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Abstract 

 

 

The main idea of this thesis is to consider walking of biped mechanisms as an 

oscillating process. The aim of this work is to design the effective methods of the control of 

oscillating underactuated system and to apply the principles gained to develop periodic and 

dynamic walking of a prototype of the robot ROTTO. The problem design of the control 

algorithms of oscillations of variable length pendulum, double pendulum and walking 

mechanical systems is considered. Different control methods are developed for variable 

length pendulum and double pendulum. The mathematical model of a two-legged mechanism 

including impact interaction between feet and support is studied. The method of synthesis of 

ballistic (natural) trajectories of movement of two-legged mechanical systems is considered 

for planar and 3D mathematical models. Special trajectories for a two link compass-like 

mechanism are developed analytically. The algorithms of dynamic walking of a two-legged 

robot separately in the frontal and sagittal plane and in 3D by maintaining the total energy are 

developed. The effectively and quality of the synthesized control systems of the mechanisms 

are simulated and proved experimentally. 
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Kurzfassung 

 

 

Die Hauptidee der Dissertation ist die Betrachtung des Gehens von anthropomorphen 

Robotern als Schwingungsprozess. Das Ziel dieser Arbeit besteht in der Entwicklung von 

effektiven Methoden zur Regelung eines mechanischen Systems mit unvollständigen 

Steuergrößen und die Verwendung dieses Prinzips für die Synthese  des dynamischen Gehens 

des zweibeinigen Roboters ROTTO.  In der Arbeit wurde das Regelungssystem für die 

Schwingungsamplitude eines Pendels mit variabler Länge, eines Zwei-Massen-Pendels und 

eines Laufroboters betrachtet. Für das Pendel mit variabler Länge und das Zwei-Massen-

Pendel wurden verschiedene Regelungsgesetzte für die Schwingungsamplitude entwickelt. Es 

wurde das mathematische Model eines zweibeinigen Laufmechanismus aufgestellt und seine 

Kontaktnahme mit  dem Untergrund betrachtet. Hierfür wurde eine Methode zur Synthese der 

ballistischen Trajektorie für den 2D und 3D Mechanismus entwickelt.  Für ein stark 

vereinfachtes Modell (Zirkelmodell) wurde eine spezielle Trajektorie analytisch abgeleitet. 

Für das dynamische Gehen eines zweibeinigen Roboters wurden die Algorithmen jeweils 

unabhängig voneinander in der frontalen und sagittalen Ebene und in 3D auf der Basis der 

Regelung der Gesamtenergie  entwickelt. Effizienz und Qualität der entwickelten 

Regelungssysteme wurden durch Simulation und Experiment  nachgewiesen. 
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Chapter 1.  Introduction and problem formulation 

Equation Chapter 1 Section 1  

 

If we can gain better insight into how humans walk, 

perhaps we could improve prosthetics for the gait-

impaired, help correct neuro-muscular deficiencies, 

or build better two-legged walking robots. 

Tad McGeer. 

 

 

1.1. Introduction 

At present there is a great variety of machines and vehicles mainly based on the 

application of a wheel which is considered to be one of the most outstanding inventions of 

people. However, all vehicles – cars, trains, ships or planes require highly-organized 

associated systems, namely airports, ports, roads, canals. Even today, it is difficult to reach 

some areas on the Earth. Apparatus which can move with the help of two limbs can change 

this situation and make it better. 

Ability to walk is an outstanding and unique invention of nature. It is a universal and 

flexible process of locomotion and it is perfectly adapted to a natural habitat of living 

systems. Ability to walk enables living beings to reach every corner of the world. Walking, 

running, flying and swimming of animals and birds takes place within a person’s sight and the 

fact that locomotion processes which living beings fulfill are extremely numerous and 

“ordinary” can create an impression that the secret of organization of these process are 

obvious. However, it is far from true…  

Engineers have been investigating the process of walking for many years [5], [28], 

[36], [53], [55], [65], [73], [77], [82], [90]. A great number of two-legged locomotion 

machines having the ability to move on two legs have been created so far. Biped robots are 

electromechanical systems which morphologically imitate a human body structure and 

implement the main degrees of freedom (DOF) of a human body. Hence, it is very desirable 

for biped robots to move similar to a human being. Because of this, the analysis of person’s 

motion (walking) has a significant meaning for the task how to find a goal-walking model. It 

is also necessary to remember the technical perfection of a mechanical structure, a mass 

distribution in a robot structure, dynamic properties of electromechanical actuators 

completely determine all physical parameters and dynamic properties of robots [6], [16], [58] 

[61], [68]. Hence, we can distinguish the following main tasks in the development of 

anthropomorphic robotic engineering:  
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 development of a mechanical structure,  

 development of mechanical and physical properties of actuators, 

 organization and control of robot locomotion. 

Now let’s consider in more details state of the art of biped robots and the main 

concepts how to plan and control walking of biped mechanisms.  

1.2. State of the Art 

It is not trivial at all to solve the task of motion synthesis. Many robots developed up 

to the present moment walk rather slow, in state conditions. At present, the majority of well-

known algorithms for robot locomotion use only some part of dynamic robot capabilities. 

Despite the fact that the theory of automatic control is highly developed, the possibility to use 

many control algorithms is essentially bounded. The difficulties arising while developing the 

algorithms which can control biped locomotion are due to the fact that a biped mechanism 

represents an unstable underactuated mechanical system with a great number of DOF. Under 

underactuation is understanding that the number of actuated DOF of mechanical system is 

less than available. 

One of the problems arising while controlling a biped robot is the coordination of 

robot joint movements. As a biped robot has a great number of degrees of freedom, the task to 

coordinate the movements in separate joints causes considerable difficulties. For example, at 

translational movement of center of mass (COM) of robot the required number of DOF is 

much less than is available. This kinematic problem has more than one solution. Hence, there 

appears the task to find the optimal solution of the problem. But in practice it is next to 

impossible to find the optimal solution for essentially non-linear system of the high order.  

The second significant problem lies in highly non-linear hybrid dynamics of bipedal 

walking. Non-linear character of a mechanism dominates particularly when investigating the 

robot locomotion in 3D space. The interaction with the support surface plays a significant role 

during robot walking. To describe robot motions taking into account impact interactions with 

the support surface it is necessary to generate complex mathematical models. Such 

mathematical model comprises equations of motion and equations of impulsive interactions.  

The next problem is that on in a large region of movement the biped robot is a multi-

input multi-output (MIMO) underactuated mechanical system [30]. In comparison with 

industrial robots which are rigidly fixed to a foundation biped robots are mobile in space and 

the value of the torque applied in an ankle joint is limited by the feet size. Limitation of the 

torque applied results into the complexity of the control algorithms.  

Strong interdependence between the task of planning the locomotions and the features 

of a mechanical structure makes it necessary to carry out the mathematical modeling even on 

the early stages of biped robot development. It is necessary to notice that the characteristics of 

movements received depend mainly on the dynamic capabilities of robots. 
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1.2.1. Mechanical Design of the Bipedal Robots 

At present humanoids show some similitude, in other words, represent the 

reconstruction of a human body and they are electrical, hydraulic, pneumatic and mechanical 

systems. Perfection of a mechanical structure of a robot and the technologies applied is one of 

the most important constituents of the successful solution of the locomotion task and it 

determined the robot dynamic capabilities which can be achieved. Currently there are a lot of 

biped robots whose number of DOF is more than 30. The following robots are well-known all 

over the world: the robot named ASIMO developed by the company Honda [33], the robot 

Johnnie from TU München KHR-3 [86], KHR-3 HUBO from Korea Advanced Institute of 

Science and Technology [41] (s. Fig. 1.1). 

 
  

а) ASIMO, Honda Motor Co. [33] b) Johnnie, TU München [86] c) KHR-3 HUBO, KAIST [41]  

 

Figure 1.1 – Well-known robots 

 

All these robots were developed according to a multi-link model of man: a head, a 

body, arms, legs and feet and they are 1,3m, 1,8m and 1,2m high respectively. The quickest of 

them is ASIMO: its walking speed is 2,7 km/h and running speed is 6,0 km/h. All three robots 

have similar mechanical concept: simple kinematics, high rigidity, self-contained system, 

relative high weight (>50 kg). 

One of the most promising directions in the question of dynamic walking is the 

application of the Series Elastic Actuation technology. This type of an actuator has the 

following features: conservation of energy in the elastic element, position control with the 

desired impedance, implementation of the artificial spring with the desired value of stiffness. 

The first works in this area of research belong to the robotics group from 

Massachusetts Institute of Technology [66], [67], [70], [71], [72]. The planar bipedal walking 

robot Spring Flamingo (s. Fig. 1.2 а) was created by this group as a pilot platform to test 

different locomotion algorithms. The robot has hip and ankle joints and knees. All robot 

motors are in the upper part of a body. Forces are transmitted via cable drives. Series Elastic 
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Actuation is employed at each degree of freedom, allowing for accurate application of torques 

and a high degree of shock tolerance [51]. The proposed algorithm Virtual Model Control 

(VMC) enabled to realize dynamic walking along the surface with different properties on the 

basis of the planar robot Spring Flamingo. The speed of walking 4,32 km/h was reached 

during the experimental research. 

  
а) b) 

Figure 1.2 – a) Robot Spring Flamingo by MIT [51], b) Robot PETMAN by Boston Dynamics [6] 

 

At present the fastest walking bipedal robot is the robot PETHMAN (s. Fig. 1.2 b) 

developed by an American military company Boston Dynamics. The speed of walking is 7,1 

km/h and heel – toe walking is like human [6]. The peculiarity of the robot PETHMAN 

mechanical structure is the application of aeronautic hydraulics as power actuators and the 

application of series elastic actuation technology to provide the predetermined total 

impedance of the foot end points with supporting surface. The robot PETHMAN is designed 

to test military uniform clothing 

When a person walks he moves some limbs of his body during definite stages of a step 

without any application of force in the joints [42]. That is why learning of passive/semi-

passive dynamic walking robots are of great interest concerning the following tasks: analysis 

of natural walking, stable walking cycles, passive dynamics (by Tad McGeer), ballistic 

motion (Alexander M. Formalskiy in the 1970s), low energy cost [3], [21], [24], [25], [53], 

[55], [56]. The original model for passive dynamics is based on human and animal leg 

motions [53]. In robots like the Honda ASIMO the realization of legged movement is not 

optimal from the point of view of energy consumption as each joint has its own motor and it 

is controlled depending on its position separately from the whole system. Human walking is 

more perfect as the motion of many parts of a human body is similar to natural periodic 

oscillations. Only in some moments the muscles send additional impulse thus increasing the 

energy of the system to continue the periodic walking [8]. 
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Energy efficiency in level-ground transport is quantified in terms of the dimensionless 

"specific cost of transport", which is the amount of energy required to carry a unit weight a 

unit distance [87] Passive dynamic walkers such as the Cornell Efficient Biped [12] have the 

same specific cost of transport as humans, 0.20. Not incidentally, passive dynamic walkers 

have human-like gaits. By comparison, Honda's biped ASIMO, which does not utilize the 

passive dynamics of its own limbs, has a specific cost of transport of 3.23 [11]. The current 

distance record for walking robots, 65.17 km, is held by the passive dynamics based Cornell 

Ranger (s. Fig 1.3).  

  
 

Figure 1.3 – Cornell Ranger [13] by Cornell University 

 

1.2.2. Design of Bipedal Robot “ROTTO” 

The bipedal robot “ROTTO” [40] was developed in Otto-von-Guericke University of 

Magdeburg during the period 2007-2010 (s. Fig. 1.4). This robot has a great number of 

different sensors, actuators and it is designed to do research in different area, such as 

investigations in gait generation and motion control, development of energy optimal gaits, 

investigation of robot ballistic motion, development of adaptive motion control using the 

feedback linearization methodology, development of force/impedance control inspection tasks 

in closed room, pipes, on complex terrain, especially in areas with harmful environmental 

conditions that are hazardous for human, development and optimization of various algorithms 

for motion, climbing and service operations and others  [39], [40]. One of the most important 

tasks for the sake of which the robot ROTTO has been developed is the development of the 

algorithms to provide periodic and dynamic walking of a robot.  
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a)  b)  
Figure 1.4 – Robot „ROTTO“ 

a) Prototype,  

b) CAD Model 

 

 The detailed information about the robot ROTTO is given in chapter 5.  

1.3. Basic concepts of the Bipedal Walking Control. 

The robots analyzed in the previous item can be classified into two categories: open 

loop and closed loop control of the stable walking (s. Fig 1.5). Open loop systems include 

static, passive, quasi-passive walking. Closed loop systems include all the types of dynamic 

walking. Let’s consider more detailed the methods how to plan and control bipedal walking. 
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Closed loop

Static
Quasi-Static

Passive

Dynamic

Open loop

Stable Robot Walking

 

Figure 1.5 - Stable Walking of Robots 

As a rule, a set of paths for definite robot movements is calculated offline and is stored in 

some data base. The robot selects online a suitable set of paths to fulfill this or that task, 

operation. Doing so [1], [48], [47], [79] locomotion is organized using the sequence of 

statically stable configurations in which the projection of the COM on the support surface is 

inside the supporting area. Such type of a gait synthesis is often used for small biped robots 

(s. Fig. 1.6). 

  
а) b) 

Figure 1.6 – a) Robot NAO [1], b) robot QRIO [20] 

 

In the mode of static stability it is usually possible only to move slowly. This is due to 

the fact that robots are comparatively light and weigh only some kilograms and servomotor 

capabilities are insufficient to produce dynamic walking.  

In some investigations walking is organized by setting and following the programmed 

trajectories. In papers [23], [31] the programmed trajectories are set in the form of time 

functions (polynomials). These programmed trajectories are followed by the drives installed 

in the joints. The polynomial coefficients change with each step depending on the behavior of 

double support phase. The authors are calling this algorithm an adaptive one. This algorithm 
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is implemented in dynamic walking of a planar bipedal robot with telescopic legs (s. Fig. 1.7 

а) and in walking of a planar anthropomorphic robot (s. Fig 1.7 b). 

  
a) b) 

Figure 1.7 – Robots developed in Moscow State University  

a) Robot with telescopic legs [23] 

b) planar anthropomorphic biped robot [9] 

 

Different postural criterions are used for synthesis and offline optimization of 

trajectories of quasi-static walking [29], [59], [69], [75], [89].  The design methods of quasi-

static walking pattern (s. Fig. 1.8) are based on the concept of postural stability Zero Moment 

Point (ZMP) which was proposed by Miomir Vukobratovic in 1968. The criterion of ZMP 

[59] defines the point on the surface referring to which the moment of support reaction forces 

applied to the foot equals zero. Unlike static walking various ways of online correction of 

ground reference point positions are proposed in publications [18], [35]. The overwhelming 

majority of algorithms for locomotion of biped robots (Honda ASIMO [33], Johnnie TU 

München and others) are based on this conception.  

Open loop

 Planning of the static configurations

 Pre-computing of ground reference 

points (ZMP, FRI, CMP)

 Down slope passive walker gait

 ...

Closed loop

 PID, LQR Control for simplified 

models (LIMP models,...)

 Virtual Model Control

 Virtual Holonomic Constraints

 Maximization of kinetic torque

 ...
 

Figure 1.8 – Stable Walking Control Methods 

Design of passive walking robots rests on the application of a sloping surface or, in 

some cases, of additional actuators to compensate the losses arising during impact interactions 

with support surface and the losses due to friction in joints.  
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All open-loop control systems have general disadvantages such as:  

 it is not possible to compensate external disturbances , 

 dependence of gait stability on the surface characteristics.  

While designing the closed-loop control system the algorithms based on the simplified 

models such as an inverse pendulum [43], spherical inverted pendulum [37], double inverted 

pendulum [93], inverted pendulum [80] and others are used more often to support the balance. 

Using such type of algorithms enables to produce stable walking. However, the simplified 

dynamic model of the anthropomorphic mechanism can be only used in the definite dynamic 

range.  

Virtual model control is a motion control framework that uses simulations of virtual 

components to generate desired joint torques. These joint torques create the same effect that 

the virtual components would have created, had they existed, thereby creating the illusion that 

the simulated components are connected to the real robot [67]. This method was used to 

design the gait of the robot Flamingo Spring. 

Virtual holonomic constraints approach [76], [78], is used to investigate the definite 

types of underactuated mechanical systems. The essential idea of this method is to find some 

movement of a mechanical system, this movement being the geometric function of the 

generalized coordinates. This method was applied to design the gait of the robot RABBIT 

[10] . 

1.3.1.  “Stability” Applied to Bipedal Robotic 

Strictly speaking, there is only one way to keep a robot in balance, that is to apply the 

appropriate forces in the point of the support (a foot, feet) contact with the surface. Let’s 

consider such a set of robot movements when a robot doesn’t lose its balance and its support 

leg does not leave the support polygon. Support polygon is some kind of convex polygon 

which is formed by all the points of contact with the surface [91]. It is possible to formulate 

for such movements the criteria how to keep the balance with respect to the vertical line [60]: 

 The normal projection of COM on the ground accounts for static gravitational 

forces. This criterion is not relevant for the movements which cause the 

dynamic forces acting on the mechanism.  

 One of the commonly used criteria is ZMP. It is basically a renaming of the 

center of pressure (COP) defined as the point on the ground where the resultant 

of the ground reaction forces acts. 

At present there is no strict conception how to keep a biped robot in balance. The term 

“in balance” more often implies the intuitive understanding “it does not overturn”. According 

to [91] the gait is considered to be stable in the following cases: 

 statically stable if the normal projection of the robot’s COM does not leave the 

support polygon, 

 quasi-statically stable if the COP of the stance foot remains strictly within the 

support polygon, and 
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 dynamically stable if the COP of the stance foot is on the boundary of the 

support polygon for at least part of the cycle and yet the biped does not 

overturn. 

From the point of view of the control theory the main criterion of the control system 

stability is Lyapunov stability. Doing this it is necessary to check the system controllability, 

exponential convergence to the predetermined trajectory, asymptotical stability. 

Unfortunately, it is not possible to use the conception of asymptotical stability for such 

processes as walking because they occur in the finite intervals of time. In this particular case 

it is possible to speak about the stability for some number of step cycles using, for instance, 

the conceptions of motion repeatability, period walking and orbital stability.  

1.3.2. Orbital stability 

Orbital stability of solutions of the autonomous system of differential equations  

 ( ),   nf G R      (1.1) 

is understood as the geometric proximity of disturbed and undisturbed motion in the phase 

space of the system (s. Fig. 1.9). Here, G  is a restricted area in 
nR . 





Stable orbit

 

Figure 1.9 – Stable Orbit 

At the present time some definitions of orbital stability are known. In the majority of 

definitions it is the orbital stability of periodic solution that is investigated. Two different 

approaches are used for defining the orbital stability. In the first approach the orbital stability 

of a trajectory is treated as the stability of the set in the phase space, and in the other one the 

orbital stability amounts in either way to Lyapunov stability after a special change of time in 

the system under the question (they are, for example, the definitions close to the definition of 

asymptotical phase) [44]. Both definitions coincide with each other for periodic solutions, 

however, in general case these approaches essentially differ. 

