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A B S T R A C T

The Free Energy Principle in neuroscience explains brain function
based on the minimization of Bayesian surprise. Under mathemati-
cal constrains on the underlying optimisation process, the FEP can
be used to derive a process theory that describes neuronal dynamics
as a hierarchy of descending local predictions and ascending predic-
tion errors that drives learning of an internal generative model of the
world. This inversion of a hierarchical generative model in the brain
is known as predictive coding (PC). Simultaneously, the minimization
of Bayesian surprise is a central objective for generative models in the
context of deep artificial neural networks (ANNs), such as the Vari-
ational Autoencoder (VAE). Deep generative models are trained on
high-dimensional inputs from large datasets using exact backpropa-
gation of errors to the parameters of the model. Such global and exact
optimisation is in contrast to the approximate, iterative and locally in-
formed learning in PC. Apart from similar computational objectives
it is still unclear how modelling constrains under the FEP, such as
locally optimised free energy or the use of error uncertainty relate to
deep generative models in terms of performance and comparability
to human brain function.

In this thesis, we aim at filling some of these gaps by designing
and evaluating ANN models under the constrains of the FEP and hy-
pothesize that such models implement canonical computations that
are present across scales in the human brain.

We contribute a dynamical PC model with a hierarchy of latent
representations that learns by predicting probabilistic sequences of
latent states using exact error backpropagation. We also contribute a
generalized PC model (GPC) that is designed from first principles un-
der the FEP. GPC replaces global backpropagation of error with local
optimisation, performs uncertainty estimation under the Laplace ap-
proximation and generates dynamical predictions local in time using
generalized coordinates of motion. We demonstrate that GPC scales
to complex sensory inputs and is comparable to VAEs in terms of
inference.

Next to evaluating unsupervised learning, we test and discuss pos-
sibilities to retrieve sensory processing related information in brain
activity using FEP based models. In this context, we evaluate the
possibility to learn shared representations of brain activity recorded
in electroencephalograms (EEG) and auditory stimuli using a multi-
view VAE architecture. We demonstrate the possibility to retrieve
temporal locations of evoked brain responses (ERPs) in EEG from
the error response of a PC model processing audio stimuli. We also
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demonstrate the possibility to predict EEG signals directly and dis-
cuss options to actively infer temporal ERP locations from EEG.

With our proposed methods we take a step towards performant,
yet biologically plausible, ANNs and provide means of explainability
through comparison to human brain function and model design from
first principles.
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Z U S A M M E N FA S S U N G

Das Free Energy Principle (FEP) in den Neurowissenschaften erklärt
Gehirnfunktion basierend auf der Minimierung von Überraschung
im bayesschen Sinne. Unter mathematischen Einschränkungen des
zugrunde liegenden Optimierungsprozesses kann das FEP verwen-
det werden, um eine Prozesstheorie abzuleiten, die neuronal Interak-
tionen als eine Hierarchie von absteigenden lokalen Vorhersagen und
aufsteigenden Vorhersagefehlern beschreibt, die zum Erlernen eines
internen generativen Modells der Welt dient.

Diese Invertierung eines hierarchischen generativen Modells im
Gehirn ist auch als Predictive Coding (PC) bekannt. Gleichzeitig
ist die Minimierung von bayesscher Überraschung ein zentrales Be-
rechnungsziel für generative Modelle im Zusammenhang mit tiefen
künstlichen neuronalen Netzen (KNNs), wie dem Variational Auto-
encoder (VAE). Tiefe generative Modelle werden mit komplexen Ein-
gaben aus großen Datensätzen trainiert und nutzen eine exakte Rück-
propagierung von Vorhersagefehlern zu Modellparametern.

Eine solche globale und exakte Optimierung steht im Kontrast zum
approximativen, iterativen und lokalen Lernen in PC Modellen. Ab-
gesehen vom ähnlichen globalen Ziel der Modelloptimierung ist noch
unklar, wie Modellierungsbeschränkungen unter dem FEP, wie zum
Beispiel lokal optimierte freie Energie oder die Verwendung von Feh-
lerunsicherheit, mit tiefen generativen Modellen in Bezug auf Leis-
tung und Vergleichbarkeit mit der menschlichen Gehirnfunktion zu-
sammenhängen.

In dieser Dissertation zielen wir darauf ab, einige dieser Lücken
zu schließen, indem wir KNNs unter den Einschränkungen des FEP
entwerfen, trainieren und evaluieren. Dabei gehen wir von der Hypo-
these aus, dass solche Modelle kanonische Berechnungen implemen-
tieren, die über verschiedenen Skalen verteilt auch im menschlichen
Gehirn vorhanden sind.

Wir stellen ein dynamisches PC Modell mit einer Hierarchie laten-
ter Repräsentationen vor, das lernt, indem es Sequenzen von proba-
bilistischen Zuständen unter Verwendung exakter Fehlerrückpropa-
gierung vorhersagt. Wir stellen weiterhin ein Generalized PC Mo-
dell (GPC) vor, das von Grund auf unter dem FEP entwickelt wur-
de. GPC ersetzt die globale Fehlerrückpropagierung durch lokale Op-
timierung, führt Unsicherheitsschätzung unter der Laplace Annähe-
rung durch und generiert strikt zeitlich lokale dynamische Vorhersa-
gen mithilfe von generalisierten Koordinaten. Wir zeigen, dass GPC
mit komplexen statischen und sequentiellen Informationen umgehen
kann und in Bezug auf Inferenz mit VAEs vergleichbar ist.
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Neben dem unüberwachten Lernen testen und diskutieren wir
Möglichkeiten, FEP-basierte Modelle im Sinne des Information Re-
trieval zum Auffinden von wahrnehmungsbezogener Informationen
im menschlichen Gehirn zu nutzen. In diesem Zusammenhang evalu-
ieren wir die Möglichkeit, gemeinsame Repräsentationen von mittels
Elektroenzephalografie (EEG) aufgezeichneter Gehirnaktivität und
auditiven Stimuli unter Verwendung einer Multi-View-VAE Architek-
tur zu lernen. Wir demonstrieren die Möglichkeit, zeitliche Positionen
von evoked potentials (ERPs), ereignisbezogene Potentialen im EEG,
aus der Fehlerantwort eines PC-Modells abzurufen, das Audiostimuli
verarbeitet. Wir demonstrieren weiterhin die Möglichkeit, EEG Signa-
le direkt vorherzusagen und diskutieren Möglichkeiten, die zeitliche
Position von ERPs aktiv aus EEG-Vorhersagefehlern abzuleiten.

Mit unseren vorgeschlagenen Methoden machen wir einen Schritt
in Richtung leistungsfähiger, aber biologisch plausibler KNNs und
bieten Mittel zur Erklärbarkeit durch den Vergleich mit menschlicher
Gehirnfunktion und der Modellentwicklung auf Basis fundamentaler
Prinzipien.
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1
I N T R O D U C T I O N

1.1 motivation and scope

The Free Energy Principle (FEP) in neuroscience provides a unifying
theoretical account of brain function [50, 52, 62]. At its core, it states
that the human brain, and self-organising systems more generally,
constantly minimize Bayesian surprise [50, 91].

As a principle, the FEP itself is not a theory and does not provide
empirically falsifiable claims per se [62]. When no further assump-
tions on the implementation are made, the FEP essentially describes
brain function as making exact Bayesian inference, in line with the
Bayesian brain hypothesis [62].

The FEP, however, can be used to derive specific process theories
when assumptions are made regarding the structure of the underly-
ing probabilistic model and optimization scheme [62]. Such process
theories specify concrete and testable process models, that allow to
falsify theoretical claims using empirical experimentation. A partic-
ular influential instantiation of the FEP is predictive coding (PC). PC

rests on the assumption that the brain optimises, via gradient descent
on prediction errors, a hierarchically structured generative model
that encodes factorized and Gaussian distributions, typically using
a mean-field and Laplace approximation [49, 51, 172]. This effectively
turns exact perception as Bayesian inference into approximate infer-
ence based on the optimisation of variational free energy. Such free
energy minimisation is a candidate for canonical computations in the
brain, as the same set of computations is hypothesized to be repeated
across brain regions, across scales and between different modalities
[11, 79]. In this context, free energy minimisation via PC has gener-
ated large quantities of empirical evidence, especially in the context
of a mapping onto canonical cortical microcircuits in the brain [5, 11,
146, 193, 215].

current models and their limitations Variational free en-
ergy can be interpreted as the negative of the evidence lower bound
(ELBO), which is a common objective function for many generative
models in machine learning [12, 104]. As such, the central objective
underlying perceptual inference in the FEP, the variational free energy,
is already a central component of many highly influential deep learn-
ing models that perform variational inference on static observations,
maybe most prominently the variational autoencoder (VAE) [104] or
deep recurrent latent variable models that infer sequential data [20].
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These high performing models resort to deep neural networks (DNNs)
trained via backpropagation of a global error signal. Backpropagation
involves computing the gradient of the chosen objective function with
respect to the optimised weights using the chain rule [177]. While
DNNs per se are inspired by biological neurons and neural connectiv-
ity, the biological plausibility of training multi-layer networks using
globally informed and exact error signals is highly debated [25, 120,
174]. Nevertheless, the computational goal in generative DNN based
models, such as VAEs, and more directly biologically plausible pro-
cess models, like PC, is directly comparable [128]. When searching
for canonical patterns of computation that relate process models to
brain function, it can be useful to separate the computational objec-
tive (minimizing free energy) from the algorithmical or implementa-
tional details and analyse their mutual influence, in spirit of Marr’s
levels of analysis [130]. This thesis focuses on the interplay between
algorithmic constrains posed on predictive coding networks (PCNs)
under the FEP and their influence on the overall computation in DNNs

as well as the mapping to human brain signals.
Research on process models under the FEP is a highly active field

in neuroscience, where elaborate and biologically plausible models,
such as generalized predictive coding, have been developed that de-
scribe learning in hierarchical-dynamical architectures [11, 51]. Such
models in neuroscience often, however, are evaluated on data with
relatively low complexity. Influential process models, such as hierar-
chical PC do not directly scale to machine learning applications, such
as unsupervised learning from complex image or video observations
[139]. In contrast, their DNN based counterparts in machine learning,
e.g. Contrastive Predictive Coding (CPC) or PredNet, are often only
loosely inspired by computational or algorithmic aspects of process
models in neuroscience [84, 124, 139, 156]. Often times, this results in
architectures that are difficult to interpret with respect to their role as
a model of canonical computations in the brain. Only little research
has focused explicitly on developing process models derived from
the FEP that scale to tasks usually approached with DNNs and error
backpropagation, such as gradient-based predictive coding [208, 225].
These models are still substantially less elaborate than process models
in neuroscience, and still have to scale to complex sequential or spatio-
temporal inputs, like audio or video. Similarly, they often still lack
aspects of uncertainty estimation and hierarchical-dynamical abstrac-
tion, which are central components of the respective process models
in neuroscience.

In this thesis, we aim at filling some of these gaps between free
energy optimization in neuroscientific and machine learning models
by designing and evaluating ANN models under the constrains of
the FEP. The design and evaluation of the proposed models is based
on the following hypotheses that underlie the presented research:
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1.1 motivation and scope

Research hypotheses

1. PC, and in particular Generalized PC under the FEP, is
a candidate canonical computational mechanism for self-
organization in brains and machines

2. Biological and artificial PCNs can be directly related with
respect to their functional architecture and prediction er-
ror responses during inference

3. Biologically plausible PCNs in machine learning can pro-
cess complex signals to enable information retrieval from
sensory, brain and cross-modal data

1.1.1 Research aims and contributions

Based on aforementioned general assumptions, we focus on the fol-
lowing core research aims:

Research aims

1. Design and evaluate DNN based PCNs with coherence to
the Free Energy Principle

2. Characterize PCN responses in comparison to human
brain activity and human annotation of sensory data

3. Design PCNs with local learning rules and evaluate their
performance on unsupervised representation learning
and in relation to DNNs with exact backpropagation of
errors

In this context, we introduce novel PCN models and perform quali-
tative and quantitative evaluation from several perspectives:

1. We contribute a dynamical deep PC model with a hierarchy of
latent representations that learns by predicting probabilistic se-
quences of latent states using exact error backpropagation.

2. We test and discuss possibilities to retrieve sensory processing
related information in brain activity using FEP based models. In
this context, we evaluate the possibility to learn shared repre-
sentations of brain activity recorded in electroencephalograms
and auditory stimuli using a multi-view VAE architecture.

3. We investigate the possibility to retrieve temporal locations of
evoked brain responses in EEG from the error response of the
proposed dynamical deep PC model in the context of audio stim-
ulus processing.
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4. We further demonstrate the possibility to predict EEG signals di-
rectly using the proposed model and discuss options to actively
infer temporal evoked response locations from EEG.

5. We contribute a generalized PC model that is designed from
first principles under the FEP. The model uses locally informed
error optimisation, performs uncertainty estimation under the
Laplace approximation and generates dynamical predictions lo-
cal in time using generalized coordinates of motion. We demon-
strate that GPC scales to complex sensory inputs and is compa-
rable to VAEs in terms of inference.

1.1.2 Thesis structure

thesis is structured into eight chapters that cover context, proposed
models, conducted experiments and discussion of empirical results:

• Chapter 2 discusses the context and fundamental mathematical
background for this thesis.

• Chapter 3 presents a VAE based architecture for shared represen-
tation learning from electroencephalogram (EEG) and auditory
data.

• Chapter 4 analyses and reviews PredNet, a popular DNN model
that considers ideas from predictive coding.

• Chapter 5 introduces a hierarchical deep PC network that learns
by predicting probabilistic sequences of latent states and covers
its application to information retrieval from EEG data.

• Chapter 6 presents and evaluates a variant of gradient-based PC

with local learning rules for the prediction of audio.

• Chapter 7 presents a generalized PC network and evaluates the
performance and scalability of a biologically plausible imple-
mentation of the FEP.

• Chapter 8 recapitulates the contributions of thesis and discusses
limitations and potential future research directions.
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2
P R E L I M I N A R I E S

The following sections will briefly introduce the Bayesian brain hy-
pothesis and compare its central claims about perceptual processing
with those posed by the FEP. After clarifying the overall computa-
tional objectives, this chapter covers the mathematical preliminaries
for describing PC models under the FEP, including variational infer-
ence, the mean-field and the Laplace approximation. Finally, we will
relate PC models to PC inspired deep neural networks and cover possi-
bilities to relate FEP based models to electroencephalographic record-
ings of brain signals.

2.1 free energy principle and predictive coding

2.1.1 The Bayesian brain hypothesis

From a high-level perspective, the FEP can be related to the Bayesian
brain hypothesis [38, 91, 106]. In particular, without specific assump-
tions on the structure and type of optimisation proces of the underly-
ing generative model, the FEP is even equivalent to the Bayesian brain
hypothesis [62].

The Bayesian brain hypothesis makes several fundamental claims
about brain function: Firstly, it claims that the brain maintains an in-
ternal, generative model of the world that specifies how observations
are generated. Typically, such a generative model explains sensations
stemming from the physical environment of the agent, including the
behavior of intelligent agents, but can cover internal, bodily, sensa-
tions as well [15, 188]. In this context it is important to note that
the Bayesian brain hypothesis does not make claims about the exact
type of encoding of this generative model, or whether the generative
model is even explicitly encoded at all. Instead, the central claim is
that the brain operates “as if” it had an internal model [62].

Secondly, following the Bayesian brain hypothesis, the internal gen-
erative model can be structured into two types of variables that model
unobservable “hidden” states and observable sensory states respec-
tively. Hidden variables v have a prior distribution p(v) that can be
drawn from. For example, a concrete hidden state might refer to the
size of an object and its prior distribution p(v) could cover a range
of possible sizes. The second type of variable, sensory observations
o are drawn from a distribution of observations that is conditional
on this hidden state p(o|v). This means that the internal generative
model is equipped with the capacity to express a specific hypothesis
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about a hidden state p(v) and to map it to concrete sensory observa-
tions o that are possible given this hypothesis. This allows to compute
the likelihood of the observation under the current hypothesis, i.e. a
quantification of how likely it is to encounter a specific observation
under the assumption that a chosen hypothesis is correct [91]. Typi-
cally, the mapping between hidden and observed state is assumed to
be complex, noisy or even ambiguous, such that multiple hypotheses
could explain the same observation [62, 91]. Following Bayes’ rule,
the posterior distribution p(v | o) of a specific hypothesis given an
observation can be computed by inverting the structure of the gener-
ative model:

p(v | o) =
p(o | v)p(v)

p(o)
(1)

which depends on the hidden state prior distribution p(v), the con-
ditional distribution of observations given hidden states p(o|v) and
the marginal likelihood of observations p(o) =

∑
v p(o | v)p(v). If con-

tinuous states are inferred, summation turns into integration. Thus in
perception, under the Bayesian brain hypothesis, the brain updates
beliefs in its hypotheses based on the inference of posterior distribu-
tions (after observing new data) given their prior distributions (before
observing new data) using Bayes’ rule [91].

Such belief updates require new data, i.e. observations, to be ac-
quired. Depending on the complexity of modelled agent, new data
from the environment can be treated as strictly passively observed or
influenced by the agent’s own actions a, or sequences of actions π. In
some models, new data might also be generated entirely internally,
e.g. during imagination or sleep [57].

2.1.2 Bayesian surprise

Focusing on passive perception, we can now talk about a "surprise"
about newly encountered sensory observations o in the Bayesian
sense: A new observation brings Bayesian surprise when the poste-
rior distribution after the observation is different to the prior [91]. The
quantity of surprise, the distance between prior and posterior distri-
bution, is often expressed using the Kullback-Leibler (KL) divergence
that measures the relative entropy between the distributions:

DKL(p(v | o)∥p(v)) =
∑
v

p(v | o) log
p(v | o)

p(v)
dv (2)

This thesis is concerned primarily with modelling passive percep-
tion, in the absence of explicit actions or policies over actions. How-
ever, for the sake of of completeness, we briefly talk about the role
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of active intervention on Bayesian surprise. When actions and poli-
cies π (referring to sequences over actions) are considered, Bayesian
surprise is equivalent to the information gain I(π) from following a
particular policy:

I(π) =
∑
o

p(o | π)DKL(p(v | o,π)∥p(v | π)) (3)

where the KL divergence DKL(p(v | o,π)∥p(v | π)) now measures
the divergence of the posterior distribution after following a policy
from the prior distribution before taking any action [62]. The mutual
influence between the expected surprise of observations encountered
in the future when following a policy and and the minimization of
long-term surprise in perception is the starting point for various mod-
els in Bayesian decision theory. A prominent example is information
gain maximization that treats the utility of a possible policy π simply
as equivalent to the information gain I(π). Finally, expected observa-
tions under a particular policy can be modelled as leading to positive
or negative rewards, such that the expected utility becomes a func-
tion that combines exploitation, i.e. taking actions that lead to reward,
with exploration, i.e. taking actions that maximise information gain
[23, 200].

2.1.3 Free Energy Principle and variational inference

The central statement of the FEP with respect to self organising sys-
tems is:

The Free Energy Principle and self-organisation

The Free Energy Principle states that self-organising systems
minimize a quantity called free energy when they are at an
equilibrium with their environment [50, 105].

Biological agents (or the brain in particular) are embedded in an en-
vironment that constantly changes, but only have a limited set of inter-
nal states. This implies that agents must avoid (the long-term average
of) surprise about the external in order to maintain the stability of their
internal states. From the perspective of the brain, the external consists
of the human body as well as the physical environment. As we will
discuss in this section, the free energy is an upper bound on surprise
and is computed with respect to those quantities that the agent can
control, namely its internal states and the actions it generates. The in-
fluence of the internal on the external is mediated via actions, while
sensations depend only on the external and drive changes of the in-
ternal representations in order to provide better explanations. Figure
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1 schematically displays these structural dependencies between the
brain and its environment.

External Internal

Sensory

Active

Figure 1: Structural dependencies that separate the internal states of the
brain from the external environment under the FEP. Internal states
are in exchange with the environment through action and sensa-
tions. Internal (brain) states and action minimize free energy, which
is a function of sensory observations and the represented genera-
tive model that explains the causes of observations.

A Markov blanket describes such separation of internal and exter-
nal states in a self-organising system in the statistical sense. More pre-
cisely, the active and sensory states that separate the internal from the
external are referred to as the Markov blanket or the blanket states.
Biological organisms, such as the brain, self-organise at various levels.
This Markov blanket structure can thus be applied at different levels,
for example at the level of cortical microcircuits, or even at the level
of individual neurons [79]. Section 2.1.7.2 provides more details on
Markov blankets in the brain.

For passive perception without additional assumptions on the
structure of the underlying generative model, the central claims of
the FEP are equivalent to those of the Bayesian brain hypothesis [62].
A crucial conceptual difference is that the FEP treats inference as a pro-
cess of optimisation, where an additionally introduced distribution
q approximates the posterior distribution p(v|o) of the hidden states
[14, 50, 51]. Computing an approximation is desirable here, since in
real-world problems, such as perception of natural scenes, the exact
posterior is generally very expensive or intractable to compute.

The resulting optimisation problem can be noted as:

q∗(v) = argmin
q(v)

DKL(q(v)∥p(v | o))

= argmin
q(v)

∑
v

q(v) log
q(v)

p(v | o)

(4)

where the optimal approximate posterior q∗(v) minimizes the dis-
tance between approximate posterior q(v) and the true posterior
p(v|o) of the hidden states. Intuitively, if the true posterior is con-
tained in the variational family of the approximating distributions,
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p(v | o) ∈ Q, then the approximation is exact, and the predictions of
the FEP reduce to those of exact Bayesian inference.

The FEP proceeds by expressing this optimisation problem in a form
that does not depend directly on the exact posterior p(v | o), which is
typically not known. The core idea is to reformulate the optimisation
problem by unpacking the KL divergence between variational and
true posterior:

DKL(q(v)∥p(v | o)) =
∑
v

q(v) log
q(v)

p(z | o)

=
∑
v

q(v)(logq(v) − logp(z | o))

=
∑
v

q(v)

(
logq(v) − log

p(o, v)
p(o)

)
= logp(o) +

∑
v

q(v)(logq(v) − logp(o, v))

= logp(o) +
∑
v

q(v) log
q(v)

p(o, v)

= logp(o) + F(o, v)

(5)

and noting the following relationship between the marginal likeli-
hood p(o) and the KL divergence:

logp(o) = DKL(q(v)∥p(v | o)) − F(q(v)) (6)

where F(o, v) is the variational free energy (VFE), also known as the
negative of the generative model’s evidence lower bound, the ELBO

[12, 104]

F(o, v) =
∑
v

q(v) log
q(v)

p(o, v)
(7)

which depends only on the approximate hidden state distribution
q(v) and the joint distribution of observations and approximate hid-
den states p(o, v), both of which are accessible. Here, the marginal
likelihood p(o), or model evidence, is the probability of generating
the observation o with the prior of the learned internal generative
model, after integration over parameters.

Crucially, since the KL divergence in equation 6 is always positive,
the surprise logp(o) from observations o is always bound by the VFE:

F(o, v)︸ ︷︷ ︸
free energy

= DKL(q(v)∥p(v|o))︸ ︷︷ ︸
KL divergence

−log(p(o))︸ ︷︷ ︸
surprise

>= −log(p(o))︸ ︷︷ ︸
surprise

(8)
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This means that, under the FEP, we can characterize surprise min-
imization with the minimization of free energy with respect to the
currently observed input.

Another useful decomposition of the VFE separates it into and ac-
curacy and a complexity term:

F(o, v)︸ ︷︷ ︸
free energy

= DKL(q(v)∥p(v))︸ ︷︷ ︸
complexity

−Eq(logp(o | v))︸ ︷︷ ︸
accuracy

(9)

This drives the optimization process towards accurate predictions
of encountered observations o while keeping the complexity, or di-
vergence between approximate posterior and its prior distribution as
small as possible.

2.1.4 Gaussian states and mean-field approximations

In the previous sections, we have seen how the FEP turns Bayesian in-
ference into a process of optimisation by choosing a parametric family
of probability distributions Q for the approximate distribution. If the
variational family is unrestricted, i.e. contains the exact posterior, then
inference is exact. The following sections will talk about PC models,
that restrict the variational family using a mean-field approximation
and often resort to the Laplace approximation to infer states and pa-
rameters of the model. We will also cover generalized coordinates of
state motion, which allow to express not only the states themselves
but also their (expected) motion. In contrast to unrestricted Bayesian
inference, PC models make specific and testable predictions about the
underlying algorithmic and implementational structure.

The mean field approximation for hidden states simplifies the struc-
ture of the approximate posterior by assuming that it factorizes over
components of the hidden state space:

q (v1, · · · , vm) =

m∏
i=1

q (vi) (10)

This implies that no interactions between the Gaussian random
variables are allowed, i.e. they are modelled as independent parts
[163]. This sort of simplification will typically not contain the true
posterior when latent variables are mutually dependent.

An approximation that is often made for PC models is to model
continuous distributions q(v) with a Gaussian form, such that the
variational distribution is parameterized by a mean µ and a covari-
ance Σ parameter [51, 54]:

q(v) = N(v;µ,Σ) (11)

10



2.1 free energy principle and predictive coding

In many cases the structure of the generative model is organized
hierarchically, i.e. contains several layers of hidden states, where each
hidden state is generated as a function of the next higher hidden state.
In this hierarchical case, a factorization of the variational posterior can
be made not only across the components of a hidden state, but also
over the hierarchical levels of the entire model [49, 51]. For N layers,
the corresponding hierarchical generative model has the form

q(v) =

N∏
l=1

q (vl | vi+l) =

N∏
l

q (vl;µl,Σl | vl+1;µl+1,Σl+1) (12)

and models each hierarchical layer as only dependent on the re-
spective higher layer. Again, we assumed the hidden states to be
modelled as multivariate Gaussians, parameterized by mean and co-
variance. This hierarchical structure is the basis for hierarchical PC

models, which infer optimal hierarchical states from sensory observa-
tions using locally interacting layers.

Even more generally, another mean-field approximation that is typ-
ically assumed more implicitly in many process models is to model
the effects of model parameters in terms of timescales as independent.
A particularly prominent approach is to divide model parameters λ

into three sets λ = λu, λγ, λθ that model rapidly, slowly and very
slowly changing parameters [52]:

q(v) =

N∏
l=1

q (vl; λl) = q (vu; λu)q (vγ; λγ)q (vθ; λθ) (13)

Rapid changing parameters λu are typically compared to neuronal
activity in the brain, while the more slowly changing parameters
λγ resemble molecular signalling and neural modulation [52]. Fi-
nally, the very slowly changing parameters λθ are often related to
experience-based and long-term changes in neural connectivity [52].
This sort of mean-field approximation across parameter time-scales
is found in many neural process models under the FEP as well as in
machine learning models, such as in the separation between state in-
ference, attentional processing and weights learning with deep neural
networks.

2.1.5 The Laplace approximation

Next to the mean-field approximations over parameter structure and
their temporal scales, another important approximation for many PC

models is the Laplace approximation (LA). The LA is present in many
PC models in neuroscience that have explicitly been mapped to canon-
ical (cortical) microcircuits in the human brain [11, 51]. The core im-
plication of the Laplace approximation is that, assuming continuous
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Gaussian distributions, the covariance Σ of approximate hidden states
v is not directly inferred, but instead is a function of the mean.

Technically, this is based on a second-order Taylor series expansion
around the mode of the variational posterior, i.e. around a local max-
imum or peak of the probability density function. The conditional
covariance can then be approximated using the curvature of the free
energy, more specifically the negative Hessian of the log joint proba-
bility at the mode [54, 162, 170].

We first explicitly specify the previously introduced generative
model with respect to model parameters θ, that mediate the influence
of hidden variables v on observed variables o via their joint density
p(o, v | θ). In the context of artificial neural networks, θ often refers to
the learnable weights of the model. The free energy can be expressed
as

F(o, v, θ) =
∑
v

q(v) log
q(v)

p(o, v | θ)

= Eq(logq(v)) − Eq(logp(o, v | θ))

(14)

where the first term Eq(logq(v)) is the entropy that generally
is tractable. Again, we assume that hidden states v are Gaussian
with respect to mean and covariance parameters µ and Σ. The
Laplace approximation proceeds by approximating the second term
Eq(logp(o, v | θ)) using a second-order Taylor series expansion
around the mode of the variational posterior:

logp(o, v | θ) ≈ logp(o,µ∗ | θ) −
1

2
(v− µ∗)TH(v− µ∗) (15)

where first the variational posterior µ∗ = argmaxµ logp(o, v |

θ)|v=µ needs to be determined. The Hessian at the mode H =

−∇v∇v logp(o, v | θ)|v=µ∗ can then be determined by differentiating
the log joint probability twice. We can now express the approximat-
ing distribution q(v | o) = N(µ,Σ) = N(µ,H−1) as a function that
depends only on the mean parameter µ [162, 170].

2.1.6 Predictive coding under the Free Energy Principle

Previously, we introduced the idea that the brain optimizes an in-
ternal generative model whose organization is assumed to explain
how the observations that humans encounter in their environment
are generated. we have seen that specific assumptions about the struc-
ture of this internal generative model, such as Gaussian distributions
and a factorization over hierarchical layers can be made. With these
assumptions in place, we now can describe a specific process model
that optimises the parameters of this generative model. The process of
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empirically inferring model parameters from observations requires a
"inversion" of the hierarchical internal generative model and the inte-
gration of observations that arrive over time. For the approximations
discussed before, PC is such a process model. In PC, the optimisa-
tion of fast changing parameters, i.e. inference and slower changing
parameters, i.e. attention and learning is achieved via a simple algo-
rithmic scheme that is repeated for each hierarchical layer: Feedback
information from a respective higher hierarchical layer conveys pre-
dictions, while feedforward information is propagated back towards
the higher layer and carries prediction errors, i.e. the divergence be-
tween prediction and data [51, 172]. A core implication of such lo-
cally informed learning is that no global error signal is necessary.
This is in contrast to the backpropagation of error algorithm for deep
neural networks, that propagates errors from a global objective func-
tion back to all parameters of the model [177]. In particular, such
locally informed learning can be implemented in the context of bio-
logically plausible, Hebbian update rules, where the change applied
to a weight only depends on the activity of presynaptic and postsy-
naptic neurons. In the context of artificial neural networks, this means
that the weight update depends strictly on information that is locally
available to the optimized weight parameter, the activity at its in-
put and output [225]. It should be noted that PC models are not the
only possible process models that can be derived from the FEP [58].
Still, they are a prominent implementation of the FEP as they allow
a straightforward mapping onto biological structures, which is more
difficult for other variants, such as (marginal) belief propagation [11,
51].

The following sections will explain how hierarchical and dynamical
inference is achieved in PC. In order to introduce all relevant aspects,
we will focus on a general model described by [51]. Many existing PC

variants can be interpreted as a special case of such generalized PC.
For example, when predictions over time are excluded, we recover hi-
erarchical PC. In chapter 7 we compare hierarchical PC to VAEs in deep
learning, which have a similar computational goal, but use global
backpropagation of error [128]. Another special case of generalized
predictive coding (GPC) is dynamical PC (i.e. without hierarchical or-
ganisation), which generalizes from many popular models in engi-
neering, such as the Kalman filter or Linear Predictive Coding (LPC)
in signal processing [95, 158, 163]. Indeed, the PC theory has a its his-
torical roots in efficient signal processing and data compression [40,
158, 172]. In this thesis we will relate dynamical PC to recurrent neural
networks (RNNs) trained with exact error backpropagation through
time (BPTT). In particular, in chapter 5 we design and evaluate a RNN

based deep PC model that predicts sequences of probabilistic latent
states using BPTT. The model presented in chapter 7 is based strictly
on the temporal filtering described by GPC, i.e. does not require prop-
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agating exact errors sequentially through time. It is important to note
that these differences focus on the algorithmic level, i.e. the models
differ in how free energy is optimised.

2.1.6.1 Dynamical models and generalized coordinates

Predictive coding as a process model under the FEP rests on several
publications by Karl Friston and colleagues, which slightly differ in
the assumptions for the underlying optimisation process [49, 51, 52,
56]. Here, we focus on the general model discussed in [51], which
rests on the mean-field approximation and the Laplace approxima-
tion, which we have covered before.

In dynamical PC, inference with respect to sequentially arriving sen-
sory data o is achieved by defining a generative model that contains
model parameters θ and state variables. Crucially, the state variables
are now split up into hidden state variables x and cause state vari-
ables v, which model temporal and hierarchical dependencies respec-
tively:

y = g(x, v, θ) + z (16)

In analogy to the static generative models discussed previously, the
function y = g(x, v, θ) relates hypotheses from latent distributions
x, v to model responses y. We have intentionally used the variable y

instead of o, to stress that it resembles observations from the gener-
ative model that we want to infer. The (possibly nonlinear) function
g is parameterized by θ. Hypotheses about the temporal changes ẋ

of hidden states x are expressed via another (nonlinear) function f:
The variable z explicitly represents observation noise, i.e. noise in the
mapping from states to sensory predictions.

