and data from stations to produce a gridded precipitation time
series. A detailed description of the CHIRPS dataset has been published in Funk et al. (2015).

GSMaP is a semi-global precipitation product with 0.1°x 0.1° spatial resolution and 1-hour temporal
resolution that uses multi-band passive microwave and infrared radiometers from the GPM Core
Observatory satellite and, with the assistance of a constellation of other satellites, covering latitudes
60°S-60°N and all longitudes. The product is designed for flood monitoring, meteorology and clima-
tology analyses. GSMaP data is available starting from 2000 to the near present, and the dataset
consist of hourly and daily data, which is available through the JAXA G-Portal (2019). This study uses
a gauge-data (GG) band, which has adjusted precipitation rate to rain gauge. The dataset is pro-

cessed using a GSMaP algorithm version 6 (product version 3).

GLDAS is a global 3-hourly climate product created by combining satellite and ground-based obser-
vation datasets, which apply multiple advanced land surface modelling and data assimilation meth-
ods to generate optimal fields of land surface states and fluxes (Rodell et al., 2004). For this study,
we used the Tair_f_inst (air temperature) band from 2.1 version of the GLDAS. GLDAS 2.1 is analo-
gous to previous versions with upgraded models, which integrate GDAS, GPCP and AGRMET da-
tasets. Data from the GLDAS 2.1 is available for the period from early 2000 to the near present. The
spatial resolution of the product is 0.25° x 0.25° (Chen et al., 2013). The GLDAS data is archived and
freely available through GSFC DISC (2019).

In order to obtain daily updates on CHIRPS, GSMaP and GLDAS data, we developed an algorithm and
programmed an automatic web platform (see Appendix 1.6 for details and information on the free
data platform), which allows easy access to the related datasets. This web platform for data acqui-
sition can be found under the following link: https://www.klimalez.org/srs-export. A large number
of existing studies that have assessed the accuracy of satellite products are characterized by deca-
dal, monthly, seasonal and annual scales (e.g., Darand and Khandu (2020); Peng et al. (2020); Rivera
etal. (2018); Yu et al. (2020)), especially studies in the field of index insurance design (e.g. Bobojonov
et al. (2014); Odening et al. (2007); Osgood et al. (2007); Westerhold et al. (2018); Xu et al. (2008)).

5 Climate Hazards Group Infrared Precipitation (CHIRP) was not considered for this study since we already
included CHIRPS, which is the improved version of CHIRP, providing higher accuracy than its predecessor, as
pointed out by (Dinku et al., 2018; Funk et al., 2015; Shen et al., 2020)
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To comprehend the pattern of the satellite precipitation and temperature measurements at differ-
ent time scales and locations, this study assessed the satellite data in decadal and monthly aggrega-
tion. The aggregation of hourly, 3-hourly and daily data into decadal and monthly values cancels out
errors observable in short-term data, as mentioned for instance by Usman & Nichol (2020). Coleman
et al. (2018) have stated that aggregated SPEs are more accurate than daily ones, as there is signifi-

cant uncertainty in an individual precipitation measurement either by the satellite or the station.

2.4.2. Accuracy measures

To evaluate the accuracy of the GSMaP, CHIRPS and GLDAS data, we used a number of classification
metrics, which are based on existing indices or adaptions of such as used in the existing research
literature (Hu et al., 2013; C. Yu et al., 2020):

Frequency Bias (BIAS), Critical Success Index (CSl), also known as Threat Score, Probability of Detec-
tion (POD) and False Alarm Ratio (FAR) were used to demonstrate the ability of remote sensing to
precisely measure decadal and monthly precipitation and temperature (Schaefer, 1990;
Stephenson, 2000). BIAS measures the tendency of a satellite to underestimate or overestimate
events. POD measures the probability of a satellite to detect precipitation events. FAR indicates the
probability of a satellite-based precipitation event being detected by mistake. CSI represents the
overall accuracy of a satellite in classifying precipitation events. CSI, POD and FAR are recommended
and extensively used by the US National Weather Service to verify various weather events
(Gerapetritis and Pelissier, 2004). The details of these statistics can be found in Table 2.1, where a
represents correctly detected precipitation events by a satellite, b stands for precipitation events
that are detected by the satellite but not confirmed by station data, and c denotes precipitation

events that are not detected by satellite data but are observed by station data.