Let’s give the appropriate definitions of orbital stability [44]: 

Definition 1: The solution
 0( , )x x t x , 0t t   , of the system (1.1) is called 

orbitally stable if for any о 0   there is 0( , ) 0t   
 

and
 0T t , so that for all 

0 0( )y B x  at any meaning of t T  the following relation is true: 
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 0 0( ( , ), ( ))y t y L x   .  

Here
 0 0 0( ) { ( , ) :  }L x x t x t t      - is a positive half-orbit of the solution 

0( , )x x t x , 0( )B x  - is an open  - sphere with the center in the point 0x , ( , )z L  - is the 

distance between the point z  and the set L , ( , ) infz L z y   ;  - is the norm in 
nR . 

Definition 2: Orbitally stable solution 0( , )x x t x  of the system (1.1) is called 

orbitally asymptotically stable if there is such meaning of 0 0  , so that for all 
00 0( )y B x  

at t    the following relation is true: 

 0 0( ( , ), ( )) 0p y t y L x  .  

This definition of orbital asymptotical stability with respect to orbital asymptotical 

stability of the closed trajectory can be explained in the following way. The orbital 

asymptotical stability of some closed trajectory in phase space means that the solution of a 

dynamic system at t  
 
converges to this closed trajectory. At this the local stability in 

every point of the given phase trajectory is not guaranteed. 

1.4. Idea of this Thesis – Synthesis of the Periodic Motions of 

Dynamical Systems 

The main idea of this thesis is to consider walking of biped mechanisms like some 

oscillating process. Oscillations are the most common processes in nature and in engineering. 

Oscillations are the processes in which movements or states of the system periodically repeat 

in time. Oscillating processes are characterized by such physical values as a phase, period, 

frequency, amplitude. These values are also perfectly suitable to characterize human steps as 

well as steps of anthropomorphic mechanisms.  

The consideration of the problem of dynamic walking synthesis in the context of 

oscillations allows us to have a new look at the tasks how to maintain balance, compensate 

external disturbances, form step cycles, it enables us to concentrate on maintaining the 

stability of a mechanical system, orbit stability and, as a consequence, periodic walking 

stability.  

The aim of this work is to develop the effective methods of oscillating mechanical 

system control when there is not enough number of control actions and to apply the principles 

gained to develop periodic and dynamic walking of an experimental prototype of the 

anthropomorphic robot ROTTO. 

The sequence of this work is the following (s. Fig. 1.10): a simple pendulum, double 

pendulum, two-legged mechanism in the frontal plane, two-legged mechanism in the sagittal 

plane, 3D realization of walking 
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Two-legged 
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Figure 1.10 – “Stairs” (structure) of the Thesis 

The second and the third chapters consider the examples of building up the systems 

controlling oscillations of simple underactuated mechanical systems. These mechanical 

systems which are considered to be classic in some way are: a simple variable length 

pendulum (swings) and double pendulum. Different control methods were developed for these 

two mechanical systems, the methods being based both on intuitive approach and on the 

application of Lyapunov functions. The experiments proving the efficiency of the methods 

applied were also carried out.  

The fourth chapter represents the mathematical model of a two-legged mechanism 

including impact interaction between feet and support. On the basis of the methods developed 

in the previous chapters the systems exercising control by maintaining the energy of 

oscillations in the frontal plane were synthesized. The experiments showing the robustness 

and the mode of a system operation for different types of surfaces were also carried out. 

The fifth chapter considers the method of synthesis of ballistic (natural) trajectories of 

movement of two-legged mechanical systems. Special trajectories, namely virtual holonomic 

constraints (VHC), for a two link compass-like mechanism were developed analytically. On 

the basis of the analysis the conclusions about some important characteristics of the obtained 

trajectories were made, these characteristics are step energy stability, independence of a step 

pitch from a step length and the possibility to scale the trajectory depending on a step length. 

The method how to synthesize the control of dynamic walking of a two-legged robot in the 

sagittal plane by maintaining the total energy of a system was developed and the simulation 

was carried out. This chapter also deals with the method of synthesis of 3D biped robot 

walking and the experiment was also carried out. 
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Chapter 2.  Control of variable length pendulum 

motions  

Equation Chapter 2 Section 2 

 

In this chapter an example of control system construction for simple mechanical 

system’s motions is considered. The Variable length pendulum can be considered as a model 

of swings with a human on them. For mechanical system one can synthesize an equation 

based on the law of conservation of angular momentum. The obtained equation allows to 

change the pendulum oscillations amplitude in desirable way. The experiments are also 

described which prove quality of constructed control systems.  

2.1. Equations of motion  

Let us consider a plane mathematical variable length pendulum (s. Fig. 2.1). The 

pendulum consists of a massless rod along which a single mass point m  is moving. As 

generalized coordinates which define the system position we will take an angle   and a 

distance l  between single mass point and suspension point O . This distance l  can change 

from minl  till maxl : 

 min maxl l l   (2.1) 



O

l
m

in

l
m

ax

m

 

Figure 2.1 – Mathematical variable length pendulum 

The system (s. Fig. 2.1) has two degrees of freedom. The equation of motion of the 

described system we set up using the Lagrange equation of second order [4], [49] 
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               ( = 1, ..., n)i

i i

d L L
Q i

dt q q

  
  

  

  (2.2) 

In the equations (2.2) iq  is a generalized coordinate, iQ  is generalized 

nonconservative force, L T V   is Lagrange function, T  is kinetic energy, V  is potential 

energy of the system. For the concerned here system 2n  . 

Expression for potential energy of the system has the following form: 

 cosV mgl  . (2.3) 

Expression for kinetic energy of the system is: 

 
2 2 21 1

2 2
T ml ml   . (2.4) 

Using the equations (2.2), (2.3) and (2.4) we can set up the equations of motion of 

variable length pendulum: 

 
2

2

2 sin

cos         

mll ml mgl M

ml ml mg F

  

 

   


  

. (2.5) 

In the equations (2.5) M  is moment of external forces which affect the pendulum with 

respect to suspension point O , F  is force that moves single mass point m  along the massless 

rod. 

In the work [50] for deducing of equation of mathematical pendulum motions the 

theorem about change of angular momentum is applied, according which a time derivative 

from the angular momentum is equal to the moment of external forces. The angular 

momentum of the pendulum with respect to suspension point O  is equal to 
2ml  , gravitation 

moment sinsM mgl   . Equation of pendulum motions round the suspension point O  

when 0M   can be presented as: 

  2 22 sin
d

ml mll ml mgl
dt

       . (2.6) 

Naturally the equation (2.6) coincides with the first equation (2.5) . This equation can 

be simplified:  

 
2

sin 0
l g

l l
     . (2.7)  
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2.2. Increase of oscillation amplitude of the pendulum. 

Formulation of control problem. 

Mathematical pendulum, which length changes periodically, is a simplified model of 

swings with a human on them. As is generally known, swings are set in motion by rhythmical 

bending and straightening of body (or periodical bending and straightening of knees). As a 

result of it the center of gravity of the whole system comes up at the moment, when the 

pendulum (swings) passes the tough (fig. 2.1), and goes down at the moment, when the 

pendulum derivates from vertical at most. Such law of variation of the distance l  can be 

presented by the following expression: 

 min

max

,  0

,  0

l
l

l

 

 

 
 

 

 (2.8) 

As a result of such motions sequence, full energy of the system increases and vibration 

amplitude grows.  



O

lmin

lm
ax

m

G

1

2

3

4
5

6

7

8

  0

  0  0

 

Figure 2.2 – Scheme of pendulum motions  

Let us analyze the change of the full energy of pendulum while its vibration in 

concordance with the law (2.8) more detailed on section 1-2-3-4-5 (fig. 2.2).  

In absence of nonconservative forces the energy-conservation equation can be written: 

 
2 2

0

1
(1 cos ) (1 cos )

2
ml mgl mgl      . (2.9) 
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Here 0 - angle of the pendulum derivation at the instant when 0   

Angular speed in point 2 (fig. 2.2) is equal to  

 
2

2 01

max

2
(1 cos )

g

l
   , (2.10) 

here 01  is initial deflection angle in position 1. A similar relation can be written also for 

speed in point 3: 

 
2

3 04

min

2
(1 cos )

g

l
   , (2.11) 

here 04  is maximal deflection angle in position 4. While pendulum motion in section 2-3 

momentary rise of center of mass of the system takes place. The forces causing it act along 

the rod and do not produce moment with respect to suspension point. Therefore the angular 

momentum in section 2-3 stays invariable  

 2 2

max 2 min 3ml ml 
.
 (2.12) 

The relation between two speeds (2.12) enables to find connection between successive 

values of maximal deflections 01
 
and 04 . After squaring both parts of the relation (2.12) 

and after substitution of the result in (2.10) and (2.11), we can obtain the relation between 

maximal deflections of pendulum 01  and 04 : 

 
3 3

max 01 min 04(1 cos ) (1 cos )l l    . (2.13) 

It follows from this that  

  
3

max
04 01 013

min

1 cos 1 cos 1 cos
l

l
         (2.14) 

i.е. 04 01cos cos   , and it means that 04 01   .  

Change of system energy takes place only in those points, where the centre of gravity 

comes up or goes down momentary, and so for composing of energy balance equation we 

need to analyze only the processes that take place in points (2-3) and (4-5). According to [50] 

by momentary rise of mass point the system energy changes for value 

 
2 2 2 2

max min min 3 max 2

1
( ) ( )

2
upH mg l l m l l      (2.15) 

In this formula the first summand describes increment of potential energy, and the 

second one describes increment of kinetic one. Taking into consideration the relations (2.10), 
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(2.11) and (2.13) the expression (2.15) can be presented in form of function of initial 

amplitude 01  

 

2

max
max min max 01

min

( ) (1 cos ) 1up

l
H mg l l mgl

l


  
      
   

. (2.16) 

 

While rise of material point the potential energy decreases, and while its down 

movement there is increment of potential energy. In points of direction change we have 

 min max 04( )cos 0downH mg l l    . (2.17) 

Here 04  is maximal deflection at the moment of the end of the increment phase. This 

consideration is given here for the case when 
04 2

pi  
.
 If 

04 2
pi  

, then 
0downH   

Thus, for one semi-oscillation, which includes rise and fall of a material point, we 

obtain total energy gain: 

 up downH H H    (2.18) 

After substitution of the expressions (2.16) and (2.17) to the relation (2.18) we will 

obtain total energy gain for oscillation period  

 

2

max
max min 04 max 01

min

1
( )(1 cos ) (1 cos ) 1

2

l
H mg l l ml

l
 

  
        
   

 (2.19) 

As is obvious from expressions (2.16) - (2.18), that for the oscillation period the 

system gains some energy H . Characteristic property of increase of vibration amplitude is 

energy increase on sections 2-3 and 6-7 and its decrease on sections 4-5 and 8-1. Value of 

energy gain depends on the range of possible change of pendulum length min maxl l l   and 

current vibration amplitude. If amplitude is small, energy gain is also “small”. By small 

angles   cosine is near to 1, and the quantity (2.19) is near to naught. By desired range (2.1) 

and «sufficiently» great dissipation there is some «limiting» oscillation amplitude of 

pendulum in the system.  

By «return» motion of the material point (5-4-3-2-1), 

 
min

max

,  0

,  0

l
l

l

 

 

 
 

 
 (2.20) 

the pendulum energy – and its oscillation amplitude with is – will decrease.  

Basing on above described properties of pendulum we will build a control system for 

swinging and oscillation support. Such control system is to solve the following tasks:  
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 Swinging of a pendulum, 

 Pendulum damping, 

 Support of oscillation amplitude with disturbances. 

 

2.3. Oscillation control of system of second order of general type. 

Differential equations of motion of a controlled mechanical system with one degree of 

freedom can be presented in the following form: 

 
1

2

( , , )

( , , )

x f x y u

y f x y u




 (2.21) 

In this case x  is the positional coordinate and 

 1( , , )f x y u y  (2.22) 

is linear or angular speed of the control object, and function 2( , , )f x y u  is generalized force 

divided by object mass or by moment of inertia. 

Let for each piecewise continuous vector function ( )u t  by desired initial conditions 

the system (2.21) possesses a unique solution ( )x t , ( )y t . Let thinking, that control parameter 

u  belongs to given set ( , )U x y . In other words, vector of the piecewise continuous function 

( )u t  is considered as permissible control, if 

 ( ) ( ( ), ( ))u t U x t y t  (2.23) 

In the equation (2.23) ( )x t , ( )y t  is solution of the equation (2.22) when ( )u u t . In 

the case, when the set ( , )U x y  depends on state coordinate x , y , condition (2.23) can be 

verified only by finding solution for the system (2.21) with this equation. 

Suppose, that function 1( , , )f x y u  do not turn into naught: 

 1( , , ) 0f x y u   (2.24) 

Then by meeting the conditions (2.24) the coordinate x  will always increase. If the 

equations (2.21) are a mathematical model of mechanical system with one degree of freedom, 

then in this case the relation (2.22) is correct and the inequality (2.24) takes place in upper 

half of the phase plane ( , )x y . 

Let rewrite the system (2.21) in the form of a first-order equation 

 2

1

( , , )
( , , )

( , , )

f x y udy
f x y u

dx f x y u
   (2.25) 

and let coordinates  
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 0 0(0) ,  (0)x x y y   (2.26) 

initial conditions for the system (2.21) or for the equation (2.25). Suppose also, that 0 0y  . 

2.3.1. Reachable sets and their limits. 

Suppose, that in phase plane ( , )x y  each trajectory ( )y x , which begins in the point 

(2.26) and corresponds to the permissible control function ( )u t , crosses the axis 0Y   at 

some end point of time t  by finite values of the coordinate x . Let consider the set of possible 

permissible control functions ( )u t  and the set of appropriate trajectories ( )y x , obtained while 

this control. More specifically, let consider only some of these trajectories, that begin form 

the point (2.26) and end on the abscissa 0Y  . The whole collection of these curves includes 

set of points of attainability domain [25] or so-called integral funnel  [7], [81]. This set of 

attainability D  is schematically shown in Figure 2.3 

minx maxx

Dmin

max

0 0,  x y

Y

X

 

 Figure 2.3 – Reachable set D 

Let consider equation, that maximizes or minimizes the derivative /dy dx  with help of 

variable u  in point ( , )x y . To create such equation one need to maximize or minimize the 

right part of the expression (2.25) with help of argument u , i.е.: 

 max
( , )

( , ) arg max ( , , )
u U x y

u u x y f x y u


  
  

, (2.27) 

or correspondingly  

 min
( , )

( , ) arg min ( , , )
u U x y

u u x y f x y u


  
  

. (2.28) 

Support, that the function (2.25) and the set ( , )U x y  are so, that for each point of 

phase space there is only one maximum in (2.27) and only one minimum (2.28), which are in 

the attainability domain D .  
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Also support, that solution of the system (2.21) by initial conditions (2.26) and control (2.27) 

or (2.28) is ensured by the piecewise continuous function ( )u t . Let max ( )y y x  be solution of 

the equation 

  max, , ( , )
dy

f x y u x y
dx

 , (2.29) 

 and min ( )y y x  be solution of 

  min, , ( , )
dy

f x y u x y
dx

 , (2.30) 

with initial conditions (2.26).  

Let designate a part of the trajectory max ( )y y x  on interval 0 maxx x x 
 
with max , 

where maxx  is value obtained by solution of max ( ) 0y x  . Let also designate a part of the 

trajectory min ( )y y x  on interval 0 minx x x 
 
with min , where minx  is value obtained by 

solution of min ( ) 0y x  .  

Now let show, that the curves max and min
 
are the upper and the lower limits of the 

attainability domain D  (fig. 2.3). For each function max( , ) ( , )u x y u x y  , by which the 

trajectory of the equation (2.25) starting from the point (2.26), is higher than point 

max( , )x y  , condition of unique solution max ( )y y x  and condition (2.27) are not fulfilled. 

Conclusions for the limit min  are similar 

2.3.2. Maximization and minimization of oscillation amplitude of 

pendulum. 

Task for maximization and minimization of derived function /dy dx  for first-order 

mechanical system can be written in symbol form [26] 

 
( , )

max[ ]
u U x y

x


 if 0y   (2.31) 

 
( , )

min[ ]
u U x y

x


 if 0y   (2.32) 

For concerned variable length pendulum (s. Fig 2.1) the equation (2.25) can be 

presented in such form: 

 
2 sin

d dx dx
mu mug x c

dt dt dt

 
   

 
. (2.33), 
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Taking into account the before agreed notations the equation (2.33) can be written as 

follows: 

 
2 sin

d d d
ml mlg c

dt dt dt

 


 
   

 
. (2.34) 

here c const is viscous friction coefficient. 

Let write the second-order equation (2.34) in form of first-order differential equations (2.21): 

 
2

2
sin

y

ml

y
y mgl c

ml







  

 (2.35) 

here 
2y ml   is angular momentum. 

Let also suppose, that pendulum has following initial conditions 

 (0) 0,  (0) 0y   , (2.36) 

and distance l  can change within the limits (2.1).  

The task of control by maximization (minimization) of amplitude consists in finding 

the law of variation of distance l  with account to inequality (2.1), by which values of angular 

deflection   are maximal (minimal) in the state, when kinetic moment y  turns into naught. 

To creation the equation let write the system of equations (2.35) in the form of (2.25) 

 
2 3 sindy m l g

c
d y




    (2.37) 

According to the above given results, maximization of the right part of the equation 

(2.37) by argument l  with account to limits (2.1) gives an optimal control law for swinging at 

semi-oscillation, for which 0y   

 
max

min

,  if 0

,  if 0

l
l

l






 


 (2.38) 

For the next (second) semi-oscillation, for which 0y  , the control law can be found 

by analogy. Taking into consideration the fact, that by 0y   the angular speed   is positive, 

and by 0y   negative, the control law for maximization of amplitude can be presented in 

form of a relation coinciding with (2.8). 

 
min

max

,  0

,  0

l
l

l

 

 

 
 

 
. (2.39) 
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While consideration of the task of amplitude minimization the following law of pendulum 

oscillation damping is obtained. 

 min

max

,  0

,  0

l
l

l

 

 

 
 

 
 (2.40) 

2.3.3. Simulation of optimal swinging and pendulum damping 

Let consider a pendulum with the following parameters: 

 max min0.5 ,  0,6 ,  0,5 ,  0m kg l m l m c    . (2.41) 

In Figure 2.4 there are graphics of angular change  , angular speed   and distance l  

as time function. These functions were obtained by solving the equations of motion (2.35) by 

the optimal control (2.39) and initial conditions (0) 0.1   , (0) 0y  . From the graphic is 

evident, that by control ( , )l    the oscillation amplitude increases. Relay function of control 

( )l t  turns momentary from the value maxl  to the value minl  by change of angle sign   and 

returns to the value maxl  by change of speed sign  . Between the change points the value of 

l const . 