ẋ = f(x, v, θ) +w (17)

where w explicitly represents any noise that underlies the motion
of hidden states over time. The presence of the function f turns this
generative model into a dynamical generative model, since it models
changes over time with respect to hypotheses generated from x and
v.

During inference, this dynamical model can be used for sequen-
tial Bayesian filtering, i.e. the estimation of variables that evolve over
time using only the current and past observations. For many practi-
cal applications, like Kalman filtering, dynamical predictions of form
ẋ = f(x, v, θ) are already sufficient to process sequential observations.
In the general case, however, observed sequential information can be
highly complex, especially in the context of fast changing neural sig-
nals in the brain, and the noise underlying temporal changes might
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have strong (temporal) correlation. For these reasons, generalized PC

models suggest that the brain explicitly represents temporal changes
not only with respect to the motion ȯ = do

dt of observations, but also
with respect to higher order derivatives over time, i.e. with respect to
acceleration ö = do2

dt2
, jerk ...

o = do3

dt3
and so on [49, 51].

This idea is reflected in generalized PC by explicitly modelling a hi-
erarchy of dynamics. It uses a local linearity assumption, i.e. assumes
that observed changes in states are linear or smooth when looking at
very small time increments. The assumption of local linearity allows
to ignore higher order derivatives of the functions f and g [49]. This
assumption allows for "generalized" model responses ỹ = g̃(ṽ, x̃, θ)
that are expressed via "generalized coordinates" of state motion

y = g(x, v)

y′ = gxx
′ + gvv

′

y′′ = gxx
′′ + gvv

′′

...

(18)

where we now explicitly model states and instantaneous temporal
derivatives of their motion, e.g. x̃ = [x, x′, x′′, ...] for hidden states
and analogously for observations ỹ and cause states ṽ. It is important
to note that specifically the local trajectory of states, i.e. the motion
of the state at a particular point in time is modelled. In effect, the
observer equation ỹ = g̃(ṽ, x̃, θ) still refers to only a specific point in
time [51].

Similarly, the motion of hidden states is modelled as

ẋ = x′ = f(x, v)

ẋ′ = x′′ = fxx
′ + fvv

′

ẋ′′ = x′′′ = fxx
′′ + fvv

′′

...

(19)

where the generalized motion of the hidden state x̃ = f̃(ṽ, x̃, θ) is
generated using function f̃ = [f, f′, f′′, . . .]. This requires the function
f itself and the derivative with respect to its inputs. Equation 18 is
usually referred to as "observer equation" and equation 19 is referred
to as "state equation". Crucially, the cause states v act as control inputs
that perturb the dynamics of hidden states x, allowing to separate
between the modelled dynamics themselves and possible causes for
these dynamics.

We can interpret this structure as a generalized state space model,
that generalizes from standard state space models that only consider
first order, like the Kalman filter [49, 95]. Similarly, RNNs and variants
like the long short-term memory (LSTM) typically model only first
order changes of their inputs explicitly [42, 80, 177]. Another differ-
ence to standard space models is the assumption that the noise on
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each order of generalised motion is correlated. Under generalized PC,
the generalized observation noise z̃ = [z, z′, z′′, . . .] and the noise in
the transition function w̃ = [w,w′,w′′, . . .] are assumed to be analytic
and have a well-defined covariance between orders of motion [49].

By assuming that observation noise z and transition noise w as well
as all state priors are Gaussian, we can now define the probabilistic
dynamical latent variable model that underlies PC when no hierarchy
is considered. The model defines a joint distribution of possible ob-
servations (also called model response) y, cause states v and hidden
states x:

p(ỹ, x̃, ṽ) = p(ỹ | x̃, ṽ)p(x̃, ṽ) = p(ỹ | x̃, ṽ)p(x̃ | ṽ)p(ṽ) (20)

Figure 2 visualizes such a dynamical generative model.

Dynamical model 

Response

Cause state Hidden state

Hierarchical prediction
Dynamical prediction

Figure 2: Dynamic generative model. Model responses are generated from
cause and hidden states that represent estimated causes and tem-
poral changes in causes respectively.

2.1.6.2 Hierarchical-dynamical models

The dynamical model of the previous section can generate hypothe-
ses about the cause for possible observations and their motion over
time. However, it does not yet account for a hierarchical abstraction
of these possible causes. Hierarchical PC rests on the assumption that
the brain maintains a generative model that factorizes into m condi-
tionally independent layers

y = g(1)
(
x(1), v(1) | θ

)
v(i−1) = g(i)

(
x(i), v(i) | θ

)
v(m) = v(m),p

(21)
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where, for each pair of adjacent layers, a separate function g links
the states of a higher layer to the cause states of a lower layer [51]. Like
in the single-layer model in the previous section, each hierarchical
layer i also maintains a function that models the motion of its hidden
states ẋ(i) = f

(
x(i), v(i)

)
. For the sake of clarity, we have omitted the

specification of generalized coordinates for states and functions in
each hierarchical layer.

Since hierarchical layers are assumed to be conditionally indepen-
dent, the overall hierarchical-dynamical model can be expressed as:

p(x̃, ṽ) = p
(
ṽ(m)

)m−1∏
i=1

p
(
x̃(i) | ṽ(i)

)
p
(
ṽ(i) | x̃(i+1), ṽ(i+1)

)
(22)

where the prior on hidden states p(x̃(i), ṽ(i)) in 21 is now expressed
as a empirical prior that depends on the next higher hierarchical layer.
Since we deal with states in generalized coordinates of motion, these
empirical priors refer to priors on the instantaneous dynamics of the
cause states of the respective lower hierarchical layer.

Hierarchical-dynamical model 

Response

Hidden state

Hierarchical prediction
Dynamical prediction

Cause state

Figure 3: Hierarchical-dynamical generative model. Model responses are
generated from cause and hidden states that represent estimated
causes and temporal changes in causes respectively. In contrast to
the dynamical model in Figure 2, the causes in each hierarchical
layer are generated by the hierarchical prediction from the respec-
tive higher layer.

Figure 3 shows such a hierarchical-dynamical generative model
with two hierarchical layers. Since in each hierarchical layer the cause
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states model perturbations to the motion of hidden states, this overall
structure allows to formulate quite complex abstractions over hierar-
chical and temporal dynamics between hierarchical layers.

2.1.6.3 Variational inference, learning and amortization

The previous sections motivated an approximate variational ap-
proach to Bayesian inference by approximating a complex target dis-
tribution with a simpler family of distributions and minimizing the
distance between the approximation and target distribution. As we
have seen, the approximating distribution can be organized hierar-
chically and even cover temporal dependencies. This leads to quite
complicated generative models, such as the hierarchical-dynamical
model in Figure 3. Such variational inference is a general method that
has found widespread use in complex applications, such as statistics,
machine learning or computational biology [12, 232].

As we will see in the next section, PC models under the FEP take
an iterative approach to estimating the approximating distribution as
well as the parameters of the generative model. Early formulations
of PC were derived as a variant of the expectation-maximisation (EM)
algorithm, which finds maximum a posteriori (MAP) estimates of the
model parameters [31]. MAP estimation aims at (iteratively) maximis-
ing the posterior probability of a parameter, given observed data and
a prior distribution over the parameter. These PC models iteratively
switch between an expectation (E) step, which computes the optimal
values of the states given the currently learned model parameters,
and a maximisation (M) step, which optimises the parameters given
the inferred states. Different variations to this scheme exist, often in-
cluding the additional estimation of precision parameters [14, 51, 139].
Generally speaking, the E step can be associated with (state) infer-
ence, while the M step can be seen as (weights) learning. As detailed
in the next section, both inference and learning in PCNs is done using
a simple gradient descent on the variational free energy of the model,
expressed as precision weighted prediction errors. This implies that
in PCNs, next to the gradual optimisation of weights parameters, the
inference at every datapoint is also an iterative procedure.

In the context of DNNs, the VAE is simple, yet effective and widely
used architecture, that takes a slightly different approach to varia-
tional inference. Here, the focus lies on learning the weight parame-
ters of the model, while inference of the parameters of state v given
data o is amortized and simplifies to a single pass through the net-
work [104]. Usually, the latent state is modelled as normal distribu-
tion with diagonal covariance:

v ∼ qϕ(v | o) = N
(
v;µ,σ2I

)
(23)
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In this context, amortization refers to the idea of using an addi-
tional set of parameters ϕ, that are shared across data points and
express the inferred state as a function of the data. In VAEs, the param-
eters of ϕ are represented by a deep encoder network. Next to this
encoder network, VAEs use a generative model θ to map from latent
states to the expected observation, rendering the model an autoen-
coder. This amortization of the inference process is highly effective,
since the encoder can be re-used for inference on new datapoints,
instead of iteratively inferring the state distribution v for each new
datapoint. Like PCNs, VAEs optimise an ELBO objective, as introduced
in 2.1.3, usually in the following form:

ELBO = Eq(v|o)[logp(o | v)] −KL(q(v | o)∥p(v)) (24)

where the first part measures the accuracy, or reconstruction error
and the KL divergence in the second part measures the divergence of
the encoded state distribution q(v | o) from the prior distribution p(v).
VAEs optimise this by back propagating the error from the objective
throughout the entire network [104]. In VAEs, propagation of errors
through samples from the random latent variable ṽ ∼ qϕ(v | o) is
done using the "reparameterization" trick. The trick refers to express-
ing the sampled distribution as a differentiable function gϕ(ϵ,o) with
respect to an additional noise variable ϵ:

ṽ = µ+ σ⊙ ϵ with ϵ ∼ N(0, I) (25)

This sampling step is necessary, since VAEs explicitly encode the
state covariance parameter. As mentioned in section 2.1.5, this is un-
like PCNs which deal with it implicitly, e.g. using the Laplace approx-
imation. In summary, both inference and learning in PCNs results in
a gradient descent on the variational Free Energy, while VAEs reduce
state inference to a single step using amortization. This difference
between PCNs and VAEs has seen relatively little attention in the lit-
erature so far. However, there have been some attempts to include
iterative inference in VAEs [128, 162]. Similarly, a version of amortized
inference has recently been suggested for PCNs [208]. Chapter 7 of this
work provides a similar approach to this, by showing that higher hi-
erarchical layers in PCNs can be interpreted as performing amortized
inference, when they have access to the observation. The next section
will cover details about how generative models are inverted in PCNs

using a gradient descent on prediction errors.

2.1.6.4 Predictive coding

In the previous sections, we covered the hierarchical and dynami-
cal generative models that underlie PC under the FEP. Here we want
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to specify the neuronal dynamics that are used to invert generative
models, in order to empirically infer model parameters given sen-
sory observations. Figure 4 visualizes the inversion of a hierarchical-
dynamical generative model with two hierarchical layers.

Model inversion


Response

Cause state

Hidden state

Prediction error

Hierarchical prediction
Dynamical prediction

Figure 4: Predictive coding describes an inversion of the hierarchical-
dynamical generative model shown in Figure 3 and allows to infer
model parameters from observed data using locally computed pre-
diction errors ϵ. Each layer is updated with respect to dynamical
prediction errors ϵx on the predicted motion of their hidden states
and hierarchical prediction errors ϵv from the outgoing and incom-
ing hierarchical prediction.

Given the hierarchical-dynamical model described in section 2.1.6.2,
GPC assumes that the brain generates locally informed predictions
ỹ = g̃(x̃, ṽ) and ˙̃x = f(x̃, ṽ) about lower states ˙̃v and the motion of
hidden states x̃ [49, 51]. At the lowest layer predictions are made
about possible sensory observations ỹ.

The distance between true causes (or sensory states) and their top-
down prediction results in a prediction error ϵv for each hierarchical
layer:

ϵ̃v =


ỹ

ṽ(1)

...

ṽ(m)

−


g̃(1)

g̃(2)

...

ṽ(m),p

 (26)

In many implementations, the lowest state ỹ is initialised simply
with an observed sample õ of the environment, while the intermedi-
ate states v are often initialised using their top-down predicted prior.
However, other options, such as an initialization with zeros or the
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mean of multiple samples are possible. For the highest layer m, there
is no corresponding top-down prediction and the prediction error
measures the divergence from a prior v(m),p.

Similarly, dynamical prediction errors ϵx measure the distance be-
tween true hidden state motion Dx and the motion predicted within
each hierarchical layer:

ϵ̃x =


Dx̃(1)

Dx̃(2)

...

Dx̃(m)

−


f̃(1)

f̃(2)

...

f̃(m)

 (27)

where D is a temporal derivative operator, such that for hidden
states x = [x, x ′, x ′′, x ′′′, ...] their temporal derivative can compactly be
expressed by Dx = [x ′, x ′′, x ′′′, ...].

Given the hierarchical-dynamical latent variable model in 22, we
can, like in the previous sections, resort to variational Bayes and focus
on optimizing the variational free energy. The VFE of the hierarchical-
dynamical model is:

F(ỹ, ṽ, x̃) = Eq(logq(ṽ, x̃)) − Eq(logp(ỹ, ṽ, x̃)) (28)

Generalized PC makes a mean field approximation over latent
states and between hierarchical layers and uses the Laplace approx-
imation to simplify neural dynamics as a function of the mean [49,
51].

Ignoring constants, one can express the energy compactly with re-
spect to prediction errors:

logp(ỹ, x̃, ṽ | θ) =
1

2
ln |Π̃|−

1

2
ϵ̃Π̃ϵ̃ (29)

where the generalized precision Π̃ refers to the overall unexplained
variance of the prediction error, or the uncertainty that arises in the
model during inference [51]. It can be separated into the precision of
the observation and the transition function, representing hierarchical
and dynamical predictions respectively:

Π̃ =

[
Π̃z

Π̃w

]
(30)

This precision Π̃ is usually estimated empirically from the observed
prediction errors, typically by estimating the variance and covariance
components of the error. The prediction errors themselves simply
measure the difference between predicted and observed mean param-
eters, as we will see next.
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The prediction errors ϵ̃ summarize hierarchical and dynamical pre-
diction errors:

ϵ̃ =

[
ϵ̃v

ϵ̃x

]
=

[
ỹ− g̃(x̃, ṽ, θ)

Dx̃− f̃(x̃, ṽ, θ)

]
(31)

The updates for mean µ of states x, v can then be described by
computing the influence of the states on the energy at each timestep:

˙̃µ−Dµ̃ = (logp(ỹ, ṽ, x̃ | θ))µ̃ (32)

Here, ˙̃µ−Dµ̃ denotes the difference between the change ˙̃µ of the
parameter and the encoded (i.e. already expected) change Dµ̃.

Under the Laplace approximation, the updates for cause and hid-
den states can be expressed with respect to the corresponding predic-
tion errors based only on the inferred and predicted mean parame-
ters:

˙̃µ(i)
v = Dµ̃

(i)
v − ϵ̃

(i)
v Π̃z,(i)ϵ̃

(i)
v − Π̃z,(i+1)ϵ̃

(i+1)
v

µ̇
(i)
x = Dµ̃

(i)
x − ϵ̃

(i)
x Π̃w,(i)ϵ̃

(i)
x

(33)

2.1.6.5 Predictive coding and precision

In the previous section, we have discussed that the weighting applied
to the prediction error depends on the precision Π̃ of observation
and transition noise. As mentioned before, this precision is usually
estimated from the observed prediction error covariance. In many
models that implement a variant of predictive coding, the precision
is assumed to be constant in practise, which simplifies the ensuing
gradient descent on prediction errors further. Predictive coding mod-
els used in machine learning are trained on static observations, or on
discrete samples from sequential data at a low frequency. This often
makes it difficult or even impossible to estimate the prediction error
covariance from a single observation, which would require sampling
at high frequencies [14]. In these cases, the prediction error covariance
could still be estimated based on the differences between multiple ob-
servations, e.g. across a batch of examples or an entire dataset. Espe-
cially early formulations of PC models stress the role of the prediction
error precision as part of the empirical prior that higher hierarchical
layers provide for lower layers during inference [48, 51]. Furthermore,
the prediction error precision has been associated with complex atten-
tional processing, primarily due to its role in mediating the gain on
prediction errors during inference [8, 46]. In some cases the underly-
ing models include additional structure in the generative model, e.g.
allowing to learn state-dependent precision [46]. In summary, while
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the prediction error precision during inference is often neglected in
practise, it has important cognitive interpretations.

As explained in section 2.1.5, under the Laplace approximation, the
state covariance parameter does not need to be inferred explicitly, but
is a function of the mean, given by the curvature around the inferred
mode, i.e. the optimal posterior of the state mean after inference. How-
ever, similar to the precision of the prediction error, this curvature is
often not computed in practise and is used primarily to motivate a
gradient descent on the mean of the states as the only relevant quan-
tity during inference. Including the Laplace approximated covariance
of the states, however, provides relevant information on the uncer-
tainty of the states during learning. In chapter 7 we implement and
analyse a predictive coding model that includes such curvature in the
context of rectified linear nonlinearity, where it is easy to compute.

2.1.7 Canonical computations

2.1.7.1 Predictive coding and canonical microcircuits

Hierarchical and dynamical PC models, as discussed in the previous
sections provide a relatively simple algorithmic scheme that describes
how a Bayesian generative model can be inverted in order to infer pa-
rameters from sensory observations. An appeal of PC as a process the-
ory under the FEP is that it can be mapped to the physical structure
of cortical hierarchies in the brain and allows to relate evoked brain
responses to inferential processes [11, 49]. The cortical canonical mi-
crocircuit describe a neural circuitry, i.e. connectivity scheme between
multiple types of neural populations in cortical columns, that is repli-
cated throughout the entire cortex [11].

Research on canonical circuitry in the cortex has a long history
and initially focused on the role of repeated functional elements
throughout the neocortex in visual processing [36, 37]. A central in-
sight that underlies these early as well as more recent formulations of
canonical circuits is that cortical columns are organized hierarchically,
each spanning multiple horizontal layers of the cortex. While each of
these layers contains different cell population types, their function
appears to be repeated between columns, indicating that the func-
tional properties in each column are shared. As part of the cerebral
cortex, the neocortex has only relatively recently evolved and covers
several higher level cognitive functions in mammals, such as spatial
reasoning, language or motor control [122, 171]. The neocortex is of-
ten divided into six layers with different cell types, in ascending order
from the most superficial (or outermost) layer towards the deeper (or
more inwards) layers. Figure 5 shows an overview of these six layers,
including their intrinsic and extrinsic connectivity. While the exact
form of these six layers within cortical columns differs between dif-
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ferent areas in the cortex, the overall functionality of the individual
layers can be summarized into a canonical form [11].

L1

L3

L4

L5

L6

L2

Molecular

External

granular

External 

pyramidal

Internal 

granular

Internal 

pyramidal

Multiform

infragranular

supragranular

granular

superficial forward stream

(prediction error)

deep backward stream

(predictions)

Figure 5: Simplified overview over intrinsic (gray) and extrinsic (green, red)
connectivity in the cortical canonical microcircuit, as discussed by
Bastos es et al. [11]. Shown is a vertical column that spans six
horizontal layers and is repeated horizontally.

Within each column, information is processed (recurrently) via in-
trinsic connections. Superficial cells in the supragranular layer send
feedforward information towards higher cortical areas, while the in-
fragranular layer provides a feedback stream towards lower cortical
areas. Maybe most strikingly, the cells in the granular layer (L4) re-
ceive the majority of feedforward information, while superficial and
deep layers receive information from a backward stream. Research
has shown that columns along the cortical layers are organized hier-
archically, where lower layers provide feedforward signals for higher
layers [11, 79]. Afferent, i.e. incoming, feedforward signal can be re-
lated to prediction errors in predictive coding and is reciprocated
with a feedback signal towards the respective lower area. In the con-
text of predictive coding models, this feedback can be related to the
prediction signal.

The most prominent version of the cortical canonical microcircuit
differentiates between the following cell types: Superficial pyramidal
cells, deep pyramidal cells, spiny stellate cells and excitatory or in-
hibitory interneurons [11]. Pyramidal cells are found in the supra-
granular and infragranular layers, while interneurons are found in
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the granular layer and supragranular layer [11]. Finally, spiny stellate
cells are located in the granular layer. In the context of predictive cod-
ing, each of these cell types, including their extrinsic and intrinsic
connectivity can be related to different parts of the generative model.
With the PC model of the previous section in mind, the superficial
pyramidal cells are interpreted as encoding and propagating preci-
sion weighted prediction errors on cause states v. Deep pyramidal
cells are thought to represent conditional expectations on the cause v

and hidden states x and to propagate top-down predictions towards
lower layers in the cortical hierarchy. Spiny stellate cells encode pre-
cision weighted prediction errors on the cause states v of the lower
hierarchical layer. The inhibitory interneurons of the granular layer
are assigned to represent precision weighted prediction errors on the
hidden states x, while interneurons in the supragranular layer repre-
sent expectations on hidden states x and cause states v [11]. In sum-
mary, the inferential structure of PC models can directly be mapped
onto canonical microcircuits in the brain, supporting the notion of PC

as driving a canonical pattern of computation in the brain. The next
section will resort to this canonical cortical microcircuit in a further
simplified form.

2.1.7.2 Markov blankets throughout the brain

Next to identifying canonical neural correlates of PC as a pro-
cess model, it is possible to identify free energy minimising, self-
organising structures across scales in the brain. One approach rests on
the mapping of Markov blankets, i.e. functional boundaries marked
by statistical independence, to structures in the brain across scales [79,
105]:

Markov blanket

The boundaries of a system can be defined in a statistical sense,
by separating (complex, dynamical) systems into internal and
external states that are separated by a Markov blanket, which
consists of active and sensory states [105].

The Markov blanket thus refers specifically to the blanket states,
the active and sensory states that make external states conditionally
independent from internal states and vice versa. More precisely, in-
ternal (i) and external (e) are conditionally independent, when their
joint probability conditioned on the Markov blanket (b) is equal to
the product of their marginal probability conditioned on the blanket
[79]:

i ⊥ e | b⇔ p(i, e | b) = p(i | b)p(e | b) (34)
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The FEP implies that, when such a Markov blanket exists for a com-
plex random dynamical system, then it will appear to minimize its
free energy over time [105]. From a modelling perspective, this view
on self-organisation stresses the importance of the chosen factoriza-
tion in the generative model, such as discussed in 2.1.4. Markov blan-
kets often are mentioned in the context of active inference, a corollary
of the FEP which focuses on the role of action in free energy minimiza-
tion. Since we here focus on perceptual inference, active inference us-
ing physical actions is outside of the scope in this work. However,
active states can also be mapped to non-physical actions, and even to
the process of prediction itself [79].

Superficial
pyramidal

cell


Spiny
stellate cell


Inhibitory
interneuron


Deep
pyramidal

cell

internalexternal

external

active

sensory

internal

external

sensory

active

internal

Figure 6: Left: Markov blanket structure including internal states that are
conditionally independent from external states. Right: Regional
Markov blanket mapped to the canonical cortical microcircuit, as
discussed by [79]. In the canonical microcircuit, cells emitting feed-
forward signals (red arrow) and feedback signals (green arrow)
can be interpreted as the sensory and active states of a Markov
blanket that separates individual columns.

In this case, actions appear more implicitly: Top-down predictions,
as active states, influence the activity of lower layers. This is particu-
larly evident in the hierarchical layout of PCNs, where predicted states
try to minimize their complexity based on their top-down prediction.
Similarly, top-down predictions can be weighted by precision, thereby
actively sampling only those parts of the input where the precision
is high. In contrast, bottom-up prediction errors can be interpreted
as sensory blanket states, which drive updates of internal states [105].
In PC, predictions and prediction errors thus can be thought to sepa-
rate the internal (higher) from the external (lower) levels. A schematic
mapping of a Markov blanket structure onto a simplified canonical
microcircuit is shown in Figure 6.

Next to the level of cortical circuits, Markov blankets also cover
individual neurons and coarser structures, such as entire brain re-
gions or the overall function of the brain [79, 105]. Crucially, these
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self-organising sub-systems can still be identified as minimizing free
energy. In summary, the neural mechanisms underlying PC describe
a specific level of self-organisation, a special case of the Markov blan-
ket as a canonical structure that can be found across scales within the
brain.

2.2 deep neural networks

After covering the conceptual and mathematical background of the
FEP and PC, the following sections cover technical fundamentals for
deep neural network architectures, their application in artificial intel-
ligence and the backpropagation of error algorithm. The content in
this section is partially based on the book chapter:

[pub:6] A. Ofner and S. Stober. “Deep Neural Networks and
Auditory Imagery.” In: Music and Mental Imagery. Ed. by M.
B. Küssner, L. Taruffi, and G.A. Floridou. Routledge, 2022, pp.
112–122

2.2.1 Supervised and unsupervised learning

A central aspect of machine learning algorithms is their capacity to
represent information. Many machine learning (ML) algorithms, such
as logistic regression or naïve Bayes, work on representations that
are defined before solving a particular task. Within the field of ML,
the set of representations that are available to the algorithm to make
inference are called features. For many applications it might be suf-
ficient to provide specifically chosen features. Often times, however,
it is difficult to find the right set of predefined features, especially
when dealing with complex data. These considerations have led to the
field of representation learning in ML. Representation learning algo-
rithms no longer project points from a predetermined feature space to
outcomes. Instead, they allow to learn the representation itself. Such
representation learning methods can extract complex sets of features,
which can be more complex and predictive than hand-crafted fea-
tures. Many representation learning algorithms furthermore allow to
find sets of features without human supervision, allowing to tackle
large and diverse amounts of data. An important example for such
representation learning algorithms are autoencoders. Autoencoders
exist in deterministic or stochastic variants, such as the VAE and learn
representations of data by converting inputs into an internal represen-
tation, which in turn is decoded back into the original data [104]. This
way, autoencoders are trained to preserve as much information as pos-
sible, even if the internal representation is reduced in size. A good
representation representation explains variations in the data well and
is disentangled. For example, an algorithm working on images might
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learn that an object’s color is affected by the time of day. An important
problem that arises here is the aspect of extracting high-level features
from raw data. This challenge has been addressed with neural net-
works (NNs) and particularly the class of DNNs, which are based on
the idea of expressing complex representations as weighted combi-
nations of simpler representations. These computational models ex-
cel at statistical pattern recognition, especially when trained on large
datasets, often times containing millions of (labelled) data points. A
vast selection of different network architectures has been developed,
often tailored to deliver high accuracy on a particular task [116, 194].
Common to deep learning models is that they are built from multiple
layers that learn representations with increasing levels of abstraction
as information propagates towards deeper, hidden neural layers.

2.2.2 Neural networks and backpropagation of error

Feed-forward neural networks relate their inputs x to outputs y via
a function y = σ(Wx+ b) that depends on learnable weights W and
biases w and are activated via differentiable, nonlinear functions σ,
such as a sigmoid or rectified linear unit (ReLU) [148]. Multiple feed-
forward layers can be stacked to form DNNs that can learn complex
nonlinear transformations from inputs to outputs. Next to fully con-
nected feedforward NNs, other variants, such as convolutional neural
networks or recurrent neural networks exist, which will be discussed
later.

DNNs are usually trained using a combination of gradient descent
and the backpropagation of error algorithm [177]. Generally speaking,
a backpropagation of error throughout neural networks requires that
the entire model is differentiable. For inputs x, targets y and outputs
ŷ, the internal parameters of the network are changed based on an er-
ror signal, where the magnitude of the error usually is parameterized
by a a scalar objective function, the loss function L(ŷ,y).

Using the chain rule, the gradients, i.e. first-order partial deriva-
tives of the loss function L with respect to all trainable parameters of
the model need to be computed, although optimising using higher
order methods is theoretically possible. The parameters can then be
adjusted using gradient descent. Generally speaking, there is no guar-
antee that training via backpropagation reaches a global minimum of
the loss function.

While inference is made with respect to individual data points,
weights training (i.e. learning) is ideally made with respect to the en-
tirety of a dataset. In practise, however, this is often infeasible. Instead
of requiring entire datasets to be processed in parallel, stochastic gra-
dient descent allows to make weight updates with respect to batches
of data [99, 175].
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Gradient descent iteratively updates trainable parameters w using
a learning rate η

w← w− η∇wL(y, ŷ) (35)

where ∇wL(y, ŷ) is the gradient of the loss function with respect
to the parameters.

A variety of efficient methods have been introduced that allow
to train large neural networks, e.g. using approximate second order
methods, such as Adam or RMSprop [103]. These typically scale the
learning rate during gradient descent, e.g. based on the variance of
the gradients.

2.2.3 Convolutional neural networks

Several aspects underlying deep neural networks bear resemblance
with neural architectures found in the biological brain. For example,
convolutional neural networks (CNNs) show connectivity similar to
the organization of neurons in the visual cortex, where individual
neurons respond only to activation within their respective receptive
fields [121, 159, 211]. The CNN architecture is in turn a refinement of
the “neocognitron” published in [60]. Initially designed for relative
simple and small inputs, like handwritten digit recognition, CNNs

have been employed in increasingly complex architectures, such as
LeNet or AlexNet, that featured more convolutional layers and larger
inputs [111, 117, 118]. In CNNs, spatial receptive fields are efficiently
computed across input dimensions and increasingly complex repre-
sentations are learned through combining features in overlapping re-
ceptive fields.

The core idea behind CNNs is a to use a combination of convolution
and pooling. Convolutional kernels, also referred to as filters, are ap-
plied by sliding over spatial dimensions of inputs and computing the
dot product between filter weights and the input. This allows to share
the same weights across different regions of the input. The output
activation of the convolution operation are feature maps that can be
trained to activate for specific spatial features in the input. With learn-
able weights w and biases b, a CNN layer applies a function of form
y = σ(w ∗ x+ b) for input feature maps x and output feature maps y,
where σ is a nonlinear activation function and ∗ refers to the convolu-
tion operation. Typically, each filter is applied to the entire depth of
the input, restricting local connectivity to the spatial domain. These
feature maps can be down sampled using pooling operations. Pooling
increases the size of the receptive field by summarizing neighboring
values, e.g. by computing the maximum ("max pooling"), or the aver-
age ("average pooling") value. This allows CNNs to compute abstract
representations with receptive fields that can cover the entire input.
CNNs are particularly suited for spatial processing, as they excel at
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aggregating increasingly abstract features and their spatial relations.
They have significantly improved state-of-the-art results in a wide
range of fields, such as visual object detection or image segmentation
[111, 116].

2.2.4 Recurrent neural networks

Next to CNNs, RNNs are an important class of deep neural networks
[42, 191]. In contrast to feedforward neural networks, RNNs feature
recurrent or feedback connections between internal states in the net-
work, making them a good choice for processing sequential data. Sim-
ple RNNs, like Elman RNNs [42], process discrete input sequences x

one timestep at a time by updating their hidden state ht with respect
to the past hidden state ht−1 and the current input xt:

ht = σ
(
Whxxt + bx +Whhht−1 + bh

)
(36)

where σ refers to a nonlinear activation function. At each timestep,
a outputs ŷt in the feedforward pass can be generated using another
function:

ŷt = σ
(
Wyhht + by

)
(37)

In this context, Whx, Whh and Wyh are the trainable weights for
input, recurrence and output function respectively and bx, bh, by are
the respective learnable biases.

For weight updates using backpropagation of errors, the recurrent
connections between internal states of the model are “unfolded” in
time. Unfolding refers to the process of making the time-steps in the
network explicit, resulting in a structure that allows to update net-
work weights analogous to feedforward networks. In particular, this
unfolding involves treating the recurrent network as a feedforward
network, with one layer per timestep, and weights shared between
all timesteps. The resulting feedforward network can be trained us-
ing backpropagation of error in the conventional way. This algorithm
is referred to as BPTT [224]

2.3 eeg processing with neural networks

2.3.1 Decoding auditory information

Two different strategies have been pursued to explore the links be-
tween cognitive processes and brain activity in the neuroimaging do-
main. The typical procedure in forward inference is the manipulation
of a subject’s psychological state followed by a calculation of the prob-
abilities of observing specific brain signals given this state, that is, a
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process from psychological state to expected brain activity [63]. In
contrast, reverse inference is used to reason in the other direction,
that is, from brain activity to cognitive processes. Reverse inference
from brain activity is a complex endeavour, especially as it requires
knowledge about the information the analysed brain signals actually
can account for. This is especially problematic when reasoning from
specific regions of the brain, as their activation could be the result
of reused activations within different cognitive processes. In reverse
inference, “decoding” approaches typically model the space of brain
signal as multivariate and the space of cognitive processes as univari-
ate. In contrast, “encoding” approaches typically model a univariate
brain space and a multivariate space of cognitive processes. Some
methods, such as canonical correlation consider both neural and psy-
chological space as multivariate. These multivariate methods allow
to perform inference with increased accuracy, especially as they con-
sider spatio-temporal relations across brain regions. In recent years,
the use of machine-learning algorithms to decode information from
brain activity has gained widespread attention and several studies
have started to apply them to the analysis of audio and imagery
related neural processes. Brain activity decoding in the presence of
auditory imagery promises insights into the contributing cognitive
functions during music listening and imagination while also shining
a light on the multi-modal mapping to (imagined) sensory inputs.