Furthermore, we employed a number of quantitative metrics. In detail, these are 1) Percentage Bias
(PBIAS), which measures the average tendency of satellite estimates to be larger or smaller than the
benchmark; 2) Mean Bias Error (MBE), which measures the average satellite estimate error; 3) Mean
Absolute Error (MAE), which measures the average magnitude of a satellite’s estimate; 4) Root
Mean Square Error (RMSE), which measures the same as MBE but puts greater weight on higher

errors than MBE.

We also applied some agreement metrics such as 1) Spearman’s Rank-order Correlation Coefficient
(SC), which measures the strength of a monotonic relationship between estimations and observa-
tions; 2) Pearson’s Correlation Coefficient (PC), which measures the linear correlation between es-
timations and observations; 3) Determination Coefficient (R?), which measures how well data points
fit in a regression line, as well as the predictability level of the observation data from satellite data;
4) Index of Agreement (d), which solves certain problems associated with PC and R? and measures
the degree to which satellite estimation is free of error; it also measures how well a satellite esti-
mate simulates station data (Willmott, 1981); 5) Linear Error in Probability Space (LEPS), which
measures the mean absolute difference between the estimated cumulative distribution value and

the observation (Potts et al., 1996); 6) Nash-Sutcliffe Efficiency (NSE), which was first proposed by
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Nash & Sutcliffe (1970) and originally used for assessing the predictive power of hydrological mod-
els, but was later widely used for quantity accuracy assessment of various models. However, NSE is
highly sensitive for data that has a high temporal volatility. Therefore, NSE has been used only for
accuracy assessment of the temperature data. The details of these statistical indices can be found
in Table 2.1, where E; and O; are satellite and station observations, respectively, at a specific time

i; O is the average of the observed precipitation/temperature.

Table 2.1: Details of accuracy measures

Statistics Formula Range Unit Perfect Value
b
Frequency Bias BIAS = at 0tooo None 1
a+c
a
Critical Success Index CSl =— Oto1l None 1
a+b+c
a
Probability of Detection POD = Tt e Oto1l None 1
b
False Alarm Ratio FAR = 3 Oto1l None 0
. ?:1(Ei - Oi)
Percentage Bias PBIAS = —/——— %X 100% —o0 t0 oo % 0
N 2i=1(0)
Mean Bias Error MBE = Z(Ei -0,) —ootoee  mmorC° 0
i=1
1 n
Mean Absolute Error MAE = EZ'Ei -0 0tooe mm or C° 0
i=1

n
1
Root Mean Square Error RMSE = _Z(Ei - 0,)? Otoee  mmorC° 0
n i=1
1 n
Linear Error in Probability Space  LEPS = gZ:MDF0 (E;) — CDF,(0p)| Otol None 0

i=1

13%,(0: - 0)(E — E)

Spearman’s Correlation SC= — —, ~ltol None 1
fs0-0) (e -B)
pe o E(0,-0)(E )
Pearson’s Correlation - — — -1to1l None 1
Jom0-0) s -B)
—2
n (p _0 _
Determination Coefficient R?=1- L_)z ltol None 1
?:1(01‘ - 0)
?:1(01‘ - Ei)z
Index of Agreement d=1- — — Oto1l None 1
Y(|E - o] +Z|0i -0l)
iy (0i — E)
Nash-Sutcliffe Efficiency NSE =1- 11;_12 —ooto 1 None 1
?:1(01‘ — 0)

Source: compiled by the authors.
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Additionally, we used Ordinary Least Squares (OLS) regression and Quantile Regression (QR) to
measure the relationship between decadal and monthly weather measurements by station and sat-
ellite. QR was used to assess the satellite decadal and monthly weather data in various quantiles of

the station precipitation measurements, which is not possible in traditional regression methods. QR
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has a number of advantages for measuring the relationship between variables compared to tradi-
tional regression methods. QR measures the relationship between minimum and maximum re-
sponse and provides a more detailed overview of the relationship (Cade and Noon, 2003). QR mini-
mizes the sum of absolute residuals and is robust to outliers (Li, 2014). In our study, we focused on
all lower, median and upper tile quantiles .05, .1, .25, .5, .75, .9, .95 to check the ability of SPE during
drought/flood periods. All statistical calculations and figures were developed using the R project (R
Development Core Team, 2018) and just the results of the QR analysis were generated with STATA
15 (StataCorp, 2019).