 
 

Figure 2.4 – Graphics of angular change 

( )t , angular speed ( )t  and length of 

pendulum ( )l t  while swinging 

 

Figure 2.5 – Phase portrait in plane ( , )   

while swinging 

 

 

In Figure 2.5 there is phase portrait of swinging of pendulum in plane ( , )  . In 

graphics 2.4 and 2.5 we can observe a jump of angular speed   by switching of control ( )l t  

from the value maxl  to the value minl . This can be explained by the fact, that the moment of 

inertia of the mechanism decreases, and the angular speed increases according to the law of 

conservation of angular momentum. 
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In Figure 2.6 there are graphics of angular change  , angular speed   and control l  as 

a time function. These functions were obtained by solving of equations of motion (2.35) by 

optimal control (2.40) and initial conditions (0) / 2   , (0) 0y  . In Figure 2.6 it is 

obvious, that by control ( , )l    the oscillation amplitude decreases. Relay function of control 

( )l t  turns momentary from the value minl  to the value maxl  by change of angle sign   and 

returns to the value minl  by change of speed sign  . Between the change points the value of 

l const . 

  
Figure 2.6 – Graphics of angular change 

( )t , angular speed ( )t  and length of 

pendulum
 ( )l t  while oscillation damping 

 

Figure 2.7 – Phase portrait in plane ( , )    

 

In Figure 2.7 there is phase portrait of damping of pendulum oscillation in plane 

( , )  . In graphics 2.6 and 2.7 we can see a jump of angular speed   by switching of control 

( )l t  from the value minl  to the value maxl . This can be explained by the fact that the moment 

of inertia of the mechanism increases and the angular speed decreases according to the law of 

conservation of angular momentum. 

2.4. Synthesis of control system of periodic pendulum motions 

Constant value of full energy unequivocally characterizes the current amplitude and 

pendulum oscillation frequency, corresponding to free motion of mechanical system. For 

ensuring of periodical motions of variable length pendulum we will take its full energy as 

controlled parameter. 

 
2 21

cos
2

H ml mgl    (2.42) 
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With help of maximization/minimization method of swinging amplitude by control 

(2.39) and (2.40) by the end of each semi-oscillation one can obtain some limited gain of 

system energy (2.19). For reaching of desired energy level by great measured error ( )sH H  

between desired sH  and current energy level H , the mechanism must make several 

oscillations with using of the limits minl  and maxl . While going into the range 

 ( )sH H H    (2.43) 

for exclusion of switching mode the change of pendulum length should be proportionate to 

( )sH H . 

The expression of feedback control will take in this form: 

 0

,  0
( )

,  0
s

l
u l H H

l

 


 


  

    
  

 (2.44) 

where   is coefficient, that is chosen while simulation, 

 

max min
0

max min

2

2

l l
l

l l
l





 

. (2.45) 

The expression (2.44) describes feedback for angle  , angle speed   and – on upper level – 

for deflection of the total energy value from its desirable value. For taking into account the 

limits (2.1) suppose, that 

 

max max

min max

min min

,       

,        

,       

l u l

u u l u l

l u l



 



 


  




 (2.46) 

2.4.1. Simulations 

Let consider simulations results of control system of variable length pendulum. Model 

of the mechanism under study (s. Fig. 2.8) was realized and researched with help of software 

package MATLAB-Simulink. The model has the following parameters: mass of material 

point 0,5 kgm  , minimal length min 0,5 ml  , maximal length max 0,6 ml  , viscous friction 

0.01 c N m s   . 
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Figure 2.8 –Control system for a variable length pendulum  

In Figure 2.9 there are transients while practicing of stepped task for control system of 

desirable energy level. These transients were obtained by modeling of control system with 

initial conditions (0) 0.1 rad   , (0) 0y  . In Figure 2.9 it is obvious, that by control ( , )l    

oscillation amplitude increases with increment of specified energy level. The function of 

control ( )l t  turns from the value maxl  to the value minl  by change of angle sign   and returns 

to the value maxl  by change of speed sign  . 

  

Figure 2.9 – Step responses of control system 

 

In Figure 2.10 there is the phase portrait in plane ( , )   by stepped increment of 

desired energy level on control system. On the phase portrait three closed orbits are visible – 

these are limit cycles, which correspond to three different energy levels. Passage from one 

trajectory into another one is fulfilled during several pendulum oscillations. 
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Figure 2.10 – Phase portrait in plane ( , )   

In Figure 2.11 there are transients while practicing of stepped decrement for control 

system of desirable energy level. From Figure 2.11 it is obvious, that while control (2.44) 

oscillation amplitude decreases with decrement of specified energy level. The function ( )l t  

turns from the value minl  to the value maxl  by change of angle sign   and returns to the value 

minl  by change of speed sign  . 

  

Figure 2.11 – Stepped decrement of desired energy 
 

In Figure 2.12 there is the phase portrait in plane ( , )   by stepped decrement of 

specified energy level on control system. On the phase portrait three closed trajectories are 

visible – these are limit cycles, which correspond to three different energy levels. Passage 

from one periodical mode into another one is fulfilled during several pendulum oscillations. 
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Figure 2.12 – Phase portrait of the system in plane ( , )    

In Figure 2.13 there are transients in the presence in the system of viscous friction with 

coefficient 0.01 c N m s   . From Figure 2.13 it is visible, that with appearance of viscous 

friction (dissipation) in the system the oscillation amplitude reduces and energy level 

decreases. Total energy varies around some value. This can be explained by the fact, that loss 

compensation is fulfilled during a half of an oscillation period. 

  

Figure 2.13 – Transients by 0.01 c N m s    
 

In Figure 2.14 there is the phase portrait in plane ( , )   in presence of dissipation 

with coefficient 0.01 c N m s   . On the phase portrait two limit cycles are visible. Phase 

elliptically trajectory corresponds with free pendulum oscillations. The second closed 

trajectory corresponds to motions under dissipative forces. Curvature of phase trajectory has 

its explanation in presence of viscous friction, by which the speed   noticeably decreases at 

each oscillation period. It is clearly visible, that at each semi-oscillation the control system 

tends to return the pendulum into the phase trajectory, which corresponds with free 

oscillations. 
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Figure 2.14 – Phase portrait with 0.01 c N m s    

2.4.2. Experiments 

Let consider experimental results of control system for variable length pendulum.  

Control of experimental setup was realized with application of Matlab xPC-Target 

technology (fig. 2.15). On the basis of xPC-Target and with help of industrial communication 

network a group of drives of the experimental setup was connected to main (Master) 

computer. 
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Figure 2.15 – Structure of experimental setup 

In Figure 2.16 a photo and a schematic diagram of the experimental setup is presented. 

The experimental setup was constructed on the basis of power drive, detailed information 
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about which is presented in [39]. The pendulum consists of two masses 1m  and 2m . The first 

mass is fastened by use of bearing in suspension point O  (s. Fig. 2.16). The main difference 

between the experimental setup and above considered model is: 

 Presence of two weighty links, 

 Asymmetrical mass distribution. 

State control counter for the moving mass has a «sufficiently» high operation speed. 

 

2m

O

1

1

1m

1l

xcg1

ycg1

2l

Actuator

ycg2 2xcg

 

 

Figure 2.16 – Photo (left) and schematic diagram (right) of the experimental setup  

 

The experimental setup has the following parameters: 

 

2 2

1 1 1 1 1

2 2

2 2 2 2 1

0,04 ,  0,315 ,  0,63 ,  5,59 10  kg ,  0,63 

0,04 ,  0,01 ,  0,2 ,  0,4 10  kg ,  2,2 

x y

x y

cg m cg m l m J m m m

cg m cg m l m J m m m





       

       
 (2.47) 

Here 1 1 2 2,  ,  ,  x y x ycg cg cg cg  are coordinates of links’ centers of mass, 1l , 2l  are links’ lengths, 

1m , 2m
 
are their masses, 1J , 2J  are moments of links’ inertia with respect to their centers of 

mass. 

Expression for potential energy of the system is of the following form: 

  
 

 

1 1 1

0 0 1 2

1 2 2 2

cos sin

cos sin

y y

P

y y

l cg cg
E E gmh E g m m

l l cg l cg

 

 

   
      
     
 

, (2.48) 

where E0 is displacement of the reference level of potential energy. Expression for kinetic 

energy of the system is: 
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Here          2 22 22 2

1 1 1 1 1 1 2 2 2,  .y x y XR l cg cg R l l cg l cg         

 

  Figure 2.17 – Transients by stepped increment of specified energy level 
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In Figure 2.17 there are transients while practicing of stepped task for control system 

of desirable energy level. From the Figure 2.17 it is obvious, that by control ( , )l    

oscillation amplitude increases together with decrement of specified energy level. By change 

from 1 J to 3 J the experiment showed a period of the order of 14 s. A great duration of 

transients in comparison with simulation is connected with presence of dissipative forces in 

the experimental setup, which were not taken into account while mathematical modeling. 

In Figure 2.18 there is the phase portrait in plane ( , )   by stepped increment of 

specified energy level on control system. From the phase portrait three closed trajectories are 

visible, which correspond to three different energy levels. Passage from one trajectory into 

another one is fulfilled during several vibrations. 

  
Fogure 2.18 – Phase portrait in plane 

( , )   by increment of energy level 
 

Figure 2.19 - Phase portrait in plane ( , )   

by decrement of energy level 

 

In Figure 2.19 there is the phase portrait in plane ( , )   by stepped decrement of 

specified energy level. From the phase portrait three closed trajectories are visible, which 

correspond to three different energy levels – the system tends to the desire orbits. Passage 

from one periodical mode into another one is fulfilled faster than by increment of specified 

energy level. This can be explained by the fact, that dissipative forces help to damp the 

mechanism. 

In Figure 2.20 there are transients while practicing of stepped decrement of specified 

energy level. From Figure 2.20 it is obvious, that by control (2.44) the oscillation amplitude 

decreases with decrement of specified energy. By change from 3 J to 1 J the transient time 

amounts to approximately 8 s. Transients time by decrement of specified energy is less than 

by increment. This is connected with presence of dissipative forces in the experimental setup, 

which in case of damping affect the process positively. 
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 Figure 2.20 – Transients by stepped decrement of specified energy 

Trajectory divergence from oscillation to oscillation is connected with energy loss, 

which can be inconstant, as well as with sensor noise and other factors. It is also to mention, 

that in the steady-state behavior the control system compensates the presence of dissipative 

forces in the experimental setup. 
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In Figure 2.21 the influence of coefficient γ (formula (2.44)) on speed of transients of 

the system is presented. Here the same properties are noticeable, that are inherit in P-

regulator, and namely procrastination of transients and decrement of coefficient γ. 

 

Figure 2.21 – Influence of coefficient γ on speed of transients 

Thus, mathematical modeling and experiments demonstrate a possibility to support the 

systems oscillations at the specified amplitude by using feedback of signal about deflection of 

total energy value from its desired value.  

In this chapter a relatively simple control objet is considered – variable length 

pendulum. The control system was constructed, by which the pendulum oscillation amplitude 

increases. The control system was constructed as well, by which the pendulum oscillation 

amplitude decreases. Combining of these control laws allows to construct a control system by 

which a specified oscillation amplitude is supported. In this control law a feedback is used for 

deflection of a current energy value from the specified one. In the next chapter we consider 

the task of construction of periodical motions by a more complicated mechanism – double 

pendulum. 
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Chapter 3.  Oscillation control of double pendulum 

Equation Section (Next) 

 

This chapter deals with the task to develop the control law of double pendulum 

oscillations. The system input is a torque in the interlink joint. For the mechanical system we 

developed some control laws based on the application of the speed gradient method and on 

the law of variation of angular momentum. Simulations were made as well as the experiments 

proving the efficiency of the control laws which were developed.  

3.1.  Mathematical model 

The object of research is the pendulum consisting of two links. The first link of the 

pendulum OB  and the second one BD  are fixed with the help of joints in the points O  and 

B  (s. Fig. 3.1). In Figure 3.1 the letters 1m
 
and 2m  show the location of the centers of mass 

of the links. Torques M and cM are applied in the joints O  and B  respectively. The given 

system is underactuated as only the torque cM  in the interlink joint is considered to be a 

controlling one. We are going to simulate different types of disturbing actions in the joint O  

of the double pendulum with the help of the torque M (constantly acting torque, viscous 

friction). 

 



O

1m

2m

B

a

D

 

Figure 3.1 – Double pendulum 

Let   is the angle of deflection of the first link OB  from the vertical, a  is the angle of 

deflection of the second link BD  with reference from the first link. 
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The expression of the potential energy of the system takes the following form: 

 1 2cos cos( )V b b  a   . (3.1) 

Here 1 1 1 2( )b m r m OB g  , 2 2b m BDg . 

The expression of the kinetic energy of the system is 

    
22

11 12 22

1
2 cos

2
T a a a   a a  a     

 
, (3.2) 

where 2

11 2a I m OB  ; 12 2 2a m r OB ; I  is the inertia moment of the first link about point O

; 1m , 2m  are the masses of the first and the second bodies; OB  is the length of the first link, 

1r , 2r  are the distances from the points O  and B  to the centers of masses of the first and the 

second links; 22a  is the inertia moment of the second link about point B ; g  is the gravity 

acceleration. 

Using the Lagrange equations (2.2), with the help of relations (3.1) and (3.2) it is 

possible to obtain the equations of motion for the double pendulum 

 

2

1 2 12 12 1 2

2

2 22 12 2

( ) ( ) 2 sin sin sin sin( )

( ) sin sin( ) c

j j a a b b M

j a a b M

a  a a a a a a   a

a  a  a  a

      

    
 (3.3) 

Here the expression 

 1 11 22 12( ) 2 cosj a a aa a    (3.4) 

describes the inertia moment of the whole mechanism about point O  and hence 1( ) 0j a  , 

 2 22 12( ) cosj a aa a  . (3.5) 

3.2. Synthesis of the pendulum oscillation control using the energy 

integral. 

Let us consider the control method with the application of the speed gradient method 

for a system of the type 

 ( ) ( )x f x G x u   (3.6) 

Here x is the vector ( 1)n  of the object state, u  is the vector ( 1)m  of system input.  

The key method [14] of Lyapunov functions construction when the task is to investigate the 

system stability is Chetayev method based on the usage of the information about the first 

integrals of the system. In paper [14] it is consider that the speed gradient method (SGM) 

should be used in combination with Lyapunov functions to synthesize the oscillation control.  
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According to the technique described in [27] the control should be chosen proportional 

to the gradient of the rate of decay of some goal function ( , )W t x . The aim of control is to 

minimize or to maximize this function. The control law calculated using the speed gradient 

method is the following  

 ( , ), 0uu W t x       (3.7) 

where ( , )W t x  is the full derivative of function according to the system (3.6), and the sing u  

denotes the derivative with respect to the parameter u . 

It is necessary to implement the ultimate equality  

 lim ( , ( ))
t

W t x t c


 ,  (3.8) 

where c  is the desired value of the function ( , )W t x . 

We can write down the control algorithm using the speed gradient method in the 

following form:  

 ( )( ( , ) ) , 0T W
u G x W t x c

x
 


    


 (3.9) 

3.2.1. Speed gradient method in the oscillation control. 

Let us use the total energy of the system as the goal function  

 ,( , ) ( , , ), ,W H a a   a a  . (3.10) 

where 

    
22

11 12 22 1 2

1
2 cos cos cos( )

2
H T V a a a b b   a a  a   a          

 
 (3.11) 

Solving the equation (3.3) with respect to higher derivatives we obtain  

 

1 2

12 12 1 21 2

2
2 22 12

2
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1 22 1
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( ) / ( ( ) ( )
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2 sin sin sin( )( ) ( )

) / (

( ) sin sin( )
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)( ) ( )

a a b b
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j

a j j

j

j a a b

u
j a j j

a a a   aa a

aa  a 

a a

a

a

a a a


      

     
        


  
 

 

. (3.12) 

Here Cu M
 
is the torque in the interlink joint. From equation (3.12) we can obtain the 

expression  

 
2 2

2 22 1 2 1 22 1 2( ) / ( (( ) [ ) ( ) ( ) /0 ) ( ( ( )0 ]) )T j a j j j a jG jx a a a a a a   . (3.13) 

Now we can find partial derivatives of the function (3.11) 
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2 12

22 12

sin( ) sin/

   ( )  cos ( ) cos/

/ sin( ) sin ( )

/ ( ) cos

b bH

a a a aHH

H b ax

H a a

a  

 a  a a   a

a a  a a  

a a   a

      
            
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  

      

 (3.14) 

Substituting relations (3.13) and (3.14) into expression (3.9), we obtain the control law of the 

double pendulum 
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Here SH  is the desired value of the goal function. Maximum possible value in the interlink 

joint is restricted | | MAXu M , that is: 
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, | |

,
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MAX MAX

M u M

u u u M

M u M




 
  

, (3.16) 

where MAXM  - maximal value of the torque in the interlink joint. 

Below we can see a block-structure of the double pendulum model with a control 

system (see Picture 3.2).  

( ) ( )x f x G x u  
x x
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

 

Figure 3.2 – Control system of pendulum  
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The model of the system consists of the following components: a model of pendulum 

dynamics, a model of torque (3.16), a model of calculation of the total energy, a model of a 

non-linear controller 

3.2.2. Simulation of the control system 

Let us consider the equation of the double pendulum motion with the following 

parameters: 

 

2

1 2

2 2

2 1
22 1 2

2 ,  2 ,  0,6 ,  9.81 / ,

,  ,  ,  
3 3 2 2

m kg m kg l m g m s

m l m l l l
a I r r

    

   
. (3.17) 

Two different levels of the desired energy of a mechanism are applied discontinuously 

to the control system (s. Fig. 3.3). At first we suppose the desired energy level equals 

3,8sH  J, then the desired value of the energy level becomes 6 J and at last this value 

becomes equal to 8 J. The plots are obtained with the initial conditions 

(0) 0.2,  (0) (0) (0) 0  a a    . Depending on the current value of the energy level the 

mechanism reaches the desired level of the energy within different time periods. When the 

energy changes from 3,8 J to 6 J it takes time 0,49 s to achieve steady-state oscillations. When 

the desired energy level changes from 6 J to 8 J the transients lasts for 0,25 s. Figure 3.3 

shows two projections of a phase trajectory on the planes ( , )   and ( , )a a . Here we can see 

two closed phase trajectories and, consequently, two periodical oscillation modes.  
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Figure 3.3 – Transients at different levels of the desired energy  

 

Figure 3.4 – Phase portrait of pendulum oscillations corresponding to one level of energy  

Figure 3.4 shows the projections of the phase trajectory on the planes ( , )  , ( , )a a , 

 ( , ) a  and ( , )a   of the double pendulum, corresponding to one level of energy and 

obtained at different initial conditions. The phase trajectories (s. Fig. 3.4) colored in blue were 

obtained with the initial conditions 0.05,  0  a a    . The phase trajectories in the red 

color were obtained with the initial conditions 0.08,  0  a a    . 

It is necessary to point out that for the mechanism under study the same level of 

energy can correspond to different phase trajectories. This is explained by the fact that the 

differential equations of double pendulum motion have a lot of solutions which belong to the 

same energy level.  

