
An Aggregated Integration Platform - an
approach for the aggregation of Information

Models

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von M.Sc. Suprateek Banerjee
geb am 16.12.1986 in Azamgarh, Indien

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universität Magdeburg

Gutachter:

1. Prof. Dr.-Ing. Christian Diedrich
2. Prof. Dr.-Ing. habil. Leon Urbas
3. Prof. Dr.-Ing. Daniel Großmann

Promotionskolloquium am 02. November 2023

ii

Acknowledgement

This page is only available in the print version due to the regulations of the Otto-
von-Guericke University.

0. Acknowledgement

iv

Abstract

In today’s automation landscape, a clear trend towards distribution can be noticed.
Starting from processing power to where data about the automation systems are
being stored and used are being decentralized. The devices at the shop floor are
getting smaller and “smarter”, in the sense that they are now becoming capable
of describing their own health or energy related metrics, which are of relevance
for higher level monitoring systems, for example. Cloud based systems can now
access data from all over the shop floor and apply machine learning algorithms
to realize use-cases like predictive and preventive maintenance. However, as one
can realize, the first step in this scenario is to get the data in a uniform and
standardized manner. This is where information models come into the picture.
Standardized use-case specific information models can help realize the true po-
tential of Industry 4.0. There is indeed a plethora of standardized information
models within the automation domain, looking at different aspects of the same
automation system. Therefore, an obvious need to harmonize information models
and to minimize any overlaps between them arises. This is seen from the point
of view of an aggregating application that wants to collect information based on
standardized information models. This thesis looks at some of state-of-the-art in-
formation models and exemplifies a scenario to explain the concept. It collects
the requirements for the creation of a so-called aggregated information model and
an aggregated integration platform respectively. Based on the requirements, this
thesis proposes an architecture of such an aggregated integration platform, that
aggregates several information models while considering that they might have over-
laps. It also proposes a solution to solve these overlaps and uses this solution to
create the aforementioned aggregated information model.

0. Abstract

vi

Zusammenfassung

In der heutigen Automatisierungslandschaft ist ein deutlicher Trend zur Dezentral-
isierung zu erkennen. Angefangen bei der Verarbeitung bis hin zur Speicherung von
Daten und Informationen – das findet dezentral (“on the edge”) statt, verteilt über
das System. Die Geräte in der Fertigung werden kleiner und “intelligenter” in dem
Sinne, dass sie nun in der Lage sind, ihre eigenen zustands- oder energiebezogenen
Metriken zu beschreiben, die z. B. für übergeordnete Überwachungssysteme rele-
vant sind. Cloud-basierte Systeme können nun auf Daten aus dem gesamten Be-
trieb zugreifen und Algorithmen des maschinellen Lernens anwenden, um Anwen-
dungsfälle wie vorausschauende und vorbeugende Wartung zu realisieren. Der erste
Schritt in diesem Szenario besteht jedoch darin, die Daten in einer einheitlichen
und standardisierten Weise zu erfassen und zur Verfügung zu stellen. Und hier
kommen Informationsmodelle ins Spiel. Standardisierte, anwendungsspezifische
Informationsmodelle können dabei helfen, das wahre Potenzial von Industrie 4.0
auszuschöpfen. Es gibt in der Tat eine Fülle von standardisierten Information-
smodellen im Bereich der Automatisierung, die (jedes Modell für sich) unter-
schiedliche Aspekte desselben Automatisierungssystems betrachten. Die Notwendi-
gkeit, Informationsmodelle zu harmonisieren und die Überschneidungen zwischen
ihnen zu minimieren, ist offensichtlich. Die Arbeit betrachtet dies aus Sicht
einer aggregierenden Anwendung, die Informationen auf der Grundlage standar-
disierter Informationsmodelle erfasst. Sie betrachtet einige der gängigen Infor-
mationsmodelle , stellt ein Szenario zur Erläuterung des Konzepts exemplarisch
dar und gestellt und trägt die Anforderungen für die Erstellung eines sogenannten
aggregierten Informationsmodells bzw. einer aggregierten Integrationsplattform
zusammen. Basierend auf den Anforderungen wird in dieser Arbeit eine Architek-
tur für eine solche aggregierte Integrationsplattform vorgeschlagen, die mehrere In-
formationsmodelle aggregiert und dabei berücksichtigt, dass diese Überschneidun-
gen aufweisen können. Sie schlägt auch eine Lösung vor, wie mit diesen Überschnei-
dungen umzugehen ist und verwendet diese Lösung, um das oben erwähnte ag-
gregierte Informationsmodell zu erstellen.

0. Zusammenfassung

viii

Contents

Acknowledgement iii

Abstract v

Zusammenfassung vii

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Goal of the thesis . 2
1.3 Structure of the thesis . 3

2 Management of Cyber-physical Production Systems 7
2.1 Complex Automation Systems . 7

2.1.1 Types of Automation Systems 8
2.1.2 Structure of Automation Systems 9
2.1.3 Life Cycle of Automation Systems 11

2.2 Cyber Physical Production Systems 14
2.2.1 Structure of a CPPS . 15
2.2.2 Information Modeling in a CPPS 16

2.3 Information Integration in a CPPS 17
2.3.1 The resulting connection mesh 18
2.3.2 Enterprise Application Integration 19
2.3.3 Aggregated Information Model 21

2.4 Summary and Task Definition . 24

3 Methods and Tools for Information Integration 27
3.1 Development of Information Integration 28

3.1.1 The General Information Integration Process 28
3.2 The Information Modeling Process 32

3.2.1 Conceptualization of Information Models 33
3.2.2 Modeling Methodologies . 35

Contents

3.2.3 Modeling Steps . 37
3.3 A Common Landscape of Information Models in Automation 40

3.3.1 Reference Models . 41
3.3.2 Model Universals . 41
3.3.3 Concept for consistent use of Engineering Models in Au-

tomation . 42
3.3.4 SemAnz4.0 . 42
3.3.5 RAMI 4.0 . 44

3.4 OPC UA - An Enabler for Industry 4.0 46
3.4.1 Motivation and Overview 46
3.4.2 OPC UA Base Layer . 47
3.4.3 OPC UA Model Extensions 51

3.5 Summary . 53

4 Solution Concept for the Aggregated Integration Platform 55
4.1 Basic Concept . 56

4.1.1 Overview of the concept idea 56
4.1.2 Method for the solution development 58

4.2 Analysis . 59
4.2.1 Actors and Use-Cases . 60
4.2.2 Requirements for the Aggregated Integration Platform . . . 63
4.2.3 Entities in an Aggregated Information Model 65
4.2.4 An Aggregation Scenario from the Process Industry 69
4.2.5 Considerations for Information Aggregation 71
4.2.6 Merging of Information Models 73
4.2.7 Demonstration of a Merged Information Model with Graphs 80

4.3 Base Model of Information Aggregation 93
4.3.1 Aggregated Information Model 93
4.3.2 Aggregation Communication Model 95
4.3.3 Consumer Operation Model 97

4.4 Meta-model of Information Aggregation 99
4.4.1 Basic Structure of the Meta-model 100
4.4.2 Data and State Model . 102
4.4.3 Basic Methods . 103
4.4.4 Addressing Information . 104
4.4.5 Communication Sequences 105
4.4.6 Consumer Business Logic . 105
4.4.7 Graphical User Interface . 106

4.5 Summary . 107

x

Contents

5 Architecture of the Aggregated Integration Concept 109
5.1 Architecture Concept . 110

5.1.1 Overview of the Architecture Concept 110
5.1.2 Procedure for the Architecture development 113

5.2 Structural Model . 114
5.2.1 Conceptual Class Diagrams of the platform modules 114

5.3 Definition of Interfaces . 122
5.3.1 Login-Interface . 124
5.3.2 AIM-Interface . 124
5.3.3 COM-Interface . 125
5.3.4 Mapping-Interface . 125
5.3.5 ACM-Interface . 126
5.3.6 Configuration-Interface . 126

5.4 Behavioral Model . 127
5.4.1 Read Access to a UIM element 127
5.4.2 Write Access to a UIM element 129
5.4.3 Subscribing to a UIM instance 130
5.4.4 Addition of a UIM element by Consumer 132
5.4.5 Deletion of a UIM element by Consumer 133
5.4.6 Dynamic Addition of a UIM element 135
5.4.7 Dynamic Deletion of a UIM element 136

5.5 Summary . 137

6 Realization and Review 139
6.1 Overview of the Implementation . 139

6.1.1 Overview of the Prototype 140
6.1.2 Process of Prototype Implementation 141

6.2 Implementation Technologies . 142
6.2.1 Description of Mapping Rules 143
6.2.2 Client-Server Technology . 143

6.3 Illustration of the aggregated platform 143
6.3.1 Underlying Servers . 144
6.3.2 Aggregation Server . 147
6.3.3 Configuration . 150
6.3.4 Consumer Client . 150
6.3.5 Mapping Rules Repository 151

6.4 Evaluation of the implemented prototype 155
6.5 Summary . 156

xi

Contents

7 Conclusion and Outlook 157
7.1 Conclusion . 157
7.2 Outlook . 159

Appendices 161

Annex A 163

References 183

List of Publications 191

Curriculum Vitae 193

Declaration of Honor 195

xii

Chapter 1

Introduction

With the advent of Industry 4.0, the rapid growth in processing power of devices
and at the same time the reduction in their sizes, effective and efficient information
modeling is becoming ever more important. Today, the components being used
in the automation industry are already capable of exposing information about
themselves in the form of well defined information models making them even more
capable and flexible. This however makes managing all the information highly
complex and with so many information sources and sinks, it is increasingly be-
coming a challenge to manage it effectively.

1.1 Motivation and Problem Statement
In today’s automation scenario, with the increasing trend towards distributed sys-
tems, the information models being exposed by those systems are gaining impor-
tance. With devices becoming more and more intelligent in terms of their process-
ing power capabilities, it is now possible for the higher levels of the automation
pyramid (e.g. Manufacturing Execution Systems) to access information directly
from the field devices. Figure 1.1 shows the gradual phase-in of the well known
automation pyramid into a system where there is seamless communication between
entities from different levels of the traditional automation pyramid. This not only
means vertical communication but also horizontal communication between enti-
ties on the same level e.g direct communication between a robot and a machine
vision system. An advantage of this development is that devices or subsystems
are already individually accessible at a stage in the life cycle of the automation
system when the system as a whole has not yet been engineered or commissioned
([Gro+14b]). Although this increases the flexibility of the entire automation sys-
tem manifold, it brings in the challenges of a fully-meshed network of information
sources and sinks.

1. Introduction

In order to solve this aforementioned connection mesh, there is need for a solution
that aggregates the various information being exposed by the information sources.
However, to effectively aggregate information from several sources into a single in-
formation source, the overlaps (if any) between the existing information need to be
solved. Upon effectively aggregating information from several sources, consumers
can retrieve information from the aggregated information source depending upon
their use case i.e. applications looking for information related to use-cases such
as Asset Management or Condition Monitoring can access this use-case specific
information from the aggregated source.

Seamless

Communication

Automation Pyramid

PLC

SCADA

MES

ERP

Robot

Interface 3

Interface 2

Interface 1

Interface 4

Interface 3

Interface 2

Interface 1

Interface 4

Cloud

gradual
phase-in

Figure 1.1: The gradual phase-in of the automation pyramid

1.2 Goal of the thesis
A similar problem (as that mentioned in the previous section) has already been
tackled by operational information systems i.e. the challenges posed by the mul-
tiplicity of couplings resulting from the connection mesh formed by the multitude
of applications interacting with each other. As a solution to this problem the con-
cept of Enterprise Application Integration could be used to reduce the number of
couplings. In this concept various consumer applications connect to a so called
Integration Platform and not directly to the information sources.
Similarly, with respect to the scenario mentioned in the previous section, an Ag-

2

1.3. Structure of the thesis

gregated Integration Platform can be developed. This platform could be used to
provide access to data and functions made available by the different information
sources that are effectively aggregated by the aggregated integration platform. Ap-
plications from all levels of the automation pyramid can retrieve use-case specific
information from the information sources via the aggregated integration platform,
and use this information to perform tasks along the life-cycle of the automation
system. Therefore, time and resource consuming couplings with the information
sources can be minimized. Such an aggregated platform could also ensure that if
standardised information models are being aggregated, the overlaps between them
are solved resulting in a single standardised aggregated information model. There-
fore the consumer applications would only need to be aware of a single standard
information model (that of the aggregated information model), thereby eliminat-
ing the need to know all the standards on which the information exposed by the
information sources are based on.
Therefore the goal of this thesis is to find a generic approach that can be used
to solve the overlaps (if any) that exist between the information models that are
currently in use in the industry. This approach should entail a mechanism to ag-
gregate several information models into an aggregated information model which
should then be exposed by an aggregated integration platform.

1.3 Structure of the thesis
The structure of this thesis has been depicted with the help of a UML Activ-
ity Diagram ([Run19]) in Figure 1.2. The individual chapters of this thesis are
represented as Activities (rectangles with rounded corners) that were carried out
during the course of this thesis. The deliverables of some chapters are represented
as Objects (rectangles).

Chapter 1 provides a short introduction to this thesis and explains the manner
in which this thesis has been structured. Chapter 2 discusses the management of
cyber-physical production system which serves as the basic background on which
this thesis is based. It starts with an introduction to complex automation sys-
tems, their types structure and the life cycle of such systems. Then it outlines
what cyber-physical production systems are and what their structure looks like.
Thereafter, Chapter 2 outlines the purpose of information modeling in a cyber-
physical production system and the related activities in during plant life cycle.
The last section discusses how information is integrated in such a system and the
resulting challenges of the same. Finally a possible solution concept is introduced
and the task for this thesis is set.
Chapter 3 explores the state of the art with respect to the methods and tools
that are currently used for information integration. It takes a deeper look at the

3

1. Introduction

Introduction (Ch. 1)

Management of Cyber-physical
Production Systems (Ch. 2)

Methods and Tools for
Information Integration (Ch. 3)

Solution Concept for the Aggregated
Integration Platform (Ch. 4)

Metamodel

Solution: An Aggregated
Integration Platform

Architecture of the Aggregated
Integration Platform (Ch. 5)

Architecture

Realisation and Review (Ch. 6)

Conclusion and Outlook (Ch. 7)

State o
f th

e art an
d

P

ro
b

lem
 Statem

en
t

So
lu

tio
n

 C
o

n
cep

t
R

ealisatio
n

Figure 1.2: Structure of the Thesis

information modeling process, the methodologies used and the steps that are usu-
ally followed. Chapter 3 then analyses efforts that have been carried out in the
direction of providing a common landscape of information models in the automa-
tion scenario and discusses some of the approaches with an eye to use one of the
approaches for this thesis.
Chapter 4 discusses the solution concept for the aggregated integration platform.
After presenting the basic concept, an analysis of the actors and use-cases is car-
ried out. Based on this analysis, the requirements for the aggregated integration
platform at set. To understand the requirements better, an example aggregation
scenario from the process industry is discussed with emphasis on the merging of in-
formation models. This merged information model was demonstrated with graphs
information models created for the example. In conclusion, this chapter delivers a
meta model of information aggregation.
Based on the aforementioned meta model, the architecture of the aggregated inte-
gration platform is developed in Chapter 5. This architecture defines the structural

4

1.3. Structure of the thesis

and behavioral model of the platform as well as the interfaces needed between the
different modules of the architecture.
Chapter 6 details the prototype developed based on the architecture from Chap-
ter 5. It explains all the modules that together build up the prototype and the
interactions between them. In conclusion, the developed prototype is evaluated
against the requirements set in Chapter 4. Chapter 7 summarizes the work carried
out within the scope of this thesis and provides an outlook to the future research
work that can be carried out on the basis of the outcome of this thesis.

5

1. Introduction

6

Chapter 2

Management of Cyber-physical
Production Systems

Contents
2.1 Complex Automation Systems 7

2.1.1 Types of Automation Systems 8
2.1.2 Structure of Automation Systems 9
2.1.3 Life Cycle of Automation Systems 11

2.2 Cyber Physical Production Systems 14
2.2.1 Structure of a CPPS . 15
2.2.2 Information Modeling in a CPPS 16

2.3 Information Integration in a CPPS 17
2.3.1 The resulting connection mesh 18
2.3.2 Enterprise Application Integration 19
2.3.3 Aggregated Information Model 21

2.4 Summary and Task Definition 24

2.1 Complex Automation Systems
In today’s production scenario, automation plays one of the most important roles.
Germany has taken a leading role in the establishment of the ’Industrie 4.0’ con-
cept, which focuses on Smart Industries. With the increase in the use of smart
sensors, actuators and measuring devices, the automation systems, although be-
coming much more capable, are getting more complex with time too.

2. Management of Cyber-physical Production Systems

The following sections will be outlining the basic concepts of complex automa-
tion systems, the structure of such automation systems and further introduce the
idea of cyber physical production systems.

2.1.1 Types of Automation Systems
In order to understand the different types of Automation Systems, a clear un-
derstanding of Automation Technology is needed. The term ‘Automation’ was
essentially formed from two greek words namely ”Auto” (self) and ”Matos” (mov-
ing). This means that in essence it is a system of self-moving parts. However
automation systems are much more than the traditional meaning of the word. Au-
tomation systems perform significantly better than their manual counterparts in
terms of power, precision and speed of operation [Kha09].

Definition 2.1 Automation is a set of technologies that results in operation of
machines and systems without significant human intervention and achieves per-
formance superior to manual operation [Kha09]

Automation Systems can be divided into different categories based on the level
of integration and flexibility in the manufacturing process operations. Some defi-
nitions of the different types of Automation Systems are outlined as follows:-

Fixed Automation : It is the type of Automation used in production sys-
tems where the volume of production is high and it needs dedicated equipment
designed to be efficient for a fixed set of operations. Used in Continuous flow and
Mass Productions systems e.g. Distillation Process, Paint Shops, Transfer lines
etc[Kha09].

Programmable Automation : Type of Automation where the sequence of
operations and the configuration of the machines could change with the help of
electronic controls. This might need non-trivial effort in reprogamming of the ma-
chines. Used in Batch processes with medium to high product volume e.g. Steel
Rolling Mills, Paper Mills etc [Kha09].

Flexible Automation : Type of Automation used in Flexible Manufacturing
Systems (FMS) where operations are mostly controlled by computer algorithms.
These computers automatically convert the high level commands given to them
by human operators, into low level changes which are then communicated to the
production machines. The processing instructions are then carried out after au-
tomatically loading/unloading the required tools for the specific operation. The
products are then transferred to the next machine automatically. Such systems

8

2.1. Complex Automation Systems

make use of Computer Numeric Control (CNC) machines and Automated Guided
Vehicles (AGV) etc [Kha09].

Integrated Automation : It represents complete automation of a production
system, with each process being controlled by computer processes and communicat-
ing with other processes in a streamlined and effective manner, thereby improving
the efficiency of such a system manifold. It is a complete system which may inte-
grate business processes along with manufacturing processes and their monitoring
and diagnostics too. This is achieved with the help of information and communica-
tion technologies. It involves components of varied complexities working together
as a single unit. Examples of such systems are found in Advanced Process Au-
tomation Systems and Computer Integrated Manufacturing (CIM) [Kha09].

2.1.2 Structure of Automation Systems
In an industrial process, there are several components responsible for various func-
tions related to Instrumentation, Commissioning, Control, Supervision and Oper-
ations Management. All of these inter-communicating components make up an
Industrial Automation System. These components interact with each other to
make the entire process more streamlined and efficient functioning of the process
as a whole. Typically an Automation System can be represented by the ‘Automa-
tion Pyramid’ shown in the figure below (Figure 2.1). The Automation Pyramid
is represented with six levels namely, the Production Process, the Field Level, the
Control Level, the Process Control Level,the Operations Control Level, the Enter-
prise Level [Rot16], which are explained in a bottom up manner as follows:

• The Process Level : The bottom most level is taken up by the production
process that is being automated.

• The Field Level : The Field Level consists of the sensors and the actuators
that interact with the Production Process directly. The sensors sense trig-
ger signals and communicate the same to the Control Level [Rot16]. The
actuators receive instructions from the Control level and then perform the
respective actions on the Process level. The communication between the
field level and the control level takes place over the communication system
of the field level e.g. Fieldbus protocols like Profibus, HART etc. The time
window for the systems at this level are in the order of seconds and smaller
[Com+13].

• The Control Level : The Control Level defines the logic which converts the
input signals received from the sensors (in the Field level) to the outputs

9

2. Management of Cyber-physical Production Systems

ERP

MES

HMI/SCADA

PLC

Field Devices

Production Process Process Level

Field Level

Control Level

Process Control Level

Operations Control Level

Enterprise Level

Figure 2.1: The Automation Pyramid - Hierarchy of Automation Systems
(adapted from [Rot16])

which are relayed to the actuators (in the field level) [Rot16]. This level con-
sists of control components such as Programmable Logic Controllers (PLCs)
which run the logic programs and produce the output signals for the actu-
ators. The time frames being considered by the systems at this level are in
milliseconds, seconds, minutes and hours [Com+13].

• The Process Control Level : The components of the Process Control Level are
applications for Process visualization and management, for the configuration
and programming of the process control systems [Rot16]. Therefore, at this
level an interaction between human beings with controlling and monitoring
applications takes place. Here systems such as Human Machine Interaction
(HMI) and Supervisory Control and Data Acquisition (SCADA) are used.

• The Operations Control Level : The components of the Operations Control
Level initiate and monitor the Production Process with the help of Pro-
duction Orders. Typical examples of systems on this level are Production
Control Systems e.g., Manufacturing Execution Systems (MESs)) [Rot16].
The time frames considered by the systems at this level are given in seconds,

10

2.1. Complex Automation Systems

minutes, hours, shifts and days [Com+13].

• The Enterprise Level : The Enterprise/Company Level consist of business
systems which monitor the production process at the highest level of ab-
straction. This level typically consists of Merchandise Management systems
(e.g.Enterprise Resource Planning (ERP)) or logistic systems [Rot16]. The
time scales being considered by the systems at this level are days, weeks and
months [Com+13].

2.1.3 Life Cycle of Automation Systems
For the establishment and operation of automation systems until decommissioning,
various different disciplines have to work together. In order to make this plant life
cycle manageable, phase plans have been established that divide the entire life
cycle into manageable parts. [NAM19] describes such a phase plan in Figure 2.2.
The individual phases are to be implemented with the focus on the construction
of automation systems. Accordingly, the plan starts with collection of the project
requirements and scope definition, and ends with the completion of the project -
the fully implemented functional system.

Project
Requirements

 and scope definition

Conceptual
Engineering

Basic
Engineering

Detail
Engineering

Construction
Commissioning

and start-up
Project
Closure

Figure 2.2: Phase plan as per [NAM19]

However, this phase plan leaves out the Operating Phase entirely, since within
the scope of [NAM19], the project is considered to be concluded after the com-
missioning and start-up phase. From the point of view of the plant operator, the
Operating Phase takes the center stage because of the value being added to the
automation system in this phase. An extended phase plan which also includes
the Operating Phase has been shown in Figure 2.3. The Operating Phase fol-
lows the Project Completion phase and it encompasses the Service, Maintenance,
Modification and Shutdown phases, finally ending with the Disposal phase.

11

2. Management of Cyber-physical Production Systems

Service Maintenance

Modification Shutdown Disposal

Figure 2.3: Phase plan of the Service phase as per [FMS04]

With the advent of IIoT, the life Cycle of automation systems and its compo-
nents has also evolved. In [Soo+18] the authors postulate a so-called IoT device
lifecycle management model. The IoT device lifecycle management model (Figure
2.4) refines the commonly used product life cycle models namely Beginning of
Life, Middle of Life and End of Life, and restructures the same with respect to
the components that constitute automation systems. This model uses the well
known Business Process Model and Notations (BPMNs) to represent the model.
From a conceptual point of view, this model encompasses the main points of the
aforementioned phase plans. The following is a discussion on the different phases
and how they relate to the phase plans mentioned in the previous paragraphs and
other literature on the same.

Plan and Design As part of the basic assessment, the project objectives are
defined as well as the approximate costs are estimated. The aim is to ensure the
feasibility of the project. The subsequent preliminary planning defines the plant at
a conceptual level and refines the cost estimation. The basic planning defines the
automation functions as well as their technical realization so that the tendering of
the plant can take place. The tasks of the execution planning are the selection of
the field devices, the facilities of the control and automation system including the
how the information will be integrated and the preparation of the required assem-
bly documents. After the plan and design phase is complete, the plant can be built.

Provisioning During this phase, the configuration or programming of the
software of the automation system takes place. This also includes the complete
development of information aggregation platforms as per the chosen technology
for the particular application scenario. After the preparation and execution of the
assembly, the functional test ensures that the target of the functional system has
been achieved.

12

2.1. Complex Automation Systems

2. Middle of Life

3. End of Life

1. Beginning of Life

Plan and
Design

Start

Provisioning

UpdateConfiguration Maintenance

MonitoringDeprovisioning

Retire

XXXXX

++

XXXXX

Stop

XXXXX

++

Inclusive Gateway

Exclusive Gateway

Parallel Gateway

Lifecycle Flow

Information Flow

OperatingOperating

DismantlingDismantling

Figure 2.4: The IoT Device Lifecycle Management Model (adapted from [Soo+18])

Operating The Configuration, Update, Maintenance and Monitoring stages
collectively form the Operating phase. The production-capable plant forms the
starting point of the operating phase. During operation, the service or more
specifically monitoring takes place, i.e. continuous monitoring of the processes
and of the automation equipment. If spontaneous errors occur, which lead to a
malfunction of the operation, a diagnosis is carried out to identify the possible
causes. After subsequent repair, the system is transferred to regular operation.
This type of plant operation is also referred to as Reactive Repair [Eme03]. In the
case of preventive maintenance [Eme03], on the other hand, a given maintenance
schedule determines the time of scheduled decommissioning in order to carry out
the pending maintenance measures. Subsequently, the system is restarted. In the
case of predictive, condition-based maintenance [Keg07], the decommissioning does

13

2. Management of Cyber-physical Production Systems

not take place at predetermined time intervals, but on the basis of state variables
which are e.g. determined by extrapolation of the date of the next scheduled de-
commissioning and maintenance. Likewise, after a scheduled shut down, changes or
extensions of the plant are made, e.g. to adapt to the production of a new product.

Dismantling The Deprovisioning and Retire stages collectively form the Dis-
mantling phase. If in case the further operation of the plant is no longer feasible
- mostly due to economic considerations, the life cycle ends with the Dismantling
of the plant and its components.

2.2 Cyber Physical Production Systems
Cyber Physical Systems (CPS), as the name suggests, are systems made up of Cyber
(Virtual) as well as Physical (real-life) components. To elaborate, CPS are systems
that function in a flexible, cooperative and interactive manner. Cooperation in this
context entails system-system-cooperation, where the non-human components of
the system are connected to each other and exchange data and information in
order to continually increase the efficiency of the overall system. Interaction refers
to the human-system-cooperation where the human components of the system in-
teract with the other components of the system e.g. with the help of a Human
Machine Interface (HMI) [Mik14] . The underlying key enabling technology which
acts as the backbone for the CPS is the Internet of Things (IoT). The term IoT
was first used in 1999 in MIT Auto-ID Labs [WW18]. In simple terms, IoT can be
defined as a network of interconnected uniquely-identifiable components (things)
of a system which can communicate with each other based on standard commu-
nication protocols. In a broader sense, the IoT architecture can be visualized to
consist of four layers: the sensing layer, networking layer, middleware layer, and
application layer. The Sensing Layer, which contains the sensors responsible for
sensing and capturing real-time information. The Networking layer connects all
the components together with the help of a physical network. This physical net-
work is used to exchange data and information between the various interconnected
components. The Middleware layer consists of hardware and software platforms
with the help of which the real-time data and information is transmitted. The
Application layer contains the algorithms which implement the system functions
to enable IoT for manufacturing and industrial use-cases [WW18].

Industrial Internet of Things (IIoT), in comparison, is a more specific sub-
domain of IoT focusing primarily on manufacturing and production processes in
industrial automation. It adds more value to these processes by globally con-
necting the various aspects of the system including but not limited to the ma-

14

2.2. Cyber Physical Production Systems

chines,assembly lines and factories [Jes+16]. Also known as the Industrial Inter-
net, it is a network of devices communicating with each other with the help of
various protocols used for industrial communication. This network makes it possi-
ble to monitor, analyze and diagnose the system in a much more efficient way than
was possible before [OT17]. Thus IIoT plays the role of the enabling technology
for CPS for the manufacturing and production industries, also known as Cyber
Physical Production Systems.

Definition 2.2 Cyber Physical Production Systems (CPPS): A CPPS can be de-
fined as an interconnected heterogeneous and distributed system of devices and
components which seamlessly communicate with each other to exchange data and
information in a production scenario, in order to continuously monitor the physical
production processes, perform diagnostics and make the entire production process
more effective and efficient [Mon14].

2.2.1 Structure of a CPPS
The structure of a CPPS can be depicted as the below Figure (2.5). To discuss
the flow of the information between the different components of the CPPS, the
data and information about the actual Production Process is being collected by
the Sensor Elements of the system. This is then processed by the Data Processing
and Transmission unit which determines the action to be taken by applying the
business logic to the input data. It then provides the respective output to the
Actuating Elements, which then carry out their appropriate tasks as outlined by the
Data Processing Unit. These three units, namely the Sensor Elements, Actuating
Elements along with the Data and Transmission Unit form the core of the CPPS.
The system functions seamlessly with the support of additional cooperative units
such as the Local Services unit which handles the cooperation of the core system
with the services in the local environment, and the Human-System Cooperation
unit, which handles the interaction with the human components of the system.
In addition to these external units, the core is also connected to an Internet of
Things / Internet of Services which plays the role of further analyzing the data
thus generated in order to formulate a behavioral description of the production
process. This data and information analysis is again made possible with the help
of the System-System cooperation and the Global Services unit, which in this case
could be a global repository of services which encapsulates the shared collective
intelligence of the knowledge being gained by similar production systems, and can
be used to make the process more efficient with time.

15

2. Management of Cyber-physical Production Systems

Figure 2.5: Structure of Cyber Physical Production Systems
[Mik14]

2.2.2 Information Modeling in a CPPS
The Cyber in CPPS is largely dependent on how the components of the production
system have been modeled in the virtual domain. Information modeling is one of
the most important aspects of an automation system. It determines how the
entire available information about the system as a whole could be structured and
represented in an accessible, understandable and efficient manner. Within the
context of this thesis, this term has been defined as below, while referring to
[MLD09], [RQ+12]:

Definition 2.3 Information Model : The Information Model of a CPPS is a rep-
resentation of the entities of the system, their data and behavioral semantics, and
the relationships, if any, between the various entities that make up the system. It
usually represents a system with a particular functional domain in mind.

As the definition above suggests, not all of the information about a system
is modeled in a single information model. Before the modeling is carried out,
the purpose of the information model is defined, which means that the a certain

16

2.3. Information Integration in a CPPS

aspect of the CPPS is being concentrated upon, and only that particular aspect
is represented in the information model. For example, let us consider the scenario
of a automotive manufacturing plant. An information model of this plant can be
created which describes the physical structure of the plant i.e. the physical location
of the different components (e.g sensors, actuators, conveyor belts, PLCs etc.) of
the plant with respect to each other and their topographical structure. This model
would define the topological hierarchies between the different components and
their physical location in the plant. Another information model could concentrate
on the real-time data being exchanged between the devices of the same plant.
Therefore, although the two information models model the same physical plant,
their modeling purposes could be different. Each information model would be
conceived with the aim to show a particular aspect of the system. When an
information model is ready, it is exposed with the help of an Integration Platform.
Within the context of this thesis, this term has been defined as below:

Definition 2.4 Integration Platform : The software component that implements
and exposes the information model that it is designed for. This is usually achieved
with the help of Software Development Kits (SDKs) which are designed specifi-
cally for the purpose of information integration and these SDKs provide the tools
needed in order to communicate data and information to and from the Integration
Platform.

2.3 Information Integration in a CPPS
Information integration plays an important role in how data and information is
handled in an automation system. Now, this information integration can only
be helpful if it is efficient, consistent, and easily accessible by the applications
that need this information and process them further in order to achieve a specific
goal. In order for the information model to be consistent, information modeling
standards were created. Information models can be conceived based on these
modeling standards. Therefore, based on the purpose of modeling, the modeler can
base his model on the appropriate modeling standard and can build the integration
platform in a standardized manner so that the access to the information exposed by
the model (by respective applications) can also be consistent and standardized. In
today’s day, the information exchange between the different layers of the traditional
automation pyramid is gradually changing. As shown in Figure 2.6, in a CPPS,
the information sources from the different levels are connected to each other and
there is a possibility to information exchange between them and the sophisticated
applications which can gather and use the information from these sources, all at
the same time.

17

2. Management of Cyber-physical Production Systems

ERP

Plant
Management

Control

Field Devices

Production Processes

M
an

ag
em

en
t

M
o

n
it

o
ri

n
g

D
ia

gn
o

si
s

B
u

si
n

es
s

Src

Src

Src

Src

Src

Future
Applications

Figure 2.6: Automation Pyramid in a CPPS perspective
[Col+14]

2.3.1 The resulting connection mesh
With the advent of Industrie 4.0, the different components of the CPPS are getting
smarter and smarter. The term ’smart’ here is to suggest that the with the massive
increase in processing power and reduction of size of the components, the individual
components of the automation system (e.g the sensors or actuators at the field level
or the control systems controlling them etc.) are now much more capable than
before. As a consequence, components and subsystems of the automation system
are already equipped with their own information models, thus providing data and
functionality. There is an obvious advantage to this trend, which is that such
components can already be accessed directly even before commissioning of the
entire automation system is completed. This further drives the collaborative effort
of the highly distributed system components. However, this would then result in
a system with (fully) meshed connections between functionality providers and the
respective consumers in a CPPS (Figure 2.7).