2.4.3. Meteorological drought indices and anomaly detection

In order to check the ability of satellite-based MDIs to detect weather shocks during the vegetation
period of rainfed crops (March-May) and irrigated crops (May, September, October), we calculated
MDIs using both in-situ weather and satellite data and applied correlation analyses. For the analyses,
we selected two drought indices, namely the Standardized Precipitation Index (SPI) and the Stand-
ardized Precipitation-Evapotranspiration Index (SPEI). According to Wanders et al. (2017), the SPI
and SPEI are among the most frequently used drought indices worldwide. Ghamghami et al. (2017)
and Okpara et al. (2017) have found the SPI well-suited for index insurance purposes. SPI is based
on the conversion of precipitation data into probabilities using gamma distribution. The negative
output value of SPI represents drought intensity, with the following categories: > 0 is no drought, 0
to -0.99 is mild drought, -1.00 to -1.49 is moderate drought, -1.50 to -1.99 is severe drought and < -
2.00is extreme drought (McKee et al., 1993). The main advantages of the SPl are a simple calculation
that uses only precipitation data and its multi-temporal character. Meanwhile, the SPI measures
only the water supply and does not take into account any temperature changes over the given pe-
riod, thus ignoring the problem of evapotranspiration. In this regard, SPEl is an improvement of SPI,
by taking into account both precipitation and Potential Evapotranspiration (PET) in defining drought
(Vicente-Serrano et al., 2010). Bezdan et al. (2019) have proposed the use of SPEI in decision-making
at both national and regional levels and in the agricultural insurance sector. In our calculations, the
PET have been calculated according to the Hargreaves & Samani (1982) method, which has an option
of calculating the PET using only Tmax and Tmin data. Categories of output values are similar to the
SPI. A detailed explanation of the SPI index calculation can be found in McKee et al. (1993), and for
SPEI calculation in Vicente-Serrano et al. (2010). SPI and SPIE were calculated using the R package

developed by Begueria & Maintainer (2017), who are the authors of SPEI itself.

Additionally, we tested the ability of SPEs to detect the extreme weather events by using the per-
centiles as a threshold for anomaly detection. We applied <10th and <20th percentiles for drought
(March, April and May) and >80th and >90th percentiles for flood events (May, September, October)
detection. Classification accuracy measures listed in Table 2.1 were applied to examine the perfor-

mance of products.
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2.5. Results
2.5.1. Accuracy of satellite precipitation data

Figure 2.3 provides a comparison of decadal and monthly precipitation levels as measured by satel-
lites at the Djizzakh station in the period of March-December 2017. A similar visualization for the
remaining five stations can be found in Figure A.1.7.1 and 1.7.2. While both satellites did record the
local precipitation events, we noticed that monthly precipitation, in comparison with our benchmark

stations, was overestimated by CHIRPS, while it was underestimated by GSMaP.
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Figure 2.3: Decadal (a) and monthly (b) precipitation by stations, GSMaP and CHIRPS at
the Djizzakh station

Source: compiled by the authors.
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Table 2.2: Accuracy assessment of continuous monthly precipitation in selected loca-
tions (March 2000-December 2017)

