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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Regelung von Systemen mit verteilten Pa-
rametern. Im Gegensatz zu Systemen mit konzentrierten Parametern, deren Zustandsvek-
tor nur von der Zeit abhängt, handelt es sich hierbei um Systeme mit einem unendlich-
dimensionalen Zustandsraum, d.h. der Systemzustand ist eine Funktion der Zeit und
weiteren Variablen, z.B. Orts- oder Eigenschaftskoordinaten. Aus mathematischer Sicht
führt die Beschreibung von verteilt-parametrischen Systemen in der Regel auf partielle
Differentialgleichungen. Dies erschwert sowohl die Analyse als auch den Reglerentwurf.
In der Literatur wurden vor allem Methoden zur Regelung von linearen partiellen Differ-
entialgleichungen untersucht. Für die im Rahmen der vorliegenden Arbeit betrachteten
Anwendungen spielen jedoch insbesondere nichtlineare partielle Differentialgleichungen
eine große Rolle. Hier konnte die diskrepanzbasierte Regelung vielversprechende Ergeb-
nisse zeigen. Das Grundkonzept wurde in [42] vorgestellt und konnte dort erfolgreich
auf die Wirbelschichtsprühgranulation angewendet werden. Ergebnisse zur Kristallisa-
tion finden sich in [47]. Während der Habilitation wurden die Konzepte erweitert und auf
neue Anwendungsfelder übertragen.
Die Basis für den diskrepanzbasierten Regelungsansatz bildet eine weniger bekannte Sta-
bilitätstheorie, Stabilität bezüglich zweier Diskrepanzen, welche in den 60ern Jahren in der
ehemaligen UdSSR entwickelt wurde. Die Hauptidee ist hierbei, das Regelungsproblem
als Ein-Ausgangsproblem aufzufassen, wobei der Ausgang problemspezifisch gewählt wird.
Zur Illustration wird der Ansatz an drei Anwendungsproblemen verschiedenen Types und
variierender Komplexität untersucht. Es handelt sich hierbei um eine nichtlineare Vari-
ation der instabilen Wärmeleitungsgleichung, eine Krananlage mit elastischem Verhalten
und die Agglomeration. Die Modelle zu den genannten Prozessen werden in Kapitel 2
eingeführt.
Im Anschluss an die Kapitel zur Stabilität bezüglich zweier Diskrepanzen (Kapitel 3) und
der diskrepanzbasierten Regelung (Kapitel 4) werden in Kapitel 5 Erweiterungen in Rich-
tung adaptive und Sliding-Mode Regelung beschrieben. Das für die diskrepanzbasierte
Regelung zentrale Konzept der internen Dynamik bzw. Nulldynamik ist Gegenstand von
Kapitel 6.
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Chapter 1

Introduction

Distributed parameter systems are systems with an infinite-dimensional state space, i.e.
the system state is a function of time and additional variables, e.g. spatial or prop-
erty coordinates. This is in contrast to lumped parameter systems, which have a finite-
dimensional state space, i.e. the state is a vector depending on time only. Mathematically,
distributed parameter systems often lead to partial differential equations (PDEs), which
are challenging from an analysis and control point of view. Especially, the case of linear
hyperbolic and parabolic PDEs has received great attention. However, in the fields of ap-
plications considered in this thesis often nonlinear PDEs play an essential role. Here, the
discrepancy based control approach has been promising. The basic concepts of this ap-
proach have been presented in [42]. It has been applied to fluidized bed spray granulation
processes [42] and crystallization [47]. During the habilitation the concepts were extended
and applied to new fields of application. The foundation of the discrepancy based con-
trol approach is a less known stability theory, stability with respect to two discrepancies,
which has been developed in the 1960s in the former USSR [21, 22, 23]. The main idea
is to study the control problem in an input-output setting, where the output is appropri-
ately chosen to reflect the problem specifics. In the following, the control approach will
be examined for different application examples of varying types and complexity. The test
problems are:

1. Heat equation with quadratic nonlinearity. This problem is a challenging nonlinear
control problem. It is a straightforward extension of the classical heat equation, i.e.
a parabolic PDE, and has been proposed in [5, 6].

2. Control of a large crane structure exhibiting elastic behavior.

3. Agglomeration, a particulate process, which can be described using population bal-
ance equations [17, 18, 19].

It should be mentioned, that the given test problems are challenging for most infinite-
dimensional control approaches, which often require linearity, boundary or full domain
actuation or flatness. Among others, popular approaches for infinite-dimensional systems
are linear optimal control [35, 36, 37], linear infinite-dimensional port-Hamilton systems
[29, 30, 31] and infinite-dimensional backstepping and flatness-based control [32, 33, 34].
In chapter 2 the application examples and their models are introduced. Basic notions of
stability with respect to a generalized distance measure, the discrepancy, are summarized
in chapter 3.
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4 Introduction

Chapter 4 covers discrepancy based control, i.e. control based on the stability concept
stated in chapter 3. After general considerations, control of the application examples
introduced in chapter 2 is presented. In chapter 5 different extensions as adaptive dis-
crepancy based control and sliding mode control are illustrated. In addition, the important
problem of zero dynamics stability is studied.



Chapter 2

Selected examples of distributed

parameter systems

2.1 Heat-equation

Control design for the heat equation and its variations have been studied for some time,
e.g. [1], and still receive considerable attention in the recent literature, e.g. [3, 2, 4, 7,
12]. In the simplest one-dimensional case, it can be assumed that the heat conduction
coefficient is equal to one over the whole domain, resulting in the following PDE

∂w

∂t
=

∂2w

∂x2
+ f(w), (2.1)

where w(x, t) is the system state, t ≥ 0 is the time and x ∈ [0, 1] is the spatial coordi-
nate. f(w) is a spatially distributed heat source or sink, reflecting for example chemical
reactions. The dependence may for example be linear, i.e. f(w) = λw. Typical boundary
conditions are:

• constant temperature
w(0, t) = const. (2.2)

• constant heat flux
∂w(1, t)

∂x
= const. (2.3)

In [5, 6] a nonlinear variation of the given heat equation has been investigated, where the
source term f(w) depends quadratic on the system state w, i.e. f(w) = w2. Therefore, the
system is unstable. Furthermore, the state diverges to infinity in finite time and hence the
system is not globally stabilizable [5, 6]. Thus, stabilizing control design is a challenging
task. In [5, 6] the authors propose an infinite-dimensional backstepping design procedure
in combination with an approximation based on Volterra series. An alternative control
design procedure will be presented in section 4.1.
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6 Selected examples of distributed parameter systems

2.2 Elastic crane structures

During crane operation elastic oscillations may occur. This is in particular relevant
for large crane structures, as for example large gantry cranes or ship-to-shore container
bridges. Here, structural dynamic problems are often caused due to hoisting or trolley
motion. In the following, only the latter effect is investigated. The influence of trolley
motion increases with increasing crane size and reduced stiffness, e.g. due to lightweight
construction. As it directly interacts with the load positioning process and may result
in sickness of the crane operator, due to its low frequency behavior, different solution
approaches have been proposed in the literature:

• increasing structure stiffness by construction optimization [14],

• passive damping via counter weights [15],

• additional active dampers [15],

• extension of the trolley motion system [43, 44].

In general, the last approach is preferable, as no additional changes in the construction
nor additional actuators are required.
From a theoretical point of view, an elastic crane structure can be represented as depicted
in Fig. 2.1. The supporting crane structure is reflected as an elastic beam, whereas the
other parts are assumed to be rigid. In general a crane is supported by two columns.
Assuming that both are identical, only one column has to be explicitly included in the
model due to symmetry. Further, bending stiffness and mass density are assumed to
be constant along the column and rotary inertia, shear deformation and buckling are
neglected.

Figure 2.1: Gantry crane [43]

Additional assumptions to simplify the modeling are:

• hoisting and thus variations in the rope length is neglected,

• friction or external forces are neglected.
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For modeling the following vector of generalized coordinates is chosen.

q = [w(x, t) z(t) ϕ(t)]T (2.4)

The position of the girder rc, trolley rt and payload rp in terms of the generalized coor-
dinates then are:

rc =

[

w(L, t)
0

]

, (2.5)

rt =

[

w(L, t) + z(t)
0

]

, (2.6)

rp =

[

w(L, t) + z(t) + l sinϕ
−l cosϕ

]

. (2.7)

Based on the kinetic and potential energy, T (2.8) and U (2.9):

T =
1

2

∫ L

0

ρcẇ
2 dx+

1

2
mcẇ

2(L, t) +
1

2
mt(ẇ(L, t) + ż)2 + . . .

. . .+
1

2
mp

[

(ẇ(L, t) + ż + ϕ̇l cosϕ)2 + (ϕ̇l sinϕ)2
]

, (2.8)

U =
1

2

∫ L

0

EI(w′′)2dx−mpgl cosϕ, (2.9)

the equations of motion (2.10)-(2.14) can be derived applying Hamilton’s principle.

ρc
∂2w

∂t2
= −EI

∂4w

∂x4
− c

∂w

∂t
(2.10)

0 = w(0, t) =
∂w(0, t)

∂t
=

∂2w

∂t2
(L, t) (2.11)

0 = mΣẅ(L, t) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− EI

∂3w(L, t)

∂x3
(2.12)

0 = msẅ(L, t) +msz̈ +mplϕ̈ cosϕ−mplϕ̇
2 sinϕ− Ft + µż (2.13)

0 = lϕ̈+ ẅ(L, t) cosϕ+ z̈ cosϕ+ g sinϕ (2.14)

Here, the dynamics consist of a PDE describing the structural dynamics of the crane
support (2.10), its boundary conditions (2.11), two ODEs describing the trolley and load
motion (2.13) and (2.14) and a coupling equation (2.12), interconnecting the subsystems.
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2.3 Agglomeration

Agglomeration is a particle formation process, where new particles are formed from smaller
particles. The particle formation is due to the establishment of solid bridges between parti-
cles during collision events. The solid bridges are formed from liquid layers on the particle
surfaces, which are created due to added binder solution. The described micro process is
depicted in Fig. 2.2. A typical agglomeration process in a fluidized bed configuration is
shown in Fig. 2.3. Here, the particles are fluidized through a hot fluidization air stream
from below. The binder is added via a spray nozzle. To achieve a continuous process
operation, primary particles have to be supplied and agglomerates of a given minimum
size have to be removed constantly.

Particle Wetting

Particle
Coalescence Particle Drying

Figure 2.2: Three stages of agglomeration: (a) particle wetting, (b) particle coalescence
and (c) particle drying [52]

Binder

Particle
Feed

Particle
Withdrawal

Fluidization air

Figure 2.3: Continuous agglomeration process scheme [52]

The agglomeration process can be described applying population balance modeling [17].
Therefore, the particle volume distribution n(t, v) is introduced. A change in the number
of particles of a specific volume V is due to agglomeration ṅa(t, v), external feed ṅf (t, v)
or particle withdrawal ṅo(t, v).

∂n(t, v)

∂t
= ṅa(t, v) + ṅf(t, v)− ṅo(t, v) (2.15)
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For simplicity ideal mixing inside the process chamber has been assumed and hence spatial
gradients can be neglected. The aggregation term ṅa(t, v) consists of two terms: a birth
and a death term [16]. The birth term accounts for the combination of two or more smaller
particles forming a new particle of size v. The death term is a sink term, reflecting events
where particles of size v form new particles of greater volume.

ṅa(t, v) = B(t, v)−D(t, v) (2.16)

The birth rate B(t, v) for particles of volume v due to binary aggregation events is repre-
sented as follows

B(t, v) =
1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u)du, (2.17)

where β(t, u, v) is the coalescence kernel, describing the likelihood that two particles of
size u and v form a new particle of size v. The death rate D(t, v) is defined similarly.

D(t, v) =

∫

∞

0

β(t, v, u)n(t, v)n(t, u)du (2.18)

From a modeling point of view, the specific form of the coalescence kernel β(t, u, v) is
an open question. Although, a number of different options for different processes and
operating conditions have been proposed in the literature, uncertainty for a given process
is high. Selected coalescence kernels are stated in Tab. 2.1.

Name β(u, v)
Size-independent kernel 1
Sum kernel u+ v
Product kernel uv
Brownian kernel

(

u1/3 + v1/3
) (

u−1/3 + v−1/3
)

EKE kernel
(

u1/3 + v1/3
)2 √

u−1 + v−1

Gravitational kernel
(

u1/3 + v1/3
)2 | u1/6 − v1/6 |

Table 2.1: Selected coalescence kernels [52] and references therein

For the particle feed ṅf (t, v) it is assumed that the particle volume distribution of exter-
nally supplied particles is some constant normalized number density distribution q0,f(v),
which is scaled with the total number of added particles Nf(t).

ṅf(t, v) = Nf(t)q0,f(v) (2.19)

To model the particle outlet it is assumed that particles exceeding a specific volume vprod

are removed from the process. This can be achieved by an appropriately chosen separation
function T (v), where a cumulative Gaussian function is a typical candidate for a non-ideal
withdrawal.

T (v) =

∫ v

0

1√
2πσ2

exp
(s− vprod)

2

σ2
ds (2.20)

Here, σ defines the classification quality and vprod the separation volume. For a given
removal rate K(t) the number density of removed particles thus is

ṅo(t, v) = K(t)T (v)n(t, v). (2.21)
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Combining the equations for the particle fluxes (2.17), (2.18) (2.19), (2.21) and the pop-
ulation balance model (2.15) yields

∂n(t, v)

∂t
=

1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u)du−
∫

∞

0

β(t, v, u)n(t, v)n(t, u)du+ . . .

. . .+Nf(t)q0,f(v)−K(t)T (v)n(t, v). (2.22)



Chapter 3

Stability with respect to two

discrepancies

In the following, a general infinite-dimensional system, with a solution ϕ(., t) and an
equilibrium at zero ϕ0 = 0, is considered. Here, the . represents an arbitrary number
of spatial or property coordinates. The distance between the process ϕ(., t) and the
equilibrium ϕ0 is then measured using the discrepancy or measure ρ(ϕ(., t), t) defined as
follows [21, 22, 23].

Definition 1 Discrepancy [23]
A discrepancy is a real valued functional ρ = ρ(ϕ (., t) , t) with the following properties

1. ρ(ϕ, t) ≥ 0,

2. ρ(0, t) = 0,

3. for an arbitrary process ϕ = ϕ(., t) the real valued functional ρ(ϕ(., t), t) is continu-
ous with respect to t.

It should be mentioned, that a discrepancy lacks essential properties of a metric, as
symmetry, fulfillment of the triangular inequality and in particular definiteness, i.e. a
vanishing discrepancy ρ(ϕ, t) = 0 does in general not imply ϕ = 0. Therefore, the dis-
crepancy is a generalization of the classical distance measures used in infinite-dimensional
stability theory, e.g. Lp and L∞- norms.
To account for deviations of the initial state ϕ(., 0) from the equilibrium ϕ0, a second
time independent discrepancy ρ0 can be used. Here, both discrepancies ρ and ρ0 have to
satisfy a continuity condition at time t = t0, i.e. for every ε > 0 and t0 > 0 there exists a
δ(ε, t0) > 0, such that from ρ0 ⩽ δ(ε, t0) it follows that ρ < ε.

Definition 2 Stability with respect to two discrepancies ρ and ρ0 [23]
The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov with respect to the two discrep-
ancies ρ and ρ0 for all t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0
such that for every process ϕ(., t) with ρ0 < δ(ε, t0) it follows that ρ < ε for all t ≥ t0.
If in addition limt→∞ ρ = 0, than the equilibrium ϕ0 is called asymptotically stable in the
sense of Lyapunov with respect to the two discrepancies ρ and ρ0.

To introduce according Lyapunov functionals the additional notion of positive definiteness
with respect to a discrepancy is required.
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12 Stability with respect to two discrepancies

Definition 3 Positive definiteness with respect to a discrepancy ρ [23]
A functional V = V (ϕ, t) is positive definite with respect to a discrepancy ρ, if V ≥ 0 and
V (0, t) = 0 for all ϕ with ρ(ϕ, t) < ∞ and for every ε > 0 there exists a δ = δ(ε) > 0,
such that V ≥ δ(ε) for all ϕ with ρ (ϕ, t) ≥ ε.

Based on the above definitions, the following theorem provides the connection between
(asymptotic) stability with respect to two discrepancies and the existence of an according
Lyapunov functional V .

Theorem 1 Lyapunov functional [23] The process ϕ with the equilibrium ϕ0 = 0 is stable
with respect to the two discrepancies ρ and ρ0 if and only if there exists a functional
V = V (ϕ, t) positive definite with respect to the discrepancy ρ, continuous at time t = t0
with respect to ρ0 at ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0. The
process is asymptotically stable if in addition lim

t→∞

V = 0.

From a stabilization or rather control design point of view, appropriate choices for the
second discrepancy ρ0 and the Lyapunov functional V are often ρ0 = ρ(t0) and V = ρ.
This leaves the discrepancy ρ as the main degree of freedom.
In comparison with the conventional Lyapunov stability theory the main difference of
a discrepancy-based stability analysis is that the Lyapunov functional does not have to
be connected to any norm of the infinite-dimensional state. To illustrate this point the
classical stability problem of the heat equation is revisited.

∂w

∂t
=

∂2w

∂x2
(3.1)

w(0, t) = 0 (3.2)

w(1, t) = 0 (3.3)

To prove stability with respect to the L2-norm the following Lyapunov functional can be
chosen.

V =
1

2

∫ 1

0

w2(x, t)dx = ∥w∥22 (3.4)

Calculating the time derivative gives

V̇ = −
∫ 1

0

(

∂w

∂x

)2

dx. (3.5)

The time derivative V̇ is bounded and negative. However, since it depends on ∂w
∂x

con-
vergence of V towards zero is not obvious. Therefore, the Poincare inequality and the
boundary conditions can be used to derive an estimate of V̇ .

V̇ = −
∫ 1

0

(

∂w

∂x

)2

dx ≤ −1

4

∫ 1

0

w2dx ≤ −1

2
V (3.6)

This implies
V (t) ≤ e−

t

2V (0), (3.7)
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and additionally exponential stability with respect to the L2-norm.

∥w(t)∥2 ≤ e−
t

4∥w(0)∥2 (3.8)

As can be seen from this example, restriction to norm-based Lyapunov functionals limits
Lyapunov stability analysis to a certain class of problems. In contrast, a discrepancy-based
stability analysis can chose an arbitrary dependence of the Lyapunov functional on the
system state. This additional degree of freedom can be used to significantly simplify the
analysis. For example, the nonlinear variation of the heat equation presented in section
2.1 will be stabilized using a weighted mean temperature to construct an appropriate
discrepancy-based control-Lyapunov functional.
As has been stated in [49], stability with respect to two discrepancies implies stability
in terms of a Lp- or L∞-norm if and only if the associated internal or zero dynamics are
stable. A similar result has been derived in [11] in the context of high-gain stabilization
and funnel control. For general problems, as they occur in many practical applications,
stability of the infinite-dimensional internal dynamics cannot be shown easily. Here, linear
finite-dimensional approximations can often serve as a good approximation. In addition,
for some system classes with specific structural properties the stability of the infinite-
dimensional zero dynamics can been investigated rigorously, e.g. for port-Hamilton sys-
tems [8] and PDEs with a self-adjoint infinitesimal generator of a strongly continuous
semigroup [9, 10].
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Chapter 4

Discrepancy based control of

distributed parameter systems

Despite extensive research on infinite-dimensional control theory, it still does not resemble
a unified control theory, but rather a collection of different control approaches. These can
roughly be divided into three groups as depicted in Fig. 4.1

• Early lumping, i.e. due to discretization or other model reduction procedures, e.g.
method of moments, the infinite-dimensional design model is reduced to a finite-
dimensional model, which can then be used for a finite-dimensional control design.
The main problem here is guaranteeing stability and performance for the original
system.

• Late lumping, i.e. using infinite-dimensional control theory, an infinite-dimensional
controller is designed. For implementation reasons, this controller has then to be
reduced to a finite-dimensional system, resulting in a possible loss of stability and
performance guarantees.

• Direct control design, i.e. designing directly a finite-dimensional controller for the
infinite-dimensional plant model.

To face the problems with early lumping control, approaches based on linear finite-
dimensional robust control theory can be applied. Here, errors due to varying set-points,
discretization and model order reduction can be taken explicitly into account during the
control design stage.
Regarding direct or late lumping control, most approaches being developed over the last
decades rely on special system properties, e.g. boundary or full-domain actuation, lin-
earity, solvability of the system equations or at least the desired error system. Important
representatives are linear optimal control methods [1, 35, 36, 37] and infinite-dimensional
backstepping [2, 4, 32, 33, 34], where the first assumes linear system equations and the
latter requires in general boundary actuation.
To overcome these structural requirements, a possible approach is to state the control
design problem in the aforementioned generalized stability setting, i.e. stability with
respect to two discrepancies [21, 23]. Here, the choice of an appropriate discrepancy allows
to incorporate engineering expertise on the process or plant into the design procedure to
simplify the control design task.

15



16 Discrepancy based control of distributed parameter systems

Figure 4.1: Control of distributed parameter systems

As the focus is on control design, rather than on stability analysis, the second discrepancy
ρ0 will be in the following implicitly defined based on ρ(t) .

ρ0 = ρ(t = 0) = 0 (4.1)

This choice is straightforward and obviously assures continuity at time t = 0. The same
applies for the Lyapunov functional V , which will be chosen as V = ρ(t). The design
procedure will be further illustrated on the basis of the model systems described above.

4.1 Control of the heat equation

In the following, the stabilizing discrepancy based control law for the heat equation with
quadratic nonlinearity and boundary actuation as proposed in [46] will be presented. It is
assumed that the temperature at the left boundary, i.e. x = 0, is equal to zero, and that
the heat flux at the right boundary, i.e. x = 1, can be controlled. The model presented
in section 2.1 thus yields:

∂w

∂t
=

∂2w

∂x2
+ w2, (4.2)

w(0, t) = 0, (4.3)

∂w(1, t)

∂x
= u, (4.4)

where u is the control input. The desired steady state temperature distribution is assumed
to be zero, i.e. wd(x) = 0. Deviations from the desired steady state will be measured in
terms of an integral quantity or weighted average.

e =

∫ 1

0

k(x) (wd − w) dx (4.5)
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From a control point of view, it is clear that errors in a greater distance from the actuated
boundary at x = 1 are harder to control. Therefore, they should be stronger weighted,
which can be achieved by the following exponential function

k(x) = exp(−ax), (4.6)

where a > 0. Based on the error defined in eq. 4.5 an appropriate discrepancy ρ is given
as follows

ρ =
1

2

(∫ 1

0

k(x) (wd − w) dx

)2

. (4.7)

Then, due to Theorem 1, asymptotic stability with respect to the two discrepancies ρ
and ρ0 with ρ0 = ρ(t = 0) follows from the existence of an appropriate functional V . An
obvious choice is the following candidate Lyapunov functional.

V = ρ =
1

2
e2 =

1

2

(∫ 1

0

k(x) (wd − w) dx

)2

(4.8)

Thus, to achieve closed-loop stability in the sense of two discrepancies the control u has to
be chosen such that the time derivative of the candidate Lyapunov functional V becomes
negative definite along the systems trajectories for all times and vanishes only for V = 0.

V̇ = eė (4.9)

= −e

∫ 1

0

k

(

∂2w

∂x2
+ w2

)

dx (4.10)

= −e

[

k
∂w

∂x

∣

∣

∣

∣

1

0

−
∫ 1

0

dk

dx

∂w

∂x
− kw2dx

]

(4.11)

= −e

[

k(1)u− k(0)
∂w(0, t)

∂x
− dk(1)

dx
w(1, t) +

∫ 1

0

d2k

dx2
w + kw2dx

]

(4.12)

Here, the last equation (4.12) suggests the following control law to guarantee negative
definiteness of the time derivative of the candidate Lyapunov functional V .

u =
1

k(1)

[

k(0)
∂w(0, t)

∂x
+

dk(1)

dx
w(1, t) + ce−

∫ 1

0

(

d2k

dx2
+ kw

)

wdx

]

(4.13)

It should be mentioned, that by design the chosen control law (4.13) also guarantees
exponential convergence of V , where c defines the convergence speed and can hence be
used as a tuning parameter.

V̇ = −ce2 = −2cV (4.14)

The proposed control scheme is tested in terms of simulations for a = 2, c = 10. As an
initial condition a sinusoidal temperature profile with a peak value of 20, i.e. w(x, 0) =
20 sin(x) has been chosen, which is significantly higher than the maximum allowable peak
value of 8 in [5]. The closed-loop behavior for the state w(x, t) and the control u is
depicted in Fig. 4.2 (left) and (right), respectively.
As can be seen in Fig. 4.2 (left) the proposed control scheme is able to stabilize the
process. Here, convergence of w in the sense of the L2 and L∞-norm as depicted in Fig.
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Figure 4.2: Closed loop operation, state w(x, t) (left) and control u (right)

Figure 4.3: Convergence of the L2-norm in closed loop operation

Figure 4.4: Convergence of V in closed loop operation (left), pole/zero map of the linear
finite-dimensional approximation (right)

4.3 (left) and (right) respectively is achieved. In addition, the Lyapunov functional V by
design converges exponentially as shown in Fig. 4.4 (left).

For a rigorous proof of stability in the L2 or L∞-norm, stability of the zero dynamics in
the according norm has to be proven. This is challenging due to the nonlinear system
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behavior. However, as an approximation a high order finite-dimensional linear approxi-
mation can been investigated instead. In the present configuration, as can be seen from
the open loop pole/zero map in Fig. 4.4 (right), no zeros are present in the right half
plane. Therefore, the zero dynamics of the finite-dimensional linear approximation are
stable in the L2 and L∞-norm, due to equivalence of norms in finite-dimensions.

4.2 Control of an elastic crane

A typical problem for mechanical systems are weakly-damped oscillations, which need
either constructive changes or additional damping. In case of the elastic crane model
presented in section 2.2, two types of weakly-damped oscillation are present: load swaying
and structural oscillations. As will be shown in the following, both can be sufficiently
damped using a single actor, the trolley. The control task can be divided into four parts:

1. damping of oscillations in the crane structure,

2. damping of load oscillations,

3. trolley positioning,

4. load positioning.

In order to reflect all requirements the following discrepancy is chosen, where k1, . . . , k4
are weighting coefficients and ε is the trolley position error, i.e. ε = z − zd.

ρ =
1

2
(k1ẇ(L, t) + k2ż + k3ϕ̇l cosϕ+ k4ε)

2 (4.15)

From the proposed discrepancy (4.15) the following candidate control Lyapunov functional
results.

V =
1

2
(k1ẇ(L, t) + k2ż + k3ϕ̇l cosϕ+ k4ε)

2 (4.16)

Calculating the time derivative of the candidate Lyapunov functional V along the systems
trajectories to design a stabilizing control law results in:

V̇ = eė, (4.17)

= e
[

k1ẅ(L, t) + k2z̈ + k3ϕ̈l cosϕ− k3ϕ̇
2l sinϕ+ k4ε̇

]

, (4.18)

= e

[

(k1 − k2)ẅ(L, t) + b1lϕ̈ cosϕ− b1lϕ̇
2 sinϕ+ k4ε̇−

k2µ

ms

ż +
k2
ms

Ft

]

. (4.19)

Here, the system equations including the boundary conditions have been used. An ap-
propriate choice of the control law for the trolley drive moment τ = Ft/ktr is given by

τt =
ms

k2ktr
[−(k1 − k2)ẅ(L, t)− b1lϕ̈ cosϕ+ b1lϕ̇

2 sinϕ− k4ε̇+
k2µ

ms

ż − ce]. (4.20)

where c > 0 is a tuning factor to influence convergence speed. This control law results in
exponential convergence of the Lyapunov functional.

V̇ = −ce2 = −2cV (4.21)
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As can be seen in Fig. 4.5 and 4.6 the proposed control law is able to stabilize the whole
system. It achieves the desired trolley and load positions, and sufficiently damps structural
oscillations and load swaying. For reference the results applying a standard motion control
system, i.e. pure trolley position control, have been included. Here, undamped structural
oscillations and load swaying occur as expected (see Fig. 4.5 and 4.6). Consequential, the
L2-norm of the displacement w(x, t) depicted in Fig. 4.7 converges only for the proposed
discrepancy based control law.

Figure 4.5: Reference tracking for pure trolley position control (dotted black) and dis-
crepancy based control (black), reference position (gray). Trolley position z (top left),
displacement at x = L, w(L, t) (top right), moment τ (bottom left), load angle φ (bottom
right) [43].
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Figure 4.6: Time behavior of the displacement w(t, x) for pure trolley position control
(left) and discrepancy based control (right) [43]

Figure 4.7: L2-norm of the displacement w(x, t) for pure trolley position control (dotted
black) and discrepancy based control (black) [43]
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4.3 Control of an agglomeration process

As has been shown in previous contributions [47, 48, 49], discrepancies based on moments
of the particle size distributions are often an appropriate choice for particulate processes.
Thus, for the agglomeration process presented in section 2.3 the deviation in the total
number of particles and thus the difference between the desired and achieved zeroth
moment is chosen.

e = ∆µ0 =

∫

∞

0

(nd − n)dv (4.22)

Here, nd is the desired steady state particle volume distribution. The resulting discrepancy
and candidate control Lyapunov functional then are

V = ρ =
1

2
e2. (4.23)

To derive the associated discrepancy based control law, the first order time derivative of
the Lyapunov functional along the system trajectories is calculated.

V̇ = eė (4.24)

= −e

∫

∞

0

∂n

∂t
dv (4.25)

= −e

(∫

∞

0

ṅa + ṅf dv −K

∫

∞

0

Tndv

)

(4.26)

From a practical point of view, the withdrawal rate K can be relatively easy adjusted and
can hence be used as a control handle for the given configuration. To achieve exponential
convergence of the Lyapunov functional the control law for K is chosen as follows

K =
1

∫

∞

0
Tndv

(

−ce+

∫

∞

0

ṅa + ṅf dv

)

, (4.27)

where c ≥ 0 is a tuning factor determining the convergence rate. By design the proposed
control law achieves exponential convergence of the Lyapunov functional V .

V̇ = −2cV (4.28)

The responses for an initial deviation from a desired steady-state distribution nd applying
the proposed discrepancy based control law are shown in Fig. 4.8 and Fig. 4.9. Here,
Fig. 4.8 (left) depicts the convergence of the zeroth moment µ0 (dotted black) towards
its desired steady-state value (gray). The convergence of the first moment µ1 and the L2

of the overall deviation between the desired and real particle size distribution ∥n − nd∥2
are shown in Fig. 4.8 (right) and Fig. 4.9 (right), respectively. Although not a priori
guaranteed by design, the closed-loop system achieves convergence in terms of the L2-
norm. The associated control action, i.e. the withdrawal rate K, is shown in Fig. 4.9
(left).
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Figure 4.8: Closed-loop response of the zeroth and first moment of the particle size
distribution µ0 (left) and µ1 (right)

Figure 4.9: Closed-loop withdrawal rate K (left) and L2-norm of the error in the particle
size distribution ∥n− nd∥2
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Chapter 5

Extensions

So far the described discrepancy based control approach assumes a known plant model,
which perfectly fits the process at hand. For practical applications this is in general not
true. Plant parameters may be unknown or vary over time. Also, measurement noise and
unstructured uncertainties may have a considerable effect on the closed loop behavior.
Therefore, in practical control implementations robustness of stability and performance
in the presence of process uncertainties is an important feature.

From a control point of view, two options exist to further improve on the control inherent
robustness properties: adaptive and robust control. In adaptive control theory [38, 39] it
is assumed that certain process parameters are unknown or slowly varying over time. The
adaptive controller then adjusts during its operation to these parameters. Conversely, in
robust control theory [40, 41] one fixed controller is designed, which is able to cope with
a certain range of structured and unstructured uncertainties.

In the following, two well-known approaches, Lyapunov redesign and sliding mode control,
are applied to extend the proposed discrepancy based control schemes. The main steps
are illustrated using the agglomeration process described in section 2.3.

5.1 Adaptive discrepancy based agglomeration control

For the given agglomeration process the feed rate Nf is a typical parametric uncertainty,
which may vary over time. As can be seen from (4.27) the proposed discrepancy based
control law directly depends on the feed rate. Hence, a misfit in Nf will have a direct
impact on the control loop.

One option to compensate for this would be to augmented the control loop with a parame-
ter estimator for the feed rate and use its estimate in the control law. This, however, may
cause problems regarding overall process stability and has typically implications on the
required controller robustness. Here, Lyapunov redesign is an appealing alternative, as
it does not impose additional requirements and by design guarantees overall closed-loop
stability. Therefore, the original Lyapunov functional (4.23) is augmented with a term
reflecting the estimation error Ñf = N̂f −Nf, where Nf is the true but unknown feed rate,
N̂f its estimate and γ a positive constant.

V =
1

2
e2 +

1

2γ
Ñ2

f (5.1)

25



26 Extensions

Calculating the time derivative of the augmented Lyapunov functional under the assump-
tion that the true feed rate Nf is constant, yields

V̇ = eė+
1

γ
Ñf

˙̂
Nf, (5.2)

= −e

(∫

∞

0

ṅa +Nf q0,f dv −K

∫

∞

0

Tndv

)

+
1

γ
Ñf

˙̂
Nf. (5.3)

As the feed rate Nf in the proposed discrepancy based control law (4.27) is unknown it is
substituted with its estimate N̂f, resulting in the certainty equivalence control law.

K =
1

∫

∞

0
Tndv

(

−ce+

∫

∞

0

ṅa + N̂f q0,f dv

)

(5.4)

The certainty equivalence control law can then be inserted into the above equation for
the time derivative of the Lyapunov functional (5.3) resulting in:

V̇ = −ce2 + Ñf

(

e+
1

γ
˙̂
Nf

)

. (5.5)

Here, the error in the feed rate estimate results in an additional term of indefinite sign
Ñf e, which may result in a loss of stability. To compensate for this problem the parameter

update law
˙̂
Nf has to be chosen appropriately

˙̂
Nf = −γe, (5.6)

where the constant γ can be seen as a tuning factor to influence rate of change of the
parameter estimate. From a practical point of view, a higher value will result in faster
adaptations, while increasing sensitivity to disturbances, e.g. measurement noise. As for
the non-adaptive discrepancy based control, the proposed certainty equivalence law (5.4)
in combination with the parameter update law (5.6), results in exponential convergence
of the Lyapunov functional.

V̇ = −ce2 (5.7)

In the following, an initial parametric uncertainty in the feed rate Nf of 50% will be
assumed. As can be seen in Fig. 5.1 (left) after an initial deviation the zeroth moment
is controlled to its set-point value. As this different feed rate results in a change of the
steady-state particle size distribution, the first moment settles to a new value as shown
in Fig. 5.1 (right). The applied withdrawal rate K and estimate for the feed rate N̂f are
shown in Fig. 5.2 (left) and (right), respectively. It should be mentioned, that in general
accordingly designed update laws (5.6) do not guarantee convergence of the parameter
estimate to the true unknown value. However, for the given configuration convergence
can be proven using LaSalle’s invariance principle [52].
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Figure 5.1: Closed-loop response of the zeroth moment µ0 (left dotted black), its desired
value µ0,d (left gray) and the first moment µ1 (right) of the particle size distribution

Figure 5.2: Closed-loop withdrawal rate K (left), unknown feed rate Nf (right gray) and
its estimate N̂f (right dotted black)
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5.2 Sliding-mode control

Sliding-mode control is well known for its robustness with respect to matched uncertain-
ties. This is in particular due to its switching control law, which allows to dominate
over bounded uncertainties occurring in the design equation. In the following, it will be
assumed that the withdrawal rate K is positive and limited from above

K ∈ [0, Kmax], (5.8)

where Kmax is a certain maximum withdrawal rate. In addition, as agglomeration pre-
serves volume and the feed rate is always positive the following inequality holds.

∫

∞

0

ṅa + ṅf dv ≥ 0 (5.9)

To design an appropriate discrepancy based sliding mode controller, the same candidate
control Lyapunov functional (4.23) as above will be used. Its time derivative along the
system trajectory then yields:

V̇ = −e

(∫

∞

0

ṅa + ṅf dv −K

∫

∞

0

Tndv

)

. (5.10)

To achieve V̇ ≤ 0 two cases for the error e have to be studied. If e > 0 then due to
inequality (5.9) the withdrawal rate K should be equal to zero, resulting in

V̇ = −e

(∫

∞

0

ṅa + ṅf dv

)

≤ 0. (5.11)

If e < 0 then the withdrawal rate K should be equal to its maximum value Kmax. Under
the assumption that the maximum withdrawal rate and the volume of the product fraction
are sufficiently large, such that

∫

∞

0

ṅa + ṅf dv ≤ Kmax

∫

∞

0

Tndv, (5.12)

holds, this choice yields

V̇ = −e

(∫

∞

0

ṅa + ṅf dv −Kmax

∫

∞

0

Tndv

)

≤ 0. (5.13)

The resulting sliding mode control law hence is

K =

{

0 if e ≥ 0,

Kmax if e < 0.
(5.14)

As it achieves the required negative definiteness of the time derivative of the Lyapunov
functional, i.e. V̇ ≤ 0, the proposed controller stabilizes the process with respect to
the chosen discrepancy. A major advantage of the proposed discrepancy based sliding
mode control law, is its robustness to matched uncertainties, i.e. uncertainties occurring
in (5.13). Here, negative definiteness is guaranteed for arbitrary uncertainties in the
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agglomeration term ṅa, the feed ṅf or the separation function T as long as inequality
(5.12) holds.
To compare the proposed discrepancy based sliding mode controller with the adaptive
discrepancy based controller proposed in section 5.1 a 50% disturbance in the feed rate
and initial state deviation is assumed. As depicted in Fig. 5.3 (left) both controllers
achieve convergences of the zeroth moment µ0 and the first moment µ1 (Fig. 5.3 right).
The sliding mode controller however has a better performance.

Figure 5.3: Convergence of the zeroth moment µ0 (left) and first moment µ1 (right) ap-
plying adaptive discrepancy based control (dotted gray) and sliding mode control (dotted
black)
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Chapter 6

Zero dynamics and control induced

instabilities

For linear finite-dimensional systems it is well-known that open-loop zeros in the complex
right half-plane pose bounds on the maximum open-loop gain. This is due to the fact, that
they serve as attractors for closed-loop poles for increasing gains. In the case of nonlinear
systems the situation is comparable although the analysis is less obvious [24]. Here,
part of the system dynamics can be rendered unobservable, when applying a nonlinear
compensating control law. This can be easily seen for the following affine nonlinear single-
input single-output system of order n.

ẋ = f(x) + g(x)u (6.1)

y = h(x) (6.2)

Based on the output y and its derivatives two new state vectors ξ and η can be introduced

ξ = [y, . . . , y(r−1)]T , (6.3)

η = [y(r), . . . , y(n−1)]T , (6.4)

where r, the relative degree, is the first index for which the Lie derivative LgL
r−1
f h(x) does

not vanish, i.e. LgL
r−1
f h(x) ̸= 0 and LgL

k−1
f h(x) = 0 for k < r. The system (6.1)-(6.2)

can then be represented as follows:

ξ̇ =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0















ξ +











0
0
...
1











(Lr
fh(x) + LgL

r−1
f h(x)u), (6.5)

η̇ = l(ξ, η). (6.6)

In this representation, the first part can be linearized using the following compensating
control law

u = −(LgL
r−1
f h(x))−1(Lr

fh(x) + v(ξ), (6.7)

where an appropriate choice of v(ξ) guarantees stability of (6.5). In contrast, the second
subsystem associated with the states η, called the internal dynamics or zero dynamics for
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y = 0, is rendered unobservable from the output y by the control law (6.7). Furthermore,
as stability of the internal dynamics is not guaranteed, it has to be checked to achieve
stability of the whole system.
From linear control theory, it is well-known that plant transmission zeros are invariant
with respect to feedback. Thus, unstable internal dynamics pose important restrictions
on control. To overcome this problem the application of parallel compensation has been
proposed in [42, 49, 54, 55, 56].
The described occurrence of the internal dynamics and the associated stability problems,
may not be as obvious in practical applications and cause serious and surprising problems.
To illustrate this problem, an important configuration of a continuous fluidized bed spray
granulation process is studied. Here, applying a particle sieving, only particles in the
desired size range are removed from the process. Small particles ṅfine are fed back to
the process chamber directly. Large particles ṅoversize are milled to smaller sizes before
being fed to the process chamber. To achieve a constant bed mass this configuration is in
general operated using a bed mass controller. The process scheme is shown in Fig. 6.1.

Figure 6.1: Continuous fluidized bed spray granulation process

As has been observed in practice and in the research literature, e.g. [20, 45], this con-
figuration tends to a loss of stability for certain operating conditions. The instability is
connected to the occurrence of a stable limit cycle and self-sustained oscillations of the
particle size distribution. Results of a one-parameter bifurcation diagram are shown in
Fig. 6.2 (right). The instability occurs for a milling diameters less then 0.72mm.
Interestingly, as has been shown in [50], the open-loop system, i.e. the granulation without
a mass controller, is stable over a certain range of operating conditions. This can be seen
from the one-parameter bifurcation in Fig. 6.2 (left) and the maximum real part of the
open-loop system poles depicted in Fig. 6.3 (left) or the variation of the dominant pole
pair shown in Fig. 6.3 (right).
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The reason for the observed loss of stability in closed-loop operation lies in the loss of
stability of the zero dynamics. This can also be seen from the occurrence of zeros in the
complex right half-plane depicted in Fig. 6.3 (right). As shown in Fig. 6.3 (left) the
maximum real part of the open-loop zeros crosses zero and remains positive for milling
grades smaller than 0.72mm.

Figure 6.2: One-parameter bifurcation of the granulation process without (left) and with
bed mass controller (right). µ2 of the steady-state particle size distribution - stable (solid
black), unstable (dashed black). (o) maximum and minimum value of the occurring limit
cycle.

Figure 6.3: Maximum real part of the open-loop poles (solid black) and zeros (dashed
black) (left). Location of the dominant pole and zero pair for increasing mill grade (right).

Therefore, for small mill grades and sufficiently high gains in the mass controllers, ig-
noring the internal dynamics will result in a destabilization of the internal dynamics.
Interestingly, these instabilities may be unobservable from the controlled variable (Fig.
6.4 (left)), as the action of the mass controller leads to their compensation. Instead they
can be observed in the control actuation itself (Fig. 6.4 (right)).
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Figure 6.4: Step response for a mass controller at mill grade µM = 0.7mm, desired mass
md (dotted black), mass in the process chamber (solid black) (left) actuated variable, i.e
withdrawal rate K (right)
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Control approaches of infinite-dimensional systems can be roughly divided into early and
late lumping and direct design approaches. Here, early lumping approaches are based on a
finite-dimensional system approximation in combination with a finite-dimensional control
design. In own contributions early lumping has been investigated to control elastic crane
structures [4, 15] and particulate processes, granulation [8] and crystallization [17]. The
focus has been however on late lumping and direct control design approaches. Here, with
except for the entropy-based control of a particular configuration of a granulation pro-
cess [18], discrepancy-based control and its extensions have been investigated for various
applications:

• unstable heat equation with quadratic nonlinearity [19],

• elastic crane structures [9],

• pellet coating [21],

• agglomeration [1],

• granulation [6, 3, 10, 12],

• crystallization [7, 16].

The proposed adaptive discrepancy-based control is especially promising for particulate
processes, where the determination of process parameters and kinetics is challenging. As
here parameter convergence cannot be assumed in general, additional estimation schemes
based on optimization [5] and Lyapunov stability theory [11, 14, 20, 22] have been pro-
posed.
Stability of the internal dynamics is a crucial property for discrepancy-based control ap-
proaches and should be ideally taken into account with an appropriate choice of the
discrepancy. Otherwise, they can result in control induced stability problems [2], which
are often hard to detect and analyze. A complementary approach to the choice of the
discrepancy is the design of a parallel compensator, which stabilizes the internal dynam-
ics. In the past, design methods have been limited to linear systems. The first promising
results on a nonlinear parallel compensator design for a finite-dimensional system has
been proposed in [13].
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Nonlinear Control of Continuous

Fluidized Bed Spray Agglomeration
Processes

Eric Otto, Stefan Palis, and Achim Kienle

Abstract Fluidized bed spray agglomeration is a complex particle formation

process widely used in the agricultural, food, and pharmaceutical industry. It can

described mathematically by population balance equations. This chapter deals with

controlling the nonlinear partial integro-differential equation. Therefore, discrep-

ancy based control, which guarantees exponential stability with respect to some

generalized distance measure, is introduced. Conditions for convergence in a norm

are discussed. Furthermore, robustness with respect to model uncertainties is shown.

1 Introduction

Fluidized bed spray agglomeration (FBSA) is an industrial particle formation

process with the goal of producing particles with predefined properties. Hereby,

two or more so-called primary particles are combined to form a new particle with

different properties. For this purpose, a particle bed is fluidized within an upward

air stream while a binder solution is sprayed into the process chamber wetting

the particles. Due to particle collision and drying of the liquid layer, solid bridges

between particles are formed. This process is depicted schematically in Fig. 1.

Important examples of products in particulate form are fertilizers in the agricul-

tural industry, milk powder in the food industry, or medicals in the pharmaceutical

E. Otto

Otto von Guericke University Magdeburg, Magdeburg, Germany

e-mail: eric.otto@ovgu.de

S. Palis (�)

Otto von Guericke University Magdeburg, Magdeburg, Germany

National Research University “Moscow Power Engineering Institute”, Moscow, Russia

e-mail: stefan.palis@ovgu.de

A. Kienle

Otto von Guericke University Magdeburg, Max Planck Institute for Dynamics of Complex

Technical Systems Magdeburg, Magdeburg, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

G. Sklyar, A. Zuyev (eds.), Stabilization of Distributed Parameter Systems:

Design Methods and Applications, SEMA SIMAI Springer Series 2,

https://doi.org/10.1007/978-3-030-61742-4_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61742-4_5&domain=pdf
mailto:eric.otto@ovgu.de
mailto:stefan.palis@ovgu.de
https://doi.org/10.1007/978-3-030-61742-4_5


74 E. Otto et al.

Particle Wetting

Particle
Coalescence Particle Drying

Fig. 1 Three stages of agglomeration: (a) particle wetting, (b) particle coalescence, and (c) particle

drying

industry [1]. Particle properties such as size and shape, porosity, and flowability

determine the quality of the product and its suitability in the subsequent processing.

Model-based process control is one way to achieve a constant production rate on

the one hand and the desired product quality on the other hand. Two factors are

currently limiting the effective use of process control. Firstly appropriate process

models capturing the important dynamics are hardly available and secondly deriving

stabilizing controllers is a major challenge due to the complexity of the nonlinear

infinite dimensional system description. In this contribution discrepancy based

control [9, 10, 12] is used to design a stable closed-loop system for a simple process

model. Here, stability with respect to a generalized distance measure is considered.

Furthermore, conditions for stability with respect to a norm are discussed.

2 Process Modeling

The technical realization of the FBSA process is depicted schematically in Fig. 2. In

continuous operation mode, new primary particles as well as binder solution are fed

constantly while particles exceeding a predefined size are withdrawn. Advantages

of this mode of operation are higher throughputs compared to batch agglomeration.

The standard approach for mathematical modeling of FBSA is using a population

balance equation (PBE) balancing the number density distribution (NDD) n(t, x)

depending on time t ∈ R≥0 and some internal or external coordinates x ∈ Rn.

The external coordinates are usually the spatial coordinates describing the position

in three-dimensional space. However, under the assumption of ideal mixing of

the particle population in the fluidized bed, the spatial distribution of particles

can be lumped. Typical candidates for internal coordinates are particle properties

such as particle size, porosity, or shape. A standard simplifying assumption for the

modeling of agglomeration processes [5] is that particles are spherical, therefore
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Fig. 2 Process scheme

Binder

Particle
Feed

Particle
Withdrawal

Fluidization air

their shape can be neglected. Additionally, further particle properties except for the

characteristic volume v ∈ R≥0 are neglected, i.e. x = v. The population balance

equation is thus given as

∂n(t, v)

∂t
= ṅa(t, v) + ṅf(t, v) − ṅo(t, v) (1)

with the aggregation term ṅa describing the formation of new particles, the feed term

ṅf describing the particles added to the process, and the output term ṅo describing

the withdrawn particles. In the following the terms are described in detail.

The aggregation term was originally derived by Hulburt and Katz [5] and consists

of a birth and a death term

ṅa(t, v) = B(t, v) − D(t, v). (2)

The agglomeration rate

r = β(t, u, v − u)n(t, u)n(t, v − u) (3)

with the agglomeration kernel β(t, u, v) describes the number of agglomeration

events per unit of time. Usually β(t, u, v) is divided into a size-independent

part β0(t) called the agglomeration efficiency and a size-dependent part β(u, v)

called the coalescence kernel. An agglomeration event is defined as collision and

coalescence of two particles with volume u and v − u, forming a new particle of

volume v. The agglomeration kernel can be interpreted as the frequency of particles

aggregating per unit of time depending on the coordinate v. In the literature a

variety of both empirical and analytical coalescence kernels have been proposed.

A selection can be found in Table 1. As has been investigated in Bück et. al. [2],
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Table 1 Selected

coalescence kernels
Name β(u, v)

Size-independent kernel 1

Sum kernel u + v

Product kernel uv

Brownian kernel
(

u1/3 + v1/3
) (

u−1/3 + v−1/3
)

EKE kernel
(

u1/3 + v1/3
)2 √

u−1 + v−1

Gravitational kernel
(

u1/3 + v1/3
)2 | u1/6 − v1/6 |

the agglomeration kernel can have a significant influence on the qualitative process

behavior. A selection of suitable kernels has been evaluated and identified for a

laboratory scale continuous fluidized bed spray agglomeration in Golovin et. al.

[3, 4].

In order to obtain the birth rate of particles with volume v, Eq. (3) is integrated

over the interval [0, v]:

B(t, v) = 1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u) du . (4)

The death rate is defined analogously as

D(t, v) =
∫ ∞

0

β(t, v, u)n(t, v)n(t, u) du . (5)

Finally, the agglomeration term is given as

ṅa(t, v) = 1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u) du −
∫ ∞

0

β(t, v, u)n(t, v)n(t, u) du .

(6)

The particle feed is modeled as the product of the normalized number density

distribution q0,f(v) and the total number Nf(t) of added particles:

ṅf(t, v) = Nf(t)q0,f(v). (7)

For the particle outlet it is assumed that particles exceeding a specific volume vprod

are removed from the process. Therefore, the separation function T (v) is introduced.

Since the separation is not ideal, T (v) is modeled as a cumulative Gaussian function

T (v) =
∫ v

0

1√
2πσ 2

exp

{

(s − vprod)
2)

σ 2

}

ds , (8)

where σ is a measure of the classification quality. The number density of removed

particles is then defined as follows:

ṅo(t, v) = K(t)T (v)n(t, v) (9)
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with removal rate K(t). Inserting Eqs. (6), (7), and (9) in Eq. (1) yields the final

process model:

∂n(t, v)

∂t
=1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u) du −
∫ ∞

0

β(t, v, u)n(t, v)n(t, u) du

+ Nf(t)q0,f(v) − K(t)T (v)n(t, v).

(10)

For general kernels β(t, u, v) this PDE cannot be solved analytically. Thus,

numerical solution techniques have to be used. In this contribution the cell-average

method developed by Kumar et al. [6] is utilized for process simulation.

3 Control of Fluidized Bed Spray Agglomeration

This section is concerned with the derivation of stabilizing controllers for the

FBSA. Therefore, the method of discrepancy based control is introduced in the

first subsection and applied to the process in the following subsection. Furthermore,

simulation studies are given and practical problems such as robustness with respect

to parametric uncertainties are discussed.

3.1 Introduction to Discrepancy Based Control

A discrepancy ρ(ϕ(., t), t) is a generalized distance measure. It measures the

distance between the process state ϕ(., t), i.e. a solution of the distributed parameter

system, and the equilibrium ϕ0. Here, it is of great importance that not all properties

of a metric or norm have to be fulfilled. In the following, the main properties

and facts on stability with respect to two discrepancies are stated in accordance

to [7, 8, 13, 14].

Definition 1 Discrepancy A discrepancy is a real valued functional ρ = ρ

[ϕ (., t) , t] with the following properties

1. ρ(ϕ, t) ≥ 0.

2. ρ(0, t) = 0.

3. for an arbitrary process ϕ = ϕ(., t) the real valued functional ρ(ϕ(., t), t) is

continuous with respect to t .

In the context of stability with respect to two discrepancies besides the discrep-

ancy ρ(ϕ(., t, t)), measuring the distance between ϕ(., t) and the equilibrium ϕ0, a

second time independent discrepancy ρ0 is used. It describes the distance between

the initial state ϕ(., 0) and the equilibrium ϕ0. The two discrepancies ρ and ρ0

have to satisfy, that ρ(ϕ(., t), t) is continuous at time t = t0 with respect to ρ0
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at ρ0 = 0, i.e. for every ε > 0 and t0 > 0 there exists a δ(ε, t0) > 0, such that from

ρ0 � δ(ε, t0) it follows that ρ < ε.

Definition 2 Stability with respect to two discrepancies ρ and ρ0

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov with respect to the

two discrepancies ρ and ρ0 for all t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists a

δ = δ(ε, t0) > 0 such that for every process ϕ(., t) with ρ0 < δ(ε, t0) it follows that

ρ < ε for all t ≥ t0. If in addition limt→∞ ρ = 0, then the equilibrium ϕ0 is called

asymptotically stable in the sense of Lyapunov with respect to the two discrepancies

ρ and ρ0.

Based on the stated stability concept, i.e. stability with respect to two discrepan-

cies, an according Lyapunov functional V can be introduced.

Definition 3 Positivity with respect to a discrepancy ρ.

The functional V = V [ϕ, t] is called positive with respect to the discrepancy ρ,

if V ≥ 0 and V [0, t] = 0 for all ϕ with ρ(ϕ, t) < ∞.

Definition 4 Positive definiteness with respect to a discrepancy ρ.

The functional V = V [ϕ, t] is positive definite with respect to a discrepancy ρ,

if V ≥ 0 and V [0, t] = 0 for all ϕ with ρ(ϕ, t) < ∞ and for every ε > 0 there

exists a δ = δ(ε) > 0, such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.

The following two theorems state the conditions for a function V guaranteeing

(asymptotic) stability with respect to two discrepancies.

Theorem 1 ([14]) The process ϕ with the equilibrium ϕ0 = 0 is stable with respect

to the two discrepancies ρ and ρ0 if and only if there exists a functional V = V [ϕ, t]
positive definite with respect to the discrepancy ρ, continuous at time t = t0 with

respect to ρ0 at ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0.

Theorem 2 ([14]) The process ϕ with the equilibrium ϕ0 = 0 is asymptotically

stable with respect to the two discrepancies ρ and ρ0 if and only if there exists

a functional V = V [ϕ, t] positive definite with respect to the discrepancy ρ,

continuous at time t = t0 with respect to ρ0 at ρ0 = 0 and not increasing along

the process ϕ, i.e. V̇ ≤ 0, with lim
t→∞

V = 0.

As has been discussed in Palis and Kienle [12], stability with respect to two

discrepancies can be interpreted as special output stability, where the discrepancy

defines a virtual system output. Therefore, given a system, which is stable with

respect to two discrepancies, stability of the full system state in terms of a norm is

guaranteed if the zero dynamics are stable.
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3.2 Application to Fluidized Bed Spray Agglomeration

In this section the discrepancy based control introduced above is applied to FBSA.

Therefore, appropriate discrepancies have to be found. For a continuous granulation

process, Palis and Kienle [10–12] showed, that the differences between desired and

actual moments of the size distribution

∆µi(t) =
∫ ∞

0

vi (nd(v) − n(t, v)) dv , (11)

where Nd(v) is the desired NDD, are a suitable choice. Here, the zeroth and the

first moment represent the total particle number and the total particle volume,

respectively. In this contribution the zeroth moment is chosen as control variable

since it can be interpreted physically and its impact on the agglomeration term ṅa

is of greater significance. In the following, two discrepancy based controllers are

derived and evaluated. The first controller is a continuous controller guaranteeing

exponential convergence of the control error. The second controller is a discrepancy

based sliding mode controller. Both approaches are then compared.

