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A B S T R A C T

In this paper, we consider a model reduction technique for stabilizable and detectable stochastic systems. It is based on a pair of Gramians that
we analyze in terms of well-posedness. Subsequently, dominant subspaces of the stochastic systems are identified exploiting these Gramians. An
associated balancing related scheme is proposed that removes unimportant information from the stochastic dynamics in order to obtain a reduced
system. We show that this reduced model preserves important features like stabilizability and detectability. Additionally, a comprehensive error
analysis based on eigenvalues of the Gramian pair product is conducted. This provides an a-priori criterion for the reduction quality which we
illustrate in numerical experiments.

1. Introduction

Simulation and optimal control of high-dimensional stochastic processes is extremely challenging but of significant practical
interest. Such processes occur for instance as solutions to spatially discretized stochastic partial differential equations. Therefore,
it is vital to reduce the computational complexity when solving such large-scale stochastic differential equation (SDE) numerically.
Different techniques for model order reduction of deterministic systems have been developed over the years and are well
documented, e.g., in [1–3]. A prominent method, balanced truncation, is motivated by energy functionals and appropriate balancing
of states. This is achieved via a pair of positive definite matrices, the observability and the reachability Gramian. Given these
matrices, a state space transformation can be computed such that both Gramians are equal and diagonal. Then, those states are
truncated that correspond to low output and high control energy. Advantages of this approach are the preservation of system
properties such as stability and minimality as well as good error bounds, as has been proved for stable systems already in [4,5]. An
extension to unstable systems using techniques from linear quadratic (LQ) control theory has been suggested by [6]. Under suitable
conditions the reduced unstable system may be used in a low-order compensator to stabilize the original system.

In the current paper, we extend this idea further to stochastic systems. We build upon earlier work, in particular [7–9], where
different versions of balanced truncation for asymptotically stable stochastic linear systems have been discussed. The situation is
more complicated than in the deterministic setup, since frequency domain considerations are not possible and hence essential tools
like transfer functions are not available. Also the duality principle of reachability and observability does not translate literally to
the stochastic setup. Therefore, it is not immediate to find an appropriate pair of Gramians, as has been discussed in [8] for the
stable case. This seems even more difficult in the unstable case, and we regard it as one of our main contributions in this paper
to suggest such a pair. While our observability Gramian is given as the stabilizing solution of the Riccati equation associated to a
LQ-state feedback problem of stochastic control, our reachability Gramian solves a modified Riccati type inequality. Both Gramians
exist under natural stabilizability and detectability conditions. They can be computed, e.g., by semidefinite programming and yield
a balancing state space transformation. Performing a balancing procedure in the usual way, we can show that the reduced system is
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still stabilizable and detectable and that the truncated closed-loop LQ-controller of the full system also stabilizes the reduced system.
Moreover, we prove error bounds for the closed-loop and the open-loop input–output system with respect to the 𝐿2-norm. In both
cases, non-trivial technical elaborations are required. Further, these results can be interpreted nicely in the gap metric as we point
out in this paper as well.

The concepts used in our approach have been developed over many years. Fundamental results on stochastic stability can
be found in [10]. Stochastic linear quadratic control theory and the stochastic Riccati equation were introduced in [11]. For its
solution, notions of stochastic stabilizability and detectability are crucial. Different versions appeared in [12–19] and have been
adapted for other classes of systems in more recent years. In this paper, we follow the definitions of detectability given in [12,19].
Low-order compensators for stochastic linear systems with multiplicative noise apparently have first been considered in [20] using
𝐻∞-techniques. Model order reduction of discrete-time stochastic systems based on balancing was discussed in [21] using linear
matrix inequalities. For continuous-time systems Gramian based methods were suggested in [7,8]. A balancing procedure in a Hilbert
space setting can be found in [22]. We refer, e.g., to [23] for a dimension reduction scheme based on an averaging principle. Besides
methods relying on Gramians, further recent developments in different directions have been made. In [24], optimization based model
reduction was studied, whereas [25,26] focused on techniques based on moment matching and sampling, respectively.

The paper is now organized as follows. We first clarify the notation and provide some tools on stochastic systems, positive
operators and system theoretic notions. In Section 3, we introduce the pair of Gramians and characterize them with energy cost
functionals. Linear quadratic Gaussian (LQG) balanced truncation is discussed in Section 4, where also essential preservation
properties are derived. The more technical results on error bounds are given in Section 5 and the appendix. Some numerical examples
that illustrate and support our findings are given in Section 6.

2. Preliminaries

In this section, we introduce the class of stochastic systems for which we want to perform model order reduction by LQG
balancing. To define suitable Gramians we consider the well-known Riccati equation of the stochastic linear quadratic control
problem, e.g., from [11], and a new Riccati-type inequality which is inspired by the type II -Gramian defined in [8]. We also recall
otions of stabilizability and detectability that are essential for the existence of the Gramians.

.1. Basics of stochastic systems

We study the stochastic system

𝑑𝑥(𝑡) = [𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)] 𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖𝑥(𝑡) 𝑑𝑊𝑖(𝑡), 𝑥(0) = 𝑥0 ∈ R𝑛, (1a)

𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑡 ≥ 0, (1b)

here 𝐴,𝑁𝑖 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚 and 𝐶 ∈ R𝑝×𝑛. The vector-valued functions 𝑥, 𝑢, and 𝑦 are called state, control input, and measured
utput respectively. We assume that 𝑊 =

(

𝑊1,… ,𝑊𝑞
)⊤ is an R𝑞-valued Wiener process with mean zero and covariance matrix

= (𝑘𝑖𝑗 ), i.e., E[𝑊 (𝑡)𝑊 (𝑡)⊤] = 𝐾𝑡. All stochastic processes appearing in this paper are defined on a filtered probability space
𝛺,F, (F𝑡)𝑡≥0,P

)

1. Furthermore, we assume that 𝑊 is an (F𝑡)𝑡≥0-adapted process with increments 𝑊 (𝑡+ℎ)−𝑊 (𝑡) being independent
f F𝑡 for 𝑡, ℎ ≥ 0. Throughout this paper, suppose that 𝑢 is an (F𝑡)𝑡≥0-adapted control with 𝑢 ∈ 𝐿2

𝑇 , meaning that

‖𝑢‖2
𝐿2
𝑇
∶= E∫

𝑇

0
‖𝑢(𝑠)‖22 𝑑𝑠 <∞ (2)

or all 𝑇 > 0, where ‖⋅‖2 denotes the Euclidean norm with associated inner product ⟨⋅, ⋅⟩2. If (2) additionally holds for 𝑇 = ∞, we
rite 𝑢 ∈ 𝐿2. For given control 𝑢 and initial state 𝑥0, the corresponding state and output processes are denoted by 𝑥(⋅, 𝑥0, 𝑢) and
(⋅, 𝑥0, 𝑢).

emark 1. There is the potential to extend the results of this paper to square integrable Lévy processes (see, e.g., [27]). We might
lso consider multiplicative noise at the input terms. This, however, makes many expressions and criteria more complicated, as we
emonstrate below in Remark 5.

.2. Resolvent positive mappings

In our analysis we will consider Lyapunov equations of a generalized type. In this context the following terminology and setup
s useful, see [28]. Let 𝐻 denote a finite dimensional real vector space ordered by a closed, solid, pointed convex cone 𝐻+. A linear
apping 𝑇 ∶ 𝐻 → 𝐻 is called positive, if 𝑇 (𝐻+) ⊂ 𝐻+. It is called resolvent positive, if its resolvent (𝛼𝐼 − 𝑇 )−1 is positive for all

ufficiently large 𝛼. The essential property of resolvent positive mappings that we use is a variant of the Perron–Frobenius theorem.

1 (F ) is right continuous and complete.
14535
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Proposition 2.1. Let 𝑇 ∶ 𝐻 → 𝐻 be resolvent positive with spectrum 𝜎(𝑇 ) and spectral abscissa 𝛼 = max{ℜ(𝜆) |

|

|

𝜆 ∈ 𝜎(𝑇 )}. Then
∈ 𝜎(𝑇 ) and there exists 𝑋 ∈ 𝐻+, 𝑋 ≠ 0, such that 𝑇 (𝑋) = 𝛼𝑋.

In our context, we consider the space S𝑛 = {𝑋 ∈ R𝑛×𝑛 |

|

|

𝑋 = 𝑋⊤} of symmetric matrices. This space is endowed with the
anonical Frobenius scalar product ⟨𝑋1, 𝑋2⟩𝐹 = tr(𝑋1𝑋2) and ordered by the closed, solid, pointed convex cone of nonnegative
efinite matrices S𝑛+ = {𝑋 ∈ S𝑛

|

|

|

𝑋 ≥ 0}. We will use the following property.

If 𝑋1, 𝑋2 ∈ S𝑛+ then 𝑋1𝑋2 = 0 ⟺ ⟨𝑋1, 𝑋2⟩𝐹 = 0 . (3)

With the given coefficient matrices 𝐴,𝑁𝑖 ∈ R𝑛×𝑛, 𝐾 = (𝑘𝑖𝑗 ) ∈ S
𝑞
+ from the previous subsection we define the mappings

𝐴,𝛱𝑁 ∶ S → S by

L𝐴(𝑋) = 𝐴⊤𝑋 +𝑋𝐴 , 𝛱𝑁 (𝑋) =
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑋𝑁𝑗 𝑘𝑖𝑗 .

hen, 𝛱𝑁 is positive and the sum L𝐴 +𝛱𝑁 is resolvent positive. The same obviously holds for the adjoint mappings

L∗
𝐴(𝑋) = 𝐴𝑋 +𝑋𝐴⊤ , 𝛱∗

𝑁 (𝑋) =
𝑞
∑

𝑖,𝑗=1
𝑁𝑖𝑋𝑁

⊤
𝑗 𝑘𝑖𝑗 .

.3. Stabilizability, observability and detectability

We now introduce notions of stability, stabilizability, and detectability, as they have been considered, e.g., in [12,28].

efinition 2.2. The system (1) is called

• mean square asymptotically stable, if there exist constants 𝑀 ≥ 1, 𝑐 > 0 such that for all 𝑥0 ∈ R𝑛, 𝑡 ≥ 0, we have E ‖

‖

𝑥(𝑡, 𝑥0, 0)‖‖
2
2 ≤

𝑀 e−𝑐𝑡 ‖
‖

𝑥0‖‖
2
2.

• stabilizable, if for all 𝑥0 ∈ R𝑛 there exists 𝑢 ∈ 𝐿2, such that 𝑥(⋅, 𝑥0, 𝑢) ∈ 𝐿2.
• observable, if the condition that 𝑦(𝑡, 𝑥0, 0) = 0 almost surely for all 𝑡 ≥ 0 implies that 𝑥0 = 0.
• detectable, if the condition that 𝑦(𝑡, 𝑥0, 0) = 0 almost surely for all 𝑡 ≥ 0 implies that lim𝑡→∞ E ‖

‖

𝑥(𝑡, 𝑥0, 0)‖‖
2
2 = 0.

In these cases, we briefly say that the pair (𝐴,𝑁𝑖) is (mean square asymptotically) stable, the triple (𝐴,𝐵,𝑁𝑖) is stabilizable, or the
triple (𝐴,𝐶,𝑁𝑖) is observable or detectable.

Remark 2. In [18] the term exact observable is used, where for brevity we just write observable. To be more precise, the notion of
stability introduced in Definition 2.2 is called mean square exponential stability in general. Since usual mean square asymptotic
stability implies exponentially fast decay in the linear case, we do not distinguish between both concepts and omit the term
‘‘exponential’’ in the following.

Unlike in the deterministic case there is no perfect duality between stabilizability and detectability. The following lemma collects
known criteria.

Lemma 2.3.

(a) The triple (𝐴,𝐵,𝑁𝑖) is stabilizable, if and only if there exists a feedback gain matrix 𝐹 , such that (𝐴 + 𝐵𝐹 ,𝑁𝑖) is stable.
(b) The triple (𝐴,𝐶,𝑁𝑖) is observable, if and only if the following variant of the Hautus test is satisfied:

If (L𝐴 +𝛱𝑁 )∗(𝑉 ) = 𝜆𝑉 with 𝜆 ∈ C, 0 ≠ 𝑉 ≥ 0, then 𝐶𝑉 ≠ 0 .

(c) The triple (𝐴,𝐶,𝑁𝑖) is detectable, if and only if the following variant of the Hautus test is satisfied:

If (L𝐴 +𝛱𝑁 )∗(𝑉 ) = 𝜆𝑉 with 𝜆 ≥ 0, 0 ≠ 𝑉 ≥ 0, then 𝐶𝑉 ≠ 0 .

(d) If the triple (𝐴⊤, 𝐶⊤, 𝑁⊤
𝑖 ) is stabilizable, then the triple (𝐴,𝐶,𝑁𝑖) is detectable. The converse does not hold in general.

3. A pair of Gramians

As in the deterministic case, stabilizability, observability and detectability characterize the solvability of Riccati equations.

3.1. An observability Gramian

We first consider the Riccati equation of the stochastic linear quadratic control problem. The following result is a special case
of [19, Theorem 4.1] (see also [28, Corollary 5.3.4]).
14536
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Theorem 3.1. Assume that (𝐴,𝐵,𝑁𝑖) is stabilizable and (𝐴,𝐶,𝑁𝑖) is detectable. Then, the Riccati equation

R(𝑄) ∶= 𝐴⊤𝑄 +𝑄𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑄𝑁𝑗𝑘𝑖𝑗 + 𝐶⊤𝐶 −𝑄𝐵𝐵⊤𝑄 = 0 (4)

possesses a stabilizing solution 𝑄+ ≥ 0, such that (𝐴 − 𝐵𝐵⊤𝑄+, 𝑁𝑖) is stable.
If (𝐴,𝐶,𝑁𝑖) is observable, then 𝑄+ > 0.

The stabilizing solution 𝑄+ of (4) will play the role of an observability Gramian in our LQG balanced truncation approach.

3.2. A reachability Gramian

The corresponding reachability Gramian will be chosen as a positive definite solution of the new Riccati-type inequality

𝐴⊤𝑃−1 + 𝑃−1𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑃

−1𝑁𝑗𝑘𝑖𝑗 − 𝐶⊤𝐶 + 𝑃−1𝐵𝐵⊤𝑃−1 ≤ 0 . (5)

Lemma 3.2. The strict inequality

𝐴⊤𝑃−1 + 𝑃−1𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑃

−1𝑁𝑗𝑘𝑖𝑗 − 𝐶⊤𝐶 + 𝑃−1𝐵𝐵⊤𝑃−1 < 0 (6)

possesses a solution 𝑃+ > 0 if and only if (𝐴⊤, 𝐶⊤, 𝑁⊤
𝑖 ) is stabilizable.