Automation components and subsystems with an inbuilt information model
does have its own advantages but at the same time there are some disadvantages
too. For example, throughout the life cycle of an automation system, different
applications (or tools) need the access to the data and information provided by

18

2.3. Information Integration in a CPPS

Provider Provider Provider Provider Provider

Provider Provider
Provider Provider Provider

Consumer Consumer

Consumer Consumer Consumer

Figure 2.7: Resulting Communication Mesh

these components and subsystems. This problem was solved quite practically and
efficiently in the scenario of a single centralized integration platform as the con-
sumer applications would just need to connect to the central platform and get
access to the data and information that the platform integrates from underlying
components or subsystems. However with the advent of the distributed and decen-
tralized information sources as in the case of a CPPS, the consumer applications
need to connect to each individual information source and access the information
relevant to it. Moreover, from a security standpoint, each of these connections
need to be managed individually as per the security guidelines and requirements.

2.3.2 Enterprise Application Integration
The domain of business information systems has managed to develop a solution to
solve a similar problem of coupling variety resulting in meshed networks. There is a
similar challenge of heterogeneous environments from which data and information
need to be accessed by multiple applications for further specific processing. As
shown in Figure 2.8a, this situation results in a fully meshed network and a large
number of connections between the individual systems that act as the provider

19

2. Management of Cyber-physical Production Systems

and consumers of information.

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

Individual
System

EAI

a b

Figure 2.8: Enterprise Application Integration

Equation 2.1 shows the number of connections in such a fully meshed system.
As is clear from the outlined equation, the number of connections is a quadratic
function of the number of individual systems.

N = n(n − 1)
2 ⊆ O(n2) (2.1)

To reduce the number of connections in such a scenario, a concept of Enterprise
Application Integration (EAI) was established [Aie06]. The basis of this concept is
a intermediary integration platform that assimilates the information from all the
other available enterprise applications. All the requests and responses of data and
information are through this intermediate layer. The intermediate layer receives
the request and then forwards it to the appropriate information provider. In the
same way when it receives the response corresponding to a particular request, it
then forwards the response to the consumer application that had requested for it
in the first place. The introduction of this intermediate layer reduces the number
of connections to the same as the number of communicating components (Figure
2.8b) . The number of connections then becomes a linear function of the number
of communicating components of the system (Equation 2.2).

N = n ⊆ O(n) (2.2)

20

2.3. Information Integration in a CPPS

2.3.3 Aggregated Information Model
In order to solve the resulting connection mesh due the ever increasing capabilities
of automation components (as discussed in Section 2.3.1), there is a need for an
architecture similar to the EAI (Section 2.3.2), which provides for an intermediate
Aggregation layer which aggregates other information models (which may be ex-
posed directly from the underlying components or subsystems). This aggregation
layer will then provide an “illusion” of a centralized integration platform. This
will then reduce the previously discussed connection complexity.
At its core, the aggregation layer will work in a way similar to the EAI scenario
solution i.e. it will receive requests from consumer applications and forward them
to the appropriate underlying integration platform. After the request is processed
by the underlying integration platform, it will be given back to the aggregation
layer. The aggregation layer will then forward the response to the actual consumer.
This then provides an added advantage that the consumer applications should no
longer need to “know” about all the relevant underlying integration platforms.
Furthermore, the security aspect can be centralized at the aggregation layer and
can be handled in a much more efficient manner. This concept will be henceforth
termed as the Aggregated Information Model. Thus, the following definitions have
been formulated within the context of this thesis.

Definition 2.5 Aggregated Integration Platform : An Aggregated Integration Plat-
form aggregates the information models exposed by other integration platforms. It
acts as a layer of abstraction between the actual sources of information (integra-
tion platforms being aggregated) and the consumers of information (applications
that would otherwise need to connect to the individual information in order to get
the information). The entire communication between the information sources and
sinks is via the aggregated platform.

Definition 2.6 Aggregated Information Model : The information model exposed
by the aggregated integration platform which is constructed by assimilating the in-
formation models of the integration platforms that are being aggregated into a single
information model. This means that the aggregated information model contains all
the type, structure and relationship information about the components of the in-
formation models that are being aggregated in a single consolidated model.

As can be observed from the Figure 2.9, the Aggregated Information Model solves
the problem of connection complexities by acting as the gateway between the
consumer applications and the underlying information providers.

The number of required connections in such a case will be equal to the sum
of the number of underlying information models being aggregated num and the
number of applications that consume the information nca (Equation 2.3).

21

2. Management of Cyber-physical Production Systems

Aggregation Layer

Consumer Consumer

Consumer Consumer Consumer

Provider Provider Provider Provider Provider

Provider Provider
Provider Provider Provider

Figure 2.9: The Aggregation Layer

N = num + nca ⊆ O(n) (2.3)
There are a number of requirements for the creation of an Aggregated Infor-

mation Model. A detailed explanation of the requirements will follow in Chapter
4 of this thesis. While most of these requirements have been adapted for the Ag-
gregated Information Models based on the generic requirements for information
modelling as per [BPV12], [Mat+20], [GH20], [ATE19], some have been derived
from standard software development best practices [SVC06]. The most important
requirements have been outlined below:

Domain Independence The Aggregated Information Model should ideally
be usable in the different domains of the automation industry i.e. the concept
should be open enough to include process industries as well as manufacturing and
production industries. Specific requirements pertaining to any particular domain
should not be included.

22

2.3. Information Integration in a CPPS

Completeness This requirement states that when an information model is
being aggregated, it should be done in its entirety. The entire information which
could be represented by the stand-alone information model, should also be acces-
sible through the Aggregated Information Model. Any additional functionalities
provided by the underlying information providers should also be provided by the
aggregated integration platform.

Non-Redundancy The Aggregated Information Model should not contain
any elements that are redundant. This is to say that when other information
models are being aggregated, it could be possible that the same entity exists in
two different information models. The information modeled for the said entity
would still belong to different domains. However, when the virtual representation
of such an entity (which exists in two different information models) is aggregated
into a single aggregated information model, there should be no duplication i.e. the
same entity should not have two different virtual representations. The aggregated
information model should contain a single virtual representation of the said entity
and the information about the same should be aggregated and clubbed within the
same virtual representation.

Openness The Aggregated Information Model must be open. This means
that on the one hand, it should be independent of the organizations providing the
underlying information model and on the other hand End-User applications can
openly access the Aggregated Information Model.

Transparency Access to the data and functionalities of the underlying in-
formation models should be transparent. This means that the end-user should
”see-through” the underlying mechanism of how the aggregation layer is handling
the information requests and responses and a hassle-free communication path is
established. The consumer application should be able to access the information
from the aggregated model in the same way as though he would have accessed it
directly from the underlying information model.

Platform Independence The different systems in this particular scenario i.e.
the integration platforms to be aggregated as well as the applications which need
access to the information, are all heterogeneous i.e. they might be running on
different kinds of hardware and software platforms. Because of this heterogeneous
nature of the system, any specific Operating System or Hardware configuration
cannot be fixed which should be used for all the components of the system. There-
fore the concept of the Aggregated Information model should also be platform
independent so that it can be implemented on all possible hardware and software

23

2. Management of Cyber-physical Production Systems

platforms.

Semantics The aggregated integration platform should provide the possibility
of semantics based operation. This is to say that the aggregated model should be
able to be used by specific applications, without the need for prior configuration. It
should be flexible enough to aggregate other information models without affecting
the normal functioning of the system at any point in the operating phase of the
automation system.

2.4 Summary and Task Definition
In order to structure the life cycle of automation systems, there exist Phase models
which consist of several phases that the automation system goes through in succes-
sion. One such general life cycle phase model which outlined the different stages
of an automation system has been put forth by NAMUR NA 35 specification. In
light of Industry 4.0, other life cycle models have been proposed. These life cycle
models represent all the important phases IIoT devices go through right from its
Planning up until its Dismantling phase.
In light of the concepts of Industrie 4.0 and Cyber Physical Production Systems,
information integration plays a major role. The way the data and information of
and about the components of an automation system are represented is determined
by the information model of the system. This information model is then exposed
by the integration platform which provides access to the data and functionalities
provided by the components of the automation system. Applications then connect
to the integration platform and consume the information for further processing
for maintenance and diagnostic purposes as outlined by the requirements of the
application scenario.
With the steady increase in the processing power and capabilities of devices and
automation components, there is a growing trend of distributed integration plat-
forms, as the components have their own integration platforms. However the
applications that need access to the information goes on increasing. This gives
rise to a complex fully meshed communication network. In this case if an appli-
cation needs access to multiple such ”smart” components, it needs to access the
information models of each of these components separately in order to assimilate
the required information.
To solve this problem of the fully meshed connections, an Aggregated Information
Model could be the appropriate solution. The Aggregated Information Model will
comprise of the aggregation of all other information models being exposed by the
distributed integration platforms. Thereby it will provide an illusion of a central
integration platform and will provide the data and functionalities of all the inte-

24

2.4. Summary and Task Definition

gration platforms it aggregates, all in one place.
Accordingly the goal of this particular thesis is to design and develop a concept and
an architecture for such an Aggregated Integration Platform which could success-
fully aggregate other information models.

25

2. Management of Cyber-physical Production Systems

26

Chapter 3

Methods and Tools for
Information Integration

Contents
3.1 Development of Information Integration 28

3.1.1 The General Information Integration Process 28
3.2 The Information Modeling Process 32

3.2.1 Conceptualization of Information Models 33
3.2.2 Modeling Methodologies 35
3.2.3 Modeling Steps . 37

3.3 A Common Landscape of Information Models in Au-
tomation . 40

3.3.1 Reference Models . 41
3.3.2 Model Universals . 41
3.3.3 Concept for consistent use of Engineering Models in Au-

tomation . 42
3.3.4 SemAnz4.0 . 42
3.3.5 RAMI 4.0 . 44

3.4 OPC UA - An Enabler for Industry 4.0 46
3.4.1 Motivation and Overview 46
3.4.2 OPC UA Base Layer . 47
3.4.3 OPC UA Model Extensions 51

3.5 Summary . 53

3. Methods and Tools for Information Integration

3.1 Development of Information Integration
The development of the integration platform is directly related to the different in-
formation sources in an automation system. As entailed in Section 2.1.2, there are
different levels in an automation system. The information sources and the way to
access that information depends upon the level where that particular information
source sits.
At Level 1 - the Field Device Level : When industrial automation had just
started, the field devices were fairly simple components which worked on analog
signals e.g. the sensors would simply transmit analog signals to the control sys-
tems. The field devices were being manually configured at the site. After this
phase, came the field devices which had a screen and a microcontroller to monitor
and configure the same. Today, we have intelligent field devices which have an
embedded operating system. These intelligent field devices have the information
model exposing their data and information in a structured manner.
At Level 2 - the Control Level : Over the course of time, the control systems
have also improved considerably. Before the 1950’s most control systems were
analog and were a simple combination of “on-off” arrangements of analog-switches
and relays. Then came the age of Numerical Control(NC) using punctured tapes
followed by Computerized Numerical Control (CNC) [HAC14]. Similar to the ad-
vancements in intelligent field devices, in today’s day we have highly sophisticated
Programmable Logic Controllers (PLC) which not only simply control the sensors
and the actuators, but are now capable of implementing complex learning based
algorithms to make the whole process more efficient with time.
At Level 3 and 4 - the Plant Management and Enterprise Level : At
these levels of the automation pyramid, with the growth of industrial application
and technology, manual maintenance of records, orders and follow-up of the same,
was replaced with use-specific computerized applications. These applications are
full-fledged business solutions for a particular business scope and domain in mind.
Sophisticated ERP software has now replaced many planning related tasks that an
organization has to deal with. At the operational level, advanced software com-
ponents have been developed that analyze the data and find patterns in the them
in order to fine-tune the process even further.

3.1.1 The General Information Integration Process
The general information integration process begins with the definition of the use-
case and what the purpose of the information integration is. The next step is
to determine how the particular information can be collected from the different
components of the system. Then the integration platform is developed and the
integrated information is then exposed (visualized) as per a particular schema.

28

3.1. Development of Information Integration

This can then be consumed by other applications depending upon the use-case.
The different steps of this entire process can be visualized with the help of a
V-Model derived from [VDI21] outlined in Figure 3.1.

Requirements

Identification of Interfaces

Identification of Information
Sources and Sinks

Integration Platform

Development of Integration Platform

Software Design

Information Modeling, Analysis and Evaluation

Assurance of properties

Figure 3.1: The Information Integration Process (adapted from [VDI21])

Requirements: In an intelligent automation system, there is a lot of data
and information being exchanged between the different components at different
data rates. Therefore it is important to identify the data and information relevant
for the particular scenario. For example if the energy efficiency of a particular
system needs to be analyzed, only the data related to the energy requirements and
outputs of the automation components should be looked at. All such requirements
are first collected depending upon the use-cases to be addressed and are fed into
the next stage.

Design and Architecture: The next step in the V-Model is the Design
and Architecture step where the system architecture for the integration platform
is designed as per the requirements from the previous step. This includes the
following main activities:-

• Identification of Information Sources and Sinks
In an automation system, there are several sources that are generating the
information and several sinks that needs to consume information in order
to deliver the results.In the design phase of the information architecture, a

29

3. Methods and Tools for Information Integration

clear identification of the sources and sinks of/for the information needs to
be identified.

• Identification of Interfaces
In an automation system, different communication protocols are used be-
tween the components for information interchange. Thus, in order to ac-
cumulate information from various sources in the automation system, the
correct communication interfaces need to be identified. In the case where no
standard communication interfaces exist, they need to be developed as per
the protocols being followed on the two sides of the communication chan-
nel. This can be explained with the help of Figure 3.2. Here the integration
platform is communicating with the underlying information sources S1, S2,
S3 using different communication interfaces C1, C2, C3 respectively and
communicates (the information thus accumulated) with the consumer appli-
cations A1, A2, A3 with the help of communication interfaces C4, C5, C6
respectively. All of these interfaces could represent different industrial com-
munication protocols. The translation mechanism between the respective
protocols must then be handled within the integration platform.

Integration Platform

A1 A2 A3

S1 S2 S3

C
2

C
5

Figure 3.2: Identification of Communication Interfaces

• Software Design
The different modules of the software are designed and their role in the sys-
tem architecture as a whole and interaction with other module components

30

3.1. Development of Information Integration

is defined.

Development of the Integration Platform: Finally the integration plat-
form is developed using a suitable development technology following a particular
information integration standard in mind. To sum up the process, this integration
platform is the actual software component which is responsible for collecting the
information from the information sources (using the communication interfaces),
structuring the information in an information model, and make it available to the
consumer applications (clients) for information consumption.

Testing and Validation: After the integration platform is developed, it needs
to be tested validated against the requirements that had been collected at the be-
ginning of the process. This is typically done in a modular way e.g. the individual
modules are tested (Unit testing) followed by a testing of the entire system (inte-
gration testing). After passing this phase, the integration platform is ready to be
used.

Information Modeling, Analysis and Evaluation The information thus
compiled needs to be made available to the consumers in a structured and sensible
manner. This is where the information model comes in. In order to create an
information model, the virtual representations of the various entities of the system
need to be conceptualized along with the relationships and semantics between
these entities. The information model should also provide knowledge about the
functionality carried out by these entities. As can be observed from the figure 3.1,
the information modeling aspect closely follows the V-Model i.e. it has its own part
to play during all the phases. This is explained further in Section 3.2.3. Figure 3.3
highlights the main components of an information model. As the V-Model enables
iterative development of the integration platform, the same is also valid for the
information model i.e. during the validation and assurance of properties, parts of
the design and architecture can be revisited until the model is validated against
the requirements.

31

3. Methods and Tools for Information Integration

Entities

Entity Types

Relationships

Relationship Types

Entity Functions

Attributes
Semantics

Hierarchies

Figure 3.3: Main components of an information model

3.2 The Information Modeling Process
In the previous section, the general information integration process was discussed.
The most crucial step in the whole process is understandably the information
modeling step. In this section, this crucial step will be discussed in detail, keeping
in mind the tools that the state-of-the-art modeling techniques provide us, which
could be used to find a solution to the problem that this thesis is aimed at solving
(Section 2.4).
Before diving into the information modeling process, the term ”Information” needs
to be defined in the context of this thesis.

Definition 3.1 Information
Information is defined as the combination of Data and its semantics. Semantics
encompasses the true meaning of the data and how it should be interpreted. In its
raw form Data is a sequence of characters, which in essence is not useful unless its
semantics are considered. The package of Data + Semantics is therefore termed
as Information and can be represented with the following simple equation (3.1).

Information = Data + Semantics (3.1)

32

3.2. The Information Modeling Process

3.2.1 Conceptualization of Information Models
An environment for the building of information systems was conceived in the
DAIDA project [Jar+92] . It classified this information by means of four ”worlds”,
as shown in 3.4. As the name suggests, the subject world consists of those com-
ponents of the information system which are the primary subject of the modeling
purpose. The system world consists of the information system itself and describes
the details about the different implementation layers involved in it. These layers
could be the functional requirement specifications, its conceptual design up until
implementation details. The usage world consists of the boundaries and the envi-
ronment within which the system should function. This entails the users and their
interfaces, the tasks, activities and projects etc. The development world contains
the processes needed to create the whole information system. It is the development
team including the programmers, analysts, architects, designers, the methodolo-
gies adopted by them, the design and implementation decisions taken by them and
the reasoning behind those decisions. Not only is all of this information required
during the conception of the system but throughout its life cycle. Therefore the
primary task of information modeling is to provide a framework to represent all
the information present in the above four worlds.
In other words, the information needs to be structured in the form of computer
understandable symbols which are used to model a part of the real world. [Myl98]
calls these structures as information bases and the part of the real world being
modeled as application. The information base may evolve over a period of time, it
can keep changing to correctly model the application. The information base needs
to be organized according to the subject matter and its contents. There it can be
said that the information base can be constructed with the help of models of one
or more of the four worlds shown in 3.4.

Over the years, the state-of-the-art of information modeling have moved from
computer-understandable representations towards human-understandable models
which can express and represent more complex application modeling purposes.
Historically, this shift can be observed by the classification of the information
models into three broad categories as follows:

Physical Information Models : In physical information models, the ap-
plication was modeled with the help of computer programming constructs and
data structures like arrays, lists, strings, trees etc. The primary disadvantage of
physical information models is that the modeler has to make a choice between
computational efficiency and the overall quality of the model. For example the
need to choose a particular data structure and data type to represent components
of the application is driven by the efficiency factor and has little to do with the
real world application.

33

3. Methods and Tools for Information Integration

Figure 3.4: The Four Worlds of Information Systems Engineering (as defined by
the DAIDA project [Jar+92])

Logical Information Models : In the early ’70s, the concept of logical data
models was introduced, where the information was represented in terms of ab-
stract mathematical symbols (e.g.sets, functions, relations etc.), thus effectively
hiding the implementation details. The relational models for databases can be
mentioned as good examples of logical models. In these information models, the
modeler doesn’t need to consider the implementation details, rather solely on the
modeling concerns. Information could be represented with the help of relational
tables without considering implementation details about the same. However the
disadvantage of logical models is the fact that the symbols used to represent the
components are flat structures and are in general not intuitive for the modeler to
conceive.

Conceptual Information Models : After the introduction of logical models,
the need for more expressive solutions to model applications and the respective
information bases, was identified. This gave birth to the use of semantics in order
to model information. Inspired by Cognitive Science [CS88], abstraction mecha-
nisms like generalization, classification and aggregation were used to organize and
model information. These models were identified to be more natural and intuitive
[HML81]. Therefore, the brief description of the information modeling step in

34

3.2. The Information Modeling Process

3.1.1 talks with respect to Entities, their types and relationships, as the concep-
tual models constitute the state-of-the-art in the field of information modeling for
more than four decades.

3.2.2 Modeling Methodologies
The information modeling process is dependent on the modeling methodologies
being used to create an Information Model. There are several information mod-
eling methodologies. As per the more recent modeling practices, three underlying
methodologies can be identified to build conceptual information models. These are
the Entity-Relationship (ER) approach, the functional modeling approach and the
Object-Oriented (O-O) modeling approach. There is however a fourth approach,
which is capable of capturing the essence of all three aforementioned modeling
approaches in a single model - the Graph modeling approach.

The Entity Relationship Approach

The ER approach describes the modeling requirements in terms of entities and
relationships between them. It is based on a graphical notation technique. Since
its introduction, several extensions to the ER approach have been made available.
The building blocks of this approach is the type system represented with the help
of entity types, relationship types and attribute types. This approach is intuitive
and has been widely used to model real world applications.

The Functional Approach

The functional approach focuses primarily on the specification and decomposition
of the functionality of the system. It describes the processes of the system and the
information flow between these system processes. This approach uses Data Flow
Diagrams (DFD) as a tool to depict the manner in which data is transformed
as it flows naturally through the different processes of the system. The DFD is
constituted by the processes, data stores, actors and the data flows.

The Object-oriented Approach

The object-oriented approach emphasizes on the identification of objects within
the application domain first, followed by their operations and functions. The pri-
mary construct here is the object which is constituted of data structures as well
as functions. The basic constructs of the O-O model are object classes, attributes,
operations and relationships(associations). It is easier to model complex objects
with the O-O approach, thereby providing better extensibility and easier integra-
tion with programming code.

35

3. Methods and Tools for Information Integration

The Graph Approach

As briefly mentioned earlier, this approach has the capability to encompass all
of the three modeling approaches mentioned above. In this type of conceptual
information modeling approach, information is modelled with the help of Graphs
containing nodes and edges whereby the nodes represent the entities and the edges
represent the relationship between those entities. The representation of this in-
formation with the help of triples of the form subject-predicate-object, where the
subject and the object are the entities of the model and are represented by nodes
in the graph. The predicate is represented as an edge between those nodes and
corresponds to the relationship between the two nodes (entities). An example of
such triples can be seen in the below figure (3.5). Here there are four entities
namely RobotType, Robot, Axis and a Workpiece. This example tries to capture
how a graph model can encompass the above three approaches. The RobotType
can be seen as a class from the O-O approach, the Robot is a concrete object of
that class thereby has a isOfType relationship with the RobotType node. The node
Axis represents an axis of a robot and therefore is connected to the Robot node
with a Has relationship. Similarly to capture what this particular robot does, a
separate node Workpiece is shown which is connected to the Robot node via a picks
relationship (edge) to show that the robot picks that workpiece. Therefore it can
be said that this graph is made of three triples representing four entities and the
relationships between them.

Robot Axis
has

RobotType

Workpiece

Figure 3.5: An example of a simple Graph Information Model

The decision to choose the modeling methodology is taken right at the start

36

3.2. The Information Modeling Process

of the modeling process. This decision depends on the modeling purpose and
the viewpoint associated with the model. As explained earlier, each information
model emphasizes on a different viewpoint of the application scenario, resulting
in the possibility of multiple viewpoints of the same scenario. For example, the
ER approach needs to be used when the data requirements are at a higher level
of detail. In a use-case where functionality takes precedence over the data, the
functional approach should be selected. When model extensibility and implemen-
tation friendly model is needed, the O-O approach should be recommended. The
disadvantages of each of these approaches also needs to be considered. For ex-
ample the ER approach lacks in the precision to describe detailed levels of data.
When there is a possibility of data requirements being changed at the functional
level, a model developed as per the functional approach may need to go through
major changes. Similarly the main disadvantage of the O-O approach is the way
to imagine and deconstruct the system into objects that the system comprises of,
where the data and its functions are to be considered as a bundled object. As
mentioned earlier, the graph approach is versatile and generic enough to represent
any of the other three approaches, therefore it is an ideal tool to explain the core
concepts of this thesis and will be used extensively in the forthcoming chapters
for a better understanding of the aggregation concept. The biggest advantage of
a graph data model is in the speed of information retrieval as compared to re-
lational data models. With the help of query languages like Cypher ([Fra+18]),
SPARQL ([DuC13]), GraphQL ([HP18]) etc., which are specifically designed for
Graph models, information can be retrieved by running the query on the Graph.
The result of these queries is the set of nodes matching the filter criteria of the
query. This thesis makes use of SPARQL queries as a means to demonstrate the
underlying concepts detailed in the next chapter.

3.2.3 Modeling Steps
In order to develop an information model, in general the steps that need to be fol-
lowed can be identified as Scope Definition, Requirements analysis, Development
and Evaluation as shown in 3.6. These steps have been derived from the informa-
tion modelling section of the V-Model shown as the grey part in 3.1. All these
steps are carried out during the Design and Architecture phases of the integration
platform development process 3.1.1. The explanation of each of the individual
steps has been detailed in this section.

Scope Definition

The first step in the model development process is the definition of the scope in
which the information model will be applicable. This is typically done directly

37

3. Methods and Tools for Information Integration

Scope Definition

Requirements Analysis

Model Evaluation

Model Development

Figure 3.6: Information Model Development Steps

after the requirements are collected for the integration platform 3.1.1. In the four
world classification described in 3.2.1, this would directly refer to the usage world.
The scope identifies the processes and the domain supported by the information
model. It includes the various viewpoints of the model, the manufacturing scenario,
the stage of the production life cycle that needs to be supported by the model.
The scope statements can be additionally complemented by the activity model
and/or the data planning model [TL08]. An activity model depicts the context,
data flows and the application processes. High level information requirements
can be collected with the help of an activity model. A data planning model
focuses specifically on the data requirements and the association between the data
components of the model. It is used as a guideline for the identification of interfaces
between the various data related components. The scope of an information model
can be revisited and revised during the course of information modeling. The scope
definition is also used to evaluate the ”completeness” aspect of the information
model since it defines the boundaries for the application of the model [TL08].

Requirements Analysis

The definition of the scope is followed by the requirements analysis. The require-
ment analysis is performed keeping in mind the basic requirements that need to

38

3.2. The Information Modeling Process

be fulfilled by an information model. The basic requirements can be identified as
follows [Myl98]:

• correctness, integrity, consistency, completeness

• low level of complexity through modularity

• clarity and ease of communication

• adequacy as a basis for system development

• provision of a guideline for research

In addition to these basic requirements, the requirement analysis phase should
also be complemented by literature research, surveys, domain experts’ interviews
and assessment of state-of-the-art information models in the application domain.
It may also include the best practices and future needs that the model needs to
adhere to. The result of the requirements analysis should be documented in a
specification document, which can then be used to evaluate the completeness and
correctness of the created information model. This document will be taken as a
basis for the next step in the development of the information model.

Development of the Model

Based on the detailed scope definition and the requirement analysis specifications,
the model enters the development phase. This is the step where the specifications
are transformed into a conceptual model 3.2.1. A formal modeling language (e.g.
IDEFIX, EXPRESS, UML etc.) is used for the development of the conceptual
model and should be independent of the physical implementation of the same.
All of the information requirements should be expressed in the conceptual model.
This could be achieved with the help of a top-down, bottom-up or a mixed de-
sign approach. Although the top-down design approach is considered to be the
most effective one for modeling, it may not be be applicable in some cases [TL08].
The design approach is therefore dependent on the individual usage world. The
basic units (building blocks) of the model are first conceptualized. This is the ab-
straction process where the requirements are classified into entities, relationships,
objects, classes and so on. This is done with the help of the concepts of Classifi-
cation, Generalization, Specialization, Aggregation and Association. Classification
as the name suggests is to classify the identified components into data structures
and operations and to group them under one umbrella when possible. Gener-
alization, Specialization, Aggregation and Association are the concepts that are
used to express relationships between the identified groups or classes. Generaliza-
tion and Specialization are used to identify inheritance relationships between the

39

3. Methods and Tools for Information Integration

classes. Aggregation is used to identify subset and superset relationships between
the classes and finally Association is used to identify dependency relationships be-
tween these classes. These concepts build the structure of the information model
and this structure is then denoted with the help of the appropriate syntax of the
formal modeling language used for the modeling.

Evaluation of the Model

After the development phase, the developed information model is evaluated against
the facets mentioned in 3.2.3. [Myl98] suggests a comparative framework for con-
ceptual models. Using this framework new conceptual models can be compared and
evaluated to identify if a developed conceptual model is appropriate for a particular
modeling task. [Myl98] proposes three dimensions along which this evaluation can
be made. These dimensions are Ontologies, Abstraction Mechanisms and Tools.

• Ontologies : List of ontological assumptions made by the conceptual model
about the type of applications it aims to model. These assumptions out-
line the built-in terms of the model and consequently define its range of
applications it can model.

• Abstraction mechanisms : This deals with the organization of informa-
tion bases in a conceptual model. The more efficient and intuitive this orga-
nization is, the more efficient and effective it will be to search the contents
of the information bases thereby making it more extensible.

• Tools : The ease of use of tools that perform operations on the information
bases, increases the scalability and usability of the information bases.

3.3 A Common Landscape of Information Mod-
els in Automation

The discussion in the previous sections have outlined the process of creation and
evaluation of information models. Now in today’s automation scenario, there exist
a plethora of information models pertaining to different viewpoints of the automa-
tion system. With the view to standardize information modeling in industrial
automation scenarios, several efforts have been made to identify common ground
between the innumerable co-exiting information models. This section discusses a
few of those efforts keeping in mind the requirements of the Industry 4.0 paradigm.

40

3.3. A Common Landscape of Information Models in Automation

3.3.1 Reference Models
At this point, it is important to mention the concept of Reference Models. In
order to design good quality information models, the modeler relies on pre-defined
suitable reference models, based on which the modeler designs the information
model specific to the application at hand. [Myl98] refers to such models as “Type
1 Reference Architectures”. Information models thus conceived must be stable,
flexible and most importantly extensible, and therefore should be in coherence
with existing standards. When an information model satisfies the aforementioned
properties, it is then easier to be able to re-use these models and techniques as
long as the architectural framework remains the same. There are several reference
models pertaining to specific enterprises at specific levels. This property of an
information model is called granularity [Myl98], higher the level of granularity, the
more specific is the reference model. Reference models exist at different levels of
granularity. There are reference models which are generic enough to be adapted
for various different application scenarios.

3.3.2 Model Universals
Within the domain of automation technology, today there are many co-existing
standards outlining basic modeling concepts. Under the umbrella of Industry 4.0,
the number of these standards is ever increasing and is now reaching a stage
where it is becoming harder to access the standards. The clarity and concise-
ness demanded by [Ne16a] are not always being adhered to. The need to define
a consistent and comprehensive terminology, model worlds and the foundation
of common ground between the standards has become crucial. Models like the
‘life-cycle-model’ or the ‘plant-model’ do not deal with well-defined objects but a
particular perspective of the objects which is contextual i.e. it can be different
for different scenarios. These kinds of models are not independently applicable.
[Com16] introduces the concept of Model Universals, which represent such models
and provides a referable source to them. A model universal does not model well-
defined concrete systems, rather it is a common core of a number of system models.
The application domain of model universals is much broader in comparison to ref-
erence models. For example any system which has a hierarchical organization
will have to comply with the model universal ‘hierarchy’. [Com16] categorizes the
different model universals into four broad sections namely, Processes and Objects
(e.g Entity Model, Life-Cycle Model), Modeling Schemes (e.g. ER model, Meta
model), Ordering Structures and Systems (e.g.Hierarchy Model, View Model) and
Technical Equipment and Functions (e.g. Component Model, Service Model).

41

3. Methods and Tools for Information Integration

3.3.3 Concept for consistent use of Engineering Models in
Automation

In the engineering of automation systems, there exist various information models
which have been formulated and are maintained by different groups and trades.
For the efficient execution of seamless, tool-supported engineering activities over
the plant’s life cycle, a homogeneous landscape of models is necessary. [Müh12]
identifies this need and develops a method to analyze the models used in engi-
neering of plants. It also established an approach to homogenize these engineering
models so as to enable an efficient application of information over the whole life
cycle.
[Müh12] analyzes the inter-relationships between the engineering models accord-
ing to the BMW-principle. It proposes and evaluates based on essential aspects
of engineering models in the sense of the digital factory. The result of model clas-
sification and analysis is a statement about the similarity of models, so that with
respect to a given application, a qualitative statement about transformability or
integrability can be given about a tuple of considered models. Building on the find-
ings of model analysis and assessment, [Müh12] introduces the concept of model
profiles. [DB06] define the term profile in the context of fieldbus technology as
follows: Profiles are agreements (also referred to as specifications) between device
manufacturers as to which parameters with which syntax and meaning between
the field devices of a class and the controllers, the parameterization tool or the
diagnostics are to be exchanged. The goals of profiles in fieldbus technology are
interoperability, interchangeability of devices, comparability, the same behavior,
etc. [Müh12] applies the same concept and applies it to engineering models to
build model profiles containing a set of model characteristics which can be used to
evaluate engineering models. This concept of model profiles was then extended to
develop complementary partial models to abstract and structure important model
components in order to harmonize the existing engineering models. It introduces
syntactic and semantic partial models in engineering and explains a method to
identify similarities between existing models from a syntactic, semantic and prag-
matic point of view. It then further formalizes a method to represent the partial
models with ontologies and develops a system to automate the knowledge process-
ing of partial models, thereby developing a common landscape of partial models
represented with ontologies.