3.2.1 Discrepancy Based Control

For the control of the zeroth moment, the control error is given as

e = ∆µ0 =
∫ ∞

0

(nd − n)dv, (12)

where nd is the desired steady state. The according discrepancy and Lyapunov

functional can hence be chosen as

ρ = 1

2
e2, (13)

V = 1

2
e2. (14)

Obviously, the error, the discrepancy, and the Lyapunov functional vanish not only

at the desired steady state distribution but for all distributions with an equal zeroth

moment. In order to derive a discrepancy based control law, the first order time

derivative of the Lyapunov functional along the system trajectories is calculated

V̇ = eė = −e

∫ ∞

0

∂n

∂t
dv = −e

(∫ ∞

0

ṅa + nf dv − K

∫ ∞

0

T n dv

)

. (15)
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Here, the withdrawal rate K is the control handle. In order to achieve exponential

convergence of the Lyapunof functional, K is chosen as

K = 1
∫ ∞

0 T n dv

(

−ce +
∫ ∞

0

ṅa + nf dv

)

, (16)

where c is a positive constant determining the convergence rate. This gives

V̇ = −2cV . (17)

Applying the control law therefore exponentially stabilizes the agglomeration

process with respect to the introduced discrepancy, i.e. the zeroth moment converges

exponentially to the desired value. If the zero dynamics of the system are asymp-

totically stable in terms of a norm, stability of the distribution in terms of the same

norm follows. Since a full analysis of the zero dynamics is usually not feasible for

this type of PDE, a local stability analysis, i.e. using the linearization around the

desired steady state of the discretized system, has been conducted showing that the

associated transfer function does not possess zeros in the right half-plane. Thus, the

zero dynamics are at least locally stable.

Furthermore, it should be mentioned that the denominator in Eq. (16) can vanish

for some distributions leading to an undefined control law or take values close to

zero leading to high controller gains. Due to the latter, K has to be bounded in

practical applications.

To verify the designed control laws, the system was simulated numerically using

the process parameters from Table 2. As agglomeration kernel the Brownian kernel

was used. In Figs. 3 and 4 simulation results comparing open-loop and closed-loop

operation are presented. It is shown that the moments as well as the L2-norm of

(nd−n) converge in both cases. While the zeroth moment and the L2-norm converge

faster in closed-loop operation the total particle volume µ1 does not. To achieve

better performance with respect to this measure, a two-dimensional controller using

the feed rate as another manipulated variable could be derived.

Table 2 Process parameters Parameter Value

Nf 380,000

β0 1 × 10−10

vprod 0.9 mm

σ 0.3 mm

Knom 0.0125 s−1

Kmax 1 s−1

γ 1 × 10−3

c 0.2
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3.2.2 Discrepancy Based Sliding Mode Control

In this section a discrepancy based sliding mode controller is derived and tested

using simulations. For the sake of simplicity and in order to improve comparability,

the same discrepancy and Lyapunov functional as in the previous section are chosen.

The time derivative of the Lyapunov functional along the system trajectory thus is

V̇ = −e

(

∫ ∞

0

ṅa + nf dv − K

∫ ∞

vprod

n dv

)

. (18)
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Assuming there exists a maximum withdrawal rate Kmax > 0 with

∫ ∞

0

ṅa + nf dv < Kmax

∫ ∞

vprod

n dv (19)

the following sliding mode control law

K =
{

0 if e ≥ 0

Kmax if e < 0
(20)

can be chosen, resulting in the required negative definiteness of the time derivative

of the Lyapunov functional

V̇ ≤ 0. (21)

Therefore, the controller stabilizes the control variable.

Applying the derived sliding mode controller in the simulation setting results

in the closed-loop behavior shown in Fig. 5. As can be seen on the left-hand side,

by applying the discrepancy based sliding mode control law the zeroth moment

converges. In contrast to the discrepancy based controller from the previous section,

this happens in finite time. Shown on the right-hand side, the difference in the

closed-loop convergence behavior of the first moment shown is however less

significant. In Fig. 6 the phase portrait of the two moments (left) and the convergence

in the L2-norm (right) are depicted.

Besides the simple implementation of the discrepancy based sliding mode control

law, a major advantage compared to the continuous control law is the robustness
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Fig. 5 Convergence of the zeroth (left) and the first moment (right) with discrepancy based (red)

and sliding mode(blue) control. (a) Zeroth moment µ0. (b) First moment µ1
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with respect to uncertainties in the model equations. This behavior is examined in

the following section.

3.3 Robustness with Respect to Parametric Uncertainties

For practical implementation robustness of the control laws with respect to model

uncertainties is an important feature. A typical parametric uncertainty for the given

agglomeration process is the feed rate. While the proposed discrepancy based

sliding mode control law does not depend on the feed and therefore possesses

a natural robustness, the control law from Sect. 3.2.1 depends explicitly on the

parameter Nf. Thus, stability is not guaranteed if the feed rate is disturbed. In

order to compensate for this, the closed-loop control system can be augmented

by a parameter estimator for the feed rate. Then the estimated feed rate is used

to compute the according withdrawal rate. It has to be mentioned that the given

parametric disturbance in the PDE changes the steady state distributions ns(v).

Therefore, it is generally not possible to stabilize the desired distribution nd(v)

under occurrence of disturbances even if the moments converge.

In order to derive a parameter estimation law the estimation error is defined using

the unknown feed rate Nf and its estimate N̂f as follows:

Ñf = N̂f − Nf. (22)
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The certainty equivalence discrepancy based control law using the estimated feed

rate N̂f is given as

K = 1
∫ ∞

0 T n dv

(

−ce +
∫ ∞

0

ṅa + N̂fq0,f dv

)

. (23)

Following the well-known Lyapunov redesign approach, the Lyapunov functional is

augmented with a term reflecting the estimation error

V = 1

2
e2 + 1

2γ
Ñ2

f , (24)

where γ is a positive constant. Deriving the time derivative of the augmented

Lyapunov functional along the closed-loop system trajectories, i.e. the controlled

agglomeration process, yields

V̇ = eė + 1

γ
Ñf

˙̂
Nf = −ce2 + Ñf

(

e + 1

γ

˙̂
Nf

)

. (25)

Here, the first term is as before negative definite in e. Due to the unknown sign of the

estimation error Ñf the second term is indefinite. Therefore, an appropriate choice

of the parameter update law
˙̂
Nf is

˙̂
Nf = −γ e, (26)

resulting in

V̇ = −ce2. (27)

Therefore, the error system is stable. To show asymptotic stability and thus

convergence of the parameter estimate, LaSalles invariance principle can be used.

Converging to and remaining at V̇ = 0 the error e has to vanish, i.e. e = 0. Here,

the dynamics of e at e = 0 are given by

ė = −
∫ ∞

0

ṅa + Nfq0,f − KT n dv . (28)

After introducing the control law (23) and some simplifications this results in

ė = Ñf. (29)

Therefore, the derivative of the control error vanishes only if the estimation error is

also equal to zero. Thus, the estimated parameter converges asymptotically to the

unknown parameter value.
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In the following, simulation results for the system with a 50% disturbance in the

feed rate, starting in the desired steady state, are presented. In Fig. 7 it can be seen

that the zeroth moment µ0 converges for both controllers, while the first moment is

significantly smaller than desired. The sliding mode controller however has a better

performance. The convergence of the parameter estimator and the (non-converging)

L2-norm are shown in Fig. 8.

Although it is, for the given configuration, generally not possible to achieve

convergence of the L2-norm in the presence of a non-vanishing disturbance due

to the change of steady states, performance could be improved by using a different

discrepancy, e.g. the average particle volume, which is the ratio between µ1 and µ0.
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4 Conclusion

In this contribution discrepancy based control for continuous fluidized bed spray

agglomeration processes has been proposed. Here, two controller types, continuous

and discontinuous, have been derived and analyzed. By design, both control laws

guarantee stability with respect to the chosen discrepancy. For the given process

configuration the zeroth moment of the number density distribution has been an

appropriate choice. Furthermore, from a local stability analysis of the discretized

zero dynamics and the simulation results it has been shown that the distributed

state is also stabilized asymptotically in terms of a norm. General conditions for the

stability of the zero dynamics could not be stated yet. Additionally, robustness with

respect to parametric uncertainties was examined. Therefore, in order to guarantee

asymptotic stability the continuous control law was augmented by a parameter

estimator. Both the adaptive continuous controller and the sliding mode controller

stabilize the chosen moment at the desired value.
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This contribution is concerned with the stability problems occurring during the operation of continuous
fluidized bed spray granulation processes with external sieve mill cycle. These processes are in general
operated by a mass controller, which guarantees that the overall mass of particles in the granulation
chamber stays in well-defined bounds. It is well-known that, depending on the milling diameter,
instabilities may occur, which result in a nonlinear limit cycle of the particle size distribution. To
overcome this problem two approaches have been proposed in the literature, constrain the admissible
parameter space to exclude regions of instability and design additional stabilizing control loops. In
the present contribution, the cause of this instability phenomenon will be studied. It will be shown
that the instability is not inherent to the process, which turns out to be open-loop stable over the
studied parameter range, but due to the mass controller. More specifically, it will be demonstrated that
the zero dynamics of the granulation process become unstable for certain parameter ranges resulting
in closed-loop unstable process behavior. To point out, that this behavior does not depend on the
specific mass controller design procedure, three prototypical mass controllers of practical relevance
are designed and analyzed.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

A large number of products from chemical, pharmaceutical,

and food industries are converted into a solid particulate state.

Here, the particle properties have an important influence on the

product properties, e.g. flowability and dust formation. Depend-

ing on the material at hand, different production processes can

be used. One important process is granulation [1]. It can be

combined with fluidized bed technology, where a particle bed is

fluidized by a temperature-controlled air stream. This fluidization

results in an increased surface of the particle bed and thus an

improved heat and mass transfer. Starting with an initial set of

particles, a solution or suspension is applied through a nozzle. The

additional liquid settles on the particle surface and forms a new

solid layer due to drying. This layer formation results in particle

growth. In this contribution, a specific configuration of contin-

uous fluidized bed spray granulation processes is investigated.

Here, only particles in the desired size range are removed from

the process. This is achieved by particle sieving. Particles being

too small are directly fed back to the process chamber, whereas

large particles are milled to smaller sizes. Due to the milling, a

∗ Correspondence to: Otto-von-Guericke-University, Universitätsplatz 2, D-

39106 Magdeburg, Germany.

E-mail address: stefan.palis@ovgu.de.

continuous stream of nuclei particles is generated, which is re-
quired for a continuous process operation. The schematic process
scheme is depicted in Fig. 1.

In principle, the described granulation process can be operated
with [2] and without [3,4] a bed mass controller. However, as
the bed mass has an influence on important process and particle
properties, as e.g. fluidization behavior, residence time, it is often
desired to keep it constant applying a bed mass controller. Here,
the pressure drop across the fluidized bed is often used as a
measure for the bed mass. Examples for the actuated variable are
the rotation velocity of a rotary valve [2] or the countercurrent
flow rate of the withdrawal. The dynamic behavior of differ-
ent configurations of continuous fluidized bed spray granulation
processes has been thoroughly investigated on the basis of math-
ematical models and in experiments. There, it has been shown
that the qualitative dynamics may vary significantly with process
conditions [5,6]. One common situation is a loss of stability due
to the change of a system parameter. This loss of stability is often
connected to the occurrence of a stable limit cycle and results in
self-sustained oscillations of the particle size distribution [5,6].
As this loss of stability is in general undesired different control
approaches have been proposed to stabilize the granulation pro-
cess. From a practical point of view, these additional control loops
increase system complexity and are connected to additional costs.
Therefore, in this contribution, the stability problem is revisited.
It is shown, that the main cause for the aforementioned stability

https://doi.org/10.1016/j.jprocont.2020.06.003
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Fig. 1. Scheme of a continuous fluidized bed spray granulation process.

problem is the mass controller itself. From a practical point of
view, this finding is crucial and should hence be considered in the
control system design for continuous fluidized bed spray granula-
tion processes. The paper is organized as follows: in Section 2 the
population balance model for a continuous fluidized bed spray
granulation with external product classification, is introduced.
In Section 3 different bed mass controller are designed for the
given configuration. Simulation studies show the described loss
of stability. This is further investigated in Section 4 by means
of bifurcation analysis. Here, also a system theoretic explanation
for the observed loss of stability is provided. Some final remarks
conclude the paper.

2. Fluidized bed spray granulation

To describe the dynamical process behavior a population bal-
ance model for the particle size distribution according to [7] will
be stated. As has been shown in [5] the model does reflect the
process behavior well. Regarding the particle size distribution the
main assumptions are that granulation chamber is well-mixed
and that the particles are spherical. Therefore, the dynamics can
be described using one property coordinate, the particle diameter
L, and no spatial coordinates, resulting in an one-dimensional
population balance model for the number distribution n(t, L). As
can be seen in Fig. 1 the change in the number of particles is a
result of the in- and outfluxes:

• ṅgrowth growth of particles,

• ṅprod particle flux due to product removal,

• ṅfines particle flux of fine particles,

• ṅoversize particle flux due to oversize removal,

• ṅmill particle flux due to particles fed back from mill.

The flux of fines particles ṅfines can be neglected, as sink and
sources terms cancel. This can be justified by the assumption that
the delay introduced by the sieving is neglectable compared to
the dynamics of particle growth. The resulting population balance
equation therefore is:

∂n

∂t
= −ṅgrowth − ṅprod − ṅoversize + ṅmill. (1)

The particle growth is due to injected fluid and its settling and
drying on the particles. Due to the intensive particle mixing inside
the fluidized bed, it can be assumed that particles are uniformly
coated. The effective mass flow rate of solid material to the

particle population is ṁe and depends on the feed composition

and injection rate. The growth rate G is thus a function of the

effective mass flow rate and the overall particle surface. Here,

the latter can be calculated from the second moment µ2 of the

particle size distribution n(t, L) [8].

G =
2ṁe

ϱA
=

2ṁe

ϱπµ2

. (2)

The according flux ṅgrowth is given by

ṅgrowth = G
∂n

∂L
. (3)

As described above, in the continuous configuration of the flu-

idized bed spray granulation particles are continuously removed

and fed to a sieving box. The particle flux being removed from

the granulator ṅout is

ṅout = Kn. (4)

where K is the drain, which in general serves as the actuated

variable for the bed mass controller. The removed particles are

sieved in two sieves, where each sieve can be described by an

according size-dependent sieving function T1(L) and T2(L).

T1/2 =
∫ L

0
e
− (L′−µ1/2)

2

2σ2
1/2 dL′

∫ ∞
0

e
− (L−µ1/2)

2

2σ2
1/2 dL

. (5)

Due to the sieving, the withdrawn particles are separated into

three classes:

1. small or fine particles passing both screens, which are fed

directly back to the granulator,

ṅfines = (1 − T2) (1 − T1) ṅout , (6)

2. particles passing only one screen, product particles, which

are removed from the whole process

ṅprod = T2 (1 − T1) ṅout , (7)

3. big particles passing no screen, oversized particles, which

are grinded in a mill and fed back to the ganulator

ṅoversize = T1ṅout . (8)

Milling of particles is a complex process, resulting in general

in multi-modal particle size distributions of milled particles [9].

For convenience it is assumed that the particle distribution fed

back from the mill is a normal distribution with mean diameter

µM . This is in accordance with [7,10] and does not influence

the qualitative process behavior. To assure that no mass is lost

nor generated during grinding, the particle size distribution of

the milled particles is scaled with the third moment of the flux

oversized particles.

ṅmill = 6
e
− (L−µM)

2

2σ2
M

√
2ππϱσM

∫ ∞

0

L3ṅoversizedL. (9)

The population balance model Eq. (1) together with the defining

equations for the fluxes Eqs. (3)–(9) fully describe the dynamics

of the particle size distribution. From an operational point of

view, however, a mass balance model, seems to be often more

appropriate due to its simplicity. This applies also to controller

design.
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Fig. 2. Open-loop response for a 1% step-wise increase of the steady-state

withdraw rate K0 at t = 0.5h.

2.1. Mass balance

The mass balance model can be directly derived from the

population balance equation (1). For this purpose, the mass of the

particle size distribution n(t, L) inside the granulation chamber at

a given moment in time t is calculated using its third moment

µ3(t).

m =
π

6
ϱ

∫ ∞

0

L3n(t, L)dL =
π

6
ϱµ3(t) (10)

The change in mass is given by the time derivative of Eq. (10).

ṁ =
π

6
ϱ

∫ ∞

0

L3
∂n

∂t
dL (11)

=
π

6
ϱ

∫ ∞

0

L3
(

−G
∂n

∂L
− ṅprod − ṅoversize + ṅmill

)

dL (12)

Taking into account that the mill is mass conserving, the terms for

the flux of oversized particles and from the mill cancel resulting

in the mass balance equation.

ṁ = ṁe −
π

6
ϱ

∫ ∞

0

L3KT2(1 − T1)ndL (13)

Here, the first term is the effective mass injected with the liquid

into the granulation chamber and the second term reflects the

mass removed with the product.

3. Mass controller

From an operational point of view, it is desired to keep the

mass inside the granulation chamber at a certain set-point to

guarantee a certain fluidization behavior. It is common practice

to achieve this by designing a mass controller based on the

derived mass balance equation, i.e. Eq. (13). In the following, three

different control strategies will be presented. These can be seen

as prototypes for other possible control design methods. All will

use the drain K as the actuated variable.

3.1. PI control

As can be seen for example from the open-loop step response

in Fig. 2 the open-loop granulation process is stable. Therefore,

a simple loop-shaping procedure can be applied to design a

PI-controller.

The open-loop Bode diagram of the granulation process with K

as control input and the mass m as output is depicted in Fig. 3. To

achieve a zero steady-state error for constant reference changes

Fig. 3. Open-loop Bode diagram without (solid black) and with (dotted black)

PI-controller.

and increase the dynamics of the mass control, the following PI
controller has been chosen:

C(s) = Kp

(

1 +
1

TN s

)

(14)

where Kp = −0.001 and TN = 1000. The open-loop Bode diagram
of the granulation in series with the PI controller is depicted in
Fig. 3. As can be seen the designed controller achieves a phase
margin of 90◦ and an amplitude margin of 60 dB.

Testing the designed PI controller on the nonlinear granulation
process for a coarse mill grade, i.e. µM = 0.9 mm results in the
behavior depicted in Fig. 4.

3.2. Compensation based control design

The next control design is closely related to nonlinear design,
feedback linearization or backstepping, where undesired terms,
e.g. nonlinearities or time-variant behavior, can be compensated
either in a normal form or at each integrator. However, due to the
fact, that the mass balance equation is a first-order differential
equation and hence possesses a relative degree of one no further
transformations are needed. Therefore, in a first step the error
dynamics are derived by calculating the difference between the
desired mass md and the actual mass m.

e = md − m (15)

Taking the time derivative and assuming that the task is set-point
tracking, i.e. md = const ., yields:

ė = −ṁe +
π

6
ϱ

∫ ∞

0

L3KT2(1 − T1)ndL. (16)

From a control point of view, the effective mass injected and the
third moment of T2(1−T1)n can be viewed as some known time-
varying functions. Therefore, the following compensating control
law can be chosen:

K =
6

πϱ

ṁe − ce
∫ ∞
0

L3T2(1 − T1)ndL
(17)

to achieve exponential convergence of the control error e:

ė = −ce (18)

where c is the tuning factor to adjust the desired convergence
rate. Here, it is required that the product fraction is always greater
than zero in order to prevent division by zero.

It should be mentioned, that setting the constant c to zero
will result in a vanishing time-derivative of the error e in (18)
and hence constant mass. Therefore, starting with a desired mass
inside the granulation chamber, the reduced control law (17) will
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Fig. 4. Closed-loop response of the designed PI controller for a set-point change of 5%, (top left) mass m(t) (solid black) and desired mass md (dotted black), (top

right) withdraw rate K , (bottom left) second moment µ2 , (bottom right) particle size distribution n(t, L).

Fig. 5. Closed-loop response of the designed compensation based controller for a set-point change of 5%, (top left) mass m(t) (solid black) and desired mass md

(dotted black), (top right) withdraw rate K , (bottom left) second moment µ2 , (bottom right) particle size distribution n(t, L).

result in a constant mass. This approach has been applied for

example in [10,11]. There, the drain K has been calculated from

an algebraic equation to achieve the desired mass.

Testing the designed compensation based controller on the

nonlinear granulation process for a coarse mill grade, i.e. µM =
0.9 mm results in the behavior depicted in Fig. 5.

3.3. Sliding mode control design

From a practical point of view, the compensating control ap-
proach has one drawback. It assumes the knowledge of the ef-
fective mass injected and the particle size distribution, which is
in general difficult to achieve. To overcome this sliding mode
control provides a robust alternative. Based on the error dynamics
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Fig. 6. Closed-loop response of the designed sliding mode controller for a set-point change of 5%, (top left) mass m(t) (solid black) and desired mass md (dotted

black), (top right) withdraw rate K , (bottom left) second moment µ2 , (bottom right) particle size distribution n(t, L).

Fig. 7. Closed-loop response of the designed mass controllers for a reduced mill grade µM = 0.7 mm, desired mass md (dotted black), PI controller (dotted gray),

compensation based controller (solid black), sliding-mode controller (solid gray) for a shorter (left) and longer time-scale (right).

Eq. (16) and assuming that the third moment of the product frac-
tion is greater than zero and the effective mass injected bounded,
the following sliding mode control law is chosen

K =
{

0 if e ≥ 0

Kmax if e < 0
(19)

where Kmax is the maximum drain. Assuming the maximum drain
Kmax is chosen such that the following inequality holds:

Kmax >
6

πϱ

ṁe
∫ ∞
0

L3T2(1 − T1)ndL
(20)

this control results in the following stable closed-loop error dy-
namics:

e =
{

−ṁe if e ≥ 0

−ṁe + Kmax
π
6
ϱ

∫ ∞
0

L3KT2(1 − T1)ndL > 0 if e < 0
(21)

It should be mentioned, that the sliding mode control law uses
only the error signal and does not require any additional mea-
surement information. In addition, it is robust with respect to

parameter variations or unforeseen disturbances, e.g. feed vari-
ations, for sufficiently high values of Kmax.

Testing the designed sliding mode controller on the nonlinear
granulation process for a coarse mill grade, i.e. µM = 0.9 mm
results in the behavior depicted in Fig. 6.

The simulation results for all three designed mass controllers
seem promising. The proposed PI controller possesses a consider-
able stability margin and the sliding mode controller is known for
its robustness against matched uncertainties. Therefore, a consid-
erable degree of robustness with respect to process uncertainties
can be expected. This will be further studied for a variation of the
mill grade, i.e. for changes in the parameter µM .

3.4. Closed-loop simulations for fine mill grade

In the following, the behavior of the same granulation process,
i.e. including a mass controller, will be investigated for a reduced
mill grade reduced, i.e. µM = 0.7 mm, with an initial mass
excess of 10%. As can be seen from Fig. 7 (left) the compensation
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Fig. 8. Closed-loop response of the designed mass controllers for a reduced mill grade µM = 0.7 mm, (top left) drain K , (top right) zeroth moment, (bottom left)

second moment for PI controller (dotted gray), compensation based controller (solid black), (bottom right) particle size distribution n(t, L) for compensation based

controller.

Fig. 9. One-parameter continuation of the open-loop granulation process (left) and applying the compensation based mass controller (right). Second moment of the

steady-state particle size distribution — stable (solid black), unstable (dashed black). (o) maximum and minimum value of the occurring limit cycle.

based and sliding mode controller are able to keep the mass at

the desired set-point. The PI controller after a convergence phase

starts to diverge again. However, as can be seen from Fig. 7 (right)

this deviation ends up in small oscillations around the desired

set-point. It should be mentioned, that the amplitude of the

oscillations can be reduced by further increasing the open-loop

gain Kp of the PI controller. Interestingly, do all controller show

oscillations in the control variable, i.e. the drain K , the zeroth

and second moment µ0 and µ2 and the particle size distribution

n(t, L) itself (Fig. 8).

From an operational point of view, this behavior is highly

undesired. It has been studied in a number of contributions [5,

6,10,12]. Solution approaches, which have been proposed are of

two kinds:

1. avoidance of critical parameter areas by the use of stability

maps derived from a bifurcation analysis [13,14],

2. design of additional stabilizing control loops [9,13,15–18].

Although both approaches circumvent the stability problem,
none of them gives an explanation of the root cause of the
observed instabilities. This will be the scope of the following
investigations.

4. Zero dynamics of continuous fluidized bed spray granula-

tion

4.1. Bifurcation analysis of the open-loop process

In order to understand the mechanisms, which lead to the
observed loss of stability, a bifurcation analysis for the open-
loop system, i.e. the continuous fluidized bed spray granulation
without mass control is conducted. As can be seen in Fig. 9
(left) the uncontrolled system with the second moment µ2 as
output is stable over a large range of mill grades, i.e. for µM ∈
[0.9 mm, 0.5 mm]. This is in contrast to the closed-loop system,
i.e. applying the proposed compensating mass controller (Fig. 9
(right)). The results for the PI and the sliding mode controller
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Fig. 10. Maximum real part of the open-loop poles (solid black) and zeros (dashed black) (left). Location of the dominant pole and zero pair for increasing mill

grade (right).

are similar. Independent of the chosen mass controller a loss of
stability and the occurrence of nonlinear oscillations are observed
at around µM = 0.7 mm.

4.2. Analysis of the zero dynamics

From a linear control theory point of view, it is well-known
that open-loop zeros in the complex right half-plane, result in
bounds on the maximum open-loop gain, as they act as attrac-
tors for closed-loop poles during gain increase. For nonlinear
systems [19] the situation is comparable. Here, applying a non-
linear compensating control law may render part of the system
dynamics unobservable from the chosen output. As will be shown
in the following, the reason for the decreased stability region
when applying mass control lies in the occurrence of zeros in the
complex right half-plane and thus the loss of stability in the zero
dynamics.

As have been discussed already based on the bifurcation anal-
ysis of the open-loop system (Fig. 9 (left)) the uncontrolled gran-
ulation process is stable in the investigated parameter range. This
can also be seen from Fig. 10 (left), where the maximum real part
of the open-loop system poles for variations in the mill grade µM

are depicted. Here, the maximum real part of the open-loop poles
remains negative and thus all poles remain in the left half-plane.
In contrast, the maximum real part of the open-loop system zeros
changes sign at µM ≈ 0.72 mm (Fig. 10 (left)). Thus, the zero
dynamics of the continuous fluidized bed spray granulation with
external sieve mill cycle change their stability behavior and be-
come unstable for sufficiently fine milling. As depicted in Fig. 10
(right) the two dominant pairs of poles and zeros move towards
the imaginary axis for decreasing mill grade. The dominant zero
pair, which can be seen as a linear two-dimensional approxi-
mation of the zero dynamics of the infinite-dimensional process
model, crosses the imaginary axis and thus becomes unstable.
Therefore, mass controllers with sufficiently high-gains will, in
this parameter region, result in a destabilization of the subsystem
associated with the zero dynamics. As has been observed in the
closed-loop simulations for µM = 0.7 mm these instabilities may
be not observable from the controlled variable (Fig. 7), as they are
compensated by the action of the mass controller. However, they
can be observed in the control actuation (Fig. 8 (top left)).

5. Conclusion

It is well-known that continuous fluidized bed spray granu-
lation with external sieve mill cycle may become unstable for
certain parameter ranges, in particular fine grinding. These in-
stabilities led to nonlinear oscillations in the particle size distri-
bution, which are in general undesired. In this contribution, the

mass controller has been identified as the root cause of the ob-
served instabilities. It has been shown that the open-loop system
is stable and the instability is induced by the mass controller.
Therefore, control system design for continuous fluidized bed
spray granulation processes should be reconsidered. In the liter-
ature two principal approaches have been proposed to overcome
the aforementioned stability problem. This contribution forms the
basis for a third possibility. Future work will be thus concerned
with a mass controller redesign, taking into account the unstable
zero dynamics, and the application parallel compensator for zero
dynamics stabilization.
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This paper is concerned with an experimental and theoretical study of dynamics and control of fluidized bed

layering granulation with external screen mill cycle. To achieve quantitative agreement betweenmodel calcula-

tions and experiments an extended dynamic process model is proposed. In contrast to previous work by

Dreyschultze et al. [1] specific plant characteristics are taken explicitly into account including a more detailed

model of the milling process and a classifying particle withdrawal from the granulation chamber. The model is

then used to develop new control strategies. First, a novel bed mass controller is designed and validated. After-

ward, a second control loop is introduced to dampen the oscillatory behavior of the particle size distribution. It

is shown that the new control concepts achieve stable steady-state operationwithin a short time and thereby im-

prove the process dynamics significantly. Theoretical predictions and experimental results are shown to be in

good agreement.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

In fluidized bed layering granulation (FBLG), product granules of

high quality are formulated by spraying a solid-containing liquid, e.g. a

solution or suspension, onto a bed of particles fluidized with a heated

gas [2]. While the liquid fraction of the injection evaporates, the solid

fraction remains on the surface of the particles inducing a layer-wise

growth [3]. For high production rates, FBLG is operated as a continuous

process. Since product particles are continuously removed, this in turn

requires a continuous supply of new nuclei. This can be achieved either

by internal nucleation due to thermal overspray [4] or grinding of over-

sized particles [5].

As was shown by means of experiments, presented by Schütte et al.

[6] and Schmidt et al. [7–9], continuous FBLG tends to instabilities in the

form of self-sustained non-linear oscillations of the particle size distri-

bution (PSD). These oscillations lead to variations in the product proper-

ties or, in the worst case, may even lead to a breakdown of the

granulation process. They are therefore highly undesired. To clarify the

potential reasons for these instabilities, different processes configura-

tions were studied by means of model-based analysis. While the au-

thors Vreman et al. [10] and Neugebauer et al. [11] studied the

dynamics of FBLG with internal nucleation, Radichkov et al. [12] and

Dreyschultze et al. [1] put the focus on FBLGwith formation of seed par-

ticles by milling of oversized particles. All contributions revealed a sig-

nificant impact of the operating conditions on the dynamic stability.

However, besides stability, the operating parameters also affect the par-

ticle properties: The contributions of Hoffmann et al. [13], Rieck et al.

[14], and Diez et al. [15] proved the dependency of selected particle

characteristics, for instance, particle porosity, on the thermal conditions

inside the granulation chamber. Therefore, a careful selection of operat-

ing parameters is essential for the formation of particles with tailor-

made properties under stable conditions. In addition, it has been

shown theoretically that the application of feedback control strategies

is promising to enhance the dynamic stability and the transient behav-

ior of continuous FBLG. Palis & Kienle [16] showed that a linear PI-con-

troller is capable to stabilize continuous FBLG processes in the

neighborhood of some given reference point. The robustness can be in-

creased by H∞ loop shaping as presented by Palis & Kienle [16,17]. Fur-

ther suitable approaches to enhance process stability and the dynamics

are adaptive control strategies [18,19], model predictive control [20,21],

and non-linear control strategies as discrepancy based control [22,23].

In multi-stage operation the process chamber is subdivided into com-

partments with different functionalities leading to additional measure-

ments and actuating values. Therefore, Cotabarren et al. [24] and Palis

[25] introduced multiple input multiple output control strategies for

this type of processes. Even though the simulation results of the
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different control approaches are quite promising, an experimental im-

plementation and validation is still missing.

This gap is closed in the present paper. Focus is on continuous FBLG

with screen-mill-cycle as presented in Fig. 1: Particles are withdrawn

from the granulation chamber via a rotary valve and classified by

screening into fine, product and oversized fraction. After milling, the

oversized fraction is, together with the fines, re-fed to the granulation

chamber while product particles are removed from the process. The ex-

periments are carried out in a pilot plant located at TUHamburg. Besides

control of PSD, special attention is also given to the control of the bed

mass, which turned out to be non-trivial and is a necessary prerequisite

for stable long term operation of the plant. Furthermore, an extended

mathematical model of the plant is presented and compared to the ex-

perimental findings.

The remainder of the present paper is structured as followed: In the

upcoming Section 1.1 a detailed process description is given. The dy-

namicmodel of the investigated FBLG is introduced in Section 2. The re-

sults of the experiments are presented and compared to simulation

results in the subsequent Section 3. First, focus is on bed mass control.

Afterward, control of PSD is addressed. Using the developedmathemat-

ical model a corresponding controller is designed to dampen the parti-

cle size distribution. Finally, the results of this contribution are

summarized and an outlook on future directions is presented in

Section 4.

1.1. Process description

The experimental examination has been carried out in a horizontal

fluidized bed plant of type Procell 25 of the manufacturer Glatt GmbH,

Weimar, Germany. The process chamber, presented in Fig. 2, has a

width of 1.00 m, a depth of 0.25m and a height of 0.40 m and can be di-

vided into four different compartments by introducing weirs. However,

throughout this contribution, no weirs were used and the granulator

was operated as a single process chamber with uniform conditions

due to intensive mixing. All presented experiments were performed

under similar conditions. At the start of each experiment, sodium ben-

zoate particles of the overall mass of 27.5 kg were fed to the process

chamber. The particles were fluidized by fluidization medium. For this

purpose, ambient air was heated up to 85 °C and blown into the granu-

lation chamber. A proper choice of the fluidization conditions is crucial

for the FBLG. Too little fluidization air induces a too small fluidization

velocity ufluid resulting in an insufficient fluidization of the particles.

Otherwise, too much fluidization air leads to the blow out of the bed

since ufluid is too high. An overview of the fluidization conditions,

based on [2], is presented in Fig. 3. There, the minimum fluidization ve-

locity is denoted as umf while uelu describes the permissible maximum

value of ufluid. Throughout the experimental investigations, the fluidiza-

tion velocity ufluid is 2.3 m/s.

The injected solution consists of 35 wt% sodium benzoate dissolved

in demineralized water. Per hour of process time 40 kg solution were

atomized by three two-fluid nozzles located at the bottom of the gran-

ulation chamber. As atomizing gas compressed air was used. The

injected droplets sprinkled the particles surface. Due to the enhanced

heat exchange between particles and fluidization medium, the liquid

phase of the droplets evaporated. The vapor was carried out by the flu-

idization medium. Because of the evaporation, the temperature of the

fluidization medium within the process chamber decreased to 50 °C.

Meanwhile, the remaining sodium benzoate solidified on the particles

surface inducing the layering-growth. Under the examined process con-

ditions, layering was the dominant granulation mechanism. In accor-

dance with Ennis et al. [26], the influence of agglomeration, attrition,

and internal nucleation, was limited by an appropriate choice of the op-

erating parameters.

Particles were withdrawn from the granulation chamber by a rotary

valve. The utilized valve is shown in Fig. 2. The discharged particleswere

transported to a two-deck tumbler screen by pneumatic conveyance.

According to themeshwidth of the screens, the particles were classified

into three fractions: The fines fraction consists of particles smaller than

0.8mm, the product fraction comprises particles in the range of 0.8mm

to 1.2 mm, and the oversized fraction contains particles larger than 1.2

mm. While the product fraction was removed from the process, the

oversized fraction was milled and, together with the fines fraction, re-

fed to the granulation chamber. For grinding of the oversized particles

an impactmill of type Rekord A of Gebr. Jehmlich GmbH, Nossen, Germany

was utilized. As illustrated in Fig. 2, themill was equippedwith pin-mill

grinding elements.

Fig. 1. Process scheme of fluidized bed layering granulation (FBLG) with external screen-mill-cycle.
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To obtain online information about the particle sizes, the process

chamber was equipped with the inline probe IPP 70-S (Parsum GmbH,

Chemnitz, Germany). Based on spatial filter velocimetry (Petrak [27]),

the probe determines the chord length distribution of the measured

particles,whichwasused for control purposes. In addition, particle sam-

ples of the bed and the outlet were taken every 20 minutes. Bymeans of

digital imaging processing, the particle size distributions of those sam-

ples were determined with a CamSizer XT (Retsch Technology GmbH,

Haan, Germany) in the post-processing.

2. Dynamic model

The following is based on the population balance model (PBM) pre-

sented in Dreyschultze et al. [1]. In this model, it is assumed that the

granulation chamber is divided into two functional zones. In the first

zone, the spraying zone (index ‘1’), the surface of the particles is wetted

by the injected solution. In the second zone, the drying zone (index ‘2’),

the liquid fraction of the injected solution evaporates from the surface of

the particles while the solid fraction remains. Each of the functional

zones is considered as well mixed. Particles are assumed to be spherical

with diameter L. Agglomeration and breakage are neglected as

discussed above.

With these assumptions, the population balance equations of the

spraying and the drying zones are

∂n1 t; Lð Þ

∂t
¼ G

∂n1

∂L
− _n12 þ _n21 þ _n1;in− _n1;out ð1Þ

∂n2 t; Lð Þ

∂t
¼ _n12 − _n21 þ _n2;in− _n2;out ð2Þ

Therein, G describes the growth rate, ni the number density of parti-

cles in zone ‘i’, and _ni the particles flows according to Fig. 4:

• _n12 and _n21 describe the particle exchange between the spraying and

the drying zone,

Fig. 2. Pictures of the utilized equipment:Upper Left:Granulation chamber Procell 25 of Glatt GmbH. Lower Left:Granulation chamber equippedwith ParsumProbe and sampling device.

Upper Right: Impact mill equipped with pin-mill grinding elements. Lower Right: Two-deck-tumbler screen and impact mill.

Fig. 3. Left: Velocity of the fluidization medium within the process chamber as well as

elutriation uelu and minimum fluidization umf velocity with respect to particles size L.

Right: Cross section of the process chamber Procell 25 of Glatt GmbH with

corresponding width li and temperatures of the fluidization medium θi: At bottom l0 =

0.25mand θ0 = 85 °C, in the process chamber l1 = 0.25m and θ1 ≈ 50 °C, and at top l2
=1.0m and θ2 ≈ 45 °C.
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• _ni;in the particle inlet to the spraying and the drying zone, and

• _ni;out the particle removal from the spraying and the drying zone.

FollowingMörl et al. [2], the particle growth rateG is based on a uni-

form particle growth depending on the total surface of particles in the

spraying zone A1(t) = π∫0
∞(L2n1(t,L))dL, by

G ¼
2xinj _minj

ρsA1 tð Þ
ð3Þ

with the injection rate _minj and the correspondingmass fraction xinj and

mass density ρs of the solid fraction within the injected suspension.

The relative volume of particles within the spraying zone

α ¼
μ3 n1ð Þ

μ3 n1ð Þ þ μ3 n2ð Þ
with μ j nið Þ ¼

Z ∞

0
L jni t; Lð ÞdL ð4Þ

and the drying zone (1− α) are assumed to be constant.

Thus, the condition μ3ð _n12Þ ¼ μ3ð _n21Þ with the particle exchange

rates between the spraying and the drying zones

_n12 t; Lð Þ ¼ n1=τ1 and _n21 t; Lð Þ ¼ n2=τ2 ð5Þ

are expressed in terms of residence times τ1 and τ2. Assuming μ3ð _n12Þ ¼

μ3ð _n21Þ, yields the following relation between the residence times and α

[28]

1=τ1 ¼ 1−αð Þ= ατ2ð Þ : ð6Þ

Characteristic values forα and τ2 for different process configurations

were given in the literature (see Bück et al. [29] and references therein).

Main differences to themodel presented in [1] are related to the cal-

culation of _n1;in; _n1;out; _n2;out in Eqs. (1) and (2), which depend on the

product withdrawal, the bed mass control and the model of the mill.

These aspects have been modified as follows to gain a better quantita-

tive description of the plant dynamics:

a) Themodel used in this paper admits a variable total bedmass to sim-

ulate the behavior of the bed mass control strategy. In contrast to

this, a constant bed mass was assumed in [1] corresponding to an

ideal controller.

b) In the experiments to be discussed subsequently, it was observed

that larger particles are preferably withdrawn from the bed com-

pared to smaller particles. Therefore, the assumption of a

representative product removal from the bed in [1] was replaced

by a classified product removal.

c) The model of the mill is crucial for a quantitative prediction of the

process dynamics. Therefore, a more detailed model of the mill

was identified from stand-alone milling experiments and added to

the plant model.

Details of thesemodifications are given in the following step by step.

2.1. Particle withdrawal from the bed and external product screening

Particles arewithdrawn from the process chamber by a rotary valve.

It is assumed that the rotary speed of the valve ωout determines the

Fig. 4. Flow sheet of the fluidized bed layering granulation with external screen-mill-cycle.

Table 1

Nomenclature according to the presented fluidized bed layering granulation.

Nomenclature

A (mm2) particle surface

d32 (mm) Sauter mean diameter

e (−) control error

G (mm/s) growth rate

k (−) gain

K (−) gain of the withdrawal

L (mm) diameter of particle

Li (mm) separation diameter
_m (kg/s) mass flow rate

n (1/mm) number density of particles
_n (1/mm) number density of particle flow

p (W) electrical power

q0 (1/mm) normalized number density of particle

q3 (1/mm) normalized volume density of particle

Qi (1/mm) cumulative normalized particle size distribution

t (s) time

T (−) separation function

u (m/s) velocity of fluidization medium

x (s) mass fraction

Greek letters

α (−) relative size of granulation zone

Δp (mBar) pressure drop

θ (°C) temperature

μi (·) (mm(i–1)) ith order moment of argument

Πi (−) parameter set of power of mill

ρ (kg/mm
3 ) mass density

σ (mm) variance of separation

τ (s) time constant

ω (%) relative rotational velocity

768 C. Neugebauer et al. / Powder Technology 354 (2019) 765–778



mass flow of the discharged particles by

_mout tð Þ ¼ kout �ωout 0≤ _mout ≤ _mout;max ð7Þ

Thus, in a first step, ωout is used as manipulated variable to control

the bed mass mbed. Bed mass is measured by means of pressure drop

across the bed Δpbed, which is in good approximation proportional to

the bed mass for constant fluidization conditions applied in the experi-

ments. Control is done with a PI controller according to

ωout tð Þ ¼ kp;out eΔpbed þ 1=τi;out

Z t

0
eΔpbeddt

� �

ð8Þ

with 0 ≤ ωout ≤ ωout,max and eΔp bed
(t) = (Δpbed,ref − Δpbed) where

Δpbed,ref denotes the reference value of the pressure drop.

Based on _mout the number density flow of thewithdrawn particles is

calculated with

_nout t; Lð Þ ¼ _n1;out þ _n2;out ð9Þ

¼ KTout n1 þ n2ð Þ ð10Þ

where the drain gain K is determined by

K ¼
_μ3;out

μ3 Tout n1 þ n2ð Þð Þ
ð11Þ

with _μ3;out ¼ 6 _mout=πρs. The term Tout accounts for the classified prod-

uct removal from the bed which was observed in the experiments.

This is modeled with the separation function

T i Li;σ ið Þ ¼

R L
0 exp − L−Lið Þ2= 2σ2

i

� �

� �

R∞
0 exp − L−Lið Þ2= 2σ2

i

� �

� � ð12Þ

with separation diameter Li = Lout and variance σi = σout. As will be

shown in Section 3, the separation diameter depends on the current

particle size distribution of the bed. In particular, it is assumed that

Lout equals the characteristic value x3,60, i.e. the particle size were the

cumulative volume based particle size distribution Q3(n1 + n2) equals

0.6:

Lout ¼ x3;60 with Q3 L ¼ x3;60
� �

¼ 0:6 : ð13Þ

Fig. 5. Scheme of the size-dependent mill model: Oversized particles _nover are classified into the six fractions _nmill;in;i by separation functions Tmill,i. Each fraction i is milledwithωmill to the

corresponding _nmill;out;i . Finally, the milled fractions are merged to _nmill;out.

Table 2

Parameter set according to the simulation study.

Granulation chamber and injection

mbed 27.50 (kg)

α 0.05 (−)

τ2 100.00 (s)

xinj 0.35 (−)
_minj 40.00 (kg/h)

ρs 1440.00 (kg/m
3 )

Particle withdrawal

kp,out −60.00 (%/mm)

kout 2.00 (kg/%·h)

σout 0.75 (mm)

τi,out 120.00 (s)

ωout,max 40.00 (%)

Particle screening

Lscreen,I 1.20 (mm)

σscreen,I 0.125 (mm)

Lscreen,II 0.80 (mm)

σscreen,II 0.05 (mm)

Milling process

kbypass 0.75 (−)

Lcutsize 0.375 (mm)

σcutsize 0.105 (mm)

Lmill,i [1.01, 1.14, 1.37, 1.58, 1.80] (mm)

σmill,i [4.05, 13.44, 8.64, 8.58, 9.41] (mm)

Power of the mill

Πmill,i [−3.09, −286.04, 25.85, 0.04, −0.0008] (−)

τmill 0.10 (1/s)

Parameter of controllers

kp,pmill
0.005 (%/W)

τi,pmill
12.00 (s)

kp,d32
250.00 (W/mm)

pmill,0 120.00 (W)
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By screening, the withdrawn particles are further classified into

three fractions: Fines _nfines , product _nproduct , and oversized _nover . The

screening process is described by

_nover t; Lð Þ ¼ Tscreen;I _nout ; ð14Þ

_nproduct t; Lð Þ ¼ 1 − Tscreen;I

� �

Tscreen;II _nout ; and ð15Þ

_nfines t; Lð Þ ¼ 1− Tscreen;I

� �

1 − Tscreen;II

� �

_nout : ð16Þ

Again, the separation functions Tscreen,I and Tscreen,II are given by Eq.

(12) with the parameters {Lscreen,I, σscreen,I} and {Lscreen,II, σscreen,II} re-

spectively. While the product fraction is removed from the process,

the oversized fraction is milled, and together with the fine fraction,

recycled to the granulation chamber serving as new nuclei (Table 1).

2.2. Particle milling

The milling of oversized particles has a significant influence on the

dynamics of the investigated FBLG process [1,8,12]. Thus, a detailed

model of the milling is essential for the quantitative prediction of the

plant dynamics. In general, milling of granules is complex. For instance,

the type and configuration of the mill as well as particle properties, e.g.

porosity and size, have a major influence on the breakage of particles

during milling [30,31,32]. Following the ideas in Neugebauer et al.

[33], an empirical PBM of the grinding process was established. How-

ever, compared to [33] amore detailedmodel of themill was developed

in the presentwork taking into account the influence of particle size dis-

tribution of the feed to themill on the grinding processes. Since the PSD

ofmilled particles cannot bemeasured inline, the following preliminary

experimental study was performed: Particles of different sizes were

classified into six fractions by screening. Samples of 0.5 kg were milled

with the relative rotational velocities ωmill= {10,15,20,25}%, i.e. 24 ex-

perimentswere performed in total. The PSDs of the sampleswere deter-

mined before and after milling with the CamSizer XT. Based on the

measurements, the separation functions of the five screens

Tmill;i Lmill;i;σmill;i

� �

¼ 1þ Lmill;i=L
� �2

� �

exp
σmill;i

1 − L=Lmill;i

� �2

 !

ð17Þ

with i ∈ {1,2,3,4,5} were parameterized. Further, the normalized

Fig. 7. Experiment 1: Number and volume based, normalized size distributions q0(t,L) and q3(T,L) of particles in granulation chamber and particle outlet. The distributions were

determined by measuring the taken samples with a CamSizer XT.

Fig. 6. Control schemes of the experiments: gray configuration was used in experiment 1, green configuration in experiments 2–4, and overall configuration in experiment 5.
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number densities of the particle size distributions of the milled particle

fractions q0,mill,out,i were determined for the different values of ωmill.

These quantities are used for modeling the mill as follows (see also

Fig. 5). First _nover is separated into six fractionswith the according screen

functions Tmill,i

_nmill;in;i t; Lð Þ ¼ Tmill;i−1

Y

5

j¼i

1−Tmill; j

� �

_nover ; i ∈ 6;5;…;2f g ð18Þ

and

_nmill;in;1 t; Lð Þ ¼
Y

5

j¼1

1 − Tmill; j

� �

_nover : ð19Þ

The relative mass of each fraction i is conserved and determined by

kmill;iðtÞ ¼ μ3ð _nmill;in;iÞ=μ3ð _noverÞ . Based on kmill,i, the milled particle

flow rate of each fraction i is determined:

_nmill;out;i t; Lð Þ ¼ kmill;i

q0;mill;out;i ωmill; Lð Þ

μ3 q0;mill;out;i ωmill; Lð Þ
� � : ð20Þ

Subsequently, the fractions _nmill;out;i are merged again. The particle

size distributionωmill of themilled particles were obtained by linear in-

terpolation between available measurements for the specific values of

ωmill given above. Further, it is taken into account, that, due to the in-

creased throughput during the continuous FBLG, the efficiency of the

milling decreases. For that purpose, a by-pass of particles with gain

kbypass is introduced, representing the uncomminuted particles of _nover:

_nmill;out t; Lð Þ ¼ kbypass _nover þ 1− kbypass
� �

X

6

i¼1

_nmill;out;i : ð21Þ

Fig. 9.Experiment 1:measuredpressuredrop over bedΔpbed, relative rotational speed of the rotary valve at the outletωout, relative rotational speed of themillωmill, and electrical power of

the mill pmill. In the experiment, the mill was operated with a constant ωmill = 17%. Alternations of pmill indicate an uneven particle comminution resulting in variations of the Δpbed
(reference value: Δpbed,ref =6 mBar). The experiment was interrupted at tr =15.5 h.

Fig. 8. Experiment 1: Upper Left: Sauter mean diameter of particles in granulation chamber and outlet over time. Product range is high-lighted in gray. Upper Right: normalized particle

size distribution q0(t,L) of bed and outlet at t=12h. Product range is high-lighted in gray. Lower left and right:mass fractions of product and oversized particles in bed and outlet.
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Finally, it is assumed, that, because of thefluidization conditions pre-

sented in Fig. 3, dust particles are blown out according to

_ndust t; Lð Þ ¼ 1 − T Lcutsize;σcutsizeð Þð Þ _nmill;out : ð22Þ

Again, the separation function T(Lcutsize, σcutsize) is described by Eq.

(12). The remaining particles are, togetherwith _nfines, re-fed to the gran-

ulation chamber:

_nin t; Lð Þ ¼ _nfines þ T μcutsize; σ cutsizeð Þ _nmill;out : ð23Þ

The recycled particles are distributed to the spraying and drying

zone with respect to the respective relative volume:

_n1;in t; Lð Þ ¼ α _nin and _n2;in t; Lð Þ ¼ 1−αð Þ _nin : ð24Þ

2.3. Numerical solution

The dynamic model was implemented in MATLAB (2018a,

MathWorks, Natick, MA, USA, 2018) applying a method of lines ap-

proach. Based on a finite volume method approach, the partial

differential Eqs. (1) and (2) were discretized using a first order upwind

scheme with 200 equidistant grid points in the domain L= [0,5] mm.

To solve the resulting system of ordinary equations the MATLAB built-

in solver ode15swas utilized. Themodel parameters used for all simula-

tions are shown in Table 2. The initial particle size distributions n1(t=

0,L) and n2(t=0,L) are based on the CamSizer measurement of the first

sample of the particle bed of the related experiment.

3. Experiments and simulation study

3.1. Operation with constant rotational speed of the mill

In the first experiment, the pin mill was operated with a constant

relative rotational speed as introduced in the previous section and illus-

trated in Fig. 6 with the gray box. This operation mode is the standard

configuration of the investigated FBLG and was, for instance, also used

by Schmidt et al. [8,9,34].

The corresponding temporal evolution of the number and volume

based normalized particle size distribution q0,i(t,L) and q3,i(t,L) of bed

and outlet are presented in Fig. 7. The size distributions are character-

ized by oscillations with long periods. As depicted in Fig. 8, the oscilla-

tions can also be observed by monitoring the Sauter mean diameter of

bed d32,bed and outlet d32,out. The Sauter mean diameter, defined as the

area-weighted mean size of a particle population and determined by

d32,i = μ3(q0,i)/μ2(q0,i), is a representative of the PSD. Throughout the

experiment, d32,out was larger than d32,bed. The deviation indicates the

classifying impact of the particle withdrawal. As illustrated by the parti-

cle size distribution q0,i of bed and outlet, as an example the samples at

t=12h are presented in Fig. 8, primarily large particleswere discharged

from the process chamber.

Because of the oscillations of the PSD, the related mass fractions of

fines xfines, product xproduct, and oversized particles xover varied. As the

bed mass is controlled via Δpbed and ωout, see Eqs. (7) and (8), the

Fig. 11. Black box model of the stationary electrical power of mill: pmill,s with respect to

mill throughput _mmill and relative rotational speed of the mill ωmill.

Fig. 10. Particle size distributions of samples at lower and upper turning point of d32,bed for open-loop experiments 1–4. Corresponding sampling times: experiment 1–13.6 h (lower

turning point) and 21.4 h (upper turning point), experiment 2–13.0 h and 10.6 h, experiment 3–33.4 h and 37.7 h, experiment 4–31.3 h and 35.3 h. Product range is highlighted in gray.

Table 3

Overview of the experiments.

ID Product ωmill pmill,ref d32,ref

1 0.8–1.2 mm 17% – –

2 0.8–1.2 mm – 170 W –

3 0.8–1.2 mm – 140 W –

4 0.8–1.2 mm – 120 W –

5 0.8–1.2 mm – – 1.2 mm
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oscillations led to variations of the mass flow of withdrawn particles
_mout . Since _mout cannot be measured online, the variations of _mout

can only be observed by monitoring the rotational speed of the rotary

valve at the particle outlet ωout. As shown in Fig. 9, ωout varied in the

range of [0,ωout,max] throughout the experiment. Based on previous

experiments, the upper limit ωout,max was found to be 40% as a further

increase of ωout did not raise _mout. It is due to this restriction that not

enough product particles were discharged from the FBLG. This was ex-

acerbated by the classifying particle withdrawal: in the outlet, product

particles were displaced by oversized particles (see Fig. 8). The insuf-

ficient product removal induced a rise of mbed and, as illustrated in Fig.

9, an increase of the pressure drop Δpbed. Similar patterns of behavior

were observed by Schmidt [34]. In the present case, the continuously

increasing bed mass finally led to the shutdown of the process.

In addition, the classifying outlet induced an overgrowing of parti-

cles in the further course of the experiment. Particles of product fraction

were not withdrawn from the process chamber in a sufficient quantity.

In consequence, particle growth proceeded such that the particles en-

tered the oversized fraction. This is illustrated in Fig. 10. There, q0,bed
and q3,bed at a local minimum and maximum, in the following denoted

as turning points, of d32,bed are shown for the experiments 1–4. Of spe-

cial interest are themodes, viz. the peaks, of the PSDs. At the lower turn-

ing point, t=13.6 h, themodes of the PSDs are in the fines fractions. In

the progress of the experiment, the particles have grown, leading to a

shift of the modes to higher particles sizes. At t = 21.4 h, the upper

turning point of d32,bed, the modes are in the oversized fraction. In con-

sequence, themass portion xover in bed and outlet increased resulting in

a higher mill throughput _mmill.

Fig. 12. Left Column: normalized number and volume based particle size distributions q0,bed and q3,bed of experiment 2. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

Fig. 13. Comparison of selected data of experiment 2 (black line) and the corresponding simulation results (blue line). By adjustingωmill, themill was operated with constant pmill=175

W.WhileΔpbed is at a constant level, the Sautermeandiameter d32,bed is characterized by non-linear oscillations. Themeasured Sautermean diameter is based on themeasurements of the

CamSizer XT.
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As illustrated in Fig. 9, the milling process is influenced by _mmill. An

increase of the mill throughput, characterized by high values of ωout

and xover, led to a decrease of the electrical power consumption of the

mill pmill. This indicates, in combination with the large maxima of d32,

bed and d32,out, the inadequate comminution of oversized particles. The

uneven milling supported the overgrowing of the particles and there-

fore the occurrence of the observed oscillations.

3.2. Closed loop control of the mill power

To enable an even milling of oversized particles feedback control

was applied to keep the mill power constant at a given reference

value by readjusting the rotational speed of the mill. For this purpose

again a PI controller was used. The block diagram of the control loop is

illustrated in green in Fig. 6. The dynamic model was extended accord-

ingly. In particular, it was assumed, that the dynamic behavior of pmill

can be described by a first order lag element (PT1):

_pmill tð Þ ¼ pmill;s−pmill

� �

=τmill ð25Þ

As indicated by experimental findings, the stationary value of the

electrical power pmill,s depends on ωmill and the mass throughput _mmill

¼ ðπρs=6Þμ3ð _noverÞ. Based on previous measurements, the correlation

pmill;s ωmill; _mmillð Þ ¼
Π1 þΠ2ωmill þ Π3 þΠ4ωmillð Þ exp − Π5 þΠ6ωmillð Þ _mmillð Þ

ð26Þ

Fig. 14. Left Column: normalized number and volume based particle size distributions q0,bedand q3,bed of experiment 3. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

Fig. 15. Comparison of selected data of experiment 3 (black line) and the corresponding simulation (blue line). The mill was operated with constant pmill =140W. While Δpbed is at a

constant level, the Sauter mean diameter d32,bed is characterized by slow decaying, non-linear oscillations. The measured Sauter mean diameter is based on the measurements of the

CamSizer XT, the experiment was interrupted at tr =21.25 h.
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was established by a least square fit. The functional correlation of pmill,s

and its arguments is presented in Fig. 11.

To study the influence of the milling on the process stability, exper-

iments 2–4 were performed with different reference values of the mill

power pmill,ref. The set-points of the different experiments are presented

in Table 3. Following Dreyschultze et al. [1] and Radichkow et al. [12], it

is expected that a reduction of pmill,ref leads to an enhanced process sta-

bility. Throughout the experiments 2–4, the classifying effect of the par-

ticle withdrawal described in the previous section is observed again.