Proof. By [28, Lemma 1.7.3] stabilizability of (𝐴⊤, 𝐶⊤, 𝑁⊤
𝑖 ) is equivalent to the existence of a matrix 𝑋 > 0 such that

𝐴⊤𝑋 +𝑋𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑋𝑁𝑖𝑘𝑖𝑗 − 𝐶⊤𝐶 = −𝑌 < 0 . (7)

Since (6) implies (7) it also implies stabilizability of (𝐴⊤, 𝐶⊤, 𝑁⊤
𝑖 ).

For the converse implication, we multiply both sides of (7) by some 0 < 𝜖 ≤ 1 and obtain

𝐴⊤(𝜖𝑋) + (𝜖𝑋)𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 (𝜖𝑋)𝑁𝑖𝑘𝑖𝑗 − 𝜖𝐶⊤𝐶 = −𝜖𝑌 .

The choice of 𝜖 ≤ 1 yields −𝐶⊤𝐶 ≤ −𝜖𝐶⊤𝐶. Moreover, for sufficiently small 𝜖, we have −𝜖𝑌 < −(𝜖𝑋)𝐵𝐵⊤(𝜖𝑋). Consequently, the
corresponding 𝑃+ ∶= (𝜖𝑋)−1 is a positive definite solution to (6). □

Remark 3. As noted before, stabilizability of (𝐴⊤, 𝐶⊤, 𝑁⊤
𝑖 ) is stronger than the more natural detectability of (𝐴,𝐶,𝑁𝑖) and it is also

not implied by observability of (𝐴,𝐶,𝑁𝑖), [12]. However, in the extreme case, where 𝐵𝐵⊤ is nonsingular, it is clear that (5) implies
(7) and thus stabilizability of (𝐴⊤, 𝐶⊤, 𝑁⊤

𝑖 ). In the following, we will make the assumptions that (𝐴,𝐵,𝑁𝑖) is stabilizable, (𝐴,𝐶,𝑁𝑖)
is observable, and that (5) has a solution 𝑃 > 0.

3.3. State cost estimations

In this section, we measure how much state variables contribute to system (1) based on the proposed Gramians.

Closed-loop dynamics. The relevance of state components with respect to the quadratic cost functional

𝐽𝑇 (𝑥0, 𝑢) = ∫

𝑇

0
E
(

‖𝑢(𝑡)‖22 + ‖𝑦(𝑡)‖22
)

𝑑𝑡

is investigated. Let us first assume that 𝑥0 = 0 and hence 𝑥(𝑡) = 𝑥(𝑡, 0, 𝑢). Moreover, suppose that we have an orthonormal basis (𝑝𝑖)
of eigenvectors 𝑃 > 0 such that we have the representation

𝑥(𝑡) =
𝑛
∑

𝑖=1
⟨𝑥(𝑡), 𝑝𝑖⟩2 𝑝𝑖. (8)

In order to tell how much a direction 𝑝𝑖 contribute to the state variable, the coefficients ⟨𝑥(𝑡), 𝑝𝑖⟩2 are analyzed below. Secondly, we
investigate how much a state variable contributes to the output (and a feedback control). Since a state is fully determined by its
initial condition, we focus on 𝑥0 =

∑𝑛
𝑖=1 𝛽𝑖𝑞𝑖. Here, (𝑞𝑖) is an orthonormal basis of eigenvectors of 𝑄 and 𝛽𝑖 ∈ R and the respective

coefficients of the expansion of 𝑥0. We assume that the control has stabilizing feedback structure, i.e., 𝑢(𝑡, 𝑥0) = −𝐵⊤𝑄𝑥(𝑡, 𝑥0). Since
the state is linear in 𝑥0 the same is true for the output 𝑦 = 𝑦(𝑡, 𝑥0) and the closed-loop control. Consequently, we have

𝑦(𝑡, 𝑥0) =
𝑛
∑

𝑖=1
𝛽𝑖𝑦(𝑡, 𝑞𝑖) and 𝑢(𝑡, 𝑥0) =

𝑛
∑

𝑖=1
𝛽𝑖𝑢(𝑡, 𝑞𝑖). (9)

Therefore, it is of interest to investigate how large 𝑢(𝑡, 𝑞𝑖) and 𝑦(𝑡, 𝑞𝑖) are. We establish the following proposition in order to
14537
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Proposition 3.3.

(a) If 𝑃 > 0 satisfies (5), and 𝑥(𝑡) = 𝑥(𝑡, 0, 𝑢) is the solution of (1a) on [0, 𝑇 ] with initial value 𝑥(0) = 0, then we have

sup
𝑡∈[0,𝑇 ]

E ⟨𝑥(𝑡), 𝑝𝑖⟩
2
2 ≤ 𝜆𝑃 ,𝑖𝐽𝑇 (0, 𝑢)

for the coefficients in (8), where 𝜆𝑃 ,𝑖 is the eigenvalue of 𝑃 associated to 𝑝𝑖. If 𝑢 is stabilizing, then the same holds for 𝑇 = ∞.
(b) Let now 𝑄 ≥ 0 satisfy (4), and consider the initial state 𝑥0 = 𝑞𝑖 with stabilizing feedback input 𝑢𝐹 = 𝐹𝑥 for 𝐹 = −𝐵⊤𝑄. Then,

𝐽∞(𝑞𝑖, 𝑢𝐹 ) = ‖

‖

𝑦(⋅, 𝑞𝑖)‖‖
2
𝐿2 + ‖

‖

𝑢𝐹 (⋅, 𝑞𝑖)‖‖
2
𝐿2 ≤ 𝜆𝑄,𝑖 (10)

for the coefficients in (9), where 𝜆𝑄,𝑖 is the eigenvalue of 𝑄 associated to 𝑞𝑖.

emark 4. Note that each 𝑢 ∈ 𝐿2 is stabilizing in Proposition 3.3(a) if (1a) is mean square asymptotically stable [20]. We interpret
he results of the proposition as follows. Assume that 𝜆𝑃 ,𝑖 and 𝜆𝑄,𝑖 are very small. Then, from (a) we infer, that the state direction
𝑖 can only be activated at very high cost. From (b) we learn that the initial variable direction 𝑞𝑖 has only very small influence on

the cost meaning that 𝑢𝐹 (⋅, 𝑞𝑖) and 𝑦(⋅, 𝑞𝑖) are small in 𝐿2. If 𝑃 and 𝑄 are diagonal and equal, we obtain that 𝑝𝑖 = 𝑞𝑖 are the unit
vectors such that unimportant directions can be identified with state components. The 𝑖th component might then be neglected in
a truncation approach if the associated diagonal entry in 𝑃 = 𝑄 is small. Such a simultaneous diagonalization of the Gramians is
discussed in Section 3.4.

Proof of Proposition 3.3. For proving (a), we use (38) with 𝑋 = 𝑃−1 and (5) yielding

E⟨𝑥(𝑡, 0, 𝑢), 𝑝𝑖⟩22 ≤ 𝜆𝑃 ,𝑖 E
[

𝑥(𝑡, 0, 𝑢)⊤𝑃−1𝑥(𝑡, 0, 𝑢)
]

≤ 𝜆𝑃 ,𝑖

[

∫

𝑡

0
E
[

𝑥(𝑠)⊤
(

𝐶⊤𝐶 − 𝑃−1𝐵𝐵⊤𝑃−1) 𝑥(𝑠)
]

𝑑𝑠 + 2∫

𝑡

0
E
⟨

𝐵⊤𝑃−1𝑥(𝑠), 𝑢(𝑠)
⟩

2 𝑑𝑠
]

= 𝜆𝑃 ,𝑖

[

‖𝑦‖2
𝐿2
𝑡
+ ‖𝑢‖2

𝐿2
𝑡
− ‖

‖

‖

𝐵⊤𝑃−1𝑥 − 𝑢‖‖
‖

2

𝐿2
𝑡

]

.

Consequently, we obtain

sup
𝑡∈[0,𝑇 ]

E⟨𝑥(𝑡, 0, 𝑢), 𝑝𝑖⟩22 ≤ 𝜆𝑃 ,𝑖

[

‖𝑦‖2
𝐿2
𝑇
+ ‖𝑢‖2

𝐿2
𝑇

]

.

If 𝑢, 𝑦 ∈ 𝐿2, we can take the supremum over 𝑡 ∈ [0,∞) instead. For (b), we set 𝑋 = 𝑄 in (38) and make use of (4) leading to

E
[

𝑥(𝑡)⊤𝑄𝑥(𝑡)
]

= 𝑥⊤0𝑄𝑥0 + ∫

𝑡

0
E
[

𝑥(𝑠)⊤
(

−𝐶⊤𝐶 +𝑄𝐵𝐵⊤𝑄
)

𝑥(𝑠)
]

𝑑𝑠 + 2∫

𝑡

0
E
⟨

𝐵⊤𝑄𝑥(𝑠), 𝑢(𝑠)
⟩

2 𝑑𝑠

= 𝑥⊤0𝑄𝑥0 + ∫

𝑡

0
E
[

− ‖𝑦(𝑠)‖22 − ‖𝑢(𝑠)‖22 +
‖

‖

‖

𝐵⊤𝑄𝑥(𝑠) + 𝑢(𝑠)‖‖
‖

2

2

]

𝑑𝑠 (11)

for 𝑡 ∈ [0, 𝑇 ]. Setting 𝑢 = 𝑢𝐹 and 𝑥0 = 𝑞𝑖 gives us

‖

‖

𝑦(⋅, 𝑞𝑖)‖‖
2
𝐿2
𝑇
+ ‖

‖

𝑢𝐹 (⋅, 𝑞𝑖)‖‖
2
𝐿2
𝑇
≤ 𝜆𝑄,𝑖.

ince 𝑢𝐹 is a stabilizing control according to Theorem 3.1, the result follows by taking 𝑇 → ∞. □

Remark 5. Using the Riccati mapping R from (4), we can write (5) in the form −R(−𝑃−1) ≤ 0. This indicates, how the Gramians
an be generalized for the case of models with control-dependent noise. Given 𝑀𝑖 ∈ R𝑛×𝑚, let us consider the following system with

controlled diffusion

𝑑𝑥(𝑡) = [𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)] 𝑑𝑡 +
𝑞
∑

𝑖=1
[𝑁𝑖𝑥(𝑡) +𝑀𝑖𝑢(𝑡)] 𝑑𝑊𝑖(𝑡), 𝑥(0) = 𝑥0,

𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑡 ≥ 0.

Then, the Riccati equation of LQ-control with cost functional 𝐽∞ takes the form (see, e.g., [28,29])

R(𝑄) = 𝐴⊤𝑄 +𝑄𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑄𝑁𝑗𝑘𝑖𝑗 + 𝐶⊤𝐶

− (𝑄𝐵 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑄𝑀𝑗𝑘𝑖𝑗 )(𝐼 +

𝑞
∑

𝑖,𝑗=1
𝑀⊤

𝑖 𝑄𝑀𝑗𝑘𝑖𝑗 )−1(𝐵⊤𝑄 +
𝑞
∑

𝑖,𝑗=1
𝑀⊤

𝑖 𝑄𝑁𝑗𝑘𝑖𝑗 ) = 0,

nd defines the observability Gramian for this case. A reachability Gramian is given by

0 ≥ −R(−𝑃−1)

= 𝐴⊤𝑃−1 + 𝑃−1𝐴 +
𝑞
∑

𝑁⊤
𝑖 𝑃

−1𝑁𝑗𝑘𝑖𝑗 − 𝐶⊤𝐶
14538
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+ (𝑃−1𝐵 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑃

−1𝑀𝑗𝑘𝑖𝑗 )(𝐼 −
𝑞
∑

𝑖,𝑗=1
𝑀⊤

𝑖 𝑃
−1𝑀𝑗𝑘𝑖𝑗 )−1(𝐵⊤𝑃−1 +

𝑞
∑

𝑖,𝑗=1
𝑀⊤

𝑖 𝑃
−1𝑁𝑗𝑘𝑖𝑗 ),

f additionally

𝐼 −
𝑞
∑

𝑖,𝑗=1
𝑀⊤

𝑖 𝑃
−1𝑀𝑗𝑘𝑖𝑗 > 0. (12)

Proposition 3.3 holds accordingly in this setup with 𝐹 = −(𝐼 +
∑𝑞
𝑖,𝑗=1𝑀

⊤
𝑖 𝑄𝑀𝑗𝑘𝑖𝑗 )−1(𝐵⊤𝑄 +

∑𝑞
𝑖,𝑗=1𝑀

⊤
𝑖 𝑄𝑁𝑗𝑘𝑖𝑗 ), but the additional

onstraint (12) on 𝑃 causes further technical difficulties. Therefore, we prefer to consider only state-dependent noise.

pen-loop dynamics. Below, we discuss that the Gramian 𝑄 might not generally be suitable for the dominant subspace characteri-
ation of unstable (but stabilizable and detectable) systems. Let 𝑢 now be an open-loop control. Since 𝑢 then is independent of the
initial) state, we can neglect it in the considerations below by setting 𝑢 ≡ 0, i.e., 𝑦(𝑡) = 𝑦(𝑡, 𝑥0, 0) = 𝐶𝑥(𝑡, 𝑥0, 0). Eq. (11) yields

E
[

𝑥(𝑡)⊤𝑄𝑥(𝑡)
]

= 𝑎(𝑡) + ∫

𝑡

0

‖

‖

‖

𝐵⊤𝑄𝑥(𝑠)‖‖
‖

2

2
𝑑𝑠, 𝑡 ∈ [0, 𝑇 ],

here 𝑎(𝑡) ∶= 𝑥⊤0𝑄𝑥0−‖𝑦‖
2
𝐿2
𝑡
. Using ‖

‖

𝐵⊤𝑄𝑥(𝑠)‖
‖

2
2 ≤ 𝑏 𝑥(𝑠)⊤𝑄𝑥(𝑠) with 𝑏 ∶=

‖

‖

‖

‖

𝐵⊤𝑄
1
2
‖

‖

‖

‖

2

2
, we can apply Gronwall’s lemma, see Lemma A.1.

etting 𝑡 = 𝑇 we then obtain

E
[

𝑥(𝑇 )⊤𝑄𝑥(𝑇 )
]

= 𝑎(𝑇 ) + ∫

𝑇

0
𝑎(𝑠)𝑏 e𝑏(𝑇−𝑠) 𝑑𝑠 = 𝑎(𝑇 ) −

[

𝑎(𝑠) e𝑏(𝑇−𝑠)
]𝑇
𝑠=0 + ∫

𝑇

0
�̇�(𝑠) e𝑏(𝑇−𝑠) 𝑑𝑠

= 𝑥⊤0𝑄𝑥0 e
𝑏𝑇 −∫

𝑇

0
‖𝑦(𝑠)‖22 e

𝑏(𝑇−𝑠) 𝑑𝑠. (13)

We have 𝑦(𝑡, 𝑥0, 0) =
∑𝑛
𝑖=1 𝛽𝑖𝑦(𝑡, 𝑞𝑖, 0), 𝑡 ∈ [0, 𝑇 ]. We obtain from (13) that the 𝑖th summand of this expansion satisfies

∫

𝑇

0
e−𝑏𝑠 ‖

‖

𝑦(𝑡, 𝑞𝑖, 0)‖‖
2
2 𝑑𝑠 ≤ 𝜆𝑄,𝑖. (14)

Inequality (14) is based on a Gronwall estimate that generally is not tight but captures the worst-case scenarios. Therefore, the
exponential weight in (14) is an indicator that eigenspaces corresponding to small eigenvalues of 𝑄 might generally only be
redundant in an unstable open-loop system on a small time scale. However, the kernel of 𝑄 remains negligible in any case. We
proceed with a strategy to simultaneous diagonalize 𝑃 and 𝑄 in order to be able to remove redundant information in (1a) and (1b)
t the same time.

