Contents lists available at ScienceDirect

Journal of the European Ceramic Society

journal homepage: www.elsevier.com/locate/jeurceramsoc

Improvement of the magnetoelectric response in NiFe₂O₄-Sr_{0.5}Ba_{0.5}Nb₂O₆ composites using LiNbO₃ as sintering additive

Roberto Köferstein^{*}, Stefan G. Ebbinghaus

Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany

ARTICLE INFO	A B S T R A C T
<i>Keywords</i> : Magnetoelectric effect Niobite Multiferroic materials Ferrite Sintering additive	Magnetoelectric (NiFe ₂ O ₄) _{0,3} –(Sr _{0.5} Ba _{0.5} Nb ₂ O ₆) _{0.7} composites with addition of LiNbO ₃ as sintering additive were prepared by a classical mixed-oxide method. XRD patterns of ceramics sintered between 1000 and 1200 °C show the desired Sr _{0.5} Ba _{0.5} Nb ₂ O ₆ and NiFe ₂ O ₄ phases. SEM investigations confirm the 0–3 connectivity of the composite ceramics. The addition of 10 and 20 mol% LiNbO ₃ improves the densification of the composite ce- ramics and leads to an increase of the size of the Sr _{0.5} Ba _{0.5} Nb ₂ O ₆ grains. Magnetic measurements show hystereses with low coercivities. Dielectric measurements were carried out depending on temperature and frequency. The samples with the LiNbO ₃ addition show significantly higher resistivity values (σ_{DC}). Magnetoelectric measure- ments were carried out in dependence of the magnetic DC-field, temperature, and frequency. The maximum magnetoelectric coefficient (m_{PC}) icros with the addition of LiNbO ₃ rescale M_{PC} and M_{PC} .

Temperature dependent measurements show a continuously decreasing of α_{ME} with lower temperature.

1. Introduction

Materials, which exhibits at least two ferroic orderings are called multiferroics. The interaction between such ferroic phenomena (e.g. ferromagnetism, ferroelectricity, ferroelasticity) leads to new functionalities and applications. The magnetoelectric effect (ME) as a result of coupling between ferro-/ferrimagnetism and ferroelectricity was first investigated by Astrov [1] and allows to control the electrical polarization by a magnetic field (direct ME effect) or the magnetization by an electric field (indirect ME effect). Composite materials composed of a ferrimagnetic and a ferroelectric phase often show strong magnetoelectric effects at room temperature in contrast to single-phase ME materials like BiFeO₃ or Cr_2O_3 [2,3]. The coupling between the two phases is mediated by their interfaces. The two different phases in such composites can be arranged in various connectivities, denoted as 0-3, 2–2, 1–3, and 3–3, in which the numbers reflect the dimension in which each phase is self-connected [4]. 0–3 composites show magnetoelectric coefficients of few $\mu V \mbox{ Oe}^{-1} \mbox{ cm}^{-1}$ at low H_{AC}^{-} frequencies up to several V ${\rm Oe}^{-1}\,{\rm cm}^{-1}$ at resonance conditions (> 10 kHz) [5–8] . Composites on the basis of PbTiO₃ show large magnetoelectric coefficients [9–11]. Due to the harmful environmental effect of lead containing compounds, composites with e.g. BaTiO₃ as lead-free piezoelectric compound have been extensively investigated [12-16]. In contrast, magnetoelectric composites with Sr_{0.5}Ba_{0.5}Nb₂O₆ (SBN) as ferroelectric phase are less well studied [17–19]. Sr_{0.5}Ba_{0.5}Nb₂O₆ crystallizes in the open tungsten-bronze structure and shows a ferroelectric relaxor behavior with a diffuse phase transition around 120 °C [20–22]. In contrast to composites with BaTiO₃, the ferroelectric phase of Sr_{0.5}Ba_{0.5}Nb₂O₆ is stable even after sintering at high temperatures [23–27]. Sintering of magnetoelectric composites often results in an insufficient densification at lower temperatures. On the other hand, higher firing temperatures often lead to an increase of the conductivity, resulting in lower magnetoelectric coefficients [28]. Some authors used sintering additives to improve the densification of magnetoelectric composites [9, 29–33]. However, to our best knowledge, systematic investigations of the influence of sintering additives on the magnetoelectric behavior have not been reported so far.

The aim of this work is to examine the influence of LiNbO₃ on the magnetoelectric properties of (NiFe₂O₄)_{0.3} – (Sr_{0.5}Ba_{0.5}Nb₂O₆)_{0.7} composites. The magnetoelectric samples were synthesized by the conventional mixed-oxide method. Phase evolution and microstructure of the ceramics were monitored by XRD and SEM. The magnetoelectric behavior was investigated depending on H_{DC}, frequency of H_{AC} and temperature. Additionally the composite were characterized by impedance spectroscopy and magnetic measurements.

* Corresponding author. *E-mail address:* roberto.koeferstein@chemie.uni-halle.de (R. Köferstein).

https://doi.org/10.1016/j.jeurceramsoc.2023.06.040

Received 8 February 2023; Received in revised form 22 May 2023; Accepted 14 June 2023 Available online 15 June 2023

0955-2219/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2. Experimental

2.1. Material preparation

We prepared (NiFe₂O₄)_{0.3}–(Sr_{0.5}Ba_{0.5}Nb₂O₆)_{0.7} composites (= 20.30 wt% NiFe₂O₄), abbreviated as NF–SBN. For the composites with the sintering additive (LiNbO₃) we added 10 and 20 mol% LiNbO₃, related to the amount of Sr_{0.5}Ba_{0.5}Nb₂O₆, resulting in a nominal composition of (NiFe₂O₄)_{0.3}–(Sr_{0.5}Ba_{0.5}Nb₂O₆ + *x* LiNbO₃)_{0.7} (*x* = 0.1; 0.2), abbreviated as NF-SBN+LN-0.1 and NF-SBN+LN-0.2 (= 19.73 wt% and 19.16 wt% NiFe₂O₄).

