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Abstract

Optimization problems with conflicting objectives occur in various domains
and can be tackled through simultaneous optimization of multiple objectives.
Metaheuristic techniques like evolutionary algorithms are used to search for
optimal decision variables. Multi-modal multi-objective optimization problems
have gained recent interest in the field, although they remain relatively unex-
plored and require further investigation. The motivation for studying these
problems arises from decision-makers’ preferences that cannot be mathemati-
cally expressed or incorporated into existing frameworks. Providing diverse
solutions enables informed decision-making, and studying these problems
offers alternative solutions when implementation challenges arise.

In the existing literature, numerous studies focus on capturing and preserving
diverse solutions in the search space. Nevertheless, there is a need for further
research to develop methods that can more accurately estimate solution density
in the neighborhood of each individual solution. Additionally, it is crucial to
develop approaches that effectively preserve diverse solutions in the search
space and prevent getting trapped in local optima. By tackling these challenges,
the performance and efficiency of multi-modal optimization algorithms can be
significantly improved, leading to a more effective exploration of the search
space for these specific problems.

This thesis contributes to multi-modal multi-objective optimization in two key
ways. Firstly, it proposes approaches to handle two types of problems: those
with multiple global optimal solution sets and those with both local and global
Pareto optimal solution sets. The developed algorithms effectively address
these problems. Secondly, novel algorithms are introduced to overcome the
limitations of the crowding distance method, ensuring an accurate represen-
tation of solution diversity in the search space. Additionally, a classification
scheme for multi-modal multi-objective optimization algorithms based on
their selection mechanism is presented.

This thesis includes a thorough experimental evaluation of proposed and
existing methods, analyzing their advantages, disadvantages, and performance.
The results demonstrate that these approaches are competitive and frequently
outperform the state-of-the-art methods in the field.
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Zusammenfassung

Mutlikriterielle Optimierungsprobleme treten in verschiedenen Bereichen auf
und können durch die gleichzeitige Optimierung mehrerer Ziele gelöst werden.
Metaheuristiken wie evolutionäre Algorithmen sind Werkzeuge, um optimale
Lösungen unter Berücksichtigung mehrerer Kriterien zu suchen. In den letzten
Jahren ist das Interesse an multimodalen, multikriteriellen Optimierungsprob-
lemen gewachsen. Allerdings gibt es nicht viele Forschungsarbeiten in diesem
Bereich. Die Motivation, diese Probleme weiter zu untersuchen, sind Präferen-
zen von Entscheidungsträgern, welche in den existierenden Frameworks bisher
nicht berücksichtigt werden können. Das Berechnen von möglichst diversen
Lösungen ermöglicht es besser informierte Entscheidungen zu treffen und Alter-
nativlösungen zu wählen, sollte bei der Umsetzung der eigentlich ausgewählten
Lösung ein Problem auftreten.

Die bisherige Literatur konzentriert sich darauf, die multikriteriellen Lösungen
gut im Lösungsraum zu verteilen. Dabei wird oft die Verteilung der Lösungen
im Suchraum vernachlässigt, was dazu führen kann, dass nur unimodale
Lösungen gefunden werden. Eine gute Verteilung im Suchraum ist essenziell
für die Performance und Effizienz von multimodalen Optimierungsalgorithmen.

Diese Dissertation trägt in zwei wesentlichen Aspekten zur mutlimodalen,
multikriteriellen Optimierung bei. Erstens werden Ansätze zur Bewältigung
von zwei Problemklassen vorgeschlagen: Probleme mit mehreren global opti-
malen Lösungen und Probleme mit sowohl lokalen als auch globalen Pareto-
optimalen Lösungen. Die entwickelten Algorithmen adressieren diese beiden
Problemklassen effektiv. Zweitens werden neue Algorithmen vorgestellt, um die
Limitation der üblich verwendeten Crowding-Distance Metrik zu adressieren
und eine bessere Verteilung im Suchraum sicherzustellen. Außerdem wird
eine Klassifikation für mutlimodale, multikriterielle Optimierungsalgorithmen
basierend auf ihrem Selektionsmechanismus präsentiert.

Diese Dissertation umfasst eine gründliche experimentelle Evaluation der
bereits bestehenden und hier neu präsentierten Methoden, in welcher Vorteile,
Nachteile und die Performance analysiert werden. Die Ergebnisse zeigen,
dass die hier vorgestellten Ansätze im Vergleich zu den bisherigen Methoden
wettbewerbsfähig sind und sie häufig übertreffen.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research goals and objectives . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Multi-Modal Multi-Objective Optimization 10
2.1 Multi-objective 0ptimization . . . . . . . . . . . . . . . . . . 10
2.2 Multi-modal Optimization . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Single-objective Multi-modal Optimization . . . . . . . 14
2.2.2 Multi-objective Optimization . . . . . . . . . . . . . . 15

2.2.2.1 Type-I multi-objective optimization evolution-
ary algorithm (MMOP): Multiple Global Pareto-
sets . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2.2 Type-II multi-objective optimization evolu-
tionary algorithm (MMOP): Coexistence of
Global and Local Pareto-sets . . . . . . . . . 15

2.3 Population-based Meta-heuristic Approaches . . . . . . . . . 15
2.4 Multi-objective Evolutionary Algorithms . . . . . . . . . . . . 17

2.4.1 Exploitation versus Exploration . . . . . . . . . . . . . 21
2.5 Multi-modal Multi-objective Evolutionary Algorithms . . . . . 21

2.5.1 Niching . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Niching Techniques . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Diversity in the Search Space versus Objective Space . 24

vi



2.7 Benchmark Problems for Multi-modal Multi-objective Opti-
mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Performance Indicators . . . . . . . . . . . . . . . . . . . . . 29
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Related Work and Foundations for Experimental Comparison
33

3.1 Overview of State-of-the-art Algorithms . . . . . . . . . . . . 33
3.1.1 Multi-modal Single-objective Optimization . . . . . . 34
3.1.2 Multi-modal Multi-objective Optimization . . . . . . . 35

3.2 Classification of related approaches for Multi-modal Multi-
objective Optimization with Multiple Global Pareto sets (Type
I multi-objective optimization evolutionary algorithm (MMOP)) 36
3.2.1 Decomposition-based Multi-modal Multi-objective Evo-

lutionary Algorithms . . . . . . . . . . . . . . . . . . . 37
3.2.2 Pareto-Dominance-based Multi-modal Multi-objective

Evolutionary Algorithms . . . . . . . . . . . . . . . . 39
3.2.3 Indicator-based Multi-modal Multi-objective Evolution-

ary Algorithms . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Related work for Multi-objective Optimization with Multiple

local Pareto-sets (Type II MMOP)) . . . . . . . . . . . . . . . 44
3.4 Foundation for Experimental Comparison . . . . . . . . . . . 46

3.4.1 Configuration of the State-of-the-art Algorithms . . . . 48
3.4.2 Specification of Benchmark Problems . . . . . . . . . . 49

4 Exploratory and Preservative Methodologies 51
4.1 Proposed exploratory methods . . . . . . . . . . . . . . . . . . 52

4.1.1 Tournament Selection Mechanism . . . . . . . . . . . 52
4.1.2 Neighborhood-based Mutation Operator . . . . . . . . 55

4.2 Proposed Preservative Methods . . . . . . . . . . . . . . . . . 58
4.2.1 Weighted sum crowding distance density measurement

approach . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.1 Configuration of the Proposed Methods . . . 60
4.2.1.2 Discussion of Results . . . . . . . . . . . . . . 62
4.2.1.3 Influence of the Weight Values in the Weighed

Sum Crowding Distance Approach . . . . . . 67

vii



4.2.1.4 Influence of the Population Size in the Weighed
Sum Crowding Distance Approach . . . . . . 68

4.2.2 Manhattan Distance-based Density Measurement Ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2.1 Combination of Manhattan and Crowding Dis-

tances in the Search Space . . . . . . . . . . . 70
4.2.2.2 Configuration of the Proposed Method . . . . 71
4.2.2.3 Discussion of results . . . . . . . . . . . . . . 71

4.2.3 Grid Distance-based Density Measurement Approach . 75
4.2.3.1 Configuration of the Proposed Method . . . . 82
4.2.3.2 Discussion of Results . . . . . . . . . . . . . 82

4.3 Proposed Approaches for Preserving both the Local and Global
Pareto-sets of Solutions . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 DBSCAN Clustering Approach . . . . . . . . . . . . . 89
4.3.2 EMMOA− XYlocal Algorithm . . . . . . . . . . . . . . 91
4.3.3 General Framework . . . . . . . . . . . . . . . . . . . . 91
4.3.4 Proposed Environmental Selection . . . . . . . . . . . . 92
4.3.5 Specification of Benchmark Problems . . . . . . . . . . 96

4.3.5.1 Configuration of the Proposed Method . . . . 97
4.3.5.2 Discussion of results . . . . . . . . . . . . . . 97

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Inter- and Intra-Front Selection Operations 103
5.1 Intra-front Selection Operations in Multi-modal Multi-objective

Optimization Problems . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 The Challenges of Crowding Distance Approach . . . . 105
5.1.2 ES-EMMO Algorithm . . . . . . . . . . . . . . . . . . 108

5.2 Inter-front Selection Operations in Multi-modal Multi-objective
Optimization Problems . . . . . . . . . . . . . . . . . . . . . 109
5.2.1 NxEMMO Algorithm . . . . . . . . . . . . . . . . . . 110

5.2.1.1 Configuration of the Proposed Methods . . . 113
5.2.1.2 Discussion of Results . . . . . . . . . . . . . . 114

5.2.2 MMEA-HAD Algorithm . . . . . . . . . . . . . . . . . 118
5.2.2.1 Discussion of Results . . . . . . . . . . . . . . 122

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



6 Conclusions and perspectives 128
6.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A Publications of the candidate 157

ix



Nomenclature

Ω An optimization problem’s Search space

IGD+ Inverted Generational Distance Plus in the objective space

M An optimization problem’s objective space

m Number of objective functions of multi-objective optimzation prob-
lems

n Number of decision variables of multi-objective optmization prob-
lems

PF Pareto-front for multi-objective optmization problems

PS Pareto-set for mutli-objective optmization problems

CD Crowding Distance

DM Decision Maker

DN-NSGA-II Decision space-based Niching Non-dominated Sorting Genetic
Algorithm II

EA Evolutionary Algorithm

EMO Evolutionary Multi-objective

HAD Harmonic Average Distance

IGD Inverted Generational Distance indicator in the objective space

IGDx Inverted Gerneational Distance indicator in the decision space

MMOEA Multimodal Multi-Objective Optimization Evolutionary Algorithm

MMOP Multimodal Multi-Objective Optimization Problem

x



MOEA Multi-Objective Optimization Evolutionary Algorithm

MOEA/D Multiobjective Evolutionary Algorithm based on Decomposition

MOP Multi-objective Optimization Problem

NBM Neighborhood-Based polynomial Mutation

NBM Neighborhood-based mutation

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGA-II-MDCD NSGA-II-manhatan-distance-crowding-distance

NSGA-II-NBM NSGA-II-Neigborhood-based Mutation

NSGA-II-WSCD NSGA-II-Weighted-Sum-Crowding-Distance

NSGA-II-WSCD-NBM NSGA-II-Weighted-Sum-Crowding-Distance-Neigborhood-
based Mutation

NSGA-III Non-dominated Sorting Genetic Algorithm III

NxEMMO Neighborhood-based Evolutionary Multimodal Multi-objective Op-

PF

PS

PSP

SBX

SOP

timization

Pareto-Front

Pareto-Set

Pareto-Set Proximity

Simulated Binary Cross-over 

Single-objective Optimization Problem

WSCD Weighted Sum Crowding Distance

xi



Chapter 1

Introduction

Many optimization problems feature multi-modal properties, which means
that there are multiple solutions of similar or slightly inferior quality according
to the objective function values. Multi-modality has been extensively studied
within the context of single-objective optimization problems. Nevertheless, the
field of multi-modal, multi-objective optimization is still relatively unexplored
and requires a great deal of attention. The motivation for the study of these
types of problems is attributed to preferences of decision-makers that cannot be
mathematically expressed and, as a result, cannot be incorporated into multi-
modal multi-objective optimization problems (MMOPs). Therefore, providing
diverse ranges of nearly equivalent solutions will facilitate decision-makers’
capacity to make informed decisions. In addition, studying these problems
offers the advantage of providing an equivalent alternative in the event of
difficulty implementing a solution [1]. Classical multi-objective optimization
evolutionary algorithms (MOEAs) struggle to solve these problems since they
neglect to preserve diverse solutions in the search space while focusing on
preserving diversity in the objective space; this means that multiple solutions
with the same or similar objective values are not preserved by the search
procedure. In this dissertation, we develop methodologies and approaches to
tackle these types of problems.

1.1 Motivation

The majority of real-world problems involve the simultaneous optimization
of one or more incompatible and sometimes conflicting objectives, which are
referred to as optimization problems. Based on the number of objectives,
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1.1. Motivation

optimization problems are classified as either single-objective, multi-objective
(two to three objectives), or many-objective (at least four objectives). We see
problems such as these every day, such as those faced by engineers optimizing
their design parameters or manufacturers maximizing their production effi-
ciency. In general, the optimization process aims to find and maintain solutions
until no better alternative can be found. In optimization problems involving at
least two competing objectives, improving one objective results in worsening
the others; hence, it is necessary to identify tradeoff solutions that satisfy all
the competing objectives concurrently. They are known as multi-objective
optimization problems (MOPs). A multi-objective optimization approach can
be applied to a wide variety of problems in real life, including feature selection,
where the two competing objectives minimize the number of features while
maximizing the quality of the features, or the optimization of delivery and
inventory costs.

In recent decades, direct or gradient-based methods have been introduced
to solve optimization problems using mathematical principles. The design
and implementation of classical and exact optimization algorithms typically
involve techniques such as dynamic programming, branch-and-bound, and
backtracking. Nevertheless, in some multi-objective optimization problems,
complexity factors such as a large search space, uncertainty noise, multi-
modality, disjoint Pareto curves, and so on may prevent classical methods
from being applied [2]. In addition, classical approximation methods such as
greedy algorithms involve several assumptions that are difficult to verify in
many situations.

Over recent decades, evolutionary algorithms (EAs) have become an increas-
ingly popular tool for searching, optimizing, and providing solutions to com-
plex problems [3] as an alternative to classical methods. These algorithms are
population-based, meta-heuristic algorithms that employ aspects of biological
evolution, such as reproduction, mutation, recombination, and selection, in
their development. Since their introduction in the 1960s, EAs have become
increasingly popular for solving various optimization problems, primarily due
to the population-based nature of EAs that can produce multiple elements of
the Pareto-optimal set in a single run as well as deal with large search spaces
[4]. Multi-objective evolutionary algorithms (MOEAs) aimed at optimizing

2



1.1. Motivation

multi-objective problems emerged in the 1990s, and especially since 2001, there
has been exponential growth in the number of approaches and methods aimed
at addressing these types of problems. These algorithms seek to gradually
achieve a set of Pareto-optimal solutions evenly distributed across the Pareto
front. Due to the fact that there is no single-best solution in multi-objective
evolutionary algorithms, their selection scheme differs from the one used in
single-objective optimizations.

Numerous real-world problems (e.g., multi-objective knapsack optimization [5],
path-finding optimization [6, 7, 8, 7], functional brain imaging problems [9],
and rocket engine design problems [10]) possess multi-modal characteristics,
either as a result of the nature of the underlying function or as a consequence
of constraints or due to changes in the environment imposing the island of
infeasibility on the problem, or both [11], which makes them difficult to solve
using classical optimization techniques. As a result of multi-modality in multi-
objective optimization problems, there can be multiple local/global optimal
solutions whose objective functions are similar or somewhat inferior.

The two classical challenges emphasize the difficulty resulting from these types
of problems. A first challenge is the preservation of multiple diverse optimal
solutions in the decision space, with a similar quality in the objective space.
A second challenge is avoiding the trap of local optima due to the presence of
multiple basins of attraction—a fact that multi-modality views as an obstacle
to achieving global optima [12]. To overcome the first challenge, methods and
approaches must be developed that identify and retain all optimal Pareto-sets
of solutions, even if they correspond to similar sets in the objective space.
As such, preserving diverse solutions in the decision space is crucial when
dealing with MMOPs. As a consequence, classical MOEAs are often ineffective
when applied to MMOPs because they lack mechanisms to keep solutions
whose fitness values are relatively similar. Addressing the second challenge is
implicitly considered in all MOEAs, in which these algorithms seek to increase
the diversity in the search space, thus pursuing further exploration of the
search space in undiscovered areas.

The rationale behind investigating these problems stems from decision-makers’
preferences. This exploration can prove advantageous if the optimizer can
present various sets of optimal solutions that possess equivalent quality based
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1.1. Motivation

on their objective function values. Moreover, it can be advantageous for the
optimizer to provide local optimal solutions that may have lower quality but
are still acceptable alternatives for decision-makers. The search for multiple
optimal solutions and the preservation of these obtained solutions are essential
for various reasons. One reason is that the global optimal solution provided may
not be feasible or attainable in practical terms, especially when limited to a dis-
crete set of available parts or shapes. Additionally, decision-makers may reject
specific solutions for reasons not accounted for in the model, such as subjective
preferences or ”soft constraints” that cannot be expressed mathematically but
are crucial for decision-making [11]. Additionally, maintaining these different
optimal solutions increases the reliability of the decision-making process by
eliminating uncertainties that may arise during the actual implementation
process.

A simple real-world example is apparent in path-finding problems, in which
a traveler wishes to arrive at the destination with the fewest number of
intersections and in the shortest amount of time. Optimizers may find two
different optimal routes that offer the same number of intersections and time
taken to reach a destination. However, the optimal route selected by the
user becomes inaccessible due to sudden environmental changes (e.g., heavy
snowfall). By identifying an alternative route, the optimizer allows the traveler
to take the alternative route in place of the intended route in order to reach a
destination without any further delay.

In the scope of this thesis, MMOPs is divided into two types. The first type of
problem consists of preserving the global optimal set of solutions (i.e., Type I
MMOPs), while the second type involves multiple locally optimal sets with
slightly inferior yet acceptable quality to the decision-maker (i.e., Type II
MMOPs). The purpose of this thesis is to address both types of problems
by identifying, developing, and evaluating techniques and approaches that
are crucial to finding multi-modal solutions to multi-objective optimization
problems.

Over the past few decades, multi-modal single-objective optimization problems
have received a significant amount of research attention. The area of multi-
objective, multi-modal optimization is a somewhat new field that was first
introduced in 2005. The field of MMOPs did not receive explicit attention from

4



1.2. Research goals and objectives

2007 to 2012, although some activities have been carried out to obtain diverse
solutions within the search space. To the best of the author’s knowledge,
the term “MMOP” reemerged in 2016, drawing researchers’ attention and
resulting in the development of several methods. This thesis discusses the
proposed techniques from the last few years in light of the theoretical challenges
we identify and our own proposed optimization approaches. This thesis also
proposes a new classification of state-of-the-art multi-modal multi-objective
optimization evolutionary algorithms (MMOEAs) as a contribution to the
field.

1.2 Research goals and objectives

The purpose of this dissertation is to propose and enhance various methods
of addressing the challenges of MMOPs, particularly regarding developing
strategies for preserving diverse solutions within the search space. The following
objectives are defined:

In addition to the objectives, there is also a set of questions to address to
better quantify/qualify each objective’s achievement.

Objective 1: Develop methods and approaches to address Type I
MMOPs

The first part of this thesis proposes strategies to solve MMOPs with multiple
global global Pareto-sets (global PSs). For this reason, current state-of-the-art
methodologies and search strategies are studied, modified and applied to Type
I MMOPs. To achieve this goal, the following research questions are addressed:

• RQ 1: Which methodologies can be used to enhance the distribution of
solutions in the decision space?

• RQ 1.1: Which techniques can be used to drive the search toward areas
in the search space?

5



1.2. Research goals and objectives

One of the primary research questions regards how to develop methods to
guide the population to explore the different search space areas and find global
optima by preventing premature convergence and becoming stuck in local
optimum regions. The proposed approaches are discussed in Section 4.1.

• RQ 1.2: How can the optimizer preserve the multiple distinct optimal
solutions in the search space which are relatively close in the objective
space?

A substantial part of this thesis focuses on the challenge that arises because
traditional selection operators of MMOEAs tend to remove useful diverse
solutions in search space located in crowded regions of objective space to
enhance the distribution of optimal solutions over the approximated Pareto-
front (PF). We have developed different selection operators to cope with this
challenge. Using these approaches, it is possible to make a better assessment
of the similarity between the obtained solutions as well as of the survival of
solutions located in distinct regions of the search space while they are close
in the objective space. The main discussion of the proposed approaches is
presented in Sections 4.2 and 5.2.1.

• RQ 2: How to make a trade-off between the diversity of solutions in the
search and objective spaces?

Achieving a sufficient diversity of solutions in both the decision and objective
spaces presents a challenge in MMOPs. This challenge arises due to the
inherent tradeoff between improving the distribution of solutions in the search
space and the distribution in the objective space. To address this issue, we
have developed a method that measures density in both spaces, allowing us
to strike a balance between the divergence of solutions in both domains. The
detailed explanation of our proposed approach can be found in Section 4.2.1.

Objective 2: Develop methods and algorithms to solve Type II
MMOPs.

To achieve this goal, we developed a method that preserves a local Pareto-set

6



1.2. Research goals and objectives

(local PS) while evolving toward the respective global PS.

• RQ 3: Which methods can be used to preserve the non-Pareto-optimal
solutions that are possible to implement by the decision-maker?

Objective 3: Classification of the selection mechanisms in Pareto-
dominance-based MMOEAs

Given the absence of a structured categorization of algorithms that focuses on
selection operators, which play a crucial role in MMOEAs, we examined various
limitations of crowding distance techniques. These limitations encompass the
imprecise estimation of solution density within the search space’s neighborhood
region. To address this gap, we introduce a novel classification of MMOEAs
in this thesis.

• RQ 4: How to efficiently classify algorithms based on the density estima-
tion of the solutions in their neighborhood area to preserve diversity of
the solutions?

In Pareto-based multi-modal, multi-objective optimization algorithms, we
present a new classification for selection operations. This classification con-
siders the inclusion of nearby solutions from the current front (referred to as
Fronti) and the solutions from previous fronts (Front1 to Fronti−1) when
estimating the density of the neighborhood area of solutions. To overcome
the limitations of existing crowding methods, we propose two classifications:
inter-front and intra-front selection operators.

Objective 4: Evaluation of the proposed algorithms

• RQ 5: How do modern MOEAs such as niching non-dominated sorting
genetic algorithm II (NSGA-II), NSGA-III, and MOPSO perform when
dealing with MMOPs?

7



1.3. Thesis Outline

• RQ 6: How do the proposed algorithms compare in terms of distribution
of obtained optimal solutions both in decision and objective spaces?

In this thesis, the proposed strategies are empirically evaluated by conduct-
ing experiments on various state-of-the-art algorithms found in the existing
literature, as well as comparing them against each other. To assess the perfor-
mance of these algorithms, a set of diverse test functions, featuring varying
levels of complexity and decision variables, are employed. Furthermore, the
algorithms are comprehensively evaluated, and their strengths and weaknesses
are analyzed based on specific criteria. Performance comparisons are made
by examining metrics such as diversity and convergence in both the search
space and objective space. Additionally, the influence of population size on the
diversity and convergence speed of the obtained solutions for the Pareto-set
(PS) and PF is also investigated.

1.3 Thesis Outline

This thesis develops methods and approaches as solutions to the previously
discussed challenges of dealing with multi-modality in MOPs. The thesis
consists of six chapters that cover all relevant challenges associated with
solving optimization problems of this type. The organization of this thesis is
as follows.

Chapter 2 (Multi-Modal Multi-Objective Optimization: Detailed Study
of Properties): This chapter outlines the major principles that guide the
remainder of the dissertation. These include concepts such as multi-objective
optimization, Pareto optimality, metaheuristic methods, and multi-objective
evolutionary algorithms. Additionally, this chapter discusses the challenges
posed by multi-modality when solving multi-objective optimization problems
and outlines the different types of MMOPs. Section 2.6 defines the notion of
niching techniques to solve these problems. The most common multi-modal
and multi-objective benchmark problems are described in Section 2.7, as
are characteristics of these problems. This chapter ends with a discussion
of the most common performance indicators used to assess an algorithm’s
performance.
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1.3. Thesis Outline

Chapter 3 (Overview of State-of-the-Art Algorithms): This chapter pro-
vides a brief overview of the techniques employed to tackle single-objective
multi-modal problems. Furthermore, it conducts a comprehensive review of the
existing literature on multi-modal, multi-objective optimization, categorizing
and comparing the various methods utilized in this field. Additionally, the
last section of this chapter presents an explanation of the algorithm setup
and configurations, establishing the foundation for subsequent analyses.

Chapter 4 (Proposed Techniques for Multi-Modal Multi-Objective Op-
timization): Our purpose in this chapter is to present new methods and
approaches to solving MMOPs of type I and type II that have been developed
over the course of this thesis and in the author’s previous publications. Addi-
tionally, we propose approaches for exploring the search space in more depth.
Throughout this chapter, we discuss RQ 1, RQ 2, and RQ 3. We assess the
performance of each method described by comparing it to the most prominent
state-of-the-art algorithms across multiple test functions. These test functions
encompass various levels of complexity, including factors such as the number
of decision variables, shape, and number of Pareto sets. The analysis carried
out in this study addresses research questions 5 and 6.

Chapter 5 (Classification of the Pareto-Dominance Based MMOEAs into
Inter and Intra-Front Selection Operations): In this chapter, we present two
novel algorithms aimed at overcoming the limitations of the crowding distance
method in effectively representing the diversity of solutions within the search
space. MMOEAs are classified based on their selection mechanism, which
covers RQ 4 in further depth. As each algorithm is presented, the experimental
results are examined and evaluated.

Chapter 6 (Conclusions and perspectives): The present manuscript is
concluded with some concluding remarks, in addition to some detailed per-
spectives on the work described, together with an outlook on future research
topics in the area.
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Chapter 2

Multi-Modal Multi-Objective
Optimization

In this chapter, we provide an overview of multi-objective optimization, evo-
lutionary algorithms, and multi-modal multi-objective optimization. The
fundamental principles of multi-objective optimization are discussed in Sec-
tion 2.1, followed by an exploration of the concepts of multi-modality in the
context of single and multi-objective optimization in Section 2.2. Afterward,
we provide a description of meta-heuristic approaches in Section 2.3, followed
by an explanation of evolutionary techniques for solving problems associated
with multi-objective optimization in Section 2.4. Niching methods, originally
developed for addressing multi-modal single-objective optimization problems,
are introduced in Section 2.6. Additionally, we provide a brief description of
several multi-modal multi-objective function benchmarks in Section 2.7. The
performance metrics utilized to evaluate algorithm performance are outlined
in Section 2.8. Finally, in Section 2.9, we conclude this chapter with a succinct
summary of the key concepts discussed.

2.1 Multi-objective 0ptimization

As mentioned, the purpose of MOP is to optimize more than one criterion
simultaneously, unlike single-objective optimization problems (SOPs) which
aim to maximize/minimize one objective. Based on these objectives, pairwise
relationships can be either independent, complementary, or conflicting. In
the first two relationships, changes in one independent objective do not af-
fect the other independent objectives. However, in complementary objectives,
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2.1. Multi-objective 0ptimization

improvements or deterioration in one objective have similar impacts on the
other objective. For complete independence objectives, such problems can be
broken down into several single-objective optimizations, while for complete
harmony objectives, the problems can be reduced to a single-objective opti-
mization. The most complicated scenarios involve conflicting objectives, and
improving one may prevent progress on another. It is therefore necessary to
find an optimal solution set that demonstrates different trade-offs between
the opposing objectives and functions.

A general definition of MOP is as follows:

minimize
x∈S

f⃗(x⃗) = (f1(x⃗), f2(x⃗), · · · , fm(x⃗)) (2.1)

subject to hi(x⃗) = 0, i = 1, 2, · · · , H
gj(x⃗) ≤ 0, j = 1, 2, · · · , G

Without loss of generality, we consider minimization problems. In such type
of MOP, S ⊆ Rn denotes the feasible region in the search space, also called
decision space, defined as follows:

S = {x⃗ ∈ Rn | hi(x⃗) = 0 & gj(x⃗) ≤ 0} (2.2)

where the vector x⃗ ∈ S represents the design (or decision) variables, and n

represents the number of the decision variables. hi(x⃗) : Rn → R, i = 1, ..., H
and gj(x⃗) : Rn → R, j = 1, ..., G are equality and inequality constrains,
respectively.

The objective functions represented by the vector f⃗(x⃗) : S → Rm

fi(x⃗) : S → R ∀i ∈ {1, · · · ,m} (2.3)

In the case of m = 1, this problem belongs to the class of single-objective
optimizations. These problems are regarded as multi-objective optimization
for 2 ≤ m ≤ 3, and as many-objective optimization for m ≥ 4.
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An optimization problem that does not contain any constraints is considered
an unconstrained problem. A minimization problem can be converted into a
maximization problem by multiplying the objective functions by -1.

Throughout this dissertation, we use the term MOP to describe problems
where the feasibility region of each problem is defined as a box-constraint
(SBox), and the domain for each decision variable is defined as follows:

SBox = {x⃗ ∈ Rn | lbi ≤ xi ≤ ubi} (2.4)

where a lower and upper bound for each of the decision variables is represented
by lbi and ubi respectively, ∀i ∈ {1, · · · , n}.

Definition 2.1 (Dominance relationship) The domination relation is
employed to compare two solution vectors x⃗, y⃗ ∈ S. x⃗ is said to be dominated
by y⃗ (denoted by y⃗ ≺ x⃗) if and only if ∀j ∈ {1, · · · ,m}, fj(y⃗) ≤ fj(x⃗), and
∃k ∈ {1, · · · ,m}, fk(y⃗) < fk(x⃗).

Definition 2.2 (Pareto-optimality) A Pareto-optimal set is the set of all
solutions x⃗ ∈ S where there is no other solution in the entire feasible search
space that dominates any solution within this set.

