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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit der Regelung von Systemen mit verteilten Pa-
rametern. Im Gegensatz zu Systemen mit konzentrierten Parametern, deren Zustandsvek-
tor nur von der Zeit abhéngt, handelt es sich hierbei um Systeme mit einem unendlich-
dimensionalen Zustandsraum, d.h. der Systemzustand ist eine Funktion der Zeit und
weiteren Variablen, z.B. Orts- oder Eigenschaftskoordinaten. Aus mathematischer Sicht
fiihrt die Beschreibung von verteilt-parametrischen Systemen in der Regel auf partielle
Differentialgleichungen. Dies erschwert sowohl die Analyse als auch den Reglerentwurf.
In der Literatur wurden vor allem Methoden zur Regelung von linearen partiellen Differ-
entialgleichungen untersucht. Fiir die im Rahmen der vorliegenden Arbeit betrachteten
Anwendungen spielen jedoch insbesondere nichtlineare partielle Differentialgleichungen
eine grofe Rolle. Hier konnte die diskrepanzbasierte Regelung vielversprechende Ergeb-
nisse zeigen. Das Grundkonzept wurde in [42] vorgestellt und konnte dort erfolgreich
auf die Wirbelschichtspriithgranulation angewendet werden. Ergebnisse zur Kristallisa-
tion finden sich in [47]. Wéhrend der Habilitation wurden die Konzepte erweitert und auf
neue Anwendungsfelder tibertragen.

Die Basis fiir den diskrepanzbasierten Regelungsansatz bildet eine weniger bekannte Sta-
bilitdtstheorie, Stabilitét beziiglich zweier Diskrepanzen, welche in den 60ern Jahren in der
ehemaligen UdSSR entwickelt wurde. Die Hauptidee ist hierbei, das Regelungsproblem
als Ein-Ausgangsproblem aufzufassen, wobei der Ausgang problemspezifisch gewahlt wird.
Zur Illustration wird der Ansatz an drei Anwendungsproblemen verschiedenen Types und
variierender Komplexitat untersucht. Es handelt sich hierbei um eine nichtlineare Vari-
ation der instabilen Warmeleitungsgleichung, eine Krananlage mit elastischem Verhalten
und die Agglomeration. Die Modelle zu den genannten Prozessen werden in Kapitel 2
eingefiihrt.

Im Anschluss an die Kapitel zur Stabilitét beziiglich zweier Diskrepanzen (Kapitel 3) und
der diskrepanzbasierten Regelung (Kapitel 4) werden in Kapitel 5 Erweiterungen in Rich-
tung adaptive und Sliding-Mode Regelung beschrieben. Das fiir die diskrepanzbasierte
Regelung zentrale Konzept der internen Dynamik bzw. Nulldynamik ist Gegenstand von
Kapitel 6.
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Chapter 1

Introduction

Distributed parameter systems are systems with an infinite-dimensional state space, i.e.
the system state is a function of time and additional variables, e.g. spatial or prop-
erty coordinates. This is in contrast to lumped parameter systems, which have a finite-
dimensional state space, i.e. the state is a vector depending on time only. Mathematically,
distributed parameter systems often lead to partial differential equations (PDEs), which
are challenging from an analysis and control point of view. Especially, the case of linear
hyperbolic and parabolic PDEs has received great attention. However, in the fields of ap-
plications considered in this thesis often nonlinear PDEs play an essential role. Here, the
discrepancy based control approach has been promising. The basic concepts of this ap-
proach have been presented in [42]|. It has been applied to fluidized bed spray granulation
processes [42] and crystallization [47]|. During the habilitation the concepts were extended
and applied to new fields of application. The foundation of the discrepancy based con-
trol approach is a less known stability theory, stability with respect to two discrepancies,
which has been developed in the 1960s in the former USSR [21, 22, 23|. The main idea
is to study the control problem in an input-output setting, where the output is appropri-
ately chosen to reflect the problem specifics. In the following, the control approach will
be examined for different application examples of varying types and complexity. The test
problems are:

1. Heat equation with quadratic nonlinearity. This problem is a challenging nonlinear
control problem. It is a straightforward extension of the classical heat equation, i.e.
a parabolic PDE, and has been proposed in [5, 6].

2. Control of a large crane structure exhibiting elastic behavior.

3. Agglomeration, a particulate process, which can be described using population bal-
ance equations [17, 18, 19].

It should be mentioned, that the given test problems are challenging for most infinite-
dimensional control approaches, which often require linearity, boundary or full domain
actuation or flatness. Among others, popular approaches for infinite-dimensional systems
are linear optimal control [35, 36, 37|, linear infinite-dimensional port-Hamilton systems
[29, 30, 31] and infinite-dimensional backstepping and flatness-based control [32, 33, 34].
In chapter 2 the application examples and their models are introduced. Basic notions of
stability with respect to a generalized distance measure, the discrepancy, are summarized
in chapter 3.



4 Introduction

Chapter 4 covers discrepancy based control, i.e. control based on the stability concept
stated in chapter 3. After general considerations, control of the application examples
introduced in chapter 2 is presented. In chapter 5 different extensions as adaptive dis-
crepancy based control and sliding mode control are illustrated. In addition, the important
problem of zero dynamics stability is studied.



Chapter 2

Selected examples of distributed
parameter systems

2.1 Heat-equation

Control design for the heat equation and its variations have been studied for some time,
e.g. [1], and still receive considerable attention in the recent literature, e.g. [3, 2, 4, 7,
12|. In the simplest one-dimensional case, it can be assumed that the heat conduction
coefficient is equal to one over the whole domain, resulting in the following PDE

ow 0*w

E = w + f(w), (2'1)

where w(x,t) is the system state, ¢ > 0 is the time and z € [0, 1] is the spatial coordi-
nate. f(w) is a spatially distributed heat source or sink, reflecting for example chemical
reactions. The dependence may for example be linear, i.e. f(w) = Aw. Typical boundary
conditions are:

e constant temperature

w(0,t) = const. (2.2)
e constant heat flux Sw(L.t
w(gx’ ) = const. (2.3)

In [5, 6] a nonlinear variation of the given heat equation has been investigated, where the
source term f(w) depends quadratic on the system state w, i.e. f(w) = w?. Therefore, the
system is unstable. Furthermore, the state diverges to infinity in finite time and hence the
system is not globally stabilizable [5, 6]. Thus, stabilizing control design is a challenging
task. In [5, 6] the authors propose an infinite-dimensional backstepping design procedure
in combination with an approximation based on Volterra series. An alternative control
design procedure will be presented in section 4.1.
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2.2 Elastic crane structures

During crane operation elastic oscillations may occur. This is in particular relevant
for large crane structures, as for example large gantry cranes or ship-to-shore container
bridges. Here, structural dynamic problems are often caused due to hoisting or trolley
motion. In the following, only the latter effect is investigated. The influence of trolley
motion increases with increasing crane size and reduced stiffness, e.g. due to lightweight
construction. As it directly interacts with the load positioning process and may result
in sickness of the crane operator, due to its low frequency behavior, different solution
approaches have been proposed in the literature:

e increasing structure stiffness by construction optimization [14],
e passive damping via counter weights [15],

e additional active dampers [15],

e extension of the trolley motion system [43, 44].

In general, the last approach is preferable, as no additional changes in the construction
nor additional actuators are required.

From a theoretical point of view, an elastic crane structure can be represented as depicted
in Fig. 2.1. The supporting crane structure is reflected as an elastic beam, whereas the
other parts are assumed to be rigid. In general a crane is supported by two columns.
Assuming that both are identical, only one column has to be explicitly included in the
model due to symmetry. Further, bending stiffness and mass density are assumed to
be constant along the column and rotary inertia, shear deformation and buckling are
neglected.
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Figure 2.1: Gantry crane [43]

Additional assumptions to simplify the modeling are:
e hoisting and thus variations in the rope length is neglected,

e friction or external forces are neglected.



Flastic crane structures

For modeling the following vector of generalized coordinates is chosen.

g = [w(z,t) 2(t) o))"

(2.4)

The position of the girder r., trolley r, and payload r, in terms of the generalized coor-

dinates then are:

re = -w(I(;’ t):| )
[w(L,t) + z(t)}
ry = O 9
~Jw(Lyt) + 2(t) + Ising
= —lcosp ’

Based on the kinetic and potential energy, 7' (2.8) and U (2.9):

T

U

1 [t 1 1
5/ peti? da + 5mcu'ﬂ(L, t)+ §mt(u')(L,t) + )7+ ...
0

1
oot gy [((L 1) + 2 4 @leos @)? + ($lsing)?]
1

L
5/ EI(w")*dz — m,gl cos ¢,
0

the equations of motion (2.10)-(2.14) can be derived applying Hamilton’s principle.

0*w
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0
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0
0

O*w ow
—Bl oar o
~ ow(0,t) 0w

mst0(L, t) + mgZ + myl@ cos p — mylp?sinp — ET 5
x

msw(Lat) + msé + mplgo COS @ — mplgb2 Singp — Ft + ,LLZ
1 + (L, t) cos p + Zcosp + gsin g

Ow(L,t)

(2.10)
(2.11)

(2.12)

(2.13)
(2.14)

Here, the dynamics consist of a PDE describing the structural dynamics of the crane
support (2.10), its boundary conditions (2.11), two ODEs describing the trolley and load
motion (2.13) and (2.14) and a coupling equation (2.12), interconnecting the subsystems.
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2.3 Agglomeration

Agglomeration is a particle formation process, where new particles are formed from smaller
particles. The particle formation is due to the establishment of solid bridges between parti-
cles during collision events. The solid bridges are formed from liquid layers on the particle
surfaces, which are created due to added binder solution. The described micro process is
depicted in Fig. 2.2. A typical agglomeration process in a fluidized bed configuration is
shown in Fig. 2.3. Here, the particles are fluidized through a hot fluidization air stream
from below. The binder is added via a spray nozzle. To achieve a continuous process
operation, primary particles have to be supplied and agglomerates of a given minimum
size have to be removed constantly.

‘ Particle
‘ \ Coalescence Particle Drying

Particle Wetting _> —)

'./.'»

Figure 2.2: Three stages of agglomeration: (a) particle wetting, (b) particle coalescence
and (c) particle drying [52]
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Figure 2.3: Continuous agglomeration process scheme [52]

The agglomeration process can be described applying population balance modeling [17].
Therefore, the particle volume distribution n(¢, v) is introduced. A change in the number
of particles of a specific volume V' is due to agglomeration n,(t,v), external feed ns(¢,v)
or particle withdrawal n,(t,v).

on(t,v)
ot

= Na(t,v) + ne(t, v) — no(t,v) (2.15)



Agglomeration 9

For simplicity ideal mixing inside the process chamber has been assumed and hence spatial
gradients can be neglected. The aggregation term n, (¢, v) consists of two terms: a birth
and a death term [16]. The birth term accounts for the combination of two or more smaller
particles forming a new particle of size v. The death term is a sink term, reflecting events
where particles of size v form new particles of greater volume.

na(t,v) = B(t,v) — D(t,v) (2.16)

The birth rate B(t,v) for particles of volume v due to binary aggregation events is repre-
sented as follows

B(t,v) = %/OU Bt u,v —u)n(t,u)n(t,v — u)du, (2.17)

where [((t,u,v) is the coalescence kernel, describing the likelihood that two particles of
size u and v form a new particle of size v. The death rate D(t,v) is defined similarly.

D(t,v) = /0 " Bt v wn(t, v)n(t, u)du (2.18)

From a modeling point of view, the specific form of the coalescence kernel B(t,u,v) is
an open question. Although, a number of different options for different processes and
operating conditions have been proposed in the literature, uncertainty for a given process
is high. Selected coalescence kernels are stated in Tab. 2.1.

Name B(u,v)
Size-independent kernel 1

Sum kernel u+v

Product kernel uv

Brownian kernel (u!/? +01/3) (w13 +071/3)
EKE kernel (u1/3 + 01/3)2 ul+o1
Gravitational kernel (ul/? + v1/3)2 | ul/6 — /6 |

Table 2.1: Selected coalescence kernels [52] and references therein

For the particle feed n(t,v) it is assumed that the particle volume distribution of exter-
nally supplied particles is some constant normalized number density distribution g ¢(v),
which is scaled with the total number of added particles Ng(t).

hf(t, U) = Nf(t)qo,f(v) (2.19)

To model the particle outlet it is assumed that particles exceeding a specific volume vpy0q
are removed from the process. This can be achieved by an appropriately chosen separation
function T'(v), where a cumulative Gaussian function is a typical candidate for a non-ideal

withdrawal. ) ( 2
1 S — Uprod
T(v) = / exp b
®) 0 V2mo? o?
Here, o defines the classification quality and vp0q the separation volume. For a given
removal rate K (t) the number density of removed particles thus is

ds (2.20)

no(t,v) = K(t)T(v)n(t,v). (2.21)
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Combining the equations for the particle fluxes (2.17), (2.18) (2.19), (2.21) and the pop-
ulation balance model (2.15) yields

on(t,v)
ot

— % /0” B(t,u,v — u)n(t,u)n(t,v —u)du — /000 B(t, v, u)n(t, v)n(t, u)du + . ..

oo+ Ne(t)qos(v) — K(t)T(v)n(t,v). (2.22)



Chapter 3

Stability with respect to two
discrepancies

In the following, a general infinite-dimensional system, with a solution ¢(.,¢) and an
equilibrium at zero ¢y = 0, is considered. Here, the . represents an arbitrary number
of spatial or property coordinates. The distance between the process ¢(.,t) and the
equilibrium ¢q is then measured using the discrepancy or measure p(p(.,t),t) defined as
follows [21, 22, 23].

Definition 1 Discrepancy [25]
A discrepancy is a real valued functional p = p(p (., 1) ,t) with the following properties

1. p(p,t) >0,
2. p(0,t) =0,

3. for an arbitrary process ¢ = (., t) the real valued functional p(¢(.,t),t) is continu-
ous with respect to t.

It should be mentioned, that a discrepancy lacks essential properties of a metric, as
symmetry, fulfillment of the triangular inequality and in particular definiteness, i.e. a
vanishing discrepancy p(¢,t) = 0 does in general not imply ¢ = 0. Therefore, the dis-
crepancy is a generalization of the classical distance measures used in infinite-dimensional
stability theory, e.g. L, and L- norms.

To account for deviations of the initial state ¢(.,0) from the equilibrium ¢y, a second
time independent discrepancy py can be used. Here, both discrepancies p and py have to
satisfy a continuity condition at time t = tg, i.e. for every £ > 0 and ty > 0 there exists a
d(e, to) > 0, such that from py < d(e, tp) it follows that p < e.

Definition 2 Stability with respect to two discrepancies p and py [23]

The equilibrium pg = 0 is stable in the sense of Lyapunov with respect to the two discrep-
ancies p and py for all t > to if for every e > 0 and to > 0 there exists a § = d(e,tg) > 0
such that for every process ¢(.,t) with py < d(g,to) it follows that p < € for all t > ty.
If in addition lim;_,, p = 0, than the equilibrium g is called asymptotically stable in the
sense of Lyapunov with respect to the two discrepancies p and pg.

To introduce according Lyapunov functionals the additional notion of positive definiteness
with respect to a discrepancy is required.

11
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Definition 3 Positive definiteness with respect to a discrepancy p [23]

A functional V =V (p,t) is positive definite with respect to a discrepancy p, if V> 0 and
V(0,t) = 0 for all ¢ with p(p,t) < oo and for every € > 0 there exists a 6 = d(g) > 0,
such that V> §(e) for all ¢ with p(p,t) > €.

Based on the above definitions, the following theorem provides the connection between
(asymptotic) stability with respect to two discrepancies and the existence of an according
Lyapunov functional V.

Theorem 1 Lyapunov functional [23] The process ¢ with the equilibrium vy = 0 is stable
with respect to the two discrepancies p and po iof and only if there exists a functional
V = V(p,t) positive definite with respect to the discrepancy p, continuous at time t = tg
with respect to py at po = 0 and not increasing along the process ¢, i.e. V < 0. The

process is asymptotically stable if in addition tlimV = 0.
— 00

From a stabilization or rather control design point of view, appropriate choices for the
second discrepancy po and the Lyapunov functional V' are often py = p(tg) and V = p.
This leaves the discrepancy p as the main degree of freedom.

In comparison with the conventional Lyapunov stability theory the main difference of
a discrepancy-based stability analysis is that the Lyapunov functional does not have to
be connected to any norm of the infinite-dimensional state. To illustrate this point the
classical stability problem of the heat equation is revisited.

o _ o
ot Ox?

w(0,1) 0

w(l,t)

To prove stability with respect to the Lo-norm the following Lyapunov functional can be
chosen.

1
V= -/ w?(z, )z = |2 (3.4)
0

Calculating the time derivative gives

V=- /01 (%’)2 dx. (3.5)

The time derivative V' is bounded and negative. However, since it depends on g—;’ con-

vergence of V' towards zero is not obvious. Therefore, the Poincare inequality and the
boundary conditions can be used to derive an estimate of V.

. /0w ? 1 /! 1
1% /0 <8x) de < 4/0 wdxr < 2V (3.6)

This implies
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and additionally exponential stability with respect to the Ly-norm.
[w(®)[l2 < e lw(0)]2 (3.8)

As can be seen from this example, restriction to norm-based Lyapunov functionals limits
Lyapunov stability analysis to a certain class of problems. In contrast, a discrepancy-based
stability analysis can chose an arbitrary dependence of the Lyapunov functional on the
system state. This additional degree of freedom can be used to significantly simplify the
analysis. For example, the nonlinear variation of the heat equation presented in section
2.1 will be stabilized using a weighted mean temperature to construct an appropriate
discrepancy-based control-Lyapunov functional.

As has been stated in [49], stability with respect to two discrepancies implies stability
in terms of a L,- or Lo,-norm if and only if the associated internal or zero dynamics are
stable. A similar result has been derived in [11] in the context of high-gain stabilization
and funnel control. For general problems, as they occur in many practical applications,
stability of the infinite-dimensional internal dynamics cannot be shown easily. Here, linear
finite-dimensional approximations can often serve as a good approximation. In addition,
for some system classes with specific structural properties the stability of the infinite-
dimensional zero dynamics can been investigated rigorously, e.g. for port-Hamilton sys-
tems [8] and PDEs with a self-adjoint infinitesimal generator of a strongly continuous
semigroup |9, 10].
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Chapter 4

Discrepancy based control of
distributed parameter systems

Despite extensive research on infinite-dimensional control theory, it still does not resemble
a unified control theory, but rather a collection of different control approaches. These can
roughly be divided into three groups as depicted in Fig. 4.1

e Farly lumping, i.e. due to discretization or other model reduction procedures, e.g.
method of moments, the infinite-dimensional design model is reduced to a finite-
dimensional model, which can then be used for a finite-dimensional control design.
The main problem here is guaranteeing stability and performance for the original
system.

e Late lumping, i.e. using infinite-dimensional control theory, an infinite-dimensional
controller is designed. For implementation reasons, this controller has then to be
reduced to a finite-dimensional system, resulting in a possible loss of stability and
performance guarantees.

e Direct control design, i.e. designing directly a finite-dimensional controller for the
infinite-dimensional plant model.

To face the problems with early lumping control, approaches based on linear finite-
dimensional robust control theory can be applied. Here, errors due to varying set-points,
discretization and model order reduction can be taken explicitly into account during the
control design stage.

Regarding direct or late lumping control, most approaches being developed over the last
decades rely on special system properties, e.g. boundary or full-domain actuation, lin-
earity, solvability of the system equations or at least the desired error system. Important
representatives are linear optimal control methods [1, 35, 36, 37| and infinite-dimensional
backstepping [2, 4, 32, 33, 34|, where the first assumes linear system equations and the
latter requires in general boundary actuation.

To overcome these structural requirements, a possible approach is to state the control
design problem in the aforementioned generalized stability setting, i.e. stability with
respect to two discrepancies [21, 23]. Here, the choice of an appropriate discrepancy allows
to incorporate engineering expertise on the process or plant into the design procedure to
simplify the control design task.

15
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/ Late lumping

Infinite dimensional Infinite dimensional
system controller
Approximation Direct design Approximation
Finite dimensional Finite dimensional
design model controller

Early lumping /

Figure 4.1: Control of distributed parameter systems

As the focus is on control design, rather than on stability analysis, the second discrepancy
po will be in the following implicitly defined based on p(t) .

po=p(t=0)=0 (4.1)

This choice is straightforward and obviously assures continuity at time ¢ = 0. The same
applies for the Lyapunov functional V', which will be chosen as V' = p(¢). The design
procedure will be further illustrated on the basis of the model systems described above.

4.1 Control of the heat equation

In the following, the stabilizing discrepancy based control law for the heat equation with
quadratic nonlinearity and boundary actuation as proposed in [46] will be presented. It is
assumed that the temperature at the left boundary, i.e. x = 0, is equal to zero, and that
the heat flux at the right boundary, i.e. x = 1, can be controlled. The model presented
in section 2.1 thus yields:

ow 0w
w(0,t) = 0, (4.3)
ow(1,t

where u is the control input. The desired steady state temperature distribution is assumed
to be zero, i.e. wy(x) = 0. Deviations from the desired steady state will be measured in
terms of an integral quantity or weighted average.

e= /0 k(x) (wg — w) dz (4.5)
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From a control point of view, it is clear that errors in a greater distance from the actuated
boundary at x = 1 are harder to control. Therefore, they should be stronger weighted,
which can be achieved by the following exponential function

k(z) = exp(—ax), (4.6)

where a > 0. Based on the error defined in eq. 4.5 an appropriate discrepancy p is given

as follows )

p— % (/01 k(z) (wq — w) dx) | (@7)

Then, due to Theorem 1, asymptotic stability with respect to the two discrepancies p
and py with py = p(t = 0) follows from the existence of an appropriate functional V. An
obvious choice is the following candidate Lyapunov functional.

1, 1 2

V=p=ge :§</01k:(:c)(wd—w)dx> (4.8)

Thus, to achieve closed-loop stability in the sense of two discrepancies the control u has to
be chosen such that the time derivative of the candidate Lyapunov functional V' becomes
negative definite along the systems trajectories for all times and vanishes only for V' = 0.

Vo= e (4.9)
b 0Pw 9
= —e/o k(w—i—w)dx (4.10)
dw|' Y dk Ow 9

= —e {k(l)u - k(O)aw(;g’ H_ dl;i:l)w(l,t) + /1 %w + kw2dx} (4.12)

Here, the last equation (4.12) suggests the following control law to guarantee negative
definiteness of the time derivative of the candidate Lyapunov functional V.

"= ﬁ {k(o)awég’ b dl:lS)w(l,t) +ce— /0 1 (% + kw) wd:z:] (4.13)

It should be mentioned, that by design the chosen control law (4.13) also guarantees
exponential convergence of V', where ¢ defines the convergence speed and can hence be
used as a tuning parameter.

V= —ce? = -2V (4.14)

The proposed control scheme is tested in terms of simulations for a = 2, ¢ = 10. As an
initial condition a sinusoidal temperature profile with a peak value of 20, i.e. w(z,0) =
20 sin(z) has been chosen, which is significantly higher than the maximum allowable peak
value of 8 in [5]. The closed-loop behavior for the state w(z,t) and the control w is
depicted in Fig. 4.2 (left) and (right), respectively.

As can be seen in Fig. 4.2 (left) the proposed control scheme is able to stabilize the
process. Here, convergence of w in the sense of the Ly and L.,-norm as depicted in Fig.
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Figure 4.2: Closed loop operation, state w(z,t) (left) and control u (right)
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Figure 4.3: Convergence of the Ly-norm in closed loop operation
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Figure 4.4: Convergence of V' in closed loop operation (left), pole/zero map of the linear
finite-dimensional approximation (right)

4.3 (left) and (right) respectively is achieved. In addition, the Lyapunov functional V' by
design converges exponentially as shown in Fig. 4.4 (left).

For a rigorous proof of stability in the Ly or L.,-norm, stability of the zero dynamics in
the according norm has to be proven. This is challenging due to the nonlinear system
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behavior. However, as an approximation a high order finite-dimensional linear approxi-
mation can been investigated instead. In the present configuration, as can be seen from
the open loop pole/zero map in Fig. 4.4 (right), no zeros are present in the right half
plane. Therefore, the zero dynamics of the finite-dimensional linear approximation are
stable in the Ly and L..-norm, due to equivalence of norms in finite-dimensions.

4.2 Control of an elastic crane

A typical problem for mechanical systems are weakly-damped oscillations, which need
either constructive changes or additional damping. In case of the elastic crane model
presented in section 2.2, two types of weakly-damped oscillation are present: load swaying
and structural oscillations. As will be shown in the following, both can be sufficiently
damped using a single actor, the trolley. The control task can be divided into four parts:

1. damping of oscillations in the crane structure,
2. damping of load oscillations,

3. trolley positioning,

4. load positioning.

In order to reflect all requirements the following discrepancy is chosen, where ky, ..., k4
are weighting coefficients and ¢ is the trolley position error, i.e. € = z — z,.

1
P=3 (k1 (L, ) + ko + ksl cos p + kye)? (4.15)
From the proposed discrepancy (4.15) the following candidate control Lyapunov functional
results.

1
V = 3 (kb (L) + ko + kil cos p + hse)’ (4.16)

Calculating the time derivative of the candidate Lyapunov functional V" along the systems
trajectories to design a stabilizing control law results in:

Vo= eé (4.17)
= e [kflw(L, t) + ko2 + k3@l cos p — ks@?lsin + k4é} , (4.18)
k k
= e | (k1 — k) (L, t) + bilpcos o — bilg?sing + kaé — 2z 4 2R L (4.19)
My Mg

Here, the system equations including the boundary conditions have been used. An ap-
propriate choice of the control law for the trolley drive moment 7 = F}/ky, is given by

d [— (k1 — ko) (L, t) — byl cos p + bil® sin o — kyé + 21

_ S —cel. (4.20
Kok oo (420)

Tt

where ¢ > 0 is a tuning factor to influence convergence speed. This control law results in
exponential convergence of the Lyapunov functional.

V= —ce? = -2V (4.21)
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As can be seen in Fig. 4.5 and 4.6 the proposed control law is able to stabilize the whole
system. It achieves the desired trolley and load positions, and sufficiently damps structural
oscillations and load swaying. For reference the results applying a standard motion control
system, i.e. pure trolley position control, have been included. Here, undamped structural
oscillations and load swaying occur as expected (see Fig. 4.5 and 4.6). Consequential, the
Lo-norm of the displacement w(x,t) depicted in Fig. 4.7 converges only for the proposed

Discrepancy based control of distributed parameter systems

discrepancy based control law.
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Figure 4.5: Reference tracking for pure trolley position control (dotted black) and dis-
crepancy based control (black), reference position (gray). Trolley position z (top left),
displacement at © = L, w(L,t) (top right), moment 7 (bottom left), load angle ¢ (bottom

right) [43].
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Figure 4.6: Time behavior of the displacement w(t,z) for pure trolley position control
(left) and discrepancy based control (right) [43]
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Figure 4.7: Lo-norm of the displacement w(x,t) for pure trolley position control (dotted
black) and discrepancy based control (black) [43]
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4.3 Control of an agglomeration process

As has been shown in previous contributions [47, 48, 49|, discrepancies based on moments
of the particle size distributions are often an appropriate choice for particulate processes.
Thus, for the agglomeration process presented in section 2.3 the deviation in the total
number of particles and thus the difference between the desired and achieved zeroth
moment is chosen.

e=Apy = /Ooo(nd —n)dv (4.22)

Here, ng is the desired steady state particle volume distribution. The resulting discrepancy
and candidate control Lyapunov functional then are
1,
V=p= 7€ (4.23)
To derive the associated discrepancy based control law, the first order time derivative of
the Lyapunov functional along the system trajectories is calculated.

Vo= eé (4.24)
< on

- _ -4 4.2

6/0 ¢ & (4.25)

= —e¢ (/ Na + g dv — K/ Tndv) (4.26)
0 0

From a practical point of view, the withdrawal rate K can be relatively easy adjusted and
can hence be used as a control handle for the given configuration. To achieve exponential
convergence of the Lyapunov functional the control law for K is chosen as follows

1 oo
K = m (—ce +/ Na + 1N dv) : (4.27)
0 0

where ¢ > 0 is a tuning factor determining the convergence rate. By design the proposed
control law achieves exponential convergence of the Lyapunov functional V.

V=—2V (4.28)

The responses for an initial deviation from a desired steady-state distribution n, applying
the proposed discrepancy based control law are shown in Fig. 4.8 and Fig. 4.9. Here,
Fig. 4.8 (left) depicts the convergence of the zeroth moment g (dotted black) towards
its desired steady-state value (gray). The convergence of the first moment p; and the Lo
of the overall deviation between the desired and real particle size distribution ||n — ng4l|2
are shown in Fig. 4.8 (right) and Fig. 4.9 (right), respectively. Although not a priori
guaranteed by design, the closed-loop system achieves convergence in terms of the Lo-
norm. The associated control action, i.e. the withdrawal rate K, is shown in Fig. 4.9

(left).
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Chapter 5

Extensions

So far the described discrepancy based control approach assumes a known plant model,
which perfectly fits the process at hand. For practical applications this is in general not
true. Plant parameters may be unknown or vary over time. Also, measurement noise and
unstructured uncertainties may have a considerable effect on the closed loop behavior.
Therefore, in practical control implementations robustness of stability and performance
in the presence of process uncertainties is an important feature.

From a control point of view, two options exist to further improve on the control inherent
robustness properties: adaptive and robust control. In adaptive control theory [38, 39] it
is assumed that certain process parameters are unknown or slowly varying over time. The
adaptive controller then adjusts during its operation to these parameters. Conversely, in
robust control theory [40, 41| one fixed controller is designed, which is able to cope with
a certain range of structured and unstructured uncertainties.

In the following, two well-known approaches, Lyapunov redesign and sliding mode control,
are applied to extend the proposed discrepancy based control schemes. The main steps
are illustrated using the agglomeration process described in section 2.3.

5.1 Adaptive discrepancy based agglomeration control

For the given agglomeration process the feed rate Nt is a typical parametric uncertainty,
which may vary over time. As can be seen from (4.27) the proposed discrepancy based
control law directly depends on the feed rate. Hence, a misfit in Ny will have a direct
impact on the control loop.

One option to compensate for this would be to augmented the control loop with a parame-
ter estimator for the feed rate and use its estimate in the control law. This, however, may
cause problems regarding overall process stability and has typically implications on the
required controller robustness. Here, Lyapunov redesign is an appealing alternative, as
it does not impose additional requirements and by design guarantees overall closed-loop
stability. Therefore, the original Lyapunov functional (4.23) is augmented with a term
reflecting the estimation error N; = Nf — N¢, where N is the true but unknown feed rate,
Nf its estimate and ~ a positive constant.

1 1 -
V =—e?4+ —N? 5.1
26 +2’7 f ( )
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Calculating the time derivative of the augmented Lyapunov functional under the assump-
tion that the true feed rate N; is constant, yields

. 1 ~ =
V = 6é+—Nfo, (52)
Y
o0 oo 1 - ;i
= —e (/ Na + Neqogdv — K/ Tndv) + — N¢Ng. (5.3)
0 0 Y

As the feed rate Ny in the proposed discrepancy based control law (4.27) is unknown it is
substituted with its estimate N¢, resulting in the certainty equivalence control law.

1 > S
K= m (—ce —|—/O Na + Niqos dU) (5.4)
0

The certainty equivalence control law can then be inserted into the above equation for
the time derivative of the Lyapunov functional (5.3) resulting in:

. ~ 1 =
V= —ce®+ N; <e + ;Nf) . (5.5)

Here, the error in the feed rate estimate results in an additional term of indefinite sign
Nte, which may result in a loss of stability. To compensate for this problem the parameter

update law N + has to be chosen appropriately

Nt = —ne, (5.6)

where the constant v can be seen as a tuning factor to influence rate of change of the
parameter estimate. From a practical point of view, a higher value will result in faster
adaptations, while increasing sensitivity to disturbances, e.g. measurement noise. As for
the non-adaptive discrepancy based control, the proposed certainty equivalence law (5.4)
in combination with the parameter update law (5.6), results in exponential convergence
of the Lyapunov functional.

V = —cé? (5.7)

In the following, an initial parametric uncertainty in the feed rate Ny of 50% will be
assumed. As can be seen in Fig. 5.1 (left) after an initial deviation the zeroth moment
is controlled to its set-point value. As this different feed rate results in a change of the
steady-state particle size distribution, the first moment settles to a new value as shown
in Fig. 5.1 (right). The applied withdrawal rate /K and estimate for the feed rate N; are
shown in Fig. 5.2 (left) and (right), respectively. It should be mentioned, that in general
accordingly designed update laws (5.6) do not guarantee convergence of the parameter
estimate to the true unknown value. However, for the given configuration convergence
can be proven using LaSalle’s invariance principle [52].
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Figure 5.1: Closed-loop response of the zeroth moment 1y (left dotted black), its desired
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its estimate Ny (right dotted black)
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5.2 Sliding-mode control

Sliding-mode control is well known for its robustness with respect to matched uncertain-
ties. This is in particular due to its switching control law, which allows to dominate
over bounded uncertainties occurring in the design equation. In the following, it will be
assumed that the withdrawal rate K is positive and limited from above

K € [0, Kozl (5.8)

where K., is a certain maximum withdrawal rate. In addition, as agglomeration pre-
serves volume and the feed rate is always positive the following inequality holds.

/ fia + Npdv >0 (5.9)
0

To design an appropriate discrepancy based sliding mode controller, the same candidate
control Lyapunov functional (4.23) as above will be used. Its time derivative along the
system trajectory then yields:

V:—e</ T'La—{—hfdv—K/ Tndv). (5.10)
0 0

To achieve V < 0 two cases for the error e have to be studied. If e > 0 then due to
inequality (5.9) the withdrawal rate K should be equal to zero, resulting in

V=—¢ (/ ha—i—mdv) <0. (5.11)
0

If e < 0 then the withdrawal rate K should be equal to its maximum value K,,,,. Under
the assumption that the maximum withdrawal rate and the volume of the product fraction
are sufficiently large, such that

/ Ng + nedv < Kmax/ Tndv, (5.12)
0 0

holds, this choice yields

V=—c¢ (/ Ta + N dv — K,,m/ Tndv) <0. (5.13)
0 0

The resulting sliding mode control law hence is

if e >
=10 ife=0, (5.14)
Koax if e <O0.

As it achieves the required negative definiteness of the time derivative of the Lyapunov
functional, i.e. V < 0, the proposed controller stabilizes the process with respect to
the chosen discrepancy. A major advantage of the proposed discrepancy based sliding
mode control law, is its robustness to matched uncertainties, i.e. uncertainties occurring
in (5.13). Here, negative definiteness is guaranteed for arbitrary uncertainties in the
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agglomeration term n,, the feed n; or the separation function 7' as long as inequality
(5.12) holds.

To compare the proposed discrepancy based sliding mode controller with the adaptive
discrepancy based controller proposed in section 5.1 a 50% disturbance in the feed rate
and initial state deviation is assumed. As depicted in Fig. 5.3 (left) both controllers

achieve convergences of the zeroth moment iy and the first moment p; (Fig. 5.3 right).
The sliding mode controller however has a better performance.
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Figure 5.3: Convergence of the zeroth moment pq (left) and first moment p; (right) ap-
plying adaptive discrepancy based control (dotted gray) and sliding mode control (dotted
black)
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Chapter 6

Zero dynamics and control induced
instabilities

For linear finite-dimensional systems it is well-known that open-loop zeros in the complex
right half-plane pose bounds on the maximum open-loop gain. This is due to the fact, that
they serve as attractors for closed-loop poles for increasing gains. In the case of nonlinear
systems the situation is comparable although the analysis is less obvious [24|. Here,
part of the system dynamics can be rendered unobservable, when applying a nonlinear
compensating control law. This can be easily seen for the following affine nonlinear single-
input single-output system of order n.

i = f(2)+g(a)u (6.1)
— hx)

Based on the output y and its derivatives two new state vectors € and 7 can be introduced

&€ = [y,...,y" V)7,

n o= [y, .. y" I

Y

where 7, the relative degree, is the first index for which the Lie derivative LgL}_lh(x) does
not vanish, i.e. Ly,L}'h(z) # 0 and LgL’Ji_lh(aj) = 0 for k < r. The system (6.1)-(6.2)
can then be represented as follows:

0

1 0 . 0 0
001 ..0 X
E= |0 e+ | @) + Ll h(@)u), (6.5)
00 0 1 X
000 ..0
no= 1U&mn). (6.6)

In this representation, the first part can be linearized using the following compensating
control law

u= —(LgL;—lh(g;))—l(L}h(x) +v(§), (6.7)

where an appropriate choice of v(£) guarantees stability of (6.5). In contrast, the second
subsystem associated with the states n, called the internal dynamics or zero dynamics for
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y = 0, is rendered unobservable from the output y by the control law (6.7). Furthermore,
as stability of the internal dynamics is not guaranteed, it has to be checked to achieve
stability of the whole system.

From linear control theory, it is well-known that plant transmission zeros are invariant
with respect to feedback. Thus, unstable internal dynamics pose important restrictions
on control. To overcome this problem the application of parallel compensation has been
proposed in [42, 49, 54, 55, 56].

The described occurrence of the internal dynamics and the associated stability problems,
may not be as obvious in practical applications and cause serious and surprising problems.
To illustrate this problem, an important configuration of a continuous fluidized bed spray
granulation process is studied. Here, applying a particle sieving, only particles in the
desired size range are removed from the process. Small particles 7, are fed back to
the process chamber directly. Large particles nopersize are milled to smaller sizes before
being fed to the process chamber. To achieve a constant bed mass this configuration is in
general operated using a bed mass controller. The process scheme is shown in Fig. 6.1.

air

m e
suspension

n oversize

..Sieving ™
* ! "

Figure 6.1: Continuous fluidized bed spray granulation process

n fine

As has been observed in practice and in the research literature, e.g. [20, 45|, this con-
figuration tends to a loss of stability for certain operating conditions. The instability is
connected to the occurrence of a stable limit cycle and self-sustained oscillations of the
particle size distribution. Results of a one-parameter bifurcation diagram are shown in
Fig. 6.2 (right). The instability occurs for a milling diameters less then 0.72mm.
Interestingly, as has been shown in [50], the open-loop system, i.e. the granulation without
a mass controller, is stable over a certain range of operating conditions. This can be seen
from the one-parameter bifurcation in Fig. 6.2 (left) and the maximum real part of the
open-loop system poles depicted in Fig. 6.3 (left) or the variation of the dominant pole
pair shown in Fig. 6.3 (right).
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The reason for the observed loss of stability in closed-loop operation lies in the loss of
stability of the zero dynamics. This can also be seen from the occurrence of zeros in the
complex right half-plane depicted in Fig. 6.3 (right). As shown in Fig. 6.3 (left) the
maximum real part of the open-loop zeros crosses zero and remains positive for milling
grades smaller than 0.72mm.
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Figure 6.2: One-parameter bifurcation of the granulation process without (left) and with
bed mass controller (right). us of the steady-state particle size distribution - stable (solid
black), unstable (dashed black). (o) maximum and minimum value of the occurring limit
cycle.
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Figure 6.3: Maximum real part of the open-loop poles (solid black) and zeros (dashed
black) (left). Location of the dominant pole and zero pair for increasing mill grade (right).

Therefore, for small mill grades and sufficiently high gains in the mass controllers, ig-
noring the internal dynamics will result in a destabilization of the internal dynamics.
Interestingly, these instabilities may be unobservable from the controlled variable (Fig.
6.4 (left)), as the action of the mass controller leads to their compensation. Instead they
can be observed in the control actuation itself (Fig. 6.4 (right)).
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Control approaches of infinite-dimensional systems can be roughly divided into early and
late lumping and direct design approaches. Here, early lumping approaches are based on a
finite-dimensional system approximation in combination with a finite-dimensional control
design. In own contributions early lumping has been investigated to control elastic crane
structures [4, 15] and particulate processes, granulation [8] and crystallization [17]. The
focus has been however on late lumping and direct control design approaches. Here, with
except for the entropy-based control of a particular configuration of a granulation pro-
cess [18], discrepancy-based control and its extensions have been investigated for various
applications:

e unstable heat equation with quadratic nonlinearity [19],

e clastic crane structures [9],

pellet coating [|21],

agglomeration [1],

granulation [6, 3, 10, 12|,

e crystallization |7, 16].

The proposed adaptive discrepancy-based control is especially promising for particulate
processes, where the determination of process parameters and kinetics is challenging. As
here parameter convergence cannot be assumed in general, additional estimation schemes
based on optimization [5] and Lyapunov stability theory [11, 14, 20, 22| have been pro-
posed.

Stability of the internal dynamics is a crucial property for discrepancy-based control ap-
proaches and should be ideally taken into account with an appropriate choice of the
discrepancy. Otherwise, they can result in control induced stability problems [2|, which
are often hard to detect and analyze. A complementary approach to the choice of the
discrepancy is the design of a parallel compensator, which stabilizes the internal dynam-
ics. In the past, design methods have been limited to linear systems. The first promising
results on a nonlinear parallel compensator design for a finite-dimensional system has
been proposed in [13].
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Nonlinear Control of Continuous )
Fluidized Bed Spray Agglomeration Qe
Processes

Eric Otto, Stefan Palis, and Achim Kienle

Abstract Fluidized bed spray agglomeration is a complex particle formation
process widely used in the agricultural, food, and pharmaceutical industry. It can
described mathematically by population balance equations. This chapter deals with
controlling the nonlinear partial integro-differential equation. Therefore, discrep-
ancy based control, which guarantees exponential stability with respect to some
generalized distance measure, is introduced. Conditions for convergence in a norm
are discussed. Furthermore, robustness with respect to model uncertainties is shown.

1 Introduction

Fluidized bed spray agglomeration (FBSA) is an industrial particle formation
process with the goal of producing particles with predefined properties. Hereby,
two or more so-called primary particles are combined to form a new particle with
different properties. For this purpose, a particle bed is fluidized within an upward
air stream while a binder solution is sprayed into the process chamber wetting
the particles. Due to particle collision and drying of the liquid layer, solid bridges
between particles are formed. This process is depicted schematically in Fig. 1.
Important examples of products in particulate form are fertilizers in the agricul-
tural industry, milk powder in the food industry, or medicals in the pharmaceutical
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Fig. 1 Three stages of agglomeration: (a) particle wetting, (b) particle coalescence, and (c) particle

drying

industry [1]. Particle properties such as size and shape, porosity, and flowability
determine the quality of the product and its suitability in the subsequent processing.
Model-based process control is one way to achieve a constant production rate on
the one hand and the desired product quality on the other hand. Two factors are
currently limiting the effective use of process control. Firstly appropriate process
models capturing the important dynamics are hardly available and secondly deriving
stabilizing controllers is a major challenge due to the complexity of the nonlinear
infinite dimensional system description. In this contribution discrepancy based
control [9, 10, 12] is used to design a stable closed-loop system for a simple process
model. Here, stability with respect to a generalized distance measure is considered.
Furthermore, conditions for stability with respect to a norm are discussed.

2 Process Modeling

The technical realization of the FBSA process is depicted schematically in Fig. 2. In
continuous operation mode, new primary particles as well as binder solution are fed
constantly while particles exceeding a predefined size are withdrawn. Advantages
of this mode of operation are higher throughputs compared to batch agglomeration.

The standard approach for mathematical modeling of FBSA is using a population
balance equation (PBE) balancing the number density distribution (NDD) n(t, x)
depending on time t € %>¢ and some internal or external coordinates x € %".
The external coordinates are usually the spatial coordinates describing the position
in three-dimensional space. However, under the assumption of ideal mixing of
the particle population in the fluidized bed, the spatial distribution of particles
can be lumped. Typical candidates for internal coordinates are particle properties
such as particle size, porosity, or shape. A standard simplifying assumption for the
modeling of agglomeration processes [5] is that particles are spherical, therefore
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Fig. 2 Process scheme

Binder

Particle
Withdrawal

Fluidization air

their shape can be neglected. Additionally, further particle properties except for the
characteristic volume v € %> are neglected, i.e. x = v. The population balance
equation is thus given as

on(t, v)

” = na(t, v) + ng(t, v) — 7o (t, v) 6]

with the aggregation term 71, describing the formation of new particles, the feed term
n¢ describing the particles added to the process, and the output term 7, describing
the withdrawn particles. In the following the terms are described in detail.

The aggregation term was originally derived by Hulburt and Katz [5] and consists
of a birth and a death term

na(t,v) = B(t,v) — D(t, v). 2)
The agglomeration rate
r=p8Cu,v—un(t,u)n(t,v—u) A3)

with the agglomeration kernel B(f, u, v) describes the number of agglomeration
events per unit of time. Usually B(¢,u, v) is divided into a size-independent
part Bo(¢) called the agglomeration efficiency and a size-dependent part S (u, v)
called the coalescence kernel. An agglomeration event is defined as collision and
coalescence of two particles with volume # and v — u, forming a new particle of
volume v. The agglomeration kernel can be interpreted as the frequency of particles
aggregating per unit of time depending on the coordinate v. In the literature a
variety of both empirical and analytical coalescence kernels have been proposed.
A selection can be found in Table 1. As has been investigated in Biick et. al. [2],
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Table 1 Selected

Name Bu,v)
coalescence kernels

Size-independent kernel | 1

Sum kernel u+v

Product kernel uv

Brownian kernel (u1/3 + v1/3) (u*l/3 + Ufl/3)
EKE kernel (' + Ul/a)z Vi T+o 1
Gravitational kernel (u1/3 + 111/3)2 | ul/6 — /6

the agglomeration kernel can have a significant influence on the qualitative process
behavior. A selection of suitable kernels has been evaluated and identified for a
laboratory scale continuous fluidized bed spray agglomeration in Golovin et. al.
(3, 4].

In order to obtain the birth rate of particles with volume v, Eq. (3) is integrated
over the interval [0, v]:

B(t,v) = %/Ovﬂ(t,u,v—u)n(t,u)n(t,v—u)du. 4

The death rate is defined analogously as

D(t,v) = fooﬂ(t, v, wn(t, v)n(t, u)du . 5)
0

Finally, the agglomeration term is given as

na(t,v) = % /(;v B, u,v—wn,u)n(t,v—u)du — /000 B, v,u)n(t, v)n(t,u)du.
(6)

The particle feed is modeled as the product of the normalized number density
distribution go f(v) and the total number N¢(¢) of added particles:

ne(t, v) = Ni(1)qo,£(v). @)
For the particle outlet it is assumed that particles exceeding a specific volume vproq

are removed from the process. Therefore, the separation function 7 (v) is introduced.
Since the separation is not ideal, 7' (v) is modeled as a cumulative Gaussian function

_ v 1 (s — Uprod)z)
T(v) = /0 s exp{ 52 } ds, ®)

where o is a measure of the classification quality. The number density of removed
particles is then defined as follows:

no(t,v) = K@) T (v)n(t, v) ©)]



Nonlinear Control of Continuous Fluidized Bed Spray Agglomeration Processes 77

with removal rate K (¢). Inserting Eqgs. (6), (7), and (9) in Eq. (1) yields the final
process model:

an(r,v) 1 o0

— /v Bt,u,v—un(t,uyn(t,v—u)du — / B, v,u)n(t, v)n(t, u)du
at 2 Jo 0

+ Ni(1)qo.£(v) — K(OT (v)n(r, v).

(10)

For general kernels S(¢,u,v) this PDE cannot be solved analytically. Thus,
numerical solution techniques have to be used. In this contribution the cell-average
method developed by Kumar et al. [6] is utilized for process simulation.

3 Control of Fluidized Bed Spray Agglomeration

This section is concerned with the derivation of stabilizing controllers for the
FBSA. Therefore, the method of discrepancy based control is introduced in the
first subsection and applied to the process in the following subsection. Furthermore,
simulation studies are given and practical problems such as robustness with respect
to parametric uncertainties are discussed.

3.1 Introduction to Discrepancy Based Control

A discrepancy p(¢(.,t),t) is a generalized distance measure. It measures the
distance between the process state ¢(., ), i.e. a solution of the distributed parameter
system, and the equilibrium ¢g. Here, it is of great importance that not all properties
of a metric or norm have to be fulfilled. In the following, the main properties
and facts on stability with respect to two discrepancies are stated in accordance
to [7, 8, 13, 14].

Definition 1 Discrepancy A discrepancy is a real valued functional p = p
[¢ (., 1), t] with the following properties

L. p(p,1) = 0.

2. p(0,1) =0.

3. for an arbitrary process ¢ = ¢(.,t) the real valued functional p(¢(.,1),1?) is
continuous with respect to 7.

In the context of stability with respect to two discrepancies besides the discrep-
ancy p(¢(., t, 1)), measuring the distance between ¢(., t) and the equilibrium ¢, a
second time independent discrepancy pg is used. It describes the distance between
the initial state ¢(., 0) and the equilibrium ¢g. The two discrepancies p and po
have to satisfy, that p(¢(., ?), t) is continuous at time ¢t = f#y with respect to po
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at pg = 0, i.e. for every ¢ > 0 and 7y > O there exists a §(e, tp) > 0, such that from
po < 6(g, tp) it follows that p < &.

Definition 2 Stability with respect to two discrepancies o and pg

The equilibrium ¢y = 0 is stable in the sense of Lyapunov with respect to the
two discrepancies p and pq for all ¢ > ¢ if for every ¢ > 0 and 79 > O there exists a
8 = 8(e, t9) > 0 such that for every process ¢(., t) with pg < (¢, tp) it follows that
p < & forall t > ty. If in addition lim;—, o, p = 0, then the equilibrium ¢ is called
asymptotically stable in the sense of Lyapunov with respect to the two discrepancies
p and pg.

Based on the stated stability concept, i.e. stability with respect to two discrepan-
cies, an according Lyapunov functional V can be introduced.

Definition 3 Positivity with respect to a discrepancy p.
The functional V = V [g, t] is called positive with respect to the discrepancy p,
if V.> 0and V [0, ] = O for all ¢ with p(¢, t) < oo.

Definition 4 Positive definiteness with respect to a discrepancy p.

The functional V = V [, t] is positive definite with respect to a discrepancy p,
if V> 0and V[0, ¢] = O for all ¢ with p(p,?) < oo and for every ¢ > 0 there
exists ad = §(¢) > 0, such that V > §(¢) for all ¢ with p [¢, t] > .

The following two theorems state the conditions for a function V' guaranteeing
(asymptotic) stability with respect to two discrepancies.

Theorem 1 ([14]) The process ¢ with the equilibrium ¢o = 0 is stable with respect
to the two discrepancies p and po if and only if there exists a functional V = Vg, t]
positive definite with respect to the discrepancy p, continuous at time t = to with
respect to py at po = 0 and not increasing along the process @, i.e. vV <O.

Theorem 2 ([14]) The process ¢ with the equilibrium @9 = 0 is asymptotically
stable with respect to the two discrepancies p and pg if and only if there exists
a functional V. = V], t] positive definite with respect to the discrepancy p,
continuous at time t = ty with respect to po at po = 0 and not increasing along
the process @, i.e. 1% <0, with IE)IgOV =0.

As has been discussed in Palis and Kienle [12], stability with respect to two
discrepancies can be interpreted as special output stability, where the discrepancy
defines a virtual system output. Therefore, given a system, which is stable with
respect to two discrepancies, stability of the full system state in terms of a norm is
guaranteed if the zero dynamics are stable.
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3.2 Application to Fluidized Bed Spray Agglomeration

In this section the discrepancy based control introduced above is applied to FBSA.
Therefore, appropriate discrepancies have to be found. For a continuous granulation
process, Palis and Kienle [10—-12] showed, that the differences between desired and
actual moments of the size distribution

Api(t) = /oo v (na(v) —n(t, v)) dv, Y
0

where Ny (v) is the desired NDD, are a suitable choice. Here, the zeroth and the
first moment represent the total particle number and the total particle volume,
respectively. In this contribution the zeroth moment is chosen as control variable
since it can be interpreted physically and its impact on the agglomeration term 71,
is of greater significance. In the following, two discrepancy based controllers are
derived and evaluated. The first controller is a continuous controller guaranteeing
exponential convergence of the control error. The second controller is a discrepancy
based sliding mode controller. Both approaches are then compared.

3.2.1 Discrepancy Based Control

For the control of the zeroth moment, the control error is given as

e=Aug = /Oo(nd — n)dv, (12)
0

where ng is the desired steady state. The according discrepancy and Lyapunov
functional can hence be chosen as

o= %ez, (13)
(14)

Obviously, the error, the discrepancy, and the Lyapunov functional vanish not only
at the desired steady state distribution but for all distributions with an equal zeroth
moment. In order to derive a discrepancy based control law, the first order time
derivative of the Lyapunov functional along the system trajectories is calculated

. o0 8” o o0
V:eé:—e/ —dv:—e(/ r'za+nfdv—K/ Tndv). (15)
0 ot 0 0
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Here, the withdrawal rate K is the control handle. In order to achieve exponential
convergence of the Lyapunof functional, K is chosen as

1 o
K=——— —ce—}—/ n, +nedv ), 16
fOOOTndv( 0 ¢ f ) (16)

where c is a positive constant determining the convergence rate. This gives

V =-2cV. a7

Applying the control law therefore exponentially stabilizes the agglomeration
process with respect to the introduced discrepancy, i.e. the zeroth moment converges
exponentially to the desired value. If the zero dynamics of the system are asymp-
totically stable in terms of a norm, stability of the distribution in terms of the same
norm follows. Since a full analysis of the zero dynamics is usually not feasible for
this type of PDE, a local stability analysis, i.e. using the linearization around the
desired steady state of the discretized system, has been conducted showing that the
associated transfer function does not possess zeros in the right half-plane. Thus, the
zero dynamics are at least locally stable.

Furthermore, it should be mentioned that the denominator in Eq. (16) can vanish
for some distributions leading to an undefined control law or take values close to
zero leading to high controller gains. Due to the latter, K has to be bounded in
practical applications.

To verify the designed control laws, the system was simulated numerically using
the process parameters from Table 2. As agglomeration kernel the Brownian kernel
was used. In Figs. 3 and 4 simulation results comparing open-loop and closed-loop
operation are presented. It is shown that the moments as well as the Ly-norm of
(ng—n) converge in both cases. While the zeroth moment and the L,-norm converge
faster in closed-loop operation the total particle volume (1 does not. To achieve
better performance with respect to this measure, a two-dimensional controller using
the feed rate as another manipulated variable could be derived.