Fig. S1 (supporting information) shows the preparation scheme of the composite powders. The samples were synthesized by the conventional mixed-oxide method. The oxides and carbonates were mixed and milled in a planetary mill for 4 h using polyamide jars, ZrO_2 -balls, and propan-2-ol. To prepare NiFe₂O₄ (NF), NiO (Berlin-Chemie, puriss.) and Fe₂O₃ (Alfa Aesar, 99.9 %) were mixed in a molar ratio of 1:1. After filtering and drying the mixture was calcined in static air at 1150 °C for 2 h (heating rate 10 K min⁻¹). Sr_{0.5}Ba_{0.5}Nb₂O₆ (SBN) was synthesized by milling stoichiometric amounts of BaCO₃ (Merck, > 98.5 %), SrCO₃ (Sigmar-Aldrich, 99.9 %), and Nb₂O₅ (Alpha Aesar, 99.9 %) and calcining at 1200 °C for 5 h (heating rate 10 K min⁻¹). According to the desired composition NiFe₂O₄ and Sr_{0.5}Ba_{0.5}Nb₂O₆ (30 mol% NiFe₂O₄) were mixed in a polyamide jar (ZrO₂-balls, propan-2-ol) to obtain NF-SBN composite powders.

Composites with the sintering additive LiNbO₃ (NF-SBN+LN-*x*) were synthesized as follows. BaCO₃, SrCO₃, Nb₂O₅ and Li₂CO₃ (UCB SA, \geq 99%) were mixed together and calcined at 1200 °C for 3 h. Here, the fractions of Ba, Sr, Nb, and Li were calculated as $n_{Ba} = n_{Sr} = n_{Nb}/(2[2 + x])$ and $n_{Li} = n_{Nb} x/(2 + x)$ (x = 0.1 and 0.2; molar addition of LiNbO₃ related to the amount of Sr_{0.5}Ba_{0.5}Nb₂O₆) resulting in a nominal composition of Sr_{0.5}Ba_{0.5}Nb₂O₆ + x LiNbO₃ (SBN+LN-x). To obtain NF-SBN+LN-x composites, NiFe₂O₄ and Sr_{0.5}Ba_{0.5}Nb₂O₆ + x LiNbO₃ powders (30 mol% NiFe₂O₄ related to Sr_{0.5}Ba_{0.5}Nb₂O₆) were mixed together as described above. All composite powders were mixed with 10 wt% of a saturated aqueous polyvinyl alcohol (PVA) solution as a pressing aid and uniaxially pressed at about 140 MPa into pellets (green density: 3.1 g cm⁻³). These pellets were sintered to ceramic bodies on a ZrO₂ fibre mat between 1000 and 1200 °C (heating-/cooling rate 5 K min⁻¹) with a soaking time of 1 h.

2.2. Characterization

X-ray powder diffraction patterns were recorded at room temperature on a Bruker D8-Advance diffractometer, equipped with a onedimensional silicon strip detector (LynxEyeTM) using Cu-K_{α} radiation and a counting time of 1 s per data point. Scanning electron microscope images were collected with a Phenom ProX SEM in the backscattered electron mode (BSE). Magnetic and magnetoelectric measurements were carried out using a Quantum Design PPMS9. Magnetic hysteresis loops were taken at 300 K with magnetic DC field cycling between -90 and +90 kOe. The samples were enclosed in gel capsules whose very small diamagnetic contribution was subtracted during data evaluation. For magnetoelectric and impedance measurements, ceramic bodies were sputtered on both sides with 100 nm thick gold electrodes using a Cressington Sputter Coater 108auto. For magnetoelectric measurements the samples were electrically poled for 18 h at room temperature applying an electric field of about 6 kV cm⁻¹ with a current limit of 0.1 mA. Afterwards, the poled samples were short-circuited for 5 min. The magnetoelectric measurements were performed using a self-made setup [15] with the magnetic DC field parallel to the electrical polarization and a small AC driving field of about 8 Oe was superimposed collinearly to the static field by a solenoid. The in-phase voltage (U_{ME}) was recorded using the lock-in technique. The magnetoelectric coefficient (α_{ME}) was calculated as $\alpha_{ME} = U_{ME} \cdot (H_{AC} \cdot d)^{-1}$ with d being the sample thickness. The thickness of the ceramic samples is between 0.93 and 1.02 mm. The magnetoelectric behavior was investigated at 300 K using a DC field cycling between \pm 15 kOe and $\nu(H_{AC})=900$ Hz. Frequency- and temperature-dependent measurements were done at the DC field at which the maximum of α_{ME} was found. An Impedance Analyzer 4192 A (Hewlett Packard) was used for frequency- and temperature-dependent impedance measurements.

3. Results and discussion

3.1. Synthesis, sintering, microstructure, and phase composition of the ceramics

(NiFe₂O₄)_{0.3}-(Sr_{0.5}Ba_{0.5}Nb₂O₆)_{0.7} composites (NF-SBN) and composites with addition of 10 and 20 mol% LiNbO3, related to $Sr_{0.5}Ba_{0.5}Nb_2O_6, \ (NiFe_2O_4)_{0.3} - (Sr_{0.5}Ba_{0.5}Nb_2O_6 \ + \ x \ LiNbO_3)_{0.7} \ (NF-$ SBN+LN-x, x = 0.1; 0.2), were prepared by the conventional mixedoxide method. The composite powders were pressed to pellets and sintered in static air between 1000 and 1200 °C for 1 h (heating-/ cooling rate: 5 K min⁻¹). Fig. 1 exemplarily shows the XRD patterns after sintering of compacted composite powders at 1050 and 1200 °C. All composite ceramics show the reflections of cubic NiFe₂O₄ (JCPDS #01-074-2081) and tetragonal Sr₀ ₅Ba₀ ₅Nb₂O₆ (JCPDS #01–074–6520). The XRD patterns of NF-SBN+LN-0.1 and NF-SBN+LN-0.2 do not show any peaks of LiNbO₃. As pointed out in our previous paper [34], firing of Sr_{0.5}Ba_{0.5}Nb₂O₆ and LiNbO₃ results in the formation of the solid solution $(\text{Li}_v(\text{Sr}_{0.5}\text{Ba}_{0.5})_{1-v/2}\text{Nb}_2\text{O}_6, y = x/(1 + x/2))$ with a tetragonal tungsten-bronze structure. Additionally, the XRD investigations reveal the formation of secondary phases. Upon sintering below 1100 °C two weak reflections at 24.7° and 30.5° point the formation of monoclinic FeNbO₄ (wolframite structure, JCPDS #01-071-1849) or orthorhombic FeNb₂O₆ or NiNb₂O₆ (JCPDS #01-075-2158 and #01-076-2354) with columbite structure. These reflections disappear completely after sintering at 1150 °C and 1200 °C. On the other hand, new peaks at 35.0°, 55.1°, and a raised intensity at 26.7° indicate either the formation of tetragonal FeNbO₄ [JCPDS #00-016-0357] or tetragonal FeNb₂O₆ or NiNb₂O₆ [JCPDS #01-077-1290 and #01-076-2355] with a metal-disordered rutile structure. The fraction of the secondary phase in the samples amounts to 2-4 wt% for sintering between 1050 and 1200 °C, whereas after firing at 1000 °C that fraction is considerably less than 2 wt%. EDX investigations (see below) on several grains show that