Djizzakh Gallaral Lalmikor Samarkand Karshi Takhtakupir Average

-9 (%] [-% 1%} -9 1%} -9 ["d [-% wv [-% wv -9 ["d

© o © o © o © a © o © o © a

= =5 = a = a = = = e = e = =

6 & 6 & 6 & 6 & 6 & 6 & 6 &
BIAS 1.09 0.89 1.11 0.90 1.08 0.88 1.10 0.87 1.28 1.02 1.08 0.91 1.12 0.91
csl 0.91 0.89 0.90 0.86 091 0.86 0.91 0.86 0.78 0.91 0.89 0.82 0.88 0.87
POD 0.99 0.89 1.00 0.88 0.99 0.87 1.00 0.87 1.00 0.97 0.98 0.86 0.99 0.89
FAR 0.08 0.00 0.10 0.02 0.08 0.01 0.09 0.01 0.22 0.05 0.09 0.05 0.11 0.02
PBIA -14.20 10.60 -9.10 18.00 -18.90 4.00 -12.90 4.90 -6.80 28.50 -13.90 9.50 -12.63 .2.58
MBE -4.68 3.50 -2.79 5.52 -6.48 1.37 -3.81 1.46 -1.22 511 -1.41 0.96 -3.40 2.99
MAE 6.45 10.37 7.77 11.74 9.25 10.93 6.27 8.33 3.69 6.97 4.15 4.86 6.26 8.87
RMS 11.13 15.76 12.37 16.98 14.11 15.71 10.64 .2.77 6.59 11.57 7.58 7.26 10.40 .3.34
SC 0.97 0.92 0.94 0.91 0.95 0.91 0.98 0.94 0.96 0.95 0.84 0.84 0.94 0.91
PC 0.96 0.90 0.93 0.88 0.93 0.89 0.95 0.92 0.96 0.91 0.79 0.80 0.92 0.88
R? 0.93 0.81 0.86 0.78 0.87 0.79 091 0.84 0.92 0.84 0.63 0.65 0.85 0.79
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 0.97 0.94 0.96 0.93 0.95 0.94 0.97 0.96 0.97 0.94 0.88 0.88 0.95 0.93
LEPS 0.05 0.08 0.06 0.09 0.07 0.09 0.04 0.07 0.04 0.06 0.10 0.13 0.06 0.09

Source: compiled by the authors.
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To quantify this difference in precipitation data, Table 2.2 and Table A.1.8.1 provide the results of
classification, quantitative and agreement statistics of continuous decadal and monthly precipita-
tion for all six stations. The results obtained from BIAS show that GSMaP slightly overestimate the
precipitation events while CHIRPS underestimates; mean values are equal to 1.12 and 0.91 for
monthly scale and 1.24 and 0.91 for decadal scale, respectively. According to POD, GSMaP has al-
most perfect values and significantly better probability to detect precipitation events than CHIRPS.
Meanwhile, based on FAR results, CHIRPS has a lower probability of false positives in terms of pre-
cipitation events than GSMaP. The values of CSI, which measures comprehensive detection proba-
bility of satellite to precipitation events, vary from 0.78 to 0.91 on a monthly scale and from 0.71
and 0.86 on a decadal scale for GSMaP; and from 0.82 to 0.89 on a monthly scale and from 0.82 to
0.98 for CHIRPS.

According to results from PBIAS and MBE in both temporal aggregations, GSMaP underestimates
precipitation in all locations while CHIRPS overestimates. MBE and RMSE shows that GSMaP has a
lower difference from benchmark measurements and a higher accuracy compared to CHIRPS in all
locations. Results of SC, PC, R?, d and LEPS for GSMaP are close to perfect values in all locations,
except for the Takhtakupir station, which is located in an arid zone. Meanwhile, these agreement
metrics are also high for CHIRPS but slightly lower than GSMaP. As shown in Table 2.2 and Table
A.1.8.1, the results of all statistical metrics for the Takhtakupir station are slightly lower in both SPEs.
Overall, the results of all statistical metrics for all stations are on a satisfactorily accurate level.
GSMaP showed a stronger ability to measure precipitation variance than CHIRPS in terms of most

statistical metrics.