Table 2 Process parameters Parameter | Value

N¢ 380,000
Bo 1x10°10
VUprod 0.9 mm

o 0.3 mm
Knom 0.0125s~!
K max 157!

y 1x1073

c 0.2
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3.2.2 Discrepancy Based Sliding Mode Control

In this section a discrepancy based sliding mode controller is derived and tested
using simulations. For the sake of simplicity and in order to improve comparability,
the same discrepancy and Lyapunov functional as in the previous section are chosen.
The time derivative of the Lyapunov functional along the system trajectory thus is

. o o
V=-—¢ / ny, +ngdv— K ndv ). (18)
0

Uprod
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Assuming there exists a maximum withdrawal rate Ky,x > 0 with

o o0
/ na + nedv < KmaX/ ndv (19)
0 Uprod
the following sliding mode control law
0 ife >0
K = te= (20)
Kmax ife <0

can be chosen, resulting in the required negative definiteness of the time derivative
of the Lyapunov functional

vV <o0. 1)
Therefore, the controller stabilizes the control variable.

Applying the derived sliding mode controller in the simulation setting results
in the closed-loop behavior shown in Fig. 5. As can be seen on the left-hand side,
by applying the discrepancy based sliding mode control law the zeroth moment
converges. In contrast to the discrepancy based controller from the previous section,
this happens in finite time. Shown on the right-hand side, the difference in the
closed-loop convergence behavior of the first moment shown is however less
significant. In Fig. 6 the phase portrait of the two moments (left) and the convergence
in the Ly-norm (right) are depicted.

Besides the simple implementation of the discrepancy based sliding mode control
law, a major advantage compared to the continuous control law is the robustness

8 6
24710 3510
— — —Desired Steady State — — —Desired Steady State
22 Discrepancy Based Control Discrepancy Based Control
——— Sliding Mode Control 3 —— Sliding Mode Control
2
1.8 25
16 &0
|
1.4 é 2
=12t g
1l 1.5
0.8+ 1
061 V”
= 0.5 - -
045 05 1 15 2 0 5 10 15 20
t(min) t (min)
() (b)

Fig. 5 Convergence of the zeroth (left) and the first moment (right) with discrepancy based (red)
and sliding mode(blue) control. (a) Zeroth moment 1. (b) First moment
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Fig. 6 Phase portrait (left) and convergence in L;-norm (right) in closed-loop (red) and open-loop
(black) operation. (a) Phase portrait in the po—u1 plane. (b) Lo-norm

with respect to uncertainties in the model equations. This behavior is examined in
the following section.

3.3 Robustness with Respect to Parametric Uncertainties

For practical implementation robustness of the control laws with respect to model
uncertainties is an important feature. A typical parametric uncertainty for the given
agglomeration process is the feed rate. While the proposed discrepancy based
sliding mode control law does not depend on the feed and therefore possesses
a natural robustness, the control law from Sect.3.2.1 depends explicitly on the
parameter Np. Thus, stability is not guaranteed if the feed rate is disturbed. In
order to compensate for this, the closed-loop control system can be augmented
by a parameter estimator for the feed rate. Then the estimated feed rate is used
to compute the according withdrawal rate. It has to be mentioned that the given
parametric disturbance in the PDE changes the steady state distributions 7 (v).
Therefore, it is generally not possible to stabilize the desired distribution ng(v)
under occurrence of disturbances even if the moments converge.

In order to derive a parameter estimation law the estimation error is defined using
the unknown feed rate N¢ and its estimate Nf as follows:

Ni = Nf — Ny (22)
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The certainty equivalence discrepancy based control law using the estimated feed
rate Nt is given as

1 o A
K=——"—/|—-ce+ / g+ N dv ). 23

Following the well-known Lyapunov redesign approach, the Lyapunov functional is
augmented with a term reflecting the estimation error

1 -~
V = -+ —N2, 24
26 + 2)/ f ( )

where y is a positive constant. Deriving the time derivative of the augmented
Lyapunov functional along the closed-loop system trajectories, i.e. the controlled
agglomeration process, yields

. 1 ~ = - 1 =~
V = eé + —NiNf = —ce® + Ny (e + —Nf) ) (25)
% %

Here, the first term is as before negative definite in e. Due to the unknown sign of the
estimation error Ny the second term is indefinite. Therefore, an appropriate choice

of the parameter update law N £ is

A

Nf = —ye, (26)
resulting in

V = —ce. 27)
Therefore, the error system is stable. To show asymptotic stability and thus
convergence of the parameter estimate, LaSalles invariance principle can be used.

Converging to and remaining at V = 0 the error e has to vanish, i.e. e = 0. Here,
the dynamics of e at e = 0 are given by

o0
é:—/ fa + Nigor — KTndv. (28)
0
After introducing the control law (23) and some simplifications this results in
é = Ny. 29)
Therefore, the derivative of the control error vanishes only if the estimation error is

also equal to zero. Thus, the estimated parameter converges asymptotically to the
unknown parameter value.
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In the following, simulation results for the system with a 50% disturbance in the
feed rate, starting in the desired steady state, are presented. In Fig. 7 it can be seen
that the zeroth moment 1o converges for both controllers, while the first moment is
significantly smaller than desired. The sliding mode controller however has a better
performance. The convergence of the parameter estimator and the (non-converging)
Ly-norm are shown in Fig. 8.

Although it is, for the given configuration, generally not possible to achieve
convergence of the Ly-norm in the presence of a non-vanishing disturbance due
to the change of steady states, performance could be improved by using a different
discrepancy, e.g. the average particle volume, which is the ratio between 1 and .
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Fig. 7 Convergence of the zeroth and first moment. (a) Zeroth moment 1¢. (b) First moment ¢
7
587 12210
——— Sliding Mode Control
5.6 Adaptive Discrepancy Based Control
5.4f 101
521
aie 8F
5 =
4.8 | 6r
=
4.6 =
44} ar
4.2 ol
4
38 . . . . . , 0 . . . . . . . ,
0 10 20 30 40 50 60 0 0.5 1 1.5 2 25 3 35 4
t (min) t (min)
(a) Unknown parameter Ny (dotted red) (b) Ly-norm of n

and the parameter estimate N¢ (black)

Fig. 8 Convergence of the parameter estimator (a) and Ly-norm of n (b)
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4 Conclusion

In this contribution discrepancy based control for continuous fluidized bed spray
agglomeration processes has been proposed. Here, two controller types, continuous
and discontinuous, have been derived and analyzed. By design, both control laws
guarantee stability with respect to the chosen discrepancy. For the given process
configuration the zeroth moment of the number density distribution has been an
appropriate choice. Furthermore, from a local stability analysis of the discretized
zero dynamics and the simulation results it has been shown that the distributed
state is also stabilized asymptotically in terms of a norm. General conditions for the
stability of the zero dynamics could not be stated yet. Additionally, robustness with
respect to parametric uncertainties was examined. Therefore, in order to guarantee
asymptotic stability the continuous control law was augmented by a parameter
estimator. Both the adaptive continuous controller and the sliding mode controller
stabilize the chosen moment at the desired value.
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ARTICLE INFO ABSTRACT

Article history: This contribution is concerned with the stability problems occurring during the operation of continuous
Rece@ved 13 Ap'ril 2020 fluidized bed spray granulation processes with external sieve mill cycle. These processes are in general
Received in revised form 24 May 2020 operated by a mass controller, which guarantees that the overall mass of particles in the granulation
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- ) chamber stays in well-defined bounds. It is well-known that, depending on the milling diameter,
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instabilities may occur, which result in a nonlinear limit cycle of the particle size distribution. To
overcome this problem two approaches have been proposed in the literature, constrain the admissible
parameter space to exclude regions of instability and design additional stabilizing control loops. In
the present contribution, the cause of this instability phenomenon will be studied. It will be shown
that the instability is not inherent to the process, which turns out to be open-loop stable over the
studied parameter range, but due to the mass controller. More specifically, it will be demonstrated that
the zero dynamics of the granulation process become unstable for certain parameter ranges resulting
in closed-loop unstable process behavior. To point out, that this behavior does not depend on the
specific mass controller design procedure, three prototypical mass controllers of practical relevance
are designed and analyzed.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction continuous stream of nuclei particles is generated, which is re-
quired for a continuous process operation. The schematic process

A large number of products from chemical, pharmaceutical, ~ Scheme is depicted in Fig. 1. )
and food industries are converted into a solid particulate state. In principle, the described granulation process can be operated

with [2] and without [3,4] a bed mass controller. However, as
the bed mass has an influence on important process and particle
properties, as e.g. fluidization behavior, residence time, it is often
desired to keep it constant applying a bed mass controller. Here,
the pressure drop across the fluidized bed is often used as a
measure for the bed mass. Examples for the actuated variable are
the rotation velocity of a rotary valve [2] or the countercurrent
flow rate of the withdrawal. The dynamic behavior of differ-
ent configurations of continuous fluidized bed spray granulation
processes has been thoroughly investigated on the basis of math-
ematical models and in experiments. There, it has been shown
that the qualitative dynamics may vary significantly with process
conditions [5,6]. One common situation is a loss of stability due
to the change of a system parameter. This loss of stability is often
connected to the occurrence of a stable limit cycle and results in
self-sustained oscillations of the particle size distribution [5,6].
As this loss of stability is in general undesired different control
approaches have been proposed to stabilize the granulation pro-
cess. From a practical point of view, these additional control loops
* Correspondence to: Otto-von-Guericke-University, Universititsplatz 2, D- ncrease sy.stem.comple')(lty'and are Conr,le_CtEd to addlt,lonal,C(,)StS'
39106 Magdeburg, Germany. Therefore, in this contribution, the stability problem is revisited.
E-mail address: stefan.palis@ovgu.de. It is shown, that the main cause for the aforementioned stability

Here, the particle properties have an important influence on the
product properties, e.g. flowability and dust formation. Depend-
ing on the material at hand, different production processes can
be used. One important process is granulation [1]. It can be
combined with fluidized bed technology, where a particle bed is
fluidized by a temperature-controlled air stream. This fluidization
results in an increased surface of the particle bed and thus an
improved heat and mass transfer. Starting with an initial set of
particles, a solution or suspension is applied through a nozzle. The
additional liquid settles on the particle surface and forms a new
solid layer due to drying. This layer formation results in particle
growth. In this contribution, a specific configuration of contin-
uous fluidized bed spray granulation processes is investigated.
Here, only particles in the desired size range are removed from
the process. This is achieved by particle sieving. Particles being
too small are directly fed back to the process chamber, whereas
large particles are milled to smaller sizes. Due to the milling, a

https://doi.org/10.1016/j.jprocont.2020.06.003
0959-1524/© 2020 Elsevier Ltd. All rights reserved.
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Fig. 1. Scheme of a continuous fluidized bed spray granulation process.
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problem is the mass controller itself. From a practical point of
view, this finding is crucial and should hence be considered in the
control system design for continuous fluidized bed spray granula-
tion processes. The paper is organized as follows: in Section 2 the
population balance model for a continuous fluidized bed spray
granulation with external product classification, is introduced.
In Section 3 different bed mass controller are designed for the
given configuration. Simulation studies show the described loss
of stability. This is further investigated in Section 4 by means
of bifurcation analysis. Here, also a system theoretic explanation
for the observed loss of stability is provided. Some final remarks
conclude the paper.

2. Fluidized bed spray granulation

To describe the dynamical process behavior a population bal-
ance model for the particle size distribution according to [7] will
be stated. As has been shown in [5] the model does reflect the
process behavior well. Regarding the particle size distribution the
main assumptions are that granulation chamber is well-mixed
and that the particles are spherical. Therefore, the dynamics can
be described using one property coordinate, the particle diameter
L, and no spatial coordinates, resulting in an one-dimensional
population balance model for the number distribution n(t, L). As
can be seen in Fig. 1 the change in the number of particles is a
result of the in- and outfluxes:

Ngrowth growth of particles,

Nproa Particle flux due to product removal,

ffines Particle flux of fine particles,

Noversize Particle flux due to oversize removal,

Nmin particle flux due to particles fed back from mill.

The flux of fines particles nsnes can be neglected, as sink and
sources terms cancel. This can be justified by the assumption that
the delay introduced by the sieving is neglectable compared to
the dynamics of particle growth. The resulting population balance
equation therefore is:
on

E = —TNgrowth — Mprod — Moversize + Mmill - (1)

The particle growth is due to injected fluid and its settling and
drying on the particles. Due to the intensive particle mixing inside
the fluidized bed, it can be assumed that particles are uniformly
coated. The effective mass flow rate of solid material to the

particle population is m, and depends on the feed composition
and injection rate. The growth rate G is thus a function of the
effective mass flow rate and the overall particle surface. Here,
the latter can be calculated from the second moment p; of the
particle size distribution n(t, L) [8].

c 2m, 21,
oA omuy
The according flux figroyem is given by

. on
Ngrowth = Gﬁ- (3)

As described above, in the continuous configuration of the flu-
idized bed spray granulation particles are continuously removed
and fed to a sieving box. The particle flux being removed from
the granulator ny,, is

(2)

hout = I(n (4)

where K is the drain, which in general serves as the actuated
variable for the bed mass controller. The removed particles are
sieved in two sieves, where each sieve can be described by an
according size-dependent sieving function T;(L) and T,(L).

_(Wmp)®
2
fie  ieodU )
Typ,=20—_ ~ " 5
/ _(mp)?
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Due to the sieving, the withdrawn particles are separated into
three classes:

1. small or fine particles passing both screens, which are fed
directly back to the granulator,

hﬁnes = (1 - TZ) (1 - T]) flout» (6)

2. particles passing only one screen, product particles, which
are removed from the whole process

flprod = T2 (1 - Tl) houta (7)

3. big particles passing no screen, oversized particles, which
are grinded in a mill and fed back to the ganulator

floversize = Tl flout . (8)

Milling of particles is a complex process, resulting in general
in multi-modal particle size distributions of milled particles [9].
For convenience it is assumed that the particle distribution fed
back from the mill is a normal distribution with mean diameter
iy This is in accordance with [7,10] and does not influence
the qualitative process behavior. To assure that no mass is lost
nor generated during grinding, the particle size distribution of
the milled particles is scaled with the third moment of the flux
oversized particles.

_(mm)?

2
e ZD‘M

V2mmwoom

The population balance model Eq. (1) together with the defining
equations for the fluxes Eqs. (3)-(9) fully describe the dynamics
of the particle size distribution. From an operational point of
view, however, a mass balance model, seems to be often more
appropriate due to its simplicity. This applies also to controller
design.

00
hmill =6 / L3hoversizedL~ (9)
0
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Fig. 2. Open-loop response for a 1% step-wise increase of the steady-state
withdraw rate Ky at t = 0.5h.

2.1. Mass balance

The mass balance model can be directly derived from the
population balance equation (1). For this purpose, the mass of the
particle size distribution n(t, L) inside the granulation chamber at
a given moment in time t is calculated using its third moment

ws(t).

T o T
m= *Q[ Ln(t, L)dL = —ops(t) (10)
6 Jo 6
The change in mass is given by the time derivative of Eq. (10).
(o]
ad
= ZQ/ 2 (11)
6 Jo ot
T o on . .
= EQ A L3 (_Gﬁ — Nprod — Noversize + nmill) dL (12)

Taking into account that the mill is mass conserving, the terms for
the flux of oversized particles and from the mill cancel resulting
in the mass balance equation.

T o0
=t — gg/ L*KT»(1 — Ty )ndL (13)
0

Here, the first term is the effective mass injected with the liquid
into the granulation chamber and the second term reflects the
mass removed with the product.

3. Mass controller

From an operational point of view, it is desired to keep the
mass inside the granulation chamber at a certain set-point to
guarantee a certain fluidization behavior. It is common practice
to achieve this by designing a mass controller based on the
derived mass balance equation, i.e. Eq. (13). In the following, three
different control strategies will be presented. These can be seen
as prototypes for other possible control design methods. All will
use the drain K as the actuated variable.

3.1. PI control

As can be seen for example from the open-loop step response
in Fig. 2 the open-loop granulation process is stable. Therefore,
a simple loop-shaping procedure can be applied to design a
Pl-controller.

The open-loop Bode diagram of the granulation process with K
as control input and the mass m as output is depicted in Fig. 3. To
achieve a zero steady-state error for constant reference changes

40
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Fig. 3. Open-loop Bode diagram without (solid black) and with (dotted black)
PI-controller.

and increase the dynamics of the mass control, the following PI
controller has been chosen:

C(s) =K, (1 + Tis) (14)
N

where K, = —0.001 and Ty = 1000. The open-loop Bode diagram
of the granulation in series with the PI controller is depicted in
Fig. 3. As can be seen the designed controller achieves a phase
margin of 90° and an amplitude margin of 60 dB.

Testing the designed PI controller on the nonlinear granulation
process for a coarse mill grade, i.e. uy = 0.9 mm results in the
behavior depicted in Fig. 4.

3.2. Compensation based control design

The next control design is closely related to nonlinear design,
feedback linearization or backstepping, where undesired terms,
e.g. nonlinearities or time-variant behavior, can be compensated
either in a normal form or at each integrator. However, due to the
fact, that the mass balance equation is a first-order differential
equation and hence possesses a relative degree of one no further
transformations are needed. Therefore, in a first step the error
dynamics are derived by calculating the difference between the
desired mass my; and the actual mass m.

e=mg—m (15)

Taking the time derivative and assuming that the task is set-point
tracking, i.e. my = const., yields:

T o0
6= —1, + ggf L*KT»(1 — Ty)ndL. (16)
0

From a control point of view, the effective mass injected and the
third moment of T,(1— T;)n can be viewed as some known time-
varying functions. Therefore, the following compensating control
law can be chosen:

6 e — ce

- 17
7o [ 3Ty(1 — Ty)ndL (17)

to achieve exponential convergence of the control error e:

e = —ce (18)

where c is the tuning factor to adjust the desired convergence
rate. Here, it is required that the product fraction is always greater
than zero in order to prevent division by zero.

It should be mentioned, that setting the constant c to zero
will result in a vanishing time-derivative of the error e in (18)
and hence constant mass. Therefore, starting with a desired mass
inside the granulation chamber, the reduced control law (17) will
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result in a constant mass. This approach has been applied for
example in [10,11]. There, the drain K has been calculated from
an algebraic equation to achieve the desired mass.

Testing the designed compensation based controller on the
nonlinear granulation process for a coarse mill grade, i.e. uy =
0.9 mm results in the behavior depicted in Fig. 5.

3.3. Sliding mode control design

From a practical point of view, the compensating control ap-
proach has one drawback. It assumes the knowledge of the ef-
fective mass injected and the particle size distribution, which is
in general difficult to achieve. To overcome this sliding mode
control provides a robust alternative. Based on the error dynamics
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Eq. (16) and assuming that the third moment of the product frac-
tion is greater than zero and the effective mass injected bounded,
the following sliding mode control law is chosen

C— :0 ife>0

19
Kinax ife<0 (19)

where Kp,qx is the maximum drain. Assuming the maximum drain
Kinax is chosen such that the following inequality holds:

6 e
> 2
7o [, 3Ty(1 — Ty)ndL

this control results in the following stable closed-loop error dy-
namics:

Kmax ( 2 0 )

ife>0

21
ife<0 (21)

B {—me + KnaxZ0 [ L*KTy(1 — Ty)ndL > 0
It should be mentioned, that the sliding mode control law uses
only the error signal and does not require any additional mea-
surement information. In addition, it is robust with respect to

parameter variations or unforeseen disturbances, e.g. feed vari-
ations, for sufficiently high values of K.

Testing the designed sliding mode controller on the nonlinear
granulation process for a coarse mill grade, i.e. uy = 0.9 mm
results in the behavior depicted in Fig. 6.

The simulation results for all three designed mass controllers
seem promising. The proposed PI controller possesses a consider-
able stability margin and the sliding mode controller is known for
its robustness against matched uncertainties. Therefore, a consid-
erable degree of robustness with respect to process uncertainties
can be expected. This will be further studied for a variation of the
mill grade, i.e. for changes in the parameter wy,.

3.4. Closed-loop simulations for fine mill grade

In the following, the behavior of the same granulation process,
i.e. including a mass controller, will be investigated for a reduced
mill grade reduced, i.e. uy = 0.7 mm, with an initial mass
excess of 10%. As can be seen from Fig. 7 (left) the compensation
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based and sliding mode controller are able to keep the mass at
the desired set-point. The PI controller after a convergence phase
starts to diverge again. However, as can be seen from Fig. 7 (right)
this deviation ends up in small oscillations around the desired
set-point. It should be mentioned, that the amplitude of the
oscillations can be reduced by further increasing the open-loop
gain K, of the PI controller. Interestingly, do all controller show
oscillations in the control variable, i.e. the drain K, the zeroth
and second moment g and wu, and the particle size distribution
n(t, L) itself (Fig. 8).

From an operational point of view, this behavior is highly
undesired. It has been studied in a number of contributions [5,
6,10,12]. Solution approaches, which have been proposed are of
two kinds:

1. avoidance of critical parameter areas by the use of stability
maps derived from a bifurcation analysis [13,14],
2. design of additional stabilizing control loops [9,13,15-18].

Although both approaches circumvent the stability problem,
none of them gives an explanation of the root cause of the
observed instabilities. This will be the scope of the following
investigations.

4. Zero dynamics of continuous fluidized bed spray granula-
tion

4.1. Bifurcation analysis of the open-loop process

In order to understand the mechanisms, which lead to the
observed loss of stability, a bifurcation analysis for the open-
loop system, i.e. the continuous fluidized bed spray granulation
without mass control is conducted. As can be seen in Fig. 9
(left) the uncontrolled system with the second moment u, as
output is stable over a large range of mill grades, i.e. for uy €
[0.9 mm, 0.5 mm]. This is in contrast to the closed-loop system,
i.e. applying the proposed compensating mass controller (Fig. 9
(right)). The results for the PI and the sliding mode controller
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are similar. Independent of the chosen mass controller a loss of
stability and the occurrence of nonlinear oscillations are observed
at around ppy = 0.7 mm.

4.2. Analysis of the zero dynamics

From a linear control theory point of view, it is well-known
that open-loop zeros in the complex right half-plane, result in
bounds on the maximum open-loop gain, as they act as attrac-
tors for closed-loop poles during gain increase. For nonlinear
systems [19] the situation is comparable. Here, applying a non-
linear compensating control law may render part of the system
dynamics unobservable from the chosen output. As will be shown
in the following, the reason for the decreased stability region
when applying mass control lies in the occurrence of zeros in the
complex right half-plane and thus the loss of stability in the zero
dynamics.

As have been discussed already based on the bifurcation anal-
ysis of the open-loop system (Fig. 9 (left)) the uncontrolled gran-
ulation process is stable in the investigated parameter range. This
can also be seen from Fig. 10 (left), where the maximum real part
of the open-loop system poles for variations in the mill grade
are depicted. Here, the maximum real part of the open-loop poles
remains negative and thus all poles remain in the left half-plane.
In contrast, the maximum real part of the open-loop system zeros
changes sign at uy =~ 0.72 mm (Fig. 10 (left)). Thus, the zero
dynamics of the continuous fluidized bed spray granulation with
external sieve mill cycle change their stability behavior and be-
come unstable for sufficiently fine milling. As depicted in Fig. 10
(right) the two dominant pairs of poles and zeros move towards
the imaginary axis for decreasing mill grade. The dominant zero
pair, which can be seen as a linear two-dimensional approxi-
mation of the zero dynamics of the infinite-dimensional process
model, crosses the imaginary axis and thus becomes unstable.
Therefore, mass controllers with sufficiently high-gains will, in
this parameter region, result in a destabilization of the subsystem
associated with the zero dynamics. As has been observed in the
closed-loop simulations for u,; = 0.7 mm these instabilities may
be not observable from the controlled variable (Fig. 7), as they are
compensated by the action of the mass controller. However, they
can be observed in the control actuation (Fig. 8 (top left)).

5. Conclusion

It is well-known that continuous fluidized bed spray granu-
lation with external sieve mill cycle may become unstable for
certain parameter ranges, in particular fine grinding. These in-
stabilities led to nonlinear oscillations in the particle size distri-
bution, which are in general undesired. In this contribution, the

mass controller has been identified as the root cause of the ob-
served instabilities. It has been shown that the open-loop system
is stable and the instability is induced by the mass controller.
Therefore, control system design for continuous fluidized bed
spray granulation processes should be reconsidered. In the liter-
ature two principal approaches have been proposed to overcome
the aforementioned stability problem. This contribution forms the
basis for a third possibility. Future work will be thus concerned
with a mass controller redesign, taking into account the unstable
zero dynamics, and the application parallel compensator for zero
dynamics stabilization.
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layering granulation with external screen mill cycle. To achieve quantitative agreement between model calcula-
tions and experiments an extended dynamic process model is proposed. In contrast to previous work by
Dreyschultze et al. [1] specific plant characteristics are taken explicitly into account including a more detailed
model of the milling process and a classifying particle withdrawal from the granulation chamber. The model is
then used to develop new control strategies. First, a novel bed mass controller is designed and validated. After-
ward, a second control loop is introduced to dampen the oscillatory behavior of the particle size distribution. It
is shown that the new control concepts achieve stable steady-state operation within a short time and thereby im-
prove the process dynamics significantly. Theoretical predictions and experimental results are shown to be in

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In fluidized bed layering granulation (FBLG), product granules of
high quality are formulated by spraying a solid-containing liquid, e.g. a
solution or suspension, onto a bed of particles fluidized with a heated
gas [2]. While the liquid fraction of the injection evaporates, the solid
fraction remains on the surface of the particles inducing a layer-wise
growth [3]. For high production rates, FBLG is operated as a continuous
process. Since product particles are continuously removed, this in turn
requires a continuous supply of new nuclei. This can be achieved either
by internal nucleation due to thermal overspray [4] or grinding of over-
sized particles [5].

As was shown by means of experiments, presented by Schiitte et al.
[6] and Schmidt et al. [7-9], continuous FBLG tends to instabilities in the
form of self-sustained non-linear oscillations of the particle size distri-
bution (PSD). These oscillations lead to variations in the product proper-
ties or, in the worst case, may even lead to a breakdown of the
granulation process. They are therefore highly undesired. To clarify the
potential reasons for these instabilities, different processes configura-
tions were studied by means of model-based analysis. While the au-
thors Vreman et al. [10] and Neugebauer et al. [11] studied the
dynamics of FBLG with internal nucleation, Radichkov et al. [12] and

* Corresponding author.
E-mail address: kienle@mpi-magdeburg.mpg.de (A. Kienle).

https://doi.org/10.1016/j.powtec.2019.05.030

Dreyschultze et al. [1] put the focus on FBLG with formation of seed par-
ticles by milling of oversized particles. All contributions revealed a sig-
nificant impact of the operating conditions on the dynamic stability.
However, besides stability, the operating parameters also affect the par-
ticle properties: The contributions of Hoffmann et al. [13], Rieck et al.
[14], and Diez et al. [15] proved the dependency of selected particle
characteristics, for instance, particle porosity, on the thermal conditions
inside the granulation chamber. Therefore, a careful selection of operat-
ing parameters is essential for the formation of particles with tailor-
made properties under stable conditions. In addition, it has been
shown theoretically that the application of feedback control strategies
is promising to enhance the dynamic stability and the transient behav-
ior of continuous FBLG. Palis & Kienle [16] showed that a linear PI-con-
troller is capable to stabilize continuous FBLG processes in the
neighborhood of some given reference point. The robustness can be in-
creased by H.. loop shaping as presented by Palis & Kienle [16,17]. Fur-
ther suitable approaches to enhance process stability and the dynamics
are adaptive control strategies [18,19], model predictive control [20,21],
and non-linear control strategies as discrepancy based control [22,23].
In multi-stage operation the process chamber is subdivided into com-
partments with different functionalities leading to additional measure-
ments and actuating values. Therefore, Cotabarren et al. [24] and Palis
[25] introduced multiple input multiple output control strategies for
this type of processes. Even though the simulation results of the

0032-5910/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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different control approaches are quite promising, an experimental im-
plementation and validation is still missing.

This gap is closed in the present paper. Focus is on continuous FBLG
with screen-mill-cycle as presented in Fig. 1: Particles are withdrawn
from the granulation chamber via a rotary valve and classified by
screening into fine, product and oversized fraction. After milling, the
oversized fraction is, together with the fines, re-fed to the granulation
chamber while product particles are removed from the process. The ex-
periments are carried out in a pilot plant located at TU Hamburg. Besides
control of PSD, special attention is also given to the control of the bed
mass, which turned out to be non-trivial and is a necessary prerequisite
for stable long term operation of the plant. Furthermore, an extended
mathematical model of the plant is presented and compared to the ex-
perimental findings.

The remainder of the present paper is structured as followed: In the
upcoming Section 1.1 a detailed process description is given. The dy-
namic model of the investigated FBLG is introduced in Section 2. The re-
sults of the experiments are presented and compared to simulation
results in the subsequent Section 3. First, focus is on bed mass control.
Afterward, control of PSD is addressed. Using the developed mathemat-
ical model a corresponding controller is designed to dampen the parti-
cle size distribution. Finally, the results of this contribution are
summarized and an outlook on future directions is presented in
Section 4.

1.1. Process description

The experimental examination has been carried out in a horizontal
fluidized bed plant of type Procell 25 of the manufacturer Glatt GmbH,
Weimar, Germany. The process chamber, presented in Fig. 2, has a
width of 1.00 m, a depth of 0.25 m and a height of 0.40 m and can be di-
vided into four different compartments by introducing weirs. However,
throughout this contribution, no weirs were used and the granulator
was operated as a single process chamber with uniform conditions
due to intensive mixing. All presented experiments were performed
under similar conditions. At the start of each experiment, sodium ben-
zoate particles of the overall mass of 27.5 kg were fed to the process
chamber. The particles were fluidized by fluidization medium. For this

purpose, ambient air was heated up to 85 °C and blown into the granu-
lation chamber. A proper choice of the fluidization conditions is crucial
for the FBLG. Too little fluidization air induces a too small fluidization
velocity ugyiq resulting in an insufficient fluidization of the particles.
Otherwise, too much fluidization air leads to the blow out of the bed
since ugyiq is too high. An overview of the fluidization conditions,
based on [2], is presented in Fig. 3. There, the minimum fluidization ve-
locity is denoted as ¢ While ue), describes the permissible maximum
value of ugyiq. Throughout the experimental investigations, the fluidiza-
tion velocity ugyiq is 2.3 m/s.

The injected solution consists of 35 wt% sodium benzoate dissolved
in demineralized water. Per hour of process time 40 kg solution were
atomized by three two-fluid nozzles located at the bottom of the gran-
ulation chamber. As atomizing gas compressed air was used. The
injected droplets sprinkled the particles surface. Due to the enhanced
heat exchange between particles and fluidization medium, the liquid
phase of the droplets evaporated. The vapor was carried out by the flu-
idization medium. Because of the evaporation, the temperature of the
fluidization medium within the process chamber decreased to 50 °C.
Meanwhile, the remaining sodium benzoate solidified on the particles
surface inducing the layering-growth. Under the examined process con-
ditions, layering was the dominant granulation mechanism. In accor-
dance with Ennis et al. [26], the influence of agglomeration, attrition,
and internal nucleation, was limited by an appropriate choice of the op-
erating parameters.

Particles were withdrawn from the granulation chamber by a rotary
valve. The utilized valve is shown in Fig. 2. The discharged particles were
transported to a two-deck tumbler screen by pneumatic conveyance.
According to the mesh width of the screens, the particles were classified
into three fractions: The fines fraction consists of particles smaller than
0.8 mm, the product fraction comprises particles in the range of 0.8 mm
to 1.2 mm, and the oversized fraction contains particles larger than 1.2
mm. While the product fraction was removed from the process, the
oversized fraction was milled and, together with the fines fraction, re-
fed to the granulation chamber. For grinding of the oversized particles
an impact mill of type Rekord A of Gebr. Jehmlich GmbH, Nossen, Germany
was utilized. As illustrated in Fig. 2, the mill was equipped with pin-mill
grinding elements.

QOwversized

P
X

Wmill=
[
Pmin—
Product
— d32 bed 'y
/ ) Fines
Fluidization
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Wout == - (
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0

Fig. 1. Process scheme of fluidized bed layering granulation (FBLG) with external screen-mill-cycle.
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Fig. 2. Pictures of the utilized equipment: Upper Left: Granulation chamber Procell 25 of Glatt GmbH. Lower Left: Granulation chamber equipped with Parsum Probe and sampling device.
Upper Right: Impact mill equipped with pin-mill grinding elements. Lower Right: Two-deck-tumbler screen and impact mill.

To obtain online information about the particle sizes, the process
chamber was equipped with the inline probe IPP 70-S (Parsum GmbH,
Chemnitz, Germany). Based on spatial filter velocimetry (Petrak [27]),
the probe determines the chord length distribution of the measured
particles, which was used for control purposes. In addition, particle sam-
ples of the bed and the outlet were taken every 20 minutes. By means of
digital imaging processing, the particle size distributions of those sam-
ples were determined with a CamSizer XT (Retsch Technology GmbH,
Haan, Germany) in the post-processing.

fluidization velocities
|

Umf ! uz (l2, 02) )
Uelu
-- wo Y

uy (l1,01)

uo (lo, 6o)

i (7fs)
\\

|
0 0.5 1 1.5 2 2.5
L (mm)

Fig. 3. Left: Velocity of the fluidization medium within the process chamber as well as
elutriation ey, and minimum fluidization uy,s velocity with respect to particles size L.
Right: Cross section of the process chamber Procell 25 of Glatt GmbH with
corresponding width [; and temperatures of the fluidization medium 6;: At bottom lp =
0.25mand 6, = 85 °C, in the process chamber /; = 0.25m and 6, = 50 °C, and at top I,
=1.0mand 6, =~ 45 °C.

2. Dynamic model

The following is based on the population balance model (PBM) pre-
sented in Dreyschultze et al. [1]. In this model, it is assumed that the
granulation chamber is divided into two functional zones. In the first
zone, the spraying zone (index ‘1’), the surface of the particles is wetted
by the injected solution. In the second zone, the drying zone (index 2’),
the liquid fraction of the injected solution evaporates from the surface of
the particles while the solid fraction remains. Each of the functional
zones is considered as well mixed. Particles are assumed to be spherical
with diameter L. Agglomeration and breakage are neglected as
discussed above.

With these assumptions, the population balance equations of the
spraying and the drying zones are

aTh (t, L) aTh

oL 12 + a1 + My in— 11 out (1)
ony(t,L) . . . .
% = N2 — N1 + N2 jn—N2 out 2)

Therein, G describes the growth rate, n; the number density of parti-
cles in zone ‘7, and n; the particles flows according to Fig. 4:

* 113 and ny; describe the particle exchange between the spraying and
the drying zone,
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Fig. 4. Flow sheet of the fluidized bed layering granulation with external screen-mill-cycle.

* 11, the particle inlet to the spraying and the drying zone, and
* N oy the particle removal from the spraying and the drying zone.

Following Morl et al. [2], the particle growth rate G is based on a uni-
form particle growth depending on the total surface of particles in the
spraying zone A;(t) = mfo(Ln,(t,L))dL, by

_ 2Xinjrninj

3
pAD )
with the injection rate ri;,; and the corresponding mass fraction x;,; and
mass density ps of the solid fraction within the injected suspension.

The relative volume of particles within the spraying zone

ae— MM ,Ltj(ni):/ijni(t,L)dL 4)
0

Hs(n1) + U3 (n2)

and the drying zone (1 — «) are assumed to be constant.
Thus, the condition 5 (f12) = p5(f11) with the particle exchange
rates between the spraying and the drying zones
fiz(t,L) =ny/71 and Ay (t,L) = np/7s 5)
are expressed in terms of residence times 7; and 7. Assuming (15 (1112) =
13(f121), yields the following relation between the residence times and o
(28]
111 =(1-a)/(ar) . (6)
Characteristic values for aand 7, for different process configurations
were given in the literature (see Biick et al. [29] and references therein).
Main differences to the model presented in [1] are related to the cal-
culation of 11y i, 11 out, M2,0ut iN Eqs. (1) and (2), which depend on the
product withdrawal, the bed mass control and the model of the mill.
These aspects have been modified as follows to gain a better quantita-
tive description of the plant dynamics:

a) The model used in this paper admits a variable total bed mass to sim-
ulate the behavior of the bed mass control strategy. In contrast to
this, a constant bed mass was assumed in [1] corresponding to an
ideal controller.

b) In the experiments to be discussed subsequently, it was observed
that larger particles are preferably withdrawn from the bed com-
pared to smaller particles. Therefore, the assumption of a

representative product removal from the bed in [1] was replaced
by a classified product removal.

¢) The model of the mill is crucial for a quantitative prediction of the
process dynamics. Therefore, a more detailed model of the mill
was identified from stand-alone milling experiments and added to
the plant model.

Details of these modifications are given in the following step by step.
2.1. Particle withdrawal from the bed and external product screening

Particles are withdrawn from the process chamber by a rotary valve.
It is assumed that the rotary speed of the valve w,,; determines the

Table 1

Nomenclature according to the presented fluidized bed layering granulation.
Nomenclature
A (mm? particle surface
ds; (mm) Sauter mean diameter
e (=) control error
G mm/e) growth rate
k (=) gain
K (=) gain of the withdrawal
L (mm) diameter of particle
L; (mm) separation diameter
1 (*¢/) mass flow rate
n (Ymm) number density of particles
n (Ymm number density of particle flow
p (W electrical power
qo (Ym) normalized number density of particle
qs (Ymm normalized volume density of particle
Q; (Y mm cumulative normalized particle size distribution
t (s) time
T (=) separation function
u (™/s) velocity of fluidization medium
X (s) mass fraction
Greek letters
a (=) relative size of granulation zone
Ap (mBar) pressure drop
0 (°0) temperature
w(-) (mm@=1) it order moment of argument
I1; (=) parameter set of power of mill
p (&2 m) mass density
o (mm) variance of separation
T (s) time constant
0] (%) relative rotational velocity
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Fig. 5. Scheme of the size-dependent mill model: Oversized particles fioyer are classified into the six fractions fiy in ; by separation functions Ty ;. Each fraction i is milled with @,y to the

corresponding My ouei- Finally, the milled fractions are merged to iy out-

mass flow of the discharged particles by

mout(t) = kout - Wour  0=Mout <Moutmax (7)

Thus, in a first step, oy is used as manipulated variable to control
the bed mass mpeq. Bed mass is measured by means of pressure drop
across the bed Appeq, Which is in good approximation proportional to
the bed mass for constant fluidization conditions applied in the experi-
ments. Control is done with a PI controller according to

t
Gout(t) = Kpout <eApbed 1/Tion /0 eAprddt> 8)

with 0 <@gy £ Mout,max and eApbed(t) = (Apbed,ref - Apbed) where
Apped rer denotes the reference value of the pressure drop.

Based on gy the number density flow of the withdrawn particles is
calculated with

hout(tv L) = ﬁ],out + hZ,out (9)
:KTout(nl +n2) (10)

where the drain gain K is determined by

ﬂ3 out
K=—""7Z" 11
155 (Tou (M1 1 112)) ()

with ft3 o, = 6Tout/TPs. The term To, accounts for the classified prod-
uct removal from the bed which was observed in the experiments.
This is modeled with the separation function

Jy exp(=(—-1)*/(20?))
Jo exp(—(L—Li)z/(Zoiz))

Ti(L;, 01) = (12)

with separation diameter L; = Lo, and variance 0; = Ogy. As will be
shown in Section 3, the separation diameter depends on the current
particle size distribution of the bed. In particular, it is assumed that
Loyt equals the characteristic value x5 g, i.e. the particle size were the

cumulative volume based particle size distribution Qs(n; + ny) equals
0.6:

Lout =X360 With Q3(L=x360) =06 . (13)

Table 2
Parameter set according to the simulation study.

Granulation chamber and injection

Mped 27.50 (kg)
« 0.05 (-)
T, 100.00 (s

Xinj 035 ( - )
i 40.00 (/)
Ps 1440.00 (k&3
Particle withdrawal

kp,out —60.00 (%/mm)
Kout 2.00 (*/z-n)
Oout 0.75 (mm)
Tiout 120.00 (s)
mout,max 40‘00 (DO)
Particle screening

Lscreen,] 1.20 (mm)
Oscreen,l 0.125 (mm)
Lscreent 0.80 (mm)
Oscreen,l] 0.05 (mm)
Milling process

Kpypass 0.75 (=)
Lcutsize 0.375 (mm)
Ocutsize 0.105 (l‘l’ll’l‘l)
Linini [1.01, 1.14, 1.37, 1.58, 1.80] (mm)
Omilli [4.05, 13.44, 8.64, 8.58, 9.41] (mm)
Power of the mill

Mimingi [—3.09, —286.04, 25.85, 0.04, —0.0008] (=)
Tmill 0.10 (‘%)
Parameter of controllers

Kp.p 0.005 */w)
Tipmn 12.00 (s
kp.d., 250.00 (Yam)
Pmillo 120.00 (W)
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Fig. 6. Control schemes of the experiments: gray configuration was used in experiment 1, green configuration in experiments 2-4, and overall configuration in experiment 5.

By screening, the withdrawn particles are further classified into
three fractions: Fines fifes, product Aproqyct, and oversized figyer. The
screening process is described by

ﬁover(t7 L) = Tscreen.l hout ’ (14)
hproduct(tyL) = (] - Tscreen.l)Tscreen,II hout ) and (]5)
ﬁﬁnes(t-, L) = (] - Tscreen.l) (1 - Tscreen,ll) ﬁout . (16)

Again, the separation functions Tscreen and Tscreen s are given by Eq.
(12) with the parameters {Lscreen,ly Gscreen,l} and {Lscreen,llv Oscreen,ll} re-
spectively. While the product fraction is removed from the process,
the oversized fraction is milled, and together with the fine fraction,
recycled to the granulation chamber serving as new nuclei (Table 1).

2.2. Particle milling
The milling of oversized particles has a significant influence on the

dynamics of the investigated FBLG process [1,8,12]. Thus, a detailed
model of the milling is essential for the quantitative prediction of the

granulation chamber

g3 (1/mm)

plant dynamics. In general, milling of granules is complex. For instance,
the type and configuration of the mill as well as particle properties, e.g.
porosity and size, have a major influence on the breakage of particles
during milling [30,31,32]. Following the ideas in Neugebauer et al.
[33], an empirical PBM of the grinding process was established. How-
ever, compared to [33] a more detailed model of the mill was developed
in the present work taking into account the influence of particle size dis-
tribution of the feed to the mill on the grinding processes. Since the PSD
of milled particles cannot be measured inline, the following preliminary
experimental study was performed: Particles of different sizes were
classified into six fractions by screening. Samples of 0.5 kg were milled
with the relative rotational velocities wmyy; = {10,15,20,25}%, i.e. 24 ex-
periments were performed in total. The PSDs of the samples were deter-
mined before and after milling with the CamSizer XT. Based on the
measurements, the separation functions of the five screens

O mill i

Tt (Limiti> Omini) = <1 + (Lmill,i/L)z) exp <1(L/L)2> (17)
— (L/Linini

with i€{1,2,3,4,5} were parameterized. Further, the normalized

particle outlet

N

qo (1/mm)

wo

time (h)

Fig. 7. Experiment 1: Number and volume based, normalized size distributions qo(t,L) and g3 (T,L) of particles in granulation chamber and particle outlet. The distributions were

determined by measuring the taken samples with a CamSizer XT.
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Sauter mean diameter
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Fig. 8. Experiment 1: Upper Left: Sauter mean diameter of particles in granulation chamber and outlet over time. Product range is high-lighted in gray. Upper Right: normalized particle
size distribution qo(t,L) of bed and outlet at t = 12h. Product range is high-lighted in gray. Lower left and right: mass fractions of product and oversized particles in bed and outlet.

number densities of the particle size distributions of the milled particle
fractions qo minour; Were determined for the different values of @p;y.

These quantities are used for modeling the mill as follows (see also
Fig. 5). First noyer is separated into six fractions with the according screen
functions Tmill,i

5

flow rate of each fraction i is determined:

o, mill out,i(@milt; L)
13 (Go mitt outi (@mi; L))

Nt out,i (£, L) = Kmit (20)

Subsequently, the fractions 7y out; are merged again. The particle

Aot ini (£, 1) = Tt i1 H(l ~Thinj)fover 1€ {6,5...... 2} (18) size distribution ey of the milled particles were obtained by linear in-
- terpolation between available measurements for the specific values of
o given above. Further, it is taken into account, that, due to the in-
and creased throughput during the continuous FBLG, the efficiency of the
milling decreases. For that purpose, a by-pass of particles with gain
5 kbypass is introduced, representing the uncomminuted particles of 1oyer:

Amittin1 (6,1) = [T(1 = T j) flover - (19)

=1

The relative mass of each fraction i is conserved and determined by
Kenini(t) = 3 (Al in.i) /U3 (Mover) . Based on ky;, the milled particle

pressure drop
|

6
hmill,out(tv L) = kbypassﬁovel' + (1 - kbypass) Z hmill,out.i . (21)

i=1

velocity of valve

- 12 40 T !
® —~
T R 80p |
= 6 £ 20
i 3 3 10 =
4 0 0 | |
0 5 10 L 20
velocity of mill power of mill
25 : - 300 :
<= 20 =
S 15 Z 200
5 10 1 F 100 .
3 5 - Q%
0 | | 0 | |
0 5 10 (7 20 0 5 10 2 20
time (h) time (h)

Fig. 9. Experiment 1: measured pressure drop over bed Apy.q, relative rotational speed of the rotary valve at the outlet oy, relative rotational speed of the mill @y, and electrical power of
the mill p,;;. In the experiment, the mill was operated with a constant @y, = 17%. Alternations of p,; indicate an uneven particle comminution resulting in variations of the Appeq
(reference value: Appedrer = 6 mBar). The experiment was interrupted at t, = 15.5 h.
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Fig. 10. Particle size distributions of samples at lower and upper turning point of dsheq for open-loop experiments 1-4. Corresponding sampling times: experiment 1-13.6 h (lower
turning point) and 21.4 h (upper turning point), experiment 2-13.0 h and 10.6 h, experiment 3-33.4 h and 37.7 h, experiment 4-31.3 h and 35.3 h. Product range is highlighted in gray.

Finally, it is assumed, that, because of the fluidization conditions pre-
sented in Fig. 3, dust particles are blown out according to

hdust(ta L) = (1 - T(Lcutsizm O_cutsize))ﬁmill‘out . (22)

Again, the separation function T(Lcytsizes Ocutsize) iS described by Eq.
(12). The remaining particles are, together with rg,,es, re-fed to the gran-
ulation chamber:

hin(tv L) = hﬁnes + T(:ucutsizev Ucutsize) hmill,out . (23)

The recycled particles are distributed to the spraying and drying
zone with respect to the respective relative volume:

My in(t,L) =0 ftin and  Npjn(t, L) = (1—)Miy (24)

2.3. Numerical solution

The dynamic model was implemented in MATLAB (2018a,
MathWorks, Natick, MA, USA, 2018) applying a method of lines ap-
proach. Based on a finite volume method approach, the partial

500
400
300

200

Pmill,s (W)

100

Will (%)

15

— 200 250
100

mmill (kg/h)

Fig. 11. Black box model of the stationary electrical power of mill: pys with respect to
mill throughput ri,;; and relative rotational speed of the mill @

10 50

differential Eqs. (1) and (2) were discretized using a first order upwind
scheme with 200 equidistant grid points in the domain L = [0,5] mm.
To solve the resulting system of ordinary equations the MATLAB built-
in solver ode15s was utilized. The model parameters used for all simula-
tions are shown in Table 2. The initial particle size distributions n(t =
0,L) and n,(t = 0,L) are based on the CamSizer measurement of the first
sample of the particle bed of the related experiment.

3. Experiments and simulation study
3.1. Operation with constant rotational speed of the mill

In the first experiment, the pin mill was operated with a constant
relative rotational speed as introduced in the previous section and illus-
trated in Fig. 6 with the gray box. This operation mode is the standard
configuration of the investigated FBLG and was, for instance, also used
by Schmidt et al. [8,9,34].

The corresponding temporal evolution of the number and volume
based normalized particle size distribution qo;(t,L) and gs;(t,L) of bed
and outlet are presented in Fig. 7. The size distributions are character-
ized by oscillations with long periods. As depicted in Fig. 8, the oscilla-
tions can also be observed by monitoring the Sauter mean diameter of
bed d3;peq and outlet ds; oy The Sauter mean diameter, defined as the
area-weighted mean size of a particle population and determined by
dso; = 5(qo,i)/H2(qo;), 1s a representative of the PSD. Throughout the
experiment, ds; oy Was larger than ds; peq. The deviation indicates the
classifying impact of the particle withdrawal. As illustrated by the parti-
cle size distribution qo; of bed and outlet, as an example the samples at
t = 12h are presented in Fig. 8, primarily large particles were discharged
from the process chamber.

Because of the oscillations of the PSD, the related mass fractions of
fines Xfines, product Xproduce and oversized particles Xoyer varied. As the
bed mass is controlled via Appeq and oy, See Egs. (7) and (8), the

Table 3
Overview of the experiments.
D Product Omill Pmill,ref 33 rer
1 0.8-1.2 mm 17% - -
2 0.8-1.2 mm - 170 W -
3 0.8-1.2 mm - 140 W -
4 0.8-1.2 mm - 120w -
5 0.8-1.2 mm - - 1.2 mm
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Fig. 12. Left Column: normalized number and volume based particle size distributions o peq and g3 peq Of experiment 2. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

oscillations led to variations of the mass flow of withdrawn particles
TMout. Since gy cannot be measured online, the variations of rigye
can only be observed by monitoring the rotational speed of the rotary
valve at the particle outlet .. As shown in Fig. 9, w, varied in the
range of [0,0oumax] throughout the experiment. Based on previous
experiments, the upper limit 0oy max Was found to be 40% as a further
increase of g, did not raise rigy. It is due to this restriction that not
enough product particles were discharged from the FBLG. This was ex-
acerbated by the classifying particle withdrawal: in the outlet, product
particles were displaced by oversized particles (see Fig. 8). The insuf-
ficient product removal induced a rise of myeq and, as illustrated in Fig.
9, an increase of the pressure drop Appeq. Similar patterns of behavior
were observed by Schmidt [34]. In the present case, the continuously
increasing bed mass finally led to the shutdown of the process.

pressure drop
[ |

—~ 12
=
i )
Z 6 et
T
2 3l .
Y
4 0 | | |
0 5 10 15
velocity of mill
25 \ 7
< 20
ST
T 10 N
3 5| |
0 | | 1
0 5 10 15

time (h)

In addition, the classifying outlet induced an overgrowing of parti-
cles in the further course of the experiment. Particles of product fraction
were not withdrawn from the process chamber in a sufficient quantity.
In consequence, particle growth proceeded such that the particles en-
tered the oversized fraction. This is illustrated in Fig. 10. There, qoped
and g3 peq at a local minimum and maximum, in the following denoted
as turning points, of d3; peq are shown for the experiments 1-4. Of spe-
cial interest are the modes, viz. the peaks, of the PSDs. At the lower turn-
ing point, t = 13.6 h, the modes of the PSDs are in the fines fractions. In
the progress of the experiment, the particles have grown, leading to a
shift of the modes to higher particles sizes. At t = 21.4 h, the upper
turning point of ds; peq, the modes are in the oversized fraction. In con-
sequence, the mass portion X,y in bed and outlet increased resulting in
a higher mill throughput ri,.

Sauter mean diameter

d32 bed (Mm)

300 Power of ‘mlll

Pmin (W)
3

0 | | |
0 5 10 15

time (h)

Fig. 13. Comparison of selected data of experiment 2 (black line) and the corresponding simulation results (blue line). By adjusting wm;, the mill was operated with constant pi; = 175
W. While Apy.q is at a constant level, the Sauter mean diameter ds; eq is characterized by non-linear oscillations. The measured Sauter mean diameter is based on the measurements of the

CamsSizer XT.
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Fig. 14. Left Column: normalized number and volume based particle size distributions go peqand g3 pea Of experiment 3. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

As illustrated in Fig. 9, the milling process is influenced by ri1,,;;. An
increase of the mill throughput, characterized by high values of @q¢
and Xover, led to a decrease of the electrical power consumption of the
mill ppin. This indicates, in combination with the large maxima of ds,,
ped and d33 our, the inadequate comminution of oversized particles. The
uneven milling supported the overgrowing of the particles and there-
fore the occurrence of the observed oscillations.

3.2. Closed loop control of the mill power
To enable an even milling of oversized particles feedback control
was applied to keep the mill power constant at a given reference

value by readjusting the rotational speed of the mill. For this purpose

pressure drop
[
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g
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< |
0 10 by 30 40
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again a PI controller was used. The block diagram of the control loop is
illustrated in green in Fig. 6. The dynamic model was extended accord-
ingly. In particular, it was assumed, that the dynamic behavior of p,;;
can be described by a first order lag element (PT;):

Prmitt(£) = (Prmitts—Prmint) /Tmit (25)

As indicated by experimental findings, the stationary value of the

electrical power pmiis depends on ®p,; and the mass throughput ritgy,
= (1ps/6)H3 (Tover ). Based on previous measurements, the correlation

Pmill.s(Omill, Mmin) = . 26)
I + Ty + (T3 + T40miy) exp(—TTs + Te@min) Mmin)

Sauter mean diameter
[

I
" 0 Lol
AR
A
W
| i
0 10 tr 30 40

time (h)

Fig. 15. Comparison of selected data of experiment 3 (black line) and the corresponding simulation (blue line). The mill was operated with constant pmiy = 140W. While Apyp.q is at a
constant level, the Sauter mean diameter ds;eq is characterized by slow decaying, non-linear oscillations. The measured Sauter mean diameter is based on the measurements of the

CamSizer XT, the experiment was interrupted at t, = 21.25 h.
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Fig. 16. Left Column: normalized number and volume based particle size distributions go pea and g3 peqa Of experiment 4. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

was established by a least square fit. The functional correlation of pp;s
and its arguments is presented in Fig. 11.

To study the influence of the milling on the process stability, exper-
iments 2-4 were performed with different reference values of the mill
power pminrer. The set-points of the different experiments are presented
in Table 3. Following Dreyschultze et al. [1] and Radichkow et al. [12], it
is expected that a reduction of i ref leads to an enhanced process sta-
bility. Throughout the experiments 2-4, the classifying effect of the par-
ticle withdrawal described in the previous section is observed again.

In experiment 2, the mill was operated with pp;jref = 175 W. The
results are presented in Figs. 12 and 13. Again, qo peq and 3 peq are char-
acterized by oscillations. As shown in Fig. 10 the measured PSDs are
now more compact than in the first experiment: Firstly, the distance be-
tween the modes of qo peqa and g3 peq at lower (t = 13.0 h) and upper

pressure drop
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turning point of ds; peq (t = 10.6 h) narrowed. Secondly, the ampli-
tudes of the corresponding modes decreased. This leads, as depicted in
Fig. 13, to a decrease in the amplitudes of ds; peq. In consequence, the
mass portion of the product fraction is of sufficient size throughout
the experiment. Thus, the adequate removal of product particles from
the FBLG is guaranteed such that, as monitored by the pressure drop
APped, the bed mass my,q is constant over time. Although the operating
conditions of the FBLG are constant, the intense milling of oversized par-
ticles induced the formation of a large number of small nuclei. In accor-
dance with [1], this leads to the formation of self-sustained oscillation of
the PSDs. Therefore, it was not expected that the process settles down to
a stable steady state so that the experiment was terminated at t = 17 h.