A general consensus in these studies is that a listener’s brain shows
responses that are correlated with presented auditory stimuli and
that the relationship between brain response and stimulus can be ex-
ploited to classify or reconstruct auditory stimuli. Examples for such
correlations can be found in the modulation of neural oscillation mag-
nitude and frequency by perceived tempo, rhythm and accents [22,
153]. Intracranial recordings show precise phase-locking to click train
stimuli and frequency-following responses for speech stimuli [110,
150]. Auditory event-related potentialss (ERPs) refer to repeatable and
distinguishable neural responses to auditory events, such as onsets or
changes in pitch [184]. ERPs can be related to fine grained aspects of
audio, reflecting even differences in timbre or harmonics [189]. Neu-
ral responses are modulated by individual aspects such as expertise
or attention [207]. This means that methods aiming at reverse infer-
ence benefit from modelling both the subject’s particular behaviour
as well as taking into account the structure of auditory stimuli and
environment. The idea of mapping auditory features to brain signals
has found traction in a variety of studies applying machine learning
to reconstruct aspects such as the loudness envelope, tempo or pitch
[199, 203].

These studies are focused primarily on audio perception and show
promising results, even if the quality of stimulus decoding is rather
unsatisfactory. [160] describe a reconstruction of speech stimulus en-
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velopes directly from recorded EEG signal based on the correlations
between EEG channels and the stimulus envelope. However, as de-
scribed by [201] the application of the same approach to more com-
plex musical signal results in poor results and demonstrates the low
correlation between recorded signal and auditory stimulus, which
is typical for non-invasive imagining methods. A common way to
deal with such low correlation is to average across a large number
of trials and focus on relatively simple stimuli, a technique particu-
larly popular in ERP based experiments [228]. Neural activity record-
ing with EEG or functional magnetic resonance imaging (fMRI) pro-
vide relatively accurate and inexpensive access to brain signal, mak-
ing it particularly interesting for machine learning. While EEG has
high temporal resolution, the spatial accuracy is inferior to the three-
dimensional fMRI signal. Multi-modal recording techniques like si-
multaneous EEG-fMRI capture multiple views on brain activity in
spatially and temporally overlapping regions and allow more fine-
grained analysis of the signal [86].

Deep learning, especially CNN and RNN based approaches have
found use in the analysis of neural activity underlying auditory per-
ception and imagination. They have demonstrated improved results
for tasks such as tempo estimation or classification of imagined musi-
cal pieces [143, 201]. However, often times neuroimaging datasets on
auditory data simply do not contain sufficient quantitative amounts
data to train deep neural networks. Typical datasets in the domain
contain 20 or less subjects and cover only short excerpts of musical
pieces or imagined stimuli. Only very few of the available datasets
contain larger amounts of subjects or provide more than one hour of
recording time per subject. These more extensive datasets typically
cover the perception of full songs, movies or are recorded in the con-
text of auditory brain-computer interfacing [26, 123]. In theory, this
shortage could be counteracted with more and longer recording ses-
sions and detailed metadata.

2.3.2 From perception to imagery decoding

Most of aforementioned studies focus primarily on the perception of
audio and music, in contrast to music imagination or combinations
of both conditions [203]. However, multiple studies using EEG and
MRI indicate that large parts of the neural processes underlying mu-
sic perception can also be observed in absence of the actual stimulus
[76, 183]. The literature on auditory imagery in the context of decod-
ing neuroimaging data tends to deal with imagery and imagination
as interchangeable terms. Often times, authors are interested in the
analysis or reconstruction of mental imagery that takes place in the
process of active imagination. In these cases, this lack of separation
is not too problematic. However, there might be cases where a more
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fine-grained differentiation is necessary, such as in auditory imagery
during memory recall or active imagination.

Here we refer to auditory imagery as the process of experiencing
auditory information without it being present at the senses. Further-
more, we treat auditory imagination as a process that can employ
mental auditory images, such as when actively imagining a specific
song. Auditory imagery generally retains the structure of actual au-
ditory content, which is shaped by aspects such as tempo and pitch.
Individual aspects of the auditory signal might be more or less accu-
rately retained when recalling previously heard stimuli, for example,
when the timbre but not the exact tempo is preserved.

Auditory imagery has been shown to be interacting with other im-
agery modalities, such as motor imagery. For example, being skilled
in motor as well as auditory imagery has positive impact on the learn-
ing performance in the respective other domain [16]. This indicates
that auditory imagery can be seen as a process that reactivates the
neural pathways underlying auditory perception and recreates an in-
ternalized sensory experience. This implies that features extracted
from brain signal in perception across different modalities should
be useful for guiding the decoding of brain activity during imagi-
nation. Still, only a small number of studies have tackled the problem
of classifying brain states in auditory imagery or reconstructing the
imagined stimuli directly. For example, [65] demonstrated the possi-
bility to use auditory imagery decoding in a Brain Computer Inter-
face setup using EEG hardware. The study focused on the recognition
of white noise imagery and reported 93% accuracy. According to the
authors, these results open up the possibility to use auditory imagery
as a complementary approach to motor-imagery interfaces. This as-
pect is especially interesting given the close connection between mo-
tor and auditory imagery. At the time of writing, there is still a lack
of machine learning studies bridging between different imagery do-
mains and exploring these inter-dependencies in greater depth.
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S H A R E D R E P R E S E N TAT I O N O F A U D I O A N D E E G

The variational autoencoder is a simple, yet highly efficient, DNN ar-
chitecture that optimises VFE for a latent variable with deep neural
networks and the backpropagation of error algorithm. VAEs provide
a useful reference point to investigate models that optimize the com-
putational objective of the Free Energy Principle, since they scale up
to complex sensory data. Here, we want to investigate the possibility
to employ VAEs as a model of canonical free energy computation in
the context of learning shared representations between sensory ob-
servations, i.e. a stimulus domain and brain signals evoked by these
sensory observations. In particular, we evaluate the possibility to re-
construct perceived and imagined musical stimuli from EEG record-
ings based on two datasets. One dataset contains multichannel EEG

of subjects listening to and imagining rhythmical patterns presented
both as sine wave tones and short looped spoken utterances. These
utterances leverage the well-known speech-to-song illusory transfor-
mation which results in very “catchy” and easy to reproduce motifs.
A second dataset provides EEG recordings for the perception of 10 full
length songs. Using a multi-view VAE model we demonstrate the fea-
sibility of learning a shared latent representation of brain activity and
simple auditory concepts, such as rhythmical motifs appearing across
different instrumentations. Upon qualitative inspection, the model al-
lows continuous interpolation between representations of different
observed variants of the presented stimuli and enables to reconstruct
perceived and imagined music. However, our results indicate that the
stimulus complexity and the quality of training data shows a strong
effect on the reconstruction quality. Focusing on passive perception,
we also quantitatively evaluate the proposed multi-view VAE model
in terms of stimulus reconstruction performance.

The content in this section is based on the following publication:

[pub:3] Ofner, André and Sebastian Stober (2018). “Shared Gen-
erative Representation of Auditory Concepts and EEG to Re-
construct Perceived and Imagined Music.” In: 19th International
Society for Music Information Retrieval Conference (ISMIR), pp.
392–399.

3.1 introduction

Studying the human brain‘s response to music gained a lot of at-
tention in recent years. Many studies in the field rely on EEG record-
ings, as they provide better temporal resolution than other techniques,
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such as functional magnetic resonance imaging functional magnetic
resonance imaging (fMRI). Previous research suggests that a listener’s
brain response is modulated in correlation to the perceived auditory
stimuli on many different levels and that these modulations can be
detected within EEG. One of these effects is the correlation between
the frequency and magnitude of neural oscillation patterns, which
are modulated by accents and rhythmical patterns in music [22, 152,
153]. Other studies indicate that tracking auditory attention towards
a specific sound source in EEG recordings is possible [6, 207].

EEG data has been used to research ERPs as a repeatable and distin-
guishable response to aspects of perceived music. The characteristic
brain activity patterns underlying ERPs can be specific, for example,
to the structure of musical events, such as note onsets or rhythm
and pitch patterns [147, 185]. Other ERPs are related to the timbre
of sound and can be modulated even by differences within timbre,
such as changes in harmonics [136, 190]. While many ERP compo-
nents show similar activation across subjects, studies suggest that
some are caused by more fine-grained aspects of music, especially
within trained musicians [190]. These brain activity patterns extend
over the temporal, spatial and frequency domain of the EEG signal.

Motivated by the existence of such features, EEG recordings have
been used in several music information retrieval studies based on
EEG, such as perceived rhythm or tempo classification [203]. First at-
tempts have been made to reconstruct the loudness envelope of per-
ceived and imagined musical stimuli, but with unsatisfying accuracy
[199, 202]. Some of these studies use deep neural networks for classifi-
cation and regression. The achieved results hint at their usefulness in
decoding complex brain signals. Outside of music cognition, recent
studies have shown the possibility to use generative models to recon-
struct perceived visual stimuli both from fMRI and EEG recordings [39,
98].

A recent study has demonstrated the possibility to learn such
shared latent embeddings for EEG recordings of music perception and
use them as a continuous semantic space representation of the audio
[173]. This suggests that elaborate generative models could learn a
shared encoding of music and brain signals, leading to a conjoint
representation of auditory features and musical concepts that are per-
ceived and processed by the brain. As previous research indicates,
these concepts span a spectrum of complexity, starting on the level
of the subject-specific ERP responses to low-level features, such as
changes in loudness up to high-level semantic or emotional mean-
ings of music.

3.1.1 Auditory concepts

Our approach relies on three assumptions for auditory concepts:
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1. Coupled auditory and conceptual processing

2. Shared neural representation of music perception and imagina-
tion

3. Hierarchical structure of music

Firstly, we assume that there is a tight coupling between auditory
and conceptual processing [101]. Several studies suggest that audi-
tory stimuli are processed in a conceptual system that is shared with
other modalities, such as visual perception [213]. Furthermore, mu-
sic processing is based on concepts inherent to the auditory stimuli
as well as on external factors, such as visual and social environment
or musical training [81]. Secondly, following the ideas of embodied
cognition, we assume that the human conceptual system is essentially
grounded in perception and that through its interplay with action and
cognitive states, music perception at least partially shares conceptual
and neural representation with musical imagination [100]. Previous
research suggests that auditory concept formation can be traced back
to specific ERPs and that the magnitude of some ERP component can
be controlled by the presence of an auditory concept in the listeners
mind [205]. Thirdly, we follow the idea that music is essentially hi-
erarchical in structure and that auditory concepts equivalently exist
on a spectrum of abstraction levels, reflecting and augmenting this
structure. They can range from concepts related to single sounds or
rhythm to concepts within the emotional or aesthetic processing of
music. Together with the previous two assumptions this means that
basic elements of perceptual musical processing, such as ERPs related
to note onset expectancy, are influenced by their integration into con-
ceptual processing. Music cognition and concept formation can be
highly subjective, stimulus-driven as well as context-dependent, e.g.
on visual and social aspects of a performance [144]. For these reasons,
we hypothesize that a simultaneous retrieval of auditory concepts
from multiple sources aids the reconstruction of the processed stim-
uli while further deepening our understanding of music cognition.

3.2 related work

Various approaches exist to learning a shared embedding from two or
more datasets. One method is Canonical Correlation Analysis (CCA)
[85]. CCA is non-probabilistic and enables the extraction of linear
components to optimize the correlations between two multivariate
datasets. CCA in combination with convolutional neural networks
has recently been used by Raposo et al. to learn a shared semantic
space between audio and EEG signal [173]. Based on CCA, Fujiwara et
al. have introduced Bayesian Canonical Correlation Analysis (BCCA),
a probabilistic interpretation of CCA [59]. However, BCCA still con-
tains linear observation models, while EEG data is very complex and
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noisy and requires non-linear computation. To surpass this limita-
tion, Deep Canonically Correlated Autoencoders (DCCAE) were pro-
posed by Wang et al. [216]. DCCAEs maximize the correlation between
the latent embeddings of two separate autoencoders, but do not en-
able cross-reconstruction between their inputs. While this problem
is solved by Correlational Neural Networks (CorrNets), the unregular-
ized latent embeddings of both DCCAE and CorrNet are prone to over-
fitting, especially in combination with the representational power of
non-linear observation models [18].

Inspired by [216] we use a multi-view VAE architecture that can
be interpreted as a deep, generative and probabilistic latent variable
interpretation of CCA, called Deep Variational Canonical Correlation
Analysis (DVCCA) [216]. A similar approach tailored specifically to a
missing view reconstruction for visual stimuli in fMRI data has suc-
cessfully been demonstrated recently [39]. Here, we show that we can
derive a general multi-view generative model capable of joint EEG and
stimulus processing that allows multi-modal learning from physiolog-
ical data as well as directly from the stimuli. To our knowledge, no
comparable framework for EEG-based audio stimulus reconstruction
or for shared auditory concept learning exists.

3.3 methods and data

We use two datasets, the OpenMIIR speech and the Naturalistic Mu-
sic EEG Dataset - Tempo (NMED-T) dataset. They are similar in exper-
imental setup but differ in focus and size.

3.3.1 OpenMIIR speech dataset

One dataset contains EEG of subjects listening to and imagining four
rhythmical patterns presented both as sine wave tones and short
looped spoken utterances. It stems from the Open Music Imagery In-
formation Retrieval (OpenMIIR) initiative [203] and features four dif-
ferent “catchy” and easy to reproduce motifs superimposed on a con-
stant metronome click. We refer to it as "OpenMIIR speech dataset".
The trials are annotated for containing either speech or sine wave
tones and can be used to train and evaluate model performance for
the perception and imagination of the same rhythmical trials within
two timbres. The metronome clicks serve as cues that are present
during perception as well as imagination. The main intention behind
this dataset is to reduce stimulus complexity as far as possible while
still retaining enough musical structure for building and evaluating
models. This dataset contains data from seven subjects with normal
hearing and no history of brain injury. It was recorded with 64 EEG

channels, horizontal and vertical electrooculography (EOG) channels
sampled at 512 Hz. All perception stimuli have equal tempo and du-
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ration of 12 s. Presentation was done in randomized order after 2 s of
metronome clicks. They were immediately followed by another 12 s
of metronome cues. Participants were asked to imagine the perceived
stimulus directly after presentation using these subsequent cue clicks.
The concatenated perception-imagination trials sum up to 26 s of
recorded EEG data for each trial. As each trial was presented 6 times,
this sums up to a total of 96 presented trials. In total, the dataset
contains about 2500 s (42 min) of EEG recordings per subject. We per-
formed common-practice preprocessing steps using the MNE-python
toolbox by Gramfort et al. including manual bad channel removal
and interpolation after visual inspection [67]. All EEG data was band-
pass filtered between 0.5 and 50 Hz. Extended Infomax independent
component analysis (ICA) was used to remove EEG artifacts using the
EOG signal.

3.3.2 NMED-T dataset

The NMED-T dataset provides EEG recordings for the perception of
10 naturalistic full length songs. The songs are in Western musical
tradition, have durations between 4:30 and 5:00 min in length and
contain vocals. They are real-world musical works with pronounced
rhythmical properties. 125 channel EEG at 1 kHz sampling rate was
recorded for all of the 20 subjects with normal hearing and no his-
tory of brain injury. We used the preprocessed version of the dataset,
which features EEG down-sampled to 125 Hz and bandpass filtered
between 0.3 and 50 Hz. Ocular and cardiac artifacts were removed us-
ing the additional EOG channels with ICA after manual bad channel
removal. A more detailed description of the preprocessed dataset can
be found in [123].

Subjects in both experiments were not required to have musi-
cal training, nor did they execute a particular task during listen-
ing or imagination. All EEG channels were normalized to zero mean
and range [-1, 1]. For training, EEG data was split into excerpts of
1 s length, resulting in 512 samples (OpenMIIR) and 125 samples
(NMED-T) length.

We computed Mel spectrograms of audio targets at their full
sample-rate of 44100 Hz using the librosa library [135] with 64 fre-
quency bands between 0 and 2000 Hz, fast Fourier transform (FFT)
window size of 2048 and hop length of 1024. Furthermore, we gener-
ated loudness envelopes for each stimulus using Hilbert transform of
the scipy library at the full sample rate [92]. We then down-sampled
the Mel spectrograms and loudness envelopes to the sample rates
of the EEG (512 Hz for OpenMIIR and 125 Hz for NMED-T) before
splitting into excerpts of 1 s length.
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3.3.3 Learning shared representations

We propose an adaptation of Variational Canonical Correlation Anal-
ysis (VCCA) as proposed by Wang et al. [216] to perform VAE based
multi-view learning on audio and EEG signal. We start by defining
EEG and audio to be two views that can be generated independently
from a shared latent embedding z:

p(audio, eeg, z) = p(z)p(audio|z)p(EEG|z). (38)

z

audio

EEG

Figure 7: Probabilistic latent variable model of the multi-view VAE model
used for shared representation learning from audio and EEG.

As we are essentially interested in the auditory information within
EEG signal, we formulate a default model with a single encoder, which
processes EEG. Here, z is a learnable space of auditory concepts
which are contained implicitly both in the audio and the EEG sig-
nal and which generate significant parts of both views. Effectively,
this projects both audio and EEG signal into the shared latent space
z, while amortized inference on z is done exclusively using the EEG

input. By declaring the prior p(z), p(audio | eeg), and p(EEG | z) to
be Gaussian, we ensure that the projections E[z | audio] and E[z | eeg]

of the maximum likelihood solution are in the same space as the pro-
jections through CCA. As we deal with the reconstruction of complex
EEG data, we parameterize the mean of pθ(EEG | z) with DNNs and
apply the same procedure for the mean of pθ(audio | z). The approx-
imate posterior qϕ(z | eeg) is optimized by a third DNN. The model
is trained by sampling from qϕ(z | eeg) and optimizing the lower
bound of the log likelihood L(eeg,audio; θ,ϕ). Like in conventional
VAEs, we optimize the reconstruction loss of audio and EEG decoder
and the KL divergence between the learned qϕ(z | eeg) and p(z) us-
ing the reparameterization trick [104].

3.3.4 Multimodal data and additional views

The model can be extended to arbitrary amount of decoders to re-
construct multiple views, as long as they are dependent mainly of a
shared latent variable. Here, we use several decoders to reconstruct
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different aspects of the audio signal: Mel spectrograms of the audio
stimuli, their loudness envelope as well as an additional decoder to
classify the trial types. Our main interest is the quality of the stim-
ulus and EEG reconstructions and we use the remaining decoders
only to enhance the training quality. Optionally, we could add addi-
tional encoders, by making use of additional private latent variables
introduced with the VCCA model. They could provide view-specific
aspects of additional input, e.g. from other modalities, such as fMRI,
audio or EEG signal during imagination. Figure 8 shows the modi-
fied VCCA architecture with one EEG decoder and two audio decoders.
Here, we test the model with a single EEG encoder and multiple de-
coders.

Figure 8: Model architecture for the proposed multi-view model from Fig-
ure 7. Latent variables parameterized by optional private encoders
are indicated with dashed lines.

3.3.5 EEG encoder architecture

Both NMED-T and OpenMIIR speech EEG encoders featured 4 convo-
lutional layers with filter numbers linearly ascending from 64 to 512

per layer. Convolution was performed on two dimensional inputs.
Each column of the input represented the same linear concatenation
of EEG channels for a single sample within the inputs of 1 s length.
This resulted in inputs of size 512*64 for the OpenMIIR speech and

40



3.4 experiment

125*125 channels for the NMED-T inputs. The kernel size was set to
[2x2] for all layers. Here and for all further kernel dimensions, we
define the first index to be within the channel domain (or frequency
for spectrograms) and the second within the temporal domain. Each
convolutional layer was followed by 30 % dropout.

3.3.6 EEG and audio decoder architectures

We used similar EEG decoder architectures for both datasets. The
OpenMIIR speech EEG decoder featured 6 hidden deconvolution lay-
ers with three layers of 16 and another three layers of 32 filters. The
kernel size was set uniformly to [2x16] with stride 2 except for a [2x1]
kernel in the third layer with stride 1. A final dense output layer con-
sisted of 512*64 units. The decoder for the NMED-T dataset followed
the same deconvolution architecture, except for kernels with dimen-
sion of [4x16] and [4x1] instead of [2x16] and [2x1]. A final dense layer
consisted of 125*125 units. Both OpenMIIR speech and NMED-T de-
coders for Mel spectrograms consisted of four layers: Two deconvo-
lution layers of 32 filters and two layers with 64 filters. As the length
of Mel spectrograms mirrors those of the EEG excerpts, but in com-
bination with a frequency resolution of 64 bins, the final dense layer
featured 512*64 and 125*64 units respectively. The kernel dimensions
were set to [4x8] uniformly, except for the fourth deconvolution layer
of the OpenMIIR speech decoder, with a [2x8] kernel. The decoder for
loudness envelope reconstruction consisted of a bidirectional LSTM

layer with 128 hidden units, followed by a dense layer of size equal to
the length of the audio excerpt. Finally, the decoder used for classifi-
cation of the OpenMIIR speech dataset consisted of two hidden dense
layers with 32 filters and a dense output layer of 1 unit. All internal
units used ReLU activations, all output units had sigmoid activation.
The size of the latent embedding was 128 units.

3.4 experiment

3.4.1 Model training and prediction

The model was trained both intra-subject and cross-subject in an end-
to-end fashion purely on the perception trials using Adam optimiza-
tion with a constant learning rate of 0.0001 [103]. For both datasets we
used 60 % of available perception trials for training and another 20

% for validation. The remaining 20 % and the imagination trials were
used for testing. All trials were shuffled randomly before training.
For tests on imagination data, we evaluated both imagination trials
whose corresponding perception trials were included in the training
as well as entirely unknown trials. All models were trained up to con-
vergence of the Mel spectrogram reconstruction loss, between 1000-
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2000 epochs. Reconstruction loss was computed as the mean squared
error between reconstructions and targets.

3.4.2 Introspection

After training we inspected the learned latent space by linearly inter-
polating between multiple existing EEG inputs extracted either from
the training or testing dataset. This way, we received embeddings for
the given inputs as well as a fixed number of embeddings that con-
nect them in the learned projection space. We then used the model to
reconstruct the Mel spectrogram and EEG signal for the embeddings.

3.5 results

3.5.1 Perceived stimulus reconstruction

We were able to use the model to reconstruct the Mel spectrograms
of perceived audio within both datasets at various levels of accuracy.
Figure 9 shows reconstructions of speech and sine wave tone pat-
terns for intra-subject training and testing on both trial types of the
OpenMIIR speech dataset. The reconstructions are characterized by
rhythmical and timbral alignment with the target. In some cases we
noticed erroneous temporal shifts of the whole predicted rhythmical
pattern within a reconstructed excerpt. Additional tests with smaller
window sizes lead to a decrease in amount and size of such errors,
while increasing the amount of false positive predictions of both sine
wave and speech patterns. In some cases speech and sine wave pat-
terns were mixed up, but still with correct temporal alignment of
note onset positions between target and predictions. Figure 10 shows
reconstructions after training on all subjects of the OpenMIIR speech
dataset. Multi-subject training lead to results with improved tempo-
ral alignment of targets and predictions. Here, in more cases the two
timbres (sine wave and speech pattern) were confused. This indicates
that the correct prediction of the timbre is more subject-specific than
the temporal and rhythmical aspects. Increasing the amount of train-
ing data for both trials enhanced the overall reconstruction quality,
training only on the speech trials still lead to temporally meaningful
reconstructions of the sine wave tone patterns. We found the stim-
ulus reconstruction quality to be best when including 4 subjects for
cross-subject training and testing.

Increasing the amount of dropout within the EEG decoder (up to 40

%) turned out to be beneficial for reconstructions of comparable qual-
ity for trials in subjects that were excluded entirely from the training
procedure. Training with randomized window start positions and us-
ing overlapping overlapping temporal windows proved to enhance
the reconstruction quality. This indicates that the spectrogram recon-
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Figure 9: Mel spectrogram reconstructions of perceived rhythmical trials for
model trained on subject ’P13’ of the OpenMIIR speech dataset.
Target stimuli are presented above their reconstructions.
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Figure 10: Mel spectrogram reconstructions of perceived rhythmical trials
for model trained on all subjects of the OpenMIIR speech dataset.
Target stimuli are presented above their reconstructions.

struction quality for this dataset is limited by the amount of available
training data suggests the use of more elaborate data augmentation
techniques or increased data set sizes in future work.

Compared to the OpenMIIR dataset, the NMED-T dataset provided
more training data with increased target complexity. The reconstruc-
tions showed different characteristic in visual inspection. Often times,
the timbre reconstruction dominated the reconstruction of tempo-
ral aspects, especially in parts that featured multiple instruments or
singing voice. In fewer cases, but within all songs, noticeable onsets of
percussion, speech or other sounds were reconstructed. For all trained
models, timbre reconstruction was visible after around 500 epochs,
while temporal aspects were learned at later stages. Figure 11 pro-
vides examples for reconstructed excerpts of the perceived full-length
songs contained in the NMED-T dataset. We found no substantial
difference in the quality of reconstructions within subjects included
into training and those from subjects excluded during training. This
might be due to the small amount and long duration of 10 stimuli
in combination with a single presentation per stimulus. Increasing
the dropout rate after each convolutional layer in the EEG encoder
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over 30 % increased the models tendency to reconstruct temporal as-
pects, such as percussion onsets. Training sets with a larger amount
of subjects generally improved reconstruction quality. Furthermore,
the introduction of overlapping EEG input windows increased the
amount of reconstructed temporal features. Models trained for more
than 2000 epochs showed more sparse reconstruction within the fre-
quency domain. This indicates that adding more data and increasing
training length can further increase the reconstruction quality for nat-
uralistic music. Often times, the size of temporal misalignment was
equal at all positions within reconstructed excerpts. This indicates
that the reconstruction quality is dependent of the window size. Fu-
ture work could test this assumption by simultaneously training on
EEG or audio excerpts of various sizes within different encoders of
the model. This would furthermore allow the representation of the
latent concepts to include contexts of various size. For example, in
the audio domain, such contexts could range from single note onsets
to changes in song structure.

3.5.2 Imagined stimulus reconstruction

VCCA models trained on perceptual OpenMIIR speech data could be
applied to imagination trial reconstruction. The reconstructed stimuli
showed the same typical rhythmical patterns and could be divided
into speech and sine wave predictions. However, the correct rhythmi-
cal predictions were less often visible and more blurry. It is impor-
tant to note that the imagination was performed superimposed on
a constant metronome click. This means that only the difference be-
tween the rhythmical structure and timbre was based on imaginative
processes, while there were still perceptual cues for temporal align-
ment. Models trained on multi-subject perceptual data showed less
blurry reconstructions. Adding private encoders with imagination
based EEG signal did not cause a visible increase in reconstruction
quality.

3.5.3 Qualitative analysis of learned auditory concepts

We found musically meaningful representations of the OpenMIIR
speech stimuli in the latent space of models trained intra-subject as
well as cross-subject. Both EEG signal from training and testing sub-
sets could be used to produce continuous interpolation. Processing
EEG inputs from both testing and training data sets and using the
target audio stimuli as validation, we found continuous representa-
tion across the temporal, rhythmical and timbral domain. For any
given input, we could change the temporal position of the rhyth-
mical pattern as well as the timbre (within speech and sine wave
tones). Furthermore, the latent space enabled interpolation between
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Figure 11: Excerpts of reconstructed Mel spectrograms from the NMED-T
dataset. The target stimuli are shown above their reconstructions.
The two top rows are based on training on all subjects. The three
bottom rows are based on training on 10 subjects and testing on
subjects that were excluded during training.
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metronome clicks and the superimposed sine wave tones, although
with decreased clarity on the test set. Figure 12 (a) shows an example
for the interpolation between 3 embeddings based on EEG inputs of
the OpenMIIR speech training data set. Here, interpolation between
a syncopated and non-syncopated part of the rhythm was done while
simultaneously shifting the temporal position of the rhythmical pat-
tern within the reconstructed excerpt. The non-syncopated excerpt
was further interpolated into its representation with speech signal.
Figure 12 (b) shows topographic projections of the brain activity re-
constructed for each embedding that was computed in Subfigure (a).
For the sake of clarity we show six topographic plots out of the to-
tal amount of 512 per embedding. Qualitative comparison of the EEG

signal with the original inputs indicated that overfitting the EEG data
is not possible when we stop training when the audio reconstruction
loss is saturated. For other use cases, higher quality EEG reconstruc-
tions could be achieved with different training procedures, such as
unsupervised EEG reconstruction pretraining. Models with smaller
latent embeddings sizes (down to 8 latent units) did still produce
meaningful and continuous interpolations, but with more blurring
across the temporal and frequency domains.

3.6 training on averaged eeg data

The previous sections covered a mostly qualitative evaluation of the
reconstructed stimuli and the structure of the learned latent space.
We found that a reduction of encoder and decoder complexity still
leads to meaningful results, while reducing the need to regularize
the encoder model via high dropout rates. For this reason, in this
section we present a simplified architecture with less parameters that
features only two decoder networks (for EEG and audio) and report
results for the OpenMIIR and NMED-T dataset. In particular, we fo-
cus on training with averaged EEG inputs and the influence of the
relative and absolute weighting of the reconstruction losses and the
size of the latent space. For this, we evaluate the model on EEG sig-
nal after averaging across subjects (within individual trials) or across
trials (within the same subject). This averaging of temporally aligned
EEG data is a common technique in the analysis of evoked responses
[77, 147, 185, 190]. Next to analysing model predictions by averag-
ing over inputs, we also include averaged EEG data in the training
set, under the hypothesis that it improves the generalization of the
model. For model evaluation we resort to the mean squared error
MSE = 1

n

∑n
i=1 (yi − ŷi)

2 between the true data y and predictions ŷ.
Additionally, in order to assess the perceptual quality of reconstruc-
tion in terms of texture, we resort to the structural similarity index
measure (SSIM) with a window size of 7 [218].
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Figure 12: (a) Reconstructed Mel spectrograms after interpolation in the
learned latent space learned for Subject ’P13’ of the OpenMIIR
speech dataset. Embeddings that correspond to real EEG inputs
are indicated with blue frames. (b) Topographic visualization of
the reconstructed temporal brain activity. Each row represents the
brain activity reconstructed for the embedding in the same row
of Subfigure (a).
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3.6.0.1 Model structure and training

The simplified model uses similar decoders for both OpenMIIR and
NMED-T dataset: A dense layer projects the latent state (with size
32 or 128) to a hidden dimension of [1x512], followed by 4 convolu-
tional layers, featuring 64 and 32 filters of size [4x2], respectively. A
final convolutional layer with the same filter size maps the output
towards a single channel prediction. All hidden layers used a ReLU

activation, followed by a Sigmoid at the output layer. We adjusted
for the differently sized EEG shape in the OpenMIIR dataset by sim-
ply cropping the respective decoder’s output. The encoders for both
datasets featured six convolutional layers, each with a filter size of
[4,2]. Again, the hidden layers are ReLU activated. The final convo-
lutional layer maps its input to either 1024 units (NMED-T) or 512

units (OpenMIIR). For the NMED-T dataset, we used linearly ascend-
ing channels, ranging from 32 at the input layer to 512 at the fifth
layer. The OpenMIIR model was significantly smaller and used two
convolutional layers with 32 followed by another three convolutional
layers with 64 channels. For the following experiments we did not
use dropout in encoder or decoder networks. We trained all models
for 3e5 steps using the Adam optimiser at a learning rate of 1e−4 and
a batch size of 64.

3.6.1 Results on NMED-T

We trained the larger of the two models on the NMED-T dataset after
averaging the input EEG signal over subjects, keeping the separation
into songs (i.e. intra-subject trials) intact. We held out every tenth in-
put window from the training set, resulting in a test set that covers
portions of the entire song. We will refer to this test set split as "win-
dowed test set". We also held out the final 10% of all songs, resulting
in a second subset of the dataset that we refer to as "continuous test
set". It should be noted that averaging across subject further decreases
the size of the dataset, but possibly provides inputs that are easier to
process, due to the elimination of noise in the signal. Table 1 provides
an overview of the results on continuous and windowed test set for a
model with 32 latent units.