In experiment 2, the mill was operated with pmill,ref = 175W. The

results are presented in Figs. 12 and 13. Again, q0,bed and q3,bed are char-

acterized by oscillations. As shown in Fig. 10 the measured PSDs are

nowmore compact than in thefirst experiment: Firstly, the distance be-

tween the modes of q0,bed and q3,bed at lower (t= 13.0 h) and upper

turning point of d32,bed (t = 10.6 h) narrowed. Secondly, the ampli-

tudes of the corresponding modes decreased. This leads, as depicted in

Fig. 13, to a decrease in the amplitudes of d32,bed. In consequence, the

mass portion of the product fraction is of sufficient size throughout

the experiment. Thus, the adequate removal of product particles from

the FBLG is guaranteed such that, as monitored by the pressure drop

Δpbed, the bed massmbed is constant over time. Although the operating

conditions of the FBLGare constant, the intensemilling of oversized par-

ticles induced the formation of a large number of small nuclei. In accor-

dancewith [1], this leads to the formation of self-sustained oscillation of

the PSDs. Therefore, itwas not expected that the process settles down to

a stable steady state so that the experimentwas terminated at t=17 h.

In experiment 3, the reference value of the electrical power of the

mill pmill,ref was reduced to 140 W. Due to the large run-time of 40 h,

Fig. 16. Left Column: normalized number and volume based particle size distributions q0,bed and q3,bed of experiment 4. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

Fig. 17. Comparison of selected data of experiment 4 (black line) and the corresponding simulation results (blue line). Themillwas operatedwith constant pmill=120W.WhileΔpbed is at

a constant level, the Sautermean diameter d32,bed is characterized by decaying, non-linear oscillations. Themeasured Sautermean diameter is based on themeasurements of the CamSizer

XT, the experiment was interrupted at tr =17.0 h.
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the experiment was interrupted after 21.25 h of process time and

restarted again. Figs. 14 and 15 present the related particle size distribu-

tions of the bed and further measurement information. Once again,

Δpbed and pmill are at a constant level throughout the experiment. Due

to the decreased pmill, the particle grinding was reduced. As shown in

Fig. 10, the modes of q0,bed and q3,bed shifted to a larger particle size L

at the lower turning point of d32,bed at t=33.4 h. This leads to a more

even particle growth resulting in a slow decay of the oscillations of the

particle size distributions and, in consequence, of the oscillations of

d32,bed.

Afterwards, pmill,ref was further reduced to 120W in experiment 4.

Related PSDs andmeasurements are presented in Figs. 16 and 17. In ex-

periment 4, a faster decay of the oscillatory behavior is observed com-

pared to experiment 3. As illustrated in Fig. 10, the deviations

between the PSDs at the lower and upper turning point of d32,bed, sam-

pling times are t = 31.3 h and t = 35.3 h, are, compared to the

previous experiments 1–3, quite small. It is expected, that in the further

course of the process these deviations would vanish such that the pro-

cess would reach stable steady-state conditions. However, the decay

to steady state is very slow due to the oscillatory behavior. In addition,

the settling is aggravated by disturbances, such as the restart of the

FBLG at tr = 17 h. Therefore, the experiment was terminated at t =

40 h.

Comparison between experiments and model predictions are also

shown in Figs. 12–17 for experiments 2–4. In general, simulation results

and experimentalfindings are in good agreement. Themaximumvalues

of q0,bed and q3,bed, as well as the period of the oscillations in Figs. 12, 14,

and 16, are at the same level resulting in a similar shape of measured

and simulated PSDs. Furthermore, Figs. 13, 15, and 17 show the good

agreement of pmill and ωmill between experiments and simulations.

With respect to pmill,ref, the model is capable to reproduce the different

forms of dynamic behavior. As illustrated in Fig. 12, pmill,ref =170 W in-

duced oscillations of q0,bed and q3,bed with large amplitudes. In contrast

to this, the PSDs are characterized by slowly decaying oscillations for

pmill,ref =140 W and pmill,ref =120 W (see Figs. 14 and 16).

3.3. Additional closed loop control of the Sauter mean diameter

To enhance thedynamics of the process and establish operationwith

constant PSD as fast as possible, a cascade controller was designed: As

illustrated in Fig. 6, the PI-controller for the bed mass is extended by

an outer loop to control the Sauter mean diameter d32,bed by readjusting

the reference value of themill power pmill,ref. The plantmodel presented

in this paper was used for controller design. As a first step, the dynamic

model is numerically linearized at the stationary state according to the

default parameter set with pmill,ref = 120 W. The resulting linear

time-invariant (LTI) transfer function Gnom(jω) of order 403 describes

the dynamic behavior of the output signal d32,bed with respect to the

input signal pmill,ref in the neighborhood of the steady state. By means

of a balanced truncation, the full-order system is reduced to a system

of order 5 [35]. The reduced model Gred(jω) shows good agreement

with the nominal system Gnom(jω) as illustrated with the Bode plots

in Fig. 18.

Based on the transfer function Gred(jω), a feedback controller is de-

signed by means of the root locus method [36]. Root loci represent the

location of the closed loop poles in the complex plane depending on

the controller gain. They are illustrated in Fig. 19 for a P controller

(left figure) compared to a PI controller (right figure). They start in

Fig. 18. Bode plots of the full order system Gnom(jω) and the reduced system Gred(jω) of

order 5.

Fig. 19. The root-locus of the closed-loop system Gcl(jω)with respect to controller gain kd32
. Poles of Gol(jω) are indicated by x, the according zero by o. The damping ratios of Gcl(jω) are

specified in gray. Left: A suitable tuned P controller kd32
increases thedamping ratio ofGcl(jω) and guarantees a stable steady-state operation. Right:Due to thepole introduced at the origin,

one pole of the PI controlled closed-loop system is in the right half-plane hence Gcl(jω) is unstable for all kd32
.
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the open loop poles of the controller and the system to be controlled in-

dicated by the crosses in Fig. 19 and end in the open loop zeros indicated

by the circles in Fig. 19. In both diagrams one branch is tending to −∞.

The controlled LTI system is stable if and only if all closed loop poles

lie in the left half plane. Usually, controllers with integral action are pre-

ferred in view of steady state accuracy [36]. However, from Fig. 19 it is

readily concluded, that the system is not stabilizable if the controller in-

cludes integral action like the PI controller in the right diagram. This is

due to the fact, that any integral action introduces an open loop pole

in the origin and that the branch starting from the origin lies entirely

in the right half plane. Therefore, a P controller was selected, which al-

lows stabilization with good damping for some suitable controller gain

as illustrated in the left diagram. From this diagram, we further con-

clude that this will even work for higher mill powers when the open

loop system becomes unstable and the pair of conjugate complex

poles of the plant close to the imaginary axis is shifted from the left to

the right half plane.

In the next step, the designed P controller was validated with a sim-

ulation study. For this purpose, the nonlinear dynamic plant model pre-

sented in Section 2 was extended by the controller according to

pmill;ref tð Þ ¼ kd32ed32;bed þ pmill;0 ð27Þ

with the control error ed32,bed
= d32,ref− d32,bed.

Fig. 20. Left Column: normalized number and volume based particle size distributions q0,bed and q3,bed of experiment 5. PSDs were determined with CamSizer XT. Right Column: PSDs of

the corresponding simulation.

Fig. 21.Comparison of selected data of experiment 5 (black line) and the corresponding simulation results (blue line). Based on the inlinemeasuredparticles size distribution the process is

controlled. The related control scheme is presented in Fig. 6. After a sufficient time the process settles at steady state characterized by constant Δpbed and d32,bed.
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As the simulation results were promising, the designed P controller

was implemented at the plant and tested in experiment 5. The Sauter

mean diameter was measured inline with the equipped Parsum probe.

Simulation and experimental results are illustrated in Figs. 20 and

21. It is shown that the overall control strategy dampens the oscillations

of d32,bed and thus also the oscillations of the PSDwithin relatively short

time and achieves a stable steady state with constant bed mass mbed.

Compared to the corresponding scenario without control of the Sauter

mean diameter which was shown in Fig. 17, the process dynamics

were improved significantly. In Fig. 17 a stable steady state could not

be achievedwithin thefirst 40 hours, whereas in Figs. 20 and 21 a stable

steady state is reachedwithin 5 hours. Again, there is a good agreement

between simulation and experiments.

4. Conclusion

In this article, control strategies for stabilizing the bed mass and the

particle size distribution of a continuous fluidized bed layering granula-

tion process with sieve-mill-cycle were developed step by step and val-

idated experimentally. For the first time, it was shown experimentally,

that the process dynamics can be improved considerably by using

even relatively simple control strategies. The theoretical development

was based on an extended plant model, accounting for a more realistic

description of the product removal, the grinding of the oversized parti-

cles and the bedmass control compared to our previous work [1,12,33].

Themodel showed good agreementwith the experimentalfindings and

can be used for further studies on dynamics and control of continuous

FBLG processes.

Future work will focus on a rigorous evaluation of more advanced

control strategies as described for example in [16,23]. Furthermore,

the dynamicmodel can be extended to account for other important par-

ticle properties, like particle porosity, for example [37]. Such a model

could be used to develop and test more advanced process configura-

tions in silico. A typical example are multi chamber processes, which

admit different operating conditions in different process chambers

and can therefore be used for the formulation of more advanced parti-

cles. To enhance the performance of those processes and guarantee

the formation of particles with desired properties, suitable control strat-

egies for multi chamber processes can also be developed using such an

extended dynamic model.
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a b s t r a c t

One of the most significant structural dynamics problems of large gantry cranes are elastic

vibrations in trolley travel direction. They put additional mechanical stresses on a crane

construction and reduce crane operation performance. As these vibrations are mostly

excited by trolley acceleration forces, they can be taken into account in the trolley motion

control system. This article presents a robust control-based approach for active damping of

the gantry crane elastic structural vibrations. The crane model with additional uncertainty

models are derived using the finite element method (FEM). In order to achieve low order

models that can be directly used for the control system design modal truncation as a model

reduction technique is performed. The robust controller is then designed by the H1-

loopshaping design procedure evaluating the associated robustness margins. The proposed

feedback strategy has been successfully verified on a laboratory gantry crane.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, well-thought-out logistics and faster cargo transportation play an important role in the enhancement of trade

and industry. In order to consume less time for these operations, application of automated equipment, including cranes, is

needed. Gantry cranes are commonly used for loading and unloading of containers at port terminals (Fig. 1). To increase effi-

ciency, a lot of the gantry cranes are operated at high velocities of the crane trolley, which causes larger swing angles of the

crane cargo [2].

Over the last five decades there has been a vast research in the field of the modelling and control of cranes. Here, a variety

of models and control approaches for different types of cranes has been covered [3,4]. One of the most important topics in

this field is the reduction of load swaying due to the positioning process applying different control strategies: sliding mode

control [5–8], error tracking control [9], adaptive tracking control [10,11], energy-based control design [12,13], and output-

based input shaping techniques [14,15] etc. In the majority of the contributions it is assumed that the crane structure is of

infinite stiffness and therefore structural dynamics can be neglected. Verification is predominantly provided using mathe-

matical crane models or small scaled laboratory cranes with ideal stiff structure. However, with the continuous increase

of crane dimensions and utilizing lightweight construction structures the assumption of ideal stiffness becomes more and

more less valid and the coupling between elastic structural vibrations and the trolley movements has to be taken into

account.

https://doi.org/10.1016/j.ymssp.2018.11.005
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In the last two decades the problem of the structural flexibility has been stated for different types of cranes ranging from

gantry, overhead and ship-to-shore (STS) container cranes [16–25] to slewing cranes [26–28]. This contribution is concerned

with large gantry cranes. Here, two main structural dynamical problems are of interest: vertical girder vibrations due to the

trolley travel and low frequency vibrations in the trolley travel direction. The first problem is called the moving load problem

and has been well covered with the modelling and analysis in [16,18,19,29,30].

In this paper the low frequency vibrations of the crane structure in the trolley movement direction are studied. Being par-

ticularly negative because of the large amplitudes and only weakly damped behaviour, these vibrations reduce the crane

operation performance of load positioning and produce additional mechanical stresses which leads to faster construction

wear. Moreover, these vibrations may have a disturbing influence on the crane operator, deteriorating his working condi-

tions and comfort [24]. In Fig. 2 the vibration measurements from real gantry crane by normal operation and its fast Fourier

transform are depicted. It can be seen that the first eigenfrequency f 1 ¼ 0:5 Hz is the important significant in the system

dynamics during normal cargo transportation operations.

Currently, several approaches can be found for vibrations reduction in the gantry crane structures. In [22] the authors

offer to optimize the crane structure by increasing supporting legs thickness or by stiffening the gantry. A passive and an

active damper via additional passive and actuated weight as counter-mass have been proposed in [31]. In the first case,

the obtained system damping was relative small (up to 10%) comparing to the implementation and material costs (30 t

counterweight). In the second case, the resulting system damping was more notable (up to 60—70%). However, an additional

linear drive system (with 5 t counterweight) for its application is needed resulting in additional costs.

For a different crane type it has been shown that the structural dynamics can be taken into account as an additional con-

trol task for the motion control system. In [29] authors offer an active damping approach for vertical container crane vibra-

tions using the modal coupling. Here, the classical crane model is extended with the a FEM based crane structure model. The

vertical vibrations are then taken into account designing an appropriate anti-sway damping strategy using pole placement.

As a control handle the hoist drive system is used. In [27,28] active damping approaches for flexible tower cranes are pro-

posed. Here, control of the slewing motion provides the damping of the elastic jib and tower vibrations. In [27] the authors

propose an early lumping control approach to control the rotating Euler-Bernoulli beam. After spatial discretization and

modal order reduction pole placement and LQR control are suggested for the crane damping control. In [28] the optimal con-

trol problem for a rotating elastic crane coupled with a trolley-load system is introduced. In [32] it has been shown that

including the elastic crane model in anti-sway control for simultaneous damping of the load swinging and crane structural

vibrations is possible. The proposed approaches have shown promising results in simulations.

Motivated by aforementioned studies, a robust control-based approach for active damping of the gantry crane vibrations

is presented in this article. For this purpose, the trolley position control system has been extended by the elastic crane model.

In order to design the robust controller for the extended plant, the H1-loopshaping design procedure has been applied and

Fig. 1. The gantry crane from a container port [1].
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robustness margins have been evaluated in the terms of the gap metric. The resulting controller has been verified on a lab-

oratory gantry crane.

Section 2 presents the modelling of the elastic gantry crane and model order reduction. Model uncertainties and errors

are described in Section 3. The robust controller design is introduced in Section 4. Section 5 concludes the article with exper-

imental results from a laboratory gantry crane.

2. Gantry crane modelling

In this section the dynamic model of the gantry crane plant is derived. As depicted in Fig. 3 this model includes a con-

trolled electric drive as it is used in most crane applications for tracking the reference position and elastic structural dynam-

ics. The classical cascade control structure performs the trolley positioning using the motor voltage as a control input ud. This

implies that in the considered robust control design the actuated variable is the reference position rr . In this contribution the

following assumptions for modelling are made:

1. the position controlled drive eliminates the feedback action of load movement and elastic crane oscillations on the trol-

ley, and compensates the friction forces;

Fig. 2. Crane vibrations acceleration (above, grey), its filtered values (above, black) and its fast Fourier transform (below, black).

Fig. 3. Crane plant model.
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2. coupling between the load swinging and the crane vibrations can be neglected as from the practical point of view they are

in a different frequencies range, e.g. load swinging range of frequencies – f l ¼ 0:08� 0:2 Hz for rope length variations

between lr ¼ 30� 5 m respectively, first natural frequency of real gantry cranes – f 1 ¼ 0:5—0:8 Hz;

3. external disturbances on the crane and load are neglected, e.g. wind, waves etc.;

4. the load swinging is neglected, assuming that it can be stabilized by a competent operator or optimized reference

trajectory.

2.1. Model of laboratory gantry crane

It has been introduced that weakly damped low-frequency crane vibrations is a serious structural dynamics problem,

which can be taken into account by the crane trolley motion control. In order to reflect the dynamic behaviour of large gantry

cranes and to verify the robust controller, a laboratory model has been designed (Fig. 4). Here, the legs have been built of thin

plate material, resulting in a limit stiffness and oscillating dynamic behaviour in trolley direction. This laboratory crane is

considered for the further mathematical modelling and control design.

The structural scheme of the model is represented in Fig. 5. Here, the model consists of a trolley travelling over a girder

(jib) and elastic supporting legs, which are fixed in the lower part. The trolley is moved via a tooth-belt drive by a DC-motor

with reduction gear, mounted on the girder. According to the aforementioned assumptions no hoist system nor load are

taken into account in this contribution. The trolley loading is performed by a rigid fixing of the crane trolley and an addi-

tional load on the top of the trolley.

Fig. 4. CAD Model and photo of the laboratory gantry crane model.

Fig. 5. Laboratory gantry crane.
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The position controlled DC drive accomplishes the trolley movement along the linear girder axis. This drive is equipped

with a current sensor and an incremental encoder providing digital measurements of current, rotation velocity and angle of

the trolley motor. In addition, inertial motion unit (MinIMU-9) is mounted on the girder, which measures girder acceleration

of the laboratory model. The trolley drive control system, damping control and bandpass filter for acceleration signal are

implemented on a micro-controller (Arduino Mega 2560). The trolley cascade position control is described in next section.

2.2. Model of trolley drive system

Currently, most crane systems are equipped with electric drives that typically provide velocity or position control of trol-

ley travel via classical cascade control with P and PI controllers (Fig. 6) [2]. Here, the control system consists of an outer posi-

tion control loop Gr sð Þ and inner velocity Gv sð Þ and current (torque) control loops Gi sð Þ. For the following cascade structure

the control design is usually performed step by step. The inner PI controller Ci sð Þ for the motor current plant Pi sð Þ is designed

first, after which the PI controller Cv sð Þ for the augmented velocity plant Gi sð ÞPv sð Þ is designed. At the last step, the position P

controller Cr sð Þ for the Gv sð ÞPr sð Þ is tuned [33,34]. The electrical and mechanical subsystems and the corresponding con-

trollers can be represented as follows:

Pi sð Þ ¼
i sð Þ

u sð Þ
¼

1

Tlsþ 1
�

1=Ra

Tasþ 1
; ð1Þ

Ci sð Þ ¼ ki �
T isþ 1

T is
; ð2Þ

Pv sð Þ ¼
v sð Þ

i sð Þ
¼

1

kms
; ð3Þ

Cv sð Þ ¼ kv �
Tvsþ 1

Tvs
; ð4Þ

Pr sð Þ ¼
r sð Þ

v sð Þ
¼

1

s
; ð5Þ

Cr sð Þ ¼ kr; ð6Þ

where Tl is the time constant of the rectifier, Ta is the electrical time constant of the DC drive, Ra is the resistance of the

electrical part of the DC drive, ki and T i are the proportional gain and time constant of current PI controller, km is the mechan-

ical parameter which resembles the inertial mass of the drive system and conversion of the angular motor velocity coordi-

nate into linear velocity, kv and Tv are the proportional gain and time constant of the velocity PI controller and kr is the

proportional gain of the position P controller. In this work all controllers coefficients are adjusted according to the magnitude

(modulus) optimum procedure that is explained in details in [33,35]. Application of this procedure for the electric drive sys-

tems results in a good reference performance with small overshoot values. The trolley drive system simulation parameters

are represented in Table 1.

In order to verify the crane model with laboratory crane the positioning reference tracking of the crane trolley has been

studied with a step change of the desired position to rr ¼ 200 mm. Simulation and experimental results are depicted in Fig. 7.

As can be seen, the linear simulation model of controlled trolley drive reflects the dynamics of the laboratory gantry crane

and the positioning behaviour resembles the linear first order system dynamics. The current mismatches are a result of the

neglected friction forces and the peak of the current value during the positioning is about 1:5Awhich is 50% of the maximum

limitation value imax ¼ 3A. Therefore, it can be assumed that the laboratory crane operates in its linear region. Hence, for con-

venience, in the further gantry crane plant modelling and damping control design, we consider that the position control loop

Gr sð Þ can be approximated as a simple first order system:

Gr sð Þ ¼
r sð Þ

rr sð Þ
¼

1

Trsþ 1
; ð7Þ

Fig. 6. Gantry crane position control scheme.
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where Tr is the time constant which can be identified using the experimental data.

2.3. Model of elastic crane

Modelling and control of mechanical elastic structures is a non-trivial task due to its infinite-dimensional nature. Appli-

cation of analytical approaches is restricted in most cases to simple geometries and boundary conditions. For more complex

structural geometries, e.g. geometry of gantry cranes, utilizing numerical methods for model lumping are usually preferred

[23,27,29].

Currently, there are a lot of commercial finite element packages that are suitable for modelling and analysis of a wide

range of infinite-dimensional physical problems. Most of them provide options for importing CAD model geometries and

exporting dynamic models. Having reliable models available allows to design and to test the control system at the stage

of crane production and to accomplish virtual commissioning.

In order to derive the dynamic model of the elastic crane, including the displacements and its derivatives, the Solid

Mechanics interface of the commercial software COMSOL Multiphysics is used. The gantry crane geometry is imported from

the CAD model of the laboratory crane, where small dimensional parts of the model have been simplified to reduce compu-

tational time. In Fig. 8 the model of the gantry crane is depicted in two dimensions. It consists of the aluminium solid girder

and the aluminium alloy solid legs. All masses of the simplified geometry correspond to the masses of the real elements of

the laboratory crane. The physical parameters of the FEM model are summarized in the Table 2. For the lower cranes legs

fixed constraint boundary conditions are applied. An external point force Ft resembles the excitation due to the trolley travel.

The damping coefficient n ¼ 0:1 has been obtained from practical measurements. The crane structure is discretized applying

a distributed mesh with quadrilateral elements resulting in nd ¼ 1124 degrees of freedom (DOF).

Here, the spatial discretization of the partial differential equations yields the equations of motion with nd DOF:

M€U þ D _U þ KU ¼ F; ð8Þ

where K;D and M are assembled the global stiffness, damping and mass matrices; U; _U and €U are displacement, velocity and

acceleration vectors at all structure domain nodes and F is the nodal forces vector.

Material induced damping can be performed by the Rayleigh damping where the damping matrix D is a linear combina-

tion of the stiffness K and mass M matrices:

D ¼ aM þ bK; ð9Þ

where b is the stiffness-proportional and a is the mass-proportional factors.

Assuming the external force is an input to the crane plant u tð Þ ¼ Ft and the point at the girder M is the displacement out-

put y tð Þ ¼ qM , the model can be expressed for small variations as a linear state-space model of high order

Table 1

Trolley drive system parameters.

Parameter Value Unit Parameter Value Unit

Ta 5:6 � 10�4 [s] Tl 5 � 10�5 [s]

Ra 2.5 [X] ki 3.7 [–]

T i 6 � 10�3 [s] km 6:6 � 103 [–]

kv 6 [–] Tv 5:8 � 10�2 [s]

kr 4.1 [–] Tr 0.1 [s]

Fig. 7. Simulation (dashed, blue) and experiment (solid, grey) time responses for trolley positioning with reference trajectory (dotted, red). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

I. Golovin, S. Palis /Mechanical Systems and Signal Processing 121 (2019) 264–278 269



_x tð Þ ¼Ax tð Þ þ Bu tð Þ; ð10Þ

y tð Þ ¼Cx tð Þ þ Du tð Þ; ð11Þ

where A;B;C and D are the system matrices.

2.4. Model order reduction

The order of the derived state-space model is 2248. For the further control design an additional model order reduction

should be introduced. In this contribution modal truncation is used. One of the advantages of this technique is that the poles

of the low order model are a subset of the poles of the high order model and, hence, all of the eigenfrequencies preserved

retain a physical interpretation [36,37].

The modal truncation technique is based on a special modal representation form of the state-space model. If the system

matrix A of state space model Eq. (10), (11) has complex conjugate eigenvalues, it is possible to transform this matrix into a

block diagonal form using the similarity transformation

bA ¼ bT�1AbT ¼

k1 0 � � � 0

0 k2 � � � 0

.

.

. .
.
. .

.
. .

.

.

0 0 0 kn

2

66664

3

77775
; ki ¼

ri �xi

xi ri

� �
; jx1j < jx2j < � � � < jxnj; ð12Þ

where the matrix bT is composed of the eigenvectors of matrix A and ki ¼ ri � jxi are the eigenvalues of matrix A. From a

physical point of view, these values represents the main properties of mechanical system modes. Namely, Re kið Þ ¼ ri char-

acterizes the mode damping, and Im kið Þ ¼ xi represents the natural frequency of the eigenmode.

Transforming the state-space model Eq. (10), (11) into its modal form

_bx tð Þ ¼bAbx tð Þ þ bBu tð Þ; ð13Þ

y tð Þ ¼bCbx tð Þ þ bDu tð Þ; ð14Þ

Fig. 8. Gantry crane FEM model.

Table 2

FEM elastic crane model parameters.

Parameter Value Name Parameter Value Name

gl 0.82 [m] Girder length gh 0.005 [m] Girder height

lw 0.001 [m] Legs width lh 0.548 [m] Legs height

mt 0.3 [kg] Trolley mass ml 0–0.6 [kg] Load mass

Eg 2 � 1012 [Pa] Elastic modulus (girder) �El 34 � 109 [Pa] Elastic modulus (crane legs)

mg 0.3 Poisson’s ratio (girder) ml 0.28 Poisson’s ratio (crane legs)

qg 2363 [kg=m3] Density (girder) ql 6124 [kg=m3] Density (crane legs)
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where

bA ¼ bT�1AbT ; bB ¼ bT�1B; bC ¼ CbT ; bD ¼ D;

the state vector bx can be partitioned into two parts bx1 bx2

� �T
. Here, the vector bx1 represents the slow eigenmodes and bx2 rep-

resents the fast modes. Hence, model Eq. (13), (14) can be rewritten as follows:

_bx1

_bx2

" #
¼

K1 0

0 K2

� � bx1

bx2

" #
þ

bB1

bB2

" #
u; ð15Þ

y ¼ bC1
bC2

h i bx1

bx2

� �
þ Du: ð16Þ

Removing the system part corresponding to bx2, will result in an approximation of (10), (11) as

_bx1 ¼K1bx1 þ bB1u; ð17Þ

y ¼bC1bx1 þ bDu ð18Þ

with the following equivalent transfer function

G1 sð Þ ¼ bC1 sI �K1ð Þ�1bB1 þ bD: ð19Þ

The number of eigenmodes that should be included in G1 sð Þ after the truncation always depends on an individual appli-

cation case. From a practical point of view, in order to decide on the appropriate order, the elastic crane dynamics and the

trolley drive system dynamics should be analysed in frequency domain. In general, the faster the drive system dynamics is,

the more system eigenmodes can be excited and therefore should be conserved. In Fig. 9 the Bode magnitude plots of the

system are depicted. As can be seen, the trolley drive system in this case is relatively slow and we assume that only the first

system eigenmode with angular eigenfrequency x1 ¼ 5:84 rad=s can be influenced. Therefore, the second order approxi-

mated model G1 sð Þ is considered for the damping control design.

2.5. Model of overall gantry plant

The overall plant model Go sð Þwhich reflects the influence of the loaded or unloaded trolley movement on the crane struc-

ture is represented in Fig. 10. Here, the elastic vibrations are excited due to the trolley acceleration forces Ft that can be

derived from the second derivative of the trolley position r sð Þ and the trolley mass mt . The output of interest of the overall

gantry plant model Go sð Þ for the further control design is the girder acceleration aM . Simulation and experimental results of

trolley positioning and elastic vibrations excitation are depicted in Fig. 11. Reduced order simulation model of elastic gantry

crane reflects the dynamics of the laboratory model with only small mismatches due to non-linearities of real elastic

structure.

3. Uncertainty models

The idea of this paper is to propose and verify the robust control law that satisfies a robust stability and a certain perfor-

mance criteria for a gantry crane with varying and uncertain parameters. Assuming that although the equations of motion

are the same, parameters of the system structural dynamics for loaded and unloaded cranes are different and the stiffness of

the crane legs is not exactly known. In this case, additional performing of uncertainty models is needed. Moreover, using

model order reduction techniques yields additional errors, which should be taken into account.

Fig. 9. The Bode magnitude plots of the high order (solid, grey), low order (dashed, blue) and trolley drive system (dotted, red) models. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.1. Coprime factor description and gap metric

From a robust control design perspective, the considered set of models for different parameters can be encapsulated in a

nominal plant Go sð Þ and a set of bounded uncertainties [36,38]. The uncertainties must be stable and have a finite H1-norm.

In order to include the model uncertainties for weakly damped or undamped elastic structure models, application of the

coprime factor description should be preferred. The nominal system normalized coprime factorization can be formulated

as follows:

Go sð Þ ¼
Nn sð Þ

Mn sð Þ
; ð20Þ

where Mn sð Þ;Nn sð Þ 2 H1 are coprime transfer functions that satisfy the Bezout identity

Mn sð ÞMn �sð Þ þ Nn sð ÞNn �sð Þ ¼ 1: ð21Þ

The family of uncertain system models GD sð Þ can be described by the nominal system Go sð Þ and coprime factor uncertain-

ties DM sð Þ and DN sð Þ as illustrated in Fig. 12.

GD sð Þ ¼
Nn sð Þ þ DN sð Þ

Mn sð Þ þ DM sð Þ
: ð22Þ

In general, application of the coprime factor description for the uncertain models yields an additional degree of freedom

for selection of DM sð Þ and DN sð Þ. To reduce conservatism, a coprime factor description with a minimal H1 – norm for DM sð Þ

and DN sð Þ should be selected, which leads to the introduction of the gap metric.

As stated in [39,40] the gap metric dg between the nominal system model Go sð Þ and the uncertainty model GD sð Þ can be

estimated as a maximum of the directed gaps between these systems

dg Go;GDð Þ ¼ max dg
!

Go;GDð Þ; dg
!

GD;Goð Þ
n o

; ð23Þ

where

dg
!

Go;GDð Þ :¼ inf
DMDN½ �2H1

k DMDN½ �k1 : GD

� �
: ð24Þ

Fig. 10. Crane plant augmented by the trolley position control.

Fig. 11. Simulation (dashed, blue) and experiment (solid, grey) time responses of the gantry crane with trolley position control. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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The gap metric possesses values between zero and one. The systems are close in terms of the gap metric if the value is

close to zero. From the control point of view, it means that the two systems can be stabilized by the same control law. For a

robust controller design the maximum value of the gap metric between the nominal model and set of uncertain models can

be used as a measure for the required robustness margin.

Being a metric, the gap metric satisfies the triangular inequality

d G1;G3ð Þ 6 d G1;G2ð Þ þ d G2;G3ð Þ; ð25Þ

which can be used for calculations of corresponding estimates by multiple error sources. For instance, the triangular inequal-

ity can be utilized to calculate an estimate for the distance between the low order uncertain model GD and the original nom-

inal model G in the terms of the gap metric d Gn;Gð Þ taking into account a low order approximation of the uncertain system

G1 ¼ GD, a low order approximation of the original nominal system G2 ¼ Go and a high order representation of the original

nominal system G3 ¼ G. Hence, the model order reduction errors or numerical lumping errors can be considered in a unified

manner.

3.2. Gantry crane model uncertainties

In this work, we consider that the system structural dynamics for a loaded and unloaded gantry crane varies and the crane

legs stiffness is not exactly known. Therefore, a set of gantry crane models can be obtained using the steps proposed in Sec-

tion 2.3 - 2.5. This set of models PC, including 169 models, is generated from the nominal FEM-model by variations of addi-

tional mass on the girder mR consisting of constant trolleymt and varying load masses ml, and elastic modulus of gantry legs

material El. It is considered that these parameters for model variations are within certain intervals:

mR ¼ �mR 1þ kmDmð Þ; El ¼ El 1þ kEDEð Þ; ð26Þ

where �mR and �El are the values of the nominal model, km; kE and Dm;DE define possible variations.

In this contribution, the following parameter values are chosen km ¼ 0:5; kE ¼ 0:3 and �1 6 Dm;DE 6 1 representing up to

50% uncertainty in the crane loading and up to 30% in crane legs stiffness (Fig. 13). The nominal model Go sð Þ 2 PC corre-

sponds to half of the crane loading capacity and can be achieved for Dm ¼ DE ¼ 0. The transfer function of the nominal model

for the given in the Table 2 parameters yields:

Go sð Þ ¼ �3 � 107 �
s4

sþ 10ð Þ sþ 50ð Þ4 s2 þ 0:16sþ 34:62ð Þ
: ð27Þ

The Bode magnitude plots and the gap metrics for a set of crane models are depicted in Fig. 14 and 15.

As can be seen from Fig. 15 the maximum of the gap metric is

dg GD;Goð Þ ¼ 0:29 ð28Þ

Fig. 12. Coprime factor uncertainty.

Fig. 13. Domain of parameter variations.
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and the error due to the order reduction in terms of the gap metric is

dg Go;Gð Þ ¼ 0:02: ð29Þ

Therefore, the required robustness margin for the robust controller can be calculated from the triangular inequality Eq. (25)

[40]

d GD;Gð Þ 6 d GD;Goð Þ þ d Go;Gð Þ ¼ 0:31: ð30Þ

4. Control design

In this section the robust control design for active crane vibrations is performed. In order to reduce the elastic swinging in

the trolley travel direction for the described set of varying gantry cranes the control law is obtained using H1 – loopshaping

procedure.

4.1. H1 – loopshaping control

The idea of the H1 – loopshaping design procedure is based on the combination of classical loopshaping ideas and H1 –

robust stabilization [36,38,41]. Here, the control design consists of two steps. In the first step the open-loop system eigen-

values are adjusted using a compensator in such a manner, that certain requirements for the closed loop system are fulfilled.

In a second step a robust, with respect to normalized coprime factor uncertainty, stabilizing controller for the shaped plant is

obtained.

To reflect closed-loop performance requirements the open-loop singular values can be adjusted using a weighting func-

tion W sð Þ as depicted in Fig. 16

Gs sð Þ ¼ G sð ÞW sð Þ: ð31Þ

For a given shaped open-loop plant in its normalized coprime factor representation Gs sð Þ ¼ N sð Þ=M sð Þ the controller K1,

which guarantees a maximum robustness margin with respect to the normalized coprime factor uncertainties, can be

obtained from the following H1 – control problem

K1

1

� �
1

1þ GsK1ð ÞM

����

����
1

6 ��1: ð32Þ

The maximum robustness margin �max can be calculated as follows:

�max ¼ 1þ q XZð Þð Þ�1=2; ð33Þ

where X and Z are the positive definite solutions of the following algebraic Riccati equations

A� BR�1DC
	 
T

X þ X A� BR�1DC
	 


� XBTR�1BX þ CR�1CT ¼ 0; ð34Þ

A� BR�1DC
	 


Z þ Z A� BR�1DC
	 
T

� ZCTR�1CZ þ BR�1BT ¼ 0; ð35Þ

with R ¼ 1þ D2. Based on the stabilizing controller K1 for the augmented plant Gs sð Þ the overall controller K can be derived

as

K sð Þ ¼ K1 sð ÞW sð Þ: ð36Þ

Application of the H1 – loopshaping for the plant Gs sð Þ with robust stability margin �, results in a controller K, which sta-

bilizes all plants GD sð Þ with gap metric dg Gs;GDð Þ < �.

4.2. Simulation results

For the controller design the nominal plant transfer function G sð Þ is considered (Fig. 14, blue line). Here, the transfer func-

tion has a slope nl ¼ þ80 dB=decade at the low frequency range, a slope nh ¼ �60 dB=decade at the high frequency range, a

peak at the eigenfrequency x1 ¼ 5:84 rad=s with magnitude jGs jx1ð Þj ¼ 47 dB and a gain crossover frequency

xc ¼ 191 rad=s. It can be seen, that the transfer function has an unbiased output state and a high value of gain crossover

frequencyxc , which can boost the influence of the measurement noise or neglected high frequency modes dynamics. Hence,

the main objective for the loop shaping is to reduce the frequency xc . The compensator W sð Þ providing the open loop shape

for the robust control design is therefore chosen as follows:
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W sð Þ ¼ kW �
1

TWsþ 1
; ð37Þ

where kW ¼ 0:1 and TW ¼ 0:05 are gain and time constant of the weighting function W sð Þ respectively. The Bode magnitude

plots of the nominal system plant and the shaped plant are depicted in Fig. 17. In order to adjust these parameters the trade-

off between fast transients and robustness requirements has been taken into account.

For the shaped crane plant model Gs sð Þ ¼ G sð ÞW sð Þ the robust controller K1 is derived with stability margin � ¼ 0:48. As

the margin is greater than the maximum of the gap metric dg;max ¼ 0:32, the achieved controller guarantees robust stability

for the set of the uncertain gantry crane models.

Fig. 14. The Bode magnitude plots for two sets of uncertain systems.

Fig. 15. Gap metric sequence.

Fig. 16. H1-loopshaping.
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In Fig. 18 the Bode magnitude plots for the set of uncertain closed loop systems and obtained controller are illustrated.

5. Practical application

The presented active damping method using the crane trolley has been implemented on a laboratory gantry crane. For

verifications the same scenario of trolley positioning as in Section 2.2 is used. In Fig. 19 the comparison of simulation and

experimental results are presented. Here, position mismatches are a result of the neglected friction forces and non-

linearities of the reduction gear. It is observable that using the proposed active damping approach as an additional task

for the trolley motion control system yields a notable system damping. Moreover, this redesign of the trolley control system

can be also extended for a simultaneous anti-sway load damping and active damping of the crane structural vibrations [32].

In order to verify the robustness properties of the achieved controller, additional experiments for a varying mass mR are

shown in Fig. 20. Here,mR ¼ 0:6 kg corresponds to the nominal case with half loading of the crane capacity,mR ¼ 0:9 kg cor-

responds to the maximum loading andmR ¼ 0:3 kg contains only the mass of trolley. It can be seen that the designed control

law completely fulfils the robustness requirements and a notable system damping for different crane loading conditions can

be achieved.

Fig. 17. Bode magnitude plots for the nominal system plant (solid, blue) and the shaped system plant (dashed, red). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. The Bode magnitude plots for two sets of uncertain closed loop systems.
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6. Conclusion

A new damping approach for gantry crane vibrations, using only trolley acceleration forces, has been presented and suc-

cessfully verified on a laboratory gantry crane. For designing a robust control law, that guarantees the robust stability and

the performance specifications for gantry cranes with different loading and unknown stiffness parameters, H1 – loopshaping

synthesis has been applied. In order to derive a mathematical description of the elastic gantry crane dynamics, FEM has been

used. The derived high order models have been reduced using modal truncation approximation. In order to represent a set of

gantry cranes, a normalized coprime factor description has been used for the parametric uncertainties. The robust controller

Fig. 19. Simulation (dashed, blue) and experiment (solid, grey) time responses of elastic gantry crane with damping control. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Experiment time responses of elastic gantry crane with (solid, blue) and without (dashed, grey) damping control for varying loads. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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has been designed and successfully applied to the laboratory gantry crane. For further verifications the presented robust

damping approach has to be verified on a full-scale real crane in combination with an anti-sway control system.

In human operated gantry cranes undamped elastic crane vibrations of high amplitudes are unacceptable for the crane

operator. However, an excessive additional actuation on the trolley motion due to the additional damping strategy can also

disturb the crane operator. Therefore, future work should explicitly take into account the comfort of the crane operator intro-

ducing an additional performance criteria.
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Abstract: Agglomeration represents an important particle formation process used in many industries.

One particularly attractive process setup is continuous fluidized bed spray agglomeration, which

features good mixing as well as high heat and mass transfer on the one hand and constant product

throughput with constant quality as well as high flow rates compared to batch mode on the other

hand. Particle properties such as agglomerate size or porosity significantly affect overall product

properties such as re-hydration behavior and dissolubility. These can be influenced by different

operating parameters. In this manuscript, a population balance model for a continuous fluidized bed

spray agglomeration is presented and adapted to experimental data. Focus is on the description of

the dynamic behavior in continuous operation mode in a certain neighborhood around steady-state.

Different kernel candidates are evaluated and it is shown that none of the kernels are able to match

the first six minutes with time independent parameters. Afterwards, a good fit can be obtained,

where the Brownian and the volume independent kernel models match best with the experimental

data. Model fit is improved for identification on a shifted time domain neglecting the initial start-up

phase. Here, model identifiability is shown and parameter confidence intervals are computed via

parametric bootstrap.

Keywords: population balance modeling; continuous fluidized bed spray agglomeration; parameter

identification; identifiability

1. Introduction

Agglomeration is a particle formation process in which at least two primary particles are combined

to form a new one. This principle is often used in many industries, e.g., pharmaceutical manufacturing

and food processing. The properties of the formed agglomerates, e.g., size, shape and porosity,

significantly affect its end-use properties, e.g., dissolubility of food powders, processability and

storeability [1]. In industrial practice, agglomerates are often formed in drums, pans or fluidized beds.

The advantages of the latter include good mixing as well as high heat and mass transfer between

particles, liquid and gas phase [2]. Compared to widely applied batch processes, an additional benefit

of operating in continuous mode is a constant throughput with constant quality due to the steady-state
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operation. Therefore, in this contribution the focus is on continuous fluidized bed spray agglomeration,

which was not in the focus of research efforts so far.

The process scheme is shown in Figure 1. The particles in the chamber are fluidized by a flow of

hot gas from the bottom, liquid binder is sprayed on the particles in the form of small droplets to make

them wet. Due to random collisions liquid bridges between particles are formed. These can become

solid by drying and thereby agglomerates consisting of different numbers of individuals are formed.

Microscopic pictures of primary particles and agglomerates are depicted in Figure 2.

Figure 1. (Left) Real pilot scale fluidized bed used for experiments (Right) Schematic representation of

fluidized bed spray agglomeration process.

Figure 2. (Left) Scanning electron microscope (SEM) picture of primary particles; (Right) SEM picture

of agglomerates at steady state.

The formation of the agglomerates and thereby the product properties can be influenced by

variation of different operating parameters and process configurations, such as feed rate, binder

concentration and temperature of the fluidization gas [3,4].

It is well-known that the individual particle properties, such as characteristic volume and porosity,

differ from particle to particle. The emerging heterogeneity significantly affects the process and thereby

the overall product properties. As an alternative to Monte-Carlo modeling approaches [5–7] the

framework of population balance modeling (PBM) [8] can be used to account for the aforementioned

heterogeneity in particle formation processes such as granulation (see [9–11] and the references therein)
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or agglomeration. Detailed modeling of all involved mechanisms would results in multi-dimensional

population balance equations, which are in general multi-dimensional partial integro-differential

equations and thus challenging to solve numerically (see [12,13] for an example). For this reason,

studies usually account for a single particle property, mostly characteristic size or volume. The resulting

model represents a one-dimensional nonlinear partial integro-differential equation, which can be

solved numerically, e.g., applying the cell average [14] or spectral method [15]. In contrast to the

more complex modeling approaches [16,17], in this contribution the kinetics are described in a more

mechanistic fashion [18] on the basis of the agglomeration kernel characterizing the formation of new

particles by binary agglomeration. This is favorable, as the resulting model will be used to design

a model based controller, which allows to keep the process close to a desired steady state in case of

unforeseen disturbances. In this contribution, a number of physically motivated or heuristically derived

kernel candidates ([19] and references therein) will be used. This results in a set of model candidates,

which can be fitted individually to experimental data [20–23] by minimization of an objective function.

To ensure that the obtained estimates are unique, i.e., there is a unique set of parameters achieving a

minimum value of the objective function for the given measurements, identifiability of the parameters

for the different models has to be checked [24,25]. As an alternative to analytical methods [26],

the framework of profile likelihoods provides an easy accessible algorithm to investigate structural

identifiability [27]. If this necessary premise is fulfilled, parameter confidence intervals have to be

computed to infer how errors in the available measurements affect the estimates. Ideally, these

could be determined by re-estimation of the model parameters for a large number of experimental

replicates. However, if only a low number or even no replicates are available, parametric bootstrap

can be applied [28,29], which is less restrictive than classical methods based on the Fisher-Information

Matrix [30]. Those methods use artificially reproduced (“bootstrapped”) measurement sets. For each

set, a parameter estimate is computed yielding a bootstrapped set of parameter estimates, which can

subsequently be used to derive parameter confidence intervals.

The manuscript is structured as follows. In Section 2, the experimental setup, mathematical

modeling and parameter identification procedure are explained in detail. The results of the parameter

estimation are shown in Section 3. Furthermore, identifiability of the best model candidates is

investigated and results for the parametric bootstrap are shown. Section 4 concludes this work

and gives an outlook to possible future research directions.

2. Materials and Methods

2.1. Experimental Setup

The experiment was realized in a pilot scale plant depicted in Figure 1. The cylindrical fluidized

bed has a inner diameter of 300 mm, schematically shown in Figure 1. Particles were fluidized by a

heated gas stream, which enters the fluidized bed chamber from the bottom through a distributor

plate. The primary particles were sprayed by a two-fluid nozzle (Model 940, liquid orifice diameter

0.8 mm, Düsen-Schlick GmbH, Untersiemau/Coburg, Germany) which was installed in a top-spray

configuration at a distance of 420 mm above the distributor plate of the fluidized bed. To reduce

clogging, the shape of the air cap was modified to hemispherical. An external pump supplied the

feeding of the sprayed binder solution. Particles having the target size are continuously discharged by

a classification tube, which is centrally installed at the bottom of the fluidized bed.

The starting materials of the fluidized bed and continuous feeding during the process were glass

beads with a Sauter mean diameter (SMD) of 0.2 mm and mean sphericity of 0.92 (see Figure 2).

The used binder solution contained 6 wt% hydroxylpropylmethylcellulose (HPMC) and 94 wt% of

water. HPMC is a white, sweet smelling powder, also known as Pharmacoat. It is typically used in

food and pharmaceutical industries.

The duration of the experiment was approximately 120 min process time with a total mass of 38 kg

used primary particles and 6.56 kg mass of sprayed liquid with a binder content of 6 wt%. The initial
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bed mass for the experiment was 8 kg. The inlet air was heated up to 100 ◦C before starting the process.

An overview of the process parameters is shown in Table 1. The mass of discharged product was 29 kg.

The produced agglomerates are shown in Figure 2.

For offline analysis, 32 bed samples and 16 product samples were taken. The sample time starts

with 2 min sample intervals for bed and 4 min sample intervals for product samples and reached up to

10 min for bed and 20 min for product samples. The particle size distribution (PSD) of each sample

was measured offline with a Camsizer (Retsch Technologies GmbH, Haan, Germany), which infers

particle size via dynamic image analysis. The output data from the Camsizer is the PSDs, normalized

with respect to the total number resulting in q0 and the volume resulting in q3 of the particle collective

for each sample and thereby over the process time. The shape was investigated at randomly selected

bed and product samples with a scanning electron microscope (SEM). The samples were pretreated by

a SEM sputter coater with a thin gold layer to amplify the measurement signal and investigated with

the Phenom G2 Pro (Phenom-World BV, Eindhoven, The Netherlands). The bed mass was measured

and calculated from the pressure drop of distributor plate and the fluidized bed.

Table 1. Overview of experimental parameters.

Parameter Unit Value

Initial bed mass kg 8
Sauter mean diameter of primary particles mm 0.2

Inlet temperature ◦C 100
Inlet mass flow kg/h 275

Feed rate kg/h 15
Spray rate kg/h 3.3

Binder content wt% 6
Density of particle material kg/m3 2500

2.2. Mathematical Modeling

In particle production processes, significant heterogeneities with respect to the individual particle

properties such as size or shape emerge. Population balance modeling represents an established

concept to describe such property distributed parameter systems [8]. Instead of describing a large

number of particles and their interactions, PBM characterizes the dynamics of the particles via the

number density distribution function (NDF) n(t, z) representing information of the number of particles

within an infinitesimal section of the particle property state space z ∈ R
Nz . In the following, it is

assumed that individual particles do only differ with respect to their characteristic volume v such that

z = v and Nz = 1. Furthermore, it is assumed that other effects than agglomeration, i.e., nucleation,

particle growth and breakage can be neglected by an appropriate choice of the operating conditions.

Under these assumptions, the dynamics of the particle distribution during the agglomeration process

can be described by the following population balance equation (PBE)

∂n(t, v)

∂t
= ṅfeed(t, v)− ṅprod(t, v) + ṅagg(t, v) (1)

The corresponding initial NDF n(0, v) can be determined from the experimental data. The left

hand side of Equation (1) accounts for temporal evolution while the first two elements of the right

hand side describe feed of new seed particles to and removal of the desired product particles from the

fluidized bed. The feed is given as

ṅfeed(t, v) = Ṅin

exp

(

−(v−µ1)
2

2σ2
1

)

∫ ∞

0 exp

(

−(v−µ1)2

2σ2
1

)

dv

(2)
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with Ṅin denoting the constant feed rate. The parameters µ1 and σ1 characterize mean and variance of

feed particle volumes. Product particle removal can be modeled as

ṅprod(t, v) = ṄoutK(v)n(t, v) (3)

where Ṅout is the constant removal rate of particles and K(v) represents the separation function

given by

K(v) =

∫ v
0 exp(−(ξ−µ2)

2

2σ2
2

)dξ

∫ ∞

0 exp(−(ξ−µ2)2

2σ2
2

)dξ
(4)

The last element of the right hand side of Equation (1) denotes the formation of new particles of

volume v by agglomeration of two particles with volumes u and v − u

ṅagg(t, v) = ṅ+
agg(t, v)− ṅ−

agg(t, v)

=
1

2

∫ v

0
β(t, u, v − u)n(t, u)n(t, v − u)du

−
∫ ∞

0
β(t, u, v)n(t, v)n(t, u)du (5)

Here, the agglomeration kernel β(t, u, v) contains information about the probability of forming a

new agglomerate and is often separated into a volume and time-dependent part

β(t, v, u) = β0(t)βv(v, u) . (6)

In general, the volume-dependent part βv(v, u), also called coalescence kernel, is a non-negative

symmetric function of two variables. As motivated in the introduction, focus in this publication is

on rather simple agglomeration kernels (e.g., [19,31]). These are either physically motivated, e.g., the

Brownian motion coalescence kernel and kernel based on equipartition of kinetic energy (EKE kernel),

or rather empirical, e.g., Kapur kernel and volume-independent (constant) kernel. Additionally,

abstract parametric approaches, e.g., Laurent-polynomials [23], can be used. The kernel candidates

studied in this contribution are summarized in Table 2.

In contrast, the time dependent part β0(t), also called the agglomeration efficiency, mirrors the

effects of the process conditions and operating parameters. In this work, as a first step, it is assumed

that the time dependency of the agglomeration efficiency can be neglected, such that β0(t) = const.

2.3. Parameter Identification

The estimation of the agglomeration process is especially challenging due to the highly nonlinear

process dynamics. In order to describe the formation of the agglomerates and to parametrize the model,

five different agglomeration kernels are considered (see Table 2). The first four kernels represent rather

simple approaches, which do not have any free parameters. Thus, only the agglomeration efficiency

pest = β0 has to be estimated from experimental data. Besides these simple kernel candidates, the fifth

formulation in the table represents a more complex parametric model candidate based on Laurent

polynomials of rank K = 2 [23]:

βv(u, v) = k1 + k2 (u + v) + k3 (u
−1 + v−1) + k4 uv + k5 (u

−1v + v−1u) + k6 (u
−1v−1) + k7 (u

2 + v2)

+ k8 (u
−2 + v−2) + k9 (u

2v + v2u) + k10 (u
−2v + v−2u) + k11 (u

−1v2 + v−1u2)

+ k12 (u
−2v−1 + v−2u−1) + k13 (u

2v2) + k14 (u
−2v2 + v−2u2) + k15 (u

−2v−2)

(7)
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Here, the parameter vector to be estimated pest = [k1, k2, . . . , k15] contains the of unknown

polynomial coefficients.

Substituting one of the kernels given in Table 2 into the PBE (1) the unknown parameters can be

estimated from the experimental data by minimizing the following objective function

J(pest) =
Nt

∑
i=1

w1‖eu,rel(ti, x, pest)‖2 + w2‖em,rel(ti, pest)‖2 (8)

where w1 and w2 are weighting coefficients and Nt is the number of samples. Weighting coefficients

are chosen such that the first and the second term of the right hand side are in the same order of

magnitude. Here, the first part represents the errors between simulated and measured bed mass scaled

by the maximum bed mass

em,rel(ti, pest) =
mb,act(ti)− mb,est(ti, pest)

max(mb,act(ti))
(9)

Furthermore, J contains the L2-norm of the error in the weighted particle size distribution u(t, x)

eu,rel(ti, x, pest) =
uact(ti, x)− uest(ti, x, pest)

max(uact(ti, x))
(10)

where u(t, x) is defined as

u(t, x) =
π

6
x3n(t, x) (11)

and x represents the characteristic size of the particles. Using local conservation of the particle number

n(t, v)dv = n(t, x)dx

n(t, x) = n(t, v)
dv

dx
(12)

uest(ti, x, pest) is computed from the simulated particle volume distribution as

uest(ti, x) =
π

6
x3nest(ti, v)

dv

dx
(13)

Its experimental counterpart uact(ti, x) is computed from the normalized particle size distribution

q3,act(ti, x) provided by the Camsizer measurements and the measured bed mass mb,act(ti) under the

assumption of spherical particle shape and particle material density ρ.

Table 2. Kernel model candidates used for parameter identification.

Expression Kernel Name

βv(u, v) = (u + v)1 × (u v)−1 Kapur kernel

βv(u, v) = (u1/3 + v1/3)× (u−1/3 + v−1/3) Brownian motion kernel

βv(u, v) = (u1/3 + v1/3)2 ×
√

u−1 + v−1 EKE kernel
βv(u, v) = 1 Volume-independent kernel

βv(u, v) =
K

∑
m=−K

K

∑
n=−K

km,n vm un Laurent polynomials kernel
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2.4. Parameter Identifiability

Identifiability is a necessary premise to ensure meaningful parameter estimates. In the following

the profile likelihood will be used to infer model identifiability. Here, the core idea is to explore the

cost functional J around the optimal parameter vector

p∗ =
[

p∗1 , . . . , p∗Np

]T
(14)

A parameter pi is said to be (locally) structural identifiable if the corresponding profile likelihood

JPL(pi) = min
pj 6=i

J (15)

has a unique minimum in the neighborhood of p∗. Therefore, for fixed values of pi the other parameters

are re-estimated resulting in a one-dimensional functional curve. If each curve features a distinct

minimum, the model is said to be (locally) structural identifiable. In contrast, flat or semi-flat profile

likelihoods without a unique minimum indicate structural non-identifiability. In this case, parameters

can not be uniquely determined even under ideal measurement conditions.

2.5. Confidence Intervals

Besides estimation of the unknown kernel parameters it is also highly desirable to evaluate their

confidence intervals. These give a measure of the estimates sensitivity to stochastic fluctuations

in the experimental data. Classical methods, e.g., approaches based on evaluation of the

Fisher-Information-Matrix [30], are only able to give an approximate centered and symmetric measure

of the true confidence region as they rely on rather strong assumptions on the underlying model

dynamics. Alternatively, the bootstrap approach has been established as a valuable method to infer

model parameter confidence [28]. The core idea will be described in the following: all measurements

underlie stochastic variations, which would result in a certain variance within a large set of replicate

experimental data vectors

Y =
{

y1 , . . . , yNrep

}

(16)

For each element of Y, model parameters can be (re-)estimated resulting in a corresponding set of

adapted parameter vectors

P =
{

p∗
1 , . . . , p∗

Nrep

}

(17)

containing information of the model parameters sensitivity to variations in the measurements.

Statistical measures as mean and variance can be easily calculated from P. Commonly, the percentile

method is applied to compute the confidence intervals. Let pα denote the 100(1 − α)-percentile of a

parameter pi extracted from P, then the corresponding parameter confidence interval is given by

[

plo
i , p

up
i

]

α
=

[

p0.5α
i , p1−0.5α

i

]

(18)

In general, the number of experimental replicates is limited. This is in particular true for the

given agglomeration process, where time and costs connected with each experiment are considerable.

Therefore, the resulting set of (re-)estimated parameter vectors P does not give a reliable measure of

the true confidence intervals. To improve the situation, the parametric bootstrap method [28,30] can be

applied. Here, Y is replaced by a set of artificial replicates

Y
BS =

{

yBS
1 , . . . , yBS

NBS

}

(19)
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which are generated with a Monte-Carlo method. The corresponding set of parameters is given by

P
BS =

{

pBS
1 , . . . , pBS

NBS

}

(20)

and is further used to determine the parameter confidence intervals.

3. Results

The proposed parameter identification procedure has been implemented in MATLAB 2018a

(The MathWorks, Inc., Natick, MA, USA). For the solution of the PBM, the method of lines has been

applied, where the spatial coordinate is lumped using the cell-average method on a logarithmic grid

with Nv = 55 grid points [14]. The model parameters utilized for simulations are derived from the

experimental conditions and are presented in Table 3. The stated unconstrained optimization problem

does not guarantee that the estimated parameters are positive, which they are for physical reasons.

