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Understanding the responses of plant populations dynamics to climatic variability is 
frustrated by the need for long-term datasets. Here, we advocate for new studies that 
estimate the effects of climate by sampling replicate populations in locations with simi-
lar climate. We first use data analysis on spatial locations in the conterminous USA to 
assess how far apart spatial replicates should be from each other to minimize temporal 
correlations in climate. We find that on average spatial locations separated by 316 km 
(SD = 149 km) have moderate (0.5) correlations in annual precipitation. Second, we 
use simulations to demonstrate that spatial replication can lead to substantial gains in 
the range of climates sampled during a given set of years so long as the climate cor-
relations between the populations are at low to moderate levels. Third, we use simula-
tions to quantify how many spatial replicates would be necessary to achieve the same 
statistical power of a single-population, long-term data set under different strengths 
and directions of spatial correlations in climate between spatial replicates. Our results 
indicate that spatial replication is an untapped opportunity to study the effects of 
climate on demography and to rapidly fill important knowledge gaps in the field of 
population ecology.

Keywords: climate vulnerability assessment, demography, power analysis, sample size, 
sampling design, space-for-time substitution

Introduction

Understanding the responses of biodiversity to climate drivers is necessary to mitigate 
and adapt to climate change (Urban et al. 2016). In recent years, the field of ecologi-
cal forecasting has experienced substantial theoretical and applied growth (Lewis et al. 
2023). These forecasts on population dynamics are necessary to assess species extinction 
risk (Mace et al. 2008) and predict range shifts (Schurr et al. 2012). However, forecast-
ing the effects of climate on populations remains elusive. This plausibly occurs because 
it takes 20–25 years of data to sufficiently describe the relationship between climate 
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and demography (Teller et al. 2016, Tenhumberg et al. 2018). 
This large replication is necessary to sample a sufficiently wide 
range of climatic conditions and to increase statistical power.

We have important knowledge gaps in population ecol-
ogy that cannot wait 20–25 years to be filled. Our recent 
synthesis showed that knowledge on climate–-demography 
relationships for plants is particularly poor for the species-
rich tropics, and for species with extreme generation times 
(Compagnoni et al. 2021b). We need immediate research tar-
geting these locations and plant life histories. As most plant 
ecologists are at young career stages, fostering our knowledge 
of climate-demography relationship requires engaging doc-
toral researchers and postdoctoral associates. However, this 
will not happen in case projects focused on climate–demog-
raphy relationships last for decades.

We propose that new studies should prioritize spatial over 
temporal replication to assess the demographic responses of 
a species to climate. Having both spatial and temporal data 
allows collecting a high sample size in a relatively short period 
of time. Spatial sampling increases our statistical power by 
increasing the range of climates sampled per unit time, and 
allowing us to ‘see through the noise’ caused by non-climatic 
factors. The range of climates sampled increases as the dis-
tance between populations decreases the correlation of yearly 
climatic anomalies among them.

We are not advocating a ‘space-for-time substitution’, but 
to estimate the short-term effects of climate by prioritizing 
spatial versus temporal replication. Space-for-time substitu-
tions infer the long-term effects of climate on plant popula-
tions (Blois et al. 2013). These long-term effects are typically 
larger than short-term climate effects, possibly because their 
magnitude reflects indirect effects (e.g. on biophysical condi-
tions, Elmendorf  et  al. 2012). Instead, short-term climatic 
effects are directly relevant to inform the management and 
conservation of populations during the upcoming cen-
tury of rapid climate change (Compagnoni et al. 2021a, b, 
Hunter et al. 2010). Here, we therefore advocate to replicate 
sampling across populations that occur in similar climates, 
and to use this spatial data as replicates of the same temporal 
process. This recommendation relies on the assumption that 
in similar environments, plant populations should respond 
similarly to climate anomalies. Such assumption has so far 
motivated much research on the demography across species 
ranges (Morley et al. 2017, Kleinhesselink and Adler 2018). 
However, to our knowledge, no study on climate–demogra-
phy relationships has yet prioritized spatial replication across 
sites with similar climatic conditions.