PS := {∀x⃗ ∈ S ⇔ ∄y⃗ ∈ S | y⃗ ≺ x⃗} (2.5)

Within a search space, the collection of optimal solutions is known as the Pareto-
set (PS). These solutions exhibit a non-dominance relationship, meaning that
none of them are superior to others or any other feasible solutions in the search
space. As a result, it is not feasible to establish a ranking among them, as they
inherently involve a trade-off between different objectives. In the objective
space, the Pareto-front (PF) represents the set of solutions that corresponds
to the Pareto set.

Definition 2.3 (Non-dominated Set) A non-dominated set of solutions
refers to all the solutions in a given set of solutions that are not dominated
by any other solution.
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2.2. Multi-modal Optimization

Definition 2.4 (Local Pareto-optimal-set (Local PS)) In the search
space S, for any arbitrary solution x⃗ in the solution set LPS (where LPS is
the set of the solutions in the neighborhood of the solution x⃗ ), there is not
any other solution y (where ∥y⃗ − x⃗∥∞ ≤ ϵ, ϵ represents a very small positive
value) that dominates the solution x⃗. This set of solutions is referred to as
the Local Pareto Set (or Local PS).

The local PF (or Local PF) represents the corresponding solutions in the
objective space.

Definition 2.5 (Global Pareto-optimal-set (Global PS))

The set of all solutions that are Pareto-optimal is called the global Pareto-set
(also known as Pareto-set).

Global–PS := {x⃗ | x⃗ ∈ Pareto–optimal–Set} (2.6)

Global Pareto-front (also known as Pareto-front) represents the objective
space image of these solutions.

PF :=
{
f⃗(x⃗) | x⃗ ∈ Pareto–optimal–Set

}
(2.7)

An example of such problems is depicted in Fig. 2.1.

2.2 Multi-modal Optimization

The concept of ”multi-modal optimization” refers to the simultaneous search
for multiple solutions to a complex objective function [11]. In general, multi-
modal optimization involves applying specific optimization methods to multi-
modal functions in an attempt to capture as many optimal solutions as possible,
including basin attractions, as described in [13, 11]. The implementation of
MMOEAs cannot succeed unless the problems being addressed are multi-
modal in nature. It has been widely assumed, however, that most problems
in Applications that cannot be effectively solved by classical optimization
algorithms (e.g., gradients, quasi-Newton methods) and are therefore addressed
by metaheuristics have multi-modal characteristics [14].
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𝑃𝐹

𝑆

𝑃𝑆
𝑍

Figure 2.1: Visual representation of the PS in the decision space (left figure), which is mapped to
the PF in the objective space (right figure). In the search space, the feasible area is highlighted in
blue, which corresponds to the highlighted area in the objective space. In the decision and objective
spaces, the hypothesized PS and PF are marked in red.

When dealing with single-objective optimization problems, multi-modal func-
tions refer to problems that are characterized by the existence of multiple
global and/or local optima [15]. Similarly, MOPs’ definition of multi-modality
specifies the existence of two or more global Pareto-optimal solutions for a
given point on the PF or at least one local Pareto-optimal solution [16, 17].

2.2.1 Single-objective Multi-modal Optimization

Assuming that v⃗ represents the local minima f ∗(1), f
∗
(2), · · · , f ∗(v) for the objective

function f : S → R. If f is ordered as f ∗(1) < f ∗(2) < · · · < f ∗(p) < TH < · · · <
f ∗(v) then set

⋃p
i=1 {X∗i } is a multimodal optimization solution for a single

objective optimization problem where X∗i =
{
x⃗ ∈ S | f(x⃗) = f ∗(i)

}
where TH represents the quality threshold beyond which local optimization
solutions of a lower quality are excluded from consideration. Assuming that
TH = f ∗(1), the decision-maker is only concerned with finding the global
optimal solution and not the local ones. When TH = ∞ is considered, it
means that all local minima of the problem are accepted by the decision-maker.
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2.2.2 Multi-objective Optimization

MMOP refers to problems in which at least k (≥ 2) decision vectors (C =
{x⃗1, x⃗2, · · · , x⃗k}) result in a similar objective vector value, i.e. ∀(x⃗i, x⃗j) ∈
C×C,

∥∥∥f⃗(x⃗i)− f⃗(x⃗j)
∥∥∥ ≤ δ (which ∥d∥ can be any arbitrary distance). Where

δ (> 0) denotes the degree of similarity between the solutions provided by the
decision-makers.

In the case δ = 0, this indicates that the decision-maker is only interested in
finding equivalent optimal solutions of the same quality located in different
areas of the search space. δ > 0 indicates that the decision-maker accepts
equivalent solutions as well as the solutions that dominate. However, the
accepted dominant solutions must satisfy another condition—that is, they
must be locally optimal solutions according to definition 2.4, which are of
acceptable quality based on the decision-maker’s opinion. This implies that
the equivalent solutions are not from the same regions in the search space.
The goal of MMOEAs is to discover and preserve as many of these equivalent
Pareto-optimal solutions as possible [18].

2.2.2.1 Type-I MMOP: Multiple Global Pareto-sets

In the first form of MMOP, it is possible to have multiple global PSs of
solutions that indicate the same PF in the objective space. An example of
such problems appears in Fig. 2.2.

2.2.2.2 Type-II MMOP: Coexistence of Global and Local Pareto-sets

In the second category of multi-modal multi-objective problems, we encounter
scenarios where multiple local PSs exist. In such cases, decision makers often
prioritize Pareto-optimal solutions that offer acceptable quality. This preference
arises when global solutions are too costly or unattainable, or when there is a
need to mitigate risk in situations where global PSs become unfeasible. Figure
2.3 illustrates an example of this particular type of problem.

2.3 Population-based Meta-heuristic Approaches

In contrast to classical search algorithms, which often focus on local optimiza-
tion and can become trapped in local optima, population-based meta-heuristic
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Multi-Objektive Evolutionary Algorithms for Multimodal Multi-objective Optimization Problems

Figure 2.2: An example of a MMOP with two global Pareto-sets of solutions (Type I MMOP)

Figure 2.3: An example of a MMOP with both global and local Pareto-sets of solutions (Type II
MMOP)

algorithms adopt a different approach. These algorithms strike a balance
between two essential strategies: randomization, also known as exploration,
and local optimization, also known as exploitation. Exploration enables the
algorithm to search unexplored regions, while exploitation allows for the
discovery of improved solutions within the proximity of previously found
promising solutions. This trade-off between exploration and exploitation helps
meta-heuristic algorithms avoid being trapped in suboptimal solutions and
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promotes the discovery of better solutions within the search space [19]. Since
randomization is incorporated into the search process, these algorithms are
well suited to finding the global optimum while avoiding the trap of the local
optimum.

Meta-heuristics have an advantage over gradient and direct search algorithms
in that their convergence toward optimal solutions is not necessarily impacted
by the initial position of the population, while the performance of such classical
search algorithms is highly influenced by the initial appearance of the solutions
[20, 21]. Many meta-heuristic techniques have been developed over the years.
Simulated annealing [22], tabu search [23], Monte Carlo methods [24], ant
colony optimization [22, 25, 26], particle swarm optimiza- tion [22, 27, 28],
and evolutionary algorithms [22, 29] are popular examples of these techniques.
Among the various applied mechanisms, evolutionary algorithms have received
significant attention during the last few decades due to their ability to generate
a well-dispersed set of non-dominated solutions that approximate the Pareto-
optimal solution set over a single algorithm run. In contrast to classical search
algorithms, these stochastic global search algorithms incorporate biological
evolution (Goldberg 1989 [30]), including mating selection, mutation, crossover,
and selection of the fittest individuals, into their algorithms to gradually
improve the current populations.

2.4 Multi-objective Evolutionary Algorithms

In the field of multi-objective optimization, various evolutionary algorithms
have emerged since the 1980s to tackle the complexities associated with
solving problems that involve multiple objectives [30]. These algorithms are
intended to approximate Pareto-optimal solutions to a given multi-objective
optimization problem as uniformly distributed solutions that are close to the
ideal Pareto front. It is, however, challenging to achieve this goal. Generally,
an approximate Pareto-optimal solution can be obtained by satisfying two
conflicting goals: minimization of the distance to the true Pareto front (i.e.,
convergence to the true PF) and maximization of the diversity of the evolved
solutions [31]. To achieve the first objective, Pareto-based fitness assignment
(e.g., non-dominance sorting) is often incorporated into some of the most
current state-of-the-art algorithms [30] to guide solutions toward the Pareto-
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Input: Optimization Problem, Search Space S, Population Size N
Output: Final population P

1 t = 0 ;
2 P (t) ← InitPop(P (t));
3 Evaluate(P (t));
4 repeat
5 Pmate ← Select(P (t));
6 P ′ ← Recombine(Pmate);
7 Q ← Mutate(P ′);
8 Evaluate(Q);
9 t = t+ 1 ;

10 P (t) ← Environmental Selection(P ′, Q)

11 until Termination criteria is fulfilled ;
12 return P

Algorithm 1: General framework for an evolutionary algorithm [34]

optimal solution [32].

As a means of achieving the second objective, various density estimation
methods are integrated with multi-objective evolutionary algorithms to in-
crease population diversity. Moreover, a number of niche technologies have
been employed to improve the distribution of the solutions, including archive
truncation [31], crowding distance comparison [33], and elitist schemes [31, 33].

Algorithm 1 illustrates a general outline for a multi-objective evolutionary
algorithm [34]. Once the population has been randomly initialized (Line 2),
solutions are evaluated (Line 3). In the following step, the parents are selected
using a mating selection operator (Line 5). The offspring Q are generated by
applying the crossover operator and then the mutation operator (Lines 6 &
7). Lastly, the environmental selection process employs the combination of
generations and offspring to determine which solutions are carried forward
into the next generation (Line 10). The iterative process continues until
the specified termination criteria are satisfied (Line 11). Upon meeting the
termination criteria, the final population is returned as the optimal solution
for single-objective optimization problems, or as the set of Pareto-optimal
solutions for multi-objective optimization problems (Line 12).

The following list presents brief descriptions of each of the algorithm compo-
nents:
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• Evaluation:

In optimization problems, the objective function value of each individual
serves as an expression of their raw performance. Following calculation
of the objective function values of the individuals, the fitness function
converts the objective function values into a measure of relative fitness [35].
Within the realm of fitness functions, one widely recognized approach is
the Pareto-based fitness evaluation, initially introduced by Goldberg [36]
as a means to address Schaffer’s problem [37]. This method utilizes non-
dominated ranking and selection techniques to facilitate the progression
of a population towards the Pareto front during the optimization of
multi-objective problems.

• Mating selection mechanism: The mating selection process is charac-
terized by a stochastic process in which solutions are selected as parents
based on fitness function values derived from evaluation. Selection of
mating solutions is influenced by fitness function values, where solutions
with higher values have a greater likelihood of being selected and prop-
agating to the next generation. This is to produce a new generation
of offspring employing a recombination process. There are a variety of
selection methods to select the mates, such as roulette wheel selection
[38], stochastic universal selection [39], and tournament selection [40],
each of which has its own advantages and disadvantages.

The tournament selection process provides one way of determining which
individuals from one generation will survive and reproduce offspring. The
binary tournament method involves the selection of pairs of individuals at
random from a population to participate in the tournament. Participants
who win the tournament progress to the next generation [41]. An example
of typical tournament selection is NSGA-II algorithm 3.2.2, with the front
number as the primary consideration and the crowding distance as the
secondary consideration. In this manner, it is assured that solutions that
are located in less-crowded regions and that have a higher fitness ranking
will be preferred.

• Variation operators (Recombination and Mutation):

To further explore the search space, a variation operator is implemented
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that introduces diverse solutions to the population. The variation operator
consists of the recombination and mutation operations derived from the
field of natural biology. The operators are implemented in turn on the
solutions chosen from the mating process to produce offspring.

– Recombination:

Recombination, also known as crossover, is a genetic operator used to
combine the genetic information for two or more parental individuals
in order to produce offspring solutions. Currently, several crossover
operators are available, including the single-point binary cross-over
[38] (the simplest form of recombination), multipoint crossover [42],
uniform crossover [43], and simulated binary crossover (SBX) [44].

The SBX is a variable-wise recommendation operator that simulates a
one-point crossover of a binary number with a real number and is well
known for handling real-coded applications. For each decision variable,
offspring values are calculated by using a probability distribution with
a standard deviation determined by the Euclidean distance between
the parents.

– Mutation:

Once the recombination operation is implemented for the parental
population, a mutation operator is typically applied to the individuals
generated from this operator. Mutation is a genetic operator that only
requires a single parent to produce a child solution. These operators
allow the random aspect to be maintained in the evolution of the
population, thus avoiding premature convergence and escaping local
optimum. A number of mutation operators are introduced, including
the Polynomial Mutation Operator [45, 46] developed for real-valued
variables. This operator is used in many metaheuristic optimization
algorithms.

• Environmental selection:

Evolutionary algorithms usually have a fixed population size over succes-
sive generations that is maintained throughout the optimization process.
Since the parent population and its offspring population exceed the prede-
termined population size, the environmental selection process—known as
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a selection for survival—is used to determine which solutions are perpetu-
ated to the next generation. To control the complexity of the algorithms
and to maintain the same population size over time, it is necessary to
implement a strategy for selecting new solutions in each generation.

2.4.1 Exploitation versus Exploration

One of the criteria that is taken into account during the environmental selection
process is the quality of the solution candidates, with higher quality solutions
being favored, as determined by a fitness function. Selection pressure is one
of the major differences between various evolutionary algorithms.

Higher selection pressures are more likely to result in fitter solutions surviving
or being chosen as mating parents and less fit solutions not surviving [47].
Therefore, increasing selection pressure results in faster convergence of a
population toward particular solutions (exploitation), but the search space is
not sufficiently explored. In contrast, under low selection pressure, even after
prolonged computation time, it is possible that the population will have a
high degree of diversification but may not converge to the optimal solution set
(exploration). A good balance between exploration and exploitation processes
is essential to improving the performance of MOEAs as exploration of new
regions should be complemented by exploitation of those that already have
appropriate solutions.

Selection processes (mating and environmental selections) are often referred
to as exploitation processes since they provide the best solutions for the
next generation of individuals, while variation processes are regarded as a
means of identifying the search space for exploration processes [48]. During
the early stages of the evolutionary process, exploration is typically essential.
Nevertheless, as the search process progresses, exploration becomes increasingly
important to enhance the quality of the results [49].

2.5 Multi-modal Multi-objective Evolutionary Algorithms

The majority of MOEAs are ill-equipped to effectively handle MMOPs due to
their inherent limitation of lacking mechanisms to preserve diversity within
the solution space [18]. When using MOEA to solve MMOPs, it is typically
feasible to find only one Pareto-optimal solution for each point on the PF.
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This limitation arises because the current design objective of MOEA does
not prioritize the maintenance of multiple solutions in the decision space.
Consequently, even if an MOEA is applied multiple times, it cannot guarantee
the identification of all Pareto-optimal solutions for MMOPs. The dynamics
inherent in evolutionary algorithms often lead to a reduction in population
diversity in the decision space, further exacerbating this issue. As a conse-
quence, the search may concentrate in a single basin of attraction, as opposed
to multiple basins in the landscape, based on the complex dynamics of the
various forces [50]. To preserve the distribution of the solutions, MOEAs are
introduced to find as many optimal Pareto sets of solutions as possible in the
decision space.

2.5.1 Niching

Search space exploration in MMOPs is a crucial and challenging task that
involves navigating a complex landscape to discover multiple optimal solutions.
The goal of search space exploration in MMOPs is to efficiently explore and
uncover the different regions in a search space while maintaining a balance
between diversity in both decision and objective spaces. Within evolutionary
algorithms, there are three main components that can be attributed to a re-
duction in population diversity: environmental selection pressure, genetic drift,
and crossover and mutation. In this regard, these components are responsible
for quick convergence to a single basin of attraction. This prevents algorithms
from converging in parallel into more than one basin of attraction [50]. When
it comes to selection pressure, most MOEAs apply environmental selection
to the whole population, which leads to the following results in MMOPs: the
solution with better quality in the objective space eliminates many other
dominant solutions, regardless of their position in the decision space. MMOPs
are characterized by the possibility that two solutions that are distant in the
decision space may be similar in the objective space or may even be identical.
As a result, MOEAs eliminate solutions that are crowded in the objective
space, regardless of how far they are from one another in the decision space.
This may lead to the elimination of equivalent (or slightly inferior) solutions.

The phenomenon of genetic drift [51, 52, 53] can result in a reduction in the
population’s distribution within the decision space. This natural occurrence
in evolutionary processes arises from sampling errors within finite populations,
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leading to the gradual loss of diversity. The transfer of a genetic characteristic
distribution to subsequent generations is constrained by the limited number
of offspring generated, which results in a reduced statistical representation
of the distribution. As a consequence, the distribution tends to approach an
equilibrium state, such as when specific alleles become fixed at the same level
of fitness. Genetic drift is commonly recognized as a neutral process. Notably,
as the population size decreases, this process intensifies [54].

A third factor that can affect diversity loss in the decision space is mutation
and recombination operators [54]. Although these operators have the potential
to accelerate the evolution process and help the algorithm escape the local
optima trap, there is a greater likelihood that they will produce offspring that
are close to their parents, meaning their offspring population will be centered
around the parents’ location [55]. In such a case, the diversity of the solutions
is diminished over the generations. Thus, standard crossover and mutation
operators do not effectively produce a wide range of offspring in the decision
space.

To resolve the above issues and expand exploration of the search space, niching
methods were proposed to mitigate the fundamental challenge of population
diversity loss within a population of solutions. These methods are introduced
into EAs to assist with finding multiple optimum solutions for multi-modal
optimization within a population. They do so by maintaining the diversity of
certain properties within the population. The objective of this method is to
achieve parallel convergence into a number of different basins of attraction
within the multi-modal landscape within a single run of the algorithm.

2.6 Niching Techniques

Due to the term’s origins in ecology, the niche refers to the peak or basin
of attraction in the context of optimization, and the species are the sub-
populations of individuals that occupy the niche [54]. Niche techniques are
designed to extend standard EAs to multi-modal domains, taking care to
avoid the EAs losing population diversity and converging to a solitary basin
of attraction within a single population. It is possible that a niching strategy
could reduce the likelihood of being trapped in a local optimum condition by
searching for multiple optimum solutions simultaneously. Niche methods have
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been researched almost exclusively within the framework of genetic algorithm
(GAs) in the past four decades. Several decades have been devoted to the
development and study of EA niching methods in related fields, such as GAs
and evolutionary strategie (ESs).

Throughout the course of this research, a range of algorithmic approaches
were developed, drawing inspiration from both bio-inspired concepts related to
organic speciation and ecological niches, as well as computational methodolo-
gies. The design of such approaches poses challenges from both theoretical and
practical standpoints. From a theoretical perspective, two key considerations
arise: first, the need to maintain diversity within a population-based stochastic
algorithm in a computationally efficient manner, and second, the desire to
gain insights from speciation theory or population genetics within the field of
evolutionary biology. In the domain of applied optimization, there is a growing
interest in providing decision-makers with a set of one or more solutions that
effectively capture diverse conceptual designs across both single-criteria and
multi-criteria search spaces. The academic literature on EA proposes numer-
ous methods for niching, such as crowding [56], deterministic crowding [57],
fitness sharing [38], parallelization [58], clustering [59], restricted tournament
selection [41], and speciation [60], among others. A variety of PSO variants,
such as NichePSO [61] and SPSO [61], have also incorporated niche methods to
leverage their abilities to solve multi-modal optimization problems. However,
the majority of such research focuses on multi-modal single objective opti-
mization problems rather than MMOPs; the study of these methods and their
implementation does not concern MMOPs. There have been few studies in
this area that propose niching methods to manage multi-modality in relation
to multi-objective optimization.

2.6.1 Diversity in the Search Space versus Objective Space

It is imperative to note that simply combining MOEAs with the above methods
will not resolve the MMOPs problem. When it comes to MMOPs, there are
two major issues that should be considered by evolutionary algorithms. To
be successful, increased distribution of solutions is required, both within the
search space and within the objective space, as is maintaining convergence
toward the PF. It is therefore recommended to develop a selection strategy
that addresses these three concerns and strikes the right balance between them.
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1
Figure 2.4: A representative example of MMOPs: improving diversity in the search space results in
the deterioration of the diversity of solutions in the objective space.

Moreover, it is important to note that the objective space and decision space
have distinct and specific requirements. While searching for solutions that
are evenly distributed in the decision space may seem beneficial, it can result
in inadequate diversity in the objective space when dealing with MMOPs.
Thus, it becomes crucial to strike a balance and trade-off between achieving
diversity in both the decision space and the objective space.

Figure 2.4 demonstrates how improving the distributions of the solutions in
the search space can negatively affect the distributions of solutions in MOPs
with multi-modal proportions. The solutions are capable of providing good
coverage of the PS in one of the runs of the MMOEAs; however, because the
diverse solutions in the decision space can map to similar or close solutions in
the objective space, it can lead to the loss of solution diversity in the objective
space. On the other hand, as shown in Figure 2.5, improvement in solutions
diversity in the unimodal MOPs has been consistent with the improvement in
solution diversity in the objective space.
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1
Figure 2.5: An example of MMOPs where maintaining diversity in the search space results in
maintaining diversity of solutions in the objective space.

2.7 Benchmark Problems for Multi-modal Multi-objective Opti-
mization

Each of these benchmark problems exhibits different characteristics, which are
indicative of the level of difficulty. This is discussed in [62], according to which
the degree of difficulty of the test problems varies depending on the PS and
PF geometries, the overlap between PSs in each dimension, the number of PSs,
and the coexistence of local and global PSs [63]. Some of these benchmark
problems can be scaled up to higher dimensions to evaluate the effectiveness
of MMOEAs in higher-dimensional search space and/or objective space.

Table 2.1 outlines five desirable characteristics of multi-modal, multi-objective
benchmark test cases, which are briefly described in the following. The charac-
teristics of the test cases, as outlined in Table 2.1, provide important informa-
tion regarding their difficulties as well as to why certain algorithms outperform
others in certain test cases and vice versa. For example, one of the indicators
of the complexity of MMOPs would be the number of PSs associated with the
problem since problems involving high numbers of PSs may be more difficult
to solve [63].

Another characteristic, which is the geometry of the PF, is important when
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considering multi-objective problems involving three or more objectives in
terms of convexity/concavity, linearity/nonlinearity, contentiousness or conti-
nuity, and so forth [64]. Several algorithms are designed to take advantage of
convex PF, while others may be better suited to concave PF. A nonlinear PF is
considered to be more difficult to determine than a linear PF. Some algorithms
may fail to detect all regions of the PF as a result of the disconnected PF
[62]. The MMF1-2 benchmark problems have been modified by symmetry
and shift from unimodal multi-objective algorithms. However, they have some
limitations, including unknown and complex local PSs.

The geometry of the PS is another important factor that can influence the
performance of various algorithms in MMOPs. The characteristics of the PS,
such as its connectivity, symmetry, linearity or nonlinearity, and complexity,
can vary and lead to different levels of difficulty in solving these problems.
Multi-objective evolutionary algorithms may only perform well when applied
to certain PS shapes. As an example, a nonsymmetric PS (e.g., MMF1z) is
more complex to solve and more similar to real-life problems [63]. Furthermore,
it would be beneficial to examine how the MMOEAs operate in escaping the
trap of local PS by using test cases in which both local and global PS exist
simultaneously. Thus, benchmark problems that possess this characteristic
can be used to evaluate the global search capabilities of a given algorithm.

Please note that we have not provided an extensive mathematical description
of the benchmark problems in this work. For more specific details, the reader
is referred to [62].
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Table 2.1: Characteristics of Multi-modal multi-objective testing problems [65]

Test Problem No. of PSs Geometry in PF Geometry in PSs
Local and Global

PSs Coexist

Omni-test 27 convex
linear

& symmetric
No

SYM-PART-simple 9 convex
linear

& symmetric
No

SYM-PART-rotated 9 convex
linear

& symmetric
No

MMF1 2 convex
non-linear

& symmetric
No

MMF1z 2 convex
non-linear

& non-symmetric
No

MMF2 2 convex
non-linear

& symmetric
Yes

MMF3 2 convex
non-linear

& symmetric
Yes

MMF4 4 concave
non-linear

& symmetric
No

MMF5 4 convex
non-linear

& symmetric
No

MMF6 4 convex
non-linear

& symmetric
No

MMF7 2 convex
non-linear

& symmetric
No

MMF8 4 concave
non-linear

& symmetric
No

MMF9 4 convex
non-linear

& symmetric
No

MMF10 4 convex
non-linear

& symmetric
No

MMF11 2 convex
linear

& symmetric
Yes

MMF12 2 convex, discontinuous
linear

& symmetric
Yes

MMF13 4 convex
non-linear

& symmetric
Yes

MMF14 2 concave
linear

& symmetric
No

MMF15 2 concave
non-linear

& symmetric
Yes

In addition, we will use the polygon-based problems described in [66] to assess
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the effectiveness of the approach. A polygon-based problem is considered a
modified version of a map-based problem. A polygon-based, problem-based
optimization algorithm takes advantage of the fact that the Pareto-optimal
sets of these problems are distributed across a number of regular polygons.
Consequently, it is relatively easy to examine an optimizer’s behavior at the
beginning of the search process [67]. In the polygon test problem, the proposed
algorithms are compared to other competing algorithms to determine their
scalability. SYM-PART is another test case we used in this thesis. In this test,
each Pareto subset consists of two elements and the vertical and horizontal
distances between adjacent Pareto subsets [68].

2.8 Performance Indicators

Compared to single-objective optimization problems, where the quality of
the obtained solutions is assessed based on their fitness function values, in
multi-objective optimization problems, it is necessary to measure performance
by mapping them to a real number (referred to as a performance indicator)
that allows us to evaluate the algorithms.

In this thesis, several performance indicators are employed to assess the
diversity and convergence of the algorithm results. These measures include
the Inverted Generational Distance Plus (IGD+) in the objective space [69],
the Inverted Generational Distance indicator in the decision space (IGDx)
[70], and the Pareto Set Proximity (PSP) [71]. The inverted gerneational
distance indicator in the decision space (IGDx) and PSP indicators are meant
to illustrate algorithms’ performances in the search space, whereas Inverted
generational distance plus in the objective space (IGD+) indicators illustrate
algorithms’ functionality in the objective space [63].
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Definition 2.6 (IGDx) [70] IGDx is a widely used indicator for evaluating

the performance of multi-modal, multi-objective optimization algorithms. It
is required that sampling points be taken from the true PS to evaluate the
quality of the obtained solutions set in the decision space.

Let P ∗ denote a set of solutions distributed uniformly across the true PS.
Let that R represents the obtained set of solutions in the decision space.
Accordingly, the IGDx metric is defined as follows:

IGDx(P ∗, R) =

∑
v∈P ∗ |R− v|2
|P ∗|

(2.8)

where the distance |R− v|2 is determined as the minimum Euclidean distance
between a point v and any other point of R. The cardinality of P ∗ represented
by |P ∗|.

The IGDx indicator evaluates the diversity and convergence of the obtained
solutions relative to the PS. Lower IGDx values indicate a more accurate
approximation of the PS, indicating that the solutions have converged to the
true PS and are well-distributed.

Definition 2.7 (PSP) [71] A Pareto-set proximilty (PSP) performance

indicator measures both the overlap ratio as well as the distance between the
obtained PS and the true PS. It is desirable to have a larger PSP value. A
PSP indicator for the solution set R regarding P ∗ can be defined as follows:

PSP(P ∗, R) =
CR(P ∗, R)

IGDx(P ∗, R)
(2.9)

CR =

(
n∏

i=1

δi

) 1
2n

(2.10)

Where CR (cover rate) is a modified version of the Maximum Spread (MS) [72]
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for the search space:

δi =


0 if qmax

i ⩽ Qmin
i or qmin

i ⩾ Qmax
i

1 ifQmin
i = Qmax

i(
(min(Qmax

i ,qmax
i )−max(Qmin

i ,qmin
i )

Qmax
i −Qmin

i

)
otherwise

(2.11)

where n denotes the number of decision variables, the terms Qmax
i and Qmin

i

correspond to the upper and lower bounds of the true PS in dimension i.
Similarly, the parameters qmax

i and qmin
i represent the maximum and minimum

values of the obtained PS for the ith decision variable.

Definition 2.8 (IGD+) [69] The Inverted Generational Distance indicator in

the objective space (inverted generational distance indicator in the objective
space (IGD)) [69] is one of the most commonly used in academic literature.
The sampling points from the true Pareto front must be used to calculate
the performance indicator. IGD values are calculated as the average of the
distances between each sample reference point and the nearest solution. It is
important to note that this performance indicator is not Pareto-compliant.
This means that solutions that are better based on a Pareto dominance
relationship may nevertheless be regarded as less desirable. Therefore, we
utilized the IGD++ performance indicator [73], which is the extended version
of the IGD performance indicator [74] that has been formulated so as to be
weakly Pareto-compliant.

When computing the distance of the IGD+ indicator, if a solution is dominated
by a reference point, Euclidean distance is applied without change. If, on
the other hand, the solution and the reference point do not dominate each
other, we calculate the minimum distance between the reference point and
the dominated region by the solution. This modification is derived from
the fact that the Euclidean distance between the reference point and the
solution indicates the degree of the solution’s inferiority in comparison with
the reference point, which should be minimized. Therefore, if the reference
point dominates the solution, the Euclidean distance is used without change
for the measurement. In contrast, if the solution and the reference point are not
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dominating one another, then reducing the distance by moving the solution
toward the reference point may not necessarily improve all the objective
functions of the solution. As a result, the usual Euclidean distance cannot be
viewed as a measure of inferiority. The negative value of di in the formula for
the IGD distance indicator would be deemed to have no inferiority (i.e., no
insufficiency). Therefore, the IGD+ performance indicator would be formulated
as follows:

IGD+(V, U) =
1

u

∑
u∈U

min ⩾ d+(v, u) (2.12)

Where U ⊂ Rm is the sampling point from the true PF and V represents the
approximation of the PF in this formula. The proposed modified Euclidean
distance is calculated as follows:

d+(v, u) =

√√√√ m∑
k=1

max(vi − ui, 0)
2 (2.13)

2.9 Summary

This chapter introduces the basics of multi-modal and multi-objective opti-
mization, describing the concepts used in this dissertation. A formal definition
of multi-objective optimization problems, multi-modality, and Pareto optimal-
ity is provided. Moreover, we describe the characteristics of those benchmark
problems as well as the performance indicators used in this thesis to compare
the performance of individual algorithms.
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Chapter 3

Related Work and Foundations for
Experimental Comparison

This chapter provides an examination of advanced algorithms used for ad-
dressing multi-modal multiple-objective optimization problems (MMOPs).
These problems are generally categorized into two types: the first type focuses
on multi-modal, multi-objective optimization problems with multiple global
Pareto sets, while the second type deals with problems involving both local
and global Pareto sets.