Unlike the variable length pendulum which was studied in the previous chapter the 

constant value of the total energy of the double pendulum does not define unambiguously its 

amplitude and oscillation frequency. Simulations shows that the pendulum when controlled 

by the speed gradient method has different phase trajectories in the steady- state depending on 

the initial conditions, in other words, it reached different periodic modes. 
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3.3. Periodic motion synthesis via the combination of optimal laws 

of swinging and damping 

In papers [22], [26] it is recommended to use the method of maximization and 

minimization of some expression characterizing the behavior of the double pendulum to 

increase or decrease the amplitude of its oscillations. Let’s consider this method in details. In 

accordance with the theorem of conservation the kinetic momentum of the system the first 

equation (3.3) can have the following form without torque M of the disturbing forces  

 1 2sin sin( )K b b  a   , (3.18) 

where K  is the kinetic momentum or, in other words, is the moment impulses of two link 

pendulum with respect to the suspension point O , 

 1 2( ) ( )K j ja  a a  . (3.19) 

As expression (3.4) is always greater than zero, expression (3.19) can be rewritten as:  

 2

1 1

( )

( ) ( )

j K

j j

a
 a

a a
  . (3.20) 

The left side of expression (3.20) is the derivative p  of some adjusted value 

 ( )p F a  . (3.21) 

To define the function ( )F a  we integrate the second member on the left side of expression 

(3.20). 

 2 22 12

1 11 22 12

( ) cos
( ) arctan( tan )

( ) 2 cos 2 2

j a a
F d d A B

j a a a

a a a a
a a a

a a


   

    (3.22) 

The constants A  and B  are equal  

 11 22 11 22 12

2 2
11 22 1211 22 12

2
,   

2( ) 4

a a a a a
A B

a a aa a a

  
 

  
. 

Having introduced the variable p , expression (3.20) can be written down in the form  

 
1( )

K
p

j a
 . (3.23) 

From (3.21) it follows  

 ( )p F a   (3.24) 

Substituting expression (3.24) in (3.18) we obtain  



49 

 

 

 1 2( , ) sin( ( )) sin( ( ) )K f p b p F b p Fa a a a      . (3.25) 

Relations (3.23) and (3.25) can be considered as the equation system of the first order 

equations with the phase variables such as the adjusted angle p  and the kinetic momentum 

K . For such a system the angle a  can be regarded as system input.  

In papers [22], [26] it is proposed to use the method of maximization and 

minimization of kinetic momentum for the synthesis of swinging and damping laws of the 

oscillations of the pendulum. 

As it was mentioned above 1( ) 0j a   for all values of the angle a , hence the value p
 

gradually increases within the time period where 0K   and this value gradually goes down if 

0K  .Within all the time periods expressions (3.23) and (3.25) can be written as the first 

order equation  

 1( )
( , )

jdK
f p

dp K

a
a  (3.26) 

Studying the first order equation (3.26), we can see that for the variable p  in order to achieve 

its maximum value it is necessary and enough to have the maximally possible value within 

the whole period of motion in the right side of the equation. In other word, it is necessary and 

enough to choose such an angle α in every instant that the value of production 1( , ) ( )f p ja a  is 

maximal. According to [22] the desired law of the optimum rocking ( )a p  depending only on 

the variable p  can be represented as 

  
0

1( ) arg max ( , ) ( )
a a

a p f p ja a


  (3.27) 

Here 0a  is the maximally possible value of the interlink angle.  

To achieve the optimum damping it is necessary to minimize the right side of 

expression (3.26) 

  
0

1( ) arg min ( , ) ( )
a a

a p f p ja a


  (3.28) 

It is necessary to point out that the presence of the limits 0a
 
allows taking into 

account the real constraints in a mechanical system in comparison with the speed gradient 

control method.  

Figure 3.5 shows the plots of swinging of double pendulum with the parameters (3.17)

, obtained according to the algorithm (3.27). The amplitude of the pendulum oscillations in 

the suspension point O  is increasing. The fact that in the expression 1( , ) ( )f p ja a , there is a 

term 1( )j a  which corresponds to the inertia moment of the whole mechanism with respect to 

suspension point O  is the evidence that this procedure allows increasing of the amplitude of 
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the oscillation of the whole mechanism. This means that in this case it is possible to consider 

the two-link pendulum as a simple pendulum with changeable location of the center of mass. 

 

Figure 3.5 –Oscillation of the double pendulum 

3.3.1. Synthesis of the control system of the oscillation amplitude of 

the double pendulum. 

On the basis of the optimal laws of swinging and damping pendulum oscillations it is 

possible to formulate a control law to maintain the pre-set level of the energy of double 

pendulum oscillations:  
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 (3.29) 

When approaching the desired level of energy a chattering mode may arise in the 

system. To avoid this mode we saturate the maximum allowable values of the angle when the 

energy values are close to desired ones. In this case  

 
0 0
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s

s s

abs H H

abs H H abs H H

a  a
a

  a


 

 
  

 (3.30) 

The value of the parameter   is defined in the process of modeling or experimentally.  
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3.3.2. Simulation results  

Let us consider the mathematical model of a double pendulum (3.3) with the following 

parameters:  

 

2

1 2

2 2

22 1 2

1.8 ,  2.53 ,  0.63 ,  9.81 / ,

0,2 ,  0.056 ,  0.315 ,  0.335 .

m kg m kg l m g m s

a kg m I kg m r m r m

    

     
 (3.31) 

The efficiency of the control law is proved in the following modes: increasing of the 

oscillation amplitude, damping of oscillations, increasing of the oscillation amplitude when 

there is an viscous friction in the suspension point O , maintaining the desired level of the 

energy with constant torque applied in the suspension point O . 

Figure 3.6 represents the full mathematical model of the double pendulum with control 

system. The full model contains a dynamic model of a pendulum, a model of the torque 

control loop in the interlink joint, the interlink angle control loop and total energy control 

loop.  
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Figure 3.6 –The pendulum control system 

The model of the torque control loop in the interlink joint is represented in the form of 

the second–order lag element with the time constant 9 T ms  and the damping coefficient

0.707  . The maximum reached torque in the interlink joint is saturated with value 5 N m . 

The control circuit for the interlink angle is adjusted on a non-periodic process. A linear 

feedback with the coefficients [50.5 5.02]K   is used in the model. An interlink angle is 

saturated to the value max 10 dega  . 

In Figure 3.7 we can see the transients in the system while increasing the given energy 

level. From Figure 3.7 it is seen that the duration of the transients is 7,5 seconds when the 

mechanism energy increases from 0.05 J to 1 J and the system reaches the desired energy 

level within 8 oscillations. The transients duration is 4 seconds when the mechanism energy 

increases from 1 J to 2 J, the mechanism makes 5 oscillations with respect to the vertical.  



52 

 

 

Figure 3.8 shows the family of phase portraits of the double pendulum when the 

desired energy grows. The blue color marks the maximum cycle corresponding to the energy 

level 1 J. The red color shows the maximum cycle corresponding to the energy level 2 J. The 

fact that there are closed trajectories on the phase portrait of the double pendulum 

demonstrates that the oscillation process reaches its stable periodic mode.  

 

 

Figure 3.7 – Transients at increasing of the 

desired energy.  

Figure 3.8 – Phase portrait in the plane 

( , )   at increasing of the desired energy. 

  

Figure 3.9 represents the transients in the system while decreasing the desired energy 

level. From Figure 3.9 it is seen that the duration of the transients is 4 seconds when the 

mechanism energy decreases from 2 J to 1 J and the system reaches the preset energy level 

within 5 oscillations. The transients duration is 7,5 seconds when the mechanism energy 

decreases from 1 J to 0 J , the mechanism makes 8 oscillations with respect to the vertical. 

When the preset energy of the system is 0 J the system tends to some minimum level of 

energy close to 0, but in the area of narrow angles the oscillations are hardly damped out. This 

is caused by the fact that the control law is rather ineffective for narrow angles.  

 
 

Figure 3.9 –Transients during decreasing of the 

desired energy.  

Figure 3.10 – Phase portrait during 

decreasing of the desired energy. 
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Figure 3.10 shows the phase portrait of the double pendulum during decreasing the 

desired energy. The blue color marks the limit cycle corresponding to the energy level 1 J. 

The red color shows the limit cycle corresponding to the energy level 0 J. The fact that there 

are closed trajectories on the phase portrait of a two link mechanism demonstrates that the 

oscillation process reaches its stable periodic mode.  

Figure 3.11 shows the transients in the system while increasing the desired energy 

level at the presence of the viscous friction in the joint O . From Figure 3.11 it is seen that the 

duration of the transients is 9 seconds when the mechanism energy increases from 0 J to 1 J 

and the system reaches the preset energy level within 9 oscillations. In comparison with the 

experiment without the viscous friction (s. Fig. 3.7) the transients lasts 1 second longer.  

Figure 3.12 represents the phase portrait of the double pendulum while increasing the 

desired energy. The blue color marks the maximum cycle corresponding to the initial energy 

level 0 J. The red color shows the maximum cycle corresponding to the energy level 1 J. 

Closed projections of phase trajectories of a two link mechanism are the evidence of stable 

periodic oscillation mode. It is necessary to note that the phase portrait in the plane ( , )   (s. 

Fig. 3.12) is much more prolonged along the X-axis compared to the experiment without the 

viscous friction (s. Fig. 3.8). This may be due to the fact that the dissipation of the mechanism 

energy depends on the angular speed of the first link.  

 
 

Figure 3.11 – Transients by increasing of the 

desired energy with the viscous friction in the 

suspension point.  

Figure 3.12 –Phase portrait of double 

pendulum by increasing the desired 

energy 

 

In Figure 3.13 the transients in the system at increasing the viscous friction coefficient 

in the joint O  by 10 times are given. From Figure 3.13 it is seen that the oscillation amplitude 

in the suspension point decreases by some degrees, and the pendulum oscillations in the 

interlink joint reaches the saturated value by 10 deg. The oscillation amplitude decreases as 

the control system is not capable to compensate the energy losses which are caused by the 

viscous friction coefficient increased in 10 times. 

140 145 150 155 160 165 170 175 180

-20

-10

0

10

20

t, s


, 

d
e
g
; 

a
, 

d
e
g

 

 



a

140 145 150 155 160 165 170 175 180
0

1

2

H
, 

J

t, s

 

 
H

H
s

D

-20 -10 0 10 20
-100

-50

0

50

100

, deg

d


/d
t,

 d
e
g
/s

-20 -10 0 10 20
-20

-10

0

10

20

, deg

a
, 

d
e
g

-100 -50 0 50 100
-20

-10

0

10

20

d/dt, deg/s

a
, 

d
e
g

-20
0

20

-100

0

100
-20

0

20

, degd/dt, deg/s

a
, 

d
e
g

-20 -10 0 10 20
-100

-50

0

50

100

, deg

d


/d
t,

 d
e
g
/s

-20 -10 0 10 20
-20

-10

0

10

20

, deg

a
, 

d
e
g

-100 -50 0 50 100
-20

-10

0

10

20

d/dt, deg/s

a
, 

d
e
g

-20
0

20

-100

0

100
-20

0

20

, degd/dt, deg/s

a
, 

d
e
g



54 

 

 

Figure 3.14 represents the phase portraits of double pendulum movement by 

increasing of the viscous friction coefficient in the joint O . The blue color marks the phase 

portraits of double pendulum corresponding to the stable periodic oscillation mode with the 

energy 1 J without any viscous friction. The red color marks the phase portraits of double 

pendulum corresponding to the stable periodic oscillation mode with the energy 1 J with some 

viscous friction. In the first plot, we can see a steady-state error at increased friction but it 

does not damper the oscillations and it only decreases their amplitude in the steady-state 

mode. In the phase portrait ( , ) a  we can see the areas where the amplitude increases. Two 

orbits are also highlighted, before and after the friction coefficient rise. In these orbits we can 

see that the orbit radius decreases when the friction coefficient is higher and the system 

energy is lower. In the phase portrait ( , ) a  it is clearly obvious that the interlink angle comes 

to the restriction 10 deg in the steady-state. 

 

 

 
Figure 3.13 –Transients at increasing of the viscous 

friction coefficient in the joint O  

Figure 3.14 – Phase trajectories at 

increasing of the viscous friction 

coefficient in the joint O  
 

Figure 3.15 shows the transients when there is a constantly acting torque in the 

suspension point O . In Figure 3.15 we can clearly see the shift of oscillation in the 

suspension point as regard to the vertical axis. The value of the shifting from the oscillation 

axis depends on the value of the applied torque in the point of the pendulum suspension. The 

mechanism energy varies within the desired level 
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Figure 3.15 – Transients when there is a constantly acting torque in the suspension point.  

3.4. Experiments 

We now give the experimental results of the investigation of the double pendulum 

control system. The control of the experimental setup is implemented by using of Matlab 

xPC-Target technology (s. Fig. 3.16). On the base of xPC-Target the drives of the 

experimental setup are connected to the master computer by means of the industrial 

communication network.  
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Figure 3.16 – The structure of the experimental setup 
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In Figure 3.17 we can see the photograph of the experimental setup. This experimental 

setup is assembled on the basis of the power drive, the detailed information about which is 

given in [38]. 

The pendulum consists of two links with masses 1m  and 2m . The first mass is fixed 

with a bearing in the suspension point O  (s. Fig. 2.16). The difference between the 

experimental setup and the model studied earlier lies in the unsymmetrical mass distribution. 

The center of mass of each link is shifted by 4 cm from its axis.  

The control loop of the interlink angle is tuned exactly the same as simulation. This 

control loop is tuned to a non-periodic process. A linear feedback with the coefficients 

[50.5 5.02]K 
 is used in the model. The maximum value of the interlink angle is

max 10 dega  . 

 

  

Figure 3.17 – The experimental setup of the double pendulum  

The performance of the double pendulum control system on the experimental setup is 

tested for the following modes: oscillation amplitude increase, oscillation amplitude damping, 

and oscillation amplitude increase when there is the viscous friction in the suspension point 

O , maintaining of the predetermined level of oscillation energy in the presence of the 

constant torque acting in the suspension point O .  
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The experiment is carried out following the same conditions and the same mode as 

during the simulation. The parameters of both systems differ only in the shift of the center of 

masses from the link axes which is in the experimental setup. During the experiments, motor 

1 (see Figure 3.16) produces the required torque in the suspension point.  

In Figure 3.18 there are the transients in the system when increasing the desired level 

of energy. From Figure 3.18 it is obvious that the duration of the transients at increasing the 

mechanism energy from 0.05 J to 1 J is 13 seconds and the system reaches the predetermined 

energy level within 9 oscillations. The duration of the transients at increasing the mechanism 

energy from 1 J to 2 J is 7 seconds, the mechanism executing 5 oscillations with respect to the 

vertical. 

  
Figure 3.18 – Transients at increasing the 

desired energy 

Figure 3.19 – A phase portrait at increasing 

the desired energy.  

 

Figure 3.19 represents the family of phase portraits of a two link mechanism when the 

desired energy increases. The blue color marks the limit cycle which corresponds to the 

energy level 1J. The red color marks the limit cycle corresponding to the energy level 2J. The 

presence of the closed orbits of two link mechanism phase trajectories is the evidence that the 

oscillating process reaches its steady-state.  

In Figure 3.20 we can see the transients in the system when the preset level of energy 

falls. From Figure 3.20 it is obvious that the duration of the transients at decreasing the 

mechanism energy from 2 J to 1 J is 7 seconds and the system reaches the predetermined 

energy level within 5 oscillations. The duration of the transients at decreasing the mechanism 

energy from 1 J to 0 J is 10 seconds, the mechanism executing 10 oscillations with respect to 

the vertical. When the desired energy is 0 J, the system tends to some minimum energy level 

close to 0, but in the area of narrow angles the oscillation amplitude is hardly damped. It is 

resulted from the fact that the control law is of little efficiency in this case. 
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Figure 3.20 – Transients at decreasing the 

desired energy 

Figure 3.21 – A phase portrait at 

decreasing the desired energy  

 

Figure 3.21 shows the family of phase portraits of two link mechanism at decreasing 

the desired energy. The blue color denotes the limit cycle which corresponds to the energy 

level 1J. The red color denotes the limit cycle corresponding to the energy level 0 J. The fact 

that there are the closed projections of two link mechanism phase trajectories says that the 

oscillating process reaches its steady-state period mode.  

In Figure 3.22 we can see the transients in the system with the viscous friction in the 

joint O  when the desired energy level increases. In Figure 3.22 it is evident that the transients 

duration at increasing the mechanism energy from 0 J to 1 J is 17 seconds and the systems 

comes to the desired energy level having executed 9 oscillations. In comparison with the 

experiment without the viscous friction (s. Fig. 3.18) the transients is 4 seconds longer.  

 

 

 
Figure 3.22 – Transients with the viscous friction Figure 3.23 – Phase trajectories of the 

system with the viscous friction 

 

Figure 3.23 shows the phase portraits of a two link mechanism by increasing of the 

desired energy. The blue color denotes the limit cycle corresponding to the initial energy level 

0 J. The red color denotes the limit cycle corresponding to the energy level 1 J. The fact that 

there are the closed orbits of the phase trajectories of a two link mechanism says that the 
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oscillating process reaches its steady-state. It is necessary to emphasize that the phase portrait 

in the plane ( , )   (see Figure 3.12) compared to the experience without any viscous friction 

(s. Fig. 3.8) is a lot more elongated along the X - axis. The explanation of this is that the 

dissipation of the mechanism energy increases as the velocity in the suspension point goes up.  

Figure 3.24 shows the transients in the system while increasing the viscous friction 

coefficient in the joint O  by 10 times. From Figure 3.24 it is seen that the oscillation 

amplitude in the suspension point decreases by some degrees, and in the interlink joint the 

pendulum oscillations reach the restriction by 10 deg. The decrease of oscillation amplitude is 

explained by the fact that the control system is not able to compensate the energy losses at 

such a value of the viscous friction.  

In Figure 3.25 we can see the phase portraits of the double pendulum movement when 

the viscous friction coefficient in the joint O  increases. The blue color marks the phase 

portraits of the double pendulum which correspond to the steady-state of the oscillations with 

the energy 1 J without any viscous friction. The red color marks the phase portraits 

corresponding to the steady-state of the oscillations with the energy 1 J with some viscous 

friction. In the first plot, we can see a steady-state error when the friction is high. In this 

condition the system keeps on oscillating and achieves a periodic mode. In the phase portrait 

( , ) a  the areas where the oscillation amplitude increases are distinctly seen. Two orbits are 

also highlighted, before and after the friction coefficient increase and in these orbits we can 

see the differences in the system behavior. In the phase portrait ( , ) a  it is obviously that the 

interlink angle comes to the restriction 10 deg in the steady-state mode. 