In this manuscript, we show the opportunities of spatial 
replication in climate–demography studies through data anal-
ysis and simulation. First, we assess how far apart populations 
must be from each other to attenuate temporal correlations in 
climate using gridded climatic data from the conterminous 
USA. Second, we consider how sampling design can maxi-
mize the range of climates captured during a study. To do so, 
we estimate how the range of climates sampled depends on 
the climate correlations among the populations and the study 
duration (between five and 30 years). Third, we use simulation 

to quantify the statistical power of a climate-demography 
relationship across sampling designs that vary in the number 
of spatial and temporal replicates, and in the strength of spa-
tial correlations in climate between populations. In this simu-
lation, we also address cases in which populations respond 
differently to climate. Based on these results, we make recom-
mendations for new demographic data collection efforts.

Material and methods

Spatial correlation in climate

To understand how spatial correlation in climate depends on 
the distance between sites, we estimate the spatial correla-
tion of annual climate in the conterminous United States of 
America (USA), a large and climatically heterogeneous section 
of terrestrial environments. We downloaded monthly temper-
ature and precipitation data for the conterminous USA from 
the CHELSA database (Karger et al. 2017, 2018). CHELSA 
data is accurate on varied topographic terrain, and gridded 
climatic data generally correlates strongly with weather station 
data (Behnke et al. 2016). We downloaded data between 1979 
and 2013 following a regular grid of 0.5°, for a total of 3261 
locations. For each location, we calculated annual temperature 
means, annual precipitation sums, and computed their stan-
dardized yearly anomalies (z-scores, henceforth ‘anomalies’).

For each location, we calculated the average distance at 
which the correlation in yearly climate anomalies is expected 
to decrease to 0.5 or lower. To do so, we calculated the corre-
lation between the 35 annual anomalies at a location, and the 
same anomalies observed at the remaining 3260 locations. 
Then, we fit a local polynomial regression using observed cor-
relations as a response variable, and distance from the original 
location as predictor. The predictions of this local regression 
identified the distance at which the correlation in climate 
anomalies is expected to be 0.5 or lower. Finally, we produced 
heatmaps showing, for each location, the average predicted 
distance at which the correlation in climatic anomalies is 0.5 
or lower.

To provide a sample of the raw data we used for this anal-
ysis, we show the data referred to five reference locations. 
We picked these locations subjectively, locating them in the 
southwestern coast, northwestern coast, northeastern coast, 
southeastern coast, and in the center of the USA. For each 
location, we first plotted the correlation between climatic 
anomalies versus the distance from the reference location, 
including the average prediction of the polynomial regression 
summarizing this relationship. Then, we produced heatmaps 
showing how the climatic anomalies observed across the USA 
correlated with the reference location.

Range of climates sampled with different sampling 
designs

We performed simulations to understand how the range of 
climate anomalies sampled changes depending on temporal 
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replication, spatial replication, and the spatial correlation 
of climatic anomalies. We estimated the range of climatic 
anomalies sampled at two sites using a multivariate normal 
(MVN) distribution:

X ~
r
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where X is an n by 2 matrix of climate anomalies at two sepa-
rate sites, n is the temporal replication of the study, ρ repre-
sents the correlation between the climatic anomalies of the 
two sites. The parameters of the MVN distribution show 0 
for the means, and diagonal elements of 1 for the variance, in 
order to simulate a series of anomalies. When simulating the 
climate at a single site, we needed a single series of climate 
anomalies, so we substituted Eq. 1a with X ~ Normal (0,1). 
To obtain RangeX, the expected range of X values (Eq. 1b), 
we simulated Eq. 1a 1000 times across n values ranging from 
two to 30 in increments of one, and across a series of ρ values 
of 0, 0.5, 0.95 and one. Finally, we calculated the mean of 
RangeX across each of these 1000 replicate simulations.