In order to exclude non-physical solutions corresponding constraints should be added, resulting in a

constrained optimization problem. For its solution, the active-set algorithm as part of the MATLAB

optimization toolbox was applied.

Table 3. Model parameters used for simulation.

Parameter Value Parameter Value

µ1 4.2 × 10−3 σ1 6.4 × 10−6

µ2 3.8 × 10−1 σ2 1.4 × 10−2

Ṅin 4 × 105 Ṅout 5.5 × 10−4

w1 1 w2 50

3.1. Kernel Estimation

3.1.1. Identification on the Whole Time Domain

Applying the proposed approach for all five kernels and using the first experimental sample as

initial condition yields in estimates for the agglomeration efficiency β0 and the Laurent polynomials

coefficients, respectively. The obtained results are depicted in Figure 3. As can be seen from the

L2-norm of the errors between measured and simulated PSD (Figure 3 (left)) and the simulated and

measured bed mass (Figure 3 (right)), the mismatch for all fitted models is considerable in the first

ten minutes of the process and decreases rapidly for larger process times. Here, the models with the

Brownian motion kernel, the volume-independent kernel and the Laurent polynomials perform better,

in terms of the L2-norm, than the models with EKE and Kapur kernel.

Figure 4 shows the comparison of the fitted models based on the Brownian motion and

volume-independent kernels and the measured PSD in terms of normalized PSD q3(t, x)

q3(t, x) =
x3n(t, x)

∫ ∞

0 x3n(t, x)dx
(21)

For t > 80 min no significant change in the normalized particle size distributions was obtained in

the experiment, indicating steady-state operation.
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Figure 3. (Left) Comparisonof the L2 norms of the particle size distribution (PSD) error for different

kernel candidates (Right) Comparison of the actual bed mass and bed masses of the identified models.
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Figure 4. Snapshots of particle size distributions q3 of the actual plant and identified models.

Generally, it can be seen that the results improve for larger time values, i.e., closer to the

steady-state operation. The big misfit in the initial phase demonstrates that the model structure does

not reflect the start-up dynamics of the agglomeration process. Possible reasons may be additional

internal transients, e.g., a temperature decrease due to spraying, which would result in a time-varying

kernel. In addition, the decrease in the actual bed mass, which can be observed in the first couple

of minutes, indicates that during start-up even particles being smaller than the product fraction are

withdrawn from the process. This is however not reflected by the model, where a constant separation

function for the product removal has been assumed. However, as the focus in this contribution and

future research is on continuous agglomeration, only the dynamic behavior close to the steady-state

is of importance. Therefore, in the following the initial start-up, i.e., the first six minutes, will be

neglected resulting in a shifted time-domain.

3.1.2. Identification for the Shifted Time Domain

In the following, the described parameter estimation will be repeated for all kernels for the

experimental data shifted by 6 min. Here, the experimental data sample at t = 6 min will be used as

the initial condition. Results of the nonlinear optimization are depicted in Figures 5 and 6. As can

be seen the matching between the parametrized model and the measurements has been improved

considerably. The misfit in the region of the first mode (Figure 6) is presumable due to the measurement

uncertainties. As before, the best results, in terms of the L2-norm, are achieved for the model with

the Brownian motion kernel, the volume-independent kernel and the Laurent polynomials. Yet, the
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latter does not show significant improvement despite its higher number of model parameters and will

therefore be excluded from subsequent analysis.
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Figure 5. Comparison of the L2 norms of the PSD error (Left) and the actual bed mass and bed masses

of the identified models (Right) for the shifted time domain.
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Figure 6. Particle size distributions q3 of the actual plant and the identified models for the shifted

time domain.

3.2. Model Identifiability

For the Brownian and volume-independent kernel, the agglomeration efficiency β0 is the only

unknown model parameter. Hence, the corresponding profile likelihood computation reduces to a

parameter study, i.e., evaluation of the cost functional J for different values of β0. The resulting curves,

depicted in Figure 7, possess a distinct minimum, which indicates that the unknown β0 is structurally

identifiable in both cases.
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Figure 7. Profile likelihoods for the Brownian motion and volume-independent kernel.

3.3. Confidence Intervals

To compute parameter confidence intervals, a set of 1000 parametric bootstrap measurements

was generated from the fitted model. Here, it was assumed that the measurements of q3(t, x) were

corrupted by a relative error

q3(t, x)BS
k = q3(t, x)∗ + qres

3 (t, x)BS
k , qres

3 (t, x)BS
k ∼ N (0, Σq3) · q3(t, x)∗ , k = 1, . . . , NBS (22)

and thus the corresponding residual qres
3 (t, x)BS

k is proportional to the magnitude of q3(t, x)∗. For the

total bed mass measurement, bootstrap measurements were generated assuming an relative error

mbed(t)
BS
k = mbed(t)

∗ + mres
bed(t)

BS
k , mres

bed(t)
BS
k ∼ N (0, Σmbed

) , k = 1, . . . , NBS (23)

The model was refitted to the bootstrapped measurement set for the Brownian motion and the

volume-independent kernel. Results by means of histograms of the obtained bootstrapped parameter

sets and percentile plots over the number of bootstrap runs are shown in Figures 8 and 9.

It can be seen that for both cases approximately symmetric Gaussian-like distributions are

obtained. Furthermore, it is shown that the values for the percentiles and the mean do not significantly

change for k > 400 thereby indicating convergence of the bootstrapped parameter distribution.

The overall confidence intervals and means are given in Table 4.

Figure 8. Results for parameter estimation for Brownian motion kernel with parametric bootstrap data:

Histogram of bootstrapped parameter set, confidence interval
[

β0.025
0 , β0.975

0

]

(red circles) and mean

β̄0 (red rectangle) (Left) Change of
[

β0.025
0 , β0.975

0

]

(dashed) and β̄0 (solid) over number of bootstrap

runs (Right).
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Figure 9. Results for parameter estimation for volume-independent agglomeration kernel with

parametric bootstrap data: Histogram of bootstrapped parameter set, confidence interval
[

β0.025
0 , β0.975

0

]

(red circles) and mean β̄0 (red rectangle) (Left) Change of
[

β0.025
0 , β0.975

0

]

(dashed) and β̄0 (solid) over

number of bootstrap runs (Right).

Table 4. Mean parameter values and confidence intervals from parametric bootstrap.

Agglomeration Kernel β̄0

[

βlo
0 , β

up
0

]

=

[

β0.025
0 , β0.975

0

]

Brownian motion 2.4284 × 10−11
[

2.2926 × 10−11, 2.5736 × 10−11
]

Volume-independent 2.1754 × 5 × 10−12
[

2.0588 × 5 × 10−12, 2.3011 × 5 × 10−12
]

4. Conclusions

In this paper the parameter identification for continuous fluidized bed spray agglomeration

was presented. For the estimation of the agglomeration kernel from the experimental data a set

of five different kernel model candidates has been fitted to experimental data applying nonlinear

optimization. Applying the estimation procedure on the whole time domain showed that the initial

start-up phase could not be reflected well by the given model structure. Possible reasons may be

additional internal transients in this phase, e.g., temperature decrease due to spraying. Those would

result in a time-varying kernel. However, the focus of future work is on the continuously operating

agglomeration, process this initial phase is of minor importance. Therefore, the estimation procedure

has been repeated for a shifted time domain, i.e., neglecting the first six minutes, resulting in significant

better results. It has been shown that models based on the Brownian motion, the volume-independent

and the Laurent polynomial kernel provide the best results in terms of the L2-norm of the error

based on the PSD. Despite its higher complexity and higher number of free model parameters, the

latter approach is not superior to the two simpler kernel models. Thus, following good modelers

practice, the Brownian and the volume-independent approaches were preferred. For both kernel

models identifiability in terms of the corresponding profile likelihoods was shown and confidence

intervals for the model parameters were determined using a parametric bootstrap method.

Future work will be concerned with qualitative process behavior for varying process conditions.

As has been shown in earlier contributions, stability of continuously operated particulate processes

strongly depends on the chosen process conditions (e.g., [32,33]). In order to increase robustness with

respect to unforeseen disturbances and stabilize the process for varying operating conditions, feedback

control will be studied. Here, a number of finite-dimensional [34,35] and infinite-dimensional [36]

approaches have been investigated and developed for related continuous granulation processes in

fluidized beds.
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a  b  s  t  r a  c t

This paper is concerned  with  stabilizing control  for continuously  operated  fluidized bed spray  granulation

with  internal  product classification.  It  is  well-known  that  these  processes may  become  unstable for  certain

operating  conditions giving  rise  to nonlinear  oscillations in the  particle  size  distribution.  In  contrast  to

previous  works,  in this  contribution  a model-free  adaptive  control is proposed.  It  is  shown that  the  given

fluidized  bed spray granulation  process  fulfills  the  required  structural  assumptions.  The designed  control

schemes,  universal  adaptive  and �-tracking  control, are  tested  in a noise-free scenario and  including

measurement  noise.
© 2018 Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Granulation is an important production process resulting in

larger particles and improved product properties, e.g. decreased

dust during material handling and increased flowability. Fluidized

bed spray granulation involves the injection of an additional liquid,

which settles on the particles, dries and thus forms a  new solid

layer on the particle surface. An important configuration is the

continuous fluidized bed spray granulation with internal classifi-

cation. Here, only particles with a minimum diameter are redrawn

from the process by applying a  counter-current flow in the out-

flow. The critical separation diameter can be influenced by the

counter-current flow velocity. In order to permanently generate

new particles a relative high nozzle height is chosen, such that

part of the liquid drops dry before hitting the particle surface. The

schematic process scheme is depicted in Fig. 1.  As  shown in  [1–3]

qualitative dynamics of continuous fluidized bed spray granulation

processes may  vary significantly with process conditions. In [1] a

detailed bifurcation analysis has been conducted, which, from a

practical point of view, gives valuable information in which param-

eter region to operate the plant at hand. In addition, the derived

models can be used for a  model-based control design, e.g. robust PI
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or  model predictive control [4,5], H∞-control [6,7] or nonlinear dis-

crepancy based control [9], to compensate for the undesired losses

of stability, i.e. the occurrence of nonlinear oscillations. However,

model validation, being the basis of the presented analysis and con-

trol design, based on experiments may  be often difficult to  perform

in  a  production setting due to  significant additional costs and unde-

sired set-point changes. Therefore, in this contribution model-free

adaptive control approaches [10–12] will be investigated on their

feasibility for fluidized bed spray granulation control. The paper is

organized as follows: in  Section 2 the model of continuous fluidized

bed spray granulation with internal product classification as pro-

posed by [3] is  stated. In  addition, a numerical bifurcation analysis

of the process is  used to  motivate the need for stabilizing control.

In Section 3 the universal adaptive and �-tracking control schemes

are introduced together with the main structural assumptions on

the process. It  is  further studied whether these requirements are

fulfilled by the given type of process. Some final remarks conclude

the paper.

2. Fluidized bed spray granulation

Particles produced during fluidized bed spray granulation pro-

cesses are of high sphericity and can thus be described by their

diameter. Due to  the very high number of particles, this leads to

the particle size  distribution and its dynamical behavior. Applying

https://doi.org/10.1016/j.jprocont.2018.07.016
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Fig. 1.  Process scheme.

population balance modeling [13] for the number density of the

particle size distribution leads to the following equation

∂n

∂t
= −G

∂n

∂L
+ ṅnuc − ṅprod (1)

where the first term is  related to the particle growth, the second

term accounts for the generation of new nuclei and the third for

product withdrawal [3].  Depending on the distance between the

particle bed and the nozzle, part  of the injected liquid contributes

to nucleation and the rest to growth. In [3] it is  assumed that the

part contributing to nucleation b(n) varies linearly with the bed

height between its minimum value b∞ and maximum value b = 1.

b(n) = b∞ + max

(

0, (1 − b∞)
hnoz − h(n)

hnoz

)

(2)

The bed height h(n) depends on the overall particle volume V = ��3,

which is proportional to the third moment, and the bed porosity ε,

which is assumed to be constant.

h(n) =
V

(1 − ε)A
=

��3

(1 − ε)A
(3)

For the nucleation it is assumed that new particles are uniformly

distributed with a medium diameter L0.

ı(L) =
nu(L; L0,  �0)

�3(nu(L; L0, �0))
(4)

where

nu(L; �, �) = exp

(

−(L − �)2

2�2

)

.  (5)

The classification function of the product removal is  given by

T(L) =

∫ L

0
nu(L; L1,  �1)dL

∫ ∞

0
nu(L; L1,  �1)dL

.  (6)

Table 1

Simulation parameters.

V̇e 1.68 ·  10−4 m3/s injection rate

ε  0.5  fluidized bed  porosity

A 5  m2 granulator cross-sectional area

hnoz 0.44 m nozzle height

b∞ 0.028 minimum nucleation rate

L0 0.3 mm medium diameter of nuclei

�0 0.05 mm standard deviation of nuclei diameter

L1 0.7  mm medium classification diameter

�1 0.05 mm classification selectivity

K  1.92 ·  10−4 1/s Product removable rate

Fig. 2. Time behavior of the particle size distribution n(t, L) for small V̇e .

Therefore, the overall population balance model is given by

∂n

∂t
= −

2(1 − b(n))V̇e

��2(n)

∂n

∂L
+

b(n)V̇eı(L)

1/6�
− KT(L)n.  (7)

For simulation the population balance model has been dis-

cretized along the property coordinate L  using a  finite volume

method with an upwind scheme. For  the uniform grid of  the prop-

erty coordinate 150 grid points have been used. The parameters are

given in Table 1 and are in accordance with [3,7].

It is  well-known [3,2,1] that the given process configuration

may become unstable depending on the given operation conditions,

e.g. the injection rate. The loss of stability results in the occur-

rence of nonlinear oscillations in the particle size distribution as

depicted in  Fig. 2.  A systematic study of this behavior, in terms of

a one-parameter bifurcation analysis, shows that below a  certain

injection rate V̇e the steady-state solution becomes unstable and a

limit cycle occurs (Fig. 3). This periodic behavior in  product quality

and availability is in general undesired. It has also been observed in

real granulation processes, e.g. [2].  In order to overcome this prob-

lem feedback control should be applied. From a practical point of

view, one would be interested to control the third moment, as it

correlates with the overall bed mass and can thus be derived from

simple pressure measurements.

y  = �3 (8)

As the actuated variable the effective volume flow rate V̇e is  chosen,

which can be manipulated using the injection pumps.

u = V̇e (9)

However, the main difficulties connected with the presented model

as a  basis for model-based control approaches are:
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Fig. 3. One-parameter bifurcation diagram for varying V̇e .

• model validation and parameter identification are very time-

consuming due to the slow time constants as can be seen from

Fig. 2,
• the assumption that the nucleation rate depends linearly on the

bed height and saturates for a  given bed volume, is  a strong sim-

plification and thus connected with considerable uncertainties,
• the drying kinetics strongly depend on the process conditions,

e.g. solid concentration in the injected suspension, fluidization

air flow rate, humidity and temperature, and are thus typically

time-varying and unknown.

3. Model-free adaptive control

To provide an alternative to model-based control of the

described fluidized bed spray granulation with internal prod-

uct classification [7] the focus will be on model-free controller

design approaches with stability guarantees. Here, the class of

non-identifier based high-gain adaptive controllers [10,11] will be

investigated, as these do rely on specific structural properties only

and have been successfully implemented for other chemical pro-

cesses, e.g. [14,15]. The main idea can be easily illustrated on a  linear

time-invariant first order system:

ẏ(t) = ay(t)  + bu(t) (10)

It is well-known that the uncontrolled plant, i.e. u(t) = 0,  is  unstable

for any a > 0. In order to stabilize the given system the following

feedback law:

u(t) = −ky(t)  (11)

can be applied, where the controller gain k  has to be chosen suf-

ficiently large or small, depending on the sign of b,  such that the

closed loop system (12) is stable.

ẏ(t) = (a − kb)y(t) (12)

In the following it will be assumed that b is positive, which is  with-

out  loss of generality. In this case a  possible time-varying choice for

the controller gain k  is given by  the nonlinear adaptation law

k̇(t) = y(t)2.  (13)

Obviously, the defined adaptation law results in  a  continuously

increasing controller gain k(t) until y(t) reaches steady state, i.e.

y(t) = 0. Both, negative output feedback for b > 0 and a continu-

ously increasing controller gain guarantee closed loop stability as

has been proven for example in [10]. Starting from the presented

idea, i.e. high-gain output feedback in  combination with an adap-

tation law, a number of different adaptive control approaches have

been developed. In this contribution, the application of universal

adaptive control and the closely related �-tracking control will be

investigated. For  both approaches a  number of assumptions have

to be fulfilled by the process to be controlled:

• the sign of the combined input-output operator CB has to be

known. In the introductory example the output operator C is  the

identity operator, i.e.  c is  equal to 1.  Therefore, only the input

operator B,  i.e. b, has been investigated.
• the relative degree, i.e. the minimum order of output time deriva-

tive directly depending on the control input, has to be equal to

one,
• stable zero dynamics, i.e.  the system achieved for constraining

the controlled output y(t) to zero has to be stable.

In case of a nonlinear process, it has to be assumed that the

according nonlinear perturbations can be  dominated by  the linear

feedback law for appropriate gain values.

3.1. Known sign of the input–output operator CB

Using the population balance model (7) together with the output

equation (8) yields

�̇3 =  −

∫ ∞

0

L3

(

2(1 − b(n))V̇e

��2(n)

∂n

∂L
+

b(n)V̇e

1/6�
ı(L) − KT(L)n

)

dL (14)

=  −
2(1 −  b(n))V̇e

��2(n)

(

lim
L→∞

n(L) −  n(0)

)

+ · ·  ·  (15)

·  ·  ·  +
b(n)V̇e

1/6�

∫ ∞

0

L3ı(L)dL −

∫ ∞

0

L3KT(L)ndL (16)

Due to  the fact that there are no particles of infinite or zero size, i.e.

lim
L→∞

n(L) = 0 and n(0) = 0, the first term vanishes, resulting in

�̇3 = A(n) + CB(n)V̇e (17)

where A(n) =  −
∫ ∞

0
L3KT(L)ndL and CB(n) =

b(n)
1/6�

∫ ∞

0
L3ı(L)dL. As

both b(n) and
∫ ∞

0
L3ı(L)dL are  positive, the input-output operator

CB(n)  is  always positive. This is obviously true as an increase in

injection rate leads to an increase of overall particle volume.

3.2. Relative degree one

Calculating the relative degree for a  given system is typically an

iterative procedure, starting with the zeroth time derivative of the

output y(t), i.e. with the output itself. Obviously, the third moment

at time instant t does not  directly depend on the injection rate V̇e.

Therefore, the relative degree has to be greater than zero. Taking

the first time derivative results in:

ẏ  = �̇3 =

∫ ∞

0

L3 ∂n

∂t
dL (18)

=

∫ ∞

0

L3

(

−
2(1 −  b(n))V̇e

��2(n)

∂n

∂L
+

b(n)V̇eı(L)

1/6�
− KT(L)n

)

dL (19)

Due to the direct dependence on the controlled variable u = V̇e,

the  relative degree is equal to  one. Thus, the second assumption is

fulfilled.

3.3. Stable zero dynamics

In order to show stability of the zero dynamics, one has to  prove

stability of (7) under the additional constraint that y  =  0.  As the given

granulation process is described by a  nonlinear integro-partial dif-

ferential equation, this is  an at least very difficult task. Therefore,

here only a  set of finite-dimensional linear approximations, i.e.
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Fig. 4. Maximum real part of system zeros (black solid) and poles (dotted gray) for

varying V̇e .

transfer functions, will be investigated. These approximations have

been derived in parallel with the bifurcation analysis and reflect

the system behavior in a  neighborhood around the path of steady

states. From a  system theoretic point of view, they form a  paramet-

ric family of transfer functions GV̇e
(s) depending on the bifurcation

variable V̇e.  It  is well-known, e.g. [16,17], that instability of the zero

dynamics is directly connected to the presence of right-half plane

zeros for the according transfer function. Thus, it is sufficient to

check that the maximum real part of system zeros remains smaller

than zero to prove stability of the zero dynamics. In Fig. 4 the max-

imum real part of all system zeros and poles is  depicted for varying

V̇e. As can be seen, no right-half plane zeros occur in the studied

region of injection rates V̇e and hence the zero dynamics remain sta-

ble. In addition, it can be  seen that the open-loop system becomes

unstable, i.e. right-half plane poles occur, for injection rates smaller

than 1.7 · 10−4 m3

s .

As has been shown, the continuous fluidized bed spray granula-

tion process fulfills the required structural properties for high-gain

adaptive control approaches.

3.4. Universal adaptive and �-tracking control

Universal adaptive control is  a  proportional output feedback

control with time-varying controller gain.

u(t) = k(t)e(t) (20)

Here, e(t) is the control error, i.e. the difference between desired

output yd and measured output y(t). For convenience and numerical

reasons an additional scaling factor ke = 2 ·10−7 has been intro-

duced.

e(t) = ke(yd − y(t)) (21)

The nonlinear adaptation law  for the controller gain is chosen as

follows

k̇(t) = e(t)2. (22)

It is clear from (22) that the controller gain is  non-decreasing and

increases when ever a  control error is  present. This behavior results

in a continuously increasing controller sensitivity and may  result in

problems in the presence of controller saturations. It is  of particu-

lar importance for practical implementations, where the control

error e(t) is typically not vanishing due to process disturbances

and measurement noises. In order to overcome the aforementioned

problem the �-tracking control approach [11] has been developed.

The main idea here, is  the introduction of an additional dead-zone,

Fig. 5. Time behavior of the particle size distribution n(t, L) for universal adaptive

control.

Fig. 6.  Time behavior of the particle size  distribution n(t, L)  applying �-tracking

control.

i.e. a  neighborhood around the desired set-point, where the con-

troller gain stops increasing and remains constant.

k̇(t) =

{

e(t)2 if ‖e(t)‖ > �

0 else
(23)

Here, the parameter � defines the described width of the dead-

zone. Typically, � should be chosen such that measurement noise

and uncritical disturbances do  not result in a newly controller gain

increase.

3.5. Results

In  order to verify the designed universal adaptive controller it

is connected to  the plant in the region of instability, i.e. in  the

regime of nonlinear oscillations, at t = 12 h. As  depicted in Figs. 5–11

the proposed universal adaptive control scheme allows for sta-

bilization of the continuous granulation starting in the region of

instability on the limit cycle. The required control actuation stays

within reasonable limits (here plus/minus 50%  of the nominal value,

i.e. V̇e ∈ [0.75 · 10−4, 2.25 · 10−4]). Applying the �-tracking control

to the same scenario shows (Figs. 6–11), that similar behavior in

terms of control performance can be achieved. However, the con-

troller gain does not  further increase when reaching the �-region

as depicted in  Fig. 7. Due to the assumptions, stable zero dynam-
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Fig. 7. Adaptive controller gain k(t) for universal adaptive control (solid gray), �-

tracking control (dashed black).

Fig. 8. Third moment of the particle size distribution for universal adaptive control

(solid gray), �-tracking control (dashed black) and without control (dotted gray).

Fig. 9. Control error e(t) for universal adaptive control (solid gray), �-tracking con-

trol  (dashed black) and without control (dotted gray).

ics and relative degree one, closed-loop stability is guaranteed for

a controller gain K  being larger or  smaller than a  critical gain Kcrit

depending on the known sign of the combined input-output oper-

ator CB.  Thus, if the controller gain is sufficiently large when the

control error enters the defined �-neighborhood process stability

is guaranteed.

Adding uniformly distributed measurement noise in the range

of plus/minus 0.45% of the steady-state third moment to  the simu-

lation, already leads to significant deterioration of the closed-loop

Fig. 10. L2-norm of error in the particle size distribution for universal adaptive

control (solid gray), �-tracking control (dashed black) and without control (dotted

gray).

Fig. 11. Injection rate V̇e for universal adaptive control (solid gray), �-tracking con-

trol (dashed black).

Fig. 12. Adaptive controller gain k(t) for universal adaptive control (solid gray), �-

tracking control (dashed black) in the presence of measurement noise.

performace in case of the universal adaptive control. As can been

seen in  Figs. 12–16,  the controller gain of the universal adaptive

control scheme is  continuously increasing, destabilizing the pro-

cess. On the other hand, the �-tracking control scheme is hardly

effected.

It should be mentioned, that both control laws show only a  very

low convergence rate in  terms of the L2-norm as depicted in  Fig. 10,

which is however of limited relevance for the given application.
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Fig. 13. Third moment of the particle size distribution for universal adaptive control

(solid gray), �-tracking control (dashed black) and without control (dotted gray) in

the  presence of measurement noise.

Fig. 14. Control error e(t) for universal adaptive control (solid gray), �-tracking

control (dashed black) and without control (dotted gray) in the presence of mea-

surement noise.

Fig. 15. L2-norm of error in the particle size  distribution for universal adaptive con-

trol  (solid gray), �-tracking control (dashed black) and without control (dotted gray)

in  the presence of measurement noise.

4. Conclusion

In this contribution two model-free adaptive control schemes,

universal adaptive control and the closely related �-tracking, and

their application to continuous fluidized bed spray granulation pro-

Fig. 16. Injection rate V̇e for universal adaptive control (solid gray), �-tracking con-

trol (dashed black) in the  presence of measurement noise.

cesses with internal product classification have been investigated.

It has been shown that the given process configuration fulfills all

structural requirements. Applying the proposed control laws sta-

bilizes the particle size distribution with reasonable performance

and control actuation. Including measurement noise into the sim-

ulation, showed the advantage of including a  �-neighborhood in

the �-tracking control. Future work will be concerned with prac-

tical verification of the proposed control approach on a pilot plant

and the investigation of other particulate processes, e.g. granulation

with mill cycle [6] or  continuous crystallization [8].
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Control of Continuous Mixed-Solution

Mixed-Product Removal Crystallization

Processes

Continuous mixed-solution mixed-product removal (MSMPR) crystallization is
considered. This process has been studied well, however, different aspects, in par-
ticular, process modeling, monitoring, and control remain challenging. An inno-
vative approach for online measurement of the crystal size distribution is pre-
sented. Furthermore, unscented Kalman filtering is applied to overcome biased
concentration measurement. Finally, a discrepancy-based control is applied to
continuous MSMPR crystallization and its closed-loop performance is evaluated.

Keywords: Crystallization monitoring, Crystal size distribution, Kalman filtering,

Nonlinear control, process modeling
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1 Introduction

Crystallization is an important separation and purification pro-

cess to produce different solid materials from liquids in chemi-

cal, food, and pharmaceutical industries. It allows adjusting

such properties as crystal size, shape, polymorphic form, and

purity [1]. Control of the product quality as a whole, in most

cases expressed in terms of its crystal size distribution (CSD), is

difficult but worthwhile and requires both an online monitor-

ing of this product quality and detailed knowledge of the con-

sidered process [2]. CSD affects product dissolution behavior,

bioavailability, and can facilitate downstream processing, so its

adjustment has a strong influence on product quality and pro-

duction performance.

In recent years, the interest in continuous manufacturing

grew dramatically. Within this field, continuous mixed-solution

mixed-product removal (MSMPR) crystallization is a powerful

approach. The main features of the continuous MSMPR crys-

tallization are a constant solution feed and a constant vessel

content withdraw, which contribute to the improvement of

product quality and production rates, compared to a similar

batch operation.

In this paper, continuous MSMPR crystallization modeling,

online monitoring, and control problems are considered. Image

processing techniques are tested for their application to crystal-

lization processes: Canny edge detector [3], model-based recog-

nition [4], genetic algorithm-based restoration from axis-length

distribution (ALD) [5]; a sufficient image processing rate was

reached for online operation using a multiprocessing system

[6]. In [7], it is claimed that realization in Matlab by Math-

works shows good quality, but remains sluggish.

Image processing is a promising approach for online CSD

measurement, but the mentioned imaging systems require

sophisticated hardware and high computational power, so a

new embedded approach will be discussed. During experiments

an issue with concentration measurement was observed: mea-

surement bias caused by crystal growth on the probe. One

straightforward approach to reduce or even overcome this

undesired phenomenon may be to alter the probe location

within the tank or to change process conditions. Alternatively,

model-based state estimation techniques, e.g., unscented

Kalman filtering (UKF) can be applied to reconstruct the solute

concentration from the biased measurement [8]. Acquired and

reconstructed measurements of the CSD and the concentration

can now be applied to design controls and operate the process

in a desired way.

In order to control the CSD, different strategies have been

proposed including robust control [9–11], C-control [12],

decentralized proportional-integral-differential (PID) and non-

linear model predictive control (NMPC) [13], and direct nucle-

ation control [14]. A Lyapunov-function-based approach called

discrepancy-based control (DBC) was presented in [15], which

was later generalized for particle systems [16]. In contrast to

linearization-based control techniques, DBC considered in this

contribution is applied to a nonlinear model taking system

nonlinearities into account. The general structure of the system

Chem. Eng. Technol. 2017, 40, No. 7, 1362–1369 ª 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cet-journal.com

Rostyslav Geyyer1,2,*

Robert Dürr3
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including plant measurement, state estimation, and

control subsystems is illustrated in Fig. 1.

2 Mathematical Modeling

Besides sophisticated experimental work, mathe-

matical modeling of the process is necessary to ob-

tain a thorough understanding of crystallization

processes [17]. Here, the population balance mod-

eling (PBM) approach [18] is used. Contents of the

crystallizer to be well-mixed are considered. Crys-

tallization is governed by growth and secondary

nucleation phenomena. The growth rate is assumed

to be size-independent. Nucleating crystals have the size Lmin
1)

[19]. Dynamics of the CSD is described by the following popu-

lation balance equation (PBE):

¶n L; tð Þ

¶t
þ G tð Þ

¶n L; tð Þ

¶L
¼ �

n L; tð Þ

tv
(1)

where n(L,t) is the crystal size distribution, t is the time, L is

the characteristic length of a crystal, G(t) is the growth rate,

and tv is the residence time. The initial condition is:

n L; t0 ¼ 0ð Þ ¼ n0 Lð Þ (2)

and the boundary condition is:

n L0 ¼ Lmin; tð Þ ¼
B tð Þ

G tð Þ
(3)

where nucleation is governed by:

B tð Þ ¼ Kb S tð Þ � 1ð Þbm3 tð Þ (4)

with nucleation kinetics parameters Kb and b. Crystal growth is

characterized by the following growth rate:

G tð Þ ¼ Kgexp
�EA;g

RgasTv tð Þ

 !

S tð Þ � 1ð Þg (5)

with growth kinetics parameters Kg and g, activation energy

EA,g, gas constant Rgas, vessel temperature Tv(t), and supersatu-

ration S(t):

S tð Þ ¼
cv tð Þ

csat tð Þ
(6)

where the equilibrium concentration csat(t) is approximated as

a polynomial:

csat tð Þ ¼
X

4

i¼0

Ki Tv tð Þð Þi (7)

Properties of the modeled substance KDP (monopotassium

phosphate): growth and nucleation kinetics as well as solubility

parameters listed in Tab. 1 were evaluated experimentally using

the methodology described in [20, 21].

The liquid-phase concentration dynamics is governed by:

dcv tð Þ

dt
¼

1

tv
cv;f � cv tð Þ
� �

�
3kVrsG tð Þ

Vvrv
m2 tð Þ (8)

where cv,f is the feed concentration, kV is the volumetric shape

factor, rs is the solid phase density, Vv is the total vessel con-

tents volume, rv is the liquid-phase density and m2(t) is the sec-

ond moment of the CSD. Arbitrary moments can be described

by the moment transform:

mi tð Þ ¼

Z

¥

Lmin

Lin L; tð ÞdL (9)

with the corresponding dynamics:

dmi tð Þ

dt
¼ BðtÞLimin þ iGðtÞmi�1 tð Þ �

1

tv
mi tð Þ (10)
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Figure 1. General structure of image processing, unscented Kalman filter (UKF),
and discrepancy-based control (DBC).

Table 1. KDP kinetics and solubility.

Variable Value

Kg [–] 5112597.405

g [–] 1.2586921036

EA,g [Jmol–1] 69859.933026

Kb [–] 26856478430.55499

b [–] 4.235315794045159

K0 [–] 15.2361

K1 [–] 0.2058

K2 [–] 0.0101

K3 [–] –1.4506 ·10–4

K4 [–] 1.2292 ·10–6

–
1) List of symbols at the end of the paper.
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3 Online CSD Measurement

Feedback control is based on process monitoring, so acquisi-

tion of representative data is crucial for efficient control. The

proposed hardware design is a pragmatic combination of an

online microscope and a low-cost single-board computer

(Raspberry Pi by the Raspberry Pi foundation). Such system

can be mounted on the flow-through cell and form a noninva-

sive online embedded video microscopy tool. Particle flow ori-

ents particles with bigger facet toward the microscope; there-

fore, analyzed shots represent characteristic lengths of crystals.

In this contribution, the algorithm suggested in [22] is coded

in Python programming language using the OpenCV library.

Let f(x,y) represent a 2D image, with coordinates x and y.

The first step for edge detection is smoothing and noise remov-

al with the Gaussian function:

Gfilt sð Þ ¼ exp
�x2 þ y2

2s2

� �

(11)

where s is the standard deviation of the Gauss kernel:

ffilt x; yð Þ ¼ Gfilt sð Þf x; yð Þ (12)

In the next step of the Canny edge detection algorithm, the

gradient �f(x,y) is calculated over the filtered image ffilt(x,y):

�f x; yð Þ ¼

¶ffilt x;yð Þ

¶y
¶ffilt x;yð Þ

¶x

0

@

1

A (13)

Therefore, the edge gradient F(x,y) and direction Q(x,y) can

be determined:

F x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

¶ffilt x; yð Þ

¶x

� �2

þ
¶ffilt x; yð Þ

¶y

� �2
s

(14)

Q x; yð Þ ¼ atan
¶ffilt x; yð Þ

¶x

� ��1
¶ffilt x; yð Þ

¶y

 !

(15)

Further analysis is called non-maximum suppression. The

gradient value is analyzed for local maxima in gradient and

antigradient directions and marked as an edge, otherwise pixels

are marked as background and thus set to zero. To obtain more

robust results, double threshold filtration should be

applied. The idea is to ignore low gradient values

and keep high values, so Flow and Fhigh should be

defined. The pixel fp(xp,yp) is treated as a

strong edge if F(xp,yp) > Fhigh, as a weak edge if

Flow < F(xp,yp) < Fhigh, otherwise suppressed. Weak

edge pixels are then tested for neighborhood of

strong edge pixels. In the positive case, they are

kept as an edge, otherwise it is suppressed.

It is reasonable to normalize threshold parame-

ters as median fmedian over the whole image and

variance v. Therefore, Flow = fmedian(1–v), Fhigh =

fmedian(1+v). Consequently, the CSD is an array of

circle diameters corresponding to detected edges. Useful infor-

mation about crystal/solution ratio can be acquired by calcula-

tion of the area ratio
Vsolid

Vv
¼

Asolid

Av
, where Asolid is the area of

crystals in the image, Av is the crystal-free area, Vsolid is the vol-

ume of crystals in the vessel, and Vv is the volume of solution

in the vessel. This relation can be used for exact calculation of

the third moment such that m3 ¼
Asolid

Av
Vv .

The described image analysis software operates on Raspberry

Pi hardware with the Raspbian operating system with an

approximate rate of ten frames per second (fps). For flow-

through cell design, such rate represents data well and makes

online operation possible. An analyzed image example is given

in Fig. 2. The first image depicts an instance of taken images,

the second image shows results of Canny edge detection, and

the third image represents the resulting CSD, similar to the

theoretically derived exponential distribution. The edge detec-

tion algorithm robustness is an important problem to discuss,

especially if the crystal/solution ratio is high. As seen in Fig. 2 ii,

crystal agglomerations, overlapping crystals, and optical arti-

facts can influence the quality of the measurements, so the de-

tection sensitivity should be thoroughly tuned for each setup.

4 State Estimation

During the experiments, crystal formation on the surface of the

concentration sensor was observed resulting in a biased mea-

surement of the solute concentration:

cv;bias ¼ cv þ d (16)

Nevertheless, the unbiased concentration can be recon-

structed using a model-based state estimator. Therefore, an

unscented Kalman filter (UKF) [8] was implemented, which is

also used to estimate the bias d. Here, it is sufficient to include

the dynamic equations of the first four moments of the CSD

according to Eq. (10) instead of the full PBM (1). The overall

UKF algorithm implements the discrete time and the corre-

sponding dynamics for the estimation of the states and the bias

is given by:

x tkþ1ð Þ ¼

m0 tkþ1ð Þ
m1 tkþ1ð Þ
m2 tkþ1ð Þ
m3 tkþ1ð Þ
cv tkþ1ð Þ
d tkþ1ð Þ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼ xðtkÞ þ f x tkð Þ;w tkð Þð ÞDt; (17)

Chem. Eng. Technol. 2017, 40, No. 7, 1362–1369 ª 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cet-journal.com

Figure 2. Crystal size measurement procedure: (i) acquired image, (ii) edge de-

tection results, (iii) crystal size histogram.
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f x tkð Þ;w tkð Þð Þ ¼

B tkð Þ �
m0 tkð Þ

tv

B tkð ÞLmin þ G tkð Þm0 tkð Þ �
m1 tkð Þ

tv

B tkð ÞL2min þ 2G tkð Þm1 tkð Þ �
m2 tkð Þ

tv

B tkð ÞL3min þ 3G tkð Þm2 tkð Þ �
m3 tkð Þ

tv
1

tv
cv;f � cv tkð Þ
� �

�
3kVrsG tkð Þ

Vvrv

m2 tkð Þ

0

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

þ w tkð Þ

(18)

y tkð Þ ¼ m0 tkð Þ; m1 tkð Þ;m2 tkð Þ;m3 tkð Þ; cv tkð Þ þ d tkð Þð ÞT þ v tkð Þ

(19)

Here, w and v denote the zero mean process and measure-

ment noises with covariance matrices Q and R. To evaluate the

performance, artificial measurements were generated using the

simulation of the idealized model Eqs. (1)–(6) and the theoreti-

cal bias was implemented as:

d tð Þ ¼ �0:15cv t0ð Þ 1� exp �3 · 10�4t
� �� �

(20)

Thereby, it is assumed that the crystal layer on the probe is

increasing up to a certain maximum thickness. The perfor-

mance of the UKF is displayed in Fig. 3. It can be seen that

both, a good reconstruction of the unbiased solute concentra-

tion and estimation of the disturbance, is obtained for different

assumptions on the measurement noise. Even for a relatively

large noise, the estimation is reasonably accurate.

5 Discrepancy-Based Control

The shift from batch to continuous operation has high poten-

tial, but this task is not trivial, especially in pharmaceutical in-

dustry, where uniformity of properties is extremely important.

The continuous MSMPR crystallization is a nonlinear distrib-

uted-parameter system, therefore, control design is a challeng-

ing task. Different strategies have been proposed including

robust control [9–11], C-control [12], decentralized PID, non-

linear model predictive control (NMPC) [13], and direct nucle-

ation control [14]. A Lyapunov-function-based approach called

discrepancy-based control was presented in [15] and general-

ized to particle systems in [16]. This approach uses a general-

ized distance measure, discrepancy, and Lyapunov stability

theory in order to design a stabilizing control law for the non-

linear infinite-dimensional model. The choice of the appropri-

ate discrepancy is motivated by the physical insight. In contrast

to conventional linearization-based approaches, the full nonlin-

ear behavior and complexity of the plant can be taken into

account.

Consider a dynamical system which satisfies Eqs. (1)–(6).

Control is designed for the third moment m3 as controlled vari-

able and the temperature in the vessel Tv as manipulated vari-

able. Defining a discrepancy r based on the third moment as:

r ¼ m3;set � m3 ¼

Z

¥

0

L3 nset � nð ÞdL (21)

with initial condition r(t0=0):=r0, the associate control Lyapu-

nov candidate functional is given by:

V ¼
1

2
r2 ¼

1

2

Z

¥

0

L3 nset � nð ÞdL

0

@

1

A

2

(22)

which is continuously differentiable and positive definite. In

order to guarantee closed-loop stability, its time derivative

should be negative definite for a non-zero discrepancy r. Cal-

culating the time derivative results in:

_V ¼ r _r ¼

Z

¥

0

L3 nset � nð ÞdL �

Z

¥

0

L3
¶n

¶t
dL

0

@

1

A (23)

Inserting the population balance Eq. (1) with the nucleation

term yields:

_V ¼ �

Z

¥

0

L3 nset � nð ÞdL

�

Z

¥

0

L3G
¶n

¶L
dL�

1

tv

Z

¥

0

L3ndLþ

Z

¥

0

L3BdðL� LminÞdL

0

@

1

A

(24)

The condition of closed-loop exponential stability with re-

spect to the discrepancy r is given by:

_V ¼ �2cV (25)

where c is the convergence rate, the only parameter to be tuned.

As the manipulated variable Tv enters growth kinetics depend-

ency in a complicated way, the crystal growth rate G will be

used as a virtual control input uvirt. This is possible as only the

growth rate is affected by the vessel temperature. Substitution

of Eqs. (22) and (23) into Eq. (24) and rearrangement with

respect to the growth rate yields the virtual control law:

uvirt ¼

crþ
1

tv

R

¥

0

L3ndL�
R

¥

0

L3BdðL� LminÞdL

R

¥

0

L3
¶n

¶L
dL

(26)

The temperature Tv can be derived from the virtual control

input by solving the following nonlinear algebraic equation at

each instance of time:

uvirt ¼ Kgexp
�EA;g

RgasTv

 !

cv
csatðTvÞ

� 1

� �g

(27)

Closed-loop performance is displayed in Fig. 4 and the simu-

lation parameters are presented in Tab. 2. Simulation of the

feedback loop with the derived discrepancy-based control

shows the expected exponential convergence with reasonable

control effort.

The presented control technique is compared with the

PI-controller tuned according to the module optimum for a
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specific set point [23]. The tuning parameters of the controllers

are listed in Tab. 3.

The integral square error (ISE) is used as a performance

indicator and the comparison is given in Tab. 4. In Fig. 4 three

scenarios with different setpoints are depicted: the first setpoint

is m3,set = 2.6 ·10–4m3, the second is m3,set = 2.8 ·10–4m3, and

the third is m3,set = 3 ·10–4m3. It is noticeable that linear control

performance worsens as the set point drifts away from the lin-

earization point, whereas DBC keeps a decent performance in

different regimes. In [24], it is claimed that the robustness of

the controller towards substance properties uncertainty, in oth-

er words plant-model mismatch, should be assured. To over-

come such issue, the adaptive form of the DBC [25] should be

considered.

6 Conclusions

Important issues of continuous MSMPR crystallization were

tackled: CSD online monitoring, state estimation and control,

forming a general process control structure as in Fig. 1. Non-

invasive online embedded video microscopy is an efficient,

affordable, and flexible tool to enhance crystallization monitor-

ing. Suggested online monitoring reaches a performance of

approximately 10 fps, which allows applying sophisticated con-

trol schemes based on solid-state measurements.

Noninvasive online embedded video microscopy can be used

not only for CSD measurements, but for metastable zone detec-

tion or morphology analysis as well. Although the Canny edge

detector allows tackling some drawbacks of video microscopy,

the application of different schemes such as Otsu’s binarization

Chem. Eng. Technol. 2017, 40, No. 7, 1362–1369 ª 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cet-journal.com

Figure 3. State estimation results for three scenarios. Low noise: (i) ideal, biased, and reconstructed measurement, (ii) estimation of bias

compared to ‘‘real’’ bias; medium noise: (iii) ideal, biased, and reconstructed measurement, (iv) estimation of bias compared to ‘‘real’’ bias;

large noise: (v) ideal, biased, and reconstructed measurement, (vi) estimation of bias compared to ‘‘real’’ bias.
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or watershed transform should improve the overall perfor-

mance, i.e., reduce computational costs, expand the possible

crystal density range, alleviate the detection of overlapping

crystals, and avoid false-positive detections.

During experiments, the concentration measurement issue

was retrieved and solved by unscented Kalman filtering which

allowed reconstruction of solute concentration from biased

measurement. It shows good performance and overcomes

emerging measurement noise. The control design for continu-

Chem. Eng. Technol. 2017, 40, No. 7, 1362–1369 ª 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cet-journal.com

Figure 4. MSMPR control simulation for three scenarios. m3,set = 2.6 ·10–4m3: (i) manipulated variable Tv, (ii)
controlled variable m3; m3,set = 2.8 ·10–4m3: (iii) manipulated variable Tv, (iv) controlled variable m3; m3,set =
3.0 ·10–4m3: (v) manipulated variable Tv, (vi) controlled variable m3.
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ous MSMPR crystallization is a challenging task due to non-

linear and distributed-parameter behavior. This motivated the

application of discrepancy-based control design. System simu-

lation exhibits exponential convergence according to the

Lyapunov stability theory. Measurements based on different

algorithms, their verification and validation is the next iteration

of research as well as the implementation of the designed state

estimator and controller.

The authors have declared no conflict of interest.

Symbols used

Asolid [m2] solid-phase area

Av [m3] solution volume

B(t) [#s–1] nucleation rate

c [–] tuning parameter

csat(t) [g g–1] equilibrium concentration

cv,f [g g–1] feed concentration

cv,bias [g g–1] biased concentration

cv(t) [g g–1] liquid-phase concentration

d [g g–1] bias

EA,g [Jmol–1] growth activation energy

�f x; yð Þ [–] image gradient

ffilt(x,y) [–] filtered function

Flow, Fhigh [–] threshold values

fmedian [–] median threshold value

fp(xp,yp) [–] pixel intensity

f(x,y) [–] image

F(x,y) [–] gradient magnitude

Gfilt(s) [–] Gaussian function

G(t) [m s–1] growth rate

Kb, b, Kg, g [–]

kinetic parameters

Ki [–] interpolation factors

kV [–] volumetric shape factor

L [m] characteristic crystal length

Lmin [m] nucleus size

n0(L) [#m–1] initial seeding

n(L,t) [#m–1] crystal size distribution

nset [#m–1] size distribution set point

Rgas [J K–1mol–1] gas constant

S(t) [–] supersaturation

t [s] time

Tv(t) [K] solution temperature

uvirt [m s–1] virtual manipulated variable

V [m6] candidate Lyapunov functional

Vsolid [m3] solid-phase volume

Vv [m3] solution volume

x, y [–] Cartesian coordinates

Q, R 6-by-6 matrices covariance matrices

w 6-by-1 vector process noise

v 5-by-1 vector measurement noise

x 6-by-1 vector state vector

y 5-by-1 vector output vector

Greek letters

tv [s] residence time

s [–] standard deviation

n [–] threshold variance

rs [kgm–3] solid-phase density

rv [kgm–3] liquid-phase density

mi [mi] i-th moment

m3,set [m3] third moment set point

r [m3] discrepancy

Q(x,y) [–] gradient argument
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Table 2. Process parameters and initial conditions.

Parameter Value

Vv [m
3] 0.026

rv [kgm
–3] 1140

kV [–] 0.7498

rs [kgm
–3] 2340

tv [s] 3120

cv,f [g g
–1] 0.2757

Tv(0) [K] 296.25

csat(0) [g g
–1] 0.2396

cv(0) [g g
–1] 0.2613

B(0) [#s–1] 250.4878

G(0) [m s–1] 1.1973 ·10–7

n(L,0) [#m–1] Bð0Þ

Gð0Þ
exp �

L

Gð0Þtv

� �

Table 3. Control parameters.

Control parameter Value

DBC: convergence rate c 0.001

PI-control: proportional factor –48 000

PI-control: integral factor –3.86

Table 4. Control performance, set points, and initials.

Controller m3,set [m
3] ISE

DBC 2.6 ·10–4 0.0162

PI-control 2.6 ·10–4 0.0175

DBC 2.8 ·10–4 0.0370

PI-control 2.8 ·10–4 0.0707

DBC 3.0 ·10–4 0.0578

PI-control 3.0 ·10–4 0.1237
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Sub- and superscripts

0 at initial time moment

b nucleation/birth

filt filtered

g growth

k on the k-th step

min minimal

s related to the solid phase

set set point

v related to the solution in the vessel

Abbreviations

ALD axis-length distribution

CSD crystal size distribution

DBC discrepancy-based control

MSMPR mixed solution mixed product removal

NMPC nonlinear model predictive control

PBM population balance modeling

PID proportional-integral-differential

PI proportional-integral

UKF unscented Kalman filter
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In this contribution different control approaches, ranging from standard linear control to non-linear model

predictive control, are applied to fluidised bed spray granulation processes with internal and external product

classification. These processes exhibit sustained non-linear oscillations in the particle property distribution,

i.e. size distribution, that have negative influence on steady-state operation, for example a constant productmass

flow with constant properties. The controllers are applied to stabilise these open-loop unstable steady-states.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Particulates processes play an important role in various fields of

application: There are many examples of particulate products in

everyday-life, for instance milk powder, milled and roasted coffee,

instant cacao powder, and sugar, to name just a few. Additionally, par-

ticulate products play an important role in other fields: health-care

(e.g. in the form of an active pharmaceutical ingredient pressed into a

tablet), in agriculture in the form of fertilisers, or in the chemical indus-

try as catalyst powders. It is reported that approximately three quarters

of all industrially processed goods are in solid state— either in their final

state or in intermediate production stages [1].

The product properties can often be characterised by the particle

properties, or rather the particle properties affect the properties of the

product. Important particle properties are for instance the particle size

and form, the porosity of the particle, the moisture content, and the

enthalpy (temperature).

The particle size and form determine for instance the flow-ability of

a powder: If the particles in the powder are too small, then cohesive

forces between the particles prevent a free flow. This can be observed

by comparison of sugar powder and crystal sugar: Although both prod-

ucts consist of the samematerial, sugar powderflows less freely because

of the increased cohesive forces between smaller sized particles.

For the production of particulate substances from liquid starting

material (solutions, emulsions, or suspensions) various processes exist:

e.g. crystallisation, granulation, and spray drying. These can be further

specialised depending on the characteristic effect that is used for the

transformation, for example cooling crystallisation or spray granulation.

Crystallisation and granulation are complex dynamic processes, involving

multiple phases (fluid and solid), heat and mass transfer between these

phases, as well as particle formation processes, e.g. layer formation.

One process that is often used in industries, e.g. in pharmaceuticals,

foods, and fertilisers, is fluidised bed spray layering granulation. It

allows for the production of dustless, free-flowing particles from liquid

rawmaterials: The suspension (or solution) is sprayed onto particles in

the process chamber and due to drying – the bed is fluidised by hot air –

the liquid evaporates. The remaining solid builds up a new layer of solid

material on the particles.

Fluidised bed spray granulation can be run in batch aswell as contin-

uous mode (Fig. 1), and drying and particle formation processes can be

coupled and run simultaneously in one apparatus. The structure of the

apparatuses is simple, and due to the high heat and mass transfer

between the phases induced by the fluidisation, compact plants – com-

pared to other technologies – can be designed. In bothmodes, a suspen-

sion or solution is sprayed leading to particle growth by layering as

explained before (centre of Fig. 1). Additionally, in continuous opera-

tion, several ways exist to remove the product from the fluidised bed,

for example by an external classification circuit which is depicted in

Fig. 1 or by an internal classification. Both cases will be described in

detail in later sections.

In the practical realisation of particle formation processes the follow-

ing problem arises: The particles are not uniform, i.e. they differ in their

properties, for instance in size, form or colour. This means that the

particles in the powder do possess a distribution with respect to their

properties, and therefore the product also possesses a property distribu-

tion. Given a product specification requires that the distribution

lies within the limits posed by the specifications to be accepted by a

customer.

Theproduct specifications can be very strict, for instance in processes

with expensive rawmaterials or where the product is a hazardous good,
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and the requirements are further increasing. The need to guarantee that

the product complies to the specification motivates the use of process

control systems in particle processes. This becomes especially important

if the process designed according to the product specifications turns out

to be unstable [2,3], i.e. even small process disturbances yield an unde-

sired drift in the product properties. The necessary compliance of the

product to specifications motivates the use of model-based feedback

controllers.

One well-established framework for the macroscopic modelling of

particulate processes, which are from a systems-theoretic point of

view infinite-dimensional processes, that is well-suited for the model-

ling of industrial-scale processes, is the population balance approach,

introduced for problems in statistical mechanics by Hulburt and Katz

in the 1960s [4]. To the field of particulate processes it was transported

by thework of Randolph and Larson [5] (with a focus on crystallisation);

it was advertised and established in the field by D. Ramkrishna and co-

workers [6].

In the literature, many successful applications of population balance

modelling to particulate processes can be found, for instance in

crystallisation [7–9], granulation [2,3,10–12], drying [13–15], or aerosol

processes [16,17].

The main obstacle in the analysis and development of general con-

trol design methods for distributed parameter systems is the complex

mathematical theory due to the infinite-dimensional character of the

processes.

In the case of nonlinear distributed systems the treatment is restrict-

ed in most cases to practically important process structures, see for

instance [18–20]. Nonetheless, control schemes are successfully de-

signed for distributed parameter systems, for applications to spatially-

distributed systems, see for instance [20–22].

There are also contributions in the field of property-distributed pro-

cesses available, for instance Kalani and Christofides [17] who proposed

nonlinear controller design for an aerosol process on the basis of a re-

duced model, and Chiu and Christofides [23] who applied a nonlinear

controller to a crystallisation process on the basis of a reduced model.

Pottmann et al. [24] designed a model-predictive controller for a drum

granulation system; Vollmer and Raisch [25] and Palis and Kienle [26]

designed a stabilising controller for an unstable crystallisation process

using H∞-theory and discrepancy-based control; Shi et al. [27] designed

amodel-predictive controller for a batch crystallisation process; Dueñas

Díez et al. [28] controlled inventories of a property-distributed process

by passivity-based control. Villegas et al. [13] presented a distributed

control scheme in a batch fluidised bed dryer and Glaser et al. [29]

presented the design of a model-predictive controller for continuous

drum granulation.

Recently, Palis and Kienle [30–32] presented results on stabilisation

of unstable steady-states in continuous fluidised bed spray granulation

using H∞-theory and discrepancy-based control in continuous granula-

tionwith internal product classification, assuming that the size distribu-

tion of particles can be measured. Apart from these publications, the

control of particle size distributions in fluidised bed spray granulation

has not receivedmuch attention, so that today, practically implemented

control systems mainly concentrate on the regulation of heat and mass

transfer (e.g. temperature), integral values (e.g. total mass of product)

ormeanvalues (e.g.meanparticle size) of the particles in the stable pro-

cess regime. Although the control schemes are for most part sufficient

for their tasks, they cannot guarantee that the property distribution as

a whole complies to the specifications. This means that in light of the

increasing strictness of product specifications the control schemes

have to be improved.

In this contribution two industrially appealing process control

schemes for the important cases of continuousfluidised bed spray gran-

ulation with internal product classification and external classification

and particle reflux are presented that allow for the stabilisation of

unstable operating points and particle size distributions in these

processes.

2. Process modelling

Limiting the scope to a purelymacroscopicmodelling, which iswell-

suited for the description of large-scale processes, population balance

modelling is often applied [5,6].

The state of a particle is characterised by its properties. In general,

two types of coordinates are distinguished: external coordinates x

(the spatial position in the system), and internal coordinates e (par-

ticle properties, e.g. the size ξ). In total, these properties span a prop-

erty state-space (denoted by Ω × E): Usually, during the process the

properties of a particle will change; this corresponds to a movement

Fig. 1. Schematics of a continuous spray granulation process with external classification

and particle recycle.

Fig. 2.Movement of a particle in property state-space.
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in state-space as shown in Fig. 2 for one external and one internal

property.

Population balancemodelling is the description of the temporal evo-

lution of a number density function n (or other functions derived from

it, for example the mass density function):

N tð Þ ¼

Z

Ω

Z

E

n t;x; eð Þ de dx ; x∈Ω; e∈E: ð1Þ

It describes howmanyof the particles in the process under consider-

ation possess a certain property, e.g. howmany particles are at position

x having the property ξ. For this, all sub-processes have to be modelled

in terms of the number density function.

In the special case of no external coordinates, dim(x) = 0, corre-

sponding to a well-mixed system, the differential or local formulation

of the population balance equation can be derived:

∂n

∂t
þ divξ φ n; ξð Þ½ �−p n; ξð Þ ¼ 0: ð2Þ

This is a formal balance law for the temporal change of the number

density function n. Open are the expressions for the transport flux φ
and the local production rate p. They depend on the process to be

modelled and therefore no general expression can be given. Further re-

quired are initial and boundary conditions, depending on the modelled

process. These details will be given in the following sub-sections.

From the number density distribution a set of integral values, called

the moments of the distribution, can be derived which are often easier

to interpret than the density distribution itself. For the case of one prop-

erty coordinate only, the jth moment can be calculated by:

μ j tð Þ ¼

Z

ξmax

ξ0

ξ
j
n t; ξð Þ dξ : ð3Þ

For certain j a physical interpretation is possible, for instance j = 0

gives the total number of particles, i.e. μ0(t)=N(t). For highermoments

themeaning of ξ has to be taken into account. If, for example, ξ denotes
the particle size, then μ1(t) is equal to the total length of particles (laid

out and measured in a row), μ2(t) is proportional to the surface area of

all particles in the population, and μ3(t) is proportional to the total

volume of particles. The proportionality factors depend on the geomet-

ric shape of the particles.

