Genomweite Assoziationsstudien zu morphologischen Merkmalen und Ligningehalt von Gerstenpedunkeln anhand der NAM-Population HEB-25

Dissertation

zur Erlangung des Doktorgrades der Agrarwissenschaften (Dr. agr.)

der

Naturwissenschaftlichen Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik

der Martin-Luther-Universität Halle-Wittenberg

vorgelegt von

Sebastian Zahn

- 1. Gutachter: Prof. Dr. Klaus Pillen
- 2. Gutachter: Prof. Dr. Jens Léon

Verteidigt am 04.12.2023

Für Opa

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mir im vergangenen, nunmehr beinahe halben Jahrzehnt geholfen haben, dieses Projekt zu verwirklichen.

An erster Stelle danke ich Prof. Dr. Klaus Pillen dafür, mir die Möglichkeit gegeben zu haben in seiner Arbeitsgruppe zu arbeiten. Des Weiteren danke ich Dr. Andreas Maurer. Danke für deine große Hilfe bei all meinen zahlreichen Fragen, deiner Geduld bei all unseren Rücksprachen und dem unermüdlichen und bis ins kleinste Detail Prüfen meiner Manuskripte, die du in Windeseile mit Kommentaren gespickt zu mir zurückgeschickt hast.

Natürlich will ich auch all jene in meinem Dank nicht aussparen, die in unserer Arbeitsgruppe nicht nur meine Arbeitstage mit ihrer Art als gute Weggefährten bereichert haben, sondern mir auch mit Ratschlägen immer wieder zu Seite standen (Danke: Paul Herzig, Antonia Lisker, Mathias Gemmer, Leonard Sommer, Laura Schmidt, Mathias Wiegmann, Wiebke Sannemann, Steven Dreißig, Sebastian Müller, Anne-Laure Tissier, Nadja Sonntag, Gabriele Mennecke, Erika Schumann, Vera Draba). Danke auch an das Team der Versuchsstation (Roswitha Ende, Jana Müglitz, Markus Hinz und Martina Fuhrmann) für die Ausführung und Begleitung während der Feldversuche.

Für die Möglichkeit, Lignin im Hochdurchsatz in Jülich messen zu dürfen, danke ich Dr. Holger Klose und seinem tollen Team (Sabine Dietrich, Stefan Robertz, Carola Mohl).

Genauso danke ich dem QuintLab für den monatelangen Zugang zu ihrem Mikroskop für die Vermessung der Pedunkel und Dr. rer. nat. Corinna Brandsch, Prof. Dr. rer. nat. Wim Wätjen und Sabrina Wille für den Zugang zu ihren Laboren bis unser eigenes Labor soweit ausgestattet war, die Ligninmessungen bei uns durchzuführen.

Auch will ich der Heerschar an Studenten danken, die als HiWis (Hilfswissenschaftler), Bacheloranten und Masteranden unermüdlich mit mir die Flut an repetitiven Arbeitsschritten auf dem Feld und im Labor in den Jahren bewältigt haben. Ohne euch wäre in dieser Zeit der Aufbau solch großer Datensätze nicht möglich gewesen. Vielen Dank auch an das Fraunhofer Institut IFF in Magdeburg und im Besonderen an Dr. Andreas Backhaus, der die Auswertung der hyperspektralen Daten möglich gemacht hat.

Zu guter Letzt will ich meiner Frau und Kollegin Tanja Zahn danken, die mir immer mit Rat und Tat zur Seite stand und mir fleißig in den Hintern getreten hat, wenn ich getrödelt habe.

Inhaltsverzeichnis

Inhalts	verze	eichnis	I	
Abbildungsverzeichnis III				
TabellenverzeichnisIV				
Tabelle	enve	rzeichnis des Anhangs	. V	
Abkürz	zungs	sverzeichnis	VI	
1 Eir	nleitu	ing	. 1	
1.1	Do	mestikation der Gerste	. 3	
1.2	Ma	rkergestütze Selektion	. 4	
1.3	Ne	sted association mapping (NAM)	. 4	
1.4	На	lle Exotic Barley 25	. 5	
1.5	Ge	nomweite Assoziationsstudien (GWAS)	. 6	
1.6	Pedunkel6			
1.7	Lignin7			
1.8	Hy	perspektraler Ansatz	. 8	
1.9	Zie	l der Arbeit	. 9	
2 Ma	ateria	al und Methoden	11	
2.1	Pfla	anzenmaterial und Feldversuche	11	
2.2	Ph	änotypisierung	12	
2.2	2.1	Pedunkelmorphologie	12	
2.2	2.2	Ligningehalt des Pedunkels	14	
2.3	Sta	atistik und Signifikanztests	20	
2.4	Ge	nomweite Assoziationsstudie (GWAS)	21	
2.5	Exc	ome Capture Sequenzierung	22	
3 Erg	gebn	isse	24	
3.1	Pe	dunkelmorphologie	24	
3.1	3.1.1 Beschreibende Statistik			

	3.1	.2	Korrelationen der Pedunkelmorphologie	26
	3.1	.3	GWAS (Pedunkelmorphologie)	27
	8.2	Нур	perspektraler Ansatz der Ligninmessung in Pedunkeln und GWAS	29
	3.2	.1	Beschreibende Statistik des Ligningehaltes (TGAL)	29
	3.2	.2	Korrelationen des TGAL 2018	30
	3.2	.3	GWAS anhand von TGAL	31
	3.2	.4	Histologie	35
4	Dis	kuss	ion	36
Z	l.1	Pec	dunkelmorphologie	36
	4.1	.1	Beschreibende Statistik	36
	4.1	.2	Korrelationen der Pedunkelmorphologie	37
	4.1	.3	GWAS (Pedunkelmorphologie)	38
	4.1	.4	Einfluss der Pflanzenentwicklung auf die Pedunkelmorphologie	45
Z	.2	Нур	perspektraler Ansatz der Ligninmessung in Pedunkeln und GWAS	46
	4.2	.1	Beschreibende Statistik des Ligningehaltes (TGAL)	47
	4.2	.2	Korrelationen des TGAL 2018	48
	4.2	.3	GWAS anhand von TGAL	49
	4.2	.4	Histologie	58
5	Faz	zit		59
6	Lite	eratu	rverzeichnis	61
7	Anł	nang		67
7	' .1	Bes	schreibende Statistik der Pedunkelmorphologie	67
7	' .2	Bes	schreibende Statistik des Ligningehaltes (TGAL)	71
7	' .3	Aus	Exome Capture Daten abgeleitete Polymorphismen	72
7	' .4	ΤG	AL Kandidatengen-Suche	77
8	8 Eidesstattliche Erklärung			
Le	oens	lauf.		83

Abbildungsverzeichnis

Abbildung 1 Schematische Darstellung der Pflanzenzellwand mit Fokus auf die
Zusammensetzung
Abbildung 2 Entwicklung der »Nested Association Mapping« (NAM) Population HEB-
25
Abbildung 3 Variation des Stängel-Durchmessers zwischen ausgewählten HEB-25-
Linien und des Eliteelters "Barke". Die Auswahl besteht aus Halmen der Linien mit dem
größten, kleinsten und durchschnittlichen Durchmesser
Abbildung 4 Variation der Dicke des Pedunkelgewebes zwischen ausgewählten HEB-
25-Linien und des Eliteelters "Barke". Die Auswahl besteht aus Halmen der Linien mit
der größten, kleinsten und durchschnittlichen Gesamtdicke des Pedunkelgewebes. 13
Abbildung 5 Beispiel einer Querschnittsmessung der Gesamtdicke des
Pedunkelgewebes (WAL) und des Pedunkeldurchmessers (DIA) 14
Abbildung 6 Hyperspektrale Phänotypisierungs-Plattform
Abbildung 7 Häufigkeitsverteilung gemessener Merkmale der Pedunkelmorphologie.
Abbildung 8 Korrelationsdiagramme (Pearson-Korrelationskoeffizienten) von
Pedunkelmerkmalen mit Entwicklungs- bzw. Ertragsmerkmalen
Abbildung 9 Manhattan-Plot, der die Ergebnisse der kreuzvalidierten genomweiten
Assoziationsstudie (GWAS) für die Stängelmorphologie-Merkmale 2017 und 2018
zusammenfasst
Abbildung 10 Boxplot der TGAL-Gehalte der einzelnen Familien, der Barke-
Wiederholungen und der gesamten HEB-Linien gemeinsam
Abbildung 11 Korrelationstabelle aller im Jahr 2018 bonitierten Pedunkel-,
Entwicklungs- und Ertragsmerkmale an der HEB-25 auf dem Kühnfeld
Abbildung 12 Manhattanplot der kreuzvalidierten genomweiten Assoziationsstudie
(GWAS) für den TGAL Gehalt in Gerstenpedunkeln der HEB-25-Population
Abbildung 13 Ligninverteilung im Querschnitt des Gerstenstängels
Abbildung 14 Tagesniederschlag und Lufttemperatur der Wetterstation Kühnfeld in
Halle
Abbildung 15 Der Hauptbiosyntheseweg zu den Monolignolen p-Coumaryl-, Coniferyl-
und Sinapylalkohol (Boerjan et al., 2003) 52

Tabellenverzeichnis

Tabelle 1 Feldversuchsmanagement
Tabelle 2 Spezifikationen der Hyperspektralkamera
Tabelle 3 Deskriptive Statistik und BLUEs (best linear unbiased estimates) der NAM-
Population HEB-25 und Barke für jedes Jahr und über beide Umgebungen hinweg.25
Tabelle 4 Heritabilitäten (im weiteren Sinne) über alle Genotypen der Merkmale DIA,
WAL und AREA mit entsprechenden Varianzkomponenten
Tabelle 5 Mittlere Anzahl signifikanter SNPs und kreuzvalidiertes R ² für diese SNPs,
für die Merkmale DIA, WAL und AREA 28
Tabelle 6 Leistung des Modells zur Schätzung von TGAL-Gehalt in Gerstenpedunkeln.
Tabelle 7 Deskriptive Statistik der TGAL Ergebnisse
Tabelle 8 Übersicht der Leistung und der gefundenen SNPs der kreuzvalidierten
GWAS
Tabelle 9 Familieneffekte für TGAL für alle Marker mit einer Detektionsrate >20 33
Tabelle 10 Familieneffekte für TGAL. 34
Tabelle 11 Durchschnittlicher Effekt des Wildallels (DR > 20) in ausgewählten QTL-
Regionen
Tabelle 12 Effektvergleich von Blühzeitpunkt (HEA) QTL und entsprechenden
Pedunkel-QTL-Regionen
Tabelle 13 BLAST Ergebnis von OsCCR-Genen in Gerste 55
Tabelle 14 Aus der aktuellen Literatur und durch BARLEX-Recherche bekannte
COMT-Gene und COMTL-Gene (COMT-ähnliche Gene) mit ihrer Position und
Annotation in der Gerste

Tabellenverzeichnis des Anhangs

Tabelle A1 Deskriptive Statistik der Pedunkelmorphologie je Familie. 67			
Tabelle A2 Deskriptive Statistik der TGAL Ergebnisse je Familie			
Tabelle A3 Legende der Nukleotid Codes nach IUPAC 72			
Tabelle A4 Aus Exome Capture Daten abgeleitete Polymorphismen für PPD-H1 auf			
Chromosom 2H (HORVU.MOREX.r2.2HG0088300.1)73			
Tabelle A5 Aus Exome Capture Daten abgeleitete Polymorphismen für HvCEN auf			
Chromosom 2H (HORVU.MOREX.r2.2HG0136910.1)74			
Tabelle A6 Aus Exome Capture Daten abgeleitete Polymorphismen für Expansin A5			
auf Chromosom 2H (HORVU.MOREX.r2.2HG0153910.1)			
Tabelle A7 Exome Capture Daten für HvGA20ox2 auf Chromosom 3H			
(HORVU.MOREX.r2.3HG0256590.1)77			
Tabelle A8 Gene im Intervall von +/- einer Million Basenpaaren um den Marker			
JHI_Hv50k_2016_72531 auf Chromosom 2H bei 21.637.130 bp (Colmsee et al.,			
2015)			
Tabelle A9 Gene im Intervall von +/- einer Million Basenpaaren um den Marker			
JHI_Hv50k_2016_163305 auf Chromosom 3H bei 32.366.059 bp (Colmsee et al.,			
2015)			

Abkürzungsverzeichnis

Abkürzung	Englische Bezeichnung	Deutsche Bezeichnung
4CL	4-Coumarate:CoA ligase	4-Coumarat:CoA Ligase
AIR	alcohol-insoluble residue	Alkoholunlöslicher Rückstand
AM	Association mapping	Assoziationskartierung
AREA	Area of peduncle cross- section	Fläche des Pedunkelquerschnitts
ВВСН	Scale for plant development stages	Skala für pflanzliche Entwicklungsstadien
BLAST	Basic Local Alignment Search Tool	
BLUEs	best linear unbiased estimates	beste lineare unverzerrte Schätzung
bp	basepair	Basenpaar
СЗН	<i>p</i> -Coumarate 3- hydroxylase	<i>p</i> -Coumarat 3-Hydroxylase
C4H	Cinnamate 4-hydroxylase	Cinnamat 4-Hydroxylase
CAD	Cinnamyl alcohol dehydrogenase	Zimtalkoholdehydrogenase
CCoAOMT	Caffeoyl-CoA <i>O</i> - Methyltransferase	Kaffeeoyl-CoA-O-Methyltransferase
CCR	Cinnamoyl-CoA reductase	Cinnamoyl-CoA Reduktase
Chr	Chromosome	Chromosom
COMT	Caffeic acid <i>O</i> - methyltransferase	Kaffeesäure-O-Methyltransferase
COMTL	Caffeic acid <i>O</i> - methyltransferase like	Kaffeesäure-O-Methyltransferase ähnlich

CV	Coefficient of Variation	Variationskoeffizient
CV.	Cultivar	Kultivar
DIA	Diameter of peduncle	Pedunkeldurchmesser
DR	Detection Rate	Detektionsrate
EAR	Ears per Square metre	Ähren pro Quadratmeter
F5H	Ferulate 5-Hydroxylase	Ferulat-5-Hydroxylase
Fam. Effekt	Family effect	Familien Effekt
FUN0	No fungizide treatment variant	Fungizidfreie Variante
FUN1	Fungizide treatment variant	Fungizidbehandelte Variante
GEA	Grains per ear	Körner pro Ähre
gen. Position	Genetic position	genetische Position
GRA	Grain area	Kornfläche
GRL	Grain length	Kornlänge
GRW	Grain weight	Korngewicht
GWAS	Genome-wide association study	Genomweite Assoziationsstudie
Н.	Hordeum (scientific name)	Hordeum (wissenschaftlicher Name)
H²	Broad-Sense-Heritability	Broad-Sense-Heritabilität
НСТ	<i>p</i> -Hydroxycinnamoyl- CoA:Quinate/	<i>p</i> -Hydroxycinnamoyl-CoA: Chinat/
HEA	Heading	Entwicklungstage bis Blühzeitpunkt
HEB	Halle Exotic Barley	Halle Exotic Barley (Eigenname)
HEI	Height	Pflanzenhöhe

HORVU	Gene name within pseudo molecules of barley cv. Morex	HORVU-Gennamen innerhalb der Pseudomolekülen der Gerste cv. Morex
LD	Linkage Disequilibrium	Kopplungsungleichgewicht
LM	Linkage mapping	Kopplungsanalyse
LOD	Lodging	Lagerneigung
MAT	Maturity	Entwicklungstage bis Reife
Max	Maximum	Maximum
Min	Minimum	Minimum
MREr	Mean relative Error	Mittlerer Relativer Messfehler
Ν	Number of samples	Größe der Stichprobe
NAM	Nested association mapping	
N _{min}	Available mineralised Nitrogen	verfügbarer mineralisierter Stickstoff
OD	Optical Density	optische Dichte
PAL	Phenylalanine ammonia- lyase	Phenylalanin-Ammoniak-Lyase
r	Pearson correlation coefficient	Korrelationskoeffizient nach Pearson
phy. Position	Physical Position	physikalische Position
QTL	Quantitative Trait Locus	Quantitativen Merkmalsregion
R ²	Coefficient of determination	Bestimmtheitsmaß
RMSEr	Relative root mean square error	Wurzel mittlerer quadratischer Fehler
SD	Standard Deviation	Standard Abweichung

SHO	Shooting	Entwicklungstage bis Schossen
SNP	Single Nucleotide Polymorphism	Einzelnukleotid-Polymorphismus
ssp.	Subspecies	Subspezies
SSR	Simple Sequence Repeats	Mikrosatelliten
TGAL	Thioglycolic acid lignin	Thioglykolsäurelignin / Ligningehaltes des Pedunkels
TGW	Thousand Grain Weight	Tausend Korn Gewicht
VA	Stainless Steel	Edelstahl
WAL	Total thickness of peduncle tissues	Gesamtdicke des Pedunkelgewebes
YLD	Yield	Ertrag

Einleitung

1 Einleitung

Insgesamt wurden 2022 in Deutschland 11,26 Millionen Tonnen Gerste geerntet, davon 1,97 Millionen Tonnen Sommergerste (Statistisches Bundesamt - Destatis, 2022). Das mittlere Korn:Stroh-Verhältnis in den aktuellen deutschen Gerstensorten beträgt 1:0,7. Da 35 % des Gerstenstrohs geerntet werden können, ohne die Humusbilanz negativ zu beeinflussen (Simon, 2006), stehen 2,75 Millionen Tonnen Gerstenstroh als Ressource auf deutschen Feldern zur Verfügung. Damit ist es eine beachtliche Quelle für Biomasse. Das hohe Vorkommen von Lignocellulose in Pflanzen macht sie zur häufigsten Art von terrestrischer Biomasse (Huber *et al.*, 2006). Lignocellulose bildet den Hauptbestandteil der pflanzlichen Zellwand und ist somit der größte Bestandteil des Gerstenstrohs. Es handelt sich um eine kompakte Struktur aus Cellulose (ca. 38 %) und Hemicellulose (ca. 35 %) in enger Verbindung mit Lignin (16 %) (Loqué *et al.*, 2015; Schutyser *et al.*, 2018; Sun *et al.*, 2001) (Abbildung 1).

Die Bioökonomie nutzt lignocellulosehaltige Rohstoffe wie Stroh in vielfältigen Prozessen. Ernterückstände können in Lignocellulose-Bioraffinerien zu Produkten wie Biokraftstoffen, sowie zu hochwertigen Produkten, einschließlich biochemischer Produkte, verarbeitet werden (Giurca and Späth, 2017). In den Boden eingearbeitet, verbessern lignocellulosehaltige Rohstoffe sowohl Bodenstruktur als auch Bodenfruchtbarkeit (D'Hose *et al.*, 2016). Zudem können sie als Futtermittel für wiederkäuende Pflanzenfresser dienen, da diese mithilfe ihrer Pansenmikroben in der Lage sind Energie aus Cellulose und Hemicellulose zu gewinnen, wobei Lignin diesen Prozess zumeist behindert (Sawatdeenarunat *et al.*, 2015). Festzuhalten bleibt, so vielfältig wie die Anwendungen sind, so vielfältig sind auch die Anforderungen an den Rohstoff Gerstenstroh.

Landwirte sind auf eine sichere Getreideernte fokussiert und benötigen stabiles und gesundes Stroh, um einen robusten Pflanzenwuchs zu sichern. Während der Grünen Revolution führte die Einführung von Halbverzwergungsgenen zu kürzeren und kräftigeren Halmen. In der Folge steigerte sich der Kornertrag und Ernteverluste verringerten sich aufgrund eines geringeren Lagerrisikos (Hedden, 2003). Unglücklicherweise können halbverzwergende Gene mit einem Kompromiss bei der ertragsrelevanten Organgröße einher gehen, denn es konnte an halbverzwergten DELLA-Mutanten gezeigt werden, dass Blütenstandsmeristeme kleiner blieben und dadurch das Ertragspotential limitiert wurde (Serrano-Mislata *et al.*, 2017). Nach

1

Schnurbusch (2019) ist an dieser Stelle mehr Grundlagenforschung zu Halmeigenschaften notwendig, um dieses Problem in Zukunft zu lösen.

Abbildung 1 Schematische Darstellung der Pflanzenzellwand mit Fokus auf die Zusammensetzung.

(a) Pektin-, wasserhaltige primäre Zellwand der Dikotyledonen; (b) Verholzte sekundäre Zellwand mit geringem Wasseranteil (Loqué et al., 2015)

Wildgersten zeichnen sich durch einen hohen Anteil an Stroh aus. Besonders ist zudem die große Variabilität der Strohzusammensetzung. Die multiparentale Wildgersten- Nested association mapping (NAM)-Population "Halle Exotic Barley" (HEB-25) (Maurer *et al.*, 2015) wird für Untersuchungen zur Lokalisierung von Genen zur Steigerung der Merkmalskomplexe Ertrag, Qualität, Pathogenresistenz und Umweltstresstoleranz genutzt. Im Rahmen dieser Dissertation werden die Studien auf den Merkmalskomplex Pedunkelmorphologie und Ligningehalt des Pedunkels erweitert. Gene mit Einfluss auf wertgebende Komponenten sollen lokalisiert werden und ihre Eignung zur Implementierung in aktuellen Elitegerstensorten diskutiert werden.