Table 2 lists the same quantities for a larger model with 128 latent
units. Both report the mean and standard deviation of three indepen-
dent runs with randomly initialised weights and biases. We found
that the variant with a higher weight γEEG = 10 for the EEG recon-
struction loss consistently scored better in terms of mean squared
error (MSE) on the EEG reconstruction and SSIM scores for both au-
dio and EEG (while the MSE on audio generally decreased). This in-
dicates that increasing the weighting of the EEG reconstruction term
in comparison to the KL regularization term and the audio input

49



shared representation of audio and eeg

z = 32

γEEG split MSEaudio MSEEEG SSIMaudio SSIMEEG

1.0 C 0.027±0.016 0.009±0.001 0.184±0.054 0.242±0.036

10.0 C 0.029±0.018 0.007±0.001 0.194±0.051 0.284±0.039

1.0 W 0.03±0.027 0.008±0.001 0.178±0.055 0.256±0.039

10.0 W 0.032±0.026 0.007±0.001 0.183±0.048 0.3±0.042

Table 1: Mean squared error (MSE) and Structural Similarity (SSIM) results
on the continuous and windowed test sets of the NMEDT-T dataset
for a model with 32 latent units. Reported are mean and standard
deviation for three runs.

generally improves the learned representations. Performance gener-
ally degraded when raising the γ weighting of audio reconstructions
instead of EEG reconstructions. We found that training models the sig-
nificantly longer than 3e5 weight updates, e.g. up to 1e6 steps does
still increase reconstruction quality on the training set, but does not
improve the test results, i.e. the model overfits the training data. We
found that, in terms of MSE and SSIM accuracy, the audio reconstruc-
tion works slightly better on the continuous test set compared to the
windowed test set. A possible explanation for this difference is the
lack of familiarity and entrainment of the human brain response at
the beginning of the songs. Since the continuous test set is extracted
from the end of each song, repetitive aspects of the song are already
known. Another possible explanation is the simpler musical struc-
ture towards the end of pop songs, such as included in the NMED-T
dataset, which often include a "fade-out" with reduced instrumen-
tation towards the end. Still, the overall differences between model
variants is consistent between both test sets.

z = 128

γEEG split MSEaudio MSEEEG SSIMaudio SSIMEEG

1.0 C 0.027±0.019 0.008±0.001 0.189±0.061 0.243±0.036

10.0 C 0.026±0.018 0.005±0.001 0.192±0.055 0.472±0.035

1.0 W 0.03±0.025 0.008±0.001 0.177±0.06 0.258±0.039

10.0 W 0.03±0.028 0.005±0.0 0.185±0.054 0.485±0.036

Table 2: Mean squared error (MSE) and Structural Similarity (SSIM) results
on the continuous and windowed test sets of the NMEDT-T dataset
for a model with 128 latent units. Reported are mean and standard
deviation for three runs.
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3.6.2 Results on OpenMIIR

We also trained and evaluated the previously best performing model
(with 128 latent units γEEG = 10) on the OpenMIIR speech dataset,
by including averaged and individual data in the training set. Here
we focused on the trials of the perception condition. Again, we we
held out the final 10% of all trials for testing. The OpenMIIR dataset
has significantly shorter trial lengths. In order to guarantee as much
training data as possible, we did not reserve windows throughout
the entire trial for testing. We trained two variants of the model: One
variant that is trained exclusively EEG signals on a per-subject and per-
trial basis, i.e. without any averaging of the inputs. The second variant
was trained on an extended training set that included averaged EEG

inputs representing the mean across subjects (keeping separate trials)
and the mean across trials (keeping individual subjects).

z = 128

Test Model MSEaudio MSEEEG SSIMaudio SSIMEEG

S S 0.044±0.025 0.011±0.003 0.216±0.126 0.716±0.058

S S&M 0.046±0.027 0.012±0.003 0.229±0.141 0.703±0.057

M S 0.044±0.028 0.003±0.0 0.175±0.083 0.718±0.02

M S&M 0.042±0.027 0.004±0.0 0.265±0.175 0.701±0.019

Table 3: Mean squared error (MSE) and Structural Similarity (SSIM) results
on the test set of the OpenMIIR dataset. The test set is divided
into reconstructions from per-subject and per-trial EEG (S) and
from EEG inputs after averaging across subjects (M). The model
is trained either with (S&M) or without (S) including EEG data that
has been averaged across subjects. Reported are mean and standard
deviation for three runs.

Table 3 reports the corresponding MSE and SSIM scores on the Open-
MIIR test set with respect to mean and standard deviation of three
runs with randomly initialised model parameters. Here, we report re-
sults on two subsets of the training data: A subset with per-subject
and per-trial EEG (S) and another subset with EEG inputs after averag-
ing across subjects (M). Similarly, we denote the model trained on the
extended dataset with modelS&M and the model without averaged
training data as modelS. As expected, the accuracy of audio recon-
struction from modelS&M improve over modelS on the test set with
mean EEG. The EEG reconstruction accuracy however was slightly bet-
ter for modelS on both subsets of the test set. Interestingly, the audio
SSIM score of modelS&M improved over modelS on the per-subject
test set (S). This improvement in audio SSIM however is in contrast to
a worse performance with respect to the MSE for this subset.
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3.6.2.1 Reconstructions from averaged EEG

Figure 13: Reconstructing audio stimuli from averaged EEG inputs after
training the model the OpenMIIR dataset with additional av-
eraged EEG data. Shown are all 16 different trial types, i.e. 8

rhythmic (top row) and the corresponding 8 speech trials (bot-
tom row). EEG inputs are either averaged across subjects, over
trials or across both dimensions.

After evaluating the influence of adding averaged EEG data to the
OpenMIIR training set quantitatively, we now qualitatively inspect
the predictions made from averaged EEG inputs. Here we report re-
sults from the model trained on individual and averaged EEG inputs.
Additional results from a model trained without averaged EEG data
can be found Figure 46 in the Appendix. In this context, we infer EEG

inputs that have been averaged across the following the subject and
trial domain:
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1. average subject and per-trial EEG

2. per-subject and average trial EEG

3. average subject and average trial EEG

Figure 13 shows the corresponding reconstructions from the model.
Shown are all 16 different trial types, i.e. 8 rhythmic and the cor-
responding 8 speech trials. All three evaluated conditions showed
a separation between rhythmic and speech trials in terms of stimu-
lus sparsity in the timbral domain. A significant difference is notice-
able between the reconstructions made from averaged EEG (keeping
individual trials separated) and those from averaged trials (keeping
individual subjects separated). In the second condition, significantly
more speech-like reconstructions were assigned to EEG inputs from
rhythmic trials. In contrast, the temporal alignment of speech recon-
structions was visually improved in the second condition. Averaging
over both subjects and trials led to more pronounced reconstructions
with increased sparsity especially for the rhythmic trials. Upon vi-
sual inspection, in this configuration the temporal alignment further
increased. Interestingly, in some cases a temporally aligned rhythmic
reconstruction was replaced with a speech reconstruction. This indi-
cates that the model aligns stimulus reconstructions with onsets de-
tected in the EEG input, even if the timbral reconstruction sometimes
fails entirely.

3.6.2.2 Averaging audio reconstructions

Next to averaging the inputs to the model and evaluating the corre-
sponding reconstructions, we can also average the audio reconstruc-
tions themselves. In this context we first infer audio reconstructions
from

1. per-subject and per-trial EEG

2. average subject and per-trial EEG

3. per-subject and average trial EEG

and average over audio reconstructions subsequently. Figure 14

shows the corresponding averaged audio reconstructions from the
model. In contrast to the previous section, the audio reconstructions
now refer to the mean across multiple reconstructions instead of a
single reconstruction from an averaged input. We found that the
included variance of multiple audio reconstructions was reflected
strongly in the mean. In particular, for per-subject and per-trial pre-
dictions, the corresponding reconstructions showed strong temporal
smearing in the timbral domain, although a temporal alignment with
the metronome clicks was still noticeable. This indicates that the
model generates predictions with a large variance between trials. The
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Figure 14: Averaged audio reconstructions from a model trained on the
OpenMIIR dataset with additional averaged EEG data. First, pre-
dictions are made from individual EEG inputs or from EEG that
has been averaged across subjects (within the same trial) or across
trials (within the same subject). After inference, the mean of the
audio reconstructions is computed for each trial.

temporal smearing was reduced for averaged EEG inputs. Averaging
across subjects or across trials leads to reconstructions that reflect
the variance in only one of these domains. As visible in Figure 14,
the corresponding reconstructions show an increased sparsity and a
more pronounced temporal alignment to the target stimuli, although
worse than the individual reconstructions presented in the previous
section. A visualization of the results from the model trained without
averaged EEG data can be found in Figure 45 in the Appendix.
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3.7 discussion

Despite having only a single hierarchical latent variable, VAEs are a
useful model to approach shared representation learning across per-
ceptual signals and related evoked responses in the human brain.
From the perspective of Bayesian inference, the evaluated model
learns a joint generative model, where surprise connected to sensory
data yeeg is minimized jointly with surprise about the correspond-
ing brain signal yeeg under a hypothesis generated from the joint
latent distribution z. Our results indicate that learning such joint rep-
resentations, although a relatively naive approach, allows to retrieve
structured information about sensory data from complex and noisy
brain signal.

Throughout the conducted experiments, EEG and audio signals
(due to their two-dimensional representation as mel spectrograms)
are processed using deep neural networks that process spatial as-
pects of the input explicitly. This allows for efficient processing using
convolutions. From a modelling perspective, the expressiveness of a
unit-wise squared-error signal is relatively limited, especially when
the variance of the decoder network is ignored, which is a simplifi-
cation taken in many VAE based studies [104, 178]. Such a unit-wise
reconstruction loss considers only the relative difference between the
predicted and observed mean, without considering (expected) uncer-
tainty. EEG signals contain significant amounts of noise, primarily due
to the recorded signal itself being a complex signal from many dif-
ferent neural sources and due the additional noise induced by the
physical electrodes being attached to the skin. Estimating the uncer-
tainty at the output of the VAE’s decoders (i.e. independently for each
modality) is possible, but increases model complexity.

This means that the presented model might be limited by the sim-
plified approach to temporal processing. Treating the temporal axis of
inputs (within temporal windows of fixed size) like a spatial domain
allows to use a static model. From a Bayesian filtering perspective,
the optimization of model weights is usually done with respect to
integrals over time, i.e. with respect to temporal averages over multi-
ple inference steps. Inference on temporally changing states, however,
is usually expressed in terms of inference on individual (discrete)
timesteps, such as in the Kalman filter or in recurrent neural net-
works [95, 177]. This means that from a high level perspective, the
static approach taken here is meaningful in terms of overall param-
eter learning, but makes a strong simplification regarding temporal
inference. If we interpret the brain as Bayesian filter under the FEP,
temporal inference is usually causal with respect to the temporal past
[49, 51]. This means that surprise (in terms of VFE) about new infor-
mation (e.g. the onset of new note) is a function that depends on the
stimulus in the past, as well as top-down expectations. However, since
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we restrict inference to be conditioned only on the brain signal and
process entire sequences of data, we can disregard such temporally
causal processing in the stimulus domain and still recover meaning-
ful predictions.

3.8 summary

In this chapter, we presented the application of a multi-view VAE

model to shared auditory concept learning and musical stimulus re-
construction from EEG signals. We showed that the model can learn
representations of simple rhythm and timbre related concepts that
are shared in audio and EEG data. Furthermore, we could see first
steps towards naturalistic music and imagined stimulus reconstruc-
tion. The presented experiments provide insights on the application
of free energy optimisation as a canonical computational motif to
shared processing in humans and machines, with a focus on per-
ceptual representations. The discussed multi-view framework is de-
signed to be expandable to additional modalities, such as fMRI data,
or additional reconstruction targets, such as emotional aspects of mu-
sic cognition. In combination with the ability to perform introspec-
tion on the shared representation of stimuli and electrophysiological
responses, the model can be an aid for future EEG based music in-
formation retrieval and research in music cognition. The following
chapters will focus on more elaborate models under the FEP that ad-
dress temporal and hierarchical inference in greater depth.
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4
P R E D N E T A N D P R E D I C T I V E C O D I N G

In the domain of deep learning, an influential PC inspired DNN archi-
tecture has been proposed by William Lotter and colleagues, that fo-
cuses on unsupervised future frame prediction in video frames [124].
Due to state-of-the art performance on several video prediction tasks,
PredNet has received an substantial amount of attention since its pub-
lication. Several works have introduced changes to the architecture
to increase performance, or to adapt the model in domains outside
video prediction, e.g. in robotics. With respect to the model archi-
tecture, PredNet combines several relevant structural motifs that are
present in hierarchical PC networks in neuroscience, such as layer-
wise error computation and a top-down pathway. As we will see in
this chapter, it is difficult to map the underlying generative model
to the established PC process models in neuroscience. Nevertheless,
PredNet has been shown to reproduce a set of cognitive phenomena,
such as illusory motions, making it an interesting and performant
baseline for PC based models in machine learning. In this chapter,
we provide a review of PredNet from the perspective of hierarchical
PC in neuroscience. In this context, we first compare PredNet to the
structure of predictive coding networks. We then quantitatively in-
vestigate the role of top-down information in the hierarchical model,
by including a label classification module as a modification to the
network.

The content and figures in this chapter is based on the following
publication:

[pub:7] R. P. Rane, E. Szügyi, V. Saxena, A. Ofner, and S. Stober.
“Prednet and predictive coding: A critical review.” In: Proceed-
ings of the 2020 International Conference on Multimedia Retrieval
(ICMR). 2020, pp. 233–241

The paper builds upon methods developed within a student project
by Roshan Prakash Rane, Edit Szügyi and Vageesh Saxena which has
been directed and supervised by thesis author. All three students con-
tributed equally to the implementation and analysis for the described
experiments and were involved in writing the paper. This chapter
summarizes their work and results, meaning that most credit goes to
them.

structure of the chapter

The rest of this chapter is organized as follows:
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Section 4.1 briefly introduces core components of the PredNet ar-
chitecture and provides a comparison to hierarchical and dynami-
cal predictive coding in neuroscience. Section 4.2 covers related work
based on deep predictive coding. Section 4.3 introduces the employed
datasets and explains how PredNet can be evaluated with respect to
a conditioning on top-down labels. Section 4.5 presents quantitative
and qualitative results for PredNet and the proposed variant with
top-down conditioning. Finally, section 4.6 discusses the results and
summarizes the insights of this chapter.

4.1 introduction

PredNet is an influential video prediction architecture that models a
hierarchy of recurrent representations in a deterministic DNN archi-
tecture [124]. A core aspect of PredNet is a hierarchical, i.e. layer-wise
prediction of the prediction error of the lower layer. Each hierarchical
layer in PredNet i consists of recurrent representations Ri that gen-
erate local predictions Âi using a convolutional prediction unit. The
prediction in each layer is compared to the output of an input con-
volution unit Ai, that applies a convolution and pooling operation to
the layer’s input, thereby down-sampling it spatially. Each layer com-
putes errors Ei as the difference between prediction and observation.
Crucially, the input to Ai for the lowest hierarchical layer is the obser-
vation o, while the prediction errors Ei are propagated upwards and
provide the input Ai+1 to the next layer. This means that only the low-
est hierarchical layer predicts data, while hidden hierarchical layers
predict prediction errors. Next to this bottom-up flow of prediction
errors, the representation Ri in each layer additionally is provided
with a top-down source of information that stems from the recurrent
representation Ri+1 of the next higher layer and involves a spatial up-
sampling step. The prediction error Ei within a layer is furthermore
passed to the representation units Ri of that layer. In PredNet, the
recurrent units are implemented as convolutional LSTMs (ConvLSTMs)
[230]. In combination with convolutional prediction and input net-
works, the architecture is particularly suited for spatio-temporal data.

The layer-wise prediction of prediction errors is in contrast to predict-
ing the states of the respective layer in hierarchical PC models in neu-
roscience. While this difference might seem subtle at first, it makes it
quite difficult to interpret the generative model that underlies Pred-
Net. Figure 15 shows a schematic comparison between the PredNet
architecture and the connectivity required for hierarchical predictive
coding in neuroscience.
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PredNet Hierarchical predictive coding

Figure 15: A comparison of PredNet [124] and the structure of hierarchi-
cal PC networks in neuroscience [49, 51]. Shown are determin-
istic nodes (square) and probabilistic nodes (round) as well as
the connectivity between two neighboring hierarchical layers. In
PredNet, differences between predicted and observed error sig-
nals are propagated, while hierarchical PC propagates the error
signal between predicted and expected states.

4.2 related work

Recent years have seen the development of several DNN models that
are inspired by the working principles of predictive coding [71, 125,
212]. Often, this class of models is referred to as "deep predictive
coding". These deep predictive coding models include object recogni-
tion from static inputs [223] or include recurrence for local recurrent
processing of encoded representations [71]. There has been work fo-
cusing specifically on contrastive predictive learning, e.g. CPC [212]
in the context of an autoregressive model, where the focus lies on
learning informative representations in latent space. Next to the Pred-
Net architecture itself, the model evaluated in detail in this chapter,
there exist several modifications using PredNet as a starting point.
These include AFA-PredNet, which extends PredNet with motor ac-
tions that modulate the generative model [234]. The same authors
proposed another variant, MTA-PredNet, which models various tem-
poral scales along the hierarchy [235]. Similarly, there have been at-
tempts at making the baseline PredNet architecture more efficient by
adding skip-connectivity or to reducing the complexity of the gating
process in the recurrent units [43, 181]. PredNet has been evaluated
in a variety of contexts, such as weather precipitation, autonomous
driving or robotics applications [181, 235]. Interestingly, PredNet’s
spatio-temporal predictions have been shown to be susceptible to vi-
sual illusions, similar to human cognition [221]. Nevertheless, none
of these studies specifically reviews and analyses the model from the
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perspective of hierarchical predictive coding as a process model in
neuroscience.

4.3 methods and data

4.3.1 The something-something dataset

For the following experiments conducted in their project work,
Prakash Rane, Edit Szügyi and Vageesh Saxena resort to the
something-something dataset, a large scale video classification
dataset covering humans executing actions in the context of everyday
objects [66]. The dataset is crowd-sourced and includes a large vari-
ety of the noise underlying real world actions, including thousands
of different objects, various lighting and background conditions and
camera motion. In contrast to related datasets, which usually include
relatively coarse-grained labels, the something-something dataset of-
fers fine-grained action labels [73, 97, 112]. Using coarse-grained ac-
tions often allows a model to infer the correct label simply using
static inputs, e.g. inferring the label ‘soccer’ from a green field. In
contrast, the something-something dataset contains labels, such as
‘putting something on a table’, ‘pretending to put something on a
table’ or ‘putting something on a slanted surface so it slides down’,
which are substantially more difficult to infer.

4.3.2 PredNet+ model

In their project work, Prakash Rane, Edit Szügyi and Vageesh Sax-
ena implemented a modification to the PredNet architecture called
PredNet+. The main idea is to extend the baseline model using an
additional label classification module that is connected to the hierar-
chically highest representation layer. Figure 16 schematically shows
the signal flow through this additional unit.

This additional module consists of two main parts: An encoder part
transforms the outputs of the hierarchically highest representation
units into probabilities over class labels using two ConvLSTM layers.
These label classes are then projected back to the spatial domain and
fed back to the top-down pathway. Throughout their experiments,
Prakash Rane, Edit Szügyi and Vageesh Saxena apply this label clas-
sification for each frame. For each frame, the weighted sum is passed
through a softmax function to get the final class probabilities. To deal
with the beginning of the video, where no context for meaningful
predictions is available, they use weighing-over-time using an expo-
nential function. PredNet+ is designed such that the latent features at
the top-most representation layer are shared between two tasks: La-
bel classification and future frame prediction. The future frame pre-
dictions are conditioned on the label predictions made by the label
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Label 

classification

unit

Figure 16: The proposed PredNet+ architecture with an additional classifi-
cation module. Shown are the representation units (green) of the
hierarchically deepest layer and the hierarchical layer below.

classification unit. The highest hierarchical layer is chosen, since it
has has the largest spatio-temporal receptive field. We hypothesize
that such a setup improves the results on both sub-tasks, as several
previous multi-task studies indicate [24, 64].

4.3.3 Evaluation metrics

Generally speaking, there is no "best choice" for an evaluation met-
ric for images [29, 132]. Thus, throughout their experiments, Prakash
Rane, Edit Szügyi and Vageesh Saxena use three different evaluation
metrics in order to judge the quality of model’s predictions. For video
prediction tasks, they use two commonly used metrics: Peak Signal
Noise Ratio (PSNR) [132] and the Structural Similarity Index Measure
(SSIM) [219]. Like Mathieu, Couprie, and LeCun [132], they calculate
PSNR and SSIM only for the frames which have movement with re-
spect to the previous frame and call them "PSNR movement" and
"SSIM movement" respectively. This choice is important, since action
videos are often short in duration, i.e. cover only few frames. This
increases the risk of rewarding the model for simply predicting a
still image. Additionally, they use a third metric called "conditioned
SSIM":

SSIMcond = (SSIMmax − SSIM(at−1,predt)) ∗ SSIM(at,predt)

(39)
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where at denotes the actual observation at timestep t. This condi-
tioned SSIM metric measures how different the predictions are from
the previous frame. This can be interpreted as measuring the "risk"
in the model’s prediction in comparison to simply copying the last
observed frame.

4.4 experiment

In their analysis, Prakash Rane, Edit Szügyi and Vageesh Saxena
focus on two different aspects: The first experiment evaluates the
performance of the baseline PredNet architecture on the something-
something dataset and includes a visualization of the network states
in the context of unsupervised prediction. The second and third ex-
periment focus on the additional classification module, where super-
vised label classification is done simultaneously with video predic-
tion.

4.4.1 Unsupervised prediction on the something-something dataset

In the first experiment, the baseline PredNet architecture is trained on
the something-something dataset using 10 different hyperparameters
settings with a different number of layers, channels per layer, input
image size and frames-per-second (FPS) settings. Furthermore, two
different loss variants are tested: L0 and Lall. Models trained with
L0 use only the lowest hierarchical layer to compute the parameter
gradients, while the Lall uses all layer’s errors. Table 4 lists the eval-
uated settings. After running the models, Prakash Rane, Edit Szügyi
and Vageesh Saxena visualize the encoded states in each layer of the
model using the average activation of all channels in a layer. This
approach is inspired by related work and can deliver insightful in-
formation, despite a reduction of complexity [71]. They additionally
plot the mean of the error signals Ei and representations Ri in every
layer throughout the duration of a video. A visualization example is
shown in Figure 17.

Prakash Rane, Edit Szügyi and Vageesh Saxena also evaluated the
possibility to generate long-term predictions with the PredNet model
by feeding back the prediction at time t as the input at the next time
step. Multi-step predictions can then be generated by repeating the
procedure n times until the end of the video is reached. Using this
approach they compared a model trained by using (t+n) prediction
to the baseline (t+ 1) model.

4.4.2 Classification with PredNet+

The second and third experiment use the proposed PredNet+ model
and evaluate its performance on multi-task learning, where action la-
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Frame Image Number

Model rate Layers size of Loss

(FPS) (pixel) param.

0 3 4 48 X 56 6.9 L0

1 6 4 48 X 56 6.9 L0

2 12 4 48 X 56 6.9 L0

3 12 4 32 X 48 6.9 L0

4 12 5 48 X 80 5.3 L0

5 12 6 64 X 96 5.8 L0

6 12 7 128 X 192 6.2 L0

7 12 6 96 X 160 7.2 L0

8 12 5 48 X 80 5.3 Lall

9 12 6 64 X 96 5.8 Lall

Table 4: Evaluated model configurations. Similar models are grouped with
horizontal lines and the column that varies is marked in bold.

bel classification is done simultaneously with video prediction. The
model is trained on the something-something dataset and compared
to state-of-the art results in terms of classification accuracy. In this
context, Prakash Rane, Edit Szügyi and Vageesh Saxena evaluate only
the best models with 4,5 and 6 layers based on the best results in the
first experiment. In order to evaluate various aspects of the architec-
ture, they test three additional variations:

• Removal of the recurrent memory in the label classification unit
by replacing the ConvLSTM with convolution layers

• Extension of the label classification loss function such that the
model is rewarded for predicting at least the correct verb in the
label

• Modification of the loss weightings to control the relative im-
portance of the classification and prediction task

4.4.3 PredNet+ on synthetic data

The third and final experiment evaluates the influence of the addi-
tional top-down conditioning in the proposed PredNet+ model in a
simplified and controllable, synthetic dataset. In this context, Prakash
Rane, Edit Szügyi and Vageesh Saxena use a modified version of the
moving MNIST dataset designed specifically for this purpose [198].
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This dataset features a static background consisting of randomly gen-
erated overlapping geometric shapes, and a single hand-written digit
moving in one of eight directions. Labels for each frame indicate the
direction of the digits movement. An example from this dataset is
shown in Figure 24. In order to evaluate the influence of the addi-
tional top-down information on the prediction accuracy, they keep
track of spatio-temporal prediction performance, while using the
movement label classification as an auxiliary task.

4.5 results

The following sections summarize the quantitative and qualitative
results obtained by Prakash Rane, Edit Szügyi and Vageesh Saxena in
the previously described experiments with PredNet and the proposed
PredNet+ variant.

4.5.1 Unsupervised prediction on the something-something dataset

Upon inspection of the generated visualizations and the quantitative
results, several observations about PredNet can be made:

• Relevant features are learned better on videos with continuous
motion

• The model is sensitive to the temporal sampling frequency

• Model errors do not behave as hierarchical predictive coding
would predict

• The network design favors short-term over long-term predic-
tions

Generally speaking, the model appears to resort to previous-frame-
copy if there are no cues for motion in the previous frames. If there
is a cue for motion and if the direction of the motion is continuous
and the motion is smooth, it interpolates the object in the direction
of the motion. Otherwise, it blurs the region containing the object of
motion to reduce the L2 loss. Figure 17 shows a typical example for
the visualization of model states aligned to each predicted frame dur-
ing next frame prediction with the baseline PredNet model. When the
sampling frequency, or FPS setting, is reduced, the results are more
pronounced. An example for such low FPS setting is shown in Figure
18. In the context of the something-something dataset, this effect is
clearly noticeable, since it contains large amounts of still frames. It
should be noted, that this problem is less severe on datasets with con-
tinuous motion, such as the KITTI or moving faces datasets, which
have been previously used to evaluate PredNet [61, 125].
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Figure 17: Visualization of model states during next frame prediction. Each
column corresponds to a single time step, while rows resemble
the computed states in each layer.

Figure 18: Example of a low FPS video and the predictions made by Pred-
Net.

A comparison of model performance after training on videos with
FPS rates 3, 6 and 12 is displayed in Figure 19. Shown is the improve-
ment over a model that simply performs last-frame copying for each
metric. The resulting scores vary significantly between different tem-
poral resolutions and indicate that high resolution is necessary to see
significant improvements over the last-frame copying baseline. This
implies that the temporal resolution is a crucial hyper-parameter for
the model.

As explained in Section 4.1 PredNet’s layer-wise prediction of pre-
diction errors is in contrast to predicting the states of the respective
layer, as it is the case in hierarchical predictive coding models. This
makes it difficult to interpret the underlying generative model and
makes an empirical analysis necessary.

As visible in Figure 17, the average bottom-up error tends to in-
crease towards higher layers. Naively, one would expect the opposite
to happen, i.e. higher layers with more context to have smaller errors.
Interestingly, the original PredNet model generally performs better
with L0 loss, i.e. using only the error of the lowest hierarchical layer
to compute the gradients, while models trained with Lall perform
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Figure 19: Comparison of model performance with respect to the employed
frames-per-second rate (FPS). Shown is the model’s improvement
on a last-frame-copy baseline.

worse [125]. As displayed in Figure 20, similar results are observable
for the something-something dataset used here. From the perspective
of hierarchical predictive coding, this is surprising, since one would
expect models to benefit from a minimization of all layer’s losses.

Another insight in the workings of PredNet is that the states in
the lowest layer differ significantly from those in the higher layers.
Figure 17 shows an example for this difference. Similarly, the average
activation of the representation units is higher and follows a different
trajectory in comparison to the remaining layers. This indicates that
the first layer does the "actual" prediction, while the remaining layers
regress the prediction errors.

As expected, the models trained with multi-step prediction slightly
outperformed the single step baseline. Three extrapolations of the
best performing model (7) are shown in Figure 21. Most strikingly,
PredNet resorts to last-frame-copying after two time steps and creates
increasingly blurry predictions throughout the extrapolation. This
means that the generated predictions do not suffice to continue the
motion when being fed back to the model. Figure 22 shows model per-
formance in comparison to the last-frame-copy baseline dependent
on the starting position (in frames) of the extrapolation. The model
generally performs better when the extrapolation is started later in
the video and more temporal context is available.

These results indicate that PredNet is designed to excel at short-
term interpolation tasks in the context of videos with smooth motion
and high sampling rates. Generating long-term predictions, in con-
trast, is difficult to achieve.
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Figure 20: Influence of L0 and Lall loss on model performance. Scores show
the model’s improvement on a last-frame-copy baseline.

Figure 21: Extrapolating the best performing model. The red mark indicates
the extrapolation start.

4.5.2 Classification with PredNet+

Table 5 shows the best achieved classification accuracy on the
something-something dataset. For comparison, state-of-the-art results
by Mahdisoltani et al. [126] and the baseline model described by
Goyal et al. alongside the something-something dataset [66] are given.
The results clearly show that PredNet+ is far from the state-of-the-art.
Surprisingly, the classification results did not change at all (±0.6%)
for any of the tested model variations. This indicates that the features
from the top-most representation units do not carry information that
is central to the model’s performance.

Model Top-1

Baseline [66] 11.5

Ours 28.2

Mahdisoltani et al. [126] 51.38

Table 5: Classification accuracy on the something-something dataset.
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Figure 22: Performance with different starting points for extrapolation. t de-
notes the total number of frames in the video. The scores indicate
the improvement on a last-frame-copy baseline.

Interestingly, as shown in Figure 23, the accuracy of future frame
prediction in PredNet+ actually degrades in comparison to the un-
modified PredNet models. This effect gets even more severe, when
the classification task is given more importance by adjusting the rel-
ative weighting of classification over video prediction. These results
indicate, again, that the information learned in the highest hierarchi-
cal layer, although being meaningful for the classification task, does
not improve the video prediction.

Figure 23: Comparison of the best performing PredNet+ model with un-
modified PredNet models. The scores show the improvement
over a last-frame-copy baseline.
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4.5.3 PredNet+ on synthetic data

Both PredNet and Prednet+ generated meaningful predictions, with
comparable accuracy on the modified moving MNIST dataset. As vis-
ible in Figure 24, the predictions generally were more blurry in mov-
ing parts of the frame, in contrast to the static background. The mean
absolute errors from the last-frame-copy baseline model, PredNet and
PredNet+ are shown in Table 6.

(a) PredNet

(b) PredNet+

Figure 24: Model predictions on the modified moving MNIST dataset.

Including the additional classification task during video prediction
slightly improves the MAE score. Upon qualitative inspection, the
predictions of non-stationary parts looked sharper in PredNet+. This
indicates the potential of including semantic top-down information
to improve model performance, at least when the additional informa-
tion can directly be related to the observed frames.

Model MAE score

Previous-frame-copy 8e-050

PredNet 7.6e-05

PredNet+ 7.3e-05

Table 6: Comparison of Prednet and PredNet+ on the modified moving
MNIST dataset.

4.6 discussion

In this chapter, we have reviewed PredNet, a popular predictive cod-
ing inspired DNN model on a challenging dataset focusing on action
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classification. We found that PredNet’s architecture is different from
hierarchical predictive coding models. This is primarily because Pred-
Net predicts the error signal of lower layers instead of their states. We
found that PredNet appears to be tailored specifically towards short-
term predictions and often resorts to copying the last frame, espe-
cially when the temporal sampling frequency is too low or too high.
When the sampling frequency is low, the abrupt motion is difficult
to predict and leads to a simple last-frame copying strategy. Interest-
ingly, upon qualitative inspection, the model also resorts to last-frame
copying, when the sampling frequency is very high, i.e. minimal dif-
ference is between subsequent frames. We found that, in many cases,
PredNet outputs blurry predictions, possibly due to the lack of prob-
abilistic temporal predictions, which could cover multiple different
outcomes given the temporal past. As we used a challenging dataset,
there are many instances with multiple possible future frames. We fur-
ther tested the possibility to use PredNet in the context of action label
classification. To do so, we proposed a modification to the PredNet ar-
chitecture, that predicts action labels using the hierarchically highest
representation units. In the proposed model, the classification mod-
ule provides additional semantic top-down information to to lower
hierarchical layers. We found that PredNet+ performs far from the
state-of-the-art architectures and that, surprisingly, adding top-down
information worsens the video prediction performance. When evalu-
ated on a simple, synthetic dataset, the same modified architecture
outperforms PredNet by a slight margin. These results suggest that
PredNet is not a viable candidate for hierarchical predictive coding in
the context of deep neural networks. Although not specifically men-
tioned by the authors, PredNet could also interpreted as a strictly
dynamical model. In this context, predicting "errors of errors" makes
more sense, e.g. when modelling multiple orders of predicted motion.
Such investigations into the dynamical aspects of PredNet specifically,
however, are left to future work.
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5
VA R I AT I O N A L P R E D I C T I V E C O D I N G F O R A U D I O
A N D E E G

A major challenge in modelling free energy optimisation in deep neu-
ral networks is the inclusion of inference over temporal sequences. In
the previous section, the aspect of observations arriving sequentially
in time has been simplified, by simply treating sequences of fixed
length as static observations. This however, is not in line with process
models under the Free Energy Principle, which usually formulate
temporal inference as a process of Bayesian filtering. In Bayesian filter-
ing schemes, such as dynamical predictive coding, inference is made
while new observations are encountered, with respect to information
extracted from past observations and hierarchical ("top-down") pri-
ors [49, 51]. This chapter focuses on designing a deep recurrent archi-
tecture that models temporal information sequentially, one discrete
observation at a time. In contrast to existing deep RNN models that
are inspired by predictive coding, such as PredNet [124], the model
explicitly models a hierarchical Bayesian latent variable model with
Gaussian latent states. In line with PredNet [124], amortized inference
from data to latent states makes use of deep neural networks that ex-
plicitly process prediction errors. Similarly, hidden hierarchical layers
are updated with respect to explicitly propagated prediction errors
between their predictions and the latent state of the respective lower
layer.