2.1. Continuous granulation with internal product classification

Vreman et al. [3] derived a model for the continuous granulation

with internal product classification which is summarised in the follow-

ing: A suspension or solution is sprayed by a nozzle onto the particles in

the fluidised bed. Assuming that the particles are almost spherical, the

characteristic size can be described by the diameter of the particles.

Assuming that the sprayed droplets can spread over the total particle

surface the buildup of new solid layers can be described by a surface-

proportional law [11]:

G ¼
2Ṁsolid

ρsolid π μ2

; ð4Þ

where Ṁsolid denotes the solid mass sprayed onto the particles. Vreman

et al. use a slightly modified version of this growth law by splitting up

the sprayed mass flow: They consider not only the growth of particles

already present but also the formation of new particles, nuclei, due to

pre-drying of the sprayed droplets:

G ¼
2 1−bð ÞṀsolid

ρsolid π μ2

: ð5Þ

Here, b denotes the fraction of the sprayed solid that is used to form

new nuclei and is related to the distance between the nozzle and the

particle bed. The numberflowof nuclei, Bn, can be calculated– assuming

that they have a normalised size distribution q0,nuclei(ξ) –:

Bn ξð Þ ¼
6 bṀsolid

ρsolid π

Z

∞

ξ0

ξ
3
q0;nuclei ξð Þ dξ :

ð6Þ

The particle flow at the outlet of the apparatus is regulated by a clas-

sifying gasflow in the outlet tube: Depending on the gas velocity certain

particle sizes leave the apparatus whereas other sizes are transported

back into the process chamber, that is, in order to obtain a product

with a certain (mean) size a fixed gas flow is set. The classifying effect

is modelled by a separation function T which depends on the particle

size and the gas velocity in the outlet tube. The product mass flow can

then be described by:

ṅprod ¼ KT ξð Þ n ; ð7Þ

where K is a drain factor. The population balance equation for this

process then reads:

∂n

∂t
þ
∂ Gnð Þ

∂ξ
¼ −ṅprod þ Bn ξð Þ : ð8Þ

Aswas shownbyVreman et al., depending on the spraying rate Ṁsolid

either a stable steady-state operation or a sustained oscillation in the

number density function and the product mass flow rate is obtained.

The control task is here to dampen out these oscillations in order to

obtain a constant product mass flow with constant properties.

2.2. Continuous granulation with external classification and particle reflux

A similar process configuration is continuous spray granulationwith

external classification as depicted in Fig. 1. The core of this configuration

is again a process chamber with a nozzle in either a top-spray or

bottom-spray configuration, and an outlet tube is installed in the centre

of the gas distributor plate. During granulation particles will leave the

chamber by this tube. This mass flow is then screened twice: The

over-sized particles from the first screen are sent to a mill where they

are milled and then re-fed into the process chamber. The under-sized

particles are screened once more. Here, the over-sized particles are

accepted as product, whereas the undersized particles are also re-fed

into the process chamber for further growth.

For population balance modelling of the number density function of

particles in the bed, the same assumptions as in the case of the internal

classification are used. This means that the population balance equation

can be used as a basis for this process— it only has to be augmented by

terms accounting for theparticle outlet and the re-cycle of particles. This

requires tomodel the screens and themill using the population balance

framework. It is assumed that no hold-up of particles occurs, that parti-

cles do not break during screening and that the performance of screens

andmill does not varywith age or particle loading. Then the screens can

be described by well-known separation functions T(ξ) individually for

the upper and the lower screen. In modelling the mill, it is assumed

that the particles having passed the mill possess a normalised size

distribution q0,mill(ξ) depending on the characteristics of the mill:

ṅmill t; ξð Þ ¼ Bm tð Þ q0;mill ξð Þ ; ð9Þ

where Bm denotes the number flow ofmilled particles which can be ob-

tained from the knowledge of the mass flow entering the mill and the

milling function. Usually, q0,mill cannot be obtained exactly and has to

be approximated.
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The number density flux of particles re-fed into the process chamber

consists of the under-sized particles of the second screen and themilled

particles, i.e.

ṅrecycle ¼ 1−T1ð Þ 1−T2ð Þṅout þ ṅmill : ð10Þ

If it is assumed that no particle size is preferred, then the particle

outlet can be expressed as being proportional to the number of particles

that possess a certain size:

ṅout ¼ Kn ; ð11Þ

where K can be designed, for instance, to achieve a pre-set bedmass [2]:

K ¼ 1−min 1; mbed;set=mbed

� �

: ð12Þ

The population balance equation for this process can then bewritten

as

∂n

∂t
þ
∂ Gnð Þ

∂ξ
¼ −ṅout þ ṅrecycle ð13Þ

with appropriate initial and boundary conditions.

This process configuration was extensively investigated by Heinrich

et al. [2] and Radichkov et al. [33] concerning the dynamic behaviour. As

was shown in Radichkov et al. by bifurcation analysis, the process

exhibits different dynamic behaviours depending, amongst others, on

the value of the average size ofmilled particles: For a certain range a sta-

ble steady-state distribution is attained which would yield a constant

mass flow of product with constant particle properties, but for a large

parameter range the system exhibits sustained oscillations in the num-

ber density function resulting in an unwanted time-varying mass

flow of product (Fig. 3). As this poses several difficulties in the post-

processing of the product process control is required to stabilise these

unstable operating points.

3. Feedback control design

3.1. Continuous granulation with internal product classification

As was motivated in the process description, this granulation pro-

cess can exhibit nonlinear oscillations in the number density distribu-

tion and thereby in important product characteristics. An analysis

shows that the solid spraying rate has huge influence on the process

stability and by this qualifies as a manipulated variable to attenuate

the oscillations. It is further found that the third moment μ3, which is

proportional to the total mass of particles in the bed, is a suitable mea-

surement to detect the oscillating behaviour as very fine particles are

blown back into to the process chamber and accumulate there.

In order to control this process a feedback controller with a simple,

industrially accepted proportional-integral structure is to be designed.

To that purpose a linear transfer function model P0(s) linking the

manipulated (the spraying rate) and the controlled variable (the third

moment) is derived based on the linearisation of the nonlinear process

model.

It has to be noted that the derived plant model is uncertain due to

uncertainties in the process parameters, e.g. the amount of nuclei for-

mation, unmodelled dynamics in the initial nonlinear process model

due to the use of assumptions in the derivation, and approximation er-

rors, amongst themuncertainties in the linearisationwhich is only valid

in a region around one steady-state and errors due to the transition of

the initially infinite-dimensional process model to a finite-dimensional

model that can be implemented and solved numerically, i.e. the

discretisation of the population balance equation. However, for these

uncertainties individual bounds are often available.

The presence of the uncertainties yields that not only the derived

transfer function, the nominal model P0, but a set of transfer functions

incorporating the uncertainty bounds has to be considered in a control-

ler design. A controller which is able to perform the required control

task for all transfer functions in this set, which may have a quite differ-

ent dynamic behaviour, for instance due to a transition from a stable to

an unstable process regime, is called a robust controller.

The design requires the expression of the uncertainties in a suitable

way, the normalised left coprime factorisation being one of them. Here,

the nominal, possibly unstable, transfer function P0(s) is split up into the

product of two stable transfer functions:

P0 sð Þ ¼ M
−1
0 sð Þ N0 sð Þ : ð14Þ

The uncertainties are then formulated as additive errors ΔM and ΔN

in both factors individually, resulting in:

P sð Þ ¼ M0 sð Þ þ ΔM sð Þ½ �
−1

N0 sð Þ þ ΔN sð Þ½ � : ð15Þ

The uncertainty models ΔM and ΔN are stable transfer function

matrices, with a known bound ε expressed in the H∞-norm:

ΔM ;ΔN½ �k k∞bε: ð16Þ

In order to derive the minimum value of ε various sophisticated

methods from systems-theory have to be applied. The details for the

derivation of the bound for this process can be found in Palis [34].

The controllerwith transfer function Cwhich is of PI-structure in the

present case is then designed for the nominal model P0 by standard

methods, e.g. the root-locus method [35]. The controller is robust if

the H∞-norm of a special closed-loop transfer function satisfies:

C
I

� �

I þ P0Cð Þ
−1

M
−1
0

�

�

�

�

�

�

�

�

∞

bε
−1

: ð17Þ

If this condition is fulfilled, the controller stabilises not only the

nominal plant model, but also the set of uncertain models. As the

infinite-dimensional system, i.e. the granulation process, is included in

this set, it is also stabilised. If the condition is not fulfilled then the

controller C has to be re-parameterised in an interative way.

3.2. Continuous granulation with external classification and particle recycle

The continuous spray granulation with external classification and a

particle recycle utilising screens and amill is known to possess unstable
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Fig. 3. Exemplary behaviour of the first four moments, normalised with respect to the ini-

tial value μj (0), in the case of a unstable steady-state in continuous spray granulationwith

external classification.
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steady-states, i.e. a stable limit cycle in the number density distribution

of the particles in the bed can occur (Fig. 3). Although this oscillation

does not influence the quality of the obtained product – this is deter-

mined by the choice of the screens – the quantity of product is strongly

influenced: At some time instants a large amount of product is generat-

ed whereas at other times the product mass flow nearly vanishes. As

this is a generally unwanted effect, feedback control is applied to

damp out these oscillations.

A bifurcation analysis of the population balance model shows that

the dynamic behaviour is strongly dependent on the size of the milled

particles that are re-cycled into the bed [33]: If they are too small then

oscillations occur otherwise a stable steady-state operation takes

place. From a control engineering point of view the size of the milled

particles is a manipulated variable. It can be regulated, for instance by

manipulation of the speed of themill. In order to detect the oscillations,

it is found that the second moment of the number density distribution

μ2 is a suitable measurement. Although it is not directly measurable it

can be obtained by other means, for instance a model-based measure-

ment system [36].

For stabilisation of these unstable steady-states, model predictive

control is applied [37]. Its main idea is to calculate the manipulated var-

iable as the solution of a dynamic optimisation programme. The main

ingredients are: (a) A dynamic processmodel that allows for the predic-

tion of the process state given the information about the current state of

the process. (b) A cost functional thatmeasures the deviation of the cur-

rent and predicted states from the desired process states. (c) An optimi-

sation algorithm that calculates the input trajectory by minimising the

difference between the predicted and desired states. Due to the iterative

re-calculation of the input trajectory, i.e. at each time instant the future

process states are predicted and the optimisation programme is solved

again, a closed-loop feedback control law is obtained which is able to

cope with process disturbances and changes in the reference signal

(Fig. 4).

The main advantages of model predictive control are that it is con-

ceptually simple, which is of great importance if the controller is to be

applied industrially, and it is able to incorporate constraints explicitly

into the problem formulation, e.g. known limits of themanipulated var-

iables can be stateddirectly and aremet in the resulting input trajectory.

The main problem of model predictive control is the need to solve an

optimisation programme: If constraints are present then the pro-

gramme is nonlinear and a closed analytic solution is for almost all

cases impossible. This requires the use of iterative numerical algorithms

which introduce various difficulties, for instance in the real-time avail-

ability of the computed input trajectory. However, focussing on linear

model predictive control, it is possible to derive an analytic solution in

the unconstrained case which closely resembles a state-feedback con-

troller with a pre-filter for reference tracking.

Given an augmented state-space model in incremental form

z kþ 1ð Þ ¼ Az kð Þ þ BΔu kð Þ; y kð Þ ¼ Cz kð Þ; ð18Þ

the predicted output can be expressed as

Y ¼ Fz kjkð Þ þΦΔU; ð19Þ

where the vectors Y and ΔU as well as the matrices F andΦ are created

by stacking the equations for all sampling times, i.e.

Y ¼

y kþ 1jkð Þ
⋮

y kþ Npjk
� �

2

4

3

5 ; ð20Þ

ΔU ¼
Δu kð Þ

⋮

Δu kþ Nc−1ð Þ

2

4

3

5 ; F ¼

CA
CA

2

⋮

CA
Np

2

6

6

4

3

7

7

5

; ð21Þ

Φ ¼

CB 0 0
CAB CB 0
⋮ ⋮ ⋮ ⋮

CA
Np−1

B CA
Np−2

B CA
Np−NcB

2

6

6

4

3

7

7

5

: ð22Þ

With these results a quadratic cost functional can be formulated

J ΔUð Þ ¼ R−Yð Þ
T
R−Yð Þ

T
þ ΔUð ÞW ΔUð Þ; ð23Þ

where R is the stacked reference signal over the prediction horizon. The

matrix W is used to scale the influence of the input on the cost. The

optimum input sequence (ΔU)opt thenminimises the cost functional, i.e.

ΔUð Þopt ¼ arg min
ΔU

J ΔUð Þ : ð24Þ

In the unconstrained case this optimisation problem can be solved

analytically, yielding

ΔUð Þopt ¼ Φ
T
ΦþW

� �

−1
Φ

T
R− Φ

T
ΦþW

� �

−1
Φ

T
Fz kjkð Þ : ð25Þ

The second part of the right-hand side of the equation can be

interpreted as state feedback, the first part is a pre-filter that will guar-

antee a zero steady-state control error.

In the case of linear constraints, e.g. bounds on the manipulated

variables, Eq. (24) is a quadratic optimisation programme, the solution

can be obtained efficiently, for instance by active-set or SQP methods

(cf. [38]).

4. Results and discussion

4.1. Continuous granulation with internal product classification

In order to stabilise the oscillations in this process, for a given re-

quired steady-state given by the parameters in Table. 1, the linear

Fig. 4. General principle of model-predictive control.

Table 1

Process parameters for the continuous spray granulation process with internal classifica-

tion after [3].

Nozzle height [m] hnozzle 0.44

Bed porosity [−] ψ 0.5

Drain factor [s−1] K 1.92 × 10−4

Solid volume spray rate [mm3 s−1] V̇solid 1.313 × 105

Minimum nucleation fraction [−] b∞ 0.028

Controller proportional gain Kp 0.0144

Integrator gain KI 8 × 10−6
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transfer function model is derived and reduced in the model order

yielding a third-order SISO transfer function. This is done to simplify

the controller design. Afterward, the uncertainties ΔM and ΔN are de-

rived, including the model reduction error, and incorporated into the

controller design as shown before (cf. [34]). For this particular process,

a simple PI-controller is designed using the root-locus method, i.e. after

setting the general structure of the controller it is parameterised by this

method such that the closed loop is stable and shows a desirable dy-

namic behaviour (Fig. 5). The robustness of the closed-loop system

with respect to the model uncertainties is checked by application of

Eq. (16). The corresponding gains of the controller are also listed in

Table. 1.

Simulation results for the application of the designed PI-controller to

the nonlinear process, i.e. the discretised population balance equation,

are shown in Fig. 6–Fig. 8. Here, after approximately 60 h the controller

is applied to the process and stabilises the number density distribution

bymanipulating the spraying rate. Note that the change in spraying rate

is only temporarily, i.e. the steady-state spraying rate is the same (illus-

trated by the dashed line in Fig. 8). However, now a constant product

mass flow with the desired (mean) particle size is obtained, a huge

improvement over the oscillating amount achieved without feedback

control (Fig. 7). Another virtue of the designed controller is that al-

though highly sophisticated methods had to be used to derive it and

to show that it stabilises the system, it can be implemented easily

using a standard PI-controller component.

4.2. Continuous granulation with external classification and particle recycle

In order to calculate and parameterise themodel predictive control-

ler for the number density distribution, at first the unstable steady-state

solution belonging to the process parameters given in Table. 2 is obtain-

ed by analytically solving the steady-state population balance equation

(cf. [38]). A finite-dimensional linear state-space model was then

obtained by linearising the nonlinear population balance equation,

which is discretised with respect to the particle size by a higher-order

finite volume method, in the vicinity of the steady-state solution. This

linear model, a system of linear ordinary differential equation, is then

discretised in time resulting in a set of linear difference equations

which are used to predict the future process states.

Given the steady-state solution, the cost functional is set up,measur-

ing the quadratic difference between the current secondmoment of the

number density distribution and the value of the secondmoment in the

steady state and a weighting of the applied input is added:

J uð Þ ¼
X

Np

k¼1

vk μ2 k½ �−μ2;ref k½ �
� �2

þwk u k½ �ð Þ
2

� �

: ð26Þ

Additionally, constraints are imposed on the range of themanipulat-

ed variable, representing the fact that particles cannot bemilled to arbi-

trary sizes:

umin k½ �≤u k½ �≤umax k½ � : ð27Þ

The corresponding values for the prediction and control horizons as

well as the constraints can also be found in Table. 2.

This then leads to a quadratic optimisation programme that has to be

solved online at each time instant k. However, the computational time

needed to re-calculate the input trajectory is – compared to the time

constant of the process in the order of minutes – negligible. In Fig. 9

the results obtained by the application of the linear model predictive

controller to the nonlinear process after 160 min are shown. Compared
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Fig. 5. Plot of the root locus of the nominal plant P0with PI-controller. The poles and zeros

of P0 are shownas black crosses and bullets, the poles of the controller are shown in grey. It

can be seen that the initially unstable poles (to the right of the dashed line) are pulled into

the stable region, i.e. the closed loop is stable.

Fig. 6. Plot of the number density distributions in the fluidised bed chamber with and

without feedback control. The controller is activated after 60 h and the sustained open-

loop oscillation is eliminated and the number density distribution in the bed attains a

steady-state.
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to the uncontrolled process where a sustained oscillation develops the

controller is able to stabilise the steady-state, resulting in a constant

mass flow of product with a constant particle size distribution (Fig. 10).

The profile of the manipulated variable, the mean diameter of the milled

and re-cycled particles, is shown in Fig. 11. It can be seen that the value is

at all times in the bounds specified by umin and umax. The non-smooth ap-

pearance of the profile is due to the time discrete implementation of the

control law and the unstable dynamics of the process. It can be smoothed

by decreasing the sample time Tsample at the cost of an increased compu-

tational load.

5. Summary and outlook

In this work the stabilisation of unstable, oscillatory steady-states in

continuous fluidised bed spray layering granulation was investigated.

Two practically important process configuration –with internal product

classification and with external product classification – which can ex-

hibit unstable process behaviour under a wide set of operating condi-

tions were considered. These unstable process states, which in both

cases are due to nuclei formulation, limit the current range of achievable

product properties.

Based on practical as well as model-based considerations, manipu-

lated variables were chosen which allow influencing the stability

of the processes. Two linear feedback controllers with industrially

accepted structures were designed to determine a-priori determined

unstable steady-state: A robust PI controller for the continuous process

with internal product classification, which takes explicitly into account

process uncertainties, and a model-predictive controller for the contin-

uous process with external classification which takes into account

constraints on the manipulated variables. It was shown in simulations

that the designed controllers are able to achieve the stabilisation; how-

ever, – being linear feedback controllers – the underlying linearised

process dynamics must be sufficiently close to the nonlinear process

dynamics.

This current restriction has to be overcome if in addition to

stabilisation also the start-up and shutdown of the continuous process-

es are to be realised. These processes are inherently nonlinear and feed-

back controller design has to incorporate this. A possible way to do this

in future work is for instance the use of gain-scheduling controllers:

There, a set of linear process models is derived where each model is a

able to represent the nonlinear dynamics over a certain range. The com-

plete nonlinear dynamics are recovered by suitably switching between

the linear models. Simultaneously, a set of linear feedback controllers

for each of the linear process models is designed as well as a switching

mechanism between the controllers.

Another restriction that has to be handled in futurework is the influ-

ence of the continuous (gas) phase on the particle growth. Based on the
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Table 2

Process parameters for the continuous spray granulation process with external

classification.

Initial bed mass [kg] mbed 10.0

Reference bed mass [kg] mbed,set 10.0

Mass flow of nuclei [kg s−1] Mnuc 5.55 × 10−5

Mass flow of solid [kg s−1] ϱsolid 1.38 × 10−2

Solid density [kg m−3] ϱsolid 1440.0

Size of nuclei [m] ξ0 0.1 × 10−3

Screen size upper screen [m] ξu 0.5 × 10−3

Screen size lower screen [m] ξl 0.4 × 10−3

Milling diameter (osc.) [m] ξM 0.2 × 10−3

Number of discretised states 100

Simulation time interval [s] tend 12,000

Sampling time [s] Tsample 60

Prediction horizon Np 30

Control horizon Nc 10

Minimum input [m] umin 0.18 × 10−3

Maximum input [m] umax 0.22 × 10−3
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Fig. 9. Plot of the number density distributions in the fluidised bed chamber with and

without feedback control after 160 min, as well as the desired steady-state reference.
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drying conditions, the morphology of the layers can differ from fairly

compact to highly porous. This results in different size growth rates

due to the added void in the layers although the same of amount of

solid was sprayed, i.e. additional changes in the particle size distribu-

tion, which have to be considered in feedback control design and

plant operation.

Notation

b mass fraction of solid spray that creates nuclei

e internal property coordinate

h height [m]

m mass [kg]

n number density function [m−1]

q0 normalised number density function [m−1]

u manipulated variable

x external/spatial coordinates

A, B, C, F state space matrices

Bn number flow of nuclei [s−1]

Bm number flow of milled particles [s−1]

C state space matrices

E property space

G particle growth rate [m s−1]

K drain factor [s−1]

KI integrator gain

Kp proportional gain

M0, N0 transfer function

Ṁ mass flow rate [kg s−1]

N total number of particles

Nc number of control steps

Np number of prediction steps

P, P0 transfer function

R reference over prediction horizon [m2]

Tsample MPC sampling time [s]

T separation function

V̇ volume spray rate [m3 s−1]

W controller design matrices

Y measurements over prediction horizon [m2]

ε robustness measure

μj j-th total moment of number density function [mj]

ξ particle diameter [m]

ρ mass density [kg m−3]

ψ bed porosity

ΔM, ΔN transfer function

ΔU change in u over control horizon [m]

Φ state space matrix

Ω physical space
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Abstract: An important structural dynamics problem of the large gantry cranes are horizontal
elastic oscillations mainly excited by the trolley motion. They reduce the crane operation
performance and lead to faster material wear of the crane construction. In this article a
distributed parameter model of large gantry cranes applying Hamilton’s principle is presented.
In order to stabilize the system dynamics the use of a generalized error measure, called
discrepancy, is proposed. Applying the associated stability theory, i.e. stability with respect to
two discrepancies, a nonlinear stabilizing control for the underactuated gantry crane is derived.
The proposed control strategy has been verified by simulations.

Keywords: Distributed parameter system; discrepancy based control; gantry crane; payload
oscillations; position control; structural dynamics.

1. INTRODUCTION

Currently, the control of underactuated crane systems is
an active field of research. In Abdel-rahman et al. (2003)
and Ramli et al. (2017) authors overviewed a variety of
models and control techniques for different types of cranes.
Most of the contributions focus on the damping of load
swaying due to the crane positioning applying different
feedback and feedforward control approaches, e.g. energy-
based control Sun and Fang (2012), Sun et al. (2018), Won
and Hoang (2018), sliding mode control Zhou et al. (2017),
Xiao et al. (2018), Wang et al. (2018), Lu et al. (2017)
and input shaping techniques Abdullahi et al. (2018),
Ramli et al. (2018). In the majority of contributions
the structural system dynamics has been neglected. How-
ever, continuous increase of crane dimensions and utilizing
lightweight profiles led to limited stiffness of the structure.
Thus, this assumption is not valid for large cranes and
a coupling between elastic structural vibrations and the
trolley movements has to be taken into account.

In the last years, the structural dynamics problem has been
stated for different types of cranes (Zrnić et al. (2006);
Rauscher and Sawodny (2017); Schlott et al. (2016); Kim-
merle et al. (2018); Miloradovic and Vujanac (2016); Sowa
et al. (2018)) including large gantry cranes (Golovin and
Palis (2019); Gašić et al. (2013); Yazid et al. (2011);
Kreuzer et al. (2012); Ryu and Kong (2012)). Here, two
main structural dynamical problems can be stated: ver-
tical girder vibrations due to the trolley travel and load
hoisting, and horizontal low frequency oscillations in the
trolley motion direction. In this contribution, the focus
is on the horizontal oscillations as they are particularly
unfavorable due to the large amplitudes and their weakly
damped behaviour. They provide additional mechanical
stresses leading to faster construction wear and decrease

⋆ Correponding author: ievgen.golovin@ovgu.de

crane operation performance. In addition, applying feed-
back control, neglecting the structural dynamics, may re-
sult in the excitation of resonance frequencies and even
unstable closed loop dynamics.

In the literature different approaches to solve the struc-
tural dynamics problem for large gantry cranes have been
proposed, e.g. structure stiffening by construction opti-
mization Zrnić et al. (2005), passive and active dampers
via additional weight as counter-mass Recktenwald (2011)
and linear robust active damping approach as an extension
for the trolley motion control system Golovin and Palis
(2019). The later has been verified on a laboratory gantry
crane.

This contribution is concerned with the modeling and
nonlinear control of underactuated large gantry cranes
with limited stiffness. In order to derive the distributed
parameter crane model Hamilton’s principle has been uti-
lized. The main control objectives for underactuated large
gantry cranes are payload positioning without swaying and
a simultaneous reduction of structural oscillations in the
trolley travel direction. Here, in order to stabilize the sys-
tem dynamics the use of a generalized error measure, called
discrepancy, is proposed (Palis and Kienle (2012, 2014)).
Applying the associated Lyapunov stability theory a non-
linear stabilizing control has been derived. The resulting
control law has been verified in a simulation study, where
the distributed dynamics have been discretized using finite
differences.

Section 2 presents the derivation of the coupled model of
the gantry crane including its structural dynamics. The
concept of stability with respect to two discrepancies as
well as the corresponding discrepancy based control design
are introduced in section 3. Section 4 concludes the article
with results from a simulation study.



2. GANTRY CRANE MODELING

In this contribution, a nonlinear model-based control ap-
proach for the gantry crane is proposed. It requires the
establishment of the corresponding dynamic plant model.
Essentially, an operational cycle of the gantry crane con-
sists of the hoisting of the load, its horizontal movement
and deposition. From a control point of view, the hor-
izontal movement phase is the most challenging tasks.
The payload should be delivered as fast as possible to
the desired position without swaying. However, for large
cranes such movements may excite the natural frequencies
of the crane structure. These important effects should
be reflected in the dynamic model. For convenience, the
following assumptions for model derivations are made:

(1) as the scope of the contribution is on the horizontal
vibrations the considered frame structure of the crane
consists of the upper horizontal beam which is rigid in
flexure and two supported columns that have limited
lateral stiffness;

(2) the structure is assumed to be symmetrical such that
the problem can be reduced and only one half of the
structure has to be taken into account;

(3) the mass density and the bending stiffness of the crane
columns are distributed along the spatial coordinate,
and they are assumed to be constant along the spatial
coordinate;

(4) rotary inertia, shear deformation and buckling effects
can be neglected;

(5) the hoisting process is neglected, such that the rope
length can be assumed to be constant;

(6) the trolley and the payload are connected by a mass-
less rigid rope and the elongation of the rope is
neglected;

(7) the moment of inertia of the load can be neglected;
(8) nonlinear friction effects can be neglected;
(9) external disturbances on the crane and load can be

neglected, e.g. wind;
(10) the trolley is actuated via a current controlled DC-

motor with gear, therefore the force Ft(t) depends
linearly on the motor torque τ(t), i.e. Ft(t) = ktrτ(t)
where ktr is the transformation coefficient.

In Fig. 1 the schematic diagram of the motion of the gantry
crane is depicted. Here, mt is the mass of the crane trolley,
mp is the mass of the payload, mc is the mass of the crane
girder, Ft is the external force being applied to the trolley,
ϕ(t) is the sway angle, z(t) is the trolley displacement,
l is the rope length, w(x, t) is the displacement of the
crane structure in horizontal direction depending on both
position x and time t, L is the length of the crane legs,
ρc is the mass density, E is Young’s modulus and I is the
moment of inertia of a cross-sectional area.

In order to derive a suitable gantry crane model Hamilton’s
principle based on the kinetic energy T (t), potential energy
U(t) and virtual work done by non-conservative forces
W (t) can be written as follows

∫ t2

t1

(δT − δU + δW ) dt= 0 , (1)

where δ represents the variational operator, t1 and t2 are
initial and final moments in time.

Fig. 1. Gantry crane

The vector of generalized coordinates is chosen as follows

q = [w(x, t) z(t) ϕ(t)] . (2)

Then the position vectors of girder rc, trolley rt and
payload rp can be written as follows

rc =

[

w(L, t)
0

]

, (3)

rt =

[

w(L, t) + z(t)
0

]

, (4)

rp =

[

w(L, t) + z(t) + l sinϕ
−l cosϕ

]

. (5)

The corresponding kinetic energy of the gantry crane can
be represented as follows

T =
1

2

∫ L

0

ρcẇ
2 dx+

1

2
mcẇ

2(L, t) +
1

2
mt(ẇ(L, t) + ż)2

+
1

2
mp

[

(ẇ(L, t) + ż + ϕ̇l cosϕ)2 + (ϕ̇l sinϕ)2
]

, (6)

and the potential energy can be formulated as follows

U =
1

2

∫ L

0

EI(w′′)2 dx−mpgl cosϕ , (7)

where the dot symbol denotes the derivative along the time
and the prime symbol along the spatial coordinate.

According to Fig. 1 the work done by non-conservative
forces, namely actuating force, trolley viscous friction force
and structural linear damping force, can be written as

δW = (Ft − µż) δz −

∫ L

0

cẇ δw dx , (8)

where µ is the viscous friction coefficient and c is the linear
structural damping.

Substituting energies (6), (7) and (8) into Hamilton’s
principle (1), taking corresponding variations and applying
integration by parts with respect to t and x, the following
equation is obtained:



0 =−

∫ t2

t1

∫ L

0

[ρcẅ + EIw′′′′ + cẇ] δw dx dt

−

∫ t2

t1

[EIw′′′(0, t)] δw(0, t) dt

+

∫ t2

t1

[EIw′′(0, t)] δw′(0, t) dt

−

∫ t2

t1

[EIw′′(L, t)] δw′(L, t) dt

−

∫ t2

t1

[mΣẅ(L, t) +msz̈ +mplϕ̈ cosϕ

−mplϕ̇
2 sinϕ− EIw′′′(L, t)] δw(L, t) dt

−

∫ t2

t1

[msẅ(L, t) +msz̈ +mplϕ̈ cosϕ

−mplϕ̈
2 sinϕ− Ft + µż]δz dt

−mpl

∫ t2

t1

[lϕ̈+ ẅ(L, t) cosϕ+ z̈ cosϕ

+ g sinϕ]δϕ dt , (9)

where mΣ = mp +mt +mc and ms = mp +mt.

Here, as variations are arbitrary, eq. (9) holds only if
the integrands vanish. Thus, taking into account the
geometrical boundary conditions w(0, t) = wx(0, t) = 0
the equations of motion follow:

0 = ρcẅ + EIw′′′′ + cẇ , (10)

0 = w(0, t) = w′(0, t) = w′′(L, t) , (11)

0 = mΣẅ(L, t) +msz̈ +mplϕ̈ cosϕ

−mplϕ̇
2 sinϕ− EIw′′′(L, t) , (12)

0 = msẅ(L, t) +msz̈ +mplϕ̈ cosϕ

−mplϕ̇
2 sinϕ− Ft + µż , (13)

0 = lϕ̈+ ẅ(L, t) cosϕ+ z̈ cosϕ+ g sinϕ . (14)

3. CONTROL DESIGN

This section focuses on stability with respect to two dis-
crepancies and the associate control design. The derived
equations of motion consist of a partial differential equa-
tion (PDE) (10) with corresponding boundary conditions
(b.c.) (11) representing the structural dynamics of the
crane and a system of nonlinear ordinary differential equa-
tions (ODE) (12-14), which act on the boundary of the
PDE and represent the coupled motion of the girder,
trolley and payload.

In this contribution it is assumed, that all system states
related to the trolley motion, payload motion and crane
oscillations at the boundary x = L can be measured.
The actuation is represented by a DC motor operating
in current control mode, where the desired current is
proportional to the control applied torque τ(t).

3.1 Stability with respect to two discrepancies

According to the works (Movchan (1960); Sirazetdinov
(1967, 1987)) the most important properties and defini-
tions about stability with respect to two discrepancies are
presented in the following. Here, the process φ(., t) is a
solution of a distributed parameter system and φ0 = 0 is
an equilibrium of the system.

Definition 1. Discrepancy
A discrepancy is a real valued functional ρ = ρ[φ(., t), t]
with the following properties

• ρ(φ, t) ≥ 0
• ρ(0, t) = 0
• for an arbitrary process φ(., t) the real valued func-

tional ρ[φ(., t), t] is continuous with respect to t
• presenting the second discrepancy ρ0(φ) with ρ0(φ) ≥
0 and ρ0(0) = 0. Than the discrepancy ρ[φ(., t), t] is
continuous at time t = t0 with respect to ρ0 at ρ0 = 0,
if for every ǫ > 0 and t0 > 0 there exists a β(ǫ, t0) > 0,
such that from ρ0 ≤ β(ǫ, t0) follows ρ < ǫ

From this definition one can state that a discrepancy
does not satisfy all properties of a metric, e.g. symme-
try d(x, y) = d(y, x) or triangular inequality d(x, y) =
d(y, z)+d(z, y). And more importantly, it has not to satisfy
the property of definiteness, i.e. a vanishing discrepancy
ρ(φ, t) = 0 does not automatically mean φ = 0. Thus,
the discrepancy is an extension of the distance measures
normally used in stability theory of DPS like Lp and L∞-
norms.

Definition 2. Stability with respect to two discrepancies ρ
and ρ0
The equilibrium φ0 = 0 is stable in terms of Lyapunov with
respect to the two discrepancies ρ and ρ0 for all t ≥ t0 if
for every ǫ > 0 and t0 ≥ 0 there exists a β = β(ǫ, t0) such
that for every process φ(., t) with ρ0 < β(ǫ, t0) it follows
that ρ < ǫ for all t ≥ t0. If in addition limt→∞ ρ = 0, than
the equilibrium φ0 is called asymptotically stable in terms
of Lyapunov with respect to the two discrepancies ρ and
ρ0.

A lot of nonlinear control approaches are based on the
Lyapunov stability theory. In order to define a relationship
between the existence of a Lyapunov functional V and
stability with respect to two discrepancies the notions of
positivity and positive definiteness of a functional with
respect to a discrepancy should be presented.

Definition 3. Positivity with respect to a discrepancy ρ
The functional V = V [φ, t] is called positive with respect
to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all φ
with ρ(φ, t) < ∞.

Definition 4. Positive definiteness with respect to a dis-
crepancy ρ
The functional V = V [φ, t] is positive definite with respect
to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all φ with
ρ(φ, t) < ∞, and for every ǫ > 0 exists a β = β(ǫ) > 0,
such that V ≥ β(ǫ) for all φ with ρ[φ, t] ≥ ǫ.

The next two theorems state the conditions for a function
V to guarantee (asymptotic) stability with respect to two
discrepancies (Sirazetdinov (1987)).

Theorem 1. The process φ with equilibrium φ0 = 0 is
stable with respect to the two discrepancies ρ and ρ0 if
and only if there exists a functional V = V [φ, t] positive
definite with respect to the discrepancy ρ, continuous at
time t = t0 with respect to ρ0 at ρ0 = 0 and not increasing
along the process φ, i.e. V̇ ≤ 0.

Theorem 2. The process φ with equilibrium φ0 = 0 is
asymptotically stable with respect to the two discrepancies
ρ and ρ0 if and only if there exists a functional V =



V [φ, t] positive definite with respect to the discrepancy
ρ, continuous at time t = t0 with respect to ρ0 at ρ0 = 0
and not increasing along the process φ, i.e. V̇ ≤ 0, with
limt→∞ V = 0.

In addition, it should be mentioned that stability with
respect to two discrepancies is necessary but in general
not sufficient for stability with respect to a Lp norm or
L∞ norm.

3.2 Discrepancy based control

The objective of the control system is to move the trolley
according to the desired position reference signal zref (t)
and a simultaneous reduction of the payload swaying and
crane structural oscillations. One of the options to derive
a nonlinear control law for a damping strategy could be
to take the overall mechanical energy Eo = T + U as a
candidate Lyapunov functional. However, calculating its
time derivative along the system trajectory results in:

Ėo = żFt . (15)

Here, choosing Ft = −kż as the input and ż as the output
yields in the well-known energy dissipation. However, due
to the underactuated nature of the system, the control
law contains neither terms related to the crane structural
motion nor the payload. One way to overcome this problem
is to couple eq. (15) with a term depending on the payload
velocity and to find reversely an appropriatly shaped
energy functional (Sun and Fang (2012)).

In this contribution another approach based on the dis-
crepancy is proposed. The generalized system error can be
chosen as follows

e = k1ẇ(L, t) + k2ż + k3ϕ̇l cosϕ+ k4ε , (16)

where ε(t) = z(t) − zref (t) is the deviation from the
reference position signal and k1 to k4 are the corresponding
weights.

Here, the generalized error e is established in such way,
that it includes the position error ε, velocity of the trolley
ż and for increasing the system coupling the corresponding
velocities of the girder ẇ(L, t) and horizontal velocity of
the payload ϕ̇l cosϕ. In order to shape the error the addi-
tional weights are introduced. Using the given generalized
error results in the following discrepancy ρ

ρ =
1

2
(k1ẇ(L, t) + k2ż + k3ϕ̇l cosϕ+ k4ε)

2
. (17)

The second discrepancy ρ0 is selected to be equal to ρ at
time t = t0 = 0:

ρ0 = ρ(t = 0) = 0 . (18)

As stated in Theorem 2 existence of a suitable functional V
is sufficient to guarantee asymptotic stability with respect
to the two discrepancies ρ and ρ0. For this aim the cor-
responding Lyapunov functional can be easily represented
as follows

V =
1

2
(k1ẇ(L, t) + k2ż + k3ϕ̇l cosϕ+ k4ε)

2
. (19)

According to stability in terms of two discrepancies the
control input should be chosen such that the time deriva-
tive V̇ is negative definite along the state trajectories and
vanishes only for V = 0. Calculating the time derivative
yields

V̇ = eė = e[k1ẅ(L, t) + k2z̈ + k3ϕ̈l cosϕ

− k3ϕ̇
2l sinϕ+ k4ε̇] . (20)

Substituting eq. (13) in (20) yields in

V̇ = e[(k1 − k2)ẅ(L, t) + b1lϕ̈ cosϕ

− b1lϕ̇
2 sinϕ+ k4ε̇−

k2µ

ms

ż +
k2

ms

Ft] , (21)

where

b1 =
k3ms − k2mp

ms

.

In order to achieve the required negative definiteness of V̇
the control law is chosen as follows

τ =
ms

k2ktr
[−(k1 − k2)ẅ(L, t)− b1lϕ̈ cosϕ

+ b1lϕ̇
2 sinϕ− k4ε̇+

k2µ

ms

ż − ae] , (22)

where a > 0 is a design parameter influencing the control
performance.

The proposed control law guarantees not only stability,
in the aforementioned sense, but also exponential conver-
gence of V

V̇ = −ae2 = −2aV . (23)

The overall control scheme is depicted in Fig. 2.

Fig. 2. Control scheme

4. RESULTS

The simulation model, including the proposed control law,
has been implemented in MATLAB. For the solution of the
PDE (10) the method of lines have been applied. Here, the
spatial coordinate is lumped applying the finite difference
method (via central difference scheme) with N = 50
points. For the solution of the resulting system of ODEs
the ode15s solver has been used. All simulation parameters
are summarized in Table 1.

For contrast, the results of the proposed control law can
be compared with additional classical cascade scheme
for drive position control where no additional damping
purposes are provided. This simple control law can be
written as follows

τ = [kp,pos(zref − z)− ż] (kp,vel + ki,vel
1

s
) , (24)

where kp,pos is position controller gain, kp,vel and ki,vel
are parameters of the velocity PI controller that can be
adjusted according to the modulus optimum.

In order to verify both control laws (22) and (24) time
responses of the positioning reference tracking have been
studied. The results are depicted in Fig. 3, 4, 5 and 6.
In Fig. 3 the convergence of the Lyapunov functional V
is shown. From Fig. 4, it can be seen, that applying the
classical cascade motion control (24) without additional



system information results in oscillatory closed loop sys-
tem dynamics with large amplitudes of payload and crane
swinging. Applying the designed discrepancy based control
(22) yields a good damping of payload and structural
motion. As can be seen from Fig. 5 and 6 not only the
motion of the girder point w(L, t) but also the distributed
state w(x, t) itself and its L2-norm are stabilized. This
is noteworthy, as this has not been part of the design.
However, it can be shown that stability in the sense of
Lyapunov with respect to two discrepancies results in
stability with respect to the Lp- or the L∞-norm if the
zero dynamics associated with the discrepancy ρ is stable
in the sense of the Lp- or L∞-norm.

Fig. 3. Time response of the Lyapunov functional V

Fig. 4. Reference tracking applying cascade position control
(green) and discrepancy based control (dark blue),
reference position (red)

Fig. 5. Time responses of the distributed state applying
cascade position control (upper) and discrepancy based
control (lower)

Fig. 6. L2-norm with respect to x of the displacement
w(x, t) applying cascade position control (green) and
discrepancy based control (dark blue)

Table 1. Model parameters used for simulation

Parameter Value Parameter Value

mt 0.1 mp 0.18

mc 0.97 l 1.5 · 103

µ 0.01 EI 6.9

ρc 3 c 5

kp,pos 5 kp,vel 1.4

ki,vel 26 ktr 83.33

k1 1.3 k2 1

k3 0.7 k4 0.6

a 0.035

5. CONCLUSION

In this contribution a discrepancy based control approach
for underactuated large gantry cranes is proposed. In order
to derive a mathematical description of elastic gantry
crane dynamics Hamilton’s principle has been utilized.
From a control point of view, the main objective is to
achieve good load positioning and simultaneous to damp
load sway and structural oscillation induced by trolley



movements. Due to the distributed nature, strong coupling
and only one control handle this is a challenging task.
In order to solve this problem a generalized stability
theory, stability with respect to two discrepancies and the
associated control approach, discrepancy based control,
have been successfully applied and verified in simulations.

Future work will be concerned with the robustness analysis
of the proposed approach and its practical implementation
for further verifications on a laboratory flexible gantry
crane.
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1. INTRODUCTION

Granulation is an important process class for transforming
a liquid product into its final solid form. It is often applied
in food production or chemical and pharamaceutical in-
dustries. From a production point of view, granulation in
fluidized beds is, due to the increased active surface and
particle mixing, often attractive. Therefore, an initially
solid particle bed is fluidized by a gas or liquid stream.
From an operational point of view, it is however well
known that different continuous fluidized bed spray gran-
ulation configurations may become unstable [2, 3, 13, 14,
15]. Here, instability often results in the occurrence of non-
linear limit cycles in dependence of the chosen operation
conditions and the specific process configuration. There-
fore, stabilizing control is needed and has been studied
to some extend [4, 5, 6, 7, 8]. As all controllers depend
on a parametrized plant model, parameter uncertainty or
variation may result in performance deterioration or even
loss of stability. In order to cope with these uncertainties in
this contribution adaptive discrepancy based control will
be studied for a continuous fluidized bed spray granulation
with external sieve-mill cycle, where the particle size distri-
bution generated from the mill is assumed to be unknown.

2. CONTINUOUS FLUIDIZED BED SPRAY
GRANULATION

Applying an air stream with predefined properties, e.g.
flow rate, temperature and humidity, to particles inside the
granulation chamber a fluidized bed is formed. Particles
in this fluidized bed are then coated by a liquid, which
is injected from a nozzle and settles on these particles.
Due to the increased temperature and low humidity of
the supplied air the liquid fraction is evaporated and the
remaining solid fraction forms a new solid layer on the

particle surface. This continuous process results thus in
a particle size increase, which can be described for the
particle ensemble by

G =
2ṁe

πµ2
. (1)

Here, ṁe is the effective solid mass injected into the
process chamber and µ2 is the second moment of the
particle size distribution µ2 =

∫

∞

0
L2ndL, which correlates

with the overall surface of the particle bed [1].
In a continuous fluidized bed spray granulation, particles
are continuously removed with a drain K.

ṅout = Kn (2)

This particle flux is then fed to two sieves and results in
three particle fractions: product ṅp, fines ṅf and oversized
ṅo. The fines and oversize fraction consist of particles being
smaller or bigger than the product specification.

ṅp = T2(L)(1− T1(L))ṅout (3)

ṅf = (1− T2(L))(1− T1(L))ṅout (4)

ṅo = T1(L)ṅout (5)

Here, T1(L) and T2(L) are the associated screening func-
tions depicted in Fig. 1.

T1,2(L;µ, σ) =

∫ L

0
exp

(

−(L̂−µ)2

4σ2

)

dL̂

∫

∞

0
exp

(

−(L̂−µ)2

4σ2

)

dL̂
(6)

Whereas the product fraction is removed from the process,
the fines and the oversize fraction remain in the process.
The fines fraction is directly fed back. The oversize fraction
is first fed to a mill, where it is grinded, and then the milled
particles are fed back into the process chamber, where they
serve as new nuclei for the particle population. The overall
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Fig. 1. Screening functions T1 (gray) and T2 (black dotted)

process scheme is depicted in Fig. 2.

Fig. 2. Process scheme

From practical investigations it is known, that the particle
size distribution generated by the mill is typically tri-
modal (Fig. 3) [12], where the proportion of each distri-
bution depends on the particle properties and the specific
mill power Pmill.

It can be assumed that the mill is mass conserving, i.e. the
third moment of the oversize fraction is equal to the third
moment of the particle distribution generated by the mill.
The mill model is hence given by

ṅm =

3
∑

i=1

aiϕi(L)

∫

∞

0

L3ṅodL (7)

where ai are the weights of the distributions ϕi(L) and
∫

∞

0
L3ṅodL is the third moment of the oversize fraction

[13]. In order to ensure the aforementioned mass conserva-

Fig. 3. Particle size distribution of milled particles [12]

tion an additional constraint on the distribution weights
has to hold.

∫

∞

0

L3

3
∑

i=1

aiϕi(L)dL = 1 (8)

Therefore, only two of the three parameters are indepen-
dent of each other. The third coefficient a3 can thus be
calculated from a1 and a2.

a3 =
1−

∫

∞

0
L3

∑

2

i=1
aiϕi(L)dL

∫

∞

0
L3ϕ3(L)dL

(9)

This yields an unconstrained mill model with two inde-
pendent parameters a1 and a2.

ṅm =

[

2
∑

i=1

ai

(

ϕi(L)−

∫

∞

0
L3ϕi(L)dL

∫

∞

0
L3ϕ3(L)dL

ϕ3(L)

)

+ . . .

. . .+
ϕ3(L)

∫

∞

0
L3ϕ3(L)dL

]

∫

∞

0

L3ṅodL (10)

=

(

2
∑

i=1

aiφi(L) + ϕ̄3(L)

)

∫

∞

0

L3ṅodL (11)

where

φi(L) = ϕi(L)−

∫

∞

0
L3ϕi(L)dL

∫

∞

0
L3ϕ3(L)dL

ϕ3(L), (12)

ϕ̄3(L) =
ϕ3(L)

∫

∞

0
L3ϕ3(L)dL

. (13)

From a practical point of view, the knowledge of the
weights ai of each distribution is of utmost importance
for control. However, offline identification using individual
experiments is very expensive and raises many uncertain-
ties. In addition, the mill behavior changes during the
process with the particle properties at hand. Therefore,
in this contribution it will be assumed that the weights ai
of each distribution are unknown. To describe the process,
the following population balance model, consisting of the
particle fluxes due to product particle withdrawalKT1(1−
T2)n, particle growth and the reflux from the mill, can be
used.
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∂n

∂t
=−G

∂n

∂L
−KT1(1− T2)n−KT1T2n+ . . .

. . .+

(

2
∑

i=1

aiφi + ϕ̄3

)

∫

∞

0

L3ṅodL (14)

It is well known [2, 3, 14] that the given process config-
uration becomes unstable for sufficiently high mill power
and a resulting reduced mill grade. This loss of stability
is connected with the occurrence of a stable limit cycle
depicted in Fig. 4. In order to stabilize the particle size

Fig. 4. Limit cycle of the particle size distribution

distribution in this contribution discrepancy based control,
i.e. control based on a generalized stability theory, will be
applied using the drain K as a manipulated variable. It
should be mentioned, that this choice differs from earlier
investigations, where the drain K has be used to imple-
ment a bed mass controller and the mill grade µM has
been used to stabilize the particle size distribution. In
addition, the mill behavior in this contribution is described
by a tri-modal distribution instead of a uni-modal normal
distribution with known parameters. As has been stated
earlier the weights of the fractions generated by the mill
are often unknown or connected with great uncertainty.
Therefore, the discrepancy based control law will be ex-
tended by appropriate adaptation mechanisms.

3. ADAPTIVE DISCREPANCY BASED CONTROL

From a mathematical point of view, the presented popula-
tion balance model is an unstable nonlinear partial-integro
differential equation with in-domain actuation. Therefore,
stabilizing control design is a challenging problem. How-
ever, as has been shown in previous contributions [4, 5, 7]
this type of problems can be handled by introducing a
generalized stability notion, i.e. stability with respect to
two distance measures, the discrepancies [9, 10, 11]. In
the following it is assumed, that the process ϕ(., t) is a
solution of the distributed parameter system and ϕ0 = 0
an equilibrium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional ρ = ρ[ϕ(., t), t]
with the following properties

(1) ρ(ϕ, t) ≥ 0

(2) ρ(0, t) = 0
(3) for an arbitrary process ϕ = ϕ(., t) the discrepancy

ρ(ϕ(., t), t) is continuous with respect to t.
(4) introducing a second discrepancy ρ0(ϕ) with ρ0(ϕ) ≥

0 and ρ0(0) = 0. Than the discrepancy ρ(ϕ(., t), t) is
continuous at time t = t0 with respect to ρ0 at ρ0 = 0,
if for every ε > 0 and t0 > 0 there exists a δ(ε, t0) > 0,
such that from ρ0 ≤ δ(ε, t0) follows ρ < ε.

Definition 2. Stability with respect to two discrepancies ρ
and ρ0

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies ρ and ρ0 for all t ≥ t0
if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0 ,
such that for every process ϕ(., t) with ρ0 < δ(ε, t0) follows
ρ < ε for all t ≥ t0. If in addition limt→∞ ρ = 0, than the
equilibrium ϕ0 is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies ρ and
ρ0.

Theorem 3. The process ϕ with the equilibrium ϕ0 = 0 is
asymptotically stable with respect to the two discrepancies
ρ and ρ0 if and only if there exists a functional V =
V [ϕ, t] positive definite with respect to the discrepancy
ρ, continuous at time t = t0 with respect to ρ0 at ρ0 = 0
and not increasing along the process ϕ, i.e. V̇ ≤ 0, with
lim
t→∞

V = 0.

In order to derive a stabilizing controller the above pre-
sented stability concept is applied. Here, we choose the
error e and the discrepancy ρ as follows

e=

∫

∞

0

L2(nd − n)dL, (15)

ρ=
1

2

(
∫

∞

0

L2(nd − n)dL

)2

. (16)

Obviously, the above requirements on a discrepancy are
met. In order to guarantee continuity at time t = t0 at
t0 = 0 the second discrepancy ρ0 is simply chosen as
ρ0 = ρ(t = 0).

In order to derive a control law, guaranteeing stability
with respect to the discrepancies ρ and ρ0, the following
candidate Lyapunov functional is introduced

V =
1

2

(
∫

∞

0

L2 (nd − n) dL

)2

. (17)

To account for the aforementioned uncertainty in the
unknown parameters a1 and a2 this candidate Lyapunov
functional is extended by a term, which takes the estima-
tion errors ã1,2 = â1,2 − a1,2 into account.

V =
1

2

(
∫

∞

0

L2 (nd − n) dL

)2

+

2
∑

i=1

1

2γ
ã2i (18)

This approach, i.e. Lyapunov redesign, is well known for
finite dimensional systems. In order to achieve stability
in the sense described above the control variable has to
be chosen such that the time derivative of V along the
system trajectories (14) is negative definite for all times
and vanishs only for V = 0.
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V̇ = e

∫

∞

0

L2G
∂n

∂L
+K(Tprod + T1)ndL

. . .+ eK

∫

∞

0

L2

(

2
∑

i=1

aiφi + ϕ̄3

)

dL

∫

∞

0

L3T1ndL

. . .+
2

∑

i=1

ãi
˙̂ai
γ

(19)

In the absence of any parameter uncertainty, i.e. â = a,
the following certainty equivalence law for the withdraw
rate could be chosen in order to achieve exponential
convergence of the proposed Lyapunov functional, i.e.
V̇ = −2cV with c > 0.

K =−

[
∫

∞

0

L2G
∂n

∂L
dL+ ce

] [
∫

∞

0

L2(Tprod + T1)ndL

. . .+

∫

∞

0

L2

(

2
∑

i=1

âiφi + ϕ̄3

)

dL

∫

∞

0

L3T1ndL

]−1

(20)

Inserting the certainty equivalence law (20) into (19) and
using the definition of the parameter estimation error ãi,
i.e. ai = âi − ãi, results after some calculation in

V̇ = −2cV−

2
∑

i=1

ãi

(

eK

∫

∞

0

L2φidL

∫

∞

0

L3T1ndL−

˙̂ai
γ

)

.

(21)
Here, the second term can be rendered zero by chosing the
following parameter adaptation laws

˙̂ai = γeK

∫

∞

0

L2φidL

∫

∞

0

L3T1ndL (22)

Therefore, the designed certainty equivalence control law
in combination with the adaption law guarantees stability
with respect to the two discrepancies ρ and ρ0. As has been
shown in [7] this generalized stability results in pointwise
stability, i.e. stability of the particle size distribution with
respect to the L∞-norm, if the zero dynamics associated
with the discrepancy ρ are stable.

4. RESULTS

For numerical simulation the population balance model
has been discretized along the property coordinate. Here,
a 1st order finite volume scheme with 150 grid points
has been applied. In order to verify the proposed control
scheme the process is started in the region of instability.
Therefore, the uncontrolled process would exhibit self-
sustained oscillations in the particle size distribution. For
the unknown mill parameters a1 and a2 an initial misfit of
10% has been assumed.

As can be seen in Fig. 5 the proposed discrepancy based
controller stabilizes the particle size distribution. The
parameter estimates â1 and â2 slowly converge towards
values, which are close to the unknown parameter values.
As can be seen from Fig. 7 and Fig. 9 the second moment
of the particle size distribution converges exponentially
towards its desired value. The third moment shown in Fig.
8, being correlated with the overall bed mass, is also stable
and stays within a reasonable range. As can be seen from

Fig. 5. Particle size distribution n

Fig. 6. Mill parameters a1 and a2 (black dotted) and their
estimates â1 and â2

Fig. 7. Second moment of the particle size distribution and
desired second moment (dotted black)

the particle size distribution depicted in Fig. 5 and the
L2 -norm of the deviation between desired particle size
distribution and the real particle size distribution (Fig.
10), the proposed adaptive discrepancy based control law
achieves asymptotic stability in the desired classical sense.
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Fig. 8. Third moment of the particle size distribution

Fig. 9. Error e of the particle size distribution

Fig. 10. L2-norm of the error between desired and actual
particle size distribution

5. CONCLUSION

In this contribution adaptive discrepancy based control
of fluidized bed spray granulation with external sieve-
mill cycle has been studied. It has been shown that the
proposed control law consisting of a certainty equivalence
law and two adaption laws allows a stabilization of the

unstable particulate process even in the presence of un-
known parameters. Future work will be concerned with
robustness with respect to measurement noise and real
plant experiments.
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1. INTRODUCTION

Agglomeration is a particle formation process in which at
least two primary particles are combined to form a new
one. This principle is often used in many industries, e.g.
pharmaceutical manufacturing and food processing. The
properties of the formed agglomerates, e.g. size, shape
and porosity, significantly affect its end-use properties,
e.g re-hydration behavior of food powders, processability
and storeability. In the industrial practice, agglomerates
are often formed in drums, pans or fluidized beds. The
advantages of the latter include good mixing and high
heat and mass transfer between particles, liquid and gas
phase. Compared to widely applied batch processes, the
additional benefits of operating in continuous mode are
constant product quality and higher flow rates which are
more attractive for chemical, food and pharmaceutical
industries. For those reasons focus in this contribution is
on continuous fluidized bed spray agglomeration, which
was not in the focus of research efforts so far.

The process scheme is shown in Fig. 1: Particles in the
the chamber are fluidized by a stream of hot air from the
bottom, liquid binder is sprayed on the particles in the

⋆ Correponding author: ievgen.golovin@ovgu.de

form of small droplets to make them wet and sticky. Due
to random collisions liquid bridges between particles are
formed. These can become solid by drying and thereby
agglomerate particles consisting of different numbers of
individuals are formed. The formation of the agglomerates
and thereby the product properties can be influenced by
variation of different operating parameters and process
configurations, like feed rate, binder concentration and
temperature of the drying/fluidizing air.