In Section 3.1, we provide an overview of the literature on multi-modal
problems, including both multi-objective optimization algorithms and single-
objective optimization algorithms. Section 3.2 addresses the algorithms intro-
duced to solve the first class of these problems. To classify these algorithms,
three major categories can be identified: dominance-based, decomposition-
based, and indicator-based MMOEAs. In particular, we devote a significant
portion of our attention to dominance-based search algorithms in Section
3.2, which is the focus of the remaining sections of this dissertation. Lastly,
state-of-the-art algorithms for dealing with the second category of multi-modal,
multi-objective optimization problems are discussed in Section 3.3.

3.1 Overview of State-of-the-art Algorithms

The concept of multi-modality has been studied for years in the context of
single-objective optimization problems. However, multi-modal, multi-objective
optimization is still a relatively unexplored field that requires a great deal of
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attention, which is why this thesis is primarily concerned with that area. In
the following section, we present a brief overview of the existing methods for
solving multi-modal, single-objective optimization problems, after which we
provide an overview of multi-modal optimization methods in the context of
multi-objective optimization.

3.1.1 Multi-modal Single-objective Optimization

Several approaches have been proposed to tackle the challenge of locating
multiple global and local optima in multi-modal optimization problems. These
include strategies like crowding populations [56] and niching techniques [75],
among others. Niching techniques, discussed in Section 2.6, have played a
crucial role in advancing multi-modal optimization algorithms. Over the
years, numerous methods have been developed to address multi-modal, single-
objective optimization problems, starting from the late 1970s [14].

As explained in Chapter 2.6, niche refers to the subdomain of the search
space or region of the search space surrounding a particular peak in a fitness
landscape, while species refers to the subset of populations that share the same
characteristics. The different approaches to structuring species within niches
employed by different niching methods illustrate how effective the methods
are for exploring the search space aimed at discovering the peaks of fitness
landscapes [76]. In some of the niching methods, such as clearing [77], fitness
sharing [78], SPSO [79], and SCGA [60], which are based on distance between
individuals, the definition of local neighborhood structures is required. Some
of these methods consider the niche radius as a similarity measurement to
group species whose distance is less than the neighborhood radius and which
have a greater likelihood of forming a population of the same niche. It is,
however, difficult to fine tune the niche radius, especially in cases of unevenly
distributed optima or in a complex fitness landscape, since this requires prior
knowledge; this is viewed as a disadvantage of these methods [76].

There are various niche methods, including clearing [80], speciation [60], fitness
sharing [37], restricted tournament selections [81], probabilistic and determin-
istic crowding [82], and crowding [83]. The species in a population is comprised
of individuals, including parents and offspring generated through the repro-
duction process in genetic algorithms. Within each niche, individuals with
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higher fitness function values are selected to propagate the next generation.
Niche techniques offer the advantage of not needing niche parameters to be
fine-tuned. However, there is a possibility of losing the discovered niche during
the replacement process, as some members may belong to different niches.

In 2009, Li [84] proposed a new kind of niching method in which the ring
topology between the individuals and their personal best is employed as a
neighborhood structure in the PSO algorithm. By using particle local memory,
this method creates a stable network while maintaining the best position
found so far. As a consequence, the ring topology facilitates the creation
of stable niches across different local neighborhoods and thus helps to find
multiple local or global optima. As a follow-up to the previous study, Qu
et al. [85] proposed a distance-based locally informed particle swarm (LIPS)
in 2012. By integrating information from the Euclidean nearest neighbor of
the personal best of each particle, the algorithm has been extended with
local search capabilities and has updated the particle velocity with the PSO
algorithm. The advantage of this approach is that it increases the possibility
of considering neighboring individuals in the same niche, thereby raising the
exploitation potential of the algorithm through interaction with local solutions.

In addition, a number of other niching-related methods have been proposed in
the past few years to handle multi-modality in single objective optimization
problems using Gravitational Search Algorithms (GSAs), which can be consid-
ered a powerful technique to solve a variety of these problems, including GGSA
[86], QISGA [87], BQIGSA [88], and CoGSA [89]. Additionally, some other
niching techniques have been suggested that may also be of interest to you.
You may refer to some existing surveys on niching methods within the context
of multimodal, single-objective optimization to gain a better understanding
of these techniques [81, 90, 91].

3.1.2 Multi-modal Multi-objective Optimization

The use of MOEAs poses a considerable challenge in solving MMOPs, in part
because they tend to increase the distribution of solutions in the objective
space without taking the distribution of solutions in the search space into
consideration. It is therefore essential to develop approaches for increasing
diversity in the search population in order to capture Pareto-optimal solutions
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by covering all parts of the Pareto front to solve MMOPs. Although there
has been a relatively limited amount of research conducted on multi-modal
multi-objective optimization problems (MMOPs);

3.2 Classification of related approaches for Multi-modal Multi-
objective Optimization with Multiple Global Pareto sets (Type
I MMOP)

Regarding MMOEAs types, there are two major types: decomposition-based
MMOEAs and Pareto-dominance-based MMOEAs. The decomposition-based
MMOEAs [92] are an enhanced version of the MOEA/D algorithm [93, 63]. The
two extended versions of MOEA/D used to solve MMOPs are described in [92]
and [94]. According to the MOEA/D algorithm, an optimization problem
with M objectives is divided into N single-objective problems, with each of
these sub-problems being assigned to a separate individual [63]. As a result of
the MOEA/D algorithm, N individuals evolved simultaneously. There are two
variations of MOEA/D when it comes to aging MMOPs, which each assign one
or more individuals with responsibility for dealing with equivalencies within
each sub-problem [18].

MMOEAs from the second category are largely extended versions of the NSGA-
II algorithm: the solutions are sorted into fronts in the environmental selection
process based on the non-dominance sorting relationship. Then, secondary
selection is performed by incorporating different niche selection techniques to
preserve the solution distribution throughout the search space. An example of a
developed algorithm that can be classified into this category can be seen in the
studies [95, 96], which make use of clustering techniques to maintain multiple
optimal solutions during development of the algorithm. As a result of this,
multiple stable subpopulations within a population are maintained, allowing
multiple optimal solutions to be preserved within the population. The more
recent approach is to employ external archives to maintain a variety of non-
dominated solutions in the decision space [97, 98, 99]. There have been several
proposed MMOEAs that have implemented the crowding diversity measure
in decision space in order to deal with MMOPs [71, 100, 101, 102, 103].

Moreover, discussions have been held regarding the implementation of diversity
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or convergence indicators into the set-oriented optimization procedure, a
method that has shown some promise [63]. MMOEAs can be improved using
these indicators to preserve the distribution of solutions in the search space
as well as provide other interesting options [12]. The gap indicator (or the
average distance to the nearest neighbor) [104] is a simple indicator that helps
to increase the diversity of the optimal solutions obtained. A further example
is the Rietze S-energy indicator, which produces a uniform distribution of
points over a number of manifolds and is scalable when it comes to the number
of decision variables [12, 63].

3.2.1 Decomposition-based Multi-modal Multi-objective Evolutionary Algo-
rithms

Decomposition-based multi-modal multi-objective evolutionary algorithms
(MOEAs) are a type of optimization algorithm for solving multi-objective
optimization problems with multi-modal or local optimal solutions. MOEA/D
is the most representative example of a decomposition-based algorithm [105].
In spite of the fact that MOEA/D has proven to be a promising candidate for
solving a variety of MOPs, it has not been shown to be suitable for solving
MMOPs, as reported in [94]. This is the result of only assigning one solution
to each weight vector, which is responsible for directing the search in a Pareto-
optimal direction. It is therefore impossible for MOEA/D to preserve multiple
equivalent solutions.

As a general principle, these algorithms aim to decompose multi-objective prob-
lems into smaller sub-problems that are easier to solve. Multi-modal MOEAs
based on decomposition typically consist of the following steps: initialization,
in which a random population of solutions is generated; and decomposition,
in which a multi-objective problem is split into several sub-problems, each
representing a local optimum. Partitioning of the objective space is based
on regions that correspond to individual sub-problems. The generation of
solutions uses either a local search algorithm or a global optimization algo-
rithm to generate a set of solutions for each sub-problem. Solution selection
consists of evaluating and selecting solutions based on their fitness values
for each sub-problem. Once the selected solutions have been combined, the
new population is formed. It consists of all solutions that have not been
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dominated by any other solution in the Pareto Archive. The purpose of this
structure is to store non-dominated solutions that have been identified so far
in the search process. Upon meeting a particular stopping criterion, such as a
specified maximum number of iterations or an acceptable level of accuracy,
the algorithm will terminate.

A multi-modal MOEAs driven by decomposition has the advantage of providing
a set of distributed solutions. A decomposition-based multi-modal MOEAs,
however, has limitations as well. In particular, they may be sensitive to the
choice of sub-problems and partitioning of the objective space, and they may
not work well with complex or nonlinear problems. Below is a brief description
of the proposed multi-modal MOEAs based on decomposition.

In 2018, MOEA/D-AD [106] was proposed as an alternative method of
solving MMOPs based on MOEA/D . MOEA/D-AD aims to enhance the
exploration-exploitation trade-off during opti. MOEA/D-AD aims to enhance
the exploration-exploitation trade-off during optimization. By generating ref-
erence points representative of different regions in the space, the proposed
algorithm provides a more profound understanding of the objective space.
A more balanced exploration of the space and improved solutions are then
achieved by guiding the optimization process using this information. With
MOEA/D-AD, each weight vector has a subpopulation size that varies adap-
tively.

In the proposed MOEA/D-AD algorithms, there is an assignment of a weight
vector wi to a particular offspring y closest to it in the objective space, and
the subpopulation of wi is referred to as Pi. From all the solutions in the
decision space, the nearest L solutions to y are selected (referred to as Q). In
the event of either of the following two conditions being satisfied, the offspring
0 will be added to Pi: If pi ∩ Q ̸= ∅, and at least one solution in pi ∩ Q

has the worse scalarizing function value than y. It will then be possible to
remove those solutions from Pi that are worse than O. Whenever pi ∩ Q
reaches ∅, then there will be a maintenance of the niching structure in the
decision space by following the techniques described earlier if pi ∩ Q = ∅.
Offspring O competes with only those solutions that are its neighbors in
the decision space. Therefore, multiple equivalent solutions may be kept in
a subpopulation of a weight vector. The idea of assignment, deletion, and
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addition has been simplified into a framework of operations in [107], which
can be used to enhance the performance of decomposition-based MMOEAs.
MOEA/D-AD has the disadvantage of working with an unbounded population,
resulting in a huge population after many iterations.

The proposed algorithm, Tri-MOEA&TAR [16], in 2019 offers a solution to
Multi-Objective Optimization Problems MOP by utilizing two archives: the
convergence archive and the diversity archive, combined with a recombination
strategy. The algorithm starts by employing a decision variable analysis
method to identify the decision variables linked to convergence and diversity.
The information derived from this analysis is then utilized to enhance the
convergence and diversity of solutions within the two archives. Finally, the
recombination strategy is applied, resulting in the generation of a substantial
number of multiple Pareto-optimal solutions.

3.2.2 Pareto-Dominance-based Multi-modal Multi-objective Evolutionary Algo-
rithms

The majority of MMOEAs fall into the Pareto-dominance-based classification,
which is based primarily on the NSGA-II algorithm, as illustrated in Figure
3.1. The mating pool consists of existing populations of solutions and their
offspring solutions, which are the result of recombination and mutation. A
subsequent environmental selection process determines which solutions from
the mating pool will be passed on to the next generation. After sorting the
solutions using the non-dominance sorting method, they are passed to the
next generation, beginning with the first front (i.e., front1). The process will
continue until the number of solutions in fronti added to the next-generation
population exceeds the number of the current population. The next step is
to compute the crowding distance of each solution on the fronti and then
to transfer those placed in sparser areas in the objective space to the next
generation. Crowding distances are used by MOP strategies to increase the
diversity of solutions in their objective space. To calculate the crowding value
for each individual of fronti, it is necessary to sort the population according to
the values of each objective function. A value of infinite distance is assigned
first to the boundary solutions. The distance is computed by aggregating the
absolute normalized difference between the function values of two consecutive
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Figure 3.1: Environmental selection operation for the NSGA-II algorithm.

solutions. This is achieved by summing up the absolute normalized difference
between the values of adjacent solutions, as described in [108].

As one of the first algorithms to address MMOPs, Omni-optimizer [100]
was widely recognized in 2005 as one of the most representative MMOEAs
[18]. The method can be employed to achieve multi-optima either for a single-
objective problem or for a multi-objective problem. The method combines
several optimization methods, including genetic algorithms, particle swarm
optimization, and local search, to provide an extremely flexible and powerful
optimization method. In this algorithm, the following approaches are employed.
First, the Latin hypercube is used to generate the initial population uniformly.
The second step consists of choosing the two individuals who will participate
in the tournament selection process using the nearest neighbor approach (i.e.,
restricted selection). In addition, a two-tier fitness assignment scheme is em-
ployed, which calculates primary fitness according to phenotypes (objectives
and constraints), while secondary fitness calculation is based on both pheno-
types and genotypes (decision variables). Omni-optimizer has the advantage of
being flexible; it is capable of handling a wide range of optimization problems
and can be modified to meet different objectives and constraints. In addition,
it has a hybrid nature that allows it to leverage the advantages of multiple
optimization techniques, making it a powerful and efficient optimization tool.
The nature of the problem and the parameters that are used can, however,
have a significant impact on the algorithm’s performance.

The decision space based Niching Non-dominated Sorting Genetic
Algorithm II (DN-NSGA-II) is a multi-objective optimization algorithm
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that was proposed in 2016 [101]. This algorithm incorporates a niching method
and a selection operator for creating the mating pool and selecting offspring.
DN-NSGA-II includes a mating selection method based on solution distances.
A brief summary of this algorithm can be summarized as follows. First, a
niching method is utilized to create the mating pool. For solutions to compete
with each other, they must all belong to the same niche. the process is as
follows: the pro Initially, a solution is randomly selected from a population of
candidates. In the second step, a constant number of solutions is chosen at
random from the remaining population (crowding factor [CF]). In the third
step, Euclidean distance is calculated between the current solution and the CF
solution, and then the closest solution is selected. A final step is to add the
best solution from the two options (current solution and closest solution) to
the mating pool. The four steps described above should be repeated to fill the
mating pool. In addition to the first modification, the selection operator has
been modified in a second way. To improve the distribution of the solutions
in the search space, the crowding distance technique was used in the decision
space rather than the objective space for the secondary selection criteria.

A Double-Niched Pareto Genetic Algorithm (DNEA) algorithm was
developed in 2018 [67], which is similar to Omni-optimizer except that it intro-
duces two sharing functions between objective and solution spaces. Compared
to standard generational evolutionary algorithms, DNEA is characterized by
its environmental selection, which is a significant difference. In both the ob-
jective and decision spaces, this algorithm estimates the density of a solution.
Using double-niching techniques, it is possible to take into account solutions
that are very close to one another within the decision (objective) space while
being very distant from one another within the decision (objective). This
algorithm is capable of preserving diversity both in the decision space and the
objective space. However, two parameters that are used in the sharing-niching
algorithm must be fine-tuned.

In contrast to the aforementioned MMOEAs that utilize genetic variation
operators like SBX crossover and polynomial mutation for inducing genetic
variation, the subsequent MMOEAs are founded on diverse approaches.

The MO-Ring-PSO-SCD algorithm is based on Particle Swarm Optimiza-
tion (PSO) [71], another representative MMOEAs that has received consider-
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able attention since its introduction in 2018. The proposed approach optimizes
particles locally by moving them toward the best positions that they have
already found or those found by others in their ring. The ring topology [109]
is then used to introdunce multiple niches. A MO-RING PSO finds the global
optimum by interacting the particles in different rings with each other and
exchanging information about their best positions among the particles. After-
ward, the global best position is updated based on the best position found so
far by each particle. By exploring new regions of the search space, the particles
are able to find the global optimum. Furthermore, MO-Ring-PSO-SCD main-
tains diversity both in the objective and decision spaces by utilizing a density
measurement approach similar to Omni-optimizer while handling boundary
individuals differently in the objective space.

Following the previous study [71], in 2019 MO-PSO-MM, a self-organizing
mechanism, was proposed [110], which involves the introduction of a self-
organizing mechanism allowing the determination of population distribution
and the construction of neighborhoods in the decision space during the evo-
lution process. It is then possible to map solutions that are similar to each
other into the same neighborhood. As in Omni-optimizer algorithms, a special
crowding distance was utilized to preserve the diversity of solutions in the
decision and objective spaces.

The Niching-CMA algorithm [111], introduced in 2010, extends the CMA-ES
approach to address decision space diversity in evolutionary multi-objective
algorithms. It employs an aggregate distance metric in both the objective and
solution spaces to classify individuals into multiple niches. Individuals with
higher non-domination levels within each niche have a survival advantage. The
concept of space aggregation is also introduced to preserve diversity in the
aggregated spaces (objective and decision spaces). This study demonstrates
that the Niching-CMA method for multi-objective optimization can generate
more diverse solutions. However, fine-tuning the user-defined parameters can
be a challenging task.

Since its introduction in 2004, the SPEA2+ algorithm has been a significant
improvement over the original SPEA2 algorithm [112] in terms of maintaining
multiple diverse solutions [99, 98]. Various modifications and enhancements
have been implemented to increase the algorithm’s efficiency. These include
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revisions in the environmental selection process, adjustments in fitness calcu-
lation, and more efficient memory utilization. The algorithm incorporates two
archives, one for the objective space and one for the solution space, to preserve
the diversity of solution options. The archive in the objective space is deter-
mined based on the density of individuals within the objective space during
the environmental selection process, while the archive in the decision space is
determined by the density of individuals within the solution space. During
mate selection in SPEA2+, individuals from the objective space archive are
exclusively chosen from the neighborhood in the objective space.

Niching-CMA represents a significant improvement over the SPEA2 algo-
rithm with regard to maintaining multiple diverse solutions. A number of
changes and modifications are introduced to enhance the efficiency of the
algorithm. These include revisions in the environmental selection process,
modifications to the fitness calculation, and a more efficient use of memory.
Two archives are used in this algorithm to maintain the diversity of solution
options: one for the objective space and one for the solution space. According
to SPEA2 [112], the archive in the objective space is determined by the den-
sity of individuals within the objective space for the environmental selection
process, while the archive in the decision space is determined by the density of
individuals within the solution. When selecting mates in SPEA2+, individuals
within the neighborhood in the objective space are only selected from the
archive in the objective space.

3.2.3 Indicator-based Multi-modal Multi-objective Evolutionary Algorithms

MMOEAs that rely on indicators tend to steer their evolutionary progress us-
ing reference vectors aligned with the chosen performance indicators. However,
it should be noted that indicator-based designs do not guarantee a uniformly
distributed optimal set of solutions, although they can guide the search process
and yield favorable performance indicator values such as hypervolume. Never-
theless, the practical application of these approaches in real-world scenarios is
challenging due to their high computational complexity.

Using a weighted indicator, a novel algorithm for assessing the convergence
quality of solutions was developed in 2019 called the MMEA-WI algorithm,
which utilizes a weighted indicator to evaluate the potential convergence

43



3.3. Related work for Multi-objective Optimization with Multiple local Pareto-sets (Type II
MMOP))

quality of the solution. An indicator based on the IBEA algorithm [113] has
been developed. By summing the fitness of other solutions depending on their
distance from the solution, the weighted indicator of the solution is calculated.
Thus, solutions tend to crowd the PS as a result of this process. We have
introduced a convergence archive to maintain the uniformity of the solutions
as well as improve the convergence capability.

3.3 Related work for Multi-objective Optimization with Multiple
local Pareto-sets (Type II MMOP))

There have been several studies on solving MMOPs, but most of them have
focused on the problem of finding multiple equivalent global Pareto solutions.
MMOPs with local Pareto solutions are seldom addressed. Nevertheless, local
Pareto solutions are of great importance when it is not possible to apply global
ones. It is difficult to locate the local PS when the non-dominated sorting
method is applied throughout the entire population. The reason for removing
these local Pareto-optimal solutions from the selection process is due to the fact
that, when considering environmental selection, local Pareto-optimal solutions
tend to be dominated by global Pareto-optimal solutions. Therefore, these
local Pareto-optimal solutions are usually discarded. Nevertheless, in many
instances, decisions are made in favor of local Pareto solutions when global
solutions are not feasible or are too expensive to be accessed. Consequently, it
would be beneficial to develop strategies for locating local PSs. In this section,
we give an overview of some of the recent research devoted to resolving
these types of problems in a way that approximates their global PSs while
maintaining some suitable local PSs as well.

To locate both global and local Pareto solutions, the Multimodal Multi
objective Genetic Algorithm (MMOGA) was introduced in 2020 [114].
The Euclidean distance in decision space determines each individual’s neigh-
borhood in MMOGA. Individuals within their own neighborhood are limited
to mating and reproducing with each other. In this way, the population has
the opportunity to evolve into different niches. In this study, individuals are
compared only with their neighbors rather than with the entire population as
a whole. As a result, the local Pareto-optimal solution is not eliminated from
the search process.
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However, it is possible that certain individuals may have been mistakenly
identified as local Pareto-optimal solutions. To address this issue, the algorithm
combines the non-dominated solutions within each niche and removes the
solutions that are dominated by their neighbors. The experimental results
demonstrate that the proposed algorithm effectively solves MMOPs involving
local Pareto sets. However, it is important to acknowledge that this study
serves as a preliminary exploration in identifying both local and global Pareto
sets for MMOPs. Despite the improved performance of the proposed algorithm
for MMOPs with local Pareto sets, it is not as efficient as some algorithms
designed for MMOPs with only global Pareto sets. Additionally, the algorithm
entails a high computational complexity [114].

A 2021 research paper addressedMMOPs with local PSs, calledMMOEA/DC
[115]. The new MMOEA incorporates dual clustering in both the decision
and objective spaces. As MMOP problems are solved, the focus is on two key
goals: finding multiple good global PSs in the objective space that have the
same quality and finding good local PSs of acceptable quality. MMOEA/DC
is able to generate both global and local PSs through the application of the
double clustering method, which is the hierarchical clustering method (HCM)
and the neighborhood-based clustering method (NCM) within the decision
space within the objective space. Averages of harmonic distances are utilized
to evaluate the crowding distances between solutions in the decision space.
To reduce the number of solutions within each cluster, an iterative process
is employed where the most crowded solution in the decision space is suc-
cessively eliminated from the most crowded cluster in the objective space
until only one solution remains. The dual clustering approach adopted in
this study effectively balances the preservation of good local Pareto sets of
acceptable quality with the preservation of global Pareto sets throughout the
evolutionary process. Based on the findings of this research, a crowding-based
mating selection strategy is proposed, which employs a binary tournament
selection method that considers the harmonic average distance values within
the decision space. This strategy aims to select offspring that exhibit greater
variation within the decision space, thus promoting diversity in the offspring
population [115]. As a result, it is possible to select mating parents that are
more uniformly distributed, thereby producing offspring that exhibit greater
genetic diversity. This algorithm carries a number of advantages, including
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when solving MMOPs when both local and global PSs coexist by utilizing
dual clustering to distinguish between good local PSs and good global PSs.

To solve MMOPs specifically to preserve local optimal solutions, DNEA-L
is proposed as an enhancement to the DNEA algorithm [116]. Using a multi-
front archive update method, both a global and local PS can be obtained.
The framework of DNEA-L is based on the following approach: multiple non-
dominated fronts are stored in a multi-front archive. Based on the proposed
approach, the neighbors of each solution whose distance to the solution is less
than the neighborhood radius identified in the decision space. Those solutions
that are dominated by their neighbors in the population are eliminated because
they are not locally Pareto-optimal. After sorting, non-dominated fronts are
constructed from the remaining solutions. Solutions with the largest double-
sharing functions are removed from the first K fronts when they exceed the
population size, reducing the number of solutions on each front to N . Based
on this algorithm, it would be possible to produce both global and local
Pareto-optimal solutions with a high degree of diversity.

Using a hierarchy ranking algorithm (HREA), an evolutionary algorithm
was developed in 2022 [117] to determine the global and local preferences
of decision-makers. An indicator of local convergence was used by HREA to
assess local convergence. The indicator would allow both global and local PSs
to be preserved during evolutionary processes. It is proposed that a hierarchy
ranking method can be used to maintain the quality of the obtained local PF
by balancing convergence and diversity. Moreover, IDMPe is proposed, which
is based on IDMP and allows for the adjustment of the number of global and
local PSs.

3.4 Foundation for Experimental Comparison

IIn this section, we describe the general experimental settings used in the
majority of the experiments discussed in the following chapters. A specific
experiment’s settings may differ from those described in this section, in which
case they are indicated accordingly.

Experiments were carried out using PlatEmo Platform Version 2.8.0 with
Matlab R2020a running at a speed of 3 GHz with 16 GB of RAM in a 64-bit
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environment and an Intel Core i7 processor. Unless otherwise specified, we
considered 100 as the population size. Each algorithm executes a maximum
of 10,000 function evaluations for all experiments to meet the termination
criteria [63]. In this study, we used the Mann-Whitney-U test or Wilcoxon rank
sum test [118] to determine whether our results are statistically significant
under the null hypothesis that the medians of both samples were equal. As
a threshold value in this study, we used 0.01 as a test of whether there are
statistically significant differences between algorithms when the p-value is
less than 0.05. Additionally, we demonstrate the wins, losses, and ties based
on statistical significance across all test suites for each algorithm versus the
proposed algorithm.

As part of the experiment, we utilized the IGD+ performance metric to assess
whether the obtained optimal solutions in objective space resembled PF
solutions. As a measure of the quality of optimal solutions obtained in an
objective space, this indicator is designed to determine the degree of diversity
and convergence. Furthermore, we used the IGDx performance indicator to
assess the similarity between optimally obtained solutions and PSs in the
search space. In this manner, we are able to examine both the diversity
and convergence of optimally obtained solutions in the decision space. In
addition, the PSP performance indicator is also used as a secondary metric
calculated by dividing the cover-rate by the IGDx values, which illustrates the
overlap between the PS and the derived results. Most commonly, the metrics
mentioned above are used to assess the performance of MMOEAs. Notably,
the lower value of the IGD+ and IGDx values results in a better convergence
of the obtained solution to the PF and PS, whereas the higher value of PSP
indicates a better convergence and cover rate for the obtained optimal solution
to the PS [119]. In Section 2.8, the above-mentioned indicators are described
in detail.

We have computed the IGD+, IGDx, and PSP values using a sample of the
respective PF and PSs of the benchmark problems to evaluate the perfor-
mance of various algorithms. In the reference point sampling approach, we
used uniformly distributed reference points on each PF and PS to calculate
performance metrics of the solutions obtained by MMOEAs.

Taking n as the number of decision variables, Pc = 1 and Pm = 1/n represent
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the probabilities of SBX and polynomial mutation, respectively. ηc = 20 and
ηm = 20 represent the distribution indices of these operators, respectively [63].
These configurations are implemented when any algorithm employs polynomial
mutation and SBX crossover.

3.4.1 Configuration of the State-of-the-art Algorithms

Some of the related works have been implemented in PlatEmo, similar to their
original publications. Furthermore, there are implementations of related works
provided by the algorithm authors. Our own contributions have also been
incorporated into the PlatEmo framework in addition to these contributions.
Based on the examination of the available source codes for the algorithms,
the author of the thesis identified some algorithms that were employed in
the study. Specifically, the MMOEA/DC, Mo-Ring-PSO-SCD, and DNEA
algorithms were utilized in this thesis.

To compare the state-of-the-art algorithms with the proposed algorithms,
we used algorithms representative of the two major categories. The Mo-ring-
PSO, Omni-optimizer, DNEA, and DN-NSGA-II algorithms are the most
representative of the Pareto-dominance-based acpmmoea, the source code for
which was available. Furthermore, our proposed algorithm for solving MMOPs
of type II was compared with the MMOEA/DC algorithms, which are the
most representative of the second category of decomposition-based MMOPs.
The NSGA-II algorithm is used as the baseline algorithm for comparison with
the other proposed algorithms.

The algorithm parameters have been configured in accordance with the speci-
fications provided in the original publications by the respective authors. In
the following list, we provide the settings for the parameters of the related
methods. Any changes to parameters are noted in the corresponding section.

• NSGA-II source code was used as it is implemented on the PlatEmo
platform, and parameters were configured based upon those reported in
the original literature [33].

• The Mo-Ring-PSO-SCD source code was obtained from the corresponding
author’s website, and the parameters were configured according to the
literature [71]. Consequently, C1 = C2 = 2.05 and W = 0.7298 were set.
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• For the MMOEA/DC algorithm, the parameter λ, which determines the
radius of the neighborhood in NCM, was set to 0.1 while the parameter
β, which sets the minimum number of solutions in each cluster, was set
to 5.

• In the proposed DNEA algorithm, Niche radius in the objective space
was set to δobj = 0.06 and in the decision space to δvar = 0.02.