1.1 Domestikation der Gerste

Die Gerste (Hordeum vulgare L.) ist eine von 32 Arten in der Gattung Hordeum. Neben bedeutenden Getreidearten wie Weizen (Triticum aesitvum L.) und Roggen (Secale cereale L.) gehört auch die Gerste zur Unterfamilie der Triticae innerhalb der Familie der Poaceae (von Bothmer, 1995)). Als direkter Vorfahre der Kulturgerste (Hordeum vulgare L. spp. vulgare) gilt Hordeum vulgare L. ssp. spontaneum (K. Koch) Thell (Hsp). Im Allgemeinen ist die Kulturgerste der Hsp recht ähnlich. Die Kulturgerste hat im Vergleich kürzere Halme und Grannen sowie größere Körner an einer kompakteren Ähre. *Hsp* ist im Gegensatz zur Kulturgerste spindelbrüchig (Badr et al., 2000). Der Verlust der Spindelbrüchigkeit wird als wichtigster Schritt in der Domestikation der Gerste gesehen. Der Phänotyp der Nichtbrüchigkeit wird von den rezessiven Allelen der Gene Btr1 und Btr2 bewirkt. Beide Gene bestimmen unabhängig die Expression des Merkmals (Pourkheirandish et al., 2015; Schmid et al., 2018). Die Domestikation der Gerste begann vor rund 10.000 Jahren im Fruchtbaren Halbmond (Badr et al., 2000; Sakuma et al., 2011; Schmidt et al., 2019), einem der Ursprungsgebiete der neolithischen Revolution, bei welcher ihr eine bedeutende Rolle zugesprochen wird (Harwood, 2019). Der Fruchtbare Halbmond spannt sich über Teile Iraks, Syriens, Libanons, Israels, Jordaniens, Ägyptens, Kuwaits, Irans und der Türkei. Das Relief ist zu großen Teilen hügelig bis gebirgig, hinzukommen Steppen und bewaldete Landstriche (von Bothmer, 2003). Neben dem Fruchtbaren Halbmond werden in Tibet (Dai et al., 2012), dem westlichen Mittelmeerraum sowie in Äthiopien (Igartua et al., 2013) weitere Domestikationsorte angenommen. Die stetigen Selektionsprozesse bedingten im Laufe der Zeit eine Fixierung von Genen und führten zu einer Verringerung der genetischen Diversität der Gerste verglichen mit den Wildformen (Russell et al., 2016). Durch die wiederholte Kreuzung genetisch ähnlicher Elite-Sorten konnten die Pflanzen durch den Verlust entsprechender Allele biotischen und abiotischen Stressfaktoren immer weniger entgegensetzen. Dieser "Flaschenhalseffekt" wird zur Erklärung des stagnierenden Fortschrittes in der klassischen Pflanzenzüchtung nicht nur bei Gerste angenommen (Tanksley and McCouch, 1997).

Einleitung

1.2 Markergestütze Selektion

Um aktuelle Gerstensorten an die sich verändernden Klimabedingungen und damit verbundenen Stressoren anzupassen, ist es von Vorteil den Genpool der Wildgersten mit seiner breiten genetischen Diversität heranzuziehen (Barati et al., 2018). Dazu stehen in Genbanken weltweit rund 400.000 Gersten-Akzessionen zur Verfügung (von Bothmer, 2003). Die Nutzung der Wildgersten ist in der klassischen Züchtung erschwert durch Genkopplungen zwischen Kandidatengenen und unerwünschten Genen (Sharma et al., 2018) sowie der Möglichkeit eines durch Genotyp-Umwelt-Interaktionen variablen Phänotypes (Francia et al., 2005). Um das Potential der Wildgersten dennoch ausschöpfen zu können, eignet sich die markergestützte Selektion. Die Vorteile sind die Geschwindkeit und Kosteneffizienz mit der anhand von molekularen Makern gezielt Allele identifiziert werden können (Francia et al., 2005). SNPs (Single Nucleotide Polymorphism) haben sich als Marker für die Hochdurchsatz-Genotypisierung als gut geignet erwiesen. Vorteile hierbei sind ein häufiges Vorkommen, geringe Kosten und ihre im Vergleich einfache Erkennung (Bayer et al., 2017). Auf der Basis von SNPs wurde der 50k Illumina Infinium iSelect SNP-Genotypisierungsarray veröffentlicht, welcher es ermöglicht, im Gerstengenom (mit einer Größe von 5,1 Gigabasenpaaren (Gbp)) Marker präzise zu lokalisieren und mit Genen zu assoziieren (Bayer et al., 2017).

1.3 Nested association mapping (NAM)

Eine NAM-Population wird aus Kreuzungen zahlreicher divergenter Elternlinien mit einem rekurrenten Elter, der an jeder Kreuzung beteiligt ist, erstellt. Dadurch entsteht eine biparentale Substruktur in der Population wie sie auch in der Kopplungsanalyse (Linkage Mapping - LM) zu finden ist. Die erste NAM-Population wurde im Mais etabliert (Yu *et al.*, 2008). An dieser Population konnte gezeigt werden, dass mit dem NAM-Ansatz für komplexe Merkmale die molekulare Variation mit der phänotypischen Variation erfolgreich assoziiert werden kann. Außerdem konnte festgestellt werden, dass mit dieser Art von integrierter Kartierungspopulation, auch QTL mit schwachen Effektstärken gut kartiert werden können (Yu *et al.*, 2008). Der Vorteil von NAM liegt im Synergismus erzeugt durch die Kombination von LM und Assoziationskartierung (Association Mapping - AM). Der Vorteil der hohen statistischen Aussagekraft der Kopplungsanalyse wird mit dem Vorteil der hohen allelischen Diversität und der guten Kartierungsauflösung der Assoziationsanalyse durch den Mehraufwand der Schaffung einer NAM-Population verknüpft (Yu *et al.*, 2008). Diese Vorteile kommen im Folgenden bei der genomweiten Assoziationsanalyse (GWAS) zum Tragen.

1.4 Halle Exotic Barley 25

Die NAM-Population "Halle Exotic Barley 25" (HEB-25) wurde durch Kreuzung der Sommergersten-Elite-Sorte Barke (*Hordeum vulgare* ssp. *vulgare*) mit einem Sortiment von 25 exotischen Gersten-Akzessionen erzeugt (Abbildung 2). Nach Rückkreuzung der resultierenden F1-Pflanzen mit Barke und drei Runden der Selbstung mittels Einkornramsch-Methode (Single-Seed-Descent-Methode), wurden 1.420 BC₁S₃-Linien, aufgeteilt in 25 Familien mit jeweils bis zu 75 Linien, als individuelle Gruppe vermehrt (Maurer *et al.*, 2015).

Abbildung 2 Entwicklung der »Nested Association Mapping« (NAM) Population HEB-25.

Die Population besteht aus 25 Familien mit 1.420 NAM-Linien in der BC_1S_3 -Generation. Pro NAM-Linie wird ein Chromosomenpaar als Doppelbalken dargestellt. Schwarze und farbige Balken stellen Chromosomenpaare von Barke beziehungsweise den exotischen Donoren dar. Auf jedem SNP Locus wird erwartet, dass HEB-25 sich in 71,875% homozygote Barke, 6,25% heterozygote und 21,875% homozygote Donor-Genotypen aufteilt. Entnommen aus Maurer et al. (2015).

Barke (*Hordeum vulgare* L. ssp. *vulgare*) ist eine zweizeilige Sommergerste. Die Braugerste besitzt seit 1996 eine Sortenzulassung. Auch im Wirtschaftsjahr 2019 wurde noch eine Saatgutmenge von 4623 dt anerkannt (Bundessortenamt, 2020). Die exotischen Akzessionen waren 24 *H. vulgare* ssp. *spontaneum*-Akzessionen und eine tibetische *H. vulgare* ssp. *agriocrithon*. Diese Akzessionen wurden von Badr *et al.* (2000) beschrieben, da sie einen großen Teil der genetischen Vielfalt im Domestikationsgebiet der Gerste, dem Fruchtbaren Halbmond, abdecken. Die Herkunftsländer der exotischen Donoren sind Irak, Türkei, Syrien, Libanon, Iran, Afghanistan, Israel und China. Die tibetische *H. vulgare* ssp. *agriocrithon* unterscheidet sich im Wesentlichen durch ihre Mehrzeiligkeit von den anderen zweizeiligen Wildgersten. Als Grund für die Mehrzeiligkeit wird eine Einkreuzung von *Hordeum vulgare* L. ssp. vulgare beschrieben (Badr *et al.*, 2000). Die HEB-25 besteht final hauptsächlich aus 2-zeiliger Gerste in Anlehnung an den rekurrenten Elter Barke, mit Ausnahme der Familie 24, die zurückgeht auf *H. vulgare* ssp. *agriocrithon*, die teilweise 6-zeilige Phänotypen ausbildet.

1.5 Genomweite Assoziationsstudien (GWAS)

Mit dieser Methode können Genorte ausfindig gemacht werden, die mit quantitativen Merkmalen in der Zielpopulation assoziiert sind. Die statistische Aussagekraft der GWAS mit der ein Genort mit einem Merkmal assoziiert werden kann, ist abhängig von einer Reihe von Faktoren. Dazu zählen die Größe und Struktur der Population, die Menge genutzter Marker, die Menge an Loci, die sich auf das untersuchte Merkmal auswirken sowie die Effektgröße und Allelhäufigkeit in der Population. (Visscher *et al.*, 2017). Praktische Anwendung findet die GWAS in der Pflanzenzüchtung, wo gewünschte Allele via GWAS erfasst werden und diese im Folgenden in Elitesorten eingebracht werden. Die Mehrheit der untersuchten Merkmale sind abiotische Stressfaktoren, Ertragsmerkmale und morphologische Parameter (Ibrahim *et al.*, 2020).

1.6 Pedunkel

Beim Pedunkel handelt es sich um den obersten Halmabschnitt direkt unterhalb der Ähre. Bei Gerste verlängern sich die vegetativen Internodien akropetisch. Darunter versteht man, dass sich die Internodien nacheinander von der Halmbasis beginnend strecken. Das bedeutet, die letzte Internodienverlängerung schiebt die Ähre aus dem Fahnenblatt heraus. Dieser Zeitpunkt wird "Heading" (HEA) genannt und geschieht circa zeitgleich zur Anthese (McKim, 2019). Der richtige Zeitpunkt für HEA/Anthese ist bei allen Pflanzen eine wichtige Lebensentscheidung (Gol et al., 2017). Der Moment der Blüte entscheidet mit über die geeignete Anpassung und das Ertragspotenzial von Kulturpflanzen (Schnurbusch, 2019). Über die Variation und die quantitativen Merkmalsregionen (QTL), die den Gerstenpedunkel kontrollieren, ist wenig bekannt. Eine Studie aus dem Jahr 2014 zur Lagerneigung einer biparentalen Gerstenpopulation gab einen ersten Einblick in dieses Thema (Chen et al., 2014). Der

Artikel beinhaltet eine QTL-Studie, die mit 117 SSR-Markern anhand der Merkmale Durchmesser und Dicke des Stengelgewebes des obersten Internodiums durchgeführt wurde.

1.7 Lignin

Lignin ist ein komplexes aromatisches Polymer (Sarkar *et al.*, 2009). Es gehört zur Gruppe der Phenylpropanoide genauso wie unter anderem Flavonoide (z.B Anthocyane), Tannin und Cumarin (Vogt, 2010). Lignin wird in den sekundären Zellwänden aller Gefäßpflanzen eingelagert (Loqué *et al.*, 2015; Sarkar *et al.*, 2009). Der Biosyntheseweg ist dem Shikimatsäureweg nachgelagert und startet demzufolge mit Phenylalanin und dem Enzym Phenylalanin-Ammoniak-Lyase (PAL) (Vanholme *et al.*, 2010). Der Biosyntheseweg fächert schließlich bei einigen Pflanzen auf, wodurch verschiedene Monolignole entstehen (Vanholme *et al.*, 2010). Lignin setzt sich aus drei Haupt-Monolignolen zusammen. Das sind Sinapylalkohol, Coniferylalkohol und *p*-Cumarylalkohol. Bei Gräsern kommen alle drei Monolignole vor, ganz im Gegensatz zu z.B. Harthölzern (Loqué *et al.*, 2015). Die entstandenen Ligninfraktionen werden als H-Lignin (*p*-Hydroxyphenyl), S-Lignin (Sinapyl) und G-Lignin (Guaiacyl) bezeichnet (Vanholme *et al.*, 2010).

Die Einlagerung von Lignin in der Zellwand sorgt für mechanische Druckfestigkeit, ermöglicht den Wassertransport durch das Xylem, indem es dieses stützt und vor dem Kollabieren bewahrt und ist wichtig als Schutz vor abiotischem und biotischem Stress. Der Ligningehalt wird von einer Vielzahl von Faktoren bestimmt. Dazu zählen abiotische Faktoren wie das Klima, Nährstoffverfügbarkeit und mechanische Beschädigungen, auf die Pflanzen mit einer veränderten Lignifizierung reagieren können. An Luzerne konnte gezeigt werden, dass Trockenstress die Ligninkonzentration verringert (Wang and Frei, 2011). Im Gegensatz dazu stimuliert zum Beispiel troposphärisches Ozon oder hohe UV-Strahlung die Pflanze dazu mehr Lignin anzureichern. Auch biotische Faktoren wie Pathogene, Insekten und Herbivoren führen zu einer Anreicherung von Lignin in Pflanzen. Als dritte Gruppe sind es genetische Faktoren, die Einfluss auf den Ligningehalt von Pflanzen haben. Zu dieser Gruppe zählen Faktoren wie die Spezies und der Genotyp (Frei, 2013).

Nicht nur für die Pflanze kann ein erhöhter Ligningehalt vorteilhaft sein. Als komplexes Polymer ist Lignin widerstandsfähig gegen biologischen Abbau, aber aufgrund seiner stark reduzierten chemischen Natur reich an Energie (Frei, 2013; Tuomela *et al.*,

Einleitung

2000). Mit einem erhöhten Ligningehalt im Stroh steigt auch der Heizwert bei thermochemischer Umwandlung. Zudem steigt mit dem Ligningehalt die CO2-Sequestration. Unter CO₂-Sequestration versteht man die Aufnahme und Speicherung von atmosphärischem Kohlenstoff durch Pflanzen. Ein Thema, welches aktuell besonders relevant im Zusammenhang mit dem Klimaschutz und Klimawandel ist. Nicht nur Stroh mit erhöhtem Ligningehalt kann von Vorteil sein. So verbessern sich zum Beispiel mit sinkendem Ligningehalt im Stroh der Futterwert und die Energieausbeute bei biologischer Umsetzung (Frei, 2013). Zu nennen sind hier Ethanolund Biogasherstellung aus Biomasse. Außerdem wird die Nährstoffmineralisierung aus Ernterückständen mit sinkendem Ligningehalt beschleunigt (Frei, 2013). Im Weiteren ist die Nutzung von Lignin im bioökonomischen Sinne zu erwähnen. Vanillin ist derzeit eine der wenigen molekularen phenolischen Verbindungen, die in industriellem Maßstab aus Biomasse hergestellt werden (Fache et al., 2016). Im Normalfall basieren Chemikalien und Polymere auf petrobasierten Rohstoffen, doch es werden Anstrengungen unternommen zum Beispiel solche Plattformchemikalien wie Vanillin in Bioraffinerien vermehrt aus nachwachsenden Rohstoffen zu erzeugen. Geschätzt werden 15 % des Vanillins jährlich aus Lignin hergestellt (Silva et al., 2009). Für solch eine Synthese wird der Anspruch an den Rohstoff Lignin noch spezieller. Es wurde festgestellt, dass Lignin mit niedrigem Molekulargewicht tendenziell zu besseren Ergebnissen führt (Bjørsvik and Minisci, 1999) und auch die Monolignolkomposition hat einen Einfluss auf das Ergebnis der Zum Beispiel ergeben **GS-Lignine** tendenziell Synthese. bessere Depolymerisationsausbeuten. Die verschiedenen möglichen Anpassungen des Ligningehalts im Gerstenstroh für die verschiedenen potenziellen Nutzungsmöglichkeiten rechtfertigen eine tiefere Forschung zu diesem Thema.

1.8 Hyperspektraler Ansatz

Für die Bestimmung des Ligningehalts gibt es verschiedene Methoden. Die Schwierigkeit dabei ist, dass die Ergebnisse der Methoden nicht vergleichbar sind (Moreira-Vilar *et al.*, 2014). Einen Überblick über die beschriebenen Methoden gibt Frei (2013). Dabei wird grundsätzlich zwischen zwei Ansätzen unterschieden. Diese sind entweder gravimetrischer oder spektrometrischer Natur. Die Klason-Methode funktioniert über eine Saccharifikation von Cellulose und anderen Zellwandpolysacchariden durch die Behandlung der Probe mit 72% Schwefelsäure. Das Ganze beruht also auf einem gravimetrischen Prinzip. Diese Methode wurde

8

jedoch bereits kritisch hinterfragt, da der Prozess sehr zeitaufwendig ist und viel Probenmaterial pro Probe benötigt wird (Chang et al., 2008; Moreira-Vilar et al., 2014). Durch die Größe der HEB-25 kommt diese Methode daher nicht in Frage. Die Analysezeit für die Messung würde für die HEB-25 mit den nötigen Wiederholungen mehrere Jahre betragen. Aufgrund dieser Schwierigkeit, kam eine gravimetrische Methode also nicht infrage. Es gibt zwei spektrometrische Ansätze mit Potential für einen Hochdurchsatz. Zum einen gibt es die Thioglykolsäure-Methode und zum anderen die Acetylbromid-Methode. Beide Methoden beruhen auf einer Solubilisierung des Lignins und einer darauffolgenden Messung der Absorption bei 280 nm (Frei, 2013; Moreira-Vilar et al., 2014). Da in den Tests die Thioglykolsäure-Methode die robusteren Ergebnisse erzielte, wurde sie für diese Studie gewählt. Doch da auch auf diesem Weg kein Hochdurchsatz erreicht werden konnte, wurde die Thioglykolsäure-Methode mit einem hyperspektralen Ansatz kombiniert. Dafür wurde ein in Kooperation mit dem "Fraunhofer-Institut für Fabrikbetrieb und -automatisierung" (IFF) in Magdeburg entwickeltes Hyperspektrales Bildgebungssystem verwendet (Herzig et al., 2019). Hiermit wurden die Pedunkelproben eingescannt, bevor sie nasschemisch gemessen wurden. Die Labormesswerte wurden daraufhin genutzt, um die erhobenen spektralen Informationen mit den gemessenen Ligninwerten zu assoziieren. Im Folgenden konnten die nicht nasschemisch analysierten Pedunkelproben mit Hilfe des Hyperspektralen Bildgebungssystems gescannt und Ligningehalte anhand von einem durch multivariate Datenverarbeitung und eines trainierten neuronalen Netzwerkes erzeugten Modells (Herzig et al., 2019) geschätzt werden.

1.9 Ziel der Arbeit

Die vorliegende Dissertation hat zum Ziel, den Pedunkel in zweierlei Hinsicht zu untersuchen. Einerseits sollen die QTL-Regionen, welche die Morphologie des Pedunkels kontrollieren und anderseits die QTL-Regionen, welche für dessen Ligningehalt ausschlaggebend sind, identifiziert und analysiert werden. Mit Hilfe einer genomweiten Assoziationsstudie (GWAS) unter Verwendung des Gersten 50k Illumina Infinium iSelect SNP Arrays (Bayer et al., 2017) und zweijähriger Felddaten der Wildgersten-NAM-Population HEB-25 soll dazu beigetragen werden, die Zusammenhänge besser zu verstehen. Diese Population bietet eine große und vielfältige Auswahl von Wildgerstenallelen in einem kultivierten "Barke"-Hintergrund (Maurer et al., 2015). In dieser Studie wird darauf abgezielt, neue Erkenntnisse und ein besseres Verständnis der QTL-Regionen zu gewinnen, die an der Kontrolle der

Merkmale Pedunkeldurchmesser (DIA), Gesamtdicke des Pedunkelgewebes (WAL), Fläche des Pedunkelquerschnitts (AREA) und Ligningehalt des Pedunkels (TGAL) beteiligt sind. Diese Merkmale sind bisher nicht umfassend untersucht worden. Es wird angenommen, dass sie einen Überblick über die potentielle Variation der Pedunkelmorphologie und des Ligningehalts von Wildgerste geben und somit einen bedeutenden Beitrag zur Grundlagenforschung leisten, auf den in zukünftigen Projekten zurückgegriffen werden kann.