 

 

 
Figure 3.24 –Transients at increasing of the 

viscous friction coefficient in the joint O  

Figure 3.25 – Phase trajectories at 

increasing of the viscous friction 

coefficient in the joint O  
 

Figure 3.26 represents the transients when there is a constant moment in the 

suspension point O . From Figure 3.26 it is seen that the oscillations deflect from the vertical 

axis. The value of the deflection depends on the value of the torque applied to the point of the 

pendulum suspension. The mechanism energy varies around the desired level. 
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Figure 3.26 – Transients with static torque in 

the suspension point 

Figure 3.27 – Phase portrait with static 

torque in the suspension point 

 

Figure 3.27 gives us the phase portraits when there is a static torque in the suspension 

point O . Three steady-state orbits are in the plot. The energy oscillates around the desired 

level and the oscillation center deflects from the vertical. In the phase plain ( , )   it is seen 

that depending on the change of the value of a static torque in the suspension point there is a 

parallel trajectory transfer along x-axis. It is necessary to point that in this mode the control 

system operates not reaching the restrictions. The energy varies around the desired level. 

The different properties of control systems performance is compared in Table 3.1. 

Mode Simulation Experiment 
Energy increase  

from 0 J to 1 J 

Duration: 7.5 s, 

8 Oscillations 

Duration: 13 s, 

9 Oscillations 

Energy increase  

from 1 J to 2 J 

Duration: 4 s, 

5 Oscillations 

Duration: 7 s, 

5 Oscillations 

Damping: energy decrease  

from 2 J to 1 J 

Duration: 4 s, 

5 Oscillations 

Duration: 7 s, 

5 Oscillations 

Energy increase under the effect 

of the viscous friction 

Duration: 9 s, 

9 Oscillations 

Duration: 13 s, 

10 Oscillations 

Viscous friction coefficient 

growth  

Slight disagreement, 

the interlink angle does not 

reach the restriction 

Slight disagreement, 

the interlink angle reaches the 

restriction 

Application of a static torque in 

the suspension point  

Deflection of the center of 

oscillation from the vertical 

axis. The energy varies around 

the preset level.  

Deflection of the center of 

oscillation from the vertical 

axis. The energy varies around 

the preset level. 

 

The main differences between the simulation and the experiment can be explained by 

the fact that in the mathematical model the friction forces acting in the experimental setup do 

not taken into account. The number of oscillations in the transients is approximately the same, 

but they last different time periods. This may come from the fact that in the mathematical 

model the shift of the centers of the link masses are not factored in. It should also be noted 

that during the experiments the control system works when there are various disturbances in 
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the suspension point, these disturbances are do not taken into account in the mathematical 

model.  

In this chapter we consider the oscillations of the double pendulum which itself is 

more complicated mechanism than the variable length pendulum that was under investigation 

in the previous chapter. Two ways of control are used in this chapter. With the help of either 

of them we managed to achieve the stable periodic mode of oscillations of the double 

pendulum. The simulation and the experiments show the efficiency of the developed control 

methods.  
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Chapter 4.  Design of the movement of a two-legged 

mechanism in the frontal plane 

 

 

This chapter investigates movement of a planar anthropomorphic mechanism in the 

frontal plane. The mechanism consists of two articulated heavy parts: a body and two legs 

rigidly fixed to each other. We establish the equations of mechanism motion. The 

instantaneous double-support phase is under study and to describe it we use the equation of a 

perfectly inelastic impact. Two ways to control the mechanism oscillations maintenance are 

characterized and the simulations are carried out. At the end of the chapter, there are the 

experimental investigations of the control system for the oscillation maintenance.  

There are two phases [10], [20] in the process of human being walking, namely, the 

phase of double-support motion, in other words, a double-support phase and the phase of 

single-support motion or the transfer phase. During the double-support motion both legs are 

on the surface. During the single-support motion only one of the legs, that is the supporting 

leg, is on the surface and the other one is in the process of transfer.  

4.1. Mathematical model of single support motion 

Now we consider a two link mechanism which simulates the movement of an 

anthropomorphic robot without feet in the frontal plane (s. Fig. 4.1) 

O

C

B

P

0

1

a



x

y

 

Figure 4.1– Diagram of a two link mechanism  
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The lower part is fixed with a joint O  and is consists from three rods welded to each 

other: a left and right leg and a pelvis. We suppose that the legs are parallel to each other and 

perpendicular to the pelvis. Assume, that the lengths, masses, inertia moments of the legs and 

pelvis are known and it is possible to define the COM of these three parts (point С). The 

pelvis joint B is the connection point of the body and the pelvis and it is in the middle of the 

pelvis. ОB and ОС are the distances from the origin of coordinates to the pelvis joint B and 

the center of the mass C  of the lower part respectively. 0  is the angle which is formed by 

the lines OC and BC.   – is the angle of deflection of the leg from the vertical, a  – is the 

angle of deflection of the body BP from the line BC.  

The mechanism (s. Fig. 4.1) has two degrees of freedom. We choose the angles and 

a  as the generalized coordinates characterizing the mechanism position. These angles and 

the direction of their readings are shown in Figure 4.1. We will establish the equation of two 

link movement using the Lagrange equations of the second order [4]. 

               (i = 1,...,n)i

i i

d L L
Q

dt q q

  
  

  
  (3.32) 

In the equations (3.32) iq  is the generalized coordinate, iQ  is the generalized 

nonconservative force, L T V   is the Lagrange function, T  is kinetic energy, V  is 

potential energy of the system. For the system under investigation 2n  . 

In order to specify the kinetic energy T of the whole mechanism we first find the 

kinetic energy of each link separately. To calculate the kinetic energy of each link we use the 

formula [4].  

  2 21
2

2
T m m v          (3.33) 

Here v  is the speed of the pole (that is arbitrary but fixed point in the link),   is the absolute 

value of this velocity,   is the angular velocity of link rotation,   is the radius-vector of the 

center of mass (the origin of this vector is in the pole), m  is the mass of link,   is the link 

inertia moment about the pole.  

The kinetic energy of the first link consisting of two legs "welded" to each other is 

 
2

1

1

2
T I  (3.34) 

where I  is the inertia moment of the lower part about the point O . 

The kinetic energy of the second link, the body is  

  
2

22

2 2 2

1 1

2 2
CT m I     a  (3.35) 
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where 2m  is the body mass, 
2C - is the velocity of the center of the body, 2I  is the inertia 

moment of the body about center of mass 2C .  

The coordinates of the joint B in the coordinate system the origin of which is at the 

end of the leg O  around which the first link rotates, are:  

 
 

 

1

1

sin

cos

B

B

x OB

y OB

    

   
 (3.36) 

The coordinates of the center of body mass 2C
 
is : 

 
   

   
2

2

1 1

1 1

sin sin

cos cos

C

C

x OB

y OB

         a  

        a  
 (3.37) 

Here BP  . 

In order to define the kinetic energy of the second link we differentiate relation (3.37) 

and we receive X and Y projections of the velocity vector of the center of mass velocity of the 

body. 

 
    

    
2

2

1 1

1 1

cos cos

sin sin

C

C

x OB

y OB

          a     a

          a     a
 (3.38) 

Using expression (3.38) we can obtain the square of the velocity vector of the center of the 

body mass. 

 
       

   

   

2 2 2

2 2 2

22 2 2

1 1

1 1

22 2 2

     2 sin sin

         +cos cos

     2 cos

C C Cx y

OB OB

OB OB

  

      a     a      a  

     a   

      a     a a

 (3.39) 

The expression for the kinetic energy of the whole mechanism has the following form 

  2

2 2 2

1 1 1

2 2 2
CT I m I   a     (3.40) 

here   и a  - the angular velocities of the first part and the body. 

Using expressions (3.39), (3.40) we can obtain the formula for the kinetic energy T of 

the whole mechanism 
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     

      

     

22 2 2

2 2

22 2 2

2 2 2

22 2

2

1 1 1
2 cos

2 2 2

1 1
  cos

2 2

1 1
  cos

2 2
B

T I m OB OB I

I m OB I m OB

I m OB I OB

    a   a a  a

   a   a a

  a   a a

        
 

      

     

 (3.41) 

Here 2

2 2BI m I    is the inertia moment of the body about joint B,  0cosOC    is 

the ordinate of the center of mass of the first link,  1cosOB    is the ordinate of the joint 

В,    1 1cos cosOB     a    is the ordinate of the center of mass 2C
 
of the body (s. 

Fig. 4.1). 

The expression for the potential energy of the mechanism runs as follows: 

      1 0 2 1 1cos cos cosV m gOC m g OB        a      (3.42) 

Here g  is the gravity acceleration, 1m
 
and 2m  are the masses of the first and the second links 

respectively. 

Let us introduce the following designations 

 
 2

11 2 12 2 22

11 1 12 2 13 2

,,  ,  

,  ,  

Ba I m OB a m OB a I

b m gOC b m gOB b m g

    

   
 (3.43) 

and rewrite the expressions for the kinetic and potential energies  

    
2

1 2 22

2

1 1

1
2 cos ,

2
T a a a     a a  

 
 a  (3.44) 

      11 0 12 1 13 1coscos cos .V b b b a           (3.45) 

According to (2.2) we can find the motion equations responding to two generalized 

coordinates   and a . 

 1 2,      
d L L d L L

M M
dt dt

     
     

  a a  
 (3.46) 

Here 1M  and 2M  are torques in joints O  and B . 

 Now we calculate the derivatives required to develop the Lagrange equations 
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   

 

     

   

11 12 22

12 22

11 0 12 1 13 1

12 13 1

        2 cos ,

        cos ,

        sin sin ,

        si

si

n s n ,

n

i

L
a a a

L
a a

L
b b b a

L
a b


    a a    a




 a   a

a


            




     a a    a 



a

 



 (3.47) 

 

     

 

11 12 12 22

12 12 22

2 cos 2 sin ,

cos sin .

d L
a a a a

dt

d L
a a a

dt

 
     a a    a a a    a 

 

 
  a  a a    a 

a 


 (3.48) 

Substituting relations (3.47), (3.48) in (3.46) gives us the equations of motion. 

 
   

     

2

1 2 12 12

11 0 12 1 13 1 1

2 sin sin

              sin             sin sin

j j a a

b b b a M

a   a a  a a  a a 

             
 (3.49) 

    2

2 22 12 13 1 1sin sinj a a b Ma  a   a   a     (3.50) 

Here the expression  1 11 22 122 cosj a a aa    a  describes the inertia moment of the first 

part as for the supporting point O ,  2 22 12 cosj a aa   a . 

Equation (3.49) can be written in the following form 

      11 0 12 1 13 1sins sin in
dK

b b b a
dt

          . (3.51) 

Here K  is the moment of momentum of a system (kinetic momentum) as for the point O   

    11 12 22 1 22 cos ( ) ( )
L

K a a a j j


    a a   a  a  a a


 (3.52) 

The dependence (3.51) results from the theorem about the change of the moment of 

momentum of the system about suspension pointO . 

4.2. Mathematical model of the perfectly inelastic impact for a two 

link mechanism 

When solving the task how to organize walking of both anthropomorphic and non-

anthropomorphic two-legged walking mechanisms the investigation of a double-support 

phase is very important. A double-support appears at the moment when one of the legs is 

being put on the surface. At this moment which, generally speaking, is followed by an impact, 

the second leg can still remain on the surface or it can already leave the surface. We will 
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consider the time of the double-support phase to be infinitely short, that is the double-support 

phase is instantaneous. Besides the change of support, in the mechanism the necessary 

redistribution of velocities must take place within the double-support time.  

x
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1
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Figure 4.2 –Two link mechanism 

While developing the equation of the impact it is necessary, first of all, to consider the 

movement of the free system (without any connections). We choose the coordinates ,x y  of 

the pelvis joint B, angles   and a  (s. Fig 4.2) to be the generalized coordinates of such a 

system. The expression for the kinetic energy of the described system with 4 degrees of 

freedom can be represented in the form  

  
22 2 2

1 1 2 2

1 1 1 1

2 2 2 2
DCT mV I m V I     a  (3.53) 

Here 1I  is the inertia moment of the lower part consisting of two legs and a pelvis rigidly 

connected with each other about its mass center C, DV  is the velocity of the mass centre D of 

the body, 2I  is the inertia moment of the body about its mass center D. 

The expressions for the coordinates and velocities of mass centers of each of the parts 

can be defined on the basis of the following formulas:  

 
sin

cos

C

C

x x BC

y y BC

  

  
 (3.54) 

 
cos

sin

C

C

BC

y BC

x x

y

  

  
 (3.55) 

  2 22 2 2 2 22 cos sinCC CV y y Bx C xx y BC           (3.56) 
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 

 

sin sin

cos cos

D

D

x x BD x BD

y x BD x BD

    a   

    a   
 (3.57) 

 
cos

sin

D

D

xx BD

y y BD

  

  
 (3.58) 

  2 2 2 2 2 2 22 cos sinD D DV x y x y BD x y BD            (3.59) 

here   a  . 

Substituting the relations (3.54) - (3.59) in (3.53) we can obtain the following 

expression for the kinetic energy of the two link mechanism with 4 DOF 

      

   

2 2 2 2

1 2 1 1 1

2 2

2 2 2

2 cos sin1

2                                              2 cos sin

m m m BC m BC I
T

m B

x y x y

x yD m BD I

        
 
    







  





 (3.60) 

The expression for the kinetic energy of the system can be written in the matrix form 

    
1

,
2

TT T z z z B z z   (3.61) 

Here  B z  is the symmetrical matrix of the kinetic energy 

  

 

 

 

 

1 2 1 2

1 2 1 2

2

1 1 1 1

2

2 2 2 2

1
cos cos

2

1
sin sin

2

1
cos sin

2

1
cos s 0i

2

0

0

0

n

m m m BC m BD

m m m BC m BD

m BC m BC I m BC

m BD m BD m BD I

B z

   

   

  

    

  (3.62) 

 
T

z x y    (3.63) 

Elementary work W  of the forces  1 1 1,x yR R R  and  2 2 2,x yR R R , applied to the 

points F and O, respectively, is equal to 

   

       

1 2 1 2

1 1 1 1 2 1 2 1          cos sin cos sin

x x y y

x y x y

W R R x R R y

OB R R R R

       

                  

 (3.64) 

here 1
 
- is the angle between the straight lines OB and BC. 
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Figure 4.3 – The system of the designations when calculating the impact for the two link mechanism 

Let us assume that when 0t   the two link mechanism is moving in such a way that 

the point O  is fixed, that is the leg ON  when 0t   remains on the horizontal surface AX . 

Suppose that at the instant 0t   the point F  of the leg LF  is contacts this line (the surface) 

(s. Fig. 4.3). The axis AY  is directed vertically. If the contact happens not with the zero 

velocity, then there occurs an impact at the moment of the contact. Let this impact be 

perfectly inelastic, that is the speed of the point F  becomes zero after the impact:  

 ( 0) ( 0) 0F Fx y     (3.65) 

After the collision of the link LF  with the surface, the link ON  may either remain on 

the surface or leave it. The latter is quite possible because the constraint applied to the point 

O  is unilateral one. The double-support result does not depend on the value of the velocity of 

the point O  before the impact, it only depends on its direction [24].  

Reactions of the support (constraints) 1R  and 2R , applied to the system at the moment 

of the impact 0t  , are impulsive actions which can be described with Dirac delta  -

functions. We denote the degrees of these actions with 
1xRE ,

1 yRE ,
2 xRE ,

2 yRE   

 
1 1 2 2 1 1 2 2( ),    ( ),     ( ),     ( )x x x x y y y yR E t R E t R E t R E t         (3.66) 

Except the forces 1R  and 2R  no other impulsive actions are applied to the mechanism 

at the impact instant. At the instant of the impact we receive the relations which correlate 

velocity steps with the degree of impulsive reactions. 
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  

 

 

   

   

0

1 2

0

0
1 2

0
1 1 1 1

2 1 2 1

0

0

0

0

.

sin

                     + sin

0

x x

y y

x y

x y

R R dt

R R dt
B z zdt

R сos R
OB dt

R сos R











 






 

        
 

        








.

 (3.67) 

Hence we obtain: 

           

   

1 2

1 2

1 1 1 10

2 1 2 1

cos sin0 0

                 cos sin

0

x x

y y

x y

x y

E E

E E

E EB z z z
OB

E E





             
 

         

.

 (3.68) 

Here  0z   is the vector of velocities just before the impact,  0z   is the vector of velocities 

just after the impact. 

According to the conditions of the impact at the instant 0t   the angle 0  . The 

configuration of the mechanism 0z at the impact instant does not change  

 0 0 0 0 0 0 00
T T

z x y x h      (3.69) 

Here 0x
 
is half the pelvis length. 

The matrix  0B z  is 

  

 

 

 

 

1 2 1 2 0

1 2 2 0

2

1 1 1

2

2 0 2

0

0 2 2

1
cos

2

1
0 sin

2

1

2

0

0

0 0

1
cos sin

2
0

m m m BC m BD

m m m BD

m BC I m BC

m BD m BD m BD

z

I

B

  

  



   





 (3.70) 

We now substitute expressions (3.68) into equation (3.69), (3.70) and use the 

expressions of the velocity steps  x
 
and  y . We will obtain the system containing 6 

algebraic equations which describe the impact. 
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      

    

        

      

       

     

1 2

1 2

1 2 1 2

1 2 1 2 0

1 2 2 0

2

1 1 1 1 1

2

2 0 2 0 2

1

2

1
cos

2

1
sin

2

1
( ) cos sin

2

1

,

,

0

cos si

0 cos

0

,

n ,

0

2

0

x x

y y

x x y y

R R

R R

R R R R

m m x m BC m BD E E

m m y m BD E E

m BC x I m BC OB E E E E

m BD x m BD I m BDy

x x x OB

y y y

 

 

  





  

     



    

   

     

 



 





      1

,

0 0 sin .OB  














     

 (3.71) 

Now let us suppose the leg that was on the support is leaving it. Then from the 

equation system (3.71) for unknown
 
 x ,  y ,  0  ,   , 

1 2x xR RE E , 
1 yRE (if 

2
0

yRE  ), we 

obtain the following solution for the velocities of the mechanism links after the impact 

 

   

 

 

2 2

1 2 2 1 1 2

2 2 2 2 2

1 2 2

2 2 2 2 2 2 2

2 1 2 2 1 2 2 1

2

1 2 2

                          2 (2 )

                         (2 )

                     

0 0

     4

I I BC I m BD I m

BC BD m m BD OB m cos

I OB m I OB m BD OB m m BD OB m cos

OBm BC I BD m co







    

 

   



  

1

2 2 2 2 2 2

1 2 2 2 1 1 1 2 1

2 2 2 2 2

2 2 1 2 1 2

2 2 2

2 1

( ) /

                        

                          

                          2 (2 2 )

                       

s

I I BD OB m BC I m BD I m I OB m

I OB m BC BD m m BD OB m m

BD OB m cos



 




     

  

 

2

2 1 1 1 2 1   4 ( ) 4 ( )) ;BCI OBm cos BD BCm OBm cos   

 (3.72) 

 

 



2 2 2

2 1 2 1 11

2 2

1 1 1 1 2 1

1 1 1

( 0) ( 0) (2 2 ) ( )

                                   2( ) ( ) ( ) (3 )

                                   4 ( (2 ) (2 )) /

  

BDm OB BC m OB m OB m I cos

I BC m cos m m OB cos

BCm OB cos cos

a   

   

   

       

     

  

2 2

1 2 1 1 2 2 1 2

2 2 2 2

1 1 2 2

2 2 2 2

2 1 1 2 2

                               ) )

                                   (

                                   2 (

( (

2 2 ) 4 ( )

)

I I BD I m m I OB m m

BC m OB m OB m BD m

BD OB m cos BCm OB I BD m co 

     

 

 



 1( )

                                  ( 0) ( 0) ( 0);

s 

a  



     

(3.73) 

Further simulations and experimental investigations show that the leg really leaves the 

surface. 
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Figure 4.4 represents the structural diagram of the mathematical model of the two link 

mechanism taking into account the perfectly inelastic impact. The general mathematical 

model consists of the following components: 

 the equations of the two link mechanism motion; 

 integrator with an external reset and the input for the initial values; 

 the equations of the perfectly inelastic impact for the two link model. 