3.4.2 Specification of Benchmark Problems

To assess the quality of the solutions for the proposed approaches, we tested
the algorithms on a total of 20 different multi-modal multi-objective problem
instances, including MMF1–15 (which are taken from the CEC 2019 compe-
tition on multi-modal multi-objective optimization [120, 101]), SYM–PART
[121], as well as Omni-test problems [100] and polygon-based problems [66].
These multi-modal test problems have the important characteristic of every
problem including multiple distinct subsets of the PS, each covering the PF
independently. These test cases all fall under the first category of MMOPs,
where there are multiple global PSs. To test the functionality of the proposed
algorithms, each test case contains a range of complexity levels based on the
number and shape of PSs and PFs. Additionally, we tested the algorithm’s
scalability in large-dimensional search spaces and objective spaces using the
MMF14 and polygon test problems [122]. Considering the fact that this re-
search area is relatively new, there are a limited number of test cases that have
been conducted in the field. Our expectation is that over time, this number will
increase. It is important to note that MMF1-14, SYM-PART, and Omni-test
multi-modal multi-objective benchmark functions were implemented on the
PlatEmo platform by the author. The polygon test problems are provided by
the corresponding author of the proposed benchmark problems. Below are
details about the benchmark problems used in this thesis:

• Benchmarks such as MMF1-MMF-13, MMF1-z, SYM-PART, and Omni-
test have two decision variables and two objective functions, and they
cannot be scaled.

• Using the MMF14 benchmark problem, it is possible to increase the
number of decision variables from two to six with two or three different
objective functions, which produces 10 different benchmarks.
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• Three instances of the Polygon benchmark suite are presented using
variables of size two, four and six, with m = 6 being the number of
objective functions.
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Chapter 4

Exploratory and Preservative
Methodologies

This chapter analyzes two different types of developed approaches to address
multi-modal multi-objective optimization problems. Combining these two
types of approaches enhances the ability of existing algorithms to deal with
MMOPs. The first types of proposed approaches consist of development tech-
niques that enable the algorithm to explore the search space in greater depth,
identifying multiple distinct solutions within the search space simultaneously
by modifying the tournament selection, reproduction, and mutation operators.
Further details concerning this type of approach are provided in Section 4.1.
The second type of proposed approach develops methods for preserving these
diversely obtained solutions, which map to the same or similar solutions in the
objective space, for transmission to the next generation using modifications to
the environmental selection process. Furthermore, the proposed environmental
selection procedures can be divided into two categories so that they can be
used for solving multi-modal, multi-objective optimization problems involving
multiple global Pareto sets (MMOPs of type I) as well as problems involving
local and global Pareto sets that must be maintained (MMOPs of type II). In
Section 4.2, the proposed approaches for dealing with MMOPs of type I are
further discussed, while Section 4.3 details the proposed approaches for dealing
with MMOPs of type II. The performance of each proposed method in this
chapter was also evaluated in comparison with some of the most recent and
prominent related algorithms and previous proposed methods in the chapter,
following the introduction of each proposed approach.
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The following descriptions of the proposed approaches and the experiments
are taken from the original publications of the author of this thesis [123, 124,
119, 125].

4.1 Proposed exploratory methods

Using explorative methods, the algorithm can be assisted in exploring the
search space more deeply by modifying the tournament selection, reproduction,
and mutation operators, thereby identifying multiple distinct solutions within
the search space at the same time. The exploratory method searches for
the best possible solution in a multidimensional search space when solving
multi-objective optimization problems. Searches can be conducted locally or
globally. A local search method focuses only on improving nearby solutions,
while a global search method considers the entire search landscape.

4.1.1 Tournament Selection Mechanism

The author of the thesis has previously published the proposed tournament
selection in [119], and the main content of this section derives from that
publication.

Basically, tournament selection is the process of selecting a group of individuals
out of a generation that will survive and reproduce in the following generation
[41]. In a binary tournament, the two participants are chosen at random, and
the individual with the lower crowding value and front number is added to
the parental population. In this repeatable process, N parental solutions are
produced, which may lead to duplicate solutions. This increases computational
costs by evaluating duplicated solutions that have already been evaluated and
decreases the full potential for finding the optimal set of solutions based on
N selected diverse solutions.

Additionally, tournament selection is typically based on dominance mechanisms
and density measurements within the objective space, which tends to favor
solutions that are not dominant and located within the separated area of
the objective space. For the algorithm to discover multiple solutions, it must
modify the classical tournament selection (such as the tournament selection
used in NSGA-II) as needed.
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To eliminate the likelihood of duplicate solutions being generated, we propose
a new tournament selection mechanism that excludes duplicate solutions from
selection and incorporates diversity-based metrics into the search space to
select a mate pair from the population for each solution. We propose a new
tournament selection mechanism where a mate pair from the population is
selected for each solution by excluding it from selection. All offspring that are
identical to their parents are subjected to a second mutation if there is no
change after crossover and mutation. In this way, we prevent the emergence of
identical solutions in a population by ensuring that offspring from a particular
generation are not identical to their parents [119].

Furthermore, we suggest that diversity-based metrics be incorporated into the
search space instead of objective metrics in order to improve mating selection.
Through the use of this strategy, we intend to increase the likelihood of finding
non-dominated solutions in areas of the search space that are not well explored
and to identify individuals that contribute significant diversity to the search
space.

As a means of estimating the average number of duplicated solutions produced
in a binary tournament selection mechanism, we conducted an experiment
with the NSGA-II algorithm (with standard tournament selection) on a test
problem (MMF1) containing 100 individuals and 10,000 function evaluations.
Our findings show that, on average, 4.145 of the offspring of each generation
are identical to their parents [119].

The proposed mating selection process aims to select mating parents that
possess a high degree of diversity in the search space and convergence toward
the PF. Algorithm 2 provides the pseudocode for our proposed tournament
selection method. To select a mate, each individual in a population is evaluated
based on two criteria. First, there is the population front number Line 1), for
which a lower number indicates a better convergence of the solution. Second,
there is the harmonic average distance (HAD) value of the solution among
the entire population (Line 2), with a higher value indicating a less congested
area around the solution. Next, two random solutions are selected for each
solution in the population, excluding the solution itself (Line 3). As the mate
for the solution Pi(t), the individual with the lowest front number and the
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Input: Population P (t)
Output: Population of Parents Q(t)

1 Front ← fast-non-dominated-sort(P (t)) HAD ← harmonic-average-distance(P (t))
2 for i← 1 to |P | do
3 Choose two solutions x and y randomly from P (t), excluding the individual Pi(t);
4 if Frontx < Fronty then
5 matei(t) ← Select x as a mate for Pi(t);
6 else if Frontx > Fronty then
7 matei(t) ← Select y as a mate for Pi(t);
8 else
9 matei(t) ← Select the one with the higher HAD value;

10 end
11 P ′

i (t) ← Recombine(Pi(t),matei(t));
12 Qi(t) ← Mutate(P ′

i (t));
13 if Qi(t)==Pi(t) || Qi(t)==matei(t) then
14 Qi(t) ← Mutate(P ′

i (t));
15 else
16 Do nothing;
17 end

18 end
19 return Q(t)

Algorithm 2: ModifiedMatGenSelect(P (t)) [119]

largest HAD is selected (Lines 5–11)[119]. The HAD value for the solution i

and its l nearest neighbors can be calculated as follows:

HAD(i) =
k∑l

j=1
1
dij

(4.1)

The dij are the Euclidean distances from the solution i and the solution j
within its neighborhood, and k denotes the neighborhood size.

Following the selection of a mate for the solution Pi(t), the genetic operators
are applied to the solution Pi(t) and its mate to create an offspring (Lines
12–13). A second chance is given to offspring if recombination and mutation
do not result in changes (Line 15). This process prevents duplicate solutions
from being produced (Lines 14–18) [119].
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4.1.2 Neighborhood-based Mutation Operator

The approaches introduced in this section are derived from the publications
of the author of this thesis, which appear in [126, 102].

Due to the fact that most population-based metaheuristics employ a mutation
operator, extending this operator to include a deeper exploration of the search
space can facilitate finding more diverse solutions to dealing with MMOPs.
This is accomplished by proposing a neighborhood-based mutation operator as
the author’s second contribution to multi-modal, multi-objective optimization.

We propose a modification of this operator based on the neighborhood mutation
concept proposed by Qu et al. [127] in order to make it more applicable to
multi-modal, multi-objective optimization problems. There is a description of
a neighborhood-based mutation (NBM) approach in Algorithm 3. As part of
the proposed method, neighboring solutions are constructed, the mutation
probability of each solution is multiplied by the number of times each solution
has appeared in its neighborhood, and a polynomial mutation operator is
applied to each solution based on its adjusted mutation probability.

The intention behind the proposed operator indicates that a solution appearing
in a neighborhood with other solutions has a greater chance of being mutated,
leading to a greater possibility of generating new solutions outside the crowded
areas and escaping local optimization traps. In this way, we are able to explore
the search space in a deeper way and generate multi-modal solutions.

Figure 4.1 presents a demonstration of the detection of the unexplored area in
the search space using the neighborhood-based mutation operator. Per Figure
4.1, PS1 and PS2 are two Pareto sets of solutions. These solutions are mainly
located adjacent to PS1. Implementing the neighborhood-based mutation will
likely facilitate the relocation of the most crowded solution, highlighted in
red, toward PS2 as well as facilitate further exploration of the search space.

The concept of neighborhoods has been widely utilized in evolutionary algo-
rithms. Neighborhoods can generally be classified into two types: index-based
neighborhoods and distance-based neighborhoods. Index-based neighborhood
optimization is commonly employed when dealing with single global peak
optimization problems. On the other hand, distance-based neighborhoods are
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Figure 4.1: A neighborhood-based mutation illustration.

typically used in multi-modal optimization scenarios where the objective is
to locate multiple optima and diversity is crucial [127]. To promote diver-
sity within the population, we incorporated a distance-based neighborhood
approach using the Euclidean distance metric in combination with the muta-
tion operator. This integration aimed to enhance the algorithm’s capacity to
generate a wider range of diverse solutions.

In Algorithm 3, the Euclidean distances between all solutions in the decision
space are first computed (Lines 1–4). Each solution’s neighborhood consists of
the individual itself and its K closest neighbors, as computed by the Euclidean
distances (Lines 6–7). Next, polynomial mutations are used to mutate each
individual in the population along with its neighboring solutions (Lines 9–26),
and this operator is explained in more detail in the following chapter. The
mutated offspring are then returned (Line 27).

In multi-objective evolutionary algorithms, the polynomial mutation operator
is often used and has been shown to be effective [128]. It was originally
proposed by Deb and Goyal [46, 129]. A polynomial distribution is used in
this operator to sample a new value around the original value for real-valued
variables. The polynomial mutation operator is composed of two parameters:
the mutation probability pm and the distribution index ηm. Specifically, a
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Input: List O of offspring of solutions of current generation with o := |O|, Neighborhood
Size=K

Probability of Mutation=pm,
Distribution Index=ηm
Upper and lower bounds xuk and xlk for each variable k
Output: Mutated Individuals O

1 for i ∈ {1, .., o} do
2 for j ∈ {1, .., o} do
3 Euc(i, j) = ∥O[i].x⃗−O[j].x⃗∥2 //calculate Euclidean distances between solutions
4 end

5 end
6 for i ∈ {1, .., o} do
7 N(i) = list of indices of K + 1 smallest values in Euc(i) //Set the neighborhood of each

solution i as itself and its K nearest neighbors
8 end
9 for i ∈ {1, .., o} do

10 for j ∈ N(i) do
11 for k ∈ {1, .., n} do
12 b = U(0, 1)
13 if b ≤ pm then

14 δ1 =
O[j].xk−xl

k

xu
k−xl

k

15 δ2 =
xu
k−O[j].xk

xu
k−xl

k

16 b = U(0, 1)
17 if b ≤ 1/2 then

18 δq = [(2b) + (1− 2b)(1− δ1)
ηm+1]

1
ηm+1 − 1

19 else

20 δq = [1− (2(1− b)) + 2(b− 0.5)(1− δ2)
ηm+1]

1
ηm+1

21 end

22 O[j].xk+= δq.(x
u
k − xlk)

23 end

24 end

25 end

26 end
27 return O

Algorithm 3: NBMutation(O, K, pm, ηm, xuk , x
l
k) [126]

probability parameter pm is used for each variable xi ∀i = 1, ..., n within a
solution x⃗ to determine whether that variable is subject to mutation. In this
case, n · pm represents the expected number of variables that will be mutated
for each solution. It is often recommended that pm = 1

n in the literature
[33, 129].
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Hence, in the expected situation, only one variable should be mutated per
solution. As for the second parameter, the distribution index ηm determines
the distribution from which the new, modified value is chosen. Distribution
indexes ηm can be used to balance exploitation and exploration in the search
process by influencing how much change a mutation operator produces. If
the change is larger, it indicates that it is more likely that the drawn value
from the distribution will be similar to the original xi value. According to the
literature, ηm is often set to 20 [33, 129].

Using this mutation operator implies that a neighboring solution, which
appears in the neighborhood of many solutions, has the chance to be mutated
more often than other solutions. In this way, the solutions that are located in
crowded areas of the search space have a higher chance of being mutated. As
a result, this might lead to better exploration in the decision space [126].

4.2 Proposed Preservative Methods

Using modifications to the environmental selection process, the second type
of proposed approach focuses on developing methods for preserving these
diverse solutions that are mapped to similar or the same solutions within the
objective space to ensure that these diverse solutions are preserved for future
generations. We present our proposed approaches in the following sections
to deal with two types of problems that require different selection operators
to solve. As the first category consists primarily of finding multiple global
PSs, the environmental selection process is required to maintain the globally
obtained optimal solutions. While the second category involves preserving
both global and local optimal solutions, it is imperative to develop selection
approaches that do not exclude locally identified optimal solutions from the
search.

4.2.1 Weighted sum crowding distance density measurement approach

Throughout this section, the main content is drawn from the author’s publi-
cations [126, 102].

To improve diversity in the objective space, the commonly used approach is
to employ the classical crowding distance (CD) method, which enhances the
distribution of solutions [33]. However, having a well-dispersed population in
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the objective space does not necessarily guarantee a high level of diversity in the
decision space. To address this issue, similar to the Omni-optimizer algorithm
[100], we incorporated the CD method in the search space to maintain solution
diversity. Additionally, we devised a strategy called weighted sum crowding
distance (WSCD), where we combined the crowding distance values from
both the decision and objective spaces. This strategy aimed to achieve a more
balanced distribution of solutions in both spaces.

Based on the proposed WSCD approach, CD is calculated in the objective
space ( CDobj) in a similar manner to the NSGA-II algorithm, for which the
pseudocode is shown in Algorithm 4. There is a large CD value (infinity)
assigned to the extreme solutions in the objective space (Lines 1–4). For the
remaining solutions, CD values are calculated by summing up the normalized
distances between the neighbors on the left and right sides of each solution in
the objective space (Lines 8–14) [33].

A description of the WSCD method can be found in Algorithm 5. The
proposed approach begins by calculating the maximum and minimum values
of all solutions for each decision variable (Lines 2–5). For each solution, the CD
values in decision space and WSCD values are set to zero (Lines 6–9). After
that, the solutions are sorted based on the values of the decision variables for
each variable (Line 11). Using the normalized distance between the boundary
solution and its adjacent neighbor, CD values are calculated for boundary
solutions (Lines 12–13). By normalizing the distances between the left- and
right-side neighbors of the solutions in the decision space, the CD values for
the remainder of the solutions can be determined (Line 14). In our work, we
normalize CD values in the decision space ( CDdec) and objective space (
CDobj), utilizing the max-min normalization method, so that the scores of
CD values can be compared across different dimensions in the decision and
objective spaces (Lines 19–20). Our objective was to ensure an adequate
diversity of solutions in both the decision and objective spaces by assigning a
final weighted sum for CD based on the assigned weights w1 and w2 for the
CD in both the decision and objective spaces.
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Input: List P of non-dominated solutions with p := |P |,
Number of Objectives M
Output: List P with added Crowding Distance (CD) values for each

solution
1 for i ∈ {1, ..,m} do
2 fi,max = maximum of values for i-th objective in P
3 fi,min = minimum of values for i-th objective in P

4 end
5 for j ∈ {1, .., p} do
6 P [j].CD = 0 //initialize CD of j-th solution in P
7 end
8 for i ∈ {1, ..,m} do
9 P ′ = sort P ascending based on i-th objective

10 P ′[1].CD =∞
11 P ′[p].CD =∞
12 for j ∈ {2, .., p− 1} do
13 P ′[j].CD += P ′[j+1].fi−P ′[j−1].fi

fi,max−fi,min

14 end

15 end
16 return P

Algorithm 4: CrowdingDistanceObj(P , m)- Pseudocode based on [126].

4.2.1.1 Configuration of the Proposed Methods

We evaluated the effectiveness of the approaches proposed in Sections 4.2.1
and 4.1.2 by implementing these approaches separately on NSGA-II algo-
rithms, which are called NSGA-II-weighted-sum-crowding-distance (NSGA-
II-WSCD) and NSGA-II-neigborhood-based mutation (NSGA-II-NBM). We
combined NBM and WSCD approaches to capture and preserve the solutions
discovered and implemented them on the NSGA-II using an algorithm we
called NSGA-II-weighted-sum-crowding-distance-neigborhood-based mutation
(NSGA-II-WSCD-NBM) Mutation (NSGA-II-NBM). We compared the vari-
ous configurations of these approaches with each other, as well as the NSGA-II
algorithm (as the baseline algorithm) and the Mo-Ring-PSO-SCD algorithm
(as the state-of- the-art algorithm).
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Input: List S of non-dominated solutions with added Crowding Distance (CDobj) values for
each solution in objective space according to NSGA-II algorithm with s := |S|, ;
// Algorithm 4

1 , Number of Objectives: m, Number of Decision Variables
2 : n
Output: List S with added Weighted Sum Crowding Distance ( CDws) values for each

solution
3 for i ∈ {1, .., n} do
4 xi,max = maximum of values for i-th decision variable in S
5 xi,min = minimum of values for i-th decision variable in S

6 end
7 for j ∈ {1, .., s} do
8 S[j].CDdec = 0 //initialize CDdec of j-th solution in S
9 S[j].CDWS = 0 //initialize CDWS of j-th solution in S

10 end
11 for i ∈ {1, .., n} do
12 S′ = sort S ascending based on i-th decision variable

13 S′[1].CDdec += 2 · |S
′[j+1].xi−S′[j].xi|
|xi,max−xi,min|

14 S′[s].CDdec += 2 · |S
′[j].xi−S′[j−1].xi|
|xi,max−xi,min|

15 for j ∈ {2, .., s− 1} do
16 S′[j].CDdec += |S′[j+1].xi−S′[j−1].xi|

|xi,max−xi,min|
17 end

18 end
19 for j ∈ {1, .., s} do
20 S[j].CD.obj = norm(S[j].CDobj) //normalize CDobj of j-th solution using max and min

values of CDobj in S
21 S[j].CD.dec = norm(S[j].CDdec) //normalize CDdec of j-th solution using max and

min values of CDdec in S
22 S[j].CDWS = w1 · S[j].CDdec + w2 · S[j].CDobj ;

23 end
24 return S

Algorithm 5: WSCD(CDobj , m, n) - Pseudocode based on [126].

The following list is a description of the configuration of the proposed ap-
proaches.

• As explained, the proposed neighborhood-based mutation approach has
been incorporated into the polynomial mutation, the configuration of
which is described in the section 3.4 on foundation for experimental com-
parison setup. When a neighborhood-based mutation is performed, there
is a single parameter K, which represents the size of the neighborhood.
The number of individuals selected for each neighborhood area of the
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Table 4.1: Analysis of performance using the IGDx indicator on the MMF1–MMF6 benchmarks
using 10,000 function evaluations. Comparison of WSCD and NBM approaches conducted using
NSGA-II. The best-performing algorithms are highlighted in bold and gray shading, and significance
relative to the best algorithms is indicated by an asterisk (*) in the respective columns [126].

Problems NSGA-II-WSCD-NBM NSGA-II-NBM NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 0.06321 (1.817E-3) 0.0.07552 * (9.316E-3) 0.07923 * (7.412E-3) 0.0.07235 * (7.26E-3) 0.1051 * (151E-2)

MMF2 0.01688 (2.885E-3) 0.01771 (3.956E-3) 0.08949 * (7.2725E-2) 0.0.03088 * (8.32E-3) 0.1021 * (853E-2)

MMF3 0.01486 (1.309E-3) 0.015017 (2.318E-3) 0.0.05839 * (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

MMF4 0.01486 (1.309E-3) 0.015017 * (2.318E-3) 0.0.05839 * (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

MMF5 0.01486 (1.309E-3) 0.015017 * (2.318E-3) 0.0.05839 * (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

MMF6 0.01486 (1.309E-3) 0.015017 (2.318E-3) 0.0.05839 * (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

Best/All 6/6 0/6 0/6 0/6 0/6

solution can be controlled using this parameter. It is generally recom-
mended that K be chosen between 1/20 and 1/5 of the population size
[127]. A neighborhood’s size can be made proportional to its population,
which makes the choice of the neighborhood’s size easy. As a result, our
preliminary experiments suggest that the neighborhood size should be
1/5 of the population size, at which point it will reach its maximum
performance.

• The weights for crowding distances in the objective space and in the
decision space are evenly divided in both WSCD variations (NSGA-II-
WSCD-NBM and NSGA-II-WSCD) as w1 = 0.5 and w2 = 0.5.

4.2.1.2 Discussion of Results

The following paragraphs were extracted from the original paper by the
author [102]. In order to assess the effectiveness of the proposed algorithms in
solving MMOPs, we applied these algorithms to the MMF1–MMF6 benchmark
problems. The experimental results, presented in Tables 4.1, 4.2, and ??,
compare the performance of the algorithms based on the IGDx, IGD+, and
PSP indicators, respectively. Lower IGDx and IGD+ values and higher PSP
values indicate better performance [126].

It is concluded from the analysis of Tables 4.1, and 4.2 that when both explo-
rative and preservative approaches are implemented together on the NSGA-II
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Table 4.2: Analysis of performance using the PSP indicator on the MMF1–MMF6 benchmarks using
10,000 function evaluations. Comparison of WSCD and NBM approaches conducted using NSGA-II.
The best-performing algorithms are highlighted in bold and gray shading, and significance relative
to the best algorithms is indicated by an asterisk (*) in the respective columns [126].

Problems NSGA-II-WSCD-NBM NSGA-II-NBM NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 15.70245 (5.23527E-1) 13.14347 * (1.59755) 12.50492 * (1.24596) 13.50486 * (1.37166) 9.29939 * (1.41609)

MMF2 59.21458 (9.79915) 56.24433 (12.59192) 9.36013 * (7.80405) 30.63185 * (9.39582) 9.42434 * (8.32393)

MMF3 67.17031 (5.65764) 66.58847 (9.97048) 14.95064 * (11.64698) 38.33345 * (9.46867) 12.73248 (0.0314)

MMF4 23.97306 (2.88038) 16.89303 * (3.19544) 17.15216 * (3.1857) 21.85007 * (2.94561) 8.20806 * (3.14241)

MMF5 8.72255 (3.8104E-1) 7.66519 * (9.6644E-1) 6.8738 * (5.9585-1) 7.95066 * (5.7642E-1) 4.89867 * (1.33815)

MMF6 10.03783 (6.3865E-1) 9.20888 * (9.6738E-1) 7.92392 * (8.2706) 9.24543 * (8.2126E-1) 5.14445 * (8.2706E-1)

Best/All 6/6 0/6 0/6 0/6 0/6

Table 4.3: Analysis of performance using the IGD+ indicator on the MMF1–MMF6 benchmarks 
using 10,000 function evaluations. Comparison of WSCD and NBM approaches conducted using 
NSGA-II. The best-performing algorithms are highlighted in bold and gray shading, and significance 
relative to the best algorithms is indicated by an asterisk (*) in the respective columns [126].
Problems NSGA-II-WSCD-NBM NSGA-II-NBM NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 5.53E-3 * (6.2E-4) 4.6E-3 (1.2E-4) 5.441E-3 * (3.22E-4) 6.49E-3 * (7.6e-4) 5.32E-3 * (2.6E-4)

MMF2 1.455E-2 * (2.516E-3) 1.4452E-2 (2.497E-3) 1.6955E-2 * (1.4602E-2) 1.877E-2 * (5.89E-3) 1.995E-2 (1.253E-2)

MMF3 1.2298 E-2 * (2.12E-3) 1.098E-2 (2.007E-3) 1.527E-2 * (1.3291E-2) 1,656E-2 * (0.00485) 1.497E-2 (9.72E-3)

MMF4 5.347E-3 * (7.6E-4) 4.762E-2 (2.4E-4) 5.425E-3 * (2.5E-4) 7.02E-3 * (9.2E-4) 5.17E-3 * (1.9E-4)

MMF5 5.37E-3 * (3.9E-4) 4.6E-3 (1.7E-4) 5.59E-3 * (3.2E-4) 6.52E-3 * (5.3E-4) 5.34E-3 * (3.2E-4)

MMF6 5.43E-3 (4.57E-4) 4.59 E-3 (2.01E-4) 5.49E-3 * (2.83E-4) 6.43E-3 * (7.5E-4) 5.31E-3 * (2.6E-4)

Best/All 0/6 6/6 0/6 0/6 0/6

algorithm, which is referred to as the NSGA-II-WSCD-NBM algorithm, it 
outperforms the NSGA-II-NBM algorithm in all the test cases. Compared 
with the results of the other algorithms, it also shows significant superiority in 
all test problems. In other words, combining both exploratory and preservative 
approaches will lead to a better approximation of PS in terms of diversity 
and convergence [102].

To analyze the performance in the objective space, Table 4.3 shows the IGD+

values for the different a lgorithms. A s c an b e o bserved f rom t he results,
NSGA-II-NBM obtains a better IGD+ value than the others, while both the 
NSGA-II and NSGA-II-WSCD-NBM algorithms gain IGD+ values similar to
each other. It can also be observed that the proposed NSGA-II-WSCD-NBM
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algorithm provides significantly superior performance over both the original
NSGA-II and the state-of-the-art Mo-Ring-PSO-SCD methods. In terms of
IGDx, the proposed NSGA-II-WSCD-NBM algorithm provided significantly
better results on all six test problems compared to the previous two algorithms
from the literature. On all but one of the benchmarks used, NSGA-II-NBM
outperforms the state-of-the-art in the objective space, as measured by the
IGD+ performance indicator.

According to our analysis of the results, WSCD variants result in the preser-
vation of distinct solutions with the same objective function values. Therefore,
the NSGA-II-WSCD shows improvement compared to the NSGA-II in terms
of the decision-space-related metric. Furthermore, it is also assumed that
neighborhood mutation contributes to the discovery of more Pareto-optimal
solutions during the search as a result of boosting the proportion of solutions
within the search process [102].

To better understand the similarity between the obtained solutions in both
the decision and objective spaces, we present the obtained solutions for the
NSGA-II-WSCD-NBM, NSGA-II-WSCD, NSGA-II-NBM, and Mo-Ring-PSO-
SCD in Figures 4.2 and 4.3. In the figures below, we display the runs that
achieved the median IGDx indicator for each algorithm [102].

As an example, in Figure 4.3 we illustrate the obtained solutions in the
decision space for the MMF3 problem of the algorithms. The same is shown
for the objective space. In the objective space, all algorithms obtain an evenly
distributed solution set along the PF. However, when we take a closer look
at the decision space, we notice that there are differences. Based on Figures
4.2 and 4.3, it is evident that the obtained solutions in decision space for
NSGA-II-WSCD-NBM are evenly distributed along the PS while covering a
greater number of points in each of its subsets. This is due to the fact that
both the NBM and WSCD methods can assist the algorithm in identifying
and maintaining the optimal solutions captured in the decision space.

It has been observed that the solutions obtained in NSGA-II-NBM tend to
fall into one of the subsets. In this case, this algorithm would not be able
to preserve the solutions in different subsets since the accd is only used in
objective space. Although the solutions in decision space are distributed over

64



4.2. Proposed Preservative Methods

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

x
2

(a) PS for NSGA-II-WSCD-NBM

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

x
2

(b) PS for NSGA-II-NBM

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

x
2

(c) PS for NSGA-II-WSCD

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

x
2

(d) PS for Mo-Ring-PSO-SCD

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

1.2

y
2

(e) PF for NSGA-II-WSCD-NBM

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

1.2

y
2

(f) PF for NSGA-II-NBM

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

y
2

(g) PF for NSGA-II-WSCD

0 0.2 0.4 0.6 0.8 1

y1

0

0.2

0.4

0.6

0.8

1

1.2

y
2

(h) PF for Mo-Ring-PSO-SCD

Figure 4.2: Obtained solutions in decision and objective space for MMF1 test problem [102]
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Figure 4.3: Obtained solutions in decision and objective space for MMF3 test problem [102]
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all equivalent subsets of the PS in the NSGA-II-WSCD algorithm, an even
distribution is still lacking (Figures 4.1[c] and 4.2[c]). Accordingly, we conclude
that NSGA-II-WSCD, which utilizes accd in the decision space, maintains
the majority of the current determined solutions in the decision space. Due to
the lack of a neighborhood mutation process, it was not possible to find most
of the solutions over the PS.

The results of the Mo-Ring-PSO-SCD shown in Figures 4.2 and 4.3 also reveal
that the PS could not be fully covered by the algorithm and that the solutions
were not evenly distributed along the PS.

4.2.1.3 Influence of the Weight Values in the Weighed Sum Crowding Distance
Approach

Our study also examines the impact of weight values (w) in different variants
of the WSCD approach, in addition to evaluating its overall performance. Our
preliminary findings indicate that increasing the weight value in either the
objective space or decision space improves the distribution of solutions in the
respective space, but it leads to a degradation in the distribution of solutions
in the other space. Figure 4.4 presents a comparison of the performance of
NSGA-II-WSCD for different weight values. The horizontal axis represents
various weight values for the CD in the decision space (ranging from 1 to 0),
while the vertical axis shows the corresponding values for IGDx, PSP, and
IGD+ based on the assigned weights [126].

The performance of the NSGA-II-WSCD algorithm, as shown in Figures 4.4(a)
and 4.4(c), is sensitive to the weight vectors on multi-modal, multi-objective
test problems. We expected that decreasing the CD in decision space would
have a negative effect on the accuracy of the NSGA-II-WSCD algorithm
when approximating the PS in decision space. In contrast, by increasing the
weight value in objective space, we are able to obtain a better estimate of
PF. According to Figure 4.4(b), the PSP values obtained support the idea
that as the weight of the CD increases in decision space, the diversity of
approximations of PS will generally increase [126].