2 Material und Methoden

2.1 Pflanzenmaterial und Feldversuche

Für diese Studie wurden die HEB-25 Generationen BC₁S_{3:10} und BC₁S_{3:11} aus den Jahren 2017 und 2018 verwendet. Die Feldversuche wurden an der Versuchsstation Kühnfeld (51°29'46.47"N; 11°59'41.81"E) in einem randomisierten vollständigen Blockdesign mit replizierten Barke-Parzellen und weiteren Elitesorten als Standards durchgeführt (Tabelle 1). Die Versuchsstation der Martin-Luther-Universität Halle-Wittenberg liegt im mitteldeutschen Trockengebiet auf rund 100 m über NN. Im langjährigen Mittel liegt der Jahresniederschlag auf dem Versuchsgut bei ca. 500 mm bei einer mittleren Jahrestemperatur von 9,2 °C. Auf Geschiebemergel liegt ca. 80 cm stark eine lessivierte Schwarzerde (Parabraunerde-Tschernosem, Haplic Phaeozem) mit lehmigem Sand. Die Böden auf dem Kühnfeld werden mit 47 Bodenpunkten bewertet (Herbst *et al.*, 2018). In beiden Versuchsjahren stand die HEB-25-Population in zwei Wiederholungen (Blöcken) auf dem Kühnfeld. Einer der beiden Blöcke wurde mit Fungiziden behandelt (FUN1) und der andere nicht (FUN0). Der Datensatz FUN1 wurde hierbei nur zu Trainingszwecken des hyperspektralen Models verwendet.

Pro Jahr und Block wuchs jede Linie in einer einzigen Parzelle mit zwei Reihen im Jahr 2017 bzw. drei Reihen im Jahr 2018. Die Referenzlinie Barke wuchs in 11 Parzellen (2017) bzw. 16 Parzellen (2018) je Block. Die Reihen hatten eine Länge von 140 cm und enthielten jeweils 50 Samen, während die Abstände zwischen den Reihen und Parzellen 20 bzw. 50 cm betrugen. Detaillierte Informationen zum Management des Feldversuchs sind in Tabelle 1 aufgeschlüsselt.

Parameter	2017	2018
Aussaat	28.03.2017	09.04.2018
Probennahme	08.08.2017	27.07.2018
Niederschlag in Vegetationsperiode	213,7 mm	66,8 mm
/orfrucht IEB-Linien	Luzerne	Luzerne
Vollucit	Wintertriticale	Sommertriticale
HEB-Linien	1417	1417
Barke Wiederholungen	11 Plots	16 Plots
Lokale Elite Sorten	48 Plots	51 Plots
N _{min} [kg/ha]	70	47
Stickstoff [kg/ha] (BBCH 30-35)	26	26
Kalium [kg/ha] (BBCH 0)	40	40
Phosphor [kg/ha] (BBCH 0)	46	46
Wachstumsregulatoren	keine	keine
Fungizide	keine	keine

Tabelle 1 Feldversuchsmanagement

2.2 Phänotypisierung

2.2.1 Pedunkelmorphologie

Für diese Studie wurde jeweils der unbehandelte Block des jeweiligen Jahres 2017 und 2018 für die Messungen der Pedunkelmorphologie genutzt, um mögliche Wechselwirkungen mit Fungiziden auszuschließen. Zum Zeitpunkt der Reife wurden fünf Haupttriebe pro Parzelle geerntet, die jeweils von einer anderen Zufallspflanze (= 5 biologische Replikate) stammen. Von jedem Halm wurde ein Querschnitt direkt unter dem Ansatz der Ähre präpariert und der Durchmesser (DIA) und die Dicke des Halmgewebes (WAL) wurden in Mikrometer mit dem Digitalmikroskop Keyence VHX-500F mit Standard-Zoomobjektiv VH-Z20R (x150) gemessen. Die Variation des jeweiligen Merkmals ist in Abbildung 3 und Abbildung 4 dargestellt. Jedes Merkmal wurde für jeden Querschnitt an verschiedenen Stellen mehrmals manuell gemessen (Abbildung 5).

Abbildung 3 Variation des Stängel-Durchmessers zwischen ausgewählten HEB-25-Linien und des Eliteelters "Barke". Die Auswahl besteht aus Halmen der Linien mit dem größten, kleinsten und durchschnittlichen Durchmesser. Von links nach rechts: HEB_03_142, "Barke", HEB_24_188, HEB_08_016.

Abbildung 4 Variation der Dicke des Pedunkelgewebes zwischen ausgewählten HEB-25-Linien und des Eliteelters "Barke". Die Auswahl besteht aus Halmen der Linien mit der größten, kleinsten und durchschnittlichen Gesamtdicke des Pedunkelgewebes.

Von links nach rechts: HEB_23_037, HEB_20_017, "Barke", HEB_14_005.

Abbildung 5 Beispiel einer Querschnittsmessung der Gesamtdicke des Pedunkelgewebes (WAL) und des Pedunkeldurchmessers (DIA).

Aus den beiden gemessenen Merkmalen wurde die Fläche des Querschnitts berechnet (AREA).

$$AREA = \pi \left(\frac{DIA}{2}\right)^2 - \pi \left(\frac{DIA}{2} - WAL\right)^2$$

Der Mittelwert der fünf Pedunkel wurde für weitere Analysen herangezogen.

2.2.2 Ligningehalt des Pedunkels

Für die Bestimmung des Ligningehaltes wurde eine Kombination aus nasschemischer und hyperspektraler Methode gewählt. Dadurch wurde es möglich, die komplette Population zu analysieren und die Grundlage für eine Genomweite Assoziationsstudie (GWAS, siehe Kapitel 2.4) zu schaffen. Von jeder Behandlungsstufe (FUN0, FUN1) des Jahres 2018 waren Pedunkelproben derselben 146 HEB-Linien, Barke Wiederholungen und Scarlett als Kontrolle genommen worden. Diese wurden alle nasschemisch mit der Thioglykolsäure-Methode analysiert, um eine möglichst breite Basis für den anschließenden hyperspektralen Ansatz zu schaffen. Des Weiteren wurden hyperspektrale Bilder der gesamten FUN0 der HEB-25 des Jahres 2018 für die Vorhersage aufgenommen.

2.2.2.1 Bestimmung des Ligningehaltes von totreifen Gerstenstängeln

Für die Bestimmung des Ligningehaltes wurde die Thioglykolsäure-Methode gewählt. Lignin ist ein sehr heterogenes Polymer. In Folge repräsentieren verschiedene Bestimmungsmethoden unterschiedliche Ligninfraktionen und somit können Ligningehalte, gemessen anhand verschiedener Methoden, nicht guantitativ verglichen werden (Brinkmann et al., 2002; Hatfield and Fukushima, 2005). Daher wird in dieser Studie, wie schon vorher in der Literatur veröffentlicht, auf eine Quantifizierung mittels einer Lignin-Standardkurve verzichtet (Bonawitz et al., 2014; Naz et al., 2017). Stattdessen wird im weiteren Verlauf der Studie die Optische Dichte (OD) als gemessenes Ergebnis der Absorptionsmessung angegeben. Eine vergleichende Studie über die drei gängigsten Lignin-Bestimmungsmethoden für krautige Pflanzen hatte aufgezeigt, dass Klason-Methode und Acetybromid-Methode höhere Ligningehalte messen als die Thioglykolsäure-Methode (Moreira-Vilar et al., 2014). Die Klason-Methode benötigt mehr Probenmaterial und Zeitaufwand wodurch sie für diese Studie ausgeschlossen wurde. Für die Thioglykolsäure-Methode sprach, dass diese schon an Reis und Gerstenstroh in ähnlichen Studien erprobt worden war. Das Protokoll aus der Literatur wurde für die Anwendung an den HEB-25 Proben modifiziert (Naz et al., 2017; Suzuki et al., 2009).

2.2.2.1.1 Protokoll der Thioglycolsäure-Lignin-Komplex (TGAL) Quantifizierung

Nach der Probennahme des Pedunkels (maximal 11 cm Länge) in Szintillationsgefäßen, wurden die Proben noch auf dem Feld in flüssigen Stickstoff gelegt und später gefriergetrocknet. Im nächsten Schritt wurde die Probe erst mit einer Schere in kurze Stücke geschnitten und dann in einer Retschmühle vermahlen. Der Mahlvorgang wurde zweimal für 5 Minuten durchgeführt, um ein Erhitzen des Mahlgutes zu vermeiden. Verwendet wurden hierfür sechs 8 mm VA Kugeln, ein VA Mahlbecher und eine Drehzahl von 25.000 Umdrehungen pro Minute, um wirklich alle Zellen aufzubrechen. Alle Parameter wurden in Vorversuchen ermittelt, bis unter dem Mikroskop bestätigt werden konnte, dass alle Zellen aufgebrochen sind. Ab diesem Punkt wurde jeder Schritt doppelt ausgeführt (technische Wiederholung, die an zwei verschiedenen Tagen durchgeführt wurde). Dann wurden exakt 20 mg (+/- 1 mg) in ein 0,2 ml Eppendorf Reaktionsgefäß eingewogen. Außerdem wurden 2 mm große Glaskugeln dazugegeben und das Gesamtgewicht von Probe, Gefäß und Kugeln festgehalten. Im ersten Schritt der nasschemischen Analysen wurde der im Alkohol unlösliche Rückstand (AIR) des Mahlgutes von der alkohollöslichen Fraktion befreit. Dazu wurden 2 ml Wasser in das Gefäß zu der Probe pipettiert und homogenisiert (30 s vortexen). Danach wurde die Probe für 10 Minuten bei 10.000 Umdrehungen pro Minute zentrifugiert und der flüssige Überstand vorsichtig mit der Pipette entfernt. Im nächsten Waschschritt wurde die Probe mit Methanol versetzt. Dazu wurden 1,5 ml Methanol zur Probe pipettiert und das Gefäß im Thermomix Comfort für 20 Minuten bei 900 Umdrehungen pro Minute und 60 °C geschüttelt. Daraufhin wurde die Probe wieder 10 Minuten bei 10.000 Umdrehungen pro Minute zentrifugiert und der Überstand vorsichtig entfernt. Dieser Methanol Waschschritt wurde insgesamt zweimal durchgeführt. Die Proben wurden nun über Nacht trocknen gelassen. Dann wurde das Gefäß mit dem AIR gewogen und das Ergebnis mit dem vorher gewogenen Brutto verrechnet. Mit dem AIR war nun das Ausgangsmaterial für die eigentliche Ligningehaltsbestimmung anhand der Thioglycolsäuremethode gegeben. Zum AIR wurden 1 ml 3 N HCl und 0,1 ml Thioglycolsäure gegeben. Die Suspension wurde für 3 Stunden im Eppendorf Thermomixer Comfort bei 80 °C gehalten und bei 600 Umdrehungen pro Minute bewegt. Danach wurde sie wieder für 10 Minuten bei 10.000 Umdrehungen pro Minute abzentrifugiert. Auch jetzt wurde der Überstand wieder vorsichtig entfernt. Im Folgenden wurde nun der entstandene Thioglycolsäure-Lignin-Komplex (TGAL) gereinigt. Zuerst wurde mit 1 ml Wasser für eine Minute bei Raumtemperatur geschüttelt. Das passierte im Thermomixer Comfort bei maximaler Geschwindigkeit. Daraufhin wurde wieder zentrifugiert (Parameter wie gehabt) und die Probe in der Speedvac für 1,5 Stunden bei 45 °C getrocknet, bis alle Proben vollständig trocken waren. Nun wurden 1,2 ml 1 N Natronlauge hinzugegeben, da TGAL sich in dieser lösen lässt. Danach wurden die Gefäße über Nacht im Thermomixer bei 25 °C und 750 Bewegungen pro Minute geschüttelt, wobei die Intensität so gewählt war, dass der Deckel des Reaktionsgefäßes nicht benetzt wurde. Am drauffolgenden Morgen wurde wie gehabt zentrifugiert und nur 1 ml der Flüssigkeit in ein 1,5 ml fassendes neues Eppendorf-Gefäß pipettiert. Hierbei war langsames Pipettieren wichtig, um Genauigkeit zu gewährleisten, da die Lösung sehr viskos ist. Im letzten Reinigungsschritt wurde TGAL nun mit 0,2 ml 12 N Salzsäure ausgefällt und daraufhin bei 4 °C für 4 Stunden gelagert. Kurz vor der Absorbtionsmessung wurden die Proben bei 4 °C für 10 Minuten und bei 10.000 Umdrehungen pro Minute zentrifugiert und falls die Messung nicht sofort erfolgte, wurden sie bis zur Messung weiterhin bei 4 °C gelagert. Dafür war die Zentrifuge vorher auf 4 °C zu kühlen. Der

Küvettenleser wurde mit 1 N Natronlauge kalibriert und der Nullwert ermittelt. Ab hier wurde zügig bis zur Messung gearbeitet. Aus der 4 °C kalten Probe wurde 1 ml des Überstandes abpipettiert und verworfen. Danach wurde 1 ml 1 N Natronlauge wieder in das Reaktionsgefäß pipettiert. Nun wurde TGAL mit der Natronlauge für 30 Sekunden geschüttelt (Vortex). Es war sicher zu stellen, dass sich alles TGAL vollständig löst. Für die technische Wiederholung wurden zwei geeignete UV Einmalküvetten (Makro, 3,5 ml Volumen) mit je 3000 µl 1 N Natronlauge gefüllt. Nun wurde sehr langsam und revers pipettierend 70 µl des gelösten TGAL hinzu pipettiert. Die Küvette wurde mit einem Deckel verschlossen und dann mit dem Deckel nach unten und oben gedreht, um Homogenität zu gewährleisten. Die Absorbtionsmessung erfolgte bei 280 nm (Epoch2, Biotek). Sie wurde je Küvette dreimal wiederholt. Somit lagen am Ende für jede Feldnummer insgesamt 12 Messwerte vor. Die gemessene optische Dichte (OD) wurde auf 20 mg korrigiert und der Nullwert abgezogen. Da bei sechs Proben die Wiederholungen auffällig stark abwichen, wurden sie ein weiteres Mal gemessen und der Mittelwert aus allen drei Messungen für die folgenden Analysen verwendet.

2.2.2.2 Hyperspektrale Messung

Die Pedunkelproben wurden mit der HYSPEX SWIR 384 (NEO Norsk Elektro Optikk, Oslo, Norwegen) aufgenommen (Tabelle 2, Abbildung 6). Die Bilder wurden unter verdunkelten Bedingungen aufgenommen, während die Kamera von oben herab gleichmäßig über die Probe in 30 cm Abstand bewegt wurde. Die Phänotypisierungsplattform für die Aufnahmen war vom Fraunhofer Institut für Fabrikbetrieb und -automatisierung IFF in Kooperation mit Paul Herzig (Herzig et al., 2019) entwickelt worden. Die Plattform besteht aus drei Hauptkomponenten: Einem Schienensystem, welches die Kamera und zwei Lampen bewegt, einem mit schwarzen Molton bedeckten Objekttisch und einer weißen Referenzplatte (Zenith Lite™ Diffusreflexionstarget von SphereOptics GmbH, Herrsching, Deutschland).

spektralkameraHySpex SWIR 384Spektralbereich:970-2500nmKanäle:288Kamera Art:ZeilenkameraPixel per Linie:384max. Bildrate:400 HzAuflösung16 Bit

Tabelle 2 Spezifikationen der Hyper-

Abbildung 6 Hyperspektrale Phänotypisierungs-Plattform

Der nun folgende Prozess der Bildverarbeitung wurde etabliert und beschrieben von Herzig *et al.* (2019) und Wiegmann *et al.* (2019a). Nach der Erstellung der hyperspektralen Pedunkelbilder wurden die Aufnahmen mithilfe der mitgelieferten Kalibrierung hinsichtlich der Radianz / Strahldichte am Sensor kalibriert. Im nächsten Schritt wurden mit Hilfe eines Matlab-programmes (Mathworks Inc.) die Stängel und Referenzplattenpixel aus der Aufnahme segmentiert und auch als solche erkannt. Die Reflexion R_{λ} wurde mit der folgenden 2-Punkt Kalibrierung des Messsignals berechnet:

$$R_{\lambda} = \frac{I_{\lambda} - I_{\lambda}^{DC}}{I_{\lambda}^{W} - I_{\lambda}^{DC}}$$

 I_{λ} = Pixel Intensität bei Wellenlänge λ , I_{λ}^{DC} = Pixel Intensität bei geschlossener Blende, I_{λ}^{W} = Pixel Intensität bei während der Aufnahme der Referenzplatte.

Zusätzlich wurde noch die mittels Laborgerät gemessene Reflektanz der Weißplatte mit eingerechnet, da diese nicht exakt 100% im gesamten Wellenlängenbereich ist. Im nächsten Schritt wurde ein "überwacht gelernter" Klassifikator generiert, der die Materialsegmentierungsaufgabe erfüllt. Dazu wurde bei einigen Aufnahmen ein Neutralgas-Algorithmus (Martinetz *et al.*, 1993) angewendet, um Hauptmaterialgruppen im Bild zu gruppieren (Weißreferenz, Objekttisch, Pedunkelprobe). Darunter zu verstehen ist ein "unüberwachtes" Clusteringverfahren, in dem keine Information über die Materialidentität notwendig ist. Das Verfahren lernt aus Ähnlichkeiten der Spektren, was eine sinnvolle Gruppeneinteilung ist. Eine manuelle Nachbearbeitung der Bilder war notwendig, um die Segmentierungsmaske optimal an die Pedunkelprobe anzupassen. Mit einem antrainierten neuronalen Netzwerk mit Radialer Basisfunktion (RBF) (Moody and Darken, 1989) wurde nun ein Klassifikator erstellt, welcher den segmentierten Vordergrund vom Rest isoliert. Dieser Klassifikator wurde dann auf alle Bilder angewendet. Die Probenpixel wurden gesammelt und ihr Spektrum pro Bild gemittelt. Mit diesen Spektren und TGAL als Zielwerten, wurde anhand eines RBF neuronalen Netzwerkes (Moody and Darken, 1989) ein Regressionsmodell erstellt. Ein **RBF-Netzwerk** ist eine universelle Funktionsapproximationsmethode, deren Parameter durch numerische Optimierung der Zielfunktion des mittleren guadratischen Fehlers (MSE) zwischen Ziel- und Vorhersagewert gefunden werden. Die Optimierung wird mit einem Gradientenabstiegsverfahren durchgeführt und gestoppt, wenn eine bestimmte Anzahl von Iterationen erreicht ist oder der MSE konvergiert, z. B. wenn die Änderungen des MSE unter einen festgelegten Schwellenwert fallen. Um eine Überdefinition auszuschließen wurde eine Leave-One-Out-Kreuzvalidierung angewendet. In jedem Validierungslauf wurde eine Pedunkelprobe als Testobjekt verwendet und die ganzen übrigen Proben zur Kalibrierung des Modells. Das Regressionsmodell wurde dann an den jeweiligen Testproben getestet. Als Leistungsmaß diente das Bestimmtheitsmaß (R²).

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - t_{i})^{2}}{\sum_{i=1}^{n} (t_{i} - \bar{t}_{i})^{2}}$$

Bestimmtheitsmaß (\mathbb{R}^2), $y_i = TGAL$ Vorhersage für Probe i, $t_i =$ gemessener Zielwert (TGAL) der Probe i, $\overline{t}_i =$ Mittlerer Zielwert über alle Proben

Einmal kalibriert, kann das Model zur Vorhersage des jeweiligen TGAL für alle Pedunkelproben herangezogen werden (Recall-Modus). Die Kalibrierung mehrerer verschiedener Regressionsmodelle ist ein typischer Ansatz beim maschinellen Lernen, da es schwierig ist, die Beschaffenheit eines hochdimensionalen Datenraums zu beurteilen und zu entscheiden, ob die systematische Beziehung zwischen dem Spektrum und dem Nährstoff linear oder nicht-linear ist. Das RBF-Modell wurde für den Recall verwendet. Um letztendlich das Model zu bewerten, wurde auf Basis der gemessenen TGAL-Werte und der vorhergesagten Werte das Bestimmtheitsmaß $(R_{Hyperspectral imaging-Recall})$ berechnet. Als weitere Parameter zur Bewertung der Leistung des Modells wurden die Wurzel des mittleren quadratischen Fehlers (RMSEr), und des Mittleren Relativen Messfehlers (MREr) berechnet. Der Relative Messfehler wurde berechnet aus (Vorhersage - Zielwert) / Zielwert. RMSEr berechnet sich aus der Quadratwurzel des durchschnittlichen Prognosefehlers.

$$RMSEr = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Wurzel des mittleren quadratischen Fehlers (RMSEr), wobei y_i = gemessener Wert (TGAL) der Probe *i*, $\hat{y_i}$ = geschätzter Wert

2.2.2.3 Histologie

Des Weiteren wurden für einen ersten Einblick in die Ligninverteilung in den Stängeln, Querschnitte präpariert, in denen das Lignin mit Phloroglucin rot angefärbt wurde. Dies geschah unter Anleitung von T. Ruten und M. Melzer im Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben. Mikroskopiert wurden Präparate der Sorte Barke und des Donors "HID219". Die Pflanzen befanden sich zum Moment der Probennahme in der Blüte.