We evaluate the model in the context of unsupervised representa-
tion learning on audio data, by comparing the prediction error re-
sponse of the network with evoked responses in the human brain.
In particular, we investigate, whether the model prediction error re-
sponse can be used to derive predictions about temporal locations of
human responses. In contrast to the previous section, this involves
processing only sensory information with the model, followed by an
evaluation of the human response at the temporal locations derived
from the model response. After evaluating temporal processing of
sensory data, we also investigate whether the model can be used
directly on brain signal recorded in EEG. In particular, we design a
variant of the model that processes EEG data temporally aligned to
fixation related potentials (FRPs) during a free reading task and eval-
uate the possible to actively infer the temporal onsets of FRPs guided
by the expected EEG signal at these locations.
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The content in this section is based on the following publications:

[pub:5] A. Ofner and S. Stober. “Modeling perception with hi-
erarchical prediction: Auditory segmentation with deep predic-
tive coding locates candidate evoked potentials in EEG.” In: 21st
International Society for Music Information Retrieval Conference (IS-
MIR). 2020, pp. 566–573.

[pub:4] A. Ofner and S. Stober. “Balancing Active Inference and
Active Learning with Deep Variational Predictive Coding for
EEG.” In: 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). IEEE. 2020, pp. 3839–3844.

structure of the chapter

The rest of this chapter is organized as follows: Section 5.1 relates
dynamical PC to evoked responses in the human brain and motivates
the retrieval of brain-related information from a free energy minimiz-
ing model applied to audio. Section 5.2 reviews related models and
introduces the proposed deep variational predictive coding network.
Section 5.3 explains how the model can be applied to derive candi-
date ERP locations from audio data, followed by a presentation of the
results in Section 5.4. Sections 5.5 and 5.6 cover the application of
a variant of the model to EEG signal prediction. Finally, Section 5.7
concludes the chapter with a discussion of the results.

5.1 predictive coding and human auditory processing

Studying the brain’s response to auditory stimuli is still limited by
the lack of resources that map complex musical stimuli to neural pro-
cesses. Studies in cognitive neuroscience and brain computer interfac-
ing on auditory evoked brain states require labor intensive manual
preparation and often focus on isolating particular brain responses
using sparse stimuli presented individually [149, 161]. While datasets
on brain states evoked by natural music exist, they often lack fine-
grained annotations of the event structure and corresponding neural
activity [108, 123, 203]. This entails a demand for efficient and un-
supervised mapping techniques between natural music and evoked
brain states. Furthermore, there is a need for biologically plausible
and multi-modal models for such mapping, as induced brain states
are a mixture of stimulus-derived and subjective, cognitive or contex-
tual factors.

As a comprehensive explanation for human perception, PC offers
a detailed description of how humans parse and predict sounds and
map auditory stimuli to musically meaningful and hierarchically or-
ganized units [214]. In predictive coding, the neural response to music
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is shaped by hierarchically organized expectations [172]. This hierar-
chy of expectations connects predictions about low-level auditory fea-
tures to more global context, such as the listener’s musical expertise
or levels of entrainment during listening [214]. The underlying depen-
dencies between expectancy and uncertainty in PC are particularly in-
teresting in the context of music perception, as it can be described
as continuously resolving uncertainty and forming new expectations
[32, 74, 107]. This is in line with evidence on the predictive nature
of human music perception, especially within studies on unexpected
stimulus deviations and the influence of the listener’s expectancy on
attention and perceptual precision [32, 107]. Under predictive coding,
long-term expectations from temporally stable aspects of music, such
as genre or tempo form top-down predictions about the activity of
layers closer to the actual auditory information [214].

Studying the human perception of music has also received in-
creased interest in other fields of research, such as Music Information
Retrieval (MIR). As humans solve tasks such as beat tracking, genre
identification or musical prediction with ease, many MIR methods
rely on computational models inspired by human perception. Within
the field of MIR, the capacity of PC algorithms to compress and repre-
sent auditory information on the sensory level has been exploited for
various tasks such as speech re-synthesis or audio compression since
many years [7, 186]. The human brain, however, augments low-level
sensory representations with a hierarchy of more abstract, semantic
predictions from other brain areas [172]. As mentioned previously,
this aspect of hierarchical predictive learning has found traction in
the domain of DNNs, but so far has been applied mostly to images
and video processing [70, 124]. Furthermore, most popular implemen-
tations of deep PC often only rely on non-linear transformation of the
sensory error and not yet abstract away from pure sensory prediction.
Autoregressive modeling of audio has seen tremendous progress in
recent years, with a plethora of models performing tasks such as sam-
ple level audio prediction or speech synthesis, often with impressive
results [21, 154, 155]. However, such autoregressive models are com-
putationally expensive and sample-level prediction models still tend
to struggle with incorporating more abstract and long-term musical
features.

5.1.1 Auditory evoked potentials and musical structure

Recent years have shown a variety of approaches to studying the hu-
man brain’s response to auditory stimuli, especially with functional
magnetic resonance imaging and electroencephalography. EEG is es-
pecially adequate in the context of music due to its higher temporal
resolution. A multitude of auditory features, such as loudness, fre-
quency, tempo and rhythm have been traced in EEG recordings of
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brain activity during music perception [22, 152, 153, 207]. Next to
these stimulus-derived aspects, recorded brain activity has further
been analysed with respect to more contextual aspects of music per-
ception, such as the listener’s attention, which is modulated by as-
pects such as expertise or engagement [6]. Two extensively researched
aspects of the neural response underlying perception potentials are
ERPs and steady-state evoked potentials (SSEP) [145, 167]. ERPs and
SSEPs differ mainly in their temporal scope: While ERPs are aligned to
a single loation (typically the onset of a particular event), SSEPs show
frequency alignment to stimulus periodicity over longer time frames
[165]. For ERPs, the brain response aligned to the event type of inter-
est is analysed after averaging large amounts of trials [94]. Auditory
event-related potentials are modulated by aspects such as rhythm,
pitch, timbre or the duration of musical events, all of which play an
important role in human audio segmentation [136, 147, 166, 167, 185,
190]. Many of these evoked potentials have been explained in the con-
text of PC as a mixture of bottom-up and top-down mechanisms that
are modulated both contextual expectations and the auditory stimu-
lus itself [10, 227]. Similar to ERPs, SSEPs are inspected after averaging
over many trials, but do not require temporal alignment to event on-
sets. Instead, SSEPs characterize periodic mappings between auditory
features and brain response, such as phase locking to perceived fre-
quencies or loudness envelopes. SSEPs are particularly interesting in
the context of natural music, as they allow to inspect more coarse-
grained aspects of music perception, such as temporal or rhythmic
entrainment, the "groove". Both ERPs and SSEPs can be related to pre-
dictive processes aiming at structuring the incoming sensory signal
into meaningful events in a hierarchical fashion [151, 227].

These insights motivate us to connect deep PC with variational in-
ference as a model of canonical computation for unsupervised stim-
ulus representation in order to segment natural music into units that
are musically meaningful. Following the assumption that hierarchical
PC of music explains a substantial amount of evoked brain states, we
analyse the retrieved musical structure in terms of the induced neural
activity in electroencephalographic signal (EEG).

5.2 deep variational predictive coding

From a high level perspective, modelling a deep PC network under
the constrains of the FEP leads to several constrains on the model
structure. One constraint addresses the underlying hierarchical struc-
ture of the probabilistic generative model [49, 51]. Each hierarchical
layer abstracts further away from the sensory, summarizing spatial
and temporal details of the activity in lower layers. Next to a hierar-
chical separation into (Gaussian) latent states, this requires each hier-
archical layer to compute temporal predictions about expected states
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in the next lower layer. As we’re interested in applying the model to
complex sensory inputs, deep neural networks are a straightforward
choice for the parameterization model parameters. In this context we
resort to the backpropagation of error algorithm, i.e. do not focus on
biologically plausible credit assignment between hierarchical layers
or timesteps. We treat more strict interpretations of local inference
and learning in chapter 7 of this thesis. The following sections de-
scribes the proposed model architecture that combines several aspects
in the context of PC in deep neural networks:

1. Explicit propagation of error signals for amortized inference

2. A hierarchy of stochastic latent states where posterior states de-
pend on top-down and bottom-up prediction errors

3. Multi-step latent dynamics with a stochastic and a deterministic
component in each hierarchical layer

4. Separation of time-scales through top-down prediction of latent
state sequences

In isolation, these modelling aspects are not new and have found
extensive use in their respective area of research. For example, using
explicit error signals to drive amortized inference is a core compo-
nent of PredNet [124]. Hierarchical Bayesian modelling over different
timescales has a long tradition in the context of Bayesian filters in
neuroscience [49, 51]. The combination of stochastic and determin-
istic components has been employed previously to design efficient
deep recurrent models, such as Variational Recurrent Neural Net-
works (VRNNs) [20]. Similarly, the idea of optimizing variational free
energy with respect to entire sequences of latent states has found use
in the context of deep reinforcement learning models [69]. The next
section provides an overview of related work on deep PC networks
for temporal prediction and variational inference in recurrent state-
space models, followed by a detailed description of the suggested
variational PC model.

5.2.1 State-space models and deep predictive coding

The design of efficient models for temporal prediction over sequences
has a long tradition. Within the class of deep neural networks, a con-
ventional, yet effective way to model long-term dependencies are re-
current neural networks (RNNs) that model transitions of determin-
istic latent states ht at discrete time-steps t [177]. This is in contrast
to probabilistic state-space models (SSMs), which model distributions
over states and their stochastic transitions [33, 69]. In deep learning,
the parameterization of such probabilistic state-space models usually
relies on amortized variational inference of the probabilistic state s
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from the corresponding observation o, e.g. using a variant of the vari-
ational autoencoder [104]. More recently, recurrent state space mod-
els (RSSM) have been proposed that combine the possibility to learn
long-range dependencies using deterministic recurrent connections
as in RNNs jointly with the expressiveness of stochastic states of state
space models. An influential example of RSSMs are VRNNs [20]. VRNNs

are trained in a relatively straightforward way using variational in-
ference, by feeding the observation at every timestep to the model
and optimizing accuracy and complexity of the model using a evi-
dence lower bound for each observation [20]. VRNNs have inspired a
variety of more elaborate RSSM models, e.g. in the domains of video
prediction, time-series forecasting or reinforcement learning [17, 69,
96]. Figure 25 shows an overview of the underlying generative model
for RNNs, SSMs and RSSMs with respect to two discrete timesteps. Gen-
erally speaking, RSSM based approaches show improved performance
over simpler models, while still allowing the interpret the underlying
state-space model in terms of a Bayesian filter [69]. Additionally, the
RSSM structure allows to separate the overall generative model explic-
itly into a dynamical part, i.e. the hidden state dynamics and asso-
ciated memorization, and static part, for representing inferred states.
Since we’re interested in hierarchical prediction, this allows to focus
on predicting the latent states themselves, in contrast to predicting
potentially more complex representations that represent aspects of
memory and dynamics. Conceptually, this separation can also be mo-
tivated using PC models in neuroscience, which often explicitly sep-
arate between cause and hidden states, representing dynamics and
inferred states respectively. [49, 51]. These reasons motivate use to
resort to a RSSM based generative model.

Within the area of deep reinforcement learning, recent work has
shown the possibility to generate predictions entirely in latent space,
instead of iteratively encoding observations on step at a time. [69].
Making predictions over multiple timesteps allows to express predic-
tions over entire sequences of (hidden factors underlying) data. This
idea has also seen use in PC inspired DNN models, such as CPC [156].
Contrastive predictive coding, as the name suggests, is rooted in
noise-contrastive estimation. The core idea behind noise-contrastive
estimation refers to the chosen loss function, that maximizes the mu-
tual information between compressed representations of a future tar-
get x and the current context c via their mutual information [156]:

I(x; c) =
∑
x,c

p(x, c) log
p(x | c)

p(x)
(40)

Since predictions are made with respect to many time-steps, this
approach allows to learn slowly moving features that maximize the
mutual information over time [156]. Representation learning using a
probabilistic noise contrastive loss is a powerful concept. That said,
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RNN SSM RSSM

Figure 25: Recurrent dynamics in recurrent neural networks (left), state
space models (middle) and recurrent state space models (right).
Recurrent neural networks model deterministic transitions (be-
tween blue nodes) between inferred hidden states. In contrast,
transitions in state space models are stochastic (between green
nodes). Recurrent state space models, such as VRNNs [20] use
both deterministic and stochastic components, allowing to ex-
press probability distributions while maintaining the benefits of
deterministic memory.

the generative model in CPC requires negative samples to be chosen
explicitly, since these are needed to compute the contrastive loss. This
specific choice of the underlying loss function also prevents an in-
terpretation of CPC as a general interpretation of PC that optimises
variational free energy, such as we intend to model. The CPC architec-
ture essentially describes an autoregressive model that predicts latent
states within a single hierarchical layer. This means that empirical pri-
ors, i.e. a top-down signal, from more abstract representations of the
data are not present. Noise contrastive prediction inspired by PC has
also been applied to video prediction [72]. Next to CPC, a deep PC

network for unsupervised representation learning from videos have
been suggested within the deep learning area [124]. Differently to
CPC, PredNet models a hierarchy of representations and is entirely
deterministic. We have reviewed the PredNet architecture in more
detail in the previous Chapter 4. To briefly recapitulate: PredNet is
inspired by PC models in neuroscience and explicitly propagates pre-
diction errors internally, upwards in the hierarchy. PredNet hierar-
chically predicts the prediction error of the lower layer, instead of
predicting the states of the respective layer (as would be required
for hierarchical predictive coding), making it difficult to interpret the
generative model. Figure 15 shows a schematic comparison between
the PredNet architecture and the connectivity required for hierarchi-
cal predictive coding. Interestingly, PredNet has been shown to pro-
duce a variety of cognitive phenomena that are often associated with
PC theory, such as illusory motion [220]. As a simple, yet effective
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deep predictive architecture, PredNet has produced several variants,
often times focusing on reducing the complexity of the underlying
recurrent model or the integration of actions [44, 233]. Other lines of
research have addressed the lack of a feature hierarchy in determin-
istic dynamical models that, such as PredRNN++ or the Hierarchical
Prediction Network (HPNet) [168, 217]. The central idea in these mod-
els is a hierarchical organization of powerful RNN models, typically
variants of LSTM [80]. While these deterministic models lack a thor-
ough connection to Bayesian interpretations of brain function (or to
hierarchical PC more specifically), such as discussed here, they have
been shown to reproduce several to neurophysiological phenomena
[168]. Another core conceptual aspect of PredNet is the explicit prop-
agation of prediction error signals, in terms of a negative and posi-
tive error signal, with encoder networks that drive inference of the
model’s representations [124]. In the model presented in this chapter,
we resort to such explicit error propagation and hierarchical stacking
of recurrent neural networks, however in the context of a hierarchi-
cal probabilistic latent variable model and variational inference. The
striking difference between connectivity in PredNet and hierarchical
PC has been noticed and a model with "corrected" hierarchical con-
nectivity have since been implemented [204]. The resulting model is
still entirely deterministic, i.e. does not allow a straightforward prob-
abilistic interpretation of the inferred states. Nevertheless, the overall
structure more closely resembles PC models in neuroscience and the
performance for next-frame prediction outperforms PredNet [84, 172,
204]. Other dynamical DNN models, that are more loosely inspired
by predictive coding, have found use in video anomaly prediction or
video representation learning [72, 231].

The notion of PC in neuroscience has also influenced a variety of
deep neural networks that apply aspects of hierarchical PC to unsu-
pervised representation learning of static inputs, such as images [35,
75, 222]. These models typically lack explicit temporal processing, but
often include aspects of iterative inference on static inputs, e.g. via re-
current processing of static inputs [70].

Next to deep PC networks, the notion of PC has found attention in
the domain of (neuro-)robotics [3, 19, 87, 88, 93, 206]. In this area of
research a variety of variational RNN models has been proposed that
learn by reducing prediction errors implicitly using backpropagation
of error through time [4, 19]. This is in contrast to models that propa-
gate prediction errors explicitly, such as PredNet or the model inves-
tigated in this chapter [124]. In robotics, a particular focus has been
devoted to comparing the mutual dependence between determinis-
tic and stochastic processing [3] and employing PC in the context of
action imitation and social interaction between humans and robots
[88, 206]. The underlying RNN models often capture multiple (contin-
uous) time-scales and have been applied to "online" recognition, i.e.
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iteratively inferring observed states using backpropagation of error
[4, 19]. Finally, PC inspired RNN using implicit error backpropagation
in robotics models have been applied to goal-directed behavior and
planning [93].

5.2.2 Hierarchical predictive coding model

In order to enable hierarchical predictions across multiple time-scales,
we stack multiple recurrent layers and train the network to predict a
sequence of probabilistic states s that are inferred in each respective
lower layer. In line with Bayesian views on brain function, we express
the prior distribution of states sl in each layer l as a Gaussian parame-
terized by mean µl and variance σl parameters [51, 69]. While the low-
est hierarchical layer predicts sensory observations o, the network’s
hidden hierarchical layers predict latent states sl−1 of the respective
lower layer. More specifically, we sample the prior distribution p(s)

of each layer and transform the resulting activation with a decoder
network. The decoder network of the lowest layer parameterizes the
prediction ôt of the expected observation. The decoders in hidden lay-
ers output predictions about the mean µ̂t and variance σ̂t parameters
of the next lower layer.

The model is trained by optimising the variational free energy, or
evidence lower bound with respect to a complexity term, that de-
pends on previous observations and states within each hierarchical
layer. The lowest hierarchical layer optimises the complexity with re-
spect to predictions about observations o at discrete timesteps t:

Complexity = Eq(st−1|o⩽t−1)[KL[q(st|o⩽t)∥p(st|st−1)]] (41)

Simultaneously, the accuracy of predicted observations maximized:

Accuracy = Eq(st|o⩽t)[lnp(ot|st)] (42)

In analogy, the complexity for a hidden hierarchical layer sl is com-
puted with respect to observed states sl−1 of the next lower hierarchi-
cal layer.

The resulting evidence lower bound for a sequence of observations
with length T is:

ELBO(q) =

T∑
t=1

(
oq(st|o⩽t)[lnp(ot|st)]

−oq(st−1|o⩽t−1)[KL[q(st|o⩽t)∥p(st|st−1)]]
) (43)
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5.2.3 Propagating explicit prediction errors

In contrast to the related classes of variational autoencoders and vari-
ational RNNs, we do not employ an encoder network that directly
transfers observations to a posterior distribution [20, 104]. Instead,
the encoder network processes only the error et between predicted
ôt and observed values ôt at discrete timesteps t:

et = ot − ôt (44)

Similarly, the encoders between hierarchical layer process the error
signal between predicted mean µ̂l and variance σ̂l and the observed
mean µl and variance σl of the next lower hierarchical layer:

eµl
= µl − µ̂l

eσ = σl − σ̂l

(45)

Each layer of the model thus computes approximate state posteri-
ors q(s1:T |e1:T ) =

∏T
t=1 q(st|et−1) by filtering previously observed

prediction errors et at time steps t with an encoder network. In this
basic model configuration, the model is regularized in each hierar-
chical layer with respect to the divergence from the prior in 44. By
selecting a pair of adjacent layers and minimizing the accuracy and
complexity term between them, this structure allows to form predic-
tions that are consistent between layers, i.e. show small or no top-
down prediction error.

The state priors p(st|st−1) in all layers are modelled as a Gaus-
sian and are parameterized with a feed-forward neural network with
respect to mean and variance. After generating the state prior, pre-
dictions about lower activities can be formed. The predictions in the
input layer are made with a deconvolutional neural network to pa-
rameterize the mean of expected inputs. The prediction models in
hidden layers parameterizes variance and mean of the same size as
the respective lower state posteriors. Without any deterministic or re-
current aspects to the model, the state prior p(st|st−1) would not be
particularly expressive. Therefore, the model has access to determin-
istic recurrent memory states that we refer to as belief states bt. They
can be seen as the explicit belief the model has at a particular point in
time [17]. Belief updating is done with a LSTM network conditioned
on previous beliefs bt−1, the top-down and bottom-up prediction er-
rors etd, ebu and the previous state st−1. Importantly, any informa-
tion regarding the previous error for outgoing predictions passes a
stochastic node before integration into the belief. Figure 26 shows an
overview of the transitions in a single layer and the connection to the
top-down predictive pathway.

While the overall network structure was identical for the experi-
ments on audio and EEG processing, they differed in some aspects,
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Figure 26: Left: Hierarchically organized PC network with two layers. Each
hierarchical layer predicts posterior predictions of the respective
lower layer. Right: A single hierarchical layer in detail. Green ar-
rows indicate descending predictions of lower layer states, or the
sensory data. Red errors indicate ascending prediction errors that
inform the posterior z∗ of probabilistic latent states z in each hi-
erarchical layer. Each hierarchical layer aggregates deterministic
information over time using recurrent connections between hid-
den states h.

such as the type and the size of the chosen LSTM model. The next
sections cover these implementational details.

5.2.4 Audio model

The audio experiments used a model with three hierarchical layers.
We model q(s|et−1) as diagonal Gaussian for all layers with mean
and variance parameterized by a convolutional neural network with
two layers of 64 and 128 units each. The convolutional layers were
followed by a dense network of 1024, 512 and 256 units respectively.
The network uses a convolutional decoder networks and parameter-
izes expected mel spectrogram inputs by treating time and frequency
axis as spatial domains. We used ReLU activations for all CNNs and
hyperbolic tangent activations for the decoder’s output layer [148].
Transitions were generated using a LSTM network [80]. In each layer,
the prediction error was computed with respect to positive and nega-
tive prediction error. The error in each layer was then ReLU activated
before propagation to the encoder networks. For all presented experi-
ments, we trained the model to convergence of the input layer recon-
struction loss. For this, we used the Adam optimizer with a learning
rate of 10−3 [103]. The KL divergence terms for each layer were scaled
proportionally to the prediction errors. Furthermore, we weighted the
reconstruction losses by 2:1:1 for the employed three layer model.

81



variational predictive coding for audio and eeg

5.2.5 EEG model

In the EEG model q(st|et−1) in all layers is a diagonal Gaussian with
mean and variance parameterized by a convolutional neural network
with two layers of 64 and 128 units each. For a three layer model,
the convolutional layers are followed by a dense network of 1024, 512

and 256 units respectively. Guided by the idea to assist the model
by explicitly capturing spatial information we model all distributions
spatially. For the three layer model we used 256, 64 and 16 latent units
per layer. Transitions in the model are computed using a convLSTM
network [192]. All hidden layers of the encoder, decoder and transi-
tion networks use ReLU activations and the final decoder layer uses
hyperbolic tangent activations. If not stated differently, we trained
all models to convergence of the input layer reconstruction loss with
the Adam optimizer. We use a learning rate of 10−4 for the first 10

and 10−3 for the remaining epochs. We found that initialising with a
lower learning rate made learning more stable. We scaled the KL di-
vergence terms with respect to the reconstruction terms at each layer
and weighted the reconstruction losses of the layer model 2:1:1.

5.3 locating auditory erps in eeg

Transforming audio features to high-level representations is a com-
plex task, which is often solved with the non-linear processing found
in DNNs. Instead of predicting individual frames, we process mel spec-
trogram representations of audio. The reduced temporal resolution
of spectrograms helps reducing the computational complexity while
still capturing fine-grained auditory information. The resulting spec-
trograms spatially extend into two dimensions, time and frequency
and can efficiently processed the convolutional decoder of the sug-
gested PC network.

We used the Naturalistic Music EEG Dataset—Tempo (NMED-T)
for the evaluations in all presented experiments [123]. As mentioned
before in chapter 3, NMED-T features EEG recordings from 10 com-
mercially available music pieces, with durations between 270 and 300

seconds, spanning 55 to 150 BPM in various genres. 20 participants
were allowed to freely and passively listen to the music, without any
additional cognitive load. We used the provided preprocessed version
of the EEG data at a sampling rate of 125 Hz. For all presented ERP ex-
periments, we re-referenced the EEG data to the average of all 125 EEG

channels and filtered out background noise using a Savitzky-Golay
filter before averaging the evoked responses. For network training,
we resorted to the "small" partition of the Free Music Archive (FMA)
dataset, featuring 8000 songs with 30 seconds duration [30]. We com-
puted magnitude spectrograms for all ten provided audio files of the
NMED-T dataset and the FMA audio files before mapping to the
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mel scale, resulting in mel spectrograms at 125 Hz, equal to the EEG

sampling rate. All audio processing steps were done with the librosa
library [135]. We tested different mel spectrogram lengths as inputs
to the lowest network layer and found lengths between 50 and 150

ms to be the sweet spot with low computation time without quick
overfitting.

For all audio-based experiments in this chapter, network training
was done first on the FMA dataset followed by a evaluation phase us-
ing the NMED-T stimuli. After training on the FMA audio, we froze
the network weights and processed the NMED-T audio to generate
predictions and corresponding prediction errors. For each processed
NMED-T audio stimulus we extracted both positive (PPE) and neg-
ative (NPE) valued prediction errors. In this context, PPEs refer to
areas where the model predictions are lower than the observed thresh-
old, while NPEs refer to predictions that are higher than the actual
values. Predictions were computed in a single pass over each song,
i.e. without repeated inference of the current musical context.

5.4 deriving erp locations from prediction errors

In order to inspect the effect of PC at the audio level, we first deac-
tivated the recurrent parts of the lowest layer, forcing the model to
express next states as a function of previous observation and the top-
down prediction. For model evaluation, we extracted positive and
negative prediction errors from each layer of the network. In all lay-
ers, we applied a magnitude threshold to pick peaks from the error
response, followed by a refinement step that ignores repeated error
peaks in a sliding window of fixed size. Both magnitude and window
size could be learned by the network itself, leaving the room for more
complex and self-supervised segmentation techniques. All audio ex-
periments use the mean of positive and negative prediction errors, if
not further specified.

Figure 27 shows two examples for input and predicted audio as
well as the corresponding prediction errors and selected peaks. The
examples illustrate that autoregressive PC decorrelates large parts of
the processed audio in the first layer, by reducing the redundancies
in the signal using non-linear weighted predictions based on the past
values. This is in line with the spatial and temporal whitening effects
described by Rao et al. in the context of center–surround receptive
fields in the retina [172]. For the following experiments, we use these
sensory predictions to derive ERP locations. Increasing the weight of
the prediction errors in the hidden layer decreased the error magni-
tudes. This is expected, as the network now learns to include more
global temporal context over multiple steps of the lower layer. Ide-
ally, the network learns to predict the rhythmic and timbral structure
perfectly and successfully suppresses the prediction error in the first
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a)

b)

Figure 27: Predicted audio and positive and negative prediction errors in
the first PC layer for songs with a) 55 and b) 108 BPM. The vi-
sualized model generates local predictions about the next inputs
in a sliding window of 50 ms size. This autoregressive and non-
linear process removes temporal redundancy in the residual error
response, which can be split into positive and negative parts. The
bottom rows show the thresholded prediction error and picked
peaks.
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and second layer. If the recurrent parts are active in the lowest layer,
the long-term temporal dependencies can be memorized in the first
layer additionally. In our experiments we found that (with a fixed
weighting of the prediction errors between layers) deactivating the
recurrence in the lowest layer is essential to learning predictive repre-
sentations in the hidden layers.

As visible in Figure 27, the tempo of the song, as well as the rhyth-
mic density of the songs have strong influence on the effectiveness of
input decorrelation in the lowest layer. While outside of the scope of
unsupervised learning, we were able to attenuate this effect by feed-
ing tempo-aligned predictions, which allow the lowest layer to reduce
large parts of the temporal surprise. Such (adaptive) temporal align-
ment could significantly improve network performance with respect
to hidden layer predictions in future iterations and is in line with the
entrainment of predictions in the human brain [214].

5.4.1 Grand average ERP

To inspect the possibility to detect ERP events based on the sensory
surprise, we extracted the prediction errors from the lowest PC layer
and averaged the EEG signal over all trials in all songs and subjects.
We were able to derive a total of 242960 trials within 10 songs and
20 subjects using the proposed method. This equates 22140 to 28740

trials per song and between 1108 and 1437 unique event locations per
song.

Figure 28 a) shows the grand average ERP for all ten songs in the
NMED-T dataset at locations of prediction errors peaks. In compar-
ison to the tempi reported in the orginal NMED-T paper, we sorted
the songs between 83 and 151 BPM using beat tracking in the librosa
library. The difference between our tempo measures and the ones in
the original paper can be explained as being multiples of each other,
e.g. 110 BPM being a multiple of 55 BPM. The averaged ERP shows
an activity peak for positively correlated channels at around 20 ms
previous to the predicted event location, followed by a negative peak
around 60 ms after onset. The grand average ERP further shows two
smaller peaks around 120 and 170 ms after onset, indicating the pres-
ence of surrounding onsets with variable latency. The reduced mag-
nitude of these delayed peaks can be explained by the differences in
tempo between songs. Specifically, the difference in peak size between
activity close to the predicted onsets and those with greater tempo-
ral distance indicates a separation between tempo-independent com-
ponents (close to the prediction error peak) and attenuated tempo-
dependent components.

Figure 28 b) shows the grand average ERP in five positively acti-
vated channels, sorted by the prediction error magnitude. The magni-
tude of the first evoked peak after stimulus onset grows proportional
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a)

b)

Figure 28: a) Grand average ERP for all songs in the NMED-T dataset at lo-
cations of prediction errors peaks generated by the PC network.
b) Grand average ERP in five positively correlated channels for
trials sorted after the prediction error magnitude of the PC net-
work.
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with the error magnitude for large error values. For smaller predic-
tion error values, the response shows larger latency. Peaks with sim-
ilar latency of the evoked activity have magnitudes proportional to
the prediction error magnitude. This fits with the assumption that
the grand average ERP shows temporally variable peaks, induced by
differences in tempo.

5.4.2 Evaluating song-level segmentation

Figure 29: SSEPs in low frequency EEG within the segments derived from
gated prediction errors in the first hidden layer of the PC network.
Indicated with dashed lines are multiples of the song tempo,
ranging from 1 to 16 Hz. Visible differences between the peaks
in the power spectrum of both segment indicate different rhyth-
mic processing of the music within the segmentation bounds.

Next to inspecting the predicted ERP responses with the local pre-
dictions of the input layer, we want to inspect the possibility to seg-
ment stimuli on the song level with the model. For this, we repeat the
unsupervised training of the previous experiments, but weight the
prediction errors in all layers equally after pretraining for 100000 up-
dates. This approach puts more focus on the temporal consistency of
the predictions in the hidden layers. Furthermore, we train with multi-
step predictions of length 16, i.e. prediction errors are generated with
respect to 16 future states at a time. This follows the assumption that
both multi-step predictions and increased weighting of the hidden
layer prediction errors increase the network’s tendency towards more
global predictions. In order to evaluate the ability to retrieve mean-
ingful musical structure with hidden layer predictions, we first seg-
ment the whole song with the prediction error of the first hidden
layer and subsequently perform SSEP analysis of the low frequency
components each song’s predicted components separately. Follow-
ing previous work that illustrates differences in beat processing with
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SSEPs, we inspect averages of the low frequency component to de-
tect changes in beat processing or entrainment between the different
segments derived from prediction errors in hidden layers of the PC

network [123]. Here, we want to inspect whether changes in hidden
layer predictions introduced by large peaks in prediction errors show
a change that is detectable with SSEPs. To generate binary segmen-
tation, we threshold the prediction error like in the previous steps
with a fixed value for each song and switch between segmentation
masks when the positive error surpasses the negative error and vice
versa. We found that using the mean of the errors between windows
of five seconds duration helped to prevent over-segmentation. Intu-
itively speaking, these changes in hidden prediction error magnitude
reflect the "mid-level" surprise of the network, as the pure sensory
surprise is largely minimized in the input layer and only the residual
errors are further propagated. Future iterations of the model could
use learnable error thresholds for improved and self-supervised seg-
mentation. To help visualize the effect of segmentation, we performed
Principal Components Analysis (PCA) before averaging the data and
analyzed only the first component. Figure 29 shows the induced SSEPs

in the power in low-frequency EEG components for selected songs.
Visible are peaks in the low frequency EEG components within all
segmented parts that are aligned with multiples of the song tempo.
In most processed songs, there is noticeable shift in the distribution
of induced peaks, indicating rhythmic differences between the anno-
tated segments.