The impact in the mechanism takes place when the sign of the angle  changes. In 

such a case the integrator (s. Fig 4.4) reinitializes the values of the velocities   and a , which 

are calculated on the basis of the relations (3.72) and (3.73), and the values   and a  remain 

the same in the integrator. 

( ) ( )x f x G x u  
Equations of 

impact

x

0x

x
x

u
0x

Integrator

resetin

 

Figure 4.4 – Structural diagram of the mathematical model of the two link mechanism considering the 

perfectly inelastic impact 

At first we will show the transients with account of the perfectly inelastic impact for 

the mechanism in which the body is "welded" to the pelvis, that is the angle 0a   (the pelvis 

joint is blocked). These transients are given in Figure 4.5. The plots are drawn at the initial 

conditions (0) 3 deg,  (0) 0 deg/ s   . As the interlink joint is blocked, the values a , a  

are equal to zero all the time.  

  
Figure 4.5 – Transients during impacts. Figure 4.6 – Phase portrait ( , )   of 

the motion during impacts. 

 

As it is obvious from Figure 4.5, the oscillating process attenuates within finite 

amount of time, at that the oscillation frequency grows infinitely. Figure 4.6 represents the 

phase portrait ( , )   of the motion. From the plot we can clearly see that after each collision 

with the surface the velocity  decreases. 
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We now resume the research of a two link mechanism with two degrees of freedom   

and a . We will suppose that the control moment 2M
 
is applied to the pelvis joint. Figure 4.7 

shows the structural diagram of the mathematical model of the two link mechanism with 

account of the perfectly inelastic impact and the control circuit for the interlink angle.  

( ) ( )x f x G x u  
Equations of 

impact

x

0x

x
x

u
0x

Integrator

resetin

maxM

maxM

PK

DK
a

a

Sa

 

Figure 4.7 – Structural diagram of the mathematical model of the two link mechanism considering the 

perfectly inelastic impact. 

The model of the control system (s. Fig. 4.7) consists of the following components: 

 the equations of the two link mechanism motion; 

 an integrator with an external reset and the input for the initial values; 

 the equations of the perfectly inelastic impact for the two link model; 

 a controller of the interlink joint position; 

 a block constraining the control action.  

The control action in the pelvis joint is developed according to the following law 

 2 ( )P S DM K Ka a a     (3.74) 

where PK  и DK  are the feedback (PD-Controller) coefficients (constant), Sa  is the 

predetermined value of the anglea . 

Control action constraint is implemented by the means of the following relation 

 

max 2 max

2 2 max

max 2 max

,   if ;

,        if | | ;

,   if .

M M M

u M M M

M M M

 


 
  

 (3.75) 

Where u  is the reduced moment in the pelvis joint.  

In Figure 4.8 we can see the transients with account of the perfectly inelastic impact 

when the controller coefficients are 200PK  , 10DK  , initial conditions 

(0) 3 deg,  (0) (0) (0) 0  a a     and max 5 N mM   . The desired value 0Sa  . From 

the plot 4.8 it is evident that the oscillating process is of the convergent character.  
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Figure 4.8 – Transients during the control of the interlink angle.  

Figure 4.9 represents the phase portrait ( , )  . From the plot it is clearly seen that 

after each collision with the surface the velocity decreases.  

 

Figure 4.9 – Phase portrait ( , )   during the control of the interlink angle. 

Compared to the case when 0a   (the pelvis joint is blocked, s. Fig. 4.6 and 4.7) the 

mechanism oscillations damp 2,5 times slower when the interlink joint is controlled. After 

each impact the body deflects towards the movement of the whole mechanism, that is the 

controller is not totally rigid. This leads to the fact that elastic control compensates partially 

the energy losses during the impact.  
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4.3. Synthesis of the oscillation control in the frontal plane on the 

basis of optimal laws of swinging and damping 

In accordance with the theorem on the conservation of the kinetic momentum without 

the moment M  of the disturbance forces the expression may be written as 

      11 0 12 1 13 1sins sin in
dK

b b b a
dt

          , (3.76) 

here K  is the kinetic momentum of the mechanism with respect to ankle joint O . 

    11 12 22 1 22 cos ( ) ( )
L

K a a a j j


    a a   a  a  a a


. (3.77) 

The expression  1 11 22 122 cosj a a aa    a  describes the inertia moment of the first body 

about the attachment point O  and hence,  1j a
 
is always more than zero. From the feature 

that  1j a
 
is always positive the expression (3.77) may be written as (3.20). 

Substituting the expression (3.24) into the relation (3.76) gives 

      11 0 12 1 13 1sin sisin ( ) ( ) )n (p F p
dK

b b b a
d

p F
t

F       a a  a   .  (3.78) 

According to [22], the desired law of the optimum swinging ( )a p , which depends only on the 

variable p  may be represented in the form of the expression (3.27). To implement the 

optimum damping the desired law has the form as (3.28). 

  
0

1( ) arg min ( , ) ( )
a a

a p f p ja a


  (3.79) 

On the basis of the optimal laws of swinging and damping the pendulum oscillations it 

is possible to develop the control law to maintain the desired level of the energy of two link 

pendulum oscillations: 

 

 

 

1

1

arg max ( , ) ( ) ,      ( ) 0

0,                                         ( ) 0

arg min ( , ) ( ) ,       ( ) 0

s
a a

S s

s
a a

f p j H H

H H

f p j H H

a a

a

a a









  



  


 


 (3.80) 

To avoid the chattering mode of control action we will introduce the proportional relation of 

the maximum value of the interlink angle 
*a  on the discrepancy between the current and 

desired energies.  

 
0 0

0

,                         ( )

( ),       ( )

s

s s

abs H H

abs H H abs H H

a  a
a

  a


 

 
  

.  (3.81) 
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Expression (3.81) allows us to control indirectly the value  1( , ) ( )f p ja a , and in this way to 

limit the approximation gradient to the given energy level. 

4.4. Simulation of the system to control oscillations in the frontal 

plane.  

The objects under study are the mathematical model of the two link mechanism (3.49) 

и (3.50), the equations describing the speed steps (3.72) and (3.73) with the following 

parameters: 

 

2

1 2

2 2

22

0 1

2.2 ,  3.8 ,  0.689 ,  9.81 / ,

0.56 ,  0.32 ,  0.714 ,  OC 0.294 ,

23.1 deg,  9.26 deg,

m kg m kg BD m g m s

a kg m I kg m OB m m

 

    

     

 

 (3.82) 

The efficiency of the control law is tested in the following modes: oscillation 

amplitude increases, oscillation decreases, oscillation amplitude increases when there is 

viscous friction in the suspension point O , maintenance of the given level of the oscillation 

energy when there is a constant moment applied in the suspension point O . 

In Figure 4.10 we can see the block diagram of the full mathematical model of the two 

link mechanism with the control system. The full model includes the dynamic model of the 

two link mechanism, the model of the circuit to control the moment in the interlink joint, the 

model of the circuit to control the interlink angle, the model of the circuit to control the 

mechanism energy.  
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Figure 4.10 – Block diagram of the mathematical model of the control system 

The model of the circuit to control the moment in the interlink joint is represented in 

the form of the second-order link with the time constant 9 T ms  and the damping 

coefficient 0.707  , the moment is limited to the value max 5 M N m  . The circuit of the 

interlink angle control is adjusted to a nonperiodic process. In the model the linear feedback 

with the coefficients 200PK  , 10DK   is used. The interlink angle is limited to the value 

max 10 dega  . 
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Figure 4.11 shows the transients in the system when increasing the desired energy 

level. From Figure 4.11 it is seen that the transients duration is 0,8 seconds when the 

mechanism energy rises from 0.25 J to 0.35 J and having done two oscillations the systems 

reaches the preset energy level. When the mechanism energy increases from 0.35 J to 0.45 J, 

the duration of the transients is 0,9 seconds and the mechanism does 2 oscillations with 

respect to the vertical axis.  

 

 
 

Figure 4.11 – Phase portrait in the plane 

( , )   when increasing the desired 

energy level 

Figure 4.11 –Transients when increasing the 

desired energy level  

 

 

 

Figure 4.12 gives the phase portrait of a two link mechanism when the given energy 

level goes up. In Figure 4.12 there are three steady-state orbits corresponding to the different 

levels of the given energy. The colors denote the maximum cycles relating to the following 

energy levels: red corresponds to 0.25 J, blue corresponds to 0.35 J and magenta means 0.45 

J. The presence of the closed phase trajectories is the evidence that the oscillating process 

reaches its steady-state periodic mode.  

Figure 4.13 represents the transients in the system if there is the viscous friction 

coefficient in the ankle joint 3 D N m s   . In Figure 4.13 we can see that if there is an 

viscous friction, the amplitude of the two link mechanism oscillations falls by 0.5 deg and the 

oscillation amplitude of the interlink angle a increases by two times. The decrease of the 

oscillation amplitude in the support joint is explained by the fact that the control system 

cannot compensate the energy losses at such a value of the viscous friction. 

Figure 4.14 is the phase portrait of the two link mechanism at the presence of the 

viscous friction. The blue color shows the phase portrait when there is the viscous friction. 

The red color marks the phase portraits corresponding to the steady-state of oscillations 

without any viscous friction. In the plot depicting the energy change we can see a steady-state 
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error. At that the system continues oscillating with smaller amplitude and it comes to the 

periodic mode.  

 

 
 

Figure 4.124 – Phase portrait at presence 

of the viscous friction 

 

Figure 4.13 – Transients at presence of the 

viscous friction in the support joint  

 

 

 

 
 

Figure 4.14 – Phase portrait at presence 

of the constant moment  

 

Figure 4.15 – Transients at presence of the 

constant moment  

 

 

In Figure 4.15 the transients with the constant moment in the ankle joint are given. 

From Figure 4.15 it is obvious that the oscillations shift away from the vertical axis. The 
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deviation value depends on the value of the applied moment. The energy varies around the 

preset level. The oscillation centre deviates from the vertical.  

Figure 4.16 reflects the phase portrait with the constantly acting moment in the support 

point. In the plots we can clearly see two steady-state orbits. The blue color denotes the phase 

trajectory corresponding to the steady-state periodic mode with the viscous friction. The red 

color marks the phase trajectory without any disturbances.  

4.5. Intuitive approach to the synthesis of the oscillation control 

We now investigate the peculiarities of attenuation of the two link mechanism energy 

in the case when the angle in the interlink joint is controlled. From Figure 4.8 we can say that 

the body hits the surface it deflects to the side of falling. At that in contrast to the case with 

the "welded" body (s. Fig. 4.5) the mechanism oscillations damp twice as slow. This feature 

allows us to say that each time during the impact with the surface the mechanism has to 

deflect by some angle in the direction of movement in order to compensate the energy 

mechanism losses. On account of this feature it is possible to develop the following law 

controlling the angle a  

 ( ) ( )sH H signa       (3.83) 

Expression (3.83) denotes that the sign of the given angle changes during the impact. Besides 

that the value of the given angle is proportional to the discrepancy between the current and 

preset values of the full energy. 

Figure 4.17 shows the block diagram of the system to control the two link mechanism 

oscillations with the control laws (3.83). The system consists of the full energy controller, the 

control loop of  the interlink angle and the equations of motion with the impact relation.  
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Figure 4.17 - The system to control the two link mechanism oscillations 

Figure 4.18 gives the transients of the implementation of the desired value of the total  

mechanism energy. From the plots it is evident that the control system reaches the desired 

level of the energy. When the desired level of the energy changes from 0.25 J to 0.4 J the 
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transients time is 1 s and after 3 oscillations the mechanism reaches the steady-state 

oscillating mode.  

 

 
 

Figure 4.16 – Phase portrait of the 

oscillating processes 

Figure 4.17 – Transients of the two link 

mechanism oscillations 

 

 

In Figure 4.19 there is a phase portrait of the oscillating processes while the energy 

control. In the plot we can observe three limit cycles corresponding to various levels of the 

full mechanism energy (red is 0.25 J, magenta is 0.32 J, blue is 0.4 J). 

Figure 4.20 represents the transients with the viscous friction in the supporting joint 

O  (the viscous friction coefficient is 1.5 D N m s   ). On the basis of the plot it is obvious 

that at presence of the viscous friction the energy of the mechanism decreases from the value 

0.38 J to 0.3 J. 

 

 
 

Figure 4.21 – Phase portrait at presence 

of the viscous friction 

Figure 4.18 –Transients at presence of the viscous 

friction 

 

 

0 2 4 6 8 10 12
-3

-2

-1

0

1

2

3


, 

a
 d

e
g

t, s

 

 



a

0 2 4 6 8 10 12
-50

0

50

d


/d
t,

 d
e
g
/s

t, s

0 2 4 6 8 10 12

0.2

0.4

H
, 

J

t, s

 

 

Hs

H

-3 -2 -1 0 1 2 3
-30

-20

-10

0

10

20

30

, deg

d


/d
t,

 d
e
g
/s

0 2 4 6 8 10 12
-3

-2

-1

0

1

2

3


, 

a
 d

e
g

t, s

 

 



a

0 2 4 6 8 10 12
-50

0

50

d


/d
t,

 d
e
g
/s

t, s

0 2 4 6 8 10 12

0

0.2

0.4

H
, 

J
, 

  
D

*0
.1

t, s

 

 

Hs

H

D*0.1

-3 -2 -1 0 1 2 3
-30

-20

-10

0

10

20

30

, deg

d


/d
t,

 d
e
g
/s



81 

 

 

In Figure 4.21 we can see the phase portrait when there is the viscous friction in the 

supporting joint O . From the plot it is clear that the presence of the viscous friction changes 

the phase trajectory of the mechanism movement (blue is with the viscous friction, red is 

without the friction). It is necessary to note that when there is the viscous friction, the 

mechanism reaches the periodic oscillating process.  

4.6. Experimental results 

We now give the experimental results of the investigation of the control system of the 

two link pendulum. The control of the experimental assembly is implemented by using 

Matlab xPC-Target technology (s. Fig. 4.22). On the basis of xPC-Target by means of the 

industrial communication network the linear elastic actuator implementing the given moment 

in the interlink joint is connected to the Master computer.  

 Network

Ethernet

(UDP)

Visualization

Monitoring

HMI

CPU (Master)

2m

1m

Motor 1

 

Figure 4.19 – Experimental assembly  

Figure 4.23 shows the experimental assembly to investigate the operation of the 

control system of the periodic movement of the two legged mechanism in the frontal plane 

[83]. The experimental assembly is made on the base of the linear elastic actuator [38]. The 

two link mechanism consists of two links with masses 1m  and 2m . The first body is the pelvis 

with "welded" legs. The 2nd body consists of a heavy link and the elastic actuator attached to 

it. The mechanism under study has the parameters (3.82). The angle a  and the angular 

velocity a  are defined with the help of the absolute encoder in the interlink joint and the 

impulse speed sensor in the linear elastic actuator respectively. The angle   and the angular 

velocity   are measured by means of the gyroscope. 

The control loop of the interlink angle is tuned exactly the same as during the 

simulation. The control loop is tuned on the nonperiodical transient. The linear feedback with 
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the coefficients 200PK  , 10DK   is used. The interlink angle is limited by the value

max 10 dega  . The intuitive control method is used in the experiments. The coefficient 

0.14   

 

Figure 4.20 – Experimental assembly  

The operation of the control system of the two link pendulum on the experimental 

assembly is tested for the following modes: the oscillation amplitude change, maintenance of 

the periodic process on the different surfaces (wood, carpet). The surfaces on which the 

experiment is carried out have different parameters of elasticity and damping. All the 

experiments are carried out with the same tuning of the control loop by the full mechanism 

energy. 

Figure 4.24 shows the transients of the implementation of the desired level of the full 

energy on the wooden surface. From the plots it is seen that the sharp decrease of the full 

mechanism energy takes place during each impact with the surface. After each impact the 

control system tends to compensate full energy losses at the expense of the body movement. 

From the plots it is seen that the mechanism reaches the steady-state periodic mode. 

. Figure 4.25 shows the transients of the implementation of the desired level of the full 

energy on the fabric surface. From the plots it is seen that the sharp decrease of the full 

mechanism energy takes place during each impact with the surface. After each impact the 

control system tends to compensate full energy losses at the expense of the body movement. 

In the plot of the energy H  it is clearly seen that there is a static error while controlling by the 

full mechanism energy. The value of this static error can be corrected by changing the value 

of the coefficient  . 
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Figure 4.21 – Transients of the implementation of the energy desired level on the 

wooden surface 

 
Figure 4.22 – Transients of the implementation of the energy desired level on the carpet 

surface. 
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Figure 4.23 – Phase portraits of the mechanism movement on the wooden (black) and 

fabric (blue) surfaces. 

Figure 4.26 shows the phase portraits of the mechanism movement ( , )   and ( , ) a . 

In the plots we can see the steady state of the periodic mechanism movements on the wooden 

and carpet surfaces. From the plots it is seen that the mechanism oscillation amplitude 

depends on the surface properties. The oscillation amplitude is 1 degree less on the surface 

with bigger damping (carpet) than on the wooden surface.  

In the present chapter we carry out the simulation and experimental investigations of 

the operation of the different control systems by maintaining the periodic motions 

(oscillations) of the two link pendulum which simulates the oscillations of the biped robot in 

the frontal plane.  

The simulation and experimental investigations show that for the underactuated 

mechanical system under investigation it is possible to develop the periodic modes when there 

is the impact interaction with the supporting surface. When comparing the operation of the 

system to control the two link mechanism oscillations by means of simulation and 

experimental investigations it turns out that the surface properties influence the properties of 

transients and the character of the steady-state periodic mode. The simulation and 

experimental investigations show that the control system brings the mechanism to the stable 

periodic mode of oscillations on the supporting surfaces which have different properties. The 

developed algorithms to control the periodic motions of the two- legged mechanism in the 

frontal plane are used further to organize 3D walking of the biped robot. 
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Chapter 5.  Design of dynamic walking of the biped 

robot ROTTO 

Equation Section (Next) 

 

In this chapter the way to synthesize walking of the two – legged locomotion 

mechanism is given. The walking control algorithm is developed in such a way that during 

locomotion the full energy of the walking mechanism is maintained to be constant. At that 

walking takes place in the periodic mode. The experimental investigations prove the 

efficiency of the developed algorithm. 