2.3 Statistik und Signifikanztests

Grundlegende deskriptive Statistiken und t-Tests zwischen den Jahren wurden in SAS 9.4 berechnet (SAS Institute Inc., Cary, NC, USA). Der Variationskoeffizient (CV) wurde über die gesamte Population ermittelt, indem die Standardabweichung durch den Mittelwert dividiert wurde. Pearson-Korrelationen wurden mit der Funktion "cor" in R 3.4.3 berechnet (R Development Core Team, Vienna, Austria).

Um eine Aussage über das Verhältnis der gesamten genotypischen Varianz zur gesamten phänotypischen Varianz treffen zu können, wurde die Broad-Sense-Heritabilität (H²) für die Pedunkelmerkmale über die beiden Versuchsjahre berechnet. Dazu wurden die Varianzkomponenten mit SAS PROC VARCOMP auf der Basis eines linearen Modells unter Annahme zufälliger Effekte für Genotyp und Umwelt geschätzt:

 $y_{ij} = \mu + g_i + e_j + \epsilon_{ij}$

$$H^2 = \frac{V_G}{V_G + \frac{V_R}{r}}$$

V_G = Genotypische Varianz V_E = Umweltvarianz V_R = Restvarianz r = Anzahl Wiederholungen

Um die besten linearen unverzerrten Schätzungen (BLUEs) für jede Linie über beide Jahre hinweg zu schätzen, wurde das oben genannte Modell angewandt, allerdings unter der Annahme fester Genotypeffekte in einem linearen gemischten Modell (SAS PROC HPMIXED).

2.4 Genomweite Assoziationsstudie (GWAS)

GWAS wurde für jedes einzelne Jahr separat durchgeführt, ebenso wie für die BLUEs der Merkmale. Die GWAS basierte auf einem 50k Illumina Infinium iSelect SNP Array (Bayer et al., 2017) und die Genotypisierung wurde durchgeführt von TraitGenetics (Gatersleben, Germany). Daraus wurde eine IBS-Matrix mit flankierender Marker-Imputation von fehlenden Genotyp-Scores abgeleitet, die 32.995 SNP-Marker enthält (Maurer and Pillen, 2019). Um eine robuste QTL-Detektion mit entsprechender Schätzung der familienspezifischen Effekte zu erreichen, wurde eine Kreuzvalidierung und anschließende Akkumulation der geschätzten Markereffekte um einen zentralen Peak-Marker durchgeführt (Maurer et al., 2017). Die GWAS basierte auf einer multiplen linearen Regression mit SAS PROC HPREG, wobei aus allen 32.995 SNPs diejenigen SNPs ausgewählt wurden, die das beste Modell auf Basis einer schrittweisen Vorwärts-Rückwärts-Regression ergaben, wobei bei jedem Schritt SNPs in das Modell eintraten oder es verließen, wenn der für den marginalen F-Test berechnete p-Wert < 0,001 war. Um robuste Ergebnisse zu gewährleisten, wurde eine fünffache Kreuzvalidierung 20-mal wiederholt, ergo wurden 100 Kreuzvalidierungsläufe durchgeführt. Für jeden Lauf wurde ein Trainingsset erstellt, das 80% der zufälligen HEB-Linien jeder Familie abdeckte, und signifikante Marker und ihre geschätzten Effekte wurden über GWAS definiert. Die anderen 20% der HEB-Linien wurden zur Validierung in Form einer berechneten guadrierten Pearson-Produkt-Moment-Korrelation zwischen beobachteten und vorhergesagten Phänotypen des Validierungssets verwendet, die den kreuzvalidierten Anteil der erklärten genotypischen Varianz darstellt und als Vorhersagefähigkeit bezeichnet wird. Die mittlere Vorhersagefähigkeit in 100 Kreuzvalidierungsläufen (20-mal fünffache Kreuzvalidierung) wurde als endgültiger Datensatz genommen.

Um einen QTL als robust zu definieren, musste der SNP in mehr als 20 von 100 Kreuzvalidierungsläufen erkannt werden, was als Detektionsrate (DR) bezeichnet wird. Der Schwellenwert wurde nach einem Permutationstest auf der Basis von drei zufällig gemischten Genotyp-Phänotyp-Matrizen festgelegt, die für die oben erwähnten Kreuzvalidierungsverfahren verwendet wurden (≙ 300 Kreuzvalidierungsläufen). Basierend auf den daraus gewonnenen Ergebnissen, wurde eine Detektionsrate von

20 als 99,99 %-Perzentil beobachtet (d.h. 99,99 % der Marker haben weniger Detektionen). Wenn die beobachtete Detektionsrate aus den Originaldaten diesen Schwellenwert überstieg, wurde das mit dem Vorhandensein einer signifikanten Marker-Merkmals-Assoziation (engl.: marker-trait association) begründet.

Die familienspezifischen Effekte wurden durch Anwendung der Kumulationsmethode bestimmt (Maurer *et al.*, 2017), wobei die SNP-Markereffekte um einen zentralen Peak-Marker mit der höchsten DR in einer 26 cM großen Region für jeden der 25 Donoren und Kreuzvalidierungsläufe akkumuliert wurden. Der Durchschnitt aller Kreuzvalidierungsläufe wurde dann als familienspezifischer Effekt definiert.

Physikalische Kartenpositionen des Infinium iSelect 50k-Chips für Gerste wurden von Bayer *et al.* (2017) übernommen. Die genetische Karte basiert auf der Karte für den 9k-Chip, vorgestellt von Maurer *et al.* (2015), basierend auf Comadran *et al.* (2012). Im Falle von 4.722 SNPs, die zwischen dem 9k- und dem 50k-Chip geteilt wurden, wurden die genetischen Positionen der 50k-Marker aus Maurer *et al.* (2015) übernommen. Die genetischen Positionen der verbleibenden Marker wurden auf der Grundlage der genetischen Positionen von physisch benachbarten Markern geschätzt.

2.5 Exome Capture Sequenzierung

Für die 1.420 Linien und 25 Wildgerstendonoren der HEB-25 Population sind pairedend Illumina Exome Capture Sequenzdaten erstellt und entsprechend der methodischen Beschreibung von Zahn et al. (2021) bzw. Schmutzer et al. (2022, in Bearbeitung) bioinformatisch verarbeitet worden. (An dieser Stelle wurde von T. Schmutzer ein Vorabzugriff auf von ihm noch nicht publizierte Daten gewährt, die er verarbeitet zur Verfügung gestellt hat und die nicht Teil dieser Dissertation sind.) An dieser Stelle soll kurz darauf eingegangen werden. Initial wurden aus den Sequenzen bioinformatischen Werkzeug TrimGalore mit dem (https://github.com/FelixKrueger/TrimGalore) Sequenzadapter und Sequenzen niedriger Qualität entfernt. Anschließend sind diese Sequenzdaten mit BWA mem (Li, 2013) an das Gerstengenom-Referenzsequenz (Version 2) der Sorte Morex aligniert (Monat et al., 2019) worden. Aus den konstruierten Alignments wurden Duplikate mittels Samtools entfernt (Li et al., 2009a). Anschließend wurden die 21 Wildgersten und Barke in eine einzige BAM-Datei zusammengeführt. Diese Datei wurde für das SNP-Calling mit Freebayes (Garrison and Marth, 2012) unter Anwendung des Parameters '--min-alternate-count 3 --min-alternate-fraction 0.05 --min-coverage 10 --

22

no-complex --dont-left-align-indels --no-population-priors' verwendet. Hochwertige SNPs wurden mit bcftools gefiltert (Li, 2011), wobei jeder SNP einen vcf-Qualitätsscore Die über 1000 haben musste. entsprechenden Kandidatengene (HORVU.MOREX.r2.2HG0088300.1, HORVU.MOREX.r2.2HG0136910.1, HORVU.MOREX.r2.2HG0153910.1, HORVU.MOREX.r2.3HG0256590.1) wurden mit bedtools 'intersect' extrahiert (Quinlan and Hall, 2010). Die Matrizen der gefilterten SNPs aus den HEB-25-Wildgerstenspendern befinden sich im Anhang (Tabelle A3 bis Tabelle A7).
Ergebnisse

3 Ergebnisse

3.1 Pedunkelmorphologie

3.1.1 Beschreibende Statistik

Die HEB-25 wurde in den Jahren 2017 und 2018 auf die Pedunkelmorphologie untersucht. Die deskriptive Statistik (Tabelle 3) zeigt, dass die Mittelwerte von DIA mit 1202,82 µm in 2017 und 1204,25 µm in 2018 sehr dicht beieinander lagen. WAL und AREA hingegen zeigten mit 279,01 μ m bzw. 8,14*10⁵ μ m² in 2017 und 247,32 μ m bzw. 7,46*10⁵ µm² in 2018 durchaus unterschiedliche Mittelwerte in den beiden Jahren. Die Mittelwerte für Barke, den Eliteelter der HEB-25, unterschieden sich zwischen den Jahren für alle Merkmale stärker als für die jeweiligen Mittelwerte über die gesamte HEB-25. Die dünnste Linie hatte einen DIA von 776,00 µm und wurde 2017 gemessen, während der größte gemessene DIA mit 1931,10 µm 2018 gefunden wurde. Bei WAL lag das absolute Minimum bei 178,74 µm und wurde 2018 gemessen, während der gemessene Maximalwert 2017 mit 385,95 µm gemessen wurde. Für AREA lagen die gefundenen Extremwerte bei einem Minimalwert von 3,78*10⁵ µm² in 2017 und einem 1,37*10⁶ µm² in Maximalwert von 2018. Den größten gefundenen Variationskoeffizienten (CV) zeigte AREA im Jahr 2017 mit 19,32 %. Generell, ist der CV bei allen Merkmalen 2017 höher als 2018. Den kleinsten CV zeigte WAL verrechnet über beide Jahre mit 7,16 %. Die gemessenen Werte für den Eliteelter Barke waren nie bei den Extremwerten einzuordnen, sondern lagen immer nahe an den Spitzenwerten der Häufigkeitsverteilung (Abbildung 7). Während Barke 2017 sehr nahe am Maximalwert der Häufigkeitsverteilung lag, war der Abstand 2018 größer.

Tabelle 3 Deskriptive Statistik und BLUEs (best linear unbiased estimates) der NAM-Population HEB-25 und Barke für jedes Jahr und über beide Umgebungen hinweg.

Merkmal ^a	n ^b	Mittelwert c	SD d	Min ^e	Max ^f	CV a	Barke ^h
DIA17	1232	1202,82	141,08	776,00	1640,91	11,73	1239,35
DIA18	1343	1204,25	137,89	833,50	1931,10	11,45	1309,98
DIA	1411	1204,33	126,87	841,76	1876,26	10,53	1274,66
WAL17	1232	279,01	24,01	179,96	385,95	8,60	270,66
WAL18	1343	247,32	19,98	178,74	322,83	8,08	238,83
WAL	1411	263,16	18,84	179,35	338,69	7,16	254,74
AREA17	1232	8,14*10 ⁵	1,57*10 ⁵	3,78*10 ⁵	1,35*10 ⁶	19,23	8,24*10 ⁵
AREA18	1343	7,46*10 ⁵	1,32*10 ⁵	4,12*10 ⁵	1,37*10 ⁶	17,67	8,04*10 ⁵
AREA	1411	7,81*10 ⁵	1,29*10 ⁵	4,04*10 ⁵	1,29*10 ⁶	16,50	8,16*10 ⁵

^a Merkmale getrennt nach Jahren bzw. BLUEs (DIA, WAL [μm], AREA [μm²]). ^b Anzahl der Beobachtungen. ^c Arithmetisches Mittel [μm]. ^d Standardabweichung [μm].
 ^e Minimum [μm]. ^f Maximum [μm]. ^g Variationskoeffizient über die Population [%].
 ^h Mittelwert der Referenzsorte Barke [μm].

Abbildung 7 Häufigkeitsverteilung gemessener Merkmale der Pedunkelmorphologie.

2017 und 2018 mit hervorgehobener "Barke"-Position (punktgestrichelte Linie). Traits: DIA [μm], WAL [μm], AREA [mm²]; n=1232 (2017), n=1343 (2018).

Die Heritabilitäten im weiteren Sinne (H²) waren für DIA mit 73,3 % über die zwei Jahre am höchsten, gefolgt von AREA mit 67,0 % und WAL mit 52,6 % (Tabelle 4). Die Umweltvarianzkomponente von DIA lag bei 0,0 %, für AREA bei 10,4 % und für WAL bei 51,1 %. Die Genotypische Varianzkomponente schwankte zwischen 57,8 % für DIA, 45,2 % für AREA und 17,4 % für WAL. Die Fehlervarianzkomponente lag für WAL bei 31,4 % für DIA bei 42,2 % und für AREA bei 44,4 %.

Tabelle 4	Heritabilitäten	(im weiteren Sin	ne) über alle	Genotypen der	r Merkmale
DIA, WAL	. und AREA mit	entsprechenden	Varianzkom	ponenten.	

Merkmal	Vg ^a	Ve ^b	Vr c	H^{2d}
DIA	57,8	0,0	42,2	73,3
WAL	17,4	51,1	31,4	52,6
AREA	45,2	10,4	44,4	67,0

^a Genotypische Varianzkomponente. ^b Umweltvarianzkomponente. ^c Fehlervarianzkomponente. ^d Heritabilität [%].

3.1.2 Korrelationen der Pedunkelmorphologie

Es konnten signifikante Korrelationen innerhalb der für diese Studie erhobenen Daten und in Kombination mit Daten der HEB-25 aus den Versuchsjahren 2017 und 2018, veröffentlicht von Gemmer *et al.* (2020), gezeigt werden (Abbildung 8).

Abbildung 8 Korrelationsdiagramme (Pearson-Korrelationskoeffizienten) von Pedunkelmerkmalen mit Entwicklungs- bzw. Ertragsmerkmalen.

Korrelation der Pedunkelmerkmale mit Entwicklungsmerkmalen 2017 (A) und 2018 (C) und Korrelation der Pedunkelmerkmale mit Ertragsmerkmalen 2017 (B) und 2018 (D). Die Heatmap-Färbung zeigt die Korrelationsstärke an. Sternchen zeigen das Signifikanzniveau an (*p < 0,05, ** p< 0,01, *** p < 0,001). Die Korrelationen der Merkmale zwischen den Jahren waren 0,57 (p < 0,001) für DIA, 0,37 (p < 0,001) für WAL und 0,51 (p < 0,001) für AREA. Abkürzungen: HEI: Pflanzenhöhe, SHO: Zeit bis zum Schossen, HEA: Zeit bis zur Blüte, MAT: Zeit bis zur Reife, LOD: Lager, YLD: Kornertrag, TGW: Tausendkorngewicht, GRW: Kornbreite, GRL: Kornlänge, GRA: Kornfläche, GEA: Kornzahl pro Ähre, EAR: Ähren m⁻². DIA und WAL korrelierten in beiden Jahren signifikant. Im Jahr 2017 korrelierten sie mit einem Korrelationskoeffizient nach Pearson (r) von 0,57 und 2018 mit einem r von 0,40. Die Korrelation zwischen DIA und AREA bzw. WAL und AREA waren in beiden Jahre signifikant. Die Korrelation von DIA zu WAL 2017 wurde mit einem r von 0.97 berechnet und 2018 mit einem r von 0,95. Die Werte von r für WAL zu AREA 2017 lagen bei 0,76 und 2018 lag r bei 0,67. Also lagen im Gesamten die r-Werte 2017 höher als 2018. Die deutlichste signifikante Korrelation zwischen einem morphologischen Pedunkelmerkmal und einem Entwicklungsmerkmal konnte zwischen DIA und HEA gezeigt werden. Die Korrelation fiel 2017 mit einem r von 0,46 höher aus als 2018 mit nur einem r-Wert von 0,26. Für DIA konnten noch weitere aber schwächere Korrelationen mit den Entwicklungsmerkmalen HEI, SHO, MAT, LOD gezeigt werden. Für WAL fielen die Korrelationen weitaus niedriger und oft auch nicht signifikant aus. Des Weiteren konnten Korrelationen zu Ertragsmerkmalen gezeigt werden. Die stärksten gefundenen signifikanten Korrelationen waren zwischen DIA und GEA (r = 0.43) gefolgt von DIA zu GRW (r = 0.25) und DIA zu EAR (r = -0.25) 2017 gefunden worden. Im Jahr 2018 fielen diese Korrelationen schwächer aus, bleiben aber signifikant. Auch WAL zeigte signifikante Korrelationen zu Ertragsmerkmalen. Diese gingen aber nicht über eine maximalen r-Wert von 0,16 mit GRW und TGW 2017 und einem minimalen r-Wert von -0,18 mit EAR im Jahr 2018 hinaus.

3.1.3 GWAS (Pedunkelmorphologie)

Im Durchschnitt wurden durch die GWAS maximal 36,81 signifikante SNPs für ein Merkmal gefunden (DIA) und minimal 21,41 für das Merkmal WAL17 (Tabelle 5). In der Kreuzvalidierung konnte zusätzlich gezeigt werden, wie hoch die Vorhersagefähigkeit (R²) der GWAS für die einzelnen Merkmale war. Das höchste R² konnte mit 0,47 % für DIA gefunden werden und das niedrigste für WAL17 mit 0,10 %.

Tabelle 5 Mittlere Anzahl signifikanter SNPs und kreuzvalidiertes R² für diese SNPs, für die Merkmale DIA, WAL und AREA. Daten für einzelne Studienjahre und BLUEs.

Merkmal	R ²	ø Nummer signifikanter SNPs
DIA	0,47	36,81
DIA17	0,45	31,67
DIA18	0,28	25,75
WAL	0,20	27,15
WAL17	0,10	21,41
WAL18	0,21	24,42
AREA17	0,33	28,46
AREA18	0,28	23,35
AREA	0,40	32,70

Die höchste gefundene Detektionsrate (DR) lag bei 94 von 100 maximal möglichen Detektionen. Gefunden wurde sie für das Merkmal WAL17 auf Chromosom 3H (JHI Hv50k 2016 166916) bei Position 128.830.583 bp (Abbildung 9) (Tabelle S2 Zahn et al. (2021)). Die meisten Marker mit einer DR > 0 wurden in der GWAS des Merkmals DIA (BLUEs) mit 1189 Markern gefunden. Auch waren auf jedem Chromosom Marker von DIA (BLUEs) und WAL (BLUEs) mit einer DR > 20 zu finden. Davon wiederum hatten 12 Marker eine DR > 60.

■ DIA 2017 n=1093 △ WAL (BLUEs) n=865 O WAL 2018 n=689 ● DIA 2018 n=908 □ WAL 2017 n=712 trait AREA (BLUEs) n=1122 • AREA 2018 n=800 DIA (BLUEs) n=1189

Abbildung Manhattan-Plot, der die Ergebnisse der kreuzvalidierten 9 genomweiten Assoziationsstudie (GWAS) für die Stängelmorphologie-Merkmale 2017 und 2018 zusammenfasst.

Die physikalischen SNP-Positionen basieren auf dem Referenzgenom V2 der Sorte Morex aus Monat et al. (2019). Die unterschiedlichen Punktformen und Füllungen unterscheiden die Merkmale und Jahre. Auf der y-Achse ist die Detektionsrate (DR) in 100 Kreuzvalidierungsläufen angegeben. Die gestrichelte Linie zeiqt den Schwellenwert von DR > 20 an, der als Signifikanzschwelle verwendet wurde. Marker ohne Detektionen werden in der Grafik nicht angezeigt.

3.2 Hyperspektraler Ansatz der Ligninmessung in Pedunkeln und GWAS

Anhand von 327 nasschemisch gemessenen Pedunkelproben konnte für TGAL ein Modell zur Schätzung von TGAL-Gehalten in für Gerstenpedunkel erzeugt werden (Tabelle 6). Die Leistung des Modells konnte mit einem R² von 30,1 %, einer Wurzel des mittleren quadratischen Fehlers mit einer OD von 0,0425 und einem mittleren relativen Messerfehler von 7,03 % bestimmt werden.

Tabelle 6 Leistung des Modells zur Schätzung von TGAL-Gehalt in Gerstenpedunkeln.