.4. State space transformation and balancing

A transformation 𝑧 = 𝑆𝑥 in (1) with nonsingular 𝑆 ∈ R𝑛×𝑛 leads to an equivalent stochastic system with the state vector 𝑧, where
he coefficient matrices undergo the state-space transformation

(𝐴,𝑁𝑖, 𝐵, 𝐶) ↦ (𝑆𝐴𝑆−1, 𝑆𝑁𝑖𝑆
−1, 𝑆𝐵, 𝐶𝑆−1).

oth systems have the same input and output. Also, none of the properties from Definition 2.2 is affected. Matrices 𝑃 and 𝑄
onstitute a pair of Gramians for the original system, if and only if 𝑆𝑃𝑆⊤ and 𝑆−⊤𝑄𝑆−1 constitute a pair of Gramians for the
ransformed system. By the spectral transformation theorem for symmetric matrices, there exist orthogonal matrices 𝑆𝑃 and 𝑆𝑄,
uch that 𝑆𝑃𝑃𝑆⊤𝑃 = 𝛴𝑃 and 𝑆−⊤

𝑄 𝑄𝑆−1
𝑄 = 𝛴𝑄 are diagonal and contain the ordered eigenvalues of 𝑃 and 𝑄, respectively.

Given that 𝑃 ,𝑄 > 0 it is possible to conduct a balancing procedure, where one computes a nonsingular (but not necessarily
rthogonal) transformation matrix 𝑆𝑏, so that 𝑆𝑏𝑃𝑆⊤𝑏 = 𝑆−⊤

𝑏 𝑄𝑆−1
𝑏 = 𝛴𝑛 is diagonal, with 𝛴2

𝑛 = diag(𝜎21 ,… , 𝜎2𝑛 ) > 0 containing the
rdered eigenvalues of 𝑃𝑄. One way of choosing the matrix 𝑆𝑏 is to compute a Cholesky factorization of 𝑃 = 𝐿𝑃𝐿⊤𝑃 and then
spectral factorization of 𝐿⊤𝑃𝑄𝐿𝑃 = 𝑈𝛴2

𝑛𝑈
⊤ with orthogonal 𝑈 , where 𝛴𝑛 turns out to be the balanced Gramian. According to

emark 4, state components associated to small diagonal entries of 𝛴𝑛 are less relevant in a balanced system. They can be removed
ue to their low contribution to the dynamics. This idea is the basis for the reduced model introduced in the next section.

. LQG balanced truncation

Our standing assumption is that (𝐴,𝐵,𝑁𝑖) is stabilizable, (𝐴,𝐶,𝑁𝑖) is observable, and that (5) has a solution 𝑃 > 0. Then,
lso (4) has a stabilizing solution 𝑄+ > 0. In this case, we can apply the balancing transformation 𝑆𝑏, leading to the balanced
ealization (𝐴𝑛, 𝑁𝑖,𝑛, 𝐵𝑛, 𝐶𝑛) = (𝑆𝑏𝐴𝑆−1

𝑏 , 𝑆𝑏𝑁𝑖𝑆−1
𝑏 , 𝑆𝑏𝐵,𝐶𝑆−1

𝑏 ) with diagonal Gramians 𝑆𝑏𝑃𝑆⊤𝑏 = 𝑆−⊤
𝑏 𝑄+𝑆−1

𝑏 = 𝛴𝑛 = diag(𝛴𝑟, 𝛴2,𝑛−𝑟),
here 𝛴𝑟 = diag(𝜎1,… , 𝜎𝑟) contains the large and 𝛴2,𝑛−𝑟 = diag(𝜎𝑟+1,… , 𝜎𝑛), 𝑟 < 𝑛, the small singular values. The balanced system
atrices are partitioned conformingly

𝐴𝑛 =
[

𝐴𝑟 ⋆
]

, 𝐵𝑛 =
[

𝐵𝑟
]

, 𝐶𝑛 =
[

𝐶𝑟 ⋆
]

, 𝑁𝑖,𝑛 =
[

𝑁𝑖,𝑟 ⋆
]

. (15)
14539
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Then, we consider the reduced system

𝑑𝑥𝑟(𝑡) =
[

𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡)
]

𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖,𝑟𝑥𝑟(𝑡) 𝑑𝑊𝑖(𝑡), 𝑥𝑟(0) = 𝑥0,𝑟 ∈ R𝑟, (16a)

𝑦𝑟(𝑡) = 𝐶𝑟𝑥𝑟(𝑡), 𝑡 ≥ 0. (16b)

y Theorem 3.1 the closed-loop system (𝐴𝑛 −𝐵𝑛𝐵⊤𝑛 𝛴𝑛, 𝑁𝑖,𝑛) is stable. We will show that the same holds for the reduced closed-loop
ystem (𝐴𝑟 − 𝐵𝑟𝐵⊤𝑟 𝛴𝑟, 𝑁𝑖,𝑟), if 𝜎(𝛴𝑟) ∩ 𝜎(𝛴2,𝑛−𝑟) = ∅. Moreover, we prove that also detectability is preserved by truncation.

.1. Preservation of closed-loop stability

We make use of a result in [8,30], which we restate here in a suitable form, see [8, Theorem II.2].

heorem 4.1. Let (�̂�, �̂�𝑖, �̂�, �̂�) be coefficient matrices with the same partitioning as in (15). Assume that (�̂�, �̂�𝑖) is stable and consider
he systems

𝑑�̂�(𝑡) =
[

�̂��̂�(𝑡) + �̂��̂�(𝑡)
]

𝑑𝑡 +
𝑞
∑

𝑖=1
�̂�𝑖�̂�(𝑡)𝑑𝑊𝑖(𝑡), �̂�(𝑡) = �̂��̂�(𝑡), (17a)

𝑑�̂�𝑟(𝑡) =
[

�̂�𝑟�̂�𝑟(𝑡) + �̂�𝑟�̂�(𝑡)
]

𝑑𝑡 +
𝑞
∑

𝑖=1
�̂�𝑖,𝑟�̂�𝑟(𝑡)𝑑𝑊𝑖(𝑡), �̂�𝑟(𝑡) = �̂�𝑟�̂�𝑟(𝑡). (17b)

et further �̂� = diag(�̂�𝑟, �̂�2,𝑛−𝑟) with 𝜎(�̂�𝑟) ∩ 𝜎(�̂�2,𝑛−𝑟) = ∅ satisfy
(

L�̂� +𝛱�̂�
)

(�̂�) ≤ −�̂�⊤�̂� and
(

L�̂� +𝛱�̂�
)

(�̂�−1) ≤ −�̂�−1�̂��̂�⊤�̂�−1 . (18)

hen, (�̂�𝑟, �̂�𝑖,𝑟) is stable.

emark 6. Matrices �̂� satisfying (18) have been called type-II-Gramians of system (�̂�, �̂�𝑖, �̂�, �̂�) and (17b) the reduced model by
ype-II balancing, see [8].

heorem 4.2. Consider the systems (1) and (16) given by the data (15). Then, we have that (𝐴𝑟 − 𝐵𝑟𝐵⊤𝑟 𝛴𝑟, 𝑁𝑖,𝑟) is stable.

roof. We balance the system in order to work with the coefficient in (15). We add (4) and (5) with 𝑃 = 𝑄 = 𝛴𝑛 to obtain

0 ≥ L𝐴𝑛 (𝛴𝑛 + 𝛴
−1
𝑛 ) +𝛱𝑁𝑛 (𝛴𝑛 + 𝛴

−1
𝑛 ) + 𝛴−1

𝑛 𝐵𝑛𝐵
⊤
𝑛 𝛴

−1
𝑛 − 𝛴𝑛𝐵𝑛𝐵⊤𝑛 𝛴𝑛

≥ L𝐴𝑛−𝐵𝑛𝐵⊤𝑛 𝛴𝑛
(𝛴𝑛 + 𝛴−1

𝑛 ) +𝛱𝑁𝑛 (𝛴𝑛 + 𝛴
−1
𝑛 ) + 𝛴−1

𝑛 𝐵𝑛𝐵
⊤
𝑛 𝛴

−1
𝑛 − 𝛴𝑛𝐵𝑛𝐵⊤𝑛 𝛴𝑛

+ 𝛴𝑛𝐵𝑛𝐵⊤𝑛 𝛴𝑛 + 𝛴𝑛𝐵𝑛𝐵
⊤
𝑛 𝛴

−1
𝑛 + 𝛴−1

𝑛 𝐵𝑛𝐵
⊤
𝑛 𝛴𝑛 + 𝛴𝑛𝐵𝑛𝐵

⊤
𝑛 𝛴𝑛

= (L𝐴𝑛−𝐵𝑛𝐵⊤𝑛 𝛴 +𝛱𝑁𝑛 )(𝛴𝑛 + 𝛴
−1
𝑛 ) + (𝛴𝑛 + 𝛴−1

𝑛 )𝐵𝑛𝐵⊤𝑛 (𝛴𝑛 + 𝛴
−1
𝑛 ) .

Let us set 𝛶𝑛 = (𝛴𝑛 + 𝛴−1
𝑛 )−1. Then, we have the two inequalities

(L𝐴𝑛−𝐵𝑛𝐵⊤𝑛 𝛴𝑛 +𝛱𝑁𝑛 )(𝛶
−1
𝑛 ) ≤ −𝛶 −1

𝑛 𝐵𝑛𝐵
⊤
𝑛 𝛶

−1
𝑛 ,

(L𝐴𝑛−𝐵𝑛𝐵⊤𝑛 𝛴𝑛 +𝛱𝑁𝑛 )(𝛴𝑛) ≤ −𝐶⊤𝑛 𝐶𝑛 − 𝛴𝑛𝐵𝑛𝐵
⊤
𝑛 𝛴𝑛.

We recognize 𝛶𝑛 and 𝛴𝑛 as unbalanced type-II Gramians of the closed-loop system given by
(

𝐴𝑛 − 𝐵𝑛𝐵⊤𝑛 𝛴𝑛, 𝑁𝑖,𝑛, 𝐵𝑛,
[

−𝐵⊤𝑛 𝛴𝑛
𝐶𝑛

])

. These
re balanced by the similarity transformation with

𝑆𝑛 = (𝛶 −1
𝑛 𝛴𝑛)1∕4 = diag(𝑆𝑟, 𝑆2,𝑛−𝑟) .

or the given 𝛶𝑛, the balanced type-II Gramian of the closed-loop system then equals

�̂�𝑛 = (𝐼 + 𝛴−2
𝑛 )−1∕2 = diag

(

𝜎𝑗
(1 + 𝜎2𝑗 )1∕2

)𝑛

𝑗=1

= diag(�̂�𝑗 )𝑛𝑗=1 . (19)

Note that �̂�𝑗 > �̂�𝑘, if and only if 𝜎𝑗 > 𝜎𝑘. Hence 𝜎(𝛴𝑟) ∩ 𝜎(𝛴2,𝑛−𝑟) = ∅ implies 𝜎(�̂�𝑟) ∩ 𝜎(�̂�2,𝑛−𝑟) = ∅. Thus, the assumptions of
Theorem 4.1 are satisfied with

(�̂�, �̂�𝑖, �̂�, �̂�) = (𝑆𝑛(𝐴𝑛 − 𝐵𝑛𝐵⊤𝑛 𝛴𝑛)𝑆
−1
𝑛 , 𝑆𝑛𝑁𝑖,𝑛𝑆

−1
𝑛 , 𝑆𝑛𝐵𝑛,

[

−𝐵⊤𝑛 𝛴
𝐶𝑛

]

𝑆−1
𝑛 ), (20a)

(�̂�𝑟, �̂�𝑖,𝑟, �̂�𝑟, �̂�𝑟) = (𝑆𝑟(𝐴𝑟 − 𝐵𝑟𝐵⊤𝑟 𝛴𝑟)𝑆
−1
𝑟 , 𝑆𝑟𝑁𝑖,𝑟𝑆

−1
𝑟 , 𝑆𝑟𝐵𝑟,

[

−𝐵⊤𝑟 𝛴𝑟
𝐶𝑟

]

𝑆−1
𝑟 ) . (20b)

The stability of (𝐴 − 𝐵 𝐵⊤𝛴 ,𝑁 ) now follows from Theorem 4.1. □
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4.2. Preservation of detectability

Let us now show that the reduced system is also detectable.

roposition 4.3. If 𝜎(𝛴𝑟) ∩ 𝜎(𝛴2,𝑛−𝑟) = ∅, then (𝐴𝑟, 𝐶𝑟, 𝑁𝑖,𝑟) given by (15) is detectable.