3.3.4 SemAnz4.0
SemAnz4.0 stands for “Semantische Allianz für Industrie 4.0” (Semantic alliance
for the Industry 4.0) [Fay+17]. The aim of this joint collaborative project was
the sustainable establishment of German norms and standards as the basis of in-

42

3.3. A Common Landscape of Information Models in Automation

ternational standardization in the context of Industry 4.0 and thereby creating a
basis for investments by industry (both large corporations and SMEs) in products
and processes. The project dealt with use cases from different dimensions of the
Industry 4.0 paradigm and highlighted the need to formulate standards to develop
a common language of information exchange between the modeled components.
A typical use case pointed out as a motivation for the project was e.g. when ma-
chines independently distribute and redistribute production orders, when sensor
data from spatially distributed measurements are merged into a key performance
indicator at plant management level, and when measuring quality deviations of
a partially machined component from production on-line in Design and Simula-
tion Tools are re-calculated, and based on the these calculations other production
steps are adapted for this component, then the partners involved must speak the
same language. The three aforementioned use cases are examples of the dimen-
sions horizontal integration, vertical integration and integrated engineering within
the domain of Industry 4.0. “Same language” here means that all parties involved
should use terms and “sentence structures” from a shared vocabulary to describe
what and how they request or implement something. It is not enough to set up
communication channels via interfaces or common communication protocols. The
future service orientation also requires a common understanding of content for
interacting. Therefore, machines, tools, products, offers, requests and orders must
not only be described formally and they can be processed by machines, but also
in a way that these descriptions must be known and understood by the designated
partner, i.e. all involved must understand the meaning being conveyed. For the
description of the properties of objects of all kinds, features have been proven to be
efficient. Features are not only suitable for describing objects, but also (in princi-
ple) for describing services. The implementation recommendations of Industry 4.0
describe various use cases [Kag+13]. Each of them interacts with communication
partners (people, machines, material, software tools in different, flexible constel-
lations). The prerequisite for realizing these applications is firstly a distributed
service-oriented architecture, secondly a communication infrastructure and thirdly
a semantic basis so that the communication partners can understand each other.

43

3. Methods and Tools for Information Integration

Figure 3.7: Important Organizations and Standardization contributions

SemAnz4.0 refers to the existing feature definitions and tries to combine and
structure them accordingly. The analysis of established standards in the context
of Industry 4.0 showed that libraries of characteristics (“properties”) for essential
areas of Industry 4.0 already exist, and fortunately, to a large extent, are the sub-
ject of standardization activities.
The existing and established standards for description of components using fea-
tures (eCl@ss (IEC 61987) in particular) and for structuring information (Automa-
tionML IEC 62714 in particular)) were analyzed and evaluated to form a suitable
semantic basis for information exchange in Industry 4.0 applications. For the rele-
vant use cases, the required data models with structure and content were specified.
Furthermore, the processes of the use cases were exemplarily demonstrated with
software tools.

3.3.5 RAMI 4.0
RAMI 4.0 stands for the Reference Architecture Model Industrie 4.0 [Ne16b]. It is
a three-dimensional layered model which brings together the important elements
within the domain of Industry 4.0. It has been represented as a three-dimensional
coordinate system, with the help of which complex inter-relations between the
various aspects of automation can be broken down into smaller and simpler mod-
ules and mapped into the coordinate system Figure 3.8. The three axes defined
according to RAMI4.0 are as follows:

44

3.3. A Common Landscape of Information Models in Automation

Figure 3.8: Reference Architecture Model Industrie 4.0
[Din]

The Hierarchy Levels axis

The right hand horizontal axis of the coordinate system represents the hierarchy
levels of IEC 62264 which is the industry standard for enterprise IT and control
systems. The traditional automation pyramid has been supplemented by the levels
Field Device, Product (representing workpieces) and Connected World (represent-
ing connection to the Internet of Things and Services) in view of the Industry 4.0
environment.

The Life Cycle and Value Stream axis

The left horizontal axis of the coordinate system is used to map the data acquisition
along the entire life cycle of production objects in Industry 4.0. This means that
even objects that are still under development (referred to as Types) can be classified
in RAMI4.0. After the designing and prototyping is completed, the Types are
transformed into Instances. The collection and provision of data early on during

45

3. Methods and Tools for Information Integration

the product development phase is said to benefit downstream partners in the value
network.

The Layers axis

Production objects are recorded along with their data and functions in six layers
along the vertical axis. The concept of the Industry 4.0 component plays a key
role here. It is the combination of the real production object and its virtual image.
These representations are derived from information and communication technolo-
gies where properties of systems are represented in the form of layers.
According to RAMI4.0, together these three dimensions map the key aspects of
Industry 4.0. It tries to bring together different user perspectives and aims to
provide a common understanding of the technologies, standards and use-cases in-
volved. Existing standards and norms can also be classified in RAMI4.0 making
it clear if any modifications are needed (e.g. due to overlaps or gaps in the stan-
dardization). If multiple standards exist for the same of similar issues, RAMI4.0
provides the possibility to discuss a preferred standard in the reference architecture
model. The main aim is to minimize the number of different standards required,
thereby moving towards a common landscape for information exchange. Further,
RAMI4.0 also highlights the importance of a universal method to uniquely iden-
tify components in different information models, unified semantics with a common
syntax for data and real-time and time critical requirements of Industry4.0 use
cases. It advocates OPC UA as the enabler for Industry 4.0 communication.

3.4 OPC UA - An Enabler for Industry 4.0
In the previous section, the term OPC UA finds mentions during the discussion
for SemAnz4.0 and RAMI4.0. It is being increasingly identified as one of the most
important enabling technologies for the realization of the Industry4.0 paradigm.
This section analyzes the feature set provided by OPC UA which have pushed for
its increasing popularity in the last few years.

3.4.1 Motivation and Overview
Open Platform Communication Unified Architecture (OPC UA) was conceived
as a successor to the Classic OPC standard, which is still being used in today’s
automation industries. Classic OPC is based on Microsoft’s COM/DCOM archi-
tecture and is therefore dependent on Microsoft based platforms. There was no
way to use Classic OPC on other platforms and since the COM/DCOM based
communication technology is being de-emphasized by Microsoft themselves, there

46

3.4. OPC UA - An Enabler for Industry 4.0

was a need for a new flexible, platform-independent standard which would include
all the features provided by Classic OPC and also include a robust data and infor-
mation modeling methodology. To fulfill the aforementioned requirements OPC
UA was created by the OPC Foundation.

OPC UA has a layered architecture as shown in Figure 3.9. The bottommost
layer, also known as the OPC UA Base Layer, addresses the two basic requirements
on the basis of which the standard was created namely Transport Model and the
Meta Model. The Base Services layer sits on top of the lowest layer and is also
a part of the OPC UA Base Layer. The upper layers consist of the information
models based on the OPC UA Base Layer namely the standard information models
defined in the OPC UA specifications itself1,other collaboration models (which will
be discussed in a following section) and Vendor specific extensions to the OPC UA
information model. The collaboration models can be developed directly on top of
the OPC UA Base Information Model or on top of the (Classic) OPC Information
Model. Similarly the vendor specific information models can be developed directly
using the OPC UA Base, the (Classic) OPC Models or on top of the collaboration
models.

3.4.2 OPC UA Base Layer
Transport and Encoding

OPC UA offers different transport and encoding mechanisms depending upon the
requirements of data exchange and modeling. Depending upon the use case the
following three transport mechanisms have been defined:

1. SOAP/HTTP Transport HTTP (Hypertext Transfer Protocol) is the
stateless, connectionless request-response protocol for data exchange on the
web. SOAP(Simple Object Access Protocol) is a messaging protocol based
on XML. OPC UA defines a mechanism to encode the service requests (Read,
Write, Method Call etc)/ responses as XML, and transfers the messages with
HTTP using the SOAP request/response protocol. This is highly effective
in exchanging data and information in Enterprise IT applications which are
based on web services and are firewall-friendly.

2. HTTPS Transport HTTPS (Hypertext Transport Protocol Secure) is the
secured version of the HTTP protocol. In HTTPS all request and response
exchanges are encrypted. SOAP is again the messaging protocol used for the

1the Data Access (DA), Alarms and Conditions (AC), Historical Access (HA) and Pro-
grams(Prg), which encompass the features available in Classic OPC

47

3. Methods and Tools for Information Integration

Transport Meta-Model

Base Services

DA AC HA Prg

Vendor Specific Extensions

Collaboration Models

OPC UA Base Layer

OPC UA Information Model

Figure 3.9: OPC UA Layered Architecture
[MLD09] [Fou17]

exchange of messages. OPC UA defines this mechanism for a more secure
information interchange.

3. UA TCP OPC UA defines this transport protocol alongside Binary encod-
ing for data exchange scenarios where there is a resource limitation, however
a fast and high throughput is needed e.g. embedded devices on a factory
floor which have a limited memory and processing power. In such a scenario
XML encoding is not effective as it is resource heavy as compared to the bi-
nary encoding scheme where data is encoded in bits without any additional
overhead (as in the case of XML encoding). OPC UA defines a standard
TCP based transport protocol for such use-cases. It can be implemented on
devices with low resource capabilities.

48

3.4. OPC UA - An Enabler for Industry 4.0

OPC UA Meta Model

The OPC UA Meta Model defines the rules and the base modeling constructs using
which an information model can be created using OPC UA. OPC UA follows an
Object oriented approach, at the heart of which are Types and Instances. The
Types define the template of how an Instance of that particular type would look
like, what its properties would be and methods that it can call. An OPC UA
information model will contain the information about both the types and instances
present in the model. The main components of the OPC UA Meta Model have
been discussed as follows:

• Nodes and References
All the entities in an OPC UA information model are modeled with the
help of Nodes. Both, Types and Instances of an information model, are
represented as nodes. The relationship between the entities is represented
with the help of References between the Nodes.
Nodes have Attributes which describe the characteristics of that node e.g. all
nodes in an UA information model have an attribute called NodeId which
uniquely identifies a particular node in the whole address space. Nodes can
belong to different NodeClasses. The attributes that a particular node will
have are defined by the NodeClass.
References are used to define relationships between the different nodes in an
address space. References are instances of ReferenceTypes. ReferenceTypes
define different kinds of relationships that two nodes can have with each
other e.g. a reference of type hasTypeDefinition is used to link a particular
Instance node to its respective Type Node.

• Objects Variables and Methods
The three main NodeClasses defined in OPC UA are Object, Variable and
Method. Nodes that belong to the Object NodeClass, are used as the basic
structuring element of a UA address space. Objects can contain Variables,
Methods and can fire Events. Variables are nodes of the NodeClass Variable
and contain a Data attribute which is used to represent the data associated
with an Object. The NodeClass Object does not contain a Data attribute,
thus any data related to an Object is to be represented with the help of
a Variable. The NodeClass Method defines methods related to an Object
that can be called. Methods can specify a Property2 called InputArguments
through which inputs arguments needed for the function to be called can be
specified, the value returned (if any) by the method call can be received in

2There are two types of Variables defined in OPC UA, namely Data Variable, the value of
which can change, and Property which are used to model the characteristics of an Object and
typically do not change during the lifetime of the information model

49

3. Methods and Tools for Information Integration

another Property element of method called OutputArguments. The body of
the method resides in the UA Server and is executed by the UA Client with
the help of the Call Service.

• Base Services
OPC UA is a client-server based communication architecture3(Figure 3.10).
A UA Client can access the information model exposed by the UA Server
with the help of OPC UA Services. These services have been defined in an
abstract manner in the specifications so that they are independent of the
transport protocol and the programming environment used to program the
UA applications. Some of the important services used by the clients have
been outlined below.

OPC UA Server

OPC UA
Client

OPC UA
Client

OPC UA Server

Request

Response

Notification

OPC UA Server

Notification

Response

Request

Request

Response

Notification

Request

Response

Notification

Figure 3.10: The OPC UA Client-Server Relationships

Session and Secure Channel Services Session services are used by a
UA client to establish a connection with a UA server. In order to connect
with a server, a client must know the EndpointUrl of the particular server.
The EndpointUrl contains all the required information needed by the client
in order to establish a secure connection with the server. The EndpointUrl
consists of transport protocol needed, the network address of the server,
the security profile needed by the server for a successful connection, any
authentication requirements (e.g. username, password) if any and the server

3A publish-subscribe architecture for OPC UA was also released in 2018, however for the
scope of this thesis report, only the client-server architecture will be discussed.

50

3.4. OPC UA - An Enabler for Industry 4.0

certificate itself which is used by the client to secure the message exchange.
Once the client fulfills all the requirements entailed by the EndpointUrl, it
can successfully establish a connection with the server and proceed to access
the address space of the server.
Discovery Services The discovery services are used by the clients to find
available UA servers in the same network. This is specially helpful when
a client wants to explore the different connection options provided by the
server and can then pick one of them in order to establish a connection with
the server. If a UA server chooses to make itself available via discovery mech-
anisms, it needs to register all of its available connection Endpoints with a
Discovery Server. The UA client requests the Discovery Server to furnish the
available connection endpoints of all the servers that have registered them-
selves to be discovered. The client then receives a list of available endpoints
as a response to its query. The client can then decide to choose one of the
endpoints in order to connect to the particular server.
Browse Services Browse services are used by the client in order to find
information in a complex address space. It allows the client to transverse
through the address space of the server.
Read,Write and Subscribe Services After the connection with a server
is successful, a client can use the Read and Write services to read and write
information from/to the address space respectively. If a client wants to
monitor a particular node in the address space of the server, it may use the
Subcription services. When a client subscribes to a particular node it gets
notified whenever there are some changes related to that node in the address
space.
Node Management Services If a client wants to alter the structure of
the server address space by adding, deleting or modifying a particular node,
it needs to use the Node Management Services4.

3.4.3 OPC UA Model Extensions
The layered architecture of OPC UA was briefly discussed in Section 3.4.1. OPC
UA is extensible i.e. the specifications are flexible enough to allow vendors and
other standardization groups to build their own domain specific information models
with OPC UA as the base information model. This is made possible by deriving
new models from the OPC UA base information model by extending the base
ObjectTypes and ReferenceTypes to formulate domain or vendor specific types.

4The server may restrict the alteration of its address space partially or completely. Only if
the server allows such changes to its address space structure, can a client do so

51

3. Methods and Tools for Information Integration

This was a result of clear separation between the Address Space Model (Meta
Model), the Information Model (derived from the UA Base types and constraints)
and the actual Data (Instances which represent the modeled entity). Thus it is
possible for a UA Server to expose multiple information models in the same address
space.

Subtopology 1

Subtopology 2

MyDevice1

ParameterSet

Topology PreConfiguredDeviceType

Server – specific Information Model

Topology Information Model

TopologyType

VendorDeviceType

Vendor-specific Device
Information Model

Base Information Model

Address Space Model

BaseObjectType

FolderType

ParameterView

Device Information Model

DeviceType

ParameterSet

e
xt

e
n

d
s

e
xt
e
n
ds

Data

Figure 3.11: OPC UA - An Extensible Model
[MLD09]

Figure 3.11 shows how an address space can be created accommodating sev-
eral information models. Here the OPC UA Address Space Model defines the
BaseObjectType. The OPC UA Base Information Model extends the BaseObject-
Type and creates the FolderType. The FolderType is then further extended by the
Topology Information Model (into TopologyType) and by the Device Information
Model (into ParameterView). It is always possible to derive types directly from
the OPC UA Address Space Model e.g. the DeviceType has been derived directly

52

3.5. Summary

from the BaseObjectType. Then, a Vendor-specific Device Information Model
further derives from the DeviceType (defined by the Device Information Model)
into a VendorDeviceType. A UA Server then exposes a Server-specific Information
Model, which in-turn is derived from the Topology Information Model but con-
tains types derived from the Vendor-specific Information Model. Lastly the server
instantiates the defined types and exposes its information model in the form of a
well-defined address space. This demonstrates the flexibility of OPC UA.

Collaboration and Vendor-specific Models

Because of the flexible information modeling approach, OPC UA has been received
very well by the automation industry. OPC UA based standardization efforts have
resulted in more than 50 official companion specifications5, with ongoing efforts
on around 15 additional companion standards. These companion specifications
cover the information present in all the layers of the automation pyramid across
different domains, thus supporting true vertical integration. Figure A.9 in the
Annex section shows some of these companion standards at a glance.

3.5 Summary
In today’s automation scenario, information integration plays an important role.
In the past years however, in light of the Industry 4.0 concept, there has been an in-
creasing demand for vertical integration. This chapter introduces the information
integration and information modelling processes and the intricacies of the same.
Some of the prominent research projects and works highlighting the importance
for a common landscape for information models in the Industry 4.0 narrative were
discussed briefly. It was noted that OPC UA has emerged as one of the strongest
sets of modeling and communication standards promising seamless vertical inte-
gration. The industry has also responded positively and this has resulted in the
creation of various OPC UA based companion standards for different sectors and
automation levels. These companion standards coexist with a multitude of infor-
mation models specifically designed with the automation industry in mind inline
with the vision of Industry 4.0. This formulates a strong basis for the formulation
of an Aggregated Information Model, which could potentially be used to bring
the various information models that currently exist under a single umbrella. This
challenge and possible solutions will be explored in the forthcoming chapters.

5at the time of writing this thesis

53

3. Methods and Tools for Information Integration

54

Chapter 4

Solution Concept for the
Aggregated Integration Platform

Contents
4.1 Basic Concept . 56

4.1.1 Overview of the concept idea 56
4.1.2 Method for the solution development 58

4.2 Analysis . 59
4.2.1 Actors and Use-Cases 60
4.2.2 Requirements for the Aggregated Integration Platform . 63
4.2.3 Entities in an Aggregated Information Model 65
4.2.4 An Aggregation Scenario from the Process Industry . . 69
4.2.5 Considerations for Information Aggregation 71
4.2.6 Merging of Information Models 73
4.2.7 Demonstration of a Merged Information Model with Graphs 80

4.3 Base Model of Information Aggregation 93
4.3.1 Aggregated Information Model 93
4.3.2 Aggregation Communication Model 95
4.3.3 Consumer Operation Model 97

4.4 Meta-model of Information Aggregation 99
4.4.1 Basic Structure of the Meta-model 100
4.4.2 Data and State Model 102
4.4.3 Basic Methods . 103

4. Solution Concept for the Aggregated Integration Platform

4.4.4 Addressing Information 104
4.4.5 Communication Sequences 105
4.4.6 Consumer Business Logic 105
4.4.7 Graphical User Interface 106

4.5 Summary . 107

4.1 Basic Concept
This section describes the basic concept for the creation of an Aggregated Integra-
tion Platform. The section 4.1.1 gives an overview of the basic concepts involved in
the development of the integration platform. The subsequent section 4.1.2 details
the methodical approach for the development of the solution.

4.1.1 Overview of the concept idea
The discussion in Chapter 3 had concluded that an efficient integration platform
exposes an information model, and provides easy access to the data and functional-
ity provided by the underlying system for which the information model is designed.
Due to the rapid advent of technology, devices and subsystems in automation are
now capable of exposing their own information models, thus advancing the trend
towards distribution further. The main aim of an Aggregated Integration Platform
is to assimilate the multiple distributed information models and to expose them
via an Aggregated Information Model (AIM). The aggregation of the UIMs will be
done in such a way that the aggregated model would still provide the same data
and functionalities that the individual UIMs provide.
The aggregated integration platform will consolidate other UIMs. This means that
it will collect the data and the functionalities from the UIMs, organize them, and
make them available to the consumers. The consumer applications will be able to
select the kind of information they need from the aggregated information model,
depending upon their specific use cases. Since the data and information about
multiple systems will be made available by the aggregated integration platform,
this gives the possibility to the consumer applications to gain access to the infor-
mation from multiple sources but consolidated in a single source of information,
all in one place.
The access and security aspects shall be automatically handled by the aggregated
integration platform and shall not be compromised. In automation systems, there
are basically two types of data and information consumers, namely People (hu-
man beings) and other technical systems. These consumers are further divided

56

4.1. Basic Concept

depending upon priority and field of operation. It is important for the aggregated
platform to control access to the data and information it exposes. Since an Ag-
gregated platform will contain information from multiple sources, the consumer’s
access rights is of primary importance. The efficient management of access rights
in the aggregation platform will safeguard the data and information accessible
via the aggregated platform. Furthermore, the aggregated platform will also ag-
gregate the security and access requirements already provided by the underlying
information sources. This means that if in order to access the information from
an underlying source (directly), a consumer needs a specific security and access
control profile, it will also be the same while accessing information via the Aggre-
gated integration platform (Figure 4.1).

The Aggregated platform will act as a layer of abstraction between the con-

Aggregation
Information Aggregated Integration Platform

Data Functions
Operating
Interface

Technichal
Systems

Persons

Information
Model (to be
aggregated)

Figure 4.1: Basic Concept of the Aggregation Platform

sumers and the sources of information. The communication mechanisms used by
the aggregation layer to communicate with the underlying sources can be differ-
ent. However, to the consumer the underlying communication mechanisms will
be irrelevant as it will just know about the single communication mechanism with
the Aggregated platform. For the consumers, the Aggregated platform will be the

57

4. Solution Concept for the Aggregated Integration Platform

single source for all data and information.

4.1.2 Method for the solution development
In order to develop the aggregated integration platform, the V-Model introduced in
3.1.1 was closely followed as part of this thesis. During the design and architecture
phase of the V-Model, the base model, meta-model and the architecture of the
platform was created. The following subsection outlines the procedure followed
for the development of the meta-model. Section 5.1.2 describes the procedure for
the development of the architecture of the aggregated integration platform.

Procedure for the meta-model development

The procedure for the meta-model development (4.2) closely follows the stan-
dard Software-Development procedure [BD10]. An important step for the solution
development is the definition of the Requirements for the development of the so-
lution. In order to define the requirements, a Requirement Elicitation phase was
conducted. In this phase, the Actors expected to use the solution, and the Use-
Cases where the solution will be used, were identified. At the same time, a Review
of existing information models used in the automation industry was conducted to
identify the important points covered while formulating the specifications of such
an information model. At the end of the analysis phase, the basic requirements
for the Aggregated integration platform were obtained. The requirements were
classified as functional and non-functional requirements.

After the requirements were frozen, the Analysis phase was conducted. The
objective of this phase was to formulate the Base Model of the aggregation plat-
form, where the different objects of the aggregation system were discussed and
structured, thus resulting in the Base object model, which is also an outcome of
the analysis phase [BD10]. Upon refining the base model with further concrete
details gathered from the analysis of the existing information models, the meta-
model of the aggregation system is realized. The meta-model is defined through
abstraction, generalization and structuring of the modeled information sources of
the application domains. The graphical representation of the Meta Models with
the help of UML-diagrams is suitable in order to effectively show the relationships
between the elements of a complex system.
The base model is an informal model which is made up of layers in a functional
hierarchy. These layers are conceptualized in a way that the elements within a
layer are tightly coupled to each other, however the individual layers are as loosely
coupled (to the other layers) as possible. The meta model is derived from the
base model and is intended to be used to aggregate any type of information model

58

4.2. Analysis

Requirements

Use-Cases
Analysis of
Information

Models

Analyse

Actors

Structure Base Model

Refine Meta-Model

Figure 4.2: Procedure for the meta-model development

in the aggregated space and this is the biggest challenge. This meta-model for
the aggregation of information models serves as the base for the development of
the architecture of the aggregated integration platform in Chapter 5 and for the
implementation of the same in Chapter 6.

4.2 Analysis
The Analysis phase observes the aggregation platform from a functional point of
view. This approach looks at the role and capabilities of the aggregation platform.
Therefore it is important to outline the Actors who interact with the aggregation
platform and the Use-Cases that provide the basis for such an interaction. The
use-cases define which actor performs what role during their interaction with the
platform. The following subsections discusses the actors and the Use-cases who
would be involved within the framework of Information Model-Management.

Definition 4.1 Information Model-Management
Information Model-Management encompasses all the activities in an automation
life cycle that are involved with the information models which co-exist in an au-
tomation environment. Therefore, accordingly, it includes the functions that are
required in order to carry out these activities. These functions are not necessarily

59

4. Solution Concept for the Aggregated Integration Platform

implemented by a single system but can be distributed among several sub-systems
with a specific focus towards the information model.

4.2.1 Actors and Use-Cases
Actors

Figure 4.3 shows the actors who are involved in any capacity with Information
Model-Management. The definition of these actors is based on their respective
roles in the plant-life cycle. The actor called System in Figure 4.3 can actually be
considered important for any phase in the plant-life cycle and therefore has been
associated with every phase in this figure. The description of the individual roles
of the actors (that have an impact on Information-Model Management) has been
outlined in the Table 4.1.

Plant Planning

Assembly

Commissioning

Operation/
Monitoring

Diagnosis/
Maintenance

Modification/
Expansion

Plant Designer

Commissioner

Operator

Observer

Maintainer

OEM Service

System

Figure 4.3: Actors

Use-Cases

The use-cases describe how the actors interact with the system. Figure 4.4 shows
the use-cases for the system Aggregation Platform as well as the actors that inter-

60

4.2. Analysis

Actor Description

Plant Designer Planning of the Topology and the devices involved in the engineering system
Basic configuration and communication configuration

Commissioning Engineer Commissioning of the automation components including their communication
Execution of the function testing and fine parameterization of the components

Operator Operation of the Production System
Installation of the process relevant parameters

Observer Observation of the Production system’s functioning
Monitoring of the Status messages of the individual sub-systems

Maintenance Engineer Maintenance and Repair of the components of the system
Carrying out system diagnostics

OEM Service Carrying out vendor specific operations

System The system that uses the Aggregated Integrated Platform
(e.g. an application that implements an Information-Model Management function)

Table 4.1: Description of Actors

act with it. An actor is usually associated with multiple use-cases. The figure does
not depict which actor is associated with which use-case for the sake of simplicity.
The conceptualization of the use-cases was done through the analysis of several
sources [Fou21b] [Fou22] [Gro+13] [Fou21c] [Kle+17a] [DC+19] [OF21] [OF19b]
[OF19a] [Bou+21]. Table 4.2 describes the Use-Cases shown in the figure. It is
important to note here that in the case of Information-Model Management, a par-
ticular Use-Case can involve multiple Actors depending upon the modeling criteria
and purpose. The focus of this table is to showcase the usage of the Aggregated
Integration Platform by the Actors in a distributed environment, therefore other
Use-Cases considering other aspects of the automation system have not been con-
sidered. These Use-Cases form the basis for the Requirements Elicitation phase,
which are covered in the following section.

61

4. Solution Concept for the Aggregated Integration Platform

Aggregated Integration Platform

Topology
Planning

Communication

Alarms
and

Events

Simulation

DiagnosisData
Consistency

IM
Modification

OEM Service

Maintenance/
Repair

IM
Configuration

Functional
Testing

Plant Designer

Commissioner

Observer Operator System

Maintainance

OEM Service

Figure 4.4: Use-Cases

62

4.2. Analysis

Use-Case Description

Topology Planning Determination of the components and their topologies
in their respective information models on the shop floor

Communication Determination of the communication specific information e.g.,
protocol, addressing scheme for the UIMs

Simulation Usage of AIMs for simulated components enabling virtual
commissioning

IM Configuration Activities related to the configuration of information models e.g.
user access rights, security profiles etc.

Functional Testing Testing of the functionality and services provided by the AIMs

Alarms and Events Provision of alarms and events by the AIMs
depending upon conditions established during the UIM design

Data Consistency Maintaining the consistency of data between an AIM and the
respective UIMs

Diagnosis Detection of anomalies based on the collective information
of the UIMs and their respective dependencies

Maintenance/Repair Carrying out maintenance/repair activities on the UIMs or
on the underlying sources themselves

IM Modification Modification of the UIMs directly from the AIM e.g.,
addition, deletion, updation of an UIM element

OEM Service Carrying out vendor-specific operations on the information models

Table 4.2: Description of the Use-Cases

4.2.2 Requirements for the Aggregated Integration Plat-
form

This section outlines the requirements for the aggregated integration platform.
The requirements are derived from the use-cases defined in Section 4.2.1. Require-
ments signify the set of features that are necessary for a system to possess. They
can be of two types functional and non-functional requirements. Functional re-
quirements define the functionality that a system must provide. Non-functional
requirements are those features of a system that not directly related to the func-
tionality of the system but still need to be fulfilled [BD10](e.g. response time of
a request-response system). The functional and the non-functional requirements
have been outlined in the following tables (Tables 4.3, 4.4).

63

4. Solution Concept for the Aggregated Integration Platform

Requirement Description

User Roles Support for different User roles and access rights

Completeness Representation of all Information Model-Management relevant artifacts

Handling Underlying
Models Addition, Modification and Removal of new Information Models

Information Access Access and explore the UIMs

Function Support Access and execute the functions implemented in the underlying systems,
directly from the Aggregated platform

Read/Write Data
Communication with the data and information sources and read and write
data from/to them e.g a functionality provided by the underlying
system should also be provided by the aggregated platform as a proxy

Subscriptions Subscribe to data points of underlying system for automatic updates of
value changes

Online/Offline Access to the information both if the source is in offline or online mode

Alarms The alarms and events supported by the underlying systems
should also be supported via the aggregated platform

Handle Mapping
Rulesets

Import or Export Instance and Type Mapping Rulesets for the
particular information model.

Semantic Organize the data and information about the same resource modeled by
different information models

Table 4.3: Functional Requirements

In conclusion, it can be said that collection of use-cases and requirements was
done from the point of view of the aggregated model, keeping in mind at the same
time the requirements fulfilled by the individual underlying models. In essence,
the requirements and use-cases common to all the underlying models should be
addressed by the aggregated model.

64

4.2. Analysis

Requirement Description

Platform-Independence Independent of Operating System platforms (see 2.3.3)

Robust

The aggregated integration platform represents a central layer of abstraction
which aggregates the information from other information systems. Therefore
there should be no characteristics which could threaten the robustness of the
entire system

Domain-Independence Independent of the application domain (see 2.3.3)

Openness Open for information models from multiple vendors and players (see 2.3.3)

Transparent Communication with underlying systems should be transparent(see 2.3.3)

Multiclient Multiple clients should be able to connect to the platform at the same time
and access data and information from the underlying systems

Multisource Multiple underlying information sources should be accessible from a single
or multiple consumers (clients) at the same time

Secure The communication between the integration platform and the underlying
sources should be secured with the help of certificates

Table 4.4: Non-functional Requirements

4.2.3 Entities in an Aggregated Information Model
As discussed in section 4.1.2, the objective of this chapter is to develop a meta
model for the aggregated integration platform. This was done on the basis of an
analysis of the different existing information models in use today in the industry.
The information models that were analysed were briefly discussed in the previous
chapter (Section 3.4.3). This section describes the result of the analysis of the in-
formation models to outline the commonalities between them in order to identify
the required entities for Information-Model Management.

The below mentioned discussion consists of the basic understanding of the en-
tities in an object oriented information model1 and the relevance of those entities
for the so-called aggregated information model i.e. how those entities should be
handled by the aggregated information model.

• Object Types
Depending upon the modeling purpose, the specifications define Object Types
which define a template for the different types of components that could be
conceptualized. This can be equated to Classes in Object-Oriented Design
terminology.

1non object-oriented modeling approaches have not been considered within the scope of this
thesis as they would require an entirely different aggregation methodology

65

4. Solution Concept for the Aggregated Integration Platform

Relevance for the Aggregated Information Model The Instance/Ob-
ject Types of the aggregated information model should be a collection of all
the Instance/Object2 types defined by the UIMs being aggregated. In ad-
dition to that the Aggregated Information Model could also define its own
types which do not belong to any underlying model.

• Objects
When a component in a system is being modeled, it is represented as an
instantiation of these well-defined Object types (mentioned above) and is
also known as a Digital Representation of the component. The definition of
the term within the context of this thesis is given below.

Definition 4.2 Digital Representation
A Digital Representation is the representation of a component of a system
in the cyber domain. It serves as a layer of abstraction between the actual
component and the services that want to access the data and information from
the component (Figure 4.5). It is a part of the middle-ware which constitutes
the interfaces required to establish communication with the actual component.

Figure 4.5 shows three real components Component 1, Component 2 and
Component 3 being represented by their respective digital representations
namely DR-Component 1, DR-Component 2 and DR-Component 3 within
an information model. All communication with the real components are
achieved via the digital representations of the same.

Relevance for the Aggregated Information Model The instances repre-
senting the system-components (Digital Representations) in the Aggregated
Information Model should be a collection of the instances represented in all
the underlying models. Similar to the case of the Object-Types, the Ag-
gregated Information Model can also contain its own Objects which do not
belong to any underlying model i.e. additional objects to the ones defined in
the underlying model but represented only at the aggregated level e.g., an
object in the aggregated model representing the mean energy consumption of
a system in a scenario where the aggregated model aggregates energy related
information from several underlying models.

2the terms ‘instance’ and ‘object’ have been used interchangeably throughout the thesis to
mean instatiation of the defined types

66

4.2. Analysis

Information Model

Services

Component 1 Component 2 Component 3

DR-Component 1 DR-Component 2 DR-Component 3

Figure 4.5: The Digital-Representation Concept

• Relationships and Relationship Types
An information model also defines the relationships between two types, be-
tween a type and an object or between two objects. In Object-Oriented ter-
minology, these relationships can be represented as instantiations (objects)
of well-defined Relationship-Types (classes).

Relevance for the Aggregated Information Model The Relationships
and the Relationship-Types of the Aggregated Information Model should be
formed by the union of all the Relationships and Relationship-Types defined
by the UIMs (that are being aggregated). The aggregated information model
may also define its own Relationships and Relationship-Types which do not
belong to any of the underlying models.

• Functions

67

4. Solution Concept for the Aggregated Integration Platform

Functions (also called Methods) define the functionality that can be carried
out by the Digital Representations of the modeled components. In Object-
Oriented terminology it can be represented as a method that can be called
by the object upon providing the appropriate input arguments and the result
can be returned by the method.

Relevance for the Aggregated Information Model The Aggregated In-
formation Model should contain all the functions/methods provided by the
underlying models. When such a function is called by a service the function
call should be forwarded to the underlying system and the objects returned
(if any) by the underlying system should be forwarded back to the requester.
This means that the implementation of the function would still be in the
underlying system and not the Aggregated platform. In other words the ag-
gregated model should provide a 1:1 mapping from the aggregated method
to the underlying method to be called when the aggregated method is called.