	R ²	RMSEr	MREr
Lignin (TGAL)	0,301	0,0425	7,03

*R*², Bestimmtheitsmaß (quadrierter Korrelationskoeffizient); RMSEr, Wurzel des mittleren quadratischen Fehlers [Optische Dichte]; MREr, Mittlerer Relativer Messfehler [%]; Relativer Messfehler=(Vorhersage-Zielwert)/Zielwert.

3.2.1 Beschreibende Statistik des Ligningehaltes (TGAL)

Der durch den hyperspektralen Ansatz erzeugte Datensatz für das Jahr 2018 enthielt 1389 Linien (Tabelle 7). Der Mittelwert lag bei einer OD von 0,58, wobei das Minimum 0,34 OD und das Maximum 0,65 OD betrug. Der Variationskoeffizient lag bei 5,39 %.

Tabelle 7 Deskriptive Statistik der TGAL Ergebnisse

aus gemessenen und via hyperspektralem Modell extrapolierten Werten der HEB-Linien

Merkmal	Mittelwert ^a	SD ^b	Min ^c	Max ^d	Ν	CV e
Lignin (TGAL)	0,58	0,03	0,34	0,65	1389	5,39

^a Arithmetisches Mittel [Optische Dichte (OD)]. ^b Standardabweichung [OD]. ^c Minimum [OD]. ^d Maximum [OD]. ^e Variationskoeffizient über die Population [%].

Des Weiteren wurde die beschreibende Statistik auch nach Familien berechnet (Tabelle A2; Abbildung 10). Die Familie mit dem niedrigsten durchschnittlichen TGAL-Werten war Familie 14 und die Pedunkel mit dem durchschnittlich meisten Lignin hatte Familie 19. Der Eliteelter Barke ordnete sich mit seinen TGAL-Gehalten als fünfthöchster Wert ein. In Familie 5 fanden sich die Linien mit dem niedrigsten und dem höchsten gemessenen TGAL-Wert. Bedingt dadurch ist Familie 5 auch jene mit dem höchsten Variationskoeffizienten von 7,74 %. Die kleinsten Variationskoeffizienten zeigten die HEB-Familie 18 und Barke. Auffällig war auch, dass die Ausreißer über alle 1389 Linien in Richtung niedriger TGAL-Gehalte ausschlugen.

Abbildung 10 Boxplot der TGAL-Gehalte der einzelnen Familien, der Barke-Wiederholungen und der gesamten HEB-Linien gemeinsam.

Zusätzlich ist die Stichprobengröße der Gruppen über den jeweiligen Plots dargestellt. ANOVA Resultate können nicht gezeigt werden, da keine zu den 0,05 Niveaus signifikanten Unterschiede zwischen Gruppen gefunden werden konnten.

3.2.2 Korrelationen des TGAL 2018

Der TGAL-Datensatz 2018 wurde mit allen anderen 2018 in der HEB-25 erhobenen Merkmalen korreliert (Abbildung 11). Zur Morphologie des Pedunkels konnten keine signifikanten Korrelationen gefunden werden, zu Ertragsmerkmalen jedoch schon. TGW und YLD korrelierten mit einem *r*-Wert von 0,18 signifikant mit TGAL. Auch GRW und EAR korrelierten signifikant mit r = 0,13 bzw. r = 0,16. Die Entwicklungsparameter SHO, HEA und MAT korrelierten signifikant mit TGAL (r = -0,23, -0,24, -0,21).

DIA														
0.40 ***	WAL													
0.95	0.67	AREA												
0.25	0.00	0.20	GEA											
0.01	0.09	0.03	0.03	TGW										
-0.13	0.07	-0.08	-0.40	0.24	GRL									
0.21	0.07	0.19	0.20	0.71	-0.09	GRW								
-0.00	0.13	0.04	-0.28	0.61	0.83	0.43	GRA							
-0.18	-0.18	-0.21	0.03	0.10	-0.01	0.06	0.01	EAR						
-0.01	-0.10	-0.05	0.32	0.26	-0.14	0.22	-0.02	0.76	YLD					
0.03	-0.05	0.00	0.05	0.18	-0.01	0.13	0.03	0.16	0.18	TGAL				
0.12	0.19	0.16	0.08	0.24	0.13	0.02	0.16	-0.11	0.02	0.03	HEI			
0.16	-0.07	0.10	0.01	-0.39	-0.11	-0.07	-0.12	-0.13	-0.21	-0.23	-0.22	SHO		
0.26	-0.05	0.19	0.13	-0.35	-0.23	0.01	-0.17	-0.16	-0.18	-0.24	-0.01	0.83	HEA	
0.22	0.00	0.18	0.01	-0.21	-0.15	0.09	-0.08	-0.17	-0.20	-0.21	-0.06	0.74	0.79	MAT

Abbildung 11 Korrelationstabelle aller im Jahr 2018 bonitierten Pedunkel-, Entwicklungs- und Ertragsmerkmale an der HEB-25 auf dem Kühnfeld.

Die Heatmap-Färbung zeigt die Korrelationsstärke an. Sternchen zeigen das Signifikanzniveau an (*p < 0,05, ** p < 0,01, *** p < 0,001). Die Entwicklungsmerkmale und Ertragskomponenten wurden aus der Literatur entnommen (Gemmer et al., 2020).

3.2.3 GWAS anhand von TGAL

Für das Merkmal TGAL wurde eine kreuzvalidierte GWAS gerechnet. Im Durchschnitt wurden 15,39 signifikante SNPs in einem von 100 Kreuzvalidierungsläufen gefunden (Tabelle 8). Das R² der Validierungs-Sets betrug 2,4 %.

Tabelle 8 Übersicht der Leistung und der gefundenen SNPs der kreuzvalidierten GWAS

Merkmal	R ² (Validierungs-Set)	Mittlere Anzahl signifikanter SNPs je Kreuzvalidierungslauf
TGAL	2,4	15,39

Insgesamt wurden 475 SNPs mindestens einmal in der kreuzvalidierten GWAS detektiert (Abbildung 12). Die maximale gefundene DR war 53 und wurde für den Marker SCRI_RS_135585 auf Chromosom 2H und für den Marker JHI_Hv50k_2016_163305 auf Chromosom 3H gefunden (Tabelle 9). Insgesamt wurden 10 Marker in der Berechnung zu den Familieneffekten mit einer DR von über

20 gefunden. Davon lagen zwei auf 2H, zwei auf 3H, drei auf 5H, einer auf 6H und zwei auf 7H.

Abbildung 12 Manhattanplot der kreuzvalidierten genomweiten Assoziationsstudie (GWAS) für den TGAL Gehalt in Gerstenpedunkeln der HEB-25-Population.

Die physikalischen SNP-Positionen basieren auf dem Referenzgenom V2 der Sorte Morex aus Monat et al. (2019). Auf der y-Achse ist die Detektionsrate (DR) in 100 Kreuzvalidierungsläufen angegeben. Die gestrichelte Linie zeigt den Schwellenwert von DR > 20, der als Signifikanzschwelle verwendet wurde. Marker ohne Detektionen werden in der Darstellung nicht angezeigt (Angezeigte Marker: n=475).

Den gefundenen Markern mit einer DR größer als 20 wurde eine QTL-Nomenklatur hinzugefügt (Tabelle 9). Die gefundenen durchschnittlichen Effekte lagen zwischen -0,0103 OD und 0,0092 OD. Im Intervall von ± 1 Mio. Basenpaaren um die Marker wurden minimal 44 und maximal 134 potentielle Kandidaten Gene gefunden (Tabelle 9).

							Anz. Kand.	Kand.
QTL	Marker	Chr ^a	Phy. Position ^a	DR	Ø Effekt ^b	SD℃	Gened	Gen
QTGAL_2H1	SCRI_RS_135585	2H	2.671.660	53	-0,0028	0,0093	81	
QTGAL_2H2	JHI_Hv50k_2016_72531	2H	21.637.130	46	0,0092	0,0024	83	PPD-H1
QTGAL_3H1	JHI_Hv50k_2016_163305	3H	32.366.059	53	-0,011	0,0053	45	
QTGAL_3H2	JHI_Hv50k_2016_218741	3H	608.903.595	23	0,0027	0,0046	72	
QTGAL_5H1	JHI_Hv50k_2016_307703	5H	437.189.473	31	0,0047	0,0042	44	
QTGAL_5H2	JHI_Hv50k_2016_326206	5H	519.836.617	33	-0,0079	0,0049	106	
QTGAL_5H3	JHI_Hv50k_2016_338274	5H	542.980.002	33	-0,0103	0,0049	52	
QTGAL_6H1	JHI_Hv50k_2016_378570	6H	18.969.632	22	-0,0011	0,0063	69	
QTGAL_7H1	JHI_Hv50k_2016_439341	7H	3.997.907	23	-0,0025	0,0058	134	
QTGAL_7H2	JHI_Hv50k_2016_458631	7H	32.344.775	51	-0,0070	0,0051	47	

Tabelle 9 Familieneffekte für TGAL für alle Marker mit einer Detektionsrate >20.

 ^a Die Marker-Positionen wurden aus Monat et al. (2019) übernommen; ^b Durchschnittlicher Effekt des Wildalleles über alle Familien (s. Tab. 7),
 ^c Standardabweichung [Optische Dichte], ^d Anzahl Kandidatengene im Intervall <u>±</u> 1 Mio. Basenpaare um Marker (Colmsee et al., 2015).

Es konnte gezeigt werden, dass QTGAL_2H2 in allen Familien einen positiven Effekt auf den TGAL-Gehalt in Gerstenpedunkeln hat (Tabelle 10). Ein auffällig negativer Effekt war für QTGAL_6H1 bei Familie 25 zu beobachten. Während der Marker keine bis nur sehr schwache Effekte in allen anderen Familien zeigte, schlug er bei Familie 25 stark aus. Diese Beobachtung wiederholte sich für den Marker QTGAL_7H1. Durchgehend negative Effekte auf TGAL über alle Familien zeigten Marker QTGAL_3H1, QTGAL_5H2 und QTGAL_7H2. Nur positive Effekte über alle Familien zeigte neben QTGAL_2H2 nur noch QTGAL_3H2.

Ergebnisse

QTL	Fam, 1	Fam, 2	Fam, 3	Fam, 4	Fam, 5	Fam, 6	Fam, 7	Fam, 8	Fam, 9	Fam, 10	Fam, 11	Fam, 12	Fam, 13	Fam, 14	Fam, 15	Fam, 16	Fam, 17	Fam, 18	Fam, 19	Fam, 20	Fam, 21	Fam, 22	Fam, 23	Fam, 24	Fam, 25
QTGAL_2H1	-0,0001	0,0005	0	-0,0002	0,0014	0	-0,0192	0,0004	0,0006	0,0002	0,0019	0	-0,0008	0	-0,04	0,0004	-0,0198	0,0001	0,0002	-0,0001	0,0004	0,0004	0	0,0017	0,0007
QTGAL_2H2	0,0089	0,0108	0,0113	0,0094	0,0122	0,0098	0,0034	0,0101	0,0052	0,0114	0,0116	0,0105	0,0075	0,0084	0,0031	0,0094	0,0089	0,0092	0,0105	0,0105	0,0107	0,0104	0,0095	0,0103	0,006
QTGAL_3H1	-0,0047	-0,0116	-0,0176	-0,0195	-0,0063	-0,011	-0,0115	-0,0109	-0,0062	-0,0201	-0,0117	-0,0062	-0,0067	-0,025	-0,0061	-0,0073	-0,0186	-0,0116	-0,0061	-0,0119	-0,007	-0,011	-0,0116	-0,0057	-0,0067
QTGAL_3H2	0,0076	0,0015	0,0044	0,003	0,0063	0,0049	0,0059	0,0052	-0,0092	0,0042	0,0072	0,0062	0,0089	0,0018	0,0012	0,0062	-0,0014	-0,0004	0,0006	0,0003	0,0007	0,0008	0,0033	-0,0099	0,0081
QTGAL_5H1	0,0013	0,0119	0,0012	0,0072	0,0038	0,0028	0,0016	0,0029	0,0027	0,0018	0,0037	0,0014	0,01	0,0007	0,0012	0,0124	0,0046	0,0019	0,0125	0,0124	0,0033	0,0041	0,0018	0,0115	-0,0004
QTGAL_5H2	-0,0068	-0,0125	-0,0008	-0,0065	-0,0087	-0,0044	-0,009	-0,0042	-0,0088	-0,0044	-0,0031	-0,0092	-0,0172	-0,0063	-0,0066	-0,0099	-0,0068	-0,0075	-0,0019	-0,0177	-0,0144	-0,0043	-0,0027	-0,0031	-0,0196
QTGAL_5H3	-0,0061	-0,0151	0,0023	-0,0088	-0,0146	-0,0145	-0,0079	-0,0129	-0,0064	-0,0131	-0,0041	-0,0064	-0,0071	-0,0162	-0,0137	-0,013	-0,001	-0,0145	-0,0044	-0,0152	-0,0151	-0,0151	-0,0118	-0,0125	-0,0093
QTGAL_6H1	0	0	0	0,0011	0	0	0,0011	0	0	0	0	0	0	0	0	0	0	0	0,0011	0	0	0	0	0	-0,032
QTGAL_7H1	-0,0029	0	-0,0014	-0,011	0	-0,0011	-0,0015	-0,0014	-0,0012	-0,0029	-0,0003	-0,0014	0	-0,0033	0,0046	-0,0018	-0,0039	-0,0003	-0,0003	-0,0015	-0,0021	-0,0007	-0,0007	0,0004	-0,0281
QTGAL_7H2	-0,0086	-0,0016	-0,0018	-0,0144	-0,0098	-0,0015	-0,0062	-0,0057	-0,0151	-0,0147	-0,0098	-0,0015	-0,0014	-0,0013	-0,0159	-0,0095	-0,0018	-0,0018	-0,0013	-0,0098	-0,0102	-0,0102	-0,0058	-0,0142	-0,0019

Tabelle 10 Familieneffekte für TGAL.

Effekt des Wildallels [Optische Dichte] auf den Ligningehalt des Pedunkels (Rot: positiver Effekt, Blau: negativer Effekt).

3.2.4 Histologie

Des Weiteren wurden für einen ersten Einblick in die Ligninverteilung in den Stängeln, Querschnitte präpariert, in denen das Lignin mit Phloroglucin rot angefärbt wurde. Dies geschah unter Anleitung von T. Ruten und M. Melzer im Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben. Mikroskopiert wurden Präparate der Sorte Barke und des Donors "HID219". Die Pflanzen befanden sich zum Moment der Probennahme in der Blüte.

Ein Erster Einblick zum besseren Verständnis der Ligninverteilung im Stängel zeigte Unterschiede zwischen Barke und dem Donors "HID219" (Abbildung 13). Das Lignin wurde rot eingefärbt und dadurch Leitbündel und Palisadenparenchym als lignifizierte Gewebe sichtbar.

Abbildung 13 Ligninverteilung im Querschnitt des Gerstenstängels. Querschnitt des Stängels der Elitesorte Barke (links) und der Wildgerste HID219 (rechts). Beide Gersten befanden sich zur Probennahme in der Blühphase. Das Lignin wurde mit Phloroglucin rot eingefärbt. Fotos: S. Zahn, T. Ruten, M. Melzer

4.1 Pedunkelmorphologie

4.1.1 Beschreibende Statistik

Die Population zeigte für alle morphologischen Merkmale des Pedunkels eine breite Variation zwischen den Genotypen (Abbildung 7), wodurch sie eine vielversprechende Ressource für eine GWAS darstellt. Der Variationskoeffizient über alle Genotypen der Population (Tabelle 3) lag in etwa in der Dimension anderer erfolgreich untersuchter Merkmale in HEB-25 (Maurer et al. 2016). Während DIA über die Jahre einen stabilen Mittelwert von ca. 1203 µm hatte (*t*-Test, *p*=0,788), waren die Werte für WAL im Jahr 2017 (279 µm) signifikant höher (*t*-Test, *p*<0,001) als im Jahr 2018 (247 µm, Tabelle 3). Der Einfluss des Faktors "Jahr" auf das Merkmal WAL spiegelt sich auch im hohen Wert der Umweltvarianzkomponente wider, während kein Einfluss auf DIA festgestellt werden konnte (Tabelle 4). Der Unterschied in WAL zwischen den Jahren könnte durch veränderte Umweltbedingungen, in diesem Fall natürlich aufgetretener Trockenstress im Jahr 2018, erklärt werden (Abbildung 14). Trockenheit könnte sich direkt auf WAL auswirken, während DIA, als das höher heritable Merkmal (Tabelle 4), unbeeinflusst bleibt.

Abbildung 14 Tagesniederschlag und Lufttemperatur der Wetterstation Kühnfeld in Halle.

Rot: Tägliche Durchschnittstemperatur [°C], blau: Niederschlag [mm], schwarz: Vegetationsperiode der HEB-25.

4.1.2 Korrelationen der Pedunkelmorphologie

Es sind bisher keine Studien direkt zur Pedunkelmorphologie von Gerste veröffentlicht, mit der die gefundenen Korrelationen direkt verglichen werden können. Eine aktuelle Arbeit zur Morphologie am zweiten Internodium von 261 Gerstenakkzessionen jedoch konnte die gleichen positiven Korrelationen zwischen den einzelnen Halmmerkmalen, also DIA und WAL sowie die negative Korrelation zur Lagerneigung zeigen sowie sie auch für die Pedunkelmerkmale gezeigt werden konnten (Bretani et al., 2022). Weitere frühere Studien weisen auf Korrelationen zwischen Lager, Blühzeitpunkt und Halmdurchmesser hin. So beschreibt eine Studie anhand einer biparentalen Gerstenpopulation signifikante Korrelationen (r = -0,146; p < 0,05) zwischen der Wanddicke des sechsten Internodiums (oberstes Internodium) und dem Lager, während keine signifikanten Korrelationen zwischen Durchmesser und Lager (Chen al., 2014). Die gefunden wurden et Unterschiede in den Korrelationsergebnissen zu dieser Studie könnten auf das sehr unterschiedliche Populationsdesign und die unterschiedlichen Messmethoden (Messschieber vs. Mikroskop) zurückzuführen sein. Außerdem wird in einer weiteren Studie bei Sommerweizen das Lager stark durch die Wandstärke an den basalen Internodien sowie durch den Halmdurchmesser aller Internodien und des Stängels beeinflusst. Aufgrund höherer Korrelationen den basalen Internodien zwischen an Halmmorphologie und Lagerresistenz, wird vorgeschlagen auf einen größeren Durchmesser und eine größere Wandstärke am unteren Ende des Halms zu züchten (Tripathi et al., 2003). Bei Reis sind der Halmdurchmesser und der Schosszeitpunkt eng mit der Knickfestigkeit verbunden. Auch für Reis ist die Schlussfolgerung, dass eine Erhöhung des Halmdurchmessers die Lagerresistenz verbessern würde (Kashiwagi et al., 2008). Diese Zusammenhänge konnten auch für die HEB-25 untersucht werden. Dazu wurden die Daten für Wachstums- und Ertragsparameter für den gleichen HEB-25 Feldversuch aus Gemmer et al. (2020) mit den Pedunkel-Daten aus dieser Studie kombiniert. Es wurden signifikante Korrelationen zwischen Lagerbildung (LOD), Blühzeitpunkt (HEA), Halmdurchmesser (DIA) und Halmdicke (WAL) beobachtet (Abbildung 8 A & B), was ihre Beziehung auch bei Gerste bestätigt. Im Allgemeinen war DIA positiv mit HEA und negativ mit LOD korreliert. Auch WAL war negativ mit LOD korreliert, was darauf hindeutet, dass DIA und WAL einen gemeinsamen Einfluss auf die Lagerresistenz haben könnten. Die Daten des Stängels zeigten vergleichbare Ergebnisse wie die Literatur für die Pflanzenstabilität von Sommerweizen und Reis (Kashiwagi *et al.*, 2008; Tripathi *et al.*, 2003). Dies könnte darauf hinweisen, dass die Stängeldaten als Indikator für die Bewertung der allgemeinen Pflanzenstabilität dienen. Die unterschiedlichen Ergebnisse zwischen den Jahren sind vermutlich auf die außergewöhnliche Trockenheit im Jahr 2018 zurückzuführen. Um dies zu bestätigen bräuchte es jedoch weiterführende Feldversuche mit möglichst ähnlichen Bedingungen.