Proof. Let us consider the balanced realization with partition in (15), so that 𝑃 = 𝑄 = 𝛴𝑛 in (4) and (5). In more detail, we partition

𝑁𝑖,𝑛 =
[

𝑁𝑖,𝑟 ⋆
𝑀𝑖,𝑟 ⋆

]

and define 𝛱𝑀𝑟
∶ S𝑛−𝑟 → S𝑟 in analogy to 𝛱𝑁 by 𝛱𝑀𝑟

(𝑋) =
∑𝑞
𝑖,𝑗=1𝑀

⊤
𝑖,𝑟𝑋𝑀𝑗,𝑟𝑘𝑖𝑗 . Then,

(

L𝐴𝑟 +𝛱𝑁𝑟

)

(

𝛴−1
𝑟

)

≤ 𝐶⊤𝑟 𝐶𝑟 − 𝛴
−1
𝑟 𝐵𝑟𝐵

⊤
𝑟 𝛴

−1
𝑟 −𝛱𝑀𝑟

(

𝛴−1
2,𝑛−𝑟

)

, (21)
(

L𝐴𝑟 +𝛱𝑁𝑟

)

(

𝛴𝑟
)

= −𝐶⊤𝑟 𝐶𝑟 + 𝛴𝑟𝐵𝑟𝐵
⊤
𝑟 𝛴𝑟 −𝛱𝑀𝑟

(

𝛴2,𝑛−𝑟
)

. (22)

Recall that ⟨⋅, ⋅⟩𝐹 is the Frobenius inner product. Assume that (𝐴𝑟, 𝑁𝑖,𝑟, 𝐶𝑟) is not detectable. Then, according to Lemma 2.3, there
exist 𝜆 ≥ 0, 𝑉1 ≥ 0, such that 𝐶𝑟𝑉1 = 0, i.e., ⟨𝐶⊤𝑟 𝐶𝑟, 𝑉1⟩𝐹 = 0 and

(

L𝐴𝑟 +𝛱𝑁𝑟

)∗
(𝑉1) = 𝜆𝑉1 .

The scalar products of (21), (22) with 𝑉1 yield

𝜆⟨𝛴−1
𝑟 , 𝑉1⟩𝐹 ≤ −⟨𝛴−1

𝑟 𝐵𝑟𝐵
⊤
𝑟 𝛴

−1
𝑟 , 𝑉1⟩𝐹 − ⟨𝛱𝑀𝑟

(

𝛴−1
2,𝑛−𝑟

)

, 𝑉1⟩𝐹 ≤ 0, (23)

𝜆⟨𝛴𝑟, 𝑉1⟩𝐹 = ⟨𝛴𝑟𝐵𝑟𝐵
⊤
𝑟 𝛴𝑟, 𝑉1⟩𝐹 − ⟨𝛱𝑀𝑟

(

𝛴2,𝑛−𝑟
)

, 𝑉1⟩𝐹 . (24)

From the inequality (23) it follows that 𝜆 ≤ 0, i.e., 𝜆 = 0.
Without loss of generality, let us assume that 𝜎𝑟+1 = max{𝜎𝑟+1,… , 𝜎𝑛}. Then,

𝜎2𝑟+1
𝜎𝑗

≥ 𝜎𝑟+1 ≥ 𝜎𝑗 for 𝑗 = 𝑟 + 1,… , 𝑛, i.e., 𝛶 =

𝜎2𝑟+1𝛴
−1
2,𝑛−𝑟 − 𝛴2,𝑛−𝑟 ≥ 0. Subtracting (23) multiplied with 𝜎2𝑟+1 from (24) we obtain

0 ≥ ⟨𝛴𝑟𝐵𝑟𝐵
⊤
𝑟 𝛴𝑟 + 𝜎

2
𝑟+1𝛴

−1
𝑟 𝐵𝑟𝐵

⊤
𝑟 𝛴

−1
𝑟 , 𝑉1⟩𝐹 + ⟨𝛱𝑀𝑟

(𝛶 ), 𝑉1⟩𝐹 ≥ 0 .

In particular, it holds that 𝐵𝑟𝐵⊤𝑟 𝛴𝑟𝑉1 = 0 and therefore

0 = 𝐴𝑟𝑉1 + 𝑉1𝐴⊤𝑟 +𝛱𝑁𝑟 (𝑉1) = (𝐴𝑟 − 𝐵𝑟𝐵⊤𝑟 𝛴𝑟)𝑉1 + 𝑉1(𝐴𝑟 − 𝐵𝑟𝐵
⊤
𝑟 𝛴𝑟)

⊤ +𝛱𝑁𝑟 (𝑉1) ,

contradicting the stability of the reduced closed-loop system by Theorem 4.2. □

4.3. Reduced order controller

Given a reduced model of an unstable system, it is a natural idea to use it for stabilization. This has been discussed in [6] for
deterministic systems. In the stochastic setup, the problem is even more involved, and we just sketch some questions.

Consider again the systems (1) and (16) given by the data (15). We partition the balancing transformation matrix as 𝑆𝑏 =
[

𝑆⊤𝑏,𝑟
⋆

]

,
where 𝑆⊤𝑏,𝑟 contains the first 𝑟 rows. The state 𝑥𝑟 of the reduced system (16) approximately satisfies 𝑥𝑟 = 𝑆⊤𝑏,𝑟𝑥. If a state feedback
control 𝑢 = 𝐹𝑟𝑥𝑟 stabilizes (16), i.e., (𝐴𝑟 − 𝐵𝑟𝐹𝑟, 𝑁𝑖,𝑟) is stable, then we may choose 𝑢 = 𝐹𝑟𝑆⊤𝑏,𝑟𝑥 as a candidate to stabilize the
original system. By Theorem 4.2 we can try 𝐹𝑟 = −𝐵⊤𝑟 𝛴𝑟. This choice is also natural as the LQG reduced systems is designed based
on neglecting unimportant information in the original stabilizing feedback control, see Proposition 3.3(b). For that reason, the
truncated singular values 𝜎𝑟+1,… , 𝜎𝑛 are a good indicator for the stabilization by the reduced feedback. Unfortunately, we cannot
give detailed a-priori estimates for suitable 𝑟, such that 𝑢 = −𝐵⊤𝑟 𝛴𝑟𝑆

⊤
𝑏,𝑟𝑥 stabilizes (1). But, of course, we can check the closed-loop

a posteriori for stability. This will be done in an example in Section 6.
Pursuing the idea further, we may also try to design a reduced dynamic compensator for (1). In our setup, this could proceed

via the reduced observer system

𝑑𝑥𝑟(𝑡) =
[

𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡) +𝐾𝑟(𝐶𝑟𝑥𝑟(𝑡) − 𝑦(𝑡))
]

𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖,𝑟𝑥𝑟(𝑡) 𝑑𝑊𝑖(𝑡). (25)

Setting 𝐾𝑟 = −𝛴𝑟𝐶⊤𝑟 and 𝑢 = −𝐵⊤𝑟 𝛴𝑟𝑥𝑟, the closed-loop system can be shown to be stable for 𝑟 = 𝑛. For smaller 𝑟, stability may be
checked a-posteriori. But there is a more serious problem with this approach, since the noise terms 𝑑𝑊𝑖 usually cannot be reproduced
in the observer. Therefore, a thorough analysis would have to consider only the deterministic part of (25). We have not carried out
any such work yet which is part of future studies.

5. Error analysis and its discussion

In this section, we begin with an overview on how the error analysis of LQG balancing is conducted in the deterministic case
and address difficulties in using the same techniques in the stochastic setting. Subsequently, we provide error bounds for stochastic
14541

LQG balancing and show links to the deterministic gap metric analysis.
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Deterministic case (𝑁𝑖 = 0 and deterministic control 𝑢). Given that 𝑁𝑖 = 0, the error analysis between (1) and (16) is often conducted in
he frequency domain. To do so, one applies the Laplace transformation to (1) and hence obtains 𝐲 = 𝐆𝐮, where 𝐮, 𝐲 are the Laplace

transforms of the input and the output, respectively, and 𝐆 is the matrix-valued transfer function of the system. The difference
between the full and the reduced system can now be measured based on 𝐆 − 𝐆𝑟, where 𝐆𝑟 is the reduced transfer function. A
ossible error norm can be the H∞-norm defined by

‖𝐆‖H∞
∶= sup

𝑤∈R
‖𝐆(i𝑤)‖2 = sup

𝑢≠0

‖𝑦‖𝐿2

‖𝑢‖𝐿2
. (26)

However, a more suitable error measure in the LQG balancing context is the so-called gap metric. An error analysis for different types
of deterministic settings in this metric can be found in [31–33]. A possible definition of the gap metric relies on a normalized (right)
coprime factorization of the transfer function, i.e., 𝐆(𝑠) = 𝐍(𝑠)𝐌(𝑠)−1. We refer to [31,33,34] for more details on this factorization.

he normalized coprime factors 𝐌,𝐍 can now be used to define the gap metric [35]:

𝛿(𝐆,𝐆𝑟) ∶= max

{

inf
𝛱∈H∞

‖

‖

‖

‖

‖

[

𝐌𝑟
𝐍𝑟

]

−
[

𝐌
𝐍

]

𝛱
‖

‖

‖

‖

‖H∞

, inf
𝛱∈H∞

‖

‖

‖

‖

‖

[

𝐌
𝐍

]

−
[

𝐌𝑟
𝐍𝑟

]

𝛱
‖

‖

‖

‖

‖H∞

}

.

time-domain interpretation of this distance is, e.g., discussed in [33,34,36]. Given and 𝐿2-input–output pair 𝑢 and 𝑦, the gap
etric guarantees the existence of a reduced 𝐿2-pair 𝑢𝑟 and 𝑦𝑟, so that we have

‖

‖

‖

‖

‖

[

𝑢 − 𝑢𝑟
𝑦 − 𝑦𝑟

]

‖

‖

‖

‖

‖𝐿2
≤ 𝛿(𝐆,𝐆𝑟)

‖

‖

‖

‖

‖

[

𝑢
𝑦

]

‖

‖

‖

‖

‖𝐿2
. (27)

bound for the gap metric is often found using the following estimate

𝛿(𝐆,𝐆𝑟) ≤
‖

‖

‖

‖

‖

[

𝐌
𝐍

]

−
[

𝐌𝑟
𝐍𝑟

]

‖

‖

‖

‖

‖H∞

. (28)

he H∞-error in (28) can be determined based on the time-domain representation of this norm given in (26). This means, that we

an work with system realizations of the transfer functions
[

𝐌
𝐍

]

,
[

𝐌𝑟
𝐍𝑟

]

and compute the 𝐿2-distance of two associated systems in

order to find a bound for the gap metric. However, working with stochastic systems causes various issues since frequency-domain
considerations cannot be applied. This is due to the fact that the ‘‘derivatives’’ in (1) are no longer classical functions not allowing
for a Laplace transformation. Therefore, a gap metric study is not possible but our error analysis will rely on generalized system
realizations of normalized coprime factorizations. In particular, a reduced input–output pair is supposed to be constructed, so that
we find an estimate of the form given in (27).

Stochastic error analysis. In order to conduct a gap-metric type error analysis, we construct a pair 𝑢𝑟, 𝑦𝑟 that is supposed to well
approximate 𝑢, 𝑦. In order to show the error between both vectors, system (1) is rewritten. To be more precise, its input–output pair
can be parameterized as

𝑑𝑥(𝑡) =[�̄�𝑥(𝑡) + 𝐵𝑣(𝑡)]𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖𝑥(𝑡)𝑑𝑊𝑖(𝑡),

�̄�(𝑡) ∶=
[

𝑢(𝑡)
𝑦(𝑡)

]

= �̄�𝑥(𝑡) +
[

𝑣(𝑡)
0

]

, 𝑡 ≥ 0,

(29)

where �̄� = 𝐴 − 𝐵𝐵⊤𝑄, �̄� =
[

−𝐵⊤𝑄
𝐶

]

and 𝑣(𝑡) = 𝐵⊤𝑄𝑥(𝑡) + 𝑢(𝑡). We can interpret (29) as a generalized realization (additional 𝑑𝑊𝑖

terms) of the coprime factors
[

𝐌
𝐍

]

. In some way, (29) mimics an asymptotically mean square stable control system since an open-loop

system with coefficients (�̄�,𝑁𝑖) is asymptotically mean square stable due to Theorem 3.1. However, 𝑣 depends on the solution itself
besides depending on 𝑢. On the other hand, �̄� represents and input–output pair rather than an output. If 𝑁𝑖 = 0, 𝑣 and (29) are called
driving-variable and driving-variable system, respectively. The relation between such driving-variable and input–output systems are
nicely described in [37].

We investigate a particular input–output pair of the reduced system fixing control 𝑢𝑟(𝑡) = 𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑡) + 𝐵⊤𝑄𝑥(𝑡) + 𝑢(𝑡) (𝛴𝑟 =
diag(𝜎1,… , 𝜎𝑟)), since this allows to rewrite the reduced model as

𝑑𝑥𝑟(𝑡) =[�̄�𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑣(𝑡)]𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖,𝑟𝑥𝑟(𝑡)𝑑𝑊𝑖(𝑡),

�̄�𝑟(𝑡) ∶=
[

𝑢𝑟(𝑡)
𝑦𝑟(𝑡)

]

= �̄�𝑟𝑥𝑟(𝑡) +
[

𝑣(𝑡)
0

]

, 𝑡 ≥ 0,

(30)

setting �̄�𝑟 = 𝐴𝑟 − 𝐵𝑟𝐵⊤𝑟 𝛴𝑟 and �̄�𝑟 =
[

−𝐵⊤𝑟 𝛴𝑟
𝐶𝑟

]

. Again, (30) can be interpreted as generalized driving variable system or system

realization of the reduced coprime factorization. The following theorem establishes an error between the original pair
[

𝑢
𝑦

]

and the

chosen reduced pair
[

𝑢𝑟
]

. The result relies on 𝐿2
𝑇 -error estimates between (29) and (30).
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Theorem 5.1. Let 𝑢𝑟(𝑡) = −𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑡)+𝐵
⊤𝑄𝑥(𝑡)+𝑢(𝑡) and 𝑦𝑟 the reduced order output associated to this input. Given 𝑥0 = 0 and 𝑥0,𝑟 = 0,

e have

‖

‖

‖

‖

‖

[

𝑢 − 𝑢𝑟
𝑦 − 𝑦𝑟

]

‖

‖

‖

‖

‖𝐿2
𝑇

≤ 2
𝑛
∑

𝑘=𝑟+1

𝜎𝑘
√

1 + 𝜎2𝑘

(

‖

‖

‖

‖

‖

[

𝑢
𝑦

]

‖

‖

‖

‖

‖

2

𝐿2
𝑇

+ E
[

𝑥(𝑇 )⊤𝑄𝑥(𝑇 )
]

)
1
2

. (31)

f it, furthermore, holds that the input and the state are square integrable on 𝛺 × [0,∞), i.e., 𝑢, 𝑥 ∈ 𝐿2, then we have
‖

‖

‖

‖

‖

[

𝑢 − 𝑢𝑟
𝑦 − 𝑦𝑟

]

‖

‖

‖

‖

‖𝐿2
≤ 2

𝑛
∑

𝑘=𝑟+1

𝜎𝑘
√

1 + 𝜎2𝑘

‖

‖

‖

‖

‖

[

𝑢
𝑦

]

‖

‖

‖

‖

‖𝐿2
. (32)

roof. We improve the readability of this paper by moving the proof to Appendix B. □

As a consequence of Theorem 5.1, we observe that the singular values 𝜎𝑘 deliver a good a-priori criterion for the choice of 𝑟
ecause removing only small singular values leads to a small bound for the error between the original and the reduced input–output
air. However, this argument is only valid if the (finite time) cost functional and, in case of (31), the terminal value 𝑥(𝑇 ) is not too
arge. The result in (32) is a gap-metric type estimate in the sense of (27). We formulate a special case of Theorem 5.1 for 𝑢 being

a stabilizing feedback control.