Table 2.3: Quantile regression results of satellite-based monthly precipitation estimates
for the Djizzakh station (n = 214)

OoLS QRO.5 QR 0.1 QR 0.25 QR 0.5 QR 0.75 QR 0.9 QR 0.95
Coef. 1.150***  0.914***  (0.940***  1.039***  1.126***  1.249***  1.480*** 1.640***
Djizzakh-GSMaP SE 0.022 0.054 0.022 0.022 0.013 0.029 0.066 0.159
R%/pR? 0.925 0.605 0.6708 0.7529 0.8046 0.7897 0.7531 0.711
Coef. 0.876***  (0.558***  (0.535***  (.681***  0.900***  1.044*** 1.168***  1.137***
Djizzakh-CHIRPS SE 0.029 0.048 0.033 0.034 0.026 0.034 0.077 0.106

R?/pR?2  0.807 0.3273 0.4044 0.5469 0.6408 0.6534 0.6123 0.5873
Coef. = Coefficient; SE = standard error; R?> = R-square for OLS; pR? = pseudo R-square for quantiles; * p<0.05,

** p<0.01, *** p<0.001

Note: A similar table for the remaining five stations can be found in Table A.1.9.2 and for decadal scale in
Table A.1.9.4.

Source: compiled by the authors.
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In both SPE products for the decadal and monthly scales, the quantile coefficients and their 95%
confidence intervals do not lie within the 95% confidence interval (Figure 2.4, Figure A.1.9.3 and
A.1.9.5); furthermore, there is a significant difference between coefficients in the upper and lower
quantiles compared to OLS (Table 2.3, Table A.1.9.2 and A.1.9.4). This indicates a different relation-
ship between precipitation by station and SPE along the quantiles, showing that the OLS regression
slope is not sufficient to describe this relationship. Both Figure 2.4 and Table 2.3 show that the mag-
nitude of coefficients is increasing as they approach the upper quantiles of the distribution of station
precipitation. Coefficients of GSMaP in the lowest quantiles (low precipitation decades and months)
are below one, as opposed to the quarter quantiles coefficients, which exceed one. Correspondingly,
GSMaP overestimates the precipitation in lower quantiles, but starts underestimating after quarter
quantiles. Structurally, the results for CHIRPS are similar; however, CHIRPS overestimates the pre-
cipitation until about the median, after which it starts underestimating precipitation. Overall, both
SPE products have a significant correlation with station precipitation measures, according to both

OLS and quantile regression.

14
'~

12
\

Coefficients
10
A
N
Coefficients
0
N
\

08

02 04 06 0.8 02 0.4 06 08
Quantiles Quantiles

Figure 2.4: Estimated results of quantile regressions for monthly scale precipitation by
(a) GSMaP and (b) CHIRPS in Djizzakh station

Note: A similar visualization for the remaining five stations can be found in Figure A.1.9.1 and for decadal

scale in Figure A.1.9.3
Source: compiled by the authors.
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Figure A.1.8.3 and Figure 2.5 illustrate the average results from all six stations for classification,
guantitative and agreement accuracy metrics of the decadal and monthly precipitation records for
each period from March 2000 to December 2017. This means that each month offers 18 periodic
precipitation observations for analysis, except January to March, for which there are 17 periodic

precipitation observations. According to the averaged results, GSMaP shows a significantly higher
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accuracy than CHIRPS in most decades and months in all accuracy metrics. The values of classifica-
tion accuracy metrics (BIAS, CSI, POD and FAR) for GSMaP are close to a perfect value in all months
excluding the dry season (June to September), which indicates a higher classification accuracy for
GSMaP in wet seasons (winter, spring and fall). Meanwhile, the classification accuracy metrics for
CHIRPS are lower than GSMaP, while CHIRPS also has a significantly lower classification accuracy in
the summer season, as compared to other seasons. Based on these results, the average values of
PBIAS and MBE confirm that GSMaP underestimated precipitation levels in the vast majority of dec-
ades and months; meanwhile, CHIRPS overestimated the amount of precipitation in decades and
months from January to May and from October to December, even though for both satellite prod-
ucts, the MAE and RMSE in summer season are significantly lower than in other seasons. GSMaP has
higher and moderately close to perfect values in SC, PC, R?, d and LEPS than CHIRPS provides in all
months, and a decrease of quantitative and agreement accuracy can be observed during the sum-
mer season for both products. Overall, GSMaP has a significantly higher accuracy in terms of all
statistics than CHIRPS, which can be observed from both continuous decadal and monthly precipi-

tation analyses and analyses for each decades’ and months’ precipitation.
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Figure 2.5: Average results of classification, quantitative and agreement accuracy met-
rics of monthly precipitation for all stations, by (a) GSMaP and (b) CHIRPS
Note: A similar visualization of results for decadal scale can be found in Figure A.1.8.3.