Fig. 1. Room-temperature XRD patterns of SBN+LN-*x* composite ceramics after sintering at the indicated temperatures for 1 h (heating-/cooling rate 5 K min⁻¹). (a,c) NF-SBN, (b,d) NF-SBN+LN-0.2.

the secondary phases consist of Ni, Fe and Nb in an atomic ratio of about Fe/Ni $\approx 1.3\text{--}1.5$ and Nb/(Fe+Ni) ≈ 2 . Therefore, the composition of the secondary phases can be approximately described as Fe_{0.6}Ni_{0.4}Nb_2O_6 which corresponds, according to the XRD results, to the columbite structure for sintering temperatures below 1100 °C which transforms into the rutile structure at higher temperatures.

The bulk densities of the dark-grey or black sintered bodies were calculated from their weight and geometric dimension. The relative bulk densities were related to 5.37 g cm⁻³, because the single crystal densities of Sr_{0.5}Ba_{0.5}Nb₂O₆ and NiFe₂O₄ are 5.37 g cm⁻³ and 5.38 g cm⁻³, respectively [22,35]. As seen in Fig. 2 the composite ceramic bodies with sintering additive (NF-SBN+LN-*x*) show considerably higher densities compared to pure NF-SBN ceramics. In contrast to NF-SBN and NF-SBN+LN-0.1, the density of NF-SBN+LN-0.2 ceramics does not significantly change upon rising the sintering temperature from 1150° to 1200°C due to the appearance of larger pillar-like grains compared to the NF-SBN and NF-SBN+LN-0.1 ceramics as described below. After sintering at 1200 °C, all samples show relative densities of \geq 90 %.

Typical microstructures of the composite ceramics are shown in Fig. 3. The SEM images were recorded in the BSE mode, therefore the bright grains are $Sr_{0.5}Ba_{0.5}Nb_2O_6$ (SBN) and the dark ones corresponds to NiFe₂O₄ (NF) and secondary phases, respectively. Representative EDX spectra are shown in Figs. S2 and S3 (supporting information) and confirm the presence of $Sr_{0.5}Ba_{0.5}Nb_2O_6$ and NiFe₂O₄. Measurements on several large grains point to an iron doping (< 1 at%) of the $Sr_{0.5}Ba_{0.5}Nb_2O_6$ phase. According to Reverz et al. [36] and Neurgaonkar et al. [37], Fe³⁺ prefers to occupy the Nb⁵⁺ sites. On the other hand, traces of Sr and Nb in the NiFe₂O₄ spectrum are most likely caused by the relative large interaction volume of the electron beam compared to the small grain size. The EDX spectra of the secondary phase reveal the composition of Fe_{0.6}Ni_{0.4}Nb₂O₆, as discussed above.

The shape of the NiF₂O₄ grains is mainly irregular after sintering at 1000 °C and changes to a pyramidal-/octahedral-like one for higher temperatures. Grains of the secondary phase show an irregular shape in all ceramics with sizes up to about 10 μ m. Up to a sintering temperature of 1100 °C, Sr_{0.5}Ba_{0.5}Nb₂O₆ forms globular and irregular grains. Starting at 1150 °C, Sr_{0.5}Ba_{0.5}Nb₂O₆ additionally forms pillar-shaped grains besides the globular-/irregular grains. The fraction of these pillars increases significantly after sintering at 1200 °C. We observe a considerable increase of the SBN grain size both with sintering temperature (T_s) and LiNbO₃ addition (*x*). For T_s = 1000 °C, the globular-/irregular SBN grains are between 0.6 and 5 μ m (NF-SBN), 0.7–7 μ m (NF-SBN+LN-0.1), and 1–13 μ m (NF-SBN+LN-0.2) which increase to 1–6 μ m (NF-SBN), 1.1–10 μ m (NF-SBN+LN-0.1), and 1.4–16 μ m (NF-SBN+LN-0.2) for T_s = 1100 °C. After firing at 1200 °C, the ceramics consist of globular grains of sizes between 1.2 and 11 μ m, 1.5–12 μ m,

Journal of the European Ceramic Society 43 (2023) 6137-6144

and 4–30 µm, whereas the pillar-like grains have dimensions of about 4–15 \times 2–4 µm, 5–11 \times 3–4 µm, and 6–25 \times 4–12 µm for NF-SBN, NF-SBN+LN-0.1, and NF-SBN+LN-0.2, respectively. On the other hand, the NF grain sizes increase only moderately with rising sintering temperature from 0.4 to 2 µm for $T_s=1000\ ^\circ C$ to 1.1–5 µm for 1200 $^\circ C$, whereas the grain size is barely affected by the sintering additive. The grain sizes of all magnetoelectric ceramics are listed in Tab. S1 (supporting information).