67



4.2. Proposed Preservative Methods

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Weight value

0.05

0.1

0.15

0.2

I
G
D
X

SSUF1 MMF4 MMF5 MMF6

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Weight value

4

6

8

10

12

14

16

18

20

P
S
P

SSUF1 MMF4 MMF5 MMF6

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Weight value

5

5.5

6

6.5

I
G
D

10-3

SSUF1 MMF4 MMF5 MMF6

Figure 4.4: Achieved (a) IGDx values, (b) PSP values and (c) IGD+ values by NSGA-II-WSCD
using different weight values for the crowding distance in the decision space [126].

4.2.1.4 Influence of the Population Size in the Weighed Sum Crowding Distance
Approach

Moreover, we examine the impact of population size on the performance of the
NSGA-II-WSCD-NBM algorithm. In most algorithms, increasing the popula-
tion size results in better approximations of optimal solutions [130]. However,
increasing the population size also comes with an increase in computational
costs [126]. We performed experiments with different population sizes for the
NSGA-II-WSCD-NBM algorithm on the six different test problems to evaluate
the effects of the population size on the approximation of the PS and PF. The
number of function evaluations is set to 10,000 and the used population sizes
are 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 [126]. To make the
trade-off between both approximations of optimal solutions in decision and
objective spaces, we equally divided the weight values in both decision and
objective spaces [126].

The results of these experiments are shown in Figure 4.5, where the median
IGDx, PSP, and IGD+ values of the experiments based on 31 independent
runs are shown on the vertical axis [126]. As expected, we observe in Figures
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4.5(a) and 4.5(b) that larger population sizes lead to a higher probability
of locating more diverse solutions. Therefore, the algorithm provides better
approximations of the PS with larger population sizes. However, as we can
observe in Figure 4.5.(c) the rate of improvement regarding the IGD+ indicator
decreases for larger population sizes. This shows that locating more solutions
in the decision space does not guarantee well-distributed solutions in the
objective space [126].
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Figure 4.5: A comparison of the effects of population size differences on the median (from left to
right) values of the (a)IGDx, (b)PSP, (c)and IGD+ using NSGA-II-WSCD algorithm [126].

4.2.2 Manhattan Distance-based Density Measurement Approach

This section contains content from the publication by the author of this thesis
in [124, 126].

To enhance density estimation in the environmental selection process, this
section introduces another distance-based density measurement technique
based on the Manhattan distance metric calculated in the decision space. We
used the Manhattan distance metric (also known as the p1 metric) to compute
the distances between solutions using the proposed method. This was due
to the natural capability of grids to represent the distribution of solutions.

69



4.2. Proposed Preservative Methods

Our method calculates the Manhattan distance between each solution and
all other solutions on the current front. After summing all of these distances
between each solution and the rest of the solutions, our global Manhattan
distance metric is calculated as follows:

MDglobal(⃗a) =
∑
p∈P

∥a⃗− p⃗∥ =
∑
p∈P

n∑
i=1

|ai − pi| (4.2)

where P is the current front of solutions, n is the dimension of decision
variables, and ai and pi represent the grid index values of solutions a⃗ and p⃗ in
dimension i.

4.2.2.1 Combination of Manhattan and Crowding Distances in the Search Space

With the aim of enhancing the diversity of solutions, we multiplied the Man-
hattan distance metric value in decision space with its CD value (as defined
in [100]), in which this distance only takes into account its nearest neighbor
for boundary definitions.

Figure 4.6 illustrates how Manhattan distance and CD distance measurements,
when combined (which we refer to as the MDCD diversity measurement
approach), can lead to a wide range of solutions in decision space.

In Figure 4.6, the global Manhattan distance values for the solutions S1 and
S2 are both equal to 20. Both of the solutions are located far from the rest
of the solutions, and both provide good coverage of solutions in the decision
space. In this example, solution S1 is located in a more crowded neighborhood
area than solution S2. Therefore, the CD value for S1 is smaller than for the
other solutions. By multiplying both Manhattan and CD values, S2 obtains a
larger value than the other solutions. Therefore, we could guarantee a better
diversity estimation of solutions by combining both distance metrics [124].

In algorithm 6, we present our proposed method (NSGA-II-MDCD). We
modify NSGA-II by replacing the CD with our MDCD metric. First, we
calculate the global Manhattan distance value (Lines 1–12). Then, the CD
value for all solutions in the decision space is calculated (Lines 8–21). The final
MDCD value for each solution is calculated by multiplying the two distances
[124].
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Figure 4.6: An example of the computation of MDCD, and its influence on the diversity of solutions
in the decision space [124].

4.2.2.2 Configuration of the Proposed Method

For the purposes of evaluating the performance of the proposed approach, the
approach is implemented on the NSGA-II algorithm as an example, which
is called the NSGA-II-MDCD algorithm. The configuration of the proposed
algorithm is as follows:

• As implemented in the previous chapter on the distributions of weights,
we determined the WSCD by dividing all weights equally in both the
decision and objective spaces.

• To determine the optimal grid size for MDCD, an experiment was con-
ducted that compared the performance of different grid sizes, which are
presented in the following sections. Based on the results of the experiment,
a grid size of 10 was selected as the optimal grid size.

4.2.2.3 Discussion of results

Experimental comparisons were conducted with 1, 5, 10, 15, 20, 25, and 30 grids
to examine the impact of grid size on the performance of the proposed algorithm
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Input: Number of Objective functions: M ,
Number of Decision Variables: n,
List P of solutions of current front (with GridIndex values for each dimension), of size p = |P |
Output: List P of solutions of current front with extra property of Combined Manhattan Distance

and CD (MDCD) for each solution
1 for j ∈ {1, .., p} do
2 P [j].MDglobal = 0
3 P [j].CDdec = 0
4 P [j].MDCD = 0

5 end
6 for i ∈ {1, .., p} do
7 for j ∈ {1, .., p} do
8 for k ∈ {1, .., n} do
9 P [i].MDglobal+ = P [i].GridIndex(k)− P [j].GridIndex(k))

10 end

11 end

12 end
13 for i ∈ {1, .., n} do
14 xi,min = minimum of values for i-th decision variable in P
15 xi,max = maximum of values for i-th decision variable in P

16 end
17 for i ∈ {1, .., n} do
18 P ′ = sort P ascending based on i-th decision variable

19 P ′[1].CDdec += 2 · |P
′[j+1].xi−P ′[j].xi|
|xi,max−xi,min|

20 P ′[p].CDdec += 2 · |P
′[j].xi−P ′[j−1].xi|
|xi,max−xi,min|

21 for j ∈ {2, .., p− 1} do
22 P ′[j].CDdec +=

|P ′[j+1].xi−P ′[j−1].xi|
|xi,max−xi,min|

23 end

24 end
25 for i ∈ {1, .., p} do
26 P [j].MDCD = P [j].CDdec · P [j].MDglobal

27 end
28 return P

Algorithm 6: Combined Manhattan Distance and Crowding distance Approach (MDCD)
.Pseudocode based on [124].

(i.e., NSGA-II-MDCD). We perform this experiment with a population size
of 100 and parameter values as described in the section of foundation for
experimental comparison 3.4. An analysis of the grid size comparison is
presented in Figure 4.7.

Increasing the size of the grids from one to five; results in a decrease in IGDx
and IGD values and a dramatic increase in PSP values, as shown in Figures
(1) and (2). In contrast, increasing the grid size from five to 30 does not
significantly affect IGD and IGDx on most problems. Although some changes
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can be noticed between different sizes, there are no clear increases or decreases
when the grid size is increased. Those observations, which demonstrate that
The proposed algorithm maintains a steady state behavior with an increase in
grid size, which can be explained by the fact that with increasing grid size, the
Manhattan distance between all possible solutions in decision space increases.
Consequently, when the Manhattan distance and the crowding distance are
multiplied, the same solutions are selected for the selection process for the
various grid sizes [124].
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Figure 4.7: Achieved (a) IGDx values, (b) PSP values and (c) IGD values by NSGA-II-MDCD
algorithm with different grid size [124].

The IGDx, IGD+ results for the different algorithms compared are presented in
Tables 4.4, 4.5 and 4.6. As can be observed in Tables 4.4, 4.5, NSGA-II-MDCD
performs the best in terms of IGDx and PSP compared to the rest of the
algorithms for four out of six test problems. Thus, the proposed algorithm
provides a better distribution of solutions in the decision space. Although the
NSGA-II-WSCD algorithm produced better results for MMF3 and MMF4
compared to the proposed method, no statistical significance was observed
between these two algorithms. The observation indicates that in MMF3 and
MMF4, optimal solutions are more concentrated in concrete grids, which
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results in a lower performance for the NSGA-II-MDCD algorithm compared
to other problems where optimal solutions are distributed across a greater
number of grids.

As expected from Table 4.6, the IGD+ value of the NSGA-II algorithm shows
its superiority in comparison with the proposed algorithm. This is because
the main focus of the NSGA-II algorithm is to obtain a better diversity of
solutions in objective space while neglecting decision space; therefore, a lower
IGD+ value is expected. With further analysis of the results, we could claim
that the NSGA-II-MDCD algorithm provides a better approximation of PS
while not disturbing the approximation of PF [124].

Table 4.4: Analysis of performance using the IGDx indicator on the MMF1-MMF6 benchmarks using
10,000 function evaluations. A performance evaluation of the MDCD approach was conducted using
NSGA-II. The best performing algorithms are highlighted in bold and gray shaded, and significance
relative to the best algorithms is indicated by an asterisk (*) in the respective columns.

Problems NSGA-II-MDCD NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 0.07478 (0.00849) 0.07923 * (7.412E-3) 0.0.07235 * (7.26E-3) 0.1051 * (151E-2)

MMF2 0.08699 (0.072) 0.08949 * (7.2725E-2) 0.0.03088 * (8.32E-3) 0.1021 * (853E-2)

MMF3 0.07747 (0.03521) 0.0.05839 (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

MMF4 0.06053 (0.01059) 0.0.05839 (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

MMF5 0.13723 (0.01042) 0.0.05839 * (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

MMF6 0.11752 (0.00682) 0.0.05839 * (3.49894E-2) 0.02478 * (5.73E-2) 0.07854 * (314E-2)

Best/All 4/6 2/6 0/6 0/6

Moreover, the solutions obtained in the median execution for the three al-
gorithms over the different datasets are represented in Figures 4.8 and 4.9
both in decision and objective spaces. In these figures, the true PS and PF
are represented in blue to underline the clustered solutions. As seen in Figure
4.8, the solutions of NSGA-II-MDCD are more evenly distributed in decision
space than the solutions of acnsga-ii-wscd and NSGA-II algorithms. As for
objective space, the proposed algorithm still obtains a good approximation
of the PF, but some parts of it are less crowded than others compared with
NSGA-II [126].
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Table 4.5: Analysis of performance using the PSP indicator on the MMF1-MMF6 benchmarks using
10,000 function evaluations. A performance evaluation of the MDCD approach was conducted using
NSGA-II. The best performing algorithms are highlighted in bold and gray shaded, and significance
relative to the best algorithms is indicated by an asterisk (*) in the respective columns [102].

Problems NSGA-II-MDCD NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 13.2156 (1.48997) 12.50492 * (1.24596) 13.50486 * (1.37166) 9.29939 * (1.41609)

MMF2 10.10445 (7.29567) 9.36013 * (7.80405) 30.63185 * (9.39582) 9.42434 * (8.32393)

MMF3 10.69778 (0.03521) 14.95064 (11.64698) 38.33345 * (9.46867) 12.73248 (0.0314)

MMF4 16.23044 (3.10691) 17.15216 (3.1857) 21.85007 * (2.94561) 8.20806 * (3.14241)

MMF5 7.16681 (0.45601) 6.8738 * (5.9585-1) 7.95066 * (5.7642E-1) 4.89867 * (1.33815)

MMF6 8.41297 (0.53495) 7.92392 * (8.2706) 9.24543 * (8.2126E-1) 5.14445 * (8.2706E-1)

Best/All 4/6 2/6 0/6 0/6

Table 4.6: Analysis of performance using the IGD+ indicator on the MMF1-MMF6 test problems, 
using 10,000 function evaluations. A performance evaluation of the MDCD approach was conducted 
using NSGA-II. The best performing algorithms are highlighted in bold and gray shaded, and 
significance relative to the best algorithms i s indicated by an asterisk (*) in the respective columns.

Problems NSGA-II-MDCD NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 0.00662 * (0.00053) 5.441E-3 (3.22E-4) 6.49E-3 * (7.6e-4) 5.32E-3 2.6E-4)

MMF2 0.02011 (0.02278) 1.6955E-2 (1.4602E-2) 1.877E-2 * (5.89E-3) 1.995E-2 (1.253E-2)

MMF3 0.01805 (0.01474) 1.527E-2 (1.3291E-2) 1,656E-2 * (0.00485) 1.497E-2 (9.72E-3)

MMF4 0.00645 * (0.00035) 5.425E-3 * (2.5E-4) 7.02E-3 * (9.2E-4) 5.17E-3 (1.9E-4)

MMF5 0.00655 * (0.00034) 5.59E-3 * (3.2E-4) 6.52E-3 * (5.3E-4) 5.34E-3 (3.2E-4)

MMF6 0.00647 * (0.0005) 5.49E-3 * (2.83E-4) 6.43E-3 * (7.5E-4) 5.31E-3 (2.6E-4)

Best/All 0/6 0/6 0/6 6/6

4.2.3 Grid Distance-based Density Measurement Approach

According to the algorithm proposed in the previous section, which we referred
to as NSGA-II-MDCD, all the solutions in the current fronts directly influence
the global Manhattan distance calculation for each solution. Thus, when
calculating the Manhattan distance of a solution, if there is a solution located
much further from this solution on the same front, it creates an illusion that
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Figure 4.8: Obtained solutions in decision and objective space for MMF1 test problem [124]

the solution is located in a sparser area, even if it may be located in the
neighborhood of a more populated area. By addressing this issue, we proposed
an improved grid-based distance method (Grdec) that accounts for the effects
of neighboring solutions on the density estimation for each solution. The main
contents of this section are taken from the publication by the author in [65].

Calculating crowding distance values can assist in identifying crowded areas.
However, it is also necessary to consider the density of solutions nearby each
solution when computing the crowding distance values. Our proposed method
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Figure 4.9: Obtained solutions in decision and objective space for MMF5 test problem [124]

was inspired by an algorithm called Grid-Based Evolutionary Algorithm
(GrEA) [131], which divides solutions into grids in objective space, introducing
a novel notion of neighborhood. To increase the selection pressure toward
the PF, the GrEA algorithm partitions the solutions in the objective space
and calculates the grid difference between the solutions, which improves the
distribution of the solutions.

Since grids are naturally capable of expressing solution distributions, we
adapted the neighborhood concept for the GrEA algorithm from objective
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space to decision space. To measure the distance between solutions in the
search space, we partitioned the decision space into grids and developed a
novel grid-based distance measurement mechanism. The neighborhood area for
each solution Si in the decision space is limited by a maximum grid difference
of n (the number of decision variables). For each solution Si, the neighborhood
contains the solutions Si with a grid difference less than n to Si, which is
formulated as follows:

NB(Si) = {Sj|Si ̸= Sj ∧ GD(Si, Sj) < n} (4.3)

Where S = (S1, ..., SN) is the current front of solutions and NB denotes the
set of solutions that are in the neighborhood of solution Si. GD(Si, Sj) is the
grid distance between pairs of solutions Si and Sj.

Our proposed grid-based crowding distance (Grdec) value for each solution is
calculated using the following equation to favor solutions located in sparse
areas:

Grdec(Si) =
∑

Sj∈NB(Si)

(n−GD(Si, Sj)) (4.4)

In this manner, a solution located in a congested area will be assigned a larger
Grdec value. The solution with smaller Grdec values is preferred in our proposed
approach. The proposed method for grid-based crowding distance in decision
space is described in Algorithm 7. In the first step of the calculation, after the
parameters have been set up (Lines 1–6), the grid distance between each pair
of solutions on the same front will be calculated (Lines 7–13). Following this,
a grid-based crowding distance (Grdec) value is calculated for each solution
based on Equations 4.3 and 4.4 (Lines 14 to 18).
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Input: Number of decision variables: n,
List S of solutions of current front (with Grid index GrInd values for
each dimension)
Output: List S with the extra property Grid-based crowding distance

in decision space (Grdec) for each solution
1 . for i ∈ {1, .., |S| − 1} do
2 S[i].Grdec = 0;
3 for j ∈ {1, .., |S|} do
4 GD(i, j) = 0;
5 end

6 end
7 for i ∈ {1, .., |S| − 1} do
8 for j ∈ {i+ 1, .., |S|} do
9 for k ∈ {1, .., n} do

10 GD(i, j)+ = S[i].GrInd[k]− S[j].GrInd[k] ;
11 GD(j, i)+ = S[j].GrInd[k]− S[i].GrInd[k] ;

12 end

13 end

14 end
15 for i ∈ {1, .., |S|} do
16 for j ∈ {1, .., |S|} do
17 S[i].Grdec+ = max(n−GD(i, j), 0);
18 end

19 end
20 S = normGrdec(S) ; // normalization of Grdec
21 return S

Algorithm 7: Grid-based crowding distance in decision space (Grdec) approach. Pseudocode
based on [65]

To normalize the grid-based crowding distance values (to combine them with
other distance metrics), a max-min normalization is applied to ensure that
the results fall within the same range (0,1] (Line 19). To avoid obtaining zero
values for the solutions that have the minimum value, the min value in the
equation should be substituted with a small value (e.g., 0.001) as follows:
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norm(Vi) =
Vi − (min(V )− 0.001)

max(V )− (min(V )− 0.001)
(4.5)

where V = (V1, ..., VN) is a set of values (the Grdec values in this work) and
norm(Vi) is the ith normalized value.

with the lower Grdec values are selected and transferred to the next generation.
Solutions located in the vicinity of sparse areas are represented by the lower
values.

To evaluate the performance of the grid-based crowding distance approach for
approximation of PS, we have incorporated our proposed algorithm into the
NSGA-II algorithm and replaced its environment selection with the proposed
Grdec method, which we call the NSGA-II-Gr algorithm. To address this
shortcoming, the proposed method Grdec is further improved by dividing the
Grdec value for each solution by the Grdec value applied to the decision space
(Grdec). This variant of the proposed algorithm is termed NSGA-II-Gr-CDdec.

In spite of the fact that the proposed method (NSGA-II-Gr) is able to ap-
proximate the density of solutions, there are some cases in which this method
fails to highlight solutions that are located in crowded areas. Due to the fact
that the Grdec value of solutions is highly dependent on grid resolution, in
some cases, even if solutions are not located in equally crowded areas, the
Grdec values of some solutions can be the same. To address this shortcoming,
the proposed method Gr is further improved by dividing the Grdec value for
each solution by the CDdec value applied to the decision space ( CDdec). This
variant of the proposed algorithm is termed NSGA-II-Gr-CDdec. To address
this shortcoming, the proposed method Gr is further improved by dividing
the Grdec value for each solution by the CDdec value applied to the decision
space ( CDdec). A description of this calculation can be found in Section 4.2.1.
This variant of the proposed algorithm is termed NSGA-II-Gr-CDdec.

A representative example of the importance of this combination can be found
in Figure 4.10. Using this example, solutions D and E share the same Grdec
values but have different values for CDdec. As a result of dividing the Grdec
values with the CDdec values, solution E gets a smaller value than D in terms
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of GrCDdec (i.e.GrCDdec = Grdec
CDdec

). The combination of these two variables
indicates that solution E is located in a less crowded area than solution D.
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Figure 4.10: An instance to demonstrate the importance of combining the grid-based crowding
distance method with the crowding distance in decision space [65].

The proposed Grdec method is further modified by two additional modifications.
To retain the diversity of the solutions in the objective space, this method
is combined with the usual CD approach used in NSGA-II ((CDobj) [33]).
This algorithm is referred to as NSGA-II-Gr-CDobj. In another variation,
we attempt to take advantage of the crowding approach in both decision
and objective spaces. By combining the Grdec approach with our proposed
WSCD approach (Section 4.2.1), we introduce a new algorithm, NSGA-II-Gr-
WSCD, which increases the diversity of the decision space without significantly
reducing the distribution of the solutions in the objective space. Considering
that lower Grdec values and higher CDdec CDdec, CDobj, and CDws values are
preferred, these modifications are proposed by dividing the calculated Grdec
values with the respective crowding distance. Following this, the final distance
values are sorted in ascending order, and the lowest values (representing
solutions located in the vicinity of sparser areas) are transferred to the next
generation.
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4.2.3.1 Configuration of the Proposed Method

In preliminary experiments, we tested all the proposed algorithms on each
test problem with varying grid sizes, and the results indicated that a grid size
increase from 1 to 20 improved all algorithms. In evolutionary algorithms, the
curve of improvement remains stable after grid size 20, with some fluctuation
due to the stochastic nature of the algorithms. We therefore conducted all
experiments with a 20-grid size.

4.2.3.2 Discussion of Results

The median value and interquartile range (IQR) of the corresponding IGDx,
IGD+, and PSP performance indicators are provided in Tables 4.7, 4.8, and 4.9.
From the analysis of the results, it is evident that by combining the crowding
distance approach with the grid-based approach, the proposed algorithms
can improve their search power compared to the baseline algorithm and the
presented state-of-the-art algorithms, which will lead to improved quality of
the optimal solutions obtained in the decision space.

As seen with the results of Table 4.7, in all cases, the combination of the
grid-based approach with crowding distance in both decision (NSGA-II-Gr-
CDdec) and objective (NSGA-II-Gr-CDobj) spaces leads to an improvement
in the quality of the optimal solutions obtained in decision space. In light
of these results, it appears that there is no statistically significant difference
between the two proposed algorithms for NSGA-II-Gr-CDdec and NSGA-II-
Gr-CDobj. It is interesting to note that both algorithms performed the best
in every test problem compared to other MMOEAs. The pairwise comparison
between NSGA-II-Gr-CDdec and NSGA-II-CDobj demonstrated that the first
algorithm outperformed the second in all test problems, as indicated by the
IGDx and PSP values, which highlights the importance of applying Grdec to
improve solution distributions in the decision space.

NSGA-II-Gr demonstrated better performance than the state-of-the-art al-
gorithm MO-Ring-PSO-SCD in terms of IGDx and PSP values across all
test problems. The PSP values indicate that both NSGA-II-Gr-CDdec and
NSGA-II-Gr-CDws consistently achieved superior results in each test problem,
effectively balancing the diversity and convergence of the obtained optimal
solutions.
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It is evident that the manipulation of the diversity of solutions in decision
space may result in a deterioration of the diversity in objective space when
dealing with MMOPs. There are several reasons why this can occur, including
the fact that solutions that are added to the decision space are dominated by
existing solutions or located near each other in the objective space, so they
do not contribute to the diversity of the objective space. In the proposed
Gr-WSCD method, a trade-off is made between the distribution of solutions in
these two spaces. Per Table 4.9, the improvement in the IGDx value is much
greater than the deterioration of the IGD+ value for the proposed methods.
For example, the improvement in IGDx value for the MMF5 and MMF8 test
problems on NSGA-II-Gr-CDws over NSGA-II-CDws is approximately 1.2e-02
and 1.05e-02, respectively. In contrast, the IGD+ value decreased by 8.36e-04
and 2.97e-04. These findings demonstrate that the proposed algorithms are
successful in making a reasonable compromise between the diversity of decision
spaces and objective spaces. Taking a closer look at Tables 4.7, 4.8, it is evident
that Grdec methods contribute to the distribution of solutions in the decision
space for the most complex test case (such as MMF1z with asymmetrical PS).

Table 4.7: Analysis of performance using the IGDx indicator on the MMF1-MMF9 benchmarks using
10,000 function evaluations. A comparison of different variation of Grdec and WSCD approaches
has been conducted using NSGA-II. The best performing algorithms are highlighted in bold and
gray shaded, and significance relative to the best algorithms is indicated by an asterisk (*) in the
respective columns.

Problems NSGA-II-Gr NSGA-II-Gr-CDDec NSGA-II-Gr-CDobj NSGAII-Gr-CDws NSGA-II-CDDec NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 0.067124(0.008875)* 0.061202(0.003417) 0.062595(0.002853)* 0.060603(0.003125) 0.061958(0.002577)* 0.062318(0.002726)* 0.073865(0.005652)* 0.11003(0.02105)*

MMF1z 0.052395(0.003493)* 0.044782(0.00213) 0.047838(0.002698)* 0.045687(0.002583) 0.045896(0.001208)* 0.046543(0.002298)* 0.055018(0.004518)* 0.12034(0.025452)*

MMF2 0.018418(0.004607) 0.018879(0.003991) 0.018996(0.004189) 0.017765(0.003369) 0.019397(0.004749) 0.018523(0.003559) 0.031923(0.012669)* 0.10784(0.087009)*

MMF3 0.015085(0.002805) 0.014636(0.001038) 0.016876(0.00313)* 0.014908(0.002532) 0.015515(0.00159)* 0.015936(0.002998)* 0.024832(0.008584)* 0.066651(0.031745)*

MMF4 0.045234(0.003421)* 0.038038(0.002652) 0.038727(0.002337) 0.037983(0.002413) 0.039865(0.00547)* 0.041913(0.003713)* 0.04535(0.003056)* 0.10256(0.047135)*

MMF5 0.11035(0.005561)* 0.1034(0.003865) 0.10417(0.006102) 0.10222(0.005236) 0.11292(0.005694)* 0.11425(0.010062)* 0.12693(0.011658)* 0.20553(0.048088)*

MMF6 0.095281(0.008412)* 0.089501(0.00341) 0.091343(0.002659) 0.091507(0.003796) 0.098542(0.006039)* 0.09933(0.007392)* 0.10804(0.011067)* 0.1892(0.073865)*

MMF7 0.044455(0.003232)* 0.038889(0.002492)* 0.036447(0.002983) 0.03801(0.002741)* 0.03704(0.002444) 0.036946(0.002157) 0.043546(0.003618)* 0.067719(0.021536)*

MMF8 0.088645(0.005978)* 0.0791(0.006105) 0.088348(0.007404)* 0.076404(0.004284) 0.083033(0.010748)* 0.086917(0.007588)* 0.10699(0.011313)* 0.8061(0.63768)*

MMF9 0.012333(0.000966)* 0.010691(0.000806) 0.011113(0.001116)* 0.010808(0.000977) 0.011338(0.001384)* 0.013275(0.001564)* 0.013383(0.002343)* 0.24982(0.20045)*

Best/All 0/10 4/10 1/10 5/10 0/10 0/10 0/10 0/10

As an additional means of evaluating the performance of the proposed algo-
rithms regarding the approximation of PF, IGD+ values were analyzed. In
nine of 10 test cases, the NSGA-II-Gr-CDobj algorithm performs significantly
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Table 4.8: Analysis of performance using the PSP indicator on the MMF1-MMF9 benchmarks using
10,000 function evaluations. A comparison of different variation of Grdec and WSCD approaches
has been conducted using NSGA-II. The best performing algorithms are highlighted in bold and
gray shaded, and significance relative to the best algorithms is indicated by an asterisk (*) in the
respective columns [102].

Problems NSGA-II-Gr NSGA-II-Gr-CDDec NSGA-II-Gr-CDobj NSGAII-Gr-CDws NSGA-II-CDDec NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 14.8073(1.9046)* 16.2504(0.87617) 15.8527(0.72453)* 16.4489(0.78003) 15.9796(0.68082)* 15.9255(0.73988)* 13.2792(0.98137)* 8.8227(1.6945)*

MMF1z 19.0266(1.2466)* 22.2021(1.1178) 20.8208(1.3242)* 21.8624(1.3449) 21.6625(0.5915)* 21.3178(1.1579)* 17.9275(1.5125)* 8.0487(1.837)*

MMF2 54.1538(14.3124) 52.9243(13.3026) 52.6005(10.6054) 55.1813(9.7281) 51.541(12.4749) 53.9273(9.5183) 29.1782(10.7133)* 7.9555(6.7582)*

MMF3 66.0964(11.5562) 67.9741(4.8889) 59.2371(11.6847)* 66.7617(10.7485) 64.4272(6.5669)* 62.7239(11.1474)* 38.3825(12.4391)* 14.5135(7.267)*

MMF4 21.8348(1.7856)* 26.1288(1.9195) 25.6534(1.579) 26.1896(1.6784) 24.941(3.2196)* 23.7223(2.1679)* 21.5821(1.454)* 9.5321(4.0232)*

MMF5 9.0458(0.46834)* 9.6169(0.33912) 9.5596(0.57918) 9.7424(0.51451) 8.8265(0.42334)* 8.7221(0.69202)* 7.7577(0.71897)* 4.7613(1.1202)*

MMF6 10.467(0.91076)* 11.0811(0.46192) 10.9065(0.33621) 10.8866(0.48719) 9.9693(0.62399)* 10.0447(0.69786)* 9.1072(1.0346)* 5.1003(2.3573)*

MMF7 22.4605(1.4481)* 25.351(1.9344)* 27.1832(2.1236) 26.1666(1.7906)* 26.7337(1.678) 26.7984(1.5704) 22.674(2.0256)* 14.1855(4.2449)*

MMF8 11.1843(0.69393)* 12.576(0.97508) 11.2055(0.9299)* 12.9898(0.6339) 12.0055(1.6526)* 11.4086(0.88867)* 9.2193(1.0427)* 0.99354(0.51834)*

MMF9 81.0639(6.131)* 93.4914(6.7324) 89.9869(9.4493) 92.5107(8.4157) 87.9327(10.8428)* 75.2867(9.1232)* 74.2549(12.4973)* 0.71175(19.3066)*

Best/All 4/10 1/10 5/10 0/10 0/10 0/10 0/10 0/10

Table 4.9: Analysis of performance using the IGD+ indicator on the MMF1-MMF9 test problems,
using 10,000 function evaluations. A comparison of different variation ofGrdec and WSCD approaches
has been conducted using NSGA-II. The best performing algorithms are highlighted in bold and
gray shaded, and significance relative to the best algorithms is indicated by an asterisk (*) in the
respective columns.