Source: compiled by the authors.
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2.5.2. Accuracy of satellite temperature data

Using the Djizzakh station as an example, Figure 2.6 demonstrates the decadal and monthly average
Tmax and Tmin estimates by GLDAS and the stations between January 2000 and December 2017. A
similar visualization for the remaining five stations can be found in Figure A.1.7.3 and A.1.7.4. Ac-
cording to results, GLDAS has a high ability to detect average Tmax and Tmin, and performs ex-

tremely accurate measurements at the 1% level in both temporal aggregation for all periods and all

locations.
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Figure 2.6: Decadal (a) and monthly (b) average Tmax and Tmin by stations and GLDAS
for the Djizzakh station
Source: compiled by the authors.
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Table 2.4: Accuracy assessment of continuous monthly average temperature in selected

locations (January 2000-December 2017)

Djizzakh Gallaral Lalmikor i::\dar- Karshi Takhtakupir Average
x - x - x c x - x c x (= x (=
© = © = © = © = © = © = © =
E E E £ E_E E E E £ E £ E £
BIAS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
cs| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

POD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PBIA 340 4.60 2.80 28.60 1.30 -11.60 -3.70 2.30 0.10 11.60 -0.70 58.80 0.53 15.72
MBE 0.73 0.43 0.58 1.86 0.25 -1.03 -0.81 0.21 0.03 1.21 -0.13  3.39 0.11 1.01
MAE 1.11 113 0.95 214 0.89 1.42 134 1.02 0.88 1.95 0.72  3.40 098 1.84

RMS 136 1.42 1.20 2.68 1.16 1.87 1.72 1.35 1.14 231 0.95 3.88 126 2.25
SC 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.99 0.99 0.97 1.00 0.98 0.99 0.98
PC 1.00 0.99 1.00 0.97 0.99 0.98 0.99 0.99 1.00 0.98 1.00 0.98 1.00 0.98
R? 0.99 0.98 0.99 0.95 0.99 0.96 0.98 0.98 0.99 0.95 0.99 0.97 0.99 0.97
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d 1.00 0.99 1.00 0.97 1.00 0.99 0.99 0.99 1.00 0.98 1.00 0.97 1.00 0.98

LEPS 0.04 0.05 0.03 0.07 0.03 0.06 0.05 0.04 0.03 0.07 0.02 0.09 0.03 0.06
NSE 0.98 0.97 0.99 0.88 0.99 0.95 0.97 0.97 0.99 0.92 0.99 0.86 0.99 0.93

Note: A similar table for the decadal scale analyses can be found in Table A.1.8.1.

Source: compiled by the authors.
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Table A.1.8.1 and Table 2.4 illustrate the results of classification, quantitative and agreement statis-
tics of continuous decadal and monthly Tmax and Tmin in all six station locations between January
2000 and December 2017, all in all 642 decades and 214 months. According to this data, GLDAS has
perfect classification accuracy in all indices, which means that GLDAS captured Tmax and Tminin all

decades and months of the study period in selected locations.