Parameterization of process models is an important part
within the interplay of process analysis, model-based con-
trol and process intensification. It is well-known that the
individual properties, like characteristic size or porosity,
differ from particle to particle in the studied process.
The emerging heterogeneity significantly affects the overall
product properties. It can be accounted for in the frame-
work of population balance modeling (PBM) (Ramkr-
ishna, 2000). The resulting model equations generally
represent nonlinear integro partial differential equations,
which are usually discretized and numerically solved with
established techniques (see e.g. Kumar et al. (2006), Bück
et al. (2012) and the references therein). Commonly, reli-
able first principles models that include detailed models
on the underlying kinetic processes on the microscopic
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Fig. 1. Schematic representation of fluidized bed spray
agglomeration process

scale are rarely found and thus kinetics are described in
a more mechanistic fashion. This requires the estimation
of unknown parameters from experimental data. The re-
sulting inverse problems often tend to be ill-conditioned
(Chakraborty et al., 2015). In order to overcome these
problems a parameter identification based on the nonlinear
optimization (Golovin et al. (2018)) as well as an online
parameter estimation approach featuring a parallel model
can be applied (Dürr et al., 2015; Palis and Kienle, 2013,
2017).

In this contribution, a new adaptive online estimation
approach for fluidized bed spray agglomeration processes
is developed. In particular, focus is on identification of the
agglomeration kernel containing information on the effects
of process conditions and characteristic agglomerate size
on formation of new agglomerates.

Section 2 presents the modeling of the fluidized bed
spray agglomeration process. The proposed Lyapunov-
based adaptive approach applied for the agglomeration
kernel estimation is described in section 3. In section 4
the presented method is validated within two simulation
studies.

2. POPULATION BALANCE MODELING OF
FLUIDIZED BED SPRAY AGGLOMERATION

In particle formation processes, significant heterogeneities
with respect to the individual particle properties like size
or shape emerge. Population balance modeling represents
an established concept to describe such distributed pa-
rameter systems. Instead of describing a large number of
particles and their interactions, PBM describes the dy-
namics of the particles via the number density distribution
function (NDF) n(t,x) representing information of the
number of particles within an infinitesimal section of the
particle property state space x ∈ R

Nx . In the following,
it is assumed that individual particles do only differ w.r.t.
characteristic volume v such that x = v and Nx = 1. In
course of the process, the particle distribution underlies
change, which is given by the solution of the so called
population balance equation (PBE)

∂n(t, v)

∂t
= ṅfeed(t, v)− ṅprod(t, v) + ṅagg(t, v) . (1)

The corresponding initial NDF is given as

n(0, v) = NΣ

exp(−(v−µ1)
2

2σ2

1

)
∫

∞

0
exp(−(v−µ1)2

2σ2

1

) dv
, (2)

where NΣ is the mass normalizing parameter.

The left hand side of (1) accounts for temporal evolution
while the first two elements of the right hand side describe
feeding new seed particles to and removal of the desired
product from the fluidized bed. Both are assumed to be
known and given as

ṅprod(t, v) = NoutK(v)n(t, v) , (3)

ṅfeed(t, v) = Nin

exp
(

−(v−µ2)
2

2σ2

2

)

∫

∞

0
exp

(

−(v−µ2)2

2σ2

2

)

dv
, (4)

where Nout and Nin denote the time-invariant removal and
feed rates of particles, respectively while K(v) represents
the separation function. The last element of the right hand
side denotes the formation of new particles of volume v by
agglomeration of two particles with volumes u and v − u

ṅagg(t, v) = ṅ+
agg(t, v)− ṅ−

agg(t, v)

=
1

2

∫ v

0

β(t, u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

β(t, u, v)n(t, v)n(t, u)du . (5)

Here, the agglomeration kernel β(t, u, v) contains informa-
tion about the probability of forming a new agglomerate
and is usually separated in volume and time-dependent
parts

β(t, v, u) = β0(t)β(v, u) . (6)

For modeling of the volume-dependent part, called coa-
lescence kernel, different approaches exist (see e.g. (Eisen-
schmidt et al., 2017) and (Le Borne et al., 2015)). Two
possibilities are the Brownian kernel, which is derived from
the Brownian motion,

β(u, v) = (u1/3 + v1/3)(u−1/3 + v−1/3) (7)

or a more general kernel structure approximation using a
Laurent-polynomial

β(u, v) =

NL
∑

i=−NL

NL
∑

j=−NL

ki,jv
iuj , (8)

where NL ∈ N denotes the rank of the polynomial and ki,j
are the associated polynomial coefficients.

In contrast, the time dependent part β0(t), also called the
agglomeration efficiency, mirrors the effects of the process
conditions and operating parameters and is mostly not
known beforehand. Moreover, it is frequently assumed that
the time dependency of the agglomeration efficiency can
be neglected, such that β0(t) = const.

3. LYAPUNOV-BASED ADAPTIVE
IDENTIFICATION

In this section the online parameter identification of the
agglomeration kernel is introduced. In order to derive an
adaptation law for the unknown parameters the Lyapunov-
based approach is applied (Krstic, 2006; Palis and Kienle,
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Fig. 2. Adaptive online parameter identification scheme

2013; Dürr et al., 2015; Palis and Kienle, 2017). The
parameter identification scheme consisting of a modified
plant model, which runs parallel to the actual plant
and the parameter adaptation algorithm is represented in
Fig. 2.

In this work two scenarios for the parameter estimation
are studied. In the first scenario, the modified plant model
includes the volume-dependent Brownian kernel function
with unknown agglomeration efficiency β0, which should
be estimated. In the second scenario, it is considered
that the structure of the coalescence kernel β(u, v) is
also unknown. In order to approximate it, the Laurent
polynomial with its unknown coefficients is included in the
modified plant model.

3.1 Estimation of the agglomeration efficiency

In the first scenario, the estimation of the agglomeration
efficiency β0 is considered. For this reason, the modified
parallel plant model with an additional observer term can
be represented as follows

∂n̂(t, v)

∂t
= ṅfeed(t, v)− ṅprod(t, v) + ṅagg(t, v)

+ l (n̂− n) , (9)

ṅagg(t, v) =
1

2

∫ v

0

β̂0β(u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

β̂0β(u, v)n(t, v)n(t, u)du , (10)

where n̂ and β̂0 are the particle size distribution and the
agglomeration efficiency estimated from the modified plant
model and l is an additional tuning parameter.

The related estimation errors are given by

e = n̂− n , β̃0 = β̂0 − β0 . (11)

Taking into account the plant model equations (1), (5)
and the modified parallel model equations (9), the error
dynamics can be derived as

∂e

∂t
=

1

2

∫ v

0

β̃0β(u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

β̃0β(u, v)n(t, v)n(t, u)du+ l e . (12)

For the adaptation of the model parameters the following
Lyapunov functional is chosen

V =
1

2

∫

∞

0

e2dv +
1

2γ
β̃2
0 , (13)

where γ is a positive real tuning parameter. It can be
easily seen that the Lyapunov functional V is positive

definite and it vanishes if the considered estimation errors
(11) are zeros. According to the Lyapunov stability theory
the stability of the proposed identification scheme can be
achieved if the first time derivative of the Lyapunov func-
tional is negative semi-definite along the state trajectories.
This time derivative can be derived as follows

dV

dt
=

∫

∞

0

l e2dv

+

∫

∞

0

e
(1

2

∫ v

0

β̃0β(u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

β̃0β(u, v)n(t, v)n(t, u)du
)

dv

+
1

γ
β̃0

˙̂
β0 . (14)

Therefore, choosing the adaptation law
˙̂
β0 as follows

˙̂
β0 = −γ

∫

∞

0

e
(1

2

∫ v

0

β(u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

β(u, v)n(t, v)n(t, u)du
)

dv (15)

yields in the negative semi-definiteness of the time deriva-
tive of V

dV

dt
=

∫

∞

0

l e2dv (16)

for the observer parameter l < 0.

3.2 Estimation of the Laurent polynomial

In the second scenario, the estimation of the volume-
dependent agglomeration kernel function is proposed. In
general, the aggregation kernel β(u, v) is a non-negative
symmetric function of two variables. In order to approx-
imate such types of functions, Laurent polynomials (8)
can be used (Eisenschmidt et al., 2017). A reasonable
approximation can be achieved with the rank NL = 1
resulting in

βest(u, v) = k1 + k2 v
−1u−1 + k3 vu+ k4 (v

−1 + u−1)

+ k5 (vu
−1 + v−1u) + k6 (v + u) . (17)

Here, k1 to k6 are unknown polynomial coefficients that
should be identified. The modified parallel model with the
polynomial is given by

∂n̂(t, v)

∂t
= ṅfeed(t, v)− ṅprod(t, v) + ṅagg(t, v)

+ l (n̂− n) , (18)

where

ṅagg(t, v) =
1

2

∫ v

0

βest(u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

βest(u, v)n(t, v)n(t, u)du . (19)

Analogous to the aforementioned design procedure, the
adaptation law for the polynomial coefficients can be
derived as

˙̂
ki = −γi

∫

∞

0

e
(1

2

∫ v

0

fi(u, v − u)n(t, u)n(t, v − u)du

−

∫

∞

0

fi(u, v)n(t, v)n(t, u)du
)

dv , (20)

where fi(u, v) is the volume dependent part associated
with i-th coefficient of (17).
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Fig. 3. Convergence of the unknown parameter β̂0 (dotted,
black) to the actual parameter β0 (solid, red)
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Fig. 4. L2 - norm of the error in time

Table 1. Model parameters used for simulation

Parameter Value Parameter Value

µ1 3.6 · 10
−12 σ1 1 · 10

−12

NΣ 7.5 · 10
8 σ2 1 · 10

−12

µ2 3.6 · 10
−12 Nout 5 · 10

−4

Nin 4 · 10
5

4. RESULTS

The proposed parameter estimation approach has been
implemented for numerical computations in MATLAB.
For the solution of the population balance equations the
method of lines is applied. Here, the internal coordinate,
i.e. the particle volume, is lumped using the cell-average
method (Kumar et al., 2006) on a logarithmic grid with
nv = 55 grid points. In order to solve the set of the
ordinary differential equations and to overcome the stiff-
ness problems the ode15s solver has been used. For the
simulations the actual plant model with the Brownian
motion coalescence kernel (7) and the scalar agglomeration
efficiency β0 = 5 · 10−12 is considered. The model param-
eters used for simulations are represented in Table 1.

4.1 Estimated agglomeration efficiency

In the first instance, the performance of the proposed
online identification approach is shown for the scenario
of agglomeration efficiency estimation. Here, the modified
plant model with Brownian kernel runs simultaneously
with the actual process plant. The same initial conditions
from (2) are applied for the particle size distributions in
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10
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-3

0

2000

4000

t = 4 min

Fig. 5. Particle size distributions q3 of the actual plant
(solid, red), parallel plant model with (points, black)
and without online estimation (dotted, grey)

the parallel model. The initial value for the estimate is

chosen β̂0 = 5·10−10. Both tuning parameters γ and l have
a strong impact on the estimation dynamics. Therefore,
assigning of their values is an iterative procedure where
trade-offs between different design specifications, e.g. fast
parameters convergence rates, oscillating behaviour and
attenuation of possible measurements noise, should be
taken into account. For this scenario the tuning parameters
are chosen as follows

γ = 1 · 10−18 , l = −0.1 . (21)

The obtained simulation results are represented in Fig. 3,
Fig. 4 and Fig. 5. Here, in Fig. 3 the convergence of the

estimated β̂0 and actual β0 is depicted. It can be seen that
the unknown parameter converges within approximately
three minutes, which is sufficiently fast related to the
process dynamics. It is also clear from the Fig. 4 that
corresponding L2 - norm of the estimation error between
particle size distributions n and n̂ converges towards zero
within the same time. In order to compare the process
dynamics the additional particle size distributions

q3(t, x) =
x3n(t, x)

∫
∞

0
x3n(t, x)dx

(22)

of the actual plant, the parallel model with and without
online parameter estimation for different time points are
depicted in Fig. 5. A significant divergence of the process
dynamics with and without online parameter estimation,
i.e. with roughly known initial guesses, can be observed
already in a short period of time.

4.2 Estimated Laurent polynomial parameters

In the second scenario, the proposed method is applied
to estimate the agglomeration kernel. Here, the modified
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Fig. 6. Convergence of the Laurent-polynomial coefficients for identification of coalescence kernel
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Table 2. Initial estimates and tuning parame-
ters for identification of Laurent-kernel

Parameter Value Parameter Value

k̂1(0) 8 · 10−9 γ1 5 · 10−41

k̂2(0) 0 γ2 1 · 10−41

k̂3(0) 0 γ3 5 · 10−41

k̂4(0) 0 γ4 7 · 10−41

k̂5(0) 1 · 10−10 γ5 7 · 10−46

k̂6(0) 0 γ6 5 · 10−41

l −0.022

plant model, which includes the Laurent polynomial with
six unknown parameters (17), runs simultaneously to
the actual process plant. In this case, the same initial
conditions for the parallel model and the actual plant are
used. The initial values for the polynomial parameters and
chosen tuning parameters are given in Table 2.

The corresponding simulations results are shown in Fig. 6,
Fig. 7, Fig. 8 and Fig. 9. From Fig. 6 it is clear that param-
eters converge with a different rate. Moreover, the simula-
tion studies indicated that only two polynomial addends
associated with parameters k1 and k5 make a significant
contribution in the overall estimation dynamics. In the
Fig. 7 a corresponding L2 - norm of the estimation error

0 0.5 1 1.5 2

10
-3

0

1

2
10

4 t = 0 min

0 0.5 1 1.5 2

10
-3

0

2000

4000

t = 6 min

0 0.5 1 1.5 2

10
-3

0

1000

2000

t = 30 min

Fig. 8. Particle size distributions q3 of the actual plant
(solid, red), parallel plant model with (points, black)
and without online estimation (dotted, grey)

between particle size distributions n and n̂ is depicted. It
can be seen that a sufficient convergence is achieved within
approximately 10 minutes, which is reasonably fast related
to the slow process dynamics. However, from the Fig. 8,
the sufficient accuracy of the distributions can be observed
after approximately 6 minutes.

The estimate of the Brownian kernel using the proposed
Laurent polynomial and the relative error between both
kernels are shown in Fig. 9. It can be seen that the relative
error is below 5 %.
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5. CONCLUSION

In this work the online parameter estimation for the con-
tinuous fluidized bed spray agglomeration process has been
demonstrated. For the identification of the agglomeration
kernel the Lyapunov-based adaptive approach has been
proposed. The presented methodology has been studied for
two different identification scenarios. In the first scenario,
this method has been applied for the agglomeration effi-
ciency estimation assuming that the agglomeration kernel
is perfectly known. In the second scenario, the proposed
approach has been applied for the volume-dependent ag-
glomeration kernel estimation. For the kernel structure
approximation a low-order Laurent polynomial has been
used. It has been shown that this approach allows a suffi-
ciently fast parameter estimation for both cases in the case
of noiseless measurements. Future work will be concerned
with the robustness analysis in presence of measurement
noise and parameter uncertainties as well as application of
this approach to real plant measurements.
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1. INTRODUCTION

Multi-chamber continuous fluidized bed spray granulation
is a versatile particle formulation process allowing the
combination of various process steps in a single setup.
The general aim of granulation is the conversion of a
liquid product into its solid particular form. In this form
product durability increases and handling is simplified, e.g.
decreased dust formation. In the multi-chamber version
a sequence of different processes as granulation, coating,
drying or cooling can be easily realized by assigning them
to different chambers. Although, a continuous mode of
operation results in high throughputs special care has to
be taken in order to guarantee a robust process operation,
with respect to feed variations and unforeseen distur-
bances. These potential problems are not specific to the
multi-chamber configuration, but are well-known for con-
tinuously operated single chamber granulation processes,
e.g. Schmidt et al. (2015). Here, process instabilities
and the occurrence of nonlinear limit cycles, as shown in
Fig. 1, have been reported. Their dependence on specific
process parameters (Fig. 2) has been extensively studied
in Dreyschultze et al. (2015); Neugebauer et al. (2016);
Bück et al. (2016).

In order to solve the described stability problems and
guarantee a robust process operation different feedback
control approaches have been studied for various single
chamber granulation processes, e.g. Palis (2018); Bück et
al. (2015); Palis and Kienle (2014, 2013, 2012). In this
contribution feedback control design for the multi-chamber
fluidized bed spray granulation process has been studied.

2. PROCESS MODEL

In the following a continuous multi-chamber fluidized bed
spray granulation process (Fig. 3 (left)) is studied. It
consists of four chambers and an additional sieve-mill

Fig. 1. Nonlinear oscillations in single-chamber continuous
fluidized bed spray granulation with external sieve
mill cycle

cycle, guaranteeing a constant production of nuclei and
the attainment of the given product specification. The first
three zones are used for particle growth and the fourth
zone for drying only. It is assumed that each chamber is
well mixed and that formation of functional zones, e.g.
granulation and drying zone, can be neglected.

In the granulation chambers the liquid product is supplied
to the fluidized particle bed by a nozzle. Due to high
temperature of the drying air the injected solution or sus-
pension, having settled on the particle surface, evaporates
partly, resulting in particle growth. The particle growth in
each chamber i is giving by

G = 2
V̇e

πµ2

(1)

Keywords: Discrepancy based control, population balance, Lyapunov stability, nonlinear
control
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Fig. 2. One-parameter continuation for varying mill grade
of single-chamber continuous fluidized bed spray gran-
ulation with external sieve mill cycle

Fig. 3. Scheme of a multi-chamber fluidized bed spray
granulation (left) and particle size distribution typ-
ically generated by the mill (right)

where µ2 is the second moment of the particle size distri-
bution.

µ2 =

∫

∞

0

L2ndL (2)

In order to achieve a continuous particle movement from
the left to the right, the whole apparatus has a small
inclination. As a first step it is assumed that the inter-
chamber weirs do not have a classification effect, i.e.
particles are moving with a given rate k from left to
right irrespective of their size. The flux from chamber i
to chamber i+ 1 can hence be described by

ṅout,i = kni. (3)

In the fourth chamber particles are continuously redrawn
and fed to two sieves resulting in three particle fractions:
product, fines and oversized particles.

ṅprod = T2(L)(1− T1(L))ṅout,4 (4)

ṅfine = (1− T2(L))(1− T1(L))ṅout,4 (5)

ṅover = T1(L)ṅout,4 (6)

Here, T1(L) and T2(L) are the associated screening func-
tions.

T1,2(L;µ, σ) =

∫ L

0
exp

(

−(L−µ)2

2σ2

)

dL

∫

∞

0
exp

(

−(L−µ)2

2σ2

)

dL
(7)

The oversized fraction is first grinded by the mill and then
fed back as ṅmill to the first granulation chamber together
with the fines fraction ṅfine. The particle size distribution
generated by the mill is typically multi-modal, where the
proportion of each distribution depends on the specific mill
power, flowrate and particle properties. It can further be
assumed that the milling is in general mass conserving,
i.e. the third moment of the oversize fraction is equal to
the third moment of the particle distribution generated
by the mill. In this contribution, it is assumed that the
mill is producing uniformly distributed particles with a
given mean diameter µM representing the mill grade. The
particle flux leaving the mill can thus be described as
follows.

ṅmill = 6
exp (L−µM )2

2σ2

M√
2ππσM

∫

∞

0

L3ṅoverdL (8)

= nmill(L)

∫

∞

0

L3ṅoverdL (9)

The overall model hence consists of a system of four
population balance equations, i.e. one population balance
equation per chamber. Here, the index i stands for the
second and third chamber, i.e. i ∈ {2, 3}. In the fourth
chamber no liquid is injected and the particle growth G is
hence zero. The particle withdraw associated with ṅout,4

is supplied to the sieves and then to the mill.

∂n1

∂t
=−G

∂n1

∂L
+ ṅmill + ṅfine − kn1 (10)

∂ni

∂t
=−G

∂ni

∂L
− kni + kni−1 (11)

∂n4

∂t
=−Kn4 + kn3 (12)

Introducing the associate terms for the fluxes from the
mill and the fines fraction, results in the following system
of nonlinear partial integro-differential equations.

∂n1

∂t
=−G

∂n1

∂L
+ nmill(L)

∫

∞

0

L3KT1n4dL+ . . .

. . .+ (1− T2)(1− T1)Kn4 − kn1 (13)

∂ni

∂t
=−G

∂ni

∂L
− kni + kni−1 (14)

∂n4

∂t
=−Kn4 + kn3 (15)

From a practical point of view, the overall mass or particle
volume inside the whole apparatus and the volume of
particles inside the last chamber, being directly connected
to the product flow rate, should be controlled. As control
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handles the particle withdraw K and liquid injection rate
V̇e can be used.

3. STABILIY WITH RESPECT TO A DISCREPANCY

Most of control methods for distributed parameter systems
them are based on the solution of the system itself or at
least the desired error system, i.e. the system in closed loop
operation. For example in the backstepping approach (e.g.
Smyshlyaev et al. (2010)) the control input is designed
such that it maps the original system onto a desired stable
error system. Whereas in the works of Bastin et. al. (e.g.
Coron et al. (2007); Prieur et al. (2008)) stability is
proven using the solution derived with the method of
characteristics. Often it is assumed that the control handle
acts on the boundary of the domain or is itself distributed.
Here, the system of population balances is a system of
nonlinear partial integro-differential equations with a lack
of solution theory and control inputs acting in the domain.
Hence, in this case a transformation to a desired error
system with known classical stability behavior is hardly
possible. As has been however shown in previous contri-
butions Palis and Kienle (2014); Palis (2018) related
problems can be solved by introducing a generalized sta-
bility notion, i.e. stability with respect to two generalized
distance measures, the discrepancies. In the following, the
most important properties and facts on stability with
respect to one discrepancy are stated in accordance to
Movtschan (1960); Sirasetdinov (1967); Martynjuk and
Gutovski (1979). Here, the process ϕ(., t) is a solution of
the distributed parameter system and ϕ0 = 0 an equilib-
rium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional ρ = ρ[ϕ (., t) , t]
with the following properties

(1) ρ(ϕ, t) ≥ 0
(2) ρ(0, t) = 0
(3) for an arbitrary process ϕ = ϕ(., t) the discrepancy

ρ(ϕ(., t), t) is continuous with respect to t.

Obviously, a discrepancy does not have all properties of a
metric, e.g. symmetry d(x, y) = d(y, x) or the triangular
inequality d(x, y) ≤ d(x, z) + d(z, y) do not have to hold.
In addition, it has not to satisfy the important property of
definiteness, i.e. a vanishing discrepancy ρ(ϕ, t) = 0 does
not automatically imply ϕ = 0.

Definition 2. Stability with respect to a discrepancies ρ

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies ρ and ρ0 for all
t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists a
δ = δ(ε, t0) > 0 , such that for every process ϕ(., t)
with ρ(ϕ, t0) < δ(ε, t0) follows ρ < ε for all t ≥ t0.
If in addition limt→∞ ρ = 0, than the equilibrium ϕ0 is
called asymptotically stable in the sense of Lyapunov with
respect to the two discrepancies ρ and ρ0.

In order to establish a relationship between stability with
respect to one discrepancies and the existence of a Lya-
punov functional V , the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy ρ

The functional V = V [ϕ, t] is called positive with respect
to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all ϕ
with ρ(ϕ, t) < ∞.

Definition 4. Positive definiteness with respect to a dis-
crepancy ρ

The functional V = V [ϕ, t] is positive definite with respect
to a discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all ϕ with
ρ(ϕ, t) < ∞ and for every ε > 0 there exists a δ = δ(ε) > 0,
such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.

The following two theorems state the conditions for a func-
tion V guaranteeing (asymptotical) stability with respect
to one discrepancy.

Theorem 5. Sirasetdinov (1967) The process ϕ with the
equilibrium ϕ0 = 0 is stable with respect to the discrep-
ancy ρ if and only if there exists a functional V = V [ϕ, t]
positive definite with respect to the discrepancy ρ and not
increasing along the process ϕ, i.e. V̇ ≤ 0.

Theorem 6. Sirasetdinov (1967) The process ϕ with the
equilibrium ϕ0 = 0 is asymptotically stable with respect
to the discrepancy ρ if and only if there exists a functional
V = V [ϕ, t] positive definite with respect to the discrep-

ancy ρ and not increasing along the process ϕ, i.e. V̇ ≤ 0,
with lim

t→∞

V = 0.

It has to be mentioned that stability with respect to two
discrepancies is necessary but in general not sufficient for
stability with respect to a Lp norm or L∞ norm.

4. DISCREPANCY BASED CONTROL

In the following, a discrepancy based controller will be
derived for the multi-chamber continuous fluidized bed
spray granulation with external sieve-mill cycle. Here, the
following discrepancy will be used.

ρ =
1

2

(

4
∑

i=1

∫

∞

0

L3ñidL

)2

+
1

2

(
∫

∞

0

L3ñ4dL

)2

(16)

where ñi is the deviation of the particle size distrubtion in
chamber i from its desired value ni,d.

ñi = ni,d − ni (17)

This choice is motivated by the two integral quantities the
overall particle volume and the particle volume in the last
chamber, which is of special importance as it is directly
connected to the product flow rate. For simplicity the
following related errors e1, the deviation from the desired
overall particle volume, e2, the deviation from the desired
particle volume in chamber four, are introduced.

e1 =

4
∑

i=1

∫

∞

0

L3ñidL (18)

e2 =

∫

∞

0

L3ñ4dL (19)

As control handles the liquid injection of the first three
chambers V̇e and the particle withdraw rate from the last
chamber K are chosen.

u1 = V̇e (20)

u2 =K (21)
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In order to design a discrepancy based control law for
the given control configuration the following Lyapunov
functional candidate is used.

V = ρ =
1

2
e2
1
+

1

2
e2
2

(22)

As for classical Lyapunov based control design, its first
time derivative has to be rendered negative.

V̇ = e1ė1 + e2ė2 (23)

= e1

4
∑

i=1

∫

∞

0

L3
∂ñi

∂t
dL+ e2

∫

∞

0

L3
∂ñ4

∂t
dL (24)

Calculating the first time derivative of the control errors
e1 and e2 yields

ė1 =
3

∑

i=1

∫

∞

0

L3

(

G
∂ni

∂L

)

dL+

∫

∞

0

L3KT2(1− T1)n4dL,

=

3
∑

i=1

2V̇e

∫

∞

0
L3 ∂ni

∂L
dL

π
∫

∞

0
L2nidL

+

∫

∞

0

L3KT2(1− T1)n4dL,(25)

ė2 =−K

∫

∞

0

L3n4dL+

∫

∞

0

L3kn3dL. (26)

As typical for multi-input multi-output control problems,
control errors can be affected with different control han-
dles. Here, for simplicity it will be assumed that the second
control error e2, i.e. the deviation from the desired particle
volume in chamber four, will be controlled by the second
control handle u2, i.e. the withdraw rate K. In order to
achieve exponential convergence of e2

ė2 = c2e2 (27)

where c2 is a negative tuning parameter, the control input
u2 has to be chosen as follows

K =
c2e2 +

∫

∞

0
L3kn3dL

∫

∞

0
L3n4dL

. (28)

In a similar way, the first control error e1, i.e. the deviation
from the overall particle volume in the apparatus, will
be controlled by the first control handle u1, i.e. the
liquid injection rate V̇e. In order to achieve exponential
convergence of e1

ė1 = c1e1 (29)

where c1 is a negative tuning parameter, the control input
u1 has to be chosen as follows

V̇e =
−
∫

∞

0
L3KT2(1− T1)n4dL− c1e1

2
∑

3

i=1

∫

∞

0

L3

(

∂ni

∂L

)

dL

π

∫

∞

0

L2nidL

(30)

Introducing the two control laws 28 and 30 into equation
24 yields exponential convergence of the chosen Lyapunov
functional V and thus proofs stability with respect to the
chosen discrepancy ρ.

V̇ = c1e
2

1
+ c2e

2

2
(31)

≤max(c1, c2)(e
2

1
+ e2

2
) = max(c1, c2)V (32)

In order to rigorously proof stability in the sense of a norm
for the particle sized distributions in each chamber, one
would have to study the associate zero dynamics Palis
and Kienle (2014), which is not in the scope of the

present contribution. Applying the derived discrepancy
based controller to the four chamber fluidized bed spray
granulation process with external sieve-mill cycle shows
that the particle size distributions in each chamber are
stabilized and converge to their desired steady-states. This
can be also seen from the second and third moment plots
of each chamber as depicted in Fig. 4 and 5.
For simulation the population balance for the particle size
distribution in each chamber has been discretized along
the property coordinate using a first order finite-volume
scheme. For time-integration a third order strong stability
preserving Runge-Kutta scheme as been used. The initial
particle size distribution in each chamber is assumed as
normally distributed with mean diameter 1.1mm and
standard deviation 0.2mm.

Fig. 4. Second moment µ3 of the particle size distribution
in chamber 1 (solid black), 2 (dotted black), 3 (solid
gray) and 4 (dotted gray)

Fig. 5. Third moment µ3 of the particle size distribution
in chamber 1 (solid black), 2 (dotted black), 3 (solid
gray) and 4 (dotted gray)

By control design the errors e1 and e2 converge exponen-
tially, which can be seen in Fig. 6. In Fig. 7 the convergence
of the Lyapunov functional V is depicted.
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Fig. 6. Control error e1 (solid black) and e2 (dotted black)

Fig. 7. Lyapunov functional V

The applied control signals u1 and u2 are shown in Fig. 8
and 9.

Fig. 8. Liquid injection rate V̇e = u1

Fig. 9. Particle withdraw rate K = u2

5. CONCLUSION

A discrepancy based control design has been presented
for multi-chamber fluidized bed spray granulation pro-
cesses with external sieve-mill cycles. Despite the complex
mathematical process model it has been shown that the
discrepancy based control approach leads to a simple and
intuitive control design, without any model simplification
or reduction steps. The design itself allows to include
engineering knowledge of the given process configuration
into the control design procedure by assigning a physically
motivated discrepancy, containing the deviation of from
the overall desired particle volume and the deviation from
the particle volume in the last chamber, which is directly
connected with the product withdraw rate. Promising first
simulation results have been achieved. For a practical
application the particle size distribution in each chamber
has to be measured, which can be achieved by using an
inline particle probe.
Future work will be concerned with a more detailed anal-
ysis of the classical stability behavior, i.e. stability of the
particle size distributions in terms of L2 and L∞-norm,
and the robustness of the presented control scheme.
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Abstract—Controller design by feedback or feedforward input-
output linearization is straightforward if the system is minimum
phase, i.e., if the zero dynamics are asymptotically stable. For
systems with unstable zero dynamics these approaches cannot
directly be applied, as they would result in the destabilization
of a part of the systems dynamics. In order to overcome this
problem and render the internal dynamics asymptotically stable
a parallel compensator can be deployed. This technique has
successfully been applied in previous works to linear systems. In
this contribution a method to stabilize nonlinear non-minimum
phase systems by a combination of parallel compensation and
feedback linearization is proposed. The theoretical results will
be illustrated on a DC/DC converter.

Index Terms—Non-minimum phase, parallel compensation,
generalized controller canonical form, boost converter

I. INTRODUCTION

About thirty years ago based on differential geometry, exact

feedback linearization and flatness based control were devel-

oped [1]–[3] and are now widely used in nonlinear control.

Here, the concepts of the relative degree and the zero dynamics

play an important role [1], [4]. For a given nonlinear system

with a well-defined relative degree an exactly input-output

linearizing control law can be designed under the additional

assumption that the zero dynamics are asymptotically stable.

Such a system is said to be of minimum phase. This approach

can be extended to some classes of systems with ill-defined

relative degree [5], [6]. The minimum phase assumption is

more restrictive.

A special case are flat systems. Here, all system variables

can be parametrized by the flat output. In the single-input

case, a system is flat if and only if it is exactly input-to-

state linearizable [7], [8]. For multi-input systems, it is more

difficult to verify whether a given system is flat or not, and to

compute a flat output [9]–[11]. For a flat output, the system has

no zero dynamics at all, i.e., the minimum phase restriction is

not applicable. It should be mentioned, that, from a practical

point of view, even if the system is flat and the flat output is

known, the use of a different, possibly non-flat, output may

be preferable.

For a linear system, the zero dynamics corresponds to the

zeros of the system’s transfer function. Here, it is well-known

that zeros in the complex right-half plane impose restrictions

on the application of well-established control schemes and

the achievable performance [12, Chapter 5]. Furthermore, in

contrast to the closed-loop pole location, the location of the

system zeros cannot be changed by feedback. However, as has

been shown in [13], [14] this problem, i.e., the instability of

the zero dynamics, can be solved by parallel compensation. In

[15], [16] parallel compensators have been successfully design

based on the linear system dynamics. In this contribution, the

design of parallel compensators based on the nonlinear system

dynamics, making use of the generalized controller canonical

form [17], [18], will be studied.

The paper is structured as follows. The most relevant

differential-geometric concepts from nonlinear control theory

are recalled in Section II. As an illustrative example the boost

converter as a DC/DC converter is used. It is introduced in Sec-

tion III. The generalized controller canonical form described

in Section IV is used in Section V to achieve minimum phase

internal dynamics. In Section VI we carry out the controller

design for the non-minimum phase converter model.

II. MATHEMATICAL PRELIMINARIES

We consider a nonlinear single-input single-output system

described by

ẋ = f(x) + g(x)u,
y = h(x)

(1)

with the state vector x, the input u and the output y. The

fields f, g : M → R
n and h : M → R are defined on an open

and connected subset M ⊆ R
n and assumed to be sufficiently

smooth. The Lie derivative of the scalar field h in the direction

of the vector field f is defined by Lfh(x) := dh(x)f(x)
with the exterior derivative dh(x) = h�(x). Higher order Lie

derivatives are defined by Lk+1
f h(x) := dLk

fh(x) · f(x) with

L0
fh(x) := h(x). The system (1) is said to have a relative

degree r at a point x0 ∈ M if Lgh(x) = 0, LgLfh(x) =
0, . . . , LfgL

r−2
f h(x) = 0 for all x in an open neighborhood

of x0 and LgL
r−1
f h(x0) �= 0 [1].

If the relative degree r is well-defined, it is the minimum

order of output time derivatives depending explicitly on the

2019 23rd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-7281-0699-1/19/$31.00 ©2019 IEEE 308



input u. In particular, output time derivatives of order less

then r do not depend on the input u:

y = φ1(x) = h(x),
ẏ = φ2(x) = Lfh(x),

...
...

y(r−1) = φr(x) = Lr−1
f h(x).

(2)

The time derivative of order r depends directly on the input u:

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u. (3)

Therefore, the nonlinearities in (3) can be compensated by

feedback. In addition, we can impose linear dynamics

y(r) + kr−1y
(r−1) + · · ·+ k0y = k0w (4)

with the reference value w using the control law

u =
1

LgL
r−1
f h(x)

�
k0w −

r�

i=0

kiL
i
fh(x)

�
(5)

with kr := 1. If the coefficients k0, . . . , kr−1 of (4) are chosen

such that all roots of the associated characteristic polynomial

have negative real parts, the output converges to the reference

value, i.e., y(t) → w for t → ∞.

If r = n, the system is flat and the control law (5) yields a

linear closed-loop system [1], [8]. For a non-flat output with

r < n, the control (4) results only in a r-dimensional linear

subsystem. For y(t) ≡ w, the dynamics of the remaining (n−
r)-dimensional subsystem evolve on the subset

Z∗={x∈M : h(x)=w,Lfh(x)=0, . . . , Lr−1
f h(x)=0}. (6)

This subset is invariant under the system’s dynamics for

u = −
Lr
fh(x)

LgL
r−1
f h(x)

. (7)

The system is called minimum phase w.r.t. the reference

value w if the internal dynamics described by (6) and (7)

is asymptotically stable. Otherwise, the system is called non-

minimum phase. This definition corresponds essentially to the

zero dynamics [1].

Now, consider system (1) in an equilibrium point x0 ∈ M
with the input u0 and the reference output value w, i.e.,

0 = f(x0) + g(x0)u0, w = h(x0).

The Taylor linearization results in a system

˙̃x = Ax̃+ b ũ, ỹ = cT x̃

with the system matrix A ∈ R
n×n, the vectors b, c ∈ R

n and

the small signal quantities x̃, ũ and ỹ. The system’s transfer

function reads

G(s) = N(s)
D(s) = cT (sI −A)−1b

= b0+b1s+···bn−rs
n−r

a0+a1s+···+an−1sn−1+sn
.

(8)

The denominator polynomial D(s) = det(sI−A) is the open-

loop characteristic polynomial. The numerator polynomial

N(s) is the characteristic polynomial of the linearized internal

I L

d = 1

C RE V

d = 0

Fig. 1. Simplified circuit diagram of the boost converter

dynamics w.r.t. the reference output value w. The equilibrium

of the internal dynamics is hyperbolic, if this polynomial has

no roots with zero real part [19]. In this case, the system is

minimum phase if and only if all roots have negative real parts.

III. BOOST CONVERTER EXAMPLE

A. Mathematical Model

A boost converter, also known as step up converter, trans-

forms a source voltage into a higher output voltage [20], [21].

Fig. 1 shows the network model of such a boost converter. In

this figure, E denotes the source voltage, L the inductance and

C the capacitance. The load is modelled by a resistance R.

The network equations with the current I and the voltage V
can be derived using Kirchhoff’s laws. The two possible

switching positions are denoted by d = 0 and d = 1. In

practice, the switch is controlled using pulse width modulation

(PWM). In this case, it is common practice to consider the

averaged model, which can be written as a state-space system

ẋ1 = −(1− u) 1
L
x2 +

E
L

ẋ2 = (1− u) 1
C
x1 − 1

RC
x2

(9)

with the average current x1 and the average voltage x2. The

duty cycle or duty ratio u ∈ (0, 1) acting as an input signal

describes the average value of d over a switching period. It is

the ratio between the switch-on time and the switching period.

In most applications one wants to control the boost converter

in such a way, that a prescribed reference output voltage w =
x0
2 is provided. The associated equilibrium point is described

by

x0
1 =

(x0
2)

2

ER
and u0 = 1− E

x0
2
. (10)

Due to u ∈ (0, 1) one obtains that in steady-state the second

state component x2 is always greater than the supply voltage,

i.e., x0
2 > E, and tends to the supply voltage for decreasing

duty ratio, i.e., x0
2 → E for u0 ↓ 0. Whereas for increasing

duty ratio it tends to infinity, i.e., x0
2 → ∞ for u0 ↑ 1.

In the following, for the boost converter the parameter

values from [20, Sect. 8.6.1] are listed in Tab. I. We consider

the operating point u0 = 0.4, x0
1 = 25/6A = 4.16̄A,

x0
2 = 25V. The linearization in this equilibrium point yields

the system matrix and the input vector

A =

�
0 −1200

600 100

�
, b =

�
50000

−4166.6̄

�
. (11)

The associated characteristic polynomial

det(sI −A) = s2 + 100s+ 72000
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TABLE I
PARAMETER VALUES OF THE BOOST CONVERTER [20, SECT. 8.6.1]

Parameter Value

E 15V

L 0.5mH

C 1000 μF
R 10Ω

has the roots s1,2 = −50±50
√
287j ≈ −50±847j. Therefore,

the operating point of the open-loop system is asymptotically

stable.

B. Current Control

First, we consider the boost converter model (9) with current

output

y = h(x) = x1 = cTx with cT =
�
1 0

�
. (12)

With this output, the system has the relative degree r = 1
because the input occurs in the first time derivative of the

output:

ẏ = ẋ1 = −(1− u) 1
L
x2 +

E
L
=

E − x2

L
+

x2

L
u.

Furthermore, the system is minimum phase [22]–[24]. This can

also be verified on the linearized model. From (11) and (12)

we obtain the transfer function

G(s) = cT (sI −A)−1b =
50000(s+ 200)

s2 + 100s+ 720000
.

We have one zero at s = −200 lying in the left complex

half-plane, i.e., the linearized model is minimum phase.

Therefore, we can design a stabilizing control law by input-

output linearization

u = − 1
Lgh(x)

[k0(h(x)− w) + Lfh(x)]

= x2−E−k0L(x1−w)
x2

with the reference value w being the reference and the con-

troller parameter k0 > 0. Alternatively, one could design a

controller based on dynamic extension [25]. However, from a

practical point of view, one wants to obtain a desired refer-

ence voltage. Although the reference current can be obtained

by (10) from the reference voltage in the equilibrium point, it

depends on the parameters E and R. Both are often not exactly

known. In addition, the supply voltage E may change over

time for certain applications. This would cause an undesired

deviation in the (internally used) reference value w.

C. Voltage Control

Next, we consider the nonlinear model (9) with voltage

output

y = h(x) = x2 = cTx with cT =
�
0 1

�
. (13)

From the first order output time derivative

ẏ = ẋ2 = (1− u) 1
C
x1 − 1

RC
x2 =

Rx1 − x2

RC
− x1

C
u

we obtain the relative degree r = 1. Unfortunately, the system

is non-minimum phase [23], [26]. Therefore, exact input-

output feedback linearization cannot be applied directly. To

verify the instability of the zero dynamics, we consider the

transfer function

G(s) = − 12500 (s− 7200)

3 (s2 + 100s+ 720000)

derived from (11) and (13). The zero s = 7200 lies in the

right complex half-plane. Hence, the system is non-minimum

phase.

D. Energy Control

Furthermore, we could consider the electrical energy

y = h(x) =
L

2
x2
1 +

C

2
x2
2 (14)

stored in the inductor and the capacitor as a control output

resulting in the relative degree r = 2, see [22], [27]. Since we

have r = n, the system is flat. Therefore, there is no internal

dynamics, i.e., the control law (5) achieves an exact input-to-

state linearization by feedback. However, the desired value of

the control variable (14) has to be calculated from the desired

reference voltage. Again, this calculation depends on (not

exactly known) system parameters and may result in undesired

deviations, which are not compensated by feedback control. In

conclusion a control configuration using voltage output would

be preferable in many applications. In order to overcome

the unstable zero dynamics obstacle an additional parallel

compensator will be design on the basis of the generalized

controller canonical form, which will be introduced in the next

section.

IV. GENERALIZED CONTROLLER CANONICAL FORM

Consider system (1) with a well-defined relative degree

r < n and the maps φ1, . . . ,φr defined by output times

derivatives of order 0, . . . , r − 1 in Eq. (2). As the rth order

time derivative depends on the input u, see (3), subsequent

time derivatives additionally depend on time derivatives of the

control u. Further differentiation yields

y(r) = φr+1(x, u)
y(r+1) = φr+2(x, u, u̇)
y(r+2) = φr+3(x, u, u̇, ü)

...

y(n−1) = φn(x, u, u̇, ü, . . . , u
(n−r−1)),

(15)

where the maps φr+1, . . . ,φn can be expressed in terms of

Lie derivatives [5], [6]. Combining the maps φ1, . . . ,φr and

φr+1, . . . ,φn one obtains a map

z = Φ(x, u, u̇, ü, . . . , u(n−r−1)). (16)

which, for fixed quantities u, u̇, ü, . . . , u(n−r−1), is a local

diffeomorphism with an inverse map

x = Φ−1(z, u, u̇, ü, . . . , u(n−r−1))
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transforming (1) into the form

ż1 = z2
ż2 = z3

...

żn−1 = zn
żn = γ(z, u, u̇, ü, . . . , u(n−r))
y = z1,

(17)

which is the generalized controller canonical form

(GCCF) [17]. System (17) is a generalized state-space

system since its input-dependent vector field also depends on

input derivatives. Because the original system (1) is affine

w.r.t. the input u, the map γ is affine w.r.t. the highest order

input time derivative u(n−r). Therefore, we can decompose γ
as follows:

γ(z, u, u̇, . . .) = α(z, u, u̇, . . .) + β(z, u, u̇, . . .)u(n−r).

Consider system (17) in an equilibrium point. The lineariza-

tion results in the transfer function (8) with the coefficients

a0 = − ∂γ
∂z1

, a1 = − ∂γ
∂z2

, . . . , an−1 = − ∂γ
∂zn

,

b0 = ∂γ
∂u , b1 = ∂γ

∂u̇ , . . . , bn−r = ∂γ
∂u(n−r) .

(18)

Provided the operating points are hyperbolic, the stability of

the whole system or the internal dynamics can be investigated

through the denominator or the numerator polynomial, respec-

tively.

Remark 1: The output time derivatives occurring in (3)

and (15) may result in large symbolic expressions. For a

numerical implementation of (17), we could use an alternative

technique of differentiation known as automatic or algorithmic

differentiation [28], [29].

A. GCCF for the boost converter with voltage output

Applying the above considerations to the boost converter

model (9) with voltage output (13). The change of coordi-

nates (16) reads

z = Φ(x, u) =

⎛
⎝y

ẏ

⎞
⎠ =

⎛
⎝ h(x)

Lfh(x) + Lgh(x)u

⎞
⎠

=

⎛
⎝ x2

Rx1(1−u)−x2

CR

⎞
⎠

(19)

with the inverse map

x = Φ−1(z, u) =

�−CRz2+z1
R(u−1)

z2

�
. (20)

The transformed system becomes

ż1 = z2
ż2 = γ(z, u, u̇) = α(z, u) + β(z, u)u̇
y = z1

(21)

with
α(z, u) = −Lz2+R(u−1)2z1−E

CLR
,

β(z, u) = Lz2−E
L(u−1) .

(22)

controller

Plant

compensator

Parallel

Feedback

ȳ

y

ỹ
w

u

Fig. 2. Control scheme using a parallel compensator

V. STABILIZING INTERNAL DYNAMICS AND PARALLEL

COMPENSATION

A. Parallel Compensator Design Concept

A parallel compensator is an additional dynamical system

acting in parallel to a given system. The application of

parallel compensation for zero dynamics stabilization has been

proposed by [13]. The main idea is to design a second system,

the parallel compensator, which results in stable internal

dynamics for the parallel interconnection of the plant and

the compensator. A typical control scheme applying parallel

compensation in combination with feedback control is shown

in Fig. 2. A design procedure based on linear systems theory

has been proposed and successfully applied in [15] and [16].

The design of nonlinear parallel compensators for nonlinear

systems with unstable internal dynamics, is to the best of our

knowledge still an open problem.

B. Parallel Compensator Design for Maximum Phase Systems

In this contribution, we propose a first nonlinear design

procedure being based on the maximum phase property. Con-

sidering a given system in the GCCF (IV) and the transfer

function (8) of its linearization (18), where we assume that

the numerator polynomial N(s) has no root with zero real

part. Then, the system is minimum phase if all roots have

negative real parts. In a similar manner, the linearized system

is called maximum phase if all roots of N(s) have positive real

parts [18]. In this case, applying the following transformation

s �→ −s, i.e., mirroring the roots along the imaginary axis, all

roots of the (modified) polynomial N(−s) have negative real

parts. In the time domain, where the variable s can be associ-

ated with the time derivative operator d
d t

, this transformation

can be associated with the substitution d
d t

�→ − d
d t

. Thus, for

a given hyperbolic maximum phase system the transformation

γ(z, u, u̇, ü,
...
u, . . .) �→ γ(z, u,−u̇,+ü,−...

u, . . .) (23)

yields a minimum phase system, which can be used as the

desired system of the parallel interconnection of plant and

parallel compensator. The parallel compensator can than be

obtained by subtraction of the plant. The described procedure

will now be illustrated for the boost converter example.
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VI. CONTROLLER DESIGN FOR THE NON-MINIMUM

PHASE CONVERTER MODEL

In a first step, the associated minimum phase system for

the boost converter model in the GCCF (21) with (22) is

constructed by the transformation (23).

ż1 = z2
ż2 = γ(z, u,−u̇) = α(z, u)− β(z, u)u̇
y = z1.

(24)

Applying the inverse transformation (20), i.e., transforming

this system into the original coordinates, yields

ẋ1 = −(1− u) 1
L
x2 +

E
L
− 2x1

u−1 u̇,

ẋ2 = (1− u) 1
C
x1 − 1

RC
x2,

(25)

which is now, in contrast to the original system (9), a gener-

alized state-space system containing the derivative of u [24].

In order to achieve the desired minimum phase system (24),

the following parallel compensator can be used:

˙̄z1 = z̄2
˙̄z2 = α(z̄, u)− 3β(z̄, u)u̇
ȳ = z̄1.

(26)

Introducing the output

ỹ = y + ȳ (27)

of the plant (21) with the parallel compensator (26) yields

¨̃y = α(z, u) + α(z̄, u) + [β(z, u)− 3β(z̄, u)]u̇ (28)

Here, eq. (28) becomes for the limit z → z̄

2ÿ = 2α(z, u)− 2β(z, u)u̇, (29)

or equivalently

ÿ = α(z, u)− β(z, u)u̇, (30)

which is exactly the same as the minimum phase system (24).

Next, we design a stabilizing controller for the augmented

system (28). Introducing v = u̇ as a new input and u as

an additional state variable, the augmented system (28) has

relative degree r = 2. We want to achieve linear dynamics

¨̃y + k1 ˙̃y + k0ỹ = k0w̃ (31)

with the reference value w̃. The linear differential equa-

tion (31) is asymptotically stable for k0, k1 > 0. Note that

in an equilibrium point we have u̇ = 0. This implies that

the systems (21), (25), and (28) have the same equilibrium

point. With the controller aim y → w and ȳ → w we have

ỹ → w̃ = 2w due to (27). Solving (28) and (31) w.r.t. v leads

to

v = −k0(z1 + z̄1 − 2w) + k1(z2 + z̄2) + α(z, u) + α(z̄, u)

β(z, u)− 3β(z̄, u)
.

(32)

Since the linearizing control law (32) uses u̇ as the controller

output, the proposed control law corresponds to dynamic

feedback linearization [17], [25].

Integration Saturation

compensator

System and

parallel

v u̇

u̇sat

usat

Fig. 3. Anti-wind-up scheme for the dynamic controller

To implement the control law (32), the parallel compen-

sator (26) in its original coordinates is used:

˙̄x1 = −(1− u) 1
L
x̄2 +

E
L
− 4x̄1

u−1 u̇,
˙̄x2 = (1− u) 1

C
x̄1 − 1

RC
x̄2.

(33)

Furthermore, we apply (19) and (22) to transform the control

law (32) into the original coordinates. This substitution leads

to a comparatively large expression, which is omitted here.

In theory, the duty ratio u is restricted to u ∈ (0, 1).
In practice, the power transistor used in the converter has

a finite switching time, e.g. due to parasitic capacitances.

As a consequence, duty rations near 0 or near 1 should be

avoided. In our simulation, we hence limit the duty ration

to u ∈ [0.1, 0.9]. Because u is generated from its time

derivative provided by the control law (32), we combined the

integration from u̇ to u with an anti-wind-up scheme shown

in Fig. 3, see [30]. This scheme results in the quantities usat

and u̇sat, which are used in the control law (32) and the parallel

compensator instead of u and u̇.

A. Numerical Simulation

In the numerical simulation we use the reference voltage

w = x0
2 = 20V for t < 400ms. This corresponds to x0

1 =
2.6̄ A and u0 = 0.25 according to (10). We used these values

as initial values for the parallel compensator (33), i.e., x̄1(0) =
2.667, x̄2(0) = 20, and the integrator, i.e., u(0) = 0.25. For

the plant (9) we took the initial values to x1(0) = 2 and

x2(0) = 19. At t ≥ 200ms we set the reference voltage to

w = x0
2 = 25V corresponding to x0

1 = 4.16̄A and u0 = 0.4.

The two eigenvalues of the desired linear error dynamics (31)

law were placed at 200 s−1 and 300 s−1. This results in the

(normalized) coefficients k0 = 60000 and k1 = 500.

Fig. 4 shows the simulation results for t = 0 . . . 400ms. In

the beginning we have some oscillation due to the deviation

between the initial values and the operating point as well as of

the plant and the parallel compensator. Then, visual inspection

shows that the trajectories converge to the desired reference

points. The simulation was carried out with Scilab [31]. We

made the source file available on Github [32].

VII. CONCLUSION

In this contribution nonlinear control of non-minimum phase

systems has been studied. Here, the main challenge is the

stabilization of the unstable zero dynamics. As this cannot

be achieved by feedback, application of a parallel compensator

has been proposed. For the class of nonlinear maximum phase

systems, i.e., systems where the modification d
d t

�→ − d
d t
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Fig. 4. Simulation results of the controlled converter model

results in a minimum phase system, a design procedure has

been developed. Here, the main idea is to use the minimum

phase system, associated with the original maximum phase

system by the modification d
d t

�→ − d
d t

, as a desired system for

the parallel interconnection of plant and parallel compensator.

From which the later can then be directly derived. For the

augmented minimum phase system nonlinear control design

procedures can be readily applied. The proposed approach

has been successfully evaluated on a boost converter with

voltage output, which is known to be maximum phase and

thus possesses unstable zero dynamics.
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[18] F. J. Doyle III, F. Allgöwer, and M. Morari, “A normal form approach
to approximate input-output linearization for maximum phase nonlinear
SISO systems,” IEEE Trans. on Automatic Control, vol. 41, no. 2, pp.
305–309, Feb. 1996.

[19] D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical

Systems. Cambridge: Cambridge University Press, 1990.
[20] S. Bacha, I. Munteanu, and A. I. Bratcu, Power Electronic Converters

Modeling and Control. London: Springer-Verlag, 2014.
[21] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics,
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Abstract—Parametrization of process models is an important
task and often the first step in process control and monitoring.
For continuous fluidized bed spray granulation, being often
described by population balance models parameter estimation
is particularly challenging due to the infinite-dimensional state
space. In this contribution a Lyapunov-based approach is used
to derive the appropriate online parameter estimation laws for a
fluidized bed spray granulation with external sieve-mill cycle.

I. INTRODUCTION

For many processes transformation of a liquid product into
its solid form is an important final task. This is especially true
for production processes in food, chemical and pharmaceutical
industries. An important process here is granulation, which is
often combined with fluidized bed technology. Starting with
an initial solid particle bed, the latter is fluidized by passing
a gas or liquid. Fluidization has two positive effects: first
the bed porosity and thus the active surface are considerably
enlarged, second particle mixing is increased resulting in a
faster homogenization of bed states.
It is well known that continuous fluidized bed spray granula-
tion may become unstable resulting in nonlinear limit cycles
under certain operation conditions and for certain process
configurations. Hence, different control approaches have been
proposed for stabilization [4] - [7]. All the controllers depend
on a parametrized plant model. However, in reality parameters
may be not known a-priori or vary during plant operation.
Thus, online parameter estimation is a crucial task. In this
contribution the problem of online parameter estimation for
continuous fluidized bed spray granulation with external sieve-
mill cycle is investigated.

II. CONTINUOUS FLUIDIZED BED SPRAY GRANULATION

The granulator consists of a granulation chamber. Here,
particles are fluidized through an air stream with predefined
conditions (pressure, temperature and humidity). Then a
liquid is injected, which settles on the particles. Due to the
increased temperature and low humidity of the supplied air
the liquid fraction is evaporated. It remains a new solid layer
on the particle surface resulting in a particle size increase.
The growth of the particle ensemble can be described by

G =
2ṁe

πµ2
(1)

where ṁe is the effective solid mass injected into the process
chamber and µ2 is the second moment of the particle size
distribution µ2 =

�

∞

0
L2ndL resembling the overall surface

of the particle bed [1].
In order to allow a continuous operation of the fluidized bed
spray granulation, particles are continuously removed and
sieved. Here, three fractions are generated product particles,
oversized particles, i.e. particles being bigger than a certain
size, and fine particle, i.e. particles being smaller than the
product specification. The production fraction is removed
from the process, the fines fraction is directly fed back and
the oversize fraction is fed to a mill, where it is grinded. The
milled particles are then fed back as new nuclei to the process
chamber. The overall process scheme is depicted in Fig. 1.

Fig. 1. Process scheme

From the granulation process particles are continuously
redrawn and feed to two sieves resulting in three particle

594978-1-5386-2402-9/17/$31.00 ©2017 IEEE 



fractions product ṅp, fines ṅf and oversized ṅo.

ṅp = T2(L)(1− T1(L))ṅout (2)

ṅf = (1− T2(L))(1− T1(L))ṅout (3)

ṅo = T1(L)ṅout (4)

Here, T1(L) and T2(L) are the associated screening func-
tions depicted in Fig. 2.

T1,2(L;µ,σ) =

� L

0
exp

�

−(L̂−µ)2

4σ2

�

dL̂

�

∞

0
exp

�

−(L̂−µ)2

4σ2

�

dL̂
(5)

Fig. 2. Screening functions T1 (gray) and T2 (black dotted)

The oversized fraction is first grinded by the mill and
then fed back as ṅm to the first granulation chamber together
with the fines fraction ṅf . The particle size distribution
generated by the mill is typically tri-modal (Fig. 3), where
the proportion of each distribution depends on the specific
mill power Pmill.