Das berechnete Merkmal AREA korrelierte stärker mit DIA als mit WAL. Auch verhielt es sich simultan zu DIA, wenn es mit Entwicklungs- und Ertragsparametern korreliert wurde (Abbildung 8), was darauf hindeutet, dass DIA einen stärkeren Einfluss auf AREA hatte als WAL. Durch seine höhere Korrelation zu LOD ist DIA das lohnendere Ziel für die Verbesserung der Lagerneigung. Auch hinsichtlich der Ertragsparameter erwiesen sich die Korrelationen von WAL als schwächer als die von DIA. Diese Beobachtung galt für alle Korrelationen zwischen Stängelmorphologie und Ertragsparametern (Abbildung 8 C & D). Während für Sommerweizen (Tripathi et al., 2003) eine signifikante negative Korrelation für Ähren m⁻² und Halmdurchmesser beschrieben wurde, beschreibt auch eine zweite Studie (Kashiwagi et al., 2008) einen Zusammenhang zwischen den beiden Merkmalen bei Reis. In der vorliegenden Studie war die Korrelation jedoch nur mäßig stark nachgewiesen worden. Eine genauere Betrachtung der positiven Korrelationen zwischen der Stängelmorphologie und den Ertragsparametern ergab eine positive Korrelation mit der Kornzahl pro Ähre und der Kornbreite. Im Gegensatz dazu war die Kornlänge negativ mit DIA und AREA korreliert. Interessanterweise war WAL das einzige Merkmal der Stängelmorphologie, das 2018 eine signifikante Korrelation mit dem Kornertrag zeigte, wenngleich diese nur sehr schwach war (r = -0,10). Demzufolge, wäre ein erhöhtes WAL höchstwahrscheinlich nur auf Kosten des Kornertrags möglich, während eine Erhöhung von DIA ohne Ertragsverluste realisiert werden könnte.

4.1.3 GWAS (Pedunkelmorphologie)

Generell zeigten die Merkmale unterschiedliche Vorhersagefähigkeiten (Tabelle 5). Während die mit den BLUEs von DIA berechnete GWAS durchschnittlich 36,81 signifikante SNPs bei einer Vorhersagefähigkeit von 47 % ergab, kam die GWAS mit den WAL-Daten mit durchschnittlich 27,15 signifikanten SNPs nicht über 20 % Vorhersagefähigkeit hinaus. AREA, als abgeleitetes Merkmal von DIA und WAL, wies durchschnittlich 32,70 SNPs pro Kreuzvalidierungslauf mit 40 % Vorhersagefähigkeit auf. Auffallend war, dass die GWAS für DIA und AREA im Jahr 2017 eine höhere Vorhersagefähigkeit hatte als im Jahr 2018, während im Jahr 2018 die Vorhersagefähigkeit für WAL das Ergebnis des Versuchsjahres 2017 übertraf. Für WAL waren die Unterschiede in der GWAS-Vorhersagefähigkeit zwischen den Jahren aufgrund des hohen Einflusses der Umweltvarianzkomponente nicht überraschend (Tabelle 4). Vermutlich führten die Trockenheit und das Ausbleiben von Starkregen-Ereignissen sowie die allgemein niedrigere Luftfeuchtigkeit dazu, dass im Jahr 2018 kein Lager und weniger Krankheitserreger auftraten. Dieser Mangel an externen Einflussfaktoren auf den Stängel scheint zu einer besseren Vorhersagefähigkeit für WAL 2018 zu führen. Der Unterschied zwischen DIA in den einjährigen GWAS-Ergebnissen war aufgrund der besseren Heritabilität nicht so ausgeprägt erwartet worden. Unter Berücksichtigung der Unterschiede zwischen den Ergebnissen der GWAS für jedes einzelne Jahr müssen die gefunden QTL von BLUEs, 2017 und 2018 jeweils für sich ausgewertet und vergleichend betrachtet werden (Tabelle 5).

4.1.3.1 Gemeinsame QTL-Regionen (QPed.shared)

Die GWAS über beide Jahre hinweg (BLUEs) ergab 22 signifikant assoziierte (DR \geq 20) SNPs für DIA und jeweils 17 für WAL und AREA (Tabelle S1 und S2 in Zahn *et al.* (2021), Abbildung 9). Die meisten der SNPs zeigten relativ kleine Effekte, während wenige mit hohen Effekten auffielen. Um robuste QTL-Regionen zu bestimmen, wurden die GWAS-Ergebnisse der einzelnen Jahre berücksichtigt. Wenn SNPs verschiedener Einzeljahres-GWAS, GWAS von BLUEs oder verschiedener Stängelmorphologie-Merkmale eng miteinander verbunden waren, wurden sie als gemeinsame QTL-Regionen behandelt. Auf diese Weise konnten sieben gemeinsame QTL-Regionen definiert werden (Tabelle 11), die im Folgenden diskutiert werden. Alle Gene, die in den jeweiligen QTL-Regionen kartiert wurden, sind in Tabelle S3 in Zahn *et al.* (2021) aufgeführt. Vorgeschlagene Kandidatengene wurden durch eine Analyse der neueren Literatur in Bezug auf bereits beschriebene Gene und Erfahrungen aus früheren HEB-25-Studien ausgewählt.

 Tabelle 11 Durchschnittlicher Effekt des Wildallels (DR > 20) in ausgewählten QTL-Regionen.

	QTL Region						WAL [µm]				AREA [µm²]	Kandidatengene
shared-QTL	Chromosom		Position ^a	2017	2018	BLUEs	2017	2018	BLUEs	2017	2018	BLUEs	
QPed.shared.2H-1	2H	18,3–26,8 cM	21.508.891–29.254.219 bp	-101,5	-	-67,5	5,6	6,5	5,5	-8,3*10 ⁴	-	-4,4*10 ⁴	<i>PPD-H1</i> (Turner <i>et al</i> ., 2005)
QPed.shared.2H-2	2H	55,5–60,8 cM	164.050.763–518.354.808 bp	-181,6	-153,7	-168,0	-10,2	-7,5	-9,5	- 1,8*10⁵	-1,4*10 ⁵	-1,6*10 ⁵	HvCEN (Comadran et al., 2012)
QPed.shared.2H-3	2H	82,0 cM	586.582.931-586.594.551 bp	11,3	-	16,3	-	-	-	-1,3*10 ⁴	-	1,0*10 ⁴	
QPed.shared.3H-1	3H	47,7–51,8 cM	128.830.583–394.780.497 bp	72,7	100,9	91,1	10,5	14,4	14,2	8,8*10 ⁴	1,2*10 ⁵	1,1*10 ⁵	
QPed.shared.3H-2	3H	71,5 cM	517.985.664 bp	-	17,0	16,3	-	-	-	-	-	2,1*10 ⁴	
QPed.shared.3H-3	3H	106,6–109,5 cM	569.528.666-573.503.074 bp	-50,3	-	-	-8,8	-	-2,0	-6,0*10 ⁴	-	-2,4*10 ⁴	HvGA20ox ₂ (Jia <i>et al.</i> , 2015)
QPed.shared.4H-1	4H	0,9–2,1 cM	393.618–3.342.910 bp	-	25,8	-	5,1	8,1	6,3	-	3,7*10 ⁴	2,5*10 ⁴	

^a Intervall zwischen den signifikanten Marker-Positionen, die in maximaler Distanz zueinander innerhalb einer QTL-Region gefunden wurden.

4.1.3.2 QPed.shared.2H-1

Die QTL-Region auf dem kurzen Arm von Chromosom 2H hatte entgegengesetzte Effekte auf DIA und WAL. Während Wildallele einen negativen Effekt für das Merkmal DIA ausübten, konnten sie mit einem positiven Effekt auf das Merkmal WAL assoziiert werden. Interessanterweise konnte dieser QTL für DIA und AREA im Jahr 2018 nicht nachgewiesen werden. Dies könnte auf einen geringeren Einfluss dieses QTL auf DIA unter trockenen Bedingungen hindeuten, während WAL unbeeinflusst blieb. Der QTL wurde bisher nicht mit DIA oder WAL in Verbindung gebracht. In der Arbeit von Bretani *et al.* (2022), die die Merkmale DIA und WAL am zweiten Gersteninternodium untersucht, wurde ein QTL in dieser Region gefunden, jedoch nur für das Merkmal Pflanzenhöhe.

Der SNP mit der höchsten DR für DIA und AREA war 80.070 bp von dem Gen PPD-H1 (PSEUDO-RESPONSE REGULATOR 7; 2H 23.720.341-23.724.445; RefSeq2) entfernt. Dieses Gen beschleunigt die reproduktiven Entwicklungsprozesse unter Langtag-Bedingungen (Turner et al., 2005). Der Abstand zu dem SNP mit der höchsten DR für WAL betrug 275.688 bp (basierend auf BLUEs). Der Effekt von PPD-H1 basiert auf seiner Rolle in der zirkadianen Uhr (Campoli et al., 2012). Die repräsentierten Allele in der HEB-25-Population reichen von einer reduzierten Reaktion auf lange Photoperioden, die durch das kultivierte Barke-Allel eingeführt wurde, bis hin zu einer hohen Empfindlichkeit gegenüber langen Photoperioden, wie sie für die meisten wilden Gersten-Akzessionen beschrieben werden. Es wird angenommen, dass das wilde Allel die Blütenentwicklung beschleunigt, mit einem Kompromiss bei Wachstum und Biomasseproduktion (Maurer et al., 2016), was der beobachteten Reduktion von DIA und AREA in der vorliegenden Studie entspricht. Daher ist PPD-H1 ein wahrscheinliches Kandidatengen, das sich in dieser QTL-Region befindet und DIA und AREA kontrolliert. Aufgrund der Entfernung des Peak-SNPs und PPD-H1 und der gegenläufigen Effektrichtung wird ein anderes, benachbartes Gen vermutet, das WAL kontrolliert, obwohl der geringe Einfluss in Familie 24 (Tabelle S1 in Zahn et al. (2021)) dem einzigen in HEB-25 vorhandenen PPD-H1-Haplotyp entspricht, der sich phänotypisch nicht vom Barke-Haplotyp hinsichtlich der Blütezeit unterscheidet (Maurer *et al.*, 2015).

Um *PPD-H1* (HORVU.MOREX.r2.2HG0088300.1) als Kandidatengen zu validieren, wurden zusätzlich Exome-Capture-Daten (Tabelle A4) genutzt. Die Exome-Capture-

41

Daten von 21 exotischen Elternlinien standen zur Verfügung und wurden jeweils mit den geschätzten Wildalleleffekten der Pedunkelmerkmale der entsprechenden Familie verglichen. Die maximalen Effekte auf DIA und AREA basierend auf BLUEs fanden sich in Familie 17 (Tabelle S1 in Zahn *et al.* (2021)). Auch im Hinblick auf die Exome-Capture-Daten unterschied sich Familie 17 an Position 23.722.022 bp durch einen SNP (Cytosin statt Guanin) von den anderen (Tabelle A4). Da die Exome-Capture-Daten die starken DIA-Werte widerspiegeln, wird davon ausgegangen, dass *PPD-H1* einen Einfluss auf das Pedunkelmerkmal DIA hat. Da AREA sich aus DIA und WAL errechnet, fand sich auch ein Einfluss von *PPD-H1* auf AREA. Es festigt sich die Vermutung, das *PPD-H1* nicht das korrespondierende Kandidatengen für WAL ist.

4.1.3.3 QPed.shared.2H-2

Im Vergleich zu den übrigen in dieser Dissertation entdeckten QTL-Regionen, hatte diese QTL-Region den höchsten Einfluss hinsichtlich der Effektstärke auf DIA (Tabelle 11). Diese QTL-Region war über beide Jahre und alle Familien hinweg robust. Außerdem konnten für alle drei Merkmale abnehmende Effekte auf das Wildallel zurückgeführt werden. Das Phosphatidylethanolamin-bindende Protein (PEBP) kodierende Gen CENTRORADIALIS (HvCEN) (Comadran et al., 2012) ist in dieser QTL-Region vorhanden. Es ist in der niedrig-rekombinanten peri-zentromerischen Region von 2H bei 523.377.523 bp positioniert (Monat et al., 2019), was einer genetischen Position von 57 cM entspricht. HvCEN ist ein Schlüsselregulator der Blütezeit mit pleiotropen Effekten auf Sprossmerkmale, da es die Bestockung fördert und die Pflanzenhöhe erhöht (Bi et al., 2019). PPD-H1 und HvCEN zeigen unidirektionale Effekte auf HEB-25-Entwicklungsmerkmale mit einer geringeren Effektstärke von HvCEN im Vergleich zu PPD-H1 (Maurer et al., 2016). Interessanterweise ist bei den Pedunkelmerkmalen der potenzielle Effekt von HvCEN auf beide Merkmale höher skaliert und bei WAL sogar in die entgegengesetzte Richtung weisend. Die Exome-Capture-Sequenzierung konnte keine offensichtlichen SNPs innerhalb der Gensequenz aufdecken, die die beobachteten Phänotypen erklären. Natürlich können auch andere Gene, die die Merkmale kontrollieren, aufgrund des hohen LDs in der peri-zentromerischen Region nicht ausgeschlossen werden. Zum Beispiel wurden Hinweise auf das Vorhandensein von AP2-ähnlichen Ethylen-responsiven Transkriptionsfaktoren gefunden (Tabelle S3 in Zahn et al. (2021)), die zu einer der größten Genfamilien gehören, die für pflanzenspezifische

42

Transkriptionsfaktoren kodieren (Guo *et al.*, 2016). *AP2* wurde kausal mit der Teilung und der Expansion der Zellen des Stängels, vor allem im obersten Internodium (Pedunkel), in Gerste in Verbindung gebracht (Patil *et al.*, 2019). Während der Blüte ist *AP2* an der Modulation des Jasmonat-Signalwegs beteiligt, um das durch Gibberellin geförderte Stängelwachstum zu erleichtern (Patil *et al.*, 2019). Leider war es aufgrund der Komplexität dieser Genfamilie nicht möglich, spezifische Exome-Capture-Sequenzen für die erhaltenen Kandidatengene zu definieren.

4.1.3.4 QPed.shared.2H-3

Diese QTL-Region beeinflusst die Merkmale DIA und AREA in fünf Familien stark positiv, während der Effekt in den übrigen Familien vernachlässigbar war (Tabelle S1 in Zahn *et al.* (2021)). HORVU2Hr1G093690.1, welcher Expansin A5 kodiert, ein mit der Zellwandentwicklung zusammenhängendes Protein, von dem nachgewiesen wurde, dass es die Zellwandverlängerung und Zellexpansion induziert (Wang *et al.*, 2011), befindet sich in der Nähe des Peak-Markers der QTL-Region. Die Exome-Capture-Sequenzierung konnte jedoch keine offensichtlichen SNPs innerhalb der Gensequenz aufzeigen, die die beobachteten Phänotypen erklären.

4.1.3.5 QPed.shared.3H-1

Die peri-zentromerische Region von 3H (Zentromerposition: 271.947.776 bp (Monat *et al.*, 2019)) enthielt die QTL-Region mit dem höchsten DR (bis zu 94 Detektionen für WAL 2017) und positiven Effekten auf alle drei Merkmale in allen Familien außer Familie 1 (Tabelle 11). In beiden Versuchsjahren waren die Effekte robust und stark. Die QTL-Region umfasst 265.569.313 bp (Tabelle 11), was es schwierig macht einen entsprechenden Kandidaten für diese QTL-Region zu definieren. Aufgrund seiner Effektstärke und Robustheit über die Jahre ist das ursächliche Gen überaus interessant für mögliche Pedunkeloptimierung und weiterführende Forschung, kann hier aber nicht identifiziert werden.

4.1.3.6 QPed.shared.3H-2

Diese QTL-Region basiert auf einem einzigen Marker (JHI_Hv50k_2016_194212), der für DIA BLUEs und DIA 2018 jeweils eine DR von 61 und für AREA BLUEs eine DR von 29 hatte. Insgesamt war der mittlere Effekt aller 25 Familien moderat, stach aber bei den Familien 20, 21 und 22 hervor (Tabelle S1 in Zahn *et al.* (2021)). Die Effekte der Wildallele dieser drei Familien erreichten eine Erhöhung des DIA um 93,5 µm bis

123,7 µm im Vergleich zum Barke-Allel. Positive Effekte in ähnlicher Stärke wurden nur von QPed.shared.3H-1 erreicht. Für AREA war das gleiche Muster hinsichtlich der familienspezifischen Effekte zu erkennen, jedoch erreichten die maximalen Effekte nicht die Effektstärke des vergleichbaren QPed.shared.3H-1.

4.1.3.7 QPed.shared.3H-3

Es konnte gezeigt werden, dass diese QTL-Region signifikante Effekte aufweist, die ausschließlich im Jahr 2017 zu einer Verringerung der Dimensionierung aller drei Merkmale führte. Es wird vermutet, dass die durch die Trockenheit induzierte frühe Reife das weitere Stängelwachstum behindert hat, bevor der Effekt dieser QTL-Region beginnen konnte, die Merkmale im Jahr 2018 zu beeinflussen. Die QTL-Region umfasst 4.457.697 bp. Der DENSO (sdw1)-Locus entspricht dieser QTL-Region (Jia et al., 2015). Er enthält ein Halbverzwergungs-Allel, das von Züchtern weltweit häufig verwendet wird. DENSO wirkt sich positiv auf die LOD-Resistenz, den Ertrag, den Blühzeitpunkt und die Erhöhung des Ernteindex aus (Jia et al., 2015). Das dem Locus zugrundeliegende Gen ist HvGA20ox2, welches für eine GA-20-Oxidase kodiert, ein funktionelles Gen für die Biosynthese von Gibberellinsäure (Jia et al., 2015). Mit Gibberellinen und ihrer Beteiligung an Pflanzenwachstum und -entwicklung ist es kausal, dass DENSO einen Verzwergungseffekt auf Zellen, Gewebe und Organe in Gerste hat (Kuczyńska and Wyka, 2011). Die Effekte sind je nach Organ und Zelltyp unterschiedlich stark. Da jedoch die Blattgröße reduziert wurde, die Gefäßbündel kleiner waren und die Tracheenelemente in den Blättern dichter gepackt waren (Kuczyńska and Wyka, 2011), ist es wahrscheinlich, dass DENSO auch die Morphologie des Stängels beeinflusst. Die Exome-Capture-Sequenzierung konnte jedoch keine offensichtlichen SNPs innerhalb der Gensequenz aufdecken, die die beobachteten Phänotypen erklären. In Herzig et al. (Herzig et al., 2018) wurde ein QTL für LOD (QTL-3H-11) definiert, der sich mit QPed.shared.3H-3 überschneidet. Diese Überlappung, zusammen mit den geschätzten Effekten, bestätigt die Korrelation von Pedunkelmerkmalen mit LOD in der HEB-25 (Abbildung 8). Genau wie für QPed.shared.2H-1 wurde in der Arbeit von Bretani et al. (2022) ein QTL in dieser Region gefunden, jedoch nur für das Merkmal Pflanzenhöhe und nicht für die auch in Bretani et al. (2022) untersuchten Merkmale DIA und WAL am zweiten Internodium.

4.1.3.8 QPed.shared.4H-1

Die Region wurde bereits als wichtiger QTL für den Blühzeitpunkt beschrieben (Maurer *et al.*, 2015) und zahlreiche pleiotrope Effekte auf Pflanzenentwicklung und Ertragskomponenten konnten in der HEB-25 Population beobachtet werden (Maurer *et al.*, 2016; Sharma *et al.*, 2018). Es wurde ein robuster Effekt auf WAL beobachtet, während DIA und AREA nur im Jahr 2018 assoziiert werden konnten. Die Effektstärke in den einzelnen Familien war sehr heterogen, wobei die Wildallel-Effekte der Familien 9 und 12 für WAL mit Steigerungen von 13-15 µm in beiden Jahren am höchsten waren (Tabelle S1 in Zahn *et al.* (2021)). Die Region umfasst 2.196.419 bp am distalen Ende des kurzen Arms von Chromosom 4H. Ein Kandidatengen kann auch hier vorerst nicht benannt werden.

4.1.4 Einfluss der Pflanzenentwicklung auf die Pedunkelmorphologie

Der stärkste Einfluss auf die Pedunkelmorphologie konnte drei QTL-Regionen zugeschrieben werden (QPed.shared.2H-1, QPed.shared.2H-2, QPed.shared.3H-1). Jede von ihnen war mit allen drei Merkmalen assoziiert (Tabelle 11). Die Effektstärken und -richtungen zwischen den Merkmalen waren vergleichbar, außer bei QPed.shared.2H-1, wo die Effekte auf DIA und WAL entgegengesetzt waren. Zwei der Hauptregionen (QPed.shared.2H-1, QPed.shared.2H-2) und auch zwei schwächere QTL-Regionen (QPed.shared.3H-3, QPed.shared.4H-1) fallen mit wichtigen QTL zusammen, die den Blühzeitpunkt in Sommergerste kontrollieren (Tabelle 12) (Maurer et al., 2015). Dies wirft die Frage auf, inwieweit die Pedunkelmorphologie indirekt durch den Blühzeitpunkt bestimmt sein könnte. Dieser Trend war auch in der positiven Korrelation zwischen HEA und DIA sichtbar. Allerdings waren die Effektstärken von Blühzeitpunkt-QTL und Pedunkel-QTL nicht vergleichbar. Während der maximale Effekt auf den Blühzeitpunkt für den QTL auf QPed.shared.2H-1 beobachtet wurde, konnte der maximale Effekt auf DIA dem QPed.shared.2H-2 zugeordnet werden. Darüber hinaus wurden drei wichtige Blühzeitpunkt-QTLs für Pedunkelmerkmale nicht detektiert (QFt.HEB25-1b, QFt.HEB25-4e, QFt.HEB25-7a) (Maurer et al., 2015). Ebenso hatte QPed.shared.3H-1 einen starken Einfluss auf Pedunkelmerkmale und wurde für HEA gar nicht entdeckt. Zusammenfassend muss von einer differenzierteren Rolle von Phytohormonen ausgegangen werden, die einerseits den Blühzeitpunkt beeinflussen und andererseits direkte Effekte auf Zellwachstum und -differenzierung haben.