• Alarms and Alarm Types
Information Models define Alarm Types which provide a template for the
types of alarms that can be modeled in a system (dependent on the modeling
purpose). They define the predefined conditions necessary for a particular
Alarm to be thrown. When these conditions are satisfied, the alarm is trig-
gered. Alarms are the instantiations of these Alarm Types.

Relevance for the Aggregated Information Model The Aggregated
Information Model should contain all the alarms and their respective types
that the underlying models define. As in the earlier cases, the Aggregated
Information Model can also define its own Alarms and their types, which
do not belong to any underlying system. When an alarm is generated in
any of the underlying systems, it should be propagated to the Aggregated
integration platform and in-turn to the end consumer application expecting
the alarm.

• Events and Event Types
Information Models define Event Types which provide a template (class)
for the types of events that can be modeled in a system (dependent on the
modeling purpose). They define the predefined conditions necessary for a
particular Event to occur. When these conditions are satisfied, the event is
triggered. Events are the instantiations of these Event Types.

68

4.2. Analysis

Relevance for the Aggregated Information Model The Aggregated
Information Model should contain all the events and their respective types
that the underlying models define. As in the earlier cases, the Aggregated
Information Model can also define its own events and their types, which
do not belong to any underlying system. When an event is generated in
any of the underlying systems, it should be propagated to the Aggregated
integration platform and in-turn to the end consumer application expecting
the event.

4.2.4 An Aggregation Scenario from the Process Industry
Figure 4.6 shows a scenario where three different information models based on
industrial standards from the process industry namely DEXPI (Data Exchange in
the Process Industry), PA-DIM (Process Automation Device Information Model)
and OPC 40223 (OPC UA for Pumps and Vacuum Pumps) describe the same
physical device, in this case an industrial Pump. The three different information
models look at the Pump with different modeling purposes in mind. The DEXPI
model defines a data model for the pump facilitating the modelling and transfer of
the engineering information of its P&IDs (Piping and Instrumentation Diagrams)
based on the ISO 15926 standard. The PA-DIM information model is based on
the NAMUR (User Association of Automation Technology in Process Industries)
requirements for Open Architecture (NE 175, also known as the NOA concept),
Self monitoring and Diagnosis of Field Devices (NE 107) and NAMUR standard
device - Field devices for standard applications (NE 131).

69

4. Solution Concept for the Aggregated Integration Platform

DEXPI

OPC 40223

PA-DIM

Pump

Figure 4.6: An Aggregation Scenario from the Process Industry

For the industrial pump in question, the corresponding PA-DIM model would
focuse on providing standardized information for Identification, Diagnostics, Pro-
cess Values and Configuration parameters. Similarly OPC 40223 specifies a man-
ufacturer independent Asset Administration Shell (AAS) for pumps and vacuum
pumps for applications in various industries including the process industry. This
would mean that in our scenario, the OPC 40223 information model would pro-
vide an AAS submodel [WT21] specific for the pump in question, thus enabling the
support for continuous and dynamic engineering over its lifecycle. Now consider a
consumer application which needs to access the information about this pump from
all three information models at the same time in order to cater to some predefined
use-case. In such a case, it would have to connect to the three information sources
individually and assimilate and process the information on its own. This is where
Aggregation could be useful. The aggregated information model will aggregate all
the information about the same physical entity (in this case the pump) from the
three different UIMs and organize it in such a way that the consumer application
should be able to access it by just connecting to the aggregated platform. The
aggregated platform will then act as a gateway to the information from the three
underlying information models, but the consumer gets access to the information
all-in-one-place. The challenges in such an aggregation scenario will be presented

70

4.2. Analysis

in a structured manner in the forthcoming section.
The creation of the aggregated information model for this scenario has been ex-
emplified with the help of Graph models for the pump corresponding these three
information models. As mentioned in the previous chapter, SPARQL queries will
be used to demonstrate how this can be achieved.

4.2.5 Considerations for Information Aggregation
Following the discussion of the above aggregation scenario 4.2.4, a few consider-
ations about aggregation of information models need to be taken into account.
As per the previous discussions about aggregation, it can be concluded that in
its most basic form, an aggregation of information models would mean to bring
together or aggregate all the Types and Objects (modeled by the information mod-
els3 being aggregated) into a single aggregated information model. The way the
Types and Objects will be aggregated will depend on the information models being
aggregated. This can be explained with the help of the following Table 4.5.

Same Overlapping Distinct

Types Nothing Merge Add
Objects Nothing Merge Add

Table 4.5: Aggregation Scenarios

The aggregation scenarios (shown in the table) can be explained as follows.
For better understanding, at the beginning of the aggregation process, the aggre-
gated information model can be considered to be empty i.e. without any Types or
Objects. The assumption here is that the UIMs are being aggregated one after the
other in succession i.e. at first only one underlying model will be aggregated by
the aggregating platform, then the second, then the third and so on. When the
aggregating platform starts to aggregate a new underlying information model, the
underlying model will be compared to the already existing aggregated information
model (formed as a result of previous aggregation cycles).
Now let us look into the composition of the aggregation process to understand how
exactly should a new UIM be aggregated by the aggregation platform. For this,
let us consider the Types first and discuss the corresponding three cases outlined
in the table above 4.5.After the discussion about the aggregation of Types, the
same three cases will be discussed for the aggregation of Objects. In addition to
this, the Relationships between Objects, between Objects and their Types, between

3since all models are object oriented, it can be assumed that all three models define Types
and Objects

71

4. Solution Concept for the Aggregated Integration Platform

Types shall all be preserved in the aggregated model. The following section con-
siders these Relationships to be instances of RelationshipTypes, therefore they can
also be considered to be covered by the following discussion, and have not been
explicitly mentioned.

• Aggregation of Types
Do Nothing In this case, if the information model being aggregated is based
upon the same modeling rules and conventions as an information model
which has already been aggregated (e.g. trying to aggregate an PA-DIM
based information model, when another PA-DIM based information model
has already been aggregated by the aggregating platform), the Types mod-
eled by the new information model are already present in the aggregated
system (because of a previous aggregation cycle), therefore nothing new has
to be done for the types.
Merge If the new information model (being aggregated) has an overlap
with an already aggregated model with respect to Types (semantically simi-
lar types), then the new Type should be merged with the already aggregated
Type and a mapping should be maintained between the original underlying
Type and the merged Type in the aggregated model. This case will be clearer
to understand in the forthcoming section when mapping rules will be dis-
cussed in a greater detail in 4.2.6.
Add If the new information model is totally distinct from any of the already
aggregated models i.e. if it is a model based on different modeling rules
and conventions that any of the ones already aggregated by the aggregating
platform, then the new type needs to be added into the type system of the
aggregated model (e.g. when the aggregating platform is aggregating an PA-
DIM based information model for the first time, without having aggregated
any PA-DIM based information model in any of the previous aggregation
cycles).

• Aggregation of Objects
In case of instances, the same three cases exist, however it is independent of
the information model being aggregated.
Do Nothing When aggregating a new information model, if the exact same
information about the same physical entity has already been aggregated via
another information model then it should not be duplicated, so nothing needs
to be done for this particular digital representation of the physical entity. For
example if 2 information models based on PA-DIM, model the same physical
device (overlapping information models based on the same standard), then
both information models will contain exactly the same information about
the device. So in this case while aggregating the second information model,

72

4.2. Analysis

the object representing the device can be ignored so as not to duplicate the
device information.
Merge This is the case similar to the one described in the example scenario
in 4.2.4. When different aspects of the same physical entity are described by
information models based on different modeling rules and conventions, then
the information about the entity from all the underlying information models,
should be merged within a single digital representation of the entity within
the aggregated information model.
Add In the case of objects representing physical entities, this case is relatively
simple. While aggregating an object in an information model, if the object
(digital representation) represents an entirely different physical entity than
the ones that have already been represented in the aggregated information
model (during previous aggregation cycles), then this object representing the
new physical entity should be added to the aggregated information model.

4.2.6 Merging of Information Models
As discussed in the previous subsection, when aggregating information models,
there could be a need to merge Types and Objects. This means that there needs to
be a mechanism to understand if two objects or types are semantically the same
or similar. The main challenge is in the case of objects i.e. how do we understand
if two or more digital representations (objects) are actually representing the same
physical entity? This section tries to analyse if a similar problem had been solved
in other domains of information modeling and discusses the possible solutions that
can be considered in the case of our aggregation scenario.
A similar challenge was encountered in case of the Common Information Model
(CIM) instrumentation services. The CIM is an open standard for IT environ-
ments managed by the Distributed Management Task Force (DMTF) ([DMT12]).
It is used to represent the managed elements in an IT environment as a set of
objects, and relationships between those objects. These representations are man-
ufacturer or provider independent, which enables multiple applications to seam-
lessly exchange information about the modeled elements. CIM also provides the
architecture to manage and control these elements. Having a common model
of information enables management applications to communicate without costly
conversion or information loss. The WBEM (Web-Based Enterprise Management)
is one such CIM implementation which includes the discovery and access proto-
cols for other such CIM implementations. In CIM too, the same entity/type can
be represented by different instrumentation services and an automated client is
then used to determine whether the different services are representing the same
entity with the help of correlatable identifiers. Depending on the entity, corre-
latable identifiers are attributes or properties like SerialNumber, GUID (Globally

73

4. Solution Concept for the Aggregated Integration Platform

Unique Identifier), MAC Address(Media Access Control address), WWN (World
Wide Name), WWID (World Wide Identifier) or other properties that have the
same value across the different services. In a newer REST based management
interface called Redfish, different Redfish instrumentation services can actually be
interlocked using URIs (Uniform Resource Identifier) that link to each other and
a single entity representation can be referred to. However, in Redfish as in CIM
or other management interfaces, using correlatable identifiers is the more typical
mechanism to represent the same entity in multiple services [Usl+12].
However it is impractical to use correlatable identifiers in order to solve the chal-
lenge of merging types and objects in the aggregation scenario in case of automa-
tion systems. This is because different information models are defined for different
modeling purposes and proposing this as a solution would mean that the correlat-
able identifiers should be included as a part of the modeling standards. This has
to be done for each entity modeled in the information model. This solution, albeit
straightforward, will cost a lot in terms of effort and time to be able to implement
it on a global scale. Secondly any new identifier being assigned to an entity or a
type has to be cross-checked with a global storage of ids in order to make sure that
the same id is not provided to any other modeled entity or type. This in itself is
an implementation challenge.
ISO/TS 29002 Part 5 does introduce an identifier called “international registration
data identifier” (IRDI) for an administered item [ISO09]. However, this admin-
istered item has been explained to represent a concept or concept information
element in a concept dictionary. Moreover, it has been developed to manage ter-
minologies (terms, definitions, images etc.). The concept as such can be applied to
our scenario indeed but it would again result in the same challenges as discussed
above. The usage of interlocking entities or types with the help of URIs would also
not be useful in our case, again because of implementation issues. Furthermore, a
straightforward logic to compare global identifiers means that such a global iden-
tifier should already exist as a part of the available standards in the automation
industry today, which unfortunately does not. Thus, it needs to be kept in mind
that the suggested solution should build on top of the existing standards without
the need to change the contents of already existing standards.

Contextual Instance and Type Mapping Rules

The solution proposed in this thesis is to solve the challenge with the help of Con-
textual Mapping Rules for objects and types. The Instance Mapping Rules(IMR)
should define how an instance represented in an information model maps to another
instance in another information model. Similarly the Type Mapping Rules(TMR)
maps two types in two different information models. For example, for two in-

74

4.2. Analysis

formation models A and B (Figure 4.7), IMR-AB and TMR-AB define the rules
according to which an instance/type from information model A should be con-
sidered to be the same/similar to an instance/type from information model B
respectively. If according to the mapping rules two different instances/types are
deemed to be the same then they should be merged into a single instance/type
respectively. When a new information model is being aggregated, its types and
instances should be checked against these mapping rules to aggregate them prop-
erly. The usage of such rules will be discussed in a greater detail in Chapter 5.
In order to merge a particular instance/type coming from two different informa-

TMR AB IMR AB

Information Model B

Types Instances

Information Model A

Types Instances

Figure 4.7: Instance and Type Mapping Rules

tion models into one, there needs to a comparison between one or many properties
of that particular instance/type in the two information models. When the result
of all the respective comparisons shows that they are indeed two representations
of essentially the same entity in the two information models, then these two repre-
sentations should be merged into one instance/type in the aggregated information
model. The properties to be compared are described in a so-called mapping rule.
Now the term contextual here aims to indicate that the instance and type mapping
rules should also indicate the way in which those comparable properties can be ac-
cessed (in the respective information models) in order to be compared. This should
be done with the help of relationship chains starting from the two instances/types

75

4. Solution Concept for the Aggregated Integration Platform

to be compared and ending in the properties that should be compared.
Figure 4.8 tries to explain it with the help of an example. A physical device,
say X, has been represented in four different information models A, B, C and D.
All rectangles in the figure represent instances of some types defined within the
information model. In information model A, the digital representation of X is
represented by DR-A, which is an instance of Type TR-A. In Information Model
B, it has been represented as DR-B (instance of type TR-B) , in Information
Model C it has been represented as DR-C (instance of type TR-C) and in Infor-
mation Model D it has been represented as DR-D (instance of type TR-D). For
the sake of simplicity, only the instances representing X have been shown with
their respective types separated by a ’:’ sign, type definition on the left and the
instance name on the right. The other instances shown in the figure also have some
type definitions, however this has not been shown in the figure explicitly. More-
over, the relationships between the instances has been represented with the help
of arrows and the names alongside the arrows are the names of those relationships.

76

4.2. Analysis

TR-A: DR-A

Comm
Protocol

Network
Address

TR-B: DR-B

Address

HasProtocol

HasNetworkAddress

HasAddress

Information Model A Information Model B

IMR A-B:
DR-A -> HasProtocol -> CommProtocol -> HasNetworkAddress -> Network

Address.Value = DR-B -> HasAddress -> Address.Value

Network

HasProtocol

Manufacturer
ID

Information Model C

TR-C: DR-C

Subsystem

ComponentOf

Component
IDs

Makers ID

IMR A-C:
DR-A -> HasProperty -> ManufacturerID.Value = DR-C-> ComponentOf ->
Subsystem -> HasComponent -> ComponentIDs -> HasProperty ->

MakersID.Value

HasProperty

HasComponent

HasProperty

Information Model D

TR-D: DR-D

NetworkInfo

HasNetworkInfo

MACAddress IPAddress

HasMACAddress

IMR B-D:
DR-B -> HasAddress -> Address.Value = DR-D -> HasNetworkInfo ->

NetworkInfo -> HasMACAddess -> MACAddress.Value

HasIPAddress

Figure 4.8: Instance and Type Mapping Rules

Since DR-A, DR-B, DR-C and DR-D represent the same physical entity X,

77

4. Solution Concept for the Aggregated Integration Platform

therefore in the aggregated information model, there should exist a single instance
representing X (as explained in 4.2.5). Now, the IMR A-B defines the condition
which when satisfied would indicate that DR-A and DR-B are essentially two differ-
ent representations of the same physical device. The rule indicates the properties
to be compared and the relationship chain with the help of which that particular
property should be accessed. This means that if the value of the property Network
Address (in information model A) and that of the property Address (in Information
Model B) are the same, then DR-A and DR-B essentially represent the same de-
vice. The access to this property has also been shown with the help of relationship
chains. Similarly between information models A and C the IMR A-C suggests a
comparison between the Manufacturer ID and the MakersID properties in models
A and C respectively and between models B and D this is done by comparing
the properties Address and MACAddess respectively (represented in the figure as
IMR B-D) . It must be noted here that there is a transitive relationship between
the IMR A-B and IMR B-D i.e essentially the same property in model B is being
compared with properties in model A and model D in the two rules respectively.
Therefore by transitivity, an instance mapping rule IMR A-D can be automati-
cally generated. The auto-generation of rules will be discussed in Chapter 5 (5.2.1).

78

4.2. Analysis

Start Aggregation

Browse Types and Instances

aggregate Type

[Mapping rule
exists with an

existing Type in
the aggregated

model]

[No mapping
rule for this

Type]

[Type] [Instance]

Load model to be
aggregated

A

[Mapping rule
exists for

instances of T]

Find Type of Instance

Type T

[No mapping
rule for

instances of T]

[Rule
satisfied]

[Rule not
satisfied]

B

[Browse
complete]

[Next
model]

B

[completed]

Merge into existing
aggregated instance

aggregate instance

[Rule not
satisfied]

[Rule
satisfied]

A

Figure 4.9: Activity Diagram for the aggregation of types and instances

For better understanding, let us discuss the relationship chains shown in the
figure (4.8) and how they should be interpreted and used. Mapping Rule A-B
outlines when an instance in model A can be said to represent the same entity

79

4. Solution Concept for the Aggregated Integration Platform

as that represented by an instance in model B. Let us assume that at the very
beginning,the aggregation platform aggregates information model A. So after the
first aggregation cycle, the aggregated information model will already contain the
instances and types defined in information model A as at this point there are
no pre-existing aggregated types or instances within the aggregated information
model. After this, the aggregation platform starts to aggregate the instances de-
fined in information model B one by one. For each instance in information model
B, the instance mapping rule should be referred to, in order to see if a rule ex-
ists between this instance and any of the pre-existing instances in the aggregated
model (in this case all instances aggregated from model A) . The first condition
that should be compared, which has not been explicitly shown in the figure, is the
comparison of type definitions of the instances. This is to say that looking at the
mapping rule, it is clear that there is a rule between an instance of type TR-A and
an instance of type TR-B. This means that while aggregating Model B, as per Map-
ping Rule A-B, only for the instances of type TR-B this rule should be considered
for comparison of property values. Moreover only existing aggregated instances of
type TR-A in the aggregated model should be compared with the aforementioned
instances in model B. In order to compare the values of the parameters relation-
ship chains should be followed to compare the values of the property instances
e.g. Starting in order to compare an instance of TR-A and an instance of TR-B,
starting at the instance of TR-A (in this case DR-A), the next hop instance via the
relationship HasProtocol is the instance CommProtocol. From there following the
relationship HasNetworkAddress we reach the instance NetworkAddress. Similarly
in model B, starting at an instance of type TR-B (in this case DR-B), we can reach
the instance Address by following the relationship HasAddress. The Mapping Rule
A-B says that if the value of the two instances NetworkAddress and Address are
the same, then it can be assured that both DR-A and DR-B are representations
of the same entity, therefore the information obtained via the instance DR-B in
model B should be merged within the single instance representing X in the aggre-
gated model. How this merged information should be structured and visualised
within the aggregated model and how the mapping rules should be represented are
implementation specific details. An example implementation will be shown in the
Realization and Review Chapter (Chapter 6).

4.2.7 Demonstration of a Merged Information Model with
Graphs

This section demonstrates the concept of mapping rules introduced above and
exemplifies how this concept can address the aggregation challenges introduced as
part of the aggregation scenario mentioned in Section 4.2.4.

80

4.2. Analysis

As mentioned in the previous chapter, Graph information models are versatile in
the sense that nearly any information model, irrespective of the modelling approach
used, can be translated into Graphs, thereby enabling fast information retrieval
with Graph queries. Graph queries can also be used to create new graphs based on
a certain matching criterion. Therefore, the aim of this demonstration is two-fold
i.e.

• To investigate the criteria identifying the pump in the three information
models (Instance Mapping Rule)

• To demonstrate an aggregated graph information model based on the above
mapping rule

To achieve the first objective, three simple graph information models have
been created for the pump (in the example scenario), each confirming to the corre-
sponding standard information models i.e. DEXPI, PA-DIM and OPC 40223. The
relationship between the resources in the graph have been represented following
the standard RDF schema as the relationships described in the DEXPI, PA-DIM
and OPC 40223 models were found to be directly mappable to the ones defined
in the RDF schema. The resources have been represented as elliptical shapes.
A resource representing a Type has been connected to the resources representing
instances of that type, via rdf:type relationships. Please note that for the sake
of simplicity, not all the properties (but a subset of the same) defined in the re-
spective standards have been shown here. However, since not all three standards
provide a standardised mapping to the semantic web4, the respective relationships
(edges) have been defined only for the current example. All of these properties
can have values and if so, can be further connected to value nodes representing
these values5. These value nodes have been depicted with rectangles in the figures.
The following subsections briefly describe the example graph information models.
Moreover, different namespaces have been used for resources that represent the
instances than the namespaces for their respective types and standardised rela-
tionships6, which is usually the case in a real modelling scenario as well.

DEXPI Graph Information Model

Figure 4.10 represents a graph information model that translates and uses the
DEXPI information model. The figure shows only a subset of the entities (types,

4DEXPI does provide a standardised RDL and this has been considered in the Graph model
for the DEXPI example

5for the sake of simplicity only the values of the nodes of interest have been depicted
6these namespaces are usually defined by the standard itself

81

4. Solution Concept for the Aggregated Integration Platform

instance declarations, properties and relationships) defined in the DEXPI model.
In this model, the pump (mentioned in scenario 4.2.4) has been modelled as a
resource (eg1:PumpP1) of pca:CentrifugalPumpType (defined by the DEXPI spec-
ification). In this example, eg1 is chosen as the namespace containing the in-
stantiations of the types defined in the dexpi and pca namespaces as defined
by the DEXPI specification. As outlined by the pca:CentrifugalPumpType, the
object eg1:PumpP1 has several properties. This model shows the properties as
pca:DesignRotationalSpeed, pca: DesignVolumeFlowrate, dexpi:DesignPressureHead,
pca:DifferentialPressure, and dexpi:TagNameAssignment. In this case the property
of interest is the dexpi:Tag-NameAssignmentClass. As defined by the specification,
this property represents the tag number of the tagged item in the plant [Dex]. As
can be inferred from the model, this tag number is a string literal “P1612-A”. The
RDF dataset for the graph can be referred to in the Listing 4.1.

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns> .
@prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .
@prefix dexpi: <http:// sandbox.dexpi.org/rdl/> .
@prefix pca: <http://data.posccaesar.org/rdl/> .
@prefix eg1: <http:// mygraphmodel.org/dexpiexample > .

eg1:PumpP1
rdf:type pca:CentrifugalPump;
pca:DesignRotationalSpeed "42.24";
pca:DesignVolumeFlowrate "42.42";
dexpi:DesignPressureHead "42.4";
pca:DifferentialPressure "42";
dexpi:TagNameAssignmentClass "P1612 -A".

Listing 4.1: RDF Dataset for the DEXPI example graph

82

4.2. Analysis

rdf:type

pca:CentrifugalPumpType

42

eg1: PumpP1

42.24

42.42

42.4

P1612-A
Namespaces:

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.org/2000/01/rdf-schema#
dexpi: http://sandbox.dexpi.org/rdl/
pca: http://data.posccaesar.org/rdl/
eg1: http://mygraphmodel.org/dexpiexample

Figure 4.10: DEXPI Graph Information Model of the Pump

PA-DIM Graph Information Model

Figure 4.11 represents a graph information model that translates and uses the PA-
DIM information model. The figure shows only a subset of the entities (types,instance
declarations, properties and relationships) defined in the PA-DIM model. The
namespaces (other than rdf and rdfs) used are cdd - for the IEC Common Data
Dictionary [Cdd] referred to by the PA-DIM specification, padim - for the stan-
dardised type information defined in the PA-DIM specification and eg2 - for the
instances of the types defined in the PA-DIM specification (these namespaces are
not standardised and have been used for a logical understanding of this example).
In this model, the pump (mentioned in scenario 4.2.4) has been modelled as a
resource (eg2:PumpP2) of padim:PADIMType. As outlined by the PADIMType
(defined by the PA-DIM specification), the object eg2:PumpP2 has several prop-
erties. This model shows the properties as cdd:Manufacturer, cdd:SerialNumber,
cdd:ProductInstanceUri, padim:DeviceHealth, and padim: SignalSet. Furthermore
the resource eg2:SignalSet contains (as a member) the resource eg2:SignalS1 which
is of the type SignalType (defined in the PA-DIM standard, but not shown in the

83

4. Solution Concept for the Aggregated Integration Platform

figure). As defined by the SignalType, any instances of the same shall have a prop-
erty SignalTag. This property has been represented by the resource eg2:SignalTag
in the graph model and is of interest since it represents an alphanumeric sequence
uniquely identifying a measuring or control point [Fou21a]. As can be inferred
from the model, this tag number is a string literal “P1612-A”. In this case there
are three more properties (of the eg2:PumpP2 resource) of interest namely the
cdd:Manufacturer, cdd:SerialNumber and cdd:ProductInstanceUri which have val-
ues “XYZ Solutions GmbH”,“1234’ and “XYZ-1234” respectively associated with
them. The RDF dataset for the graph can be referred to in the Listing 4.2.

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns> .
@prefix rdfs:<http://www.w3.org /2000/01/rdf -schema#> .
@prefix cdd: <https: //cdd.iec.ch/cdd/iec61987/iec61987.nsf/> .
@prefix padim: <http:// myexample.com/padim/rdl> .
@prefix eg2: <http:// mygraphmodel.org/padimexample > .

eg2:PumpP2
rdf:type padim:PADIMType ;
cdd:Manufacturer "XYZ␣Solutions␣GmbH";
cdd:SerialNumber "1234";
cdd:ProductInstanceUri "XYZ -1234";
padim:hasDeviceHealth padim:DeviceHealth ;
padim:hasSignalSet eg2:SignalSet .

eg2:SignalSet
padim:hasSignal eg2:SignalS1 .

eg2:SignalS1
cdd:SignalTag "P1612 -A".

Listing 4.2: RDF Dataset for the PADIM example graph

84

4.2. Analysis

eg2:SignatSet

has_property

eg2:Signal S1

cdd:SignalTag

P1612-A

rdf:type

padim:PADIMType

eg2: PumpP1

XYZ Solutions GmbH

1234

XYZ-1234

padim:DeviceHealth

padim:hasSignal

Namespaces:
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs:http://www.w3.org/2000/01/rdf-schema#
cdd:https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/
padim:http://myexample.com/padim/rdl
eg2:http://mygraphmodel.org/padimexample

Figure 4.11: PA-DIM Graph Information Model of the Pump

OPC 40223 Graph Information Model

Figure 4.12 represents a graph information model that translates and uses the
OPC 40223 information model. The namespaces (other than rdf and rdfs) used
are opc40223 - for the standardised type information defined in the OPC 40223
specification and eg3 - for the instances of the types defined in the OPC 40223
specification (these namespaces are not standardised and have been used for a
logical understanding of this example) 7. The figure shows only a subset of the
entities (types,instance declarations, properties and relationships) defined in the
OPC 40223 model. In this model, the pump (mentioned in scenario 4.2.4) has
been modelled as a resource (eg3:PumpP3) of opc40223:PumpType. As outlined

7[Sch+19] introduces a standardised way to map OPC UA models to graph information
models, but this example does not make use of the same for the sake of simplicity.

85

4. Solution Concept for the Aggregated Integration Platform

by the PumpType (defined by the OPC 40223 specification), its instance shall
have several properties. This model shows these as resources eg3:Identification,
eg3:Maintenance, eg3:Operational and eg3:Ports. The eg3:Identification resource
further contains properties namely opc40223:Manufacturer, opc40223:SerialNumber
and opc40223: ProductInstanceUri. In this case there are three properties of inter-
est namely the opc40223:Manufacturer, the opc40223:SerialNumber and opc40223:
ProductInstanceUri which have values “XYZ GmbH”, “SN#1234”, and “XYZ-
1234” respectively associated with them.The RDF dataset for the graph can be
referred to in the Listing 4.3.

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns>.
@prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#>.
@prefix opc40223: <http:// myexample.com/opc40223/rdl> .
@prefix eg3: <http:// mygraphmodel.org/opc40223example >.

eg3:PumpP3
rdf:type opc40223:PumpType;
opc40223:hasIdentification eg3:Identification;
opc40223:hasMaintenance eg3:Maintenance;
opc40223:hasOperational eg3:Operational;
opc40223:hasPorts eg3:Ports.

eg3:Identification
opc40223:ProductInstanceUri "XYZ -1234";
opc40223:Manufacturer "XYZ␣GmbH";
opc40223:SerialNumber "SN#1234".

Listing 4.3: RDF Dataset for the OPC40223 example graph

86

4.2. Analysis

rdf:type

opc40223:PumpType

opc40223:Identification

eg3:Pump P3

eg3:Maintenance

eg3:Operational

eg3:Ports

SN#1234

XYZ

opc40223:SerialNumber

XYZ-1234

Namespaces:
rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: <http://www.w3.org/2000/01/rdf-schema#
opc40223: <http://myexample.com/opc40223/rdl
eg3:http://mygraphmodel.org/opc40223example

Figure 4.12: OPC 40223 Graph Information Model of the Pump

Instance Mapping Rule between DEXPI and PA-DIM models

As can be noticed from the figures 4.10 and 4.11, the assumption in case of this
example is that the way to understand if both models are describing the same
physical pump, would be to compare the values of the TagNameAssignmentClass
property of the DEXPI model with that of the SignalTag property of the PA-DIM
model. This assumption is based on the definitions of the two properties in the
respective standards, treating the pump as a tagged item in the plant in case of
its representation as per the DEXPI specification, and as a measuring or control
point in case of its representation as per the PA-DIM specification. Thereby if the
values of these propoerties match (as is the case in the example), it can be con-
cluded that both resources eg1:PumpP1 in the DEXPI Model and eg2:PumpP2 in
the PA-DIM model are representations of the same physical pump in two different
information models. The listing 4.4 demonstrates a simple SPARQL query that
can be used to match the instances of the pump between the aforementioned ex-

87

4. Solution Concept for the Aggregated Integration Platform

ample RDF datasets for the DEXPI and PA-DIM based models shown in listings
4.1 and 4.2 respectively.

PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
PREFIX dexpi: <http:// sandbox.dexpi.org/rdl/>
PREFIX pca: <http://data.posccaesar.org/rdl/>
PREFIX cdd: <https: //cdd.iec.ch/cdd/iec61987/iec61987.nsf/>
PREFIX padim: <http:// myexample.com/padim/rdl>
PREFIX eg1: <http:// mygraphmodel.org/dexpiexample >
PREFIX eg2: <http:// mygraphmodel.org/padimexample >

SELECT ?pump1 ?pump2 ?productinstanceuri ?tag
WHERE {

?pump1 dexpi:TagNameAssignmentClass ?tag.
?pump2 cdd:ProductInstanceUri ?productinstanceuri.
?pump2 padim:hasSignalSet ?sigset.
?sigset padim:hasSignal ?sig.
?sig cdd:SignalTag ?tag.

}

Listing 4.4: SPARQL query to match the two pump instances between the DEXPI
and PA-DIM models

Instance Mapping Rule between PA-DIM and OPC 40223 models

As can be noticed from the figures 4.11 and 4.12, the way to understand if both
models are describing the same physical pump, would be to compare the value
of the ProductInstanceUri property of the PA-DIM model with that of the Pro-
ductInstanceUri property of the OPC 40223 model. This assumption is based on
the definitions of the two properties in the respective standards. If the respective
values match (as is the case in the example), it can be concluded that both objects
eg2:PumpP2 in the PA-DIM Model and eg3:PumpP3 in the OPC 40223 model are
representations of the same physical pump in two different information models.
Now, it is important to note here that although the definitions of the Manufac-
turer and SerialNumber properties are semantically similar, the standards do not
define them as globally unique. Therefore, although these properties were chosen
as properties of interest, they cannot be used as a criterion to match the instances
representing the pump in the two models. The example also demontrates this
fact where the values of the Manufacturer and SerialNumber properties in both
models are indeed very similar but not exactly the same. In case of the ProductIn-
stanceUri properties, they are defined (in both the standards) to be the globally

88

4.2. Analysis

unique identifier for the resource. The listing 4.4 demonstrates a simple SPARQL
query that can be used to match the instances of the pump between the afore-
mentioned example RDF datasets for the PA-DIM and OPC40223 based models
shown in listings 4.2 and 4.3 respectively.

PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema#>
PREFIX opc40223: <http:// myexample.com/opc40223/rdl>
PREFIX cdd: <https: //cdd.iec.ch/cdd/iec61987/iec61987.nsf/>
PREFIX padim: <http:// myexample.com/padim/rdl>
PREFIX eg2: <http:// mygraphmodel.org/padimexample >
PREFIX eg3: <http:// mygraphmodel.org/opc40223example >

SELECT ?pump2 ?pump3 ?piu2
WHERE {

?pump3 opc40223:hasIdentification ?ident3 .
?ident3 opc40223:ProductInstanceUri ?piu.
?pump2 cdd:ProductInstanceUri ?piu.

}

Listing 4.5: SPARQL query to match the two pump instances between the PA-DIM
and OPC 40223 models

Merging the models using the Instance Mapping Rules

The three models shown in the figures 4.10, 4.11 and 4.12can be merged using
the instance mapping rules discussed above. The merged model has been shown
in Figure 4.13. As can be noticed from the figure, the three different objects
representing the pump in three models have been merged to a single resource
eg:PumpP in the merged model and all the relationships that were represented
in the different models have been preserved in the merged model. The color
coding used in Figure 4.10, Figure 4.11 and Figure 4.12 has been preserved in
Figure 4.13 as well, so that it is easy to visualize which elements come from which
graphs. Another thing to note in the merged graph is that the resource repre-
senting the merged instance of the pump (eg:Pump) has a rdf:type relationship
with all the three types from the three graphs namely pca:CentrifugalPumpType,
opc40223:PumpType and padim:PADIMType, which is theoretically possible from
a graph modelling perspective but might not be possible in other modelling ap-
proaches e.g., in implementations which interpret this as multiple inheritance,
this might not be allowed, in which case a merged resource representing the type
might be considered. This merged graph expresses the non-redundancy require-

89

4. Solution Concept for the Aggregated Integration Platform

ment in the sense that the same value nodes are reachable via two different rela-
tionship paths (e.g. the value node XYZ-1234 can be reached from the resource
eg:PumpP either via its opc40223:hasIdentification -¿ opc40223:Identification -¿
opc40223:ProductInstanceUri path or via the cdd:ProductInstanceUri path). How-
ever the paths themselves are not considered to be redundant since an application
that knows any one of these paths should be able to rely on the same in order to
retrieve the value. The RDF dataset for the merged graph can be referred to in
the Listing 4.6.