3.2. Magnetic behavior

The field-dependent magnetization curves measured at 300 K of NF-SBN+LN-0.2 ceramics sintered between 1000 and 1200 °C are exemplarily shown in Fig. 4. The analogous magnetization curves of the other ceramic samples are shown in Fig. S4 (supporting information). Data have been normalized with respect to the nominal NiFe₂O₄ fraction. Because of the ferrimagnetic nature of NiFe₂O₄ the ceramics reveal hystereses with very low coercivity values between about 5 and 33 Oe. The saturation magnetizations (M_s) for the composite samples were calculated by extrapolating the magnetization at high field to H = 0 due to the presence of small amounts of paramagnetic secondary phases as aforementioned [25, 38-40]. The saturation magnetizations at 300 K of the composite ceramics are between 44.8(2) and 47.8(2) emu g^{-1} and thus slightly lower than to the value of 49.7(1) emu g⁻¹ (2.09(1) μ_B f. u^{-1}) for pure NiFe₂O₄ sintered under the same conditions. Additionally, the M_s values of the composites decrease slightly with rising sintering temperature, e.g. from 47.8(2) to 44.9(2) emu g $^{-1}$ (2.01(1) - 1.88(1) μ_{R} f.u.⁻¹) after sintering from 1000° to 1200°C for NF-SBN+LN-0.2 samples (inset II in Fig. 4 and Fig. S4, supporting information). The lower M_s values, compared to bulk NiFe2O4, and their decreasing trend with sintering temperature is most likely caused by the formation of nonferro-/nonferrimagnetic (FeNi)Nb2O4 secondary phases resulting in the formation of Ni/Fe- vacancies and possible oxygen vacancies. Such vacancies caused a weakening of the superexchange interactions and also lead to a change of the cation distribution between the tetrahedral and octahedral site in the ferrite phase [41-43].

3.3. Impedance spectroscopy

The development of the real part of the relative permittivity (ϵ_r') and dissipation factor (tan δ) with the applied frequency at room temperature for ceramics sintered at 1100 °C is exemplarily shown in Fig. 5. All composite ceramics reveal slightly decreasing permittivities and tan δ values with rising frequency (see also Fig. S5, supporting information), most likely caused by the Maxwell–Wagner interface polarisation of the electrically conductive NiFe₂O₄ grains surrounded by the insulating Sr_{0.5}Ba_{0.5}Nb₂O₆ matrix [44,45].

The temperature dependence of ϵ_r' and tan δ at a frequency of 1 kHz is demonstrated for samples sintered at 1100 °C in Fig. 6. The permittivity values of all samples (see also Fig. S6, supporting information) rise with temperature up to 200 °C, whereas a permittivity maximum, which reflects the diffuse phase transition (Curie-range [34,46]) of Sr_{0.5}Ba_{0.5}Nb_2O_6 was not observed. Increasing permittivity values at higher temperatures are connected with an increase in the loss tangents, most likely due to a decreasing resistivity of these samples.

The conductivities of the magnetoelectric ceramics are low ($\sigma_{DC} \ll 10^{-7}$ S cm⁻¹) at room temperature, hence the high-temperature impedance data were fitted by an equivalent circuit consisting of one or two resistance-capacitor (RC) elements including a constant phase-shift element. The specific complex impedance (ρ^*) for a single RC element is described by [47]:

$$\rho * = \frac{\rho_{DC}}{1 + (i\omega\tau)^{\beta}} \tag{1}$$

Fig. 2. Bulk densities of composite ceramic bodies after sintering at various temperatures for 1 h (heating-/cooling rate 5 K min^{-1}).

where, β is the constant phase-shift (CPE) coefficient and $\tau=\rho_{DC}\epsilon\epsilon_{0}.$ The

Fig. 3. SEM-BSE surface images of selected NF-SBN (a,b) and NF-SBN+LN-0.2 (c,d) ceramic bodies sintered at the indicated temperatures (T_s) for 1 h. The assignment of the grains is shown in (b) and (d) (NF = NiFe₂O₄, SBN = Sr_{0.5}Ba_{0.5}Nb₂O₄, SP = secondary phase).

Fig. 4. Field dependence of the magnetization at 300 K for NF-SBN+LN-0.2 composite ceramics sintered at the indicated temperatures (T_s) for 1 h. Inset I shows a magnification at high magnetic fields. Inset II shows the saturation magnetization (M_s) depending on the sintering temperatures for (a) NF-SBN, (b) NF-SBN+LN-0.1, and (c) NF-SBN+LN-0.2 ceramics. The magnetization values are given with respect to the nominal NiFe₂O₄ content.

Fig. 5. Frequency dependence of ϵ_r' (closed symbols) and tan δ (open symbols) at 296 K for the indicated magnetoelectric ceramic bodies sintered at 1100 °C for 1 h.

Fig. 6. Temperature dependence of ϵ_r' (closed symbols) and tan δ (open symbols) at 1 kHz for the indicated magnetoelectric ceramic bodies sintered at 1100 °C for 1 h. For the sake of clarity every third data point is represented by a symbol.

Cole-Cole plots of composite ceramics sintered up to 1100 °C show one single semicircular arcs (Fig. S7, supporting information). The resultant calculated permittivities are between $6.9 \cdot 10^2 - 4.5 \cdot 10^3$ indicating that this single relaxation process can be assigned to the bulk effect only. On the other hand, the Cole-Cole plots (Fig. S8, supporting information) of the composites sintered at 1150 and 1200 °C can be well described by two RC elements connected in series suggesting two different electrical transport processes. The calculated permittivities for these two processes are between $3.7 \cdot 10^3 - 7.9 \cdot 10^3$ and $1.6 \cdot 10^4 - 4.1 \cdot 10^4$, respectively. According to Irvine et al. [48] the higher permittivity values can be assigned to grain boundary contributions, whereas the lower values represents the bulk contribution. From the fit of the data, also the DC resistivities were obtained. As seen in Fig. 7, the specific DC resistivities (ρ_{DC}) slightly increase for $T_s = 1050$ °C and then decrease with rising sintering temperature. Ceramics with the addition of LiNbO3 NF-SBN+LN-x (x = 0.1, 0.2) show significantly higher resistivity values (about one order of magnitude) than the NF-SBN composites ceramics.

3.4. Magnetoelectric properties

Fig. 8 shows the dependence of the magnetoelectric coefficient (α_{ME})

Fig. 7. Evolution of the specific DC resistivity with sintering temperature for the indicated magnetoelectric composite ceramics. The uncertainties of the data are smaller than the symbol sizes (less than 4 %).