In experiment 3, the reference value of the electrical power of the
mill prinrer Was reduced to 140 W. Due to the large run-time of 40 h,

Sauter mean diameter
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Fig. 17. Comparison of selected data of experiment 4 (black line) and the corresponding simulation results (blue line). The mill was operated with constant pyii; = 120 W. While Appeq is at
a constant level, the Sauter mean diameter ds; peq is characterized by decaying, non-linear oscillations. The measured Sauter mean diameter is based on the measurements of the CamSizer
XT, the experiment was interrupted at t, = 17.0 h.
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Fig. 18. Bode plots of the full order system G,om(j®) and the reduced system Gieq(j®) of
order 5.

the experiment was interrupted after 21.25 h of process time and
restarted again. Figs. 14 and 15 present the related particle size distribu-
tions of the bed and further measurement information. Once again,
ApPped and pp are at a constant level throughout the experiment. Due
to the decreased pny;, the particle grinding was reduced. As shown in
Fig. 10, the modes of qo peq and g3 peq Shifted to a larger particle size L
at the lower turning point of ds; peq at t = 33.4 h. This leads to a more
even particle growth resulting in a slow decay of the oscillations of the
particle size distributions and, in consequence, of the oscillations of
d32,bed-

Afterwards, pminrer Was further reduced to 120 W in experiment 4.
Related PSDs and measurements are presented in Figs. 16 and 17. In ex-
periment 4, a faster decay of the oscillatory behavior is observed com-
pared to experiment 3. As illustrated in Fig. 10, the deviations
between the PSDs at the lower and upper turning point of ds; peq, Sam-
pling times are t =313 h and ¢t =35.3 h, are, compared to the

C. Neugebauer et al. / Powder Technology 354 (2019) 765-778

previous experiments 1-3, quite small. It is expected, that in the further
course of the process these deviations would vanish such that the pro-
cess would reach stable steady-state conditions. However, the decay
to steady state is very slow due to the oscillatory behavior. In addition,
the settling is aggravated by disturbances, such as the restart of the
FBLG at t; = 17 h. Therefore, the experiment was terminated at t =
40 h.

Comparison between experiments and model predictions are also
shown in Figs. 12-17 for experiments 2—-4. In general, simulation results
and experimental findings are in good agreement. The maximum values
of Gopea and G3 peq, as well as the period of the oscillations in Figs. 12, 14,
and 16, are at the same level resulting in a similar shape of measured
and simulated PSDs. Furthermore, Figs. 13, 15, and 17 show the good
agreement of py; and @y, between experiments and simulations.
With respect to pminrer, the model is capable to reproduce the different
forms of dynamic behavior. As illustrated in Fig. 12, i ref = 170 Win-
duced oscillations of g peq and g3 peq With large amplitudes. In contrast
to this, the PSDs are characterized by slowly decaying oscillations for
Pmill,ref = 140 W and DPmill,ref = 120 W (See FlgS 14 and ]6)

3.3. Additional closed loop control of the Sauter mean diameter

To enhance the dynamics of the process and establish operation with
constant PSD as fast as possible, a cascade controller was designed: As
illustrated in Fig. 6, the Pl-controller for the bed mass is extended by
an outer loop to control the Sauter mean diameter ds; peq by readjusting
the reference value of the mill power pp rer. The plant model presented
in this paper was used for controller design. As a first step, the dynamic
model is numerically linearized at the stationary state according to the
default parameter set with pmiyref = 120 W. The resulting linear
time-invariant (LTI) transfer function G,om(j®) of order 403 describes
the dynamic behavior of the output signal ds; peq With respect to the
input signal pp; ref in the neighborhood of the steady state. By means
of a balanced truncation, the full-order system is reduced to a system
of order 5 [35]. The reduced model G,q(j®w) shows good agreement
with the nominal system Gpom(j®) as illustrated with the Bode plots
in Fig. 18.

Based on the transfer function G.q(j®), a feedback controller is de-
signed by means of the root locus method [36]. Root loci represent the
location of the closed loop poles in the complex plane depending on
the controller gain. They are illustrated in Fig. 19 for a P controller
(left figure) compared to a PI controller (right figure). They start in

104 P controller 104 PI controller
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Fig. 19. The root-locus of the closed-loop system G (jw)with respect to controller gain kq.,. Poles of G(jw) are indicated by x, the according zero by o. The damping ratios of Gq(jw) are
specified in gray. Left: A suitable tuned P controller kg, increases the damping ratio of G (j®) and guarantees a stable steady-state operation. Right: Due to the pole introduced at the origin,
one pole of the PI controlled closed-loop system is in the right half-plane hence Gq(j) is unstable for all kg, .
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Fig. 20. Left Column: normalized number and volume based particle size distributions o pea and g3 peq Of experiment 5. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

the open loop poles of the controller and the system to be controlled in-
dicated by the crosses in Fig. 19 and end in the open loop zeros indicated
by the circles in Fig. 19. In both diagrams one branch is tending to —e.
The controlled LTI system is stable if and only if all closed loop poles
lie in the left half plane. Usually, controllers with integral action are pre-
ferred in view of steady state accuracy [36]. However, from Fig. 19 it is
readily concluded, that the system is not stabilizable if the controller in-
cludes integral action like the PI controller in the right diagram. This is
due to the fact, that any integral action introduces an open loop pole
in the origin and that the branch starting from the origin lies entirely
in the right half plane. Therefore, a P controller was selected, which al-
lows stabilization with good damping for some suitable controller gain
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as illustrated in the left diagram. From this diagram, we further con-
clude that this will even work for higher mill powers when the open
loop system becomes unstable and the pair of conjugate complex
poles of the plant close to the imaginary axis is shifted from the left to
the right half plane.

In the next step, the designed P controller was validated with a sim-
ulation study. For this purpose, the nonlinear dynamic plant model pre-
sented in Section 2 was extended by the controller according to

Prmill.ref (£) = Kay, sy 00 + Prmill0 (27)

with the control error eg.,, , = d32rer — 32 bed-
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Fig. 21. Comparison of selected data of experiment 5 (black line) and the corresponding simulation results (blue line). Based on the inline measured particles size distribution the process is
controlled. The related control scheme is presented in Fig. 6. After a sufficient time the process settles at steady state characterized by constant Apyeq and dsz ped.
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As the simulation results were promising, the designed P controller
was implemented at the plant and tested in experiment 5. The Sauter
mean diameter was measured inline with the equipped Parsum probe.

Simulation and experimental results are illustrated in Figs. 20 and
21.1tis shown that the overall control strategy dampens the oscillations
of d3 ped and thus also the oscillations of the PSD within relatively short
time and achieves a stable steady state with constant bed mass mpegq.
Compared to the corresponding scenario without control of the Sauter
mean diameter which was shown in Fig. 17, the process dynamics
were improved significantly. In Fig. 17 a stable steady state could not
be achieved within the first 40 hours, whereas in Figs. 20 and 21 a stable
steady state is reached within 5 hours. Again, there is a good agreement
between simulation and experiments.

4. Conclusion

In this article, control strategies for stabilizing the bed mass and the
particle size distribution of a continuous fluidized bed layering granula-
tion process with sieve-mill-cycle were developed step by step and val-
idated experimentally. For the first time, it was shown experimentally,
that the process dynamics can be improved considerably by using
even relatively simple control strategies. The theoretical development
was based on an extended plant model, accounting for a more realistic
description of the product removal, the grinding of the oversized parti-
cles and the bed mass control compared to our previous work [1,12,33].
The model showed good agreement with the experimental findings and
can be used for further studies on dynamics and control of continuous
FBLG processes.

Future work will focus on a rigorous evaluation of more advanced
control strategies as described for example in [16,23]. Furthermore,
the dynamic model can be extended to account for other important par-
ticle properties, like particle porosity, for example [37]. Such a model
could be used to develop and test more advanced process configura-
tions in silico. A typical example are multi chamber processes, which
admit different operating conditions in different process chambers
and can therefore be used for the formulation of more advanced parti-
cles. To enhance the performance of those processes and guarantee
the formation of particles with desired properties, suitable control strat-
egies for multi chamber processes can also be developed using such an
extended dynamic model.
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control system. This article presents a robust control-based approach for active damping of
the gantry crane elastic structural vibrations. The crane model with additional uncertainty
models are derived using the finite element method (FEM). In order to achieve low order
Damping of elastic vibrations model§ that can pe clir_ectly used for the control system desigp modal trupcation as a model
Model order reduction reduction technique is performed. The robust controller is then designed by the H..-
H..-loopshaping control loopshaping design procedure evaluating the associated robustness margins. The proposed
Gap metric feedback strategy has been successfully verified on a laboratory gantry crane.
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1. Introduction

Currently, well-thought-out logistics and faster cargo transportation play an important role in the enhancement of trade
and industry. In order to consume less time for these operations, application of automated equipment, including cranes, is
needed. Gantry cranes are commonly used for loading and unloading of containers at port terminals (Fig. 1). To increase effi-
ciency, a lot of the gantry cranes are operated at high velocities of the crane trolley, which causes larger swing angles of the
crane cargo [2].

Over the last five decades there has been a vast research in the field of the modelling and control of cranes. Here, a variety
of models and control approaches for different types of cranes has been covered [3,4]. One of the most important topics in
this field is the reduction of load swaying due to the positioning process applying different control strategies: sliding mode
control [5-8], error tracking control [9], adaptive tracking control [10,11], energy-based control design [12,13], and output-
based input shaping techniques [14,15] etc. In the majority of the contributions it is assumed that the crane structure is of
infinite stiffness and therefore structural dynamics can be neglected. Verification is predominantly provided using mathe-
matical crane models or small scaled laboratory cranes with ideal stiff structure. However, with the continuous increase
of crane dimensions and utilizing lightweight construction structures the assumption of ideal stiffness becomes more and
more less valid and the coupling between elastic structural vibrations and the trolley movements has to be taken into
account.
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Fig. 1. The gantry crane from a container port [1].

In the last two decades the problem of the structural flexibility has been stated for different types of cranes ranging from
gantry, overhead and ship-to-shore (STS) container cranes [16-25] to slewing cranes [26-28]. This contribution is concerned
with large gantry cranes. Here, two main structural dynamical problems are of interest: vertical girder vibrations due to the
trolley travel and low frequency vibrations in the trolley travel direction. The first problem is called the moving load problem
and has been well covered with the modelling and analysis in [16,18,19,29,30].

In this paper the low frequency vibrations of the crane structure in the trolley movement direction are studied. Being par-
ticularly negative because of the large amplitudes and only weakly damped behaviour, these vibrations reduce the crane
operation performance of load positioning and produce additional mechanical stresses which leads to faster construction
wear. Moreover, these vibrations may have a disturbing influence on the crane operator, deteriorating his working condi-
tions and comfort [24]. In Fig. 2 the vibration measurements from real gantry crane by normal operation and its fast Fourier
transform are depicted. It can be seen that the first eigenfrequency f; = 0.5 Hz is the important significant in the system
dynamics during normal cargo transportation operations.

Currently, several approaches can be found for vibrations reduction in the gantry crane structures. In [22] the authors
offer to optimize the crane structure by increasing supporting legs thickness or by stiffening the gantry. A passive and an
active damper via additional passive and actuated weight as counter-mass have been proposed in [31]. In the first case,
the obtained system damping was relative small (up to 10%) comparing to the implementation and material costs (30 t
counterweight). In the second case, the resulting system damping was more notable (up to 60—70%). However, an additional
linear drive system (with 5 t counterweight) for its application is needed resulting in additional costs.

For a different crane type it has been shown that the structural dynamics can be taken into account as an additional con-
trol task for the motion control system. In [29] authors offer an active damping approach for vertical container crane vibra-
tions using the modal coupling. Here, the classical crane model is extended with the a FEM based crane structure model. The
vertical vibrations are then taken into account designing an appropriate anti-sway damping strategy using pole placement.
As a control handle the hoist drive system is used. In [27,28] active damping approaches for flexible tower cranes are pro-
posed. Here, control of the slewing motion provides the damping of the elastic jib and tower vibrations. In [27] the authors
propose an early lumping control approach to control the rotating Euler-Bernoulli beam. After spatial discretization and
modal order reduction pole placement and LQR control are suggested for the crane damping control. In [28] the optimal con-
trol problem for a rotating elastic crane coupled with a trolley-load system is introduced. In [32] it has been shown that
including the elastic crane model in anti-sway control for simultaneous damping of the load swinging and crane structural
vibrations is possible. The proposed approaches have shown promising results in simulations.

Motivated by aforementioned studies, a robust control-based approach for active damping of the gantry crane vibrations
is presented in this article. For this purpose, the trolley position control system has been extended by the elastic crane model.
In order to design the robust controller for the extended plant, the H.-loopshaping design procedure has been applied and
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Fig. 2. Crane vibrations acceleration (above, grey), its filtered values (above, black) and its fast Fourier transform (below, black).

robustness margins have been evaluated in the terms of the gap metric. The resulting controller has been verified on a lab-
oratory gantry crane.

Section 2 presents the modelling of the elastic gantry crane and model order reduction. Model uncertainties and errors
are described in Section 3. The robust controller design is introduced in Section 4. Section 5 concludes the article with exper-
imental results from a laboratory gantry crane.

2. Gantry crane modelling

In this section the dynamic model of the gantry crane plant is derived. As depicted in Fig. 3 this model includes a con-
trolled electric drive as it is used in most crane applications for tracking the reference position and elastic structural dynam-
ics. The classical cascade control structure performs the trolley positioning using the motor voltage as a control input u,. This
implies that in the considered robust control design the actuated variable is the reference position r,. In this contribution the
following assumptions for modelling are made:

1. the position controlled drive eliminates the feedback action of load movement and elastic crane oscillations on the trol-
ley, and compensates the friction forces;

Reference
trajectory
Tr Uy ir Ug
Position Velocity || Current | Cranetrolley Elastic crane
controller controller controller with drive system dynamics
¥ % [ ay

Fig. 3. Crane plant model.
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2. coupling between the load swinging and the crane vibrations can be neglected as from the practical point of view they are
in a different frequencies range, e.g. load swinging range of frequencies - f; = 0.08 — 0.2 Hz for rope length variations
between I, = 30 — 5 m respectively, first natural frequency of real gantry cranes - f; = 0.5—0.8 Hz;

3. external disturbances on the crane and load are neglected, e.g. wind, waves etc.;

4. the load swinging is neglected, assuming that it can be stabilized by a competent operator or optimized reference

trajectory.

2.1. Model of laboratory gantry crane

It has been introduced that weakly damped low-frequency crane vibrations is a serious structural dynamics problem,
which can be taken into account by the crane trolley motion control. In order to reflect the dynamic behaviour of large gantry
cranes and to verify the robust controller, a laboratory model has been designed (Fig. 4). Here, the legs have been built of thin
plate material, resulting in a limit stiffness and oscillating dynamic behaviour in trolley direction. This laboratory crane is
considered for the further mathematical modelling and control design.

The structural scheme of the model is represented in Fig. 5. Here, the model consists of a trolley travelling over a girder
(jib) and elastic supporting legs, which are fixed in the lower part. The trolley is moved via a tooth-belt drive by a DC-motor
with reduction gear, mounted on the girder. According to the aforementioned assumptions no hoist system nor load are
taken into account in this contribution. The trolley loading is performed by a rigid fixing of the crane trolley and an addi-
tional load on the top of the trolley.

Omm

0
©
©
0

140mm_|_

Fig. 4. CAD Model and photo of the laboratory gantry crane model.
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Fig. 5. Laboratory gantry crane.
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The position controlled DC drive accomplishes the trolley movement along the linear girder axis. This drive is equipped
with a current sensor and an incremental encoder providing digital measurements of current, rotation velocity and angle of
the trolley motor. In addition, inertial motion unit (MinIMU-9) is mounted on the girder, which measures girder acceleration
of the laboratory model. The trolley drive control system, damping control and bandpass filter for acceleration signal are
implemented on a micro-controller (Arduino Mega 2560). The trolley cascade position control is described in next section.

2.2. Model of trolley drive system

Currently, most crane systems are equipped with electric drives that typically provide velocity or position control of trol-
ley travel via classical cascade control with P and PI controllers (Fig. 6) [2]. Here, the control system consists of an outer posi-
tion control loop G,(s) and inner velocity G,(s) and current (torque) control loops G;(s). For the following cascade structure
the control design is usually performed step by step. The inner PI controller C;(s) for the motor current plant P;(s) is designed
first, after which the PI controller C,(s) for the augmented velocity plant G;(s)P,(s) is designed. At the last step, the position P
controller C,(s) for the G,(s)P,(s) is tuned [33,34]. The electrical and mechanical subsystems and the corresponding con-
trollers can be represented as follows:

l(S) 1 1/Ra

P =06) " T+ 1 Ts 1 (1)

G(s) = k- L5 @)
L)1
Pv(s) l(S) *k_ms (3)
Cu(s) =k, - T;t Ly 4)
ris) 1
Py(s) W 5 (5)

where T, is the time constant of the rectifier, T, is the electrical time constant of the DC drive, R, is the resistance of the
electrical part of the DC drive, k; and T; are the proportional gain and time constant of current PI controller, k;, is the mechan-
ical parameter which resembles the inertial mass of the drive system and conversion of the angular motor velocity coordi-
nate into linear velocity, k, and T, are the proportional gain and time constant of the velocity PI controller and k, is the
proportional gain of the position P controller. In this work all controllers coefficients are adjusted according to the magnitude
(modulus) optimum procedure that is explained in details in [33,35]. Application of this procedure for the electric drive sys-
tems results in a good reference performance with small overshoot values. The trolley drive system simulation parameters
are represented in Table 1.

In order to verify the crane model with laboratory crane the positioning reference tracking of the crane trolley has been
studied with a step change of the desired position to r, = 200 mm. Simulation and experimental results are depicted in Fig. 7.
As can be seen, the linear simulation model of controlled trolley drive reflects the dynamics of the laboratory gantry crane
and the positioning behaviour resembles the linear first order system dynamics. The current mismatches are a result of the
neglected friction forces and the peak of the current value during the positioning is about 1.5A which is 50% of the maximum
limitation value i,,q = 3A. Therefore, it can be assumed that the laboratory crane operates in its linear region. Hence, for con-
venience, in the further gantry crane plant modelling and damping control design, we consider that the position control loop
G,(s) can be approximated as a simple first order system:

r(s) 1

e =) T 1 @

n-(s) () 0r(s) uq(s) i(s) v(s) r(s)

—0—{C,(5) Co(8) PO Ci(s) [ Pi(9)

P, (s) P-(s)

\ 4

Gi(s)

Gy (5)

G (5)

Fig. 6. Gantry crane position control scheme.
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Table 1

Trolley drive system parameters.
Parameter Value Unit Parameter Value Unit
Ta 56-107* [s] Ty 5.107° [s]
Ra 25 Q] ki 3.7 -1
T; 6-1073 [s] km 6.6-10° (-1
ky 6 [-] T, 5.8.1072 [s]
kr 4.1 [-] T, 0.1 [s]

30
i 1
2 M
220 < 051
g ] ~ 1
~ h = OMpp= = = = = = = =
= 10 \ {
i -0.5
wa o
; o A
0 10 0 10 0 10

5 5
t/s t/s

Fig. 7. Simulation (dashed, blue) and experiment (solid, grey) time responses for trolley positioning with reference trajectory (dotted, red). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where T, is the time constant which can be identified using the experimental data.
2.3. Model of elastic crane

Modelling and control of mechanical elastic structures is a non-trivial task due to its infinite-dimensional nature. Appli-
cation of analytical approaches is restricted in most cases to simple geometries and boundary conditions. For more complex
structural geometries, e.g. geometry of gantry cranes, utilizing numerical methods for model lumping are usually preferred
[23,27,29].

Currently, there are a lot of commercial finite element packages that are suitable for modelling and analysis of a wide
range of infinite-dimensional physical problems. Most of them provide options for importing CAD model geometries and
exporting dynamic models. Having reliable models available allows to design and to test the control system at the stage
of crane production and to accomplish virtual commissioning.

In order to derive the dynamic model of the elastic crane, including the displacements and its derivatives, the Solid
Mechanics interface of the commercial software COMSOL Multiphysics is used. The gantry crane geometry is imported from
the CAD model of the laboratory crane, where small dimensional parts of the model have been simplified to reduce compu-
tational time. In Fig. 8 the model of the gantry crane is depicted in two dimensions. It consists of the aluminium solid girder
and the aluminium alloy solid legs. All masses of the simplified geometry correspond to the masses of the real elements of
the laboratory crane. The physical parameters of the FEM model are summarized in the Table 2. For the lower cranes legs
fixed constraint boundary conditions are applied. An external point force F; resembles the excitation due to the trolley travel.
The damping coefficient £ = 0.1 has been obtained from practical measurements. The crane structure is discretized applying
a distributed mesh with quadrilateral elements resulting in n; = 1124 degrees of freedom (DOF).

Here, the spatial discretization of the partial differential equations yields the equations of motion with ny DOF:

MU +DU +KU =F, (8)

where K, D and M are assembled the global stiffness, damping and mass matrices; U, U and U are displacement, velocity and
acceleration vectors at all structure domain nodes and F is the nodal forces vector.

Material induced damping can be performed by the Rayleigh damping where the damping matrix D is a linear combina-
tion of the stiffness K and mass M matrices:

D = oM + K, )
where f is the stiffness-proportional and o is the mass-proportional factors.

Assuming the external force is an input to the crane plant u(t) = F; and the point at the girder M is the displacement out-
put y(t) = q, the model can be expressed for small variations as a linear state-space model of high order
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Fig. 8. Gantry crane FEM model.

Table 2
FEM elastic crane model parameters.
Parameter Value Name Parameter Value Name
g 0.82 [m] Girder length - 0.005 [m] Girder height
ly 0.001 [m] Legs width In 0.548 [m] Legs height
m; 0.3 [kg] Trolley mass m; 0-0.6 [kg] Load mass
Eg 210" [Pa] Elastic modulus (girder) E 34.10° [Pa] Elastic modulus (crane legs)
Vg 0.3 Poisson’s ratio (girder) 3\ 0.28 Poisson’s ratio (crane legs)
Py 2363 [kg/m3] Density (girder) Pi 6124 [kg/m?3] Density (crane legs)
X(t) =Ax(t) + Bu(t), (10)
y(t) =Cx(t) + Du(t), (11)

where A, B, C and D are the system matrices.
2.4. Model order reduction

The order of the derived state-space model is 2248. For the further control design an additional model order reduction
should be introduced. In this contribution modal truncation is used. One of the advantages of this technique is that the poles
of the low order model are a subset of the poles of the high order model and, hence, all of the eigenfrequencies preserved
retain a physical interpretation [36,37].

The modal truncation technique is based on a special modal representation form of the state-space model. If the system
matrix A of state space model Eq. (10), (11) has complex conjugate eigenvalues, it is possible to transform this matrix into a
block diagonal form using the similarity transformation

210 -~ 0

o~ —~ —~ 0 j.z 0 O; —Q;

A=TaT=| T | zi={w', (,} 1] < || < -+ < |, (12)
: . . . i i
0 0 0 4

where the matrix T is composed of the eigenvectors of matrix A and /; = g; £ jw; are the eigenvalues of matrix A. From a
physical point of view, these values represents the main properties of mechanical system modes. Namely, Re(/;) = o; char-
acterizes the mode damping, and Im(/;) = w; represents the natural frequency of the eigenmode.

Transforming the state-space model Eq. (10), (11) into its modal form
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where

A=T7'AT, B=T'B, C=CT, D=D,

the state vector X can be partitioned into two parts [X; X;] ". Here, the vector X, represents the slow eigenmodes and X, rep-
resents the fast modes. Hence, model Eq. (13), (14) can be rewritten as follows:

x| [A 0% B
[2}‘{5 m}kj+{é}“ (15)
v=¢& EZH;E;}+D”' (16)

Removing the system part corresponding to X, will result in an approximation of (10), (11) as

X1 =A1X1 + Byu, (17)

y=Ci%: + Du (18)
with the following equivalent transfer function

Gi(s) = C1(sI — A1)"'By + D. (19)

The number of eigenmodes that should be included in G; (s) after the truncation always depends on an individual appli-
cation case. From a practical point of view, in order to decide on the appropriate order, the elastic crane dynamics and the
trolley drive system dynamics should be analysed in frequency domain. In general, the faster the drive system dynamics is,
the more system eigenmodes can be excited and therefore should be conserved. In Fig. 9 the Bode magnitude plots of the
system are depicted. As can be seen, the trolley drive system in this case is relatively slow and we assume that only the first
system eigenmode with angular eigenfrequency w; = 5.84 rad/s can be influenced. Therefore, the second order approxi-
mated model G;(s) is considered for the damping control design.

2.5. Model of overall gantry plant

The overall plant model G, (s) which reflects the influence of the loaded or unloaded trolley movement on the crane struc-
ture is represented in Fig. 10. Here, the elastic vibrations are excited due to the trolley acceleration forces F, that can be
derived from the second derivative of the trolley position r(s) and the trolley mass m,. The output of interest of the overall
gantry plant model G,(s) for the further control design is the girder acceleration ay. Simulation and experimental results of
trolley positioning and elastic vibrations excitation are depicted in Fig. 11. Reduced order simulation model of elastic gantry
crane reflects the dynamics of the laboratory model with only small mismatches due to non-linearities of real elastic
structure.

3. Uncertainty models

The idea of this paper is to propose and verify the robust control law that satisfies a robust stability and a certain perfor-
mance criteria for a gantry crane with varying and uncertain parameters. Assuming that although the equations of motion
are the same, parameters of the system structural dynamics for loaded and unloaded cranes are different and the stiffness of
the crane legs is not exactly known. In this case, additional performing of uncertainty models is needed. Moreover, using
model order reduction techniques yields additional errors, which should be taken into account.

0 | |
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Fig. 9. The Bode magnitude plots of the high order (solid, grey), low order (dashed, blue) and trolley drive system (dotted, red) models. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Crane plant augmented by the trolley position control.

3.1. Coprime factor description and gap metric

From a robust control design perspective, the considered set of models for different parameters can be encapsulated in a
nominal plant G,(s) and a set of bounded uncertainties [36,38]. The uncertainties must be stable and have a finite H,.-norm.
In order to include the model uncertainties for weakly damped or undamped elastic structure models, application of the
coprime factor description should be preferred. The nominal system normalized coprime factorization can be formulated
as follows:

Na(s)
Go(S) = -t | 20
where M, (s),Nn(s) € H,, are coprime transfer functions that satisfy the Bezout identity
M (S)Ma(—S) + Na(5)Na(—$) = 1. (21)

The family of uncertain system models Ga(s) can be described by the nominal system G,(s) and coprime factor uncertain-
ties Ay (s) and Ay(s) as illustrated in Fig. 12.

_ Nn(s) + AN(S)
 Ma(s) + Auls)”

In general, application of the coprime factor description for the uncertain models yields an additional degree of freedom
for selection of Ay (s) and Ay(s). To reduce conservatism, a coprime factor description with a minimal H,, — norm for Ay(s)
and Ay(s) should be selected, which leads to the introduction of the gap metric.

As stated in [39,40] the gap metric J, between the nominal system model G,(s) and the uncertainty model G(s) can be
estimated as a maximum of the directed gaps between these systems

Ga(s) (22)

3¢(Go, Ga) = max{35(Go, Gn), 35 (Ga, Go) }, (23)
where
5(GorGa) i= | inf {[[BwBnl. : Ga}. (24)
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Fig. 11. Simulation (dashed, blue) and experiment (solid, grey) time responses of the gantry crane with trolley position control. (For interpretation of the
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references to colour in this figure legend, the reader is referred to the web version of this article.)

5
t/s



I Golovin, S. Palis / Mechanical Systems and Signal Processing 121 (2019) 264-278 273

AN(S) | AM(S)

u(s) y(s)
Nn(s) P> M,I(S)

Fig. 12. Coprime factor uncertainty.

The gap metric possesses values between zero and one. The systems are close in terms of the gap metric if the value is
close to zero. From the control point of view, it means that the two systems can be stabilized by the same control law. For a
robust controller design the maximum value of the gap metric between the nominal model and set of uncertain models can
be used as a measure for the required robustness margin.

Being a metric, the gap metric satisfies the triangular inequality

8(Gy,Gs) < 8(Gy,Ga) + 8(Gy, G3), (25)

which can be used for calculations of corresponding estimates by multiple error sources. For instance, the triangular inequal-
ity can be utilized to calculate an estimate for the distance between the low order uncertain model G, and the original nom-
inal model G in the terms of the gap metric §(G,, G) taking into account a low order approximation of the uncertain system
G1 = G,, a low order approximation of the original nominal system G, = G, and a high order representation of the original
nominal system G; = G. Hence, the model order reduction errors or numerical lumping errors can be considered in a unified
manner.

3.2. Gantry crane model uncertainties

In this work, we consider that the system structural dynamics for a loaded and unloaded gantry crane varies and the crane
legs stiffness is not exactly known. Therefore, a set of gantry crane models can be obtained using the steps proposed in Sec-
tion 2.3 - 2.5. This set of models Il¢, including 169 models, is generated from the nominal FEM-model by variations of addi-
tional mass on the girder my consisting of constant trolley m, and varying load masses m;, and elastic modulus of gantry legs
material E;. It is considered that these parameters for model variations are within certain intervals:

my = mz(l + kmAm)7 E = El(] + kEAE)7 (26)

where my and E; are the values of the nominal model, k,,, ks and A, A define possible variations.

In this contribution, the following parameter values are chosen k,, = 0.5,k = 0.3 and -1 < A, A < 1 representing up to
50% uncertainty in the crane loading and up to 30% in crane legs stiffness (Fig. 13). The nominal model G,(s) € I1¢ corre-
sponds to half of the crane loading capacity and can be achieved for A,;, = Ag = 0. The transfer function of the nominal model
for the given in the Table 2 parameters yields:

4
Gols) = —3-107 - - . 27)
(s+10)(s+50)"(s? + 0.16s + 34.62)
The Bode magnitude plots and the gap metrics for a set of crane models are depicted in Fig. 14 and 15.
As can be seen from Fig. 15 the maximum of the gap metric is
64(Ga,G,) = 0.29 (28)
A E;,GPa
44
0.3 0.6 09| ™Mzkg
>
34
24

Fig. 13. Domain of parameter variations.
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and the error due to the order reduction in terms of the gap metric is
3g(Go,G) = 0.02. (29)

Therefore, the required robustness margin for the robust controller can be calculated from the triangular inequality Eq. (25)
[40]

3(Ga, G) < 3(Ga, Go) + 3(Go, G) = 0.31. (30)

4. Control design

In this section the robust control design for active crane vibrations is performed. In order to reduce the elastic swinging in
the trolley travel direction for the described set of varying gantry cranes the control law is obtained using H,, - loopshaping
procedure.

4.1. H,, - loopshaping control

The idea of the H,, - loopshaping design procedure is based on the combination of classical loopshaping ideas and H,, -
robust stabilization [36,38,41]. Here, the control design consists of two steps. In the first step the open-loop system eigen-
values are adjusted using a compensator in such a manner, that certain requirements for the closed loop system are fulfilled.
In a second step a robust, with respect to normalized coprime factor uncertainty, stabilizing controller for the shaped plant is
obtained.

To reflect closed-loop performance requirements the open-loop singular values can be adjusted using a weighting func-
tion W(s) as depicted in Fig. 16

Gs(s) = G(s)W(s). (31)

For a given shaped open-loop plant in its normalized coprime factor representation G(s) = N(s)/M(s) the controller K,
which guarantees a maximum robustness margin with respect to the normalized coprime factor uncertainties, can be
obtained from the following H.. - control problem

<el (32)

I[5 )=
1 | (14 GK)M
The maximum robustness margin €4 can be calculated as follows:

€max = (l + P(XZ))71/27 (33)

=)

where X and Z are the positive definite solutions of the following algebraic Riccati equations

(A - BR’1DC) X+ x(A - BR’IDC> _XB'R'BX+CR'C" =0, (34)

(4-BR'DC)Z +2(A~ BR’IDC)T _ZC'R'CZ + BR BT =0, (35)

with R = 1 + D?. Based on the stabilizing controller K., for the augmented plant G;(s) the overall controller K can be derived
as

K(s) = Koo (s)W(s). (36)

Application of the H,, - loopshaping for the plant G,(s) with robust stability margin €, results in a controller K, which sta-
bilizes all plants G, (s) with gap metric d4(Gs, Ga) < €.

4.2. Simulation results

For the controller design the nominal plant transfer function G(s) is considered (Fig. 14, blue line). Here, the transfer func-
tion has a slope n; = +80 dB/decade at the low frequency range, a slope n, = —60 dB/decade at the high frequency range, a
peak at the eigenfrequency w; =5.84rad/s with magnitude |Gs(jw;)|=47dB and a gain crossover frequency
o, = 191 rad/s. It can be seen, that the transfer function has an unbiased output state and a high value of gain crossover
frequency w., which can boost the influence of the measurement noise or neglected high frequency modes dynamics. Hence,
the main objective for the loop shaping is to reduce the frequency w.. The compensator W(s) providing the open loop shape
for the robust control design is therefore chosen as follows:
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Fig. 14. The Bode magnitude plots for two sets of uncertain systems.
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where ky = 0.1 and Ty = 0.05 are gain and time constant of the weighting function W(s) respectively. The Bode magnitude
plots of the nominal system plant and the shaped plant are depicted in Fig. 17. In order to adjust these parameters the trade-
off between fast transients and robustness requirements has been taken into account.

For the shaped crane plant model G;(s) = G(s)W(s) the robust controller K, is derived with stability margin € = 0.48. As
the margin is greater than the maximum of the gap metric dg mex = 0.32, the achieved controller guarantees robust stability
for the set of the uncertain gantry crane models.
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Fig. 17. Bode magnitude plots for the nominal system plant (solid, blue) and the shaped system plant (dashed, red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. The Bode magnitude plots for two sets of uncertain closed loop systems.

In Fig. 18 the Bode magnitude plots for the set of uncertain closed loop systems and obtained controller are illustrated.

5. Practical application

The presented active damping method using the crane trolley has been implemented on a laboratory gantry crane. For
verifications the same scenario of trolley positioning as in Section 2.2 is used. In Fig. 19 the comparison of simulation and
experimental results are presented. Here, position mismatches are a result of the neglected friction forces and non-
linearities of the reduction gear. It is observable that using the proposed active damping approach as an additional task
for the trolley motion control system yields a notable system damping. Moreover, this redesign of the trolley control system
can be also extended for a simultaneous anti-sway load damping and active damping of the crane structural vibrations [32].

In order to verify the robustness properties of the achieved controller, additional experiments for a varying mass my are
shown in Fig. 20. Here, ms = 0.6 kg corresponds to the nominal case with half loading of the crane capacity, ms = 0.9 kg cor-
responds to the maximum loading and my = 0.3 kg contains only the mass of trolley. It can be seen that the designed control
law completely fulfils the robustness requirements and a notable system damping for different crane loading conditions can
be achieved.
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Fig. 19. Simulation (dashed, blue) and experiment (solid, grey) time responses of elastic gantry crane with damping control. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. Experiment time responses of elastic gantry crane with (solid, blue) and without (dashed, grey) damping control for varying loads. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6. Conclusion

A new damping approach for gantry crane vibrations, using only trolley acceleration forces, has been presented and suc-
cessfully verified on a laboratory gantry crane. For designing a robust control law, that guarantees the robust stability and
the performance specifications for gantry cranes with different loading and unknown stiffness parameters, H,, — loopshaping
synthesis has been applied. In order to derive a mathematical description of the elastic gantry crane dynamics, FEM has been
used. The derived high order models have been reduced using modal truncation approximation. In order to represent a set of
gantry cranes, a normalized coprime factor description has been used for the parametric uncertainties. The robust controller
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has been designed and successfully applied to the laboratory gantry crane. For further verifications the presented robust
damping approach has to be verified on a full-scale real crane in combination with an anti-sway control system.

In human operated gantry cranes undamped elastic crane vibrations of high amplitudes are unacceptable for the crane
operator. However, an excessive additional actuation on the trolley motion due to the additional damping strategy can also
disturb the crane operator. Therefore, future work should explicitly take into account the comfort of the crane operator intro-
ducing an additional performance criteria.
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Abstract: Agglomeration represents an important particle formation process used in many industries.
One particularly attractive process setup is continuous fluidized bed spray agglomeration, which
features good mixing as well as high heat and mass transfer on the one hand and constant product
throughput with constant quality as well as high flow rates compared to batch mode on the other
hand. Particle properties such as agglomerate size or porosity significantly affect overall product
properties such as re-hydration behavior and dissolubility. These can be influenced by different
operating parameters. In this manuscript, a population balance model for a continuous fluidized bed
spray agglomeration is presented and adapted to experimental data. Focus is on the description of
the dynamic behavior in continuous operation mode in a certain neighborhood around steady-state.
Different kernel candidates are evaluated and it is shown that none of the kernels are able to match
the first six minutes with time independent parameters. Afterwards, a good fit can be obtained,
where the Brownian and the volume independent kernel models match best with the experimental
data. Model fit is improved for identification on a shifted time domain neglecting the initial start-up
phase. Here, model identifiability is shown and parameter confidence intervals are computed via
parametric bootstrap.

Keywords: population balance modeling; continuous fluidized bed spray agglomeration; parameter
identification; identifiability

1. Introduction

Agglomeration is a particle formation process in which at least two primary particles are combined
to form a new one. This principle is often used in many industries, e.g., pharmaceutical manufacturing
and food processing. The properties of the formed agglomerates, e.g., size, shape and porosity,
significantly affect its end-use properties, e.g., dissolubility of food powders, processability and
storeability [1]. In industrial practice, agglomerates are often formed in drums, pans or fluidized beds.
The advantages of the latter include good mixing as well as high heat and mass transfer between
particles, liquid and gas phase [2]. Compared to widely applied batch processes, an additional benefit
of operating in continuous mode is a constant throughput with constant quality due to the steady-state
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operation. Therefore, in this contribution the focus is on continuous fluidized bed spray agglomeration,
which was not in the focus of research efforts so far.

The process scheme is shown in Figure 1. The particles in the chamber are fluidized by a flow of
hot gas from the bottom, liquid binder is sprayed on the particles in the form of small droplets to make
them wet. Due to random collisions liquid bridges between particles are formed. These can become
solid by drying and thereby agglomerates consisting of different numbers of individuals are formed.
Microscopic pictures of primary particles and agglomerates are depicted in Figure 2.

exhaust gas
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Figure 1. (Left) Real pilot scale fluidized bed used for experiments (Right) Schematic representation of
fluidized bed spray agglomeration process.

Figure 2. (Left) Scanning electron microscope (SEM) picture of primary particles; (Right) SEM picture
of agglomerates at steady state.

The formation of the agglomerates and thereby the product properties can be influenced by
variation of different operating parameters and process configurations, such as feed rate, binder
concentration and temperature of the fluidization gas [3,4].

It is well-known that the individual particle properties, such as characteristic volume and porosity,
differ from particle to particle. The emerging heterogeneity significantly affects the process and thereby
the overall product properties. As an alternative to Monte-Carlo modeling approaches [5-7] the
framework of population balance modeling (PBM) [8] can be used to account for the aforementioned
heterogeneity in particle formation processes such as granulation (see [9-11] and the references therein)
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or agglomeration. Detailed modeling of all involved mechanisms would results in multi-dimensional
population balance equations, which are in general multi-dimensional partial integro-differential
equations and thus challenging to solve numerically (see [12,13] for an example). For this reason,
studies usually account for a single particle property, mostly characteristic size or volume. The resulting
model represents a one-dimensional nonlinear partial integro-differential equation, which can be
solved numerically, e.g., applying the cell average [14] or spectral method [15]. In contrast to the
more complex modeling approaches [16,17], in this contribution the kinetics are described in a more
mechanistic fashion [18] on the basis of the agglomeration kernel characterizing the formation of new
particles by binary agglomeration. This is favorable, as the resulting model will be used to design
a model based controller, which allows to keep the process close to a desired steady state in case of
unforeseen disturbances. In this contribution, a number of physically motivated or heuristically derived
kernel candidates ([19] and references therein) will be used. This results in a set of model candidates,
which can be fitted individually to experimental data [20-23] by minimization of an objective function.
To ensure that the obtained estimates are unique, i.e., there is a unique set of parameters achieving a
minimum value of the objective function for the given measurements, identifiability of the parameters
for the different models has to be checked [24,25]. As an alternative to analytical methods [26],
the framework of profile likelihoods provides an easy accessible algorithm to investigate structural
identifiability [27]. If this necessary premise is fulfilled, parameter confidence intervals have to be
computed to infer how errors in the available measurements affect the estimates. Ideally, these
could be determined by re-estimation of the model parameters for a large number of experimental
replicates. However, if only a low number or even no replicates are available, parametric bootstrap
can be applied [28,29], which is less restrictive than classical methods based on the Fisher-Information
Matrix [30]. Those methods use artificially reproduced (“bootstrapped”) measurement sets. For each
set, a parameter estimate is computed yielding a bootstrapped set of parameter estimates, which can
subsequently be used to derive parameter confidence intervals.

The manuscript is structured as follows. In Section 2, the experimental setup, mathematical
modeling and parameter identification procedure are explained in detail. The results of the parameter
estimation are shown in Section 3. Furthermore, identifiability of the best model candidates is
investigated and results for the parametric bootstrap are shown. Section 4 concludes this work
and gives an outlook to possible future research directions.

2. Materials and Methods

2.1. Experimental Setup

The experiment was realized in a pilot scale plant depicted in Figure 1. The cylindrical fluidized
bed has a inner diameter of 300 mm, schematically shown in Figure 1. Particles were fluidized by a
heated gas stream, which enters the fluidized bed chamber from the bottom through a distributor
plate. The primary particles were sprayed by a two-fluid nozzle (Model 940, liquid orifice diameter
0.8 mm, Diisen-Schlick GmbH, Untersiemau/Coburg, Germany) which was installed in a top-spray
configuration at a distance of 420 mm above the distributor plate of the fluidized bed. To reduce
clogging, the shape of the air cap was modified to hemispherical. An external pump supplied the
tfeeding of the sprayed binder solution. Particles having the target size are continuously discharged by
a classification tube, which is centrally installed at the bottom of the fluidized bed.

The starting materials of the fluidized bed and continuous feeding during the process were glass
beads with a Sauter mean diameter (SMD) of 0.2 mm and mean sphericity of 0.92 (see Figure 2).
The used binder solution contained 6 wt% hydroxylpropylmethylcellulose (HPMC) and 94 wt% of
water. HPMC is a white, sweet smelling powder, also known as Pharmacoat. It is typically used in
food and pharmaceutical industries.

The duration of the experiment was approximately 120 min process time with a total mass of 38 kg
used primary particles and 6.56 kg mass of sprayed liquid with a binder content of 6 wt%. The initial
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bed mass for the experiment was 8 kg. The inlet air was heated up to 100 °C before starting the process.
An overview of the process parameters is shown in Table 1. The mass of discharged product was 29 kg.
The produced agglomerates are shown in Figure 2.

For offline analysis, 32 bed samples and 16 product samples were taken. The sample time starts
with 2 min sample intervals for bed and 4 min sample intervals for product samples and reached up to
10 min for bed and 20 min for product samples. The particle size distribution (PSD) of each sample
was measured offline with a Camsizer (Retsch Technologies GmbH, Haan, Germany), which infers
particle size via dynamic image analysis. The output data from the Camsizer is the PSDs, normalized
with respect to the total number resulting in g and the volume resulting in g3 of the particle collective
for each sample and thereby over the process time. The shape was investigated at randomly selected
bed and product samples with a scanning electron microscope (SEM). The samples were pretreated by
a SEM sputter coater with a thin gold layer to amplify the measurement signal and investigated with
the Phenom G2 Pro (Phenom-World BV, Eindhoven, The Netherlands). The bed mass was measured
and calculated from the pressure drop of distributor plate and the fluidized bed.

Table 1. Overview of experimental parameters.

Parameter Unit  Value
Initial bed mass kg 8
Sauter mean diameter of primary particles mm 0.2
Inlet temperature °C 100
Inlet mass flow kg/h 275
Feed rate kg/h 15
Spray rate kg/h 3.3
Binder content wt% 6
Density of particle material kg/m3 2500

2.2. Mathematical Modeling

In particle production processes, significant heterogeneities with respect to the individual particle
properties such as size or shape emerge. Population balance modeling represents an established
concept to describe such property distributed parameter systems [8]. Instead of describing a large
number of particles and their interactions, PBM characterizes the dynamics of the particles via the
number density distribution function (NDF) n(t, z) representing information of the number of particles
within an infinitesimal section of the particle property state space z € RM:. In the following, it is
assumed that individual particles do only differ with respect to their characteristic volume v such that
z = v and N, = 1. Furthermore, it is assumed that other effects than agglomeration, i.e., nucleation,
particle growth and breakage can be neglected by an appropriate choice of the operating conditions.
Under these assumptions, the dynamics of the particle distribution during the agglomeration process
can be described by the following population balance equation (PBE)

on(t,v ) ) .
E—)t ) = nfeed(tr U) - nprod(trv) + nagg(tr Z)) (1)

The corresponding initial NDF 7(0, v) can be determined from the experimental data. The left
hand side of Equation (1) accounts for temporal evolution while the first two elements of the right
hand side describe feed of new seed particles to and removal of the desired product particles from the
fluidized bed. The feed is given as

exp ( *(1’2;%41 )? )
@)

fooo exp <_(02;?1)2> dov
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with N;, denoting the constant feed rate. The parameters p1 and 0q characterize mean and variance of
feed particle volumes. Product particle removal can be modeled as

nprod(tr Z)) = NOMfK(U)n(t’ U) 3)

where N, is the constant removal rate of particles and K (v) represents the separation function
given by

fO exp 5 ]42 )dg
K(v) = é ’ 4
Jo~ exp( “ ") dg

The last element of the right hand side of Equation (1) denotes the formation of new particles of
volume v by agglomeration of two particles with volumes u# and v — u

ﬁagg(t, ?J) - fl;ég(t’ U) agg(t U)
= % /O'U ,B(t/ u,o— M)n(t,u)n(tlv _ T/l)du
- /Oooﬁ(f, u,v)n(t, v)n(t,u)du -

Here, the agglomeration kernel B(t, u,v) contains information about the probability of forming a
new agglomerate and is often separated into a volume and time-dependent part

B(t,v,u) = Bo(t)Bo(v, u). (6)

In general, the volume-dependent part (v, 1), also called coalescence kernel, is a non-negative
symmetric function of two variables. As motivated in the introduction, focus in this publication is
on rather simple agglomeration kernels (e.g., [19,31]). These are either physically motivated, e.g., the
Brownian motion coalescence kernel and kernel based on equipartition of kinetic energy (EKE kernel),
or rather empirical, e.g., Kapur kernel and volume-independent (constant) kernel. Additionally,
abstract parametric approaches, e.g., Laurent-polynomials [23], can be used. The kernel candidates
studied in this contribution are summarized in Table 2.

In contrast, the time dependent part By (f), also called the agglomeration efficiency, mirrors the
effects of the process conditions and operating parameters. In this work, as a first step, it is assumed
that the time dependency of the agglomeration efficiency can be neglected, such that Bo(t) = const.

2.3. Parameter Identification

The estimation of the agglomeration process is especially challenging due to the highly nonlinear
process dynamics. In order to describe the formation of the agglomerates and to parametrize the model,
five different agglomeration kernels are considered (see Table 2). The first four kernels represent rather
simple approaches, which do not have any free parameters. Thus, only the agglomeration efficiency
Pest = Po has to be estimated from experimental data. Besides these simple kernel candidates, the fifth
formulation in the table represents a more complex parametric model candidate based on Laurent
polynomials of rank K = 2 [23]:

Bo(u,0) =ki +ky (u+v) +ks (ut +0 1) +hkyuo+ks (u o +o0 tu) + ke (u o) +ky (u? +0?)
+ ks (2 +072) + ko (420 + 0%u) + k1o (420 + v %) +kig (u" 0 + v_luz) )
ki (207 402Ut kg (470%) 4 kg (4707 + 07 2u?) 4 ks (20 7?)
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Here, the parameter vector to be estimated pest = [k1, k2, ..., k15] contains the of unknown
polynomial coefficients.

Substituting one of the kernels given in Table 2 into the PBE (1) the unknown parameters can be
estimated from the experimental data by minimizing the following objective function

Ni
](Pest) = Z w1 ”eu,rel(tir X, Pest) ”2 + w2||em,rel(ti/ Pesl‘> HZ 8)
i=1
where wy and w, are weighting coefficients and N is the number of samples. Weighting coefficients
are chosen such that the first and the second term of the right hand side are in the same order of
magnitude. Here, the first part represents the errors between simulated and measured bed mass scaled
by the maximum bed mass

My et (t ) My est (ti/ PESf) (9)

t;,
€, rel (ti) Pest) = max(my qer(ti))

Furthermore, | contains the Ly-norm of the error in the weighted particle size distribution u(t, x)

uact(ti/ x) — Uest (ti/ X, Pest)

max(uget (¢, %)) (10)

€y, rel (ti/ X, Pest) =
where u(t, x) is defined as

u(t,x) = %xSn(t,x) (11)

and x represents the characteristic size of the particles. Using local conservation of the particle number

n(t,v)dv = n(t,x)dx

dov
t =n(t,v)— 12
n(t, x) n(,v)dx (12)
Uest (ti, X, Pest) is computed from the simulated particle volume distribution as
s do
Uest (ti, x) = gx3nest(tilv)a (13)

Its experimental counterpart u,c¢(¢;, x) is computed from the normalized particle size distribution
43,act (ti, x) provided by the Camsizer measurements and the measured bed mass my, ,+(t;) under the
assumption of spherical particle shape and particle material density p.

Table 2. Kernel model candidates used for parameter identification.

Expression Kernel Name
Bo(u,v) = (u+0)' x (uov)™! Kapur kernel
Bo(u,v) = (u'/3 +0'/3) x (u=1/3 4 v71/3)  Brownian motion kernel
Bo(u,v) = (U3 +01/3)2 x Vu=T 401 EKE kernel
,Bv(u,v) 1 Volume-independent kernel
K K P
Bo(u,v) = Z Z Ky 0™ 4" Laurent polynomials kernel
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2.4. Parameter Identifiability

Identifiability is a necessary premise to ensure meaningful parameter estimates. In the following
the profile likelihood will be used to infer model identifiability. Here, the core idea is to explore the
cost functional | around the optimal parameter vector

* * * T
p = [P1/~-/PN,,} (14)
A parameter p; is said to be (locally) structural identifiable if the corresponding profile likelihood

JpL(pi) = min | (15)
Pj#i

has a unique minimum in the neighborhood of p*. Therefore, for fixed values of p; the other parameters
are re-estimated resulting in a one-dimensional functional curve. If each curve features a distinct
minimum, the model is said to be (locally) structural identifiable. In contrast, flat or semi-flat profile
likelihoods without a unique minimum indicate structural non-identifiability. In this case, parameters
can not be uniquely determined even under ideal measurement conditions.

2.5. Confidence Intervals

Besides estimation of the unknown kernel parameters it is also highly desirable to evaluate their
confidence intervals. These give a measure of the estimates sensitivity to stochastic fluctuations
in the experimental data. Classical methods, e.g., approaches based on evaluation of the
Fisher-Information-Matrix [30], are only able to give an approximate centered and symmetric measure
of the true confidence region as they rely on rather strong assumptions on the underlying model
dynamics. Alternatively, the bootstrap approach has been established as a valuable method to infer
model parameter confidence [28]. The core idea will be described in the following: all measurements
underlie stochastic variations, which would result in a certain variance within a large set of replicate
experimental data vectors

Y:{yl,...,erw} (16)

For each element of Y, model parameters can be (re-)estimated resulting in a corresponding set of
adapted parameter vectors

P={pi, . P, | (17)

containing information of the model parameters sensitivity to variations in the measurements.
Statistical measures as mean and variance can be easily calculated from P. Commonly, the percentile
method is applied to compute the confidence intervals. Let p* denote the 100(1 — «)-percentile of a
parameter p; extracted from [P, then the corresponding parameter confidence interval is given by

[Pgo, P?p]a _ [p?'5”‘, p370.5a} (18)

In general, the number of experimental replicates is limited. This is in particular true for the
given agglomeration process, where time and costs connected with each experiment are considerable.
Therefore, the resulting set of (re-)estimated parameter vectors P does not give a reliable measure of
the true confidence intervals. To improve the situation, the parametric bootstrap method [28,30] can be
applied. Here, Y is replaced by a set of artificial replicates

vES = {ybs, R} (19)
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which are generated with a Monte-Carlo method. The corresponding set of parameters is given by

s — {pfS, ... pkS,} (20)

and is further used to determine the parameter confidence intervals.

3. Results

The proposed parameter identification procedure has been implemented in MATLAB 2018a
(The MathWorks, Inc., Natick, MA, USA). For the solution of the PBM, the method of lines has been
applied, where the spatial coordinate is lumped using the cell-average method on a logarithmic grid
with N, = 55 grid points [14]. The model parameters utilized for simulations are derived from the
experimental conditions and are presented in Table 3. The stated unconstrained optimization problem
does not guarantee that the estimated parameters are positive, which they are for physical reasons.
In order to exclude non-physical solutions corresponding constraints should be added, resulting in a
constrained optimization problem. For its solution, the active-set algorithm as part of the MATLAB
optimization toolbox was applied.

Table 3. Model parameters used for simulation.

Parameter Value Parameter Value
1 42x1073 o 6.4 x 107°
1o 3.8 x 1071 o 1.4 x 1072
Nin 4% 10° Nout 55 x 1074
w1 1 wy 50

3.1. Kernel Estimation

3.1.1. Identification on the Whole Time Domain

Applying the proposed approach for all five kernels and using the first experimental sample as
initial condition yields in estimates for the agglomeration efficiency Sy and the Laurent polynomials
coefficients, respectively. The obtained results are depicted in Figure 3. As can be seen from the
Ly-norm of the errors between measured and simulated PSD (Figure 3 (left)) and the simulated and
measured bed mass (Figure 3 (right)), the mismatch for all fitted models is considerable in the first
ten minutes of the process and decreases rapidly for larger process times. Here, the models with the
Brownian motion kernel, the volume-independent kernel and the Laurent polynomials perform better,
in terms of the Ly-norm, than the models with EKE and Kapur kernel.