Statistical power for climate–demography 
relationship with different sampling designs

We used simulations to quantify the statistical power of the 
relationship between climate and population growth rate 
for different spatio-temporal sampling designs and different 
spatial correlations in climate. Starting from a case with two 
separate sites,
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where X is an n by 2 matrix of normally distributed climatic 
anomalies, n refers to temporal replicates, Ŷis  is the average 
prediction of the model referred to site s and year i, β0 is the 
intercept of the linear model, β1 is the slope, and Yis repre-
sents the observed log population growth rate. Yi is a log pop-
ulation growth rate because we have synthetic estimates of 
climatic effects on this variable (Compagnoni et al. 2021b), 
because it is the central focus of demographic theory (Sibly 
and Hone 2002), and because it is normally distributed, 

facilitating simulations and their interpretation. For this and 
subsequent simulations we used a β1 value of 0.05, and a Ɛ 
value of 0.15 to reflect empirical estimates from 162 plant 
populations (Compagnoni et al. 2021b). We simulated the 
process described in Eq. 2 1000 times using study durations, 
n, of three, four and five years, correlations ρ of 0.95 and 0.5, 
0 and −0.5, and a number of spatial replicates of two, 10, 20, 
30, 40 and 50. We divided spatial replicates in two subsets, 
and assigned each subset to one of the two series of climatic 
anomalies simulated by Eq. 2. For example, when spatial rep-
licates were 50, we subdivided these replicates in two groups 
of 25 replicates, each group experiencing identical climate. 
We used low values of n to reflect that the median length 
of demographic studies of plants is four years (Salguero-
Gómez et  al. 2015). This sampling effort likely reflects the 
length of many PhD programs.

As an alternative, we also simulated assuming a single cen-
sused population, using study durations of 20 and 30 years. 
This simulation was meant to represent the handful of single 
site, long-term studies found in the literature (Chu  et  al. 
2016). In these simulations, we substituted Eq. 2a with X ~ 
Normal (0,1). We calculated power as the proportion of the 
1000 simulations for which β1 had a p-value below 0.05. This 
power analysis based on simulation is a straightforward way 
to quantify how the uncertainty of model estimates is influ-
enced by the sampling design.

The power estimate described above assumed that β1, in 
Eq. 2b, were the same for each population. Therefore, we 
also addressed the sensitivity of our power estimates to spa-
tial variation in β1. We ran all of our analyses in R ver. 4.0.2 
(www.r-project.org). We fit polynomial regressions using the 
R function loess, and we produced spatial plots using package 
ggmap (Kahle and Wickham 2013). We ran the analyses on 
the spatial correlation in climate using a high-performance 
computing cluster.

Results

Spatial correlation in climate

In the conterminous USA annual temperature anomalies 
are strongly correlated even at relatively large (e.g. 500 km, 
Supporting information) distances. The correlation between 
precipitation anomalies is less strong, and it decays more rap-
idly with distance (Supporting information). In the conter-
minous USA, our loess models predict that the distance to 
reach a correlation of 0.5 is on average 316 km (SD = 149 
km) for precipitation and 1460 km (SD = 428 km) for tem-
perature. However, there is substantial heterogeneity in the 
decay of correlation for each location (Fig. 1). Considering 
the 5th and 95th percentiles of the distances at which the 
correlation of climate anomalies is predicted to be 0.5, these 
range from 52 to 568 km for precipitation, and from 868 to 
2196 km for temperature. Sites with a predicted correlation 
of zero are on average always at least 1000 km apart: only 
5% of the predicted distances at which the correlation is zero 
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have a distance equal to or less than 1000 and 1920 km for 
precipitation and temperature, respectively.

Range of climates sampled with different sampling 
designs

Spatial replication can lead to substantial gains in the range 
of climates sampled during a given set of years so long as the 
climate correlations between populations are at low to inter-
mediate levels. To reach a range of ± 2 standard deviations at 
a single site, one would on average need 27 years of data. This 
number of years decreases to 20 when using two sites whose 
climate has correlation 0.9, and 15 when two sites have cor-
relations 0.5 (Supporting information).