QTL	HEA ^ª [Tage nach Aussaat]	WAL ^ь [µm]	DIA ^ь [µm]	AREA ^b [µm²]
QFt.HEB25-1b	-1,4	-	-	-
QPed.shared.2H-1	-9,5	5,5	-67,5	-4,4*10 ⁴
QPed.shared.2H-2	-3,0	-9,5	-168,0	-1,6*10 ⁵
QPed.shared.3H-1	-	14,2	91,1	1,1*10⁵
QPed.shared.3H-3	-3,1	-2,0	-22,3	- 2,4*10 ⁴
QPed.shared.4H-1	3,2	6,3	25,2	2,5*10 ⁴
QFt.HEB25-4e	2,2	-	-	-
QFt.HEB25-5d	3,8	-1,3	-22,7	-
QFt.HEB25-7a	4,1	-	-	-

Tabelle 12 Effektvergleich von Blühzeitpunkt (HEA) QTL und entsprechenden Pedunkel-QTL-Regionen.

^a entnommen aus Maurer et al. (Maurer et al., 2015). ^b basierend auf BLUEs

Um ein besseres Verständnis der Rolle der Phytohormone in der Gerste im Zusammenhang mit der Pedunkelmorphologie zu bekommen wurde die Literaturrecherche auf Bambus ausgeweitet. Grund dafür ist, dass Bambus eine wertvolle Quelle für Informationen über die Regulation von Halmmerkmalen innerhalb der Familie der Poacea ist. Bei Bambus sind die Breite des Sprossapikalmeristems, die Höhe und die Gesamtzellzahl mit dem Halmdurchmesser verbunden (Wang et al., 2019). Außerdem konnte gezeigt werden, dass Unterschiede in den Gehalten der Phytohormone Abscisinsäure, Auxinen, Gibberellinen und Jasmonaten die Unterschiede zwischen den getesteten Bambus-Akzessionen verursachen (Wang et al., 2019). Dies deutet darauf hin, dass Veränderungen in den pflanzlichen Zellwänden eher eine indirekte Folge von Mutationen in Genen sind, die Entwicklungsprogramme kontrollieren, als eine Mutation direkt in einem an der Zellwandbiogenese beteiligten Gen (Yong et al., 2005). Die Übertragung dieser Erkenntnisse auf die HEB-25-Population könnte den Einfluss genomischer Regionen wichtiger Entwicklungsgene, denen Phytohormone unterliegen, auf die Pedunkelmorphologie erklären.

4.2 Hyperspektraler Ansatz der Ligninmessung in Pedunkeln und GWAS

Um eine vollständige Datengrundlage über die gesamte HEB-25 für die GWAS zu erstellen, wurde für die Analyse des Ligningehalts ein hyperspektraler Ansatz gewählt. Dazu wurden 146 HEB-Linien, Barke Wiederholungen und Scarlett nasschemisch analysiert.

Im nächsten Schritt wurde ein Modell erstellt und dessen Leistung errechnet (Tabelle 6). Mit diesem Model wurden dann die übrigen TGAL-Gehalte der nicht im

Labor gemessenen Pedunkel geschätzt. Die Leistung des Modells ist mit einem R² von 0,3 recht niedrig (Tabelle 6). Die RMSEr ist verhältnismäßig klein. Zur Veranschaulichung, betrachtet man das Verhältnis zu den TGAL-Ergebnissen, für die eine Spannweite der Messwerte zwischen 0,34 OD und 0,65 OD gemessen wurde, zum RMSEr mit 0,0425 OD (Tabelle 7), wird diese Verhältnismäßigkeit durchaus deutlicher. Je kleiner die RMSEr, desto besser fällt das Modell aus. Damit kann der Wert als Indikator für ein akzeptables Model interpretiert werden. Weiter konnte gezeigt werden, dass der Mittlere Relative Fehler des Modells bei 7,03 % liegt (Tabelle 6). Jedoch bleibt das niedrige R² als starkes Indiz für ein schwaches Modell zu erklären. Einen Hinweis gibt die deskriptive Statistik (Tabelle 7). Der Variationskoeffizient (CV) lag mit 5,39 sehr niedrig. Obwohl für die Wildgerstenpopulation eine hohe Variation angenommen wurde, zeigte sie für TGAL nur eine geringe Variabilität. Auch die TGAL-Gehalte der einzelnen Familien, der Barke-Wiederholungen und der gesamten HEB-Linien gemeinsam (Abbildung 10) verdeutlichen das Fehlen größerer Variation. Das Fehlen dieser erwarteten Variation hat sicherlich deutlich senkenden Einfluss auf den R² Wert des Modells. In den folgenden Kapiteln werden Argumente für ein funktionierendes Konzept gefunden (Korrelationen des TGAL 2018, GWAS anhand von TGAL). Dies sind weitere Hinweise funktionierendes Modell mit niedrigem R^2 bedingt durch auf ein den Eingangsdatensatz.

4.2.1 Beschreibende Statistik des Ligningehaltes (TGAL)

Der vollständige Fun0 Datensatz aus 2018 besteht aus TGAL-Ergebnissen von 146 gemessenen und 1243 geschätzten HEB-Linien. Hinzu kommen 10 gemessene Ergebnisse der Barke-Wiederholungen. Für die Gesamtheit der HEB-Linien, welche später in die GWAS einfließen, wurde die deskriptive Statistik errechnet (Tabelle 7). Der Variationskoeffizient über die HEB-Population lag bei 5,39 % und war damit niedrig.

Um die Familien der Population und deren Unterschiede zu untersuchen, wurde eine Abbildung erstellt, welche deren Verteilung der geschätzten TGAL-Werte darstellt (Abbildung 10). Familie 2, 5 und 25 enthalten Linien, die mit einer Optischen Dichte (OD) kleiner als 0,4 ausreißen. Trotzdem ergab eine ANOVA keine signifikanten Unterschiede (p < 0.05) zwischen den dargestellten Gruppen. Bei den drei Linien mit auffallend geringen TGAL-Gehalten, handelt es sich um die Linien HEB_05_048, HEB_25_027 und HEB_02_064. Für alle drei Linien gilt, dass die TGAL-Gehalte Schätzwerte der Modellierung sind. Es konnten keine Parallelen zwischen den Linien gefunden werden hinsichtlich der Entwicklungsparameter, Ertragsparameter oder Pedunkelmorphologie. Ob es sich hierbei um Artefakte oder besonders interessante Linien hinsichtlich des Ligningehaltes handelt, kann somit in dieser Arbeit nicht ermittelt werden. Eine nasschemische Messung des Lignins der Linien in einem zukünftigen Projekt ist nötig, um die Ergebnisse deuten zu können.

4.2.2 Korrelationen des TGAL 2018

Um den Ligningehalt in Kontext zu den anderen 2018 ermittelten Merkmalen zu setzen, wurden die gemessenen morphologischem Pedunkelmerkmale und die in der Literatur veröffentlichten Entwicklungs- und Ertragsmerkmale (Gemmer et al., 2020) mit TGAL korreliert und in einer Korrelationstabelle (Abbildung 11) zusammengefasst. Die drei stärksten Korrelationen zu TGAL waren negativ und hoch signifikant. Sie waren zu verzeichnen zwischen TGAL und den Entwicklungsmerkmalen Tage bis Schossen (SHO), Tage bis Blüte (HEA) bzw. Tage bis Reife (MAT). Die Korrelation zum Merkmal HEA lässt sich darauf zurückführen, dass die Zellstreckung des Pedunkels simultan zum Blütezeitpunkt geschieht (McKim, 2019). Generell deutet die Korrelation der Entwicklungsmerkmale mit TGAL auf einen Einfluss von Blühgenen hin. Diese konnte durch eine GWAS auch bestätigt werden. Eine Peak-Region wurde nahe des Gens PPD-H1 (Abbildung 12, Tabelle 9) detektiert, wodurch dieses insbesondere in Betrachtung der hier gefunden Korrelationen als Kandidatengen für diesen Lokus zählt. PPD-H1 als Bestandteil der zirkadianen Uhr (Campoli et al., 2012) beeinflusst den Blühzeitpunkt. Das Wildallel beschleunigt die Blütenentwicklung (Maurer et al., 2016), siehe dazu auch Kapitel 4.1.3.2 QPed.shared.2H-1. In der Theorie ist es daher vorstellbar, dass eine frühere Entwicklung, induziert durch das Wildallel von PPD-H1, dem Pedunkel eine längere Periode zur Ligninanreicherung verschafft. Der Zeitraum von der Streckung des Pedunkels zum Zeitpunkt der Blüte bis die Pflanze völlig ausgetrocknet ist und alle Prozesse zum Erliegen kommen, wäre also verlängert. Der Zustand der Pflanze zum Zeitpunkt der TGAL-Beprobung hielt den finalen TGAL-Gehalt im Lebenszyklus der Pflanzen im Pedunkel fest.

Die nächst stärkere Korrelation war zwischen TGAL und Ertrag (YLD) zu finden (Abbildung 11). Bei genauerer Betrachtung fällt auf, dass auch andere

48

Ertragsparameter wie Ähren pro Quadratmeter (EAR), Korngewicht (GRW) und Tausend-Korn-Gewicht (TGW) positiv mit TGAL korrelieren. Eine direkte kausale Korrelation zu TGAL scheint in diesem Fall allerdings unwahrscheinlich. Viel sinnvoller erscheint, dass die Ertragsmerkmale auch dem Einfluss von Blühgenen unterliegen und daher indirekt mit TGAL zusammenhängen. Hinzu kommt, dass 2018 ein vergleichsweise trockenes Jahr war (Abbildung 14). Eine Vermutung ist daher, dass Pflanzen, die früh geblüht haben der Trockenheit entkommen konnten (drought escape) und dementsprechend bessere Ertragsparameter aufwiesen.

Im Zusammenhang mit den Merkmalen der Pedunkelmorphologie scheint diese Theorie aber nicht komplett aufzugehen. Mit einer verzögerten Blüte im Jahr 2018 stieg auch der Pedunkeldurchmesser (DIA) und damit nahm auch die Oberfläche der Pedunkelquerschnitte (AREA) zu (Abbildung 11). Trotzdem gab es zwischen den Merkmalen Pedunkeldurchmesser und TGAL keine Korrelation. Weiterhin war eine Korrelation von TGAL und der Gesamtdicke der Pedunkelgewebe (WAL) im Voraus erwartet worden. Diese Erwartung wuchs aus dem Wissen, dass Lignin in Gefäßpflanzen nicht nur während der Morphogenese, sondern auch als Reaktion auf verschiedene Stressfaktoren synthetisiert wird (Sato *et al.*, 2011). Da für WAL gezeigt werden konnte, dass die Umweltvarianzkomponente einen großen Anteil an der Variation in WAL erklärt (Kapitel: 4.1.1 Beschreibende Statistik), lag die Vermutung nahe, dass es Lignin ist, welches den WAL Dickenunterschied zwischen den beiden Jahren verursacht. Doch die Daten können diese Theorie an dieser Stelle nicht bestätigen.

4.2.3 GWAS anhand von TGAL

Zur weiteren Analyse der TGAL-Daten wurde eine GWAS gerechnet. Die kreuzvalidierte GWAS hatte einen niedrigen R² von 0,024 im Validierungs-Set (Tabelle 8). Insgesamt wurden 475 SNPs im Verlauf der Kreuzvalidierung detektiert. Dreizehn SNPs überschritten den Schwellenwert von 20 Detektionen in den 100 Validierungsläufen (Abbildung 12).

Aus der kreuzvaliderten GWAS wurden die Familieneffekte berechnet (Tabelle 10). Drei QTL konnten mit einer hohen DR > 50 aufwarten: ein QTL auf dem kurzen Arm von 2H (QTGAL_2H1), einer auf 3H (QTGAL_3H1) und einer auf 7H (QTGAL_7H2). An allen drei QTL beeinflusste das Wildallel das TGAL negativ. Auffällig war auch die höchste Standartabweichung (0,0093 OD) der Effekte an QTGAL_2H1 (Tabelle 9). Der

CV konnte in diesem Fall nicht zur besseren Interpretation der Werte genutzt werden, da eine Berechnung aus einem Datensatz kombiniert aus positiven und negativen Familieneffekten unzulässig und fehlerhaft gewesen wäre.

Der QTL QTGAL 2H2 hatte den stärksten positiven Effekt auf TGAL im Mittel über alle Familien. Der Marker liegt im Gen HORVU.MOREX.r2.2HG0087510.1, welches als Ubiquitin Thioesterase annotiert ist (Colmsee et al., 2015). Im Intervall von +/- einer Million Basenpaaren liegen 83 Gene (Tabelle 9, Tabelle A8), die als Kandidatengene in Betracht genommen werden können. Darunter sind sechs Gene annotiert als "F-box family protein", vier mit der Annotation "Ubiquitin Thioesterase", drei mit der Annotation "Cytochrome P450" und drei mit der Annotation "Glycosyltransferase". Diese Aufzählung enthält nur die mehrfach vorkommenden Annotationen der 83 Gene in dem betrachteten Intervall. In der Menge an gefundenen Genen und durch die wiederkehrenden Annotationen innerhalb der Gene im betrachteten Intervall, wäre es zu spekulativ eines von Ihnen an dieser Studie als Kandidatengen zu benennen. Eine Literaturrecherche ergab jedoch trotzdem eine Vermutung, hinsichtlich eines Kandidatengens. Die Kombination von GWAS-Studien und der HEB-25-Population enthüllte immer wieder einen charakteristischen QTL nahe von QTGAL 2H2 auf dem kurzen Arm des Chromosoms 2H. Für den Lokus wird in den jeweiligen Studien PPD-H1 als Kandidatengen angenommen (Herzig et al., 2019; Maurer et al., 2015; Saade et al., 2016; Vatter et al., 2017; Wiegmann et al., 2019b). Für PPD-H1 als Kandidatengen konnte ein Effekt auf TGAL um 0,0092 OD und im Einklang dazu auf die Blüte von ungefähr -9 Tagen gezeigt werden. Es kann daher auch als eine weitere Validierung der Methode und des Ergebnisses gesehen werden. Besonders kann anhand von Blühgenen, ergo PPD-H1, die bereits im Kapitel 4.2.2 "Korrelationen des TGAL 2018" gefundene Korrelation erklärt werden, was den Zusammenhang zwischen dem Kandidatengen und TGAL nochmal bestätigt.

Der stärkste und robusteste Effekt von allen QTL konnte für QTGAL_3H1 gezeigt werden. QTGAL_3H1 hatte einen starken negativen Effekt (-0,011 OD) auf TGAL (Tabelle 9). Die Suche ergab, dass der gefundene Marker in dem Gen HORVU.MOREX.r2.3HG0193880.1 liegt, welches als "RING-finger, DEAD-like helicase, PHD and SNF2 domain-containing protein" annotiert ist. Zu diesem Gen wird auf die molekulare Funktion verwiesen, dass es an Metallionen bindet (Colmsee *et al.*, 2015). Im Intervall von +/- einer Million Basenpaaren Abstand zu dem Marker sind 45 Gene beschrieben worden (Tabelle 9, Tabelle A9). Eine Vermutung welches der Gene

50

als Kandidatengen in Frage kommt, kann an dieser Stelle nicht gegeben werden. Das hat verschiedene Gründe. Direkte GWAS Treffer von SNPs in Kandidatengenen sind nicht selbstverständlich. Auch die Wahrscheinlichkeit, einen kausalen SNP zu detektieren, ist selbst bei einer GWAS mit 32.995 SNPs nicht unbedingt gegeben. Besonders in Genomregionen mit wenig Rekombination, ist eine weite Streuung der detektierten Marker um den kausalen Marker und das Kandidatengen zu erwarten. Am Beispiel von PPD-H1 kann das Phänomen gut dargestellt werden. Der kausale SNP (SNP22) ist bekannt (Jones et al., 2008; Turner et al., 2005), ist jedoch nicht auf dem Array enthalten. Auch ist zu bedenken, dass aufgrund der Anzahl potentiell verschiedener Wildallele immer das Problem besteht, dass diese sich nicht immer gleich verhalten und somit der SNP signifikant wird, der die breite Masse am besten abbilden kann und gleichzeitig an das kausale Gen gekoppelt ist. Im Folgenden wurde für TGAL der SNP JHI Hv50k 2016 72531 signifikant. SNPs, welche in fast allen Familien polymorph sind, neigten auch in vorangegangenen HEB-25 Veröffentlichungen dazu signifikant zu werden (Maurer et al., 2015). Doch auch wenn ein SNP diesen beiden Kriterien entspricht, bleibt immer noch die Chance, dass der SNP einen zu geringen Effekt zeigt und daher letztendlich nicht als signifikante Detektion aus der GWAS hervorgeht.

Letzten Endes konnte nur für QTGAL_2H2 ein Kandidatengen genannt werden. Und dies anhand von HEB-25 Studien. Für die restlichen 9 QTL musste also ein anderer Weg zum Kandidatengen gefunden werden. Um mögliche Kandidatengene den detektierten SNPs zuordnen zu können, kann es zielführend sein aus der Literatur Gene im Genom zu lokalisieren und möglichen Bezug zu detektierten SNPs herzustellen. Die Vermutung liegt nahe, dass ein Kandidatengen innerhalb des Syntheseweges von Lignin zu finden ist (Abbildung 15). Dazu wurden im Folgenden Schlüsselgene des Ligninsyntheseweges in der Literatur ausfindig gemacht und diskutiert, ob die GWAS-Ergebnisse von TGAL mit diesen zu erklären sind.

51

Abbildung 15 Der Hauptbiosyntheseweg zu den Monolignolen p-Coumaryl-, Coniferyl- und Sinapylalkohol (Boerjan et al., 2003).

PAL, PHENYLALANIN AMMONIAK-LYASE; C4H, CINNAMATE 4-HYDROXYLASE; 4CL, 4-COUMARATE:CoA LIGASE; C3H, p-COUMARATE 3-HYDROXYLASE; HCT, p-HYDROXYCINNAMOYL-CoA: QUINAT/ SHIKIMAT p-HYDROXYCINNAMOYLTRANSFERASE; CCoAOMT, CAFFEOYL-CoA O-METHYLTRANSFERASE; CCR, CINNAMOYL-CoA REDUCTASE; F5H, FERULAT-5-HYDROXYLASE; COMT, KAFFEESÄURE-O-METHYLTRANSFERASE; CAD, CINNAMYLALKOHOL-DEHYDROGENASE. Entnommen aus Vanholme, Demedts et al. (2010)

Es ist bekannt, dass eine erhöhte Ligninsynthese, Phenylalanin-Ammoniak-Lyase (PAL)-Aktivität, Cinnamoyl-CoA Reduktase (CCR)-Expression und Zimtalkoholdehydrogenase (CAD)-Expression im zweiten Internodium während der Blüte zur Lagerresistenz beitragen (Begović *et al.*, 2018). Da im TGAL-Versuchsjahr 2018 Extremwetter-Ereignisse während der Vegetationsperiode der HEB-25 ausblieben, konnte kein Lager für die Saison bonitiert werden. Nimmt man aber aus dem Jahr 2017 die Lagerneigung der HEB-25 Linien und korreliert diese mit TGAL aus

2018, erhält man einen sehr geringen Pearson-Korrelationskoeffizienten (0,073). Damit ist eine Reproduktion dieses Zusammenhangs an dieser Stelle nicht möglich. Nichts desto trotz sind PAL, CCR und CAD Gene aus dem Monolignolbiosyntheseweg (Abbildung 15), welche als Kandidatengene in Frage kommen. Weiter sind Kaffeesäure-O-Methyltransferase (COMT) und CAD Gene geeignet, spezifisch den Ligningehalt oder die Zusammensetzung einer Pflanze zu verändern. Eine Manipulation von PAL, Cinnamat 4-Hydroxylase (C4H), *p*-Coumarat 3-Hydroxylase (C3H) und 4-Coumarat:CoA Ligase (4CL) führt durch ihre Funktion im Phenylpropanoid-Syntheseweg zu einem Einfluss der Gene auch auf andere Endprodukte des Syntheseweges. Somit generiert eine Veränderung an diesen Genen neben einer Modifikation des Lignins weitere ungewünschte pflanzenphysiologische Nebeneffekte (Moura *et al.*, 2010). Für eine selektive Veränderung im Lignin der Pflanzen sind diese Gene daher nur bedingt geeignet.