Figure 4 shows the comparison of the fitted models based on the Brownian motion and
volume-independent kernels and the measured PSD in terms of normalized PSD g3(t, x)

 2Pa(tx)
93t x) = fooo x3n(t,x)dx @1

For t > 80 min no significant change in the normalized particle size distributions was obtained in
the experiment, indicating steady-state operation.
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Figure 3. (Left) Comparisonof the Ly norms of the particle size distribution (PSD) error for different
kernel candidates (Right) Comparison of the actual bed mass and bed masses of the identified models.
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Figure 4. Snapshots of particle size distributions g3 of the actual plant and identified models.

Generally, it can be seen that the results improve for larger time values, i.e., closer to the
steady-state operation. The big misfit in the initial phase demonstrates that the model structure does
not reflect the start-up dynamics of the agglomeration process. Possible reasons may be additional
internal transients, e.g., a temperature decrease due to spraying, which would result in a time-varying
kernel. In addition, the decrease in the actual bed mass, which can be observed in the first couple
of minutes, indicates that during start-up even particles being smaller than the product fraction are
withdrawn from the process. This is however not reflected by the model, where a constant separation

function for the product removal has been assumed. However, as the focus in this contribution and
future research is on continuous agglomeration, only the dynamic behavior close to the steady-state
is of importance. Therefore, in the following the initial start-up, i.e., the first six minutes, will be
neglected resulting in a shifted time-domain.

3.1.2. Identification for the Shifted Time Domain

In the following, the described parameter estimation will be repeated for all kernels for the
experimental data shifted by 6 min. Here, the experimental data sample at { = 6 min will be used as
the initial condition. Results of the nonlinear optimization are depicted in Figures 5 and 6. As can

be seen the matching between the parametrized model and the measurements has been improved

considerably. The misfit in the region of the first mode (Figure 6) is presumable due to the measurement
uncertainties. As before, the best results, in terms of the Lro-norm, are achieved for the model with
the Brownian motion kernel, the volume-independent kernel and the Laurent polynomials. Yet, the
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latter does not show significant improvement despite its higher number of model parameters and will
therefore be excluded from subsequent analysis.

7
3.5 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Kapur 10 ¢ * Measured
3 Brownian |1 Kapur
* EKE 95 Brownian
25 O Vol.-indep. |4 e EKE
O Laur. poly. 9l O Vol.-indep.
= 2 g 2 O Laur. poly.
T * -
g 15 L g 8.5
1r 8
0.5 75t
0 7 : : : : s
0 0 20 40 60 80 100

t / min

Figure 5. Comparison of the L, norms of the PSD error (Left) and the actual bed mass and bed masses
of the identified models (Right) for the shifted time domain.

t=6 min t=8 min t =14 min
* Measured ¢ Measured * Measured
2 ; 2 N 2 ]
Brownian Brownian Brownian
- O Vol.-indep. - O Vol.-indep. - O Vol.-indep.
> S >
1 1 1
0 S 0 0
0 1 2 0 1 2 0 1 2
x /[ mm x [/ mm x /[ mm
t =41 min t=72 min t=102 min
* Measured * Measured ¢ Measured
2 ) 2 N 2 ]
Brownian Brownian Brownian
O Vol.-indep. O Vol.-indep. O Vol.-indep.
& I & ., &
1 . 1 . 1 N
C.. - .. .
0 < 0 0
0 1 2 0 1 2 0 1 2
z / mm x / mm z / mm

Figure 6. Particle size distributions g3 of the actual plant and the identified models for the shifted
time domain.

3.2. Model Identifiability

For the Brownian and volume-independent kernel, the agglomeration efficiency By is the only
unknown model parameter. Hence, the corresponding profile likelihood computation reduces to a
parameter study, i.e., evaluation of the cost functional ] for different values of By. The resulting curves,
depicted in Figure 7, possess a distinct minimum, which indicates that the unknown B is structurally
identifiable in both cases.
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Figure 7. Profile likelihoods for the Brownian motion and volume-independent kernel.

3.3. Confidence Intervals

To compute parameter confidence intervals, a set of 1000 parametric bootstrap measurements
was generated from the fitted model. Here, it was assumed that the measurements of g3(t, x) were
corrupted by a relative error

qg(t,x),lfs =q3(t,x)" + qges(t,x)fs, qges(t,x),lfs ~N(0,%y,)-q3(t,x)", k=1,...,Ngs (22

and thus the corresponding residual g5 (, x) B is proportional to the magnitude of g3(t, x)*. For the
total bed mass measurement, bootstrap measurements were generated assuming an relative error

Myea (1) = mpea (1) + miy (D%, migy (0 ~ N(0,Zm,,,), k=1,..., Nps (23)

The model was refitted to the bootstrapped measurement set for the Brownian motion and the
volume-independent kernel. Results by means of histograms of the obtained bootstrapped parameter
sets and percentile plots over the number of bootstrap runs are shown in Figures 8 and 9.

It can be seen that for both cases approximately symmetric Gaussian-like distributions are
obtained. Furthermore, it is shown that the values for the percentiles and the mean do not significantly
change for k > 400 thereby indicating convergence of the bootstrapped parameter distribution.
The overall confidence intervals and means are given in Table 4.

150 —

—
o
s}

\

251

Frequency
U1
o
|
|
\
Bo
N
N

7 7 o | I
o Jl—{ —hﬁl 55

2.2 2.3 24 2.5 2.6 2.7 0 200 400 600 800 1000
16} Bootstraps

0

Figure 8. Results for parameter estimation for Brownian motion kernel with parametric bootstrap data:
Histogram of bootstrapped parameter set, confidence interval [[38'025, ﬁ8'975 | (red circles) and mean
Bo (red rectangle) (Left) Change of [,38'025, [‘38'975} (dashed) and By (solid) over number of bootstrap
runs (Right).
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Figure 9. Results for parameter estimation for volume-independent agglomeration kernel with
parametric bootstrap data: Histogram of bootstrapped parameter set, confidence interval [f}02°, 57|
(red circles) and mean f (red rectangle) (Left) Change of [f)9%°, 3:°] (dashed) and By (solid) over

number of bootstrap runs (Right).

Table 4. Mean parameter values and confidence intervals from parametric bootstrap.

Agglomeration Kernel S [ lo, SP} = B3935, Y75
Brownian motion 24284 x 1071 [2.2926 x 10711, 2.5736 x 10~ 11]

Volume-independent 21754 x 5 x 10712 [2.0588 x 5 x 10712, 2.3011 x 5 x 107 12|

4. Conclusions

In this paper the parameter identification for continuous fluidized bed spray agglomeration
was presented. For the estimation of the agglomeration kernel from the experimental data a set
of five different kernel model candidates has been fitted to experimental data applying nonlinear
optimization. Applying the estimation procedure on the whole time domain showed that the initial
start-up phase could not be reflected well by the given model structure. Possible reasons may be
additional internal transients in this phase, e.g., temperature decrease due to spraying. Those would
result in a time-varying kernel. However, the focus of future work is on the continuously operating
agglomeration, process this initial phase is of minor importance. Therefore, the estimation procedure
has been repeated for a shifted time domain, i.e., neglecting the first six minutes, resulting in significant
better results. It has been shown that models based on the Brownian motion, the volume-independent
and the Laurent polynomial kernel provide the best results in terms of the L;-norm of the error
based on the PSD. Despite its higher complexity and higher number of free model parameters, the
latter approach is not superior to the two simpler kernel models. Thus, following good modelers
practice, the Brownian and the volume-independent approaches were preferred. For both kernel
models identifiability in terms of the corresponding profile likelihoods was shown and confidence
intervals for the model parameters were determined using a parametric bootstrap method.

Future work will be concerned with qualitative process behavior for varying process conditions.
As has been shown in earlier contributions, stability of continuously operated particulate processes
strongly depends on the chosen process conditions (e.g., [32,33]). In order to increase robustness with
respect to unforeseen disturbances and stabilize the process for varying operating conditions, feedback
control will be studied. Here, a number of finite-dimensional [34,35] and infinite-dimensional [36]
approaches have been investigated and developed for related continuous granulation processes in
fluidized beds.
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This paper is concerned with stabilizing control for continuously operated fluidized bed spray granulation
withinternal product classification. It is well-known that these processes may become unstable for certain
operating conditions giving rise to nonlinear oscillations in the particle size distribution. In contrast to
previous works, in this contribution a model-free adaptive control is proposed. It is shown that the given
fluidized bed spray granulation process fulfills the required structural assumptions. The designed control
schemes, universal adaptive and A-tracking control, are tested in a noise-free scenario and including

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Granulation is an important production process resulting in
larger particles and improved product properties, e.g. decreased
dust during material handling and increased flowability. Fluidized
bed spray granulation involves the injection of an additional liquid,
which settles on the particles, dries and thus forms a new solid
layer on the particle surface. An important configuration is the
continuous fluidized bed spray granulation with internal classifi-
cation. Here, only particles with a minimum diameter are redrawn
from the process by applying a counter-current flow in the out-
flow. The critical separation diameter can be influenced by the
counter-current flow velocity. In order to permanently generate
new particles a relative high nozzle height is chosen, such that
part of the liquid drops dry before hitting the particle surface. The
schematic process scheme is depicted in Fig. 1. As shown in [1-3]
qualitative dynamics of continuous fluidized bed spray granulation
processes may vary significantly with process conditions. In [1] a
detailed bifurcation analysis has been conducted, which, from a
practical point of view, gives valuable information in which param-
eter region to operate the plant at hand. In addition, the derived
models can be used for a model-based control design, e.g. robust PI

* Correspondence to: Otto-von-Guericke-University, Universitdtsplatz 2, D-39106
Magdeburg, Germany.
E-mail address: stefan.palis@ovgu.de

https://doi.org/10.1016/j.jprocont.2018.07.016
0959-1524/© 2018 Elsevier Ltd. All rights reserved.

or model predictive control [4,5], H,-control [6,7] or nonlinear dis-
crepancy based control [9], to compensate for the undesired losses
of stability, i.e. the occurrence of nonlinear oscillations. However,
model validation, being the basis of the presented analysis and con-
trol design, based on experiments may be often difficult to perform
in a production setting due to significant additional costs and unde-
sired set-point changes. Therefore, in this contribution model-free
adaptive control approaches [10-12] will be investigated on their
feasibility for fluidized bed spray granulation control. The paper is
organized as follows: in Section 2 the model of continuous fluidized
bed spray granulation with internal product classification as pro-
posed by [3] is stated. In addition, a numerical bifurcation analysis
of the process is used to motivate the need for stabilizing control.
In Section 3 the universal adaptive and A-tracking control schemes
are introduced together with the main structural assumptions on
the process. It is further studied whether these requirements are
fulfilled by the given type of process. Some final remarks conclude
the paper.

2. Fluidized bed spray granulation

Particles produced during fluidized bed spray granulation pro-
cesses are of high sphericity and can thus be described by their
diameter. Due to the very high number of particles, this leads to
the particle size distribution and its dynamical behavior. Applying
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Fig. 1. Process scheme.

population balance modeling [13] for the number density of the
particle size distribution leads to the following equation
on on .

E = _Gﬁ + nnuc - l’lpmd

where the first term is related to the particle growth, the second
term accounts for the generation of new nuclei and the third for
product withdrawal [3]. Depending on the distance between the
particle bed and the nozzle, part of the injected liquid contributes
to nucleation and the rest to growth. In [3] it is assumed that the
part contributing to nucleation b(n) varies linearly with the bed
height between its minimum value b,, and maximum value b=1.

hnoz — h(n))

hnoz

(1)

bn) = b + max (0. (1~ bs.) (2)
The bed height h(n) depends on the overall particle volume V=7 113,
which is proportional to the third moment, and the bed porosity ¢,
which is assumed to be constant.

v T3

=G A~ d_on 3)

For the nucleation it is assumed that new particles are uniformly
distributed with a medium diameter L.

_ my(L; Lo, 00)
o) = wa(nu(L; Lo, 09)) “)
where
2
ny(L; ., 0) = exp (W) . (5)

The classification function of the product removal is given by

JymatiLy, o)L

= fooo nu(L; Ly, oq)dL’

Table 1
Simulation parameters.

Ve 1.68-10-4m3/s injection rate

e 0.5 fluidized bed porosity

A 5m? granulator cross-sectional area

hpoz 0.44m nozzle height

b 0.028 minimum nucleation rate

Loy 0.3 mm medium diameter of nuclei

oo 0.05mm standard deviation of nuclei diameter
Ly 0.7 mm medium classification diameter

o1 0.05 mm classification selectivity

K 1.92-10%1/s Product removable rate

10

20

0.0
0.5

1.0

Lmm, 1.5

20 O

Fig. 2. Time behavior of the particle size distribution n(t, L) for small V.

Therefore, the overall population balance model is given by

an 201 —bm)Ve dn _ b(n)Ved(L)
T R V= O (7)

For simulation the population balance model has been dis-
cretized along the property coordinate L using a finite volume
method with an upwind scheme. For the uniform grid of the prop-
erty coordinate 150 grid points have been used. The parameters are
given in Table 1 and are in accordance with [3,7].

It is well-known [3,2,1] that the given process configuration
may become unstable depending on the given operation conditions,
e.g. the injection rate. The loss of stability results in the occur-
rence of nonlinear oscillations in the particle size distribution as
depicted in Fig. 2. A systematic study of this behavior, in terms of
a one-parameter bifurcation analysis, shows that below a certain
injection rate V, the steady-state solution becomes unstable and a
limit cycle occurs (Fig. 3). This periodic behavior in product quality
and availability is in general undesired. It has also been observed in
real granulation processes, e.g. [2]. In order to overcome this prob-
lem feedback control should be applied. From a practical point of
view, one would be interested to control the third moment, as it
correlates with the overall bed mass and can thus be derived from
simple pressure measurements.

y=u3 (8)

As the actuated variable the effective volume flow rate V, is chosen,
which can be manipulated using the injection pumps.

u="V. (9)

However, the main difficulties connected with the presented model
as a basis for model-based control approaches are:
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Fig. 3. One-parameter bifurcation diagram for varying V.

e model validation and parameter identification are very time-
consuming due to the slow time constants as can be seen from
Fig. 2,

e the assumption that the nucleation rate depends linearly on the
bed height and saturates for a given bed volume, is a strong sim-
plification and thus connected with considerable uncertainties,

e the drying kinetics strongly depend on the process conditions,
e.g. solid concentration in the injected suspension, fluidization
air flow rate, humidity and temperature, and are thus typically
time-varying and unknown.

3. Model-free adaptive control

To provide an alternative to model-based control of the
described fluidized bed spray granulation with internal prod-
uct classification [7] the focus will be on model-free controller
design approaches with stability guarantees. Here, the class of
non-identifier based high-gain adaptive controllers [10,11] will be
investigated, as these do rely on specific structural properties only
and have been successfully implemented for other chemical pro-
cesses, e.g.[14,15]. The mainidea can be easilyillustrated on alinear
time-invariant first order system:

y(t) = ay(t) + bu(t) (10)

Itis well-known that the uncontrolled plant, i.e. u(t) =0, is unstable
for any a>0. In order to stabilize the given system the following
feedback law:

u(t) = —ky(t) (11)

can be applied, where the controller gain k has to be chosen suf-
ficiently large or small, depending on the sign of b, such that the
closed loop system (12) is stable.

y(t) = (a—kb)y(t) (12)

In the following it will be assumed that b is positive, which is with-
out loss of generality. In this case a possible time-varying choice for
the controller gain k is given by the nonlinear adaptation law

k(t) = y(t)?. (13)

Obviously, the defined adaptation law results in a continuously
increasing controller gain k(t) until y(t) reaches steady state, i.e.
y(t)=0. Both, negative output feedback for b>0 and a continu-
ously increasing controller gain guarantee closed loop stability as
has been proven for example in [10]. Starting from the presented
idea, i.e. high-gain output feedback in combination with an adap-
tation law, a number of different adaptive control approaches have
been developed. In this contribution, the application of universal

adaptive control and the closely related A-tracking control will be
investigated. For both approaches a number of assumptions have
to be fulfilled by the process to be controlled:

e the sign of the combined input-output operator CB has to be
known. In the introductory example the output operator C is the
identity operator, i.e. ¢ is equal to 1. Therefore, only the input
operator 3, i.e. b, has been investigated.

e therelative degree, i.e. the minimum order of output time deriva-
tive directly depending on the control input, has to be equal to
one,

e stable zero dynamics, i.e. the system achieved for constraining
the controlled output y(t) to zero has to be stable.

In case of a nonlinear process, it has to be assumed that the
according nonlinear perturbations can be dominated by the linear
feedback law for appropriate gain values.

3.1. Known sign of the input—output operator CB

Using the population balance model (7) together with the output
equation (8) yields

. *© 2(1 —b(n)Ve On  b(n)Ve
m:—/o L3< ) T G 8(L)—I<T(L)n> dL (14)

_ 20 =bm)Ve (. B
=TT LM (LIL“QC”(L) n(O))+ (15)
b(n)ve = 3 = 3
+3 Tow /0 L38(L)dL — /0 L3KT(L)ndL (16)

Due to the fact that there are no particles of infinite or zero size, i.e.
Llim n(L) = 0 and n(0)=0, the first term vanishes, resulting in
—> 00

3 = A(n) + CB(n)Ve (17)

where A(n) = — [(* L*KT(L)ndL and ¢B(n) = {fgZ [ L*8(L)dL. As

both b(n) and fooc L38(L)dL are positive, the input-output operator
CB(n) is always positive. This is obviously true as an increase in
injection rate leads to an increase of overall particle volume.

3.2. Relative degree one

Calculating the relative degree for a given system is typically an
iterative procedure, starting with the zeroth time derivative of the
output y(t), i.e. with the output itself. Obviously, the third moment
at time instant t does not directly depend on the injection rate V.
Therefore, the relative degree has to be greater than zero. Taking
the first time derivative results in:

V=3 :/ L3%dL (18)
0
[0 (P a0
0

Due to the direct dependence on the controlled variable u = V,
the relative degree is equal to one. Thus, the second assumption is
fulfilled.

3.3. Stable zero dynamics

In order to show stability of the zero dynamics, one has to prove
stability of (7) under the additional constraint that y = 0. As the given
granulation process is described by a nonlinear integro-partial dif-
ferential equation, this is an at least very difficult task. Therefore,
here only a set of finite-dimensional linear approximations, i.e.
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Fig. 4. Maximum real part of system zeros (black solid) and poles (dotted gray) for
varying V,.

transfer functions, will be investigated. These approximations have
been derived in parallel with the bifurcation analysis and reflect
the system behavior in a neighborhood around the path of steady
states. From a system theoretic point of view, they form a paramet-
ric family of transfer functions Gy, (s) depending on the bifurcation

variable V. It is well-known, e.g. [16,17], that instability of the zero
dynamics is directly connected to the presence of right-half plane
zeros for the according transfer function. Thus, it is sufficient to
check that the maximum real part of system zeros remains smaller
than zero to prove stability of the zero dynamics. In Fig. 4 the max-
imum real part of all system zeros and poles is depicted for varying
Ve. As can be seen, no right-half plane zeros occur in the studied
region of injection rates V. and hence the zero dynamics remain sta-
ble. In addition, it can be seen that the open-loop system becomes
unstable, i.e. right-half plane poles occur, for injection rates smaller
than 1.7.10-4 ™2,

As has been shown, the continuous fluidized bed spray granula-
tion process fulfills the required structural properties for high-gain
adaptive control approaches.

3.4. Universal adaptive and A-tracking control

Universal adaptive control is a proportional output feedback
control with time-varying controller gain.

u(t) = k(t)e(t) (20)

Here, e(t) is the control error, i.e. the difference between desired
outputy, and measured output y(t). For convenience and numerical
reasons an additional scaling factor k.=2-10-7 has been intro-
duced.

e(t) = ke(yq — y(t)) (21)

The nonlinear adaptation law for the controller gain is chosen as
follows

k(t) = e(t)?. (22)

It is clear from (22) that the controller gain is non-decreasing and
increases when ever a control error is present. This behavior results
in a continuously increasing controller sensitivity and may result in
problems in the presence of controller saturations. It is of particu-
lar importance for practical implementations, where the control
error e(t) is typically not vanishing due to process disturbances
and measurement noises. In order to overcome the aforementioned
problem the A-tracking control approach [11] has been developed.
The main idea here, is the introduction of an additional dead-zone,

10

0.0

0.5 115
Lmm,

15
20 0

Fig. 5. Time behavior of the particle size distribution n(t, L) for universal adaptive
control.
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0.0
0.5

1.0

Lmp, 1.5

20 0O

Fig. 6. Time behavior of the particle size distribution n(t, L) applying A-tracking
control.

i.e. a neighborhood around the desired set-point, where the con-
troller gain stops increasing and remains constant.

2 .
() — e(t)” iffle(t)l > A (23)
0 else

Here, the parameter A defines the described width of the dead-
zone. Typically, A should be chosen such that measurement noise
and uncritical disturbances do not result in a newly controller gain
increase.

3.5. Results

In order to verify the designed universal adaptive controller it
is connected to the plant in the region of instability, i.e. in the
regime of nonlinear oscillations, at t= 12 h. As depicted in Figs. 5-11
the proposed universal adaptive control scheme allows for sta-
bilization of the continuous granulation starting in the region of
instability on the limit cycle. The required control actuation stays
within reasonable limits (here plus/minus 50% of the nominal value,
ie.Ve € [0.75-107%,2.25-1074]). Applying the A-tracking control
to the same scenario shows (Figs. 6-11), that similar behavior in
terms of control performance can be achieved. However, the con-
troller gain does not further increase when reaching the A-region
as depicted in Fig. 7. Due to the assumptions, stable zero dynam-
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Fig. 8. Third moment of the particle size distribution for universal adaptive control
(solid gray), A-tracking control (dashed black) and without control (dotted gray).
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Fig. 9. Control error e(t) for universal adaptive control (solid gray), A-tracking con-
trol (dashed black) and without control (dotted gray).

ics and relative degree one, closed-loop stability is guaranteed for
a controller gain K being larger or smaller than a critical gain K
depending on the known sign of the combined input-output oper-
ator CB. Thus, if the controller gain is sufficiently large when the
control error enters the defined A-neighborhood process stability
is guaranteed.

Adding uniformly distributed measurement noise in the range
of plus/minus 0.45% of the steady-state third moment to the simu-
lation, already leads to significant deterioration of the closed-loop
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\
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Fig. 10. L,-norm of error in the particle size distribution for universal adaptive
control (solid gray), A-tracking control (dashed black) and without control (dotted

gray).
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Fig. 11. Injection rate V, for universal adaptive control (solid gray), A-tracking con-
trol (dashed black).
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Fig. 12. Adaptive controller gain k(t) for universal adaptive control (solid gray), A-
tracking control (dashed black) in the presence of measurement noise.

performace in case of the universal adaptive control. As can been
seen in Figs. 12-16, the controller gain of the universal adaptive
control scheme is continuously increasing, destabilizing the pro-
cess. On the other hand, the A-tracking control scheme is hardly
effected.

It should be mentioned, that both control laws show only a very
low convergence rate in terms of the L,-norm as depicted in Fig. 10,
which is however of limited relevance for the given application.
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Fig. 15. L,-norm of error in the particle size distribution for universal adaptive con-
trol (solid gray), A-tracking control (dashed black) and without control (dotted gray)
in the presence of measurement noise.

4. Conclusion

In this contribution two model-free adaptive control schemes,
universal adaptive control and the closely related A-tracking, and
their application to continuous fluidized bed spray granulation pro-

0.00035

0.00030 1
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0.00015

0.00010 -

0.00005 -

0.00000 -

00 25 50 75 100 125 150
t/h

175 200

Fig. 16. Injection rate V, for universal adaptive control (solid gray), A-tracking con-
trol (dashed black) in the presence of measurement noise.

cesses with internal product classification have been investigated.
It has been shown that the given process configuration fulfills all
structural requirements. Applying the proposed control laws sta-
bilizes the particle size distribution with reasonable performance
and control actuation. Including measurement noise into the sim-
ulation, showed the advantage of including a A-neighborhood in
the A-tracking control. Future work will be concerned with prac-
tical verification of the proposed control approach on a pilot plant
and the investigation of other particulate processes, e.g. granulation
with mill cycle [6] or continuous crystallization [8].
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Mixed-Product Removal Crystallization

Continuous mixed-solution mixed-product removal (MSMPR) crystallization is
considered. This process has been studied well, however, different aspects, in par-
ticular, process modeling, monitoring, and control remain challenging. An inno-
vative approach for online measurement of the crystal size distribution is pre-

sented. Furthermore, unscented Kalman filtering is applied to overcome biased
concentration measurement. Finally, a discrepancy-based control is applied to
continuous MSMPR crystallization and its closed-loop performance is evaluated.
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1 Introduction

Crystallization is an important separation and purification pro-
cess to produce different solid materials from liquids in chemi-
cal, food, and pharmaceutical industries. It allows adjusting
such properties as crystal size, shape, polymorphic form, and
purity [1]. Control of the product quality as a whole, in most
cases expressed in terms of its crystal size distribution (CSD), is
difficult but worthwhile and requires both an online monitor-
ing of this product quality and detailed knowledge of the con-
sidered process [2]. CSD affects product dissolution behavior,
bioavailability, and can facilitate downstream processing, so its
adjustment has a strong influence on product quality and pro-
duction performance.

In recent years, the interest in continuous manufacturing
grew dramatically. Within this field, continuous mixed-solution
mixed-product removal (MSMPR) crystallization is a powerful
approach. The main features of the continuous MSMPR crys-
tallization are a constant solution feed and a constant vessel
content withdraw, which contribute to the improvement of
product quality and production rates, compared to a similar
batch operation.

In this paper, continuous MSMPR crystallization modeling,
online monitoring, and control problems are considered. Image
processing techniques are tested for their application to crystal-
lization processes: Canny edge detector [3], model-based recog-
nition [4], genetic algorithm-based restoration from axis-length
distribution (ALD) [5]; a sufficient image processing rate was
reached for online operation using a multiprocessing system
[6]. In [7], it is claimed that realization in Matlab by Math-
works shows good quality, but remains sluggish.

Image processing is a promising approach for online CSD
measurement, but the mentioned imaging systems require
sophisticated hardware and high computational power, so a
new embedded approach will be discussed. During experiments
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an issue with concentration measurement was observed: mea-
surement bias caused by crystal growth on the probe. One
straightforward approach to reduce or even overcome this
undesired phenomenon may be to alter the probe location
within the tank or to change process conditions. Alternatively,
model-based state estimation techniques, e.g., unscented
Kalman filtering (UKF) can be applied to reconstruct the solute
concentration from the biased measurement [8]. Acquired and
reconstructed measurements of the CSD and the concentration
can now be applied to design controls and operate the process
in a desired way.

In order to control the CSD, different strategies have been
proposed including robust control [9-11], C-control [12],
decentralized proportional-integral-differential (PID) and non-
linear model predictive control (NMPC) [13], and direct nucle-
ation control [14]. A Lyapunov-function-based approach called
discrepancy-based control (DBC) was presented in [15], which
was later generalized for particle systems [16]. In contrast to
linearization-based control techniques, DBC considered in this
contribution is applied to a nonlinear model taking system
nonlinearities into account. The general structure of the system
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including plant measurement, state estimation, and

2 Mathematical Modeling

Besides sophisticated experimental work, mathe-
matical modeling of the process is necessary to ob-
tain a thorough understanding of crystallization

Research Article 1363
Uyirt TV
control subsystems is illustrated in Fig. 1. DBC ¥ MSMPR
n(t,L) . d
Image Concentration
processing measurement ¢
A
Cy cV‘bias
UKF

processes [17]. Here, the population balance mod-
eling (PBM) approach [18] is used. Contents of the
crystallizer to be well-mixed are considered. Crys-
tallization is governed by growth and secondary
nucleation phenomena. The growth rate is assumed
to be size-independent. Nucleating crystals have the size L,
[19]. Dynamics of the CSD is described by the following popu-
lation balance equation (PBE):

on(L,t) on(L,t) n(L,t)
ot +G(#) oL T,

(1)

where n(L,t) is the crystal size distribution, ¢ is the time, L is
the characteristic length of a crystal, G(¢) is the growth rate,
and 7, is the residence time. The initial condition is:

n(L,tp = 0) = no(L) 2)
and the boundary condition is:

n(I‘O = Lmirn t) = & (3)

(t

where nucleation is governed by:

~—

B(1) = Ky (S(t) = 1)°us (1) 4

with nucleation kinetics parameters Kj, and b. Crystal growth is
characterized by the following growth rate:

G(t) = Kgexp (RL;’Z)) (S(t) —1)% (5)
gas Lv

with growth kinetics parameters K, and g, activation energy
Ea g gas constant Ry, vessel temperature T,(f), and supersatu-
ration S(¢):

sty — &0

B Csat(t)

(6)

where the equilibrium concentration cg,(t) is approximated as
a polynomial:

4

Csat(t) = ZKi(Tv(t))i (7)

=0

1) List of symbols at the end of the paper.
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Figure 1. General structure of image processing, unscented Kalman filter (UKF),
and discrepancy-based control (DBC).

Properties of the modeled substance KDP (monopotassium
phosphate): growth and nucleation kinetics as well as solubility
parameters listed in Tab. 1 were evaluated experimentally using
the methodology described in [20, 21].

Table 1. KDP kinetics and solubility.

Variable Value

Kq [-] 5112597.405

gl 1.2586921036

Eag Jmol™] 69859.933026

Ky [-] 26856478430.55499
b[-] 4.235315794045159
Ko [-] 15.2361

K [-] 0.2058

K [-] 0.0101

Ks [-] -1.4506x10™*

K, [-] 1.2292x10°

The liquid-phase concentration dynamics is governed by:

dc(\it(,t) _ 1 (Cv,f — Cv(t)) B ?’kLsG(t)

Ty va v

Uy (t) (8)

where c,¢ is the feed concentration, ky is the volumetric shape
factor, ps is the solid phase density, V, is the total vessel con-
tents volume, p, is the liquid-phase density and u,(f) is the sec-
ond moment of the CSD. Arbitrary moments can be described
by the moment transform:

©

u;(t) = / L'n(L,t)dL )

L

‘min

with the corresponding dynamics:

= B(0) Ly + iG(H,_1 (1) — —p1(0) (10)

www.cet-journal.com
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3  Online CSD Measurement

Feedback control is based on process monitoring, so acquisi-
tion of representative data is crucial for efficient control. The
proposed hardware design is a pragmatic combination of an
online microscope and a low-cost single-board computer
(Raspberry Pi by the Raspberry Pi foundation). Such system
can be mounted on the flow-through cell and form a noninva-
sive online embedded video microscopy tool. Particle flow ori-
ents particles with bigger facet toward the microscope; there-
fore, analyzed shots represent characteristic lengths of crystals.
In this contribution, the algorithm suggested in [22] is coded
in Python programming language using the OpenCV library.

Let f(x,y) represent a 2D image, with coordinates x and y.
The first step for edge detection is smoothing and noise remov-
al with the Gaussian function:

—x? 4 y?
G (0) = exp (T‘z) (11)
where 0 is the standard deviation of the Gauss kernel:
fﬁlt(xvy) = Gﬁll(a)f(xvy) (12)

In the next step of the Canny edge detection algorithm, the
gradient Vf{(x,y) is calculated over the filtered image f(x,y):

Vi(x,y) = afﬁ..a(yx,y) -

ox

Therefore, the edge gradient F(x,y) and direction ©(x,y) can
be determined:

O(x,y) = atan ( (afﬁlgj’y )) o ﬁ";;’y )> (15)

Further analysis is called non-maximum suppression. The
gradient value is analyzed for local maxima in gradient and
antigradient directions and marked as an edge, otherwise pixels
are marked as background and thus set to zero. To obtain more
robust results, double threshold filtration should be
applied. The idea is to ignore low gradient values
and keep high values, so Fio,, and Fpg, should be
defined. The pixel fy(x,.y,) is treated as a
strong edge if F(xp.yp) > Fhign, as a weak edge if
Fiow < F(xp,p) < Frigns otherwise suppressed. Weak
edge pixels are then tested for neighborhood of
strong edge pixels. In the positive case, they are
kept as an edge, otherwise it is suppressed.

It is reasonable to normalize threshold parame-
ters as median fieqian OVer the whole image and
variance v. Therefore, Fiow = fmedian(1-v), Fhigh =

circle diameters corresponding to detected edges. Useful infor-
mation about crystal/solution ratio can be acquired by calcula-

Vsolid o Asolid

tion of the area ratio , where Agjiq is the area of

crystals in the image, A, is the crygtal—free area, Vjiq is the vol-
ume of crystals in the vessel, and V, is the volume of solution
in the vessel. This relation can be used for exact calculation of

Ao
the third moment such that u; = ;‘Lhd V.

The described image analysis software operates on Raspberry
Pi hardware with the Raspbian operating system with an
approximate rate of ten frames per second (fps). For flow-
through cell design, such rate represents data well and makes
online operation possible. An analyzed image example is given
in Fig.2. The first image depicts an instance of taken images,
the second image shows results of Canny edge detection, and
the third image represents the resulting CSD, similar to the
theoretically derived exponential distribution. The edge detec-
tion algorithm robustness is an important problem to discuss,
especially if the crystal/solution ratio is high. As seen in Fig. 2 ii,
crystal agglomerations, overlapping crystals, and optical arti-
facts can influence the quality of the measurements, so the de-
tection sensitivity should be thoroughly tuned for each setup.

4  State Estimation

During the experiments, crystal formation on the surface of the
concentration sensor was observed resulting in a biased mea-
surement of the solute concentration:

Cy bias = Cv +d (16)

Nevertheless, the unbiased concentration can be recon-
structed using a model-based state estimator. Therefore, an
unscented Kalman filter (UKF) [8] was implemented, which is
also used to estimate the bias d. Here, it is sufficient to include
the dynamic equations of the first four moments of the CSD
according to Eq.(10) instead of the full PBM (1). The overall
UKEF algorithm implements the discrete time and the corre-
sponding dynamics for the estimation of the states and the bias
is given by:

o (tes1)
ty (tesr)
slte) = | 20 | ) flx() )AL (17)

M3 (tes1)

Cv(tk-H)

d(ter1)
E 60 -
2
2 40 1
g
< 2 |
‘V‘;,)
) 00 05 1 15

107°
characteristic size [m)

Figure 2. Crystal size measurement procedure: (i) acquired image, (ii) edge de-

Jfmedian(14v). Consequently, the CSD is an array of  tection results, (iii) crystal size histogram.
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B(ty) — ’#
B(ti) Linin + Gttt () — ”‘Tm

B(t 26ty (1) ")
Pl wit)) = | BUMin + 26t (1) — o +w(ty)
B(tk) min T 3G(tk)‘u2(tk) T :
k. Gt
vt — 1) = 0y (1)
0
(18)

(1) = (1o (t) 1 (1)t (1) a5 (1) e (8) + (1) + v(te)
(19)

Here, w and v denote the zero mean process and measure-
ment noises with covariance matrices Q and R. To evaluate the
performance, artificial measurements were generated using the
simulation of the idealized model Egs. (1)-(6) and the theoreti-
cal bias was implemented as:

d(t) = —0.15¢,(ty) (1 — exp(—3x 10~ *)) (20)

Thereby, it is assumed that the crystal layer on the probe is
increasing up to a certain maximum thickness. The perfor-
mance of the UKF is displayed in Fig.3. It can be seen that
both, a good reconstruction of the unbiased solute concentra-
tion and estimation of the disturbance, is obtained for different
assumptions on the measurement noise. Even for a relatively
large noise, the estimation is reasonably accurate.

5 Discrepancy-Based Control

The shift from batch to continuous operation has high poten-
tial, but this task is not trivial, especially in pharmaceutical in-
dustry, where uniformity of properties is extremely important.
The continuous MSMPR crystallization is a nonlinear distrib-
uted-parameter system, therefore, control design is a challeng-
ing task. Different strategies have been proposed including
robust control [9-11], C-control [12], decentralized PID, non-
linear model predictive control (NMPC) [13], and direct nucle-
ation control [14]. A Lyapunov-function-based approach called
discrepancy-based control was presented in [15] and general-
ized to particle systems in [16]. This approach uses a general-
ized distance measure, discrepancy, and Lyapunov stability
theory in order to design a stabilizing control law for the non-
linear infinite-dimensional model. The choice of the appropri-
ate discrepancy is motivated by the physical insight. In contrast
to conventional linearization-based approaches, the full nonlin-
ear behavior and complexity of the plant can be taken into
account.

Consider a dynamical system which satisfies Eqs. (1)-(6).
Control is designed for the third moment x5 as controlled vari-
able and the temperature in the vessel T, as manipulated vari-
able. Defining a discrepancy p based on the third moment as:

P =MU3gt —H3 = /L3(nset - I’l)dL (21)
0
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© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

with initial condition p(#,=0):=p,, the associate control Lyapu-
nov candidate functional is given by:

o 2

/L3(nSet —n)dL (22)

0

which is continuously differentiable and positive definite. In
order to guarantee closed-loop stability, its time derivative
should be negative definite for a non-zero discrepancy p. Cal-
culating the time derivative results in:

0 0

. : d
V =pp :/L3(nset —n)dL —/L3 a’ZdL (23)
0 0

Inserting the population balance Eq. (1) with the nucleation
term yields:

0
3
- /L (nset -
0
o0 o0

/L3G de? /L3ndL+/L3B6(Lfme)dL
v
0 0 0

(29)

The condition of closed-loop exponential stability with re-
spect to the discrepancy p is given by:

V=—2V (25)

where ¢ is the convergence rate, the only parameter to be tuned.
As the manipulated variable T, enters growth kinetics depend-
ency in a complicated way, the crystal growth rate G will be
used as a virtual control input u,;,. This is possible as only the
growth rate is affected by the vessel temperature. Substitution
of Egs. (22) and (23) into Eq.(24) and rearrangement with
respect to the growth rate yields the virtual control law:

1 o0 o0
@+ [13ndL ~ [ PBO(L ~ Ly )dL
Uyirt = 0 o 0 (26)
301
Jrd

0 L

The temperature T, can be derived from the virtual control
input by solving the following nonlinear algebraic equation at
each instance of time:

E

Uiy = Ky exp | —28 o ) ©7)
vt e P RgasTv Csat(Tv)

Closed-loop performance is displayed in Fig.4 and the simu-
lation parameters are presented in Tab.2. Simulation of the
feedback loop with the derived discrepancy-based control
shows the expected exponential convergence with reasonable
control effort.

The presented control technique is compared with the
PI-controller tuned according to the module optimum for a

www.cet-journal.com
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(i) Reconstruction of c, for low measurement noise
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(i) Estimate of bias for low measurement noise
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Figure 3. State estimation results for three scenarios. Low noise: (i) ideal, biased, and reconstructed measurement, (ii) estimation of bias
compared to “real” bias; medium noise: (iii) ideal, biased, and reconstructed measurement, (iv) estimation of bias compared to “real” bias;
large noise: (v) ideal, biased, and reconstructed measurement, (vi) estimation of bias compared to “real” bias.

specific set point [23]. The tuning parameters of the controllers
are listed in Tab. 3.

The integral square error (ISE) is used as a performance
indicator and the comparison is given in Tab.4. In Fig.4 three
scenarios with different setpoints are depicted: the first setpoint
is f3ger = 2.6x107'm’, the second is U3 = 2.8x10*m?, and
the third is 3 g = 3% 10~*m’. It is noticeable that linear control
performance worsens as the set point drifts away from the lin-
earization point, whereas DBC keeps a decent performance in
different regimes. In [24], it is claimed that the robustness of
the controller towards substance properties uncertainty, in oth-
er words plant-model mismatch, should be assured. To over-
come such issue, the adaptive form of the DBC [25] should be
considered.

Chem. Eng. Technol. 2017, 40, No. 7, 1362-1369
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6 Conclusions

Important issues of continuous MSMPR crystallization were
tackled: CSD online monitoring, state estimation and control,
forming a general process control structure as in Fig. 1. Non-
invasive online embedded video microscopy is an efficient,
affordable, and flexible tool to enhance crystallization monitor-
ing. Suggested online monitoring reaches a performance of
approximately 10 fps, which allows applying sophisticated con-
trol schemes based on solid-state measurements.

Noninvasive online embedded video microscopy can be used
not only for CSD measurements, but for metastable zone detec-
tion or morphology analysis as well. Although the Canny edge
detector allows tackling some drawbacks of video microscopy,
the application of different schemes such as Otsu’s binarization

www.cet-journal.com



Chemical Engineering
Technology

Research Article

1367

_, (ii) 3rd moment, of the CSD

(i) Manipulated variable 10
I —— DBC-control =
206.2 --- Plcontrol | 2.6, e s
______________________ :F —— DBC-control
208 4 - -~ Pl-control
ME 2.55 .
~ 295.8 o L
= )
205.6 =25 |
2954 &
2.45 | 7
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time [ h time [ h
(iii) Manipulated variable 10~ (iv) 3rd moment of the CSD
- I — DBC-;:ontrol — —
- -~ Pl-control M T T
26| N e —— DBC-control
; - -~ Pl-control
295.5 . |
S
;:; 295 | i
294.5
2.5 .
294 o
1 1 | 1 | | | 1 I |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time [/ h time [/ h
(v) Manipulated variable 101 (vi) 3rd moment of the CSD
I —— DBC-control 3+ - — 7 __________
206 - - -  Pl-control A i B Tt
] —— DBC-control
: - -- Pl-control
295 o 28l |
n £
294 E’
2.6 | s
203 | )
292 g
1 1 1‘ ! 2.4k ] I I -
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time [ h time / h

Figure 4. MSMPR control simulation for three scenarios. t3set = 2.6x10*m?>: (i) manipulated variable T, (ii)
controlled variable ps; psser = 2.8x107*m?: (iii) manipulated variable T,, (iv) controlled variable us; tt3 et =

3.0x10™*m?>: (v) manipulated variable T,, (vi) controlled variable Us.

or watershed transform should improve the overall perfor-
mance, ie., reduce computational costs, expand the possible
crystal density range, alleviate the detection of overlapping
crystals, and avoid false-positive detections.

Chem. Eng. Technol. 2017, 40, No. 7, 1362-1369
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During experiments, the concentration measurement issue
was retrieved and solved by unscented Kalman filtering which
allowed reconstruction of solute concentration from biased
measurement. It shows good performance and overcomes
emerging measurement noise. The control design for continu-
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Table 2. Process parameters and initial conditions. Symbols used
Parameter Value Agolid [m?] solid-phase area
V, [m*] 0.026 A, [m3] solution volume
o B(t) [#s7] nucleation rate
Py lkgm™] 1140 c [-] tuning parameter
ky [-] 0.7498 Coat(D) gg'] equilibrium concentration
1 .
_ Cuf [gg] feed concentration
kgm™ 234 v - . .
ps lkgm ] 340 Cybias [gg 3 biased concentration
7, [s] 3120 c(b) gg'] liquid-phase concentration
-1 .
s T P
Ag Jmol '] growth activation energy
T,(0) [K] 296.25 Vi(x,y) [-] image gradient
el [g™] 02396 Jfaeey) (-] filtered function
Fiow Fhigh [-] threshold values
(0) [gg™'] 0.2613 Jfmedian  [-] median threshold value
B(0) [#s7'] 250.4878 Folipyp) -] pixel intensity
L . flxy) [-] image
G(0) [ms™] 1.1973x10 F(x,y) [-] gradient magnitude
n(L,0) [#m"'] B(0) L Gao)  [-] L Gaussian function
G(0) Xpl — G(0)r, G(1) [ms™] growth rate
Ky, b, Kg’ k4 (-]
kinetic parameters
Table 3. Control parameters. K; (-] interpolation factors
kv [-] volumetric shape factor
Control parameter Value L [m] characteristic crystal length
DEC 0.001 Lin [m] nucleus size
: convergence rate ¢ . no(L) [ #mfl] initial seeding
PI-control: proportional factor 48 000 n(L,t) [#m™] crystal size distribution
# -1 . . . . .
PlI-control: integral factor -3.86 et [ m,l ] 1 size distribution set point
Rgas [JK "mol™] gas constant
S(t) [-] supersaturation
Table 4. Control perf i d initial ! [s] time
able 4. Control performance, set points, and initials. T(8) (K] solution temperature
-1 . . .
Uy [ms™] virtual manipulated variable
Controll } ISE virt
ontroTer Hase (1] \% [m°) candidate Lyapunov functional
DBC 2.6x107 0.0162 Veolid [m? solid-phase volume
3 .
Pl-control 26x10™ 0.0175 W (] solution volume
Xy [-] Cartesian coordinates
DBC 2.8x107™ 0.0370 QR 6-by-6 matrices covariance matrices
Pl-control 2810 0.0707 w 6-by-1 vector  process noise .
v 5-by-1 vector  measurement noise
DBC 3.0x10™" 0.0578 X 6-by-1 vector  state vector
PL-control 3010 0.1237 y 5-by-1 vector  output vector
Greek letters
ous MSMPR crystallization is a challenging task due to non- 7, [s] residence time
linear and distributed-parameter behavior. This motivated the [-] standard deviation
application of discrepancy-based control design. System simu- v [-] threshold variance
lation exhibits exponential convergence according to the Ds [kgm™] solid-phase density
Lyapunov stability theory. Measurements based on different Dy (kgm™] liquid-phase density
algorithms, their verification and validation is the next iteration Ui [m'] i-th moment
of research as well as the implementation of the designed state Usset [m’] third moment set point
estimator and controller. p [m?] discrepancy
Oy [-] gradient argument
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Sub- and superscripts

0 at initial time moment

b nucleation/birth

filt filtered

g growth

k on the k-th step

min minimal

s related to the solid phase
set set point

v related to the solution in the vessel
Abbreviations

ALD axis-length distribution
CSD crystal size distribution
DBC discrepancy-based control

MSMPR mixed solution mixed product removal

NMPC  nonlinear model predictive control
PBM population balance modeling

PID proportional-integral-differential
PI proportional-integral

UKF unscented Kalman filter
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In this contribution different control approaches, ranging from standard linear control to non-linear model
predictive control, are applied to fluidised bed spray granulation processes with internal and external product
classification. These processes exhibit sustained non-linear oscillations in the particle property distribution,
i.e. size distribution, that have negative influence on steady-state operation, for example a constant product mass
flow with constant properties. The controllers are applied to stabilise these open-loop unstable steady-states.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Particulates processes play an important role in various fields of
application: There are many examples of particulate products in
everyday-life, for instance milk powder, milled and roasted coffee,
instant cacao powder, and sugar, to name just a few. Additionally, par-
ticulate products play an important role in other fields: health-care
(e.g. in the form of an active pharmaceutical ingredient pressed into a
tablet), in agriculture in the form of fertilisers, or in the chemical indus-
try as catalyst powders. It is reported that approximately three quarters
of all industrially processed goods are in solid state — either in their final
state or in intermediate production stages [1].

The product properties can often be characterised by the particle
properties, or rather the particle properties affect the properties of the
product. Important particle properties are for instance the particle size
and form, the porosity of the particle, the moisture content, and the
enthalpy (temperature).

The particle size and form determine for instance the flow-ability of
a powder: If the particles in the powder are too small, then cohesive
forces between the particles prevent a free flow. This can be observed
by comparison of sugar powder and crystal sugar: Although both prod-
ucts consist of the same material, sugar powder flows less freely because
of the increased cohesive forces between smaller sized particles.

For the production of particulate substances from liquid starting
material (solutions, emulsions, or suspensions) various processes exist:
e.g. crystallisation, granulation, and spray drying. These can be further
specialised depending on the characteristic effect that is used for the
transformation, for example cooling crystallisation or spray granulation.

* Corresponding author. Tel.: +49391 6718319; fax: +49391 6718265.
E-mail address: andreas.bueck@ovgu.de (A. Biick).
URL:E-mail addresses:E-mail address: http://www.nawitec.org (A. Biick).

http://dx.doi.org/10.1016/j.powtec.2014.07.023
0032-5910/© 2014 Elsevier B.V. All rights reserved.

Crystallisation and granulation are complex dynamic processes, involving
multiple phases (fluid and solid), heat and mass transfer between these
phases, as well as particle formation processes, e.g. layer formation.

One process that is often used in industries, e.g. in pharmaceuticals,
foods, and fertilisers, is fluidised bed spray layering granulation. It
allows for the production of dustless, free-flowing particles from liquid
raw materials: The suspension (or solution) is sprayed onto particles in
the process chamber and due to drying - the bed is fluidised by hot air -
the liquid evaporates. The remaining solid builds up a new layer of solid
material on the particles.

Fluidised bed spray granulation can be run in batch as well as contin-
uous mode (Fig. 1), and drying and particle formation processes can be
coupled and run simultaneously in one apparatus. The structure of the
apparatuses is simple, and due to the high heat and mass transfer
between the phases induced by the fluidisation, compact plants - com-
pared to other technologies — can be designed. In both modes, a suspen-
sion or solution is sprayed leading to particle growth by layering as
explained before (centre of Fig. 1). Additionally, in continuous opera-
tion, several ways exist to remove the product from the fluidised bed,
for example by an external classification circuit which is depicted in
Fig. 1 or by an internal classification. Both cases will be described in
detail in later sections.

In the practical realisation of particle formation processes the follow-
ing problem arises: The particles are not uniform, i.e. they differ in their
properties, for instance in size, form or colour. This means that the
particles in the powder do possess a distribution with respect to their
properties, and therefore the product also possesses a property distribu-
tion. Given a product specification requires that the distribution
lies within the limits posed by the specifications to be accepted by a
customer.

The product specifications can be very strict, for instance in processes
with expensive raw materials or where the product is a hazardous good,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2014.07.023&domain=pdf
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Fig. 1. Schematics of a continuous spray granulation process with external classification
and particle recycle.

and the requirements are further increasing. The need to guarantee that
the product complies to the specification motivates the use of process
control systems in particle processes. This becomes especially important
if the process designed according to the product specifications turns out
to be unstable [2,3], i.e. even small process disturbances yield an unde-
sired drift in the product properties. The necessary compliance of the
product to specifications motivates the use of model-based feedback
controllers.

One well-established framework for the macroscopic modelling of
particulate processes, which are from a systems-theoretic point of
view infinite-dimensional processes, that is well-suited for the model-
ling of industrial-scale processes, is the population balance approach,
introduced for problems in statistical mechanics by Hulburt and Katz
in the 1960s [4]. To the field of particulate processes it was transported
by the work of Randolph and Larson [5] (with a focus on crystallisation);
it was advertised and established in the field by D. Ramkrishna and co-
workers [6].

In the literature, many successful applications of population balance
modelling to particulate processes can be found, for instance in
crystallisation [7-9], granulation [2,3,10-12], drying [13-15], or aerosol
processes [16,17].

The main obstacle in the analysis and development of general con-
trol design methods for distributed parameter systems is the complex
mathematical theory due to the infinite-dimensional character of the
processes.

In the case of nonlinear distributed systems the treatment is restrict-
ed in most cases to practically important process structures, see for
instance [18-20]. Nonetheless, control schemes are successfully de-
signed for distributed parameter systems, for applications to spatially-
distributed systems, see for instance [20-22].

There are also contributions in the field of property-distributed pro-
cesses available, for instance Kalani and Christofides [17] who proposed
nonlinear controller design for an aerosol process on the basis of a re-
duced model, and Chiu and Christofides [23] who applied a nonlinear
controller to a crystallisation process on the basis of a reduced model.
Pottmann et al. [24] designed a model-predictive controller for a drum
granulation system; Vollmer and Raisch [25] and Palis and Kienle [26]

designed a stabilising controller for an unstable crystallisation process
using H..-theory and discrepancy-based control; Shi et al. [27] designed
a model-predictive controller for a batch crystallisation process; Duefias
Diez et al. [28] controlled inventories of a property-distributed process
by passivity-based control. Villegas et al. [13] presented a distributed
control scheme in a batch fluidised bed dryer and Glaser et al. [29]
presented the design of a model-predictive controller for continuous
drum granulation.

Recently, Palis and Kienle [30-32] presented results on stabilisation
of unstable steady-states in continuous fluidised bed spray granulation
using H..-theory and discrepancy-based control in continuous granula-
tion with internal product classification, assuming that the size distribu-
tion of particles can be measured. Apart from these publications, the
control of particle size distributions in fluidised bed spray granulation
has not received much attention, so that today, practically implemented
control systems mainly concentrate on the regulation of heat and mass
transfer (e.g. temperature), integral values (e.g. total mass of product)
or mean values (e.g. mean particle size) of the particles in the stable pro-
cess regime. Although the control schemes are for most part sufficient
for their tasks, they cannot guarantee that the property distribution as
a whole complies to the specifications. This means that in light of the
increasing strictness of product specifications the control schemes
have to be improved.

In this contribution two industrially appealing process control
schemes for the important cases of continuous fluidised bed spray gran-
ulation with internal product classification and external classification
and particle reflux are presented that allow for the stabilisation of
unstable operating points and particle size distributions in these
processes.

2. Process modelling

Limiting the scope to a purely macroscopic modelling, which is well-
suited for the description of large-scale processes, population balance
modelling is often applied [5,6].

The state of a particle is characterised by its properties. In general,
two types of coordinates are distinguished: external coordinates x
(the spatial position in the system), and internal coordinates e (par-
ticle properties, e.g. the size §). In total, these properties span a prop-
erty state-space (denoted by Q) x E): Usually, during the process the
properties of a particle will change; this corresponds to a movement

T
-

e + Ae

€1 + )

X1 x; + Ax

R‘l’

Fig. 2. Movement of a particle in property state-space.
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in state-space as shown in Fig. 2 for one external and one internal
property.

Population balance modelling is the description of the temporal evo-
lution of a number density function n (or other functions derived from
it, for example the mass density function):

N(t) ://n(t,x,e) dedx, XxEQ, e€E. (1)
Q'E

It describes how many of the particles in the process under consider-
ation possess a certain property, e.g. how many particles are at position
x having the property &. For this, all sub-processes have to be modelled
in terms of the number density function.

In the special case of no external coordinates, dim(x) = 0, corre-
sponding to a well-mixed system, the differential or local formulation
of the population balance equation can be derived:

% + dive[p(n, §)]—p(n,§) = 0. 2

This is a formal balance law for the temporal change of the number
density function n. Open are the expressions for the transport flux ¢
and the local production rate p. They depend on the process to be
modelled and therefore no general expression can be given. Further re-
quired are initial and boundary conditions, depending on the modelled
process. These details will be given in the following sub-sections.