Fig. 3. Particle size distribution of milled particles

It is assumed that the mill is mass conserving, i.e. the third
moment of the oversize fraction is equal to the third moment of

the particle distribution generated by the mill. The mill model
is hence given by

ṅm =
3

�

i=1

aiϕi(L)

�

∞

0

L3ṅodL (6)

where ai are the weights of the distributions ϕi(L) and
�

∞

0
L3ṅodL is the third moment of the oversize fraction [8].

In can be assumed that milling particles conserves the overall
mass. Thus, the third moment of the oversize fraction ṅo and
the milled fraction ṅm have to be equal,

�

∞

0

L3ṅmdL =

�

∞

0

L3ṅodL (7)

resulting in an additional constraint on the distribution weights.

�

∞

0

L3
3

�

i=1

aiϕi(L)dL = 1 (8)

Resolving this constraint by calculating the appropriate coef-
ficient a3

a3 =
1−

�

∞

0
L3

�2
i=1 aiϕi(L)dL

�

∞

0
L3ϕ3(L)dL

(9)

yields an unconstrained mill model with two independent
parameters a1 and a2.

ṅm =

�

2
�

i=1

ai

�

ϕi(L)−

�

∞

0
L3ϕi(L)dL

�

∞

0
L3ϕ3(L)dL

ϕ3(L)

�

+ . . .

. . .+
ϕ3(L)

�

∞

0
L3ϕ3(L)dL

�

�

∞

0

L3ṅodL (10)

=

�

2
�

i=1

aiφi(L) + ϕ̄3(L)

�

�

∞

0

L3ṅodL (11)

where

φi(L) = ϕi(L)−

�

∞

0
L3ϕi(L)dL

�

∞

0
L3ϕ3(L)dL

ϕ3(L), (12)

ϕ̄3(L) =
ϕ3(L)

�

∞

0
L3ϕ3(L)dL

. (13)

From a practical point of view, the knowledge of the weights ai
of each distribution is of utmost importance. However, offline
identification using individual experiments is very expensive
and raises many uncertainties. This is due to the fact that
the behavior of the milling processes varies not only with the
supplied power, but also with the supplied solid particle flow,
its particle size, porosity and moisture distribution. Therefore,
in this contribution it will be assumed that the weights ai of
each distribution are unknown and should thus be identified
during process operation.

Assuming ideal mass control the drain K is calculated such
that the first time derivative of µ3 becomes zero implying a
constant bed mass

µ̇3 =

�

∞

0

L3 ∂n

∂t
dL = 0 (14)

=

�

∞

0

L3

�

−G
∂n

∂L
− ṅo − ṅp + ṅm

�

dL. (15)
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Because the mill is assumed to be mass conserving the third
moments of the oversize flux and mill flux are equal resulting
in

K =

�

∞

0
L3

�

−G ∂n
∂L

�

dL
�

∞

0
L3T2(1− T1)ndL

. (16)

To describe the process, the following population balance
model, consisting of the particle fluxes due to product particle
withdrawal KT1(1−T2)n, particle growth and the reflux from
the mill, can be used.

∂n

∂t
= −G

∂n

∂L
−KT1(1− T2)n−KT1T2n+ . . .

. . .+

�

2
�

i=1

aiφi + ϕ̄3

�

�

∞

0

L3ṅodL (17)

It is well known [2; 3] that the given process configuration
becomes unstable for sufficiently high mill power and associate
small mill grade. The loss of stability is connected with the
occurrence of a stable limit cycle depicted in 4. From a

Fig. 4. Limit cycle of the particle size distribution

practical point of view, the derivation of estimates for the
stability boundaries or the design of a stabilizing control is
of utmost importance for a reliable process operation. Both
can be achieved on the basis of the given model assuming
known parameters. Whereas the derivation of the sieving
function or growth rate can be done on the basis of typically
simple experiments on the single apparatus, identification of
the mill parameters is challenging. This is due to the fact,
that they depend not only on the mill type but also on the
supplied mill power, material flow rate and its size distribution,
structure and moisture content. Hence, an identification using
synthetic offline experiments is in general unreliable. In this
contribution, online identification, i.e. parameter estimation
during process operation, will be studied as a solution to the
aforementioned problem.

III. ONLINE PARAMETER IDENTIFICATION

In order to derive an adaptation algorithm for an affine
parameterized model in this contribution a Lyapunov-based

parameter estimation approach (see e.g. [9] and references
therein) will be used. Here, the system with the unknown
parameters is augmented by a modified plant model resembling
the plant structure and incorporating an additional observer
term. For the given fluidized bed spray granulation process
with unknown mill parameters the modified plant model is
given by

∂n̂

∂t
= −G

∂n

∂L
−KT1(1− T2)n−KT1T2n+ . . .

. . .+

�

2
�

i=1

âiφi + ϕ̄3

�

�

∞

0

L3ṅodL− . . .

−c(n̂− n) (18)

where âi are the estimated mill parameters and n̂ is the particle
size distribution estimated from the modified plant model. The
parameter c is an additional tuning parameter. The associated
estimation errors are defined as

e = n̂− n, (19)

ãi = âi − ai. (20)

From a practical point of view it is important to note that
particle size distribution can be directly measured using for
example a Parsum probe. In order to derive the adaptation

laws ˙̂ai for the parameter estimates âi the following candidate
Lyapunov functional is chosen

V =
1

2

�

∞

0

e2dL+
2

�

i=1

1

2γi
ã2i (21)

where γi are positive real constants. It should be mentioned
that in case of convergence of the modified plant particle size
distribution n̂ towards the real particle size distribution n in
sense of the L2-norm and for vanishing parameter estimation
errors the Lyapunov functional V itself vanishes. Applying
standard Lyapunov stability theory, stability can be achieved
in case that the first time derivative of the Lyapunov functional
V is negative semidefinite along the trajectory of (17).

V̇ =

�

∞

0

e

�

2
�

i=1

ãiφi(L)

�

∞

0

L3ṅodL− ce

�

dL . . .

. . .+
2

�

i=1

1

γi
ãi ˙̂ai (22)

Choosing the adaptation laws ˙̂ai as follows

˙̂ai = −γi

�

∞

0

eφi(L)dL

�

∞

0

L3ṅpdL (23)

results in the desired negative semi definite of the time
derivative of V

V̇ = −c

�

∞

0

e2dL. (24)

The overall parameter estimation scheme is shown in Fig. 5
and consists of the proposed modified plant model (18) and the
Lyapunov based adaptation laws (23). Here, u is an external
disturbance or control input, which should be chosen such
that an appropriate parameter update is guaranteed (persistent
excitation).
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Fig. 5. Parameter identification scheme

It should be mentioned, that the derived observer model and
adaptation law require require both an online measurement of
the particle size distribution n(t, L), which can be realized by
applying specific measurement devices, e.g. Parsum probe or
FBRM.

IV. RESULTS

For numerical simulation the model equations are dis-
cretized along the property coordinate applying the finite
volume method (1st order upwind flux discretization) with 200
grid points. For simplicity constant control inputs and fixed
system parameters in the region of instability, i.e. unstable
steady state particle size distribution, are chosen. In this case,
the granulation process exhibits self-sustained oscillations,
i.e. possesses a stable limit cycle. Due to the particle size
distribution measurement, the initial uncertainty is only in the
mill parameters a1 and a2. Here, an error of 60 % in each
parameter has been assumed resulting in an considerable devi-
ation between assumed and real milled particle size distribution
(Fig. 6).

Fig. 6. Assumed (black dotted) and real (gray) milled particle size distribution

As can be seen in Fig. 7 and 8 the unknown system
parameters ai can be identified in within approximately one
hour, which is reasonably taking into account the slow process
dynamics. During the parameter estimation the state of the
modified plant model n̂ (Fig. 11) shows only a relative small

Fig. 7. Convergence of the mill parameters a1 estimate â1 (black dotted)

Fig. 8. Convergence of the mill parameters a2 estimate â2 (black dotted)

error in sense of the L2 -norm (Fig. 9). From a practical
point of view, increasing the parameter c results in a faster
convergence of the observer model state towards the plant
state, which is desired for attenuation of measurement noise.
On the other hand, as the adaptation laws depend on the
misfit between the observer model state and the plant state,
an increasing parameter c results in a shorter adaptation phase
and may thus prevent parameter convergence.

V. CONCLUSION

In this contribution online parameter estimation of fluidized
bed spray granulation with external sieve-mill cycle has been
studied. It has been shown that the proposed adaptation laws
allow a sufficiently fast estimation of the unknown parameters.
Future work will be concerned with robustness with respect to
measurement noise, real plant experiments and the application
of the proposed adaptation laws in a control scheme.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding by the German
Research Foundation (DFG) as part of the priority program
Dyn-Sim-FP (DFG-SPP1679).

597



Fig. 9. L2-norm of the error between plant and modified plant model state

Fig. 10. Particle size distribution n of the plant

Fig. 11. Particle size distribution n̂ of the modified plant model
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Universitätsplatz 2, Magdeburg 39106, Germany

Email: ievgen.golovin@ovgu.de

Stefan Palis

Otto-von-Guericke University Magdeburg
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Abstract—In this article control-based reduction of gantry
crane elastic swinging in the trolley travel direction is concerned.
As acceleration forces of the trolley are often the reason of
these vibrations, they can be utilized in an appropriate damping
strategy. For an elastic crane a dynamic model is derived applying
the finite element method (FEM). This approach results in a
high order state-space model, which should be reduced for the
controller design procedure. In order to design a controller, which
can be applied for simultaneous damping of elastic vibrations of
crane construction and payload sway with varying rope length a
robust control approach has been applied.

I. INTRODUCTION

Nowadays, rapid transportation and well-designed logis-
tics play an important role in the development of trade and
industry. Time reduction for these operations requires utilizing
automated and efficient equipment, including cranes. At port
terminals for example gantry cranes are widely used for
loading and unloading of containers. Due to continuous weight
reduction and increasing crane sizes, structure stiffness is
decreasing and may lead to an increased influence of elastic
vibrations. Often these vibrations are consequences of dynamic
coupling between crane trolley, load and mechanical structure
appearing due to trolley acceleration forces [1].
Low frequency vibrations in travel direction of trolley are
particularly negative because of their large displacements and
undamped behaviour. They produce additional mechanical
stresses, which lead to faster material fatigue and hence reduce
operating life of the crane. Moreover, these vibrations have a
disturbing impact on the crane operator extending the time
needed for the positioning process.
Currently three approaches exist for vibration reduction. The
first one is the mechanical optimization of the gantry structure
[2; 3]. Here, crane structure stiffness is enhanced by increasing
supporting legs thickness or by stiffening of portal frames.
The second approach introduces an additional weight as a
counter-mass acting as a passive damper [4]. The obtained
damping is typicaly small whereas the investment costs are
considerable. The third concept is utilization of an actuated
counterweight, where the mass movement compensates natural
vibrations of the structure. This method is more effective but
it requires an additional linear drive system, which takes a lot
of supplementary costs [4].
In this contribution a new active damping approach without
an additional electric drive system is presented. Here, the
reduction of elastic crane vibrations as well as the anti-sway
control is provided only by trolley acceleration forces. For
this purpose, an extension of the motion control system of

trolley with payload is necessary. In order to design a control
law, which can be easily implemented for operation with
different rope length, the application of robust control methods
is proposed.
In section 2 the mathematical model of an elastic gantry
crane with the electric drive system and the model reduction
procedure for large-scale crane structure are introduced. Model
errors and uncertainties as well as control design are discussed
in section 3. Section 4 concludes the contribution with simula-
tion results from the nonlinear high-order gantry crane model.

II. MATHEMATICAL MODELING

A. Elastic crane model

Mathematical modeling of mechanical structures in general
and large cranes in particular is a non-trivial task, and utilizing
analytical methods is often restricted to simple geometries,
loads and boundary conditions. For simulations of more com-
plex mechanical models numerical methods are usually used.
In this contribution the commercial finite element package
COMSOL Multiphysics has been used to derive an elastic
crane model. After spatial discretization the equations of
motion with N degrees of freedom (DOF) can be represented
in the general form:

MgḦ + CgḢ +KgH = Fg, (1)

where Mg , Cg and Kg are global mass, damping and stiffness

matrices, Ḧ , Ḣ and H are vectors of acceleration, velocity
and displacement at all nodes in the structure domain and Fg

is the vector of all nodal forces.
Material induced damping is represented by Rayleigh damp-
ing. Here, the damping matrix Cg is expressed as a linear
combination of the mass Mg and stiffness Kg matrices:

Cg = αMg + βKg, (2)

where α is the mass-proportional coefficient and β is the
stiffness-proportional coefficient.
Typically, gantry crane structures are very complicated con-
sisting of multiple components. To reduce weight and to
maintain a relatively high stiffness, elements with specially
shaped profiles are usually used in practice. Modeling of these
structures as solids requires a lot of computational time and
resources. Therefore, it is good practice to simplify parts of the
model geometry. Fig. 1 shows the model of the gantry crane in
two dimensions. It consists of solid steel beams, which mass
corresponds to the mass of the real elements of the crane.
The lower parts of the crane legs are fixed. The excitation of
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Fig. 1. Gantry crane FEM Model

structural vibrations due to trolley motion is reflected by an
external point force Ft. The damping ratio ξ = 0.005 has been
obtained from practical measurements of real gantry crane
swinging. The crane structure has been discretized applying an
unstructured mesh with triangular elements resulting in 3458
DOF.
Considering that the external force Ft is an input to the crane
plant u(t) = Ft and the crane point M is the displacement
output of interest y(t) = dM , the FEM-crane model can be
represented for small variations as a linear high order state-
space model

ẋ(t) = Ax(t) +Bu(t), (3)

y(t) = Cx(t) +Du(t), (4)

where A, B, C and D are constant matrices.

B. Model order reduction

The order of the state-space model derived by the finite
element model is approximately 7000. In order to allow the
design of a controller with low order an additional model
reduction should be performed. For the model reduction of
gantry crane dynamics the balanced truncation approximation
has been used. This method is based on the balanced realiza-
tion of the system model, i.e. the asymptotically stable minimal
realization where the controllability Gramian matrix Wc and
observability Gramian matrix Wo are equal and diagonal [5; 6].

Wc =

te
�

0

eAtBBT eA
T tdt

=

te
�

0

eA
T tCTCeAtdt = Wo = Σ. (5)

Here, the diagonal matrix Σ fulfils the following Lyapunov
equations:

AΣ+ ΣAT +BBT = 0, (6)

ΣA+AT
Σ+ CTC = 0. (7)

The elements of Σ are called the Hankel singular values σi

and are order by size, i.e. σi ≥ σi+1.

Σ =







σ1 0 0

0
. . . 0

0 0 σn






,σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. (8)

States associated with the big Hankel singular values have by
construction a dominant influence on the input-output behavior
and should thus be conserved. Let the balanced realization of
the high order state-space model of elastic crane (3), (4) be
partitioned as

A =

�

A11 A12

A21 A22

�

, B =

�

B1

B2

�

,

C = [C1 C2] ,Σ =

�

Σ1 0
0 Σ2

�

, (9)

where Σ1 = diag(σ1,σ2, . . . ,σk) are the first k dominant
Hankel singular values and Σ2 = diag(σk+1,σk+2, . . . ,σn).
Removing the system part corresponding to the Σ2, will result
in an approximation

ẋ(t) = A11x(t) +B1u(t), (10)

y(t) = C1x(t) +D1u(t), (11)

with the following equivalent transfer function

G1(s) = C1(sI −A11)
−1B1 +D1. (12)

The error introduced by the described model reduction proce-
dure can be overestimated by

�G(s)−G1(s)�∞ ≤ 2
n
�

i=k+1

σi. (13)

An appropriate order of the reduced model can be easily
assigned, e.g. by examining the Hankel singular values dia-
gram depicted in Fig. 2. As can be seen the first two states
have a significant contribution to the overall model behavior
and should hence be conserved. Therefore, a second order
model G1(s) gives a reasonable approximation of elastic crane
dynamics.

Fig. 2. Hankel singular values of the elastic crane model

C. Trolley-payload model

Fig. 3 represents motion of the trolley-payload system,
where mt is the trolley mass, mp is the payload mass, mr

is the rope mass, Fx and Fl are the forces that are applied
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to the trolley, x(t) is the trolley displacement, l(t) is the rope
length and ϕ(t) is the sway angle. The equations of motion
can be derived using Euler-Lagrange equation

d

dt

�

∂L

∂q̇i

�

−
∂L

∂qi
= Qi, i = 1 . . . N, (14)

where L(q, q̇, t) = T − V is the Lagrange function (T is the
kinetic energy, V is the potential energy), qi are the generalized
coordinates and Qi are the generalized forces [7].

Fig. 3. Trolley-payload system

Under the assumptions that trolley and payload are connected
by the massless rigid rope and neglecting the elongation of the
rope, the vector of generalized coordinates yields as q(t) =
[x(t) ϕ(t) l(t)]T . The coordinate vector of payload can be
given as follows:

sp = [x+ l sinϕ, −l cosϕ] . (15)

Then, equations of kinetic and potential energy can be repre-
sented as:

T =
1

2
(mt +mp)ẋ

2 +
1

2
(mp +mr)l̇

2 +
1

2
mp(lϕ̇)

2

+ mpẋ(l cosϕϕ̇+ sinϕl̇) +
1

2
Iϕ̇2, (16)

V = −mpgl cosϕ, (17)

where I is the moment of inertia of the load. Finally, the
equations of motion of trolley-payload system are derived for
the vector of generalized coordinates q(t) as follows:

Fx = moẍ+mp sinϕl̈ +mpl cosϕϕ̈

+2mp cosϕl̇ϕ̇−mpl sinϕϕ̇
2, (18)

0 = mpl cosϕẍ+ (mpl
2 + I)ϕ̈+ 2mpll̇ϕ̇

+mLgl sinϕ, (19)

Fl = mp sinϕẍ+ (mr +mp)l̈ −mplϕ̇
2

−mpg cosϕ, (20)

where mo = mt+mp is the total mass of trolley and payload.
Considering the constant rope length the nonlinear equations
of motion (18, 19, 20) can be linearised at the operating point
of gantry crane and represented in state-space form for the
state vector x = [x ẋ ϕ ϕ̇]T , the system input u = Fx and

the system output vector y = [x ẋ ϕ]T as follows:







ẋ
ẍ
ϕ̇
ϕ̈






=









0 1 0 0
0 0

mpg
mt

0
0 0 0 1
0 0 −mog

mtl
0















x
ẋ
ϕ
ϕ̇






+









0
1
mt

0
− 1

mtl









u, (21)

y =

�

1 0 0 0
0 1 0 0
0 0 1 0

�







x
ẋ
ϕ
ϕ̇






+

�

0
0
0

�

u. (22)

D. Augmented trolley-payload model

Currently, most crane systems are equipped with an electric
drive system, which typically provides the velocity control of
trolley travelling, in general cascade control with PI controllers
[8]. Augmenting the trolley-payload model (21, 22) by the
transfer function of the velocity controller

u(s) = kp(sxref − sx) +
kp
Ti

(xref − x) (23)

the new state vector becomes x = [x ẋ ϕ ϕ̇ xsoll]
T .

It should be mentioned that the control input becomes the
reference velocity u = ẋref . With the system output vector
y = [x ẋ ϕ Fx]

T the system matrices are:

A2 =













0 1 0 0 0

−
kp

mtTi
−

kp

mt

mpg
mt

0
kp

mtTi

0 0 0 1 0
kp

mtlTi

kp

mtl
−mog

mtl
0 −

kp

mtlTi

0 0 0 0 0













, (24)

B2 =
�

0
kp

mt
0 −

kp

mtl
1
�T

, (25)

C2 =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−
kp

Ti
−kp 0 0

kp

Ti









, (26)

D2 = [0 0 0 kp]
T
. (27)

E. Overall system plant

The overall system plant consists of a cascade intercon-
nection of the augmented trolley-payload subsystem G2 =
(A2, B2, C2, D2) (24, 25, 26, 27) via force output Fx and the
low order elastic crane subsystem G1 = (A1, B1, C1, D1) (10,
11).

�

ẋ1

ẋ2

�

=

�

A1 0
B2C1 A2

� �

x1

x2

�

+

�

B1

B2D1

�

v, (28)

y = [C1 C2]

�

x1

x2

�

+Dv. (29)

III. CRANE CONTROL

A. Uncertainty models

The aim of this paper is the design of a control law for
simultaneous damping of the payload swinging with varying
rope length and elastic crane vibrations. It is assumed that
although the equations of motion are the same, parameters of
the rope length can vary during crane operation. In this case
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using parametric uncertainties is reasonable. The linear system
eq. (28), (29) is replaced then by a family of systems

ẋ(t) = A(q)x(t) +B(q)u(t), (30)

y(t) = C(q)x(t) +D(q)u(t), (31)

where matrices A, B, C, D depend on the parameters q,
which are time invariant and belong to a feasible set of
uncertainty Q = {q ∈ R : qmin ≤ q ≤ qmax}.
Furthermore, using the proposed model order approximation
techniques additional errors are introduced, which should be
taken into account.

1) Coprime factor uncertainty: From a robust control de-
sign point of view, the studied set of cranes can be embedded
into a nominal plant Gn(s) and a set of bounded uncertainties
[5; 9; 10]. These uncertainties have to be stable and pos-
sess a finite H∞ -norm. For undamped and weakly damped
mechanical structures utilizing a coprime factor description
of the present model uncertainties should be preferred. The
normalized coprime factorization of the nominal system Gn(s)
can be expressed as

Gn(s) =
Nn(s)

Mn(s)
, (32)

where Mn(s), Nn(s) ∈ H∞ are stable coprime transfer
functions satisfying the Bezout identity

Mn(s)Mn(−s) +Nn(s)Nn(−s) = 1. (33)

Then the set of uncertain systems G∆(s) can be characterized
by the nominal system Gn(s) and stable coprime factor
uncertainties ∆M (s) and ∆N (s)

G∆(s) =
Nn(s) +∆N (s)

Mn(s) +∆M (s)
. (34)

However, using the coprime factor description does not give
a unique realization of ∆M (s) and ∆N (s). Thus, selection
of a specific realization is an additional degree of freedom.
In order to reduce conservatism a coprime factor description
with a minimal H∞ - norm for [∆M (s)∆N (s)] should be
preferred leading to the introduction of the gap metric.

2) The gap metric: The gap metric δg between two linear
systems Gn(s) and G∆(s) can be calculated according to

[11; 12] as a maximum of the directed gaps
−→
δg (Gn, G∆) and

−→
δg (G∆, Gn)

δg(Gn, G∆) = max{
−→
δg (Gn, G∆),

−→
δg (G∆, Gn)}, (35)

where
−→
δg (Gn, G∆) := inf

[∆M∆N ]∈H∞

{�[∆M∆N ]�∞ : G∆}. (36)

The gap metric may possess values between zero and one.
Here, two systems Gn(s) and G∆(s) are close if their gap
metric is close to zero. As will be shown later, the maximum
of the gap metric with respect to a nominal plant for a given set
of perturbed plants can be used as a measure for the required
robustness margin.
As a metric the gap metric satisfies the triangular inequality

δ(G1, G3) ≤ δ(G1, G2) + δ(G2, G3), (37)

which can be used to derived appropriate estimates in the
presence of multiple error sources. For example, having a low
order approximation of the uncertain system G1 = G∆, a low
order approximation of the original nominal system G2 = Gn

and a high order representation of the original nominal system
G3 = G, the triangular inequality can be used to derive an
estimate for the distance between the low order uncertain
system G∆ and the original nominal system G in the sense
of the gap metric δ(Gn, G). Therefore, additional errors due
to model order reduction or numerical discretization may be
easily taken into account.

3) Gantry crane model uncertainties and required robust-
ness margin: Assuming that the rope length is not exactly
known the set of crane models ΠL for different l can be
derived from eq. (28), (29).

Fig. 4. Gap metric sequence for set ΠL

In Fig. 4 the gap metric for the set of normalized gantry crane
models ΠL is shown. As can be seen the maximum of the gap
metric for the concerned range of rope length l is

δg(G∆, Gn) = 0.31. (38)

The order reduction error for the elastic crane model in sense
of the gap metric can be calculated as

δg(Gn, G) = 0.03. (39)

B. Robust control design

In order to reduce the elastic vibrations in the trolley travel
direction and swaying of the payload a control law is obtained
using H∞ - loopshaping.

1) H∞ - loopshaping control: H∞ - loopshaping design
is based on the combination of H∞ - robust stabilization and
classical loopshaping ideas and guarantees both performance
and fulfilment of given robustness requirements [13; 14]. The
design procedure is divided into two steps: augmentation by
pre-compensator in order to shape the open loop singular
values and H∞ - stabilization of the shaped plant.
In order to reflect closed-loop performance requirements the
open-loop singular values are shaped applying the weighting
function W (s) as depicted in Fig. 5

Gs(s) = G(s)W (s). (40)
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Fig. 5. The loopshaping

Given the shaped open-loop plant in its normalized coprime
factor representation Gs(s) = N(s)/M(s). The controller K∞

guaranteeing a maximum robustness margin with respect to the
normalized coprime factor uncertainties can be calculated from
the following H∞ - control problem

�

�

�

�

�

K∞

1

�

1

(1 +GsK∞)M

�

�

�

�

∞

≤ �−1. (41)

Here, the maximum achievable robustness margin �max can be
calculated

�max = (1 + ρ(XZ))−1/2, (42)

where X and Z are the positive definite solutions of two
algebraic Riccati equations

0 = (A−BR−1DC)TX +X(A−BR−1DC)

−XBTR−1BX + CR−1CT , (43)

0 = (A−BR−1DC)Z + Z(A−BR−1DC)T

− ZCTR−1CZ +BR−1BT , (44)

with R = 1 +D2.
Using the robustly stabilizing controller K∞ for the weighted
plant Gs(s) the overall controller K can be expressed as

K(s) = K∞(s)W (s). (45)

Implementation of the H∞ - loopshaping methodology for the
shaped plant Gs(s) with robust stability margin �, results in
a controller K, which stabilizes all plants G∆(s) with gap
metric δg(Gs, G∆) < �.

C. Results

In order to provide simultaneous damping of payload sway
and elastic vibrations two controllers K1 and K2 have been
designed.
Two compensators W1(s) and W2(s) realizing the desired
open loop shapes for these systems have been chosen as
follows

W1(s) =
20

0.05s+ 1
, (46)

W2(s) =
100

0.01s+ 1
. (47)

For the shaped crane plants Gs,1(s) = G(s)W1(s) and
Gs,2(s) = G(s)W2(s) robust controllers K∞,1 and K∞,2 have
been derived with stability margins �1 = 0.67 and �2 = 0.61
respectively. As the margin associated with the damping of

load swaying is greater than the maximum of the gap metric
δg,max = 0.31 and the margin associated with the damping of
elastic vibrations is much greater than order reduction error,
the achieved controllers guarantee robust stability for the set
of uncertain crane models.
Simulation results are depicted in Fig. 6. Here, the designed
robust controllers K1 and K2 has been applied to the nonlinear
crane system eq. (18), (19), (20) and to the high order elastic
crane model (3, 4). As can be seen in Fig. 6 (c) and (d), the
designed H∞ controllers provide simultaneously damping of
the elastic structure vibrations and the payload sway by varying
the rope length.

IV. CONCLUSION

A new active damping approach for gantry crane vibrations
using only trolley acceleration forces has been presented and
verified on a nonlinear gantry crane model. For designing
a control law, that guarantees the robust stability and the
performance specifications for gantry crane with different
rope length, H∞ - loopshaping synthesis has been applied. In
order to derive a mathematical description of elastic gantry
crane dynamics FEM has been utilized. The derived high
order models have been reduced using balanced truncation
approximation. In order to represent the gantry crane with
different rope length a normalized coprime factor description
has been considered for the parametric uncertainties. Two
controllers for anti-sway control and vibration damping
control have been designed and applied to nonlinear crane
model.
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Abstract: This contribution is concerned with a relatively new approach to particulate process
control. The main idea is to use of a generalized distance measure, the discrepancy, in order
to describe deviations from a desired particle property distribution. Applying, the associated
stability theory, i.e. stability theory with respect to two discrepancies, a stabilizing control
law can be derived. One of the main advantages of the proposed discrepancy based control
method is that no model reduction is required. In this contribution an adaptive extension of
the discrepancy based control is proposed in order to control a crystallization process in the
presence of parameter uncertainties.

1. INTRODUCTION

Control of particulate processes is an active field of re-
search [1, 3, 9, 10]. From a control theory point of view
particulate processes are often modelled as distributed
parameter systems and therefore of great interest. The
population balance equation describing the dynamics of
particle property distribution is, depending on the specific
process, a nonlinear partial integro-differential equation
with sinks and sources in the domain. It has been recently
applied by the authors to the problem of stabilization of
continuous cystallization processes [3] and fluidized bed
spray granulation with internal [5, 6] and external product
classification [4, 8]. The paper is organized as follows: in
section 2 the main theoretic concepts of stability with
respect to two discrepancies are stated. In section 3 the
model system, a crystallization process, is introduced. In
section 4 the adaptive discrepancy based control method
is applied in order to derive a stabilizing control law for
the model system.

2. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

The concept of stability with respect to two discrepancies
has been introduced in [11]. The main idea is to describe
the stability of a process by a generalized distance mea-
sure, which does not have to be a norm. For convenience
the most important facts on stability with respect to two
discrepancies as given e.g. in [11, 12] will be stated. Here,
the process ϕ(., t) is a solution of the distributed parameter
system and ϕ0 = 0 an equilibrium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional ρ = ρ[ϕ (., t) , t]
with the following properties

(1) ρ(ϕ, t) � 0
(2) ρ(0, t) = 0
(3) for an arbitrary process ϕ = ϕ(., t) the discrepancy

ρ(ϕ(., t), t) is continuous with respect to t.

(4) introducing a second discrepancy ρ0(ϕ) with ρ0(ϕ) �
0 and ρ0(0) = 0. Than the discrepancy ρ(ϕ(., t), t) is
continuous at time t = t0 with respect to ρ0 at ρ0 = 0,
if for every ε > 0 and t0 > 0 there exists a δ(ε, t0) > 0,
such that from ρ0 � δ(ε, t0) follows ρ < ε.

Obviously, a discrepancy has not all properties of a metric,
e.g. symmetry d(x, y) = d(y, x) or triangular inequality
d(x, y) ≤ d(x, z) + d(z, y) and more importantly does not
have to satisfy the important property of definiteness, i.e.
a vanishing discrepancy ρ(ϕ, t) = 0 does not imply ϕ = 0.

Definition 2. Stability with respect to two discrepancies ρ
and ρ0

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies ρ and ρ0 for all t ≥ t0
if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0 ,
such that for every process ϕ(., t) with ρ0 < δ(ε, t0) follows
ρ < ε for all t ≥ t0. If in addition limt→∞ ρ = 0, than the
equilibrium ϕ0 is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies ρ and
ρ0.

In order to establish a relationship between stability with
respect to two discrepancies and the existence of a Lya-
punov functional V the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy ρ

The functional V = V [ϕ, t] is called positive with respect
to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all ϕ
with ρ(ϕ, t) < ∞.

Definition 4. Positive definiteness with respect to a dis-
crepancy ρ

The functional V = V [ϕ, t] is positive definite with respect
to a discrepancy ρ, if V � 0 and V [0, t] = 0 for all ϕ with
ρ(ϕ, t) < ∞ und for every ε > 0 there exists a δ = δ(ε) > 0,
such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.
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The following two theorems state the conditions for a func-
tion V guaranteeing (asymptotical) stability with respect
to two discrepancies.

Theorem 5. [12] The process ϕ with the equilibrium ϕ0 =
0 is stable with respect to the two discrepancies ρ and ρ0
if and only if there exists a functional V = V [ϕ, t] positive
definite with respect to the discrepancy ρ, continuous at
time t = t0 with respect to ρ0 at ρ0 = 0 and not increasing
along the process ϕ, i.e. V̇ ≤ 0.

Theorem 6. [12] The process ϕ with the equilibrium ϕ0 =
0 is asymptotically stable with respect to the two discrep-
ancies ρ and ρ0 if and only if there exists a functional
V = V [ϕ, t] positive definite with respect to the discrep-
ancy ρ, continuous at time t = t0 with respect to ρ0 at
ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0,
with lim

t→∞

V = 0.

3. EXAMPLE - CONTINUOUS CRYSTALLIZATION

As an example a continuous crystallization process with
fines dissolution depicted in Fig. 1 will be studied. This
process has be investigated e.g. in [2]. The main assump-
tions are:

• isothermal operation,
• constant volume,
• ideal mixing,
• unclassified withdrawal,
• no attrition,
• no breakage.

Fig. 1. Continuous crystallization

In addition, it is assumed that the concentration c0 can be
influenced by an additional dilution. The fines withdraw
ṅFein is realized by a controllable pump.
The solid phase can be described using a population
balance model for the crystal size distribution, whereas
the liquid phase can be model by a mass balance. From
a mathematical point of view the studied system consists
of a nonlinear partial integro-differential equation for the
crystal size distribution coupled to an ordinary differential
equation for the concentration.

In order to describe the dynamics of the crystal size
distribution n(t, L) with the characteristic crystal length L
the following population balance model has been proposed.

∂n

∂t
= −

∂G(c)n

∂L
− ṅpr − ṅfines + ṅnuc. (1)

Here, G(c) is the growth rate depending on the concen-
tration and ṅpr, ṅfines and ṅnuc are the associate rates
for product withdrawal, fines dissolution and nucleation.
It is assumed that the crystal growth solely depends on
the concentration and is proportional with the supersatu-
ration:

G(c) = k1 (c− cs) . (2)

The product withdrawal does not depend on the specific
crystal size and can hence be represented as

ṅPr = Kn (3)

where K is the rate of withdrawal. As crystals for the fines
dissolution are withdrawn from the settling zone it can be
assumed that only small crystals of a maximal length LF

are effected.

ṅFein = KF (1− σ(L− LF ))n = KFnFn (4)

Here,KF is the withdrawal rate and σ is the Heaviside step
function. For the nucleation it is assumed that crystals of
size L = 0 are generated in dependence of the supersatu-
ration.

ṅnuc =

(

1−
4

3
πµ3

)

k2e

(

−
k3

( c

cs
−1)

2

)

, (5)

Here, µ3 is the third moment of the crystal size distribu-
tion, i.e.

µ3 =

∫

∞

0

L3ndL. (6)

Hence, the population balance model for the solid phase
is described as follows:

∂n

∂t
=−

∂G(c)n

∂L
−Kn−KFnFn

+δ (0)

(

1−
4

3
πµ3

)

k2e

(

−
k3

( c

cs
−1)

2

)

. (7)

The equation for the liquid phase, i.e. the ordinary differ-
ential equation for the concentration, is given as follows.

dc

dt
=

(c0 − ̺)K
(

1− 4

3
πµ3

) +K (̺− c)−
(̺− c)

(

1− 4

3
πµ3

)

4

3
π
dµ3

dt
(8)

LF 1mm

̺ 1.7 103 kg

m3

cs 980.2 kg

m3

K 1
k1 5.065 10−2

k2 7.958
k3 1.217 10−3

ninit 7 10−3 exp(−4L)

c0 1002 kg

m3

KF 0.07 1

h

Table 1. Plant parameters

It is well known that the given process is unstable in a
certain range of fines dissolution rates. In order to stabilize
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this process in the presence of uncertainties in the param-
eters k1 and k2 the control approach presented in [] will be
extended by an adaptation mechanism guaranteeing closed
loop stability.

4. ADAPTIVE DISCREPANCY BASED CONTROL

As has been shown earlier [3] the zeroth moment of
the crystal size distribution µ0 and the concentration c
as the controlled variables and the dissolution rate KF

and the inlet concentration c0 as the control variable are
appropriate handles in order to stabilize the process. The
error therefore is

e =

(

µ0,d − µ0

cd − c

)

=

(

e1
e2

)

(9)

In order to derive a stabilizing controller the above pre-
sented stability concept is applied. Here, we choose the
discrepancy ρ as follows

ρ =
1

2

(

e21 + e22
)

. (10)

Obviously, the above requirements on a discrepancy are
met. In order to guarantee continuity at time t = t0 at
t0 = 0 the second discrepancy ρ0 is simply chosen as
follows

ρ0 = ρ(t = 0). (11)

According to Theorem 6 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies ρ and ρ0. For this purpose
the following candidate Lyapunov functional is introduced

V =
1

2

(∫

∞

0

L3 (nd − n) dL

)2

. (12)

In order to account for the unknown parameters k1 and k2
this candidate Lyapunov functional has to be augmented

V =
1

2
eT e+

1

2γ

(

k̃21 + k̃22

)

, (13)

where k̃1,2 = k̂1,2 − k1,2 are the estimation errors. This
approach, i.e. Lyapunov redesign, is well known for finite
dimensional systems. In order to achieve stability in the
sense described above the control variable has to be chosen
such that the time derivative of V along the system
trajectories (7) is negative definite for all times and vanishs
only for e = 0.

V̇ =−eT







∫

∞

0

−

∂G(c)n

∂L
−Kn−KFnFn+ k2nnucdL

(c0 − ̺)K
(

1−

4

3
πµ3

) +K (̺− c)−
(̺− c)

(

1−

4

3
πµ3

)

4

3
π
dµ3

dt







+
1

γ

(

k̃1
˙̂
k1 + k̃2

˙̂
k2

)

(14)

where

nnuc = δ (0)

(

1−
4

3
πµ3

)

exp






−

k3
(

c
cs

− 1
)2






(15)

In the case of known parameters k1 and k2, i.e. k̂1 = k1 and

k̂2 = k2, the following certainty equivalence control law
could be chosen in order to guarantee negative definitness
of the time derivative of the candidate Lyapunov func-
tional V and hence stability in the sense of Lyapunov with
respect to two discrepancies.

KF =
−c1e1 −

∫

∞

0
∂k̂1(c−cs)n

∂L
+Kn+ k̂2nnucdL

∫

∞

0
nFndL

(16)

c0 =

[

c2e2 +
̺K+(̺−c) 4

3
π

dµ3

dt

(1− 4

3
πµ3)

−K (̺− c)

]

K

(1− 4

3
πµ3)

(17)

Applying the certainty equivalence control law in 14 results
in

V̇ =−eT





c1e1 +

∫

∞

0

[

k̃1(c− cs)
∂n

∂L
− k̃2nnuc

]

dL

c2e2





+
1

γ

(

k̃1
˙̂
k1 + k̃2

˙̂
k2

)

. (18)

Choosing the following parameter adaption laws

˙̂
k1 = γe1

∫

∞

0

(c− cs)
∂n

∂L
dL (19)

˙̂
k2 =−γe1

∫

∞

0

nnucdL (20)

the remaining terms cancel. Resulting in

V̇ = −c1e
2
1 − c2e

2
2. (21)

Hence, the designed certainty equivalence control law in
combination with the adaption law (Fig. 2) guarantees
stability with respect to the two discrepancies ρ and ρ0.

However, convergence of the parameter estimates k̂1 and

k̂2 to the real values k1 and k2 is not guaranteed, which is
well known from similiar adaptive control approaches.

Fig. 2. Control scheme

In order to test the control law the process is started with
an initial crystal size distribution ninit in the region of
instability, i.e. KF = 0.07, with an parameter estimation
error of 15%. As can be seen in Fig. 3, 4, 6 and 5 the
adaptive version of the discrepancy based control succeeds
in stabilizing the chosen discrepancy and the desired
crystal size distribution.
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Fig. 3. Error in zeroth moment of the crystal size distri-
bution

Fig. 4. Error in concentration

Fig. 5. Crystal size distribution n

Fig. 6. Concentration c

5. CONCLUSION

In this contribution the adaptive discrepancy based con-
trol for particulate processes has been presented. As an

illustrative example a continuous crystallization process
with parametric uncertainty has been chosen. In order
to stabilize this process an adaptive nonlinear control
approach has been proposed. The main idea is to aug-
ment the Lyapunov functional in order to account for the

parameter estimation error k̃ and then derive a certainty
equivalence control law using stability with respect to two
discrepancies and an associate parameter adaptation law.
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Abstract: In this paper we consider two configurations of continuous crystallization processes
with significant nonlinear behaviour and a tendency to self-sustained nonlinear oscillations. The
control task is to stabilize the crystallization process in the presence of model uncertainties
and external disturbances. This is a challenging task as the model consists of a population
balance equation describing the disperse phase, i.e. a nonlinear partial differential equation,
being coupled to a mass balance equation describing the liquid phase. In this contribution
robust control methods are applied to solve this problem.

Keywords: Control of nonlinear systems, population balance models, robust control.

1. INTRODUCTION

Crystallization is a thermal separation process mostly used
in chemical industry that consists in transformation of
amorphous solid, liquid or gaseous substance into crystals
[Mersmann et al. (2011)]. Crystallization leads to an in-
crease of the concentration and purity of the final product.
In this paper continuous crystallization processes within
mixed-solution, mixed-product-removal (MSMPR) crys-
tallizers are considered. The focus here is on two impor-
tant crystallizer configurations: with the fines dissolution
loop and without. In order to improve performance of the
crystallization process feedback control should be applied.
Different control approaches have already been studied:
closed-loop control of crystal shape [Ma and Wang (2012)],
robust nonlinear control based on the method of moments
[Chiu and Christofides (1999)], infinite-dimensional H∞-
control [Vollmer and Raisch (2002)], [Motz et al. (2003)]
and discrepancy-based control [Palis and Kienle (2012)].
In this contribution a finite-dimensional robust control
approach will be studied resulting in easy implementable
low order controllers.

2. CRYSTALLIZATION PROCESS MODELING

In the crystallization processes studied in this contribution
crystals are generated and growing due to the oversatura-
tion of the liquid phase: the oversaturated solution is fed
to the reactor and cooled down there; such temperature
change decreases solvent saturation capacity and causes
crystal growth and formation of nuclei. Due to the presence
of different effects like seeding, nucleation, fracture, abra-
sion and growth, crystals have different sizes giving rise to
a crystal size distribution (CSD). In many cases the CSD
determines the quality of product since many physical
properties of the product are closely related to its CSD.
In addition, the effectiveness of downstream processing by
filtering or drying are strongly influenced by the CSD.

Hence, the dynamics of the crystallization process should
be studied considering the dynamics of the CSD.

2.1 Continuous crystallization process model derivation

To derive a model of the process the population balance
approach [Randolph and Larson (1988)] is applied. Fol-
lowing [Temmel et al. (2014)] a mathematical model was
derived with assumptions:

• the reactor content is ideally mixed;
• the solution volume inside the reactor is constant;
• the growth is size-independent;
• the system is diluted the reactor volume is not a
function of the substance and crystals mass;

• the mass of the solvent is much higher than the mass
of the substance;

• the occurance of breakage or agglomeration can be
neglected;

• nuclei have length zmin and negligible mass.

The crystal growth and dissolution factor G is assumed to
be derived in the following way:

G =

{

Kg exp(−EA,g/(RgasT ))(S − 1)g, if S > 1,

Kd(S − 1), otherwise,
(1)

where the supersaturation S is defined as follows:

S(t) =
ωl(t)

ωsat

. (2)

Here, the mass fraction at saturation ωsat was identified
experimentally and approximated by a polynomial:

ωsat =

4
∑

i=0

Ki(T − 273.15)i (3)
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Fig. 1. The fine crystal selection function R(z)

The crystal withdrawal term is defined as follows:

ṅout(t, z) =
n(t, z)

τr
, (4)

where τr represents the residence time.

In one of its configurations the crystallization facility in-
corporates the fines dissolution loop and the corresponding
term is defined:

ṅdiss = δR(z)nout(t, z) (5)

The term δ represents the fines dissolution loop rate, the
ratio of the product withdrawal related to fines dissolution
loop withdrawal and R(z) describes the selection of fine
crystals, this function was identified empirically [Temmel
(2014)] and is shown in Fig. 1:

R(z) =



















ymax

(1 + exp(
z−zf
wf

)
if z < zfb,

ymax(1 + exp(
zfb−zb

wb
))

(1 + exp(
zfb−zf

wf
))(1 + exp( z−zb

wb
))
, otherwise

(6)

The nucleation rate ṅbuild can be defined as a bound-
ary condition which appears when the supersaturation is
greater than one, so the crystals of size zmin and negligible
mass are generated:

Gn|z=zmin
= ṅbuild(t) (7)

ṅbuild(t, z) =

{

Kb exp(−EA,b/(RgasT ))(S − 1)b, if S > 1,

0, otherwise
(8)

The population balance model for the solid phase of the
continuous crystallization is thus defined:

∂n(t, z)

∂t
= −

∂Gn(t, z)

∂z
− ṅout(t, z)− ṅdiss(t, z) (9)

The mass balance of the solute in the liquid phase is
formulated as follows:

dml

dt
= ṁl,in(t)− ṁl,out(t) + ṁl,diss,in(t)

−ṁl,diss,out(t)− kvρs
dµ3(t)

dt
(10)

where the terms ṁl,in(t) and ṁl,out(t) describe the inward
and outward reactor flow, ṁl,diss,in(t) and ṁl,diss,out(t)
describe inward and outward fines dissolution loop flow
and the last term reflects the crystal growth.

The accumulation term on the left-hand side of the mass
balance equation can be substituted in the following way:

dml

dt
=

d(Vrρwωl(t))

dt
= Vrρw

dωl(t)

dt
. (11)

The inward and outward reactor flows are described as
follows:

ṁl,in(t) = V̇inρw,inωl,in =
1

τr
Vrρw,inωl,in (12)

ṁl,out(t) = V̇outρwωl(t) =
1

τr
Vrρwωl(t) (13)

The inward and outward dissolution loop flows are defined
as follows:

ṁl,diss,out(t) = V̇fρwωl(t) = δV̇outρwωl(t)

=
1

τr
δVrρwωl(t) (14)

ṁl,diss,in(t) = ṁl,diss,out(t) +
kvρsV̇f

Vr

µ3,f (t)

= δ
1

τr
Vrρw(ωl(t) + kvρsµ3,f (t)) (15)

After some further simplifications the mass balance can be
described as follows:

dωl(t)

dt
=

1

τr

(

ρw,in

ρw
ωl,in − ωl(t) + δkvρsµ3,f (t)

)

−
kvρs
Vrρw

dµ3(t)

dt
(16)

For the process configuration without fines dissolution, the
term δ is equal to zero.

2.2 Open-loop simulation

For simulation studies and the following control design
the process was discretized applying the finite volume
method [Versteeg and Malalasekera (2007)]. The resulting
model dimension for controller design was 2000 and for
control system validation was reduced to 400 due to the
computational expense. In order to gain a rough under-
standing of the process, simulation studies of the open-
loop system were performed. The open-loop simulation
expands the knowledge about process peculiarities, its
stability, influence of parameter deviations on dynamic
behaviour of the model and allows to define qualitative
and quantitative indicators of the desired process oper-
ation. As we consider two cases, with and without fines
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Fig. 2. The configuration without fines dissolution loop
- reactor temperature step change Tr = 301.15K to
298.15K at tstep = 3 · 105s

dissolution loop, these cases will be analyzed separately.
In the configuration without fines dissolution loop, the
studied parameter is the temperature within the reactor
T (t) which can be controlled by the cooling system. In
the second configuration, the fines dissolution loop rate
δ(t) was altered to study different operation points. The
model parameters are provided in Table 1. The simulation
results are shown in Fig. 2 and 3. In both cases the mass
fraction in liquid phase ωl(t), the third moment of CSD
µ3(t), manipulated variable (reactor temperature T (t) for
the first configuration and fines dissolution loop rate δ(t)
for the second one) and the CSD n(t, z) - initial distribu-
tion (dotted gray) and final distribution (solid black) are
shown.

As can be seen the configuration without fines dissolution
loop is stable, the configuration with fines dissolution loop
shows some oscillatory behaviour but stays stable. How-
ever, as has been shown in [Randolph and Larson (1988)]
for related configurations the emergence of nonlinear os-
cillations is possible and should be avoided.

Table 1. Simulation parameters

Parameter Value

Vr 0.024m3

Qout 0.1 l
min

Kg 1.67E-006 m/s
g 1.04

EA,g 5.71E-009 J/mol
Kb 1234131.27 1/s
b 1.1

EA,b 5.17E-011 J/mol
Kd -4.32E-006 m/s
ρs 1757 kg/m3

kV 0.33

K0 0.049378679989695

K1 0.002179443878122

K2 0.000089305667414

K3 -0.000002627008140

K4 0.000000049096298

ρw 1000 kg/m3

zmin 1E-6 m

Fig. 3. The configuration without fines dissolution loop
- reactor temperature step change δ = 10 to 90 at
tstep = 1 · 105s

Fig. 4. Bode diagrams for varying reactor temperature
(without fines dissolution loop)

3. LINEAR ANALYSIS AND MODEL REDUCTION

3.1 Analysis of the linearized models

The linearization was performed considering both configu-
rations: system without fines dissolution loop and system
with it. For a control design appropriate control inputs
and outputs should be chosen. Here, for both configu-
rations the third moment µ3 of the CSD was chosen as
the controlled variable. As an appropriate control input
the reactor temperature and the fines dissolution loop
rate were chosen in the first and second configuration,
respectively. Linearization at different operation points
for varying reactor temperatures in the range of 298.15K
to 305.15K with nominal model referred to 301.15 and
varying fines dissolution loop rate in the range from 10 to
150 with nominal model referred to 90 was undertaken and
the results are depicted in figures 4 and 5, respectively with
nominal models indicated with wider lines. Both nominal
models are stable, controllable and observable. For a direct
control design the order is however very high and should
be reduced in order to design a low order controller being
easily implementable on a programmable logic controller.

3.2 Model order reduction

In this contribution the balanced residualization method
has been used for model order reduction [Skogestad and
Postlethwaite (2005), Gu (2005), Chiang and Safonov
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Fig. 5. Bode diagrams for varying dissolution rate (with
fines dissolution loop)

(1996)]. For the first configuration a model order reduction
to order three and in the second configuration to order 12
was achievable. The approximation error for both reduced
order models is relatively small for low frequencies and
increases for higher frequencies introducing an additional
model uncertainty in the high-frequency zone. This ad-
ditional model uncertainty should be mitigated by the
robustness of the designed controller.

4. ROBUST CONTROLLER DESIGN AND
SIMULATION

4.1 H∞-loop-shaping controller design

Due to the number of considered assumptions, performed
simplifications and approximations, a controller should be
designed being capable of mitigating mismatches between
the real process and the design model. Here, the H∞-
loopshaping approach [McFarlane and Glover (2013)] has
been chosen as it combines simplicity, realizability and
robustness with respect to the general class of coprime
factor uncertainties. As stated earlier for both configu-
rations the third moment µ3 of the CSD is chosen as
the controlled variable and the reactor temperature and
the fines dissolution loop rate are the control inputs for
the crystallization without and with fines dissolution loop,
respectively (Fig. 6).

Fig. 6. Control system configuration

In the following it is assumed that the nominal system G
is given in its normalized left coprime factorization

G = M−1N (17)

where M and N are stable coprime transfer functions
fulfilling the Bezout identity. Then an uncertain plant Gp

consisting of the nominal system G can be represented as
follows:

Gp = (M +∆M )−1(N +∆N ) (18)

where ∆M and ∆N are stable unknown transfer functions
with ‖[ ∆N ∆M ]‖

∞
< ǫ representing the model uncertain-

ties. It is well known that a controllerK robustly stabilizes
the perturbed feedback system if it stabilizes the nominal
system G(s) and

∥

∥

∥

∥

[

K
I

]

(I +GK)−1M−1

∥

∥

∥

∥

∞

≤
1

ǫ
. (19)

A coprime factor uncertainty representation is in general
superior over additive or multiplicative model uncertain-
ties, as it is not restricted to perturbations which preserve
the number of right half-plane poles of the plant. This fact
is important for the control of continuous crystallization as
stability behaviour may change depending on the specific
operating conditions. In order to incorporate requirements
on the closed loop performance the above stated H∞-
problem is generally combined with a prior loop shaping
stage, where the pre- and postcompensators W1 and W2

are designed in order to achieve a desired open loop be-
haviour. Hence, the H∞-problem is solved for the nominal
model G augmented by the compensators W1 and W2

Gs = W2GW1 (20)

and the H∞-loop shaping controller Kres is formed from
the compensators W1 and W2 and the solution of the H∞-
problem K.

Kres = W1KW2 (21)

The H∞-loop-shaping controller design was performed
using the reduced-order models taking into account the
following requirements: no static error, fast transient and
low overshoot. For implementation reasons an additional
controller order reduction was performed reducing the
order up to 5 and 7, respectively.

4.2 Closed-loop system simulation

The controllers were verified using closed-loop simulations
with the full order nonlinear process models. The simu-
lation consisted in reference tracking test to ensure the
steady-state accuracy, starting with initial conditions close
to the reference point. The reference points are µ3 = 1.3
for the first configuration and µ3 = 1.4 for the second
one. Then we simulated the emergence of disturbance -
increase of feed solution temperature by ∆Tfeed = 0.5K
at t = 5 · 103s for the first configuration and t = 2 · 106s
for the second one. The simulation results are shown in
Fig. 7 and 8. The depicted variables are the mass fraction
in liquid phase ωl(t), the manipulated value T (t) for the
first case and δ(t) for the second one, the third moment
of the CSD µ3(t) and the crystal size distribution n(t, z):
initial (dotted gray) and final (solid black). The crystal size
distribution representation over time is depicted in Fig. 9
and 10. Apparently, the system based on model without
fines dissolution loop coped with the disturbance with less
effect on the process performance than the system based
on the second configuration. This is reasonable, because
the nature of manipulated variable of reactor temperature
is similar to the disturbance nature in contrast to the
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Fig. 7. Controlled crystallization without fines dissolution
(disturbance rejection)

Fig. 8. Controlled crystallization with fines dissolution
(disturbance rejection)

Fig. 9. Controlled crystallization with fines dissolution
(disturbance rejection) - crystal size distribution

configuration with fines dissolution loop. Nevertheless, the
designed controllers stabilize both process configurations,
improve the transient dynamics, mitigate model uncer-
tainties, discretization errors and diminish the influence
of unforeseen disturbances as expected.

5. CONCLUSION

In this contribution two configurations of continuous crys-
tallization processes have been studied. Both are described
by a nonlinear model with distributed parameters. In order
to stabilize the crystallization process and improve its
performance feedback control was applied. Here, a linear

Fig. 10. Controlled crystallization with fines dissolution
(disturbance rejection) - crystal size distribution

finite-dimensional robust controller approach being capa-
ble of mitigating model uncertainties and diminishing the
influence of unforeseen disturbances has been successfully
applied. Future work will concern the validation of the de-
signed controllers within the crystallization facility HUGO
at the Max Planck Institute for Dynamics of Complex
Technical Systems Magdeburg and the extension of the
crystallization process model in order to include crystal
breakage and agglomeration phenomena.

Table 2. Notation

n(t, z) crystal size distribution
G crystal growth and dissolution factor
τr residence time
δ fines dissolution loop rate

R(z) fines dissolution selection function
Kb fitting parameter for preexponential crystal

nucleation rate constant
EA,b activation energy - nucleation
Rgas general gas constant
T temperature inside reactor
S supersaturation
b exponential parameter for nucleation
Kg fitting parameter for preexponential

crystal growth rate constant
EA,g activation energy - growth
g exponential parameter for growth
Kd fitting parameter for preexponential crystal

dissolution rate constant
ωl(t) mass fraction in liquid phase
ωsat mass fraction at saturation point
kV volume shape factor
ρs density of potassium alum

µ3(t) the third moment of crystal size distribution
µ3,f (t) the third moment of fine crystals size distribution

Vr crystallizer volume
ρw water density
G nominal plant transfer function

M,N coprime transfer functions
∆M ,∆N model uncertainties

ǫ maximum stability margin
K H∞-problem solution
I identity matrix

W1,W2 pre- and postcompensators
Gs uncertain plant transfer function
Kres resulting H∞-controller
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Abstract: This paper is concerned with control of a continuous fluidized bed spray granulation.
On the basis of an entropy function a control Lyapunov function will be derived. In order to
facilitate the control design procedure this entropy-based control Lyapunov function will be
approximated by its second order Taylor expansion.

1. INTRODUCTION

Fluidized bed spray granulation is a particulate process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter solution. Due to high process air
temperature, the fluid evaporates and the remaining solid
material either contributes to growth of already existing
particles or forms new nuclei. As product particles should
have a certain minimum size an additional product clas-
sification is required. In this contribution a process con-
figuration applying an air sifter with countercurrent flow
as depicted in Fig. 1 will be studied. Another possibility
is for example the application of an external classification
using sieves with corresponding recycle of the over- and
undersized fraction [2]. In order to allow a continuous
process operation part of the withdrawn product particles
will be milled and fed back as nuclei to the granulation
chamber. It is well known that continuous granulation
processes in general and in particular configurations ap-
plying a mill cycle tend to instability and the occurrence
of nonlinear oscillations of the particle size distribution.
These oscillations give undesired time behavior of product
quality [4, 3, 2]. Similar patterns of behavior have been
observed for other particulate processes as e.g. crystal-
lization processes (e.g. [10]). In order to control these
several approaches have been proposed ranging from linear
finite dimensional control (e.g. [9, 7]) to nonlinear infinite
dimensional control methods [8]. Especially the later, i.e.
the discrepancy based control design, has been successfully
applied to different particulate processes.
In this contribution control design exploiting the thermo-
dynamic structure, i.e. the entropy, of the process will
studied. Therefore, an entropy-based control Lyapunov
function will be derived and used for control design.