Fig. 8. Magnetoelectric coefficient (α_{ME}) vs. magnetic DC field for composite ceramics sintered at 1100 °C for 1 h. Inset I shows the evolution of $H_{DC\alpha ME,max}$ with sintering temperature. Inset II shows the frequency dependence (H_{AC}) of α_{ME} at $H_{DC\alpha ME,max}$ for composites sintered at 1100 °C. For the sake of clarity, in inset II every 10^{1h} data point is represented by a symbol.

measured at 300 K on the static magnetic field (H_{DC}) for composite ceramics fired at 1100 °C. Composites sintered at other temperatures exhibit analogous behaviors as demonstrated in Fig. S9 (supporting information). Starting from 15 kOe, α_{ME} remains very small until approximately 5 kOe and then increases to a maximum (α_{MEmax}) at H_{DC} \approx 1 kOe and nearly vanishes at zero field, i. e. only very small remanences were observed and the coercive fields are smaller than 40 Oe. For negative fields an inverse behavior occurs. As can be seen in Fig. 9, α_{MEmax} strongly depends on the sintering temperature. Considering the impedance results, we assume that the decrease of α_{MEmax} for the higher sintering temperatures is due to an increase of conductivity resulting in an inner discharging. A seen in Fig. 9, the maximum of the magnetoelectric coefficient increases with the addition of LiNbO₃. We found maximum α_{ME} values of 180(10) $\mu V \text{ Oe}^{-1} \text{ cm}^{-1}$ and 379(20) $\mu V \text{ Oe}^{-1}$ cm⁻¹ after sintering at 1100 °C for NF-SBN and NF-SBN+LN-0.1 ceramics, while NF-SBN+LN-0.2 even shows a value of 803(43) μ V Oe⁻¹ cm⁻¹ after sintering at 1050 °C (ν (H_{AC}) = 900 Hz). This increase of α_{ME} by the addition of the additive LiNbO3 most likely is the result of higher

Fig. 9. Maximum magnetoelectric coefficient ($\alpha_{ME,max}$) depending on the sintering temperature for the investigated composite ceramics.

bulk densities and significant higher grain sizes of the ferroelectric SBN phase. Additionally, the NF-SBN+LN-x samples possess significantly higher resistivity values (Fig. 7), even after sintering at high temperatures, which reduce an inner discharging of the samples. The outcome of the higher densification and lower resistivity is an improved coupling between the ferrimagnetic and ferroelectric grains. As pointed out in our previous paper [34] reaction between Sr_{0.5}Ba_{0.5}Nb₂O₆ and LiNbO₃ leads to a solid solution which can be described by the formula Li_v(Sr_{0.5-} $Ba_{0.5})_{1-y/2}Nb_2O_6$ [49]. Therefore, a possible increase of the piezoelectric coefficient due to the partial substitution of Ba²⁺/Sr²⁺ by Li⁺ cannot be excluded as an additional reason for increasing α_{ME} , [50,51],. Depending on the sintering temperature, the H_{DC} field at which α_{ME} reaches its maximum (H_{DCamax}) slightly varies between 0.7 and 1.4 kOe as plotted in inset I of Fig. 8. For NF-SBN ceramics, we observed a considerable systematic increase of $H_{DC\alpha max}$ with sintering temperature, while for NF-SBN+LN-0.2 ceramics HDCamax remains nearly constant and for NF-SBN+LN-0.1 a slight increase was found for $T_s > 1100$ °C. The inset II in Fig. 8 demonstrates the evolution of α_{ME} at $H_{DC\alpha max}$ at 300 K depending on the frequency of the AC driving field for samples sintered at 1100 °C. All magnetoelectric composites reveal an increase of α_{ME} up to 300–400 Hz, whereas α_{ME} is nearly constant at higher frequencies. Investigations by Bichurin and Petrov [52] showed that charge accumulation in 0-3 composites results in an inverse Maxwell-Wagner-type relaxation leading to an increasing charging of the capacitance with frequency, which saturates at higher frequencies. A similar behavior was also observed in e.g. CoFe₂O₄-Ba_{0.5}Sr_{0.5}Nb₂O₆

Fig. 10. α_{ME} versus temperature measured at the field at which the maximum α_{ME} appeared (H_{DCaME,max}) for composites sintered at 1100 °C for 1 h.

and CoFe₂O₄-BaTiO₃ composites, respectively [15,28].

As seen in Fig. 10, temperature depended measurements of the magnetoelectric coefficient during cooling show a decreasing α_{ME} at lower temperatures due to the decreasing piezoelectric/ferroelectric character of strontium barium niobate at low temperature [20, 53–55]. Measurements of α_{ME} versus H_{DC} at different temperatures between 50 and 300 K show that the magnetic DC field ($H_{DC\alpha max}$) at which α_{ME} reaches its maximum does not shift with the measurement temperature (Fig. S10, supporting information). Therefore, the trend of decreasing α_{ME} at lower temperatures is due to a reduced magnetoelectric coupling and not due to a shift of $H_{DC\alpha max}$. This behavior supports the strain-mediated origin of α_{ME} [56].

The magnetoelectric effect in composite materials is generally explained by a mechanic coupling between the magnetostrictive and the piezoelectric component. Therefore, the evolution of α_{ME} depending on H_{DC} is influenced by the magnetostriction and, consequently, the integration of α_{ME} over H_{DC} should reflect the course of the magnetostrictive coefficient (λ), qualitatively ($\lambda \sim \int \alpha_{ME} dH$) [57,58]. Fig. 11 and Fig. S11 (supporting information) show the integral of α_{ME} depending on H_{DC} in comparison with the static magnetostrictive coefficient data of NiFe₂O₄ taken from Anantharamaiah et al. [59] and Karpova et al. [60]. The evolution of the magnetostriction by Karpova et al. [60] was only measured for positive magnetic fields. It can be seen that a positive α_{ME} corresponds to a negative slope of λ . The integral of α_{ME} saturates at a field of > 3 kOe while the magnetostriction saturates already at about 1.5–2 kOe. This broadening of the $\int \alpha_{ME} dH$ curve compared to λ is probably due to the surrounding ferroelectric component which induces strain (pressure) into the NiFe2O4 grains. A similar behaviour was reported for Ni-BaTiO₃ composites [61]. In general, the magnetostriction mainly is influenced by particle size, pressure, and annealing temperature [62-64].