5.5 eeg prediction and active inference

After evaluating the model’s prediction error response to auditory
stimuli with respect to temporally aligned evoked responses in the
human brain, want now seek to explore the capacity of the model to
learn predictive representations from EEG signal. In this context we
want to investigate the interplay of observed and expected precision
(in terms of an inverse of the inferred variance) of EEG predictions
and their applicability to adaptively select EEG signal during inference.
The following sections motivate a focus on precision as foundation of
adaptive processing under the FEP and how adaptive inference relates
to the presented PC model.

5.5.1 Active inference and active learning

A particularly interesting property of PC networks is that, in their
Bayesian interpretation under the Free Energy principle, they provide
the necessary perceptual structure that drives actions, adaptive pro-
cessing and planning in the human brain [55, 57]. Under the Free
Energy principle, active components underlying inference such as
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(physical) actions or prospective planning to reach rewarding states
are often subsumed under the notion of "active inference" [57]. Next
to inference, i.e. neural activity on fast timescales, the notion of "active
learning" has been formulate in the context of free energy optimisa-
tion. Active learning and active inference are based on the idea that
intelligent behaviour reduces surprise, either by developing a reliable
model of the world or by actively engaging with the environment.
Active inference and active learning differ in the type of uncertainty
that is reduced: Active learning allows a system to build a predic-
tive model of the world. This focuses on reducing uncertainty about
parameters of the model by capturing regularities [187]. Active infer-
ence relies on an existing world model and minimises uncertainty
about current or next states, i.e. the context [57]. For example, an
agent might use active inference to sample colors in the surround-
ing to reduce uncertainty about whether it is currently inside of a
building. Active inference and learning often interact directly, e.g. the
ability to map from colors to the context is in turn established by
active learning of parameters. 1

While active inference and learning provide formal descriptions of
behavior in their respective time courses, they do not directly cover
the question of how these processes are implemented. However, ac-
tive inference has been cast as a process theory in the context of PC

and the human brain [57, 90]. Many computational models of active
inference and learning treat planning from the perspective of a deci-
sion process on well-defined actions and policies, i.e. sequences over
actions [47, 179]. Here, we focus on simpler approach, where notions
of active inference and learning are cast in the context of prospective
or delayed neural responses [90]. The fundamental idea behind active
behavior in the context of PC schemes is that actions influence free-
energy optimisation by affecting only the (expected) sensory predic-
tion errors, i.e. by actively sampling observations [53]. Interestingly,
the neural mapping from actions to expected sensory observations
are often modelled as "simple" reflexes that trigger the activity of
stretch receptors in muscles [53]. Here, we focus on investigating the
expected precision of prediction errors as they are a fundamental re-
quirement for active inference and learning.

5.5.1.1 Multi-step predictions and evidence sampling

Each layer of the proposed network aggregates information about
past states with a recurrent memory and can form multi-step predic-
tions. In the previous sections on audio processing, we have taken
a straightforward approach and have trained the network using a

1 It should be noted that in the domain of machine learning, the term active learning
is used mostly to denote specifically the active query of new annotated data. Here
focus on active learning in the broader sense and in the context of unsupervised
learning [27].
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bottom-up approach, where (multistep) predictions are directly com-
pared to the observations. Assuming appropriate scaling of the KL

divergence regularization terms, this results in representations that
are driven primarily by the sensory data itself, in terms of a bottom-
up pass of information. Here, we take a more elaborate approach and
train the network by alternating between a bottom-up pass and a top-
down pass. The bottom-up pass refers to first updating the sensory
layer and then updating the higher hierarchical layers with respect
to the ascending prediction error. The top-down pass operates in the
opposite direction and propagates the prediction of the highest hier-
archical layer first, followed by an update of the lower layers with
respect to the descending prediction.

In each hierarchical layer predictions are made over a sequence
of latent states. As a result, there are multiple observations (one for
each predicted state) that provide an error signal, or an "evidence"
for the correctness of the predictive model. In the context of preci-
sion weighted expectations about states, we can now think about an
adaptive process that decides between observations that are included
and those that are ignored (i.e. have low expected precision). In the
extreme case of updating a particular layer without any bottom-up
information, the predictions will still be refined with respect to the
top-down information. This potentially leads to predictions that are
internally consistent but are less and less predictive about the actual
data. The following experiments thus focus on investigating the top-
down inferred uncertainty in comparison to the observed uncertainty.
Next to analysing these precision signals, we will inspect the possi-
bility to use the learned representations to actively select temporal
locations in the EEG data that best fit the learned representation.

5.5.1.2 EEG dataset and preprocessing

As investigated in chapter 3, learning representations from auditory
EEG is a complex task, even if the perceived stimulus is available. To
simplify our investigation, we resort to EEG data recorded in the con-
text of Fixation Related Responses (FRPs). FRPs are a variant of ERP

that are temporally aligned to eye fixations. This requires additional
eye-tracking technology to record the saccadic eye movements. From
an experimental point of view, FRPs have the advantage that they pro-
vide clear labels, in terms of detected fixations, about when the evoked
response is observable in the brain [9]. This removes the need to de-
rive possible ERP onsets from the stimulus itself, removing possible
sources of ambiguity, such as whether or not the stimulus has been
perceived (or attended to) at all. Next to a clear temporal labelling of
the evoked response, FRPs have the quality of being actively generated
by the human subject [9]. For these reasons, we resort to the Zurich
Cognitive Language Processing Corpus (ZuCo), a simultaneous EEG

and eye-tracking dataset for natural sentence reading for model train-
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ing and evaluation [82]. The dataset was designed specifically with
training machine learning systems in mind and provides substantial
amounts of recorded EEG signal. We used all available subject data
within the second task, where subjects were asked to read English
sentences displayed without any additional task. This resulted in a
total of 93184 fixations in 12 subjects. We used the preprocessed EEG

following the routine described in the paper and resampled the data
to 448 Hz [82]. Differently to the authors, we did not disregard fixa-
tions based on their duration. The EEG data was aligned to fixation
onsets based on the provided eye-tracking data. We split the data on
a per-subject basis and used 60% for training. This allows to evaluate
the model for unseen inputs for each subject as well as the average
performance. We furthermore extracted the fixation duration for the
purpose of model evaluation but did not feed any metadata during
model training. In the following experiments, the model was trained
to predict consecutive EEG inputs of 8 samples duration in the input
layer.

5.5.2 Autoregressive EEG prediction

We first inspect the model’s capacity to reconstruct multi-channel EEG

signal directly after each processed time-step in the input layer. At
each step, the model predicts the next EEG input by aggregating the
previous posterior, the deterministic memory and top-down predic-
tion. We train the model with focus on the input layer and scale the
prediction errors of the remaining two layers by 0.1 before error back-
propagation. As we are interested in the performance of bottom-up
driven prediction, we evaluate the difference between predicted and
observed variance, without additional precision weighting.

This can be seen as a non-linear probabilistic version of linear PC

(LPC), which is a well established method for audio compression
and speech synthesis [158]. In comparison to our method, LPC lacks
top down predictions and multi-step latent prediction. We were able
to use both single and multi layer networks to reconstruct expected
EEG. While these examples were trained on FRP onset aligned inputs,
predictions for continuous EEG looked comparable. One common ob-
servation in all tested configurations is that learning the oscillatory
pattern was improved by gradually increasing the range of posterior
means in hidden and the input layer.

We perform an ablation study with three variants of the model. For
this, we keep all model parameters constant but allow the models to
differ in the way future steps are predicted. The first variant performs
inference over a single step after observing prediction error once. The
second variant performs multi-step predictions in the first hidden
layer and updates the input layer by treating its own predictions as
actual observations. Importantly, the prediction feedback is done only
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Model PSNR MSE

Single step latent prediction 49.9 14.8

Multistep prediction & internal feedback 50.5 13.0

Multistep prediction & autoregressive inputs 52.2 8.6

Table 7: MSE and PSNR (in dB) for multi-channel EEG prediction

at test time. The third and final variant combines latent multi-step
prediction and autoregressive processing of actual inputs in the input
layer.

As metrics we resort to the mean squared error (MSE):

MSE =

√√√√(
1

mn
)

m∑
i=1

n∑
j=1

(yij − xij)2 (46)

between EEG signal x and prediction y, where m denotes the num-
ber of channels and n denotes the number of samples in each pre-
diction. We further compute the peak signal-to-noise ratio (PSNR)
between input signal and predictions defined as

PSNR = 10 log10(
MAX2

MSE
) (47)

where MAX refers to the maximum EEG value.

5.6 results on eeg

As listed in Table 7, the multi-step model outperforms the single
step baseline in terms of EEG prediction quality, despite the increased
complexity of multi-step predictions. Feeding back predictions to the
multi-step model also results in an improvement over the single step
baseline, signifying gains both in autoregressive and one-shot predic-
tion.

5.6.1 Comparing observed and inferred precision

A key requirement for meaningful evidence sampling is that the
model is able to predict and weight the precision with respect to
the input data as well as model accuracy. This holds especially for se-
quential predictions, where information can be aggregated over time
for refined prediction. Observed and predicted average precision for
a three layer model performing next step prediction in the input layer
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is displayed in Figure 30. The distribution of observed precision mir-
rors the fact that the predictions are largely driven by the reconstruc-
tion term of the input layer. While the lowest average precision is
observed in the first 5 steps, the highest average precision is observed
at the end of the sequence, where most context was aggregated. The
highest average predicted precision was reached for the first step and
the final two steps. This is compatible with the idea that the variance
is easiest to predict with maximal temporal context (in the final steps
of the predicted sequence) and at the beginning of prediction, with
minimal context available for precise EEG prediction.
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Figure 30: Distribution of observed and predicted averaged posterior preci-
sion in the first layer of a three layer model. Listed are number of
times where the step had the highest or lowest average posterior
precision within the sequence. The bottom row shows the preci-
sion predicted in the top-down pathway. All values refer to the
average precision of a latent state and are computed as the mean
of all spatially distributed units within 10 batches of the test set.
The precision in the first step without temporal context for filter-
ing is indicated in grey.

5.6.2 Fixation Related Potential prediction

Figure 31 visualizes evoked FRPs from averaged model predictions in
across all subjects at test time. Shown are single trial EEG segments
that were clustered by the fixation duration before averaging. The
averaged predictions show the first positive P1 that is followed by
second activation, the P2 component, with onset proportional to the
fixation duration. This is in line with previous studies that cluster FRP

data based on fixation duration [82].
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Figure 31: FRPs from averaged input and predicted EEG signal. Predictions
were generated using multi-step latent predictions over 15 steps
(120 EEG samples) and autoregressive processing of inputs. The
EEG trials were sorted after fixation duration before averaging.
Input and predicted EEG signal show a positive P1 peak (around
100 ms after the fixation) that is followed by a fixation duration
dependent second component P2 (starting around 200 ms after
onset).

For onset aligned as well as continuous inputs, averaged model
outputs from multi-step latent predictions showed the characteristic
activity peaks after fixation onset. Fixation onset aligned predictions
looked meaningful even for a single internally propagated time-step
prior to sequential prediction onset. In contrast, predictions without
autoregression in the input layer on continuous data relied heavily on
the prediction errors before sequential predictions and did not lead to
meaningful predictions with fewer than 4 input steps. This indicates
that onset aligned training leads to a stronger prior preference of
the network to predict FRP-like signal. The next section explores the
application of these priors for active inference.
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Figure 32: Prediction errors during active inference of the fixation onset posi-
tion in the a) train and b) test set. Shown are the mean prediction
errors and 95 % confidence intervals for multi-step latent pre-
dictions over 9 continuous input windows (72 samples). In both
subsets, shifting the inputs away from the fixation start point in-
creases prediction error. This prediction error is used for rapid
estimation of the context by inferring the position with lowest
prediction error without updating model weights.

5.6.3 Active inference of FRP locations

Often times, behavior is learned jointly by active inference and active
learning, especially when the inferred regularities are stable between
trials. When key aspects appear randomly in trials however, active
learning is less efficient. In these situations (long-term) learning re-
lies largely on a correct estimation of the context with active inference
[187]. Here, we want to look at such a case, where the prediction of
FRPs is performed on EEG data with randomized fixation onset loca-
tions. We were able to employ the previously introduced multi-step
predictions for active inference of the correct fixation onset by com-
paring the averaged sequential latent prediction in each batch with
randomly shifted EEG inputs. For this, we used the trained model
with frozen encoder and decoder weights to actively correct the ran-
domized shift. We shifted the inputs through 6 possible offsets and
update the inferred state at the position leading to minimal prediction
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error between observed and preferred signal. Figure 32 shows that the
averaged prediction errors increase towards larger shifts from the FRP

onset location. This allows to correct the randomized shift based on
prediction errors between the decoded prior (i.e. the preference for
FRP-like signal) and the actual EEG signal.

5.7 discussion

5.7.1 Locating auditory ERPs with prediction errors

We demonstrated the application of the deep PC network for unsu-
pervised audio representation learning. We compared the network’s
prediction errors with evoked potentials in the human brain. For this,
we related the hierarchical predictions of the model on ten naturalis-
tic musical pieces to onset-aligned evoked potentials captured in EEG

recordings of the songs. We derived temporal locations for individual
musical events from the sensory surprise and inspected steady-state
evoked potentials that capture rhythmic differences in the segmented
songs.

The employed PC model combines deterministic sequential predic-
tions with probabilistic representations. While the deterministic parts
allow to learn regularities over time-scales, the probabilistic elements
lessens overfitting and helped shortening training duration. While
sensory-level predictions can be employed for local event annotations,
the predictions and prediction errors in hidden layers target higher
levels of temporal abstraction. Here, we qualitatively analysed the
possibility to derive song-level segmentation with multi-step predic-
tions generated in hidden layers.

Our results indicate the usefulness of PC models for the retrieval
of musically meaningful events across the local and global structure
of musical works. The model allows to approach audio segmentation
jointly with structuring recorded brain activity, forming a basis for re-
trieval of information about cognitive processes in music perception.
This offers an appealing method for researching auditory evoked po-
tentials, as it eases the mapping between stimulus characteristics and
connected evoked potentials across time-scales. Future improvements
could enhance the capacity of the model, e.g. by allowing the model
to segment inputs based on learned error gating.

5.7.2 EEG prediction

The results on direct EEG prediction indicate the possibility to learn
meaningful representations from EEG signal with deep variational
predictive coding. For this we introduced a hierarchical probabilis-
tic state-space model with multi-step latent predictions in each layer.
While the lowest layer expresses predictions about the EEG signal,
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higher layers sample evidence by predicting the distributions param-
eters of lower layers. We demonstrated the possibility to generate
multi-step latent predictions in hidden layers and their application
to sampling new inputs in active learning and active inference. The
model can be used for adaptive input processing by comparing pre-
dicted and actual uncertainty and reducing prediction errors based
on the learned preferences for future EEG signal. Quantitative and
qualitative evaluation of the predicted signals near eye fixations were
presented. Future work could scale this up to more elaborate active
inference implementations, for example by incorporating explicit poli-
cies and physical actions in real-time brain-computer interfaces.

5.7.3 Potential drawbacks of the model

While providing promising early results, the particular chosen model
also has several drawbacks, which can potentially limit its perfor-
mance and its role as a model of canonical computation. Firstly, the
chosen approach to explicitly predicting sequences of latent states
could potentially limit the model due to the lack of a more elaborate
separation between represented states and their dynamics. Many es-
tablished PC models in the neuroscience literature separate between
aspects addressing inferred dynamics ("hidden states") and possi-
ble causes that induce these dynamics as a sort of control parame-
ter ("cause states") [49, 51]. These models allow to abstract informa-
tion between hierarchical layers that show abstraction with respect to
hierarchical and temporal dynamics, instead of "simply" modelling
higher hierarchical layers with slower updates. A second potential
drawback of the suggested architecture is the inclusion of an explicit
complexity term (i.e. the KL divergence from the prior) within each
hierarchical layer. This approach requires a manual tuning of the reg-
ularization with respect to the weighting of accuracy, in terms of ad-
ditional hyperparameters. In this context, more elaborate implemen-
tations could, for example, focus on relying only on the top-down
signals as empirical priors. From the perspective of biological plau-
sibility, the reliance of the model on the backpropagation of error
algorithm towards all parameters also poses problems. Models that
rely on strictly local learning rules, i.e. Hebbian learning, in context
with complex spatio-temporal observations still need to fully scale up
towards the performance achieved with deep neural networks and ex-
act error backpropagation. Nevertheless, they provide the possibility
to fully separate inference and learning within each hierarchical layer.
Intuitively, this results in separate, and smaller models with less pa-
rameters to be learned, potentially allowing to scale up the complex-
ity of the overall model. Such locally informed process models will
be covered in chapters 6 and 7.
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6
G R A D I E N T- B A S E D P R E D I C T I V E C O D I N G

The previous chapters have covered models of canonical computation
under the FEP that rely on credit assignment via exact backpropaga-
tion of errors. As they are inspired by hierarchical PC in neuroscience,
deep PC models in particular can be connected to a rich theoretical
account that explains a variety of cognitive phenomena arising in hu-
man processing of music. While these models efficiently learn from
complex observations, the biological plausibility of the underlying
credit assignment via exact error propagation across the entire model
is limited. In particular the required separation of computation into
a global "feedforward structure" addressing predictions and a global
"feedback structure", addressing credit assignment is difficult to in-
tegrate with established neural process theories, such as predictive
coding. This chapter will deal with a class of artificial PC networks
that learns strictly using locally available information. We still deal
with models in the context of gradient computation with automatic
differentiation. In this chapter, we will refer to these "gradient-based"
models simply as PCNs. While PCNs have been applied to unsuper-
vised representation learning from static information, such as images,
their application to complex sequential data, such as audio, is still
underexplored. In this chapter, we want to investigate a PCN model
that predicts future audio signals and learns to integrate top-down
information during dynamical prediction. For this, we discuss and
build upon the connections between Infinite Impulse Response fil-
ters, Kalman filters, and inference in PC networks. We then evaluate
the possibility to use to the network for a beat tracking task and the
possibility to perform audio filtering. We find that the model is useful
for the presented audio processing tasks, although our results also
indicate that the performance is strongly dependent on the chosen
dataset.

The content and figures in this chapter is based on the following
publication:

[pub:2] A. Ofner, J. Schleiss, and S. Stober. “Hierarchical Pre-
dictive Coding and Interpretable Audio Analysis-Synthesis.” In:
Proceedings of the 15th International Symposium on Computer Music
Multidisciplinary Research (CMMR). 2021, pp. 225–234.

6.1 introduction

Research on human auditory processing has demonstrated that hu-
mans are efficient at tracking stochastic auditory regularities and can
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even disentangle stationary parts, e.g. fundamental frequencies, from
dynamic transformations, e.g. resonances, in musical events. From a
signal processing perspective, PCNs with a single layer already de-
liver useful computations, like the source-filter separation in Linear
PC (LPC), a widely used Digital Signal Processing (DSP) method. How-
ever, in order to live up to their full potential, PCNs need hierarchical
structure. The number of existing studies employing PC to process
raw audio signal is limited and the available methods are generally
difficult to interpret. PCNs treated in neuroscience are generally re-
stricted to simple auditory stimuli or even symbolic inputs [137, 195].
Still, there are striking similarities between the structures of Infinite
Impulse Response (IIR) filters and recurrent neural networks (RNN),
classes that are already widely used in signal processing applications
and those models that address human auditory cognition more specif-
ically, in particular the Kalman filter or PCNs. We will cover these
similarities later in this chapter. A major challenge when employing
gradient based PCNs for signal processing tasks is that they only de-
liver approximate results during learning and inference. This poses
a major drawback for those tasks where high accuracy is required.
Furthermore, it is difficult to design efficiently operating hierarchical
PC models, which would have the advantage of naturally scaling to
larger signal processing systems while allowing meaningful cognitive
interpretations. To solve these challenges, we resort to the structural
similarities between PC models and established DSP methods in the
next section and then introduce a hierarchical PC model for temporal
prediction.

6.1.1 Predictive coding and error backpropagation

Exact error propagation is an effective method to train large feedfor-
ward networks, by computing the gradient of a global loss function
with respect to all optimised parameters of the model. In this con-
text, models that contain recurrent connections are unrolled over time
steps and treated as a feedforward architecture, allowing to backprop-
agate errors though time. While efficient, such exact error backprop-
agation is in contrast to locally informed inference and credit assign-
ment described by process models in neuroscience, such as PC models
under the FEP [49, 51]. Such models generally have a distributed struc-
ture, where errors (in terms of Bayesian surprise) are represented
locally. These process models can be mapped onto a structure that
is repeated across the human cortex indicating their biological plau-
sibility as a canonical computational motif [11]. Much criticism has
focused on the issue that the application of exact error backpropaga-
tion involves an algorithm that operates separately to the feedforward
pass, i.e. the predictions [226]. Furthermore, exact error backpropaga-
tion requires a symmetry of forward and backwards weights, since
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the back-propagation of information requires an exact copy of the
weights used for the forward pass[226]. Examples for such recipro-
cal and symmetrical weights exist in the brain, but are not as om-
nipresent as would be required for exact error backpropagation [196,
226]. However, there have been many attempts to mitigate the differ-
ences between locally informed learning and exact error backpropa-
gation [120, 182, 197, 225, 226]. Many of these approaches focus on
demonstrating that backpropagation of error can approximated by
locally informed learning rules, such as PC networks or contrastive
Hebbian learning [182, 225].

6.2 related work

The similarity between IIR filters, Kalman filters, RNNs, and PC net-
works is particularly apparent when one views these models in their
state space model (SSM) form. Figure 33 a) provides an overview
of these related classes in state-space form, such as they are used
in tasks typical for each class. Aspects of learned model structure,
such as filter coefficients, are referred to as weights in the context of
artificial networks. Generally speaking, "inference" refers to employ-
ing these given coefficients (i.e. weights) to update hidden represen-
tations, while "learning" refers to the slower process of optimizing
weights.

While the signal flow of the model classes is directly comparable,
differences arise in the way inference and learning are addressed in
typical tasks. Kalman filters are usually used for dynamic inference
given prior assumptions on the data, resulting in mathematically ex-
act updates of their latent state. The deterministic class of IIR filters is
typically used to apply a previously designed transfer function to in-
coming signals, where output signals are a weighted combination of
previously processed signals. Some exceptions, such as differentiable
IIR filters allow to learn weights during application [113]. Kalman
filters and PC networks are typically modeled as probabilistic genera-
tive models, keeping track of an inferred latent state with associated
variance (or inverse precision). Both have found applications in mod-
eling cognitive and neural processes. In contrast to Kalman filters,
optimization in PC networks generally addresses state inference and
weights learning simultaneously. Finally, PCNs can include internal
predictions of their latent states, i.e. "top-down" expectations about
activities in lower PCN layers [2, 51]. This hierarchical structure is
similar, but not identical, to the multi-layer architecture of deep neu-
ral networks, which typically lack the feedback connections that are
inherent to PCNs. More specifically, DNNs can be interpreted as corre-
sponding to pyramidal dendritic connections in the biological coun-
terpart. This means that DNNs, possibly with multiple layers, connect
adjacent variables in PCN layers [127]. Here, we explore the audio DSP
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Figure 33: a) Comparison of Kalman filters, differentiable IIR filters, and
gradient-based PC networks in state-space form. Blue color indi-
cates variables that are optimized in a typical filtering application
for each model. b) Signal analysis and synthesis with autoregres-
sive PC and linear activation functions: In the analysis stage, ob-
servations at time-step t are mapped to hidden states using en-
coder weights. The learned transition dynamics are then applied
to the latent state. Outgoing predictions for the next timestep t+1

are computed via decoder weights that map from the updated la-
tent state to the expected sensory input. During synthesis, the
prediction error is fed to the model jointly with the previous pre-
diction.

capabilities of single-layer and hierarchical PCN models interpreted as
biologically plausible Neural Kalman filters. This PCN class has been
discussed for single-layer models in [141].

6.2.1 Audio filtering and state-space models

Signal analysis with autoregressive filters at discrete time-steps t can
be described with respect to a steady state transfer function H(z)

H(z) =
G

1−
∑k

j=1 ajz−j
=

G

A(z)
(48)

with input gain G [89, 109]. The parameters aj with 1 ⩽ j ⩽ k and
G of this state transfer function can be optimized with respect to
the prediction error e(x) between predicted signal p(t) and observed
signal o(t), also referred to as excitation or residual signal:

e(t) =
1

G
(o(t) −

k∑
j=1

ajo(t− j)) (49)
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The SSM of this generalized prediction error filter is updated with the
following difference equation:

z[t+ 1] = A[t]z[t]

o[t] = C[t]z[t]
(50)

where z[t] is the state vector at timestep t and the prediction coef-
ficients aj are represented by weights A and C. All four discussed
model classes, despite originating from the different fields can be in-
terpreted in prediction error minimizing SSM form. Linear PC (LPC),
a widely used DSP tool, draws from this possibility for the design
of IIR coefficients. LPC is typically used for signal compression, par-
ticularly for speech coding, by separating stationary residual signals
from imposed resonances [158]. This theoretically allows to analyse
and synthesize signals using the same model. However, the efficient
algorithms employed in LPC are not directly biologically interpretable
and generally do not actually use a SSM to find the coefficients. From
this perspective, our work generalises LPC towards the more general
class of PCNs, where analysis and synthesis use the same model.

6.2.2 RNN and differentiable IIR filter

Recurrent neural networks, in their simplest form, can be expressed
by the following difference equations [42, 113]:

z[t+ 1] = σz (Wzz[t] +Uzx[t+ 1] + bz)

y[t+ 1] = σy (Wyz[t+ 1] + by)
(51)

with hidden states z, inputs x and outputs y. W and U are trainable
weights and b are biases. Known from previous work is that, in the
case where activation functions σ are (non-)linear and the biases are
set to zero, this structure directly resembles a (non-)linear all-pole IIR

filter

z[t+ 1] = Wzz[t] +Uzx[t+ 1]

y[t+ 1] = Wyz[t+ 1]
(52)

which scales to arbitrary order of transfer functions H(z) (also re-
ferred to as the filter order) and allows to train differentiable IIR filters
using the optimization methodology for RNNs [113]. A useful gener-
alized state space form for such IIR filters is

z[t+ 1] = Az[t] +Bx[t]

y[t+ 1] = Cz[t+ 1] +Dx[t+ 1]
(53)

where matrices A,C represent the learnable weights for latent state
transition and output transformation and B,D are weights for input
transformations [113].
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6.2.3 Kalman Filters

The Kalman filter gained large popularity in fields such as engineer-
ing, statistics, and neuroscience and filters data points with respect
to a probabilistic latent state and their expected precision. Typically,
dynamics and observation models are linear and the observed noise
and the latent states are modeled as Gaussian distributions. Similar
to the previously discussed model classes, the Kalman filter can be
described in SSM form:

z[t+ 1] = Az[t] +Bu[t] + v

y[t+ 1] = Cz[t+ 1] +w[t]
(54)

with hidden states ht at discrete timesteps t. Correspondingly to the
deterministic IIR filter, the weights of the transition matrix A describe
the linear dynamics. The weights of matrix B and C parameterize
the observation model. Weights B transform the control inputs u, i.e.
known inputs to the system and C map from inferred state to the sen-
sory prediction. Finally, v and w are white noise Gaussian processes
with mean zero. The Gaussian prior p(zt+1) and posterior distribu-
tion p (zt+1 | y1...t, xt) of the Kalman filter are parameterized by their
sufficient statistics, the mean µ and covariance matrix Σz [95, 141].

6.2.4 Gradient-based predictive coding

Gradient-based PC has been applied to an approximation of the exact
inference in the Kalman filter [141]. In the simplest case, without ob-
servations or control inputs, we have a state space model of the form

z[t+ 1] = Az[t]

y[t+ 1] = Hz[t+ 1]
(55)

where A and H are learnable matrices for the state transition dynam-
ics and the observation model respectively.

Following [141], we define the loss function of the PC filter as:

argminµt+1
L = argmaxµt+1

p (yt+1 | zt+1)p (zt+1 | zt) (56)

In this formulation, weights A and H and the inferred hidden state
z (or, more specifically, its mean parameter µ) can be updated using
a gradient descend on the precision weighted prediction errors local
to the layer [141]:
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dL

dµt+1
= −HTΣzϵz + Σxϵx

dL

dA
= −Σxϵxµ

T
t

dL

dC
= −ϵyµ

T
t+1

(57)

with sensory prediction errors ϵy = y −Hµt+1 and state predic-
tion errors ϵz = µt+1 − Aµt [141]. This means that each layer op-
timizes the quality of its signal predictions pyt+1

= Hµt+1 and of
its state predictions pµt+1

= Aµt. Often times, the variance Σ is as-
sumed to be constant during inference and learning, i.e. fixed to a
prior hyper-parameter, such as a simple identity. Here, we will also
resort to a fixed variance (an identity matrix), although more elabo-
rate implementations could adaptively weight the prediction errors
with respect to an inferred variance. In this thesis, we will cover such
variance estimation in PC networks in chapter 7, in the context of
unsupervised learning on spatial and spatio-temporal data. This op-
timization process happens locally informed and in parallel for each
optimized variable. This implies that many different possible config-
urations of states and network parameters could be found during
minimization of the locally computed prediction errors.

A more general form of the PC SSM includes additional weights for
control inputs u and observed inputs x:

z[t+ 1] = Az[t] +Bu[t]

y[t+ 1] = Hz[t+ 1] +Dx[t]
(58)

In summary, we see that single layer PC models and Kalman filters
can be represented using the same SSM as IIRs and RNNs (excluding
nonlinearities), but additionally differentiate between control and ob-
served inputs.

6.3 hierarchical predictive coding of audio

To create a hierarchy of dynamical layers with local computations, we
can augment the PC SSM mentioned in equation 58 with two sets of
weights, F and G. These weights modulate the influence of the layer’s
own latent state z in comparison to a top-down prediction of this state
ztd provided by a higher layer:

z[t+ 1] = FAz[t] +GAztd[t] +Bu[t]

y[t+ 1] = Hz[t+ 1] +Dx[t]
(59)

Here, we denote the weighted state prediction from current and
next higher layer with ẑ = Fz+Gztd. In all experiments, we ignore
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control inputs u, which could receive known additional (action) sig-
nals and feed past observations xt−1 to the observation encoder for
the filtering task presented in section 6.4.3.

The state prediction error now includes the additional input and
weights:

ϵz = µ[t+ 1] − FAµ[t] −GAµtd[t] (60)

Figure 34 shows an overview of a single layer PC model and how
multiple layers can be connected through locally informed predic-
tions and prediction error signals. More precisely speaking, the low-
est PC layer directly predicts audio inputs and receives prediction
error et at every timestep. In contrast, hidden PC layers predict the
hidden states of the lower layer and receive state prediction error ezt .
Both lowest and hidden PC layers additionally optimize the weights
of their transition model that maps from currently inferred state zt to
the next state zt + 1. We can interpret weights F and G as part of the
prediction units that produce the optimal state predictions zt+1 given
the transition model A. Finally, the latent state zt + 1 is optimized in
parallel via gradient descent to minimize the prediction error et + ezt
local to the respective layer.

We use an overlap-and-add processing approach which is com-
monly used in DSP, meaning that the PCN processes audio signals in
overlapping sequences. For all experiments, the lowest PCN layer pro-
cesses these sequences sample-by-sample. Hidden layers have identi-
cal update frequencies. We found that sequence sizes between 16 and
2048 frames provide meaningful results. The hop-length was set to
half the sequence length.

6.3.1 Audio analysis and synthesis

Assuming purely linear prediction and a well-trained model, using
the PCN for audio re-synthesis is possible by reverting the process
that computes the residual signal at timestep t (i.e. linear prediction
error) from the prediction during analysis. Figure 33 b) shows an
overview of the steps for synthesis and analysis given at the lowest
layer of a hierarchical PC model. While this is not the only possible
approach to analyze and synthesize signals with PC networks, it has
the advantage of relatively exactly replicating the approach taken in
LPC. In LPC the coefficients minimizing the squared error during the
linear prediction of the next sample resemble compressed versions of
the resonances (typically formants in speech coding) and allow the
signal to be transmitted with high compression rates through block-
wise filter coefficients and down-sampled residual signals. For lin-
ear prediction, this LPC residual signal is equal to the prediction er-
ror that arises in (gradient-based) predictive coding. Assuming linear
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Figure 34: Predictive Coding network for hierarchical Kalman filtering: At
each timestep t, predictions yt are generated from a latent state
zt using decoder weights that are optimized towards the sen-
sory prediction error et between observation x and prediction
y. Future latent states zt+1 are computed with learnable transi-
tion weights. The transition weights are optimized towards the
state prediction error ezt between predicted state ẑt and the next
inferred state zt. Hidden PC layers minimize the prediction error
ezt from a "top-down" prediction of the state. The hidden state z

is optimized towards sensory and state prediction error et and
ezt and creates a balance between outgoing and incoming pre-
dictions. Optional encoders allow to predict with respect to past
observations xt−1 or control inputs u.

PCN weights and audio with stationary parts, we expect that resonant
parts of the audio are gradually removed from the residual.