Statistical power for climate-demography 
relationship with different sampling designs

Our power analysis indicates that spatial replication greatly 
increases the power to detect a relationship between climate 
and population growth rate (Fig. 2). The statistical power of 
very long time series for a single site is comparable to that of 
datasets with high spatial replication. One site sampled for 
20 and 25 times provides a statistical power of about 30 and 
41%, respectively. These two statistical powers are reached 

with just three temporal samples distributed across, respec-
tively, 10 and 20 spatial replicates experiencing medium to 
highly correlated climate (0.5, 0.95). With four temporal 
samples and 10 spatial replicates, a statistical power of 40% 
is reached with climate correlation 0.95; with five temporal 
samples and 10 spatial replicates, statistical power always 
exceeds 40%. Lowering climatic correlation between popu-
lations from 0.95 to 0.5 slightly increases statistical power: 
depending on the number of temporal samples and spatial 
replicates, increases in statistical power vary from 4 to 8% 
(Fig. 2).

Variation in the effect of climate on demography (rep-
resented by β1 values) did not noticeably affect statistical 
power (Supporting information). Statistical power remained 
unchanged, reflecting that is was influenced by the average 
β1, which was still 0.05, rather than its variation.

Discussion

Until recently, understanding the response of plant species 
to climatic variation has relied on either long-term monitor-
ing efforts, which are rare (Salguero-Gómez et al. 2015), or 
on responses of plant populations to spatial climate gradients 
(‘space-for-time substitutions’, Blois et al. 2013), which are 

Figure 1. The correlation between temperature and precipitation anomalies decays slowly with distance. The heatmaps show for each grid 
cell, the average distance at which the correlation in temperature (A) and precipitation (C) anomalies decreases to 0.5 or lower. These aver-
age distances are estimated using a local regression (loess) model.
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affected by several confounding factors. Specifically, spatial 
climatic gradients do not measure the direct effect of climate 
on populations, because they encompass substantial changes 
in community composition (Whittaker 1970), and biophysi-
cal factors (Shaver et al. 2000). Fortunately, our power analy-
sis shows that we can propel our understanding of species 
responses to climate using spatial replicates that come from 
sites with similar long-term average climates.

We argue that using numerous spatial replicates in studies 
of demographic responses to climate is an opportunity that 
should be exploited urgently by conservation scientists. Our 
power analysis suggests that large spatial replication allows 
obtaining estimates of climate effects in as little as three years. 
This short temporal horizon would allow early career research-
ers or distributed networks to study the effects of climatic 
variability on populations. Such abundance of investigators 
would facilitate ameliorating the taxonomic, geographic, and 
life-history biases present in current data (Compagnoni et al. 
2021a, b). The result would encourage the development and 
improve the quality of climate change vulnerability assess-
ments. The IUCN recommends evaluating vulnerability 
by focusing on time series of population data (Mace  et  al. 
2008). These data can be readily used to estimate the effects 
of climate on population dynamics and, as a result, climate 
vulnerability (Hunter  et  al. 2010, Jenouvrier  et  al. 2022). 
However, given that long-term population data are rare in 
plants (Salguero-Gómez et al. 2015), large spatial replication 
provides an opportunity to perform such population-based 
climate vulnerability assessments.

We suggest new studies focusing on sites with similar cli-
mate located at the leading or rear edge of species ranges, 

because these locations are ecologically more important, and 
because they should provide higher statistical power. Leading 
or rear range edges are the locations where populations are 
most sensitive to climate (Morley et al. 2017, Amburgey et al. 
2018, Kleinhesselink and Adler 2018); accordingly, range 
edges also show the highest variability in population growth 
rates (Sexton et al. 2009, Csergő et al. 2017, Guyennon et al. 
2023). From an ecological perspective, such high climate 
sensitivity provides an opportunity to understand range 
limit formation and to forecast range shifts (Parmesan 2006, 
Ehrlén and Morris 2015). From a statistical point of view, a 
higher sensitivity to climate increases statistical power.