Corollary 5.2. Let 𝑢(𝑡) = −𝐵⊤𝑄𝑥(𝑡) + 𝑢(1)(𝑡) and 𝑢𝑟(𝑡) = −𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑡) + 𝑢
(1)(𝑡) with 𝑢(1) ∈ 𝐿2

𝑇 . Given 𝑥0 = 0 and 𝑥0,𝑟 = 0, we have
‖

‖

‖

‖

‖

[

𝑢 − 𝑢𝑟
𝑦 − 𝑦𝑟

]

‖

‖

‖

‖

‖𝐿2
𝑇

≤ 2
𝑛
∑

𝑘=𝑟+1

𝜎𝑘
√

1 + 𝜎2𝑘

‖

‖

‖

𝑢(1)‖‖
‖𝐿2

𝑇
.

roof. By (11), we have
‖

‖

‖

‖

‖

[

𝑢
𝑦

]

‖

‖

‖

‖

‖

2

𝐿2
𝑇

+E
[

𝑥(𝑇 )⊤𝑄𝑥(𝑇 )
]

= ‖

‖

𝐵⊤𝑄𝑥 + 𝑢‖
‖

2
𝐿2
𝑇
= ‖

‖

‖

𝑢(1)‖‖
‖

2

𝐿2
𝑇
. For that reason, this result is a direct consequence

of Theorem 5.1. □

Corollary 5.2 tells that the stabilizing feedback control 𝑢 = −𝐵⊤𝑄𝑥+𝑢(1) and its output can be well-approximated by the reduced
feedback 𝑢𝑟 = −𝐵⊤𝑟 𝛴𝑟𝑥𝑟 + 𝑢

(1) and the associated output in case the truncated singular values are small.
We draw our attention back to open-loop controls and discuss the benefit of Theorem 5.1 in this context since this might not

be obvious seeing that 𝑢𝑟 depends on the original state 𝑥. Therefore, it seems that we did not gain much from the practical point
f view although we found a good candidate for an approximating input–output pair. However, there is a fundamental difference
etween stochastic and deterministic settings since in the context of stochastic differential equations, there are many problems that
annot be solved in moderate high dimensions 𝑛 even though one is willing to simulate the original system (1). To be more precise,
ne often needs to compute conditional expectations of the form

𝑔(𝑥) ∶= E[𝑓 (𝑦(𝑡))|𝑥(𝑠) = 𝑥], 𝑥 ∈ R𝑛, 𝑠 < 𝑡,

which is the expectation of some quantity of interest 𝑓 (𝑦) at time 𝑡 given that the state at time 𝑠 is 𝑥. Such objects occur in
stochastic optimal stopping problems, e.g., in the context of pricing (Bermudan) options in finance. In order to find an approximation
𝑔(⋅) ≈

∑𝐾
𝑘=1 𝛽𝑘𝜓𝑘(⋅) of the unknown function 𝑔, where 𝜓1,… , 𝜓𝐾 is some suitable (polynomial) basis, we have to solve the least

quares problem

𝛽 ∶= arg min
𝛽∈R𝐾

𝑀
∑

𝑖=1

|

|

|

|

|

|

𝑓 (𝑦(𝑡)𝑖) −
𝐾
∑

𝑘=1
𝛽𝑘𝜓𝑘(𝑥(𝑠)𝑖)

|

|

|

|

|

|

2

, (33)

where 𝑦(𝑡)𝑖 and 𝑥(𝑠)𝑖 i.i.d. samples of the random variables 𝑦(𝑡) and 𝑥(𝑠), respectively. Notice that (33) is the discretized version by
Monte Carlo of the original continuous problem min𝛽∈R𝐾 E |

|

|

𝑓 (𝑦(𝑡)) −
∑𝐾
𝑘=1 𝛽𝑘𝜓𝑘(𝑥(𝑠))

|

|

|

2
. Now, solving the regression problem in (33)

equires a huge computational effort already in moderate high dimensions since regression suffers from the curse of dimensionality.
his often makes this procedure infeasible for dimensions 𝑛 ≥ 10. Therefore, a possible strategy can be to simulate the original
ystem (1) in order to determine the reduced order input 𝑢𝑟 defined in Theorem 5.1 that gives a good approximation 𝑦𝑟 of 𝑦. If 𝑟 is
ufficiently small, one can then solve (33) in the reduced system, in which the impact of the curse of dimensionality is drastically
ecreased. This leads to a good estimate 𝑔𝑟 (defined on R𝑟) of the original 𝑔.

We finally investigate the scenario, in which we do not intent to simulate the original system (1) but an open-loop control 𝑢 is
used. Fortunately, Theorem 5.1 also provides a bound for the distance between 𝑢𝑟 (defined within this theorem) and the original
input 𝑢. For that reason, we know that 𝑢 and 𝑢𝑟 must be close if the truncated singular values of the system are small. Subsequently,
we can use that the (reduced) output is Lipschitz continuous in the control term. This is proved in the following lemma.

Lemma 5.3. Given the reduced order model (16) with 𝑥0,𝑟 = 0, then there exists a constant 𝛾𝑇 > 0 such that

‖

‖

𝑦𝑟(⋅, 0, 𝑢𝑟)‖‖𝐿2
𝑇
≤ 𝛾𝑇 ‖

‖

𝑢𝑟‖‖𝐿2
𝑇

(34)

2
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for all 𝑢𝑟 ∈ 𝐿𝑇 .
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I

Proof. We use Eq. (4) associated to the balanced realization with diagonal solution 𝛴𝑛. We can now exploit the partition in (15)
and evaluate the left upper block of the balanced version of the matrix Eq. (4). This yields the following inequality

𝐴⊤𝑟 𝛴𝑟 + 𝛴𝑟𝐴𝑟 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖,𝑟𝛴𝑟𝑁𝑗,𝑟𝑘𝑖𝑗 + 𝐶⊤𝑟 𝐶𝑟 − 𝛴𝑟𝐵𝑟𝐵

⊤
𝑟 𝛴𝑟 ≤ 0, (35)

where 𝛴𝑟 = diag(𝜎1,… , 𝜎𝑟) contains the first 𝑟 singular values of the system. Applying (38) to the reduced system with initial state
ero and setting 𝑋 = 𝛴𝑟, we obtain

E
[

𝑥𝑟(𝑡)⊤𝛴𝑟𝑥𝑟(𝑡)
]

=∫

𝑡

0
E

[

𝑥𝑟(𝑠)⊤
(

𝐴⊤𝑟 𝛴𝑟 + 𝛴𝑟𝐴𝑟 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖,𝑟𝛴𝑟𝑁𝑗,𝑟𝑘𝑖𝑗

)

𝑥𝑟(𝑠)

]

𝑑𝑠

+ 2∫

𝑡

0
E
⟨

𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑠), 𝑢𝑟(𝑠)
⟩

2 𝑑𝑠. (36)

With 2
⟨

𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑠), 𝑢𝑟(𝑠)
⟩

2 ≤ ‖

‖

𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑠)‖‖
2
2 + ‖

‖

𝑢𝑟(𝑠)‖‖
2
2 and (35), identity (36) becomes

E
[

𝑥𝑟(𝑡)⊤𝛴𝑟𝑥𝑟(𝑡)
]

≤ ‖

‖

𝑢𝑟‖‖
2
𝐿2
𝑡
− ‖

‖

𝑦𝑟‖‖
2
𝐿2
𝑡
+ 2∫

𝑡

0
E ‖

‖

‖

𝐵⊤𝑟 𝛴𝑟𝑥𝑟(𝑠)
‖

‖

‖

2

2
𝑑𝑠

≤ ‖

‖

𝑢𝑟‖‖
2
𝐿2
𝑡
− ‖

‖

𝑦𝑟‖‖
2
𝐿2
𝑡
+ 2𝑏𝑟 ∫

𝑡

0
E
[

𝑥𝑟(𝑠)⊤𝛴𝑟𝑥𝑟(𝑠)
]

𝑑𝑠,

where 𝑏𝑟 ∶=
‖

‖

‖

‖

‖

𝐵⊤𝑟 𝛴
1
2
𝑟

‖

‖

‖

‖

‖

2

2
. Gronwall’s Lemma A.1 for 𝑡 = 𝑇 leads to

E
[

𝑥𝑟(𝑇 )⊤𝛴𝑟𝑥𝑟(𝑇 )
]

≤ ‖

‖

𝑢𝑟‖‖
2
𝐿2
𝑇
− ‖

‖

𝑦𝑟‖‖
2
𝐿2
𝑇
+ ∫

𝑇

0
(‖
‖

𝑢𝑟‖‖
2
𝐿2
𝑠
− ‖

‖

𝑦𝑟‖‖
2
𝐿2
𝑠
)2𝑏𝑟 e2𝑏𝑟(𝑇−𝑠) 𝑑𝑠

= ∫

𝑇

0
(‖
‖

𝑢𝑟(𝑠)‖‖
2
2 − ‖

‖

𝑦𝑟(𝑠)‖‖
2
2) e

2𝑏𝑟(𝑇−𝑠) 𝑑𝑠

using integration by parts in the last step. Therefore, we have

‖

‖

𝑦𝑟‖‖
2
𝐿2
𝑇
≤ ∫

𝑇

0
‖

‖

𝑦𝑟(𝑠)‖‖
2
2 e

2𝑏𝑟(𝑇−𝑠) 𝑑𝑠 ≤ ∫

𝑇

0
‖

‖

𝑢𝑟(𝑠)‖‖
2
2 e

2𝑏𝑟(𝑇−𝑠) 𝑑𝑠 ≤ e2𝑏𝑟𝑇 ‖

‖

𝑢𝑟‖‖
2
𝐿2
𝑇
.

This concludes the proof. □

By the linearity of 𝑦𝑟 in 𝑢𝑟, (34) means that controls being close to each other lead to similar outputs. Therefore, only a slight

deviation between 𝑦𝑟(⋅, 0, 𝑢𝑟) and 𝑦𝑟(⋅, 0, 𝑢) is expected. The smallest constant in (34) is 𝛾𝑇 = sup𝑢𝑟∈𝐿2
𝑇 ⧵{0}

‖𝑦𝑟(⋅,0,𝑢𝑟)‖𝐿2𝑇
‖𝑢𝑟‖𝐿2𝑇

. If there is a

Lipschitz constant independent of 𝑇 , we can consider 𝛾𝑇 = 𝛾 = sup𝑢𝑟∈𝐿2⧵{0}
‖𝑦𝑟(⋅,0,𝑢𝑟)‖𝐿2

‖𝑢𝑟‖𝐿2
in (34) which is the norm of the input–output

operator on the entire positive real line. This holds, e.g., if (16) is asymptotically stable [20]. We can now formulate the result when
𝑢𝑟 = 𝑢 is chosen in Theorem 5.1.

Corollary 5.4. Let 𝑥0 = 0, 𝑥0,𝑟 = 0, 𝑢 ∈ 𝐿2
𝑇 and 𝑦𝑟 = 𝑦𝑟(⋅, 0, 𝑢). If 𝛾𝑇 > 0 is a constant satisfying (34), we have

‖

‖

𝑦 − 𝑦𝑟‖‖𝐿2
𝑇
≤ 2(1 + 𝛾𝑇 )

𝑛
∑

𝑘=𝑟+1

𝜎𝑘
√

1 + 𝜎2𝑘

(

‖

‖

‖

‖

‖

[

𝑢
𝑦

]

‖

‖

‖

‖

‖

2

𝐿2
𝑇

+ E
[

𝑥(𝑇 )⊤𝑄𝑥(𝑇 )
]

)
1
2

.

f additionally holds that 𝑢, 𝑥 ∈ 𝐿2, then we have

‖

‖

𝑦 − 𝑦𝑟‖‖𝐿2
𝑇
≤ 2(1 + 𝛾𝑇 )

𝑛
∑

𝑘=𝑟+1

𝜎𝑘
√

1 + 𝜎2𝑘

‖

‖

‖

‖

‖

[

𝑢
𝑦

]

‖

‖

‖

‖

‖𝐿2
.

Proof. It holds that
‖

‖

𝑦(⋅, 0, 𝑢) − 𝑦𝑟(⋅, 0, 𝑢)‖‖𝐿2
𝑇
≤ ‖

‖

𝑦(⋅, 0, 𝑢) − 𝑦𝑟(⋅, 0, 𝑢𝑟)‖‖𝐿2
𝑇
+ ‖

‖

𝑦𝑟(⋅, 0, 𝑢𝑟) − 𝑦𝑟(⋅, 0, 𝑢)‖‖𝐿2
𝑇

≤ ‖

‖

𝑦(⋅, 0, 𝑢) − 𝑦𝑟(⋅, 0, 𝑢𝑟)‖‖𝐿2
𝑇
+ 𝛾𝑇 ‖

‖

𝑢𝑟 − 𝑢‖‖𝐿2
𝑇
, (37)

where 𝑢𝑟 is defined as in Theorem 5.1. Applying (31) to both terms in (37) yields the first estimate. If 𝑢, 𝑥 ∈ 𝐿2 holds, we can use
(32) instead and obtain the second inequality. This concludes the proof. □

According to Theorem 5.1 the singular values of (1) can be used a-priori to find a suitable dimension 𝑟 of an accurate reduced
system (16) using a control that is possibly not available. Corollary 5.4 now additionally tells us that this unavailable control can be
replaced by the original system control if the norm of the input–output operator is not too large. Computing this norm 𝛾𝑇 is feasible
in small dimensions 𝑟 without causing large computation cost. Hence, 𝛾𝑇 provides an a-posteriori criterion for a good approximation
14544

of 𝑦(⋅, 0, 𝑢) by 𝑦𝑟(⋅, 0, 𝑢). We finally provide a bound that neither contains the state 𝑥 nor the output 𝑦 of the original system.
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Theorem 5.5. Let 𝑦 = 𝑦(⋅, 0, 𝑢) and 𝑦𝑟 = 𝑦𝑟(⋅, 0, 𝑢) and 𝑢 ∈ 𝐿2
𝑇 . Then,

(

E∫

𝑇

0
e−𝛽𝑡 ‖

‖

𝑦(𝑡) − 𝑦𝑟(𝑡)‖‖
2
2 𝑑𝑡

)

1
2
≤ 2

𝑛
∑

𝑘=𝑟+1
𝜎𝑘

(

E∫

𝑇

0
e−𝛽𝑡 ‖𝑢(𝑡)‖22 𝑑𝑡

)

1
2
,

where 𝛽 = max{
‖

‖

‖

‖

𝐵⊤𝑄
1
2
‖

‖

‖

‖

2

2
,
‖

‖

‖

‖

𝐶𝑃
1
2
‖

‖

‖

‖

2

2
}.