2. CONTINUOUS FLUIDIZED BED SPRAY
GRANULATION

A continuous fluidized bed spray granulator with an ad-
ditional mill as depicted in Fig. 1 consists of a granula-
tion chamber, where the particle population is fluidized
through an air stream and coated by injecting a suspension
V̇e. The particle growth associated to the layering process
has been described in [1].

Fig. 1. Process scheme

G = 2
V̇e

π
∫
∞

0
L2ndL

(1)

It should be mentioned that the particle growth rate
is inversely proportional to the overall particle surface
area and hence the second moment of the particle size
distribution. Product particles are continuously removed
through an air sifter with countercurrent flow. Here, due
to the particle size specific sinking velocity, small particles
with L < L2 are reblown into the granulation chamber,
while large product particles with L ≥ L2 pass the air
sifter. The associated ideal separation function T is given
as follows.
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T (L) = σ(L− L2) (2)

The outlet flow is hence

ṅout = KT (L)n. (3)
where K is the drain, depending mainly on the air velocity
and the ration between granulation chamber and sifter
cross section. In order to guarantee a continuous process
operation nuclei have to be continuously supplied. This
can be achieved using an additional mill. For simplicity
it can be assumed that the mill is mass conserving and
generates a rectangular distribution.

B = α(σ(L− L0)− σ(L− L1))

∫

∞

0
L3KTndL

∫

∞

0
L3ndL

(4)

= α(σ(L− L0)− σ(L− L1))

∫

∞

0
L3KTndL

4(L4

1
− L4

0
)

(5)

To describe the process, a population balance model for
the particle size distribution can be stated consisting of
the following particle fluxes

• B particle flux from the mill,
• ṅout particle flux due to particle removal,

and size independent particle growth associated with the
particle growth rate G.

∂n

∂t
= −G

∂n

∂L
− ṅout +B (6)

For numerical simulation the model equations are semi-
discretized with the finite volume method (1st order up-
wind flux discretization) with 310 grid points. The model
parameters used are given in Table 1.

V̇e 1.5 · 10
5 mm

3

s

L0 0.1mm

L1 0.2mm

L2 0.7mm

K 1 · 10
−3 1

s

α0 5 · 10
−3

Table 1. Plant parameters

3. ENTROPY-BASED CONTROL LYAPUNOV
FUNCTION

In the following a control Lyapunov functional will be
derived based on an entropy function for the population
balance model. The candidate being proposed in this
contribution is strongly related to the one studied recently
in [6] for a continuous crystallizer.

S =

∫

∞

0

−Cn lnndL =

∫

∞

0

s(n)dL (7)

Here, C is a positive constant, which will be specified later.
As we are interested in deviations from and control design
for a desired steady state n0 the following quantities can
be defined

∆S = S0 − S, (8)

∆Z =Z0 − Z, (9)

where Z = kn. The conjugate variable of Z can be
calculated as

ω0 =
∂s

∂Z

∣

∣

∣

∣

Z=Z0

(10)

=−

C

k
(lnn0 + 1). (11)

Using Z, its conjugate and the entropy S a control Lya-
punov function can be derived [6, 5].

V = −

∫

∞

0

∆Zω0dL+∆S (12)

Using eq. (11) yields

V =

∫

∞

0

∆n(C(lnn0 + 1))dL, (13)

−

∫

∞

0

C(n0 lnn0 − n lnn)dL, (14)

=

∫

∞

0

C(∆n− n(lnn0 − lnn))dL. (15)

In order order to simplify the control design for the
continuous fluidized bed granulation process this control
Lyapunov candidate will be approximated by its second
order Taylor approximation.

V =

∫

∞

0

C

n0

∆n2dL (16)

Choosing C = 1

2
n0 yields

V =
1

2

∫

∞

0

∆n2dL. (17)

4. CONTROL DESIGN

In the following the second order approximation of the
entropy-based Lyapunov candidate (17) will be used in
order to design an appropriate feedback control law. Cal-
culating the time derivative V̇ yields

V̇ =

∫

∞

0

∆n

(

∂n0

∂t
−

∂n

∂t

)

dL (18)

=−

∫

∞

0

G

2

∂∆n2

∂L
+∆n [B0 −B −KT∆n] dL (19)

=−

G

2
∆n2

∣

∣

∣

∣

∞

0

−

∫

∞

0

∆n [B0 −B −KT∆n] dL(20)

Here, the first two terms vanish due to the boundary
conditions n(L = 0) = limL→∞ n(L) = 0, i.e. there are no
particles of size zero and infinitely large particles. Hence,
the time derivative of the Control Lyapunov functional V
does not depend on the growth rate G and thus all results
will be robust with respect to variations in the suspension
injection rate.

V̇ =

∫

∞

0

∆n [B0 −B −KT∆n] dL (21)

Inserting the equations for the particle outlet (3) and the
mill flux (5) results in the following
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V̇ =−

∫ L1

L0

∆n

∫

∞

L2

α0L
3Kn0 − αL3KndL

4(L4

1
− L4

0
)

dL (22)

−K

∫

∞

L2

∆n2dL (23)

For convenience a virtual control input uvirt = α
∫

∞

L2

L3KndL

is introduced.

V̇ = −(uvirt,0 − uvirt)

∫ L1

L0

∆ndL

4(L4

1
− L4

0
)
−K

∫

∞

L2

∆n2dL (24)

In order to achieve negative definiteness of the time deriva-
tive of the entropy-based candidate Lyapunov functional
V the following virtual control law is chosen

uvirt = uvirt,0 +
4(L4

1
− L4

0
)

∫ L1

L0

∆ndL

[

c

∫

∞

0

∆n2dL

]

, (25)

which results in the control law for α

α =
uvirt

∫

∞

L2

L3KndL
. (26)

The time derivate of the entropy-based control Lyapunov
function hence is

V̇ =−c

∫

∞

0

∆n2dL−K

∫

∞

L2

∆n2dL (27)

≤−c

∫

∞

0

∆n2dL = −2cV (28)

guaranteeing asymptotic stability and exponential con-
vergence. The control law is tested starting at an initial
particle size distribution n(t = 0, L) = 1.5 ·n0(L) depicted
in Fig. 2 and with a tuning factor c = 2 · 10−6. As can
be seen in Fig. 3 and 4 the proposed control law succeeds
in controlling the desired particle size distribution with
reasonable control effort (Fig. 5 and Fig. 6). For compar-
ison the open loop process behavior is depicted in Fig. 7
showing considerably more oscillations and higher peaks
in the particle size distribution. In order to evaluate the
control performance the third moment of the particle size
distribution in open and closed loop operation is shown in
Fig. 8.

Fig. 2. Initial particle size distribution

Fig. 3. Particle size distribution in closed loop operation n

Fig. 4. Entropy-based Lyapunov function V

Fig. 5. Control input α

Fig. 6. Virtual control input uvirt

5. CONCLUSION

For a continuous fluidized bed spray granulation with mill
cycle an appropriate control law has been derived and
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Fig. 7. Particle size distribution in open loop operation n

Fig. 8. Third moment of the particle size distribution µ3 in
open (black dashed) and closed loop operation (gray
solid)

tested. The main idea is to derive a Lyapunov functional
on the basis of an entropy function. In order to facilitate
the control design procedure this entropy-based Lyapunov
functional has been approximated by its second order
Taylor expansion. Future work will be concerned with a
thorough comparison between the here presented entropy-
based control approach giving physical insight and the
earlier proposed discrepancy based control design [8].
Applying the latter control laws are designed on the
basis of a generalized distance measure, the discrepancy,
focusing on the process input output behavior.
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Discrepancy-based control of a heat equation with quadratic

nonlinearity

Stefan Palis 1,∗ and Achim Kienle1,2

Abstract— This article deals with a new approach to stabiliz-
ing boundary control for nonlinear parabolic PDEs. The system
under investigation is the quadratic heat equation. In order to
stabilize this system in this contribution the use of a generalized
distance measure, the discrepancy, is proposed. Applying, the
associated stability theory, i.e. stability theory with respect to
two discrepancies, a stabilizing control law can be derived.

I. INTRODUCTION

Control of distributed parameter systems (e.g. [1], [2], [3])

is an active field of research. Especially, the case of linear

parabolic PDEs with boundary actuation has received great

attention in recent years. In [4], [5] the finite-dimensional

feedback linearization approach has been successfully ex-

tended to parabolic PDEs with Volterra nonlinearities. There,

the heat equation with a quadratic nonlinearity has been

one of the studied test cases. It has been shown [4] that

using a state transformation the quadratic nonlinearity can

be transformed into a Volterra series nonlinearity. For the

transformed system choosing a flat output an infinite di-

mensional feedback linearizing controller based on Volterra

series has been derived, which has been truncated to second

order for implementation. As has been shown by simulations

the proposed controller is able to stabilize the heat equation

with quadratic nonlinearities for initial conditions with peak

values up to 8. For initial conditions with a higher maximum

value, i.e maxx∈[0,1]w(x) > 8, the authors state [4] that the

proposed control law is not able to stabilize the system.

In this contribution a complementary approach, discrepancy-

based control, will be proposed for this challenging bench-

mark problem. The discrepancy-based control approach has

been developed and successfully applied in particulate pro-

cess control, e.g. crystallization [6] and granulation [7], [8].

Here, the main idea is to choose an appropriate generalized

distance measure, the discrepancy, which allows a direct

Lyapunov design guaranteeing stability with respect to the

chosen discrepancies. In addition, convergence with respect

to a Lp-norm or pointwise convergence can be guaranteed

under the condition of stable zero dynamics.

The paper is organized as follows: in section II the model

system, a heat equation with quadratic nonlinearity, is stated.

In section III the main theoretic concepts of stability with

1Otto-von-Guericke-Universität, Universitätsplatz 2, D-39106 Magde-
burg, Germany

2Max-Planck-Institut für Dynamik komplexer technischer Systeme, Sand-
torstrasse 1, D-39106 Magdeburg, Germany

∗ Author to whom all correspondence should be addressed. Email:
stefan.palis@ovgu.de

respect to two discrepancies are stated. The connection be-

tween stability with respect to two discrepancies and stability

in the sense of the L∞-norm is outlined in section IV. In

section V the discrepancy-based control method is applied

in order to derive a stabilizing control law for the model

system. Some final remarks conclude the paper.

II. HEAT EQUATION WITH QUADRATIC NONLINEARITY

Consider the following heat equation with an additional

quadratic nonlinearity

∂w

∂t
=

∂2w

∂x2
+ w2, (1)

with boundary conditions

w(0, t) = 0, (2)

∂w(1, t)

∂x
= u. (3)

Here, w(x, t) is the system state, t ≥ 0 is the time and

x ∈ [0, 1] is the spatial coordinate. It is well known that

this system is unstable, diverges to infinity in finite time

and is not globally stabilizable [4] and references therein.

Therefore, the stabilizing control of the heat equation with

quadratic nonlinearity is a challenging task.

III. STABILITY WITH RESPECT TO TWO DISCREPANCIES

In the following, the most important properties and facts

on stability with respect to two discrepancies are stated in

accordance to [9], [10], [11]. Here, the process ϕ(., t) is a

solution of a distributed parameter system and ϕ0 = 0 an

equilibrium of the system. The discrepancy ρ(ϕ(., t), t) is a

measure of the distance between the process ϕ(., t) and the

equilibrium ϕ0.

Definition 1: (Discrepancy): A discrepancy is a real val-

ued functional ρ = ρ[ϕ (., t) , t] with the following properties

1) ρ(ϕ, t) ≥ 0,

2) ρ(0, t) = 0,

3) for an arbitrary process ϕ = ϕ(., t) the real valued

functional ρ(ϕ(., t), t) is continuous with respect to t.

It is important to note that a discrepancy lacks essential

properties of a metric, e.g. symmetry d(x, y) = d(y, x) or

triangular inequality d(x, y) ≤ d(x, z) + d(z, y) are not

satisfied. In addition, a discrepancy has not to satisfy the im-

portant property of definiteness, i.e. a vanishing discrepancy

ρ(ϕ, t) = 0 does not automatically imply ϕ = 0. Therefore,

the discrepancy is an extension of the distance measures

2014 American Control Conference (ACC)
June 4-6, 2014. Portland, Oregon, USA
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normally used in stability theory for distributed parameter

systems like Lp and L∞- norms.

In the context of stability with respect to two discrepancies

besides the discrepancy ρ(ϕ(., t, t)) measuring the distance

between ϕ(., t) and the equilibrium ϕ0, a second time

independent discrepancy ρ0 is used describing the distance

between the initial state ϕ(., 0) and the equilibrium ϕ0.

The two discrepancies ρ and ρ0 have to satisfy, that the

discrepancy ρ(ϕ(., t), t) is continuous at time t = t0 with

respect to ρ0 at ρ0 = 0, i.e. for every ε > 0 and t0 > 0 there

exists a δ(ε, t0) > 0, such that from ρ0 � δ(ε, t0) it follows

that ρ < ε.

Definition 2: (Stability with respect to two discrepancies

ρ and ρ0): The equilibrium ϕ0 = 0 is stable in the sense

of Lyapunov with respect to the two discrepancies ρ and ρ0
for all t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists

a δ = δ(ε, t0) > 0 such that for every process ϕ(., t) with

ρ0 < δ(ε, t0) it follows that ρ < ε for all t ≥ t0. If in

addition limt→∞ ρ = 0, than the equilibrium ϕ0 is called

asymptotically stable in the sense of Lyapunov with respect

to the two discrepancies ρ and ρ0.

In order to define a Lyapunov functional V guaranteeing

stability with respect to two discrepancies the additional

notions of positivity and positive definiteness of a functional

with respect to a discrepancy are introduced.

Definition 3: (Positivity with respect to a discrepancy ρ):

The functional V = V [ϕ, t] is called positive with respect

to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all ϕ

with ρ(ϕ, t) < ∞.

Definition 4: (Positive definiteness with respect to a dis-

crepancy ρ): The functional V = V [ϕ, t] is positive definite

with respect to a discrepancy ρ, if V ≥ 0 and V [0, t] = 0
for all ϕ with ρ(ϕ, t) < ∞ und for every ε > 0 there exists a

δ = δ(ε) > 0, such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.

The following two theorems state the conditions for a

functional V guaranteeing (asymptotic) stability with respect

to two discrepancies.

Theorem 1: [11] The process ϕ with the equilibrium ϕ0 =
0 is stable with respect to the two discrepancies ρ and ρ0
if and only if there exists a functional V = V [ϕ, t] positive

definite with respect to the discrepancy ρ, continuous at time

t = t0 with respect to ρ0 at ρ0 = 0 and not increasing along

the process ϕ, i.e. V̇ ≤ 0.

Theorem 2: [11] The process ϕ with the equilibrium

ϕ0 = 0 is asymptotically stable with respect to the two

discrepancies ρ and ρ0 if and only if there exists a functional

V = V [ϕ, t] positive definite with respect to the discrepancy

ρ, continuous at time t = t0 with respect to ρ0 at ρ0 = 0
and not increasing along the process ϕ, i.e. V̇ ≤ 0, with

lim
t→∞

V = 0.

IV. STABILITY WITH RESPECT TO A DISCREPANCY AND

POINTWISE CONVERGENCE

In order to state conditions, when convergence in two

discrepancies yields convergence in a Lp-norm or pointwise

convergence, i.e. convergence in the L∞-norm, the discrep-

ancies ρ may be interpreted as output variables. Whereas the

distributed variable ϕ resembles the system state. Applying

this notation the finite dimensional concepts of relative

degree and zero dynamics (e.g. [12]) can be extended to

the infinite dimensional case (e.g. [13], [14]) yielding the

desired connection between stability with respect to two

discrepancies and stability in the Lp or L∞-norm. In the

finite dimensional case a system of order n and relative

degree r ≤ n can be represented in its normal form applying

a local coordinate transformation [12].

ż1 = z2 (4)

...

żr−1 = zr (5)

żr = f(ψ, η) + g(ψ, η)u (6)

ψ̇ = h(ψ, η, u) (7)

Here, the system state space can be easily separated into

two parts. The first part consisting of the state equations for

ψ = [z1, . . . , zr]
T

, which can be linearized and controlled

by the control u, and the second part being associated

with the state η = [zr+1, . . . , zn]
T

, which forms the zero

dynamics. As a separation of the state variables is in general

inconvenient for a distributed parameter system, the zero

dynamics are typically defined by constraining the output

to zero by applying the appropriate control law ([13], [14]),

e.g. the discrepancy-based control law. Therefore, applying

the discrepancy-based control law guarantees stability of the

whole system if and only if the zero dynamics associated

with the discrepancy ρ are stable. Unfortunately, stability

of the zero dynamics in the infinite dimensional case is

very hard to check. In order to overcome this problem in

this contribution a heuristic approach is proposed. Therefore,

for the heat equation with quadratic nonlinearity only the

conditions related to the finite dimensional linear case, i.e.

the presence of right-half plane zeros, will be checked. This

approach gives due to linearization at least a local stability

result, i.e. valid in a neighborhood of a steady state, for the

finite dimensional approximation.

V. DISCREPANCY-BASED CONTROL

In the following, a discrepancy-based control law will be

derived for the heat equation with quadratic nonlinearity.

Here, deviations from the desired steady state wd(x) = 0
will be measured in terms of an integral quantity

e =

� 1

0

k(x) (wd − w) dx, (8)

where the kernel k(x) is defined as follows

k(x) = exp(−ax). (9)
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This choice is motivated by the fact that errors in a greater

distance from the actuated boundary at x = 1 are harder

to control and should therefore be stronger weighted, i.e.

x ↓ gives k(x) ↑. An appropriate choice for a discrepancy ρ

being associated with the error measure defined in eq. 8 is

ρ =
1

2

�
� 1

0

k(x) (wd − w) dx

�2

. (10)

In order to guarantee continuity at time t = t0 at ρ0 = 0 the

second discrepancy ρ0 is chosen as follows

ρ0 = ρ(t = 0). (11)

According to Theorem 2 existence of an appropriate func-

tional V is sufficient to guarantee asymptotic stability with

respect to the two discrepancies ρ and ρ0. For this purpose

the following candidate Lyapunov functional is introduced

V =
1

2
e2 =

1

2

�
� 1

0

k(x) (wd − w) dx

�2

. (12)

In order to achieve stability in the sense of two discrepancies

the control variable u has to be chosen such that the time

derivate of V along the systems trajectories (1) is negative

definite for all times and vanishes only for V = 0. Calcu-

lating the time derivative of V along the system trajectories

(1) yields

V̇ = eė = −e

� 1

0

k

�

∂2w

∂x2
+ w2

�

dx, (13)

= −e

�

k
∂w

∂x

�

�

�

�

1

0

−

� 1

0

dk

dx

∂w

∂x
− kw2dx

�

, (14)

= −e

�

k(1)u− k(0)
∂w(0, t)

∂x
−

dk

dx
w

�

�

�

�

1

0

+

� 1

0

d2k

dx2
w + kw2dx

�

, (15)

= −e

�

k(1)u− k(0)
∂w(0, t)

∂x
−

dk(1)

dx
w(1, t)

+

� 1

0

d2k

dx2
w + kw2dx

�

. (16)

Using (16) the negative definiteness of the time derivative

of the candidate Lyapunov functional V can be guaranteed

choosing the following control law.

u =
1

k(1)

�

k(0)
∂w(0, t)

∂x
+

dk(1)

dx
w(1, t) + ce

−

� 1

0

�

d2k

dx2
+ kw

�

wdx

�

(17)

In addition to stability with respect to two discrepancies

the control law (17) guarantees exponential convergence of

V , where c can be used as a tuning parameter in order to

influence the convergence velocity.

V̇ = −ce2 = −2cV (18)

In order to check for pointwise convergence, i.e. stability of

the zero dynamics with respect to the discrepancy ρ, only a

high order finite dimensional linear approximation has been

studied. As can be seen from the open loop pole/zero map in

Fig. 1 there are no zeros in the right half plan. This indicates

that the zero dynamics are stable, which in turn would prove

stability in the L∞-norm.

Fig. 1. Pole/zero map of linear finite dimensional approximation

The proposed control scheme is tested for a = 2, c = 10
and a sinusoidal initial condition with a peak value of 20,

i.e. w(x, 0) = 20sin(x), which is higher than the maximum

allowable value of 8 in [4]. As can be seen in Fig. 2 and 3

the proposed control scheme is able to stabilize the process.

Fig. 2. Closed loop operation

Fig. 4 shows the exponential convergence of the Lyapunov

functional V . The convergence of w in the sense of the L2

and L∞-norm are depicted in Fig. 5 and 6 respectively.

VI. CONCLUSION

A new control approach for the benchmark problem of a

heat equation with quadratic nonlinearity has been presented.
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Fig. 3. Control input u

Fig. 4. Convergence of V in closed loop operation

It has been shown in silico that the proposed discrepancy-

based control is able to stabilize the system in a certain

range of initial conditions. As the proposed design guarantees

only stability in the sense of Lyapunov with respect to the

two chosen discrepancies stability of the associated zero

dynamics has to be studied in order to ensure convergence

in a Lp-norm or pointwise convergences, i.e. convergence in

a L∞-norm. This is a challenging task for the investigated

problem. Therefore, only the zero dynamics of the linearized

discretized approximation is studied.
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Abstract 

Particle shape plays an important role in many industrial applications since it can have significant impact on both, processability 

of particles as well as the properties of the final product. For this reason modeling of the corresponding production process is 

crucial for developing efficient process optimization and control strategies. The shape evolution of crystals on the process scale 

can be described conveniently within the framework of morphological population balance modeling. In order of being a reliable 

tool for the prediction of the crystal shape distribution during the production process as well as for the design of suitable control 

and optimal production strategies, the models require the estimation of several parameters characterizing the growth rates of the 

different crystal facets. This is particularly challenging due to the infinite dimensional state space of the models. In this 

contribution online parameter estimation for the growth rates of L-glutamic acid cooling crystallization is presented. Using a 

Lyapunov-based approach the parameter adaption laws are computed directly from the infinite dimensional problem formulation. 

It will be shown that a reasonably fast convergence of the parameter estimates can be achieved even in the presence of 

measurement noise using appropriate filters. 
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1. Introduction 

Crystallization is an important class of production processes in chemical and pharmaceutical industries. It is used to 

produce a desired material in crystalline form from a liquid solution. Details on crystallization principles and 

techniques can be found e.g. in [1].  The production processes are characterized frequently by heterogeneity of the 

crystal ensemble with respect to crystal properties like size and shape. Those have a significant influence on the end-

use property and the processability of the final product. Modeling of the corresponding dynamics is thus crucial for 

the design of efficient schemes for process control and optimization. It is well known that the temporal evolution of 

the previously described heterogeneous system can be modeled using population balances [2]. Here, morphological 

population balances being a special form of multivariate PBMs can be used to describe the dynamic shape evolution 

(e.g. [3], [4]). For the development of process control and optimization schemes the individual facets growth kinetics 

in the population balance have to be determined. This can be done for example by experimentally measuring the 

growth rates of a single crystal or a small number of crystals, which has several drawbacks that may yield biased 

estimates. Alternatively, the rates may be determined directly from process scale seeded crystallization experiments. 

Here, the temperature, solute concentration and the crystal shape distribution have to be measured. The parameters 

of the growth kinetics can then be estimated minimizing the error between the simulation of the morphological PB 

and the measurement data from experiment. In offline optimization-based parameter estimation schemes variations 

of the optimal parameter estimates due to changes in operation conditions are typically neglected resulting in 

performance deterioration. In order to overcome this problem in this manuscript the design of an online parameter 

estimation approach for morphological PBs will be investigated for a L-glutamic acid crystallization process [5,6]. 

This contribution is structured as follows. At first the general process model will be presented. Subsequently, the 

online parameter adaption laws will be derived directly from the infinite dimensional process model using a 

Lyapunov-based approach [7]. Next the performance of the proposed parameter estimation scheme will be shown 

assuming ideal measurements without noise. Further, it will be made clear that in case of realistic measurement 

errors the online adaption has to be combined with a filtering technique. At the end, the results are summarized and 

possible extensions for future research are mentioned. 

 

Nomenclature 

   solute concentration  

   estimated solute concentration  

   solubility  

   error in the number density distribution/concentration between model and process  

   kinetic coefficients (exponents) for facet growth  

   facet growth rate in length/width dimension  

   estimated facet growth rate in length/width dimension  

   facet growth parameters  

   estimated facet growth parameters  

   error in facet growth parameters  

   length of β-form L-GA  

 mean length/width of number density distribution  

 estimated mean length/width of number density distribution  

   number density distribution  

   estimated number density distribution  

  error feedback gains for model  

   kinetic coefficients (exponents) for facet growth  

   time  

   temperature  

    width of β-form L-GA   
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   parameter adaption rate tuning parameters  

   crystal density  

   relative supersaturation 

 

2. Process modeling 

In this manuscript seeded crystallization of β-form L-glutamic acid (L-GA) in a stirred tank reactor as presented 

in [5] is used as a benchmark problem. The shape of a single crystal can be described reasonably by the length  and 

width  of a parallelepiped (Fig. 1). Thus, depending on the ratio of both the crystal shape may vary between disks 

and needles. Assuming that the crystal growth is dominant and neglecting other effects like agglomeration, breakage 

and nucleation, the dynamics of the number density distribution  with respect to the two characteristic 

properties can be modeled using the following morphological PBM 

 

 

 

(1) 

 

Here, the growth rates are given by 

 

 

 

 

 

(2) 

 

 
Figure 1: Scheme of typical  form L-GA crystal and corresponding representation as parallelepiped [5] 

 

It is assumed that each growth rate depends only on the crystal size in the corresponding dimension and on the 

relative supersaturation.  

 

 (3) 
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The solubility of L-GA depends on the solute temperature and is given by the following empirical formula 

 

 
 

(4) 

 

Dynamics of the solute concentration can be derived from the mass balance of the liquid in the crystallizer and are 

given by 

 

 

 

(5) 

where   is the crystal density. Obviously, the overall dynamical system consists of an ordinary differential equation 

(ODE) and partial differential equations (PDE), which are coupled. The numerical values of the parameters are 

given in Table 1. 

Table 1: Process parameters and corresponding values 

Parameter Value Parameter Value 

    

    

    

    

 

3. Design of the online parameter estimator 

The majority of the parameter values listed in Table 1 have been identified from lab scale experiments. Thus, 

they can only be viewed as a rough orientation for a crystallization process on an industrial scale. Additionally, in a 

large scale industrial setting the process model may be not exact or the process parameters may vary during plant 

operation. Controller performance particularly suffers from those uncertainties as design procedure typically depend 

on a fully parameterized plant model. For this reason an online parameter identification procedure [7] will be 

designed. 

The Lyapunov-based online estimation uses the following modified plant model, which runs in parallel to the 

actual process (see Fig. 2) 

 

 

 

 

 

(6) 

where  and   are the particle shape distribution and the solute concentration estimated from the modified plant 

model. From this point on it is assumed that only the parameters  and    are unknown such that the unknown 

growth rates are given by 

 

 

 (7) 
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Figure 2: Online estimation scheme 

 

The parameters    and    are additional tuning factors and can be interpreted as model error feedback gains. 

In a first step, the estimation errors of the crystal shape number distribution, the solute concentration and the 

parameters are introduced. 

 

 

 

 

 

 

(8) 

Combining (1) and (5-6) the error dynamics can be derived. 

 

 

 

 

 

(9) 

In order to design suitable adaption laws for the parameter estimates the following Lyapunov functional is chosen 

 

. 

 
(10) 

Here,    and  are positive real tuning parameters. One can easily obtain that the Lyapunov function is positive 

definite and vanishes only for exact parameter estimates and if the shape number distribution and the solute 
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concentration of the model converge to the ones of the real plant. Applying standard Lyapunov stability theory 

yields that stability of the proposed estimator scheme can be achieved by guaranteeing that the first time derivative 

of   is negative semidefinite for all time points and vanishes for . Calculating the first time derivative of the 

Lyapunov functional along the system trajectory gives 

 

 

 

(11) 

In order to guarantee the negative definiteness of the first time derivative of the Lyapunov functional  the adaption 

laws are chosen as 

 

 

 

(12) 

Resulting in 

 

 

 

which is negative semidefinite for  and . 

(13) 

4. Evaluation of online identification procedure 

The presented online parameter estimation approach has been implemented numerically using 

MATLAB/Simulink. For this reason the partial differential equations for the process (1) and the model (6) were 

transformed to a large-scale system of ordinary differential equations using a two-dimensional finite volume scheme. 

Details on the application of a finite volume scheme for the discretization of PDEs can be found for example in [8]. 

The double integrals were approximated using a two-dimensional trapezoidal rule. For the process the parameters 

given in Table 1 are used. The initial solute concentration is  

 

 

 

and for the initial crystal shape number density distribution of the process is assumed to correspond to a two-

dimensional normal distribution  

 

 

 

with mean and covariances given as 
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The cooling rate is chosen as  It is assumed that the models initial values for shape number density 

distribution and solute concentration differ from the corresponding process values by a factor of 0.9. Furthermore, 

the initial values for the unknown parameters, i.e. the initial guesses, are only known very roughly. 

 

 

 

Figure 3. Parameter estimates for ideal measurements 

 

 
Figure 4. Moment estimates for ideal measurements 

 

4.1. Ideal measurements without noise 

In a first step the performance of the online parameter estimation algorithm is shown for the case of ideal 

measurements without measurement noise. Though this scenario is not realistic as experimental data is always 

corrupted by measurement uncertainties it is well suited to show the general performance of the algorithm and to 

study the effects of different choices of the tuning parameters on the dynamics of the parameter estimates. 

Simulation studies indicate that the parameter estimates convergence rate mainly depends on the adaption rate 

factors  while the ratio of error feedback factors and adaption rate factors affect the damping or the smoothness of 
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the parameter estimate dynamics. Thus, by an appropriate choice of the tuning parameters a reasonable convergence 

rate can be achieved. In Fig. 3 the corresponding parameter estimate dynamics are shown for  

 

 

 

It can be seen that the parameter estimates converge to the real values within 250 s and are only slightly 

overshooting. Additionally the model crystal shape number density distribution converges to the one of the process 

reasonably fast, as shown in Fig. 4.  

 

4.2. Noise corrupted measurements 

In order to come up with a more realistic setup the measurements are now considered to be corrupted with additive 

white noise. Due to the noise the performance of the proposed online parameter estimation algorithm is expected to 

deteriorate.  In order to achieve comparable performance as in the noise-free setting the model has been extended 

including the first order moments of the distribution  

 

 

 

 

 

(14) 

resulting in two additional model equations 

 

 

 

 

 

(15) 

Using the extended estimator model the Lyapunov function  has to be extended by errors in the two first moments 

 

 

 

(16) 

 

resulting in two extended adaptation laws 

 

 

 

 

 

 

(17) 
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The corresponding simulation results can be seen in Fig. 6 and Fig. 7. As in the ideal measurement scenario, the 

parameter estimation errors decrease at first but, due to the stochastic measurement uncertainty, the parameter 

estimates do not converge to their real values. Instead the estimates themselves reflect the stochastic process 

behavior. Applying a simple filter is however sufficient to overcome this problem (dashed black lines). 

 

 
Figure 5. Parameter estimates for noise corrupted measurements 

 

 
Figure 6. Moment estimates for noise corrupted measurements 

 

  

5. Summary/Conclusion, Future Work 

In this manuscript online estimation of facet growth kinetics was studied for L-glutamic acid crystallization. It 

has been shown that the proposed Lyapunov-based adaption laws allow a reasonable fast estimation of the unknown 

model parameters in the case of ideal measurements. Additionally, an extension of the algorithm was presented to 

deal with noise corrupted measurements. Future work will be concerned with further analysis of tuning parameter 

effects on the estimation error dynamics as well as further analysis of the effects of stochastic measurements. In 

addition, the approach will be extended to the estimation of parameters depending directly on the shape dimensions. 



1345 Robert Dürr et al.  /  Procedia Engineering   102  ( 2015 )  1336 – 1345 

 

Finally, the proposed online parameter estimation algorithm is planned to be used for real lab-scale experiments and 

as a part of an adaptive control scheme. 
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Abstract: This contribution is concerned with control of systems of population balances, which
are frequently used for modeling of particulate processes like granulation or crystallization. Using
the model of a pellet coating processes it will be shown that discrepancy based control can be
successfully applied for control of systems of population balances. Here, the main idea is to
choose a system output being a generalized measure for the distance between the particle size
distribution and its desired steady state, which allows a direct Lyapunov design.

1. INTRODUCTION

Systems of population balance equations are frequently
used in models of particulate processes as for example
fluidized bed spray granulation, drum granulation, spray
drying and crystallization. They are used to describe the
behavior of a certain particle property (e.g. liquid content,
particle size, porosity). Due to the vast range of indi-
vidual processes (e.g. particle breakage, particle growth,
agglomeration, nucleation) the population balance model
may be a simple linear first order hyperbolic partial dif-
ferential equation or a system of nonlinear partial integro-
differential equations. Hence, control design for this type
of processes is challenging. In order to simplify the control
design procedure the discrepancy based control has been
proposed in [4, 5, 8]. Although this design has been suc-
cessfully applied to different particulate processes [4, 5, 8]
rigorous proof of stability in a L2 or L∞ norm for a
concrete process model is still a challenge.
In this contribution the discrepancy based control will be
applied to a pellet coating processes, which is often used
for production of drugs, fertilizers, foods and detergents.
Here, the pellets are coated in a fluidized bed process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter solution. Due to high process
air temperature, the fluid evaporates and the remaining
solid material contributes to growth of already existing
particles. As product particles should have a certain size
an additional product classification is required. This can
achieved by internal classification using an air sifter with
countercurrent flow as depicted in Fig. 1. For a film coating
processes the Wurster apparatus is the most common
configuration. Here, a Wurster tube is located in the center
of the process chamber and the solution is injected by a
bottom-spray nozzle. A corresponding process model for
the pellet coating in a Wurster fluidized bed process has
been proposed by Hampel et. al. [2].

Fig. 1. Scheme of the Wurster fluidized bed process

2. PELLET COATING IN A WURSTER FLUIDIZED
BED PROCESS

As has been described, the pellet coating process can be re-
alized in a continuous fluidized bed spray granulator with
internal product classification as depicted in Fig. 1. Here,
the granulator consists of a granulation chamber, where
the particle population is fluidized through an air stream.
The solution V̇e is injected from the granulator bottom
in the middle of the Wurster coater, which separates the
inner high velocity zone from the outer low velocity zone.
Due to this separation the apparatus can be decomposed
into two functional zones

• the spraying zone, i.e. the inner high velocity zone,
where the solution is supplied to the particles,

• the drying zone, i.e. the outer low velocity zone, where
the particles are dried.

This configuration allows under certain operating condi-
tions the suppression of particle breakage and agglomera-
tion, which are highly undesired in a coating process [3].
For the modeling of the particulate phase the aforemen-
tioned decomposition can be reflected by introducing two
particle size distributions n1(L, t) and n2(L, t) for the
spraying and the drying zone, where L ∈ [0,∞) is the
characteristic particle diameter and t ≥ 0 is the time.
The volumetric ratio between spraying and drying zone
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is represented by introducing a parameter α. The particle
growth in the spraying zone associated to the layering
process can been described using a surface-proportional
growth law [1].

G =
2V̇e

π
∫

∞

0
L2n1dL

=
2V̇e

πµ2,1

, (1)

Due to fluidization intense particle mixing occurs, which
results in particle transport between the two compart-
ments. The associated exchange rates from compartment
one to two ṅ12 and from two to one ṅ21 can be character-
ized by their residence time τ1 and τ2, which can in turn
be related to the relative size of the compartments.

ṅ12 =
1

τ1
n1 (2)

ṅ21 =
1

τ2
n2 (3)

The product particles are continuously removed through
an air sifter with countercurrent flow. Due to the particle
size specific sinking velocity large particles pass the air
sifter while small particles are reblown into the granulation
chamber. The associated non-ideal separation function T
shown in Fig. 2 depends on the critical separation diameter
L1, which can be directly influenced by the air mass flow
rate.

T (L) =

∫ L

0
e−

(L′
−L1)2

a2 dL′

∫

∞

0
e−

(L−L1)2

a2 dL

(4)

Fig. 2. Non-ideal separation function T due to classifying
product removal

It is assumed that product particles are removed from
both compartments equally, where the drain is equal to
the inverse residence time τ3

ṅ1,P =
1

τ3
T (L)n1 (5)

ṅ2,P =
1

τ3
T (L)n2 (6)

In order to allow a continuous operation nuclei of a
predefined size distribution are added. Here, it is assumed
that the nuclei size distribution is a normal distribution
with mean diameter L0.

nnuc(L) =
e−

(L−L0)2

a2

∫

∞

0
L3e−

(L−L0)2

a2 dL

(7)

Fig. 3. Nuclei size distribution nnuc(L)

The particle fluxes due to external nuclei hence are

ṅ1,nuc = αKnnuc(L) (8)

ṅ1,nuc = (1− α)Knnuc(L) (9)

(10)

where K is the inlet rate. To describe the process, a pop-
ulation balance model for each particle size distribution
has been proposed recently in [2]. Fig. 4 illustrates the
coupling of the two population balance models.

∂n1

∂t
=−G

∂n1

∂L
− ṅ12 + ṅ21 − ṅ1,P + ṅ1,nuc (11)

∂n2

∂t
= ṅ12 − ṅ21 − ṅ2,P + ṅ2,nuc (12)

Fig. 4. Coupling of the population balances

For numerical simulation the model equations are semi-
discretized with the finite volume method (1st order up-
wind flux discretization) with 150 grid points. The model
parameters used are given in Table 1.

For a continuous process operation the particle size dis-
tributions n1(L, t) and n2(L, t) should be stabilized. This
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τ1 0.1s
τ2 9.9s
τ3 1800s
α 0.01
ε 0.5

V̇e 201mm
3

s

a 0.05
L0 0.3mm

K 60 1

s

Table 1. Plant parameters

can be achieved using for example the critical separation
diameter L1 as a control handle. The main problems here
are the non-affinity of the control and the growth related
integral term in the population balance equation, which
results in a nonlinear partial integro-differential equation.
Both problems can be however solved applying discrep-
ancy based control design, which relies on the theory of
stability in the sense of Lyapunov with respect to two
generalized distance measures, the discrepancies.

3. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

Most of the control design methodologies for distributed
parameter systems presented in the literature rely on spe-
cial system properties, as for example boundary actuation,
linearity, solvability of the systems equation or at least
the desired error system, i.e. the system in closed loop
operation. Two popular representatives of them are for
example the backstepping approach (e.g. [9]), where the
control input is designed such that it maps the original
system onto a desired stable error system, or the approach
proposed in the works of Bastin et. al. (e.g. [10, 11]),
where stability is proven using the solution derived with
the method of characteristics.
For the presented system of population balance equations
and the population balance models studied in [4, 5, 8]
these approaches are obviously not well suited. However,
as has been shown in previous contributions [4, 5, 8] this
problem is solvable by introducing a generalized stabil-
ity notion, i.e. stability with respect to two generalized
distance measures, the discrepancies. In the following the
most important properties and facts on stability with
respect to two discrepancies are stated in accordance to
[14, 15, 16]. Here, the process ϕ(., t) is a solution of the
distributed parameter system and ϕ0 = 0 an equilibrium
of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional ρ = ρ[ϕ (., t) , t]
with the following properties

(1) ρ(ϕ, t) > 0
(2) ρ(0, t) = 0
(3) for an arbitrary process ϕ = ϕ(., t) the discrepancy

ρ(ϕ(., t), t) is continuous with respect to t.
(4) introducing a second discrepancy ρ0(ϕ) with ρ0(ϕ) >

0 and ρ0(0) = 0. Than the discrepancy ρ(ϕ(., t), t) is
continuous at time t = t0 with respect to ρ0 at ρ0 = 0,
if for every ε > 0 and t0 > 0 there exists a δ(ε, t0) > 0,
such that from ρ0 6 δ(ε, t0) follows ρ < ε.

According to this definition a discrepancy has not all
properties of a metric, e.g. symmetry d(x, y) = d(y, x)

or triangular inequality d(x, y) ≤ d(x, z) + d(z, y). In
addition, it has not to satisfy the important property of
definiteness, i.e. a vanishing discrepancy ρ(ϕ, t) = 0 does
not automatically imply ϕ = 0.

Definition 2. Stability with respect to two discrepancies ρ
and ρ0

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies ρ and ρ0 for all t ≥ t0
if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0 ,
such that for every process ϕ(., t) with ρ0 < δ(ε, t0) follows
ρ < ε for all t ≥ t0. If in addition limt→∞ ρ = 0, than the
equilibrium ϕ0 is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies ρ and
ρ0.

In order to establish a relationship between stability with
respect to two discrepancies and the existence of a Lya-
punov functional V the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy ρ

The functional V = V [ϕ, t] is called positive with respect
to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all ϕ
with ρ(ϕ, t) < ∞.

Definition 4. Positive definiteness with respect to a dis-
crepancy ρ

The functional V = V [ϕ, t] is positive definite with respect
to a discrepancy ρ, if V > 0 and V [0, t] = 0 for all ϕ with
ρ(ϕ, t) < ∞ und for every ε > 0 there exists a δ = δ(ε) > 0,
such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.

The following two theorems state the conditions for a func-
tion V guaranteeing (asymptotical) stability with respect
to two discrepancies.

Theorem 5. [15] The process ϕ with the equilibrium ϕ0 =
0 is stable with respect to the two discrepancies ρ and ρ0
if and only if there exists a functional V = V [ϕ, t] positive
definite with respect to the discrepancy ρ, continuous at
time t = t0 with respect to ρ0 at ρ0 = 0 and not increasing
along the process ϕ, i.e. V̇ ≤ 0.

Theorem 6. [15] The process ϕ with the equilibrium ϕ0 =
0 is asymptotically stable with respect to the two discrep-
ancies ρ and ρ0 if and only if there exists a functional
V = V [ϕ, t] positive definite with respect to the discrep-
ancy ρ, continuous at time t = t0 with respect to ρ0 at
ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0,
with lim

t→∞

V = 0.

It has to be mentioned that stability with respect to two
discrepancies is necessary but in general not sufficient for
stability with respect to a Lp norm or L∞ norm.

4. DISCREPANCY BASED CONTROL DESIGN
CONTROL DESIGN

In the following a stabilizing control is derived for the
pellet coating process in a fluidized bed (11) and (12). The
control input is the critical particle diameter L1, which
can be adjusted directly via the air mass flow. In order to
derive a stabilizing controller the above presented stability
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concept is applied. Here, we choose the discrepancy ρ as
follows

ρ =
1

2

(
∫

∞

0

L3 (nd − n) dL

)2

. (13)

where n = n1+n2 and nd = n1,d+n2,d is the desired steady
state particle size distribution. Obviously, the above re-
quirements on a discrepancy are met. In order to guarantee
continuity at time t = t0 at ρ0 = 0 the second discrepancy
ρ0 is simply chosen as follows

ρ0 = ρ(t = 0). (14)

The associated error is

e =

∫

∞

0

L3 (nd − n) dL. (15)

According to Theorem 6 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies ρ and ρ0. For this purpose
the following candidate Lyapunov functional is introduced

V =
1

2

(
∫

∞

0

L3 (nd − n) dL

)2

. (16)

In order to achieve stability in the sense described above
the control variable has to be chosen such that the time
derivative of V along the system trajectories (11) and (12)
is negative definite for all times and vanishs only for V = 0.
Calculating the time derivative V̇ yields

V̇ =−e

∫

∞

0

L3

(

−G
∂n1

∂L
− ṅP + ṅnuc

)

dL (17)

=−e

∫

∞

0

L3

(

−G
∂n

∂L
+ ṅnuc

)

dL

−e
1

τ3

∫

∞

0

L3KT (L)ndL (18)

with ṅP = ṅ1,P +ṅ2,P and ṅnuc = ṅ1,nuc+ṅ2,nuc. In order
to achieve affinity in the control a virtual control uvirt is
introduced.

uvirt =

∫

∞

0

L3KT (L)ndL (19)

Using this virtual control negative definiteness of the time
derivative of the candidate Lyapunov functional V (18)
can be achieved choosing the following control law.

uvirt = τ3

[

ce+

∫

∞

0

L3

(

−G
∂n1

∂L
+ ṅnuc

)

dL

]

(20)

For an application the virtual control uvirt has to be
transformed into the associated critical particle diameter
L1, which leads to the following zero-finding problem.

0 = f(L1) = uvirt −

∫

∞

0

L3K

∫ L

0
e−

(L′
−L1)2

a2 dL′

∫

∞

0
e−

(L−L1)2

a2 dL

ndL (21)

In addition to stability with respected to the two discrep-
ancies ρ and ρ0, the control law (20) guarantees exponen-
tial convergence of V .

V̇ = −c

(
∫

∞

0

L3(nd − n)dL

)2

= −2cV (22)

However, it has to mentioned that applying the discrep-
ancy based control law (20) guarantees stability with re-
spect to a Lp or L∞ norm only if the zero dynamics asso-
ciated with the discrepancy ρ are stable with respect to a
Lp or L∞ norm, which is in accordance with [12, 13]. As a
rigorous stability analysis of the zero dynamics is difficult
an heuristic approach is to study the zero dynamics of the
linearized semi-discrete approximations.
The control law as depicted in Fig. 5 consists of nonlinear
compensation part, which needs a measurement of the
particle size distribution n1 and n2 (e.g. by two Parsum
inline probes), and a proportional error feedback.

Fig. 5. Control scheme

In order to test the control law the desired set point, i.e.
∫

∞

0
L3nddL, has been increased by 20% at t = 0h and two

times decreased by 20% at t = 10h and t = 15h as depicted
in Fig. 6. As can be seen in Fig. 7 and 8 the discrepancy
based control succeeds in stabilizing the desired particle
size distributions n1 and n2 with reasonable control effort
(Fig. 9).

Fig. 6. Reference
∫

∞

0
L3nddL (dotted black) and controlled

variable
∫

∞

0
L3ndL (solid gray)

Fig. 7. Error in the particle size distribution e =
∫

∞

0
L3 (nd − n) dL
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Fig. 8. Particle size distribution in the spraying zone n1

(top) and in the drying zone n2 (bottom)

Fig. 9. Critical particle diameter L1 (top) and virtual
control uvirt (bottom)

5. CONCLUSION

In this contribution control of systems of population bal-
ances models has been studied using continuous pellet
coating in a fluidized bed as an example. It has been shown
that applying discrepancy based control stabilization and

control of systems of population balances is possible. Fu-
ture work will be concerned with real plant experiments,
a thorough study of the zero dynamics associated with
the chosen discrepancy and an extension of the linear
robust control approaches proposed in [6, 7] to systems
of population balances.
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Abstract

System parameter estimation from measurements plays an important role in process

control and monitoring. For systems described by population balance models parameter

estimation is particularly challenging due to the infinite-dimensional state space. In

this contribution a Lyapunov-based approach is used to derive the appropriate online

parameter estimation laws for fluidized bed spray granulation.

Keywords – Parameter estimation, granulation

1 Overview

Granulation is an important class of production processes in food, chemical and phar-

maceutical industries. It is used to produce granules from liquid products, e.g. solutions

or suspensions. More and more frequently, granulation is combined with fluidized bed

technology. Here, a fluidized bed is formed from solid particles under appropriate con-

ditions, e.g. by passing a gas or liquid through the solid material. Important properties

of the fluidized bed are the fluid like behavior, an enlarged active surface caused by

increased bed porosity and good particle mixing. In addition, fluidization technology

allows a combination of different processes like drying, coating, mixing, granulation, ag-

glomeration, heating or pneumatic transport.

It is well known that continuous fluidized bed spray granulation depending on the pro-

cess configuration exhibit nonlinear limit cycles. These are connected to a loss of sta-

bility of the steady state for a certain range of parameters. Therefore, different control

approaches have been proposed recently for different process configurations being ca-

pable to achieve stability, reject disturbances and improve transient process behavior

[1] - [4]. As the proposed controllers all depend on plant parameters, which are hard to

determine in reality and may vary during plant operation, online parameter estimation is

a crucial task in order to guarantee closed loop stability. Hence, in this contribution the

problem of online parameter estimation for continuous fluidized bed spray granulation is

investigated. Focus is on processes with internal product classification.

2 Continuous fluidized bed spray granulation

The granulator consists of a granulation chamber, where the particle population is flu-

idized through an air stream with predefined pressure, temperature and humidity. Then

a liquid solution or suspension is injected, which settles on the particles. Due to the low

humidity and increased temperature the liquid fraction, i.e. the solvent or the external

phase, is evaporated. The remaining solid forms a new layer on the particle surface.

Besides the described layered growth in fluidized bed spray granulation operation in-

ternal nucleation due to drying of solution or suspension droplets takes place. Particle
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Figure 1: Process scheme

agglomeration and breakage are neglected.

In order to allow a continuous operation of the fluidized bed spray granulation, particles

are continuously removed through an air sifter with counter current flow, which sepa-

rates smaller from larger particles. The large particles, i.e. the product particles, pass

the air sifter while the small particles are reblown into the granulation chamber. The

process scheme is depicted in Fig. 1.

The associated particle growth has been described in [5]. In order to account for internal

formation of nuclei the growth rate has been modified in Vreman et. al. [6]. There, it

is assumed that only a certain part of the solid mass fraction injected with the liquid or

suspension ((1 − b)V̇e) contributes to the particle growth, while the rest (bV̇e) results in

new nuclei.

G =
2(1− b)V̇e

π
∫

∞

0
L2ndL

=
2(1− b)V̇e

πµ2

(1)

Here, it is assumed that the size distribution of the formed nuclei is a normal distribution

with a mean diameter L0.

B =
bV̇e

1

6
π

e−
(L−L0)

2

a2

∫

∞

0
L3e−

(L−L0)
2

a2 dL
=

bV̇e

1

6
π
nB(L) (2)

The nucleation parameter b determines how much of the injected suspension results

in new particles. In Vreman et al. [6] an idealized piecewise linear relation for the

nucleation parameter b as a function of bed and nozzle height has been derived (see

Fig. 2). The main assumptions are:

• constant bed porosity ε,

• the bed height h can be derived from the third moment of the particle size distribu-

tion,

h =
V

(1− ε)A
, (3)
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• there exists a minimum of the nucleation parameter b∞, which is reached, when

the bed reaches the height of the nozzle

• for a minimum bed height of 0 it is assumed that 100 % of the injected suspension

forms new particles giving a nucleation parameter of b = 1

• between the two limiting situations h = 0 and h = hnoz b is interpolated linearly

resulting in the following expression

b = b∞ +max

(

0, (1− b∞)
hnoz − h

hnoz

)

. (4)

Figure 2: Dependence of the nucleation parameter b on the bed height h according to Vreman

et al. [6] with hnoz = 440mm

Obviously, these assumptions are very restrictive. Therefore, in this contribution the

described relation will be omitted, instead the nucleation parameter b will be handled as

a free, slowly varying parameter.

The classifying product removal can be described by the sifting diameter L1, an non-

ideal separation function T (L) and the drain K.

ṅprod = K

∫ L
0
e−

(L′
−L1)

2

a2 dL′

∫

∞

0
L3e−

(L−L1)
2

a2 dL
n = KT (L)n (5)

To describe the process, a population balance model for the particle size distribution

has been proposed in Vreman et al. [6] consisting of the particle fluxes due to prod-

uct removal ṅprod and nuclei formation B and particle growth associated with the size

independent growth rate G according to (1).

∂n

∂t
= −G

∂n

∂L
− ṅprod +B. (6)

3 Online parameter identification

So far it has been assumed that the rate of injected solid material V̇e is known. In an

industrial setting this is however not the case as here the solid fraction of the injected
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suspension or solution may vary. In addition, the nucleation parameter b is unknown and

may vary with process conditions. For convenience the unknown parameters V̇e and b

are replaced by two parameters k1 and k2 entering affine into the population balance

model (6).
∂n

∂t
= −

2

πµ2

k1
∂n

∂L
+ k2

1
1

6
π
nB(L)−KT (L)n (7)

Identifying k1 = (1− b)V̇e and k2 = bV̇e the unknown parameters Ve and b can be derived

by

V̇e = k1 + k2, (8)

b =
1

k1
k2

+ 1
. (9)

In order to derive adaptation algorithms for affine parameterized models two common

approaches (see [7] and references therein) are:

• parameter estimation using swapping,

• passivity-based parameter estimation.

In the first approach the input and output signals are filtered such that the dynamic esti-

mation problem is converted into a static estimation problem, which can then be solved

using standard gradient or least-squares identification algorithms. The passivity-based

parameter estimation procedure uses a modified plant model containing the estimates

of the uncertain plant parameters. In this contribution the second approach will be used

for online parameter identification. The modified plant model is

∂n̂

∂t
= −

2

πµ2

k̂1
∂n

∂L
+ k̂2

1
1

6
π
nB(L)−KT (L)n̂− c(n̂− n) (10)

here k̂1, k̂2 are the parameter estimates and n̂ is the particle size distribution estimated

from the modified plant model. The parameter c is an additional tuning parameter. The

associated estimation errors are defined as

e = n̂− n, (11)

k̃1 = k̂1 − k1, (12)

k̃2 = k̂2 − k2. (13)

In order to derive the adaptation laws
˙̂
k1 and

˙̂
k2 for the parameter estimates k̂1 and k̂2

the following candidate Lyapunov functional is chosen

V =
1

2

∫

∞

0

e2dL+
1

2γ1
k̃2

1
+

1

2γ2
k̃2

2
, (14)

where γ1 and γ2 are positive real constants. It is important to note that the Lyapunov

function V vanishes for vanishing parameter estimation errors and under the condition

that the particle size distribution of the plant n and the model n̂ converge towards each

other in the L2-norm. Standard Lyapunov stability theory yields that stability can be

achieved guaranteeing that the first time derivative of the Lyapunov functional V neg-

ative semidefinite along the trajectory of (10). Hence, the adaptation laws
˙̂
k1 and

˙̂
k2



Proc. 5th Population Balance Modelling

Conference

PBM2013

11-13 September 2013, Bangalore

should be chosen such that the time derivative of the Lyapunov functional V is rendered

negative semidefinite along the trajectory of (10).

V̇ =
∫

∞

0

e

(

−
2

πµ2

k̃1
∂n

∂L
+ k̃2

1
1

6
π
nB(L)−KT (L)e− ce

)

dL+
1

γ1
k̃1

˙̂
k1 +

1

γ2
k̃2

˙̂
k2 (15)

Choosing the adaptation laws
˙̂
k1 and

˙̂
k2 as

˙̂
k1 =

2γ1
πµ2

∫

∞

0

e
∂n

∂L
dL (16)

˙̂
k2 = −

γ2
1

6
ρπ

∫

∞

0

enB(L)dL (17)

gives for V̇

V̇ = −c

∫

∞

0

e2dL−

∫

∞

0

KT (L)e2dL ≤ 0. (18)

4 Results

For numerical simulation the model equations are discretized in space applying the finite

volume method (1st order upwind flux discretization) with 150 grid points. In a first step it

is assumed that the process is operated at steady state and that the steady state paricle

size distribution n0(L) can be directly measured using for example a Parsum probe. The

model parameters, adaptation gains and the initial parameter guesses k̂1,0 and k̂2,0 used

are given in Table 1.

Plant parameters

A 5 · 106mm2

hnoz 440mm

ε 0.5

V̇e 1.67 · 105mm3

s

b∞ 0.028
L0 0.3mm

L1 0.7mm

K 1.92 · 10−4 1

s

Adaptation parameters

γ1 10−2

γ2 10−6

c 1

k̂1,0 1 · 105

k̂2,0 1 · 103

Table 1: Plant and adaptation parameters

As can be seen in Fig. 3 and 4 k1 and k2 and the associated estimates for V̇e and b

converge reasonably fast. The convergence rate for the parameters k1 and k2 can be

influenced by the adaptation gains γ1 and γ2.
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Figure 3: Convergence of k1 and k2 (top left and right) convergence of
ˆ̇
V e and b̂ (dotted gray)

towards V̇e and b (solid black) (bottom left and right)

Figure 4: Convergence of k1 and k2 (top left and right) convergence of
ˆ̇
V e and b̂ (dotted gray)

towards V̇e and b (solid black) (bottom left and right) on a smaller time scale
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5 Conclusion

In this contribution online parameter estimation of fluidized bed spray granulation has

been studied. It has been shown that the proposed adaptation laws allow a sufficiently

fast estimation of the unknown parameters. Future work will be concerned with robust-

ness with respect to measurement noise, real plant experiments and the application of

the proposed adaptation laws in a control scheme.
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