We believe that the assumptions of our power analysis 
are likely to hold, as they reflect current ecological under-
standing. First, the assumption that populations experienc-
ing the same average climate respond similarly to climate 
variation is well supported in the literature (Morley  et  al. 
2017, Amburgey  et  al. 2018, Kleinhesselink and Adler 
2018). Moreover, our power analysis is robust to relaxing this 
assumption (Supporting information). Second, the assump-
tion that residual variance (represented by Ɛ in Eq. 2c) is 
constant across replicates also reflects current knowledge. 
Specifically, review (Sexton et al. 2009) and synthesis studies 
(Csergő et al. 2017, Guyennon et al. 2023) indicate that the 
variability of population growth rates should become larger 
only at range edges. Third, so long as the spatial replicates are 
sufficiently spaced (e.g. separated by dispersal), they should 
meet the assumption of statistical independence. In princi-
ple, statistical independence might not hold in response to 
unobserved large-scale drivers such as herbivores with large 
foraging ranges, or epidemic outbreaks. For this reason, we 
recommend testing for the presence of spatial autocorrelation 
in the residuals.

To improve ecological inference, we suggest that research-
ers exploit the covariates that might mediate demographic 
responses to climate, such as soil conditions (Nicolè  et  al. 
2011) or competition (Alexander  et  al. 2015). In single-
species studies, these mediators cannot be taken into con-
sideration, putting the external validity of the results into 
question. Spatial replication allows to quantify and test the 
importance of these mediating factors. However, because the 
effect of these mediators is assessed by estimating an interac-
tion, this requires a concomitant increase in sample size (Ch. 
16 in Gelman et al. 2020).

To detect spatial autocorrelations that might occur due to 
unexpected, large-scale processes such as epidemics, we sug-
gest that spatial replicates should be sampled randomly rather 
than on a regular grid (Fortin et al. 1989). Detecting spatial 
autocorrelation is important, because it would indicate that 
the spatial replicates are not fully independent. A large spac-
ing between groups of sites (e.g. 100 km) would contribute 
to minimize such potential autocorrelation, while minimiz-
ing the climatic correlation among sites. This spacing might 
be possible for a distributed network of researchers, but it 
may be prohibitively expensive or logistically difficult for a 
single doctoral researcher. We suggest that, given the rela-
tively small effect of climate correlation on statistical power, 

Figure 2. Spatial replication provides a statistical power similar to, 
or higher than, temporal replication. Plot showing statistical power 
on the y-axis against spatial replication on the x-axis. Symbols show 
temporal replications of three (circles), four (triangles), five 
(squares), 20 (cross), and 30 (crossed square). The color of symbols 
refers to the correlation among spatial replicates. This correlation is 
one for the simulations with a single spatial replicate. The dashed 
horizontal line denotes a statistical power of 80%.
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smaller spacing between populations might be a viable option 
in many real world situations.

Our simulations and analyses ignored the importance 
of microclimate which, however, might still be leveraged 
in spatially replicated studies. Recent studies highlight 
the importance of microtopography (Scherrer and Körner 
2010), exposure (Ackerly  et  al. 2020), and vegetation type 
(Sanczuk  et  al. 2023) on plant responses to climate. It is 
unlikely that nearby sites experiencing different microcli-
mates will also observe substantially different annual climatic 
anomalies. However, microclimates experience different 
absolute climatic conditions (e.g. minimum and maximum 
temperatures, Bennie et al. 2008). These conditions can be 
leveraged in studies that use climatic predictors with a direct 
physiological interpretation, such as growing degree days 
(Körner  et  al. 2023). While such physiological predictors 
require daily weather data, these can be measured via data 
loggers, or derived from gridded climatic data (Maclean et al. 
2019, Kearney and Porter 2020).

The spatially replicated sampling we propose here is a 
practical solution to estimate climate–demography rela-
tionships and rapidly fill important knowledge gaps in the 
field of population ecology. However, monitoring 20 or 
more populations simultaneously is a large task for a single 
researcher. Such spatial replication might become more fea-
sible through collaborative research networks (Villellas et al. 
2021), or through unmanned aerial vehicles (UAV). UAV 
might make spatially replicated plant demographic data 
increasingly easy to obtain. For example, in both grassland 
and forest vegetation, UAV can identify individuals of a focal 
species (Schmidt et al. 2017, Bogdan et al. 2021, Allen et al. 
2023), and quantify vegetation structure (Zhang et al. 2021, 
Coverdale and Davies 2023). We believe that the sampling 
choices we advocate in this article will contribute to the mat-
uration of population ecology and its links to conservation 
science, functional ecology and macro-ecology.
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