Proof. We present the proof in Appendix C. □

The bound of Theorem 5.5 is practically computable since it does not involve variables of the original system (1). However,
a high accuracy cannot be expected since it is a worst-case bound (based on Gronwall’s lemma) that also captures systems with
exponentially growing states that might not be approximated well with the underlying dimension reduction scheme. Therefore, the
result of Theorem 5.5 can also be read as a warning that LQG balancing is not working well for all types of unstable open-loop
systems (satisfying our assumptions) even though the truncated singular values are small.

6. Numerical examples

For 𝑡 ∈ [0, 𝑇 ], we consider the following 2D stochastic heat equation with Neumann boundary conditions and scalar noise (𝑞 = 1):
𝜕𝑋(𝑡, 𝜁)
𝜕𝑡

= 𝛼𝛥𝑋(𝑡, 𝜁) + 𝑓 (𝜁 )𝑢(𝑡) + 𝜈𝑔(𝜁 )𝑋(𝑡, 𝜁)
𝜕𝑊 (𝑡)
𝜕𝑡

, 𝜁 ∈ [0, 𝜋]2,

𝜕𝑋(𝑡, 𝜁)
𝜕𝐧

= 0, 𝜁 ∈ 𝜕[0, 𝜋]2, 𝑋(0, 𝜁) ≡ 0,

here 𝛼, 𝜈 > 0 and 𝑓, 𝑔 are bounded functions on [0, 𝜋]2. We set 𝛼 = 0.2, 𝜈 = 2, 𝑓 (𝜁 ) = 1[ 𝜋4 ,
3𝜋
4 ]2 (𝜁 ), 𝑔(𝜁 ) = e−

|

|

|

𝜁1−
𝜋
2
|

|

|

−𝜁2 and
= 𝐿2([0, 𝜋]2) to be the solution space for the mild solution of the stochastic partial differential equation (SPDE). In this context,

et ⟨⋅, ⋅⟩𝐻 denote the inner product in 𝐻 and ‖⋅‖𝐻 the corresponding norm. The output is the mean temperature on the uncontrolled
rea,

𝑌 (𝑡) = C𝑋(𝑡, 𝜁) ∶= 4
3𝜋2 ∫[0,𝜋]2⧵[ 𝜋4 ,

3𝜋
4 ]2

𝑋(𝑡, 𝜁)𝑑𝜁.

We discretize this SPDE by a spectral Galerkin method according to [9]. The eigenvalues of the Neumann Laplacian on [0, 𝜋]2 are
given by 𝜆𝑖𝑗 = −(𝑖2+𝑗2) and the corresponding eigenvectors representing an ONB of 𝐻 are ℎ𝑖𝑗 =

𝑓𝑖𝑗
‖

‖

‖

𝑓𝑖𝑗
‖

‖

‖𝐻

, where 𝑓𝑖𝑗 = cos(𝑖⋅) cos(𝑗⋅). We

order these eigenvalues and write 𝜆𝑘 and ℎ𝑘 for the 𝑘th largest eigenvalue and the associated eigenvector, respectively. We obtain
a system of the form (1) with matrices 𝐶⊤ =

(

Cℎ𝑘
)

𝑘=1,…,𝑛, 𝐴 = 𝛼 diag(𝜆1, 𝜆2,…) = 𝛼 diag(0,−1,…), 𝑁1 = 𝜈
(

⟨𝑔ℎ𝑖, ℎ𝑘⟩𝐻
)

𝑘,𝑖=1,…,𝑛,
𝐵 =

(

⟨𝑓, ℎ𝑘⟩𝐻
)

𝑘=1,…,𝑛. We observe that this spatial discretization is unstable but the requirements for applying LQG balancing are
fulfilled.

Gramians 𝑄 and 𝑃 according to their definitions in Theorem 3.1 and in (5) can now be computed. For 𝑄 we have used a fixed
point iteration with 𝑄0 = 𝐼 and 𝑄𝑘+1 being the stabilizing solution of the Riccati equation

L𝐴(𝑄𝑘+1) +𝛱𝑁 (𝑄𝑘) + 𝐶⊤𝐶 −𝑄𝑘+1𝐵𝐵⊤𝑄𝑘+1 = 0.

This converges quite fast to the Gramian 𝑄, e.g., [28, Sec. 5.4.3]. The Gramian 𝑃 is computationally more involved. By our error
analysis in Section 5, it is natural to seek for a 𝑃 with a large number of small eigenvalues, so that we aim to find the Gramian with
minimal trace subject to (5). However, we do not have a linear matrix inequality (LMI) formulation for 𝑃 but rather for its inverse.
Therefore, we have rewritten (5) as the LMI

[

𝐴⊤𝑃−1 + 𝑃−1𝐴 +𝑁⊤
1 𝑃

−1𝑁1 − 𝐶⊤𝐶 𝑃−1𝐵
𝐵⊤𝑃−1 −𝐼

]

≤ 0 , 𝑃−1 ≥ 0

and maximized the trace of 𝑃−1 using the solver Mosek [38] with the Matlab package Yalmip [39]. However, this might not ensure
the same approximation quality as when being able to solve for 𝑃 directly. For the computation of 𝑃−1 in dimension 𝑛 = 100, it
took about 5 to 6 min, where the empirical complexity is about 𝑛6. Therefore, we did not consider larger systems.

For 𝑛 = 100, we choose the reduced order 𝑟 = 10. The decay of the singular values 𝜎𝑗 is shown in Fig. 1. As pointed out in
Section 5, the truncated singular values determine the error of LQG balanced truncation. We observe that 𝑟 = 10 provides very
small 𝜎𝑟+1,… , 𝜎𝑛 relative to 𝜎1. We combine (1) and (16) (𝑢𝑟 = 𝑢) with zero initial states and define 𝜉 =

[ 𝑥
𝑥𝑟
]

leading the open-loop
error system

𝑑𝜉 =
([

𝐴 0
0 𝐴𝑟

]

𝜉 +
[ 𝐵
𝐵𝑟

]

𝑢
)

𝑑𝑡 +
[

𝑁1 0
0 𝑁1,𝑟

]

𝜉 𝑑𝑊 , 𝑦𝜉 = [ 𝐶 −𝐶𝑟 ] 𝜉,

where 𝑦𝜉 = 𝑦 − 𝑦𝑟. Secondly, we introduce a closed-loop version by

𝑑𝜉 =
([

𝐴−𝐵𝐵⊤𝑄 0
]

𝜉 +
[ 𝐵 ]

𝑢
)

𝑑𝑡 +
[

𝑁1 0
]

𝜉 𝑑𝑊 , 𝑦 = [ 𝐶 −𝐶 ] 𝜉,
14545

0 𝐴𝑟−𝐵𝑟𝐵⊤𝑟 𝛴𝑟 𝐵𝑟 0 𝑁1,𝑟 𝜉 𝑟
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Fig. 1. Decay singular values of discretized heat equation for 𝑛 = 100.

Fig. 2. Open-loop and closed-loop error systems driven by 𝐿2-input 𝑢.

Fig. 3. No control vs. reduced controller in (1) with random initial state. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

i.e., a stabilizing feedback control is used. We have computed 𝑡 ↦
√

E |

|

|

𝑦𝜉 (𝑡)
|

|

|

2
(blue graphs) and five trajectories 𝑡 ↦ |

|

|

𝑦𝜉 (𝑡, 𝜔)
|

|

|

(red
otted graphs) in Fig. 2. Notice that the open-loop case is depicted left and the closed-loop scenario is given in the right picture. In
oth cases, we have used zero initial states and the 𝐿2-input 𝑢 = cos(5𝑡)

𝑡+1 . The mean square error in blue has been computed from a
deterministic Lyapunov type ordinary differential equation and the five sample output paths from a drift implicit Euler–Maruyama
method.

We can see that the error is small in both cases, but by stability it decays only in the closed-loop case. Furthermore, we observed
in this example that the reduced feedback controller also stabilizes the full system. To visualize this effect, we have computed
𝑡↦

√

E |𝑦(𝑡)|2 (blue graphs) for system (1) with 𝑢 ≡ 0 (Fig. 3 left), 𝑢(𝑡) = 𝐵⊤𝑟 𝛴𝑟𝑆
⊤
𝑏,𝑟𝑥(𝑡) (Fig. 3 right) and a randomly generated initial

state 𝑥0, where 𝑆⊤𝑏,𝑟 are the first 𝑟 rows of the balancing transformation 𝑆𝑏 in Section 4. As mean square stability is stronger than
path-wise stability in the linear case, we see the same effect for the trajectories 𝑡 ↦ 𝑦(𝑡, 𝜔) (red dotted graphs) in Fig. 3.
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7. Conclusions

In this paper, we considered dimension reduction techniques for large-scale stochastic systems. Such schemes are vital in both
ontrol and probabilistic settings as many system evaluations are required. In this context, one can think of aiming to investigate
tatistical properties by sampling methods or the optimal control of spatially discretized stochastic partial differential equations.
hese fit into our framework, in which we have studied potentially unstable stochastic differential equations. They occur, for instance

f the driving noise is large. Therefore, we have made an essential contribution since many existing model reduction schemes require
ertain stability conditions. We have introduced a pair of Gramians that are designed in order to characterize dominant subspaces
f the underlying stochastic system. In particular, unnecessary direction in closed-loop dynamics have been identified by these
ramians but we have also pointed out their relevance for open-loop controls. These considerations led to a reduced order model

hat captures many important features of the original one. We proved that, e.g., stabilizability and detectability are preserved. Our
imension reduction procedure further allowed for a detailed error analysis. Based on the error estimates provided in this work,
lgebraic a-priori criteria for the approximation quality have been found. These error bounds therefore give a clear guidance on how
o fix the reduced order dimension. The effectiveness of our method has been demonstrated by applying it to an unstable stochastic
eat equation. This means that an infinite dimensional state dynamics could be approximated by a low-order stochastic system.
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Appendix A. Supporting lemmas

Lemma A.1 (Gronwall Lemma). Given 𝑇 > 0 let 𝑧, 𝛼 ∶ [0, 𝑇 ] → R and 𝛽 ∶ [0, 𝑇 ] → [0,∞) be continuous functions. If

𝑧(𝑡) ≤ 𝛼(𝑡) + ∫

𝑡

0
𝛽(𝑠)𝑧(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ],

then for all 𝑡 ∈ [0, 𝑇 ], it holds that

𝑧(𝑡) ≤ 𝛼(𝑡) + ∫

𝑡

0
𝛼(𝑠)𝛽(𝑠) exp

(

∫

𝑡

𝑠
𝛽(𝑤)𝑑𝑤

)

𝑑𝑠.

Proof. The result can be shown following the steps in [40, Proposition 2.1]. □

Lemma A.2. Let 𝑎, 𝑏1,… , 𝑏𝑞 be R𝑑 -valued processes, where 𝑎 is
(

F𝑡
)

𝑡∈[0,𝑇 ]-adapted and almost surely Lebesgue integrable and the functions
𝑏𝑖 are integrable with respect to the mean zero Wiener process 𝑊 = (𝑊1,… ,𝑊𝑞)⊤ with covariance matrix 𝐾 =

(

𝑘𝑖𝑗
)

𝑖,𝑗=1,…,𝑞 . If the process
𝑥 is given by

𝑑𝑥(𝑡) = 𝑎(𝑡)𝑑𝑡 +
𝑣
∑

𝑖=1
𝑏𝑖(𝑡)𝑑𝑊𝑖, 𝑡 ∈ [0, 𝑇 ].

Then, we have

𝑑
𝑑𝑡

E
[

𝑥(𝑡)⊤𝑥(𝑡)
]

= 2E
[

𝑥(𝑡)⊤𝑎(𝑡)
]

+
𝑣
∑

𝑖,𝑗=1
E
[

𝑏𝑖(𝑡)⊤𝑏𝑗 (𝑡)
]

𝑘𝑖𝑗 .
14547

Proof. We refer to [41, Lemma 5.2] for a proof of this lemma. □
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Let 𝑥 now be the solution to (1a). As a direct consequence, we obtain the following identity:

E
[

𝑥(𝑡)⊤𝑋𝑥(𝑡)
]

= 𝑥⊤0𝑋𝑥0 + 2∫

𝑡

0
E
[

𝑥(𝑠)⊤𝑋 (𝐴𝑥(𝑠) + 𝐵𝑢(𝑠))
]

𝑑𝑠

+ ∫

𝑡

0

𝑞
∑

𝑖,𝑗=1
E
[

𝑥(𝑠)⊤𝑁⊤
𝑖 𝑋𝑁𝑗𝑥(𝑠)

]

𝑘𝑖𝑗𝑑𝑠

= 𝑥⊤0𝑋𝑥0 + ∫

𝑡

0
E

[

𝑥(𝑠)⊤
(

𝐴⊤𝑋 +𝑋𝐴 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝑋𝑁𝑗𝑘𝑖𝑗

)

𝑥(𝑠)

]

𝑑𝑠

+ 2∫

𝑡

0
E
⟨

𝐵⊤𝑋𝑥(𝑠), 𝑢(𝑠)
⟩

2 𝑑𝑠, (38)

where 𝑋 ≥ 0 is a semidefinite matrix.

Lemma A.3. Let 𝑊 be as in Lemma A.2 and 𝐴,𝑁𝑖 ∈ R𝑘×𝑘 be generic matrices. Suppose that 𝑏 is an R𝑘-valued and 𝑐0,… , 𝑐𝑞 are scalar
(

F𝑡
)

𝑡∈[0,𝑇 ]-adapted processes in 𝐿
2
𝑇 . If 𝑥 is given by

𝑑𝑥(𝑡) = [𝐴𝑥(𝑡) + 𝑏(𝑡) ±
[

0
𝑐0(𝑡)

]

]𝑑𝑡 +
𝑞
∑

𝑖=1
[𝑁𝑖𝑥(𝑡) ±

[

0
𝑐𝑖(𝑡)

]

]𝑑𝑊𝑖(𝑡), 𝑥(0) = 0. (39)

Then, for 𝑡 ∈ [0, 𝑇 ], we have

E
[

𝑥(𝑡)⊤𝐷𝑥(𝑡)
]

= E∫

𝑡

0
𝑥(𝑠)⊤

(

𝐴⊤𝐷 +𝐷𝐴⊤ +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝐷𝑁𝑗𝑘𝑖𝑗

)

𝑥(𝑠) + 2𝑥(𝑠)⊤𝐷𝑏(𝑠)𝑑𝑠

± 𝑑𝑘E∫

𝑡

0
2𝑥2(𝑠)𝑐0(𝑠) +

𝑞
∑

𝑖,𝑗=1

(

2𝑛𝑖𝑥(𝑠) ± 𝑐𝑖(𝑠)
)

𝑐𝑗 (𝑠)𝑘𝑖𝑗𝑑𝑠, (40)

where 𝐷 = diag(𝑑1,… , 𝑑𝑘) ≥ 0, 𝑛𝑖 is the last row of 𝑁𝑖 and 𝑥2 the last entry of 𝑥.