90

4.2. Analysis

rdf:type

pca:CentrifugalPumpType

42
eg: PumpP

42.24

42.42

42.4

P1612-A

rdf:type

padim:PADIMType

XYZ Solutions GmbH

XYZ-1234

padim:DeviceHealth

eg2:SignatSet

eg2:Signal S1

padim:hasSignalSet

padim:hasSignal

cdd:SignalTag

1234

opc40223:Identification

SN#1234XYZ

opc40223:ProductInstanceUri
eg3:Maintenance

eg3:Operational

eg3:Ports

rdf:type

opc40223:PumpType

Namespaces:
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs:http://www.w3.org/2000/01/rdf-schema#
cdd:https://cdd.iec.ch/cdd/iec61987/iec61987.nsf/
padim:http://myexample.com/padim/rdl^
dexpi: http://sandbox.dexpi.org/rdl/
pca: http://data.posccaesar.org/rdl/
opc40223: <http://myexample.com/opc40223/rdl
eg1: http://mygraphmodel.org/dexpiexample
eg2:http://mygraphmodel.org/padimexample
eg3:http://mygraphmodel.org/opc40223example
eg:http://mygraphmodel.org/mergedgraphexample

Figure 4.13: Merged Graph Information Model of the Pump
91

4. Solution Concept for the Aggregated Integration Platform

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns> .
@prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .
@prefix dexpi: <http:// sandbox.dexpi.org/rdl/> .
@prefix pca: <http://data.posccaesar.org/rdl/> .
@prefix cdd: <https: //cdd.iec.ch/cdd/iec61987/iec61987.nsf/> .
@prefix padim: <http:// myexample.com/padim/rdl> .
@prefix opc40223: <http:// myexample.com/opc40223/rdl> .
@prefix eg1: <http:// mygraphmodel.org/dexpiexample > .
@prefix eg2: <http:// mygraphmodel.org/padimexample > .
@prefix eg3: <http:// mygraphmodel.org/opc40223example >.
@prefix eg: <http:// mygraphmodel.org/mergedgraphexample >.

eg:PumpP
rdf:type pca:CentrifugalPump;
rdf:type padim:PADIMType ;
rdf:type opc40223:PumpType;
pca:DesignRotationalSpeed "42.24";
pca:DesignVolumeFlowrate "42.42";
dexpi:DesignPressureHead "42.4";
pca:DifferentialPressure "42";
dexpi:TagNameAssignmentClass "P1612 -A";
cdd:Manufacturer "XYZ␣Solutions␣GmbH";
cdd:SerialNumber "1234";
cdd:ProductInstanceUri "XYZ -1234";
padim:hasDeviceHealth padim:DeviceHealth ;
padim:hasSignalSet eg2:SignalSet ;
opc40223:hasIdentification eg3:Identification;
opc40223:hasMaintenance eg3:Maintenance;
opc40223:hasOperational eg3:Operational;
opc40223:hasPorts eg3:Ports .

eg2:SignalSet
padim:hasSignal eg2:SignalS1 .

eg2:SignalS1
cdd:SignalTag "P1612 -A".

eg3:Identification
opc40223:ProductInstanceUri "XYZ -1234";
opc40223:Manufacturer "XYZ␣GmbH";
opc40223:SerialNumber "SN#1234".

Listing 4.6: RDF Dataset for the Merged graph

92

4.3. Base Model of Information Aggregation

4.3 Base Model of Information Aggregation
The objective of this section is to use the results of Information Models-Analysis,
to abstract and to structure them in the form of a Base Model for Information
Aggregation. Therefore, the following sections introduce different levels of the
Base Model which structure the different Information-Model Management relevant
artifacts in a functional hierarchy. In a functional hierarchy the upper layers take
information from the lower layers for further processing and representation. In such
a structure, there is a clear separation of responsibilities of the different layers
and how they handle data and information. The Base Model has been divided
into 3 main layers (Figure 4.14) namely, the Aggregation Communication Model
(comprising of the Communication Sequences and the Addressing Information sub-
modules), the Aggregated Information Model (comprising of the Basic Methods
and the Data and State Model sub-modules) and the Consumer Operation Model
(comprising of the Graphical User Interface and the Consumer Business Logic sub-
modules). The following sub-sections will describe each of the layers separately.

Consumer Operation Model (COM)

Graphical User Interface

Consumer Business Logic

Aggregated Information Model (AIM)

Basic Methods

Data and State Model

Aggregation Communication Model (ACM)

Communication Sequences

Address Information

Figure 4.14: The Base Model

4.3.1 Aggregated Information Model
The AIM is the core of the Base Model. It contains all the information of all the
UIMs and makes them available to the upper layer in the Base Model, i.e to the
Consumer Operation Model or any other consumer applications that might need

93

4. Solution Concept for the Aggregated Integration Platform

the information. The access to the individual UIMs is carried out via the AIM.
The AIM, on the other hand communicates with the information sources with
the help of the Aggregation Communication Model (Section 4.3.2), which contains
the required information in order to establish communication with the underlying
sources of information. The AIM is further divided into two sub-modules namely
the Data and State Model and the Basic Methods. The following subsections
describe the respective sub-modules.

Aggregated Information Model (AIM)

Basic Methods

Data and State Model

Underlying Information Model

N:1

Figure 4.15: Aggregated Information Model

Data and State Model

The Data and State Model (DSM) contains all the data which the UIMs (which are
being aggregated) have made available to its consumers. The consistency of the
data is safeguarded by the DSM i.e. the State of the data in the AIM and UIMs
should be consistent at all times. The DSM layer, with the help of the ACM,
reads the data values from the UIM and can write it back to the source after
manipulation of the same. The data values can be simple variable or parameter
values, or values complying to complex data structures. In addition to the data
values, the DSM also contains metadata about the same e.g. Name, Data Type,
Scalar/Vector and also information about other dependencies (e.g. Alarms and
Warning threshold etc.).

Definition 4.3 Data and State Model
The DSM defines the data elements that the AIM exposes to its consumers. It
maintains the consistency of the data by using the dynamic and logical dependencies
between them

As described in the definition, the DSM contains all the logical and dynamic
dependencies of the data elements in order to safeguard the consistency of the
same. This entails the access rights to the concerned data value. Data consistency
is specifically important in cases e.g. where there is a dependency between a
data value and its corresponding alarm threshold condition as the breach of this

94

4.3. Base Model of Information Aggregation

threshold should trigger an alarm. Therefore it is not only important to maintain
the consistency of the data but also the corresponding threshold limits set for the
particular data value in the underlying model. Therefore it is the responsibility
of the DSM to observe such conditions and maintain the consistency of the data.
Even in case of a data value subscription, the DSM is responsible to provide
consistent notifications from the underlying systems about the data values being
subscribed to, by consumer applications. Moreover, it could also be possible that in
order to always provide a consistent view of the data from the underlying system,
there would be a need to get the data from the underlying system following a
particular protocol or communication sequence. This functionality would be the
responsibility of the Aggregation Communication Model (Section 4.3.2).

Basic Methods

The Basic Methods (BM) consist of the atomic functions that can be carried out
on the data elements belonging to the underlying systems that are aggregated
e.g. Read to read a data value from an underlying source and Write to write a
value back to the underlying data element. These functions should directly be
made available by the underlying system, which can in-turn be called from the
aggregation layer as and when required. In other words, a Read method called to
read a data value of the aggregated model should trigger the Read method of the
underlying system to read the corresponding data value in the underlying system.

Definition 4.4 Basic Methods
The BM layer handles the basic atomic methods inherently provided by the UIMs.
These methods which are provided by the underlying system in order to access
its data shall be outsourced with the help of the DSM of the aggregation layer to
provide indirect access (via the AIM) to the data of the underlying system.

4.3.2 Aggregation Communication Model
The Aggregation Communication Model (ACM) manages the communication with
the underlying system. Therefore the ACM contains all the parameters required to
establish the communication e.g. addressing information of the underlying system
and the communication sequences that it needs to follow to access the information
from the UIM. Therefore within the scope of this thesis report, the ACM deals with
those communication related activities that are relevant in order to access the UIM
and its functions. The ACM encapsulates protocol specific communication. In gen-
eral, the UIMs can specify different communication protocols in order to establish
communication with them and access their data and functions. In such a case,
each such communication scenario would be handled by its own ACM. So in the

95

4. Solution Concept for the Aggregated Integration Platform

event of aggregation of multiple information models, with different communication
protocols, there will be a different ACM with respect to each protocol, however all
these models would still provide their information to the DSM (in the AIM). The
Addressing Information and the Communication Sequences sub-modules together
build up the ACM. In conclusion, it can be said that the relationship between
the AIM and the ACM is that the ACM contains technology specific information
about how the data-exchange will be performed between the AIM and the UIMs.

Definition 4.5 Aggregation Communication Model
The ACM handles the UIM-specific aspects of the communication. It encapsulates
the protocol specific addressing mechanism as well as the protocol-specific commu-
nication mechanisms. For each UIM (being aggregated) there exists exactly one
ACM (1:1 relationship).

Underlying Information ModelUnderlying Information Model

1:1

Aggregation Communication Model (ACM)

Communication Sequences

Addressing Information

Figure 4.16: Aggregation Communication Model

Addressing Information

The Addressing Information (AI) layer depicts the UIM-specific internal address-
ing of the data elements and functions, as well as the protocol-specific addressing
mechanism of the underlying system itself, which are mandatory to establish com-
munication with the underlying system and then to access the data and functions
modeled by the UIM.

Definition 4.6 Addressing Information
AI contains the protocol specific addressing information (to connect to the under-
lying system) and the information model specific addressing information to locate
and access the data elements and functions within the information model).The
ACM accesses the data values and the functions using the addressing information
contained by the AI.

96

4.3. Base Model of Information Aggregation

Communication Sequences

The Communication Sequences (CS) deals with the sequence in which the com-
munication between the consumer applications and the underlying systems need
to occur, when the aggregation layer serves the data and the functions represented
by the UIMs. For example when a consumer application wants to read a data
value, it sends the request to the aggregation layer, the aggregation layer should
then retrieve the information from the respective underlying system and serve the
request back to the consumer. In the case of an event or an alarm, the sequence
will be in the reverse order i.e. the event should be propagated from the underly-
ing system, via the aggregation layer, to the respective consumer interested in the
event.

Definition 4.7 Communication Sequences
CS represents the path that any communication between the consumers and the
sources of information takes in order to exchange data and information. This
includes the sequence in which functions and events are handled by the ACM.

4.3.3 Consumer Operation Model
The core of the Consumer Operation Model (COM) is formed by the Use-specific
operating user interface where the user sees the information modeled in the AIM.
The AIM will provide an aggregated view of several information models in one
place, however the COM will selectively pick only the relevant data and function-
alities which are relevant to its particular use case, so the COM is more focused on
a specific objective. For example, it is possible for multiple COMs to concentrate
on different subsets of the AIM in order to analyze the data and information for
different purposes. This suggests an n:1 relationship between the COM and the
AIM. Thus the COM can be further divided into two sub-modules viz. the Con-
sumer Business Logic, which simplifies the use-case specific operation criteria, and
the Graphical User Interface which displays the data and functionalities depend-
ing upon the use-case. The following sections will further discuss the Consumer
Business Logic and the Graphical User Interface layers.

Definition 4.8 Consumer Operation Model
A COM contains the use-case specific operation interface which can used to interact
with the data and functions from the AIM depending upon a particular use-case.
The COM provides access to the data and functions of the UIMs via the AIM.

97

4. Solution Concept for the Aggregated Integration Platform

Underlying Information Model

N:N

Consumer Operation Model (COM)

Graphical User Interface

Consumer Business Logic

Figure 4.17: Consumer Operation Model

Consumer Business Logic

The Consumer Business Logic (CBL) layer contains all the high level logic ele-
ments relevant in order to support use-case specific operations on the aggregated
data and functions made available by the AIM. It makes complex processing func-
tions available to the Graphical User Interface. In other words, a CBL function
can be designed to collect data values from different UIMs (via the AIM), process
them and forward the result to the Graphical User Interface to be displayed to the
user. For example, let us consider a CBL designed to analyze the energy consump-
tion of a system with respect to the topological arrangement of the components
in a system. In such a case, the CBL can get the aggregated information (from
the AIM) about the topology and energy consumption of each component, process
it according to its well-defined business logic and then formulate the result of the
analysis.
In the reverse direction, the CBL can also be designed to carry out performance/-
efficiency related analytics based on the data from the underlying systems, and
can set parameters in the underlying system via the aggregation layer. This can
be represented in the form of recommended settings for performance improvement
and visualized in the Graphical User Interface. For example in the same scenario
(discussed above), after calculating the energy efficiency (based on energy con-
sumption measurements), the CBL can develop functions to suggest parameter
set points for energy optimization. These set points can then be sent by the user
to the underlying systems with the help of the Graphical User Interface.

Definition 4.9 Consumer Business Logic
The CBL layer provides additional functional logic which work on the data from
the underlying systems.It makes the usage of these functions available to the user
from the Graphical User Interface. These use-case specific functions can collect
data selectively from the underlying systems, manipulate them according to a pre-
defined algorithm and then send data set points to the underlying systems.

98

4.4. Meta-model of Information Aggregation

Graphical User Interface

The Graphical User Interface (GUI) is the system boundary over which the op-
erator can interact with the aggregated system. The GUI represents the use-case
specific data elements functionalities available from the underlying systems and ad-
ditional functions to manipulate the data in the underlying system. The functions
are implemented as per the CBL.

Definition 4.10 Graphical User Interface
The GUI provides a visual representation of the data elements and functionalities
inherently provided by the underlying systems. It also provides the capability to
manipulate the data elements with the help of algorithms developed according to
the CBL.

4.4 Meta-model of Information Aggregation
The objective of this section is to develop a meta-model for information aggre-
gation which can be used to develop a well-defined architecture for the solution
introduced in this chapter. The meta-model is to be derived from the abstract
Base Model (Section 4.3) consisting of the AIM (Aggregated Information Model),
ACM (Aggregation Communication Model) and the COM (Consumer Operation
Model). The methodology adopted for the development of the meta model is ac-
cording to the Meta Object Facility (MOF) introduced by the Object Management
Group (OMG). The MOF defines four model levels (Figure 4.18). The top level
M3 is the Meta-Meta-Model which is the language used in the MOF to define the
meta-models at the M2 level. The specification of Unified Modelling Language
(UML) is an example of a M2 Level model, i.e. the model that is used to describe
UML itself. M2 models are used to describe the elements in the M1 layer. There-
fore M1 itself consists of models written in UML. The layer M0 is the data layer
and models the concrete real world entities based on the models defined on the
M1 layer.

As per the above discussion, with respect to this thesis, the meta-model for
Information Aggregation will be a refined version of the Base Model (Level M2).
This meta-model will be used to define concrete models (Level M1) for the types of
Information Models (which will be aggregated). The instances (platforms exposing
the information models) of the concrete Information Models will lie at Level M0.
Thus, the meta-model represents the basis for the representation of concrete UIM
types. It defines the building blocks depending upon which the Information Model-
Management relevant aspects of an UIM are identified. UML has been used as
the modeling language of choice to model the meta-model. It is a well-known and

99

4. Solution Concept for the Aggregated Integration Platform

MOF-Model

UML-Meta-
Model

UML-Model

Meta-Model
of Information

Aggregation
Base Model

Model of
Information

Models

Aggregated
Integration

Platform

Meta Object Facility (MOF) This Work

Meta-Meta-
Model (M3)

Meta-Model
(M2)

Model (M1)

Instance (M0)

Figure 4.18: Modeling Levels of MOF [OMG06]

widely accepted language for graphical modeling. The following sections aim to
build the meta-model and discuss the building blocks of the model.

4.4.1 Basic Structure of the Meta-model
Figure 4.19 shows the basic structure of the meta-model which depicts the Base
Model presented in Section 4.3. A UIM serves as the basic element for this thesis.
The Information-Model Management related activities are performed on the UIM
by the aggregation layer with the help of the AIM (Aggregated Information Model),
which aggregates all the data (and its dependencies) represented in the UIM. The
AIM in turn contains a DSM (Data and State Model) and BM (Basic Methods)
sub-layers, both of which will be further refined in the forthcoming sub-sections.

To handle the communication with the UIMs, the meta-model consists of
ACMs. Each UIM has exactly one corresponding ACM, which in turn consists
of the levels AI (Addressing Information) and CS (Communication Sequences).
Depending upon the use-case for the usage of the aggregated model, multiple
COMs (Consumer Operation Model) can co-exist. Each COM consists of a GUI
(Graphical User Interface) and possibly a CBL (Consumer Business Logic) sub-
layer. The GUI and the CBL sub-layers will be further refined. The Information

100

4.4. Meta-model of Information Aggregation

Graphical User
Interface

Consumer
Business Logic

Basic Methods

Data and State
Model

Addressing
Information

Communication
Sequences

Consumer
Operation

Model

Aggregated
Information

Model

Aggregation
Communication

Model

Underlying
Information

Model

<<uses>>

<<uses>><<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

1

1..*

0..*

1

1..*

1

1

1

*

1

1

<<uses>>

<<uses>>

1

1..*

0..*

Figure 4.19: Basic Structure of the Meta-model

Model-Management related activities are then carried out by an operator via the
GUI which acts the interface between the operator and the aggregated system.
The GUI can visualize the elements modeled by the UIM with the help of the
DSM (of the AIM). In order to use the data and information of the UIM, the GUI
makes use of the BM sub-layer. The BM layer works in conjugation with the DSM
layer in order to carry out operations on the data-elements modeled by the UIM.
If higher-level analysis of the aggregated model is the requirement for a certain
use-case, this would be implemented as a function as defined by the CBL layer and
would be available for use via the GUI. Therefore the CBL-layer uses the DSM and
the BM layers too. The following sections discuss each of the layers and presents
the class diagrams for each of them. Only the classes directly within that layer
are depicted with their respective members. The classes from other layers can be
seen as placeholders which have been detailed in their appropriate sections.

101

4. Solution Concept for the Aggregated Integration Platform

4.4.2 Data and State Model
The DSM forms the basis for the functioning of the subsequent BM, CBL and GUI
layers. The DSM essentially consists of the elements that represent the ones that
constitute the UIMs. There are two basic elements in the DSM of the AIM namely
the Instance Element, the Type Element. These are the basic building blocks of an
information model as mentioned in 4.2.5. This means that each of these elements
can be extended and further specified to form more elements in the information
model. For example the Type Element represents a collection of all kinds of types
that can be instantiated viz. Object Types, Data Types, Relationship Types, which
can again be further extended and specialized. Both the basic elements can have
associations with each other. These associations are called Relationships and are
represented by Relationship Elements which is a subset of Instance Elements. A
Relationship Element is an instantiation of a Relationship Type. In other words
any element in an information model can have a association with any other element
and this association is known as the relationship between the two elements. The
Instance Element has another association with itself. In some cases, this associa-
tion represents the Instance Mapping Rule of this instance element with another
instance element in another information model. Similarly a Type Element in an
aggregation scenario also has an association with other Type Elements. In case
of same/similar types from different UIMs this association represents the Type
Mapping Rule which maps this Type Element to the same/similar Type Element
in another information model.
Both the Instance Element and the Type Element have the Name, Description, ID,
Type, Access attributes which contain the meta-information about the elements.
Figure 4.20 shows the UML representation of these elements.

102

4.4. Meta-model of Information Aggregation

DSMDSM Instance Element

+Name
+Description
+ID
+Type
+Access

Instance Element

+Name
+Description
+ID
+Type
+Access

Addressing
Information
Addressing
Information

1 *

1

1

(from the Addressing
Information module)

Type ElementType Element

*

*

+Name
+Description
+ID
+Type
+Access

Instance
mapping rules

Instance
mapping rules

Type mapping
rules

Type mapping
rules

1

*

1 1

+Properties
+PropertyPaths

+Properties
+PropertyPaths

Figure 4.20: Data and State Model

4.4.3 Basic Methods
The BM level can contain multiple functions. These functions are used to interact
with the UIM. For a particular UIM, the availability of these functions depend
on the roles/rights of the consumer/system accessing the UIM. One such function
will always have a name (Name), a description (Info), an availability (Validity) as
well as a working logic (Algorithm). The input parameters needed in order to call
the method are represented by the class InputArgument. The input parameters
have a Name, a Value and data type Type. A method can give back some results
after the execution of the working logic on the input parameters (if any), these
results are represented by a Return Value class. Each result will in turn have a
Name, a Value and a data type Type. The execution of the methods depends on
whether the information consumer has the appropriate rights to call the method.
This dependence of the method’s availability is represented by the Access class. In
order to explore the UIMs, the BM layer needs to know the address information
about the UIM itself as well as its elements, in order to connect to it and call
the available methods. Since BM methods access the data and information of the
UIM, there is a direct association of BM with the DSM.

103

4. Solution Concept for the Aggregated Integration Platform

AIMAIM Basic Methods

+Name
+Info
+Validity
-Algorithm

Basic Methods

+Name
+Info
+Validity
-Algorithm

InputArgument

+Name
+Value
+Type

InputArgument

+Name
+Value
+Type

Return Value

+Name
+Value
+Type

Return Value

+Name
+Value
+Type

Access

+Access Rights

Access

+Access Rights

Instance ElementInstance Element
Addressing
Information
Addressing
Information

11 **

0..*

1 1 1 1

1..*

(from the Data
and State Model)

(from the Addressing
Information module)

Type ElementType Element

(from the Data
and State Model)

1

0..* 0..* 0..*

Figure 4.21: Basic Aggregation Methods

4.4.4 Addressing Information
The UIM can be hosted by different kinds of platforms following their own com-
munication protocol. Thus, the addressing information contains the address of
the UIM itself (how to access the UIM) and the UIM elements (how to access
the elements within the UIM). This can depend on the particular communication
protocol and how the UIM element can be reached according the modeling of the
UIM. A UIM could support multiple communication protocols, therefore it can
be reachable at multiple protocol specific addresses. The data and functions of a
UIM will have an address within the UIM, so the the methods from the BM can
interact with them.

104

4.4. Meta-model of Information Aggregation

ACMACM Addressing
Information

+ Address

Addressing
Information

+ Address

Type ElementType Element

Communication
Sequence

Communication
Sequence

Instance ElementInstance Element Basic MethodsBasic Methods

11 0..**

1 1

1

1

11

(from the Data
and State Model)

(from the Basic
Methods module)

(from the Data
and State Model)

Figure 4.22: Addressing Information

4.4.5 Communication Sequences
The communication sequences define the logical flow of information between the
UIMs and the consumers. Some information models do not provide direct read or
write access to their data elements. In such a case, the Communication Sequence
defines the UIM specific workflow to be followed in order to gain access to the
data elements. The Communication Sequence contains a working logic (Algorithm)
detailing the required workflow to be followed to be able to access the data elements
in that model. This can also be dependent on the communication protocol used
to communicate with the UIM. This layer can also be left empty if there are no
specific communication sequences to be followed.

4.4.6 Consumer Business Logic
The CBL layer contains use-case specific operating functions. In the case when
a COM doesn’t have a specific use-case for the aggregated information in the
AIM, this layer can also be left empty. Similar to the BM, the CBL consists of
a name (Name), a possible result which could be returned (Return Value) and
possible input parameters (InputArgument). A CBL is also associated with roles
which define the availability of CBL functions depending upon access rights of the
consumers.

105

4. Solution Concept for the Aggregated Integration Platform

ACMACM
Communication

Sequence

-Algorithm

Communication
Sequence

-Algorithm

Instance ElementInstance Element Addressing
Information
Addressing
Information

1 0..*

1 1

0..*

(from the Data
and State Model)

(from the Addressing
Information module)

Type ElementType Element

(from the Data
and State Model)

1

0..* 0..*

Figure 4.23: Communication Sequences

COMCOM Consumer Business
Logic

+Name
+Info
+Validity
-Algorithm

Consumer Business
Logic

+Name
+Info
+Validity
-Algorithm

InputArgument

+Name
+Value
+Type

InputArgument

+Name
+Value
+Type

Return Value

+Name
+Value
+Type

Return Value

+Name
+Value
+Type

Access

+Access Rights

Access

+Access Rights

Instance ElementInstance Element
Addressing
Information
Addressing
Information

11 0..*0..*

0..*

1 1 1 1

0..*0..*

(from the Data
and State Model)

(from the Addressing
Information module)

Type ElementType Element

(from the Data
and State Model)

1

0..* 0..*

Figure 4.24: Consumer Business Logic

4.4.7 Graphical User Interface
The GUI represents the interface between the user and the system. The basic
element Consumer Operation represents the actual operation to be carried out on
the AIM. The Consumer Operation can be associated with one or more Access
instances, which can control the access rights to the AIM. It provides a visual

106

4.5. Summary

component which visualizes the information collected from the AIM and also pro-
vides visual elements to run the functions provided by the UIM and the use-case
specific functionalities defined by the CBL-layer. These have been represented by
the Visual Element class in the Figure 4.25. The Visual-Elements are therefore
directly connected to the data elements in the DSM and to the functional elements
in the BM levels. The types and scope of these Visual-Elements are defined and
limited by the UIM and the user-roles.

Consumer
Operation

GUI Element

+Graphical
Representation

UIM

Access

+Access Rights

Instance Element Basic Methods

1
*

*
*

*

*
* *

**

(from the Data
and State Model)

(from the Basic
Methods module)

Type Element

(from the Data
and State Model)

*

*

+Operation ID
+Info

*

Figure 4.25: Graphical User Interface

4.5 Summary
In this chapter, the meta-model, which acts as the basis for the Aggregation of
Information Models, was developed and discussed. Section 4.2 analyses the actors
and the use-cases which deal with the Information Model-Management. From the
discussed use-cases the functional and non-functional requirements were outlined in
section 4.2.2. This was followed by an analysis of the available information models
in the automation industry and the building blocks of a typical information model
were identified in section 4.2.3. Further considerations about the aggregation of
information models were observed and the challenge to merge the modeled types
and instances was identified in the following subsections. In section 4.3 the base
model for the aggregation of models was developed, which was then further refined
to ultimately develop the meta-model in section 4.4. The main challenge for this
chapter was to design a model which can be used to design a complete architecture
for the development of a solution to aggregate multiple information models in a
unified manner on a single platform. Such an architecture will be formulated

107

4. Solution Concept for the Aggregated Integration Platform

in Chapter 5 of this thesis. Chapter 5 will address the basic concept for the
solution development, introduced in section 4.1 and refine it further to develop
and Architecture based on the Meta-model introduced in this chapter.

108

Chapter 5

Architecture of the Aggregated
Integration Concept

Contents
5.1 Architecture Concept . 110

5.1.1 Overview of the Architecture Concept 110
5.1.2 Procedure for the Architecture development 113

5.2 Structural Model . 114
5.2.1 Conceptual Class Diagrams of the platform modules . . 114

5.3 Definition of Interfaces 122
5.3.1 Login-Interface . 124
5.3.2 AIM-Interface . 124
5.3.3 COM-Interface . 125
5.3.4 Mapping-Interface . 125
5.3.5 ACM-Interface . 126
5.3.6 Configuration-Interface 126

5.4 Behavioral Model . 127
5.4.1 Read Access to a UIM element 127
5.4.2 Write Access to a UIM element 129
5.4.3 Subscribing to a UIM instance 130
5.4.4 Addition of a UIM element by Consumer 132
5.4.5 Deletion of a UIM element by Consumer 133
5.4.6 Dynamic Addition of a UIM element 135

5. Architecture of the Aggregated Integration Concept

5.4.7 Dynamic Deletion of a UIM element 136
5.5 Summary . 137

5.1 Architecture Concept
This section provides an overview of the basic concept architecture of the aggre-
gated integration platform. Section 5.1.1 describes the structure of the components
of the meta-model (described in Chapter 4) namely the AIM (Aggregated Informa-
tion Model), ACM (Aggregation Communication Model) and the COM (Consumer
Operation Model), within an architectural concept. In the next section (section
5.1.2), the concept architecture is refined to define a software-architecture of the
Aggregated Integration Platform.

5.1.1 Overview of the Architecture Concept
Based on the solution concept for the aggregated integration platform introduced
in Chapter 4, a three layer Meta-model consisting of the COM, AIM and the ACM,
was developed. The AIM and the ACM are the UIM specific layers which deal
with the representation of the UIM and entail its functionality in the aggregated
environment. The COM layer is however use-case specific and enables the con-
sumer to use the information from the AIM as defined by the particular use-case
in consideration. This clear distinction between the UIM dependent (AIM and
ACM) and use-case specific (COM) layers, forms the basis for the Architecture
concept. This proves to be a good foundation for the usage of the Producer-
Consumer design pattern1 for this thesis [Bus]. In such an architecture a Producer
offers certain services, which can be consumed by one or more Consumers. In this
thesis, the various use-case specific COMs need to utilize the information provided
by the single AIM. Therefore in light of the meta-model, it can be said that the
Producer offers services, using which the Consumers can access the data and infor-
mation of the UIMs. This Producer will be denoted as the Aggregated Information
Provider (AIP) in 5.1 and in the forthcoming sections. In order to communicate
with the UIMs, the AIP will make use of the information provided by the ACM.
The Consumers are designed according to their respective COMs, which define
the use-case specific requirements for information consumption. The GUI com-
ponent of the consumers then represent the user-interface of the particular COM.
The Consumer that do not require a GUI component, can directly access the data

1Design patterns in software development define proven basic methodologies used to develop a
software system.The design pattern is chosen depending upon the requirements of such a software
keeping the boundary conditions in mind.

110

5.1. Architecture Concept

and information made available by the AIM. These Consumers will be henceforth
called as Aggregated Information Consumer(AIC).The AIP in itself can be said to
contain a collection of consumers, each of which consume the information provided
by the underlying producer (UIM). Therefore the AIP acts as a consumer for the
UIM and as a producer (although it is technically not producing the information,
rather providing access to it) for the AICs. The AIM contains the Instance and
Type Mapping rules which should be accessible to the AIP and used by it during
the aggregation of a UIM 2. These mapping rules could be local or global (depend-
ing upon the type of deployment) and should be saved in a repository accessible
to the AIP before it starts to aggregate a new UIM. Thus this thesis proposes
the use of a Local Repository and/or a Global Repository where the instance and
type mapping rules and be saved and accessed by different AIPs as per the deploy-
ment scope. This deployment scenario will be discussed in a greater detail in the
forthcoming Section 5.2.1. It must be noted here that all security related aspects
(secure communication of information and user data management) have not been
considered in this architecture. All security related aspects must be considered
while implementing this architecture.

2These mapping rules should be provided by the UIM designers who work in collaboration
with each other to identify the rules that define when and how an instance/type should be
mapped to separate or merged instances/types in the AIM (see 4.2.6)

111

5. Architecture of the Aggregated Integration Concept

A
gg

re
ga

te
d

 I
n

fo
rm

at
io

n
 P

ro
vi

d
er

Aggregated
Information Model

Aggregation
Communication

Model

Underlying Information Model
Underlying Information

Modeler

Persons Systems

Consumer
Operation Model

Consumer
Operation Model

Consumer Consumer

Figure 5.1: The Architecture Concept

So as described, the Mapping Rules will be used as a required unit for the
aggregation of information models and needs to be made accessible to the AIP.
The AIP however consists of the AIM and the ACM only. The Mapping Rules could
also be proposed to be made a part of the UIM, however this brings additional
challenges of defining how many mapping rules should an information model have
with respect to how many other information models? If such a proposal is made,
it would also mean an additional change to be made in all existing information
models, which is a massive effort in itself. Therefore this thesis proposes the usage
of a central repository which should be externally supplied with the mapping rules
by information model designers. Ideally these machine-readable mapping rules

112

5.1. Architecture Concept

should also be written in a standardised way with a common language to express
these rules. Although there isn’t any existing standards for such mapping rules,
Chapter 6 presents one possible way that was implemented within the scope of
this thesis to demonstrate the concept.

5.1.2 Procedure for the Architecture development
The starting point for the development of the Software-Architecture, is the Archi-
tecture concept described in the previous section, in which the Meta-model was
separated into a Producer-Consumer architecture 5.1.

Definition 5.1 Software Architecture
Software Architecture of a system is defined as the structure or structures of the
software components which make up the whole system. It encompasses the disci-
pline of creating such structures and defines the relationships and properties of the
software components of these structures [BCK03] [Cle+10]. Therefore a Software-
Architecture defines the software components representing the system and how they
interact with each other.

Architecture
Concept

Create Structure
of the

Architecture
Structural Model

Define Interfaces Interfaces

Define interaction
between the

modules

Behavioral
Model

Figure 5.2: Procedure for the Architecture Development

In a Producer-Consumer architecture, the Consumers use the services offered by
the Producer. Based on this, Section 5.2 defines a Software-Architecture in the

113

5. Architecture of the Aggregated Integration Concept

form of a structural model. Based on the definition of the structural model and
the Architecture concept, Section 5.3 defines the interfaces as well as the ser-
vices, with the help of which the Consumers and the Producers will communicate
with each other. The Software-Architecture is then refined according the dynamic
requirements of the system thereby defining its behavior. Finally the behavioral
model of the concept is developed in Section 5.4. The behavioral model along with
the structural Model formulates the architecture for the Aggregated Integration
Platform (Figure 5.2).