Problems NSGA-II-Gr NSGA-II-Gr-CDDec NSGA-II-Gr-CDobj NSGAII-Gr-CDws NSGA-II-CDDec NSGA-II-WSCD Mo-Ring-PSO-SCD NSGA-II

MMF1 0.007599(0.00073)* 0.006187(0.000424)* 0.005055(0.000386) 0.00584(0.000639)* 0.005754(0.000336)* 0.005418(0.00055)* 0.006533(0.000504)* 0.005331(0.000233)*

MMF1z 0.007038(0.000836)* 0.005919(0.000341)* 0.004838(0.000185) 0.005703(0.000548)* 0.005782(0.000281)* 0.005298(0.000462)* 0.006554(0.00057)* 0.005145(0.000222)*

MMF2 0.014274(0.003097) 0.015225(0.00409) 0.015057(0.003806) 0.015032(0.002328) 0.014505(0.002001) 0.014852(0.002164) 0.019609(0.006034)* 0.020704(0.019092)*

MMF3 0.011869(0.002062) 0.011685(0.002171) 0.011666(0.002669) 0.012051(0.002231) 0.011566(0.001405) 0.012024(0.002053) 0.015091(0.003205)* 0.014244(0.006389)*

MMF4 0.008182(0.00144)* 0.006185(0.00058)* 0.005068(0.000225) 0.00619(0.000593)* 0.005954(0.000284)* 0.00545(0.00056)* 0.006793(0.000809)* 0.005221(0.000259)*

MMF5 0.007493(0.000737)* 0.006361(0.000506)* 0.005031(0.000332) 0.006111(0.000515)* 0.005691(0.000347)* 0.005275(0.000651) 0.006285(0.000481)* 0.00537(0.000226)*

MMF6 0.007036(0.001198)* 0.006074(0.000735)* 0.004996(0.000283) 0.005967(0.00066)* 0.005702(0.000356)* 0.005445(0.000493)* 0.006374(0.000755)* 0.005198(0.000334)*

MMF7 0.008725(0.00095)* 0.007058(0.00083)* 0.005098(0.000304) 0.006122(0.000588)* 0.006702(0.000767)* 0.005271(0.000542)* 0.007676(0.001388)* 0.005016(0.000264)

MMF8 0.007482(0.000784)* 0.006989(0.000668)* 0.005144(0.000178) 0.00552(0.000312)* 0.006857(0.00046)* 0.005223(0.000338)* 0.007582(0.000663)* 0.005289(0.000292)*

MMF9 0.033322(0.005984)* 0.027648(0.002816)* 0.019675(0.00109)* 0.01997(0.001073)* 0.02757(0.003082)* 0.019284(0.000882) 0.028642(0.003486)* 0.020262(0.001267)*

Best/All 0/10 0/10 6/10 0/10 1/10 1/10 0/10 1/10

better than the original NSGA-II algorithm. The reason for this observation is
that the algorithm is mostly focused on providing evenly distributed solutions
in objective space rather than in decision space.

To further evaluate the performance of the proposed algorithms on the approx-
imation of the PF, IGD+ values were studied. These results, as shown in Table
4.9, indicate that the NSGA-II-Gr-CDobj algorithm significantly outperforms
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4.2. Proposed Preservative Methods

the original NSGA-II algorithm in nine out of 10 test cases. The obvious
reason for this observation is that the focus of this algorithm is on providing
better-distributed solutions in objective space while ignoring decision space.
On the other hand, the NBM operator enhances the exploration of the search
space, leading to a better identification of Pareto-optimal solutions during the
search process.

It is evident that the obtained IGDx and PSP values for both NSGA-II-Gr-
CDdec and NSGA-II-Gr-CDws performed better than the previous algorithms
without considering the Grdec approach without degrading the IGD+ values
much. Based on this analysis, the proposed NSGA-II-Gr-CDdec and NSGA-
II-Gr-CDws agorithms are successful in preserving the discrete solution in a
search space as a result of the proposed Grdec method.

The overall reason for the better performance of both of the proposed NSGA-
II-Gr-CDdec and NSGA-II-Gr-CDws over the rest of the compared MMOPs
is that in early generations, solutions may be randomly distributed over the
search space. In some cases, grid-based crowding distances are zero; however,
after normalizing the value, they become non-zero. By dividing the obtained
values with the crowding distance values, the solution is chosen primarily
based on the crowding distance values, which compensate for the absence of
grid-based crowding distance values. In the later generations, as the solutions
converge toward the PS, they are closer to each other, and therefore their
Grdec values differ. Thus, the combination of this distance with the crowding
distance outperforms crowding distance alone by considering a wider range of
solutions than the two-nearest-neighborhoods considered by crowding distance.
As a result of this combination, more diverse solutions are selected along the
PS as the selection pressure on the decision space increases in comparison to
the NSGA-II-CDdec.

To demonstrate the similarities between the obtained solutions in both the
decision and objective spaces, some results are presented in Figures 4.11, and
4.12 for the median run of the IGDx performance indicator. The solutions
obtained by all the competitors are presented in both the decision and objective
spaces. Solid blue lines illustrate the true PS and PF, while red markers
illustrate the obtained solutions. From Figures 4.11, and 4.12, for example, it
can be observed that the obtained solutions for both NSGA-II-Gr-CDdec and
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NSGA-II-Gr-CDws cover a larger area and are more evenly distributed over
the PS, corresponding to the two PSs of the problem, located respectively in
the ranges of x1 ∈ [1, 2] (left side) and x1 ∈ [2, 3] (right side). However, in
NSGA-II-WSCD (Figure 4.9[d]), the optimally obtained solutions are unevenly
distributed over the PS, meaning they are denser on the right side than on
the left. As a result, the optimal solutions for NSGA-II cover more points
on the right side of the PS, and these points are positioned closely together.
Due to the straightforward shape of the right side of this specific problem,
both NSGA-II and NSGA-II-WSCD found more Pareto-optimal solutions in
this particular area. Hence, the proposed grid-based methods are capable of
covering more points in both PSs, and the solutions are distributed more
uniformly across them.

4.3 Proposed Approaches for Preserving both the Local and Global
Pareto-sets of Solutions

In the past few years, a considerable amount of research has been undertaken
to develop approaches to deal with MMOPs of the first type that have multiple
equivalent PSs; however, only limited research has been done on approaches
to deal with MMOPs of the second type that have both global and local PSs.
Decision-makers are often interested in having information about local PSs
that are of inferior quality but are acceptable in case the global PSs are no
longer feasible in practice due to changes in the environment or because global
optimal solutions are too costly to implement. However, when it comes to
capturing and preserving local optimal solutions, the main challenge arises
because local Pareto-optimal solutions with acceptable quality are dominated
and replaced by non-dominated solutions using non-dominated sorting methods
implemented across the entire population of solutions. Moreover, since the
primary objective of the MOEAs is to provide a better distribution of optimal
solutions over the PF, multi-modal solutions with similar objective function
values but located in different regions of the search space may be eliminated
from the search process in these algorithms. Thus, to address this type of
MMOPs, we propose a method that preserves both local and global optimal
solutions, thus providing better approximations of local and global PSs. With
the help of niching methods, we are able to retain solutions that are both
distant in the search space and close to the objective space. In the next section,
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Figure 4.11: Obtained solutions in decision space for MMF1z test problem [65]
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Figure 4.12: Obtained solutions in objective space for MMF1z test problem [65]
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we will provide a detailed explanation of our suggested approach for addressing
these specific types of problems.

4.3.1 DBSCAN Clustering Approach

The density-based spatial clustering of applications with noise (DBSCAN)
algorithm, first proposed in 1996 by [132], is a clustering algorithm that
relies on neighborhood radius (Eps) and MinPts, which is the minimum
number of points that allow them to be considered as one cluster. A variety
of situations can be tackled with this technique, including multi-objective
optimization, which utilizes the strengths of clustering algorithms to solve
complex optimization problems. Multi-objective optimization problems can
be solved effectively by DBSCAN because it is a clustering algorithm based
on density. In this algorithm, regions of high density in the objective space
are identified, and solutions within those regions are clustered together. It is
thus capable of identifying clusters with irregular shapes or varying densities,
making it suitable for complex optimization problems in which there are
multiple local optima. Nevertheless, to solve MMOPs, we used this clustering
technique to find the dense areas in the search space so as to generate a
greater diversity of solutions.

A description of the DBSCAN clustering technique is given in Algorithm 8.
The MinPts parameter indicates the minimum number of points to take into
consideration when building a cluster. If the Euclidean distance between two
points is equal to or less than the value of Eps, they are regarded as neighbors.
For a solution b that belongs to the solution set U , the neighborhood of that
point is indicated by NEps(q):

NEps(q) = [a ∈ U |dist(p, q) ≤ Eps) (4.6)

There are two conditions to satisfy for a point q to directly reach a point p: 1)
the data point q must satisfy the core point condition,

|NEps| ≥MinPts (4.7)
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Input: P̃ : union of the population and offspring; MinEps; Eps: neighborhood raduis
Output: C1,C2,...,Ck

1 Core← ∅;
2 for x ∈ P̃ do

3 Neigbor(x) =
{
y ∈ P̃ | ∥y − x∥ ≤ Eps

}
; // Find direct density-reachable

solutions for solutions x
4 if |Neigbor(x)| ≥MinEps then
5 Core← Core ∪ x ; // Consider x as a core solution

6 end
7 if x ∈ core then
8 i = 1;

9 while P̃ ̸= ∅ do
10 select an arbitrary solution x from P̃ ;
11 U = Ci ← {x};
12 while U ̸= ∅ do
13 Select an arbitrary solution from U ;
14 B ← Neigbor(x) \ Ci;
15 U ← B ∪B and Ci = Ci ∪B;
16 U ← U \ {x}
17 end

18 P̃ ← Ci;
19 i← i+ 1

20 end

21 else
22 Consider {x} as noise
23 end

24 end
25 return C1,C2,...,Ck

Algorithm 8: Clustering Algorithm: DBSCAN-Algorithm(P̃ , MinEps, Eps)

2) the data point p must be in the NEps(q)) neighborhood of the point q:

p ∈ NEps(q) (4.8)

A point a is densely reachable from a point b if the following conditions are
met: 1) There exists a chain of points, denoted as p1, p2, · · · , pn, that connects
the two points. Specifically, p1 is point a, and pn is point b. 2) All the points
in the chain, from p1 to pn−1, must also be core points. In other words, each
intermediate point in the chain must have enough neighboring points within
a specified radius to qualify as a core point.
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Any point in the solution set U that cannot be reached by any core point
is considered noise and is excluded from forming any cluster. To control the
amount of noise in the dataset, a parameter called MinPts is utilized.

4.3.2 EMMOA−XYlocal Algorithm

This section provides a detailed description of our algorithm with the goal of
maintaining both local and global PSs simultaneously. The suggested algorithm
is called EMOA-XY-Euc. As part of our suggested approach, we employed
DBSCAN to cluster the solutions in the search space.

The clustering algorithm mentioned above is applied in the search space using a
similar approach as described in [115]. In line with the methodology presented
in the algorithm proposed by [115], we incorporate a non-dominated sorting
algorithm within each cluster. This enables us to identify non-dominated
solutions within the neighborhood of each cluster and maintain them during
the search for additional global optima in the search space.

In the next step, our proposed density measurement is applied to the non-
dominated solutions from each cluster as the secondary selection criteria. The
density measurement is adapted to both the search and objective spaces. By
preserving the diversity of solutions in the search space as they are close to
their objective spaces, the algorithm can locate and preserve more diverse
solutions in the search space.

4.3.3 General Framework

The primary structure of the proposed algorithm, named EMMOA− XYlocal,
is depicted in Algorithm 9. Through this algorithm, non-dominated solutions
obtained from individual local regions are collected and merged with the global
non-dominated solutions. A diversity estimator metric is subsequently used to
rank them. Finally, the N first solutions, ranked in best-to-worst order based
on their diversity in both decision and objective spaces, constitute the next
generation of population.

On the basis of Algorithm 9, the inputs are the MMO problem (MMOP[n,m]);
the noise elimination parameter; the population size (N); the minimal number
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of solutions for each local cluster (num); and the size of the neighborhood of
the DBSCAN cluster (Eps), which is determined in the following way:

Eps = α · (Xu
i −X l

i) (4.9)

where α is considered as a tuning factor for neighborhood size, the Xu
i and

X l
i values are the upper and lower bounds for the decision variable i, and the

output represents the final population. The major components of our proposed
algorithm are outlined as follows.

Following the initialization of the population (Line 2), solutions are then
analyzed in Line 3. In Line 5, the parental population is selected using the
mating selection operator. In Lines 6–7, the SBX and polynomial mutations
are applied to the parental population, yielding an offspring named Q. After
evaluating the offspring population in Line 8, the current population and its
offspring are combined in Line 9 to form a union population. In Line 10, a
modified environment selection is implemented to create the next population.
In the next subsection, the procedure of the proposed environmental selection
is explained in detail in Algorithm 13. The process will continue until the
termination criterion is satisfied, and then the final population in Line 12 will
be returned.

4.3.4 Proposed Environmental Selection

In Algorithm 10, we demonstrate the modified environmental selection, which
is detailed below. Algorithm input parameters include the combination of
the population and the offspring (P̃ ), the neighborhood radius (Eps), and
(num) is the minimum number of solutions in each cluster. The population
for the next generation is the output of this algorithm, P (t+ 1). Initially, the
solutions are sorted using a non-dominated sorting method and divided into
fronts (Front = [Front = (Front1, F ront2, ...)]; Line 2).

To implement the DBSCAN clustering method to cluster solutions in the
search space, described in detail in [132], the solutions must first be normalized
in the search space using Equation 4.10 (Line 5). This is due to the DBSCAN
clustering algorithm’s sensitivity to the scale of the decision variables [133].

92



4.3. Proposed Approaches for Preserving both the Local and Global Pareto-sets of Solutions

Input: MMOP(n,m): An optimization problem with n dimensions of search space (i.e. [X l,
Xu] lower and upper boundaries for each dimension), and m dimensions of objective
space; N : Population Size; Eps: neighborhood raduis ; Neps(b); num: Minimun
number of solutions for each cluster

Output: P : Final population
1 t = 0 ;
2 P (t) ← Initialize(P (t));
3 Evaluate(P (t));
4 while Termination critera not met do
5 Pmate ← Tournoment-Selection(P (t));

6 ˜P (t) ← SBX-Corossover(Pmate);

7 Q ← Ploynomial-Mutatation(P̃ );
8 Evaluation(Q(t));

9 P̃ ← P ∪Q ;
10 t = t+ 1 ;

11 P (t) ← Modified-Environmental-Selection(P̃ , Eps, N , num) ; // Algorithm 13

12 end
13 return P

Algorithm 9: General Framework EMMOA−XYlocal Algorithm

Using the DBSCAN clustering algorithm, the number of clusters k is not
predetermined; it is determined automatically by the algorithm based on the
density and distribution of the data points.

x
′(j) =

x(j) − x
(j)
min

x
(i)
max − x

(i)
min

j = 1, · · · , n (4.10)

The x
(j)
min, x

(j)
max values represent the min and max value for the decision variable

j, and x(j) value represents the jth decision variable for the vector x. In multi-
modal problems, it is important to preserve those equivalent distinct solutions
located in sparse areas of the search space and not consider them as noise.
This retains the diversity of solutions in the search space. Parameter A for the
elimination of noise must therefore be considered 1, which allows even single
solutions to be considered clusters in the sparse areas of the search space and
to be kept within the search process.

After the solutions have been clustered (C1,C2,...,Ck), the fast non-dominant
sorting method is applied to each cluster (Lines 7–11). Next, when the number
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Input: P̃ ; N ; Eps; MinEps; num
Output: P (t+ 1): Next population

1 BestPop← ∅;
2 Front ← Fast-Non-Dominated-Sort(P̃ ) ; // Front = (Front1, F ront2, ...)
3 i = 1 ;
4 j = 1 ;

5 Normalize P̃ in the search space;
6 // Cluster the solutions within the search space using DBSCAN

7 C1,C2,...,Ck ← DBSCAN-Algorithm(P̃ , Neps(b), Eps) for i = 1, ..., k do

8 if |Ci| > num then
9 FrontCi ← Fast-Non-Dominated-Sort(Ci) ; // FrontCi = (Front1Ci

, F ront2Ci
, ...)

10 BestPop← Front1Ci
∪BestPop

11 else
12 i = i+ 1
13 end

14 end
15 BestPop← BestPop ∩ Front1;
16 while |BestPop|+ |Frontj | ≤ N do
17 BestPop← BestPop ∪ |Frontj |;
18 j = i+ 1

19 end
20 while |BestPop| ≥ N do
21 P (t+ 1) ← Density-Estimator(BestPop, N) ; // Algorithm 11

22 end
23 return P (t+ 1)

Algorithm 10: Environmental Selection: Modified-Environmental-Selection(P̃ , Eps, N ,
num)

of solutions within a cluster is greater than the minimum cluster size (num),
the non-dominated solutions from these clusters are added to the Bestpop

(Line 10), with the intention of preserving the local PSs. Following excluding
global non-dominated solutions from the solution set in Bestpop (Line 15), the
solutions from front1 and front2 are added to fronti in turn until the total
number of solutions in Bestpop exceeds the population size (N ; Lines 16–19).
Following this, our modified diversity measurement method is implemented
for the population in the Bestpop to preserve more diverse solutions in the
search space (Algorithm 11), which we describe in greater detail below. As a
result of this secondary selection criteria, the solutions for the next population
are passed on to the next generation (Line 22).

Algorithm 11 illustrates our modified version of density preservation as a
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Input: BestPop ; N
Output: P (t+ 1)

1 for x ∈ BestPop do
2 Identify the solution y ∈ BestPop with minimum euclidean distance to the solution x in

the objective space ;
3 dist(xobj) = ∥x− y∥;
4 Find the coresponding solution y in the decision space represented by y

′
that maps to

the solution y in the objective space (y = f(y
′));

5 dist(xdec) = ∥x′ − y′∥;
6 dist(x) = dist(xobj) · dist(xdec)
7 end
8 while |BestPop| ≥ N do
9 for x ∈ BestPop do

10 Find the neighborhood size for the solutions by Equation 4.12 ; Calucluate the
Harmonic Average Distance value of the solution x (HAD(x))in the search space by
; density(x) = dist(x) ·HAD(x)

11 end
12 Findout the solution x ∈ BestPop with the minimun density value ;

BestPop = BestPop \ {x};
13 end
14 P (t+ 1) = BestPop
15 return P (t+ 1)

Algorithm 11: Modified secondary selection criteria: Density-Estimator(BestPop, N)

secondary selection criteria. In Line 2 of the first step for each solution x, we
find the solution y that is closest in the objective space using the Euclidean
distance metric. In Line 3, we calculate the Euclidean distance between the
solutions x and y in the objective space (i.e. dist(xobj) = ∥x− y∥). Then
we locate the solutions y′ and x′ in the search space that correspond to the
solutions y and x in the objective space (Line 4).

dist(x) = dist(xobj) · dist(xdec) (4.11)

While the size of the remaining solutions in Bestpop is larger than the popu-

lation size, we perform the following steps (Lines 8–16). Using the following
equation, the neighborhood size of the solutions is determined in Line 10:

Neighborhood− size =
√
|bestpop| (4.12)
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Then, we calculate the harmonic average distance (HAD) between each
solution and its K nearest neighbor (i.e. K = ⌊Neighborhood− size⌋):

HAD(xi) =
K∑K
j=1

1
dij

(4.13)

Where the Euclidean distance between the solution i and its jth nearest
neighbor is represented by dij. According to the example visualized in [34], the
advantage of using harmonic average distance over crowding distance is that
it is able to more accurately indicate whether solutions reside in the crowded
area. Consequently, in Line 12, to calculate the density of the solution x in
its neighborhood area in the search space, its obtained HAD distance value
to the k nearest neighbors (HAD(x)) is multiplied by the distance dist(x)
obtained for the solution x (density(x) = dist(x) · HAD(x)). Considering
that these distances are measured at various scales, we have multiplied them.
This is because we aim to remove the need for normalization of these distance
values and to consider the effect of each distance value on the density of the
solutions equally.

Figure 4.13 illustrates an example of a proposed density measurement method.
For the solution A′, the nearest neighbor solution is represented by B′ in the
objective space. Next, we calculate the distance between these two solutions
(distobj(A

′, B′)). Within the search space, we identify solutions denoted as A
and B, while mapping them to their respective counterparts, A′ and B′, in
the objective space. In the search space, we calculate the distance between
these two solutions (distdec(A,B)). Then, we compute the harmonic average
distance (HAD) between A and its K-nearest neighbor (K =

√
N =

√
9 = 3)

in the search region. As a result, the density of solution A (density(A)) is
calculated by multiplying these distances with each other.

4.3.5 Specification of Benchmark Problems

Apart from the test cases outlined in Section 4.4.2, we also performed the
following tests to evaluate the coexistence of the global and local PSs on
the MMOPs: MMF11, MMF12, MMF13, and MMF15 benchmarks have two
decision variables and two objective functions, which are scalable with the
number of local PSs. However, in these test cases, we consider the coexistence
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1

Figure 4.13: An example of the calculation for the proposed density estimation for solution A.

of a global PS and a local PS, and, accordingly, one global PF and one local
PF.

4.3.5.1 Configuration of the Proposed Method

The configuration of the proposed method is as follows: for the DBSCAN
clustering algorithm, the parameter α, which controls the neighborhood radius
(i.e. EPs) and the num value are set to 0.1 and 5 accordingly, as it is stated
in [115]. A HAD distance measurement using the NxEMMO algorithm has a

neighborhood size of
√∑k−1

i=1 Fronti, where k in this case refers to the front

number that required to be used as a front number to selectN−(
∑k−1

i=1 |Fronti|)
remaining solutions (i.e. N is the population size).

4.3.5.2 Discussion of results

In order to assess the effectiveness of the proposed algorithm in comparison to
other competing algorithms, we present comprehensive results for IGDx, PSP,
and IGD+ in Tables 4.10, 4.11, and 4.12. These tables include the median
values and interquartile ranges (IQR) calculated from 31 independent runs of
the algorithm for each performance indicator.

To examine the performance of the proposed EMMOA−XYlocal algorithm, we
compare it with two other state-of-the-art algorithms: the NxEMMO (detailed
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explanation provided in Section 5.2.1) and the MMOE/AC [115] algorithms
(the state-of-the-art algorithms for solving type II MMOPs), as well as the
NSGA-II as the baseline algorithm. Per the results in Table 4.10, in general,
the proposed algorithm performed the best among the other algorithms on
seven out of 15 test problems. Based on the performance of the algorithms
over the test cases that contained both local and global PSs, it was observed
that in two out of four test cases, the proposed algorithm outperformed the
MMOE/AC algorithm, and in one test case where the MMOE/AC algorithm
obtained superior results, no statistical significance was reported between
the two algorithms. As seen from the comparison of this algorithm with the
NxEMMO algorithm, the proposed algorithm in all the test cases containing
local PSs was capable of preserving more spots on the local PS while preserving
the global PSs. Three out of 11 tests containing only global PSs yielded the
best results when using the NxEMMO algorithm. As the results of the tests
show, the proposed algorithm is not only superior to NxEMMO when it comes
to preserving the local PSs but also performs better when dealing with just
global PSs in 7 out of 11 test cases.

To maintain the local optimal solutions, it is essential to integrate a clustering
method into the search space. By retaining the non-dominated solutions within
each cluster, the local optimal solutions are preserved throughout the search
process. By employing the proposed density measurement technique in the
search space, the optimizer ensures the preservation of local Pareto-optimal
solutions and subsequently proceeds to locate a global Pareto-optimal solution
during the evolutionary search.

As shown in Table 4.12, when using the IGD+ performance indicators to
compare algorithms regarding their performance on the approximation of the
PF, the proposed algorithm was outperformed by others on all test cases.
Conversely, MMOE/AC is the best-performing algorithm in five out of 11
test cases that include the global PSs. This is due to the hierarchy clustering
technique that is employed in the objective space to further preserve the
diversity of the solution and therefore approximate the PF more accurately.
While the main focus of the algorithm in this study is on the distribution of
solutions in the search space, in multi-modal problems there is a trade-off
between the diversity of the solutions in the search and objective spaces. As
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Table 4.10: Analysis of performance using the IGDx indicator on the MMF1-MMF15 test problems
using 10,000 function evaluations A comparison of the NSGAIIXYlocal algorithm and the other
state-of-the-art algorithms The best-performing algorithms are highlighted in bold and gray shading,
and their significance relative to the best algorithms is indicated by an asterisk (*) in the respective
columns.

Problems EMMOA−XYlocal NxEMMO MMOEAC NSGAII

MMF1 0.063703(0.004499) 0.06826*(0.011957) 0.065891*(0.00304) 0.11478*(0.023295)

MMF1z 0.05036(0.006777) 0.054599*(0.013128) 0.049536(0.003536) 0.11967*(0.023685)

MMF2 0.019686(0.006711) 0.086632*(0.060714) 0.020344(0.003601) 0.085467*(0.064877)

MMF3 0.019131(0.003288) 0.072191*(0.042195) 0.020345(0.006536) 0.068035*(0.046307)

MMF4 0.041289*(0.003202) 0.034715(0.003061) 0.042502*(0.00379) 0.10556*(0.035845)

MMF5 0.57059(0.012583) 0.56786(0.013278) 0.591*(0.00927) 0.61874*(0.015645)

MMF6 0.091691(0.004483) 0.09557*(0.011502) 0.097371*(0.003753) 0.19387*(0.057345)

MMF7 * 0.036333(0.003384) 0.036965(0.003481) 0.040795*(0.005045) 0.069254*(0.017539)

MMF8 0.12503*(0.039628) 0.26061*(0.11824) 0.09801(0.020285) 0.7981*(0.33379)

MMF9 0.009969*(0.000473) 0.007537(0.000432) 0.011029*(0.00077) 0.093028*(0.2199)

MMF10 0.01522(0.12058) 0.20128(0.022631)* 0.016695(0.002183) 0.20203(0.016937)*

MMF11 0.011373(0.000838) 0.24902(0.000563)* 0.012554(0.000693)* 0.25045(0.001166)*

MMF12 0.005189(0.000515) 0.24476(0.000744)* 0.005097(0.000543) 0.24626(0.001106)*

MMF13 0.15705(0.030822)* 0.25794(0.00219)* 0.14938(0.015624) 0.30889(0.03992)*

MMF15 0.12458(0.04274) 0.2689(0.003997)* 0.13602(0.041955)* 0.2763(0.007056)*

Best/All 8/15 3/15 4/15 0/15

Wins/Losses/Ties – 2/13/4 2/13/5 3/10/2

such, improving the distribution of the solutions in the search space might
adversely affect how well the algorithm performs in the objective space.
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Table 4.11: Analysis of performance using the PSP indicator on the MMF1-MMF15 test problems
using 10,000 function evaluations A comparison of the NSGAIIXYlocal algorithm and the other
state-of-the-art algorithms The best-performing algorithms are highlighted in bold and gray shading,
and their significance relative to the best algorithms is indicated by an asterisk (*) in the respective
columns.

Problems EMMOA−XYlocal NxEMMO MMOEAC NSGAII

MMF1 15.6378(1.0943) 14.632*(2.8334) 15.0204*(0.67793) 8.4532*(1.7456)

MMF1z 19.6325(2.8707) 18.1833*(4.5993) 20.1523(1.4141) 8.1724*(1.5981)

MMF2 49.5431(17.7406) 10.7635*(5.6645) 49.1464(8.9314) 9.9459*(7.8377)

MMF3 50.5629(10.9215) 11.3401*(10.1311) 48.4516(13.0693) 12.4462*(9.9079)

MMF4 24.1959*(1.9821) 28.6876(2.5845) 23.4269*(2.0486) 9.1544*(3.1222)

MMF5 1.2362(0.030535) 1.2386(0.030162) 1.1947*(0.017932) 1.1292*(0.06761)

MMF6 10.8594(0.63715) 10.3903*(1.2134) 10.2032*(0.3937) 4.9954*(1.6075)

MMF7 26.5736*(3.0536) 26.5611(3.6799) 24.2768*(2.9238) 13.775*(4.1412)

MMF8 7.845*(2.6586) 3.5652*(1.5098) 10.0144(2.1187) 1.0041*(0.39043)

MMF9 100.3115*(4.9371) 132.6703(7.5858) 90.6094*(6.3278) 10.7495*(34.3256)

MMF10 65.7022(51.6623) 0.15029(2.4653)* 59.8909(8.1726) 0.12076(2.048)*

MMF11 87.9305(6.5103) 0.71708(0.1368)* 79.6373(4.3744)* 0.5974(0.14036)*

MMF12 192.6812(19.0085) 0.55476(0.11163)* 196.1908(20.7349) 0.4769(0.15071)*

MMF13 5.5002(2.2617)* 1.8423(0.039078)* 6.2589(0.67636) 1.1662(0.58644)*

MMF15 8.0269(2.5592) 1.7018(0.2187)* 7.3265(2.4356)* 1.6514(0.31767)*

Best/All 8/15 3/15 5/15 0/15

Wins/Losses/Ties – 2/13/4 2/13/5 3/10/2

4.4 Summary

To address multi-modal, multi-objective optimization problems, this chapter
proposes two types of approaches. By combining these two types of approaches,
existing algorithms are enhanced in their ability to handle MMOP. Using the
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Table 4.12: Analysis of performance using the IGD+ indicator on the MMF1-MMF15 test problems
using 10,000 function evaluations A comparison of the NSGAIIXYlocal algorithm and the other
state-of-the-art algorithms The best-performing algorithms are highlighted in bold and gray shading,
and their significance relative to the best algorithms is indicated by an asterisk (*) in the respective
columns.