Proof. Applying Lemma A.2, we find

E
[

𝑥(𝑡)⊤𝐷𝑥(𝑡)
]

= 2∫

𝑡

0
E
[

𝑥(𝑠)⊤𝐷
(

𝐴𝑥(𝑠) + 𝑏(𝑠) ±
[

0
𝑐0(𝑠)

])]

𝑑𝑠

+ ∫

𝑡

0

𝑞
∑

𝑖,𝑗=1
E
[

(

𝑁𝑖𝑥(𝑠) ±
[

0
𝑐𝑖(𝑠)

])⊤
𝐷
(

𝑁𝑗𝑥(𝑠) ±
[

0
𝑐𝑗 (𝑠)

])

]

𝑘𝑖𝑗𝑑𝑠

= E∫

𝑡

0
𝑥(𝑠)⊤

(

𝐴⊤𝐷 +𝐷𝐴⊤ +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖 𝐷𝑁𝑗𝑘𝑖𝑗

)

𝑥(𝑠) + 2𝑥(𝑠)⊤𝐷𝑏(𝑠)𝑑𝑠

± E∫

𝑡

0
2𝑥(𝑠)⊤𝐷

[

0
𝑐0(𝑠)

]

+
𝑞
∑

𝑖,𝑗=1

(

2𝑁𝑖𝑥(𝑠) ±
[

0
𝑐𝑖(𝑠)

])⊤
𝐷
[

0
𝑐𝑗 (𝑠)

]

𝑘𝑖𝑗𝑑𝑠.

We observe that 𝑥(𝑠)⊤𝐷
[

0
𝑐0(𝑠)

]

= 𝑑𝑘𝑥2(𝑠)𝑐0(𝑠) and
(

2𝑁𝑖𝑥(𝑠) ±
[

0
𝑐𝑖(𝑠)

])⊤
𝐷
[

0
𝑐𝑗 (𝑠)

]

= 𝑑𝑘
(

2𝑛𝑖𝑥(𝑠) ± 𝑐𝑖(𝑠)
)

𝑐𝑗 (𝑠),

so that the result follows. □

Appendix B. Proof of Theorem 5.1

Proof of Theorem 5.1. Let (𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝑁𝑖,𝑛) be the balanced realization of (1) with state variable 𝑥𝑛. Let us further introduce 𝐴𝑘
and 𝑁𝑖,𝑘 as the left upper 𝑘×𝑘 blocks of 𝐴𝑛 and 𝑁𝑖,𝑛. Moreover, suppose that 𝐵𝑘 and 𝐶𝑘 are the first 𝑘 rows of 𝐵𝑛 and first 𝑘 columns
of 𝐶𝑛, 𝑘 = 𝑟,… , 𝑛 − 1. We define

𝑑𝑥𝑘(𝑡) = [�̄�𝑘𝑥𝑘(𝑡) + 𝐵𝑘𝑣(𝑡)]𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖,𝑘𝑥𝑘(𝑡)𝑑𝑊𝑖(𝑡),

�̄�𝑘(𝑡) = �̄�𝑘𝑥𝑘(𝑡) +
[

𝑣(𝑡)
0

]

, 𝑡 ≥ 0,

(41)

where �̄�𝑘 = 𝐴𝑘 − 𝐵𝑘𝐵⊤𝑘𝛴𝑘, �̄�𝑘 =
[

−𝐵⊤𝑘𝛴𝑘
𝐶𝑘

]

and 𝑘 = 𝑟,… , 𝑛. Clearly, 𝑘 = 𝑟 yields (30). On the other hand, 𝑘 = 𝑛 provides the
⊤ ⊤
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input–output parameterization of the balanced version of (1) which can be seen by exploiting 𝐵 𝑄𝑥(𝑡) = 𝐵𝑛 𝛴𝑛𝑥𝑛(𝑡). Consequently,
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𝑦

f
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f

̄𝑛 coincides with �̄� in (29). Therefore, we have
‖

‖

‖

‖

‖

[

𝑢 − 𝑢𝑟
𝑦 − 𝑦𝑟

]

‖

‖

‖

‖

‖𝐿2
𝑇

= ‖

‖

�̄� − �̄�𝑟‖‖𝐿2
𝑇
≤

𝑛
∑

𝑖=𝑟+1

‖

‖

�̄�𝑘 − �̄�𝑘−1‖‖𝐿2
𝑇
, (42)

or which we investigate every summand ‖

‖

�̄�𝑘 − �̄�𝑘−1‖‖𝐿2
𝑇

in the following. Exploiting the definitions of �̄�𝑛 and �̄�𝑛 the balanced version
f (4) becomes

�̄�⊤𝑘𝛴𝑘 + 𝛴𝑘�̄�𝑘 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖,𝑘𝛴𝑘𝑁𝑖,𝑘𝑘𝑖𝑗 + �̄�⊤𝑘 �̄�𝑘 ≤ 0 (43)

or 𝑘 = 𝑛 (here even the equality holds in (43)). The inequalities in (43) for 𝑘 = 𝑟,… , 𝑛− 1 follow by evaluating the 𝑘× 𝑘 left upper
lock of inequality with 𝑘 = 𝑛. We now define 𝐿𝑘 = 𝛴𝑘 +𝛴−1

𝑘 . Then, adding the balanced versions of both (in)equalities (4) and (5)
ields

�̄�⊤𝑘𝐿𝑘 + 𝐿𝑘�̄�𝑘 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖,𝑘𝐿𝑘𝑁𝑖,𝑘𝑘𝑖𝑗 + 𝐿𝑘𝐵𝑘𝐵⊤𝑘𝐿𝑘 ≤ 0 (44)

or 𝑘 = 𝑛. The evaluation of the left upper blocks then provides the results for 𝑘 = 𝑟,… , 𝑛 − 1. We partition

𝑥𝑘 =
[

𝑥𝑘,1
𝑥𝑘,2

]

, �̄�𝑘 =
[

�̄�𝑘−1 ⋆
𝑎21 ⋆

]

, 𝐵𝑘 =
[

𝐵𝑘−1
𝑏2

]

, 𝑁𝑖,𝑘 =
[

𝑁𝑖,𝑘−1 ⋆
𝑛𝑖,21 𝑛𝑖,22

]

. (45)

The variable 𝑥𝑘,2 is scalar and we omit the index 𝑘 in 𝑎21, 𝑛𝑖,21 ∈ R1×(𝑘−1), 𝑏2 ∈ R1×𝑚, 𝑛𝑖,22 ∈ R in order to simplify the notation. We
set

𝑥− =
[

𝑥𝑘,1 − 𝑥𝑘−1
𝑥𝑘,2

]

, 𝑥+ =
[

𝑥𝑘,1 + 𝑥𝑘−1
𝑥𝑘,2

]

(46)

and obtain from (41) that

𝑑𝑥−(𝑡) = [�̄�𝑘𝑥−(𝑡) +
[

0
𝑐0(𝑡)

]

]𝑑𝑡 +
𝑞
∑

𝑖=1
[𝑁𝑖,𝑘𝑥−(𝑡) +

[

0
𝑐𝑖(𝑡)

]

]𝑑𝑊𝑖(𝑡), (47a)

𝑑𝑥+(𝑡) = [�̄�𝑘𝑥+(𝑡) + 2𝐵𝑘𝑣(𝑡) −
[

0
𝑐0(𝑡)

]

]𝑑𝑡 +
𝑞
∑

𝑖=1
[𝑁𝑖,𝑘𝑥+(𝑡) −

[

0
𝑐𝑖(𝑡)

]

]𝑑𝑊𝑖(𝑡), (47b)

where 𝑐0(𝑡) ∶= 𝑎21𝑥𝑘−1(𝑡) + 𝑏2𝑣(𝑡) and 𝑐𝑖(𝑡) ∶= 𝑛𝑖,21𝑥𝑘−1(𝑡). We apply Lemma A.3 to (47a) with 𝑏(𝑡) = 0 and 𝐷 = 𝛴𝑘. Moreover, we
immediately insert (43) into the result of this lemma resulting in

E
[

𝑥−(𝑇 )⊤𝛴𝑘𝑥−(𝑇 )
]

≤ −E∫

𝑇

0
𝑥−(𝑡)⊤�̄�⊤𝑘 �̄�𝑘𝑥−(𝑡)𝑑𝑡 (48)

+ 𝜎𝑘E∫

𝑇

0
2𝑥𝑘,2(𝑡)𝑐0(𝑡) +

𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥−(𝑡) + 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡)𝑘𝑖𝑗𝑑𝑡.

Using the definitions of 𝑐𝑖 and 𝑥−, we find an upper bound by replacing 𝑥− by 𝑥𝑘 in the last term, i.e.,
𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥−(𝑡) + 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡)𝑘𝑖𝑗 ≤
𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥𝑘(𝑡) + 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡)𝑘𝑖𝑗 (49)

exploiting that ∑𝑞
𝑖,𝑗=1 𝑐𝑖(𝑡)𝑐𝑗 (𝑡)𝑘𝑖𝑗 ≥ 0 because 𝐾 = (𝑘𝑖𝑗 ) is positive semidefinite. Secondly, we see that �̄�𝑘𝑥− = �̄�𝑘𝑥𝑘 − �̄�𝑘−1𝑥𝑘−1 =

�̄�𝑘 − �̄�𝑘−1 since �̄�𝑘 =
[

�̄�𝑘−1 ⋆
]

. Now, inserting these estimates into (48) implies

‖

‖

�̄�𝑘 − �̄�𝑘−1‖‖
2
𝐿2
𝑇
≤ 𝜎𝑘E∫

𝑇

0
2𝑥𝑘,2(𝑡)𝑐0(𝑡) +

𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥𝑘(𝑡) + 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡)𝑘𝑖𝑗𝑑𝑡. (50)

We apply Lemma A.3 to (47b) with 𝑏(𝑡) = 2𝐵𝑣(𝑡), 𝐷 = 𝐿𝑘 and directly make use of (44) providing

E
[

𝑥+(𝑇 )⊤𝐿𝑘𝑥+(𝑇 )
]

≤ E∫

𝑇

0
−𝑥+(𝑡)⊤𝐿𝑘𝐵𝑘𝐵⊤𝑘𝐿𝑘𝑥+(𝑡) + 4𝑥+(𝑡)⊤𝐿𝑘𝐵𝑘𝑣(𝑡)𝑑𝑡

− (𝜎𝑘 + 𝜎−1𝑘 )E∫

𝑇

0
2𝑥𝑘,2(𝑡)𝑐0(𝑡) +

𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥+(𝑡) − 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡)𝑘𝑖𝑗𝑑𝑡. (51)

We observe that
(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥+(𝑡) − 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡) =
(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥𝑘(𝑡) + 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡) (52)

based on the definitions of 𝑐𝑖 and 𝑥+ and furthermore find

4 𝑣(𝑡) 2 ≥ 2𝑣(𝑡) 2 − ‖𝐵⊤𝐿 𝑥 (𝑡) − 2𝑣(𝑡)‖
2

(53)
14549
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= −𝑥+(𝑡)⊤𝐿𝑘𝐵𝑘𝐵⊤𝑘𝐿𝑘𝑥+(𝑡) + 4𝑥+(𝑡)⊤𝐿𝑘𝐵𝑘𝑣(𝑡).

Combining (51) with (52) and (53) leads to

E∫

𝑇

0
2𝑥𝑘,2(𝑡)𝑐0(𝑡) +

𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21𝑛𝑖,22 ] 𝑥𝑘(𝑡) + 𝑐𝑖(𝑡)
)

𝑐𝑗 (𝑡)𝑘𝑖𝑗𝑑𝑡 ≤
4

𝜎𝑘 + 𝜎−1𝑘
‖𝑣‖2

𝐿2
𝑇
.

his together with (50) gives us

‖

‖

�̄�𝑘 − �̄�𝑘−1‖‖
2
𝐿2
𝑇
≤ 4

𝜎𝑘
𝜎𝑘 + 𝜎−1𝑘

‖𝑣‖2
𝐿2
𝑇
= 4

𝜎2𝑘
𝜎2𝑘 + 1

‖𝑣‖2
𝐿2
𝑇
.

Inserting this into (42), it follows that
‖

‖

‖

‖

‖

[

𝑢 − 𝑢𝑟
𝑦 − 𝑦𝑟

]

‖

‖

‖

‖

‖𝐿2
𝑇

≤ 2
∑𝑛
𝑘=𝑟+1

𝜎𝑘
√

𝜎2𝑘+1
‖𝑣‖𝐿2

𝑇
. It remains to calculate ‖𝑣‖𝐿2

𝑇
with 𝑣(𝑡) = 𝐵⊤𝑄𝑥(𝑡)+𝑢(𝑡).

ased on (11), we obtain

E
[

𝑥(𝑇 )⊤𝑄𝑥(𝑇 )
]

= ∫

𝑇

0
E
[

− ‖𝑦(𝑡)‖22 − ‖𝑢(𝑡)‖22 +
‖

‖

‖

𝐵⊤𝑄𝑥(𝑡) + 𝑢(𝑡)‖‖
‖

2

2

]

𝑑𝑡,

hich provides the first claim of this theorem. If 𝑢, 𝑥 ∈ 𝐿2, then the limit as 𝑇 → ∞ of the above right hand side exists. Therefore,
im𝑇→∞ E

[

𝑥(𝑇 )⊤𝑄𝑥(𝑇 )
]

exists. Hence it is zero, otherwise it contradicts 𝑥 ∈ 𝐿2. Now, taking the limit as 𝑇 → ∞ in (31) yields the
econd claim. □

ppendix C. Proof of Theorem 5.5

roof of Theorem 5.5. Showing this result is more complex than the proof given in Appendix B. However, some basic steps are
dentical such that a similar notation will be used below. As before, let (𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝑁𝑖,𝑛) be the balanced realization of (1), i.e., the
ssociated Gramians are identical and equal to 𝛴𝑛. Again, 𝐴𝑘, 𝐵𝑘, 𝐶𝑘, 𝑁𝑖,𝑘 for 𝑘 = 𝑟,… , 𝑛 − 1 are the respective submatrices of the
alanced realization. They define the reduced system of dimension 𝑘 given by

𝑑𝑥𝑘(𝑡) = [𝐴𝑘𝑥𝑘(𝑡) + 𝐵𝑘𝑢(𝑡)]𝑑𝑡 +
𝑞
∑

𝑖=1
𝑁𝑖,𝑘𝑥𝑘(𝑡)𝑑𝑊𝑖(𝑡),

𝑦𝑘(𝑡) = 𝐶𝑘𝑥𝑘(𝑡), 𝑡 ≥ 0.