4. Conclusion

Magnetoelectric (NiFe₂O₄)_{0.3}–(Sr_{0.5}Ba_{0.5}Nb₂O₆)_{0.7} composites with the addition of LiNbO₃ as sintering aid were synthesized by the conventional mixed-oxide method. Due to the sintering aid the densities of the ceramic increase significantly and the addition of LiNbO₃ leads to a significant growth of the Sr_{0.5}Ba_{0.5}Nb₂O₆ grains, while the size of the NiFe₂O₄ grains remains nearly unaffected. The microstructure of the ceramic bodies reveals a 0–3 connectivity. Temperature-dependent measurements show increasing permittivities and tan δ values. The DC resisitivity decreases with higher sintering temperature of the composite ceramics, whereas it increases with the addition of LiNbO₃. The field dependence of the magnetoelectric coefficient (α_{ME}) shows maxima/

Fig. 11. Integral of α_{ME} of NF-SBN+LN-0.2 (a) sintered at 1100 °C compared to the static magnetostriction (λ) of NiFe₂O₄ (after Anantharamaiah et al. [45] (b) and Karpova et al. [46] (c)).

minima at H_{DC} between \pm 0.7 and \pm 1.4 kOe depending on sintering temperature. The maximum magnetoelectric coefficient considerably increases by addition of LiNbO₃ from 180(10) to 803(43) μV Oe $^{-1}$ cm $^{-1}$ (@ 900 Hz). Temperature-dependent measurements show that α_{ME} becomes smaller at lower temperatures. Here, we examined for the first time the effect of sintering aids on the magnetoelectric behaviour. The investigations show that LiNbO₃ does not only influence densification and grain growth of composite ceramics, but also it is able to improve the magnetoelectric composites and therefore potentially offer a way for improved magnetoelectric properties.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jeurceramsoc.2023.06.040.

References

- D.N. Astrov, The magnetoelectric effect in antiferromagnetics, Sov. Phys. JETP 11 (1960) 708–709.
- [2] J.M. Caicedo, J.A. Zapata, M.E. Gómez, P. Prieto, Magnetoelectric coefficient in BiFeO₃ compounds, J. Appl. Phys. 103 (2008) 07E306.
- [3] G.T. Rado, V.J. Folen, Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains, Phys. Rev. Lett. 7 (1961) 310–311.
- [4] R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectricpyroelectric composites, Mat. Res. Bull. 13 (1978) 525–536.
- [5] W.P. Wang, H. Yang, T. Xian, R.C. Yuc, Observation of abnormal magnetoelectric behavior in 0-3 type CoFe₂O₄–BaTiO₃ nanocomposites, Chem. Phys. Lett. 618 (2015) 72–77.
- [6] G. Schileo, C. Pascual-Gonzalez, M. Alguero, I.M. Reaney, P. Postolache, L. Mitoseriu, K. Reichmann, A. Feteira, Yttrium iron garnet/barium titanate multiferroic composites, J. Am. Ceram. Soc. 99 (2016) 1609–1614.
- [7] S.Q. Ren, L.Q. Weng, S.-H. Song, F. Li, J.G. Wan, M. Zeng, BaTiO₃/CoFe₂O₄ particulate composites with large high frequency magnetoelectric response, J. Mater. Sci. 40 (2005) 4375–4378.
- [8] A. Hanumaiah, T. Bhimasankaram, S.V. Suryanarayana, G.S. Kumar, Dielectric behaviour and magnetoelectric effect in cobalt ferrite-barium titanate composites, Bull. Mater. Sci. 17 (1994) 405–409.
- [9] K. Li, D.-L. Shi, Y. Zhu, Y. Wang, H. Lai-wa Chan, S. Peng, Enhanced magnetoelectrical coupling in cobalt ferrite/lead lanthanum zirconate titanate 0-3 composites through phase boundary modification, Mater. Chem. Phys. 143 (2013) 34–40.
- [10] R.A. Islam, J. Jiang, F. Bai, D. Viehland, S. Priya, Correlation between structural deformation and magnetoelectric response in (1-x) Pb(Zr_{0.52}Ti_{0.48}) O₃-xNiFe_{1.9}Mn_{0.1}O₄ particulate composites, Appl. Phys. Lett. 91 (2007), 162905.
- [11] S. Mokhtari, H. Ahmadvand, M.J. Fesharaki, H. Papi, P. Kameli, H. Salamati, Complex magnetoelectric effect in multiferroic composites: the case of PFN-PT/ (Co,Ni)Fe₂O₄, J. Phys. D: Appl. Phys. 52 (2019), 505001.
- [12] J. van den Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO₃-Ni(Co,Mn)Fe₂O₄, J. Mater. Sci. 13 (1978) 1538–1548.
- [13] R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Influence of core size on the multiferroic properties of CoFe₂O₄@BaTiO₃ core shell structured composites, Ceram. Int. 44 (2018) S84–S87.
- [14] T. Ramesh, V. Rajendar, S.R. Murthy, CoFe₂O₄–BaTiO₃ multiferroic composites: role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci.: Mater. Electron 28 (2017) 11779–11788.
- [15] T. Walther, U. Straube, R. Köferstein, S.G. Ebbinghaus, Hysteretic magnetoelectric behavior of CoFe₂O₄–BaTiO₃ composites prepared by reductive sintering and reoxidation, J. Mater. Chem. C. 4 (2016) 4792–4799.
- [16] A. Chaudhuri, K. Mandal, Large magnetoelectric properties in CoFe₂O₄:BaTiO₃ core-shell nanocomposites, J. Magn. Magn. Mater. 377 (2015) 441–445.
- [17] S. Tiwari, S. Vitta, Magnetoelectric and magnetodielectric coupling and microwave resonator characteristics of Ba_{0.5}Sr_{0.5}Nb₂O₆/CoCr_{0.4}Fe_{1.6}O₄ multiferroic composite, Sci. Rep. 8 (2018) 11619.
- [18] Y.H. Tang, X.M. Chen, Y.J. Li, X.H. Zheng, Dielectric and magnetoelectric characterization of CoFe₂O₄/Ba_{0.55}Sr_{0.25}Ca_{0.2}Nb₂O₆ composites, Mater. Sci. Eng. B 116 (2005) 150–155.
- [19] S.S. Rathore, S. Vitta, Large low field room temperature magneto-dielectric response from (Sr_{0.5}Ba_{0.5})Nb₂O₆/Co(Cr_{0.4}Fe_{1.6})O₄ Bulk 3-0 composites, Mater. Sci. Eng. B 204 (2016) 1–7.