5.2 Structural Model
This sections deals with the structural model of the Aggregated Integration Plat-
form. The structural model describes the components that make up the whole
system as well as their relationships (as defined by the Software-Architecture).
The subsection 5.2.1 depicts the components the platform comprises of. These
have been depicted in the form of UML class diagrams and in some cases UML-
Deployment diagrams to provide more clarity.

5.2.1 Conceptual Class Diagrams of the platform modules
The AIP and the AIC(s) together form the main components for the functionality
of the Aggregated Integration Platform. The AIP and AIC(s) combined represent
the meta-model that has been developed in Section 4.4, with the help of which
Information Model-Management (4.1) activities are performed on the UIMs. The
following subsections will organize the structural model of the platform by describ-
ing the aforementioned interfaces in the form of UML-classes and components.

Login-Module

The class Login Services implements the Login-Interface described in section 5.3.1.
In order to authenticate a successful login the Login-Services class makes use of
the Access Control List, which maintains a list of the authorized consumers and
their respective access rights. The aforementioned list can be made in conjugation
with the login credentials of the operating system hosting the application or can
also be maintained in the form of a database that will be accessed at runtime
for consumer authentication. Figure 5.3 depicts the class diagram of the Login
Module.

114

5.2. Structural Model

<<interface>>
Login

Login Services
Access Control

List

Figure 5.3: Login

AIM-Module

The access to all the objects modeled in the UIMs is provided through the AIM
class. The AIM provides access to the Instance Elements and the Type Elements
with the help of the Basic Methods. The class AIM-Services implements the AIM-
Interface described in section 5.3.2. The AIM-Manager uses the services and pro-
vides access to the AIM. The AIM-Services class provides the needed access de-
pending upon the access rights managed by the Access class.The AIM-Manager
discovers new UIMs which can be aggregated, with the help of the Discovery Man-
ager class which implements the discovery related services to find potential UIMs
that can be aggregated. The Configuration Manager is responsible for providing
the configuration information (for a UIM to be aggregated) to the AIM-Manager.
The AIM-Manager uses the Repo-Manager class to retrieve the mapping rules and
also the mapping information about the UIM components and their corresponding
representations (in the AIM). The mapping rules are used during aggregation, and
the one-to-one mapping of AIM and UIM components is used for reading, writing,
subscribing etc. At this point it is important to consider the use of Caching for
the AIP.

Definition 5.2 Caching
Caching is the process of storing a copy of the data in a software or hardware
component called Cache. This is done to provide faster retrieval of data for future
requests of the same. The addition and removal of data from the Cache memory

115

5. Architecture of the Aggregated Integration Concept

depends on different Cache Management schemes [JNW10].

The principles of Caching can also be used in case of the AIP with a simple Cache
management strategy. The first time a component in the UIM is accessed, it can
be saved in the AIM-Cache, which is nothing but a deep-copy of the underlying
component in the AIM 3. When a consumer wants to access a component, it
should also specify the Age which is acceptable for its use. This Age signifies the
acceptable duration of the cached data. If the required Age is more than that of
the Cached data, such a request can be served with a local copy of the underlying
component, stored in the AIM. If the required Age however, is less than that of
the cached data, the request has to be forwarded to the appropriate UIM and the
response needs to be forwarded back to the requester. The Cache is managed by
the Cache-Manager which is also responsible for refreshing the cached data as per
a refresh-policy set by the AIP designer. When the data is to be acquired from
the UIM, the AIM-Manager uses the ACM-Manager, which is then responsible to
retrieve the data from the UIM and give it back to the AIP. Figure 5.4 represents
the AIM and the classes that it interacts with.

3A deep copy in object oriented design is a copy of an object including all of its members
i.e. new memory is assigned for the copied version of the object and the new memory locations
are populated with the values from those memory locations which hold the object being copied
[GR89].

116

5.2. Structural Model

AIM

BM

Instance
Element

Type
Element

ACMACM
Manager

Communication
Driver

AIM
Manager

AIM
Services

Discovery
Manager

<<interface>>
AIM

Repo
Manager

Cache
Manager

1

*

*

*

11

1

1

1 *

1

*

1

1

1

1

1

1

Figure 5.4: AIM

COM-Module

The class COM represents the consumer’s view of the integrated information. It
represents the GUI elements as well as the consumer specific business logic i.e the
CBL elements. The relationship between the GUI elements to their respective
functions is handled by the COM Services class, which implements the services
mentioned in section 5.3.3. It has a relation to the Access class to verify the rights
of a consumer to carry out a particular COM service. The COM-Manager class
manages the different COM instances, as each defined use-case will be represented
by an instance of the COM class.

117

5. Architecture of the Aggregated Integration Concept

COM

GUI

CBL

COM
Manager

COM
Services

<<interface>>
COM

Access 1

*

*

*11

1

1

Figure 5.5: COM

ACM-Module

The class ACM-Services implements the ACM-Interface described in section 5.3.5.
It provides the services to interact with the UIMs. In order to interact with the
UIMs, different protocols might have to be followed. This requires the need of
communication drivers, which are represented by instances of the ACM-Services
class. The ACM-Manager class maintains a list of the required communication
drivers. When a request to access an element from the UIM is received, the ACM-
Manager recognizes the appropriate communication driver to be used and fetches
the required information from the UIM using the identified communication driver.
A class diagram of the ACM is shown in Figure 5.6.

118

5.2. Structural Model

ACM
Communication

Driver
ACM

Manager

ACM
Services

<<interface>>
ACM

*1

1

1

* 1

Figure 5.6: ACM

Configuration-Module

The class Configuration-Services implements the Configuration-Interface defined
in section 5.3.6. It works in conjugation with the AIM while the process of aggrega-
tion is being carried out. The Configuration Services are used by the Configuration-
Manager class, which manages the different Configurations of the different UIMs.
The Configuration class also makes use of the Security-Profiles class to identify
the security needs as specified by the aggregation requirements. A class diagram
of the Configuration is shown in the figure 5.7.

ConfigurationSecurity-Profiles
Configuration

Manager

Configuration
Services

<<interface>>
Configuration

*1

1

1

* 1

Figure 5.7: Configuration

119

5. Architecture of the Aggregated Integration Concept

Mapping-Module

The Mapping-Interface defined in 5.3.4 is implemented by the Mapping-Repo class.
This class represents the mapping repository where the instance and type mapping
rules will be saved. The class Repo-Manager manages the different mapping rules
contained in the repository. While aggregating a UIM, The AIM uses the Repo-
Manager to identify the mapping rules (if any) for the UIM being aggregated.
The class Rule Finder is used by the Repo-Manager to identify the mapping rules
associated with a particular UIM. The Repo-Manager is also responsible for the
automatic creation of new rules in the repository. As described in the previous
chapter 4.2.6, if we consider two information models A and B, IMR-AB represents
the instance mapping rules and TMR-AB represents the type mapping rules. Now
if the instance and type mapping rules between a third information model D and
any one of the existing models (A or B) is introduced into the mapping reposi-
tory, the Rule Creator should automatically generate the mapping rules between
information model D and the remaining models (for which the rules have not been
provided by the model designers). Figure 5.8 depicts an example scenario where
IMR-AB and TMR-AB are already present in the repository and the rules between
B and D (IMR-BD and TMR-BD) are then introduced into the repository. In this
case the Rule-Creator will automatically create the rules between A and D, due to
the transitive relationship between them. However this transitive relationship will
only exist if the properties of an instance/type being compared are the same in
the two mapping rules e.g. in the example shown in 4.8 in Chapter 4, no transitive
relationship exists between the Mapping Rule A-B (properties being compared
are Network Address in model A and Address in model B) and Mapping Rule
A-C (properties being compared are ManufacturerID in model A and MakersID in
model C).Therefore, IMR-AD and TMR-AD will be created and placed into the
repository (5.7 (due to the existence of a transitive relationship between them)
and an IMR-BC and TMR-BC will not be created due to the lack of transitivity.
This means that if the model designers provide the mapping rules between a new
information model and any of the models (the rules for which already exist in the
repository), then the rules between the new information models and the rest of
the models will automatically be generated by the Rule-Creator (if a transitive
relationship exists between the rules). Figure 5.9 shows the class diagram of the
Mapping module.

120

5.2. Structural Model

TMR AB IMR AB

Mapping Repository

Added

TMR BD

IMR BD

TMR AB IMR AB

Mapping Repository

TMR BD IMR BD

TMR AD IMR AD

Automatically Created

Figure 5.8: Automatic Rule Creation (based on a transitive relationship)

Rule CreatorRepository
Repo

Manager

Mapping
Services

<<interface>>
Mapping

11

1

1

* 1

Instance
Mapping Rule

Rule Finder

Type
Mapping Rule

1

1

**

1

1

*
*

Figure 5.9: Mapping

Local and Global Mapping Repositories

121

5. Architecture of the Aggregated Integration Concept

The architecture defines a local and/or a global repository containing the instance
and type mapping rules. Some information models can be proprietary and might
not have a universal mapping rule with other standard information models. In
such a case the mapping rules developed by the model designers, can be saved
in a local repository where the AIP has been deployed. Also, when the mapping
rules are being tested and not yet standardized, they can be saved in the local
repository. Only when they are standard mapping rules between two standard
information models, should they be saved in the global repository. This can be
explained with the help of the deployment diagram shown in the Figure 5.10.

AIM

Mapping
Repository

b. Local Deployment

Aggregated Information Provider
Webserver

Mapping
Repository

Aggregated Information Provider

AIM

a. Global Deployment

Figure 5.10: Deployment Diagram for Mapping Repositories

5.3 Definition of Interfaces
The main objective of the AIP is to provide the data and functions of the UIMs
(aggregated by the AIM), to the Consumers in order to perform the activities
identified by the use-cases defined in Section 4.2.1. In accordance to this, the
interfaces required by the AIP can be defined in light of the outlined Requirements
(Section4.2.2) and the observed use-cases.

Definition 5.3 Interface
A Software Interface defines the services provided by a software component and
encapsulates them within the component. It provides well defined entry points to
allow access to the resources and services provided by a software component [PH04]

122

5.3. Definition of Interfaces

The following subsections describe the required AIP interfaces which will be
used for communication with the Consumers on one side and with the UIMs on
the other side. Figure 5.11 shows an overview of the interfaces.

Consumer

Aggregated Information Provider

Underlying Information Model

Login COM

ACM Mapping

AIM
Configuration

Module

RepositoryAIM

Configuration

Figure 5.11: The Interfaces

The Login-Interface is used for authorization of the Consumer (Person and sys-
tems) in order to identify the User-Roles and access restrictions for that particular
Consumer. The COM-Interface is the standard interface with the help of which
the Consumer interacts with the AIM and can access the data and functions of one
or more UIMs with the help of one or more use-case specific implementations of the
COM-Interface. The AIM-Interface is the main interface which provides actual ac-
cess to the data and functions of the aggregated UIMs. The AIM-Interface achieves
this in co-operation with the ACM-Interface, the implementations of which take
care of the communication-specific aspect of the information exchange between
the AIM and the UIMs. The Mapping-Interface is specifically used to handle the
access to the Instance and Type Mapping rules which involves the UIM concerned,
and also to maintain a mapping between the UIM elements and their respective
AIM elements. The management of the mapping rules is done with the help of
the Mapping-Interface. The Configuration-Interface handles the configuration in-

123

5. Architecture of the Aggregated Integration Concept

formation about the UIMs, which are needed in order to establish a successful
connection with the UIM and to be able to aggregate the model in the AIM. The
following subsections will describe these interfaces and the services provided by
these interfaces. These following descriptions assume a secure way of handling the
communication between the different modules described in the previous section
and does not explicitly refer to the security related aspects of these interfaces.

5.3.1 Login-Interface
The Login-Interface is used to oversee the role-based login and logout of the Con-
sumers (Person or Systems). The function Login is used by the Consumer to gain
access to the AIM specifying a specific Consumer-Role. The Login function needs
the correct LogidID and Password for a successful login to the system to be able
to access the AIM. The Logout function, as the name suggests, is used to logout
of the system.

5.3.2 AIM-Interface
The AIM-Interface enables the consumer access to the data and functions provided
by the UIMs. This access depends upon the access rights of the consumer. The
function GetUIMElement provides read functionality to the appropriate Instance
or Type element of the UIM. In order to be able to identify the relationships be-
tween the elements, the function GetUIMRelationshipInfo about an element can
be used. This function should list out all the existing relationship that an element
has with any other element in the information model. The write access (for a
writable element) to the modeled elements would depend upon the access rights
of the requesting consumer. When possible, the WriteUIMElement function can
be used to write a value to the particular element. In order to keep the data in
the UIM and the AIM consistent, a transaction mechanism must be implemented.
This can be achieved with the help of the standard BeginTransaction, EndTrans-
action and Commit functions used for Transaction Management [Hen00]. In case
of an incomplete transaction, the Rollback function restores the AIM or UIM to the
previous consistent stage. The consumer can get notifications about value changes
of a particular element by using the SubscribeToUIMElement function. The UIM
will then generate events for the data changes and the consumer should receive it
in a callback function ElementChanged. To call a function modeled as an Instance-
Element in the UIM, the AIM offers a function called InvokeUIMMethod which
can be used to pass input arguments to the UIM-Method and receive the returned
result. The AIM provides the possibility to make changes to the UIM by adding
or deleting an element with the help of the AddUIMElement, DeleteUIMElement

124

5.3. Definition of Interfaces

functions (if the consumer has the appropriate rights to do so).Similarly, the func-
tions UIMElementAdded and UIMElementRemoved in AIM should be called by
the UIM in case of elements being dynamically added or removed from it after
it has already been aggregated in the AIM and the AIM should subsequently be
refreshed using RefreshAggregatedModel function. Apart from these functions re-
lated to the UIM modeled elements, the BrowseUIMElements function provides a
possibility to browse the whole structure of the UIM, element by element with the
help of their relationships acting as links between the elements which the browse
function can follow.
In terms of Aggregation of UIMs a few additional functions are provided by the
AIM. The DiscoverUIM function is used to discover potential UIMs, which could
be aggregated into the AIM. These discovered or pre-configured UIMs can be ag-
gregated into the AIM with the AggregateUIM function.

5.3.3 COM-Interface
The COM-Interface is used by the consumer to access the AIM as per the specifica-
tions of the use-case. The COM-Interface also includes the graphical components
to enable the consumer to interact with the aggregated model of the UIMs (as de-
scribed in section 4.3.3). As discussed in Chapter 4, the COM provides additional
analysis functions on the aggregated model, which are not intrinsically provided by
the UIMs. The function InvokeCOMFunction can be used to call such a function,
the algorithm for which, works on the collective data from multiple UIMs. This
would also depend on the Access rights of the consumer. The COM-Interface also
contains the companion functions which work in conjugation with the functions
of the AIM-Interface to read and write data from and to the UIMs respectively.
These functions include GetAIMElement, SetAIMElement, SubscribeToAIMEle-
ment, AddAIMElement, DeleteAIMElement, BrowseAIMElements, GetAIMRela-
tionshipElement etc. Since to the COM, the UIMs will be practically invisible and
it would only be interacting with the AIM. It is then the responsibility of the AIM
to forward the request to the appropriate UIM and get the response from the UIM
and forward it back to the consumer with the help of the COM.

5.3.4 Mapping-Interface
The Mapping-Interface takes care of all the mapping information required by the
AIP. It helps to manage the Instance and Type Mapping rules in a Mapping Repos-
itory. It makes these mapping rules available to the AIM-Interface while aggre-
gating an existing UIM in order to decide whether to add, merge or ignore the
underlying instance or type element with respect to the AIM (Section 4.2.6). The
functions GetInstanceMappingRule and GetTypeMappingRule are used to access

125

5. Architecture of the Aggregated Integration Concept

the appropriate mapping rules (if available) from the mapping repository. The
function UploadMappingRule is used to upload a new instance or type mapping rule
into the local or global mapping repository. Furthermore, the Mapping-Interface is
also used to maintain the mappings between the AIM and the UIM representations
of the modeled elements. These mappings establish the links between the repre-
sentation (of an UIM element) in the AIM to its underlying counterpart so that
requests and responses can be forwarded accordingly between the consumer and
the UIMs. The function GetMappedUIMElementId is used to get the ID of the UIM
counterpart of an element in the AIM 4 and the function GetMappedAIMElementId
works in the opposite direction and is used to get the ID of the AIM counterpart of
an element in the UIM 5. Apart from these the service CreateNewMappingEntry is
used to create a new mapping entry between a UIM-element and an AIM-element.

5.3.5 ACM-Interface
The ACM-Interface provides the communication interface between the AIM and
the UIMs. It deals with the conversion of the request and response formats ex-
pected by the UIM/AIM as defined by the communication protocol used by the
UIM. The function GetCommunicationDriver is used to fetch the appropriate com-
munication driver (for the said UIM) after the information about the appropriate
UIM is provided by the Mapping-Interface. It contains all the protocol specific
functions which are needed to interact with the modeled elements in the UIM
Connect,Disconnect, CreatSession, CloseSession, GetElement, SetElement, Sub-
scribeToElement, AddElement, DeleteElement, BrowseElement, GetRelationship-
Info. In case of a communication error, it provides the function GetCommunica-
tionError in order to diagnose and rectify the cause of the communication error.

5.3.6 Configuration-Interface
The Configuration-Interface is used to manage the configuration related infor-
mation about the UIMs. These include the protocol-specific addressing infor-
mation, any credentials, and the necessary security related parameters (certifi-
cates,encryption algorithms etc.) needed to establish communication with the
UIM. The function LoadUIMConfiguration is used to load the configuration ar-
tifacts of a pre-configured UIM. This helps to automatically aggregate the pre-
configured UIMs, if they are available for aggregation. The SaveUIMConfigura-
tion is used to save the UIM configuration to be made available automatically in
case the aggregation process is re-started. The function DeleteUIMConfiguration

4Used to forward a request from the consumer to the appropriate UIM
5Used to forward a request from the UIM to the consumer

126

5.4. Behavioral Model

deletes the configuration related information about a UIM. Once deleted, con-
figuration information needs to be provided again in order to aggregate the said
UIM.

5.4 Behavioral Model
This section contains the dynamic model of the aggregation platform. The dynamic
model refines the relationships between the classes defined in the static model by
showing the interactions between them and the order of the same. Therefore
this section discusses seven scenarios (derived from the functional requirements in
4.2.2) where the different modules interact with each other. When the consumer
interacts with the AIM, the first step for the consumer is to always use the Login
module in order to establish the access rights associated with it. This interaction
has however, been only shown in section 5.4.1, but is to be assumed to be the first
step also for sections 5.4.2, 5.4.3, 5.4.4 and 5.4.5.

5.4.1 Read Access to a UIM element
This section shows the read access to the UIM elements. Figure 5.12 shows the
sequence diagram of the interactions between the different objects (of classes de-
scribed in previous sections) when a consumer requests read access to a UIM
element via the AIM. The process begins with the Consumer/COM 6 using the
Login service to login successfully with the username and password which is then
matched against the ACL to verify the validity of the same. This is followed by
Connect (with valid security certificates), in order to access the AIM. Once the
connection is successful, the AIM returns a connected session back to the con-
sumer. This session will be used for the rest of the operations. The consumer can
browse the AIM using the BrowseAIMElements service and when the consumer
wants to read a particular element, it uses the GetAIMElement service of the
AIM with the ElementId of the requested element.Upon receipt of this request,
the AIM requests the Mapping module for the ID of the corresponding UIM ele-
ment by using the service GetMappedUIMElementId. With this UIM element Id,
the AIM-Manager sends the GetUIMElement service request to the ACM Man-
ager. The ACM Manager then gets hold of the appropriate communication driver
neeeded to communicate with the UIM with the GetCommunicationDriver service.
Finally, with the help of the communication driver the ACM gets the value of the
element using the GetElement service. The Data entity thus obtained is forwarded

6The consumer is based on the COM, so the the two terms consumer and COM have been
used interchangeably in the following sections

127

5. Architecture of the Aggregated Integration Concept

in the reverse order from the UIM to the ACM to the AIM and finally back to the
consumer.

Consumer Login ACL AIM

Login (Username,
Password)

Authenticated

Connect (security profile)

session

BrowseAIMElements (Start Element)

Elements List, cursor

GetAIMElement (cursor)

Element Id

Figure 5.12: Getting the AIM element Id

128

5.4. Behavioral Model

Consumer

AIM

AIM-
Manager

Repo-
Manager

GetAIMElement
(ElementId)

GetMappedUIMElementId
(ElementId)

Mapping
Repository

UIMElementId

ACM-
Manager

ACM

Comm
Driver

UIM

GetUIMElement
(UIMElementId)

GetCommunicationDriver

GetElement(UIMElementId)

UIMElement

Figure 5.13: Reading a UIM element

5.4.2 Write Access to a UIM element
This section represents the write access to the UIM elements in the form of se-
quence diagrams similar to the read access explained in section 5.4.1. The same
sequence (as the read access) is followed up until the ElementId of the required
AIM element is obtained, if it is obtained while browsing the AIM. However, if
the element id of the AIM element is already known, then directly after login and
connect, the consumer can use the SetAIMElement service with the id of the ele-
ment whose value is to be written, and the Value that needs to be written. Similar
to the previous case, the AIM-Manager finds the corresponding UIM element Id
with the help of the Mapping module using the service GetMappedUIMElementId.
Upon receipt of the corresponding UIM element Id, the AIM-Manager uses the Se-
tUIMElement service to send a write request to the ACM-Manager with the id and
the Value (obtained from the SetAIMElement request). The ACM-Manager then
writes the value to the UIM element with the help of the communication driver
(obtained by using the GetCommunicationDriver service) and the SetElement ser-
vice. The assumption in this depiction is that the consumer has the required access
rights to change a value of the underlying element and the underlying element is
indeed writable and is not read-only. The cases where a value cannot be written
to an underlying element due to access limitations have not been shown in the

129

5. Architecture of the Aggregated Integration Concept

following figures (5.14).

Consumer

AIM

AIM-
Manager

Repo-
Manager

SetAIMElement
(ElementId)

GetMappedUIMElementId
(ElementId)

Mapping
Repository

UIMElementId

ACM-
Manager

ACM

Comm
Driver

UIM

SetUIMElement
(UIMElementId,Value)

GetCommunicationDriver

SetElement
(UIMElementId,Value)

Figure 5.14: Writing to a UIM element

5.4.3 Subscribing to a UIM instance
This section describes how subscriptions work in the aggregated environment with
the help of sequence diagrams. In order to subscribe to an AIM element, the first
thing the consumer needs is the AIM element id, which can be obtained either
by browsing the AIM and selecting an element (as shown in section 5.4.1) or it
has to known in advance. With the element ID, the consumer uses the Subscri-
beToAIMElement service. The AIM-Manager then finds the corresponding UIM
element by using the GetMappedUIMElementId. With the UIM element Id, the
AIM-Manager sends the SubscribeToUIMElement request to the ACM-Manager.
The ACM-Manager caters to the request by obtaining the required communication
driver (as in previous sections) and then by using the SubscribeToElement service
via the communication driver. The UIM then returns the subscription id (Figure
5.15).

130

5.4. Behavioral Model

Consumer

AIM

AIM-
Manager

Repo-
Manager

SubscribeToAIMElement
(ElementId)

GetMappedUIMElementId
(ElementId)

Mapping
Repository

UIMElementId

ACM-
Manager

ACM

Comm
Driver

UIM

SubscribeToUIMElement
(UIMElementId)

GetCommunicationDriver

SubscribeToElement
(UIMElementId)

SubscriptionId

Figure 5.15: Subscribing to a UIM element

After the subscription is successful, if the data value of the subscribed el-
ement in the UIM changes, it will send a corresponding DataChangeEvent to
the ACM-Manager, containing the subscription id and the data changes. A data
change means that the value of the UIM element (that was subscribed to) has been
changed, therefore this change should trigger a value change of the corresponding
AIM element, thus automatically triggering another DataChangeEvent with the
subscription id for the subscription between the consumer and the AIM. Therefore
when the DataChangeEvent is first received by the ACM-Manager, it finds the
corresponding AIM element by using the GetMappedAIMElementId of the Map-
ping module. After getting the AIM element Id, the AIM-Manager writes the new
(changed) value of the element to the AIM element by using the SetAIMElement
service, to change the local (cached) value of the data entity. As soon as the value
is changed, it should trigger a DataChangeEvent to the consumer7. Figure 5.16
shows the propagation of the DataChangeEvent from the UIM right upto the COM

7Alarms and Events can also be propagated in the same way from the UIM via the AIM and
finally to the COM

131

5. Architecture of the Aggregated Integration Concept

(via the AIM).

Consumer

AIM

AIM-
Manager

Repo-
Manager

Mapping
Repository

ACM-
Manager

ACM

Comm
Driver

UIM

DataChangeEvent
(UIMElementId,NewValue)

GetMappedAIMElementId
(UIMElementId)

AIMElementId

SetAIMElement
(AIMElementId, NewValue)

DataChangeEvent
(AIMElementId,NewValue)

Figure 5.16: Subscription Data Change Event

5.4.4 Addition of a UIM element by Consumer
This section describes the sequence of interactions between the different modules
when the consumer adds a new element to the AIM. In such a scenario, the newly
added element, could be an element modeled directly in the AIM. If this is not
the case, then it means that corresponding to this new element in the AIM, a new
element should be added to one of the UIMs which the AIM aggregates. To which
of the UIMs the new element would be added, should then be specified by the
consumer (e.g. by providing a namespace). Apart from this, the consumer should
also specify all the relationships that the newly added element in AIM would
have with other modeled elements of the AIM. So the process is started by the
consumer by using the service AddAIMElement, thus providing a RelationshipList
of all the relationships it has with other AIM elements. This list will contain the
AIM-element-ids of all the target elements (with which the relationship has to be
formed). From each of the target elements, the AIM-Manager forms a list of the
corresponding UIM-element-id by using the GetMappedUIMElement service of the
Mapping module. After this, the AIM-Manager sends a AddUIMElement request

132

5.4. Behavioral Model

to the ACM-Manager along with the newly compiled RelationshipList containing
the target element ids in the UIM. With the knowledge about the UIM the new
element is to be added to, the ACM-Manager finds the required communication
driver by using the GetCommunicationDriver service. Then with the help of the
appropriate communication driver, the ACM-Manager is able to add a new element
into the UIM with the AddElement service, providing the RelationshipList with
it . Once the new element is created in the UIM, the AIM-Manager requests the
Repo-Manager to create a new map entry between the new AIM element and the
new UIM element using the CreateMapEntry service(Figure 5.17).

Consumer

AIM

AIM-
Manager

Repo-
Manager

AddAIMElement
(AIMRelationshipList)

GetMappedUIMElementId
(TargetElementId)

Mapping
Repository

UIMElementId

ACM-
Manager

ACM

Comm
Driver

UIM

AddUIMElement
(UIMRelationshipLis t)

GetCommunicationDriver

AddElement
(UIMRelatioshipList)

NewUIMElementId

CreateMapEntry
(NewAI MElementId,New

UIMElementId)

 NewAI MElementId

Figure 5.17: Addition of an element by the consumer

5.4.5 Deletion of a UIM element by Consumer
This section describes the sequence of interactions between the different modules
when the consumer deletes an element from the AIM. In this case the consumer first

133

5. Architecture of the Aggregated Integration Concept

sends a DeleteAIMElement request to the AIM-Manager, with the AIM-element-id
of the element to be deleted. The AIM-Manager the finds the corresponding UIM-
element-id by using the GetMappedUIMElement service of the Mapping module.
After getting the UIM-element-id, the AIM-Manager sends the DeleteUIMElement
request to the ACM-Manager, providing the UIM-element-id with its request. The
ACM-Manager fulfills the request by first getting the required communication
driver by using the GetCommunicationDriver service and then using the driver to
call the DeleteElement service . Once the element is deleted in the UIM, the AIM-
Manager requests the Repo-Manager to delete the map entry corresponding to
the deleted AIM element and the deleted UIM element using the DeleteMapEntry
service(5.18)).

Consumer

AIM

AIM-
Manager

Repo-
Manager

DeleteAIMElement
(AIMElementId)

GetMappedUIMElementId
(AIMElementId)

Mapping
Repository

UIMElementId

ACM-
Manager

ACM

Comm
Driver

UIM

DeleteUIMElement
(UIMElementId)

GetCommunicationDriver

DeleteElement
(UIMElementId)

DeleteMapEntry
(AIMElementId,UIMEle

mentId)

Figure 5.18: Deletion of an element by the Consumer

134

5.4. Behavioral Model

5.4.6 Dynamic Addition of a UIM element
This section describes the sequence of interactions between the different modules
when a new element is added directly to a UIM (e.g. a plug and play device plugged
in, thereby creating a new element in an existing information model). This again,
is an example of propagation of an event from the UIM up to the consumer, which
in this case is a InformationModelChangeEvent generated by the UIM. This is
based on the principle that when a new element is added to an already existing
(running) information model, a corresponding new element should also be added
to the AIM (which aggregates the UIM). Therefore when a new element is added to
the UIM, an InformationModelChangeEvent, containing the details of the newly
added element and its relationships with other UIM-elements, is generated and
sent to the ACM-Manager via the appropriate communication driver. The ACM-
Manager forwards the event to the AIM-Manager. The AIM-Manager upon getting
the event, creates a new AIM-element along with its relationships 8corresponding
to this new UIM-Element and creates the new mapping information in the Mapping
Module by using the service CreateNewMapEntry service (Figure 5.19).

8the AIM-elements corresponding to each of the relationship target elements in the UIM are
found out with the help of the Mapping module and then each relationship is then correspondingly
established

135

5. Architecture of the Aggregated Integration Concept

Consumer

AIM

AIM-
Manager

Repo-
Manager

Mapping
Repository

ACM-
Manager

ACM

Comm
Driver

UIM

IMChangeEvent
(NewUIMElementId,

RelationshipLis t)

AddNewAIMElement
(AIMRelationshipList)

GetMappedAIMElementId
(TargetElementId)

NewAI MElementId

IMChangeEvent
(NewAI MElementId,

RelationshipLis t)

CreateNewMapEntry
(NewAI MElementId,New

UIMElementId)

AIMElementId

Figure 5.19: Dynamic Addition of a UIM element

5.4.7 Dynamic Deletion of a UIM element
This section describes the sequence of interactions between the different modules
when an existing UIM-Element is deleted from the UIM directly (not by the con-
sumer). Similar to section 5.4.6, the dynamic deletion of a UIM element, will
also change the UIM structure. Therefore even in this case, a InformationMod-
elChangeEvent will be generated by the UIM, containing the details about the
deleted UIM-element. The ACM-Manager listens for this event using the com-
munication driver dedicated for the involved UIM. Upon receipt of this Informa-
tionModelChangeEvent, the ACM-Manager forwards it to the AIM-Manager. The
AIM-Manager finds the AIM-element corresponding to the deleted UIM-element
with the help of the GetMappedAIMElement service of the Mapping module. The
AIM-Manager then deletes the corresponding AIM-element and its relationships
from the AIM using its DeleteAIMElement service. Once the element is deleted in
the AIM, the AIM-Manager requests the Repo-Manager to delete the map entry
corresponding to the deleted AIM element and the deleted UIM element using the
DeleteMapEntry service (5.20).

136

5.5. Summary

Consumer

AIM

AIM-
Manager

Repo-
Manager

Mapping
Repository

ACM-
Manager

ACM

Comm
Driver

UIM

IMChangeEvent
(UIMElementId,Rela

tionshipList)

DeleteMapEntry
(AIMElementId,UIMEle

mentId)

DeleteAIMElement
(AIMElementId)

GetMappedAIMElementId
(TargetElementId)

IMChangeEvent
(AIMElementId,Rela

tionshipList)

AIMElementId

Figure 5.20: Dynamic Deletion of a UIM element

5.5 Summary
This chapter develops the Architecture for the Aggregated Integration Platform.
Section 5.1 introduces the basic Architecture concept in the form of a Producer-
Consumer architecture. Section 5.2 describes the structural model of the Ag-
gregated Integration Platform where it shows the class diagrams of the different
components in the architecture. The following section 5.3 describes the required
interfaces for the development of the architecture. Section 5.4 describes the Be-
havioral model of the platform, so as to show the dynamic interactions between
the different modules of the platform in the form of sequence diagrams involved in
seven example scenarios which correspond to use-cases for the aggregation plat-
form. These concepts discussed in this chapter will form the basis for Chapter 6
of this thesis.

137

5. Architecture of the Aggregated Integration Concept

138

Chapter 6

Realization and Review

Contents
6.1 Overview of the Implementation 139

6.1.1 Overview of the Prototype 140
6.1.2 Process of Prototype Implementation 141

6.2 Implementation Technologies 142
6.2.1 Description of Mapping Rules 143
6.2.2 Client-Server Technology 143

6.3 Illustration of the aggregated platform 143
6.3.1 Underlying Servers . 144
6.3.2 Aggregation Server . 147
6.3.3 Configuration . 150
6.3.4 Consumer Client . 150
6.3.5 Mapping Rules Repository 151

6.4 Evaluation of the implemented prototype 155
6.5 Summary . 156

6.1 Overview of the Implementation
This section provides the overview about the implementation of the prototype
which was developed in order to demonstrate the Aggregated Integration Platform
concept outlined in this thesis. Within this section, at first an overview about the
prototype itself has been provided in Section 6.1.1 which includes the typical sce-
narios considered for the prototype implementation. The following section 6.1.2

6. Realization and Review

describes the procedure used during the implementation of the introduced concept
paying special attention to the implementation technologies used for the man-
agement of mapping rules as well as the client-server architecture used for the
development of the integration platform.