From the number density distribution a set of integral values, called
the moments of the distribution, can be derived which are often easier
to interpret than the density distribution itself. For the case of one prop-
erty coordinate only, the jth moment can be calculated by:

gmax

/éj n(t,€) dg . 3)
&

H;(t) =

For certain j a physical interpretation is possible, for instance j = 0
gives the total number of particles, i.e. tp(t) = N(t). For higher moments
the meaning of § has to be taken into account. If, for example, § denotes
the particle size, then py (t) is equal to the total length of particles (laid
out and measured in a row), th(t) is proportional to the surface area of
all particles in the population, and ps(t) is proportional to the total
volume of particles. The proportionality factors depend on the geomet-
ric shape of the particles.

2.1. Continuous granulation with internal product classification

Vreman et al. [3] derived a model for the continuous granulation
with internal product classification which is summarised in the follow-
ing: A suspension or solution is sprayed by a nozzle onto the particles in
the fluidised bed. Assuming that the particles are almost spherical, the
characteristic size can be described by the diameter of the particles.
Assuming that the sprayed droplets can spread over the total particle
surface the buildup of new solid layers can be described by a surface-
proportional law [11]:

_ 2Msolid , ( 4)
Psotia T Ha

where M,;;; denotes the solid mass sprayed onto the particles. Vreman

et al. use a slightly modified version of this growth law by splitting up

the sprayed mass flow: They consider not only the growth of particles

already present but also the formation of new particles, nuclei, due to

pre-drying of the sprayed droplets:

G= 2(]_b)MSOHd . (5)

Psotia T Hy

Here, b denotes the fraction of the sprayed solid that is used to form
new nuclei and is related to the distance between the nozzle and the
particle bed. The number flow of nuclei, B, can be calculated - assuming
that they have a normalised size distribution qo ;ycrei(§) -

6 szolid

Psolig T /§3 qO,nuclei(g) dg .
&

B,(§) =

(6)

The particle flow at the outlet of the apparatus is regulated by a clas-
sifying gas flow in the outlet tube: Depending on the gas velocity certain
particle sizes leave the apparatus whereas other sizes are transported
back into the process chamber, that is, in order to obtain a product
with a certain (mean) size a fixed gas flow is set. The classifying effect
is modelled by a separation function T which depends on the particle
size and the gas velocity in the outlet tube. The product mass flow can
then be described by:

ﬁpmd = KT(g) n, (7)

where K is a drain factor. The population balance equation for this
process then reads:

g—r; + a(;;n) = _':lprod + Bn (g) . (8)

As was shown by Vreman et al., depending on the spraying rate Mg
either a stable steady-state operation or a sustained oscillation in the
number density function and the product mass flow rate is obtained.
The control task is here to dampen out these oscillations in order to
obtain a constant product mass flow with constant properties.

2.2. Continuous granulation with external classification and particle reflux

A similar process configuration is continuous spray granulation with
external classification as depicted in Fig. 1. The core of this configuration
is again a process chamber with a nozzle in either a top-spray or
bottom-spray configuration, and an outlet tube is installed in the centre
of the gas distributor plate. During granulation particles will leave the
chamber by this tube. This mass flow is then screened twice: The
over-sized particles from the first screen are sent to a mill where they
are milled and then re-fed into the process chamber. The under-sized
particles are screened once more. Here, the over-sized particles are
accepted as product, whereas the undersized particles are also re-fed
into the process chamber for further growth.

For population balance modelling of the number density function of
particles in the bed, the same assumptions as in the case of the internal
classification are used. This means that the population balance equation
can be used as a basis for this process — it only has to be augmented by
terms accounting for the particle outlet and the re-cycle of particles. This
requires to model the screens and the mill using the population balance
framework. It is assumed that no hold-up of particles occurs, that parti-
cles do not break during screening and that the performance of screens
and mill does not vary with age or particle loading. Then the screens can
be described by well-known separation functions T(§) individually for
the upper and the lower screen. In modelling the mill, it is assumed
that the particles having passed the mill possess a normalised size
distribution qomi(§) depending on the characteristics of the mill:

i (t,6) = B (£) Go min(6) 9)

where B,,, denotes the number flow of milled particles which can be ob-
tained from the knowledge of the mass flow entering the mill and the
milling function. Usually, go i cannot be obtained exactly and has to
be approximated.
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The number density flux of particles re-fed into the process chamber
consists of the under-sized particles of the second screen and the milled
particles, i.e.

ﬁrecyde = (1 _Tl)(] _T2 )ﬁout + hmi!l . (1 0)
If it is assumed that no particle size is preferred, then the particle

outlet can be expressed as being proportional to the number of particles

that possess a certain size:

Ry = K1 (11)

where K can be designed, for instance, to achieve a pre-set bed mass [2]:

K= 1= min(1, Myegser/Myeq ) (12)

The population balance equation for this process can then be written

as
on 0(G . )
a_rtl + (agn) = Mgy + Myecycle (13)

with appropriate initial and boundary conditions.

This process configuration was extensively investigated by Heinrich
etal. [2] and Radichkov et al. [33] concerning the dynamic behaviour. As
was shown in Radichkov et al. by bifurcation analysis, the process
exhibits different dynamic behaviours depending, amongst others, on
the value of the average size of milled particles: For a certain range a sta-
ble steady-state distribution is attained which would yield a constant
mass flow of product with constant particle properties, but for a large
parameter range the system exhibits sustained oscillations in the num-
ber density function resulting in an unwanted time-varying mass
flow of product (Fig. 3). As this poses several difficulties in the post-
processing of the product process control is required to stabilise these
unstable operating points.

3. Feedback control design
3.1. Continuous granulation with internal product classification

As was motivated in the process description, this granulation pro-
cess can exhibit nonlinear oscillations in the number density distribu-

tion and thereby in important product characteristics. An analysis
shows that the solid spraying rate has huge influence on the process

3 . "
—— Oth moment
- — -1st moment
2.5¢ —»— 2nd moment ||
------- 3rd moment

Normalised moment [-]

10000
tin[s]

0 5000 15000

Fig. 3. Exemplary behaviour of the first four moments, normalised with respect to the ini-
tial value g (0), in the case of a unstable steady-state in continuous spray granulation with
external classification.

stability and by this qualifies as a manipulated variable to attenuate
the oscillations. It is further found that the third moment pi3, which is
proportional to the total mass of particles in the bed, is a suitable mea-
surement to detect the oscillating behaviour as very fine particles are
blown back into to the process chamber and accumulate there.

In order to control this process a feedback controller with a simple,
industrially accepted proportional-integral structure is to be designed.
To that purpose a linear transfer function model Py(s) linking the
manipulated (the spraying rate) and the controlled variable (the third
moment) is derived based on the linearisation of the nonlinear process
model.

It has to be noted that the derived plant model is uncertain due to
uncertainties in the process parameters, e.g. the amount of nuclei for-
mation, unmodelled dynamics in the initial nonlinear process model
due to the use of assumptions in the derivation, and approximation er-
rors, amongst them uncertainties in the linearisation which is only valid
in a region around one steady-state and errors due to the transition of
the initially infinite-dimensional process model to a finite-dimensional
model that can be implemented and solved numerically, i.e. the
discretisation of the population balance equation. However, for these
uncertainties individual bounds are often available.

The presence of the uncertainties yields that not only the derived
transfer function, the nominal model Py, but a set of transfer functions
incorporating the uncertainty bounds has to be considered in a control-
ler design. A controller which is able to perform the required control
task for all transfer functions in this set, which may have a quite differ-
ent dynamic behaviour, for instance due to a transition from a stable to
an unstable process regime, is called a robust controller.

The design requires the expression of the uncertainties in a suitable
way, the normalised left coprime factorisation being one of them. Here,
the nominal, possibly unstable, transfer function Py(s) is split up into the
product of two stable transfer functions:

Po(s) = Mo ' (5) No(s) - (14)

The uncertainties are then formulated as additive errors Ay; and Ay
in both factors individually, resulting in:

P(s) = [Mo(s) + Ay ()] ' [No(s) + An(s)] - (15)

The uncertainty models Ay and Ay are stable transfer function
matrices, with a known bound ¢ expressed in the H.-norm:

I1Aw  An]lle<e: (16)

In order to derive the minimum value of ¢ various sophisticated
methods from systems-theory have to be applied. The details for the
derivation of the bound for this process can be found in Palis [34].

The controller with transfer function C which is of PI-structure in the
present case is then designed for the nominal model Py by standard
methods, e.g. the root-locus method [35]. The controller is robust if
the H..-norm of a special closed-loop transfer function satisfies:

< (17)

=

H [ﬂ(HPOC)”M(;l

If this condition is fulfilled, the controller stabilises not only the
nominal plant model, but also the set of uncertain models. As the
infinite-dimensional system, i.e. the granulation process, is included in
this set, it is also stabilised. If the condition is not fulfilled then the
controller C has to be re-parameterised in an interative way.

3.2. Continuous granulation with external classification and particle recycle

The continuous spray granulation with external classification and a
particle recycle utilising screens and a mill is known to possess unstable
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steady-states, i.e. a stable limit cycle in the number density distribution
of the particles in the bed can occur (Fig. 3). Although this oscillation
does not influence the quality of the obtained product - this is deter-
mined by the choice of the screens - the quantity of product is strongly
influenced: At some time instants a large amount of product is generat-
ed whereas at other times the product mass flow nearly vanishes. As
this is a generally unwanted effect, feedback control is applied to
damp out these oscillations.

A bifurcation analysis of the population balance model shows that
the dynamic behaviour is strongly dependent on the size of the milled
particles that are re-cycled into the bed [33]: If they are too small then
oscillations occur otherwise a stable steady-state operation takes
place. From a control engineering point of view the size of the milled
particles is a manipulated variable. It can be regulated, for instance by
manipulation of the speed of the mill. In order to detect the oscillations,
it is found that the second moment of the number density distribution
Ik is a suitable measurement. Although it is not directly measurable it
can be obtained by other means, for instance a model-based measure-
ment system [36].

For stabilisation of these unstable steady-states, model predictive
control is applied [37]. Its main idea is to calculate the manipulated var-
iable as the solution of a dynamic optimisation programme. The main
ingredients are: (a) A dynamic process model that allows for the predic-
tion of the process state given the information about the current state of
the process. (b) A cost functional that measures the deviation of the cur-
rent and predicted states from the desired process states. (c) An optimi-
sation algorithm that calculates the input trajectory by minimising the
difference between the predicted and desired states. Due to the iterative
re-calculation of the input trajectory, i.e. at each time instant the future
process states are predicted and the optimisation programme is solved
again, a closed-loop feedback control law is obtained which is able to
cope with process disturbances and changes in the reference signal
(Fig. 4).

The main advantages of model predictive control are that it is con-
ceptually simple, which is of great importance if the controller is to be
applied industrially, and it is able to incorporate constraints explicitly
into the problem formulation, e.g. known limits of the manipulated var-
iables can be stated directly and are met in the resulting input trajectory.
The main problem of model predictive control is the need to solve an
optimisation programme: If constraints are present then the pro-
gramme is nonlinear and a closed analytic solution is for almost all
cases impossible. This requires the use of iterative numerical algorithms
which introduce various difficulties, for instance in the real-time avail-
ability of the computed input trajectory. However, focussing on linear
model predictive control, it is possible to derive an analytic solution in
the unconstrained case which closely resembles a state-feedback con-
troller with a pre-filter for reference tracking.

Svstem

Reference

t/ Tsample

ko k+l k+ N,

control horizon

prediction horizon

Fig. 4. General principle of model-predictive control.

Given an augmented state-space model in incremental form
z(k+ 1) = Az(k) + BAu(k), y(k) = Cz(k), (18)
the predicted output can be expressed as
Y = Fz(k|k) + PAU, (19)

where the vectors Y and AU as well as the matrices F and & are created
by stacking the equations for all sampling times, i.e.

y(k+ 1]k)
: , (20)
y(k + Np|k)
Au(k) Cc/:z
AU = : E= | 0| (21)
Au(k+ N.—1) cAV
CB 0 0
o= B8 22)
cAV'B caA™?B  cAM B

With these results a quadratic cost functional can be formulated
J(AU) = R=Y)' (R=Y)" + (AU)W(AU), (23)

where R is the stacked reference signal over the prediction horizon. The
matrix W is used to scale the influence of the input on the cost. The
optimum input sequence (AU),p, then minimises the cost functional, i.e.

(AU)gy = arg min J(AU) . (24)

In the unconstrained case this optimisation problem can be solved
analytically, yielding

(AU)gpe = (@7 + W) " &"R— (07> +- W) " @ Ez(klk) . (25)

The second part of the right-hand side of the equation can be
interpreted as state feedback, the first part is a pre-filter that will guar-
antee a zero steady-state control error.

In the case of linear constraints, e.g. bounds on the manipulated
variables, Eq. (24) is a quadratic optimisation programme, the solution
can be obtained efficiently, for instance by active-set or SQP methods
(cf. [38]).

4. Results and discussion
4.1. Continuous granulation with internal product classification

In order to stabilise the oscillations in this process, for a given re-
quired steady-state given by the parameters in Table. 1, the linear

Table 1
Process parameters for the continuous spray granulation process with internal classifica-
tion after [3].

Nozzle height [m] Npozzte 0.44

Bed porosity [—] ] 0.5

Drain factor [s~'] K 1.92 x 1074
Solid volume spray rate [mm® s™'] Vioiid 1313 x 10°
Minimum nucleation fraction [—] beo 0.028
Controller proportional gain K, 0.0144
Integrator gain K 8x10°°
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transfer function model is derived and reduced in the model order
yielding a third-order SISO transfer function. This is done to simplify
the controller design. Afterward, the uncertainties A, and Ay are de-
rived, including the model reduction error, and incorporated into the
controller design as shown before (cf. [34]). For this particular process,
a simple PI-controller is designed using the root-locus method, i.e. after
setting the general structure of the controller it is parameterised by this
method such that the closed loop is stable and shows a desirable dy-
namic behaviour (Fig. 5). The robustness of the closed-loop system
with respect to the model uncertainties is checked by application of
Eq. (16). The corresponding gains of the controller are also listed in
Table. 1.

Simulation results for the application of the designed PI-controller to
the nonlinear process, i.e. the discretised population balance equation,
are shown in Fig. 6-Fig. 8. Here, after approximately 60 h the controller
is applied to the process and stabilises the number density distribution
by manipulating the spraying rate. Note that the change in spraying rate
is only temporarily, i.e. the steady-state spraying rate is the same (illus-
trated by the dashed line in Fig. 8). However, now a constant product
mass flow with the desired (mean) particle size is obtained, a huge
improvement over the oscillating amount achieved without feedback
control (Fig. 7). Another virtue of the designed controller is that al-
though highly sophisticated methods had to be used to derive it and
to show that it stabilises the system, it can be implemented easily
using a standard PI-controller component.

4.2. Continuous granulation with external classification and particle recycle

In order to calculate and parameterise the model predictive control-
ler for the number density distribution, at first the unstable steady-state
solution belonging to the process parameters given in Table. 2 is obtain-
ed by analytically solving the steady-state population balance equation
(cf. [38]). A finite-dimensional linear state-space model was then
obtained by linearising the nonlinear population balance equation,
which is discretised with respect to the particle size by a higher-order
finite volume method, in the vicinity of the steady-state solution. This
linear model, a system of linear ordinary differential equation, is then
discretised in time resulting in a set of linear difference equations
which are used to predict the future process states.

Given the steady-state solution, the cost functional is set up, measur-
ing the quadratic difference between the current second moment of the

x10°

stable

o
e
Eo %
5
S0 -8 6 -4 2 0

Re x 10"

Fig. 5. Plot of the root locus of the nominal plant P, with PI-controller. The poles and zeros
of Py are shown as black crosses and bullets, the poles of the controller are shown in grey. It
can be seen that the initially unstable poles (to the right of the dashed line) are pulled into
the stable region, i.e. the closed loop is stable.
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Fig. 6. Plot of the number density distributions in the fluidised bed chamber with and
without feedback control. The controller is activated after 60 h and the sustained open-
loop oscillation is eliminated and the number density distribution in the bed attains a
steady-state.

number density distribution and the value of the second moment in the
steady state and a weighting of the applied input is added:

Ny

) = S vl =g )” + el (26)

k=1

Additionally, constraints are imposed on the range of the manipulat-
ed variable, representing the fact that particles cannot be milled to arbi-
trary sizes:

Upin K] Sulk] <ugax[K] - (27)

The corresponding values for the prediction and control horizons as
well as the constraints can also be found in Table. 2.

This then leads to a quadratic optimisation programme that has to be
solved online at each time instant k. However, the computational time
needed to re-calculate the input trajectory is — compared to the time
constant of the process in the order of minutes - negligible. In Fig. 9
the results obtained by the application of the linear model predictive
controller to the nonlinear process after 160 min are shown. Compared

current
- steady-state

Product volume flow [mm3 s“]
P
T
1
1

0 50 100 150
tin [h]

Fig. 7. Plot of the product volume flows for the case of internal classification with and
without feedback control (control is activated after 60 h). The solid line (up to 60 h) de-
notes open-loop operation, afterwards the results correspond to closed-loop operation.
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Fig. 8. Plot of the profile of the manipulated variable (solid volume spray rate). The value is
constant until the controller is activated after 60 h. It then changes the manipulated vari-
able as indicated. Afterwards the value remains constant for the rest of the process
duration.

to the uncontrolled process where a sustained oscillation develops the
controller is able to stabilise the steady-state, resulting in a constant
mass flow of product with a constant particle size distribution (Fig. 10).
The profile of the manipulated variable, the mean diameter of the milled
and re-cycled particles, is shown in Fig. 11. It can be seen that the value is
at all times in the bounds specified by ty,;, and ty,a«. The non-smooth ap-
pearance of the profile is due to the time discrete implementation of the
control law and the unstable dynamics of the process. It can be smoothed
by decreasing the sample time Tsqmpie at the cost of an increased compu-
tational load.

5. Summary and outlook

In this work the stabilisation of unstable, oscillatory steady-states in
continuous fluidised bed spray layering granulation was investigated.
Two practically important process configuration — with internal product
classification and with external product classification - which can ex-
hibit unstable process behaviour under a wide set of operating condi-
tions were considered. These unstable process states, which in both
cases are due to nuclei formulation, limit the current range of achievable
product properties.

Based on practical as well as model-based considerations, manipu-
lated variables were chosen which allow influencing the stability
of the processes. Two linear feedback controllers with industrially

Table 2
Process parameters for the continuous spray granulation process with external
classification.

Initial bed mass [kg] Mped 10.0
Reference bed mass [kg] Mbped set 10.0

Mass flow of nuclei [kg s~ 1] Muue 555 x 107°
Mass flow of solid [kg s~ '] Osolid 1.38 x 102
Solid density [kg m ™3] Osolid 1440.0

Size of nuclei [m] & 01x1073
Screen size upper screen [m] &u 0.5 %1073
Screen size lower screen [m] & 04x1073
Milling diameter (osc.) [m] Ev 02x1073
Number of discretised states 100
Simulation time interval [s] tend 12,000
Sampling time [s] Tsample 60
Prediction horizon Np 30
Control horizon N¢ 10
Minimum input [m] Umin 0.18 x 103
Maximum input [m] Umax 022 x 1073
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Fig. 9. Plot of the number density distributions in the fluidised bed chamber with and
without feedback control after 160 min, as well as the desired steady-state reference.

accepted structures were designed to determine a-priori determined
unstable steady-state: A robust PI controller for the continuous process
with internal product classification, which takes explicitly into account
process uncertainties, and a model-predictive controller for the contin-
uous process with external classification which takes into account
constraints on the manipulated variables. It was shown in simulations
that the designed controllers are able to achieve the stabilisation; how-
ever, - being linear feedback controllers - the underlying linearised
process dynamics must be sufficiently close to the nonlinear process
dynamics.

This current restriction has to be overcome if in addition to
stabilisation also the start-up and shutdown of the continuous process-
es are to be realised. These processes are inherently nonlinear and feed-
back controller design has to incorporate this. A possible way to do this
in future work is for instance the use of gain-scheduling controllers:
There, a set of linear process models is derived where each model is a
able to represent the nonlinear dynamics over a certain range. The com-
plete nonlinear dynamics are recovered by suitably switching between
the linear models. Simultaneously, a set of linear feedback controllers
for each of the linear process models is designed as well as a switching
mechanism between the controllers.

Another restriction that has to be handled in future work is the influ-
ence of the continuous (gas) phase on the particle growth. Based on the
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Fig. 10. Plot of the product mass flows for the case of external classification with and with-
out feedback control.
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Fig. 11. Plot of the profile of the manipulated variable obtained by constrained model-
predictive control. The dashed lines correspond to the minimum and maximum value
for the manipulated variable (see Table. 2).

drying conditions, the morphology of the layers can differ from fairly
compact to highly porous. This results in different size growth rates
due to the added void in the layers although the same of amount of
solid was sprayed, i.e. additional changes in the particle size distribu-
tion, which have to be considered in feedback control design and
plant operation.

Notation

b mass fraction of solid spray that creates nuclei
e internal property coordinate

h height [m]

m mass [kg]

n number density function [m™']

qo normalised number density function [m~']
u manipulated variable

X external/spatial coordinates

A, B,C F state space matrices

B, number flow of nuclei [s™]

B number flow of milled particles [s~]
C state space matrices

E property space

G particle growth rate [m s~ ']

K drain factor [s™ 1]

K; integrator gain

Ky proportional gain

Mo, Ng  transfer function

M mass flow rate [kg s~ ']

N total number of particles

N number of control steps

N, number of prediction steps

P, Py transfer function

R reference over prediction horizon [m?]
Tsample ~ MPC sampling time [s]

separation function

volume spray rate [m®> s~ ]

controller design matrices

measurements over prediction horizon [m
robustness measure

j-th total moment of number density function [m’]
particle diameter [m]

mass density [kg m™3]

bed porosity

Am, Ay transfer function

AU change in u over control horizon [m]

’]

STOE O <

)] state space matrix
Q physical space
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underactuated large gantry cranes
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Abstract: An important structural dynamics problem of the large gantry cranes are horizontal
elastic oscillations mainly excited by the trolley motion. They reduce the crane operation
performance and lead to faster material wear of the crane construction. In this article a
distributed parameter model of large gantry cranes applying Hamilton’s principle is presented.
In order to stabilize the system dynamics the use of a generalized error measure, called
discrepancy, is proposed. Applying the associated stability theory, i.e. stability with respect to
two discrepancies, a nonlinear stabilizing control for the underactuated gantry crane is derived.
The proposed control strategy has been verified by simulations.

Keywords: Distributed parameter system; discrepancy based control; gantry crane; payload
oscillations; position control; structural dynamics.

1. INTRODUCTION

Currently, the control of underactuated crane systems is
an active field of research. In Abdel-rahman et al. (2003)
and Ramli et al. (2017) authors overviewed a variety of
models and control techniques for different types of cranes.
Most of the contributions focus on the damping of load
swaying due to the crane positioning applying different
feedback and feedforward control approaches, e.g. energy-
based control Sun and Fang (2012), Sun et al. (2018), Won
and Hoang (2018), sliding mode control Zhou et al. (2017),
Xiao et al. (2018), Wang et al. (2018), Lu et al. (2017)
and input shaping techniques Abdullahi et al. (2018),
Ramli et al. (2018). In the majority of contributions
the structural system dynamics has been neglected. How-
ever, continuous increase of crane dimensions and utilizing
lightweight profiles led to limited stiffness of the structure.
Thus, this assumption is not valid for large cranes and
a coupling between elastic structural vibrations and the
trolley movements has to be taken into account.

In the last years, the structural dynamics problem has been
stated for different types of cranes (Zrnié et al. (2006);
Rauscher and Sawodny (2017); Schlott et al. (2016); Kim-
merle et al. (2018); Miloradovic and Vujanac (2016); Sowa
et al. (2018)) including large gantry cranes (Golovin and
Palis (2019); Gasié et al. (2013); Yazid et al. (2011);
Kreuzer et al. (2012); Ryu and Kong (2012)). Here, two
main structural dynamical problems can be stated: ver-
tical girder vibrations due to the trolley travel and load
hoisting, and horizontal low frequency oscillations in the
trolley motion direction. In this contribution, the focus
is on the horizontal oscillations as they are particularly
unfavorable due to the large amplitudes and their weakly
damped behaviour. They provide additional mechanical
stresses leading to faster construction wear and decrease
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crane operation performance. In addition, applying feed-
back control, neglecting the structural dynamics, may re-
sult in the excitation of resonance frequencies and even
unstable closed loop dynamics.

In the literature different approaches to solve the struc-
tural dynamics problem for large gantry cranes have been
proposed, e.g. structure stiffening by construction opti-
mization Zrnié et al. (2005), passive and active dampers
via additional weight as counter-mass Recktenwald (2011)
and linear robust active damping approach as an extension
for the trolley motion control system Golovin and Palis
(2019). The later has been verified on a laboratory gantry
crane.

This contribution is concerned with the modeling and
nonlinear control of underactuated large gantry cranes
with limited stiffness. In order to derive the distributed
parameter crane model Hamilton’s principle has been uti-
lized. The main control objectives for underactuated large
gantry cranes are payload positioning without swaying and
a simultaneous reduction of structural oscillations in the
trolley travel direction. Here, in order to stabilize the sys-
tem dynamics the use of a generalized error measure, called
discrepancy, is proposed (Palis and Kienle (2012, 2014)).
Applying the associated Lyapunov stability theory a non-
linear stabilizing control has been derived. The resulting
control law has been verified in a simulation study, where
the distributed dynamics have been discretized using finite
differences.

Section 2 presents the derivation of the coupled model of
the gantry crane including its structural dynamics. The
concept of stability with respect to two discrepancies as
well as the corresponding discrepancy based control design
are introduced in section 3. Section 4 concludes the article
with results from a simulation study.



2. GANTRY CRANE MODELING

In this contribution, a nonlinear model-based control ap-
proach for the gantry crane is proposed. It requires the
establishment of the corresponding dynamic plant model.
Essentially, an operational cycle of the gantry crane con-
sists of the hoisting of the load, its horizontal movement
and deposition. From a control point of view, the hor-
izontal movement phase is the most challenging tasks.
The payload should be delivered as fast as possible to
the desired position without swaying. However, for large
cranes such movements may excite the natural frequencies
of the crane structure. These important effects should
be reflected in the dynamic model. For convenience, the
following assumptions for model derivations are made:

(1) as the scope of the contribution is on the horizontal
vibrations the considered frame structure of the crane
consists of the upper horizontal beam which is rigid in
flexure and two supported columns that have limited
lateral stiffness;

(2) the structure is assumed to be symmetrical such that
the problem can be reduced and only one half of the
structure has to be taken into account;

(3) the mass density and the bending stiffness of the crane
columns are distributed along the spatial coordinate,
and they are assumed to be constant along the spatial
coordinate;

(4) rotary inertia, shear deformation and buckling effects
can be neglected;

(5) the hoisting process is neglected, such that the rope
length can be assumed to be constant;

(6) the trolley and the payload are connected by a mass-
less rigid rope and the elongation of the rope is
neglected;

) the moment of inertia of the load can be neglected;

) nonlinear friction effects can be neglected;

) external disturbances on the crane and load can be
neglected, e.g. wind;

) the trolley is actuated via a current controlled DC-
motor with gear, therefore the force F;(t) depends
linearly on the motor torque 7(t), i.e. Fy(t) = k7 (1)
where k. is the transformation coefficient.

In Fig. 1 the schematic diagram of the motion of the gantry
crane is depicted. Here, m; is the mass of the crane trolley,
m,, is the mass of the payload, m. is the mass of the crane
girder, F; is the external force being applied to the trolley,
p(t) is the sway angle, z(¢) is the trolley displacement,
[ is the rope length, w(z,t) is the displacement of the
crane structure in horizontal direction depending on both
position = and time ¢, L is the length of the crane legs,
pe is the mass density, F is Young’s modulus and [ is the
moment of inertia of a cross-sectional area.

In order to derive a suitable gantry crane model Hamilton’s
principle based on the kinetic energy T'(¢), potential energy
U(t) and virtual work done by non-conservative forces
W (t) can be written as follows

/t2(§T—6U+5W)dt:O, (1)

ty

where § represents the variational operator, t; and ty are
initial and final moments in time.
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Fig. 1. Gantry crane

The vector of generalized coordinates is chosen as follows

q=[w(z,t) 2(t) p(t)]. (2)

Then the position vectors of girder r., trolley r; and
payload 7, can be written as follows

r=|"%"). 3)

re= w(L,t)O—i- z(t)| , (4)
ry = w(L,t) j_lig)ts);ZSin go} . (5)

The corresponding kinetic energy of the gantry crane can
be represented as follows

L

1 1

T = 5/ pe? dz + 5m0w2(Lvt) + gmt(w(Lat) +2)?
0

+ iy [(0(L.0) + 5+ gleosg)? + (glsing)?] . (6)

and the potential energy can be formulated as follows
1 /L
U= §/ EI(w")*dz — myglcosp, (7)
0

where the dot symbol denotes the derivative along the time
and the prime symbol along the spatial coordinate.

According to Fig. 1 the work done by non-conservative
forces, namely actuating force, trolley viscous friction force
and structural linear damping force, can be written as

L
JW:(Ft—u,é)éz—/ cw dwdex (8)
0

where p is the viscous friction coefficient and c is the linear
structural damping.

Substituting energies (6), (7) and (8) into Hamilton’s
principle (1), taking corresponding variations and applying
integration by parts with respect to ¢t and x, the following
equation is obtained:



to L
0=— / / [pcto + ETw"" + cii] 6w dx dt
t1 0

~ / " BIw™(0.1)] 5w(0. ) dt
+ /t2 [ETw"(0,t)] 6w’ (0,t) dt
_ /  BI0 (L. 1)] 6 (L. 1) dt

ta
_/ [msw(L,t) + msZ + mpldpcos
ty

—mylp?sing — ETw (L, t)] w(L,t) dt

to
—/ [msw(L,t) + msZ + mplpcos

t1

—mpl@? sing — Fy + pldzdt

ta
— mpl/ [l + w(L,t) cosp + Zcos p
t1
+ gsing]dpdt, (9)
where my = mp + my + m. and mg = my + my.

Here, as variations are arbitrary, eq. (9) holds only if
the integrands vanish. Thus, taking into account the
geometrical boundary conditions w(0,t) = w;(0,t) = 0
the equations of motion follow:

0= pc + EIw"" + v, (10)
0=w(0,t) =w'(0,t) = w"(L,t), (11)
0 =myw(L,t) +msZ + myldcosp
—mylp?sing — EIw" (L, t), (12)
0 =msw(L,t) + msZ + mpldcos
—mylp?sing — Fy + p#, (13)
0=1p+w(L,t)cosp + Zcosp + gsing. (14)

3. CONTROL DESIGN

This section focuses on stability with respect to two dis-
crepancies and the associate control design. The derived
equations of motion consist of a partial differential equa-
tion (PDE) (10) with corresponding boundary conditions
(b.c.) (11) representing the structural dynamics of the
crane and a system of nonlinear ordinary differential equa-
tions (ODE) (12-14), which act on the boundary of the
PDE and represent the coupled motion of the girder,
trolley and payload.

In this contribution it is assumed, that all system states
related to the trolley motion, payload motion and crane
oscillations at the boundary x = L can be measured.
The actuation is represented by a DC motor operating
in current control mode, where the desired current is
proportional to the control applied torque 7(¢).

3.1 Stability with respect to two discrepancies

According to the works (Movchan (1960); Sirazetdinov
(1967, 1987)) the most important properties and defini-
tions about stability with respect to two discrepancies are
presented in the following. Here, the process ¢(.,t) is a
solution of a distributed parameter system and ¢g = 0 is
an equilibrium of the system.

Definition 1. Discrepancy
A discrepancy is a real valued functional p = p[é(.,t), ]
with the following properties

e p(¢,t) >0

e p(0,t)=0

e for an arbitrary process ¢(.,t) the real valued func-
tional p[¢4(.,t),t] is continuous with respect to ¢

e presenting the second discrepancy pg(¢) with pg(¢) >
0 and po(0) = 0. Than the discrepancy p[¢(.,t),t] is
continuous at time t = ¢ with respect to pg at pg = 0,
if for every € > 0 and ¢ > 0 there exists a 8(e, o) > 0,
such that from pg < B(e,to) follows p < €

From this definition one can state that a discrepancy
does not satisfy all properties of a metric, e.g. symme-
try d(z,y) = d(y,x) or triangular inequality d(z,y) =
d(y, z)+d(z,y). And more importantly, it has not to satisfy
the property of definiteness, i.e. a vanishing discrepancy
p(¢p,t) = 0 does not automatically mean ¢ = 0. Thus,
the discrepancy is an extension of the distance measures
normally used in stability theory of DPS like L, and Loo-
norms.

Definition 2. Stability with respect to two discrepancies p
and po

The equilibrium ¢y = 0 is stable in terms of Lyapunov with
respect to the two discrepancies p and pg for all t > ¢y if
for every € > 0 and ¢y > 0 there exists a 8 = ((e, tg) such
that for every process ¢(.,t) with py < B(e, to) it follows
that p < e for all t > ty. If in addition lim;_, p = 0, than
the equilibrium ¢q is called asymptotically stable in terms
of Lyapunov with respect to the two discrepancies p and

Po-

A lot of nonlinear control approaches are based on the
Lyapunov stability theory. In order to define a relationship
between the existence of a Lyapunov functional V and
stability with respect to two discrepancies the notions of
positivity and positive definiteness of a functional with
respect to a discrepancy should be presented.

Definition 8. Positivity with respect to a discrepancy p
The functional V' = Vg, t] is called positive with respect
to the discrepancy p, if V"> 0 and V[0,t] = 0 for all ¢
with p(@,t) < oo.

Definition 4. Positive definiteness with respect to a dis-
crepancy p

The functional V' = V¢, ] is positive definite with respect
to the discrepancy p, if V' > 0 and V[0, ¢] = 0 for all ¢ with
p(,t) < oo, and for every ¢ > 0 exists a § = SB(e) > 0,
such that V > f(e) for all ¢ with p[e,t] > €.

The next two theorems state the conditions for a function
V to guarantee (asymptotic) stability with respect to two
discrepancies (Sirazetdinov (1987)).

Theorem 1. The process ¢ with equilibrium ¢g = 0 is
stable with respect to the two discrepancies p and pg if
and only if there exists a functional V' = V¢, ] positive
definite with respect to the discrepancy p, continuous at
time ¢ = ¢y with respect to py at pp = 0 and not increasing
along the process ¢, i.e. V < 0.

Theorem 2. The process ¢ with equilibrium ¢g = 0 is
asymptotically stable with respect to the two discrepancies
p and po if and only if there exists a functional V =



V[, t] positive definite with respect to the discrepancy
p, continuous at time ¢ = tg with respect to po at po = 0
and not increasing along the process ¢, i.e. V < 0, with
lim; oo V = 0.

In addition, it should be mentioned that stability with
respect to two discrepancies is necessary but in general
not sufficient for stability with respect to a L, norm or
L norm.

3.2 Discrepancy based control

The objective of the control system is to move the trolley
according to the desired position reference signal zs(t)
and a simultaneous reduction of the payload swaying and
crane structural oscillations. One of the options to derive
a nonlinear control law for a damping strategy could be
to take the overall mechanical energy E, = T+ U as a
candidate Lyapunov functional. However, calculating its
time derivative along the system trajectory results in:

E,=2F;. (15)
Here, choosing F; = —kz as the input and 2 as the output
yields in the well-known energy dissipation. However, due
to the underactuated nature of the system, the control
law contains neither terms related to the crane structural
motion nor the payload. One way to overcome this problem
is to couple eq. (15) with a term depending on the payload
velocity and to find reversely an appropriatly shaped
energy functional (Sun and Fang (2012)).

In this contribution another approach based on the dis-
crepancy is proposed. The generalized system error can be
chosen as follows

e =kiw(L,t) + koZ + ksl cos p + kye | (16)
where €(t) = 2(t) — zpes(t) is the deviation from the

reference position signal and k; to k4 are the corresponding
weights.

Here, the generalized error e is established in such way,
that it includes the position error &, velocity of the trolley
z and for increasing the system coupling the corresponding
velocities of the girder w(L,t) and horizontal velocity of
the payload ¢l cos ¢. In order to shape the error the addi-
tional weights are introduced. Using the given generalized
error results in the following discrepancy p

1
pP=3 (k1 (L, t) + ko2 + ksl cos o + kae)” . (17)

The second discrepancy py is selected to be equal to p at
time t =ty = 0:

po=p(t=0)=0. (18)
As stated in Theorem 2 existence of a suitable functional V'
is sufficient to guarantee asymptotic stability with respect
to the two discrepancies p and pg. For this aim the cor-
responding Lyapunov functional can be easily represented
as follows

1
V =3 (ko (L, 1) + ko + ksl cos ¢ + kse)® . (19)

According to stability in terms of two discrepancies the
control input should be chosen such that the time deriva-
tive V is negative definite along the state trajectories and
vanishes only for V' = 0. Calculating the time derivative
yields

V =eé =e[k1w(L,t) + kaZ + ks@lcos ¢

— k3p?lsinp + kgé] . (20)
Substituting eq. (13) in (20) yields in
V = e[(ky — ko)w(L,t) + bylgcosp
k k
—blP?sing + ke — 2L 2R (21)
Mg Mg

where
k)gms - kgmp
by = ———=.

ms

In order to achieve the required negative definiteness of 1%
the control law is chosen as follows

L [— (k1 — ko)w(L,t) — b1lpcosy
katT'
k
+b1lp? sing — kyé + 2t ael, (22)
ms

where a > 0 is a design parameter influencing the control
performance.

The proposed control law guarantees not only stability,
in the aforementioned sense, but also exponential conver-
gence of V'

V = —ae® = —2aV .
The overall control scheme is depicted in Fig. 2.

(23)

z
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Fig. 2. Control scheme

4. RESULTS

The simulation model, including the proposed control law,
has been implemented in MATLAB. For the solution of the
PDE (10) the method of lines have been applied. Here, the
spatial coordinate is lumped applying the finite difference
method (via central difference scheme) with N = 50
points. For the solution of the resulting system of ODEs
the odel5s solver has been used. All simulation parameters
are summarized in Table 1.

For contrast, the results of the proposed control law can
be compared with additional classical cascade scheme
for drive position control where no additional damping
purposes are provided. This simple control law can be
written as follows

. 1
T = [kp,pos (zv'ef —z) — Z] (kp,vel + ki,velg) ) (24)

where kp pos is position controller gain, kp yei and £; yer
are parameters of the velocity PI controller that can be
adjusted according to the modulus optimum.

In order to verify both control laws (22) and (24) time
responses of the positioning reference tracking have been
studied. The results are depicted in Fig. 3, 4, 5 and 6.
In Fig. 3 the convergence of the Lyapunov functional V'
is shown. From Fig. 4, it can be seen, that applying the
classical cascade motion control (24) without additional



system information results in oscillatory closed loop sys-
tem dynamics with large amplitudes of payload and crane
swinging. Applying the designed discrepancy based control
(22) yields a good damping of payload and structural
motion. As can be seen from Fig. 5 and 6 not only the
motion of the girder point w(L,t) but also the distributed
state w(z,t) itself and its Lgo-norm are stabilized. This
is noteworthy, as this has not been part of the design.
However, it can be shown that stability in the sense of
Lyapunov with respect to two discrepancies results in
stability with respect to the L,- or the L..-norm if the
zero dynamics associated with the discrepancy p is stable
in the sense of the L,- or Lo-norm.
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Fig. 3. Time response of the Lyapunov functional V
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Fig. 4. Reference tracking applying cascade position control
(green) and discrepancy based control (dark blue),
reference position (red)
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Fig. 5. Time responses of the distributed state applying
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Fig. 6. Lo-norm with respect to x of the displacement
w(x,t) applying cascade position control (green) and
discrepancy based control (dark blue)

Table 1. Model parameters used for simulation

Parameter  Value Parameter  Value
my 0.1 mp 0.18

me 0.97 l 1.5-103
m 0.01 EI 6.9

Pe 3 c 5

kp,pos 5 kp vel 1.4

ki vel 26 ktr 83.33

k1 1.3 ko 1

ks 0.7 k4 0.6

a 0.035

5. CONCLUSION

In this contribution a discrepancy based control approach
for underactuated large gantry cranes is proposed. In order
to derive a mathematical description of elastic gantry
crane dynamics Hamilton’s principle has been utilized.
From a control point of view, the main objective is to
achieve good load positioning and simultaneous to damp
load sway and structural oscillation induced by trolley



movements. Due to the distributed nature, strong coupling
and only one control handle this is a challenging task.
In order to solve this problem a generalized stability
theory, stability with respect to two discrepancies and the
associated control approach, discrepancy based control,
have been successfully applied and verified in simulations.

Future work will be concerned with the robustness analysis
of the proposed approach and its practical implementation
for further verifications on a laboratory flexible gantry
crane.
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Abstract:

In this contribution control design for continuous fluidized bed spray granulation with external
sieve-mill cycle in the presence of uncertain mill behavior is presented. It is well-known that this
specific particulate process becomes unstable in certain parameter regions. Being described by
a population balance model, a nonlinear partial integro-differential equation, control design is
challenging. To overcome this problem control design is studied in terms of a generalized stability
theory, i.e. stability with respect to two discrepancies. The resulting discrepancy based control
can be extended by additional parameter adaptation to cope with the present uncertainties.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Granulation is an important process class for transforming
a liquid product into its final solid form. It is often applied
in food production or chemical and pharamaceutical in-
dustries. From a production point of view, granulation in
fluidized beds is, due to the increased active surface and
particle mixing, often attractive. Therefore, an initially
solid particle bed is fluidized by a gas or liquid stream.

From an operational point of view, it is however well
known that different continuous fluidized bed spray gran-
ulation configurations may become unstable [2, 3, 13, 14,
15]. Here, instability often results in the occurrence of non-
linear limit cycles in dependence of the chosen operation
conditions and the specific process configuration. There-
fore, stabilizing control is needed and has been studied
to some extend [4, 5, 6, 7, 8]. As all controllers depend
on a parametrized plant model, parameter uncertainty or
variation may result in performance deterioration or even
loss of stability. In order to cope with these uncertainties in
this contribution adaptive discrepancy based control will
be studied for a continuous fluidized bed spray granulation
with external sieve-mill cycle, where the particle size distri-
bution generated from the mill is assumed to be unknown.

2. CONTINUOUS FLUIDIZED BED SPRAY
GRANULATION

Applying an air stream with predefined properties, e.g.
flow rate, temperature and humidity, to particles inside the
granulation chamber a fluidized bed is formed. Particles
in this fluidized bed are then coated by a liquid, which
is injected from a nozzle and settles on these particles.
Due to the increased temperature and low humidity of
the supplied air the liquid fraction is evaporated and the
remaining solid fraction forms a new solid layer on the

particle surface. This continuous process results thus in
a particle size increase, which can be described for the
particle ensemble by

2m
. (1)

T2

Here, m, is the effective solid mass injected into the

process chamber and ps is the second moment of the

particle size distribution us = fooo L?ndL, which correlates

with the overall surface of the particle bed [1].

In a continuous fluidized bed spray granulation, particles
are continuously removed with a drain K.

hout = KTL (2)
This particle flux is then fed to two sieves and results in
three particle fractions: product n,, fines 1y and oversized

N,. The fines and oversize fraction consist of particles being
smaller or bigger than the product specification.

G:

hp = TQ(L)(I - Tl(L))hout (3)
=1 —=T5(L))(1 = Ti(L))nour (4)
7;Lo = Tl(L)'hfout (5)

Here, T1 (L) and T5(L) are the associated screening func-
tions depicted in Fig. 1.

fOL exp (_(ET_;‘P) dL
o (T i

Whereas the product fraction is removed from the process,
the fines and the oversize fraction remain in the process.
The fines fraction is directly fed back. The oversize fraction
is first fed to a mill, where it is grinded, and then the milled
particles are fed back into the process chamber, where they
serve as new nuclei for the particle population. The overall

T1,2(L; ey J) -

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
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Fig. 1. Screening functions T (gray) and T» (black dotted)

process scheme is depicted in Fig. 2.
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Fig. 2. Process scheme

From practical investigations it is known, that the particle
size distribution generated by the mill is typically tri-
modal (Fig. 3) [12], where the proportion of each distri-
bution depends on the particle properties and the specific

mill power P,,;1;.

It can be assumed that the mill is mass conserving, i.e. the
third moment of the oversize fraction is equal to the third
moment of the particle distribution generated by the mill.
The mill model is hence given by

3 00
fim = > a;i(L) /O Lh,dL
=1

where a; are the weights of the distributions ¢;(L) and
fooo L3n,dL is the third moment of the oversize fraction
[13]. In order to ensure the aforementioned mass conserva-

(7)
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Fig. 3. Particle size distribution of milled particles [12]

tion an additional constraint on the distribution weights
has to hold.

0o 3
/ L Z aipi(L)dL =1 (8)
0 i=1

Therefore, only two of the three parameters are indepen-
dent of each other. The third coefficient a3 can thus be

calculated from a; and as.

1 fooo L Z?:l aipi(L)dL
B [y L3ps(L)dL

This yields an unconstrained mill model with two inde-
pendent parameters a; and as.

(9)

as

f0°° L3;(L)dL

— fooo Toos(L)dL 303([/)) + ...

N, = lz a; (%‘(L)

¢3(L) R
P f(;x;L?’gpg(L)dL‘| ‘/O L3nodL (10)
— <Z a;idi(L) + ¢3(L)> /0 b L?nedL (11)
where
© r3

o) = D) — P D), (12

v ps(D)
@3(L) = W (13)

From a practical point of view, the knowledge of the
weights a; of each distribution is of utmost importance
for control. However, offline identification using individual
experiments is very expensive and raises many uncertain-
ties. In addition, the mill behavior changes during the
process with the particle properties at hand. Therefore,
in this contribution it will be assumed that the weights a;
of each distribution are unknown. To describe the process,
the following population balance model, consisting of the
particle fluxes due to product particle withdrawal K73 (1—
T>)n, particle growth and the reflux from the mill, can be

used.
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on on
o~ o

2 o
oot (Z a;p; + 50_3> /0 LBfLOdL
=1

It is well known [2, 3, 14] that the given process config-
uration becomes unstable for sufficiently high mill power
and a resulting reduced mill grade. This loss of stability
is connected with the occurrence of a stable limit cycle
depicted in Fig. 4. In order to stabilize the particle size

—KT1(1 —TQ)TL— KT1T2n+

(14)

L/mm

Fig. 4. Limit cycle of the particle size distribution

distribution in this contribution discrepancy based control,
i.e. control based on a generalized stability theory, will be
applied using the drain K as a manipulated variable. It
should be mentioned, that this choice differs from earlier
investigations, where the drain K has be used to imple-
ment a bed mass controller and the mill grade py; has
been used to stabilize the particle size distribution. In
addition, the mill behavior in this contribution is described
by a tri-modal distribution instead of a uni-modal normal
distribution with known parameters. As has been stated
earlier the weights of the fractions generated by the mill
are often unknown or connected with great uncertainty.
Therefore, the discrepancy based control law will be ex-
tended by appropriate adaptation mechanisms.

3. ADAPTIVE DISCREPANCY BASED CONTROL

From a mathematical point of view, the presented popula-
tion balance model is an unstable nonlinear partial-integro
differential equation with in-domain actuation. Therefore,
stabilizing control design is a challenging problem. How-
ever, as has been shown in previous contributions [4, 5, 7]
this type of problems can be handled by introducing a
generalized stability notion, i.e. stability with respect to
two distance measures, the discrepancies [9, 10, 11]. In
the following it is assumed, that the process ¢(.,t) is a
solution of the distributed parameter system and ¢y = 0
an equilibrium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional p = p[p(.,t), 1]
with the following properties

(1) plp,t) >0

(2) p(0,t) =0

(3) for an arbitrary process ¢ = ¢(.,t) the discrepancy
p(p(.,t),t) is continuous with respect to t.

(4) introducing a second discrepancy po(¢) with po(p) >
0 and po(0) = 0. Than the discrepancy p(¢(.,t),t) is
continuous at time ¢ = ¢y with respect to pg at pp = 0,
if for every € > 0 and ¢y > 0 there exists a (g, ty) > 0,
such that from pg < (e, o) follows p < e.

Definition 2. Stability with respect to two discrepancies p
and pg

The equilibrium ¢y = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies p and pg for all t > ¢
if for every € > 0 and ¢y > 0 there exists a § = d(e,%9) > 0,
such that for every process ¢(.,t) with pg < 0(g, to) follows
p < € for all t > ty. If in addition lim;_, o, p = 0, than the
equilibrium ¢ is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies p and
Po-

Theorem 3. The process ¢ with the equilibrium g = 0 is
asymptotically stable with respect to the two discrepancies
p and po if and only if there exists a functional V' =
Ve, t] positive definite with respect to the discrepancy
p, continuous at time ¢ = ¢ty with respect to py at pg = 0
and not increasing along the process ¢, i.e. V' < 0, with
limV = 0.

t—o00

In order to derive a stabilizing controller the above pre-
sented stability concept is applied. Here, we choose the
error e and the discrepancy p as follows

e= /OO L*(ng —n)dL, (15)
0

= ([ )

Obviously, the above requirements on a discrepancy are
met. In order to guarantee continuity at time ¢ = ¢y at
to = 0 the second discrepancy pg is simply chosen as
po = p(t=0).

In order to derive a control law, guaranteeing stability
with respect to the discrepancies p and pg, the following
candidate Lyapunov functional is introduced

Vzi(/omLQ(nd—n)dL>2.

To account for the aforementioned uncertainty in the
unknown parameters a; and as this candidate Lyapunov
functional is extended by a term, which takes the estima-
tion errors aj 2 = d1,2 — a1,2 into account.

(16)

(17)

2
(18)

1/ [ 2 1
V:2</0 LQ(nd—n)dL> +) —a;

1127

This approach, i.e. Lyapunov redesign, is well known for
finite dimensional systems. In order to achieve stability
in the sense described above the control variable has to
be chosen such that the time derivative of V' along the
system trajectories (14) is negative definite for all times
and vanishs only for V = 0.
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V:€/0 G87+K( prod+T1)ndL

oo 2 o0

.+6K/ L? <Z a;p; —|—<p_3> dL/ L3TyndL
0 i—1 0

(19)

In the absence of any parameter uncertainty, i.e. a = a,
the following certainty equivalence law for the withdraw
rate could be chosen in order to achieve exponential
convergence of the proposed Lyapunov functional, i.e.
V = —2¢V with ¢ > 0.

K=_ [/ G%dL+ ce] [/ L*(Tyroq + Ti)ndL
o 0

o0
.+/ L? (Zal@—&-%) dL/ L*TindL
0

i=1

-1

(20)

Inserting the certainty equivalence law (20) into (19) and
using the definition of the parameter estimation error a;,
i.e. a; = a; — a;, results after some calculation in

2 o0 o]
V=-2V-> a <eK/ L2¢>idL/
i=1 0 0
(21)

Here, the second term can be rendered zero by chosing the
following parameter adaptation laws

a; = velK / L?¢;dL / L3TindL
0 0

L3TyndL — &
S

(22)

Therefore, the designed certainty equivalence control law
in combination with the adaption law guarantees stability
with respect to the two discrepancies p and pg. As has been
shown in [7] this generalized stability results in pointwise
stability, i.e. stability of the particle size distribution with
respect to the Lo,-norm, if the zero dynamics associated
with the discrepancy p are stable.

4. RESULTS

For numerical simulation the population balance model
has been discretized along the property coordinate. Here,
a 1lst order finite volume scheme with 150 grid points
has been applied. In order to verify the proposed control
scheme the process is started in the region of instability.
Therefore, the uncontrolled process would exhibit self-
sustained oscillations in the particle size distribution. For
the unknown mill parameters a; and as an initial misfit of
10% has been assumed.

As can be seen in Fig. 5 the proposed discrepancy based
controller stabilizes the particle size distribution. The
parameter estimates a; and as slowly converge towards
values, which are close to the unknown parameter values.
As can be seen from Fig. 7 and Fig. 9 the second moment
of the particle size distribution converges exponentially
towards its desired value. The third moment shown in Fig.
8, being correlated with the overall bed mass, is also stable
and stays within a reasonable range. As can be seen from

\\\
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Fig. 5. Particle size distribution n
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Fig. 6. Mill parameters a; and ag (black dotted) and their
estimates a; and as
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Fig. 7. Second moment of the particle size distribution and
desired second moment (dotted black)

the particle size distribution depicted in Fig. 5 and the
Lo -norm of the deviation between desired particle size
distribution and the real particle size distribution (Fig.
10), the proposed adaptive discrepancy based control law
achieves asymptotic stability in the desired classical sense.
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5. CONCLUSION

In this contribution adaptive discrepancy based control
of fluidized bed spray granulation with external sieve-
mill cycle has been studied. It has been shown that the
proposed control law consisting of a certainty equivalence
law and two adaption laws allows a stabilization of the

unstable particulate process even in the presence of un-
known parameters. Future work will be concerned with
robustness with respect to measurement noise and real
plant experiments.
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Abstract: Fluidized bed spray agglomeration is a particle formation process in many industrial
applications, e.g. pharmaceutical and food processing. The properties of the formed agglomer-
ates, like characteristic volume, significantly affect the product quality and can be affected by
variation of certain operating parameters. Mathematical modeling not only provides an abstract
characterization of the effects of those on the product properties but also supports thorough
understanding of the underlying physical and chemical mechanisms. Moreover, it enables
application of advanced process analysis, control and intensification schemes. As characteristic
properties underlie variations within the ensemble of agglomerates the process can be described
as a distributed parameter system, where the resulting model equations are partial differential
equations. Adaption to experimental data requires the solution of inverse problems, which tend
to be ill-conditioned. As an alternative approach, in this contribution an adaptive identification
procedure is presented. Therefore, a modified plant model is run in parallel to the process
and adaption rates are chosen based on a Lyapunov-function. The approach is validated in a
parametric study for two scenarios: In the first, it is assumed that the structure of the dynamics
is fully known, while in the second, this assumption does not hold. It is shown that the proposed
approach allows to reconstruct unknown kinetic information of the process dynamics.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Adaptive identification, distributed parameter systems, population balance

equations, partial differential equations

1. INTRODUCTION

Agglomeration is a particle formation process in which at
least two primary particles are combined to form a new
one. This principle is often used in many industries, e.g.
pharmaceutical manufacturing and food processing. The
properties of the formed agglomerates, e.g. size, shape
and porosity, significantly affect its end-use properties,
e.g re-hydration behavior of food powders, processability
and storeability. In the industrial practice, agglomerates
are often formed in drums, pans or fluidized beds. The
advantages of the latter include good mixing and high
heat and mass transfer between particles, liquid and gas
phase. Compared to widely applied batch processes, the
additional benefits of operating in continuous mode are
constant product quality and higher flow rates which are
more attractive for chemical, food and pharmaceutical
industries. For those reasons focus in this contribution is
on continuous fluidized bed spray agglomeration, which
was not in the focus of research efforts so far.