- [20] A.A. Ballmann, H. Brown, The growth and properties of strontium barium metaniobate Sr_xBa_{1-x}Nb₂O₆, a tungsten bronze ferroelectric, J. Cryst. Growth 1 (1967) 311–314.
- [21] R. Köferstein, F. Oehler, S.G. Ebbinghaus, Investigations of nano-crystalline Sr_{0.5}Ba_{0.5}Nb₂O₆ and bulk ceramics synthesized by a polymerization method using PEG400, J. Eur. Ceram. Soc. 39 (2019) 1156–1163.
- [22] S.S. Rathore, S. Vitta, Enhanced dielectric constant and relaxor behavior realized by dual stage sintering of Sr_{0.5}Ba_{0.5}Nb₂O₆, AIP Conf. Proc. 1591 (2014) 133–135.
- [23] S. Lee, C.A. Randall, Z.-K. Liu, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate, J. Am. Ceram. Soc. 90 (2007) 2589–2594.
- [24] T. Müller, H.-P. Abicht, Influence of the cubic/hexagonal phase transition on the mechanical strength of barium titanate ceramics, cfi/Ber, DKG 77 (2000) E26–E31.
- [25] R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Fine-grained BaTiO₃–MgFe₂O₄ composites prepared by a pechini-like process, J. Alloy. Compd. 638 (2015) 141–147.
- [26] K. Kamishima, Y. Nagashima, K. Kakizaki, N. Hiratsuka, K. Watanabe, T. Mise, H. Naganuma, S. Okamura, Simple process synthesis of BaTiO₃-(Ni,Zn,Cu)Fe₂O₄ ceramic composite, J. Phys. Soc. Jpn. 77 (2008), 064801.
- [27] R.R. Neurgaonkar, W.K. Cory, J.R. Oliver, E.J. Sharp, G.L. Wood, G.J. Salamo, Growth and optical properties of ferroelectric tungsten bronze crystals, Ferroelectrics 142 (1993) 167–188.
- [28] R. Köferstein, F. Oehler, S.G. Ebbinghaus, Fine-grained magnetoelectric Sr_{0.5}Ba_{0.5}Nb₂O₆-CoFe₂O₄ composites synthesized by a straightforward one-pot method, Mater. Chem. Phys. 278 (2022), 125616.
- [29] S.R. Jigajeni, A.N. Tarale, D.J. Salunkhe, P.B. Joshi, S.B. Kulkarni, Dielectric, magnetoelectric and magnetodielectric properties in CMFO-SBN composites, Ceram. Int. 39 (2013) 2331–2341.
- [30] S.R. Jigajeni, M.M. Sutar, S.M. Salunkhe, P.B. Joshi, Investigation on magnetoelectric and dielectric properties of Co_{0.9}Mn_{0.3}Fe_{1.8}O₄-Sr_{0.5}Ba_{0.5}Nb₂O₆ composites, J. Mater. Sci.: Mater. Electron 23 (2012) 1678–1687.
- [31] N. Kitahara, H. Kageyama, T. Kawasaki, K. Abe, H. Itoh, J. Takahashi, Low-temperature fabrication of NiCuZn ferrite-(Ba_{0.7}Sr_{0.3})TiO₃ composites using granulated powders, J. Ceram. Soc. Jpn 121 (2013) 54–61.
- [32] S.S. Veer, D.J. Salunkhe, S.V. Kulkarni, S.B. Kulkarni, P.B. Joshi, Effect of sintering aid on physical and magnetoelectric properties of La_{0.7}Sr_{0.3}MnO₃–BaTiO₃ composites, Indian J. Eng. Mater. Sci. 15 (2008) 121–125.
- [33] D. liang Shi, K.H. Lam, K. Li, LPF-Doped core-shell structure based CFO/PLZT 0-3 magnetoelectric composite ceramics, J. Alloy. Compd. 617 (2014) 484–490.
- [34] R. Köferstein, S.G. Ebbinghaus, Effect of sintering additives on the densification and dielectric properties of Sr_{0.5}Ba_{0.5}Nb₂O₆ ceramics synthesized by a softchemistry method, J. Solid State Chem. 278 (2022), 123564.
- [35] M.A. Gabal, Y.M. Angari, Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite, Mater. Chem. Phys. 118 (2009), 153160.
- [36] J. Ravez, A. Perron-Simon, P. Hagenmuller, Les phases de structure "bronzes de tungstèn quadratiques": règles cristallochimiques, relations entre propriétés ferroélectriques et distorsions structurales, Ann. Chim. 1 (1976) 251–268.
- [37] R.R. Neurgaonkar, W.F. Hall, J.R. Oliver, W.W. Ho, W.K. Cory, Tungsten bronze Sr_{1-x}Ba xNb₂O₆: a case history of versatility, Ferroelectrics 87 (1988) 167–179.
- [38] I. Aaeger, A.H. Morrish, B.M. Wanklyn, Magnetization studies in transition-metal niobates: I. NiNb₂O₆, Phys. Rev. B 15 (1977) 1465–1476.
- [39] C.B. Liu, R. Chen, X.Y. Yue, Y.J. Liu, M.M. Shi, H.P. Zhu, C. Domg, Y. Liu, Y.B. Han, J.F. Wang, Z.Z. He, Crystal growth, magnetic property and phase transition of the zigzag-chain antiferromagnet FeNbO₄, J. Magn. Magn. Mater. 464 (2018) 108–111
- [40] H. Ehrenberg, G. Wltschek, R. Theissmann, H. Weitzel, H. Fuess, F. Trouw, The magnetic structure of FeNbO₄, J. Magn. Magn. Mater. 218 (2000) 261–265.
- [41] G. Hassnain Jaffari, A.K. Rumaiz, J.C. Woicik, S. Ismat Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe₂O₄ thin films, J. Appl. Phys. 111 (2012), 093906.
- [42] S. Singh, S. Munjal, N. Khare, Strain/defect induced enhanced coercivity in single domain CoFe₂O₄ nanoparticles, J. Magn. Magn. Mater. 386 (2015) 69–73.
- [43] J.-H. Cho, S. Cho, J.H. Lee, H. Palneedi, J.-H. Lee, H.-P. Kim, N.J. Lee, S. Tigunta, S. Pojprapai, S. Kim, J. Ryu, Y.S. Oh, S. Hong, W. Jo, Room-temperature multiferroicity in NiFe₂O₄ and its magnetoelectric coupling intensified through defect engineering, J. Am. Ceram. Soc. 104 (2021) 6384–6392.
- [44] K.W. Wagner, Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen, Arch. Elektro 2 (1914) 371–387.
- [45] A. Sakanas, R. Grigalaitis, J. Banys, L. Mitoseriu, V. Buscaglia, P. Nanni, Broadband dielectric spectroscopy of BaTiO₃-Ni_{0.5}Zn_{0.5}Fe₂O₄ composite ceramics, J. Alloy. Compd. 602 (2014) 241–247.
- [46] K. Uchino, Relaxor Ferroelectric-based Ceramics, in: K. Uchino (Ed.), Advanced Piezoelectric Materials Science and Technology, Woodhead Publishing Limited, Cambridge, 2010, p. 111 (et seqq).
- [47] F. Oehler, H.-T. Langhammer, S.G. Ebbinghaus, Preparation and dielectric properties of CaTaO₂N and SrNbO₂N ceramics, J. Eur. Ceram. Soc. 37 (2017) 2129–2136.
- [48] J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy, Adv. Mater. 2 (1990) 132–138.
- [49] In the formula Li_y(Sr_{0.5}Ba_{0.5})_{1-y/2}Nb₂O₆ (solid solution between Sr_{0.5}Ba_{0.5}Nb₂O₆ and LiNbO₃), y represents the molar fraction of LiNbO₃ which can be calculated from the x parameter as y = x/(1+x/2).
- [50] R.R. Neurgaonkar, J.R. Oliver, W.K. Cory, L.E. Cross, D. Viehland, Piezoelectricity in tungsten bronze crystals, Ferroelectrics 160 (1994) 265–276.