6.1.1 Overview of the Prototype
The architecture of the Aggregated Integration Platform was explained in Chap-
ter 5. The structural and behavioral model introduced in the previous chapter
was implemented with the help of an OPC UA based client-server architecture.
The aggregated integration platform itself can be viewed as a combination of an
Aggregation Server (with an embedded OPC UA server exposing the AIM and sev-
eral embedded OPC UA clients) and an OPC UA Client (representing the COM)
connected to the Aggregation Server. A simplified overview of the prototype is
shown in figure 6.1, whereby the Aggregation Server consists of several dedicated
clients C1, C2 and C3 connected to the underlying servers US-PADIM, US-DEXPI
and US-40223. This prototype aims to implement the typical aggregation sce-
nario mentioned in section 4.2.4. Therefore the underlying servers US-PADIM,
US-DEXPI and US-40223 have been implemented to expose practical information
models based on the PADIM, DEXPI and OPC40223 models respectively. The Ag-
gregation Server is the AIP mentioned in the previous chapter (5.2.1) which hosts
the AIM and communicates with the Mapping repository (handling the mapping
rules). For this particular prototype a generic AIC has been chosen, which is
capable of providing the basic consumer functionality on the AIM e.g. Reading,
Writing and Subscribing of data elements exposed in the AIM. C1, C2 and C3 are
implementing the ACMs mentioned in the previous chapters and are responsible
of communicating with the respective underlying servers. Further implementation
details about the prototype have been covered in the forthcoming sections.

140

6.1. Overview of the Implementation

Aggregation Server

C1 C2 C3

US-PADIM US-DEXPI US-40223

Consumer Client

Aggregated Integration Platform

Figure 6.1: Overview of the prototype

6.1.2 Process of Prototype Implementation
The prototype development process closely follows the V-Model introduced in
3.1.1. The software architecture mentioned in 5.1 and the handling of mapping
rules for the merging of information models (4.2.6) are the starting points for the
realisation of the prototype. Therefore there are mainly two independent parts to
this prototype namely the management of the mapping rules which are needed to
solve the overlaps in the information models and the client-server architecture to
manage the interaction with the resulting AIM. In conclusion, after finalising the
implementation technology to describe the mapping rules, two instance mapping
rules were written i.e. one that maps a instance representing the same pump (from
the example in 4.2.4) between the DEXPI and PADIM information models (as per
4.2.7), and another mapping rule that provides this mapping between the PADIM
and OPC40223 models. Similarly the implementation technology for the develop-

141

6. Realization and Review

ment of the client-server architecture was chosen as per the requirements outlined
in 4.2.2 and the AIM was developed considering the aforementioned mapping rules
and was hosted by an aggregating server. In the end the implementation was val-
idated against the requirements. The different modules of the prototype will be
detailed in the forthcoming sections along with the reasoning behind choosing the
implementation technologies.

Implemented Mapping
Rules

Implemented platform

Evaluation

Software
Architecture

Define Mapping Rules
Define platform

architecture

Evaluate

Figure 6.2: Process of Prototype Implementation

6.2 Implementation Technologies
As mentioned in the previous section, up until now the software architecture and
the mapping rule descriptions form the basis for the development of the aggregated
platform. A suitable implementation technology needs to be chosen to describe
the mapping rules. Similarly the client-server architecture also needs to be imple-
mented choosing the technology that suits best with respect to the functional and
non-functional requirements detailed in 4.2.2. This section describes the points

142

6.3. Illustration of the aggregated platform

considered to reach an informed decision about the implementation technology to
be used.

6.2.1 Description of Mapping Rules
For the description of the mapping rules, two ways to represent the information
were considered namely JSON and XML. For the purposes of this thesis, JSON
was chosen to describe the mapping rules between the pairs of information models
i.e. a JSON file mapping the pump in our example scenario between the DEXPI
and PADIM models and another JSON file providing the rule to map the instances
representing the pump between the PADIM an OPC40223 models. Table A.1 in the
Annex section shows a comparison between JSON and XML supporting the usage
of JSON for this particular application as this is a relatively simple application
where ease and speed of use are more important.

6.2.2 Client-Server Technology
The Producer-Consumer design pattern mentioned in the previous chapter (5.1.1)
was implemented with a client-server architecture whereby the AIP consists of
a server hosting the AIM and three clients connected to each of the underlying
servers, each hosting the three UIMs. As per the discussion in 3.3 OPC UA was
chosen as the implementation technology for the client-server architecture. Not
only does OPC UA fulfil most of the functional and non-functional requirements
mentioned in 4.2.2, there are already OPC UA Companion Specifications (3.4.3)
available for the PADIM (OPC 30081 - Process Automation Devices) [Fou21a] and
DEXPI (OPC 30250 - UA Companion Specification for DEXPI) [Fou21c] infor-
mation models (the OPC 40223 is an intrinsic OPC UA Companion Specification
for Pumps and Vacuum Pumps [OF21]).

6.3 Illustration of the aggregated platform
This section will detail the different modules implemented to illustrate the working
of the aggregated platform as a proof of concept demonstration of the concepts
introduced in this thesis. The different modules have been illustrated in 6.3. The
following sections will also relate each of the implemented modules to the structure
model of the platform from 5.2. The implementation of the underlying servers and
the aggregating server was done using the Unified Automation .NET SDK.

143

6. Realization and Review

OPC UA PADIM
Server

OPC UA DEXPI
Server

OPC UA 40223
Server

OPC UA Consumer Client

OPC UA
Aggregation

Client

OPC UA
Aggregation

Client

OPC UA
Aggregation

Client

Aggregation
Node Manager

Configuration NodeFactory
Type

Aggregator

OPC UA Aggregation Server

Instance
Aggregator

OPC UA
Aggregation

Client

OPC UA
Aggregation

Client

OPC UA
Aggregation

Client

Aggregation
Node Manager

Configuration NodeFactory
Type

Aggregator

OPC UA Aggregation Server

Instance
Aggregator

Instance
Mapping

Rules

Type
Mapping

Rules

Mapping Repository

Instance
Mapping

Rules

Type
Mapping

Rules

Mapping Repository
Aggregated Integration Platform

Figure 6.3: Implemented modules in the aggregated platform

6.3.1 Underlying Servers
Three OPC UA servers (acting as underlying servers in the example scenario) were
developed for this demonstration, each hosting a UIM for the PADIM, DEXPI and
OPC 40223 models respectively. A fictitious pump was modelled in all three servers
respectively using the OPC UA TypeDefinitions from the three companion speci-
fications i.e. in the PADIM OPC UA Server, an instance of the PADIMType was
created, in the DEXPI OPC UA Server an instance of the CentrifugalPumpType
was created and finally in the OPC 40223 Server an instance of the PumpType
was created. The respective properties of these instances were populated as per
the example shown in 4.2.7. These instances have been represented according to
OPC UA notations in the following figures 6.4,6.5 and 6.6 (not all properties have

144

6.3. Illustration of the aggregated platform

been shown in the figures for the sake of simplicity). The address space in their
respective OPC UA servers can be found in Annex (A.1, A.2, A.3).

Pump_PADIM

PADIMType

ManufacturerSerialNumber

ProductCodeModel

SignalSetAssetId

SignalS1

DiscreteSignal

Tag

Figure 6.4: Pump instance in the PADIM OPC UA Server

145

6. Realization and Review

Pump_DEXPI

CentrifugalPumpType

DesignRotationalSpeedDifferentialPressure

DesignVolumeFlowRateDesignShaftPower

TagNameSequenceNumber

AssignmentClass
TagNameAssignmentClass

TagNameSuffixAssignment

Class

TagNamePrefixAssignment

Class

Figure 6.5: Pump instance in the DEXPI OPC UA Server

146

6.3. Illustration of the aggregated platform

Pump_40223

PumpType

ConfigurationEvents

MaintenanceDocumentation

Operational Identification

Manufacturer

SerialNumber

Figure 6.6: Pump instance in the OPC 40223 OPC UA Server

6.3.2 Aggregation Server
The Aggregation Server is the core of this thesis and implements the main ag-
gregation concepts introduced in the previous chapters.The Aggregation Server
represents the AIP introduced in section 5.1.1 and hosts the AIM in its address
space. As can be seen from figure 6.3, the Aggregation Server contains several
interconnected components connected to each other. Each of these components
will be discussed in the following subsections.

Aggregation Node Manager

The Aggregation Node Manager implements the AIM-Module of the platform
(5.2.1). It manages the address space of the Aggregation Server i.e. it man-
ages all the nodes present in the AIM and communication with the same. It acts
as a middleware between the Consumer Client (6.3.4) and the three underlying
servers (6.3.1). It creates the nodes in the aggregated address space by browsing
the address spaces of the three underlying servers with the help of three cor-

147

6. Realization and Review

responding Aggregation Clients (6.3.2) connected to each of the three underlying
servers respectively. For each node in the underlying servers, a corresponding node
is present in the aggregated address space. Since the underlying servers are the
actual sources of information for the Aggregation Server, it maintains mapping
dictionaries between the nodes in its own address space and the corresponding
nodes in the underlying servers. When the Consumer Client requests the read-
/write/subscribe services for a particular node in the aggregated address space,
the Aggregation Server forwards these requests to the corresponding node from one
of the underlying servers (using the corresponding Aggregation Client). Similarly
it forwards the responses from the underlying server to the Consumer Client.

Type Aggregator

The Type Aggregator is used by the Aggregation Node Manager to create the
Type nodes of the Aggregation Server. During the aggregation process, when the
Aggregation Node Manager encounters a Type node in the underlying server, it
uses the Type Aggregator which in turn uses the Type Mapping Rules to decide
if the Type node from the underlying system already exists in the Aggregation
Server address space. If the Type node doesn’t exist in the address space of the
Aggregation Server, a new Type node is added to it. If as per the Type Mapping
Rules, the same or similar type already exists in the Aggregation Server address
space, no new Type node is added, however the mapping dictionaries are updated
to point to the same or similar Type node.

Instance Aggregator

The Instance Aggregator is used by the Aggregation Node Manager to create
the Instance nodes of the Aggregation Server. During the aggregation process,
when the Aggregation Node Manager encounters a Instance node in the underly-
ing server, it uses the Instance Aggregator which in turn uses the Instance Mapping
Rules to decide if the entity represented by the Instance node from the underly-
ing system already exists in the Aggregation Server address space. If an Instance
node representing the entity doesn’t exist in the address space of the Aggregation
Server, a new Instance node is added to it. If as per the Instance Mapping Rules,
an Instance node representing the same entity already exists in the Aggregation
Server address space, a new Instance node of Type AggregatedInstanceType is cre-
ated in the Aggregation Server address space. Thereafter, another Instance node
representing the Instance node of the underlying server is added to the Aggregation
Server address space and both the Instance nodes (new and previously added) in
the Aggregation Server address space are reorganized as Child nodes of the afore-
mentioned Instance node of AggregatedInstanceType. The mapping dictionaries

148

6.3. Illustration of the aggregated platform

are updated accordingly. At the end of the aggregation process, all Instances from
the underlying serveres representing the same entity are aggregated under a single
Instance of AggregatedInstanceType within the Aggregation Server address space.
In the case of the prototype implementation, the instances representing the same
pump i.e. Pump PADIM in the underlying PADIM server, the Pump DEXPI in
the underlying DEXPI server and the Pump 40223 in the underlying OPC 40223
server were all aggregated under a single AggregatedPump instance in the Aggrega-
tion Server. The AggregatedInstanceType has a property called AggregatedModels
which contains a list of all the models that have been aggregated under the said
aggregated instance in the Aggregation Server. The OPC UA representation of
this AggregatedPump instance is shown in Figure 6.7.

AggregatedPump

AggregatedInstanceType

PADIMPumpType

Pump_PADIM

DEXPIPumpType

Pump_DEXPI

PumpType

Pump_40223

0:PropertyType

AggregatedModels

Figure 6.7: Aggregated Pump instance in the Aggregation OPC UA Server

Node Factory

In an OPC UA Address space, each node has a unique server-wide NodeId which
serves as an identifier for the node. When the underlying servers are being aggre-
gated by the Aggregation Server, when new nodes need to be added to the address
space of the Aggregation Server, the Node Factory creates these nodes (with their
unique NodeId). Moreover all nodes in an OPC UA Address space belong to a

149

6. Realization and Review

so-called NodeClass. A node might represent an ObjectType, a ReferenceType,
an Object (instances of ObjectTypes), a Variable, a Method or a DataType. The
NodeClass defines what Attributes, References, Properties can be expected from
a particular node (the NodeId is one such Attribute). Therefore during the ag-
gregation process the NodeFactory creates a node of the appropriate NodeClass
depending upon the NodeClass of the node in the underlying server that is being
aggregated.

Aggregation Clients

As mentioned in 6.3.2, the Aggregation Node Manager communicates with the
underlying servers with the help of Aggregation Clients connected to each of the
underlying servers. The Aggregation Clients implement the ACM-Module of the
platform(5.2.1). In the prototype implementation, three OPC UA Clients were cre-
ated for the three underlying servers. The mapping dictionaries of the Aggregation
Node Manager also contain information about the client sessions a particular node
in the address space of the Aggregation Server is associated with. This means
that when the Consumer Client tries to access a particular node, the Aggregation
Node Manager consults the mapping dictionaries and finds out the appropriate
Aggregation Client that can then access the appropriate node in the underlying
server and serve the request.

6.3.3 Configuration
The Configuration component implements the Configuration-Module 5.2.1 of the
platform. It is used to store the parameters needed to create a connection session
with the underlying servers. This includes the endpoint descriptions, the secu-
rity profiles and the login information needed in order to connect to the underly-
ing servers. This information is already available before the Aggregation Server
is started up. During the aggregation process, the Aggregation Node Manager
uses this information to create the Aggregation Client sessions with the respec-
tive underlying servers. In the prototype implementation, this component has
been implemented as an XML file storing the aforementioned information about
the underlying servers, which is loaded by the Aggregation Node Manager upon
startup of the Aggregation Server.

6.3.4 Consumer Client
The Consumer OPC UA Client implements the Login-Module (5.2.1) and the
COM-Module (5.2.1) of the platform. It connects to the Aggregation Server and
uses the OPC UA Services (Read, Write, Subscribe etc.) offered by the Aggregation

150

6.3. Illustration of the aggregated platform

Server. Since the prototype does not deal with any particular use-case for the
consumption of the aggregated information, the was no specific business logic to be
implemented in the Consumer Client. Therefore in the prototype implementation
the Consumer Client is represented by the UAExpert Generic OPC UA Client as
it provides a possibility to test most of the functional requirements (4.2.2) for the
platform.

6.3.5 Mapping Rules Repository
This component implements the Mapping-Module of the platform (5.2.1). To
realise the repository concept introduced in 5.2.1, two instance mapping rules
were written using JSON. Since the underlying servers are OPC UA servers, the
mapping rules have been kept relatively simple. The rules outline the BrowsePaths
of the properties of the Types, the instances of which are to be compared across the
models to decide whether the instances represent the same entity i.e. the Pump
in our example scenario e.g there is just one rule in the JSON containing the IMR
between the DEXPI and PADIM Models (6.1) and two rules corresponding to the
two pairs of properties that need to be compared in the JSON containing the IMR
between the PADIM and OPC 40223 models (6.2). During the aggregation process
these rules are loaded by the Aggregation Node Manager to merge the instances
within the AggregatedPumpType instance in the address space of the Aggregation
Server. These rules were kept in a local storage location.

151

6. Realization and Review

{
"model1Namespace" : "http: // opcfoundation.org/UA/DEXPI/",
"model2Namespace" : "http: // opcfoundation.org/UA/PADIM/",
"rules" :
[

{
"model1TypeName" : "CentrifugalPumpType",
"model2TypeName" : "PADIMType",
"valuesToBeCompared" :
[

{
"browsePath1" : "./ TagNameAssignmentClass",
"browsePath2" : "./ SignalSet/SignalS1/SignalTag"
}

]
}

]
}

Listing 6.1: Instance Mapping Rule JSON for the Pump instance in DEXPI and
PADIM models

{
"model1Namespace" : "http: // opcfoundation.org/UA/PADIM/",
"model2Namespace" : "http: // opcfoundation.org/UA/Pumps/",
"rules" :
[
{

"model1TypeName" : "PADIMType",
"model2TypeName" : "PumpType",
"valuesToBeCompared" :
[

{
"browsePath1" : "./ Manufacturer",
"browsePath2" : "./ Identification/Manufacturer"

},
{

"browsePath1" : "./ SerialNumber",
"browsePath2" : "./ Identification/SerialNumber"

}
]

}

152

6.3. Illustration of the aggregated platform

]
}

Listing 6.2: Instance Mapping Rule JSON for the Pump instance in PADIM and
OPC 40223 models

Auto-creation of rules

As mentioned in 5.2.1, the pre-requisite for the auto-creation of new mapping rules
is the existence of a transitive relationship between the existing rules with respect
to the parameters being compared among the models. Unfortunately in our ex-
ample scenario, a transitive relationship does not exist. So in order to test the
functioning of the automatic creation of rules, an IMR between the PADIM Model
and a fictitious ModelX was manually created and added to the local mapping
repository (listing 6.3). In this fictitious ModelX the Manufacturer and the Se-
rialNumber can be found within a so-called AssetInfo object within the instance
representing the pump in the address space. A Python script was programmed to
monitor the addition of any new mapping rules to the local repository. As soon
as a new mapping rule would be added, it would trigger the algorithm that looks
for the transitive relationship and creates a new mapping rule between the two
appropriate models e.g. in the test case mentioned above, a new IMR was created
by the script between the fictitious ModelX and the OPC 40223 models (listing
6.4) and the properties of Pump instances to be compared between ModelX and
OPC 40223 models were populated correctly.

{
"model1Namespace" : "http: // opcfoundation.org/UA/PADIM/",
"model2Namespace" : "http: // fictitiousmodel.org/PumpX/",
"rules" :
[
{

"model1TypeName" : "PADIMType",
"model2TypeName" : "PumpXType",
"valuesToBeCompared" :
[
{

"browsePath1" : "./ Manufacturer",
"browsePath2" : "./ AssetInfo/ManufacturerName"

},
{

"browsePath1" : "./ SerialNumber",
"browsePath2" : "./ AssetInfo/SNo"

153

6. Realization and Review

}
]

}

]
}

Listing 6.3: Instance Mapping Rule JSON for the Pump instance in PADIM and
ModelX models

{
"model1Namespace" : "http: // opcfoundation.org/UA/Pumps/",
"model2Namespace" : "http: // fictitiousmodel.org/PumpX/",
"rules" :
[
{

"model1TypeName" : "PumpType",
"model2TypeName" : "PumpXType",
"valuesToBeCompared" :
[
{

"browsePath1" : "./ Identification/Manufacturer",
"browsePath2" : "./ AssetInfo/ManufacturerName"

},
{

"browsePath1" : "./ Identification/SerialNumber",
"browsePath2" : "./ AssetInfo/SNo"

}
]

}

]
}

Listing 6.4: Instance Mapping Rule JSON for the Pump instance in PADIM and
ModelX models

154

6.4. Evaluation of the implemented prototype

6.4 Evaluation of the implemented prototype
Inline with the V-Model from 3.1.1 the implemented prototype was validated with
respect to the behavioural model described in section 5.4 in the previous chap-
ter. The three underlying OPC UA Servers (PADIM, DEXPI and OPC 40223)
were aggregated by the Aggregation Server. The entire UIMs within the underly-
ing servers were represented by the AIM hosted by the Aggregation Server. The
three Pump instances in the underlying servers (Pump DEXPI, Pump PADIM
and Pump 40223) were aggregated (along with their respective parameters) cor-
rectly within an AggregatedPump instance in the Aggregation Server. The data
access services (Read, Write, Subscribe) were tested and validated. Furthermore,
the implementation was validated against the functional and non-functional re-
quirements mentioned in 4.2.2. Table 6.1 and Table 6.2 provide an overview of
the validation of the prototype implementation against the requirements. Annex
A provides screenshots of the UAExpert Client (AIC) showing the aggregation
result in the GUI of the client and tries to provide an overview of the results
while testing the implementation to test the functioning of the Read, Write and
Subscribe services (see Figures A.4,A.5,A.6,A.7,A.8).

Requirement Description

User Roles fulfilled by OPC UA User Management

Completeness fulfilled by aggregating all elements in the underlying
server address space

Handling Underlying
Models fulfilled by the inclusion of dynamic aggregation

Information Access fulfilled by the OPC UA Browse and Read Services

Function Support fulfilled by extension of the working principle used for
Read and Write

Read/Write Data fulfilled see Figure A.6 and Figure A.7

Subscriptions fulfilled see Figure A.8

Online/Offline if the underlying server supports this, the aggregation
server will too

Alarms fulfilled by extension of the working principle

Handle Mapping
Rulesets fulfilled by the Mapping Respository

Semantic fulfilled by the usage of AggregatedInstanceType

Table 6.1: Functional requirements fulfilled by the solution concept

155

6. Realization and Review

Requirement Description

Platform-Independence fulfilled by the usage of JSON, Python and OPC UA

Robust fulfilled by the usage of OPC UA and complete
aggregation of underlying servers

Domain-Independence fulfilled by aggregating Types and Instances irrespective
of the domain

Openness fulfilled by the usage of OPC UA

Transparent fulfilled by design, clients do not need any communication
specific knowledge except OPC UA

Multiclient fulfilled, multiple OPC UA Clients can connect
simultaneously

Multisource fulfilled, multiple servers were successfully aggregated

Secure fulfilled by the usage of OPC UA by design

Table 6.2: Non-functional requirements fulfilled by the solution concept

6.5 Summary
In this chapter, the realization and review of the Aggregated Integration Platform
was discussed. Based on requirements and the meta-model from Chapter 4 and
the software architecture from Chapter 5, the implementation technologies for the
description of the mapping rules and for the client-server architecture were chosen.
Section 6.3 discusses the implementation of each component of the platform itself
as well as the underlying servers that were aggregated by the platform. In 6.3.5 the
implementation of the mapping rules (needed for the aggregation process) and the
mapping repository was discussed. The auto-creation of these rules was demon-
strated in 6.3.5. Section 6.4 briefly discussed the validation of the implemented
prototype.

156

Chapter 7

Conclusion and Outlook

This concluding chapter summarizes the work in this thesis and the result achieved
in the process. Section 7.1 presents a walkthrough of the thesis starting from the
problem definition,then the proposed solution and finally its prototype implemen-
tation. This is followed by an overall evaluation of the results and an outlook on
future research activities that might follow this thesis (7.2).

7.1 Conclusion
With the advent of Industry 4.0, information modelling and information models
have become ever more important in automation technology. Devices used in to-
day’s automation domain are becoming cheaper, smaller but at the same time more
powerful. Due to this reason, they are now offering a lot more extensive data and
functionality, thereby creating the need for efficient information models providing
access to the data and functionality. These information models are constantly
evolving and can be adapted to the needs of the industry so that they are best
suited for a particular application or use-case e.g. predictive maintenance on the
basis of condition monitoring parameters of a device, a subsystem of devices or the
overall system itself. While the advantages of using efficient information models
are manifold, it is also becoming increasingly important to identify commonalities
between the information models and thereby the provision of a common landscape
of information models. The activities that are involved in the management of such
information models during the entire life cycle of an automation system, have been
termed as Information Model-Management within the scope of this thesis. As the
strict hierarchy between the different levels of the automation pyramid is now get-
ting blurry, these information models are being used to provide access to different
aspects of the same system from anywhere in the pyramid e.g. ERP systems are
being able to access the Asset Management related information of a field device

7. Conclusion and Outlook

directly, MES systems are being able to send Jobs to machines on the shop floor
directly e.t.c and all this without going through the other layers of the pyramid.
The natural consequence of this is the resulting connection mesh with a lot of
information consumers being simultaneously connected to a multitude of informa-
tion providers. This in turn makes the management of the information models
difficult or manufacturer specific closed information models.
To solve this problem, this thesis aims to develop an Aggregated Integration Plat-
form for the efficient management of information models. This platform can be
used to aggregate several information models in an Aggregated Information Model
which exposes data and functionality of all the information models being aggre-
gated, in an efficient way. In order to do this, this thesis first analyses the methods
and tools for information integration and looks at the information modeling pro-
cess altogether with the aim to find a common landscape for information models.
The thesis then investigates the different actors and the use-cases for which infor-
mation models are being used in today’s automation scenarios and thereafter the
functional and non-functional requirements for the Aggregated Integration plat-
form were defined. Upon reviewing several information models and an example
scenario of overlapping information models, a concept to solving this overlap was
discussed i.e. the creation of a merged information model. With this knowledge,
a meta model for the platform was conceived which represents the Information
Model-Management in three layers i.e. Aggregated Information Model, Aggrega-
tion Communication Model and Consumer Operation Model. With the meta-model
as its basis, a software architecture for the platform was developed. The structural
as well as the behavioural model of the architecture was defined based on the in-
teractions between the three aforementioned layers. Several Information Models
(named Underlying Information Models in this these) are aggregated into a single
Aggregated Information Models, and there might be several Consumer Operation
Models interacting with the Aggregated Information Model. In order to solve the
overlaps between the Underlying Information Models, a concept of Instance and
Type Mapping Rules and the management of these rules within a Mapping Repos-
itory was conceptualized within the software-architecture. This led to a prototype
implementation following a Client-Server architecture, whereby the Underlying
Information Models were hosted in their own respective Servers which were then
aggregated by an Aggregation Server with the help of Aggregation Clients. As can
be noticed from Table 6.1 and Table 6.2 in the previous chapter, the evaluation
of the prototype against the expected behaviour of such an aggregated platform
showed the developed concept does fulfil the requirements that had been set for
it. The Aggregated Information Platform makes it possible for applications to be
able to access the information about a particular entity all-in-one-place, thereby
enabling use-case specific access to the aggregated information. Point to point con-

158

7.2. Outlook

nections between applications to several information sources can then be omitted
and the effort will be reduced accordingly.

7.2 Outlook
The concept developed within the scope of this thesis can be used to bring together
information from different information sources that is essentially about different
aspects of the same or similar entities. With the advent of Machine Learning in
the automation industry, such aggregated information can help solve the prime
use-cases of predictive and preventive maintenance e.g. if the aggregated informa-
tion about the Pump mentioned in the example scenario in this thesis is monitored
over a period of time, it might be possible to run pattern recognition algorithms
on the dataset to be able to identify data patterns that were observed in relation
to a reported malfunction. The next time a similar data pattern under similar
conditions is observed during the lifetime of the Pump, another malfunction might
be predicted in the same time frame as observed the previous times this had hap-
pened. Needless to say that the same concept can be extended to any asset which
is prone to malfunction as some point in time (e.g. wear and tear of a physical
asset, existence of bugs in a software asset). As with any other Machine Learning
system, the efficiency of such a prediction will improve with time as the system
learns more and more. Since such an aggregated platform is capable of bringing
correlated information, the dataset would not need to be collected from many dif-
ferent sources, rather it will be available all-in-one-place. Since the correlation
between the information obtained from different sources can be more easily ob-
served in an aggregated model, it will also make it easier to identify the causation
of observations. An example of this can be the currently discussed topic of energy
efficiency and optimisations whereby all the factors resulting in a particular value of
energy consumption might not be easily apparent. Observation of the parameters
in an aggregated platform may help in identifying the data points that might play
role in making a particular device/sub-system more energy efficient. Moreover,
the aggregation process itself can be use-case specific i.e. instead of aggregating
everything from underlying sources only information related to energy consump-
tion/efficiency can be aggregated. Such a use-case specific aggregation can be done
at the subsystem level (which together build up an entire system). Several such
subsystems can further be aggregated to provide a system level use-case specific
aggregated information model.

159

7. Conclusion and Outlook

160

Appendices

Annex A

Criteria JSON XML

Platform-Independence + +

Ease of Use + -

Human-readable + +

Hierarchical + +

Speed of use + -

Secure + -

Table A.1: Comparison of JSON and XML

. Annex A

Figure A.1: Pump instance in the PADIM OPC UA Server Address Space

164

Figure A.2: Pump instance in the DEXPI OPC UA Server Address Space

165

. Annex A

Figure A.3: Pump instance in the OPC 40223 OPC UA Server Address Space

166

Figure A.4: AggregatedPump instance in the Aggregation OPC UA Server Address
Space

167

. Annex A

Figure A.5: Login Service in the Aggregation Server

168

Figure A.6: Read Service in the Aggregation Server

169

. Annex A

Figure A.7: Write Service in the Aggregation Server

170

Figure A.8: Subscribe Service in the Aggregation Server

171

. Annex A

O
P

C
 U

A
 f

o
r

A
u

to
ID

(R
e

p
re

se
n

t
an

d
 A

cc
es

s
A

u
to

ID
 d

ev
ic

es
)

FD
I

(D
ev

ic
e

in
te

gr
at

io
n

 a
n

d

D
ev

ic
e

m
an

ag
em

en
t

te
ch

n
o

lo
gy

 c
o

m
b

in
in

g
b

as
e

co
n

ce
p

ts
 o

f
ED

D
L

an
d

 F
D

T)

IS
A

-9
5

(I
n

fo
rm

at
io

n
 M

o
d

el
 t

h
at

 c
o

n
fo

rm
s

to

th
e

C
o

m
m

o
n

 O
b

je
ct

 M
o

d
el

 d
es

cr
ib

in
g

th
e

o
b

je
ct

 m
o

d
el

 f
o

r
In

fo
 a

b
o

u
t

P
er

so
n

n
el

, R
o

le
 B

as
e

Eq
u

ip
m

en
t,

P

h
ys

ic
al

 A
ss

et
 a

n
d

 M
at

e
ri

al
 a

s
re

so
u

rc
es

 f
o

r
M

O
M

)

O
P

C
 U

A
 f

o
r

Se
rc

o
s

D
ev

ic
es

(R
e

p
re

se
n

t
an

d
 A

cc
es

s
Se

rc
o

s
d

ev
ic

es
)

M
D

IS
(O

il
an

d
 G

as
 s

ta
n

d
ar

d
 f

o
r

in
te

rf
ac

in
g

th
e

Su
b

se
a

P
ro

d
u

ct
io

n
 C

o
n

tr
o

l
Sy

st
em

, w
it

h
 a

 M
as

te
r

C
o

n
tr

o
l S

ta
ti

o
n

to

 t
h

e
D

is
tr

ib
u

te
d

 C
o

n
tr

o
l S

ys
te

m
)

O
P

C
 U

A
 f

o
r

C
N

C
 S

ys
te

m
s

(I
n

te
rf

ac
e

an
d

 e
xc

h
an

ge
 d

at
a

w
it

h
 C

N
C

 S
ys

te
m

s)

O
P

C
 U

A
 f

o
r

FD
T

(r
ep

re
se

n
ts

 t
h

e
m

o
d

el
s

fr
o

m
 E

th
er

n
et

P

O
W

ER
LI

N
K

)

O
P

C
 U

A
 P

O
W

ER
LI

N
K

(r

ep
re

se
n

ts
 t

h
e

m
o

d
el

s
fr

o
m

 E
th

er
n

et

P
O

W
ER

LI
N

K
)

O
P

C
 U

A
 f

o
r

To
b

a
cc

o

M
a

ch
in

es
(O

P
C

 U
A

 In
fo

 M
o

d
el

 t
o

 r
ep

re
se

n
t

to
b

ac
co

 in
d

u
st

ry
 m

ac
h

in
e

in
fo

 t
o

h

ig
h

er
 le

ve
l m

an
u

fa
ct

u
ri

n
g

sy
st

e
m

s)

O
P

C
 U

A
 f

o
r

C
o

n
tr

o
l a

n
d

C

o
m

m
u

n
ic

a
ti

o
n

 S
ys

te
m

P

ro
fi

le
(O

P
C

 U
A

 In
fo

 M
o

d
el

 t
h

at
 a

p
p

lie
s

ex
is

ti
n

g
C

SP
+

 d
ev

ic
e

p
ro

fi
le

te

ch
n

o
lo

gy
 t

o
 w

h
o

le
 m

ac
h

in
es

 a
n

d

p
ro

d
u

ct
io

n
 li

n
es

)

O
P

C
 U

A
 f

o
r

A
u

to
m

a
ti

o
n

 M
L

(T
h

e
in

fo
rm

at
io

n
 m

o
d

el
 a

llo
w

s
to

 c
o

m
m

u
n

ic
at

e
an

d

o
p

er
at

io
n

al
iz

e
A

u
to

m
at

io
n

 M
L

b
y

m
ea

n
s

o
f

O
P

C
 U

A
)

O
P

C
 U

A
 f

o
r

A
n

a
ly

ze
r

D
ev

ic
es

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
 f

ea
tu

ri
n

g
an

In

fo
rm

at
io

n
 M

o
d

el
 f

o
r

A
n

al
ys

e
r

D
ev

ic
es

.)

O
P

C
 U

A
 P

a
ck

M
L

C
o

m
p

 S
p

ec
(S

ta
n

d
ar

d
 in

fo
rm

at
io

n
 m

o
d

el
 f

o
r

p
ac

ka
gi

n
g

b
as

ed
 o

n
 a

 c
o

lla
b

o
ra

ti
o

n

w
it

h
 O

M
A

C
.)