The process scheme is shown in Fig. 1: Particles in the
the chamber are fluidized by a stream of hot air from the
bottom, liquid binder is sprayed on the particles in the

* Correponding author: ievgen.golovin@ovgu.de

form of small droplets to make them wet and sticky. Due
to random collisions liquid bridges between particles are
formed. These can become solid by drying and thereby
agglomerate particles consisting of different numbers of
individuals are formed. The formation of the agglomerates
and thereby the product properties can be influenced by
variation of different operating parameters and process
configurations, like feed rate, binder concentration and
temperature of the drying/fluidizing air.

Parameterization of process models is an important part
within the interplay of process analysis, model-based con-
trol and process intensification. It is well-known that the
individual properties, like characteristic size or porosity,
differ from particle to particle in the studied process.
The emerging heterogeneity significantly affects the overall
product properties. It can be accounted for in the frame-
work of population balance modeling (PBM) (Ramkr-
ishna, 2000). The resulting model equations generally
represent nonlinear integro partial differential equations,
which are usually discretized and numerically solved with
established techniques (see e.g. Kumar et al. (2006), Biick
et al. (2012) and the references therein). Commonly, reli-
able first principles models that include detailed models
on the underlying kinetic processes on the microscopic

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
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Fig. 1. Schematic representation of fluidized bed spray
agglomeration process

scale are rarely found and thus kinetics are described in
a more mechanistic fashion. This requires the estimation
of unknown parameters from experimental data. The re-
sulting inverse problems often tend to be ill-conditioned
(Chakraborty et al., 2015). In order to overcome these
problems a parameter identification based on the nonlinear
optimization (Golovin et al. (2018)) as well as an online
parameter estimation approach featuring a parallel model
can be applied (Diirr et al., 2015; Palis and Kienle, 2013,
2017).

In this contribution, a new adaptive online estimation
approach for fluidized bed spray agglomeration processes
is developed. In particular, focus is on identification of the
agglomeration kernel containing information on the effects
of process conditions and characteristic agglomerate size
on formation of new agglomerates.

Section 2 presents the modeling of the fluidized bed
spray agglomeration process. The proposed Lyapunov-
based adaptive approach applied for the agglomeration
kernel estimation is described in section 3. In section 4
the presented method is validated within two simulation
studies.

2. POPULATION BALANCE MODELING OF
FLUIDIZED BED SPRAY AGGLOMERATION

In particle formation processes, significant heterogeneities
with respect to the individual particle properties like size
or shape emerge. Population balance modeling represents
an established concept to describe such distributed pa-
rameter systems. Instead of describing a large number of
particles and their interactions, PBM describes the dy-
namics of the particles via the number density distribution
function (NDF) n(t,x) representing information of the
number of particles within an infinitesimal section of the
particle property state space x € R™=. In the following,
it is assumed that individual particles do only differ w.r.t.
characteristic volume v such that x = v and N, = 1. In
course of the process, the particle distribution underlies
change, which is given by the solution of the so called
population balance equation (PBE)

on(t,v . . .

% = nfeed(ta v) - nPFOd(t7 v) + nagg(t’ ’U) . (1)
The corresponding initial NDF is given as
exp(g(v Ufl) )

n(0,v) = Ny

I exp(M) dv’ ®

where Ny is the mass normalizing parameter.

The left hand side of (1) accounts for temporal evolution
while the first two elements of the right hand side describe
feeding new seed particles to and removal of the desired
product from the fluidized bed. Both are assumed to be
known and given as

Nprod (t, V) = Nowt K (v)n(t,v), (3)
. €Xp ( (2052) )
nfccd(tav) = Nin I —(v—p1a)? 5 (4)
For ()

where N,,; and N;,, denote the time-invariant removal and
feed rates of particles, respectively while K (v) represents
the separation function. The last element of the right hand
side denotes the formation of new particles of volume v by
agglomeration of two particles with volumes v and v — u

nagg(t ,U) agg ) agg(t U)

/ Bt w0 —wn(t, wn(t,v — u)du
_/O B(t, u,v)n(t,v)n(t,u)du. (5)

Here, the agglomeration kernel 5(t,u,v) contains informa-
tion about the probability of forming a new agglomerate
and is usually separated in volume and time-dependent
parts

ﬂ(t,v,u) = ﬂO(t)ﬂ(U7u) . (6)
For modeling of the volume-dependent part, called coa-
lescence kernel, different approaches exist (see e.g. (Eisen-
schmidt et al., 2017) and (Le Borne et al., 2015)). Two
possibilities are the Brownian kernel, which is derived from
the Brownian motion,

Blu,v) = (u'/? + v ) (7)
or a more general kernel structure approximation using a
Laurent-polynomial

1)1/3)(7171/3 +

Np
Z Z kijo'u (8)
—Np j=—N

where N, € N denotes the rank of the polynomial and &; ;
are the associated polynomial coefficients.

In contrast, the time dependent part 8y(t), also called the
agglomeration efficiency, mirrors the effects of the process
conditions and operating parameters and is mostly not
known beforehand. Moreover, it is frequently assumed that
the time dependency of the agglomeration efficiency can
be neglected, such that 5y (t) = const.

3. LYAPUNOV-BASED ADAPTIVE
IDENTIFICATION

In this section the online parameter identification of the
agglomeration kernel is introduced. In order to derive an
adaptation law for the unknown parameters the Lyapunov-
based approach is applied (Krstic, 2006; Palis and Kienle,
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Fig. 2. Adaptive online parameter identification scheme

2013; Diur et al., 2015; Palis and Kienle, 2017). The
parameter identification scheme consisting of a modified
plant model, which runs parallel to the actual plant
and the parameter adaptation algorithm is represented in
Fig. 2.

In this work two scenarios for the parameter estimation
are studied. In the first scenario, the modified plant model
includes the volume-dependent Brownian kernel function
with unknown agglomeration efficiency By, which should
be estimated. In the second scenario, it is considered
that the structure of the coalescence kernel [(u,v) is
also unknown. In order to approximate it, the Laurent
polynomial with its unknown coefficients is included in the
modified plant model.

3.1 Estimation of the agglomeration efficiency

In the first scenario, the estimation of the agglomeration
efficiency [y is considered. For this reason, the modified
parallel plant model with an additional observer term can
be represented as follows

aﬁf;g v) = Tfeed (tv 'U) - hPrOd(t7 ’U) + ﬁagg(t, 'U)
+1(h—mn), (9)

Nagg(t,v) / BoB(u, v — w)n(t,u)n(t, v — u)du
_/o ﬁoﬁ(u,v)n(t,v)n(t,u)du (10)

where n and 30 are the particle size distribution and the
agglomeration efficiency estimated from the modified plant
model and [ is an additional tuning parameter.

The related estimation errors are given by
Bo = Bo — Bo - (11)
Taking into account the plant model equations (1), (5)

and the modified parallel model equations (9), the error
dynamics can be derived as

1 (Y«
=5 /0 BoBu, v —u)n(t, u)n(t,v — u)du

e=n—n,

- /000 Boﬁ(u, v)n(t, v)n(t,u)du +le. (12)

For the adaptation of the model parameters the following
Lyapunov functional is chosen

vl [T 82
== e“dv+ —

2 o 2,y 0>
where v is a positive real tuning parameter. It can be
easily seen that the Lyapunov functional V' is positive

(13)

definite and it vanishes if the considered estimation errors
(11) are zeros. According to the Lyapunov stability theory
the stability of the proposed identification scheme can be
achieved if the first time derivative of the Lyapunov func-
tional is negative semi-definite along the state trajectories.
This time derivative can be derived as follows

dv o
s /0 le2dv
+/O e(%/o BoB(u, v — w)n(t,u)n(t,v — u)du
- /00 Boﬂ(u,v)n(t,v)n(t,u)du)dv
0
+ oo (1)

Therefore, choosing the adaptation law BO as follows

50 = —y /000 e(% /OU Blu,v —u)n(t,u)n(t,v —u)du
- /OOO B(u,v)n(t,v)n(uu)du)dv

yields in the negative semi-definiteness of the time deriva-

tive of V
d oo
—V = / le2dv
dt 0

for the observer parameter [ < 0.

(15)

(16)

3.2 Estimation of the Laurent polynomial

In the second scenario, the estimation of the volume-
dependent agglomeration kernel function is proposed. In
general, the aggregation kernel 5(u,v) is a non-negative
symmetric function of two variables. In order to approx-
imate such types of functions, Laurent polynomials (8)
can be used (Eisenschmidt et al., 2017). A reasonable
approximation can be achieved with the rank Ny, = 1
resulting in
Best(u,v) = ky + kov ™t + ksvu+ kg (v Fuh)

+ ks (vu™t v ) + ke (v u). (17)
Here, k1 to kg are unknown polynomial coefficients that
should be identified. The modified parallel model with the
polynomial is given by

on(t, ) ) )
((915 v) = Nfeed (ta U) — Nprod (t, U) + ﬂagg(t, ’U)
+1 (ﬁ - TL) ) (18)
where
Tagg(t; v) / Best(u,v — w)n(t, u)n(t,v — u)du

— /0 Best (w, v)n(t, v)n(t, u)du (19)

Analogous to the aforementioned design procedure, the
adaptation law for the polynomial coefficients can be

derived as
/ filu

iy
— /0 filu,v)n(t, v)n(t, u)du) dv,

where f;(u,v) is the volume dependent part associated
with 4-th coefficient of (17).

n(t,w)n(t,v —u)du

(20)
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Table 1. Model parameters used for simulation

Parameter Value Parameter Value

11 3.6-10~12 o1 1-10~12
Ny, 7.5-108 o2 1-1012
142 3.6-10"12 Nout 5-10—%
N; 4-10°

4. RESULTS

The proposed parameter estimation approach has been
implemented for numerical computations in MATLAB.
For the solution of the population balance equations the
method of lines is applied. Here, the internal coordinate,
i.e. the particle volume, is lumped using the cell-average
method (Kumar et al., 2006) on a logarithmic grid with
n, = 55 grid points. In order to solve the set of the
ordinary differential equations and to overcome the stiff-
ness problems the odelds solver has been used. For the
simulations the actual plant model with the Brownian
motion coalescence kernel (7) and the scalar agglomeration
efficiency By = 5- 10712 is considered. The model param-
eters used for simulations are represented in Table 1.

4.1 Estimated agglomeration efficiency

In the first instance, the performance of the proposed
online identification approach is shown for the scenario
of agglomeration efficiency estimation. Here, the modified
plant model with Brownian kernel runs simultaneously
with the actual process plant. The same initial conditions
from (2) are applied for the particle size distributions in

<104 t=0min
2, T
S 1
Q= *——o—0—0—0——o—o——9
0 0.5 1 1.5 2
x / mm ©1073
t=1min
& 5000 |
0 .’/’ -.\\\
0 0.5 1 1.5 2
z [ mm %107
t =4 min
4000 r
S 2000 | -
0 = Peeeies .
0 0.5 1 1.5 2
x / mm %1078

Fig. 5. Particle size distributions q3 of the actual plant
(solid, red), parallel plant model with (points, black)
and without online estimation (dotted, grey)

the parallel model. The initial value for the estimate is
chosen BO = 5-1071%. Both tuning parameters v and [ have
a strong impact on the estimation dynamics. Therefore,
assigning of their values is an iterative procedure where
trade-offs between different design specifications, e.g. fast
parameters convergence rates, oscillating behaviour and
attenuation of possible measurements noise, should be
taken into account. For this scenario the tuning parameters
are chosen as follows

y=1-10"'%, l=-0.1. (21)
The obtained simulation results are represented in Fig. 3,
Fig. 4 and Fig. 5. Here, in Fig. 3 the convergence of the
estimated BO and actual By is depicted. It can be seen that
the unknown parameter converges within approximately
three minutes, which is sufficiently fast related to the
process dynamics. It is also clear from the Fig. 4 that
corresponding Ly - norm of the estimation error between
particle size distributions n and n converges towards zero
within the same time. In order to compare the process
dynamics the additional particle size distributions

x3n(t, x)
q&(t;x) fooo x?’n(t,x)dx
of the actual plant, the parallel model with and without
online parameter estimation for different time points are
depicted in Fig. 5. A significant divergence of the process
dynamics with and without online parameter estimation,
i.e. with roughly known initial guesses, can be observed

already in a short period of time.

(22)

4.2 Estimated Laurent polynomial parameters

In the second scenario, the proposed method is applied
to estimate the agglomeration kernel. Here, the modified
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Table 2. Initial estimates and tuning parame-
ters for identification of Laurent-kernel

Parameter Value Parameter Value

k1(0) 8-1077 " 5.10~41

k2(0) 0 2 1104

k3(0) 0 3 5.10~41

k4(0) 0 4 7.10741

ks (0) 1-1010 75 7.10746

ke (0) 0 6 5.10741
l —0.022

plant model, which includes the Laurent polynomial with
six unknown parameters (17), runs simultaneously to
the actual process plant. In this case, the same initial
conditions for the parallel model and the actual plant are
used. The initial values for the polynomial parameters and
chosen tuning parameters are given in Table 2.

The corresponding simulations results are shown in Fig. 6,
Fig. 7, Fig. 8 and Fig. 9. From Fig. 6 it is clear that param-
eters converge with a different rate. Moreover, the simula-
tion studies indicated that only two polynomial addends
associated with parameters k; and ks make a significant
contribution in the overall estimation dynamics. In the
Fig. 7 a corresponding Ls - norm of the estimation error

%x10% t =0 min
2, T
&1
0 of o ° n
0 0.5 1 1.5 2
plmm g9
t =6 min
4000 r ‘ 1
. /
< 2000 ¢ /// 1
O —r”/‘
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t =30 min
.
/
2
x / mm <1073

Fig. 8. Particle size distributions g3 of the actual plant
(solid, red), parallel plant model with (points, black)
and without online estimation (dotted, grey)

between particle size distributions n and n is depicted. It
can be seen that a sufficient convergence is achieved within
approximately 10 minutes, which is reasonably fast related
to the slow process dynamics. However, from the Fig. 8,
the sufficient accuracy of the distributions can be observed
after approximately 6 minutes.

The estimate of the Brownian kernel using the proposed
Laurent polynomial and the relative error between both
kernels are shown in Fig. 9. It can be seen that the relative
error is below 5 %.
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5. CONCLUSION

In this work the online parameter estimation for the con-
tinuous fluidized bed spray agglomeration process has been
demonstrated. For the identification of the agglomeration
kernel the Lyapunov-based adaptive approach has been
proposed. The presented methodology has been studied for
two different identification scenarios. In the first scenario,
this method has been applied for the agglomeration effi-
ciency estimation assuming that the agglomeration kernel
is perfectly known. In the second scenario, the proposed
approach has been applied for the volume-dependent ag-
glomeration kernel estimation. For the kernel structure
approximation a low-order Laurent polynomial has been
used. It has been shown that this approach allows a suffi-
ciently fast parameter estimation for both cases in the case
of noiseless measurements. Future work will be concerned
with the robustness analysis in presence of measurement
noise and parameter uncertainties as well as application of
this approach to real plant measurements.
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Abstract: This paper is concerned with control of multi-chamber continuous fluidized bed spray
granulation processes with external sieve-mill cycles. The process is described by a population
balance equation for the particle size distribution in each chamber, resulting in a system of
nonlinear partial integro-differential equations. Therefore, control design is challenging. In order
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1. INTRODUCTION

Multi-chamber continuous fluidized bed spray granulation
is a versatile particle formulation process allowing the
combination of various process steps in a single setup.
The general aim of granulation is the conversion of a
liquid product into its solid particular form. In this form
product durability increases and handling is simplified, e.g.
decreased dust formation. In the multi-chamber version
a sequence of different processes as granulation, coating,
drying or cooling can be easily realized by assigning them
to different chambers. Although, a continuous mode of
operation results in high throughputs special care has to
be taken in order to guarantee a robust process operation,
with respect to feed variations and unforeseen distur-
bances. These potential problems are not specific to the
multi-chamber configuration, but are well-known for con-
tinuously operated single chamber granulation processes,
e.g. Schmidt et al. (2015). Here, process instabilities
and the occurrence of nonlinear limit cycles, as shown in
Fig. 1, have been reported. Their dependence on specific
process parameters (Fig. 2) has been extensively studied
in Dreyschultze et al. (2015); Neugebauer et al. (2016);
Biick et al. (2016).

In order to solve the described stability problems and
guarantee a robust process operation different feedback
control approaches have been studied for various single
chamber granulation processes, e.g. Palis (2018); Biick et
al. (2015); Palis and Kienle (2014, 2013, 2012). In this
contribution feedback control design for the multi-chamber
fluidized bed spray granulation process has been studied.

2. PROCESS MODEL

In the following a continuous multi-chamber fluidized bed
spray granulation process (Fig. 3 (left)) is studied. It
consists of four chambers and an additional sieve-mill

x 10

t(h)

L(mm)

Fig. 1. Nonlinear oscillations in single-chamber continuous
fluidized bed spray granulation with external sieve
mill cycle

cycle, guaranteeing a constant production of nuclei and
the attainment of the given product specification. The first
three zones are used for particle growth and the fourth
zone for drying only. It is assumed that each chamber is
well mixed and that formation of functional zones, e.g.
granulation and drying zone, can be neglected.

In the granulation chambers the liquid product is supplied
to the fluidized particle bed by a nozzle. Due to high
temperature of the drying air the injected solution or sus-
pension, having settled on the particle surface, evaporates
partly, resulting in particle growth. The particle growth in
each chamber i is giving by

Ve

o

G=2

(1)

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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Fig. 2. One-parameter continuation for varying mill grade
of single-chamber continuous fluidized bed spray gran-
ulation with external sieve mill cycle
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Fig. 3. Scheme of a multi-chamber fluidized bed spray
granulation (left) and particle size distribution typ-
ically generated by the mill (right)

where pi5 is the second moment of the particle size distri-
bution.

[io = / L*ndL (2)
0

In order to achieve a continuous particle movement from
the left to the right, the whole apparatus has a small
inclination. As a first step it is assumed that the inter-
chamber weirs do not have a classification effect, i.e.
particles are moving with a given rate k from left to
right irrespective of their size. The flux from chamber i
to chamber ¢ + 1 can hence be described by

hout,i = k’I’LZ (3)

In the fourth chamber particles are continuously redrawn
and fed to two sieves resulting in three particle fractions:
product, fines and oversized particles.

fiprod = To(L)(1 — T1(L))70ut 4 (4)
Mfine = (1= T2(L))(1 = Ti(L))7tout.a (5)
hover = Tl (L)houtA (6)

Here, T1(L) and T»(L) are the associated screening func-
tions. ,
L ([—
Jo exp <7(2‘62“) ) dL
fooo exp <77(§;2“)2) dL

The oversized fraction is first grinded by the mill and then
fed back as 7, to the first granulation chamber together
with the fines fraction 7 ;n.. The particle size distribution
generated by the mill is typically multi-modal, where the
proportion of each distribution depends on the specific mill
power, flowrate and particle properties. It can further be
assumed that the milling is in general mass conserving,
i.e. the third moment of the oversize fraction is equal to
the third moment of the particle distribution generated
by the mill. In this contribution, it is assumed that the
mill is producing uniformly distributed particles with a
given mean diameter pys representing the mill grade. The
particle flux leaving the mill can thus be described as
follows.

T1,2(L; sy J) =

exp (L—:QM)2 IS
ﬁmill = 6\/277T77T0f\/[ / LShoverdL (8)
M 0
:nmzll(L)/ LBhouerdL (9)
0

The overall model hence consists of a system of four
population balance equations, i.e. one population balance
equation per chamber. Here, the index ¢ stands for the
second and third chamber, i.e. ¢ € {2,3}. In the fourth
chamber no liquid is injected and the particle growth G is
hence zero. The particle withdraw associated with 74y¢,4
is supplied to the sieves and then to the mill.

on on . .

aitl = _GaiLl + Nmill + nfine - knl (10)
ani 8ni

E = —GaiL — k’l’Ll + lmz,l (11)
on

78154 =—Kng+ kns (12)

Introducing the associate terms for the fluxes from the
mill and the fines fraction, results in the following system
of nonlinear partial integro-differential equations.

Gnl o 8n1 e 3
W = GaT + nmlu(L) /(; L KTl’I’L4dL + ...
+(1—T2)(1—T1)Kn4—kn1 (13)
5 = -G 9L kn; + kn;_1 (14)
on
87154 = —Kn4 + kng (15)

From a practical point of view, the overall mass or particle
volume inside the whole apparatus and the volume of
particles inside the last chamber, being directly connected
to the product flow rate, should be controlled. As control
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handles the particle withdraw K and liquid injection rate
V. can be used.

3. STABILIY WITH RESPECT TO A DISCREPANCY

Most of control methods for distributed parameter systems
them are based on the solution of the system itself or at
least the desired error system, i.e. the system in closed loop
operation. For example in the backstepping approach (e.g.
Smyshlyaev et al. (2010)) the control input is designed
such that it maps the original system onto a desired stable
error system. Whereas in the works of Bastin et. al. (e.g.
Coron et al. (2007); Prieur et al. (2008)) stability is
proven using the solution derived with the method of
characteristics. Often it is assumed that the control handle
acts on the boundary of the domain or is itself distributed.
Here, the system of population balances is a system of
nonlinear partial integro-differential equations with a lack
of solution theory and control inputs acting in the domain.
Hence, in this case a transformation to a desired error
system with known classical stability behavior is hardly
possible. As has been however shown in previous contri-
butions Palis and Kienle (2014); Palis (2018) related
problems can be solved by introducing a generalized sta-
bility notion, i.e. stability with respect to two generalized
distance measures, the discrepancies. In the following, the
most important properties and facts on stability with
respect to one discrepancy are stated in accordance to
Movtschan (1960); Sirasetdinov (1967); Martynjuk and
Gutovski (1979). Here, the process ¢(.,t) is a solution of
the distributed parameter system and po = 0 an equilib-
rium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional p = p[¢ (., 1), 1]
with the following properties

(1) p(p,t) =0

(2) p(0,t) =0

(3) for an arbitrary process p = ¢(.,t) the discrepancy
p(p(.,t),t) is continuous with respect to t.

Obviously, a discrepancy does not have all properties of a
metric, e.g. symmetry d(z,y) = d(y,z) or the triangular
inequality d(z,y) < d(z, z) + d(z,y) do not have to hold.
In addition, it has not to satisfy the important property of
definiteness, i.e. a vanishing discrepancy p(p,t) = 0 does
not automatically imply ¢ = 0.

Definition 2. Stability with respect to a discrepancies p

The equilibrium ¢y = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies p and py for all
t > tg if for every € > 0 and ¢y > 0 there exists a
d = d(e,t9) > 0, such that for every process ¢(.,t)
with p(p,t9) < d(g,tg) follows p < e for all ¢t > ¢.
If in addition lim;_, o, p = 0, than the equilibrium g is
called asymptotically stable in the sense of Lyapunov with
respect to the two discrepancies p and pyg.

In order to establish a relationship between stability with
respect to one discrepancies and the existence of a Lya-
punov functional V', the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy p

The functional V' = V [p, t] is called positive with respect
to the discrepancy p, if V' > 0 and V' [0,¢t] = 0 for all ¢
with p(p,t) < oo.

Definition 4. Positive definiteness with respect to a dis-
crepancy p

The functional V' = V [, t] is positive definite with respect
to a discrepancy p, if V> 0 and V' [0,¢] = 0 for all ¢ with
p(p,t) < oo and for every € > 0 there exists a § = d(e) > 0,
such that V' > d(e) for all ¢ with p[p,t] > e.

The following two theorems state the conditions for a func-
tion V' guaranteeing (asymptotical) stability with respect
to one discrepancy.
Theorem 5. Sirasetdinov (1967) The process ¢ with the
equilibrium ¢y = 0 is stable with respect to the discrep-
ancy p if and only if there exists a functional V = Vi, ¢|
positive definite with respect to the discrepancy p and not
increasing along the process ¢, i.e. V < 0.
Theorem 6. Sirasetdinov (1967) The process ¢ with the
equilibrium ¢y = 0 is asymptotically stable with respect
to the discrepancy p if and only if there exists a functional
V = Ve, t] positive definite with respect to the discrep-
ancy p and not increasing along the process ¢, i.e. V<o,
with tli)m V=0

oo

It has to be mentioned that stability with respect to two
discrepancies is necessary but in general not sufficient for
stability with respect to a L, norm or L., norm.

4. DISCREPANCY BASED CONTROL

In the following, a discrepancy based controller will be
derived for the multi-chamber continuous fluidized bed
spray granulation with external sieve-mill cycle. Here, the
following discrepancy will be used.

1 (A oo 2 1 0o 2
_ = 3~ L 3~ 1
P 2(;/0 andL> +2(/0 Ln4dL> (16)

where 7n; is the deviation of the particle size distrubtion in
chamber ¢ from its desired value n; 4.

(17)
This choice is motivated by the two integral quantities the
overall particle volume and the particle volume in the last
chamber, which is of special importance as it is directly
connected to the product flow rate. For simplicity the
following related errors e;, the deviation from the desired
overall particle volume, ey, the deviation from the desired
particle volume in chamber four, are introduced.

Ny = Ni,d — Ny

4 oo
elzz/ L3n;dL (18)
i=1"0
ey = / L3fydL (19)
0

As control handles the liquid injection of the first three
chambers V. and the particle withdraw rate from the last
chamber K are chosen.

u =V,
UQZK
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In order to design a discrepancy based control law for
the given control configuration the following Lyapunov
functional candidate is used.

1 1
V=p= 56% + 56%
As for classical Lyapunov based control design, its first
time derivative has to be rendered negative.

(22)

V =e1é1 + egéy (23)
4 ~ ~
* 0N, * 0Ny
= § L3=dL L3Z=2dL (24
eli_l/o 8td +€2/0 8td (24)

Calculating the first time derivative of the control errors
e1 and eg yields

3 o oo
on;
. 3 7 3
€1 = ;:1 /0 L <G 3 > dL + /0 L°KTy(1 —Ty)n4dL,

3 3 o] on; 0o

2Ve Jy L*GpdL
= + L3KTy(1 — T1)nsdL(25
— 7 [° L*ndL /0 2( 1nadL(25)

bg=—K / L3n4dL + / L3knsdL. (26)
0

0

As typical for multi-input multi-output control problems,
control errors can be affected with different control han-
dles. Here, for simplicity it will be assumed that the second
control error es, i.e. the deviation from the desired particle
volume in chamber four, will be controlled by the second
control handle us, i.e. the withdraw rate K. In order to
achieve exponential convergence of ey

(27)
where c5 is a negative tuning parameter, the control input
us has to be chosen as follows
Cco€o + fooo L?’kn;),dL
fooo L3n4dL ’
In a similar way, the first control error ey, i.e. the deviation
from the overall particle volume in the apparatus, will
be controlled by the first control handle wu;, ie. the

liquid injection rate V.. In order to achieve exponential
convergence of e;

€9 = Cg€2

K= (28)

é1 = C1€1 (29)

where ¢y is a negative tuning parameter, the control input
u1 has to be chosen as follows

— [T L3KTy(1 — T )ngdL — cyeq
233 Jo e () e

wf0°° L2n;dL

‘./e:

(30)

Introducing the two control laws 28 and 30 into equation
24 yields exponential convergence of the chosen Lyapunov
functional V' and thus proofs stability with respect to the
chosen discrepancy p.

V =c1€? + cye’ (31)
(32)
In order to rigorously proof stability in the sense of a norm
for the particle sized distributions in each chamber, one

would have to study the associate zero dynamics Palis
and Kienle (2014), which is not in the scope of the

<max(cy, c)(e? + e2) = max(cy, c2)V

present contribution. Applying the derived discrepancy
based controller to the four chamber fluidized bed spray
granulation process with external sieve-mill cycle shows
that the particle size distributions in each chamber are
stabilized and converge to their desired steady-states. This
can be also seen from the second and third moment plots
of each chamber as depicted in Fig. 4 and 5.

For simulation the population balance for the particle size
distribution in each chamber has been discretized along
the property coordinate using a first order finite-volume
scheme. For time-integration a third order strong stability
preserving Runge-Kutta scheme as been used. The initial
particle size distribution in each chamber is assumed as
normally distributed with mean diameter 1.1mm and
standard deviation 0.2mm.

1.2e+11
Te+11
8e+10
=N 6e+107

4e+10

2e+10r °

S e e e ———————— .-

Fig. 4. Second moment 3 of the particle size distribution
in chamber 1 (solid black), 2 (dotted black), 3 (solid
gray) and 4 (dotted gray)

1e+08

8e+07r,

6e+07r

(a9
3.

4e+07

2e+07 N

Fig. 5. Third moment pu3 of the particle size distribution
in chamber 1 (solid black), 2 (dotted black), 3 (solid
gray) and 4 (dotted gray)

By control design the errors e; and ey converge exponen-
tially, which can be seen in Fig. 6. In Fig. 7 the convergence
of the Lyapunov functional V' is depicted.
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Fig. 6. Control error ey (solid black) and ey (dotted black)
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t (h)

Fig. 7. Lyapunov functional V'

The applied control signals u; and us are shown in Fig. 8
and 9.
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Fig. 8. Liquid injection rate V, = u;
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0.008 1

X 0.0061

0.004 1
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t (h)
Fig. 9. Particle withdraw rate K = uq
5. CONCLUSION

A discrepancy based control design has been presented
for multi-chamber fluidized bed spray granulation pro-
cesses with external sieve-mill cycles. Despite the complex
mathematical process model it has been shown that the
discrepancy based control approach leads to a simple and
intuitive control design, without any model simplification
or reduction steps. The design itself allows to include
engineering knowledge of the given process configuration
into the control design procedure by assigning a physically
motivated discrepancy, containing the deviation of from
the overall desired particle volume and the deviation from
the particle volume in the last chamber, which is directly
connected with the product withdraw rate. Promising first
simulation results have been achieved. For a practical
application the particle size distribution in each chamber
has to be measured, which can be achieved by using an
inline particle probe.

Future work will be concerned with a more detailed anal-
ysis of the classical stability behavior, i.e. stability of the
particle size distributions in terms of Ly and L..-norm,
and the robustness of the presented control scheme.
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Abstract—Controller design by feedback or feedforward input-
output linearization is straightforward if the system is minimum
phase, i.e., if the zero dynamics are asymptotically stable. For
systems with unstable zero dynamics these approaches cannot
directly be applied, as they would result in the destabilization
of a part of the systems dynamics. In order to overcome this
problem and render the internal dynamics asymptotically stable
a parallel compensator can be deployed. This technique has
successfully been applied in previous works to linear systems. In
this contribution a method to stabilize nonlinear non-minimum
phase systems by a combination of parallel compensation and
feedback linearization is proposed. The theoretical results will
be illustrated on a DC/DC converter.

Index Terms—Non-minimum phase, parallel compensation,
generalized controller canonical form, boost converter

I. INTRODUCTION

About thirty years ago based on differential geometry, exact
feedback linearization and flatness based control were devel-
oped [1]-[3] and are now widely used in nonlinear control.
Here, the concepts of the relative degree and the zero dynamics
play an important role [1], [4]. For a given nonlinear system
with a well-defined relative degree an exactly input-output
linearizing control law can be designed under the additional
assumption that the zero dynamics are asymptotically stable.
Such a system is said to be of minimum phase. This approach
can be extended to some classes of systems with ill-defined
relative degree [5], [6]. The minimum phase assumption is
more restrictive.

A special case are flat systems. Here, all system variables
can be parametrized by the flat output. In the single-input
case, a system is flat if and only if it is exactly input-to-
state linearizable [7], [8]. For multi-input systems, it is more
difficult to verify whether a given system is flat or not, and to
compute a flat output [9]-[11]. For a flat output, the system has
no zero dynamics at all, i.e., the minimum phase restriction is
not applicable. It should be mentioned, that, from a practical
point of view, even if the system is flat and the flat output is
known, the use of a different, possibly non-flat, output may
be preferable.

For a linear system, the zero dynamics corresponds to the
zeros of the system’s transfer function. Here, it is well-known
that zeros in the complex right-half plane impose restrictions
on the application of well-established control schemes and

©2019 IEEE

Stefan Palis
Institute for Automation Engineering
Otto-von-Guericke University Magdeburg
Magdeburg, Germany
e-mail: stefan.palis@ovgu.de

the achievable performance [12, Chapter 5]. Furthermore, in
contrast to the closed-loop pole location, the location of the
system zeros cannot be changed by feedback. However, as has
been shown in [13], [14] this problem, i.e., the instability of
the zero dynamics, can be solved by parallel compensation. In
[15], [16] parallel compensators have been successfully design
based on the linear system dynamics. In this contribution, the
design of parallel compensators based on the nonlinear system
dynamics, making use of the generalized controller canonical
form [17], [18], will be studied.

The paper is structured as follows. The most relevant
differential-geometric concepts from nonlinear control theory
are recalled in Section II. As an illustrative example the boost
converter as a DC/DC converter is used. It is introduced in Sec-
tion III. The generalized controller canonical form described
in Section IV is used in Section V to achieve minimum phase
internal dynamics. In Section VI we carry out the controller
design for the non-minimum phase converter model.

II. MATHEMATICAL PRELIMINARIES

We consider a nonlinear single-input single-output system
described by

x - f(z) + g(z)u, (1)
y =
with the state vector z, the input u and the output y. The
fields f,g: M — R"™ and h : M — R are defined on an open
and connected subset M C R” and assumed to be sufficiently
smooth. The Lie derivative of the scalar field A in the direction
of the vector field f is defined by L¢h(z) = dh(z)f(z)
with the exterior derivative d h(z) = h'(x). Higher order Lie
derivatives are defined by L™ h(x) := d LEh(x) - f(x) with
L?-h(m) := h(x). The system (1) is said to have a relative
degree r at a point z° € M if Lyh(z) = 0,L,Lsh(x) =
0,... ,LfgL;_zh(x) = 0 for all z in an open neighborhood
of 2° and LgL;_lh(:cO) #0 [1].
If the relative degree r is well-defined, it is the minimum
order of output time derivatives depending explicitly on the



input w. In particular, output time derivatives of order less
then 7 do not depend on the input wu:

Y = ¢1(.%‘) = h(l‘),
(] = ¢a(x) = Lysh(x),
: : @
Y = 6@) = Lyh().
The time derivative of order r depends directly on the input u:
y'") = Lih(x) + LeL " h(z)u. 3)

Therefore, the nonlinearities in (3) can be compensated by
feedback. In addition, we can impose linear dynamics

y(r) + k:r_ly(“l) + o+ koy = kow 4)

with the reference value w using the control law

LLT 1h <k0w Zkﬂ ) 5)

with k,. := 1. If the coefficients kg, ..., k,._1 of (4) are chosen
such that all roots of the associated characteristic polynomial
have negative real parts, the output converges to the reference
value, i.e., y(t) = w for t = oo.

If » = n, the system is flat and the control law (5) yields a
linear closed-loop system [1], [8]. For a non-flat output with
r < n, the control (4) results only in a r-dimensional linear
subsystem. For y(t) = w, the dynamics of the remaining (n —
r)-dimensional subsystem evolve on the subset

={zeM: h(z)=w, Lih(x)=0,..., L h(z)=0}. (6)
This subset is invariant under the system’s dynamics for
B L h(z) . N

LyL%  h(x)

The system is called minimum phase w.r.t. the reference
value w if the internal dynamics described by (6) and (7)
is asymptotically stable. Otherwise, the system is called non-
minimum phase. This definition corresponds essentially to the
zero dynamics [1].

Now, consider system (1) in an equilibrium point 2° € M
with the input u° and the reference output value w, i.e.,

0= f(2°) +g(z")’, w=h(a?).
The Taylor linearization results in a system
T=Ai+bu, §=c'z

with the system matrix A € R™*", the vectors b, ¢ € R™ and
the small signal quantities z, @ and y. The system’s transfer
function reads

cl'(sI —A)~'b

bty ®)
ag+aisttan—1sn " 4sme
The denominator polynomial D(s) = det(sI — A) is the open-
loop characteristic polynomial. The numerator polynomial
N(s) is the characteristic polynomial of the linearized internal

EIQZL1 dOC[
[I—

Fig. 1.

=
<

Simplified circuit diagram of the boost converter

dynamics w.r.t. the reference output value w. The equilibrium
of the internal dynamics is hyperbolic, if this polynomial has
no roots with zero real part [19]. In this case, the system is
minimum phase if and only if all roots have negative real parts.

III. BOoOST CONVERTER EXAMPLE
A. Mathematical Model

A boost converter, also known as step up converter, trans-
forms a source voltage into a higher output voltage [20], [21].
Fig. 1 shows the network model of such a boost converter. In
this figure, ¥ denotes the source voltage, L the inductance and
C the capacitance. The load is modelled by a resistance R.

The network equations with the current I and the voltage V'
can be derived using Kirchhoff’s laws. The two possible
switching positions are denoted by d = 0 and d = 1. In
practice, the switch is controlled using pulse width modulation
(PWM). In this case, it is common practice to consider the
averaged model, which can be written as a state-space system

1 E
R A ©)
C RC
with the average current x; and the average voltage x5. The
duty cycle or duty ratio v € (0,1) acting as an input signal
describes the average value of d over a switching period. It is
the ratio between the switch-on time and the switching period.
In most applications one wants to control the boost converter
in such a way, that a prescribed reference output voltage w =
29 is provided. The associated equilibrium point is described
by

Ty =
Ty =

0_ (29)?

2 =25 and W =1-% (10)

Due to u € (0,1) one obtains that in steady-state the second
state component x5 is always greater than the supply voltage,
i.e., 23 > E, and tends to the supply voltage for decreasing
duty ratio, i.e., 2§ — E for u® | 0. Whereas for increasing
duty ratio it tends to infinity, i.e., 3 — oo for v 1 1.

In the following, for the boost converter the parameter
values from [20, Sect. 8.6.1] are listed in Tab. I. We consider
the operating point u’ = 0.4, 2} = 25/6 A = 4.16A,
29 = 25'V. The linearization in this equilibrium point yields
the system matrix and the input vector

50000 >

0 —1200
A= (600 100 ) b= (—4166.6

The associated characteristic polynomial

det(sI — A) = s? + 100s + 72000

(1)



TABLE I
PARAMETER VALUES OF THE BOOST CONVERTER [20, SECT. 8.6.1]
Parameter Value
E 15V
L 0.5 mH
C 1000 uF
R 109

has the roots s1 2 = —50£501/2875 ~ —50+847;. Therefore,
the operating point of the open-loop system is asymptotically
stable.

B. Current Control

First, we consider the boost converter model (9) with current
output

y=h(z) =z, =c"z with " =(1 0). (12)

With this output, the system has the relative degree r = 1
because the input occurs in the first time derivative of the
output:

E — Xro )
r 1
Furthermore, the system is minimum phase [22]-[24]. This can

also be verified on the linearized model. From (11) and (12)
we obtain the transfer function

g=dir=—-(1-u)tza+ £ =

- 50000(s + 200)
G(s)=c"(sI —A)'b= :
(8) = (sl = 4) 5% + 1005 + 720000
We have one zero at s = —200 lying in the left complex

half-plane, i.e., the linearized model is minimum phase.
Therefore, we can design a stabilizing control law by input-
output linearization

w = i Ro(h(@) —w) + Lyh(a)

wngfkoL(xlfw)
2

with the reference value w being the reference and the con-
troller parameter ky > 0. Alternatively, one could design a
controller based on dynamic extension [25]. However, from a
practical point of view, one wants to obtain a desired refer-
ence voltage. Although the reference current can be obtained
by (10) from the reference voltage in the equilibrium point, it
depends on the parameters ' and R. Both are often not exactly
known. In addition, the supply voltage ' may change over
time for certain applications. This would cause an undesired
deviation in the (internally used) reference value w.

C. Voltage Control

Next, we consider the nonlinear model (9) with voltage
output

y=h(z) =22 =c"z with "' =(0 1). (13)

From the first order output time derivative

Rﬂfl — X9 X1

RC C

_ L

yzigz(l—u)%xl RCIQZ

we obtain the relative degree » = 1. Unfortunately, the system
is non-minimum phase [23], [26]. Therefore, exact input-
output feedback linearization cannot be applied directly. To
verify the instability of the zero dynamics, we consider the
transfer function

12500 (s — 7200)
3 (s + 100s + 720000)
derived from (11) and (13). The zero s = 7200 lies in the

right complex half-plane. Hence, the system is non-minimum
phase.

G(s) =—

D. Energy Control
Furthermore, we could consider the electrical energy

L

y=h(z) = Zat +
stored in the inductor and the capacitor as a control output
resulting in the relative degree r = 2, see [22], [27]. Since we
have r = n, the system is flat. Therefore, there is no internal
dynamics, i.e., the control law (5) achieves an exact input-to-
state linearization by feedback. However, the desired value of
the control variable (14) has to be calculated from the desired
reference voltage. Again, this calculation depends on (not
exactly known) system parameters and may result in undesired
deviations, which are not compensated by feedback control. In
conclusion a control configuration using voltage output would
be preferable in many applications. In order to overcome
the unstable zero dynamics obstacle an additional parallel
compensator will be design on the basis of the generalized
controller canonical form, which will be introduced in the next
section.

(14)

IV. GENERALIZED CONTROLLER CANONICAL FORM

Consider system (1) with a well-defined relative degree
r < n and the maps ¢1,...,¢, defined by output times
derivatives of order 0,...,7 — 1 in Eq. (2). As the rth order
time derivative depends on the input u, see (3), subsequent
time derivatives additionally depend on time derivatives of the
control u. Further differentiation yields

y = gralau)

y(T—H) = ¢1"+2(ma u, U)

yrt = gpa(w, u, i) (15)

y(nil) = ¢n(z7 U, iL, ﬂa v 7u(n7r71)),
where the maps ¢,1,...,¢, can be expressed in terms of
Lie derivatives [5], [6]. Combining the maps ¢1,..., ¢, and
®r41,---,Pn ONE obtains a map

2= ®(x,u, 0, i, ..., w7, (16)

which, for fixed quantities w,u, 1, ... ;a1 s a local

diffeomorphism with an inverse map

r =0z, u,u,i,... ,u("_r_l))



transforming (1) into the form

21 = 22
,’/5’2 = Z3
, A7)
Zpn—1 = Zn
Zn = (z,u, 1, ..., w7
Yy = Zi,
which is the generalized controller canonical form

(GCCF) [17]. System (17) is a generalized state-space
system since its input-dependent vector field also depends on
input derivatives. Because the original system (1) is affine
w.r.t. the input u, the map -y is affine w.r.t. the highest order
input time derivative u("~"). Therefore, we can decompose 7y
as follows:

v(z,u,t, .. ) = alz,u, . ) + Bz u,, . .)u(”*r).

Consider system (17) in an equilibrium point. The lineariza-
tion results in the transfer function (8) with the coefficients

_ 9y _ Oy _ Oy
[ 7821 5 a] = 7822 s ey Qp_1 = GERE (18)
bo= &2 p= & b _ _ 9y
0 — ou? 1= GITRl teey n—r — Jun—r) "

Provided the operating points are hyperbolic, the stability of
the whole system or the internal dynamics can be investigated
through the denominator or the numerator polynomial, respec-
tively.

Remark 1: The output time derivatives occurring in (3)
and (15) may result in large symbolic expressions. For a
numerical implementation of (17), we could use an alternative
technique of differentiation known as automatic or algorithmic
differentiation [28], [29].

A. GCCF for the boost converter with voltage output

Applying the above considerations to the boost converter
model (9) with voltage output (13). The change of coordi-
nates (16) reads

h(z
z=®(z,u) = 1 = (=)
y Lih(xz)+ Lyh(x)u
j hia) + Lh(ae) o
€2
B Rzi(1—u)—x2
CR
with the inverse map
_CRZQ+Z1
2= & (zyu) ( RGED) ) 0)
22
The transformed system becomes
2':1 = 29
2 = (7 u,1) = alzu) + B(z,u)i @21
y = 2
with Lot Rty E
. _ ) UuU— zZ1—
Oé(Z7u) - Lew—E CLR ) (22)
Blz,u) = Ia=n-

w Plant
— ™| Feedback
controller Parallel
compensator

Fig. 2. Control scheme using a parallel compensator

V. STABILIZING INTERNAL DYNAMICS AND PARALLEL
COMPENSATION

A. Parallel Compensator Design Concept

A parallel compensator is an additional dynamical system
acting in parallel to a given system. The application of
parallel compensation for zero dynamics stabilization has been
proposed by [13]. The main idea is to design a second system,
the parallel compensator, which results in stable internal
dynamics for the parallel interconnection of the plant and
the compensator. A typical control scheme applying parallel
compensation in combination with feedback control is shown
in Fig. 2. A design procedure based on linear systems theory
has been proposed and successfully applied in [15] and [16].
The design of nonlinear parallel compensators for nonlinear
systems with unstable internal dynamics, is to the best of our
knowledge still an open problem.

B. Parallel Compensator Design for Maximum Phase Systems

In this contribution, we propose a first nonlinear design
procedure being based on the maximum phase property. Con-
sidering a given system in the GCCF (IV) and the transfer
function (8) of its linearization (18), where we assume that
the numerator polynomial N(s) has no root with zero real
part. Then, the system is minimum phase if all roots have
negative real parts. In a similar manner, the linearized system
is called maximum phase if all roots of N (s) have positive real
parts [18]. In this case, applying the following transformation
s — —s, i.e., mirroring the roots along the imaginary axis, all
roots of the (modified) polynomial N(—s) have negative real
parts. In the time domain, where the variable s can be associ-
ated with the time derivative operator %, this transformation
can be associated with the substitution % — —%. Thus, for
a given hyperbolic maximum phase system the transformation

Y(z,u, @, i, U, ) (2w, =, i, =) (23)
yields a minimum phase system, which can be used as the
desired system of the parallel interconnection of plant and
parallel compensator. The parallel compensator can than be

obtained by subtraction of the plant. The described procedure
will now be illustrated for the boost converter example.



VI. CONTROLLER DESIGN FOR THE NON-MINIMUM
PHASE CONVERTER MODEL

In a first step, the associated minimum phase system for
the boost converter model in the GCCF (21) with (22) is
constructed by the transformation (23).

21 = 29
V(z,u, =) = a(z,u) — B(z,u)i
Yy = Z1.

Zy = (24)

Applying the inverse transformation (20), i.e., transforming
this system into the original coordinates, yields

: 1 E 2xq
oy = —(I—u)gre+ 7 — 2551,

(1- u)%xl — %xg, (25)

Ty =
which is now, in contrast to the original system (9), a gener-
alized state-space system containing the derivative of u [24].

In order to achieve the desired minimum phase system (24),
the following parallel compensator can be used:

51 = 2
2%2 = OK(E,U) - 35(2, u)u (26)
g = Zz.
Introducing the output
y=y+y 27

of the plant (21) with the parallel compensator (26) yields

J = a(z,u) + a(z,u) + [B(z,u) — 36(Z,u)|u (28)
Here, eq. (28) becomes for the limit z — Z
2§ = 2a(z,u) — 28(z, u), (29)
or equivalently
= a(z,u) — B(z,u)t, (30)

which is exactly the same as the minimum phase system (24).
Next, we design a stabilizing controller for the augmented
system (28). Introducing v = @ as a new input and w as
an additional state variable, the augmented system (28) has
relative degree r = 2. We want to achieve linear dynamics

3D

with the reference value w. The linear differential equa-
tion (31) is asymptotically stable for kg, k; > 0. Note that
in an equilibrium point we have @ = 0. This implies that
the systems (21), (25), and (28) have the same equilibrium
point. With the controller aim y — w and y — w we have
Y — w = 2w due to (27). Solving (28) and (31) w.r.t. v leads
to

é‘i‘]ﬁf/-l-kog: kow

ko(z1 + 21 — 2w) + k1(22 + 2Z2) + a(z,u) + a(Z,u)
B(z,u) — 38(z,u) '
(32)
Since the linearizing control law (32) uses w as the controller

output, the proposed control law corresponds to dynamic
feedback linearization [17], [25].

v=—

. . > 7v.Lsat
Integration Saturation
v U
= > = / B Uyt
T | System and
_>?<_ parallel
compensator

Fig. 3. Anti-wind-up scheme for the dynamic controller

To implement the control law (32), the parallel compen-
sator (26) in its original coordinates is used:
I = —(1—%)%@2-}-%—3331@
To = (1 — u)%:}’:l — %{EQ.

(33)

Furthermore, we apply (19) and (22) to transform the control
law (32) into the original coordinates. This substitution leads
to a comparatively large expression, which is omitted here.

In theory, the duty ratio u is restricted to u € (0,1).
In practice, the power transistor used in the converter has
a finite switching time, e.g. due to parasitic capacitances.
As a consequence, duty rations near 0 or near 1 should be
avoided. In our simulation, we hence limit the duty ration
to u € [0.1,0.9]. Because u is generated from its time
derivative provided by the control law (32), we combined the
integration from % to w with an anti-wind-up scheme shown
in Fig. 3, see [30]. This scheme results in the quantities gy
and gy, Which are used in the control law (32) and the parallel
compensator instead of u and .

A. Numerical Simulation

In the numerical simulation we use the reference voltage
w = 29 = 20V for t < 400ms. This corresponds to z! =
2.6 A and u° = 0.25 according to (10). We used these values
as initial values for the parallel compensator (33), i.e., T1(0) =
2.667, T2(0) = 20, and the integrator, i.e., u(0) = 0.25. For
the plant (9) we took the initial values to z1(0) = 2 and
x2(0) = 19. At t > 200ms we set the reference voltage to
w = ) = 25V corresponding to z{ = 4.16 A and v’ = 0.4.
The two eigenvalues of the desired linear error dynamics (31)
law were placed at 200s~* and 300s~!. This results in the
(normalized) coefficients kg = 60000 and k1 = 500.

Fig. 4 shows the simulation results for £ = 0...400ms. In
the beginning we have some oscillation due to the deviation
between the initial values and the operating point as well as of
the plant and the parallel compensator. Then, visual inspection
shows that the trajectories converge to the desired reference
points. The simulation was carried out with Scilab [31]. We
made the source file available on Github [32].

VII. CONCLUSION

In this contribution nonlinear control of non-minimum phase
systems has been studied. Here, the main challenge is the
stabilization of the unstable zero dynamics. As this cannot
be achieved by feedback, application of a parallel compensator
has been proposed. For the class of nonlinear maximum phase

d d

systems, i.e., systems where the modification Er i e s
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Fig. 4. Simulation results of the controlled converter model

results in a minimum phase system, a design procedure has
been developed. Here, the main idea is to use the minimum
phase system, associated with the original maximum phase

system by the modification % — —d(—lt, as a desired system for

the parallel interconnection of plant and parallel compensator.
From which the later can then be directly derived. For the
augmented minimum phase system nonlinear control design
procedures can be readily applied. The proposed approach
has been successfully evaluated on a boost converter with
voltage output, which is known to be maximum phase and
thus possesses unstable zero dynamics.
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Abstract—Parametrization of process models is an important
task and often the first step in process control and monitoring.
For continuous fluidized bed spray granulation, being often
described by population balance models parameter estimation
is particularly challenging due to the infinite-dimensional state
space. In this contribution a Lyapunov-based approach is used
to derive the appropriate online parameter estimation laws for a
fluidized bed spray granulation with external sieve-mill cycle.

I. INTRODUCTION

For many processes transformation of a liquid product into

its solid form is an important final task. This is especially true
for production processes in food, chemical and pharmaceutical
industries. An important process here is granulation, which is
often combined with fluidized bed technology. Starting with
an initial solid particle bed, the latter is fluidized by passing
a gas or liquid. Fluidization has two positive effects: first
the bed porosity and thus the active surface are considerably
enlarged, second particle mixing is increased resulting in a
faster homogenization of bed states.
It is well known that continuous fluidized bed spray granula-
tion may become unstable resulting in nonlinear limit cycles
under certain operation conditions and for certain process
configurations. Hence, different control approaches have been
proposed for stabilization [4] - [7]. All the controllers depend
on a parametrized plant model. However, in reality parameters
may be not known a-priori or vary during plant operation.
Thus, online parameter estimation is a crucial task. In this
contribution the problem of online parameter estimation for
continuous fluidized bed spray granulation with external sieve-
mill cycle is investigated.

II. CONTINUOUS FLUIDIZED BED SPRAY GRANULATION

The granulator consists of a granulation chamber. Here,
particles are fluidized through an air stream with predefined
conditions (pressure, temperature and humidity). Then a
liquid is injected, which settles on the particles. Due to the
increased temperature and low humidity of the supplied air
the liquid fraction is evaporated. It remains a new solid layer
on the particle surface resulting in a particle size increase.
The growth of the particle ensemble can be described by

a— 21 0
Uy
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where . is the effective solid mass injected into the process
chamber and po is the second moment of the particle size
distribution p1o = fooo L?*ndL resembling the overall surface
of the particle bed [1].

In order to allow a continuous operation of the fluidized bed
spray granulation, particles are continuously removed and
sieved. Here, three fractions are generated product particles,
oversized particles, i.e. particles being bigger than a certain
size, and fine particle, i.e. particles being smaller than the
product specification. The production fraction is removed
from the process, the fines fraction is directly fed back and
the oversize fraction is fed to a mill, where it is grinded. The
milled particles are then fed back as new nuclei to the process
chamber. The overall process scheme is depicted in Fig. 1.

1t

)

suspension

~N

.sieving™+

%

n fine

Fig. 1. Process scheme

From the granulation process particles are continuously
redrawn and feed to two sieves resulting in three particle



fractions product 7, fines ¢ and oversized 7,.

hp T2(L)(1 - Tl (L))hout (2)
’h‘f = (1 - T2<L))(1 - TI(L»’h‘out 3
'ho = Tl (L>hout (4)

Here, T7(L) and T5(L) are the associated screening func-
tions depicted in Fig. 2.
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Fig. 2. Screening functions 7% (gray) and 75 (black dotted)

The oversized fraction is first grinded by the mill and
then fed back as n,, to the first granulation chamber together
with the fines fraction ny. The particle size distribution
generated by the mill is typically tri-modal (Fig. 3), where
the proportion of each distribution depends on the specific
mill power P,;;.

qs3 [l/mm]

L [mm]

Fig. 3. Particle size distribution of milled particles

It is assumed that the mill is mass conserving, i.e. the third
moment of the oversize fraction is equal to the third moment of

the particle distribution generated by the mill. The mill model
is hence given by

3 S
’I;Lm = ZCLZQDZ(L)‘/O Lg'flodL
i=1

where a; are the weights of the distributions ¢;(L) and
f0°° L3n,dL is the third moment of the oversize fraction [8].
In can be assumed that milling particles conserves the overall
mass. Thus, the third moment of the oversize fraction 7, and
the milled fraction n,,, have to be equal,

/ L?n,,dL = / L?n.dL
0 0

resulting in an additional constraint on the distribution weights.