Problems EMMOA−XYlocal NxEMMO MMOEAC NSGAII

MMF1 0.004124*(0.000174) 0.004407*(0.000192) 0.003321(0.000236) 0.0039*(0.000136)

MMF1z 0.004607*(0.000506) 0.004409*(0.000496) 0.0034(0.000357) 0.003841*(0.000304)

MMF2 0.011688(0.002865) 0.013729*(0.00909) 0.011506(0.002206) 0.013448(0.015575)

MMF3 0.010876(0.001863) 0.011404(0.005682) 0.010655(0.001427) 0.009451(0.007619)

MMF4 0.004128*(0.000248) 0.004546*(0.000452) 0.003528(0.000206) 0.00347(0.000179)

MMF5 0.008723(0.001089) 0.009195*(0.000985) 0.008471(0.001436) 0.008859*(0.00101)

MMF6 0.004388*(0.000357) 0.004868*(0.000527) 0.003382(0.000306) 0.003975*(0.00029)

MMF7 0.005022*(0.000422) 0.004802*(0.000363) 0.003427(0.000242) 0.003858*(0.000161)

MMF8 0.071565*(0.00031) 0.071495*(0.000205) 0.071143*(0.000201) 0.070967(0.000126)

MMF9 0.008512*(0.000645) 0.005995(0.000403) 0.007847*(0.000863) 0.006528*(0.000437)

MMF10 0.005839(0.11131)* 0.00183(0.15196) 0.00457(0.000437) 0.002665(0.15081)

MMF11 0.006243(0.000565)* 0.00274(0.000218) 0.006959(0.000723)* 0.003098(0.000272)*

MMF12 0.001861(0.000246)* 0.00074(4.3e-05) 0.00181(0.000281)* 0.000777(7.1e-05)*

MMF13 0.008824(0.004057)* 0.003475(0.000897)* 0.007785(0.001474)* 0.003002(0.000612)

MMF15 1.0352(0.002908)* 1.0294(0.001342) 1.0379(0.00395)* 1.0293(0.000666)

Best/All 0/15 4/15 6/15 5/15

Wins/Losses/Ties – 4/13/4 2/13/5 3/10/2

first approach, the algorithm is able to explore the search space more deeply,
identifying multiple distinct solutions within the search space simultaneously
by changing the tournament selection, reproduction, and mutation operators.
Additionally, the proposed environmental selection procedures can be divided
into two categories so that they can be applied to multi-modal, multi-objective
optimization problems that involve multiple global Pareto sets (MMOP of
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type I) and problems that require both local and global Pareto sets to be
maintained. After the introduction of each proposed method, the performance
of each method was compared with several of the most recent and prominent
related algorithms and previous methods proposed in the chapter. Several
different MMOP with varying levels of complexity and dimensions in the
decision space were used to assess the algorithms’ functionality and suitability
for handling MMOP with different properties. In both type I and type II
MMOP, the results obtained from the proposed approaches demonstrate that
the proposed algorithms are more efficient and effective in exploring and
preserving the diverse solutions in the search space than the state-of-the-art
algorithms.
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Chapter 5

Inter- and Intra-Front Selection
Operations

In this chapter, we propose a novel classification of environmental selection
operators in a Pareto-dominance-based MMOEAs. The development of this
classification involved considering whether to use solutions from other fronts
to calculate crowding values, which we classified as intra- and inter-front
selection operations. To overcome some of the shortcomings associated with
existing crowding methods based on intra-selection operations, two algorithms
are proposed in which the selection mechanism is determined by inter-front
selection operations.

Since most MMOEAs measure solution quality in terms of Pareto dominance,
we focus our research primarily on this type of MMOEAs. In the past few
years, it has been possible to estimate the density of crowds in the search space
by using several crowding distance methods. It is our intention to examine
some of the drawbacks of the crowding distance method in this chapter.

We propose a novel classification of Pareto-dominance-based algorithms for
environmental selection into two categories: (I) intra-front selection oper-
ations and (II)inter-front selection operations [63].

(I) It is possible to measure density using the neighboring solutions located on
the same front by determining the crowding distance between each solution
based on the neighboring solutions located on the same front of the solution.
According to the crowding value calculation, a solution can appear to be
far away from other solutions in the decision space when it may actually be
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located near many other solutions on the previous front [63]. Thus, even if the
area has already been discovered by solutions on previous fronts, the solution
has a better chance of surviving and passing on to the next generation.

(II) Another approach to measuring diversity involves taking into account
not only the solutions within the same front of the search space but also the
solutions in the vicinity of preceding fronts. By considering the solutions in
both the current front and its neighboring fronts, this method provides a more
accurate calculation of the crowding values of the solutions. This enhanced
diversity measurement approach is described in detail in [63].

The experimental results obtained from the proposed algorithms were com-
pared with other state-of-the-art algorithms and other algorithms proposed
by the author that are implemented for many MMOPs. The main content of
this chapter is taken from three publications of the author of this thesis: [63]
[34], and [119].

5.1 Intra-front Selection Operations in Multi-modal Multi-objective
Optimization Problems

Most Pareto-dominance-based MMOEAs are based upon the NSGA-II al-
gorithm [33], which is considered one of the most commonly used Pareto-
dominance-based MOEAs [134]. In the current population, Pareto dominance
is used to evaluate fitness as the primary criterion. A non-dominated solu-
tion has a higher fitness value than dominated solutions. Thus, it is more
likely to survive and be passed on to future generations. Following this point,
diversification is considered a secondary criterion for selection [63].

The Pareto-dominance-based MMOEAs calculate the crowding distance value
of the solutions in the search space in order to maintain a good distribution
of solutions. This value is calculated using a similar general structure as in
NSGA-II in the objective space: for each solution in the Fronti, the mean
distance between two adjacent solutions on the left and right sides of the
solution is calculated. Calculating the crowding distance for each solution is
done by summing these distances [63].

This method of calculating the crowding value, which solely considers solutions
within the same front and ignores the influence of solutions from other fronts, is
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referred to as the intra-front selection operation. Many existing MMOEAs
utilize the crowding distance approach in the decision space to enhance the
diversity of the population, as observed in studies such as [126, 101, 100].

Figure 5.1 depicts an example of a visualized calculation of the crowding
distance for intra-front selection operations to better demonstrate the concept.

• 
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Figure 5.1: An illustration of the measurement of crowding distance values in the intra-front selection
procedure [63].

According to Figure 5.1, the crowding value of the solution A is calculated by
considering the effects of the closest solutions on both sides of the solution in
the same front rather than other neighboring solutions from other fronts, both
in the search space and objective space. The volume of the orange-highlighted
regions indicates the crowding value of solution A in the search space as well
as the objective space. This example clearly illustrates the concept of an
intra-front selection operation [63].

5.1.1 The Challenges of Crowding Distance Approach

The first limitation is that there are more neighboring solutions in the decision
space than in the objective space, making calculating the crowding distance in
the decision space more challenging. Consider two objectives and two decision
variables in a problem. The crowding distance along a non-dominated front in
the objective space can be calculated using two neighboring solutions. In the
search space, however, there can be up to four (i.e., 2n) neighboring solutions
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Figure 5.2: An example of how crowding distance is measured, for two solutions within a decision
space [63].

for the same non-dominated solution An example of measuring the crowding
distance in the search space is illustrated in Figure 5.2. The crowding distance
calculated for C is calculated using four solutions: F , B, D, and A, and the
crowding distance calculated for E is calculated using three solutions: F , D,
and G. As we can see, C has a higher crowding distance value than E, even if
solution C is near solution B; this is because the crowding distance for C is
heavily influenced by the solution A [63].

Another shortcoming of the crowding distance calculation in the decision space
is that the overlap of distinct PSs in the search space creates the illusion that
the solution is located in a dense area, so it is excluded from selection using
crowding distance, even though it is essential to preserve solutions that enable
us to explore uncovered areas in the decision space. Figure 5.3 shows the
aforementioned drawback when using the MMF4 test problem [63]. Despite
being located in a sparse space and being the only solution covering PS2’s
left side, solution A is still considered near the other solutions when crowding
distances are calculated. This issue arises from the fact that the PSs are
overlapped in both dimensions of the search space, making it appear crowded.
As a consequence, if we use crowding distance as the secondary selection
criterion, we eliminate these solutions from the search process and lose the
opportunity to search for solutions that are optimal in the local area [63].
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Figure 5.3: An example of the limitation of crowding distances when estimating density [63].

An alternative solution to these problems involves developing a selection
methodology that uses Euclidean distances among neighboring solutions
on the same front to determine the best solution. The presented selection
strategy is called the Euclidean-based Selection Evolutionary Multi-Modal
Multi-Objective (ES-EMMO) algorithm.

Another disadvantage of crowding distance measurements—or any selection
method that measures density by looking at neighboring solutions on the same
front—is that density calculations do not consider the neighboring solutions
on previous fronts and therefore are inaccurate.

We can see an example of this problem in Figure 5.4. Crowding distance is
calculated based on neighboring solutions located on the same front. According
to the figure, solution A has a larger crowding distance value since it has a
greater distance from the other solutions in the same front in the search space
(i.e. B, C, and D), and the volume of the orange highlighted region denotes
the crowding value of solution A. Using the crowding distance metric therefore
increases the chance of selecting the solution A that will survive and transfer
to the next population. In contrast, it does not improve the distribution of
the solutions since the same area is already covered by some solutions from
Front1 to Fronti−1.

An alternative solution to the mentioned problems involves developing a selec-
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Figure 5.4: An example of crowding distance and making the illusion that the solution A is located
in a sparse area while it actually is not, by ignoring the effects of other nearby solutions on previous
fronts [63].

tion methodology that uses Euclidean distances among neighboring solutions
on the same front to determine the best solution. The presented selection
strategy is called the Euclidean-based Selection Evolutionary Multi-modal
Multi-objective (ES-EMMO) algorithm.

5.1.2 ES-EMMO Algorithm

In this section, we propose the ES-EMMO algorithm, which has a modified
environmental selection from the original NSGA-II. The goal is to preserve
solutions that cover several PSs. This is because in MMOEAs, we aim to avoid
removing solutions that are near each other in objective space but far away
in search space, which can represent different PSs. Considering this concept
and aiming to give higher chances to solutions located near one another in
the objective space but far enough apart in the search space, we employ the
Eucxy metric to measure each solution, This metric serves as a basis for the
environmental selection procedure [63].

Figure 5.5, illustrates an example of the Eucxy measurement for solution A
to make it easier to comprehend the concept. In the right figure, dAB and
dAD represent the Euclidean distances between solution A and its neighboring
solutions B and D, respectively. The left figure shows the distance between
solution A and these solutions in the decision space, with d′AB and d′AD
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Figure 5.5: An example of the concept of Eucxy approach [63].

representing the corresponding Euclidean distances. A solution’s final crowding
value is determined by multiplying its distance from its neighboring solution B
in the search space and objective space and then adding the distance between
that solution and its neighboring solution D in the search and objective spaces.

In general, the Eucxy for each solution xu is calculated as follows:

Eucxy(xu) =
∑

xv∈NB(xu)

Euc(fu, fv) · Euc(xu, xv) (5.1)

where NB(xu) contains all the xu’s adjacent solutions on both sides of its

corresponding front based on each objective function, while Euc(fu, fv) and
Euc(xu, xv) represent the Euclidean distances between xu and its neighbor
solution xv in the objective space and decision space.

5.2 Inter-front Selection Operations in Multi-modal Multi-objective
Optimization Problems

As a result of considering both solutions on the same front (Fronti) and
neighboring solutions on previous fronts (i.e. (Fronti) to Fronti−1), we propose
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the second classification of the environmental selection operations for Pareto-
dominated-based MMOEAs. In our study, we refer to these types of selection
mechanisms as inter-front selection operations. Accordingly, the next
section presents two novel algorithms that use an alternative method of
environment selection based on inter-front selection.

5.2.1 NxEMMO Algorithm

The neighborhood-based evolutionary multimodal multi-objective optimization
(NxEMMO) algorithm [103] is developed based on the NSGA-II and includes
several modifications. An overview of the NxEMMO algorithm can be found
in Algorithm 12.

The population P (t) is initialized at generation t with N random individuals
(Lines 1–2). The solutions are evaluated (Line 3), and the parents are then
determined using a mating selection operator (Line 5). Offspring Q are gener-
ated using the simulated binary crossover (SBX) operator and mutated by the
polynomial mutation operator [45] (Lines 6–7). On the basis of the max-min
normalization techniques, the solutions are normalized in the search space,
after which the modified environmental selection mechanism is applied (Line
10).

The proposed environmental selection mechanism (Algorithm 13) is performed
on the combination of P and Q. The algorithm starts by applying non-
dominated sorting as in NSGA-II and then sorting the solutions into several
fronts, each denoted by Fronti for its first front (Line 1). As with NSGA-II,
the solutions from Front1 to Fronti−1 are passed on to the new population
(P (t + 1)) (Lines 2–7). It is necessary to truncate the solutions in Fronti if
they do not fit the new population.

The major difference between the NxEMMO and NSGA-II algorithms is its
truncation approach. NxEMMO has a new crowding distance mechanism
which replaces the one from NSGA-II.

There are two cases: 1) The Nearest Neighbor Distance (NND) mechanism is
used if the front selected for truncation is itself Front1. This diversity estimated
measurement was originally proposed by Zitzler et al. [112], which is designed
to keep the size of a set of solutions to a predefined value. The operation is
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named Omission (line 10). 2) we perform the Harmonic Average Distance
(HAD) for truncation but different from the crowding distance in NSGA-II, we
compute HAD between every single solution in Fronti and all other solutions
in Front1 to Fronti−1. In other words, we set l in Equation 4.1 as the number
of solutions in Front1 to Fronti−1. Addition is referred to as this mechanism
(line 8). Through this operator, the solution with the highest HAD value is
transferred to the new population (P (t+ 1)). Once the HAD values for the
remaining solutions in Fronti have been updated, the next individuals will be
selected iteratively until R(t+1) has been filled up [63]. The HAD (Harmonic
Average Distance) value is computed by measuring the distance between a
solution i and its k-nearest neighbors. The calculation of the HAD value can
be performed using the formula provided in Equation 4.1.

The neighborhood size (i.e. k) is calculated as follows:

k =
⌊√

l
⌋

(5.2)

Referring to Figure 5.2, solution B and F are two nearest neighbors to solution
C, while G and D are two neighbors to solution E. Let’s assume dBC = 1,
dCF = 3, dEG = 2 and dED = 4. As a result, the harmonic average distance is
smaller for C than E, i.e. HAD(C) is smaller than HAD(E). Though, these
solutions have an opposite relationship in the case of crowding value.

Referring to Figure 5.2, we observe that solutions B and F are the two closest
neighbors to solution C, while solutions G andD are the two nearest neighbors
to solution E. Considering the given distance values, such as dBC = 1, dCF = 3,
dEG = 2, and dED = 4, it can be concluded that the harmonic average distance
(HAD) is smaller for solution C compared to solution E. This indicates that
HAD(C) is smaller than HAD(E). However, it is worth noting that these
solutions exhibit an opposite relationship when it comes to crowding value.

An example from the MMF1 test [101] in Figure 5.6 (left) illustrates the
influence of the addition function on the diversity of solutions in the decision
space. Solutions in Front1 to Fronti−1 can be found as . A blue ♢ is used to
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Input: Optimization Problem, Search Space S, Population Size N
1 t ← 0 ;
2 P (t) ← InitPop(P (t));
3 Evaluate(P (t));
4 while Termination criteria is not fulfilled do
5 Pmate ← Select(P (t));
6 P ′ ← Recombine(Pmate);
7 Q ← Mutate(P ′);
8 Evaluate(Q);
9 t ← t+ 1;

10 P (t) ← Modified Environmental Selection(P ′, Q) //Algorithm 13;

11 end
Output: Final population P

Algorithm 12: NxEMMO Algorithm. Pseudocode based on [103]

Input: Population: P (t), Offspring Population: Q
1 Front ← fast-non-dominated-sort(P (t) ∪Q);
2 //Front = (Front1, F ront2, ...)
3 i = 1
4 U = ∅ while |U |+ |Fronti| < N do
5 U ← U ∪ |Fronti|;
6 i = i+ 1;

7 end
8 if i ≥ 2 then
9 P (t+ 1)← Addition(Fronti, U)

10 else
11 P (t+ 1)← Omission(Fronti)
12 end

Output: Population P (t+ 1)

Algorithm 13: Modified Environmental Selection: ModifiedEnvSelection. Pseudocode based
on [103]

identify the solutions in Fronti. Those solutions in the red circle are the results
of the addition function. In addition, the selected solutions are represented by
a purple □ based on the crowding distance method. The addition function
only selects those solutions that are located in sparse areas, considering all
solutions, not just those in Fronti but also all other solutions from Front1
to Fronti−1. Comparatively, the crowding distance method does not select
solutions evenly distributed across the decision space.

Figure 5.6 (right) depicts an example of the omission function based on the
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Figure 5.6: Using the test problem MMF1, an example of addition (left) and omission (right)
functions [63].

NND mechanism. When only one front exists, this function is activated, which
means the truncation occurs in Front1. We seek to omit two solutions in
this example. A blue ∗ indicates non-dominated solutions, while a □ shows
the result of omission using the NND function. In Figure 5.6, two solutions
(duplicates) occupy the same position (marked by the red circle). One of the
duplicate solutions and another solution in the crowded area are eliminated
using the NND function [63].

Taking the HAD function as opposed to NND gives a better comparison of
the results of the omission function. HAD’s results are represented by red
circles. HAD selected the above duplicates when selecting two solutions for
omission. HAD results in the elimination of both duplicates, leaving the empty
position in that part of the decision space, whereas NND maintains one of
the duplicates at the same position (the red circle) and eliminates the other
in a crowded area [63].

5.2.1.1 Configuration of the Proposed Methods

In this research, we conduct a comparative analysis between two of our
proposed algorithms, NxEMMO (utilizing inter-front selection operations)
and ES-EMMO (also employing inter-front selection operations), and other
competing algorithms that are based on similar inter-front operations. The
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Table 5.1: A comparison of the IGDx values obtained by different algorithms [63].

inter-front
operations

intra-front operations

Problems NxEMMO ES-EMMO NSGA-II-CDws DN-NSGA-II Omni-optimizer

MMF1 0.06826 (0.011957) 0.069926 (0.004074) 0.073512* (0.005277) 0.14906* (0.037849) 0.13652* (0.023222)

MMF1z 0.054599 (0.013128) 0.060952* (0.008315) 0.060436* (0.012492) 0.12516* (0.041036) 0.10905* (0.037024)

MMF2 0.086632* (0.060714) 0.099559* (0.099973) 0.068848 (0.041494) 0.15677* (0.096484) 0.12076* (0.09012)

MMF3 0.072191 (0.042195) 0.060297 (0.044795) 0.071141 (0.056237) 0.11243* (0.055217) 0.10998* (0.04382)

MMF4 0.034715 (0.003061) 0.1522* (0.041193) 0.053797* (0.010829) 0.13763* (0.049653) 0.1392* (0.046631)

MMF5 0.56786 (0.013278) 0.57518* (0.026768) 0.59996* (0.011188) 0.6072* (0.040392) 0.5984* (0.039829)

MMF6 0.09557 (0.011502 0.13045* (0.016892) 0.11779* (0.010055) 0.19174* (0.027151) 0.20344* (0.028455)

MMF7 0.036965 (0.003481 0.042214* (0.009148) 0.040405* (0.006513) 0.075119* (0.015421) 0.060416* (0.012387)

MMF8 0.26061* (0.11824) 0.96612* (0.086946) 0.20274 (0.10151) 0.50743* (0.37566) 0.48434* (0.37711)

MMF9 0.007537 (0.000432) 0.019128* (0.010262) 0.024772* (0.038961) 0.035751* (0.019869) 0.030939* (01914)

MMF14 0.007748 (0.000466) 0.010298* (0.001504) 0.036652* (0.050487) 0.03771* (0.021226) 0.032523* (0.022532)

SYM-PARTsimple 0.064747 (0.006078) 3.3772* (1.1078) 2.2426* 2.299 7.0069* (2.2805) 7.0481* (1.9072)

SYM-PARTrotated 2.2081 (1.4778) 3.2888* (1.8333) 3.004 ((1.0614) 6.1886* (2.4087) 6.7457* (2.5533)

Omni-test 0.035064 (1.4778) 0.434055* (0.343155) 0.06756* (0.025421) 0.848054* (0.310415) 0.99567* (0.285056)

selected algorithms for comparison include Omni-optimizer [100], DN-NSGA-II
[101], NSGA-II-CDws, and our proposed ES-EMMO algorithm.

5.2.1.2 Discussion of Results

In Tables 5.1,5.2, and5.3, the best-performing algorithms are indicated in
bold font. Additionally, an asterisk (*) is used to denote significant statistical
differences compared to the best-performing algorithms. The tables present
the algorithms categorized based on their selection methods. Our objective is
to compare the performance of the proposed algorithms with other algorithms,
as well as to evaluate the performance of the two selection operations against
each other [63].
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Table 5.2: A comparison of the PSP values obtained by different algorithms [119].

inter-front
operations

intra-front operations

Problems NxEMMO ES-EMMO NSGA-II-CDws DN-NSGA-II Omni-optimizer

MMF1 (2,2) 16.9617 (1.2649) 14.632* (2.8334) 16.2399* (1.7222) 13.5223* (1.1236) 8.4532* (1.7456)

MMF1z (2,2) 21.2536 (4.6165) 18.1833* (4.5993) 21.3127 (3.7551) 16.2743* (3.4372) 8.1724* (1.5981)

MMF2 (2,2) 13.6626 (8.322) 10.7635* (5.6645) 11.2419 (6.687) 13.2636 (8.692) 9.9459 (7.8377)

MMF3 (2,2) 15.2512 (8.8569) 11.3401 (10.1311) 15.3887 (8.5256) 11.4225 (14.095) 12.4462 (9.9079)

MMF4 (2,2) 30.1475 (1.728) 28.6876* (2.5845) 29.5983 (2.3712) 18.4703* (3.5828) 9.1544* (3.1222)

MMF5 (2,2) 1.2524 (0.011468) 1.2386* (0.030162) 1.2288* (0.02723) 1.1609* (0.034616) 1.1292* (0.06761)

MMF6 (2,2) 11.4149 (0.63732) 10.3903* (1.2134) 11.2765 (1.0371) 8.3961* (0.68611) 4.9954* (1.6075)

MMF7 (2,2) 26.7459 (2.5599) 26.5611* (3.6799) 29.0313 (5.1569) 23.93* (3.5717) 13.775* (4.1412)

MMF8 (2,2) 7.0477 (2.6601) 3.5652* (1.5098) 6.1924 (4.2528) 4.804* (2.9008) 1.0041* (0.39043)

MMF9 (2,2) 121.1216* (6.025) 132.6703 (7.5858) 81.3375* (15.4764) 40.368* (46.8601) 10.7495* (34.3256)

Omni-test (2,2) 28.3315* (1.2741) 28.4204* (2.151) 32.689 (2.1142) 14.5811* (6.0094) 3.4256* (8.4479)

SYM-PART (2,2) 14.4054* (1.2994) 15.4253* (1.4269) 16.3943 (1.2325) 0.44329* (0.66802) 0.15392* (0.14778)

Polygon (6,2) 5.654 * (0.16177) 6.3247 * (0.13203) 6.5461 (0.14536) 4.5685 * (0.41006) 4.4309 * (0.31134)

Polygon (6,4) 1.527 (1.5023) 0.53428 * (1.4851) 0.51441 * (1.5042) 0.52719 * (1.2955) 0.42006 * (1.0601)

Polygon (6,6) 0.10114 (0.07837) 0.044371 * (0.074686) 0.042089 * (0.061189) 0.044769 (0.069666) 0.043487 * (0.066217)

Best/All 8/15 1/15 6/15 0/15 0/15

Wins/Losses/Ties – 1/11/3 4/4/7 0/12/3 0/13/2

In Tables 5.1 and 5.2, we can see that the NxEMMO algorithm outperforms
other algorithms in 11 out of 14 test instances. As expected, these results meet
our expectation that modifications to the environmental selection and replacing
the crowding distance in the NxEMMO algorithm will lead to improved results.
When NxEMMO is used, it is possible to detect the solutions in sparse areas
in the decision space more effectively than with the crowding distance method
used in the algorithm that utilizes inter-front selection operations. Algorithm
13 describes how adding and omitting in subsequent steps leads to enhanced
PS approximation. Moreover, as we see in Tables 5.1 and 5.2, ES-EMMO
performs the best among the three algorithms on the MMF3 test case that
involves local PS. It appears that DN-NSGA-II and Omni-optimizer algorithms
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Table 5.3: A comparison of the IGD+ values obtained by different algorithms [119].

inter-front
operations

intra-front operations

Problems NxEMMO ES-EMMO NSGA-II-CDws DN-NSGA-II Omni-optimizer

MMF1 (2,2) 16.9617 (1.2649) 14.632* (2.8334) 16.2399* (1.7222) 13.5223* (1.1236) 8.4532* (1.7456)

MMF1z (2,2) 21.2536 (4.6165) 18.1833* (4.5993) 21.3127 (3.7551) 16.2743* (3.4372) 8.1724* (1.5981)

MMF2 (2,2) 13.6626 (8.322) 10.7635* (5.6645) 11.2419 (6.687) 13.2636 (8.692) 9.9459 (7.8377)

MMF3 (2,2) 15.2512 (8.8569) 11.3401 (10.1311) 15.3887 (8.5256) 11.4225 (14.095) 12.4462 (9.9079)

MMF4 (2,2) 30.1475 (1.728) 28.6876* (2.5845) 29.5983 (2.3712) 18.4703* (3.5828) 9.1544* (3.1222)

MMF5 (2,2) 1.2524 (0.011468) 1.2386* (0.030162) 1.2288* (0.02723) 1.1609* (0.034616) 1.1292* (0.06761)

MMF6 (2,2) 11.4149 (0.63732) 10.3903* (1.2134) 11.2765 (1.0371) 8.3961* (0.68611) 4.9954* (1.6075)

MMF7 (2,2) 26.7459 (2.5599) 26.5611* (3.6799) 29.0313 (5.1569) 23.93* (3.5717) 13.775* (4.1412)

MMF8 (2,2) 7.0477 (2.6601) 3.5652* (1.5098) 6.1924 (4.2528) 4.804* (2.9008) 1.0041* (0.39043)

MMF9 (2,2) 121.1216* (6.025) 132.6703 (7.5858) 81.3375* (15.4764) 40.368* (46.8601) 10.7495* (34.3256)

Omni-test (2,2) 28.3315* (1.2741) 28.4204* (2.151) 32.689 (2.1142) 14.5811* (6.0094) 3.4256* (8.4479)

SYM-PART (2,2) 14.4054* (1.2994) 15.4253* (1.4269) 16.3943 (1.2325) 0.44329* (0.66802) 0.15392* (0.14778)

Polygon (6,2) 5.654 * (0.16177) 6.3247 * (0.13203) 6.5461 (0.14536) 4.5685 * (0.41006) 4.4309 * (0.31134)

Polygon (6,4) 1.527 (1.5023) 0.53428 * (1.4851) 0.51441 * (1.5042) 0.52719 * (1.2955) 0.42006 * (1.0601)

Polygon (6,6) 0.10114 (0.07837) 0.044371 * (0.074686) 0.042089 * (0.061189) 0.044769 (0.069666) 0.043487 * (0.066217)

Best/All 8/15 1/15 6/15 0/15 0/15

Wins/Losses/Ties – 1/11/3 4/4/7 0/12/3 0/13/2

are more prone to becoming trapped into local PSs.

A closer look at the interquartile results for the IGDx values in Table 5.1
reveals that in 10 out of the 14 test cases, the NxEMMO has a lower score
than its competition. This means that the results obtained with the NxEMMO
algorithm have better stability and robustness over several runs of the algo-
rithm since they do not show much variation when compared to the other
state-of-the-art algorithms. Moreover, when we compare the results for the
NxEMMO algorithm and the proposed ES-EMMO algorithm, we can see
that the NxEMMO algorithm does better in 10 out of 14 test cases based on
statistical significance compared to the ES-EMMO algorithms. In comparison
to the results for the MMF3 test cases, ES-EMMO did not differ statistically
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from NxEMMO, regardless of the better IGDx value [63].

The performance indicator for PSP consists of the ratio of cover rate to IGDx,
where cover rate (or overlap rate) indicates the percentage of the defined
region between the optimal solution and the PS. The results in Tables 5.1
and 5.2 are nearly identical since the overlap rate of the test results is one,
which is an ideal value [63].

Based on the results in terms of intra-front selection operations, ES-EMMO
outperforms the NSGA-II-CDws algorithm in five cases. In addition, in most
of the test cases, it also outperformed the Omni-optimizer and DN-NSGA-
II algorithms, which use crowding distance metrics on the decision space.
These results confirm that using other distance metrics besides the crowding
distance metric can help to overcome the abovementioned problem and boost
diversification over the PSs [63].

In the Omni-test problem, the ES-EMMO, Omni-optimizer, and DN-NSGA-
II algorithms demonstrate subpar performance. This can be attributed to
the inadequate distribution of solutions within the search space, as these
algorithms were unable to identify all 27 Pareto solutions (PS). Conversely,
the NxEMMO algorithm exhibits promising outcomes in terms of preserving
a significant number of PSs.

We additionally observe that NSGA-II-CDws exhibits superiority to all the
other algorithms when it comes to IGD+ values (i.e., Table 5.3). We expect this
algorithm to have a better approximation of PF in the objective space since
it considers the diversity of the solutions in the objective space in its density
calculations. According to the analysis, NxEMMO is the second-best algorithm
in the objective space, after NSGA-II-CDws. Both the Omni-optimizer and
DN-NSGA-II algorithms perform poorly when compared to other algorithms
in the category of intra-front selection. All in all, as expected, considering the
effects of neighboring solutions further improves the density estimation of the
solutions within the search space. Therefore, inter-front selection operations
generally outperform intra-front selection operations.

To provide better visualization of the result population and demonstrate the
similarity between the obtained final solutions in both decision and objective
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spaces, Figures 5.7, 5.8, and 5.9 present the results of the run with the median
IGDx performance indicator for the MMF6, MMF9, and SYM-PARTsimple

test cases. A solid gray line corresponds to the actual PF and PS of the
test problems, while the red marker represents the solutions obtained using
computational algorithms. We compare the results for the NxEMMO algorithm,
a representation of an inter-front selection operation, as well as ES-EMMO
and NSGA-II-CDws, a representation of an intra-front selection operation. On
closer inspection of Figures 5.7, 5.8, and 5.9 in terms of the search space, the
obtained results for the algorithm NxEMMO on the MMF6, MMF14, and
SYM-PARTsimple test cases indicate that this algorithm has a better coverage
area over the PS than the other two, and the results are distributed more
evenly over the PS for those test problems. We can see, for example, that in
the SYM-PARTsimple test case, the NxEMMO algorithm succeeds in finding
and preserving all PSs, whereas other state-of-the-art algorithms are able to
locate only some PSs. Furthermore, we can see that the NxEMMO algorithm
is capable of providing reasonable coverage of the PF.