6.4 results

6.4.1 Beat tracking

In order to quantitatively assess the possibility to extract music infor-
mation from raw audio using prediction errors, we resort to a beat
tracking task using two datasets: The SMC MIREX dataset is com-
monly used for beat tracking evaluation [83]. Our second evaluation
is based on finger tapping recordings in the NMED-T dataset that
focuses on EEG recordings during music perception [123]. We choose
an approach similar to the predominant local pulse (PLP) method
described in Grosche et al. [68] and predict beat timings based on a
local enhancement of a novelty function. The novelty function in [68]
is based on spectral flux, the spectral difference between subsequent
Fourier transformed audio inputs. We feed Fourier transformed au-
dio inputs to the PCN (this being the only place where the PCN inputs
are not audio samples) and use the prediction error from a single
layer PCN to compute the novelty curve. Wherever possible, we use
the same FFT parameters as used in Grosche et al. [68] but do not tune
any other hyper parameters. For comparison to other approaches, we
report the F-measure and two continuity-based metrics: CMLt, mea-
suring correctly tracked beats at the metrical level, and AMLt, which
allows variations such as double, half or offbeat variations [28]. All
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SMC MIREX F-Score CMLt AMLt

Ellis, 2007 0.339 0.162 0.315

Grosche, 2010 0.360 0.071 0.221

Böck, 2014 0.521 0.363 0.433

PCN (ours) 0.205 0.108 0.201

NMED-T F-Score CMLt AMLt

Ellis, 2007 0.277 0.195 0.473

Grosche, 2010 0.305 0.037 0.125

Böck, 2014 0.092 0.105 0.280

PCN (ours) 0.321 0.111 0.295

Table 8: Beat tracking evaluation

evaluations are based on the mir_eval package [169]. Next to the PLP
model, we compare our approach to established baselines: A dynamic
Bayesian network from [13] and the dynamic programming approach
from [41]. Table 8 shows resulting scores on both datasets.

Interestingly, with respect to the F-Measure, our method outper-
forms the baselines on the NMED-T dataset but delivers the worst
performance on the SMC dataset. This indicates a useful performance
on genres with salient rhythmical features, as the NMED-T dataset
was designed focusing on pop songs with clear rhythms. The SMC
dataset features many songs with soft onsets, such as strings, where
the novelty function from the prediction error is not sufficient. We
hope that these encouraging results motivate future work with im-
proved tracking based on predictive coding.

6.4.2 Audio filtering with top-down predictions

Figure 35 shows examples for repeated block-wise prediction of the
same audio input with a single layer PCN and a hierarchical PCN with
two layers for different gradient steps. In both networks, the inferred
state and transition weights of the lowest layer are reset after each
sequence prediction. This means that predictions in the single layer
PCN are based on local information, i.e. the previously seen samples
in the sequence. The hierarchical PCN keeps a top-down prediction of
the lower layer’s hidden state, providing refined contextual informa-
tion for each prediction. This learnable state prior noticeably leads to
a shifted starting point for the lowest layer in the hierarchical PCN in
Fig. 35 a), where the lowest layer has not enough time to converge
properly. When initialised with optimised parameters, both variants
are able to approximate the target audio to a reasonable degree and
the differences in prediction (and associated prediction errors) are
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Figure 35: a) Repeated prediction of a constant sine wave with single layer
(left) and hierarchical PCN with two layers (right). The hierarchi-
cal model learns a top-down state prior for the sequence, while
the single layer model has only local context. When convergence
in the lowest layer is not guaranteed, such as with too few gradi-
ent descent steps or with inappropriate initialisation of precision,
only the hierarchical model correctly tracks the incoming signal.
b) With increased gradient steps for state inference in the low-
est layer both single-layer and hierarchical PCN eventually show
accurate posterior predictions (green). Predictions from the state
prior (blue) improve only for the hierarchical model.
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largely restricted to the start of the sequence, as visible in Fig. 35 b).
This indicates that minimizing prediction error can be solved through
online inference in independent trials as well as through the more
gradual process of weights learning when information between trials
is carried over. As noticeable in both Fig. 35 a) and b), the learning dy-
namic of the hierarchical model is significantly more dynamic, since
the weighting of the top-down state prior is slightly adapted at each
timestep.

The posterior predictions, indicated in Fig. 35 with green lines,
show that the lowest PCN layer does not directly adapt to the top-
down prior, but needs some time to tune the remaining weights to
this additional source of information. When the top-down prior is cor-
rectly integrated, however, the hierarchical model quickly improves
over the single layer model, especially with parameter initialisation
that prevents full convergence of prediction errors in the lowest layer.

6.4.3 Replicating filter transfer functions

We tested the possibility to simulate a Butterworth low-pass (LP) fil-
ter, which is widely in various DSP applications. Figure 36 shows in-
put and output audio signals to the targeted LP filter and the cor-
responding in and outputs of a PCN. We test PCNs with single and
two layers on a constantly ascending sine wave tone superimposed
on constant white noise. Both PCN variants are able to replicate the
desired transfer function of the LP filter and show the desired high
frequency content removal.

6.5 discussion

We presented a gradient-based PC model for audio analysis and syn-
thesis. The hierarchical model targets biological plausibility through
locally informed updates while still being efficient and accurate
enough to replicate classical DSP tasks like filtering and beat tracking.
We reviewed the similarities between the autoregressive state-space
models underlying predictive coding, IIR filters, recurrent neural net-
works, and Kalman filtering. From a modelling perspective, the dis-
cussed architecture is to trained to integrate top-down predictions by
using an additional set of weights in the transition function. As a re-
sult, the hidden state dynamics explicitly depend on the top-down
prior as a separate source of information. This can be interpreted as
a sort of control input (i.e. resembling the role of u). More elaborate
versions of the model could improve upon this by treating top-down
signals as (slowly-moving) control states, that control the (potentially
more complex) dynamics of the respective layer. In PC models in neu-
roscience this aspect of top-down control of state dynamics is a core
aspect that leads to temporal abstraction between layers [49, 51]. How-
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Figure 36: Replicating an order 2 Butterworth LP filter. LP filter and PCN
remove high frequency contents and have comparable output
magnitudes. As the prediction starts with randomized states and
without top-down prior, the prediction error (red) is higher at the
sequence start.

ever, this usually implies a separation of states into a set that repre-
sents dynamics and into an additional set that controls perturbations
of these dynamics. Thus, the complexity of the model is significantly
increased. Another promising avenue for more elaborate versions of
the investigated model is the inclusion of a variance, i.e. uncertainty,
component into the hidden state that is not simply an identity matrix
and constant during inference. We will discuss a gradient based PC

model that includes cause and hidden state separation as well as vari-
ance estimation in the next chapter. It is unclear how estimation of
uncertainty would affect performance on signal processing tasks on
audio, where high accuracy generally is of high importance, leaving
ample room for future exploration. Depending on the chosen focus,
the model investigated here provides a basis for future work that
could approach more complex audio signal processing applications
or aspects of subjectivity in artificial music perception.
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7
G E N E R A L I Z E D P R E D I C T I V E C O D I N G

The previous chapters have covered the VAE as a simple model of
variational free energy optimisation with DNNs, a more elaborate PC

inspired DNN architecture and investigated gradient-based PC with lo-
cal learning rules. Out of these, gradient-based PC networks (simply
referred to as PCNs in this chapter) arguably have the largest degree
of biological plausibility. PCNs can perform approximate backpropa-
gation of error in supervised learning settings and have been scaled
to unsupervised representation learning in deterministic settings [140,
208]. However, it is less clear how PC compares to state-of-the-art ar-
chitectures, such as VAEs, in unsupervised and probabilistic settings.
In this chapter we propose a PCN that is directly inspired by gener-
alized PC (GPC) in neuroscience [49, 51] in the context of automatic
differentiation and exact gradient computation. The network param-
eterizes hierarchical distributions of latent states under the Laplace
approximation and maximises model evidence via iterative inference
using precision weighted local error signals. Unlike its inspiration it
uses multi-layer neural networks with nonlinearities between latent
distributions. From a machine learning perspective, this approach of-
fers a model that is consistent with an established process model in
neuroscience [51] while allowing the flexibility to include single or
multi-layer neural networks within each hierarchical layer. Next to a
hierarchical abstraction of static observations, the model covers dy-
namical predictions with respect to a "dynamical hierarchy" covering
the first-order motion of latent states as well as their higher order
motion derivatives. In this chapter, we compare a static variant of the
proposed model to VAE and Variational Laplace Autoencoder (VLAE)
baselines on three different image datasets and find that generalized
PC quantitatively shows performance comparable to variational au-
toencoders trained with exact error backpropagation. We also inves-
tigate the possibility of learning spatio-temporal dynamics via static
prediction by encoding sequential observations in generalized coordi-
nates of motion, i.e. using a hierarchical-dynamical GPC model.

The content and figures in this chapter is based on the following
publication:

[pub:1] A. Ofner, B. Millidge, and S. Stober. “Generalized Pre-
dictive Coding: Bayesian Inference in Static and Dynamic mod-
els.” In: 4th Shared Visual Representations in Human and Machine
Intelligence workshop (SVRHM) at NeurIPS. 2022.
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structure of the chapter Section 7.1 briefly recapitulates
variational inference in PCNs and DNNs and provides an overview
on related work. Section 7.2 introduces the proposed generalized PC

network in the context of automatic differentiation. The implemented
models and datasets chosen for experimentation are discussed in Sec-
tions 7.3 and 7.4. Section 7.5 covers the results from the experiments,
followed by a discussion in Section 7.6.

7.1 related work

7.1.1 Predictive coding and variational inference

In the previous chapter, we have focused on a simple PCN that pre-
dicts the motion of its hidden states with respect to (discrete) sequen-
tial observations and a top-down prediction of the hidden state. PCN

models in neuroscience often have a more elaborate structure that
is "hierarchical-dynamical". "Static" PCNs are organised hierarchically,
where top-down signals from higher layers predict the activity of
the layer below and bottom-up signals convey prediction errors. In
"hierarchical-dynamical" PC models each layer additionally predicts
temporal changes of expected neural activity in the layer below. Given
these dynamics, Hebbian updates on weights and activities can be de-
fined that minimize the prediction error at each hierarchical layer of
the network.

The weight and activity update dynamics of PCNs can be inter-
preted as performing variational inference by iteratively refining an
inferred distribution over possible causes p(z|o) of observed sensory
data o [51, 52, 208]. In variational inference, an approximate distri-
bution q(z; λ) is fit to the generally intractable posterior pθ(z | o) by
optimizing the variational free energy

F : Fθ(o; λ) = Eq(z;λ) [lnpθ(o, z) − lnq(z; λ)] (61)

In predictive coding, we define q(z; λ) to be a simple diagonal or
full-covariance Gaussian distribution with λ as the sufficient param-
eters, i.e. the mean and covariance. Given the generative model θ

(decoder) of a particular hierarchical layer, inference in PC models
proceeds by estimating the optimal variational parameters λ∗ that
maximize model evidence given observed data and current parame-
terization. Learning of the parameters of the generative model θ can
be achieved by performing a gradient descent on Fθ (o; λ∗) with re-
spect to θ which results in Hebbian weight updates. Crucially, learn-
ing and inference in PCNs is driven by locally generated predictions
and prediction errors. In hierarchical PCNs, the predicted distributions
of higher layers foster empirical priors for the next lower layer:
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p(z,o) = p (o | z1)p (z1 | z2) . . . p (zL−1 | zL) (62)

such that a layer’s inference model can be interpreted as the next
higher layer’s generative model.

7.1.2 Gradient-based predictive coding networks

Overall, a surprisingly small amount of work has focused on scaling
inference and learning of PC networks with local learning rules in the
domain of machine learning [139]. This is in contrast to the wealth
of computational PC models in neuroscience [14, 49, 51, 172]. Within
machine learning applications, first steps have been taken to apply
PC models to large datasets, usually focusing on image datasets with
relatively low complexity, such as the MNIST dataset [138]. In this
context, supervised and unsupervised learning has been addressed
[138, 139]. Similar hierarchical PCNs has been implemented in the
context of convolutional neural networks [140, 180]. These PCNs are
often trained with a methodology similar to training deep neural net-
works, e.g. by computing weight updates with respect to stochastic
mini-batches of data from a larger dataset [157, 225].

Most of aforementioned models perform inference and weight up-
dates assuming that an exact inverse of the forward weights in each
hierarchical layer is known, i.e. credit assignment proceeds by com-
puting the exact gradient for the activity and weights in each hierar-
chical layer, using the locally arising prediction error at that particular
layer. It has been shown that using approximate (learned) backward
weights leads to similar performance [142]. This motivates us to focus
on exact gradient computation and resort to automatic differentiation
of the (nonlinear) feedforward function. This implies that exact prop-
agation of error gradients, but local to each hierarchical layer of the
PCN is compatible with PC. From a deep learning perspective, this
means that the predictive distribution between hierarchical layer can
be a arbitrarily complex function, e.g. a deep neural network, as long
as the prediction errors are computed locally with respect to the pa-
rameterized hierarchical latent variable. This fits well with the idea
that complex (i.e. "deep" or multi-layer) neural networks could be
interpreted in terms of dendritic connectivity in biological neurons
[128].

Recently, learning in PCNs have been extended to include amor-
tized inference of inferred latent states [208]. The central idea is that
PCNs might have an additional pathway enabling "bottom-up" amor-
tized inference via weights that are learned with respect to the entire
dataset. This potentially removes the need for costly iterative infer-
ence. In this chapter, we will take a similar view and treat amortized
inference of latent states. However, we do not explicitly introduce ad-

113



generalized predictive coding

ditional "bottom-up" weights for amortization. Instead, we stick to
the conventional hierarchical structure of PCNs and exploit the fact
that each hierarchical layer already amortizes the iterative inference
of the respective lower layer.

Typically, the inference in PCNs is interpreted deterministically, e.g.
using a dirac-delta (point mass) distribution [139]. This simplifies in-
ference in PCNs to inferring the MAP of an encoded mean parameter
in each layer and allows to ignore computing the estimated variance
(or uncertainty) in the model. Here, we focus on inference using the
Laplace approximation and explicitly interpret the PCN as perform-
ing variational inference on Gaussian states with respect to a directly
optimised mean and a covariance parameter that equals the Hessian
of the joint probability of the model.

Even less work has been done with respect to dynamical PCNs [138,
140]. Existing studies focusing gradient based PCNs in machine learn-
ing focused on simple models that perform single step autoregres-
sive predictions, drawing connections to recurrent neural networks
and the Kalman filter [140, 141]. Such simple dynamical PCNs that
perform inference with respect to observations at a future, discrete
timestep have been treated in the previous chapter of this thesis. A
possible explanation for the lack of gradient-based PCN models in
machine learning is that elaborate dynamical PC models in neuro-
science often modelled in continuous-time, or as a hybrid of continu-
ous and discrete time, e.g. using a Taylor series expansion of discrete
model inputs [51]. Here, we will take the latter, hybrid, approach and
show how scaled up dynamical PCNs can be trained on conventional,
i.e. discrete, sequential datasets in machine learning, assuming that a
high sampling rate is available.

7.1.3 Variational autoencoders with iterative inference

The VAE is a highly influential class of deep neural networks that per-
forms amortized inference of λ using an inference model ϕ (encoder)
[104]. The inference model in VAEs learns to predict the approximate
posterior qϕ(z | o) by learning the parameters ϕ of the variational
mapping over a dataset. In contrast to the Hebbian updates in PCNs,
VAEs are trained using exact backpropagation of error through the en-
tire model [177]. In VAEs, backpropagation of errors through samples
from the random latent variable z̃ ∼ qϕ(z | o) is solved by resorting to
the "reparameterization" trick that involves expressing the sampled
distribution as a differentiable function gϕ(ϵ,o) with respect to an ad-
ditionally introduced noise variable ϵ. A typical choice for the prior
distribution in VAEs is a normal distribution with diagonal covariance

z ∼ qϕ(z | o) = N
(
z;µ,σ2I

)
(63)
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such that

z̃ = µ+ σ⊙ ϵ with ϵ ∼ N(0, I) (64)

More recently, the notion of iterative inference has been adapted
for VAEs to improve the posterior distribution [128, 162]. While VAEs

(especially those with iterative updates) and static PCNs have striking
similarities in terms of architecture and optimisation scheme, there
is still a lack of quantitative comparisons in the literature [128]. Simi-
larly, various deep recurrent models for predicting sequential stimuli
have been developed, but lack exhaustive comparison to dynamical
PCNs [20, 80, 176].

7.1.4 Generalized predictive coding

Generalized PC (GPC) describes an influential class of PCNs that cov-
ers static and dynamic models in combination with generalized coor-
dinates of state motion and the Laplace approximation [49, 51]. Static
GPC networks infer the conditional mean and covariance of cause
states v and hidden states x. Each hierarchical layers predicts the ex-
pected activity in the next lower layer using non-linear function g:
y = g(x, v, θ) + z. Dynamical GPC networks additionally predict the
motion of hidden states ẋ = f(x, v, θ) +w using a non-linear transi-
tion function f. When hidden states are ignored, the resulting model
is static, i.e. lacks dynamical predictions. z and w denote observa-
tion noise and transition noise respectively. While cause states are
predicted hierarchically, hidden states are usually not observed by
higher hierarchical layers.

Under the assumption of local linearity, GPC uses states in general-
ized coordinates of motion ỹ = [y,y′,y′′, . . .]T, where y′ denotes the
temporal derivative at y. Similarly, for cause and hidden states:

y = g(x, v) + z x′ = f(x, v) +w

y′ = gxx
′ + gvv

′ + z′ x′′ = fxx
′ + fvv

′ +w′

Using Gaussian priors p(z) = N(z; µ̄,Σ), GPC infers posterior dis-
tributions of the causes p(x̃ | ṽ) = N

(
Dx̃ : f̃, Σ̃z

)
and the hidden

states p(ỹ | x̃, ṽ) = N
(
ỹ : g̃, Σ̃z

)
. Here, D denotes a derivative oper-

ator that replaces each order of state motion with the next higher
order: x← x ′, x ′ ← x ′′, ....

While conditional mean parameters µ are encoded explicitly, the co-
variance Σ is encoded implicitly as a function of the mean using the
Laplace approximation (LA). Under the LA, the covariance is deter-
mined by the local curvature of − logpθ(y, v, x) at the inferred mode
of pθ(v, x | o). Figure 37 shows dynamical and static GPC in compari-
son to a VAE.
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Figure 37: Variational autoencoders (a) encode mean and variance of their la-
tent distribution. Error signals are propagated through the entire
network via the backpropagation algorithm. Generalized PC (b-
d) propagates local errors and encodes only the mean under the
Laplace approximation. The variance is a function of the mean
and can be explicitly sampled (b) or appears only as error weight-
ing terms (c).

GPC proceeds by expressing the free energy F of each hierar-
chical layer l as a function of precision weighted prediction errors
ξ(l,o) = Σ(l,o)−1

ϵ(l,o) for outgoing predictions and for top-down pre-
dictions ξ(l,v) = Σ(l,v)−1

ϵ(l,v) from the next higher layer. Here, preci-
sion is the inverse of the covariance Σ. Depending on the chosen prior,
the distance between prior and posterior distribution is measured by
ξ(l,p) = Σ(l,p)−1

ϵ(l,p). Here, ϵp = µ − µ̄ = µ − 0, is the prediction
error between posterior and prior and ϵ(l)v = µ(l) − g(µ(l+1)) is the
hierarchical prediction error between layers (or the sensory predic-
tion error at the lowest layer). For dynamical models, the generalized
predictions ỹ result in generalized errors ϵ̃ = ỹ− õ = [ϵ, ϵ′, ϵ′′, . . .]T.
Inference in each layer is done via gradient descent on ξ = Σ−1ϵ for
cause states [51]:

˙̃µ(l)v = µ̃(l)v − ε̃
(l)T
v ξ(l) − ξ(l+1)v. (65)

Within each hierarchical layer, the motion of hidden states is in-
ferred as:

˙̃µ(l)x = Dµ̃(l)x − ε̃
(l)T
x ξ(l). (66)

7.2 gpc with automatic differentiation

Here we are interested in modelling the GPC model introduced in Sec-
tion 7.1.4 in the context of multi-layer neural networks and automatic
differentiation. We first describe the structure and inference mecha-
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nism for a static model. After that, we introduce the full GPC model
that additionally models hidden state dynamics over time.

Expanding on related work on hierarchical PCNs, we start with a
static PCN that covers L hierarchical layers and computes predictions
about the activity of latent (cause) states v(l) on lower layers using
a nonlinear function g(v(l+1)) that parameterizes its generative net-
work. We allow the nonlinear function to be parameterized by a multi-
layer NN and employ exact backpropagation of errors to update the
parameters of a particular hierarchical layer, with respect to the lo-
cally computed prediction error. 1 The locally computed prediction
error is composed of three terms, which will cover in the next sec-
tion.

7.2.1 Inference and learning with prediction errors

For a hierarchical layer l, the variational free energy F decomposes
into an accuracy term, that measures the quality of the outgoing pre-
diction g(l)(µ(l)), and a complexity term between top down predicted
state g(l+1)(µ(l+1)) and inferred state µ(l). Since we want to compare
the GPC model to variational autoencoders, we regularize by the dis-
tance between a standard normal prior distribution and the inferred
posterior distribution. Under the Laplace approximation, this simpli-
fies to the divergence from zero mean.

F(o,q(l), q̂(l)) = Eq[logp(o | z)] − KL(q(l)(z)∥q̂(l)(z)) − KL(q(l)(z)∥p(z))
(67)

Hidden hierarchical layers predict the mean of activity of the layer
below, i.e. observations o are replaced by the sufficient parameters
µl−1 and Σl−1. We can also express this lower bound with respect
to the optimal inferred posterior distribution q∗(l)(z) that is inferred
during inference:

F(o,q(l), q̂(l)) = Eq[logp(o | z)] − KL(q∗(l)(z)∥q̂(l)(z)) (68)

In our GPC model, the optimal inferred posterior distribution
q∗(l)(z) is inferred using an approximation of the full KL divergences
that rests on precision weighted errors that are simple to compute lo-
cally for each layer:

F(o,q(l), q̂(l)) = Eq[logp(o | z)] − KL(q∗(l)(z)∥q̂(l)(z))

≈ −ϵ(l,o)ξ(l,o) − ϵ(l,v)ξ(l,v)
(69)

1 In order to avoid confusion, we will explicitly refer to hierarchical layers of the PCN

(i.e. referring to a latent variable and associated generative network) as "hierarchical
layers" and refer to layers of the generative network simply as "layers".

117



generalized predictive coding

Where the corresponding weighted prediction errors ξ are com-
puted as:

ξ(l,p) = Σ(l,p)−1

ϵ(l,p), ϵ(l,p) = (µ(l) − 0)

ξ(l,v) = Σ(l,v)−1

ϵ(l,v), ϵ(l,v) = (µ(l) − g(l+1)(µ(l+1)))

ξ(l,o) = Σ(l,o)−1

ϵ(l,o), ϵ(l,o) = (g(l)(µ(l)) − o)

(70)

To make use of amortized inference, at the start of iterative infer-
ence, the inferred posterior is initialized with its top-down prediction
µ0 = µ̂. During inference the optimal posterior distribution q∗(l)(z)

with respect to distance from the prior and decoder accuracy is then
computed using a simple gradient descent or using Gauss-Newton
updates on ϵ(l,p) and ϵ(l,o). After inference, the covariance parame-
ters of the top-down predicted distribution ˆq(z) and the inferred pos-
terior distribution q∗(z) are inferred following the routine described
in Park, Kim, and Kim [162] using Σ−1 = − ∇2

z logpθ(o, z)
∣∣
z=µ

,
which can be efficiently computed for ReLU activations. We then com-
pute weights updates using the Adam optimiser by replacing the
full KL divergence in Formula 3 with the precision weighted error
ϵ(l,v)ξ(l,v). For model evaluation and comparison to the baselines,
we use the full analytical KL divergence. We found that training the
model using the full KL terms leads to similar results, although with
increased numerical instability when latent vectors have large dimen-
sions or when the amount and size of inference steps is insufficient.

7.2.2 Laplace approximation with ReLU nonlinearity

Inspired by the work of Park, Kim, and Kim [162], we employ ReLU

non-linearity for the input and hidden layer of each hierarchical
layer’s decoder network, followed by a linear output layer. For de-
coder network weights W and Jacobian Wz with respect to latent
states z = (v) (or z = (v, x) for a hierarchical-dynamical models, as
discussed in the next section) ReLU non-linearity allows to efficiently
compute the precision of inferred posterior states

Σ−1 = − ∇2
z logpθ(o, z)

∣∣
z=µ

= Wz
TWz + I |z=µ (71)

by computing binary activation masks ReLU(Wz) = O(Wz) dur-
ing the decoder’s forward pass and recursively multiplying with the
decoder’s weights [162]. Under a local linearity assumption, we can
use the approximation Wz

TWz of the generative network’s Hessian
matrix for precision weighted state updates

µ̇ =
(
WT

zWz + I
)−1

WT
z ε |z=µ (72)
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during inference. After a fixed amount of inference steps towards
the posterior mode the approximate posterior distribution is

q(z | o) = N(µ,Σ) (73)

using the Laplace approximation [162]. This distribution is then
used to compute gradients for the weights. We perform exact error
propagation to the weights strictly locally within each hierarchical
layer using automatic differentiation in PyTorch [78, 164]. This is in
contrast to a backpropagation pass over all parameters, such as in
VAEs, where the decoder’s error directly drive updates of encoder
parameters.

7.2.3 Hierarchical-dynamical GPC

Dynamical GPC models are trained like static GPC via iterative infer-
ence. To create a hierarchical-dynamical model GPC, we introduce ad-
ditional hidden states x, such that each hierarchical layer contains la-
tent states z = (v, x). The resulting model predicts the mean of cause
states z(l−1) = g(z(l)) of lower layers using the hierarchical gener-
ative network g as described in the previous sections. Here, we do
not allow skip connections between hierarchical layers, i.e. only the
hidden states x are used for outgoing hierarchical predictions.

In the hierarchical-dynamical model, these hierarchical predictions
are computed in generalized coordinates: This means that, in addi-
tion to decoding the states y = g(z) per se, their explicitly represented
state motion ỹ = g(z̃) is also decoded and compared with the data
õ. During decoding the states y = g(z), the Jacobian Wz at the cur-
rently inferred mode is computed by masking the decoder network.
All other orders of state motion y′ = gzz

′,y′′ = gzz
′′, ... are decoded

through this masked decoder network Wz.
So far, we have covered hierarchical predictions in generalized co-

ordinates based on a separation between cause and hidden states. To
actually make the model dynamical, it needs to be able to predict
the motion of hidden states in generalized coordinates Dx̃ = f̃(ṽ, x̃).
During the prediction of hidden state motion x′ = f(z) the Jacobian
of the transition network fz is computed. This Jacobian is reused
for all higher order hidden state motion predictions z′′ = fz(z

′), ...,
zN = fz(z

N−1). We interpret the Taylor series expansion underlying
the forward and inverse embedding of sequential data as a convolu-
tion operation along the temporal axis, which can efficiently be com-
puted using convolutional kernels. Figure 38 displays the dynamical
connectivity in the hierarchical GPC layer.

We now arrived at a fully constructed hierarchical-dynamical
model that mirrors the structure of generalized predictive coding in
neuroscience [49, 51]. Conceptually, the resulting structure offers a
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Figure 38: Hierarchical predictions (green) express expectations about
causes (or data) in the next lower layer. Dynamical predictions
(blue) predict higher orders of state motion. Dotted connections
indicate optional skip connections between causes and the layer’s
hierarchical response (not used here).

large degree of abstraction: At each timestep, each hierarchical layer
predicts the cause state and N orders of instantaneous cause state mo-
tion of the respective lower hierarchical layer. These lower layer’s
cause states, in turn, perturb the dynamics of the lower hierarchical
layer’s hidden states. This means that each hierarchical layer abstracts
away from the dynamics of the next lower layer, resulting in different
time-scales. Expressing the model in generalized coordinates allows
to predict all orders of motion, across all hierarchical layers in par-
allel - rendering dynamical predictions entirely static in time. In the
next section, we discuss a proposed method that turns discrete se-
quences of data in a dataset into a generalized representation, such
as required by the model.

7.2.3.1 Generalized coordinates from discrete sequential data

We compute temporal embeddings of observations according to a Tay-
lor expansion of form

f(x±dx) = f(x)±dxf′(x)+
dx2

2!
f′′(x)± dx3

3!
f′′′(x)+

dx4

4!
f′′′′(x)± . . .

(74)

for points x± dx around a point x assuming a fixed step size e.g.
dx = 1. Since we observe discrete samples [o1, ...on] we approximate
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the instantaneous derivatives f ′, f ′′, ... up to desired order using a
central finite difference operator δdx

n[f](x). We interpret the result-
ing differencing coefficients as convolutional kernels, which can be
applied to any sequential data with sufficiently high sampling rate
either online or during preprocessing. Mapping back from the net-
work’s states to sequential data can easily be done using the inverse
kernel. Figure 39 shows examples for forward and inverse embedding
kernels.
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Figure 39: Forward and inverse embedding kernels for five different em-
bedding orders. Embedding coefficients (top row) are applied
to the temporal axis of each observed unit and project from dis-
crete samples around an expansion point, the centered sample,
to orders of unit motion in generalized coordinates. The recipro-
cal mapping is achieved with the inverse embedding coefficients
(lower row) that map from orders of state motion to discrete sam-
ples.

7.2.3.2 Multiple shooting

Following related work on multiple shooting (MS) based training of
Neural Ordinary Differential Equations (ODEs) we train the model by
splitting discrete sequences into multiple segments, which are opti-
mised in parallel [34, 209]. We sample discrete sequences [ot1 , ...otn ]
of length n at m shooting points [oτ1

, ...oτm ] which are then em-
bedded into generalized coordinates. For b sequences sampled at m
point, the network is trained with a batch size of b ∗m. In practise,
this means that we can omit the term Dµ̃(l)x for the dynamical pre-
dictions, which would be required for sequential filtering.

Figure 40 shows an example with two discrete sequences. Crucially,
while hidden states are inferred for each shooting point oτi

individ-
ually, the prediction errors for cause states are averaged over all m
samples from a sequence. The network thus learns to represent the
instantaneous motion in the generalized observation õi at each each
shooting point τi with hidden states x̃ while a sequence-wise cause
ṽ controls (or "perturbs") the hidden state dynamics. Multiple shoot-
ing provides and efficient way to learn weight parameters and cause
states with the model. Another possible ways to address learning in
the model is to filter generalized observations sequentially, i.e. one ob-
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Multiple shooting with cause and hidden states
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Figure 40: Example for multiple shooting with the proposed PC network.
Multiple shooting allows make inference with respect to multi-
ple locations, or shooting points τ in parallel. Discrete samples
around each each shooting point τi are projected to generalized
observations using the embedding kernels shown in 39. These
generalized observations õi are arranged over the batch dimen-
sion. Then, hidden states x̃ are inferred for each õi. For each se-
quence only a single cause state ṽ is inferred.

servation at a time. In such sequential Bayesian filtering, cause states
and weights are optimized with respect to the time integral of the
variational free-energy, the free action.

7.3 implemented models and baselines

7.3.1 VAE and VLAE baseline

We use the conventional VAE architecture with fully factorized normal
distribution, reparameterization of the latent distribution and trained
via backpropagation of error [104, 162]. It is trained using a single
sample from the latent distribution as input to the decoder and the
regularization with a standard normal. The VLAE is a variant of the
VAE with iterative mode seeking that defines a full-covariance Gaus-
sian posterior at the mode using the Laplace approximation [162].
The VLAE uses a single sample from the latent distribution at the in-
ferred mode as input to the decoder. Unlike the cited model, we do
not use a decaying learning rate for mode seeking. For the VAE and
VLAE models, the encoder and decoder consist of two ReLU activated
layers with 256 hidden units and parameterize 16 latent units.

7.3.2 Static GPC model

We implement a static GPC with two hierarchical layers and fix the
mean of the second layer’s latents to the data. In this setup, the
output of the second hierarchical layer provides empirical priors via
amortized inference on the first hierarchical layer’s cause states p(v1)
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2. The resulting architecture resembles that of an autoencoder as it
uses the second layer’s generative model as the first layer’s infer-
ence model. Predictions between cause states are parameterized by
a dense neural network with three layers. All generative networks
have 256 hidden units and 16 latent units (causes). Unlike VAE and
VLAE, the PC models do not use biases. In contrast to the VAE base-
line, inference and learning in the presented network (GPC-M) does
not involve a sampling step. For comparison we also implement a net-
work (GPC-V) that is trained using stochastic updates with a single
sample from the posterior distribution using the reparameterization
trick, as is standard procedure in VAEs.

7.3.3 Dynamical GPC model

We also implement two variants of dynamical GPC models to test
amortized inference and dynamical inference of causes respectively:
A simplified model with two hierarchical layers without cause states
that predicts hidden states top-down. Again, the data serves as fixed
input to the second hierarchical layer. The second model consists of
a single hierarchical layer that infers cause and hidden states with
associated dynamics using multiple shooting. We use 16 units for
cause and hidden states in all models. We use multiple shooting with
b = 4,m = 8 only for the dynamical GPC model that infers causes
and use b = 64,m = 1 otherwise. We use generalized coordinates of
order N = 2 for the simplified and N = 3 for the full GPC model.