5.1. Development of the dynamic model 

This section deals with the methods to develop the equations of motion of complicated 

mechanical systems. 

  
 

Figure 5.1 – Robot ROTTO Structure  

 

Figure 5.1 shows the kinematics of the robot ROTTO. The robot consists of 8 heavy 

links and it has 30 DOF. Let us consider the methods which allow us to receive the motion 

equations of such a mechanism.  
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The dynamic of the rigid body mechanical system is described by means of  the 

equations of motion which reflect the interrelation between the forces acting in the system and 

the acceleration caused by these forces. There are two types of problems, namely, forward and 

inverse dynamic. Forward dynamic is the calculation of the acceleration response of a given 

rigid-body system and inverse dynamic is the calculation of the force that must be applied to a 

given rigid-body system in order to produce a given acceleration response [19].  

While generating the equations of motion for the mechanical system with relatively 

small number of DOF the methods which allow receiving the analytical description of the 

system dynamics  are  mainly used. The motion equations of such systems are visible and 

during the simulation they do not require big computational cost. Very often there is no point 

in generating the equations of motion for the mechanical systems with relatively big number 

of DOF in an analytical form. This is explained by the fact that the equations of motion 

become lengthy and boundless. For the system with big number of DOF the recursive 

algorithms are used. Depending on the type of dynamic presentation different methods are 

used (s. Fig. 5.2). 

Serial ChainStructure Three Chain Parallel Chain Closed Chain

Inverse DynamicSystem Model Forward Dynamic

 Newton-Euler

 Euler-Lagrange

 Natural Orthogonal 

Compliment (NOC)

 Decoupled NOC

 ...

Recursive 

Algorithms
 Joint-Space Inertia Matrix

 Composite-Rigid-Body

 Sparse Factorisation

 Articulated-Body 

(Propopogation Mehtod)

 ...

Rigid Body Dynamic

Figure 5.2 – Rigid Body Dynamic  

The robot ROTTO has a tree-like kinematics structure. That is why to develop the 

motion equations for this robot we use the recursive Newton-Euler algorithm. 
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Inverse Dynamic – Recursive-Newton Euler Algorithm 

Inverse dynamic for a chain or a tree- like kinematic structure of a mechanism  

according to the method of the recursive Newton Euler algorithm is calculated in three steps 

[19]: 

1. Calculate the velocity and acceleration of each body in the tree. 

2. Calculate the forces required to produce these accelerations. 

3. Calculate the forces transmitted across the joints from the forces acting on the 

bodies. 

Step 1: Let us calculate the velocity i  and acceleration  ia  of i -body. The velocity of 

-bodyi  in the kinematics chain can be defined recursively as the sum of the velocity of the 

previous ( 1)i   body and the velocity across the i -joint  

 1 0       ( =0)i i i iS q     (4.1) 

Here iS  is the transformation matrix of the body coordinates from the local system into the 

global one.  

The expressions for the accelerations of the system are received when differentiating 

expressions (4.1) and have the following form 

 
1 0    ( =0)i i i i i ia a S q S q a    (4.2) 

Here 
iS  is Jacobian received when we differentiate the transformation matrix of the body 

coordinates. 

1 0       ( =0)i i i iS q   

1 0    ( =0)i i i i i ia a S q S q a  

Start

Stop

i N

 

Figure 5.3 – Iteration algorithm of calculation of the velocities and accelerations of the 

mechanism links.  
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The calculations of the velocities and accelerations for all the bodies are performed iteratively 

with  1,...,i N , where  N  is the number of the bodies. Having calculated the velocities and 

accelerations it is possible to pass on to the calculation of the forces acting on the links.   

Step 2: The overall equivalent torque B

if  acting on the i -body is connected with the 

acceleration of the i -body by the following expression  

 2( )B

i i i i i if I ml a I      (4.3) 

Here iI  - is the body inertia about center of the body mass. Assume that if  is the equivalent 

torque acting from the parent body  ( 1)i   on the i -body across the i -joint and assume that 

x

if  is any external force acting on the i -body, ,  ,  j k lf f f  are the forces acting on the children 

bodies (s. Fig.  5.4). 

 

body (i-1) body (i)

body (j)

body (l)

body (k)

fi

f j

f
l

fk

joint i

x

if

Parent Children

 

Figure 5.4 – Kinematic diagram of the mechanical system.  

Step 3:  The force if  acting on the i -body is calculated from the expression   

 ( ...)B x

i i i j k lf f f f f f       (4.4) 

Generalized torques are calculated from the following formula  

 T

i i iS f   (4.5) 

As a result of the algorithm implementation it is possible to receive the equation of the 

mechanism motion in the inertial coordinate system. These motion equations can also be 

written in the coordinate system of the mechanism links.  

There are the methods of the motion equation development in the form of forward 

dynamic. The description of these methods can be found in the papers [77], [94], [19] . 

 At present there are a great number of software packages which allow developing the 

equations of motion for free structure mechanical systems. MATLAB [52] and Dymola [15]. 
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can  be referred to the software packages of this type. The mathematical model of the robot 

ROTTO is made in both applications. The equations given in [34] are used for simulation of 

the contact processing. 

In the laboratory RobotsLab the concept HIL/SIL simulation was developed which 

allows us to reduce essentially the time for the development and implementation of the 

algorithms to control the robots. This concept is described in the article [17] .  

5.2. Synthesis of the robot movement on the basis of ballistic 

trajectories 

As it has already been noticed in the first chapter there are a lot of methods to organize 

walking of two-legged locomotion mechanisms. Simple trial- and - error methods as well as 

complicated methods based on the criteria of the minimum energy consumption, ZMP, FRI, 

CMP and others are used to solve this problem. The stability criterion ZMP which indicates 

whether the given movement leads to overturning or not is the method commonly used to 

synthesize the movement trajectories. The control of walking on the basis of the criterion 

ZMP with the application of the linear inverted pendulum model  (LIPM) is the example of 

such a method. The application of the model LIPM leads to considerable simplification of the 

robot joint motions. When observing the criterion ZMP the robot locomotion in some “stable” 

zone. In spite of the fact that such an algorithm of generating the robot motion trajectories is 

one of the most successful for the time being and it is used in the majority of robots (Аsimo, 

HRP and others) the robot gate does not look natural when this algorithm is used. The 

application of the dynamic properties of the mechanism is greatly limited because of the 

considerable simplification of the robot dynamic model. 

The obvious requirement for the modern methods of the trajectory generation is the 

application of the dynamic peculiarities of the mechanism when developing the 

anthropomorphic walking. Within the frames of the given work the method of the trajectory 

synthesis is developed. The basis of this method is the free mechanism movement. In other 

words the method is based on the so-called ballistic trajectories.   

This chapter deals with the method of synthesis of the ballistic trajectories for the 

anthropomorphic robot. To simplify the task a five - link model of the mechanism is 

investigated and the family of ballistic trajectories is obtained. The procedure how to obtain 

the trajectories of the 12 - link mechanism with 14 DOF is considered further in the work.  

5.2.1. Basic of ballistic trajectories 

The investigations in the sphere of human walking biomechanics [3], [24], [88], [92] 

show that during walking the muscles of a human being are active only for some, relatively 

short, periods of time. In the periods between the muscle activities human motions are similar 

to ballistic ones. In these periods the parts of a human body move along the free (natural) 

trajectories using own dynamics and practically without usage of any additional energy. As a 

result of such movement the kinetic energy of the links is transformed into the potential one 

and then again into kinetic. In papers [46], [94] the assumption is made that such movement  
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is close to energy – efficient and energy-optimal one. For the first time the problem of 

ballistic movement synthesis was considered in the papers of A. M. Formalskiy in 1975 [20]. 

Then it was considered in the papers of Mochon [62], McGeer [54], [55], McMahon [57]. The 

investigations of these authors show that ballistic trajectories have a great similarity to the 

trajectories of human being movement in a single-support phase.  

We consider the five-link mechanism without any feet (s. Fig. 5.5) as an example of 

the ballistic trajectory synthesis.  
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Figure. 5.5 – Scheme of the 5-link biped 

The equations of motion for the five-link mechanism can be obtained on the basis of 

the recursive method Newton-Euler [77] or developed analitically. In accordance with [2], [3], 

[21], [24] the equation for the five-link mechanism can be presented in the matrix form 

 
2( ) sin ( )i iH q q gL q M q q     (4.6) 

Here ( )H q  is the matrix of the kinetic energy, L  is the diagonal matrix of the potential 

energy, g  is the gravity acceleration, ( )M q  is the skew-symmetric matrix, 
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Ballistic motions represent the solutions of differential equations (4.6) if 0  . Assume that 

in equations (4.6) 0  , they become as follows 

 
2( ) sin ( ) 0i iH q q gL q M q q    (4.8) 

The problem of obtaining the ballistic trajectories can be formulated in the following 

way: it is necessary to find such a vector of the initial velocities (0)q  of the mechanism links 

which make the mechanism move from the given state (0)q
 
into the given state ( )q T

 
for the 

given time T  (s. Fig. 5.6). 

Initial configuration Final configuration

(0)q ( )q T

T

 

Figure 5.6 – Boundary configurations of the biped in the swing phase 

The configurations (0)q  and ( )q T
 
exactly coincide but the legs are swapped. Thus, 

the problem to design the ballistic trajectories is reduced to the boundary value problem, from 

mathematical point of view. This boundary value problem can be solved by means of the 

shooting method, Newton method and other ways.  

In this paper the key to the boundary value problem solution is the minimization 

method Levenberg-Marquardt [45], [63] of goal function E  (s. Fig. 5.6). This objective 

function describes the disparity between the desired configuration at the instant T  and the 

configuration obtained during the iteration at the instant T . To integrate the differential 

equations the adaptive integration methods Runge-Kutte of the 4-th and the 5-th order are 

used.  

The goal function E  (s. Fig. 5.7) depends on N - variables (the number of DOF). The 

function values become lower and tend to the global minimum [94] in the process of 

minimization (iterative process). 



92 

 

 

Minimisation
(Levenberg-

Marquardt)

Initial Conditions    

E

( )q T

( )setq T

(0)q

2( ) sin ( ) 0i iH q q gL q M q q  

Equations of motion

(0)q

 

Figure 5.7 – Minimization algorithm 

Mathematical simulation shows that the solution of the boundary value problem is 

sensitive to the change in the initial conditions and the duration of the step T, which is the 

consequence of the instability of the trivial solution of system (4.8). If choice of initial 

approximation (0)q
 

is unsuccessfully, then the iteration of the boundary value problem 

solution converges slowly which is explained by the essential nonlinearity of the equation of 

motion. The boundary value problem for the linearized problem is solved analytically. Under 

some conditions it has only one solution for the linearized equations .  

Let us consider the solutions obtained for the model with the following parameters: 

link masses are 1.5 kgOD DE OB BAm m m m    , 6 kgOCm  ,   the centers of masses of all the 

links which are considered to be homogenous are in the middle of the rods  OD , DE , OB , 

BA , OC  and the inertia moments are calculated 
21

12
J ml , where l  is the length of the rod.  

The lengths of the rods are 0.25 mOD DE OB BAl l l l    , 0.3 mOCl  . 

Figure 5.8 shows the ballistic trajectories and the motion sequences of the mechanism 

movement. These trajectories are obtained as the result of the boundary value problem 

solutions for the following conditions: 

0.5 sT  ,  (0) 0;  -12;  12;  -12;  12 deg
T

q  ,   ( ) 0;  12;  -12;  12;  -12 deg
T

q T  . 

Below there are three boundary value problem solutions which were obtained:  

1.  (0) 2.5141;   0.4460;   4.3407;  1 .2731;   2.9552  rad/sq     - - symmetric step 

2.  (0) 2.4080;   0.4835; 4.1299;   1.7022 ;  5.6827  rad/sq     - knee forward step 

3.  (0) 2.5729;  0.7076;   5.0528;   4.4603;   10.5426  rad/sq    - knee backward step 
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a)  

  
b) 

  
c) 

 

Figure 5.8 – Ballistic trajectories and the motion sequences 

а) symmetric step, b) knee forward step,  

с) knee backward step 
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Figure 5.9 – Dependence of the velocity value on the interlink angle value for the five-link 

mechanism. 

Figure 5.9 represents the graphs in the plane, velocity 1a  values and the values of the 

interlink angle 
1a . Red, blue and black colors mark  the dependences obtained for the 

symmetric step (branch), knee forward step and  knee backward step respectively. From the 

plots we can see that only in the symmetric step there is no velocity jump  while changing the 

supporting leg.  

5.2.2. Three-Dimensional Ballistic Walking of the Biped Model with 

many degrees of freedom 

This section provides an example of finding a ballistic trajectory for the mechanical 14 

DOF anthropomorphic robot models using a method of gradually increasing number of 

degrees of freedom in the model of robot. All studies were made with the help of software 

package Matlab SimMechanics [52] and based on ideas about the works of ballistic motion 

under A.M. Formalskiy [21]. 

The starting point for building a complex multi-body mechanical model of the biped 

mechanism is a simple model of the planar five link robot. An initial mechanical structure is a 

five body mechanism with two legs with the knee joint and the torso. For such system the first 

and the last configuration are chosen, such as on the Fig. 1, and the initial angular velocities 

are selected equal to zero. 

As a result, the system comes to a symmetrical solution. Symmetrical solution is not 

desired, because it is not similar to human walking. For acquisition non symmetric solution to 

define the initial velocity of the knee joint swing leg must be much more different from 

symmetric solution (1 rad/s replace by 10 rad/s). The result should be a solution to meet the 

two paired equation of the ballistic motion (s. Step 1) 

Below the procedure of obtaining 3D ballistic trajectories [94] is given in simplified 

form. 
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Step 1: Definition of direction and velocity 

aY1

aY2

aY3 aY4

aY5

X

Z

Y

 

5 DOF 

ZX-Plane 

Definition of solution with the right motion of 

the knee. Optimization of the step height 

relative to the step length 

 

Step 2: Generation of the gait step in 2D 

aY1

aY2

aY3 aY4

aY5

X

Z

Y

 

5 DOF 

ZX-Plane 

Optimization of the step length. Desired 

length of the step can be obtained using the 

stepwise increasing of it 

 

Step 3: Definition of the body bending 

aY1

aY2

aY3 aY4

aY5

f K

X

Z

Y

 

5 DOF 

ZX-Plane 

Desired body bending can be obtained using 

the stepwise increasing of it 

 

Step 4: Modification of the gait step in 3D 

aY1

aY2

aY3
aY4

aY5

aX3

aX4

X

Z

Y

 

5 DOF 

+2 DOF 

X-Axis 

in pelvis 

3D-Step 

Generation of the 3D motion using the 

addition of DOF in the pelvis. 
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Step 5: Addition of the second DOF in the pelvis 

aY1

aY2

aY3
aY4

aY5

aX3

aX4

aZ3
aZ4

X

Z

Y

 

7 DOF 

+2 DOF 

Z-Axis  
in pelvis 

3D-Step 

Adding of the second (vertical) DOF in the 

pelvis and generation of 3D Step. 

 

Step 6: Addition of the DOF in the body  

aY1

aY2

aY3
aY4

aY5

aX3

aX4

aZ3
aZ4

X

Z

Y

aZ6

 

9 DOF 

+1 DOF 

Z-Axis 

in body 

3D-Step 

Addition of the DOF in the body for the 

potential compensation of the rotatory 

moment. 

 

Step 7: Addition of the two shoulder joints  

aY1

aY2

aY3
aY4

aY5

aX3

aX4

aZ3
aZ4

X

Z

Y

aZ6

aY7

aX7

aY8 aX8

 

10 DOF 

+4 DOF 

XY-Axis 

in hands 

3D-Step 

Adding two arms and generation of the 3D 

step. 

 

Having done all the steps enumerated above it is possible to obtain 3D ballistic motion 

of the anthropomorphic mechanism with 14 DOF (s. Fig. 5.10). The parameters of the 

mathematical model of the mechanism correspond to the parameters of the robot ROTTO. 

The parameters of the mechanism are in the appendixes [94].  

From the sequence of motion configurations of 3D ballistic robot motion (s. Fig. 5.10) 

it is seen that in the process of a step the robot oscillates his pelvis with respect to the vertical 

and at the shoulders also performs oscillations with respect to the vertical, but in the opposite 

direction. Such type of locomotion is similar to human walking.  
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Figure 5.10 – Synthesis of the 3D step 

 

From Figure 5.11 can be seen that while making a step the projection COM of the 

whole mechanism on the supporting surface is not under the foot during the single-support 

phase. Thus, according to the definition given in the first chapter it is possible to consider this 

type of walking as dynamic one.  

 

Figure 5.11 – Motion projection COM 

It is necessary to point out that the obtained 3D ballistic motion is similar to the human 

step. It can be explained by the fact that the ballistic motion is free, that there are no  control 

moments in the mechanism joints during movement. Free movement is apparently 

characteristic for human walking 
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5.2.3. Ballistic Motion of Two Link Model 

This chapter has the materials from the article published in [84] 

Obtaining of virtual constraints [78] for linked leg movements (interlink angle and the 

angle of the support leg against surface) is based on the ballistic method to construct free 

motion of a mechanism without friction in joints. The mathematical model of a 2D two-mass 

mechanism (s. Fig. 5.12 a) is considered. It can be described using the Lagrange equations of 

2nd order. Its linearized model is: 

 

1 2 2 2 3 2 2 2

2 2 2 1 1 1 1

3 2 2 2 3 2 2 2

[ 2 ( )] [ ( )]    

 (( )( ) ) ( ) 0

[ ( )] ( )( ) 0

y y

y y

y y

b b a cg b b a cg

m g a cg a m g a cg

b b a cg b m g a cg

 a

 a  

 a  a

     

      

     

 (4.9) 

where a1 and a2 - lengths of links, m1 and m2 - masses of links, I1 and I2 - moments of inertia 

of links about the centers of mass. Centers of mass of links OB and BD are located at the 

distances cg1y, cg2y from the points B and D, 2 2 1b m a , 2

3 2 2 2 2( )yb I m a cg   , 

2 2 2

1 2 11 1 1 1 2 2 2( ( )( ))y yb I I m a cg m a cg a     . 

a2

a1

cg1y

cg2y m2
m1

I1I2

O

B

D

 
O

B

D

 
O

B

D

 
a) b) c) 

Figure 5.12 – Two-mass mechanism, its initial and final position 

 

Equation (4.9) can be transformed into matrix form:  

 0Bz Az   (4.10) 

An analytical solution of the system of differential equations can be obtained using the 

transition matrix R to convert equations to a normal form, by the method proposed in [24] 

 2 2
1 1 1 2 2 20, 0.x w x x w x     (4.11) 

where 
2

iw  - the roots of (4.10). Analytical solution of the equations (4.11) is: 

 
1 1 1 1 1 1

2 2 2 2 2 2

[ ( )sin (0)sin ( )] / sin

[ ( )sh (0)sh ( )] / sh

x x T w t x w T t wT

x x T w t x w T t w T

  

  
 (4.12) 

Here  1(0) (0) (0)
T

x R a  and  1( ) ( ) ( )
T

x T R T a T  - vectors of initial and final conditions 

for system (4.11). The boundary value problem for the unknown velocities (0) , ( )T  and 
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step time T is to solve using equations (4.12). The boundary conditions, which are shown on 

Fig. 5.12 b) (initial position) and Fig. 5.12 c) (final one), can be presented as: 

 
1 1

1 1

(0) [ (0) (0)] , (0) [ (0) (0)] ,

( ) [ ( ) ( )] , ( ) [ ( ) ( )] .