5.2.2 MMEA-HAD Algorithm

The main content of this section has been taken from the original paper
by the author [119]. In this section, we propose our new approach called
Multi-modal Multi-objective Evolutionary Algorithm using Harmonic Average
Distance (MMEA-HAD) which follows the same general outline similar to
typical evolutionary algorithms, such as the NSGA-II algorithm [33].

In MMEA-HAD, we incorporate modifications to both tournament and envi-
ronmental selection mechanisms, which are important elements for dealing
with MMOPs. We performed an experiment on a test problem (MMF1) using
the NSGA-II algorithm (with standard tournament selection) containing 100
individuals and, overall, 10000 function evaluations. In 100 generations, we
found that, on average, in each generation, 4.145% of the offspring were exact
duplicates of their parents. This number of duplicates can have a consider-
able impact on the environmental selection process in EMMO algorithms, in
particular the environmental selection process in our latest algorithm [34]. As
illustrated in an example in [34], the duplicate solutions on the same front
can be deleted by the HAD mechanism, leaving an empty position in that

118



5.2. Inter-front Selection Operations in Multi-modal Multi-objective Optimization Problems

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

(a) PS for NxEMMO

0 0.2 0.4 0.6 0.8 1

f1

0

0.2

0.4

0.6

0.8

1

f
2

(b) PF for NxEMMO

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

(c) PS for ES-EMMO

0 0.2 0.4 0.6 0.8 1

f1

0

0.2

0.4

0.6

0.8

1

f
2

(d) PF for ES-EMMO

1 1.5 2 2.5 3

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

(e) PS for NSGA-II-CDws

0 0.2 0.4 0.6 0.8 1

f1

0

0.2

0.4

0.6

0.8

1

f
2

(f) PF for NSGA-II-CDws

Figure 5.7: Obtained solutions in both decision and objective spaces for MMF6 test problem [63]

part of the decision space, while the proposed NND mechanism allows one
duplicate to remain at the same location. In this paper, we aim to avoid
selecting duplicate solutions by exploiting the full potential of the parental
population to generate diverse solutions in the search space. The framework
for the proposed The MMEA-HAD algorithm is shown in Algorithm 14.

After initializing the population randomly (Line 1), solutions are evaluated.
The following steps are implemented on the population until the termination
criteria are met (Lines 4–8). As presented in Algorithm 2, the modified mating
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Figure 5.8: Obtained solutions in both decision and objective spaces for MMF9 test problem [63]

selection criteria are applied to the populations, and the modified reproduction
operator is then applied to the parent populations to produce the offspring
(Line 5). As soon as the offspring are produced, the results are evaluated
(Line 6). Following this, the modified environmental selection mechanism
(represented in Algorithm 15) is applied to the combination of the parents
and the offspring to make a new population for the next generation (Line 7).

We propose a modified environmental selection mechanism in Algorithm 15.
In the case of multiple fronts of solutions, an addition operator is applied
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Figure 5.9: Obtained solutions in both decision and objective spaces for SYM-PARTsimple test
problem [63]

to select the solutions in sparser parts of the search space. For each solution
at Fronti, the HAD value between that solution and every solution in its
neighborhood from Front1 to fronti−1 is calculated. Neighborhood size is
defined as the square root of the number of solutions from Front1 to fronti−1.
Afterward, the solution with the largest HAD value is transferred to the new
population R(t + 1). The iterative process of selecting the next individual
and updating the remaining population’s harmonic average distance (HAD)
values continues until all N possible solutions are chosen (Lines 7-9). As the
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Input: Population Size N , Search Space S, Max Number of Generations Gmax,
Output: Final Population Pfinal

1 t = 1 ;
2 Set up population P (t) with N individuals;
3 Evaluatation of (P (t));
4 while t ¡ Gmax do
5 Q(t) ← Modifed mating Selection and the Reproduction Operatoras (P (t)) ;

// Algorithm 2

6 Evaluatation of (Q(t));
7 P (t+ 1) ← Modified Environmental Selection (P (t), Q(t)); // Algorithm 15

8 end
9 return Pfinal

Algorithm 14: General framework for MMEA-HAD algorithm. The pseudocode is based on
[119]

solutions approach the Pareto front (PF) in later generations, they may be
situated in the first front. In such instances, the omission operator is applied.
This involves iteratively removing the solutions with the highest HAD until
the population size is reached (Lines 9-11).

The MMEA-HAD is further combined with the tournament selection method
proposed in Section 4.1.1 to make an intra-front selection operator that
enhances the exploration of solutions.

5.2.2.1 Discussion of Results

Tables 5.4, 5.5, and 5.6 offer a detailed description of IGD+, PSP, and IGDx
results. According to the 31 independent runs of the algorithms for every
problem, we compute the median and interquartile range (IQR) for each of the
performance indicators IGD+, IGDx, and PSP. An analysis of the statistical
difference between the results according to the best algorithm is conducted
using a Mann-Whitney U test with a significance level of α = 0.05, reflecting
the statistical significance of the conclusions. Furthermore, we demonstrate
the wins, losses, and ties for each algorithm over the proposed algorithm across
all test suites.

In Tables 5.4, 5.5, we compare the results of the algorithms on the basis
of IGDx and PSP, which represent their performance in the decision space.
Throughout the 15 test problems, the performance of the proposed MMEA-
HAD algorithm beats the performance of its previous algorithm (NxEMMO
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Input: Population: P (t), Offspring Population: Q(t)
Output: Population P (t+ 1)

1 Front ← fast-non-dominated-sort(P (t) ∪Q)
2 i = 1 ;
3 while |P |+ |Fronti| ≤ N do
4 P (t+ 1)← P (t) ∪ |Fronti|;
5 i = i+ 1;

6 end
7 if i ≥ 2 then
8 P (t+ 1)← Addition(Fronti, P (t+ 1))
9 else

10 P (t+ 1)← Omission(Fronti)
11 end

Output: Population P (t+ 1)
12 return P (t+ 1)

Algorithm 15: Modified Environmental Selection: ModifeiEnvironSelect. The pseudocode
is based on [34, 119]

algorithm) in seven out of 15 test cases, especially in the higher-dimensional
search and objective spaces. TThe utilization of the modified selections of
tournament and environment simultaneously in the new algorithm leads to
the generation of solutions that are both diverse and convergent along the PS.
Consequently, the proposed method achieves a more accurate approximation
of the PS in all test cases compared to the baseline algorithm NSGA-II.

One of the reasons that our proposed algorithm performs better than other
algorithms could be that it utilizes a tailored tournament selection method,
which eliminates duplicate solutions within the population. To thoroughly
investigate this aspect, we performed additional research and carried out
experiments involving all test functions. The experiments were conducted
with 100 individuals and 10,000 function evaluations, utilizing the proposed
MMEA-HAD algorithm. Remarkably, across all generations, we consistently
observed that the modified mating selection mechanism successfully eliminated
the occurrence of duplicate solutions. This finding highlights the efficacy of
our algorithm in ensuring a diverse population without any repeated solutions.

Considering both the PSP and IGDx performance indicators, it is evident
that the proposed MMEA-HAD algorithm consistently outperformed other
competitors in representing the PS in most cases (8 out of 15). Moreover, the
algorithm with better average values and the proposed algorithm did not show
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Table 5.4: A comparison of the IGDx values obtained via different algorithms. In (m,n), the size of
the decision variable n and the number of objectives m are given. The best algorithm is highlighted
in blue. The asterisk (*) indicates the statistical significance relative to the best algorithm [119].

Problems MMEA-HAD NxEMMO DNEA NSGA-II-CDws NSGA-II

MMF1 (2,2) 0.058847 (0.003946) 0.06826* (0.011957) 0.061305* (0.006423) 0.073512* (0.005277) 0.11478* (0.023295)

MMF1z (2,2) 0.046656 (0.010718) 0.054599* (0.013128) 0.04677 (0.008116) 0.060436* (0.012492) 0.11967* (0.023685)

MMF2 (2,2) 0.070443 (0.039368) 0.086632* (0.060714) 0.073379 (0.037776) 0.068848 (0.041494) 0.085467 (0.064877)

MMF3 (2,2) 0.058886 (0.037601) 0.072191 (0.042195) 0.058824 (0.029222) 0.071141 (0.056237) 0.068035 (0.046307)

MMF4 (2,2) 0.033154 (0.00194) 0.034715* (0.003061) 0.033561 (0.002765) 0.053797* (0.010829) 0.10556* (0.035845)

MMF5 (2,2) 0.56402 (0.004894) 0.56786 (0.013278) 0.57407* (0.006236) 0.59996* (0.011188) 0.61874* (0.015645)

MMF6 (2,2) 0.08721 (0.004791) 0.09557* (0.011502) 0.088428 (0.007831) 0.11779* (0.010055) 0.19387* (0.057345)

MMF7 (2,2) 0.037259* (0.002659) 0.036965* (0.003481) 0.034349 (0.005445) 0.040405* (0.006513) 0.069254* (0.017539)

MMF8 (2,2) 0.13482 (0.048267) 0.26061* (0.11824) 0.15105 (0.08965) 0.20274* (0.10151) 0.7981* (0.33379)

MMF9 (2,2) 0.008256* (0.000419) 0.007537 (0.000432) 0.012294* (0.002397) 0.024772* (0.038961) 0.093028* (0.2199)

Omni-test (2,2) 0.035121* (0.001579) 0.035064* (0.002751) 0.030401 (0.001842) 0.067564* (0.025421) 0.28523* (0.41252)

SYM-PART (2,2) 0.069413* (0.006177) 0.064747* (0.006078) 0.060897 (0.004591) 2.2426* (2.299) 4.8896* (3.2094)

Polygon (6,2) 0.17687 * (0.005087) 0.15811 * (0.003301) 0.15243 (0.003306) 0.21889 * (0.019518) 0.22452 * (0.017737)

Polygon (6,4) 0.63837 (1.4507) 1.7587 * (2.5475) 1.8966 * (2.5725) 1.8092 * (2.4795) 2.0501 * (2.4416)

Polygon (6,6) 4.4861 (2.3019) 6.3022 * (2.3054) 6.2868 * (2.016) 6.2266 (2.1361) 6.2913 (2.1028)

Best/All 8/15 1/15 5/15 1/15 0/15

Wins/Losses/Ties – 4/7/4 3/6/6 1/11/3 0/12/3

statistically significant differences in three of the test cases. With a closer
look at the results, we can see that the algorithm performs better than other
competitors in higher-dimensional search and objective spaces. The results
demonstrate that there is an advantage to the proposed algorithms in terms
of scalability.

Based on our expectations, the proposed algorithm, when emphasizing the
distribution of the solutions in the search space, can lead to the loss of the
distribution in the objective space over the PF. It is required to find the right
balance between the diversity and convergence of the solutions in the search
space and the objective space. Despite this, the DNEA algorithm was the best
out of the competitors on 11 out of 15 test suits because it uses an archive
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Table 5.5: A comparison of the PSP values obtained via different algorithms. In (m,n), the size of
the decision variable n and the number of objectives m are given. The best algorithm is highlighted
in blue. The asterisk (*) indicates the statistical significance relative to the best algorithm [119].

Problems MMEA-HAD NxEMMO DNEA NSGA-II-CDws NSGA-II

MMF1 (2,2) 16.9617 (1.2649) 14.632* (2.8334) 16.2399* (1.7222) 13.5223* (1.1236) 8.4532* (1.7456)

MMF1z (2,2) 21.2536 (4.6165) 18.1833* (4.5993) 21.3127 (3.7551) 16.2743* (3.4372) 8.1724* (1.5981)

MMF2 (2,2) 13.6626 (8.322) 10.7635* (5.6645) 11.2419 (6.687) 13.2636 (8.692) 9.9459 (7.8377)

MMF3 (2,2) 15.2512 (8.8569) 11.3401 (10.1311) 15.3887 (8.5256) 11.4225 (14.095) 12.4462 (9.9079)

MMF4 (2,2) 30.1475 (1.728) 28.6876* (2.5845) 29.5983 (2.3712) 18.4703* (3.5828) 9.1544* (3.1222)

MMF5 (2,2) 1.2524 (0.011468) 1.2386* (0.030162) 1.2288* (0.02723) 1.1609* (0.034616) 1.1292* (0.06761)

MMF6 (2,2) 11.4149 (0.63732) 10.3903* (1.2134) 11.2765 (1.0371) 8.3961* (0.68611) 4.9954* (1.6075)

MMF7 (2,2) 26.7459 (2.5599) 26.5611* (3.6799) 29.0313 (5.1569) 23.93* (3.5717) 13.775* (4.1412)

MMF8 (2,2) 7.0477 (2.6601) 3.5652* (1.5098) 6.1924 (4.2528) 4.804* (2.9008) 1.0041* (0.39043)

MMF9 (2,2) 121.1216* (6.025) 132.6703 (7.5858) 81.3375* (15.4764) 40.368* (46.8601) 10.7495* (34.3256)

Omni-test (2,2) 28.3315* (1.2741) 28.4204* (2.151) 32.689 (2.1142) 14.5811* (6.0094) 3.4256* (8.4479)

SYM-PART (2,2) 14.4054* (1.2994) 15.4253* (1.4269) 16.3943 (1.2325) 0.44329* (0.66802) 0.15392* (0.14778)

Polygon (6,2) 5.654 * (0.16177) 6.3247 * (0.13203) 6.5461 (0.14536) 4.5685 * (0.41006) 4.4309 * (0.31134)

Polygon (6,4) 1.527 (1.5023) 0.53428 * (1.4851) 0.51441 * (1.5042) 0.52719 * (1.2955) 0.42006 * (1.0601)

Polygon (6,6) 0.10114 (0.07837) 0.044371 * (0.074686) 0.042089 * (0.061189) 0.044769 (0.069666) 0.043487 * (0.066217)

Best/All 8/15 1/15 6/15 0/15 0/15

Wins/Losses/Ties – 1/11/3 4/4/7 0/12/3 0/13/2

in objective space, which improves the distribution of solutions in objective
space.

To illustrate the performance of IGDx over generations, we show an example
of the median run of the competitor algorithms for four test problems in
Figure 5.10. We observe that NSGA-II loses its approach to PS in the later
generations (at the end of optimization), demonstrating that non-tailored EMO
Algorithms for MMOPs cannot deal with such problems. From a comparison
of the MMEA-HAD algorithm with the DNEA algorithm, it is evident that
the DNEA algorithm shows more fluctuation at the beginning, while the
proposed algorithm maintains a steady behavior over the entire optimization
procedure. As shown, the DNEA algorithm obtained a better result at the
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Table 5.6: A comparison of the IGD+ values obtained via different algorithms. In (m,n), the size of
the decision variable n and the number of objectives m are given. The best algorithm is highlighted
in blue. The asterisk (*) indicates the statistical significance relative to the best algorithm [119].

Problems MMEA-HAD NxEMMO DNEA NSGA-II-CDws NSGA-II

MMF1 (2,2) 0.004699* (0.000363) 0.004407* (0.000192) 0.003128 (0.000178) 0.003693* (0.000266) 0.0039* (0.000136)

MMF1z (2,2) 0.004255* (0.000481) 0.004409* (0.000496) 0.003067 (0.000149) 0.003767* (0.000206) 0.003841* (0.000304)

MMF2 (2,2) 0.012611 (0.010245) 0.013729 (0.00909) 0.016721 (0.00882) 0.014602 (0.007049) 0.013448 (0.015575)

MMF3 (2,2) 0.010452 (0.010993) 0.011404 (0.005682) 0.011528* (0.004805) 0.009442 (0.005035) 0.009451 (0.007619)

MMF4 (2,2) 0.004711* (0.000476) 0.004546* (0.000452) 0.003054 (0.000237) 0.003513* (0.000244) 0.00347* (0.000179)

MMF5 (2,2) 0.008984* (0.001674) 0.009195* (0.000985) 0.006835 (0.00037) 0.007854* (0.001077) 0.008859* (0.00101)

MMF6 (2,2) 0.004635* (0.000623) 0.004868* (0.000527) 0.003123 (0.000172) 0.003773* (0.000238) 0.003975* (0.00029)

MMF7 (2,2) 0.005672* (0.000535) 0.004802* (0.000363) 0.003352 (0.000185) 0.003844* (0.000252) 0.003858* (0.000161)

MMF8 (2,2) 0.071423* (0.000277) 0.071495* (0.000205) 0.070858 (0.000127) 0.070937* (9e-05) 0.070967* (0.000126)

MMF9 (2,2) 0.006519* (0.000393) 0.005995 (0.000403) 0.006994* (0.000844) 0.006378* (0.000423) 0.006528* (0.000437)

Omni-test (2,2) 1.0018* (0.000384) 1.0017* (0.000348) 1.0009 (0.000216) 1.0009 (0.000139) 1.0009* (0.000309)

SYM-PART (2,2) 0.013816* (0.001603) 0.013407* (0.001858) 0.008298 (0.000218) 0.008747* (0.000575) 0.009031* (0.000653)

Polygon (6,2) 0.12473 * (0.00764) 0.10741 * (0.003583) 0.085192 (0.002205) 0.12592 * (0.009252) 0.12242 * (0.012047)

Polygon (6,4) 0.26578 * (0.027928) 0.224 * (0.019196) 0.1908 (0.009455) 0.2455 * (0.016005) 0.24559 * (0.026836)

Polygon (6,6) 0.411 * (0.040505) 0.36919 * (0.037701) 0.30212 (0.021663) 0.36442 * (0.02947) 0.37658 * (0.03799)

Best/All 1/15 1/15 12/15 1/15 0/15

Wins/Losses/Ties – 4/2/9 11/2/2 8/3/4 8/2/5

end of optimization for the MMF7 test problem. In summary, the proposed
approach has a very smooth convergence and delivers similar or even better
results than the other approaches.

5.3 Summary

In this chapter, we have classified the selection operations of Pareto-based
MMOEAs into two distinct categories: inter-front and intra-front selection. To
make our comparisons, we have considered both the proposed algorithms and
other state-of-the-art algorithms that belong to the same categories. Through
extensive experiments, we have observed that the proposed inter-front selection
method outperforms algorithms utilizing alternative selection approaches.
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Figure 5.10: Comparison of the IGDx values for the median run over the generations for MMF1
(top), MMF5 (second from top), MMF7 (third from top), Omni (bottom) test problems [119].

To assess the scalability of the proposed algorithms, we have evaluated them
across a range of test problems with varying levels of complexity, particularly
those with higher decision and objective space dimensions. Based on our
findings, the NxEMMO algorithm, in conjunction with the proposed selection
mechanism, consistently generates more diverse solutions in the search space
compared to other competitive algorithms.
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Chapter 6

Conclusions and perspectives

In this chapter, we offer a concise overview of the outcomes derived from
this thesis and draw conclusive remarks concerning the research objectives
outlined in Chapter 1. Additionally, we outline a number of promising avenues
for future research in the field of multi-modal and multi-objective optimization
problems.

This thesis focuses on metaheuristic optimization of multi-modal, multi-
objective problems. Chapter 2 introduced fundamental concepts such as
the formal definition of multi-objective problems, evolutionary algorithms,
multi-modality, and Pareto optimality. Additionally, the benchmark problem
characteristics and performance indicators used for algorithm comparison in
this thesis were presented. Furthermore, the chapter discusses the general
experimental settings employed. Chapter 3 reviewed the state-of-the-art litera-
ture in multi-objective optimization algorithms, including both single-objective
and multi-modal multi-objective optimization problems. The chapter focused
on algorithms specifically designed to solve multi-modal, multi-objective opti-
mization problems involving multiple global optimal solutions. Additionally,
algorithms used to address the second category of these problems were also
covered.

Chapters 4 and 5 presented new contributions to this thesis. The proposed
approaches to dealing with MMOPs enhance existing algorithms by combining
two types of strategies. The first approach enables deeper exploration of the
search space by modifying tournament selection, reproduction, and mutation
operators to identify multiple distinct solutions simultaneously. Furthermore,
two categories of environmental selection procedures are introduced, tailored
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to MMOPs involving multiple global Pareto sets and those requiring both
local and global Pareto sets. Experimental evaluations compare the proposed
methods with prominent related algorithms, demonstrating their superior
efficiency and effectiveness in exploring and preserving diverse solutions in the
search space across various MMOPs. Chapter 5 introduces a new classification
of selection operations in Pareto-based MMOEAs, distinguishing between inter-
front and intra-front selection. The performance of the proposed algorithms
in these categories is compared with other state-of-the-art algorithms.

6.1 Research objectives

The thesis concludes here with a summary of the research objectives and the
results obtained for each objective.

Objective 1: Develop methods and approaches to address Type I
MMOPs

The primary objective of this thesis was to propose strategies for solving
multi-modal, multi-objective problems with multiple global Pareto sets (PSs).
To achieve this, existing methodologies and search strategies were studied,
modified, and applied specifically to MMOPs of type I. A key research question
addressed in this context pertains to the development of methods to guide
the population toward exploring diverse regions of the search space to avoid
premature convergence and local optima. A significant portion of this thesis
focused on addressing the challenge posed by traditional selection operators in
MOEAs, which tend to remove diverse solutions located in crowded regions of
the objective space to enhance the distribution of optimal solutions obtained
over the approximated Pareto front. To overcome this challenge, novel selection
operators were developed to better assess the similarity between solutions and
ensure the survival of solutions from distinct regions of the search space that
may be close to the objective space. Balancing the diversity of solutions in
both the decision and objective spaces is a complex task in MMOPs because
improving the distribution of solutions in the search space can negatively
impact the distribution of solutions in the objective space, and vice versa. To
address this trade-off, a method was developed to measure density in both
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the search space and objective space, allowing for a balanced consideration of
the divergence of solutions in both spaces.

The performance of the proposed methods was comprehensively evaluated
by comparing them with recent and well-known algorithms discussed in the
chapter. Several multi-modal, multi-objective optimization problems with
varying complexities and decision space dimensions were employed to assess the
capabilities and practicality of the proposed algorithms. The results obtained
from type I MMOPs clearly demonstrated the exceptional performance of the
proposed approaches in terms of efficiency and effectiveness, surpassing state-
of-the-art algorithms in terms of their ability to explore and preserve diverse
solutions within the search space. These findings highlight the excellence of the
proposed algorithms and their potential to advance the field of multi-modal,
multi-objective optimization.

Objective 2: Develop methods and algorithms to solve Type II
MMOPs.

The second objective of this thesis focused on developing approaches to address
multi-modal, multi-objective optimization problems that involve the presence
of both global and local optima. To achieve this objective, we proposed an
algorithm specifically designed to handle such problems. In the proposed
algorithm, the population was divided into multiple subpopulations using
various clustering techniques, and selection methods were applied to each
niche individually. The proposed algorithm integrates a clustering method
in the search space to retain local Pareto-optimal solutions. By organizing
non-dominated solutions into clusters, the algorithm effectively maintains
the local optima while simultaneously searching for global Pareto-optimal
solutions throughout the evolutionary process. The incorporation of a density
measurement technique facilitates guidance for the optimizer in exploring the
search space, resulting in enhanced preservation of local optima.

Objective 3: Classification of the selection mechanisms in Pareto-
dominance based MMOEAs
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This thesis addresses the absence of a systematic classification of algorithms
based on selection operators, which play a crucial role in multi-modal, multi-
objective evolutionary algorithms. We identify several limitations of crowding
distance methods, particularly their inaccurate density estimations for neigh-
boring solutions within the search space. To rectify these shortcomings, we
propose a novel classification for the selection operations of Pareto-based
MMOEAs based on how nearby solutions from current or previous fronts are
considered when estimating the density of the solution’s neighborhood area. To
mitigate the deficiencies of existing crowding methods, we introduce two classi-
fications: inter-front and intra-front selection operators, each characterized by
distinct selection mechanisms. The evaluation of the proposed algorithms on
diverse test problems, including those with higher decision and objective space
dimensions, provided insights into their scalability. The results demonstrate
that, in most cases, the proposed algorithm—which belongs to the category
of inter-front operators and considers neighboring solutions from both the
current and previous fronts—achieves a higher level of solution diversity in
the search space compared to other competitive algorithms.

Objective 4: Evaluation of the proposed algorithms

The proposed strategies were subjected to comprehensive testing, including
comparisons with various state-of-the-art algorithms from the literature as well
as among themselves, within the context of this research objective. Performance
evaluations involve the utilization of different test functions from the literature,
varying in complexity and number of decision variables. The algorithms were
assessed based on specific criteria, highlighting their strengths and weaknesses.
Performance measurements such as diversity and convergence in both the
search space and the objective space were employed to facilitate the comparison
of the different methods. Furthermore, the impact of population size on the
diversity and convergence speed of the obtained solutions toward the PS and
PF was investigated.
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6.2 perspectives

The research presented in this thesis represents a significant advancement in
the field of multi-modal, multi-objective optimization since its introduction in
2018. While there has been a notable surge in research interest in this domain,
particularly in recent years, several challenges persist in the field of multi-
modal optimization, offering exciting opportunities for future investigations.
Here, we outline several promising areas for further research.

• One crucial future research direction in the field is the development of
performance indicators that enable the precise evaluation of algorithm
performance, especially for real-world multi-modal multi-objective op-
timization problems where knowledge about the location of the true
Pareto front is unavailable. Introducing reliable performance indicators
will provide researchers with more in-depth insights into algorithm perfor-
mance and enhance the evaluation process, leading to advancements in the
field of multi-modal multi-objective optimization. This research direction
holds great potential for improving our understanding and application of
algorithms in practical scenarios.

• In addition to evaluating the algorithm’s performance on large-scale
objective MMOPs, another interesting research area to explore is the
development of advanced selection mechanisms within the algorithm.
Specifically, investigating novel selection strategies that adaptively adjust
the selection pressure based on the characteristics of the problem and
the current population can lead to improved exploration and exploitation
capabilities. These adaptive selection mechanisms have the potential to
enhance the algorithm’s ability to maintain diversity, overcome premature
convergence, and discover a more comprehensive set of Pareto-optimal
solutions.

• Another promising direction for future work involves investigating inno-
vative selection strategies that dynamically adapt the selection pressure
according to the problem’s characteristics and the current population. By
incorporating such adaptive selection mechanisms, the algorithm can en-
hance its exploration and exploitation capabilities, resulting in improved
performance. These strategies have the potential to address challenges
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such as maintaining solution diversity, mitigating premature convergence,
and identifying a more extensive set of Pareto-optimal solutions. Exploring
these research areas contributes to advancing multi-modal, multi-objective
optimization algorithms, making them more effective in tackling complex
real-world optimization problems.

• Another potential future direction is the development of comprehensive
benchmark functions tailored specifically for evaluating the performance
of multi-modal optimization algorithms. These benchmark functions play
a crucial role in facilitating fair and standardized comparisons among dif-
ferent approaches. To ensure their effectiveness, these benchmarks should
encompass a diverse range of challenging characteristics, including varying
modalities, nonlinearity, and high-dimensionality. Such comprehensive
benchmark functions will provide a valuable resource for researchers to as-
sess and compare the performance of multi-modal optimization algorithms
accurately.

• Another important future direction is the application of multi-modal op-
timization techniques to address complex real-world problems in various
domains. By employing these techniques in practical contexts such as
engineering design, or path finding problems, researchers can showcase the
practical value and effectiveness of multi-modal optimization approaches.
Investigating the applicability and performance of multi-modal optimiza-
tion algorithms across diverse application domains will provide valuable
insights and contribute to the advancement of real-world problem-solving
capabilities. This avenue of research will bridge the gap between theo-
retical advancements and practical applications, ultimately leading to
the development of more robust and efficient solutions for real-world
challenges.

By focusing on these promising research directions, we can further advance the
field of multi-modal, multi-objective optimization and address the remaining
challenges, ultimately leading to more effective and efficient solutions for
complex optimization problems.
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Diversity-indicator based multi-objective evolutionary algorithm: Di-
moea. In International Conference on Evolutionary Multi-Criterion
Optimization, pages 346–358. Springer, 2019. (page 37)

[105] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary
algorithm based on decomposition. IEEE Transactions on evolutionary
computation, 11(6):712–731, 2007. (page 37)

[106] Ryoji Tanabe and Hisao Ishibuchi. A decomposition-based evolutionary
algorithm for multi-modal multi-objective optimization. In Parallel
Problem Solving from Nature–PPSN XV: 15th International Conference,
Coimbra, Portugal, September 8–12, 2018, Proceedings, Part I 15, pages
249–261. Springer, 2018. (page 38)

[107] Ryoji Tanabe and Hisao Ishibuchi. A Framework to Handle Multi-modal
Multi-objective Optimization in Decomposition-based Evolutionary Al-

145



Bibliography

gorithms. IEEE Transactions on Evolutionary Computation, pages 1–1,
2019. (page 39)

[108] Mario Inostroza-ponta and Manuel Villalobos-cid. A multimodal multi-
objective optimisation approach to deal with the phylogenetic inference
problem. 2020. (page 40)

[109] Xiaodong Li. Niching without niching parameters: Particle swarm
optimization using a ring topology. IEEE Transactions on Evolutionary
Computation, 14(1):150–169, 2010. (page 42)

[110] Jing Liang, Qianqian Guo, Caitong Yue, Boyang Qu, and Kunjie Yu. A
self-organizing multi-objective particle swarm optimization algorithm for
multimodal multi-objective problems. In Advances in Swarm Intelligence:
9th International Conference, ICSI 2018, Shanghai, China, June 17-22,
2018, Proceedings, Part I 9, pages 550–560. Springer, 2018. (page 42)

[111] Ofer M Shir, Mike Preuss, Boris Naujoks, and Michael Emmerich. En-
hancing decision space diversity in evolutionary multiobjective algo-
rithms. In Evolutionary Multi-Criterion Optimization: 5th International
Conference, EMO 2009, Nantes, France, April 7-10, 2009. Proceedings
5, pages 95–109. Springer, 2009. (page 42)

[112] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. Evolutionary Methods
for Design Optimization and Control with Applications to Industrial
Problems, pages 95–100, 2001. (page 42, 110)
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