The obtained results from the quantitative statistic metrics demonstrate a satisfactory accuracy of
both Tmax and Tmin measurements by GLDAS in both temporal aggregations according to Yu et al.
(2020). According to PBIAS and MBE values, GLDAS slightly overestimated Tmax in four locations
and underestimated in two locations. Similarly, GLDAS overestimated Tmin in five locations and un-
derestimated in one location. Meanwhile, the results of MAE and RMSE values show that these over-
/underestimations, as well as the difference between station and GLDAS measurements, can be dis-
regarded. Overall, results of SC, PC, R%, d, LEPS and NSE for Tmax and Tmin are near to the perfect
value of zero or one, respectively, which indicates the strong ability of GLDAS to measure variance
of decadal and monthly mean Tmax and Tmin, even though agreement statistical metrics of Tmax

are slightly and insignificantly higher than Tmin.
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Figure 2.7: Estimated results of quantile regressions for (a) GLDAS Tmax and (b) GLDAS

Tmin in Djizzakh station

Note: A similar visualization for the remaining five stations can be found in Figure A.1.9.1 and for decadal

scale in Figure A.1.9.3.
Source: compiled by the authors.
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Table 2.5: Estimated results of OLS regressions for monthly GLDAS Tmax and GLDAS

Tmin in all locations

Djizzakh Gallaral Lalmikor Samarkand Karshi Takhtakupir
GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS GLDAS
Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin
0.947*** 1.255%** 0.982*** 1.276%** 0.979%**  1.253*** 0.934*** 1.188*** 0.945%** 1 155%** 1.016%**  1.249***
0.006 0.014 0.006 0.019 0.007 0.019 0.009 0.015 0.006 0.017 0.005 0.015
0.991 0.973 0.991 0.953 0.989 0.954 0.981 0.967 0.992 0.954 0.995 0.972

Note: A similar table for the remaining five stations can be found in 9.2 and for decadal scale in Table
A.1.94.

Coef. = Coefficient; SE = standard error; R-square; * p<0.05, ** p<0.01, *** p<0.001
Source: compiled by the authors.
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Figure A.1.9.3 and Figure 2.7 show that OLS is sufficient to describe the relationship between tem-
perature (decadal and monthly) measurements by satellite and station. The quantile slope estimates
are not statistically different from the OLS estimate. Therefore, we conducted only OLS regression
for satellite temperature data. The average R? of Tmax is 0.99, ranging from 0.98 to 0.99, and Tmin
varies from 0.95 to 0.98, with a mean of 0.97. P-values in all locations are below 0.001, which means
the results are statistically significant at the 1 % level. Coefficients of GLDAS Tmax in all locations are
less than one, as opposed to GLDAS Tmin, which reach higher than one. Correspondingly, GLDAS
slightly overestimates the decadal and monthly mean Tmax and underestimates the Tmin. Overall,
both GLDAS Tmax and Tmin in all locations have a significant correlation with station temperature

measurements according to both OLSs.

Figure A.1.8.4 and Figure 2.8 illustrate the average results (from six stations) of classification, quan-
titative and agreement accuracy metrics of decadal and monthly temperature records for each pe-
riod between January 2000 and December 2017, which means each month has 18 periodic temper-
ature data measurements. Both Tmax and Tmin have perfect values for all classification accuracy
metrics in all decades and months, which means that GLDAS is capturing all decadal and monthly
temperature events and there is no data missing in any of the locations. In quantitative and agree-
ment accuracy metrics, Tmax has a slightly higher accuracy than Tmin in most periods. PBIASs of
Tmax and Tmin are significantly higher during the winter season, as average Tmax and Tmin during
the winter season are very close to zero, and a slight difference between measurements might cause
high PBIAS values. The PBIAS values are 107.55% in January and -7.75% in February for Tmax. The
PBIAS values of Tmin are 19.06%, 102.85%, 45.6%, 14.43%, 35.83% and -203.85% in January, Febru-
ary, March, September, October and December, respectively. Despite this, the MBE, MAE and RMSE
values of Tmax and Tmin during the winter season are lower than in other seasons, which demon-
strates the low relevance of high PBIAS values to the overall quantitative and agreement accuracy.

As shown in the figure, Tmax has higher and closer to perfect values in SC, PC, R%, d and LEPS than
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Tmin in the majority of decades and months. Even though the SC, PC, d, LEPS and R? values are lower
in summer seasons, those do not significantly affect the MBE, MAE and RMSE. Overall, both Tmax
and Tmin have significant classification, quantitative and agreement accuracy, which can be ob-
served from both continuous decadal an