R. Köferstein and S.G. Ebbinghaus

- [51] W. Jiang, W. Cao, X. Yi, H. Chen, The elastic and piezoelectric properties of tungsten bronze ferroelectric crystals (Sr_{0.7}Ba_{0.3})₂NaNb₅O₁₅ and (Sr_{0.3}Ba_{0.7})₂NaNb₅O₁₅, J. Appl. Phys. 97 (2005), 094106.
- [52] M. Bichurin, V. Petrov, Modeling of Magnetoelectric Effects in Composites, Springer, Dordrecht, 2014, p. 45.
- [53] T. Volk, D. Isakov, V. Salobutin, L. Ivleva, P. Lykov, V. Ramzaev, M. Wöhlecke, Effects of Ni doping on properties of strontium–barium–niobate crystals, Solid State Comm. 130 (2004) 223–226.
- [54] B.-M. Jin, R. Guo, A.S. Bhalla, Piezoelectric properties and equivalent circuits of ferroelectric relaxor single crystals, J. Mater. Sci. 32 (1997) 2005–2058.
- [55] T.R. Volk, V.Yu Salobutin, L.I. Ivleva, N.M. Polozkov, R. Pankrath, M. Woehlecke, Ferroelectric properties of strontium barium niobate crystals doped with rare-earth metals, Phys. Solid State 42 (2000) 2129–2136.
- [56] J. van Suchtelen, Product properties: a new application of composite materials, Philips Res. Rep. 27 (1972) 28–37.
- [57] Y. Zhou, D. Maurya, Y. Yan, G. Srinivasan, E. Quandt, S. Priya, Self-biased magnetoelectric composites: an overview and future perspectives, Energy Harvest. Syst. 3 (2016) 1–42.
- [58] D.A. Filippov, V.M. Laletin, N.N. Poddubnaya, V.V. Shvartman, D.C. Lupascu, J. Zhang, G. Srinivasan, Magnetostriction via magnetoelectricity: using

Journal of the European Ceramic Society 43 (2023) 6137-6144

magnetoelectric response to determine the magnetostriction characteristics of composite multiferroics, Tech. Phys. Lett. 45 (2019) 1152–1154.

- [59] P.N. Anantharamaiah, B. Prerna Rao, H.M. Shashanka, J.A. Chelvane, V. Khopkar, B. Sahoo, Role of Mg²⁺ and In³⁺ substitution on magnetic, magnetostrictive and dielectric properties of NiFe₂O₄ ceramics derived from nanopowders, Phys. Chem. Chem. Phys. 23 (2021) 1694–1705.
- [60] T. Karpova, V. Vassiliev, E. Vladimirova, V. Osotov, M. Ronkin, A. Nosov, Synthesis of ultradisperse NiFe₂O₄ spinel by thermal decomposition of citrate precursors and its magnetic properties, Ceram. Int. 38 (2012) 373–379.
- [61] T. Buttlar, T. Walther, K. Dörr, S.G. Ebbinghaus, Preparation and magnetoelectric behavior of Ni/BaTiO₃ heterostructures with 0-3 connectivity, Phys. Stat. Solidi B 257 (2020) 1900622.
- [62] S.D. Bahme, P.A. Joy, Enhanced magnetostrictive properties of CoFe₂O₄ synthesized by an autocombustion method, Sens. Actuators A 137 (2007) 256–261.
- [63] K. Khaja Mohaideen, P.A. Joy, Influence of initial particle size on the magnetostriction of sintered cobalt ferrite derived from nanocrystalline, Powders, J. Magn. Magn. Mater. 346 (2013) 96–102.
- [64 K. Venkata Siva, S. Sudersan, A. Arocklarajan, Bipolar magnetostriction in CoFe2O4: effect of sintering, measurement temperature, and prestress, J. Appl. Phys. 128 (2020), 103904.