7.4 datasets

We employ three popular datasets for unsupervised learning on im-
ages: The MNIST dataset (Creative Commons Attribution-Share Alike
3.0 license), Fashion MNIST (MIT license) and OMNIGLOT (MIT Li-
cense). Evaluation of the dynamical PC model is based on the Dis-
entanglement testing Sprites dataset (Apache License 2.0). MNIST
and FashionMNIST contain 60000 train and 10000 test images (with
28 × 28 pixels) while the OMNIGLOT dataset contains 24345 train
and 8070 test images (also with 28 × 28 pixels). To generate discrete
video sequences with high temporal resolution for the dynamical GPC

model we use a customized version of the dSprites dataset [133]. We
generate 128000 random samples from the original dataset and apply
Gaussian blur along both spatial axes with kernel size 3 and Standard
deviation of 10 before applying normalization. We restrict x and y po-
sitions to six values respectively, such that all sprites appear within
a center crop of 32 x 32 pixels. Starting with the noisy version of the
sprite, we apply a single direction of rotation (counterclockwise) by

2 Note that the cause state of the second hierarchical layer is fixed, i.e. iterative infer-
ence is restricted to the first hierarchical layer.

123



generalized predictive coding

rotating the sprite by a single degree. All remaining aspects, such
as shape, size, horizontal position and vertical position stay constant.
The Gaussian noise was applied only to the first frame of each se-
quence. We then projected the resulting discrete video sequences into
generalized coordinates using the embedding kernels discussed in
Section 7.2.3.1.

7.5 experiments

7.5.1 Static predictive coding

We train and evaluate models with varying amounts of inference
steps on MNIST [115], FashionMNIST [229] and OMNIGLOT [114].
Unlike the VLAE baseline, we do not initialise the decoder output vari-
ance based on dataset statistics. Instead we add noise from a standard
normal distribution and apply a logit transformation for all datasets.
Table 9 shows test results on all datasets for 3 and 6 iterative inference
steps using the conventional train and test splits. Listed are mean and
standard deviation across 10 runs. We trained for 1e+ 4 steps with
the ADAM optimiser at a learning rate of 1e-2 [103] and inference
learning rate of 0.5, the default setting of the VLAE baseline [162].
In almost all configurations, GPC-S and GPC-M slightly outperform
the VAE, while the VLAE model consistently outperforms both PCNs.
This indicates that PCNs, despite lacking exact error signals for the
inference network learn a generative model that is comparable to the
VAE. The GPC-M model without explicit sampling consistently out-
performed the sample-based GPC-S model, except for one configura-
tion on OMNIGLOT. In terms of divergence from the prior, the GPC

models consistently showed posterior complexity that is comparable
to, but slightly higher than, VAE complexity. For all tested models,
increasing the number of inference steps is beneficial only for low
numbers of steps. We found that reducing the inference learning rate
or adding a decay term can improve stability, but did not include it
in our experiments.

Table 11 in the Appendix shows the posterior complexity of mod-
els trained on the static prediction task for MNIST, OMNIGLOT and
Fashion MNIST in terms of mean and standard deviation over ten
runs. The PC models GPC-S and GPC-M show complexity that is
comparable to, but slightly higher than the complexity of the base-
line VAE. The VLAE shows complexity values that are smaller than
the baseline VAE in four out of the 6 tested configurations. For VLAE

and GPC models, increasing the amount of inference steps from 3 to
6 slightly increases the complexity of encoded states.
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MNIST OMNIGLOT fMNIST

VAE 901.2±1.4 1019.4±1.2 881.3±0.3

GPC-S (3) 892.9±1.2 1001.1±0.8 882.0±1.5

GPC-M (3) 892.9±1.0 1002.2±0.8 880.0±0.4

VLAE (3) 881.4±1.2 989.3±1.0 870.1±0.4

GPC-S (6) 896.4±1.1 1004.7±0.8 883.0±1.0

GPC-M (6) 894.7±0.8 1003.0±1.4 878.4±0.4

VLAE (6) 877.4±1.4 983.1±3.8 869.3±0.2

Table 9: Negative evidence lower bound (test set)

7.5.2 Dynamical predictive coding

To assess the capabilities of dynamical PCNs we train a dynamical
GPC model on a variant of the Disentanglement testing sprites dataset
[134]. Most conventional video benchmarks have relatively low sam-
pling rates, where the local linearity assumption does not hold. We
generate high resolution videos for a single direction of rotation
(counterclockwise) and use random, but constant, values for the re-
maining latent factors. We applied Gaussian blur to all images and
cropped the videos to 32x32 pixel resolution, making sure that no
sprites appear outside the area.

GPC-all GPC-L1

MSE 0.432±0.124 0.476±0.204

Layer 1 0.768±0.257 0.779±0.422

Layer 2 0.097±0.013 0.173±0.031

Table 10: Accuracy of the dynamical model on the rotating dSprites dataset.
Variant GPC-all infers prediction error from both dynamical layers.
Variant GPC-L1 only infers errors in the lowest dynamical layer.
Shown are mean and standard deviation over 10 runs.)

Table 10 shows the MSE over 3e+4 updates using two different
variants of the simplified dynamical model: The GPC-all model was
trained using the prediction error from both dynamical layers, while
GPC-L1 only considers the error in the lowest dynamical layer. Both
models smoothly predict the constant rotation across latent factors.
GPC-all shows improved MSE in terms of total and per-layer predic-
tion. This indicates that including higher-order dynamical predictions
errors propagated through the network’s Jacobian indeed improves
accuracy. We found that GPC-L1 reacts poorly to increased latent di-
mensionality and stops predicting any meaningful state motion when
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Figure 41: t-SNE projection of cause and hidden states after unsupervised
learning. Hidden states encode spatial aspects, such as shape
while cause states encode hidden state motion and cluster into
rotation directions. Marker sizes indicate the scale of observed
sprites.

Figure 42: Dynamical prediction with learned causes over three different
step sizes dt. Shown is every tenth of 50 steps.

32 or more latent units were used. In contrast, GPC-all showed mean-
ingful transitions for larger embeddings.

7.5.3 Simultaneously inferring cause and hidden states

We found that training a dynamical model that infers causes and hid-
den states simultaneously on the rotating dSprites dataset lead to a
clear clustering of causes into the two directions of motion for the in-
ferred cause states, as shown in Figure 41. The hidden states capture
spatial aspects, such as sprite shape, which change in dependency of
the inferred cause. After training the network and freezing weights,
new generalized observations õ can be encoded via iterative infer-
ence.
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The inferred stated can then be used for dynamical prediction of
future timesteps, by applying x ′ = f(z), x ′′ = fz(z

′), .... Figure 42

shows a typical extrapolation for up to 50 with different step sizes dt

scaling the predicted hidden state motion x ′ = f(x, v) ∗ dt. Changing
the applied step size allows to increase and decrease the speed of
motion forward and backward in time. Figure 43 shows the discrete
observations and their temporal embeddings. Additionally shown are
the model’s generalized prediction ỹ from hidden states as well as the
resulting inverse embedding to a discrete sequence.

Figure 43: Discrete video frames (right) are fed to the model as generalized
observations (left). The generalized sensory prediction of the net-
work can be projected back to discrete sequences (center).

7.5.4 Gradient descent and Gauss-Newton updates

We compared Gauss-Newton updates during iterative inference with
simple gradient descent steps that do not consider precision weight-
ing. The gradient descent based updates perform well when an ad-
equate learning rate is chosen. Then, in in many cases they outper-
form VAE baseline in terms of model evidence. As visible in Figure
44, the gradient based updates are much more sensitive to the in-
ference learning rate. We found that values around 0.001 work best,
while higher rates lead to degraded performance. In contrast, the
Gauss-Newton based updates consider the precision at the currently
inferred mode, leading to more stable updates that are adaptively
weighted and are less sensitive to the inference learning rate.
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Figure 44: Comparison of static PC with gradient descent and Gauss-
Newton updates during iterative inference of the optimal pos-
terior distribution. Shown are the first 3000 weight updates on
the MNIST dataset.

7.6 discussion

We presented a generalized PC network that uses Hebbian updates
and the Laplace approximation with nonlinear neural networks to
infer posterior distributions. We have shown that the model performs
comparably to VAEs trained with exact error backpropagation. We
extended the model to cover dynamical predictions of simple video
sequences and demonstrated the possibility to learn dynamics using
generalized coordinates of motion.

Datasets in the machine learning domain often have relatively low
sampling rate and the local linearity assumption does not generally
hold. In contrast, physical and biological data such as processed
by the brain do not suffer from low sampling rates, but are locally
smooth. We found that in many cases, GPC still learns meaningful dy-
namics on datasets with lower sampling rate. In this chapter, however,
we focused on synthetically generated, high resolution data.

Important steps for future work could be to use convolutional neu-
ral networks or a comparison to related dynamical models, such as
Neural ODEs or RNNs [176, 209]. In this chapter we focused on a model
that explicitly represents orders of state motion with a simple infer-
ence scheme that allows a direct mapping to canonical microcircuits
in the brain [11, 51]. The underlying idea of representing "moving
reference frames" to model of high-level motion has recently been
connected to autoregressive normalizing flows in the context of deep
neural networks trained with exact backpropagation of errors [129].
These insights provide an interesting avenue for the development of
more elaborate models, both with respect to deep neural networks
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and biologically plausible models of canonical computation in the
brain.

In the presented experiments, we have focused on the rectified lin-
ear unit activation function, as it allows to efficiently compute the Ja-
cobian. ReLU activations have found widespread use in the deep learn-
ing domain. In contrast to other established nonlinearities in DNNs,
such as Sigmoid activations, ReLUs are computationally efficient, e.g.
due to the lack of exponentials, and show good convergence proper-
ties [111]. The Jacobian computation discussed in this chapter exploits
the simplicity of the ReLU activation function in terms of derivative
computation, which can efficiently be computed as a forward mask-
ing operation. This approach is specific to ReLU activations and for
other nonlinearities the computation of the Jacobian might be sig-
nificantly more expensive computationally, possible preventing the
possibility to train the model at all.

In this chapter, we have used the widely established Adam opti-
miser to optimise the model’s weights [103]. Adam approximates sec-
ond order information using the first and second moments, i.e. the
mean and variance, of the model parameter first-order gradients. It
is a "first order" method, since it requires only the gradient of the
parameters in contrast to methods that require higher order gradi-
ents. As such, it ignores the covariance of the parameter gradients
and with that, does not compute (approximate) information about
the optimal direction of the gradient descent steps [131]. This is in con-
trast to other, generally computationally significantly more expensive
methods, such as Natural Gradient descent [131] that steer magni-
tude and direction of gradient descent steps with (approximations of)
the Hessian matrix. Similarly, in gradient-based PC models, weights
updates are usually expressed with respect to second order informa-
tion i.e. based on a full-rank (approximation of) the Hessian matrix of
the free energy with respect to the model’s weights [49, 56]. Depend-
ing on the underlying model, the Hessian matrix might be exactly
computed (e.g. when the model is entirely linear) or approximated
based on the variance of neural activities the precision of the predic-
tion error [49]. We can thus see the Adam optimiser as a simplified
(yet in practice efficient and useful) replacement for such full-rank
precision estimation with respect to the weights. Future work could
provide more elaborate approaches to weights learning with locally
represented error signals.

The proposed implementation makes two simplifications that pos-
sibly weaken its biological plausibility: Firstly, the gradients of states
and weights are computed exactly using automatic differentiation.
This means that we have implicitly assumed the existence of exact
duplicates of the forward weights as well as the exact computation
of the derivatives of employed nonlinearities. It should be noted that
this does not address exact copies of forwards weights over multi-
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ple hierarchical layers, such as would be required for the backprop-
agation of error algorithm [177] for the entire PCN. Recent work has
suggested that this assumption does not have a major impact on PC

as an algorithmic scheme, since it can be addressed e.g. by "learn-
ing additional sets of parameters with Hebbian update rules with-
out noticeable harm to learning performance" [142]. Learning addi-
tional parameters here refers to parameterizing a set of approximate
backwards weights, from the locally computed error to the associated
states and parameters of a layer in the PC hierarchy. A second simplifi-
cation addresses the representation of precision on the inferred states.
Here, we compute the precision directly, using the presented Jacobian
computation based on ReLU activations. The brain, is assumed to es-
timate precision by representing prediction error units that infer the
covariance matrix using lateral connections between error-units [49].
Currently, it is unclear how this or similar mechanisms in the brain
could account for computing the state covariance encoded with the
Laplace approximation.
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8
C O N C L U S I O N

Recent developments in artificial intelligence have led to increasingly
powerful and complex generative models. These usually rely on deep
neural networks that are trained on large datasets and use exact back-
propagation of errors to the parameters of the model. In many cases,
the minimization of Bayesian surprise is a central objective for such
deep generative models, like the VAE. While several mechanisms in
deep neural networks, such as convolutional layers for spatial inputs,
are inspired by biology, many aspects, such as the computation of a
global error signal across the entire network are still in contrast to
evidence about learning in biological brains. At the same time, the
Free Energy Principle in neuroscience explains brain function based
on the minimization of Bayesian surprise and has led to a variety of
biologically plausible process models, such as hierarchical PC. These
process models use iterative and locally informed parameter updates
to facilitate learning of an internal generative model of the world.
Apart from the shared computational objective, the minimisation of
Bayesian surprise, it is still unclear how modelling constrains under
the FEP relate to deep generative models in terms of performance and
comparability to human brain function.

The work covered in this thesis aims at filling some of these gaps
by reviewing, designing and evaluating ANN models under the con-
strains of the FEP. In this context we pay special attention to process
models, in particular hierarchical and dynamical PC, that implement
canonical computations that are hypothesized to be present across
scales in the human brain. In this context we evaluate unsupervised
learning, with a focus on auditory and visual stimuli, as well as pos-
sibilities to retrieve sensory processing related information in brain
activity using FEP based models. The following sections summarize
our contributions, followed by a discussion of limitations and possi-
ble future research directions.

8.0.1 Research contributions

relating vaes to process models under the free energy

principle

In the context of DNN based models, the VAE is a simple, yet effective
and widely used architecture that optimises a bound on its Bayesian
surprise, the variational Free Energy, or evidence lower bound (ELBO).
VAEs consist of an encoder-decoder structure, where the decoder re-
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sembles a generative network that maps from a latent representation
to expected data. The encoder network, in turn, performs amortized
inference over the latent states, by expressing latent state parameters
as a function of sensory data. While the objective and underlying gen-
erative model is highly reminiscent of a single layer PC model under
the FEP, there is still a lack of studies that explicitly relate VAEs and
PCNs as a biologically plausible process model. Chapters 3 and 7 in
this work address this gap from two different perspectives: Chapter
3 presents a VAE based architecture for shared representation learn-
ing from brain signals and auditory data. In this study, we empiri-
cally evaluate the possibility to represent simple auditory concepts,
like rhythmical patterns or timbral aspects in a DNN model that op-
timises Bayesian surprise. This is driven by the hypothesis that the
free energy minimisation inherent to VAEs, just like in PCNs, can be
seen as a canonical model of computation that is also present in the
human brain. Learning a shared representation of audio and brain
signals, however, is a complex task. Datasets providing time-aligned
audio and EEG data are typically small in size and the recorded EEG

is very complex, since it records a high-dimensional mixture of brain
signals and noise in the hardware. Nevertheless, we were able to re-
construct rhythmically meaningful, time-aligned reconstructions of
simple tone patterns, as recorded in the OpenMIIR dataset [203]. To
do so, we resorted to a multi-head VAE architecture, that reconstructs
audio and EEG from a shared latent representation. We converted
the audio signal to mel spectrogram representation and treated time
and frequency dimension as spatial axes. Similarly, we treated the
time and channel dimension of the EEG as spatial axes. This allows
to employ CNNs in order to efficiently process sequential data in a
static setup. While two separate decoders were used to reconstruct
audio and EEG, a single encoder network was employed, that maps
from EEG signal to the latent representation. Using the same setup in
the context of more complex, natural music in the NMED-T dataset
still led to meaningful reconstructions, although substantial less pre-
cise [123]. Next to the model itself, we also proposed and evaluated a
technique inspired by research on ERPs in neuroscience, where time-
aligned evoked responses are averaged over trials or subjects. By com-
puting the mean over stimuli or subjects at time-aligned data points,
we were able to train smaller, yet performant models. Similarly, av-
eraging the reconstructions of models trained on individual inputs
helped during qualitative inspection of the results.

Next to this exploratory approach that investigates shared represen-
tation learning with VAEs, chapter 7 explicitly relates the architecture
of VAEs to that of a hierarchical PCN with two hierarchical layers. In
particular, we suggest that the inferred states of the first hierarchical
PCN can directly be related to the latent representation of the VAE

when the states of the second hierarchical PCN layer are initialized
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with the observed data. Then, just like the VAE, the PCN acts as an au-
toencoder, where the generative network of the second hierarchical
layer acts as the inference network. However, in contrast to the VAE,
the inference network in PCNs is not informed by the loss of the de-
coder network that reconstructs the data. Instead, updates in the PCNs

are driven strictly by the local prediction errors, the bottom-up and
top-down errors in each layer. Using a selection of image benchmark
datasets, we compared VAE and PCN model accuracy and latent state
complexity. We find that PCNs perform comparable to VAEs in both
metrics, although both are outperformed by VLAEs, which combine
iterative mode seeking, similar to PCNs, with the exact error propa-
gation used in VAEs. Nevertheless, these results imply that VAEs and
PCNs as a process model under the FEP can directly be related with
respect to architecture and performance.

deep predictive coding models for eeg processing

Several existing deep learning models have been inspired by predic-
tive coding. A particularly influential model is PredNet, which fo-
cuses on spatio-temporal predictions and uses multiple autoregres-
sive layers that predict the prediction error of the respective lower
layer [124]. Chapter 4 analyses and reviews PredNet in the context
of a challenging action classification dataset [66]. After reviewing the
architectural differences between PredNet and hierarchical PC mod-
els, we empirically evaluate PredNet in an extensive ablation study,
covering different network sizes and hyperparameters. We find that
PredNet appears to be tailored to excel at short-term temporal ex-
trapolation and is highly sensitive to hyperparameters such as the
temporal resolution of videos. Since directly relating the representa-
tions of PredNet to a PC model is not straightforward, we empirically
investigated the influence of top-down information by including a
classification module at the hierarchically highest layer. We find that,
while it is possible to classify actions with the modified PredNet archi-
tecture, the top-down signal does not improve the prediction process
per se. This empirical evidence stresses that the processing in PredNet
is substantially different to hierarchical PCNs.

Based on these insights, we contribute a novel deep predictive cod-
ing model in Chapter 5. In contrast to PredNet, our model learns by
predicting probabilistic sequences of latent states in a hierarchically
organized and autoregressive network and matches the connectivity
in hierarchical PCNs. We apply the proposed model to two informa-
tion retrieval tasks on EEG data: A first set of experiments focuses
on unsupervised prediction of audio. After training the PCN on au-
dio, we extract the model’s prediction error response on the NMED-
T dataset [123]. We then threshold this time-aligned prediction er-
ror response in order to find temporal locations that are particularly
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surprising to the model. Since NMED-T also provides EEG signal,
this procedure allows to investigate the human brain’s response time-
aligned to the PCN. We found that this method works well in practise
and detects clearly recognizable human evoked responses.

Next to transferring a PCN’s prediction error response to time-
aligned human evoked responses, we also investigated the possibil-
ity to apply the proposed model directly to EEG signal prediction
in Chapter 5. In order to reduce dataset complexity, we resorted
to the ZuCo dataset, which contains EEG recordings of human fixa-
tion related responses in a free reading task [82]. In this context, we
found that the model allows to learn multi-step predictions of EEG
signals without complex preprocessing. Furthermore, we were able
to actively correct random temporal shifts applied to the EEG sig-
nal after training the network on fixation-aligned inputs. While still
exploratory, these results hint at the possibilities to use biologically
plausible, yet efficient PCNs in the context of information retrieval
from brain signals.

scaling up predictive coding models with local learn-
ing rules

Next to implementing and evaluating models in the context of DNNs

and exact backpropagation of error signals, we also investigated the
possibility to scale up PC models that more strictly adhere to the con-
nectivity and learning rules described by hierarchical and dynamical
PC under the Free Energy Principle. In particular, we contributed two
gradient-based PCNs, that infer states and learn weights using a gra-
dient descent on the prediction error local to each hierarchical layer.
The networks are gradient-based in the sense that they do not use
explicit backwards weights to propagate the errors within each hier-
archical layer, but use automatic differentiation to do this more implic-
itly. This allows to implement efficient models in the context of estab-
lished frameworks for automatic differentiation. The models perform
strictly locally informed updates without resorting to error backprop-
agation through multiple hierarchical layers, or through time.

Chapter 6 presents and evaluates a variant of gradient-based PC

focusing on audio prediction. The proposed model is deterministic,
predicts raw audio signals at discrete timesteps and includes a top-
down input to the state update. We found that, when applied to
iterative prediction of simple audio inputs, the model successfully
integrates the top-down prediction leading to more accurate recon-
structions based on prior knowledge. Furthermore, we were able to
apply the model to a beat tracking task. We found that the model
outperforms baselines on the NMED-T dataset [123], while deliver-
ing worse performance on an established benchmark dataset. In this
context, we also reviewed the similarities between single layer dy-
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namical PCNs and other popular methods in audio processing, such
as trainable IIR filters.

The model discussed in Chapter 6 focuses specifically on dynam-
ical prediction at discrete timesteps, without other core aspects that
are covered by generalized PC models in neuroscience [51], such as
uncertainty estimation or temporal predictions in generalized coordi-
nates of motion. Generalized coordinates capture the instantaneous
change in a model’s state (as well as the sensory input) with respect
to multiple temporal derivatives. Such generalized representations
are usually modelled in continuous time, making it difficult to apply
to ANN based models straightforwardly. Chapter 7 contributes a gen-
eralized PCN model in the context of automatic differentiation. Like
generalized PCN models in neuroscience, it uses the Laplace approx-
imation for state uncertainty estimation. We demonstrate the useful-
ness of the Laplace approximation by comparing a static version of
the model with a VAE. The model efficiently projects spatio-temporal
data from discrete timesteps to generalized coordinates by interpret-
ing the underlying discrete Taylor expansion as a convolutional ker-
nel over the time axis. The model encodes latent states hierarchically,
using "cause" states, while "hidden" states capture the dynamics in
each layer. We show that the model is able to represent simple spatio-
temporal sequences with respect to the expected change in latent
states. By clustering the network’s latent states, we show that model
learns to separate temporal changes captured in the hidden states
from perturbations to these dynamics, encoded by cause states.

8.0.2 Limitations and future work

In this work, we have reviewed and implemented ANN based mod-
els that are informed by the architectural constrains and the learning
rules of process models under the Free Energy Principle. We also eval-
uated possibilities to apply such models of canonical computation in
the context of information retrieval from human EEG data. However,
both areas are still underexplored and many limitations are still to be
solved. The following paragraphs discuss these limitations and pro-
vide an outlook over possible future research.

scaling up predictive coding models with local learn-
ing rules

A large portion of this work has been devoted to implementing and
analysing predictive coding models in the context of artificial neural
networks (ANNs). We reviewed PredNet, a popular DNN based model
that is inspired by PC [124]. While our empirical results on a video ac-
tion classification dataset highlight important deviations of PredNet
from hierarchical PC models, the results of the study are restricted to
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the particular application - action classification. While PredNet devi-
ates significantly from hierarchical PC architectures in neuroscience
[51], its hierarchically error-predicting organisation with respect to
being specifically a dynamical model have yet to be explored in future
work. A particularly interesting avenue could be to relate PredNet’s
hierarchy of error-predicting modules to the generalized PC models
discussed in Chapter 7, since these models cover a hierarchy over
hidden state dynamics in each hierarchical layer.

In this work, we contributed a deep autoregressive PCN that, like
PredNet, uses BPTT to learn model parameters from sequential data.
The proposed model conforms to hierarchical PC more closely than
PredNet, since it predicts sequences of latent states top-down, instead
of predicting errors. This hierarchy arguably makes the model more
biologically plausible under the FEP. However, the model still resorts
to BPTT, which is a credit assignment mechanism that is not plau-
sibly implemented in the brain, primarily because it requires exact
sequence recall when computing the gradients [119]. For this reason,
from the perspective of modelling PC as a canonical computation in
the brain, this is a problematic modelling decision. At the moment
of writing, BPTT still is substantially more efficient and accurate than
other, more biologically plausible temporal credit assignment mecha-
nisms [119]. Next to this deep predictive coding model, we also con-
tribute more directly biologically plausible PCN architectures in this
work. These PCNs use updates that are strictly local, both hierarchi-
cally and in time. This essentially renders the contributed models
a form of Bayesian filters, since they process temporal information
online and strictly forward in time. Future work should address the
performance gap between these two approaches to temporal credit as-
signment. In this work, we contributed a generalized PC model, that
takes a third approach, by converting discrete data into a continuous-
time representations using a Taylor expansion. This approach allows
to encode sequential data locally in time, since higher order temporal
derivatives are modelled. The results on generalized PC presented in
this work, however, are still largely a proof-of-concept. In particular,
the conversion from discrete sequences to generalized coordinates re-
quires high sampling rates, which are usually not present in machine
learning video datasets. Future work could address this problem, for
example by simply supplying more high-resolution data. It should be
noted that from the perspective of biological plausibility, this issue is
less severe, since physical data, as processed in the brain, generally
has high resolution.

information retrieval with fep models

Investigating information retrieval from human brain signals is an
exciting, yet challenging area of research. Here, we were driven by
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the hypothesis that ANN models based on the FEP have an inher-
ent aspect of biological plausibility, while still offering the possibility
to deal with complex data, such as required, e.g. in audio or EEG
processing. We addressed information retrieval from human brain
signals, as captured in EEG, using two different methodologies.

Firstly, we addressed shared representation learning, where a joint
latent representation encodes the mutual information between the
model’s expectation and the human brain signal. In the context of
shared representation learning with auditory EEG, we found that
multi-head VAEs allow to reconstruct simple stimuli, especially when
the inputs are averaged. Nevertheless, our results are still far from
perfect reconstructions, especially when applied to more complex au-
dio stimuli, such as the pop songs in the NMED-T dataset [123]. We
found that the model reconstructions are often difficult to interpret
qualitatively. Similarly, the squared prediction error, as it is applied
to high-dimensional spatial input covering the frequency and tem-
poral domain appears to be a relatively poor evaluation metric re-
garding musically relevant content. One way to address this, is to
use smaller, i.e. temporally shorter, inputs to the model. We have
chosen this approach in the context of our proposed autoregressive
PCN model. This approach, however, requires sequential predictions,
which makes the model substantially more complex than the multi-
head VAE. Other approaches could include more elaborate metrics,
such as multi-scale spectral losses [45], or even resort to a sonification
of the reconstructed audio. Recent years have seen an increase in EEG
datasets particularly suited for large-scale machine learning applica-
tions, such as the NMED-T and ZuCO dataset used in this work [82,
123]. Despite this progress, another crucial limitation in the context of
shared representation learning from EEG data is still the size of the
available datasets.

Next to shared representation learning, we also evaluated the pos-
sibility to use a deep autoregressive predictive coding network for
unsupervised prediction of EEG. While the network is able to make
short-term predictions over expected future EEG signal, the con-
tributed model is far from making accurate long-term predictions,
leaving ample room for future work. We demonstrated the possibil-
ity to actively infer temporal positions in EEG signal that optimally
fit the expectancy of the network, in a process inspired by active in-
ference under the FEP [2, 57]. This mechanism itself is useful, e.g.
to correct accidental temporal misalignment’s during EEG recording.
More elaborate active inference models, however, model complex ac-
tion sequences, called policies, when interacting with sensory data
[47, 57, 210]. Investigating such more elaborate models in the con-
text of (online) EEG processing is a promising direction of research,
especially with respect to configurations where the generated EEG
data can be influenced, such as in Brain-Computer Interfaces [1, 102].
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In this work, we did not evaluate a static predictive coding model
on EEG data. Given the similarities between (hierarchical) VAEs and
hierarchical PCNs, this is another promising area for future research.

We also addressed a more indirect approach to information re-
trieval, that involves applying the model the sensory data and us-
ing the model’s error response to retrieve candidate temporal loca-
tions for human evoked responses. The approach works well when
applied to an entire dataset of aligned audio and EEG recordings. In
this work, we focused on a "global average" ERP, which simply in-
cludes all trials from all subjects in the test dataset. We found that
for the NMED-T dataset, averaging over predicted ERP locations in
a single song still leads to meaningful results, since each song cov-
ers multiple minutes. Due to the nature of averaging, the approach
works less well, when the amount of data gets smaller, e.g. when
a single, temporally short trial is used. In the presented study, we
thresholded the model’s averaged prediction error using a fixed mag-
nitude. This approach does not cover more fine-grained aspects of the
prediction error, such as its distribution over frequencies in the audio.
Future work could thus employ more elaborate error thresholding
mechanisms, possible learned directly by the model, to retrieve more
specific information.
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a.1 additional publications

Several additional publications were created during the course of
writing, which were not directly used in this thesis. This section
briefly summarizes their content.

[A:1] A. Ofner and S. Stober. “PredProp: Bidirectional stochastic
optimization with precision weighted predictive coding.” In: arXiv
preprint arXiv:2111.08792 (2021).

This paper proposes a novel optimisation method for gradient-
based predictive coding networks with a focus on the precision of
the prediction errors after propagation to the optimised parameters.

[A:2] A. Ofner and S. Stober. “Towards bridging human and arti-
ficial cognition: Hybrid variational predictive coding of the physical
world, the body and the brain.” In: Physics Workshop at NeurIPS
2018 (2018).

This paper discusses an early-stage model that aims at integrating
human and artificial generative models using a DNN model that
predicts the motion of human subjects in video based on recorded
EEG signals.

[A:3] A. Ofner and S. Stober. “Knowledge transfer in coupled pre-
dictive coding networks.” In: Bernstein Conference 2019 (2019).

This paper employs a version of the model discussed in Chapter
5 in the context of two coupled networks. We show that knowledge
about stimuli that are not visible to one model can be extracted from
the response of a second network that has access to the stimuli.

[A:4] A. Ofner and S. Stober. “Distributed Planning with Active
Inference.” In: Bernstein Conference 2021 (2021).

This paper proposes an active inference model, where multiple
independent planners are embodied within one agent and are
predicted top-down. By actively exploring the preferences of the
ensemble of planners, the agent learns to memorize and exploit their
behavior.
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[A:5] A. Ofner, R. K. Ratul, S. Ghosh, and S. Stober. “Predic-
tive coding, precision and natural gradients.” In: arXiv preprint
arXiv:2111.06942 (2021).

This paper explores the estimation of prediction error precision in
predictive coding networks.

[A:6] A. Ofner and S. Stober. “Hybrid Active Inference.” In: arXiv
preprint arXiv:1810.02647 (2018).

This paper reviews possibilities to employ active inference as a
guiding principle to design neuro-hybrid artificial intelligence.

[A:7] A. Ofner and S. Stober. “Differentiable Generalised Predic-
tive Coding.” In: arXiv preprint arXiv:2112.03378 (2021).

This paper reports early-stage progress on the generalized predic-
tive coding model discussed in Chapter 7 of this thesis. It primarily
evaluates possibilities to implement dynamical predictions in gener-
alized coordinates in the context of automatic differentiation.

a.2 generalized predictive coding

MNIST OMNIGLOT fMNIST

VAE 37.7±0.4 32.8±0.3 30.3±0.6

GPC-S (3) 37.5±0.1 34.1±0.1 30.9±0.3

GPC-M (3) 37.8±0.1 33.3±0.1 35.7±0.1

VLAE (3) 36.8±0.1 34.8±0.1 29.8±0.1

GPC-S (6) 39.0±0.1 36.2±0.1 31.2±0.2

GPC-M (6) 38.0±0.1 34.5±0.1 33.4±0.1

VLAE (6) 37.0±0.1 36.0±0.1 30.0±0.1

Table 11: Posterior complexity (test set) of models trained on the static pre-
diction task for MNIST, OMNIGLOT and Fashion MNIST in terms
of mean and standard deviation over ten runs.

a.3 shared representation of audio and eeg
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Figure 45: Averaged audio reconstructions from a model trained on the
OpenMIIR dataset without averaged EEG data. First, predictions
are made from individual EEG inputs or from EEG that has been
averaged across subjects (within the same trial) or across trials
(within the same subject). After inference, the mean of the audio
reconstructions is computed for each trial.
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Figure 46: Reconstructing audio stimuli from averaged EEG inputs after
training the model the OpenMIIR dataset without averaged EEG
data. Shown are all 16 different trial types, i.e. 8 rhythmic (top
row) and the corresponding 8 speech trials (bottom row). EEG in-
puts are either averaged across subjects, over trials or across both
dimensions.
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