00 3
/ LY aipi(L)dL = 1
0 i=1

Resolving this constraint by calculating the appropriate coef-
ficient a3

(6)

@)

®)

L= Jo° P 3 aipi(L)dL
asz = 0
fo L3ps(L)dL
yields an unconstrained mill model with two independent
parameters a; and as.

(€))

mfo L3h,dL (10)
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where
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Bl = phET a3

From a practical point of view, the knowledge of the weights a;
of each distribution is of utmost importance. However, offline
identification using individual experiments is very expensive
and raises many uncertainties. This is due to the fact that
the behavior of the milling processes varies not only with the
supplied power, but also with the supplied solid particle flow,
its particle size, porosity and moisture distribution. Therefore,
in this contribution it will be assumed that the weights a; of
each distribution are unknown and should thus be identified
during process operation.

Assuming ideal mass control the drain K is calculated such
that the first time derivative of p3 becomes zero implying a
constant bed mass

< .0n
15 = LP=—dL = 14
fi3 /0 T 0 (14)
> on
= L} -G= —n,—7 : L.
/0 [GaL Mo — Np + Ty | d (15)



Because the mill is assumed to be mass conserving the third
moments of the oversize flux and mill flux are equal resulting
in

_ o LP(-GER)dL
I L3T(1 — Ty)ndL’

(16)

To describe the process, the following population balance
model, consisting of the particle fluxes due to product particle
withdrawal KT} (1 —T5)n, particle growth and the reflux from
the mill, can be used.

on on
a = —Gﬁ—KTl(l—Tg)n—KTlTQTl—F...

2 oo
s (Z aidi + @,) / L?hodL (17
i=1 0

It is well known [2; 3] that the given process configuration
becomes unstable for sufficiently high mill power and associate
small mill grade. The loss of stability is connected with the
occurrence of a stable limit cycle depicted in 4. From a

L/mm

Fig. 4. Limit cycle of the particle size distribution

practical point of view, the derivation of estimates for the
stability boundaries or the design of a stabilizing control is
of utmost importance for a reliable process operation. Both
can be achieved on the basis of the given model assuming
known parameters. Whereas the derivation of the sieving
function or growth rate can be done on the basis of typically
simple experiments on the single apparatus, identification of
the mill parameters is challenging. This is due to the fact,
that they depend not only on the mill type but also on the
supplied mill power, material flow rate and its size distribution,
structure and moisture content. Hence, an identification using
synthetic offline experiments is in general unreliable. In this
contribution, online identification, i.e. parameter estimation
during process operation, will be studied as a solution to the
aforementioned problem.

III. ONLINE PARAMETER IDENTIFICATION

In order to derive an adaptation algorithm for an affine
parameterized model in this contribution a Lyapunov-based

parameter estimation approach (see e.g. [9] and references
therein) will be used. Here, the system with the unknown
parameters is augmented by a modified plant model resembling
the plant structure and incorporating an additional observer
term. For the given fluidized bed spray granulation process
with unknown mill parameters the modified plant model is
given by

o )
67:: - _Ga% — KTi\(1 = To)n— KT\ Ton + ...

2 S
...+<Zdi¢i+<p3>/ L3n,dL — . ..
i=1 0
—c(n—n) (18)

where a; are the estimated mill parameters and 7 is the particle
size distribution estimated from the modified plant model. The
parameter c is an additional tuning parameter. The associated
estimation errors are defined as

e =

f—n, (19)

From a practical point of view it is important to note that
particle size distribution can be directly measured using for
example a Parsum probe. In order to derive the adaptation
laws a, for the parameter estimates a; the following candidate
Lyapunov functional is chosen

a; =

2

1 [ 1
V= f/ e?dL + a? 1)
2 /o ; 2

where ~y; are positive real constants. It should be mentioned
that in case of convergence of the modified plant particle size
distribution n towards the real particle size distribution n in
sense of the Lo-norm and for vanishing parameter estimation
errors the Lyapunov functional V' itself vanishes. Applying
standard Lyapunov stability theory, stability can be achieved
in case that the first time derivative of the Lyapunov functional
V' is negative semidefinite along the trajectory of (17).

. (oo} 2 [ee]
vV o= / e Zai@(L)/ L*hdL —ce | dL . ..
0 i1 0
2 1.
;%‘

Choosing the adaptation laws a; as follows

0 0

results in the desired negative semi definite of the time
derivative of V

V=—c / e?dL. (24)
0

The overall parameter estimation scheme is shown in Fig. 5
and consists of the proposed modified plant model (18) and the
Lyapunov based adaptation laws (23). Here, u is an external
disturbance or control input, which should be chosen such
that an appropriate parameter update is guaranteed (persistent
excitation).
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It should be mentioned, that the derived observer model and
adaptation law require require both an online measurement of
the particle size distribution n(t, L), which can be realized by
applying specific measurement devices, e.g. Parsum probe or
FBRM.

IV. RESULTS

For numerical simulation the model equations are dis-
cretized along the property coordinate applying the finite
volume method (1st order upwind flux discretization) with 200
grid points. For simplicity constant control inputs and fixed
system parameters in the region of instability, i.e. unstable
steady state particle size distribution, are chosen. In this case,
the granulation process exhibits self-sustained oscillations,
i.e. possesses a stable limit cycle. Due to the particle size
distribution measurement, the initial uncertainty is only in the
mill parameters a; and ao. Here, an error of 60 % in each
parameter has been assumed resulting in an considerable devi-
ation between assumed and real milled particle size distribution
(Fig. 6).
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Fig. 6. Assumed (black dotted) and real (gray) milled particle size distribution

As can be seen in Fig. 7 and 8 the unknown system
parameters a; can be identified in within approximately one
hour, which is reasonably taking into account the slow process
dynamics. During the parameter estimation the state of the
modified plant model 7 (Fig. 11) shows only a relative small
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Fig. 7. Convergence of the mill parameters a; estimate a1 (black dotted)
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Fig. 8. Convergence of the mill parameters a2 estimate as (black dotted)

error in sense of the L, -norm (Fig. 9). From a practical
point of view, increasing the parameter c results in a faster
convergence of the observer model state towards the plant
state, which is desired for attenuation of measurement noise.
On the other hand, as the adaptation laws depend on the
misfit between the observer model state and the plant state,
an increasing parameter c results in a shorter adaptation phase
and may thus prevent parameter convergence.

V. CONCLUSION

In this contribution online parameter estimation of fluidized
bed spray granulation with external sieve-mill cycle has been
studied. It has been shown that the proposed adaptation laws
allow a sufficiently fast estimation of the unknown parameters.
Future work will be concerned with robustness with respect to
measurement noise, real plant experiments and the application
of the proposed adaptation laws in a control scheme.
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Abstract—In this article control-based reduction of gantry
crane elastic swinging in the trolley travel direction is concerned.
As acceleration forces of the trolley are often the reason of
these vibrations, they can be utilized in an appropriate damping
strategy. For an elastic crane a dynamic model is derived applying
the finite element method (FEM). This approach results in a
high order state-space model, which should be reduced for the
controller design procedure. In order to design a controller, which
can be applied for simultaneous damping of elastic vibrations of
crane construction and payload sway with varying rope length a
robust control approach has been applied.

I. INTRODUCTION

Nowadays, rapid transportation and well-designed logis-
tics play an important role in the development of trade and
industry. Time reduction for these operations requires utilizing
automated and efficient equipment, including cranes. At port
terminals for example gantry cranes are widely used for
loading and unloading of containers. Due to continuous weight
reduction and increasing crane sizes, structure stiffness is
decreasing and may lead to an increased influence of elastic
vibrations. Often these vibrations are consequences of dynamic
coupling between crane trolley, load and mechanical structure
appearing due to trolley acceleration forces [1].

Low frequency vibrations in travel direction of trolley are
particularly negative because of their large displacements and
undamped behaviour. They produce additional mechanical
stresses, which lead to faster material fatigue and hence reduce
operating life of the crane. Moreover, these vibrations have a
disturbing impact on the crane operator extending the time
needed for the positioning process.

Currently three approaches exist for vibration reduction. The
first one is the mechanical optimization of the gantry structure
[2; 3]. Here, crane structure stiffness is enhanced by increasing
supporting legs thickness or by stiffening of portal frames.
The second approach introduces an additional weight as a
counter-mass acting as a passive damper [4]. The obtained
damping is typicaly small whereas the investment costs are
considerable. The third concept is utilization of an actuated
counterweight, where the mass movement compensates natural
vibrations of the structure. This method is more effective but
it requires an additional linear drive system, which takes a lot
of supplementary costs [4].

In this contribution a new active damping approach without
an additional electric drive system is presented. Here, the
reduction of elastic crane vibrations as well as the anti-sway
control is provided only by trolley acceleration forces. For
this purpose, an extension of the motion control system of
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trolley with payload is necessary. In order to design a control
law, which can be easily implemented for operation with
different rope length, the application of robust control methods
is proposed.

In section 2 the mathematical model of an elastic gantry
crane with the electric drive system and the model reduction
procedure for large-scale crane structure are introduced. Model
errors and uncertainties as well as control design are discussed
in section 3. Section 4 concludes the contribution with simula-
tion results from the nonlinear high-order gantry crane model.

II. MATHEMATICAL MODELING
A. Elastic crane model

Mathematical modeling of mechanical structures in general
and large cranes in particular is a non-trivial task, and utilizing
analytical methods is often restricted to simple geometries,
loads and boundary conditions. For simulations of more com-
plex mechanical models numerical methods are usually used.
In this contribution the commercial finite element package
COMSOL Multiphysics has been used to derive an elastic
crane model. After spatial discretization the equations of
motion with NV degrees of freedom (DOF) can be represented
in the general form:

M,H + C H + K,H = F,, (1)

where My, Cy and K, are global mass, damping and stiffness
matrices, H, H and H are vectors of acceleration, velocity
and displacement at all nodes in the structure domain and Fj
is the vector of all nodal forces.

Material induced damping is represented by Rayleigh damp-
ing. Here, the damping matrix Cy is expressed as a linear
combination of the mass M, and stiffness K, matrices:

C, = aM, + BK,, )

where « is the mass-proportional coefficient and /5 is the
stiffness-proportional coefficient.

Typically, gantry crane structures are very complicated con-
sisting of multiple components. To reduce weight and to
maintain a relatively high stiffness, elements with specially
shaped profiles are usually used in practice. Modeling of these
structures as solids requires a lot of computational time and
resources. Therefore, it is good practice to simplify parts of the
model geometry. Fig. 1 shows the model of the gantry crane in
two dimensions. It consists of solid steel beams, which mass
corresponds to the mass of the real elements of the crane.
The lower parts of the crane legs are fixed. The excitation of
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Fig. 1. Gantry crane FEM Model

structural vibrations due to trolley motion is reflected by an
external point force F;. The damping ratio £ = 0.005 has been
obtained from practical measurements of real gantry crane
swinging. The crane structure has been discretized applying an
unstructured mesh with triangular elements resulting in 3458
DOF.

Considering that the external force F} is an input to the crane
plant u(t) = F; and the crane point M is the displacement
output of interest y(t) = djs, the FEM-crane model can be
represented for small variations as a linear high order state-
space model

i) = Ax(t) + Bu(t), 3)
y(t) = Cux(t) + Du(t), 4)

where A, B, C' and D are constant matrices.

B. Model order reduction

The order of the state-space model derived by the finite
element model is approximately 7000. In order to allow the
design of a controller with low order an additional model
reduction should be performed. For the model reduction of
gantry crane dynamics the balanced truncation approximation
has been used. This method is based on the balanced realiza-
tion of the system model, i.e. the asymptotically stable minimal
realization where the controllability Gramian matrix W, and
observability Gramian matrix W, are equal and diagonal [5; 6].

te
W, = / AtBBT A tat
0
te
— / ATCT CeAtdt = W, = 3. (5)
0

Here, the diagonal matrix X fulfils the following Lyapunov
equations:

AY + 2 AT + BBT 0, (6)
YA+ AT +CcTCc = 0. (7

The elements of ¥ are called the Hankel singular values o;
and are order by size, i.e. 0; > 041

g1 0 0
Y= 0 0 7012022"'Zgn20 (8)
0O 0 o,

States associated with the big Hankel singular values have by
construction a dominant influence on the input-output behavior
and should thus be conserved. Let the balanced realization of
the high order state-space model of elastic crane (3), (4) be

partitioned as
_ A Ar _ B
A= [A21 A22] B = [32] '

by 0
C:[Cl 02]722 |:01 22:| ) 9)
where ¥ = diag(oy,02,...,0%) are the first k£ dominant

Hankel singular values and Yo = diag(ok+1,0k+2,---,0n)-
Removing the system part corresponding to the Yo, will result
in an approximation

x(t) = Allx(t) + Blu(t), (10)
y(t) = Ciz(t) + Dyu(?), (1)

with the following equivalent transfer function
Gl(s) = Cl(SI — A11)71B1 + D;. (12)

The error introduced by the described model reduction proce-
dure can be overestimated by

IG(s) = G1(s)]|loo <2 > 0. (13)

i=k+1

An appropriate order of the reduced model can be easily
assigned, e.g. by examining the Hankel singular values dia-
gram depicted in Fig. 2. As can be seen the first two states
have a significant contribution to the overall model behavior
and should hence be conserved. Therefore, a second order
model G1(s) gives a reasonable approximation of elastic crane
dynamics.
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Fig. 2. Hankel singular values of the elastic crane model

C. Trolley-payload model

Fig. 3 represents motion of the trolley-payload system,
where m, is the trolley mass, m, is the payload mass, m,
is the rope mass, F, and Fj are the forces that are applied



to the trolley, x(¢) is the trolley displacement, {(¢) is the rope
length and ¢(t) is the sway angle. The equations of motion
can be derived using Euler-Lagrange equation

d (0L\ 0L .
dt<8q’i)8qui’ i=1...N, (14)

where L(q,q,t) =T — V is the Lagrange function (T is the
kinetic energy, V' is the potential energy), g; are the generalized
coordinates and (); are the generalized forces [7].

Fig. 3. Trolley-payload system

Under the assumptions that trolley and payload are connected
by the massless rigid rope and neglecting the elongation of the
rope, the vector of generalized coordinates yields as g(t) =
[z(t) ¢(t) 1(t)]T. The coordinate vector of payload can be
given as follows:

sp=[r+Ising, —lcosy]. (15)
Then, equations of kinetic and potential energy can be repre-
sented as:

1 1 . 1
T = i(mt +my)i? + §(mp +m, )%+ imp(l¢)2
1
+ mp&(l cos pp + sin pl) + 511/;2, (16)
V. = —mpglcosp, 17

where [ is the moment of inertia of the load. Finally, the
equations of motion of trolley-payload system are derived for
the vector of generalized coordinates ¢(¢) as follows:

F, = moi+ mpsin gpz' + myl cos pp
-+2my, cos cpigb — myl sin 02, (18)
0 = mylcospi + (myl> + 1)@+ Qmpligb
+mpglsin @, (19)
F = mysingi + (m, +my)l —m,lp?
—Mmpg COS ©, (20)

where m, = m; +m,, is the total mass of trolley and payload.
Considering the constant rope length the nonlinear equations
of motion (18, 19, 20) can be linearised at the operating point
of gantry crane and represented in state-space form for the
state vector x =[x & ¢ ¢]7, the system input v = F,, and

the system output vector y = [z @ ]| as follows:
i 0 1 0 0]z 0
0 _ |00 20| i e
ol = oo 0 1| lelT| 0 |wED
. me .
b 0 -5 0] Ly —~m
10 0 07| o
y = |01 0 0 + 10| w. 22)
0 0 10 :g 0

D. Augmented trolley-payload model

Currently, most crane systems are equipped with an electric
drive system, which typically provides the velocity control of
trolley travelling, in general cascade control with PI controllers
[8]. Augmenting the trolley-payload model (21, 22) by the
transfer function of the velocity controller

k
w(s) = kp(strep — sT) + %(mref —x) (23)
7
the new state vector becomes = = [z & ¢ ¢ xsou)l.
It should be mentioned that the control input becomes the
reference velocity u = #,.y. With the system output vector

y=[r @ ¢ F.|T the system matrices are:

[0 1 0 0 0
_ kp _k'ip mpg 0 kp
meT; me my my T
Ay = 0 0 0 1 0 , (24)
kp ’fip _ Mmog _ kp
mlT; +l myl m¢lT;
. 0 0 0 0
k k T
By = [0 ko9 _he ] 25)
[ 1 0O 0 0 O
0 1 0 0 O
C2 = o 0 10 0> (26)
k k
-7 ~k 00 F
Dy = [0 0 0 kJ". 27)

E. Overall system plant

The overall system plant consists of a cascade intercon-
nection of the augmented trolley-payload subsystem Gy =
(Az, Ba, Cq, D) (24, 25, 26, 27) via force output F, and the
low order elastic crane subsystem G = (41, By, C1, D1) (10,

11).
T A 0 x B
o I P e N R e

y = [C1 Cy B;}JrDv. (29)

III. CRANE CONTROL
A. Uncertainty models

The aim of this paper is the design of a control law for
simultaneous damping of the payload swinging with varying
rope length and elastic crane vibrations. It is assumed that
although the equations of motion are the same, parameters of
the rope length can vary during crane operation. In this case



using parametric uncertainties is reasonable. The linear system
eq. (28), (29) is replaced then by a family of systems

i(t) = Algz(t) + Blq)u(t), (30)
y(t) = C(g)z(t) + D(q)u(?), (31

where matrices A, B, C, D depend on the parameters ¢,
which are time invariant and belong to a feasible set of
uncertainty @ = {q ER: gmin < g < Qmax}~

Furthermore, using the proposed model order approximation
techniques additional errors are introduced, which should be
taken into account.

1) Coprime factor uncertainty: From a robust control de-
sign point of view, the studied set of cranes can be embedded
into a nominal plant G,,(s) and a set of bounded uncertainties
[5; 9; 10]. These uncertainties have to be stable and pos-
sess a finite H,, -norm. For undamped and weakly damped
mechanical structures utilizing a coprime factor description
of the present model uncertainties should be preferred. The
normalized coprime factorization of the nominal system G, (s)
can be expressed as

(32)

where M, (s), No(s) € He, are stable coprime transfer
functions satisfying the Bezout identity

M, (8)Mp(—8) + Np(8)Np(—s) = 1. (33)

Then the set of uncertain systems Ga(s) can be characterized
by the nominal system G,(s) and stable coprime factor
uncertainties Aps(s) and Ay (s)

Nn(s) + An(s)
Mn(s) + AIW(S)'

However, using the coprime factor description does not give
a unique realization of Ays(s) and Ax(s). Thus, selection
of a specific realization is an additional degree of freedom.
In order to reduce conservatism a coprime factor description
with a minimal Ho, - norm for [Ap(s)An(s)] should be
preferred leading to the introduction of the gap metric.

Ga(s) = (34)

2) The gap metric: The gap metric §, between two linear
systems G, (s) and Ga(s) can be calculated according to

QI; 12] as a maximum of the directed gaps d,(G,,, Ga) and
69 (GA’ Gn)

— —
69(GH’GA) :max{ég(GmGA)v59(GA7Gn)}a (35)
where

5_;(Gn,GA) = inf

[AvAN]cH {IAMAN]|lo : GA}.  (36)

The gap metric may possess values between zero and one.
Here, two systems G, (s) and Ga(s) are close if their gap
metric is close to zero. As will be shown later, the maximum
of the gap metric with respect to a nominal plant for a given set
of perturbed plants can be used as a measure for the required
robustness margin.

As a metric the gap metric satisfies the triangular inequality

5(G1,G3) < 5(G1,G2) + 5(G2,G3), 37

which can be used to derived appropriate estimates in the
presence of multiple error sources. For example, having a low
order approximation of the uncertain system G; = Ga, a low
order approximation of the original nominal system G2 = G,
and a high order representation of the original nominal system
Gs = @G, the triangular inequality can be used to derive an
estimate for the distance between the low order uncertain
system Ga and the original nominal system G in the sense
of the gap metric 6(G,,,G). Therefore, additional errors due
to model order reduction or numerical discretization may be
easily taken into account.

3) Gantry crane model uncertainties and required robust-
ness margin: Assuming that the rope length is not exactly
known the set of crane models Ilp, for different [ can be
derived from eq. (28), (29).

0.35

0.3 X!

10 15 20 25
Fig. 4. Gap metric sequence for set ITy,

In Fig. 4 the gap metric for the set of normalized gantry crane
models ITy, is shown. As can be seen the maximum of the gap
metric for the concerned range of rope length [ is

5,(Ga,Gy) = 0.31. (38)

The order reduction error for the elastic crane model in sense
of the gap metric can be calculated as

84(Gn, G) = 0.03. (39)

B. Robust control design

In order to reduce the elastic vibrations in the trolley travel
direction and swaying of the payload a control law is obtained
using H. - loopshaping.

1) Hy - loopshaping control: H., - loopshaping design
is based on the combination of H., - robust stabilization and
classical loopshaping ideas and guarantees both performance
and fulfilment of given robustness requirements [13; 14]. The
design procedure is divided into two steps: augmentation by
pre-compensator in order to shape the open loop singular
values and H, - stabilization of the shaped plant.

In order to reflect closed-loop performance requirements the
open-loop singular values are shaped applying the weighting
function W (s) as depicted in Fig. 5

Gs(s) = G(s)W (s). (40)
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Fig. 5. The loopshaping

Given the shaped open-loop plant in its normalized coprime
factor representation G (s) = N (s)/M(s). The controller K
guaranteeing a maximum robustness margin with respect to the
normalized coprime factor uncertainties can be calculated from
the following H, - control problem

1
<e L 41
I el < @
Here, the maximum achievable robustness margin €,,,, can be
calculated
emaz = (1+ p(X Z))1/2, 42)

where X and Z are the positive definite solutions of two
algebraic Riccati equations

0=(A—-BR'DC)TX 4+ X(A—- BR™'DC)
— XBTR'BX +CR™'CT, (43)

0=(A-BR'DC)Z + Z(A—- BR'DC)T
—ZCT'R™'CZ + BR™'B7, (44)

with R =1+ D%
Using the robustly stabilizing controller K, for the weighted
plant G4(s) the overall controller K can be expressed as

K(s) = Koo()W(s). (45)

Implementation of the H, - loopshaping methodology for the
shaped plant G4(s) with robust stability margin e, results in
a controller K, which stabilizes all plants Ga(s) with gap
metric §4(Gs,Ga) < €.

C. Results

In order to provide simultaneous damping of payload sway
and elastic vibrations two controllers K; and K5 have been
designed.

Two compensators Wi(s) and Wa(s) realizing the desired
open loop shapes for these systems have been chosen as
follows

20
|/|/ = — 4
15 = goss 1 17 (46)
100
Wy(s) = ——— . 47
2(5) = Gors 11 @7

For the shaped crane plants Gs1(s) = G(s)Wi(s) and
Gs.2(s) = G(s)Wa(s) robust controllers K, 1 and K 2 have
been derived with stability margins ¢; = 0.67 and €5 = 0.61
respectively. As the margin associated with the damping of

load swaying is greater than the maximum of the gap metric
0g,max = 0.31 and the margin associated with the damping of
elastic vibrations is much greater than order reduction error,
the achieved controllers guarantee robust stability for the set
of uncertain crane models.

Simulation results are depicted in Fig. 6. Here, the designed
robust controllers /Ky and K has been applied to the nonlinear
crane system eq. (18), (19), (20) and to the high order elastic
crane model (3, 4). As can be seen in Fig. 6 (c¢) and (d), the
designed H,, controllers provide simultaneously damping of
the elastic structure vibrations and the payload sway by varying
the rope length.

IV. CONCLUSION

A new active damping approach for gantry crane vibrations
using only trolley acceleration forces has been presented and
verified on a nonlinear gantry crane model. For designing
a control law, that guarantees the robust stability and the
performance specifications for gantry crane with different
rope length, H, - loopshaping synthesis has been applied. In
order to derive a mathematical description of elastic gantry
crane dynamics FEM has been utilized. The derived high
order models have been reduced using balanced truncation
approximation. In order to represent the gantry crane with
different rope length a normalized coprime factor description
has been considered for the parametric uncertainties. Two
controllers for anti-sway control and vibration damping
control have been designed and applied to nonlinear crane
model.
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Abstract: This contribution is concerned with a relatively new approach to particulate process
control. The main idea is to use of a generalized distance measure, the discrepancy, in order
to describe deviations from a desired particle property distribution. Applying, the associated
stability theory, i.e. stability theory with respect to two discrepancies, a stabilizing control
law can be derived. One of the main advantages of the proposed discrepancy based control
method is that no model reduction is required. In this contribution an adaptive extension of
the discrepancy based control is proposed in order to control a crystallization process in the

presence of parameter uncertainties.
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1. INTRODUCTION

Control of particulate processes is an active field of re-
search [1, 3, 9, 10]. From a control theory point of view
particulate processes are often modelled as distributed
parameter systems and therefore of great interest. The
population balance equation describing the dynamics of
particle property distribution is, depending on the specific
process, a nonlinear partial integro-differential equation
with sinks and sources in the domain. It has been recently
applied by the authors to the problem of stabilization of
continuous cystallization processes [3] and fluidized bed
spray granulation with internal [5, 6] and external product
classification [4, 8]. The paper is organized as follows: in
section 2 the main theoretic concepts of stability with
respect to two discrepancies are stated. In section 3 the
model system, a crystallization process, is introduced. In
section 4 the adaptive discrepancy based control method
is applied in order to derive a stabilizing control law for
the model system.

2. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

The concept of stability with respect to two discrepancies
has been introduced in [11]. The main idea is to describe
the stability of a process by a generalized distance mea-
sure, which does not have to be a norm. For convenience
the most important facts on stability with respect to two
discrepancies as given e.g. in [11, 12] will be stated. Here,
the process ¢(., t) is a solution of the distributed parameter
system and ¢y = 0 an equilibrium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional p = plp (.,t),1]
with the following properties

(1) p(p,t) 20

(2) p(0,1) = 0

(3) for an arbitrary process ¢ = ¢(.,t) the discrepancy
p(p(.,t),t) is continuous with respect to t.

(4) introducing a second discrepancy po(¢) with po(p) =
0 and pg(0) = 0. Than the discrepancy p(¢(.,t),t) is
continuous at time t = tg with respect to pg at pg = 0,
if for every € > 0 and ¢¢ > 0 there exists a d(e, ¢y) > 0,
such that from pg < (e, to) follows p < e.

Obviously, a discrepancy has not all properties of a metric,
e.g. symmetry d(z,y) = d(y,x) or triangular inequality
d(z,y) < d(x,z) + d(z,y) and more importantly does not
have to satisfy the important property of definiteness, i.e.
a vanishing discrepancy p(¢,t) = 0 does not imply ¢ = 0.

Definition 2. Stability with respect to two discrepancies p
and po

The equilibrium ¢y = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies p and pg for all t > ¢
if for every £ > 0 and ¢y > 0 there exists a § = d(e,tg) > 0,
such that for every process ¢(.,t) with py < d(e, tg) follows
p < ¢ for all t > tg. If in addition lim;_, ., p = 0, than the
equilibrium ¢ is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies p and

Po-

In order to establish a relationship between stability with
respect to two discrepancies and the existence of a Lya-
punov functional V' the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy p

The functional V' =V [p, t] is called positive with respect
to the discrepancy p, if V' > 0 and V' [0,¢] = 0 for all ¢
with p(p,t) < 0.

Definition 4. Positive definiteness with respect to a dis-
crepancy p

The functional V' = V [, t] is positive definite with respect
to a discrepancy p, if V' > 0 and V' [0,¢] = 0 for all ¢ with
p(p,t) < oound for every e > 0 there exists a § = d(g) > 0,
such that V' > 6(e) for all ¢ with p[p,t] > €.

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
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The following two theorems state the conditions for a func-
tion V' guaranteeing (asymptotical) stability with respect
to two discrepancies.

Theorem 5. [12] The process ¢ with the equilibrium ¢y =
0 is stable with respect to the two discrepancies p and pg
if and only if there exists a functional V' = V|, t] positive
definite with respect to the discrepancy p, continuous at
time ¢ = ¢y with respect to py at pg = 0 and not increasing
along the process ¢, i.e. vV <0.

Theorem 6. [12] The process ¢ with the equilibrium g =
0 is asymptotically stable with respect to the two discrep-
ancies p and pg if and only if there exists a functional
V = Vg, t] positive definite with respect to the discrep-
ancy p, continuous at time ¢ = ¢y with respect to py at
po = 0 and not increasing along the process ¢, i.e. V <0,
with tli}m vV =0.
o0

3. EXAMPLE - CONTINUOUS CRYSTALLIZATION

As an example a continuous crystallization process with
fines dissolution depicted in Fig. 1 will be studied. This
process has be investigated e.g. in [2]. The main assump-
tions are:

isothermal operation,
constant volume,

ideal mixing,
unclassified withdrawal,
no attrition,

no breakage.

¥

fines
dissolution

n fines

i

* npr

Fig. 1. Continuous crystallization

In addition, it is assumed that the concentration cg can be
influenced by an additional dilution. The fines withdraw
N pein 18 realized by a controllable pump.

The solid phase can be described using a population
balance model for the crystal size distribution, whereas
the liquid phase can be model by a mass balance. From
a mathematical point of view the studied system consists
of a nonlinear partial integro-differential equation for the
crystal size distribution coupled to an ordinary differential
equation for the concentration.

In order to describe the dynamics of the crystal size
distribution n(t, L) with the characteristic crystal length L
the following population balance model has been proposed.

on 0G(c)n

ot 0L
Here, G(c) is the growth rate depending on the concen-
tration and 7pr, M fines and nNpye are the associate rates
for product withdrawal, fines dissolution and nucleation.
It is assumed that the crystal growth solely depends on
the concentration and is proportional with the supersatu-
ration:

— Npr — hfines + hnuc- (1)

G(c) =k1(c—cs). (2)
The product withdrawal does not depend on the specific
crystal size and can hence be represented as
ﬁpT =Kn (3)
where K is the rate of withdrawal. As crystals for the fines
dissolution are withdrawn from the settling zone it can be
assumed that only small crystals of a maximal length L
are effected.

hFein :Kp(l—J(L—LF))n:KFTLFTL (4)
Here, K is the withdrawal rate and o is the Heaviside step
function. For the nucleation it is assumed that crystals of
size L = 0 are generated in dependence of the supersatu-
ration.

k3
Cy ()
Nnue = (1 - 37"#3) koe (Cs 1) s (5)
Here, u3 is the third moment of the crystal size distribu-
tion, i.e.
py = / L3ndL. (6)
0

Hence, the population balance model for the solid phase
is described as follows:

on _ 0G(c)n
ot 0L

—Kn—KFnFn

k3

+5(0) (1 - 3m> kge(_@‘élf). (7)

The equation for the liquid phase, i.e. the ordinary differ-
ential equation for the concentration, is given as follows.

de co— o) K —c) 4 d
do_ (0 O (g (279 1l
Lp 1mm
0 1.7 103 £g
Cs 980.2£%
K 1
k1 5.065 102
ko 7.958
k3 1.217 103
Ninit 71073 exp(—4L)
co 100254
Kr 0.07%

Table 1. Plant parameters

It is well known that the given process is unstable in a
certain range of fines dissolution rates. In order to stabilize
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this process in the presence of uncertainties in the param-
eters k1 and ks the control approach presented in [| will be
extended by an adaptation mechanism guaranteeing closed
loop stability.

4. ADAPTIVE DISCREPANCY BASED CONTROL

As has been shown earlier [3] the zeroth moment of
the crystal size distribution pg and the concentration c
as the controlled variables and the dissolution rate Kp
and the inlet concentration ¢y as the control variable are
appropriate handles in order to stabilize the process. The
error therefore is

S(uE)(E) o

In order to derive a stabilizing controller the above pre-
sented stability concept is applied. Here, we choose the
discrepancy p as follows

1
P=73 (e1 +¢€3). (10)

Obviously, the above requirements on a discrepancy are
met. In order to guarantee continuity at time ¢t = t; at
to = 0 the second discrepancy py is simply chosen as
follows

po = p(t=0). (11)
According to Theorem 6 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies p and pg. For this purpose
the following candidate Lyapunov functional is introduced

V—;(/OOOL?’(ndn)dL)Q.

In order to account for the unknown parameters k; and ko
this candidate Lyapunov functional has to be augmented
V= 1eTe—i—i (I;:f+l;§)7
2 2y
where k12 = 1%172 — k1,2 are the estimation errors. This
approach, i.e. Lyapunov redesign, is well known for finite
dimensional systems. In order to achieve stability in the
sense described above the control variable has to be chosen
such that the time derivative of V along the system
trajectories (7) is negative definite for all times and vanishs
only for e = 0.

(12)

(13)

_8G(c)n — Kn — Kpnpn + kennuedL
v ; oL
IR WG S SR C At B W
(17%71_#3) (17%71';1,3) 3 dt
1 /- = =2
-|-§ (k1k1 + kzkz) (14)
where
k3

Npue = 5 (0) 1- S TH3 | €Xp - (15)

In the case of known parameters k; and ko, i.e. /;71 = ky and
ko = ko, the following certainty equivalence control law
could be chosen in order to guarantee negative definitness
of the time derivative of the candidate Lyapunov func-
tional V' and hence stability in the sense of Lyapunov with
respect to two discrepancies.

o ki (c—cs)n

+ Kn + konpyedL

—creg —
Ke— 0 oL 16
r fooo npndL (16)
—c)Apdus
{0262 + —Qlﬁ(—l(g_é )3‘ il e (0 — c)]
377#3)
Co = K (17)
(1—%71';;3)

Applying the certainty equivalence control law in 14 results
in

oo ~ a ~
V= _el | aer + /0 [k‘l(c — cs)a—z — k‘gnnuc} dL

Co2€9
1 /7~ = ~ X
- (akr + Eoka) (18)
Choosing the following parameter adaption laws
B o0 0
Ky :'yel/o (c—cs)a%dL (19)
];2 = —’yel/ NpuedL (20)
0
the remaining terms cancel. Resulting in
V= —clef — 6263. (21)

Hence, the designed certainty equivalence control law in
combination with the adaption law (Fig. 2) guarantees
stability with respect to the two discrepancies p and pg.
However, convergence of the parameter estimates lAcl and
1%2 to the real values k; and ks is not guaranteed, which is
well known from similiar adaptive control approaches.

< Adaptation | ——————

Discrepancy based | Crystalizer
Control v >

Fig. 2. Control scheme

In order to test the control law the process is started with
an initial crystal size distribution n;,; in the region of
instability, i.e. Kp = 0.07, with an parameter estimation
error of 15%. As can be seen in Fig. 3, 4, 6 and 5 the
adaptive version of the discrepancy based control succeeds
in stabilizing the chosen discrepancy and the desired
crystal size distribution.
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Fig. 3. Error in zeroth moment of the crystal size distri-
bution

0 1 2 3 4 5
t/h

Fig. 4. Error in concentration

Fig. 5. Crystal size distribution n
1004
1002
1000
o

998+

996

994 1 2 3 4 5
t/h
Fig. 6. Concentration ¢

5. CONCLUSION

In this contribution the adaptive discrepancy based con-
trol for particulate processes has been presented. As an

illustrative example a continuous crystallization process
with parametric uncertainty has been chosen. In order
to stabilize this process an adaptive nonlinear control
approach has been proposed. The main idea is to aug-
ment the Lyapunov functional in order to account for the
parameter estimation error k and then derive a certainty
equivalence control law using stability with respect to two
discrepancies and an associate parameter adaptation law.
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1. INTRODUCTION

Crystallization is a thermal separation process mostly used
in chemical industry that consists in transformation of
amorphous solid, liquid or gaseous substance into crystals
[Mersmann et al. (2011)]. Crystallization leads to an in-
crease of the concentration and purity of the final product.
In this paper continuous crystallization processes within
mixed-solution, mixed-product-removal (MSMPR) crys-
tallizers are considered. The focus here is on two impor-
tant crystallizer configurations: with the fines dissolution
loop and without. In order to improve performance of the
crystallization process feedback control should be applied.
Different control approaches have already been studied:
closed-loop control of crystal shape [Ma and Wang (2012)],
robust nonlinear control based on the method of moments
[Chiu and Christofides (1999)], infinite-dimensional H.-
control [Vollmer and Raisch (2002)], [Motz et al. (2003)]
and discrepancy-based control [Palis and Kienle (2012)].
In this contribution a finite-dimensional robust control
approach will be studied resulting in easy implementable
low order controllers.

2. CRYSTALLIZATION PROCESS MODELING

In the crystallization processes studied in this contribution
crystals are generated and growing due to the oversatura-
tion of the liquid phase: the oversaturated solution is fed
to the reactor and cooled down there; such temperature
change decreases solvent saturation capacity and causes
crystal growth and formation of nuclei. Due to the presence
of different effects like seeding, nucleation, fracture, abra-
sion and growth, crystals have different sizes giving rise to
a crystal size distribution (CSD). In many cases the CSD
determines the quality of product since many physical
properties of the product are closely related to its CSD.
In addition, the effectiveness of downstream processing by
filtering or drying are strongly influenced by the CSD.

Hence, the dynamics of the crystallization process should
be studied considering the dynamics of the CSD.

2.1 Continuous crystallization process model derivation

To derive a model of the process the population balance
approach [Randolph and Larson (1988)] is applied. Fol-
lowing [Temmel et al. (2014)] a mathematical model was
derived with assumptions:

the reactor content is ideally mixed;

the solution volume inside the reactor is constant;

the growth is size-independent;

the system is diluted the reactor volume is not a

function of the substance and crystals mass;

e the mass of the solvent is much higher than the mass
of the substance;

e the occurance of breakage or agglomeration can be
neglected;

e nuclei have length z,,;, and negligible mass.

The crystal growth and dissolution factor G is assumed to
be derived in the following way:

if §>1,
otherwise,

(1)

_ K, EXP(_EA,Q/(RgasT))(S —1)9,
“= {Kd<s 1),

where the supersaturation S is defined as follows:

s(t) = 20 )

Wsat

Here, the mass fraction at saturation wg,; was identified
experimentally and approximated by a polynomial:

4
Wsat = Z K;(T — 273.15)° (3)
1=0

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
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Selection function

L L 1
0.5 1 15

2 25 3 3.5 4 45 5
Crystal size [m] x10™

Fig. 1. The fine crystal selection function R(z)

The crystal withdrawal term is defined as follows:

. n(t, z
nout(ta Z) = (7_ )7
T

(4)

where 7, represents the residence time.

In one of its configurations the crystallization facility in-
corporates the fines dissolution loop and the corresponding
term is defined:

Ndiss = 5R(z)nout (t7 Z) (5)
The term 0 represents the fines dissolution loop rate, the
ratio of the product withdrawal related to fines dissolution
loop withdrawal and R(z) describes the selection of fine
crystals, this function was identified empirically [Temmel
(2014)] and is shown in Fig. 1:

—ymamz_z if z < Zfb,
(1 + exp(—-*)
R(z) = ! Zfb—2b
ymam(l + exp(Tb)) .
, otherwise

(1 -+ exp(Z250))(1 + exp(3524))

(6)
The nucleation rate 74,4 can be defined as a bound-
ary condition which appears when the supersaturation is
greater than one, so the crystals of size z,,,;, and negligible
mass are generated:

(7)

Gn|z:zmm = 7ibuilal(t)

J— J— b ]
hbu“d(t,Z) _ {Kb exp( EA7b/(RgasT))(S 1) s if S > 1,

(®)

The population balance model for the solid phase of the
continuous crystallization is thus defined:

5 = g, Neur(t:2) —Taiss(t 2)

9)

The mass balance of the solute in the liquid phase is
formulated as follows:

0, otherwise

599
dm; . .
W = ml,’in(t) — My, out (t) + My diss,in (t)
. dus(t
_ml,diss,out(t) - kvps M;t( ) (10)

where the terms 1y ;, () and 17 o, (t) describe the inward
and outward reactor flow, 1y giss,in(t) and 1y diss,out(t)
describe inward and outward fines dissolution loop flow
and the last term reflects the crystal growth.

The accumulation term on the left-hand side of the mass
balance equation can be substituted in the following way:

dm;  d(Vepuwwi(t)) dwi (t)
_ dWrpuw®)) _ . 11
dt dt VePu =gy ()

The inward and outward reactor flows are described as
follows:

(12)

(13)

ml,in(t) = Vvinpw,inwl,in = ?M'pw,inwl,in
r

. 1
ml,out(t) - Voutpwwl (t) - ? prwl(t)

T

The inward and outward dissolution loop flows are defined
as follows:

ml,diss,out (t) = prwwl(t) = 6V0utpwwl (t)

1
— 5V, punlt) (14)
Tr

kuyps Vf

ml,diss,in (t) = ml,diss,out (t) + Tﬂfi,f(t)
T

=6 Vopulealt) + kopapis (1)) (15)

T

After some further simplifications the mass balance can be
described as follows:

dwy (t) 1 (pw,in

dt 7

Puw

Wi — wn(t) + 6kvpsu3,f<t>)

kops dps(t)

16

Vipy dt ( )

For the process configuration without fines dissolution, the
term ¢ is equal to zero.

2.2 Open-loop simulation

For simulation studies and the following control design
the process was discretized applying the finite volume
method [Versteeg and Malalasekera (2007)]. The resulting
model dimension for controller design was 2000 and for
control system validation was reduced to 400 due to the
computational expense. In order to gain a rough under-
standing of the process, simulation studies of the open-
loop system were performed. The open-loop simulation
expands the knowledge about process peculiarities, its
stability, influence of parameter deviations on dynamic
behaviour of the model and allows to define qualitative
and quantitative indicators of the desired process oper-
ation. As we consider two cases, with and without fines
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Fig. 2. The configuration without fines dissolution loop
- reactor temperature step change 7, = 301.15K to
298.15K at tszep = 3+ 10%s

dissolution loop, these cases will be analyzed separately.
In the configuration without fines dissolution loop, the
studied parameter is the temperature within the reactor
T'(t) which can be controlled by the cooling system. In
the second configuration, the fines dissolution loop rate
d(t) was altered to study different operation points. The
model parameters are provided in Table 1. The simulation
results are shown in Fig. 2 and 3. In both cases the mass
fraction in liquid phase w;(t), the third moment of CSD
u3(t), manipulated variable (reactor temperature T'(t) for
the first configuration and fines dissolution loop rate J(t)
for the second one) and the CSD n(t, z) - initial distribu-
tion (dotted gray) and final distribution (solid black) are
shown.

As can be seen the configuration without fines dissolution
loop is stable, the configuration with fines dissolution loop
shows some oscillatory behaviour but stays stable. How-
ever, as has been shown in [Randolph and Larson (1988)]
for related configurations the emergence of nonlinear os-
cillations is possible and should be avoided.

Table 1. Simulation parameters

Parameter Value

Vr 0.024m3

Qout 01#

K, 1.67E-006 m/s
g 1.04

Epyq 5.71E-009 J/mol
Ky 1234131.27 1/s
b 1.1

Eap 5.17E-011 J/mol
K, -4.32E-006 m/s
Ps 1757 kg/m?

kv 0.33

Ko 0.049378679989695
K1 0.002179443878122
Ko 0.000089305667414
Ks -0.000002627008140
Ky 0.000000049096298
Pw 1000 kg/m?3

Zmin 1E-6 m

§ Mass fraction in liquid phase Third moment
£ 0.144
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Z o142 2
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° =
g | Foas
@ 0.138 ) z
2 0 2 4 6 8 10 0 2 4 6 8 10
= time[s] x10° time[s] x10°
Manipulated variable Crystal Size distribution
o 100 3000
o
=
s & 2000
o 123
o 50 1
L =
3
a
c
o | i
= / 0

0 2 4 6 8 10 0 0,&)02 0.004 0.006 0.008 0.01
timel[s] x10° Crystal length

Fig. 3. The configuration without fines dissolution loop
- reactor temperature step change § = 10 to 90 at
tstep =1- 1058
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Fig. 4. Bode diagrams for varying reactor temperature
(without fines dissolution loop)

3. LINEAR ANALYSIS AND MODEL REDUCTION
3.1 Analysis of the linearized models

The linearization was performed considering both configu-
rations: system without fines dissolution loop and system
with it. For a control design appropriate control inputs
and outputs should be chosen. Here, for both configu-
rations the third moment pz of the CSD was chosen as
the controlled variable. As an appropriate control input
the reactor temperature and the fines dissolution loop
rate were chosen in the first and second configuration,
respectively. Linearization at different operation points
for varying reactor temperatures in the range of 298.15K
to 305.15K with nominal model referred to 301.15 and
varying fines dissolution loop rate in the range from 10 to
150 with nominal model referred to 90 was undertaken and
the results are depicted in figures 4 and 5, respectively with
nominal models indicated with wider lines. Both nominal
models are stable, controllable and observable. For a direct
control design the order is however very high and should
be reduced in order to design a low order controller being
easily implementable on a programmable logic controller.

3.2 Model order reduction
In this contribution the balanced residualization method

has been used for model order reduction [Skogestad and
Postlethwaite (2005), Gu (2005), Chiang and Safonov
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Fig. 5. Bode diagrams for varying dissolution rate (with
fines dissolution loop)

(1996)]. For the first configuration a model order reduction
to order three and in the second configuration to order 12
was achievable. The approximation error for both reduced
order models is relatively small for low frequencies and
increases for higher frequencies introducing an additional
model uncertainty in the high-frequency zone. This ad-
ditional model uncertainty should be mitigated by the
robustness of the designed controller.

4. ROBUST CONTROLLER DESIGN AND
SIMULATION

4.1 H,-loop-shaping controller design

Due to the number of considered assumptions, performed
simplifications and approximations, a controller should be
designed being capable of mitigating mismatches between
the real process and the design model. Here, the H..-
loopshaping approach [McFarlane and Glover (2013)] has
been chosen as it combines simplicity, realizability and
robustness with respect to the general class of coprime
factor uncertainties. As stated earlier for both configu-
rations the third moment pug of the CSD is chosen as
the controlled variable and the reactor temperature and
the fines dissolution loop rate are the control inputs for
the crystallization without and with fines dissolution loop,
respectively (Fig. 6).

e Au u y
N oL oy B
Linearization

point

Fig. 6. Control system configuration

In the following it is assumed that the nominal system G
is given in its normalized left coprime factorization

G=M1'N (17)
where M and N are stable coprime transfer functions
fulfilling the Bezout identity. Then an uncertain plant G,
consisting of the nominal system G can be represented as
follows:

Gp=(M+Ay) YN+ Ap) (18)
where Ajp; and Ay are stable unknown transfer functions
with [[[Ax A ]|l < €representing the model uncertain-
ties. It is well known that a controller K robustly stabilizes
the perturbed feedback system if it stabilizes the nominal
system G(s) and

<

H ﬁ(] (I +GK) M 1
0o €

. (19)

A coprime factor uncertainty representation is in general
superior over additive or multiplicative model uncertain-
ties, as it is not restricted to perturbations which preserve
the number of right half-plane poles of the plant. This fact
is important for the control of continuous crystallization as
stability behaviour may change depending on the specific
operating conditions. In order to incorporate requirements
on the closed loop performance the above stated H.o-
problem is generally combined with a prior loop shaping
stage, where the pre- and postcompensators W; and W
are designed in order to achieve a desired open loop be-
haviour. Hence, the H..-problem is solved for the nominal
model G augmented by the compensators W; and Wy

Gs = WoGWy (20)
and the H-loop shaping controller K,.s is formed from
the compensators W, and W5 and the solution of the H .-
problem K.

Kpes = Wi KW, (21)
The H..-loop-shaping controller design was performed
using the reduced-order models taking into account the
following requirements: no static error, fast transient and
low overshoot. For implementation reasons an additional
controller order reduction was performed reducing the
order up to 5 and 7, respectively.

4.2 Closed-loop system simulation

The controllers were verified using closed-loop simulations
with the full order nonlinear process models. The simu-
lation consisted in reference tracking test to ensure the
steady-state accuracy, starting with initial conditions close
to the reference point. The reference points are ps = 1.3
for the first configuration and ps = 1.4 for the second
one. Then we simulated the emergence of disturbance -
increase of feed solution temperature by ATfeeq = 0.5K
at t = 5-10%s for the first configuration and ¢ = 2 - 10%s
for the second one. The simulation results are shown in
Fig. 7 and 8. The depicted variables are the mass fraction
in liquid phase w;(t), the manipulated value T'(t) for the
first case and §(¢) for the second one, the third moment
of the CSD ps(t) and the crystal size distribution n(t, z):
initial (dotted gray) and final (solid black). The crystal size
distribution representation over time is depicted in Fig. 9
and 10. Apparently, the system based on model without
fines dissolution loop coped with the disturbance with less
effect on the process performance than the system based
on the second configuration. This is reasonable, because
the nature of manipulated variable of reactor temperature
is similar to the disturbance nature in contrast to the
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configuration with fines dissolution loop. Nevertheless, the
designed controllers stabilize both process configurations,
improve the transient dynamics, mitigate model uncer-
tainties, discretization errors and diminish the influence
of unforeseen disturbances as expected.

5. CONCLUSION

In this contribution two configurations of continuous crys-
tallization processes have been studied. Both are described
by a nonlinear model with distributed parameters. In order
to stabilize the crystallization process and improve its
performance feedback control was applied. Here, a linear

n
(=3
=3
=3

1000-

mass density[kg/m]

0.008

0.01 6 time[s]
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Fig. 10. Controlled crystallization with fines dissolution
(disturbance rejection) - crystal size distribution

finite-dimensional robust controller approach being capa-
ble of mitigating model uncertainties and diminishing the
influence of unforeseen disturbances has been successfully
applied. Future work will concern the validation of the de-
signed controllers within the crystallization facility HUGO
at the Max Planck Institute for Dynamics of Complex
Technical Systems Magdeburg and the extension of the
crystallization process model in order to include crystal
breakage and agglomeration phenomena.

Table 2. Notation

(t,2) crystal size distribution
G crystal growth and dissolution factor
Tr residence time
é fines dissolution loop rate
R(z) fines dissolution selection function
Ky fitting parameter for preexponential crystal
nucleation rate constant
Eap activation energy - nucleation
Ryas general gas constant
T temperature inside reactor
S supersaturation
b exponential parameter for nucleation
Ky fitting parameter for preexponential
crystal growth rate constant
Eayg activation energy - growth
g exponential parameter for growth
Kq fitting parameter for preexponential crystal
dissolution rate constant
wy () mass fraction in liquid phase
Wsat mass fraction at saturation point
ky volume shape factor
Ps density of potassium alum
wna(t) the third moment of crystal size distribution
w3, ¢ (t) the third moment of fine crystals size distribution
Vi crystallizer volume
Pw water density
G nominal plant transfer function
M, N coprime transfer functions
Apr, AN model uncertainties
€ maximum stability margin
K H o-problem solution
1 identity matrix
Wi, Wa pre- and postcompensators
Gs uncertain plant transfer function
Kres resulting Hoo-controller
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Abstract: This paper is concerned with control of a continuous fluidized bed spray granulation.
On the basis of an entropy function a control Lyapunov function will be derived. In order to
facilitate the control design procedure this entropy-based control Lyapunov function will be
approximated by its second order Taylor expansion.
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1. INTRODUCTION

Fluidized bed spray granulation is a particulate process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter solution. Due to high process air
temperature, the fluid evaporates and the remaining solid
material either contributes to growth of already existing
particles or forms new nuclei. As product particles should
have a certain minimum size an additional product clas-
sification is required. In this contribution a process con-
figuration applying an air sifter with countercurrent flow
as depicted in Fig. 1 will be studied. Another possibility
is for example the application of an external classification
using sieves with corresponding recycle of the over- and
undersized fraction [2]. In order to allow a continuous
process operation part of the withdrawn product particles
will be milled and fed back as nuclei to the granulation
chamber. It is well known that continuous granulation
processes in general and in particular configurations ap-
plying a mill cycle tend to instability and the occurrence
of nonlinear oscillations of the particle size distribution.
These oscillations give undesired time behavior of product
quality [4, 3, 2]. Similar patterns of behavior have been
observed for other particulate processes as e.g. crystal-
lization processes (e.g. [10]). In order to control these
several approaches have been proposed ranging from linear
finite dimensional control (e.g. [9, 7]) to nonlinear infinite
dimensional control methods [8]. Especially the later, i.e.
the discrepancy based control design, has been successfully
applied to different particulate processes.

In this contribution control design exploiting the thermo-
dynamic structure, i.e. the entropy, of the process will
studied. Therefore, an entropy-based control Lyapunov
function will be derived and used for control design.

2. CONTINUOUS FLUIDIZED BED SPRAY
GRANULATION

A continuous fluidized bed spray granulator with an ad-
ditional mill as depicted in Fig. 1 consists of a granula-
tion chamber, where the particle population is fluidized
through an air stream and coated by injecting a suspension
Ve. The particle growth associated to the layering process
has been described in [1].

air

suspension

particles

out

X

mill

Fig. 1. Process scheme

V.
=2——F
7 [, L?ndL

G

It should be mentioned that the particle growth rate
is inversely proportional to the overall particle surface
area and hence the second moment of the particle size
distribution. Product particles are continuously removed
through an air sifter with countercurrent flow. Here, due
to the particle size specific sinking velocity, small particles
with L < Lo are reblown into the granulation chamber,
while large product particles with L > Lo pass the air
sifter. The associated ideal separation function T is given
as follows.

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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T(L) = o(L - Ly) (2)

The outlet flow is hence

Nout = KT (L)n. (3)
where K is the drain, depending mainly on the air velocity
and the ration between granulation chamber and sifter
cross section. In order to guarantee a continuous process
operation nuclei have to be continuously supplied. This
can be achieved using an additional mill. For simplicity
it can be assumed that the mill is mass conserving and
generates a rectangular distribution.

Jo T L*KTndL
Jo° L3ndL
JoS L3KTndL )

(LY — Ly)

B=a(o(L — Lo) — o(L — L)) (4)

= a(a'(L — Lo) — O'(L — Ll))

To describe the process, a population balance model for
the particle size distribution can be stated consisting of
the following particle fluxes

e B particle flux from the mill,
® N,y particle flux due to particle removal,

and size independent particle growth associated with the
particle growth rate G.

on on

a = _GaiL — hout + B (6)
For numerical simulation the model equations are semi-
discretized with the finite volume method (1st order up-
wind flux discretization) with 310 grid points. The model
parameters used are given in Table 1.

V. 1.5 105 mmZ
Lo 0.lmm
Ly 0.2mm

Lo 0.7mm

K 1-10734

o 5.1073

Table 1. Plant parameters

3. ENTROPY-BASED CONTROL LYAPUNOV
FUNCTION

In the following a control Lyapunov functional will be
derived based on an entropy function for the population
balance model. The candidate being proposed in this
contribution is strongly related to the one studied recently
in [6] for a continuous crystallizer.