O
P

C
 U

A
 In

fo
 M

o
d

el
 f

o
r

IE
C

6

1
1

3
1

-3
(D

es
cr

ib
es

 s
ta

n
d

ar
d

iz
ed

 in
te

rf
ac

e
to

p

ro
gr

am
 P

LC
s)

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
s

d
ev

el
o

p
ed

 b
y

th
e

M
ec

h
an

ic
al

 E
n

gi
n

ee
ri

n
g

In
d

u
st

ry
A

ss
o

ci
at

io
n

)

O
P

C
 U

A
 f

o
r

R
o

b
o

ti
cs

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
 f

o
r

In
d

u
st

ri
al

R

o
b

o
ti

c
Sy

st
em

s)

O
P

C
 U

A
 f

o
r

M
a

ch
in

e
V

is
io

n
(C

o
m

p
an

io
n

 S
p

ec
if

ic
at

io
n

 f
o

r
In

d
u

st
ri

al

M
ac

h
in

e
V

is
io

n
 S

ys
te

m
s)

O
P

C
 U

A
 f

o
r

M
a

ch
in

er
y

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
 c

o
n

ta
in

in
g

h
ar

m
o

n
iz

ed
 b

u
ild

in
g

b
lo

ck
s

fo
r

th
e

m
ec

h
an

ic
al

 e
n

gi
n

ee
ri

n
g

in
d

u
st

ry
)

O
P

C
 U

A
 f

o
r

W
ei

g
h

in
g

 T
ec

h
n

o
lo

g
y

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
 f

o
r

w
e

ig
h

ti
n

g
te

ch
n

o
lo

gi
es

 a
n

d
 c

o
ve

rs
 d

if
fe

re
n

t
sc

al
e

sy
st

e
m

s)

O
P

C
 U

A
 f

o
r

P
la

st
ic

s
a

n
d

 R
u

b
b

er

M
a

ch
in

er
y

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
 f

o
r

p
la

st
ic

s
an

d

ru
b

b
er

 m
ac

h
in

er
y

in
d

u
st

ry
)

O
P

C
 U

A
 f

o
r

M
a

ch
in

e
To

o
ls

(C
o

m
p

an
io

n
 S

p
ec

if
ic

at
io

n
 f

o
r

In
d

u
st

ri
al

To

o
lin

g
m

ac
h

in
es

)

Figure A.9: OPC UA Companion Standards
[MLD09] [Fou17]

172

List of Figures

1.1 The gradual phase-in of the automation pyramid 2
1.2 Structure of the Thesis . 4

2.1 The Automation Pyramid - Hierarchy of Automation Systems . . . 10
2.2 Phase plan as per [NAM19] . 11
2.3 Phase plan of the Service phase as per [FMS04] 12
2.4 The IoT Device Lifecycle Management Model (adapted from [Soo+18]) 13
2.5 Structure of Cyber Physical Production Systems 16
2.6 Automation Pyramid in a CPPS perspective 18
2.7 Resulting Communication Mesh . 19
2.8 Enterprise Application Integration 20
2.9 The Aggregation Layer . 22

3.1 The Information Integration Process (adapted from [VDI21]) 29
3.2 Identification of Communication Interfaces 30
3.3 Main components of an information model 32
3.4 The Four Worlds of Information Systems Engineering (as defined

by the DAIDA project [Jar+92]) . 34
3.5 An example of a simple Graph Information Model 36
3.6 Information Model Development Steps 38
3.7 Important Organizations and Standardization contributions 44
3.8 Reference Architecture Model Industrie 4.0 45
3.9 OPC UA Layered Architecture . 48
3.10 The OPC UA Client-Server Relationships 50
3.11 OPC UA - An Extensible Model . 52

4.1 Basic Concept of the Aggregation Platform 57
4.2 Procedure for the meta-model development 59
4.3 Actors . 60
4.4 Use-Cases . 62
4.5 The Digital-Representation Concept 67

List of Figures

4.6 An Aggregation Scenario from the Process Industry 70
4.7 Instance and Type Mapping Rules 75
4.8 Instance and Type Mapping Rules 77
4.9 Activity Diagram for the aggregation of types and instances 79
4.10 DEXPI Graph Information Model of the Pump 83
4.11 PA-DIM Graph Information Model of the Pump 85
4.12 OPC 40223 Graph Information Model of the Pump 87
4.13 Merged Graph Information Model of the Pump 91
4.14 The Base Model . 93
4.15 Aggregated Information Model . 94
4.16 Aggregation Communication Model 96
4.17 Consumer Operation Model . 98
4.18 Modeling Levels of MOF [OMG06] 100
4.19 Basic Structure of the Meta-model 101
4.20 Data and State Model . 103
4.21 Basic Aggregation Methods . 104
4.22 Addressing Information . 105
4.23 Communication Sequences . 106
4.24 Consumer Business Logic . 106
4.25 Graphical User Interface . 107

5.1 The Architecture Concept . 112
5.2 Procedure for the Architecture Development 113
5.3 Login . 115
5.4 AIM . 117
5.5 COM . 118
5.6 ACM . 119
5.7 Configuration . 119
5.8 Automatic Rule Creation (based on a transitive relationship) 121
5.9 Mapping . 121
5.10 Deployment Diagram for Mapping Repositories 122
5.11 The Interfaces . 123
5.12 Getting the AIM element Id . 128
5.13 Reading a UIM element . 129
5.14 Writing to a UIM element . 130
5.15 Subscribing to a UIM element . 131
5.16 Subscription Data Change Event 132
5.17 Addition of an element by the consumer 133
5.18 Deletion of an element by the Consumer 134
5.19 Dynamic Addition of a UIM element 136
5.20 Dynamic Deletion of a UIM element 137

174

List of Figures

6.1 Overview of the prototype . 141
6.2 Process of Prototype Implementation 142
6.3 Implemented modules in the aggregated platform 144
6.4 Pump instance in the PADIM OPC UA Server 145
6.5 Pump instance in the DEXPI OPC UA Server 146
6.6 Pump instance in the OPC 40223 OPC UA Server 147
6.7 Aggregated Pump instance in the Aggregation OPC UA Server . . 149

A.1 Pump instance in the PADIM OPC UA Server Address Space . . . 164
A.2 Pump instance in the DEXPI OPC UA Server Address Space . . . 165
A.3 Pump instance in the OPC 40223 OPC UA Server Address Space . 166
A.4 AggregatedPump instance in the Aggregation OPC UA Server Ad-

dress Space . 167
A.5 Login Service in the Aggregation Server 168
A.6 Read Service in the Aggregation Server 169
A.7 Write Service in the Aggregation Server 170
A.8 Subscribe Service in the Aggregation Server 171
A.9 OPC UA Companion Standards . 172

175

List of Figures

176

List of Tables

4.1 Description of Actors . 61
4.2 Description of the Use-Cases . 63
4.3 Functional Requirements . 64
4.4 Non-functional Requirements . 65
4.5 Aggregation Scenarios . 71

6.1 Functional requirements fulfilled by the solution concept 155
6.2 Non-functional requirements fulfilled by the solution concept 156

A.1 Comparison of JSON and XML . 163

List of Tables

178

Listings

4.1 RDF Dataset for the DEXPI example graph 82
4.2 RDF Dataset for the PADIM example graph 84
4.3 RDF Dataset for the OPC40223 example graph 86
4.4 SPARQL query to match the two pump instances between the

DEXPI and PA-DIM models . 88
4.5 SPARQL query to match the two pump instances between the PA-

DIM and OPC 40223 models . 89
4.6 RDF Dataset for the Merged graph 92
6.1 Instance Mapping Rule JSON for the Pump instance in DEXPI and

PADIM models . 152
6.2 Instance Mapping Rule JSON for the Pump instance in PADIM and

OPC 40223 models . 152
6.3 Instance Mapping Rule JSON for the Pump instance in PADIM and

ModelX models . 153
6.4 Instance Mapping Rule JSON for the Pump instance in PADIM and

ModelX models . 154

Listings

180

Acronyms

AAS Asset Administration Shell. 70

ACM Aggregation Communication Model. 95, 100

AI Addressing Information. 96

AIM Aggregated Information Model. 56, 63, 93

BM Basic Methods. 95

BPMN Business Process Model and Notation. 12

CBL Consumer Business Logic. 98

COM Consumer Operation Model. 97

CS Communication Sequences. 97

DSM Data and State Model. 94

EAI Enterprise Application Integration. 20

ER Entity-Relationship. 35

ERP Enterprise Resource Planning. 11

GUI Graphical User Interface. 99

HMI Human Machine Interaction. 10

MES Manufacturing Execution System. 10

MOF Meta Object Facility. 99

OMG Object Management Group. 99

Acronyms

O-O Object-Oriented. 35, 36, 37

OPC UA Open Platform Communication Unified Architecture. 46

PLC Programmable Logic Controller. 10

SCADA Supervisory Control and Data Acquisition. 10

SDK Software Development Kit. 17

UML Unified Modelling Language. 99

182

References

[Ado+16] P Adolphs, S Auer, H Bedenbender, M Billmann, M Hankel, R Heidel,
M Hoffmeister, H Huhle, M Jochem, M Kiele-Dunsche, et al. ‘Struktur
der verwaltungsschale: Fortentwicklung des referenzmodells für die
Industrie 4.0-komponente’. In: Bundesministerium für Wirtschaft und
Energie (BMW), Berlin (2016), pp. 345–361.

[Aie06] S. Aier. Enterprise application integration: Serviceorientierung und
nachhaltige Architekturen. Reihe Enterprise architecture. Gito-Verlag,
2006. isbn: 9783936771749.

[ATE19] Selma Azaiez, Francois Tanguy, and Marc Engel. ‘Towards build-
ing OPC-UA companions for semi-conductor domain’. In: 2019 24th
IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA). IEEE. 2019, pp. 142–149.

[BCK03] L. Bass, P. Clements, and R. Kazman. Software Architecture in Prac-
tice. SEI series in software engineering. Addison-Wesley, 2003. isbn:
9780321154958.

[BD10] B. Bruegge and A.H. Dutoit. Object-oriented Software Engineer-
ing: Using UML, Patterns, and Java. Prentice Hall, 2010. isbn:
9780136061250.

[Bir01] Rolf Birkhofer. Modellbasierte Beschreibung zur offenen Integration
intelligenter Feldgeräte der Automatisierungstechnik. Vol. 16. Herbert
Utz Verlag, 2001.

[Bou+21] Cornelis Bouter, Monireh Pourjafarian, Leon Simar, and Robert Wil-
terdink. ‘Towards a Comprehensive Methodology for Modelling Sub-
models in the Industry 4.0 Asset Administration Shell’. In: 2021 IEEE
23rd Conference on Business Informatics (CBI). Vol. 2. IEEE. 2021,
pp. 10–19.

[BPV12] Jörg Becker, Wolfgang Probandt, and Oliver Vering. Grundsätze ord-
nungsmäßiger Modellierung: Konzeption und Praxisbeispiel für ein ef-
fizientes Prozessmanagement. Springer-Verlag, 2012.

A. References

[Bus] F. Buschmann. PatternOriented-Software-Architecture-A-System-of-
Patterns-Volume-1. Bd. 1. Wiley. url: https://books.google.de/
books?id=0kUFZDuqvmEC.

[Cdd] IEC 61987 Common Data Dictionary. Standard. International
Electrotechnical Commission. url: https : / / cdd . iec . ch / cdd /
iec61987/cdddev.nsf/TreeFrameset?OpenFrameSet.

[Cle+10] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,
P. Merson, R. Nord, and J. Stafford. Documenting Software Architec-
tures: Views and Beyond. SEI Series in Software Engineering. Pearson
Education, 2010. isbn: 9780132488594.

[Col+14] A.W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka,
R. Harrison, F. Jammes, and J.L. Lastra. Industrial Cloud-Based
Cyber-Physical Systems: The IMC-AESOP Approach. Springer-
Link : Bücher. Springer International Publishing, 2014. isbn:
9783319056241.

[Com+13] International Electrotechnical Commission et al. ‘IEC 62264-1: 2013’.
In: Enterprise-control system integration (2013).

[Com16] International Electrotechnical Commission. IEC TR 63022 ED1:
Model Universals – Specification and Examples. Sept. 2016.

[CS88] Allan Collins and Edward E Smith. ‘Readings in Cognitive Science, a
Perspective From Psychology and Artificial Intelligence’. In: (1988).

[DB06] C. Diedrich and T. Bangemann. Profibus PA: Instrumentierungstech-
nologie für die Verfahrenstechnik. Automatisierungstechnik 2016.
Oldenbourg Industrieverl., 2006. isbn: 9783835630567.

[DC+19] Jan De Caigny, Thomas Tauchnitz, Ronny Becker, Christian
Diedrich, Tizian Schröder, Daniel Großmann, Suprateek Banerjee,
Markus Graube, and Leon Urbas. ‘NOA–Von Demonstratoren
zu Pilotanwendungen: Vier Anwendungsfälle der Namur Open
Architecture’. In: atp magazin 61.1-2 (2019), pp. 44–55.

[Dex] DEXPI P&ID Specification Version 1.3. Standard. DEXPI Initiative,
June 2021. url: https://dexpi.org/wp-content/uploads/2020/
09/DEXPI-PID-Specification-1.3.pdf.

[Din] DIN SPEC 91345:Referenzarchitekturmodell Industrie4.0 (RAMI4.0).
Standard. DIN Deutsches Institut für Normung e.V., 2016.

[DMT12] DMTF. ‘Common Information Model (CIM) Infrastructure’. In: (Apr.
2012).

184

https://books.google.de/books?id=0kUFZDuqvmEC
https://books.google.de/books?id=0kUFZDuqvmEC
https://cdd.iec.ch/cdd/iec61987/cdddev.nsf/TreeFrameset?OpenFrameSet
https://cdd.iec.ch/cdd/iec61987/cdddev.nsf/TreeFrameset?OpenFrameSet
https://dexpi.org/wp-content/uploads/2020/09/DEXPI-PID-Specification-1.3.pdf
https://dexpi.org/wp-content/uploads/2020/09/DEXPI-PID-Specification-1.3.pdf

[Dra09] R. Drath. Datenaustausch in der Anlagenplanung mit AutomationML:
Integration von CAEX, PLCopen XML und COLLADA. VDI-Buch.
Springer Berlin Heidelberg, 2009. isbn: 9783642046742.

[DuC13] Bob DuCharme. Learning SPARQL: querying and updating with
SPARQL 1.1. ” O’Reilly Media, Inc.”, 2013.

[Eme03] Emerson. EMERSON PROCESS MANAGEMENT: Reducing opera-
tions and maintenance costs - White paper, September 2003. 2003.

[Fay+17] Alexander Fay, Christian Diedrich, Martin Dubovy, Christian
Eck, Constantin Hildebrandt, André Scholz, Tizian Schröder, and
Ralf Wiegand. Vorhandene Standards als semantische Basis für
die Anwendung von Industrie 4.0 (SemAnz40). ger. Tech. rep.
Holstenhofweg 85, 22043 Hamburg: Universitätsbibliothek der
Helmut-Schmidt-Universität, 2017.

[FMS04] Karl Friedrich Früh, Uwe Maier, and Dieter Schaudel. Handbuch der
Prozessautomatisierung. Oldenbourg Verlag-Strohmann, G.: Automa-
tisierungstechnik (2 Bände . . ., 2004.

[Fou17] OPC Foundation. OPC Unified Architecture - Interoperability for In-
dustrie 4.0 and the Internet of Things. OPC Foundation, 2017, p. 16.
url: https://opcfoundation.org/wp-content/uploads/2017/
11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf.

[Fou21a] OPC Foundation. OPC 30081: OPC UA for Process Automation De-
vices – PA-DIM. July 2021.

[Fou21b] OPC Foundation. OPC 30090: OPC UA for Field Device Tool (FDT).
Aug. 2021.

[Fou21c] OPC Foundation. OPC 30250: OPC Unified Architecture for DEXPI.
Sept. 2021.

[Fou22] OPC Foundation. OPC 30080: OPC UA for Field Device Integration
(FDI). Apr. 2022.

[Fra+18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg,
Petra Selmer, and Andrés Taylor. ‘Cypher: An evolving query lan-
guage for property graphs’. In: Proceedings of the 2018 International
Conference on Management of Data. 2018, pp. 1433–1445.

[GH20] Iris Graessler and Julian Hentze. ‘The new V-Model of VDI 2206 and
its validation’. In: at-Automatisierungstechnik 68.5 (2020), pp. 312–
324.

185

https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf
https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf

A. References

[Gom11] H. Gomaa. Software Modeling and Design: UML, Use Cases, Pat-
terns, and Software Architectures. Cambridge University Press, 2011.
isbn: 9781139494731.

[GR89] Adele Goldberg and D. Robson. Smalltalk-80: The Language.
Addison-Wesley series in computer science. Addison-Wesley, 1989.
isbn: 9780201136883.

[Gro+13] D. Großmann, M. Braun, B. Danzer, and M. Riedl. FDI - Field De-
vice Integration: Handbuch für die einheitliche Integrationstechnolo-
gie. Vde Verlag GmbH, 2013. isbn: 9783800735136.

[HAC14] Ernie Hayden, Michael Assante, and Tim Conway. ‘An Abbreviated
History of Automation and Industrial Controls Systems and Cyber-
security’. In: (Aug. 2014).

[Hen00] Ken Henderson. The guru’s guide to Transact-SQL. Addison-Wesley
Professional, 2000.

[HML81] Michael Hammer and Dennis Mc Leod. ‘Database description with
SDM: A semantic database model’. In: ACM Transactions on
Database Systems (TODS) 6.3 (1981), pp. 351–386.

[HP18] Olaf Hartig and Jorge Pérez. ‘Semantics and complexity of
GraphQL’. In: Proceedings of the 2018 World Wide Web Conference.
2018, pp. 1155–1164.

[ISO09] ISO. ‘ISO/TS 29002-5: 2009 Industrial automation systems and
integration—Exchange of characteristic data—Part 5: Identification
scheme’. In: (2009).

[Jar+92] Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, and Yan-
nis Vassiliou. ‘DAIDA: An environment for evolving information sys-
tems’. In: ACM Transactions on Information Systems (TOIS) 10.1
(1992), pp. 1–50.

[Jes+16] S. Jeschke, C. Brecher, H. Song, and D.B. Rawat. Industrial In-
ternet of Things: Cybermanufacturing Systems. Springer Series in
Wireless Technology. Springer International Publishing, 2016. isbn:
9783319425597.

[JNW10] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM,
Disk. Elsevier Science, 2010. isbn: 9780080553849.

[Kag+13] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster. Recommen-
dations for Implementing the Strategic Initiative INDUSTRIE 4.0:
Securing the Future of German Manufacturing Industry ; Final Re-
port of the Industrie 4.0 Working Group. Forschungsunion, 2013.

186

[Keg07] G Kegel. ‘Automation und Lifecycle Management Zusammenhänge
und Abgrenzungen’. In: Gesellschaft Mess-und Automatisierungstech-
nik (GMA)-Kongress, Baden-Baden. 2007.

[Kha09] IIT Kharagpur. Introduction to Industrial Automation and Control.
2009. isbn: 9780080553849. url: https://nptel.ac.in/courses/
108105063/pdf/L-01(SM)(IA&C)%20((EE)NPTEL).pdf.

[Kle+17a] Christian Klettner, Thomas Tauchnitz, Ulrich Epple, Lars Nothdurft,
Christian Diedrich, Tizian Schröder, Daniel Großmann, Suprateek
Banerjee, Michael Krauß, Chris Iatrou, et al. ‘Namur Open Archi-
tecture: Die Namur-Pyramide wird geöffnet für Industrie 4.0’. In: atp
magazin 59.01-02 (2017), pp. 20–37.

[Mat+20] Selvine G Mathias, Sebastian Schmied, Daniel Grossmann, Ralph
Klaus Müller, and Björn Mroß. ‘A compliance testing structure for
implementation of industry standards through opc ua’. In: 2020 25th
IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA). Vol. 1. IEEE. 2020, pp. 1091–1094.

[Mik14] Martin Mikusz. ‘Towards an understanding of cyber-physical systems
as industrial software-product-service systems’. In: Procedia Cirp 16
(2014), pp. 385–389.

[MLD09] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC
unified architecture. Springer Science & Business Media, 2009.

[Mon14] László Monostori. ‘Cyber-physical production systems: Roots, expec-
tations and R&D challenges’. In: Procedia Cirp 17 (2014), pp. 9–13.

[Müh12] M. Mühlhause. Konzept Zur Durchgängigen Nutzung Von Engi-
neeringmodellen der Automation. Logos Verlag Berlin, 2012. isbn:
9783832596675.

[Myl98] John Mylopoulos. Characterizing Information Modeling Techniques.
Ed. by Peter Bernus, Kai Mertins, and Günter Schmidt. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1998, pp. 17–57. isbn: 978-3-
662-03526-9. doi: 10.1007/978-3-662-03526-9_2. url: https:
//doi.org/10.1007/978-3-662-03526-9_2.

[NAM19] NAMUR. NAMUR NA 35:2019-01-17 Engineering and execution of
PCT projects in process industry. Jan. 2019, p. 35.

[Ne16a] DIN Deutsches Institut für Normung e.V. DIN SPEC 820-1: Nor-
mungsarbeit - Teil 1: Grundsätze. Beuth Publishing, 2016.

[Ne16b] DIN Deutsches Institut für Normung e.V. DIN SPEC 91345: Referen-
zarchitekturmodell Industrie 4.0 (RAMI4.0). 2016.

187

https://nptel.ac.in/courses/108105063/pdf/L-01(SM)(IA&C)%20((EE)NPTEL).pdf
https://nptel.ac.in/courses/108105063/pdf/L-01(SM)(IA&C)%20((EE)NPTEL).pdf
https://doi.org/10.1007/978-3-662-03526-9_2
https://doi.org/10.1007/978-3-662-03526-9_2
https://doi.org/10.1007/978-3-662-03526-9_2

A. References

[OF19a] VDMA OPC Foundation. OPC 40010-1: OPC UA for Robotics - Ver-
tical Integration. July 2019.

[OF19b] VDMA OPC Foundation. OPC 40100-1: OPC UA for Machine Vi-
sion - Control, configuration management, recipe management, result
management. Aug. 2019.

[OF21] VDMA OPC Foundation. OPC 40223: OPC UA for Pumps and Vac-
uum Pumps). May 2021.

[OMG06] OMG. ‘Meta Object Facility (MOF) Core Specification’. In: (2006).
[OT17] M. Oppitz and P. Tomsu. Inventing the Cloud Century: How Cloudi-

ness Keeps Changing Our Life, Economy and Technology. Springer
International Publishing, 2017. isbn: 9783319611617.

[PH04] D.A. Patterson and J.L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface, Third Edition. The Morgan
Kaufmann Series in Computer Architecture and Design. Elsevier Sci-
ence, 2004. isbn: 9780080502571.

[PU10] PLCOpen and OPC UA. ‘PLCOpen and OPC Foundation: OPC UA
Information Model for IEC 61131-3’. In: (Feb. 2010).

[Rot16] Armin Roth. Einführung und Umsetzung von Industrie 4.0: Grundla-
gen, Vorgehensmodell und Use Cases aus der Praxis. Springer-Verlag,
2016.

[RQ+12] Chris Rupp, Stefan Queins, et al. UML 2 glasklar: Praxiswissen für
die UML-Modellierung. Carl Hanser Verlag GmbH Co KG, 2012.

[Run19] Krishna Rungta. UML 2.0: Learn UML in 1 Day. Guru99, 2019.
[Sch07] B. Scholten. The Road to Integration: A Guide to Applying the ISA-95

Standard in Manufacturing. ISA, 2007. isbn: 9780979234385.
[Sch+19] Rainer Schiekofer, Stephan Grimm, Maja Milicic Brandt, and Michael

Weyrich. ‘A formal mapping between OPC UA and the semantic web’.
In: 2019 IEEE 17th International Conference on Industrial Informat-
ics (INDIN). Vol. 1. IEEE. 2019, pp. 33–40.

[Soo+18] Gabor Soos, Daniel Kozma, Ferenc Nandor Janky, and Pal Varga.
‘IoT Device Lifecycle – A Generic Model and a Use Case for Cel-
lular Mobile Networks’. In: Aug. 2018, pp. 176–183. doi: 10.1109/
FiCloud.2018.00033.

[SVC06] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki. Model-
driven software development: technology, engineering, management.
John Wiley & Sons, Inc., 2006.

188

https://doi.org/10.1109/FiCloud.2018.00033
https://doi.org/10.1109/FiCloud.2018.00033

[TL08] Y Tina Lee. ‘Information Modeling: From Design to Implementation’.
In: (Aug. 2008).

[Usl+12] M. Uslar, M. Specht, S. Rohjans, J. Trefke, and J.M. González. The
Common Information Model CIM: IEC 61968/61970 and 62325 - A
practical introduction to the CIM. Power Systems. Springer Berlin
Heidelberg, 2012. isbn: 9783642252150.

[VDI21] VDI/VDE. VDI/VDE 2206: 2021-11 Development of mechatronic
and cyber-physical systems. VDI/VDE 2206. Beuth Publishing, 2021.
url: https://www.beuth.de/en/technical- rule/vdi- vde-
2206/342674320.

[WT21] Jan Nicolas Weskamp and Juilee Tikekar. ‘An Industrie 4.0 compliant
and self-managing OPC UA Aggregation Server’. In: 2021 26th IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA). IEEE. 2021, pp. 1–8.

[WW18] Lihui Wang and Xi Vincent Wang. Cloud-based cyber-physical systems
in manufacturing. Springer, 2018.

[Zur16] R. Zurawski. Integration Technologies for Industrial Automated
Systems. Industrial Information Technology. CRC Press, 2016. isbn:
9781420009040.

189

https://www.beuth.de/en/technical-rule/vdi-vde-2206/342674320
https://www.beuth.de/en/technical-rule/vdi-vde-2206/342674320

A. References

190

List of Publications

[BG16] Suprateek Banerjee and Ing Daniel Großmann. ‘An Electronic De-
vice Description Language based approach for communication with
dbms and file system in an industrial automation scenario’. In: 2016
IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA). 2016, pp. 1–4. doi: 10.1109/ETFA.
2016.7733682.

[BG17] Suprateek Banerjee and Daniel Großmann. ‘Aggregation of informa-
tion models — An OPC UA based approach to a holistic model of
models’. In: 2017 4th International Conference on Industrial Engi-
neering and Applications (ICIEA). 2017, pp. 296–299. doi: 10.1109/
IEA.2017.7939225.

[BG19] Suprateek Banerjee and Daniel Grossmann. ‘OPC UA and Dynamic
Web Services: A Generic Flexible Industrial Communication Ap-
proach’. In: ICCAE 2019. Perth, WN, Australia: Association for
Computing Machinery, 2019, 114–117. isbn: 9781450362870. doi:
10.1145/3313991.3313996. url: https://doi.org/10.1145/
3313991.3313996.

[Cai+19] Jan de Caigny, Thomas Tauchnitz, Ronny Becker, Christian Diedrich,
Tizian Schröder, Daniel Großmann, Suprateek Banerjee, Markus
Graube, and Leon Urbas. ‘NOA–Von Demonstratoren zu Pilotan-
wendungen: Vier Anwendungsfälle der Namur Open Architecture’.
In: atp magazin 61.1-2 (2019), pp. 44–55.

[Gro+14a] Daniel Grossmann, Suprateek Banerjee, Markus Bregulla, Dirk
Schulz, and Roland Braun. ‘Auf dem Weg zum Internet of Portals’.
In: atp magazin 56.07-08 (2014), pp. 42–51.

[Gro+14b] D. Großmann, S. Banerjee, M. Bregulla, D. Schulz, and R. Braun.
‘OPC UA server aggregation — The foundation for an internet of
portals’. In: Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA). 2014, pp. 1–6. doi: 10.1109/ETFA.
2014.7005354.

https://doi.org/10.1109/ETFA.2016.7733682
https://doi.org/10.1109/ETFA.2016.7733682
https://doi.org/10.1109/IEA.2017.7939225
https://doi.org/10.1109/IEA.2017.7939225
https://doi.org/10.1145/3313991.3313996
https://doi.org/10.1145/3313991.3313996
https://doi.org/10.1145/3313991.3313996
https://doi.org/10.1109/ETFA.2014.7005354
https://doi.org/10.1109/ETFA.2014.7005354

A. List of Publications

[Gro+16] D. Großmann, S. Banerjee, J. Kiesbauer, and S. Erben. Pre-
dictive Maintenance auf der Basis von FDI und OPC UA.
AUTOMATION 2016: 17. Branchentreff der Mess- und Au-
tomatisierungstechnik. Düsseldorf: VDI Verlag, 2016, 77–78. isbn:
978-3-18-102284-9. doi: 10 . 51202 / 9783181022849 - 77. url:
https://doi.org/10.51202/9783181022849-77.

[Kle+17b] Christian Klettner, Thomas Tauchnitz, Ulrich Epple, Lars Nothdurft,
Christian Diedrich, Tizian Schröder, Daniel Großmann, Suprateek
Banerjee, Michael Krauß, Chris Iatrou, et al. ‘Namur Open Archi-
tecture: Die Namur-Pyramide wird geöffnet für Industrie 4.0’. In: atp
magazin 59.01-02 (2017), pp. 20–37.

[Mir+17] Jorge Miranda, Suprateek Banerjee, Jorge Cabral, Daniel Grossmann,
Christian F. Pedersen, and Stefan R. Wagner. ‘Analysis of OPC uni-
fied architecture for healthcare applications’. In: 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA). 2017, pp. 1–4. doi: 10.1109/ETFA.2017.8247771.

[Not+18] Lars Nothdurft, Ulrich Epple, Tizian Schröder, Christian Diedrich,
Daniel Grossmann, Suprateek Banerjee, Sebastian Schmied, Chris
Paul Iatrou, Markus Graube, Leon Urbas, et al. ‘NOA Demonstra-
toren Special’. In: atp magazin 60.01-02 (2018), pp. 44–69.

[Sch+20] Sebastian Schmied, Daniel Grossmann, Selvine G. Mathias, and
Suprateek Banerjee. ‘Vertical Integration via Dynamic Aggregation
of Information in OPC UA’. In: Intelligent Information and Database
Systems. Ed. by Pawel Sitek, Marcin Pietranik, Marek Krotkiewicz,
and Chutimet Srinilta. Singapore: Springer Singapore, 2020, pp. 204–
215. isbn: 978-981-15-3380-8.

192

https://doi.org/10.51202/9783181022849-77
https://doi.org/10.51202/9783181022849-77
https://doi.org/10.1109/ETFA.2017.8247771

Curriculum Vitae

This page is only available in the print version due to the regulations of the
Otto-von-Guericke University.

A. Curriculum Vitae

194

Declaration of Honor

”I hereby declare that I produced this thesis without prohibited external assistance
and that none other than the listed references and tools have been used. I did not
make use of any commercial consultant concerning graduation. A third party
did not receive any nonmonetary perquisites neither directly nor indirectly for
activities which are connected with the contents of the presented thesis.
All sources of information are clearly marked, including my own publications.
In particular I have not consciously:

• Fabricated data or rejected undesired results

• Misused statistical methods with the aim of drawing other conclusions than
those warranted by the available data

• Plagiarized data or publications

• Presented the results of other researchers in a distorted way

I do know that violations of copyright may lead to injunction and damage claims
of the author and also to prosecution by the law enforcement authorities. I hereby
agree that the thesis may need to be reviewed with an electronic data processing
for plagiarism.

This work has not yet been submitted as a doctoral thesis in the same or a similar
form in Germany or in any other country. It has not yet been published as a
whole.”

.....................................
Place, Date

...
Suprateek Banerjee

Frankfurt am Main, 17.11.2023

A. Declaration of Honor

196

	Acknowledgement
	Abstract
	Zusammenfassung
	Introduction
	Motivation and Problem Statement
	Goal of the thesis
	Structure of the thesis

	Management of Cyber-physical Production Systems
	Complex Automation Systems
	Types of Automation Systems
	Structure of Automation Systems
	Life Cycle of Automation Systems

	Cyber Physical Production Systems
	Structure of a CPPS
	Information Modeling in a CPPS

	Information Integration in a CPPS
	The resulting connection mesh
	Enterprise Application Integration
	Aggregated Information Model

	Summary and Task Definition

	Methods and Tools for Information Integration
	Development of Information Integration
	The General Information Integration Process

	The Information Modeling Process
	Conceptualization of Information Models
	Modeling Methodologies
	Modeling Steps

	A Common Landscape of Information Models in Automation
	Reference Models
	Model Universals
	Concept for consistent use of Engineering Models in Automation
	SemAnz4.0
	RAMI 4.0

	OPC UA - An Enabler for Industry 4.0
	Motivation and Overview
	OPC UA Base Layer
	OPC UA Model Extensions

	Summary

	Solution Concept for the Aggregated Integration Platform
	Basic Concept
	Overview of the concept idea
	Method for the solution development

	Analysis
	Actors and Use-Cases
	Requirements for the Aggregated Integration Platform
	Entities in an Aggregated Information Model
	An Aggregation Scenario from the Process Industry
	Considerations for Information Aggregation
	Merging of Information Models
	Demonstration of a Merged Information Model with Graphs

	Base Model of Information Aggregation
	Aggregated Information Model
	Aggregation Communication Model
	Consumer Operation Model

	Meta-model of Information Aggregation
	Basic Structure of the Meta-model
	Data and State Model
	Basic Methods
	Addressing Information
	Communication Sequences
	Consumer Business Logic
	Graphical User Interface

	Summary

	Architecture of the Aggregated Integration Concept
	Architecture Concept
	Overview of the Architecture Concept
	Procedure for the Architecture development

	Structural Model
	Conceptual Class Diagrams of the platform modules

	Definition of Interfaces
	Login-Interface
	AIM-Interface
	COM-Interface
	Mapping-Interface
	ACM-Interface
	Configuration-Interface

	Behavioral Model
	Read Access to a UIM element
	Write Access to a UIM element
	Subscribing to a UIM instance
	Addition of a UIM element by Consumer
	Deletion of a UIM element by Consumer
	Dynamic Addition of a UIM element
	Dynamic Deletion of a UIM element

	Summary

	Realization and Review
	Overview of the Implementation
	Overview of the Prototype
	Process of Prototype Implementation

	Implementation Technologies
	Description of Mapping Rules
	Client-Server Technology

	Illustration of the aggregated platform
	Underlying Servers
	Aggregation Server
	Configuration
	Consumer Client
	Mapping Rules Repository

	Evaluation of the implemented prototype
	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendices
	Annex A
	References
	List of Publications
	Curriculum Vitae
	Declaration of Honor