(54)

etting 𝑘 = 𝑟 now yields the reduced system (16) with 𝑢𝑟 = 𝑢. Given that 𝑘 = 𝑛, we obtain the balanced realization of (1) and hence
𝑛 = 𝑦. The inequality of Theorem 5.5 involves a scaled 𝐿2-norm for which we can apply triangle inequality leading to

(

E∫

𝑇

0
e−𝛽𝑡 ‖

‖

𝑦(𝑡) − 𝑦𝑟(𝑡)‖‖
2
2 𝑑𝑡

)

1
2
≤

𝑛
∑

𝑘=𝑟+1

(

E∫

𝑇

0
e−𝛽𝑡 ‖

‖

𝑦𝑘(𝑡) − 𝑦𝑘−1(𝑡)‖‖
2
2 𝑑𝑡

)

1
2
. (55)

In order to proceed further, the error between 𝑦𝑘 and 𝑦𝑘−1 is analyzed. The associated matrix inequalities are derived from the ones
for the balanced realization which are obtained by replacing (𝐴,𝐵, 𝐶,𝑁𝑖, 𝑃 ,𝑄) by (𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝑁𝑖,𝑛, 𝛴𝑛, 𝛴𝑛) in (4) and (5). Evaluating
he left upper 𝑘 × 𝑘 blocks of these (in)equalities yields

𝐴⊤𝑘𝛴
−1
𝑘 + 𝛴−1

𝑘 𝐴𝑘 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖,𝑘𝛴

−1
𝑘 𝑁𝑗,𝑘𝑘𝑖𝑗 − 𝐶⊤𝑘 𝐶𝑘 + 𝛴

−1
𝑘 𝐵𝑘𝐵

⊤
𝑘𝛴

−1
𝑘 ≤ 0, (56a)

𝐴⊤𝑘𝛴𝑘 + 𝛴𝑘𝐴𝑘 +
𝑞
∑

𝑖,𝑗=1
𝑁⊤
𝑖,𝑘𝛴𝑘𝑁𝑗,𝑘𝑘𝑖𝑗 + 𝐶⊤𝑘 𝐶𝑘 − 𝛴𝑘𝐵𝑘𝐵

⊤
𝑘𝛴𝑘 ≤ 0 (56b)

or 𝑘 = 𝑟,… , 𝑛. We partition 𝑥𝑘, 𝑁𝑖,𝑘 and 𝐵𝑘 like in (45) and set 𝐴𝑘 =
[

𝐴𝑘−1 ⋆
𝑎21 ⋆

]

. Below, the variables 𝑥− and 𝑥+ are defined

nalogously to (46). Based on (54), we find the respective equations by

𝑑𝑥−(𝑡) = [𝐴𝑘𝑥−(𝑡) +
[

0
𝑐0(𝑡)

]

]𝑑𝑡 +
𝑞
∑

𝑖=1
[𝑁𝑖,𝑘𝑥−(𝑡) +

[

0
𝑐𝑖(𝑡)

]

]𝑑𝑊𝑖(𝑡), (57a)

𝑑𝑥+(𝑡) = [𝐴𝑘𝑥+(𝑡) + 2𝐵𝑘𝑢(𝑡) −
[

0
𝑐0(𝑡)

]

]𝑑𝑡 +
𝑞
∑

𝑖=1
[𝑁𝑖,𝑘𝑥+(𝑡) −

[

0
𝑐𝑖(𝑡)

]

]𝑑𝑊𝑖(𝑡), (57b)

here 𝑐0(𝑡) ∶= 𝑎21𝑥𝑘−1(𝑡)+𝑏2𝑢(𝑡) and 𝑐𝑖(𝑡) ∶= 𝑛𝑖,21𝑥𝑘−1(𝑡). We apply Lemma A.3 to E
[

𝑥−(𝑡)⊤𝛴𝑘𝑥−(𝑡)
]

, 𝑡 ∈ [0, 𝑇 ], using (57a) and exploit
56b) giving us

E
[

𝑥−(𝑡)⊤𝛴𝑘𝑥−(𝑡)
]

≤ E∫

𝑡

0
𝑥−(𝑠)⊤𝛴𝑘𝐵𝑘𝐵⊤𝑘𝛴𝑘𝑥−(𝑠)𝑑𝑠 − E∫

𝑡

0
𝑥−(𝑠)⊤𝐶⊤𝑘 𝐶𝑘𝑥−(𝑠)𝑑𝑠 (58)

+ 𝜎𝑘E∫

𝑡
2𝑥𝑘,2(𝑠)𝑐0(𝑠) +

𝑞
∑

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥−(𝑠) + 𝑐𝑖(𝑠)
)

𝑐𝑗 (𝑠)𝑘𝑖𝑗𝑑𝑠.
14550
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S

T

a

We obtain that

𝑥−(𝑠)⊤𝛴𝑘𝐵𝑘𝐵⊤𝑘𝛴𝑘𝑥−(𝑠) =
‖

‖

‖

‖

‖

𝐵⊤𝑘𝛴
1
2
𝑘 𝛴

1
2
𝑘 𝑥−(𝑠)

‖

‖

‖

‖

‖

2

2
≤
‖

‖

‖

‖

‖

𝐵⊤𝑘𝛴
1
2
𝑘

‖

‖

‖

‖

‖

2

2
𝑥−(𝑠)⊤𝛴𝑘𝑥−(𝑠).

ince 𝐵⊤𝑘𝛴
1
2
𝑘 = 𝐵⊤𝑛 𝛴

1
2
𝑛

[

𝐼𝑘
0

]

, where 𝐼𝑘 is a 𝑘 × 𝑘 identity matrix, we have
‖

‖

‖

‖

‖

𝐵⊤𝑘𝛴
1
2
𝑘

‖

‖

‖

‖

‖

2

2
≤
‖

‖

‖

‖

‖

𝐵⊤𝑛 𝛴
1
2
𝑛

‖

‖

‖

‖

‖

2

2
=
‖

‖

‖

‖

𝐵⊤𝑄
1
2
‖

‖

‖

‖

2

2
≤ 𝛽. Therefore, we have

𝑥−(𝑠)⊤𝛴𝑘𝐵𝑘𝐵⊤𝑘𝛴𝑘𝑥−(𝑠) ≤ 𝛽𝑥−(𝑠)⊤𝛴𝑘𝑥−(𝑠).

Moreover, we define 𝛼𝑘(𝑡) = E ∫ 𝑡0 2𝑥𝑘,2(𝑠)𝑐0(𝑠) +
∑𝑞
𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥𝑘(𝑠) + 𝑐𝑖(𝑠)
)

𝑐𝑗 (𝑠)𝑘𝑖𝑗𝑑𝑠 and see that 𝛼𝑘 is an upper bound for the
last integral in (58) taking (49) into account. We further observe that 𝐶𝑘𝑥− = 𝑦𝑘 − 𝑦𝑘−1 such that (58) becomes

E
[

𝑥−(𝑡)⊤𝛴𝑘𝑥−(𝑡)
]

≤ 𝜎𝑘𝛼𝑘(𝑡) − ‖

‖

𝑦𝑘 − 𝑦𝑘−1‖‖
2
𝐿2
𝑡
+ 𝛽 ∫

𝑡

0
E
[

𝑥−(𝑠)⊤𝛴𝑘𝑥−(𝑠)
]

𝑑𝑠.

We apply Lemma A.1 resulting in

E
[

𝑥−(𝑡)⊤𝛴𝑘𝑥−(𝑡)
]

≤ 𝜎𝑘𝛼𝑘(𝑡) − ‖

‖

𝑦𝑘 − 𝑦𝑘−1‖‖
2
𝐿2
𝑡
+ 𝛽 ∫

𝑡

0
[𝜎𝑘𝛼𝑘(𝑠) − ‖

‖

𝑦𝑘 − 𝑦𝑘−1‖‖
2
𝐿2
𝑠
] e𝛽(𝑡−𝑠) 𝑑𝑠.

Using integration by parts, we obtain

𝛽 ∫

𝑡

0
[𝜎𝑘𝛼𝑘(𝑠) − ‖

‖

𝑦𝑘 − 𝑦𝑘−1‖‖
2
𝐿2
𝑠
] e𝛽(𝑡−𝑠) 𝑑𝑠

=
[

−(𝜎𝑘𝛼𝑘(𝑠) − ‖

‖

𝑦𝑘 − 𝑦𝑘−1‖‖
2
𝐿2
𝑠
) e𝛽(𝑡−𝑠)

]𝑡

𝑠=0
+ ∫

𝑡

0
[𝜎𝑘�̇�𝑘(𝑠) − E ‖

‖

𝑦𝑘(𝑠) − 𝑦𝑘−1(𝑠)‖‖
2
2] e

𝛽(𝑡−𝑠) 𝑑𝑠.

herefore, we have

E
[

𝑥−(𝑡)⊤𝛴𝑘𝑥−(𝑡)
]

≤ ∫

𝑡

0
[𝜎𝑘�̇�𝑘(𝑠) − E ‖

‖

𝑦𝑘(𝑠) − 𝑦𝑘−1(𝑠)‖‖
2
2] e

𝛽(𝑡−𝑠) 𝑑𝑠

nd hence, by setting 𝑡 = 𝑇 , we obtain

E∫

𝑇

0
‖

‖

𝑦𝑘(𝑠) − 𝑦𝑘−1(𝑠)‖‖
2
2 e

−𝛽𝑠 𝑑𝑠 ≤ 𝜎𝑘 ∫

𝑇

0
�̇�𝑘(𝑠) e−𝛽𝑠 𝑑𝑠. (59)

In the following, an upper bound of the above right-hand side is found that depends on the control 𝑢. For that reason, we exploit
(56a) after applying Lemma A.3 to find an expression for E

[

𝑥+(𝑡)⊤𝛴−1
𝑘 𝑥+(𝑡)

]

based on (57b). Consequently,

E
[

𝑥+(𝑡)⊤𝛴−1
𝑘 𝑥+(𝑡)

]

≤ E∫

𝑡

0
𝑥+(𝑠)⊤𝐶⊤𝑘 𝐶𝑘𝑥+(𝑠)𝑑𝑠

+ E∫

𝑡

0
−𝑥+(𝑠)⊤𝛴−1

𝑘 𝐵𝑘𝐵
⊤
𝑘𝛴

−1
𝑘 𝑥+(𝑠) + 4𝑥+(𝑠)⊤𝛴−1

𝑘 𝐵𝑘𝑢(𝑠)𝑑𝑠

− 𝜎−1𝑘 E∫

𝑡

0
2𝑥𝑘,2(𝑠)𝑐0(𝑠) +

𝑞
∑

𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥+(𝑠) − 𝑐𝑖(𝑠)
)

𝑐𝑗 (𝑠)𝑘𝑖𝑗𝑑𝑠. (60)

With the same argument like in (53), it can be shown that

4 ‖𝑢(𝑠)‖22 ≥ −𝑥+(𝑠)⊤𝛴−1
𝑘 𝐵𝑘𝐵

⊤
𝑘𝛴

−1
𝑘 𝑥+(𝑠) + 4𝑥+(𝑠)⊤𝛴−1

𝑘 𝐵𝑘𝑢(𝑠).

Using the definitions of 𝑥+ and 𝑐𝑖, it immediately follows that E ∫ 𝑡0 2𝑥𝑘,2(𝑠)𝑐0(𝑠) +
∑𝑞
𝑖,𝑗=1

(

2 [ 𝑛𝑖,21 𝑛𝑖,22 ] 𝑥+(𝑠) − 𝑐𝑖(𝑠)
)

𝑐𝑗 (𝑠)𝑘𝑖𝑗𝑑𝑠 = 𝛼𝑘(𝑡).
Inserting these insights into (60), we obtain

E
[

𝑥+(𝑡)⊤𝛴−1
𝑘 𝑥+(𝑡)

]

≤ E∫

𝑡

0
𝑥+(𝑠)⊤𝐶⊤𝑘 𝐶𝑘𝑥+(𝑠)𝑑𝑠 + 4 ‖𝑢‖2

𝐿2
𝑡
− 𝜎−1𝑘 𝛼𝑘(𝑡).

Since it holds that
‖

‖

‖

‖

‖

𝐶𝑘𝛴
1
2
𝑘

‖

‖

‖

‖

‖

2

2
≤
‖

‖

‖

‖

‖

𝐶𝑛𝛴
1
2
𝑛

‖

‖

‖

‖

‖

2

2
=
‖

‖

‖

‖

𝐶𝑃
1
2
‖

‖

‖

‖

2

2
≤ 𝛽, we have

E
[

𝑥+(𝑡)⊤𝛴−1
𝑘 𝑥+(𝑡)

]

≤ 𝛽E∫

𝑡

0
𝑥+(𝑠)⊤𝛴−1

𝑘 𝑥+(𝑠)𝑑𝑠 + 4 ‖𝑢‖2
𝐿2
𝑡
− 𝜎−1𝑘 𝛼𝑘(𝑡).

Lemma A.1 now delivers

E
[

𝑥+(𝑡)⊤𝛴−1
𝑘 𝑥+(𝑡)

]

≤ 𝛽 ∫

𝑡

0
[4 ‖𝑢‖2

𝐿2
𝑠
− 𝜎−1𝑘 𝛼𝑘(𝑠)] e𝛽(𝑡−𝑠) 𝑑𝑠 + 4 ‖𝑢‖2

𝐿2
𝑡
− 𝜎−1𝑘 𝛼𝑘(𝑡).

Again, integration by parts leads to

E
[

𝑥+(𝑡)⊤𝛴−1𝑥+(𝑡)
]

≤
𝑡
[4E ‖𝑢(𝑠)‖2 − 𝜎−1�̇�𝑘(𝑠)] e𝛽(𝑡−𝑠) 𝑑𝑠.
14551
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Consequently, we find that

∫

𝑇

0
�̇�𝑘(𝑠) e−𝛽𝑠 𝑑𝑠 ≤ 4𝜎𝑘E∫

𝑇

0
‖𝑢(𝑠)‖22 e

−𝛽𝑠 𝑑𝑠.

Using this estimate for (59), the result follows from (55). □
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