S = /00o —CnlnndL = /Ooo s(n)dL (7)

Here, C'is a positive constant, which will be specified later.
As we are interested in deviations from and control design
for a desired steady state ng the following quantities can
be defined

AS =S, S, (8)
AZ=2Zy— 7, (9)

where Z = kn. The conjugate variable of Z can be

calculated as

Os

wo = EYA yzs (10)
= f%(lnno +1). (11)

Using Z, its conjugate and the entropy S a control Lya-
punov function can be derived [6, 5].

V=- /Oo AZwodL + AS (12)
Using eq. (11) yields ’
V= /0 T An(Cnng + 1))dL, (13)
- /OOO C(noInng — nlnn)dL, (14)
= /000 C(An —n(lnng —Inn))dL. (15)

In order order to simplify the control design for the
continuous fluidized bed granulation process this control
Lyapunov candidate will be approximated by its second
order Taylor approximation.

V= / C An2dr (16)
o ™o
Choosing C' = %no yields
I e
V== An=dL. (17)
2 Jo

4. CONTROL DESIGN

In the following the second order approximation of the
entropy-based Lyapunov candidate (17) will be used in
order to design an appropriate feedback control law. Cal-
culating the time derivative V yields

[ Oong On

[ee} 2
=—/ GOANT | By — B— KTAn]dL (19)
0

(18)

2 0L
G

=— —An?
2

- / An[By — B — KTAn]dL(20)
0 0

Here, the first two terms vanish due to the boundary
conditions n(L = 0) = limy_,o n(L) = 0, i.e. there are no
particles of size zero and infinitely large particles. Hence,
the time derivative of the Control Lyapunov functional V'
does not depend on the growth rate G and thus all results
will be robust with respect to variations in the suspension
injection rate.

V= / An[By — B — KTAn]dL (21)
0

Inserting the equations for the particle outlet (3) and the
mill flux (5) results in the following
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I f;j aoLPKng — al3KndL

[ A (7 BT 22)
-K An?dL (23)
Lo

. . . (o)
For convenience a virtual control input -+ = « f L, L3KndL

is introduced.

v 1 Anidl k[ an2aL (24

= —(Umrt,o — Upirt m - . n ( )
In order to achieve negative definiteness of the time deriva-
tive of the entropy-based candidate Lyapunov functional
V the following virtual control law is chosen

4 L4 _ L4 [e%s}
Uyirt = uvirt,O + (LliO) |:C/ A?’I,2dL:| 5 (25)
. AndL 0
0]
which results in the control law for «

Uyirt

T T LKndL

(26)

The time derivate of the entropy-based control Lyapunov
function hence is

V=—c / An?dL — K | An?dL (27)
0 Lo
< —c/ An?dL = —2cV (28)
0

guaranteeing asymptotic stability and exponential con-
vergence. The control law is tested starting at an initial
particle size distribution n(t = 0, L) = 1.5-ny(L) depicted
in Fig. 2 and with a tuning factor ¢ = 2-107%. As can
be seen in Fig. 3 and 4 the proposed control law succeeds
in controlling the desired particle size distribution with
reasonable control effort (Fig. 5 and Fig. 6). For compar-
ison the open loop process behavior is depicted in Fig. 7
showing considerably more oscillations and higher peaks
in the particle size distribution. In order to evaluate the
control performance the third moment of the particle size
distribution in open and closed loop operation is shown in
Fig. 8.

9
2510

0 1 2 3 4
L/mm

Fig. 2. Initial particle size distribution

2
3

L/mm

Fig. 3. Particle size distribution in closed loop operation n

17
4x10

354
3
250

15
1

0.5/

OO 2 4 6 8 10

Fig. 4. Entropy-based Lyapunov function V

5

3.5

Fig. 5. Control input «

1470

1468"
1466

o

£ 1464

35

51462
1460
1458

1456, 2 2 6 8 10

Fig. 6. Virtual control input ;.
5. CONCLUSION

For a continuous fluidized bed spray granulation with mill
cycle an appropriate control law has been derived and



Stefan Palis et al. / IFAC-PapersOnLine 48-13 (2015) 154—157 157

h
L/mm v

Fig. 7. Particle size distribution in open loop operation n

8
6.5% 10

Fig. 8. Third moment of the particle size distribution pg in
open (black dashed) and closed loop operation (gray
solid)

tested. The main idea is to derive a Lyapunov functional
on the basis of an entropy function. In order to facilitate
the control design procedure this entropy-based Lyapunov
functional has been approximated by its second order
Taylor expansion. Future work will be concerned with a
thorough comparison between the here presented entropy-
based control approach giving physical insight and the
earlier proposed discrepancy based control design [8].
Applying the latter control laws are designed on the
basis of a generalized distance measure, the discrepancy,
focusing on the process input output behavior.
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Discrepancy-based control of a heat equation with quadratic
nonlinearity
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Abstract— This article deals with a new approach to stabiliz-
ing boundary control for nonlinear parabolic PDEs. The system
under investigation is the quadratic heat equation. In order to
stabilize this system in this contribution the use of a generalized
distance measure, the discrepancy, is proposed. Applying, the
associated stability theory, i.e. stability theory with respect to
two discrepancies, a stabilizing control law can be derived.

I. INTRODUCTION

Control of distributed parameter systems (e.g. [1], [2], [3])
is an active field of research. Especially, the case of linear
parabolic PDEs with boundary actuation has received great
attention in recent years. In [4], [S] the finite-dimensional
feedback linearization approach has been successfully ex-
tended to parabolic PDEs with Volterra nonlinearities. There,
the heat equation with a quadratic nonlinearity has been
one of the studied test cases. It has been shown [4] that
using a state transformation the quadratic nonlinearity can
be transformed into a Volterra series nonlinearity. For the
transformed system choosing a flat output an infinite di-
mensional feedback linearizing controller based on Volterra
series has been derived, which has been truncated to second
order for implementation. As has been shown by simulations
the proposed controller is able to stabilize the heat equation
with quadratic nonlinearities for initial conditions with peak
values up to 8. For initial conditions with a higher maximum
value, i.e max,cjo,1yw(x) > 8, the authors state [4] that the
proposed control law is not able to stabilize the system.

In this contribution a complementary approach, discrepancy-
based control, will be proposed for this challenging bench-
mark problem. The discrepancy-based control approach has
been developed and successfully applied in particulate pro-
cess control, e.g. crystallization [6] and granulation [7], [8].
Here, the main idea is to choose an appropriate generalized
distance measure, the discrepancy, which allows a direct
Lyapunov design guaranteeing stability with respect to the
chosen discrepancies. In addition, convergence with respect
to a L,-norm or pointwise convergence can be guaranteed
under the condition of stable zero dynamics.

The paper is organized as follows: in section II the model
system, a heat equation with quadratic nonlinearity, is stated.
In section III the main theoretic concepts of stability with
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respect to two discrepancies are stated. The connection be-
tween stability with respect to two discrepancies and stability
in the sense of the L.,-norm is outlined in section IV. In
section V the discrepancy-based control method is applied
in order to derive a stabilizing control law for the model
system. Some final remarks conclude the paper.

II. HEAT EQUATION WITH QUADRATIC NONLINEARITY

Consider the following heat equation with an additional
quadratic nonlinearity

ow 0w 9
o a2 T M
with boundary conditions
w(0,t) = 0, 2
ow(1,t
7(’535 ) = . 3)

Here, w(x,t) is the system state, ¢ > 0 is the time and
x € [0,1] is the spatial coordinate. It is well known that
this system is unstable, diverges to infinity in finite time
and is not globally stabilizable [4] and references therein.
Therefore, the stabilizing control of the heat equation with
quadratic nonlinearity is a challenging task.

III. STABILITY WITH RESPECT TO TWO DISCREPANCIES

In the following, the most important properties and facts
on stability with respect to two discrepancies are stated in
accordance to [9], [10], [11]. Here, the process ¢(.,t) is a
solution of a distributed parameter system and ¢y = 0 an
equilibrium of the system. The discrepancy p(¢(.,t),t) is a
measure of the distance between the process (.,t) and the
equilibrium ¢g.

Definition 1: (Discrepancy): A discrepancy is a real val-
ued functional p = p[p (.,t),t] with the following properties

1) pp,t) =0,

2) p(0,t) =0,

3) for an arbitrary process ¢ = ¢(.,t) the real valued
functional p(p(.,t),t) is continuous with respect to ¢.

It is important to note that a discrepancy lacks essential
properties of a metric, e.g. symmetry d(z,y) = d(y,z) or
triangular inequality d(z,y) < d(z,z) + d(z,y) are not
satisfied. In addition, a discrepancy has not to satisfy the im-
portant property of definiteness, i.e. a vanishing discrepancy
p(p,t) = 0 does not automatically imply ¢ = 0. Therefore,
the discrepancy is an extension of the distance measures



normally used in stability theory for distributed parameter
systems like L, and L.,- norms.

In the context of stability with respect to two discrepancies
besides the discrepancy p(¢(.,t,t)) measuring the distance
between ¢(.,t) and the equilibrium ¢j, a second time
independent discrepancy pg is used describing the distance
between the initial state ¢(.,0) and the equilibrium ¢q.
The two discrepancies p and po have to satisfy, that the
discrepancy p(p(.,t),t) is continuous at time ¢ = to with
respect to pg at pg = 0, i.e. for every € > 0 and £y > 0 there
exists a (e, tp) > 0, such that from py < (e, tp) it follows
that p < e.

Definition 2: (Stability with respect to two discrepancies
p and po): The equilibrium g = 0 is stable in the sense
of Lyapunov with respect to the two discrepancies p and pg
for all ¢ > t¢ if for every € > 0 and ¢y > O there exists
ad = d(e,to) > 0 such that for every process ¢(.,t) with
po < 0(g,tg) it follows that p < ¢ for all ¢ > ¢o. If in
addition lim; ,., p = 0, than the equilibrium g is called
asymptotically stable in the sense of Lyapunov with respect
to the two discrepancies p and pg.

In order to define a Lyapunov functional V' guaranteeing
stability with respect to two discrepancies the additional
notions of positivity and positive definiteness of a functional
with respect to a discrepancy are introduced.

Definition 3: (Positivity with respect to a discrepancy p):
The functional V' = V [, ] is called positive with respect
to the discrepancy p, if V. > 0 and V' [0,¢] = 0 for all ¢
with p(p,t) < oc.

Definition 4: (Positive definiteness with respect to a dis-
crepancy p): The functional V' = V [, t] is positive definite
with respect to a discrepancy p, if V' > 0 and V' [0,¢] = 0
for all ¢ with p(p,t) < oo und for every € > 0 there exists a
d = d(g) > 0, such that V' > §(¢) for all ¢ with p[p,t] > €.

The following two theorems state the conditions for a
functional V' guaranteeing (asymptotic) stability with respect
to two discrepancies.

Theorem 1: [11] The process ¢ with the equilibrium g =
0 is stable with respect to the two discrepancies p and pg
if and only if there exists a functional V' = V[, t] positive
definite with respect to the discrepancy p, continuous at time
t =ty with respect to pg at pg = 0 and not increasing along
the process ¢, i.e. Vv <0.

Theorem 2: [11] The process ¢ with the equilibrium
wo = 0 is asymptotically stable with respect to the two
discrepancies p and pg if and only if there exists a functional
V = V]p, t] positive definite with respect to the discrepancy
p, continuous at time ¢ = £y with respect to pg at pg = 0
and not increasing along the process ¢, i.e. V < 0, with
limV =0.

t—o0

IV. STABILITY WITH RESPECT TO A DISCREPANCY AND
POINTWISE CONVERGENCE

In order to state conditions, when convergence in two
discrepancies yields convergence in a L,-norm or pointwise
convergence, i.e. convergence in the L,,-norm, the discrep-
ancies p may be interpreted as output variables. Whereas the
distributed variable ¢ resembles the system state. Applying
this notation the finite dimensional concepts of relative
degree and zero dynamics (e.g. [12]) can be extended to
the infinite dimensional case (e.g. [13], [14]) yielding the
desired connection between stability with respect to two
discrepancies and stability in the L, or L.,-norm. In the
finite dimensional case a system of order n and relative
degree r < m can be represented in its normal form applying
a local coordinate transformation [12].

251 = 292 (4)
Z.’T,1 = Zr (5)
o= F@W,m) +g(¥,n)u (6)
Y = h(y,n,u) (7)

Here, the system state space can be easily separated into
two parts. The first part consisting of the state equations for
Y= [z1,..., zr]T, which can be linearized and controlled
by the control u, and the second part being associated
with the state n = [z,41, .. .,zn]T, which forms the zero
dynamics. As a separation of the state variables is in general
inconvenient for a distributed parameter system, the zero
dynamics are typically defined by constraining the output
to zero by applying the appropriate control law ([13], [14]),
e.g. the discrepancy-based control law. Therefore, applying
the discrepancy-based control law guarantees stability of the
whole system if and only if the zero dynamics associated
with the discrepancy p are stable. Unfortunately, stability
of the zero dynamics in the infinite dimensional case is
very hard to check. In order to overcome this problem in
this contribution a heuristic approach is proposed. Therefore,
for the heat equation with quadratic nonlinearity only the
conditions related to the finite dimensional linear case, i.e.
the presence of right-half plane zeros, will be checked. This
approach gives due to linearization at least a local stability
result, i.e. valid in a neighborhood of a steady state, for the
finite dimensional approximation.

V. DISCREPANCY-BASED CONTROL

In the following, a discrepancy-based control law will be
derived for the heat equation with quadratic nonlinearity.
Here, deviations from the desired steady state wq(z) = 0
will be measured in terms of an integral quantity

1
e= / E(x) (wg — w) dz, (8)
0
where the kernel k(z) is defined as follows

k(x) = exp(—ax). 9)



This choice is motivated by the fact that errors in a greater
distance from the actuated boundary at x = 1 are harder
to control and should therefore be stronger weighted, i.e.
x | gives k(x) 1. An appropriate choice for a discrepancy p
being associated with the error measure defined in eq. 8 is

p—;(/olkm(wd—w)dxf

In order to guarantee continuity at time ¢ = ¢y at pg = 0 the
second discrepancy pg is chosen as follows

po = p(t =0).

(10)

(1)

According to Theorem 2 existence of an appropriate func-
tional V' is sufficient to guarantee asymptotic stability with
respect to the two discrepancies p and pg. For this purpose
the following candidate Lyapunov functional is introduced

V—;&—;(/Olk(x)(wd—w)dx)Q

In order to achieve stability in the sense of two discrepancies
the control variable u has to be chosen such that the time
derivate of V' along the systems trajectories (1) is negative
definite for all times and vanishes only for V' = 0. Calcu-
lating the time derivative of V' along the system trajectories

(1) yields
1 2
. 0*w 9
eez—e/o k(8m2+w )d:v,

1

12)

Vo= (13)

ow L dk ow 9
B ow(0,t) dk |'
= —e lkz(l)u — lc(O)T - .
1 52
+/ d’;w+kw2dx} , (15)
0 XL
B ow(0,t)  dk(1)
= —e [k(l)u k(0) o In w(l,t)
1 52
+/ dl;w—i—szdx} ) (16)
0 de

Using (16) the negative definiteness of the time derivative
of the candidate Lyapunov functional V' can be guaranteed
choosing the following control law.

1 ow(0,t)  dk(1)
k(1) {k(()) Oz * dx

L a2k

In addition to stability with respect to two discrepancies
the control law (17) guarantees exponential convergence of
V', where ¢ can be used as a tuning parameter in order to
influence the convergence velocity.

V = —ce? = -2V

u = w(l,t) 4 ce

a7

(18)

In order to check for pointwise convergence, i.e. stability of
the zero dynamics with respect to the discrepancy p, only a

high order finite dimensional linear approximation has been
studied. As can be seen from the open loop pole/zero map in
Fig. 1 there are no zeros in the right half plan. This indicates
that the zero dynamics are stable, which in turn would prove
stability in the L.,-norm.

150
100 O

50

-50r

-100f O

g i?oo

-200 -100 0

Re

-300

Fig. 1. Pole/zero map of linear finite dimensional approximation

The proposed control scheme is tested for a = 2, ¢ = 10
and a sinusoidal initial condition with a peak value of 20,
i.e. w(z,0) = 20sin(x), which is higher than the maximum
allowable value of 8 in [4]. As can be seen in Fig. 2 and 3
the proposed control scheme is able to stabilize the process.

0.3 04 1

Fig. 2. Closed loop operation

Fig. 4 shows the exponential convergence of the Lyapunov
functional V. The convergence of w in the sense of the Lo
and L,-norm are depicted in Fig. 5 and 6 respectively.

VI. CONCLUSION

A new control approach for the benchmark problem of a
heat equation with quadratic nonlinearity has been presented.



-500+ ]
-1000+ ]
> 1500 ]
-2000- ]
-2500- ]
-3000, 0.1 0.2 0.3 0.4
t/s
Fig. 3. Control input u
15 T T
10 ]
>
5, 4
0
0 0.1 0.2 0.3 04
t/s

Fig. 4. Convergence of V in closed loop operation

It has been shown in silico that the proposed discrepancy-
based control is able to stabilize the system in a certain
range of initial conditions. As the proposed design guarantees
only stability in the sense of Lyapunov with respect to the
two chosen discrepancies stability of the associated zero
dynamics has to be studied in order to ensure convergence
in a Ly,-norm or pointwise convergences, i.e. convergence in
a Lo.-norm. This is a challenging task for the investigated
problem. Therefore, only the zero dynamics of the linearized
discretized approximation is studied.
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Abstract

Particle shape plays an important role in many industrial applications since it can have significant impact on both, processability
of particles as well as the properties of the final product. For this reason modeling of the corresponding production process is
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different crystal facets. This is particularly challenging due to the infinite dimensional state space of the models. In this
contribution online parameter estimation for the growth rates of L-glutamic acid cooling crystallization is presented. Using a
Lyapunov-based approach the parameter adaption laws are computed directly from the infinite dimensional problem formulation.
It will be shown that a reasonably fast convergence of the parameter estimates can be achieved even in the presence of
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1. Introduction

Crystallization is an important class of production processes in chemical and pharmaceutical industries. It is used to
produce a desired material in crystalline form from a liquid solution. Details on crystallization principles and
techniques can be found e.g. in [1]. The production processes are characterized frequently by heterogeneity of the
crystal ensemble with respect to crystal properties like size and shape. Those have a significant influence on the end-
use property and the processability of the final product. Modeling of the corresponding dynamics is thus crucial for
the design of efficient schemes for process control and optimization. It is well known that the temporal evolution of
the previously described heterogeneous system can be modeled using population balances [2]. Here, morphological
population balances being a special form of multivariate PBMs can be used to describe the dynamic shape evolution
(e.g. [3], [4]). For the development of process control and optimization schemes the individual facets growth kinetics
in the population balance have to be determined. This can be done for example by experimentally measuring the
growth rates of a single crystal or a small number of crystals, which has several drawbacks that may yield biased
estimates. Alternatively, the rates may be determined directly from process scale seeded crystallization experiments.
Here, the temperature, solute concentration and the crystal shape distribution have to be measured. The parameters
of the growth kinetics can then be estimated minimizing the error between the simulation of the morphological PB
and the measurement data from experiment. In offline optimization-based parameter estimation schemes variations
of the optimal parameter estimates due to changes in operation conditions are typically neglected resulting in
performance deterioration. In order to overcome this problem in this manuscript the design of an online parameter
estimation approach for morphological PBs will be investigated for a L-glutamic acid crystallization process [5,6].

This contribution is structured as follows. At first the general process model will be presented. Subsequently, the
online parameter adaption laws will be derived directly from the infinite dimensional process model using a
Lyapunov-based approach [7]. Next the performance of the proposed parameter estimation scheme will be shown
assuming ideal measurements without noise. Further, it will be made clear that in case of realistic measurement
errors the online adaption has to be combined with a filtering technique. At the end, the results are summarized and
possible extensions for future research are mentioned.

Nomenclature

c solute concentration [g/[]

é estimated solute concentration [g /1]

c* solubility [g/!]

en € error in the number density distribution/concentration between model and process
9, 9w kinetic coefficients (exponents) for facet growth

G, Gy facet growth rate in length/width dimension [m/s]

G, Gy estimated facet growth rate in length/width dimension [m/s]
ki, ky facet growth parameters [m/s]

ky, ky estimated facet growth parameters [m/s]

ky, kw error in facet growth parameters

L length of B-form L-GA [m]

Myo, Moy mean length/width of number density distribution [m]

My, Moy estimated mean length/width of number density distribution [m]
n number density distribution [m ™3]

l estimated number density distribution [m ™3]

PPbs, pobs pobs error feedback gains for model [s7]

qL, Qw kinetic coefficients (exponents) for facet growth

t time [s]

T temperature [°C]

w width of B-form L-GA [m]
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Yo, Yw parameter adaption rate tuning parameters
p crystal density [kg m™3]
o relative supersaturation

2. Process modeling

In this manuscript seeded crystallization of f-form L-glutamic acid (L-GA) in a stirred tank reactor as presented
in [5] is used as a benchmark problem. The shape of a single crystal can be described reasonably by the length L and
width W of a parallelepiped (Fig. 1). Thus, depending on the ratio of both the crystal shape may vary between disks
and needles. Assuming that the crystal growth is dominant and neglecting other effects like agglomeration, breakage
and nucleation, the dynamics of the number density distribution n(t, L, W) with respect to the two characteristic
properties can be modeled using the following morphological PBM

IELW) 9 Gt L W)t L W} + e (G (6, L W) (e, L W)} = O
—— o+ o G L W) n(t, L W)} + o (G (8, L, W) (e, L W)} = . (1)

Here, the growth rates are given by

Gy (t,L) = kg, o(£)9: L9,

G (6, W) = kg, ()W WW, @

</ N

i
\
=

w

Figure 1: Scheme of typical 8 form L-GA crystal and corresponding representation as parallelepiped [5]

It is assumed that each growth rate depends only on the crystal size in the corresponding dimension and on the
relative supersaturation.

o(t) = L:C* 3)

Cc




Robert Diirr et al. / Procedia Engineering 102 (2015) 1336 — 1345 1339

The solubility of L-GA depends on the solute temperature and is given by the following empirical formula

c* =4.408—1.4644-1071 T + 1.786 - 1072 T? — 2.96366 - 107* T3 + 2.68138 - 107¢ T*. 4)

Dynamics of the solute concentration can be derived from the mass balance of the liquid in the crystallizer and are
given by

de(t) 0 ,
— =—pff(2WLGW+L G,) n(t, L W) dL dW
00

)

where p is the crystal density. Obviously, the overall dynamical system consists of an ordinary differential equation

(ODE) and partial differential equations (PDE), which are coupled. The numerical values of the parameters are
given in Table 1.

Table 1: Process parameters and corresponding values

Parameter Value Parameter Value
kg, 0.6314-107° kg, 0.1943-10°°
q. 0.2106 qw 0.2210
gL 1.6602 9w 1.5740
p 1540

3. Design of the online parameter estimator

The majority of the parameter values listed in Table 1 have been identified from lab scale experiments. Thus,
they can only be viewed as a rough orientation for a crystallization process on an industrial scale. Additionally, in a
large scale industrial setting the process model may be not exact or the process parameters may vary during plant
operation. Controller performance particularly suffers from those uncertainties as design procedure typically depend
on a fully parameterized plant model. For this reason an online parameter identification procedure [7] will be
designed.

The Lyapunov-based online estimation uses the following modified plant model, which runs in parallel to the
actual process (see Fig. 2)

on J 4 J .
E: - a—L{GLTl}—W{GWTl}-FP,{JbS (ﬁ—n),

dé cr ) ) (©)
== —pj f (2W LGy + L* G,) n(t, L, W)dLdW + PP (¢ - c).
0 0

where 71 and ¢ are the particle shape distribution and the solute concentration estimated from the modified plant
model. From this point on it is assumed that only the parameters kg, and kg, are unknown such that the unknown
growth rates are given by

G,(t, L) = kg, o(0)9L L9, (7
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Figure 2: Online estimation scheme

The parameters P°’S and P°PS are additional tuning factors and can be interpreted as model error feedback gains.
In a first step, the estimation errors of the crystal shape number distribution, the solute concentration and the

parameters are introduced.

ep=f—-n
ee=C—c
kg, = kg, — kg, (8)
lzgw =Koy — gy

Combining (1) and (5-6) the error dynamics can be derived.

O¢n = 0 k, o9LLaL 9 k gw i aw pobs
=1 = = 3L (ke ot 1n) — = n kg, 0T W W) + BiPe,

s © o (€))

e - ~

a—; =-p f f (2 kg, 09" Waw [ + kg g9t L2*9L ) n(t, L, W)dLAW + PP e

00
In order to design suitable adaption laws for the parameter estimates the following Lyapunov functional is chosen
15 2
kg, - (10)

L1 (®,2 o2 t p 2, 1
V==J 1, endeW+2eC+2yL kg, + ok

Here, y; and y,, are positive real tuning parameters. One can easily obtain that the Lyapunov function is positive
definite and vanishes only for exact parameter estimates and if the shape number distribution and the solute
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concentration of the model converge to the ones of the real plant. Applying standard Lyapunov stability theory
yields that stability of the proposed estimator scheme can be achieved by guaranteeing that the first time derivative
of V is negative semidefinite for all time points and vanishes for V = 0. Calculating the first time derivative of the
Lyapunov functional along the system trajectory gives

av
—t=faneﬁdeW+PceC2

_ [k oLt n
+ kg, <%—09L ff AL { }endeW—pagLecffL“andeW)

_ owaw
+kgw<ﬂ— gWﬂ nendeW—2pogWeCﬂLW1+andeW>.

an

In order to guarantee the negative definiteness of the first time derivative of the Lyapunov functional V the adaption
laws are chosen as

2 a
kg, =vw (agW IIW{W‘?W n}e, dLdW + 2 p 9% eCﬂ.LW“andL dW),

12)
. 0 (
kg, =11 (agL ff E{L‘“ n}e, dL dW + p g9l e, J’f L?*aL n dL dW),
Resulting in
av 2 2
P P,e; dLdW + P. ez,
00 (13)

which is negative semidefinite for P°?¢ < 0 and P°%S < 0.
4. Evaluation of online identification procedure

The presented online parameter estimation approach has been implemented numerically using
MATLAB/Simulink. For this reason the partial differential equations for the process (1) and the model (6) were
transformed to a large-scale system of ordinary differential equations using a two-dimensional finite volume scheme.
Details on the application of a finite volume scheme for the discretization of PDEs can be found for example in [8].
The double integrals were approximated using a two-dimensional trapezoidal rule. For the process the parameters
given in Table 1 are used. The initial solute concentration is

c(0) =27.26 g/l

and for the initial crystal shape number density distribution of the process is assumed to correspond to a two-
dimensional normal distribution

n(0,L, W)~N (i, %)

with mean and covariances given as

_ 10-5 £ .10-5 _1n-10(%4 0
@4=(10-10"55-10"5), T=10 (0 1).
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The cooling rate is chosen as 1.5 K/min. It is assumed that the models initial values for shape number density
distribution and solute concentration differ from the corresponding process values by a factor of 0.9. Furthermore,
the initial values for the unknown parameters, i.e. the initial guesses, are only known very roughly.

kg, (0) =10k, kg, (0) = 10k,
k

L’ w
9 kg
-6 L = W
27X 10 20.3( 10
—Real

P I .. Identified

15}
54 i
4 10'§
3ri 5
2
1 {f
0 -5

0 500 1000 0 500 1000

t t

Figure 3. Parameter estimates for ideal measurements

0‘80 500 1000 4'40 500 1000

t t
Figure 4. Moment estimates for ideal measurements

4.1. Ideal measurements without noise

In a first step the performance of the online parameter estimation algorithm is shown for the case of ideal
measurements without measurement noise. Though this scenario is not realistic as experimental data is always
corrupted by measurement uncertainties it is well suited to show the general performance of the algorithm and to
study the effects of different choices of the tuning parameters on the dynamics of the parameter estimates.
Simulation studies indicate that the parameter estimates convergence rate mainly depends on the adaption rate
factors y; while the ratio of error feedback factors and adaption rate factors affect the damping or the smoothness of
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the parameter estimate dynamics. Thus, by an appropriate choice of the tuning parameters a reasonable convergence
rate can be achieved. In Fig. 3 the corresponding parameter estimate dynamics are shown for

YL =7Yw = 1-10719, BPbS = —0.05, P?Ps = —0.025.

It can be seen that the parameter estimates converge to the real values within 250 s and are only slightly
overshooting. Additionally the model crystal shape number density distribution converges to the one of the process
reasonably fast, as shown in Fig. 4.

4.2. Noise corrupted measurements

In order to come up with a more realistic setup the measurements are now considered to be corrupted with additive
white noise. Due to the noise the performance of the proposed online parameter estimation algorithm is expected to
deteriorate. In order to achieve comparable performance as in the noise-free setting the model has been extended
including the first order moments of the distribution

0o o

m10=fandeW,

(14)
my, = f f W ndLdw,
00
resulting in two additional model equations
721( O'gl‘ijandeW+Pos(mlo mlo)
15)
dﬁ\lol T b. ~
- aw f f WIW ndL dW + B3®S (Mg, — mMyq).
00

Using the extended estimator model the Lyapunov function V has to be extended by errors in the two first moments

1
— k

1[0 ( 1 1
:Effe dL dW‘I'_eC + (mlo m10)2+5(m01_m()1)2+2}/L gL +2yw aw (16)
0 0

resulting in two extended adaptation laws

owIw n
k w=Yw agwff endeW+2pagWecffLW“qwndeW—(rﬁm—m(,l)mqw),

Y Lt n
kg, = v (agb ﬂ 3L dL dW + p g9t e, jf L dL dW — (Mg — Myg) qu>. (17)
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The corresponding simulation results can be seen in Fig. 6 and Fig. 7. As in the ideal measurement scenario, the
parameter estimation errors decrease at first but, due to the stochastic measurement uncertainty, the parameter
estimates do not converge to their real values. Instead the estimates themselves reflect the stochastic process
behavior. Applying a simple filter is however sufficient to overcome this problem (dashed black lines).

k k

9 E 9
x10° L 2o 10 . W
—Real
6 — Identified
------ Filtered 15

0 1000 2000 0 1000 2000
t t

Figure 5. Parameter estimates for noise corrupted measurements

m m

x10* 1° x10° o
—— Measurement
—— Model
9
25
2
1.5
1
0 500 1000 1500 20.00 2500 0 500 1000 1500 2000 2500

t t

Figure 6. Moment estimates for noise corrupted measurements

5. Summary/Conclusion, Future Work

In this manuscript online estimation of facet growth kinetics was studied for L-glutamic acid crystallization. It
has been shown that the proposed Lyapunov-based adaption laws allow a reasonable fast estimation of the unknown
model parameters in the case of ideal measurements. Additionally, an extension of the algorithm was presented to
deal with noise corrupted measurements. Future work will be concerned with further analysis of tuning parameter
effects on the estimation error dynamics as well as further analysis of the effects of stochastic measurements. In
addition, the approach will be extended to the estimation of parameters depending directly on the shape dimensions.
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Finally, the proposed online parameter estimation algorithm is planned to be used for real lab-scale experiments and
as a part of an adaptive control scheme.
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Abstract: This contribution is concerned with control of systems of population balances, which
are frequently used for modeling of particulate processes like granulation or crystallization. Using
the model of a pellet coating processes it will be shown that discrepancy based control can be
successfully applied for control of systems of population balances. Here, the main idea is to
choose a system output being a generalized measure for the distance between the particle size
distribution and its desired steady state, which allows a direct Lyapunov design.

1. INTRODUCTION

Systems of population balance equations are frequently
used in models of particulate processes as for example
fluidized bed spray granulation, drum granulation, spray
drying and crystallization. They are used to describe the
behavior of a certain particle property (e.g. liquid content,
particle size, porosity). Due to the vast range of indi-
vidual processes (e.g. particle breakage, particle growth,
agglomeration, nucleation) the population balance model
may be a simple linear first order hyperbolic partial dif-
ferential equation or a system of nonlinear partial integro-
differential equations. Hence, control design for this type
of processes is challenging. In order to simplify the control
design procedure the discrepancy based control has been
proposed in [4, 5, 8]. Although this design has been suc-
cessfully applied to different particulate processes [4, 5, §]
rigorous proof of stability in a Lo or L. norm for a
concrete process model is still a challenge.

In this contribution the discrepancy based control will be
applied to a pellet coating processes, which is often used
for production of drugs, fertilizers, foods and detergents.
Here, the pellets are coated in a fluidized bed process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter solution. Due to high process
air temperature, the fluid evaporates and the remaining
solid material contributes to growth of already existing
particles. As product particles should have a certain size
an additional product classification is required. This can
achieved by internal classification using an air sifter with
countercurrent flow as depicted in Fig. 1. For a film coating
processes the Wurster apparatus is the most common
configuration. Here, a Wurster tube is located in the center
of the process chamber and the solution is injected by a
bottom-spray nozzle. A corresponding process model for
the pellet coating in a Wurster fluidized bed process has
been proposed by Hampel et. al. [2].

978-3-902823-54-0/2013 © IFAC 172

particles

Fig. 1. Scheme of the Wurster fluidized bed process

2. PELLET COATING IN A WURSTER FLUIDIZED
BED PROCESS

As has been described, the pellet coating process can be re-
alized in a continuous fluidized bed spray granulator with
internal product classification as depicted in Fig. 1. Here,
the granulator consists of a granulation chamber, where
the particle population is fluidized through an air stream.
The solution V. is injected from the granulator bottom
in the middle of the Wurster coater, which separates the
inner high velocity zone from the outer low velocity zone.
Due to this separation the apparatus can be decomposed
into two functional zones

e the spraying zone, i.e. the inner high velocity zone,
where the solution is supplied to the particles,

e the drying zone, i.e. the outer low velocity zone, where
the particles are dried.

This configuration allows under certain operating condi-
tions the suppression of particle breakage and agglomera-
tion, which are highly undesired in a coating process [3].

For the modeling of the particulate phase the aforemen-
tioned decomposition can be reflected by introducing two
particle size distributions nq(L,t) and no(L,t) for the
spraying and the drying zone, where L € [0,00) is the
characteristic particle diameter and ¢ > 0 is the time.
The volumetric ratio between spraying and drying zone

10.3182/20130925-3-FR-4043.00082
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is represented by introducing a parameter «. The particle
growth in the spraying zone associated to the layering
process can been described using a surface-proportional
growth law [1].

B 2V, 21
B T [, L?n1dL T2

G (1)

Due to fluidization intense particle mixing occurs, which
results in particle transport between the two compart-
ments. The associated exchange rates from compartment
one to two N2 and from two to one ny; can be character-
ized by their residence time 7 and 75, which can in turn
be related to the relative size of the compartments.

. 1

N2 = —MN1 (2)
71

. 1

Nn21 = —N2 (3)
T2

The product particles are continuously removed through
an air sifter with countercurrent flow. Due to the particle
size specific sinking velocity large particles pass the air
sifter while small particles are reblown into the granulation
chamber. The associated non-ideal separation function T’
shown in Fig. 2 depends on the critical separation diameter
L1, which can be directly influenced by the air mass flow
rate.

L _(L'*L1)2
(L) = Jye = dr W
00 _(L—Lq)?
Jo e <F dL
|
1 I
i
0.8 [
~06
=
0.4
0.2
bl
L, 1 4

L/mm

Fig. 2. Non-ideal separation function 7" due to classifying
product removal

It is assumed that product particles are removed from
both compartments equally, where the drain is equal to
the inverse residence time 73

1

7'711’1:) = —T(L)nl (5)
73
1

7.7,2713 = fT(L)’I’LQ (6)
73

In order to allow a continuous operation nuclei of a
predefined size distribution are added. Here, it is assumed
that the nuclei size distribution is a normal distribution
with mean diameter L.

173

_ (L-Lg)?

nnuc(L) = o (L—Lg)? (7)
e e TR L

4001
350
300
250

< 200

K

150f i

100
50 |

oL 1 2 3 4 5
L/mm

Fig. 3. Nuclei size distribution 1n,,.(L)

The particle fluxes due to external nuclei hence are

hl,nuc — aKnnuc(L) (8)
hl,nuc = (1 - O‘)Knnuc(L) (9)
(10)

where K is the inlet rate. To describe the process, a pop-
ulation balance model for each particle size distribution
has been proposed recently in [2]. Fig. 4 illustrates the
coupling of the two population balance models.

8%1 8711
— =—-G—— —Nia+na1—Nip+n 11
ot oL 12 21 1,P 1,nuc ( )
8%2 . . . .
—= =012 — N21 — N2 P + N2 nuc (12)
ot
nuclei
I}]l.nuc nz,nuc
n(L,1) 7, n,(L,1)
spraying % 4_ drying
zone 7 ny, zone
_>
a,T - (1-a), 1,

product
removal

Fig. 4. Coupling of the population balances

For numerical simulation the model equations are semi-
discretized with the finite volume method (1st order up-
wind flux discretization) with 150 grid points. The model
parameters used are given in Table 1.

For a continuous process operation the particle size dis-
tributions nq(L,t) and ne(L,t) should be stabilized. This
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1 0.1s

T2 9.9s

73 1800s

o 0.01

15 0.5

Ve 201 mm’
a 0.05

Lo 0.3mm
K 60+

Table 1. Plant parameters

can be achieved using for example the critical separation
diameter L as a control handle. The main problems here
are the non-affinity of the control and the growth related
integral term in the population balance equation, which
results in a nonlinear partial integro-differential equation.
Both problems can be however solved applying discrep-
ancy based control design, which relies on the theory of
stability in the sense of Lyapunov with respect to two
generalized distance measures, the discrepancies.

3. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

Most of the control design methodologies for distributed
parameter systems presented in the literature rely on spe-
cial system properties, as for example boundary actuation,
linearity, solvability of the systems equation or at least
the desired error system, i.e. the system in closed loop
operation. Two popular representatives of them are for
example the backstepping approach (e.g. [9]), where the
control input is designed such that it maps the original
system onto a desired stable error system, or the approach
proposed in the works of Bastin et. al. (e.g. [10, 11]),
where stability is proven using the solution derived with
the method of characteristics.

For the presented system of population balance equations
and the population balance models studied in [4, 5, 8]
these approaches are obviously not well suited. However,
as has been shown in previous contributions [4, 5, 8] this
problem is solvable by introducing a generalized stabil-
ity notion, i.e. stability with respect to two generalized
distance measures, the discrepancies. In the following the
most important properties and facts on stability with
respect to two discrepancies are stated in accordance to
[14, 15, 16]. Here, the process ¢(.,t) is a solution of the
distributed parameter system and ¢y = 0 an equilibrium
of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional p = p[p (.,t),1]
with the following properties

(1) plp,t) > 0
(2) p(0,t) =

)
(3) for an arbltrary process ¢ = ©(.,t) the discrepancy
p(p(.,t),t) is continuous with respect to ¢.

) introducing a second discrepancy po(¢) with po(p) =
0 and pp(0) = 0. Than the discrepancy p(¢(.,t),t) is
continuous at time t = ¢y with respect to pg at pg = 0,
if for every € > 0 and ¢y > 0 there exists a §(g,tp) > 0,
such that from pg < d(e, tg) follows p < e.

(4

According to this definition a discrepancy has not all
properties of a metric, e.g. symmetry d(z,y) = d(y,z)
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or triangular inequality d(z,y) < d(z,z) + d(z,y). In
addition, it has not to satisfy the important property of
definiteness, i.e. a vanishing discrepancy p(¢,t) = 0 does
not automatically imply ¢ = 0.

Definition 2. Stability with respect to two discrepancies p
and po

The equilibrium ¢y = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies p and pg for all t > ¢
if for every £ > 0 and ¢y > 0 there exists a § = d(e,tg) > 0,
such that for every process ¢(.,t) with pg < d(e, to) follows
p < ¢ for all t > ty. If in addition lim;_, ., p = 0, than the
equilibrium ¢ is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies p and

Po-

In order to establish a relationship between stability with
respect to two discrepancies and the existence of a Lya-
punov functional V' the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy p

The functional V' =V [p, t] is called positive with respect
to the discrepancy p, if V> 0 and V' [0,¢] = 0 for all ¢
with p(p,t) < 0.

Definition 4. Positive definiteness with respect to a dis-
crepancy p

The functional V = V [, t] is positive definite with respect
to a discrepancy p, if V' > 0 and V' [0,¢] = 0 for all ¢ with
p(p,t) < oo und for every e > 0 there exists a § = d(e) > 0,
such that V > d(e) for all ¢ with p[p,t] > ¢

The following two theorems state the conditions for a func-
tion V guaranteeing (asymptotical) stability with respect
to two discrepancies.

Theorem 5. [15] The process ¢ with the equilibrium ¢g =
0 is stable with respect to the two discrepancies p and pg
if and only if there exists a functional V = V|, t] positive
definite with respect to the discrepancy p, continuous at
time t = ¢y with respect to pg at pp = 0 and not increasing
along the process ¢, i.e. V < 0.

Theorem 6. [15] The process ¢ with the equilibrium ¢y =
0 is asymptotically stable with respect to the two discrep-
ancies p and pg if and only if there exists a functional
V = Ve, t] positive definite with respect to the discrep-
ancy p, continuous at time ¢ = ¢y with respect to pg at
po = 0 and not increasing along the process ¢, i.e. V<o,
with tlggo V =0.

It has to be mentioned that stability with respect to two
discrepancies is necessary but in general not sufficient for
stability with respect to a L, norm or L., norm.

4. DISCREPANCY BASED CONTROL DESIGN
CONTROL DESIGN

In the following a stabilizing control is derived for the
pellet coating process in a fluidized bed (11) and (12). The
control input is the critical particle diameter L, which
can be adjusted directly via the air mass flow. In order to
derive a stabilizing controller the above presented stability
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concept is applied. Here, we choose the discrepancy p as

follows
1/ [® 2
P=53 (/ L3(nd—n)dL) .
0

where n = n1+ng and ng = ny,q+ns g is the desired steady
state particle size distribution. Obviously, the above re-
quirements on a discrepancy are met. In order to guarantee
continuity at time ¢ = ty at pg = 0 the second discrepancy
po is simply chosen as follows

(13)

po = p(t=0). (14)

The associated error is
e= / L3 (ng —n)dL. (15)

0

According to Theorem 6 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies p and pg. For this purpose
the following candidate Lyapunov functional is introduced

V;(/OOOLB(ndn)dL)Q.

In order to achieve stability in the sense described above
the control variable has to be chosen such that the time
derivative of V' along the system trajectories (11) and (12)
is negative definite for all times and vanishs only for V' = 0.
Calculating the time derivative V' yields

(16)

V= —e/ L? (—G%"Ll —np + nnu> dL  (17)
0

o on
_ 3 _ 2
= e/o L ( G8L+nnuc> dL

1 o
—e— LP*KT(L)ndL (18)
T3 0
with np = 11, p+n2,p and Npue = 71, nuc +72,nuc- In order
to achieve affinity in the control a virtual control ;¢ is
introduced.

(o)
Upirt = / LPKT(L)ndL (19)
0
Using this virtual control negative definiteness of the time
derivative of the candidate Lyapunov functional V' (18)
can be achieved choosing the following control law.

o on .
Uyirt = T3 |:C€ +/0 LS <G6L1 + nnM) dL:| (20)

For an application the virtual control wu.,;-+ has to be
transformed into the associated critical particle diameter
L1, which leads to the following zero-finding problem.

&'—r?

a2 dL’

ndL (21)
L

0= f(L1) = wpirt — /°° LgKf0 c

0 fooo ef(L*agl)z
In addition to stability with respected to the two discrep-

ancies p and pg, the control law (20) guarantees exponen-
tial convergence of V.

V=—c (/OOO L3(ng — n)dL)2 =2V (22)
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However, it has to mentioned that applying the discrep-
ancy based control law (20) guarantees stability with re-
spect to a L, or Lo, norm only if the zero dynamics asso-
ciated with the discrepancy p are stable with respect to a
L, or Ly norm, which is in accordance with [12, 13]. As a
rigorous stability analysis of the zero dynamics is difficult
an heuristic approach is to study the zero dynamics of the
linearized semi-discrete approximations.

The control law as depicted in Fig. 5 consists of nonlinear
compensation part, which needs a measurement of the
particle size distribution n; and ng (e.g. by two Parsum
inline probes), and a proportional error feedback.

Ya=HWsq e Uiy L Fhy
Discrepancy based ol =1 | Granulator B
Control gl = o

n(L,t)

Fig. 5. Control scheme

In order to test the control law the desired set point, i.e.
fooo L3ng4dL, has been increased by 20% at t = Oh and two
times decreased by 20% at t = 10h and t = 15h as depicted
in Fig. 6. As can be seen in Fig. 7 and 8 the discrepancy
based control succeeds in stabilizing the desired particle
size distributions n; and ny with reasonable control effort
(Fig. 9).

1.7

16

1.5

1.3

12

1'10 5 10 15 20

th

Fig. 6. Reference fooo L3n4dL (dotted black) and controlled
variable [~ L3ndL (solid gray)

x 10°

0 5 10 15 20
th

Fig. 7. Error in the particle size distribution e =
IS L? (na —n)dL
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L/mm

Fig. 8. Particle size distribution in the spraying zone n;
(top) and in the drying zone ny (bottom)

0.35

t’h

0 5 10 15 20
th

Fig. 9. Critical particle diameter L; (top) and virtual
control ;¢ (bottom)

5. CONCLUSION

In this contribution control of systems of population bal-
ances models has been studied using continuous pellet
coating in a fluidized bed as an example. It has been shown
that applying discrepancy based control stabilization and
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control of systems of population balances is possible. Fu-
ture work will be concerned with real plant experiments,
a thorough study of the zero dynamics associated with
the chosen discrepancy and an extension of the linear
robust control approaches proposed in [6, 7] to systems
of population balances.
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Abstract

System parameter estimation from measurements plays an important role in process
control and monitoring. For systems described by population balance models parameter
estimation is particularly challenging due to the infinite-dimensional state space. In
this contribution a Lyapunov-based approach is used to derive the appropriate online
parameter estimation laws for fluidized bed spray granulation.

Keywords — Parameter estimation, granulation

1 Overview

Granulation is an important class of production processes in food, chemical and phar-
maceutical industries. It is used to produce granules from liquid products, e.g. solutions
or suspensions. More and more frequently, granulation is combined with fluidized bed
technology. Here, a fluidized bed is formed from solid particles under appropriate con-
ditions, e.g. by passing a gas or liquid through the solid material. Important properties
of the fluidized bed are the fluid like behavior, an enlarged active surface caused by
increased bed porosity and good particle mixing. In addition, fluidization technology
allows a combination of different processes like drying, coating, mixing, granulation, ag-
glomeration, heating or pneumatic transport.

It is well known that continuous fluidized bed spray granulation depending on the pro-
cess configuration exhibit nonlinear limit cycles. These are connected to a loss of sta-
bility of the steady state for a certain range of parameters. Therefore, different control
approaches have been proposed recently for different process configurations being ca-
pable to achieve stability, reject disturbances and improve transient process behavior
[1] - [4]. As the proposed controllers all depend on plant parameters, which are hard to
determine in reality and may vary during plant operation, online parameter estimation is
a crucial task in order to guarantee closed loop stability. Hence, in this contribution the
problem of online parameter estimation for continuous fluidized bed spray granulation is
investigated. Focus is on processes with internal product classification.

2 Continuous fluidized bed spray granulation

The granulator consists of a granulation chamber, where the particle population is flu-
idized through an air stream with predefined pressure, temperature and humidity. Then
a liquid solution or suspension is injected, which settles on the particles. Due to the low
humidity and increased temperature the liquid fraction, i.e. the solvent or the external
phase, is evaporated. The remaining solid forms a new layer on the particle surface.
Besides the described layered growth in fluidized bed spray granulation operation in-
ternal nucleation due to drying of solution or suspension droplets takes place. Particle
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Figure 1: Process scheme

n prod

agglomeration and breakage are neglected.

In order to allow a continuous operation of the fluidized bed spray granulation, particles
are continuously removed through an air sifter with counter current flow, which sepa-
rates smaller from larger particles. The large particles, i.e. the product particles, pass
the air sifter while the small particles are reblown into the granulation chamber. The
process scheme is depicted in Fig. 1.

The associated particle growth has been described in [5]. In order to account for internal
formation of nuclei the growth rate has been modified in Vreman et. al. [6]. There, it
is assumed that only a certain part of the solid mass fraction injected with the liquid or
suspension ((1 — b)V,) contributes to the particle growth, while the rest (bV,) results in
new nuclei.

_ 200V 20DV 1)
7 fo° L?*ndL T2

Here, it is assumed that the size distribution of the formed nuclei is a normal distribution

with a mean diameter L,.

G

o e by

e € a? e

B = 1 (L—Lg)2 | nB(L) (@)
o L3 @ dL  ©"

The nucleation parameter b determines how much of the injected suspension results

in new particles. In Vreman et al. [6] an idealized piecewise linear relation for the

nucleation parameter b as a function of bed and nozzle height has been derived (see

Fig. 2). The main assumptions are:

e constant bed porosity ¢,

e the bed height 4 can be derived from the third moment of the particle size distribu-

tion, >
Tyt (3)
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e there exists a minimum of the nucleation parameter b.,, which is reached, when
the bed reaches the height of the nozzle

e for a minimum bed height of 0 it is assumed that 100 % of the injected suspension
forms new particles giving a nucleation parameter of b = 1

e between the two limiting situations » = 0 and h = h,,. b is interpolated linearly
resulting in the following expression

hnoz -

0.08
0.07'\
0.06-
2005

0.04

g '.‘“\“I hnoz 1
0.03 | b,

: | \ .
0'0220 430 440 450 460 470 480
h/mm

Figure 2: Dependence of the nucleation parameter b on the bed height 4 according to Vreman
et al. [6] with h,,,, = 440mm

Obviously, these assumptions are very restrictive. Therefore, in this contribution the
described relation will be omitted, instead the nucleation parameter b will be handled as
a free, slowly varying parameter.

The classifying product removal can be described by the sifting diameter L, an non-
ideal separation function 7'(L) and the drain K.

7<L/—§1>2 ,
Fiprod = K Jo'e (HI;ZL n=KT(L)n (5)
Joo L3e™ o= dL
To describe the process, a population balance model for the particle size distribution
has been proposed in Vreman et al. [6] consisting of the particle fluxes due to prod-
uct removal n,,.,c and nuclei formation B and particle growth associated with the size
independent growth rate G according to (1).

on on .
E = —GaiL — Nprod + B. (6)

3 Online parameter identification

So far it has been assumed that the rate of injected solid material V, is known. In an
industrial setting this is however not the case as here the solid fraction of the injected
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suspension or solution may vary. In addition, the nucleation parameter b is unknown and
may vary with process conditions. For convenience the unknown parameters V, and b
are replaced by two parameters k; and k, entering affine into the population balance

model (6). on

on 2
Identifying &, = (1 —b)V, and k, = bV, the unknown parameters V, and b can be derived
by

Vo = ki + ko, (8)
1

b = ——. 9

ol ®)

In order to derive adaptation algorithms for affine parameterized models two common
approaches (see [7] and references therein) are:

e parameter estimation using swapping,
e passivity-based parameter estimation.

In the first approach the input and output signals are filtered such that the dynamic esti-
mation problem is converted into a static estimation problem, which can then be solved
using standard gradient or least-squares identification algorithms. The passivity-based
parameter estimation procedure uses a modified plant model containing the estimates
of the uncertain plant parameters. In this contribution the second approach will be used
for online parameter identification. The modified plant model is

on 2 - 0On

_ kl

~ 1 R R
a L +k2an(L) —KT(L)TL—C(TL—TL) (10)

6
here ki, k, are the parameter estimates and 7 is the particle size distribution estimated

from the modified plant model. The parameter ¢ is an additional tuning parameter. The
associated estimation errors are defined as

e = n—mn, (11)
ifl = ]%1—]{1, (12)
ky = ko — ko. (13)

In order to derive the adaptation laws 121 and k, for the parameter estimates ke and ks
the following candidate Lyapunov functional is chosen

1 2 2 1 7.2
vf2A <M+2%k 2 (14)
where ~; and ~, are positive real constants. It is important to note that the Lyapunov
function V' vanishes for vanishing parameter estimation errors and under the condition
that the particle size distribution of the plant n and the model »n converge towards each
other in the L,-norm. Standard Lyapunov stability theory yields that stability can be
achieved guaranteeing that the first time derivative of the Lyapunov functional V' neg-

ative semidefinite along the trajectory of (10). Hence, the adaptation laws k; and k-



Proc. 5" Population Balance Modelling PBM2013
Conference 11-13 September 2013, Bangalore

should be chosen such that the time derivative of the Lyapunov functional V' is rendered
negative semidefinite along the trajectory of (10).

. o0 2 - ~ 1 1- = 1=
V= (& <—k’18n + kQTTLB(L) — KT(L)@ — C€) dL + 7]451]{1 + 7]€2k’2 (15)
0 Ty  OL 5T M V2

Choosing the adaptation laws 12:1 and 122 as

A 27, [ On
- —dL 1
ky W2/0 e (16)
I e
b= 1 /0 ens(L)dL (17)
gives for V
V= _C/ eQdL—/ KT(L)e*dL < 0. (18)
0 0
4 Results

For numerical simulation the model equations are discretized in space applying the finite
volume method (1st order upwind flux discretization) with 150 grid points. In a first step it
is assumed that the process is operated at steady state and that the steady state paricle
size distribution ny(L) can be directly measured using for example a Parsum probe. The
model parameters, adaptation gains and the initial parameter guesses l%l,o and 1%270 used
are given in Table 1.

Plant parameters
A 5 - 10mm?
Proz 440mm
€ 0.5
V. 1.67 - 105mm?
boo 0.028
Lo 0.3mm
Ly 0.7mm
K 1.92-107%2
Adaptation parameters
T 107
V2 10-°
c 1
k10 1-10°
ka0 1-10°

Table 1: Plant and adaptation parameters

As can be seen in Fig. 3 and 4 k; and k, and the associated estimates for V, and b
converge reasonably fast. The convergence rate for the parameters k; and k, can be
influenced by the adaptation gains v; and ~,.
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Figure 3: Convergence of k; and k (top left and right) convergence of f/e and b (dotted gray)
towards V. and b (solid black) (bottom left and right)
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5 Conclusion

In this contribution online parameter estimation of fluidized bed spray granulation has
been studied. It has been shown that the proposed adaptation laws allow a sufficiently
fast estimation of the unknown parameters. Future work will be concerned with robust-
ness with respect to measurement noise, real plant experiments and the application of
the proposed adaptation laws in a control scheme.
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