T T

T T

x R a x R a

x T R T a T x T R T a T

 

 

 

 

 

 

    

  
 (4.13) 

The obtained trajectories should be realizable. The velocity in the interlink joint must 

be equal to zero up to the impact moment in order to “freeze” the mechanism. Blocking of 

joint B (s. Fig. 2) during the impact is important for entering and leaving the contact at a given 

configuration. According to [24] for the symmetric boundary value problem boundary 

conditions are: 

 
1 1

1 1

(0) [ (0) (0)] , (0) [ (0) 0] ,

( ) [ (0) (0)] , ( ) [ (0) 0] .

T T

T T

x R a x R

x T R a x T R

 

 

 

 

 

   

        

   
 (4.14) 

The resulting equations ( )fa  , and the total energy as function of the step length are 

shown in Figure 5.13. 

 
a) 

 
b) 

Figure 5.13 – Resulting equations and the total energy as function of the step length 
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It should be noted that the obtained solutions for this task have the following properties: for 

every step length, the time of the step is constant, the dependence of ( )fa   is scalable (s. 

Fig.5.13 a), depending on step length. At the same time to maintain a constant step time, 

system must have more initial energy for longer steps, as it can be seen in Fig.5.13 b). 

5.3. Walking control in sagittal plane 

This chapter has the materials from the article published in [84] 

To solve the walking control problem a 5-mass mechanism with attached ground 

reaction is considered (s. Fig. 5.14 a)). 

 

 

a) b) 

Figure 5.14- Anthropomorphic mechanism, the sagittal plane. 

 

Angles are denoted as 1 – angle of support leg respect to the vertical, 2 – interlink 

angle, 4  – body position respect to support leg, b  – angle of the body respect to vertical, 

1k  – angle of the knee joint of support leg, 2k  – angle of the second knee joint. 

The original mechanical system, which is described as a system of first order non-

linear differential equations in matrix form, has the state vector x and input vector u: 

 
 

 

1 2 4 1 2 1 2 4 1 2

1 2 4 1 2 1 2 1 2

,T
k k k k O O O O

k k x x y y

x x y x y

u M M M M M R R R R

         


 (4.15) 

where  Mi – torque at the -thi  joint;  Rx1, Ry1 – forces acting on a body in the fulcrum;  Rx2, 

Ry2 – forces acting on a body at the end of the second leg;  0x , 0y  – global coordinates of the 

fulcrum О. 

Contact processing is implemented according to [34]. Due to the position control 

loops, realized in all joints except the supporting one, as well as the presence of internal links 
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in the system, the vectors of inputs and considered states can be rewritten as: 

 1 2 4 1 2 1 2 4 1 2
T

k k k k         x   2 4 1 2s s k s k s   u . The system under control is artificially 

introduced as feedback system (expression for interlink angle as a function of the support leg 

supplemented with adjustments related to the function of the knee). Final expressions are 

 max 1 21

2 1

2 2max 2

max 1 2

2max

, 0
( , ) .

, 0

kk s

k s

k

fk



   
 

  
   



 
 

           
   
  

 (4.16) 

 

 

 

1 2

2 1 2

1 2

1.1
( ) ,

2
( , , )

0.9
( ) ,

2

sri k s

s sr k s

sri k s

f forward

f Direction

f backward

  

  

  


 

 
  


 (4.17) 

Where rsif  – virtual constraint for step control. Introducing such feedback, the system is 

obtained with the following state and input vectors:  1 2 4 1 2 4
T      x   4su . 

The system can be reduced to the mechanism presented in Fig. 5.14 b). For this 

mechanism the total energy is calculated as H V T  , intuitive control is built, that 

implements the increment (falling) of energy of the system over the period of oscillations (a 

step) through inclination of the body with respect to the vertical. The setpoint of the angle of 

the body with respect to the support leg is: 

 2
4 4

2
s s


       (4.18) 

Such a setpoint means, that for  4 0S  , both legs deviate from the body at the same 

angle. Symmetric lifting, moving of leg and placing of leg on a surface will cause a 

symmetric oscillation of the body with respect to the vertical. Setting any other 4S  will 

lead to asymmetric oscillations of the body, with a forward or backward inclination of the 

body. Analogously to the method of the energy increment for an one-mass parametric 

pendulum (the change of the radius vector of the COM [50]), the influence of an increment of 

the total energy of the oscillation per period on the input Δφ4s is approximately obtained as: 

 4max 1( )
H

sign
u

 


 


 (4.19) 

The angle 4S  is calculated proportionally to the error of the energy, thus avoiding 

switching mode. This leads to a controller form [26], [22], similar to the method of speed-

gradient: 

    4 4max 1( )s S S

H
u H H T V H sign

u
    


         


 (4.20) 

The resulting block diagram of control system is shown in Figure 5.15 
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Fig. 5.15 - Resulting block diagram of control system 

Simulation Results: 

The parameters of mechanism (Fig. 4a) are: masses of links m1.1 = m1.2 = m2.1 = m2.2 = 

2.2 kg, m4 = 12 kg; moments of inertia of links respect to centers of mass J1.1 = J1.2 = J2.1 = 

J2.2 = 0.02 kg·m
2
, J4 = 0.001 kg·m

2
; lengths of links a1.1 = a1.2 = a2.1 = a2.2 = 0.35 m, a4 = 0.5 

m; centers of mass of links CG1, CG2 and CG4 are located at a center of link. Simulation 

results are shown in Fig.5.16 a), phase diagrams in the steady-state behavior are shown in Fig. 

5.16 b) 

  
a) b) 

Fig. 5.16 – a) Transients while walking forward, b) phase diagrams in the  

steady-state behavior 12-15s  
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Fig. 5.17 – Simulation of 3D walking 
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Figure 5.17 represents the motion sequence of 3D walking. From the Figure it is seen 

that when walking the robot performs oscillations in the frontal plane.  The video of 

simulation can be found here [74] 

Plots were obtained by walking forward with constant step length of φ2max =20º. 

Mechanism starts to move from a vertical position slowly gaining energy, coming up to the 

periodic mode. Step time is 0.54 seconds (1.85 Hz step frequency, by step length of 0.24m 

velocity is 0.45 m / s = 1.6km / h). System is noticeably faster gaining energy after increase of 

set point. This can be explained by increase of energy during the period - the mechanism 

makes more steps over the same time with increasing frequency. After increase of the energy 

level step time becomes 0.49s (frequency of step is 2.04 Hz, for step length 0.24m velocity is 

0.49 m / s = 1.75km / h). When the energy level set point is less than required to perform step, 

mechanism reduces the speed and at the 19th second starts to make steps on the spot. From 

the phase trajectory (Fig 6a) can be concluded that the system works in a stable oscillation 

regime in the period between 12 and 15 sec. 

5.4. 3D walking synthesis. Experimental investigations 

Experimental investigations of the operation of the control algorithm for dynamic 

walking were carried out on the robot ROTTO. Some information about the robot parameters, 

set of sensors, power sensors, communication and control system can be found in the 

published papers [39], [40], [85], [64]. 

The control of the robot ROTTO is implemented with the application of Matlab xPC-

Target technology (s. Fig. 5.18). On the basis of xPC-Target by means of the industrial 

communication network several  robot drives are connected to the master computer . The 

drives implement the given moments in the joints or monitor the given trajectories.  

Network

Ethernet

(UDP)

Visualization

Monitoring

HMI

CPU (Master)

Force Sensors

Gyro Sensor

Force Actuator

Actuator with position 

and velocity Sensor 

Force Actuator

 

Figure 5.18 – The experimental assembly 
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Position sensor  and an angular velocity sensor are  in each joint of the robot. 3-axis 

gyroscope and 3-axis accelerometer are placed  in the pelvis, 6-component force sensor is in 

the robot feet (s. Fig. 5.18). 

5.4.1. Swinging in frontal plane 

This section of the work deals with the experimental investigations of the robot 

swinging in frontal plane. The control algorithm with the help of which the oscillations were 

obtained  is described in Chapter 4.  

Figure 5.19 shows the plots of the given (red), current (blue) и average (black) values 

of the full mechanism energy. From the plot it is clearly seen that at the moment of impact the 

sharp decrease of the full mechanism energy is observed. Having made approximately two 

oscillations the mechanism reaches the given value. 

 
 

Figure 5.19  – Energy oscillations with the 

different desired levels 

Figure 5.20 – Phase portraits  

Figure 5.20 shows the phase portraits in the plane  at different values of the given 

energy and the angle of deflection of the support leg from the vertical. From the plots it is 

seen that the large amplitude of oscillations correspond to the high level of energy. The 

experiments show that the periodic cycle is stable.  

Figure 5.21 shows the sequence of configurations of on robot in frontal plane.  The 

robot oscillations in frontal plane were registered with the help of the video camera. It is 

possible  to watch  the video films on the site RobotsLab [74]. 
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Figure 5.21 – Robot motion sequence with oscillation control in frontal plane 
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5.4.2. 3D Walking on the horizontal surface 

This section of the work deals with the experimental investigations of  3D robot 

walking on the flat surface by swinging in frontal plane and with the help of the algorithm of 

the energy maintenance in sagittal plane (s. section 5.3 of the given paper) . 

The main idea of the algorithm of 3D walking development is the synchronization of 

oscillations in sagittal and frontal planes. The frontal plane is the main and determining one. 

The value of the interlink angle in the sagittal plane ( , , )sagital frontal Sagital Sagitalfa     is the 

function of the value of the current deflection from the vertical of the supporting leg (4.12) in 

the sagittal plane 
sagittal  and the current position of the robot in  the frontal plane 

[ ,  ]frontal frontal  . This function is used as the program trajectory and it is calculated as 

 ( )sagittal sagitalr fa    (4.21) 

Here r  is the coefficient which is proportional to the current energy of oscillations in the 

frontal plane and it is calculated using the formula 

 
2 2

1 2frontal frontalr k k    (4.22) 

The coefficients 1k  and 2k  are tuned experimentally in such a way that in the walking 

steady-state the value r is constant. In case of big disturbances acting on the robot the value r

is filtered with the low-frequency filter with the time constant corresponding to the time of 

step.   

Figure 5.22 shows the motion sequence of one step of the robot. The length step is 9 

cm. From the Figure it is seen that the robot is moving its leg during the deviation in the 

frontal plane. At that the moving leg rises by 3 cm over the surface. The leg bends in the knee 

by 7  grad. The supporting led deflection from the vertical by 3 grad. The maximum forward 

walking velocity of the robot which was reached during the experiments was 0,5 km/h. The 

robot walking was registered with the help of the video camera. It is possible to watch the 

video films on the site RobotsLab [74]. 
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Fig. 5.22 – sequence of configurations 3D walking of the robot when maintaining oscillation energy  

 

Figure 5.23 represents the plots of the total given (red), current (blue) and average 

(black) energy of the robot. Figure 5.23 shows the phase portrait of the oscillation in the 

frontal plane. Figure 5.23 shows the plot of robot forward velocity changes in the sagittal 

plane.  Figure 5.26 represents the plot of the interlink angle (between the hips) changes in the 

sagittal plane. Figure 5.27 shows the plot of the support reaction changes. 
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Fig. 5.23 – Robot total energy 
Fig. 5.24 – Phase portrait of the oscillation 

in the frontal plane 

  
Fig. 5.25 – Robot forward velocity in the 

sagittal plane 

Fig. 5.26 – The value of the interlink angle 

in the sagittal plane 

 

 

Fig. 5.27 – Vertical components of the 

support reactions. 

 

 

From the plots represented here it is seen that the robot oscillates periodically in the 

frontal plane. The system of oscillation energy maintenance compensates the energy losses 

which occur during the impact of the moving leg against the support surface. If the given 

value of the total energy and the coefficient r increase smoothly, the robot increases smoothly 

its forward velocity in the sagittal plane.   
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This chapter deals with the simulation of the control algorithm by maintaining 

movement (oscillations) of the five-link mechanism. Simulation and the experiments showed 

that for the mechanical system under study it is possible to develop the periodic mode when 

there is impact interaction with the support surface. Simulation and the experiments show that 

the control system brings the mechanism to the stable periodic mode of oscillations in the 

frontal plane and maintains stable dynamic 3D walking. 
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Conclusion  

 

 

The consideration of the problem of dynamic walking design from the point of view of 

the periodic movement development allowed us to look differently at the problem of step 

cycle formation, balance maintenance, external disturbances compensation. This also allowed 

us to concentrate on maintenance of the system orbital stability and, as a consequence, of 

periodic walking design.  

At first the work deals with the comparatively simple control object, that is the 

variable length pendulum. The control type was developed at which the amplitude of the 

pendulum oscillations increases. Then the control law was designed at which the amplitude of 

the pendulum oscillations decreases. Combining these control laws we managed to develop 

the control law at which the given amplitude of oscillations is maintained. In this control law 

the feedback from the deviation of the current energy value from the given value was used.  

Then we considered oscillations of the double pendulum which is more complex 

mechanism than a simple variable length pendulum. During the control design two methods 

were used. Using each of them we managed to develop a stable periodic mode of double 

pendulum oscillations. Simulation and experiments showed the efficiency of the developed 

control algorithms.  

The following stage of work was the design of the control algorithm by maintaining 

the periodic movement (oscillations) of the two-link mechanism, namely, a model of the 

biped walking robot in the frontal plane. Simulations and experiments showed that for this 

underactuated mechanical system it was possible to design the periodic modes when there is 

impact interaction with support surface. When analyzing the control system operation by 

simulations and the experiments it turned out that the surface properties influence the 

properties of transients and the character of steady-state periodic mode. The developed 

algorithms to control the periodic motion of a two-legged mechanism in the frontal plane 

allowed us to pass on to the synthesis of biped robot movement in the sagittal plane.  

In the concluding part of the work we developed the methods of design the ballistic 

trajectories for relatively simple, planar models, as well as for multilink 3D models of an 

anthropomorphic robot. On the basis of these methods the trajectories of the movement of the 

biped in the sagittal plane were obtained. In the work we carried out the simulation of the 

control system operation by maintaining the periodic movement (oscillations) of a five-link 

mechanism. Basing on the conception of the synchronization of the motions in the frontal and 

sagittal planes the simple algorithm of design of 3D walking of the biped robot ROTTO was 

developed. Simulations and experiments showed that the control system brings the 

mechanism to the stable periodic mode and maintains the stable dynamic 3D walking.  

The further direction in the development of the ideas of this thesis may be the 

improvement of the algorithm to control walking on the basis of the principle of the energy 
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maintenance. This approach may enable to decrease the load on the control system by 

maintaining the oscillations and to decouple the motions in the sagittal and frontal planes.  
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Zusammenfassung 

 

 

Die Synthese des dynamischen Gehens eines anthropomorphen Roboters auf der Basis 

von periodischen Bewegungen bietet neue Möglichkeiten für die Entwicklung von 

Schrittzyklen, die Gleichgewichtserhaltung und Kompensation von Störeinwirkungen für das 

zweibeinige Gehen. Dieses Verfahren garantiert orbitale Stabilität und lässt sich auf das 

dynamische Gehen übertragen. 

In dieser Arbeit  wurde zuerst ein Pendel mit variabler Länge als eine vereinfachtes 

System betrachtet. Zu Beginn wurde ein System untersucht, bei dem die 

Schwingungsamplitude zunimmt. Anschließend erfolgte die Betrachtung eines Systems mit 

abnehmender Schwingungsamplitude.  Durch Kombination beider Algorithmen wurde  ein 

Regelungssystem entworfen, bei dem die Schwingungsamplitude gleich bleibt. Hierbei wird 

die Gesamtenergie des Systems auf   einem konstanten Niveau gehalten.  

Es wurde ein Zwei-Massen-Pendel, das eine komplexere Struktur darstellt, betrachtet.  

Für dieses System wurden zwei Regelungssysteme nach unterschiedlichen Verfahren 

entworfen. Beide Regelungssysteme garantieren die Einhaltung von stabile Schwingungen 

des Zwei-Massen-Pendels bei unterschiedlichen Störungseinwirkungen. Die 

Funktionsfähigkeit dieser Methoden wurde durch numerische Untersuchungen und 

Experimente nachgewiesen. 

Die nachfolgenden Betrachtungen behandeln die Entwicklung eines Regelungssystems 

für die periodischen Bewegungen (Schwingungen) eines vereinfachtes Models des  

zweibeinigen  Roboters. Dieses Model bestand aus zwei Gelenken  und beschränkte sich auf 

die frontale Bewegung des Laufroboters. Numerische und experimentelle Untersuchungen 

haben die Stabilität der Regelungssystems bei sprungförmigen Störgrößen (Kontakt des Fußes 

mit unterschiedlichem Untergrund beim Auftreten) nachgewiesen. Es wurde gezeigt, dass 

Oberflächeneigenschaften des Untergrunds Einfluss auf die Übergangsprozesse und auf die 

Art des stationären periodischen Betriebs haben.  

Im letzten Kapitel der Arbeit wurde die Entwicklung einer Methode zum Entwurf von 

ballistischen Trajektorien sowohl für das vereinfachte 2D als auch für das mehrgliedrige 3D-

Modell des anthropomorphen Roboters betrachtet. Mit Hilfe der entwickelten Methoden 

wurden die Bewegungstrajektorien für Beine und Körper in der Sagittalebene bestimmt. 

Hierfür wurden numerische Untersuchungen des Regelungssystems für die periodischen 

Bewegungen (Schwingungen) des 5 DOF Systems in der sagittalen Ebene durchgeführt. Auf 

der Basis des Konzept der Synchronisierung der Bewegungstrajektorien in der frontalen und 

sagittalen Ebene wurden einfache Algorithmen für die Synthese des dynamischen Gehens des 

Roboters ROTTO entwickelt. Die Phasendiagramme der Regelgrößen stellen Grenzzyklen 

(limit cycles) dar und weisen die Effizienz der entwickelten Algorithmen nach. 
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Zukünftige Arbeiten sollten sich auf die Erweiterung und Weiterentwicklung von 

Algorithmen des dynamischen Gehens auf der Basis der Schwingungsregelung konzentrieren. 

Die vorgeschlagenen Konzepte sind in der Lage, das Steuerungssystem zu entlasten und die 

Bewegungen in der sagittalen und frontalen Ebene zu entkoppeln. 
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