4.2.3.1 Zimtalkoholdehydrogenase (CAD)

CAD ist das letzte Enzym im Biosyntheseweg der Monolignole (Vanholme et al., 2012). Es gibt Hinweise darauf, dass die CAD-Manipulation eine Stellschraube ist, um die Ligninverdaulichkeit zu verbessern und/oder den Ligningehalt in Pflanzen zu senken (Preisner et al., 2014). Eine erste Gen-Suche ergab zwei Treffer: erstens CAD 6 auf 1H und zweitens CAD 9 auf 4H (Colmsee et al., 2015). Daten deuten darauf hin, dass TaCAD1 das vorherrschende CAD im Weizenstängel für die Ligninbiosynthese ist (Ma, 2010). Transponiert man TaCAD1 via BLAST (engl. Basic Local Alignment Search Tool) auf das Morex Referenzgenom v2 (Colmsee et al., 2015; Monat et al., 2019), findet sich auf Chromosom 6H zwischen 169.468.758 bp und 169.472.489 bp eine putative Alkoholdehydrogenase (HORVU.MOREX.r2.6HG0477260.1), jedoch ist kein Lokus der GWAS mit diesem Gen zu erklären. Für Reis wurde eine Zimtalkoholdehydrogenase beschrieben, welche hauptsächlich in den Sklerenchymzellen der sekundären Zellwand und der Gefäßbündelregion exprimiert wird. Es konnte für diese Zelltypen ein Einfluss der CAD auf die Zellwanddicke sowie auf den Ligningehalt gezeigt werden (Li et al., 2009b). Die Sequenz für das beschrieben CAD-Gen in Reis OsCAD7 (Loc Os04g52280) konnte aus der MSU RGAP Datenbank entnommen werden (Kawahara et al., 2013). Ein BLAST gegen das Referenzgenom Morex v2 (Colmsee et al., 2015; Monat et al., 2019) resultierte in einer weiteren putativen Alkoholdehydrogenase (HORVU.MOREX.r2.2HG0158470). Der

53

Genort auf 2H zwischen 610.696.602 bp und 610.705.731 bp konnte wiederum nicht mit einem Peak der GWAS in Verbindung gebracht werden.

4.2.3.2 Phenylalanin-Ammoniak-Lyase (PAL)

Das PAL-Enzym katalysiert die Desaminierung von Phenylalanin und stellt einen Anfang des Phenylpropanoid-Biosyntheseweges dar. Als solches spielt es eine wichtige Rolle bei der Regulation von Phenylpropanoiden, einschließlich Lignin (Whetten and Sederoff, 1995).

Phenylalanin wird durch PAL zu Zimtsäure umgesetzt (Abbildung 15). Aktuell sind in der Referenzsequenz (Version 2) 16 Phenylalanin-Ammoniak-Lyasen und eine Phenylalanin-Ammoniak-Lyase-1 annotiert (Colmsee *et al.*, 2015). Die gefundene Gene verteilen sich auf die Chromosomen 1H, 2H, 3H und 6H, 7H plus zwei bei denen eine Zuordnung nicht möglich war. Von allen 16 möglichen PAL-Genen ist keines in der Nähe eines detektierten QTL.

4.2.3.3 Cinnamoyl-CoA Reduktase (CCR)

Für CCR sind 30 Gene in "Morex v2 CDS Aug2019" (Colmsee et al., 2015) annotiert. Diese 30 Annotationen beinhalten CCR, CCR2, CCR4, CCR-Familien Proteine und CCR-ähnliche Proteine. Studien in Reis belegen Unterschiede in den Substrat-Präferenzen in den 33 gefundenen OsCCR-Genen in Reis. OsCCR17, 19, 20 und 21 zeigten Enzymaktivität gegenüber Hydroxycinnamoyl-CoA-Substraten, was darauf hindeutet, dass diese OsCCRs biochemisch funktionelle CCRs in Reis sind. Weiterhin konnte gezeigt werden, dass Feruloyl-CoA, eine Vorstufe für G-Lignin, das bevorzugte Substrat zweier OsCCR Gene ist (OsCCR20 und 21). Tatsächlich bestehen Reis-Lignine zu ca. 70 % aus G-Lignin. Weiterhin konnten OsCCR17 und 21 mit einer Stressantwort der Pflanze auf biotischen und abiotischen Stress in Verbindung gebracht werden. Dazu zählen Infektionen mit Magnaporthe grisea und Xanthomonas oryzae pv. oryzae (Xoo), UV-Bestrahlung und Salzstress. Tatsächlich sind OsCCR17 und 21 ähnlich zu CCR aus anderen Pflanzenspezies, in denen sie auch mit einer Antwort auf Stressoren verbunden werden konnten. OsCCR20 ist hauptsächlich neben OsCCR19 an der entwicklungsbedingten Ablagerung von Ligninen in sekundären Zellwänden beteiligt (Park et al., 2017).

Es war möglich durch einen BLAST gegen das Morex v2 Referenzgenom (Colmsee *et al.*, 2015) die zu OsCCR17, 19, 20, 21 ähnlichsten CCRs zu identifizieren (Tabelle 13).

Die Sequenzen für die OsCCR wurden dafür aus der MSU RGAP Datenbank entnommen (Kawahara *et al.*, 2013). Ausfällig war, dass die beiden für die entwicklungsbedingten Ablagerung von Ligninen in sekundären Zellwänden beteiligten OsCCRs (19, 20) denselben HORVU als BLAST-Ergebnis hatten. Nichtsdestotrotz konnte weder mit den drei Genen (Tabelle 13), noch mit irgendeinem anderen der 30 mit CCR annotierten Genen ein QTL des GWAS-Ergebnisses erklärt werden.

Reis CCR ^a	HORVU	Chr. ^b	Interval [bp] ^b		Annotation	
OsCCR17	HORVU.MOREX.r2.5HG0387900	5H	358.283.458 35	58.285.451	Cinnamoyl-CoA reductase	
OsCCR19	HORVU.MOREX.r2.5HG0400660	5H	451.764.502 45	51.768.836	Cinnamoyl CoA reductase	
OsCCR20	HORVU.MOREX.r2.5HG0400660	5H	451.764.502 45	51.768.836	Cinnamoyl CoA reductase	
OsCCR21	HORVU.MOREX.r2.6HG0471350	6H	115.897.303 12	15.899.334	Cinnamoyl CoA reductase	

Tabelle 13 BLAST Ergebnis von OsCCR-Genen in Gerste

^a beschrieben in Park et al. (2017) und Sequenz entnommen aus der MSU RGAP Datenbank (Kawahara et al., 2013); ^b entnommen aus "Morex v2 CDS Aug2019" (Colmsee et al., 2015)

4.2.3.4 Kaffeesäure-O-Methyltransferase (COMT)

Ein Schlüsselenzym im Biosyntheseweg ist COMT. Für unteranderem dieses Enzym wurde in den C4-Pflanzen Mais und Sorghum beschrieben, dass es durch Mutation einen Phänotypen hervor rufen kann, mit der Charakteristik einer braunen Mittelrippe, einem niedrigeren Ligningehalt und einer höheren Verdaulichkeit (Green et al., 2014). Es sind drei COMT Gene in verholzenden Geweben identifiziert worden und neun COMT-ähnliche Gene (Daly et al., 2019). Das Herunterregulieren der COMT Proteine und Enzymaktivität hat den Ligningehalt von Gerstenstängeln reduziert und starken Einfluss auf die Lignin-Zusammensetzung gezeigt (Daly et al., 2019). Um die beschrieben Gene in dieser Studie zu untersuchen, wurden sie auf die Gerstengenom-Referenzsequenz (Version 2) der Sorte Morex transponiert. Auch wurden zwei direkte BARLEX-Treffer mit der Annotation "Caffeic acid 3-O-methyltransferase" und "Caffeic acid 3-O-methyltransferase1" gefunden (Colmsee et al., 2015) (Tabelle 14). Es konnte kein Zusammenhang zwischen den COMT Genen und dem GWAS-Ergebnis gefunden werden. Auch in der Arbeit von Daly et al. (2019) konnten die Mutanten mit brauner Mittelrippe in Gerste und Weizen nicht beobachtet werden. In der Arbeit wird vermutet, dass eine Ausprägung des Genotyps in Gerste und Weizen durch die Redundanz von COMT verhindert wird. Diese Redundanz der COMTs könnte vermutet werden, als Grund für die in der Studie nur sehr moderat schwankenden Ligningehalte bei herunterregulierter COMT durch RNA-Interferenz (Daly et al., 2019). Übertragen auf

die Interpretation der GWAS bedeutet dies, dass es vermutlich durch die Redundanz von COMT und die sehr geringe gefundene Ligninvariation in den Pedunkeln der HEB-25 zu keinen QTL-Detektionen in Zusammenhang mit COMT kommt. Sehr interessant ist die drastisch veränderte Lignin Struktur, welche durch die Herunterregulation von COMT induziert wird (Daly *et al.*, 2019). Mit den vorliegenden Exome-Capture-Daten der HEB-25 sollte es in Folgeprojekten möglich sein, Familien mit unterschiedlichen COMT zu identifizieren und deren Lignin-Zusammensetzung zu analysieren. Im Anbetracht der Aktualität des Themas der nachwachsenden Rohstoffe ist dies eine sinnvolle Fragestellung für Folgeprojekte.

4.2.3.5 Peroxidasen und Laccasen

Im aktuellen Modell der Lignifizierung beinhaltet die Zellwand Peroxidasen und/oder Laccasen. Diese sorgen für die oxidative Kapazität (Grabber *et al.*, 2008). Nachdem die Monolignole die Zellwand erreicht haben, passiert durch diese Enzyme die oxidative Radikalisierung der Monolignol-Phenole. In der Folge können sich nun zwei dieser Monolignol-Radikale kovalent binden. Für die weitere Lignin-Polymerisation wird nun das entstanden Dimer wieder radikalisiert und geht dann erneut eine Bindung mit einem weiteren Monomer ein.

An der Dehydrierung von Monolignolen sind Peroxidasen und/oder Laccasen beteiligt. Auch wenn beide Enzyme das gleiche Ergebnis erzielen, ist der zugrundeliegende Mechanismus verschieden. Während Peroxidasen Wasserstoffperoxid als Substrat verwenden, nutzen Laccasen Sauerstoff zur Oxidation ihrer Metallzentren, um die katalytische Phenoloxidation zu ermöglichen. Beide Enzymtypen gehören zu großen Genfamilien, deren einzelne Mitglieder überlappende Aktivitäten haben, was die Untersuchung des Prozesses erschwert. Von einem Knockout zum Beispiel kann erwartet werden, dass er aufgrund der Genredundanz wenig bis keinen Effekt auf die Lignifizierung zeigen wird (McCaig *et al.*, 2005; Vanholme *et al.*, 2010). Die bestehende Literatur wird mit der erarbeiteten GWAS bestätigt, da kein QTL direkt einer Peroxidase oder Laccase zugeordnet werden kann. Dies kann natürlich nur unter dem Vorbehalt diskutiert werden, dass an den entsprechenden Genen innerhalb der HEB-25 eine Variation besteht und die Power der GWAS ausreichend ist.

 Tabelle 14 Aus der aktuellen Literatur und durch BARLEX-Recherche bekannte COMT-Gene und COMTL-Gene (COMT-ähnliche Gene) mit ihrer Position und Annotation in der Gerste

Gen	HORVU ^b	Annotation^b	HORVU ^c		Start ^c	Endec	Annotation ^c
HvCOMT1 ^ª	HORVU7Hr1G082280.1	O-methyltransferase 1	HORVU.MOREX.r2.7HG0590460	7H	478.095.736	47.8097.471	O-methyltransferase
HvCOMT2 ^a	HORVU3Hr1G116770.1	Caffeic acid 3-O- methyltransferase	HORVU.MOREX.r2.3HG0274970	3H	625.802.608	625.803.841	O-methyltransferase
HvCOMT3 ^a	HORVU6Hr1G000040.1	Caffeic acid 3-O- methyltransferase	HORVU.MOREX.r2.6HG0449080	6H	4.220.045	4.221.668	O-methyltransferase
HvCOMTL1 ^a	HORVU1Hr1G011930.1	O-methyltransferase 1	HORVU.MOREX.r2.1HG0009370	1H	27.806.841	27.808.212	O-methyltransferase
HvCOMTL2 ^a	HORVU1Hr1G003370.2	Caffeic acid 3-O- methyltransferase	HORVU.MOREX.r2.1HG0002940	1H	6.930.870	6.932.707	O-methyltransferase
HvCOMTL3 ª	HORVU7Hr1G119480.2	O-methyltransferase 1	HORVU.MOREX.r2.7HG0621570	7H	628.336.704	628.337.771	O-methyltransferase
HvCOMTL4 ª	HORVU4Hr1G001250.1	Caffeic acid 3-O- methyltransferase	HORVU.MOREX.r2.4HG0276750	4H	2.513.156	2.514.321	O-methyltransferase
HvCOMTL5 ^a	HORVU1Hr1G089620.1	O-methyltransferase 1	HORVU.MOREX.r2.1HG0073960	1H	509.724.985	509.727.119	O-methyltransferase
HORVU6Hr1G092840.2 ª	HORVU6Hr1G092840.2	O-methyltransferase family protein	HORVU.MOREX.r2.6HG0525130	6H	569.351.941	569.353.961	O-methyltransferase
HORVU3Hr1G006060.1 ª	HORVU3Hr1G006060.1	O-methyltransferase 1	HORVU.MOREX.r2.3HG0186290	ЗH	12.279.800	12.281.451	O-methyltransferase
HORVU1Hr1G089700.1ª	HORVU1Hr1G089700.1	O-methyltransferase 1	HORVU.MOREX.r2.1HG0073980	1H	509.759.683	509.770.097	O-methyltransferase
HvF1-OMT ^a	HORVU1Hr1G089520.1	O-methyltransferase family protein	HORVU.MOREX.r2.1HG0073880	1H	509.258.345	509.259.569	O-methyltransferase
			HORVU.MOREX.r2.3HG0198920	ЗH	68.115.326	68.115.685	Caffeic acid 3-O-methyltransferase
			HORVU.MOREX.r2.7HG0614280	7H	611.156.857	611.157.260	Caffeic acid 3-O-methyltransferase

^a Gen entnommen von Daly et al. (2019), ^b HORVU und Annotation für "barley pseudomolecule assembly (barley CDS HC May 2016)" (Colmsee et al., 2015), ^c Übersetzung zu "Morex v2 CDS Aug2019" (Colmsee et al., 2015).

4.2.4 Histologie

Eine weitere Hypothese ist ein möglicher Zusammenhang von morphologischen Merkmalen des Stängels mit dem Ligningehalt, jedoch können die erhobenen morphologischen Merkmale keinen Aufschluss darüber geben, ob zum Beispiel zwischen den Linien Verschiebungen in den Verhältnissen der Pedunkel-Gewebetypen vorliegen. Wenn sich der Anteil an Lignin-einlagernden Geweben, wie Pallisadenparenchym, Epidermis, Leitbündelgröße oder Leitbündelanzahl (Abbildung 13) am Gesamtgewebe vergrößert, müsste sich der Theorie nach auch der Anteil an Lignin des Stängels erhöhen. Die mikroskopischen Aufnahmen (Abbildung 13) deuten an, dass mit hoher Wahrscheinlichkeit in der HEB-25 Variation in den Verhältnissen der Pedunkel-Gewebetypen vorliegt und zwar hinsichtlich Leitbündelgröße und -dichte. Solche Anteils-Verschiebungen wie zum Beispiel im Mesophyll konnten für Blätter von Gräsern beobachtet werden. In dieser Studie, ausgelöst durch Beschattung, stieg der Anteil an Schwammparenchym des dorsiventralen Mesophylls (Ivanova and P'Yankov, 2002). Im Umkehrschluss würde somit der erwartete Ligningehalt durch einen abiotischen Einfluss sinken. Dies konnte durch die einjährigen Daten in der vorliegenden Arbeit nicht gezeigt werden. Aus den errechneten Korrelationen von TGAL mit DIA, WAL und AREA geht hervor, dass zumindest für diese Merkmale keine Korrelation vorliegt (Abbildung 11). An dieser Stelle ergeben sich neue interessante Fragestellungen für zukünftige Forschung an der HEB-25.

5 Fazit

Nach zweijährigen Feldversuchen mit der Gersten NAM Polulation HEB-25 wurden die erhobenen phänotypischen Daten der Pedunkelmorphologie und des Ligningehaltes des Strohs für eine GWAS genutzt. Es konnten neue Erkenntnisse über die QTL-Regionen gewonnen werden, die an der Kontrolle der Pedunkelmorphologie beteiligt sind. Es konnte ein Zusammenhang zwischen Lagerneigung und Pedunkelmerkmalen gezeigt werden, während kein direkter Einfluss auf den Kornertrag beobachtet werden konnte. Drei QTL-Regionen auf 2H und 3H stachen durch robuste und starke Effekte auf Merkmale der Pedunkelmorphologie hervor. Obwohl der Blühbeginn mit der Pedunkelstreckung zusammenfiel, erwiesen sich die Effekte der QTL, die diese Merkmale kontrollieren, weniger konform als erwartet. Dies könnte durch Phytohormone verursacht werden, die sowohl das Zellwachstum als auch den Blühzeitpunkt unterschiedlich beeinflussen. QPed.shared.3H-1 (47,7-51,8 cM) zeigte starke positive Effekte auf die Pedunkelmerkmale, aber keine auf den Blühzeitpunkt. Aufgrund der hohen LD in der perizentrischen QTL-Region müssen jedoch weitere Studien durchgeführt werden, um das zugrundeliegende ursächliche Gen zu identifizieren. Vorteilhafte Wildallele dieses Gens könnten ein vielversprechendes Ziel für die Introgression in Elitegerste sein, um die Lagerresistenz und/oder die Menge des geernteten Strohs zu erhöhen, während andere günstige Eigenschaften der Pflanzen unbeeinflusst bleiben. Es war nicht möglich die Pedunkelmorphologie in Zusammenhang mit dem Ligningehalt zu bringen. Es konnte jedoch gezeigt werden, dass die Variation in den Ligningehalten in der HEB-25 sehr gering ist. Das Besondere an der Analyse war die hyperspektrale Methode zur Schätzung des Ligningehaltes für rund 90 % der Linien. Hoch signifikante negative Korrelationen zu den Entwicklungsmerkmalen Schossen (SHO), Blüte (HEA) bzw. Reife (MAT) und dem in der GWAS gefundenen Blüh-QTL (PPD-H1) deuten auf den Einfluss von Blühgenen auf den Ligningehalt hin. Nichtsdestotrotz kann damit nicht die gesamte Variation erklärt werden. Neun weitere detektierte QTL, denen kein Kandidatengen zugeordnet werden konnte, zeugen von einem komplexen Merkmal mit vermutet hohen Redundanzen der beteiligten Gene. Da durch eben diese Redundanz erwartet wird, dass Knockouts keine messbaren Effekte liefern, sind diese nur bedingt das Mittel der Wahl, um Gene in Folgearbeiten zu identifizieren. Trotz geringer Lignin-Variation bietet die HEB-25 den Vorteil der vorliegenden Exome-Capture-Daten. Hiermit können beispielsweise unterschiedliche potentielle Lignin-Gene identifiziert und deren Lignin-
Zusammensetzung vergleichend analysiert werden. Außerdem wären mehrjährige Versuche sinnvoll, da denkbar ist, dass die Trockenheit 2018 die Pflanzen zur vorzeitigen Blüte gebracht hat und somit die Ausprägung unterschiedlicher Ligningehalte zwischen den Linien unterdrückt hat. Folgeversuche könnten außerdem auf die Optimierung des Analyse-Prozesses zielen. Gerade für die Arbeit mit einer solch großen Population wäre es von Vorteil den aufwendigen hyperspektralen Ansatz mit Nah-Infrarot-Spektroskopie (NIRS) zu substituieren. Dadurch könnte es möglich werden, den Ligningehalt der Pflanzen zu mehreren Zeitpunkten in ihrer Entwicklung zu ermitteln. Die genetische Regulation von Lignin in der Gerste bietet noch viel Forschungspotential. Sie ist ein komplexes Forschungsfeld mit vielen Variablen und einer großen Aktualität und Tragweite durch die steigende Relevanz nachwachsender Rohstoffe.

6 Literaturverzeichnis

- Badr A, M K, Sch R, Rabey HE, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F. 2000. On the Origin and Domestication History of Barley (Hordeum vulgare). Molecular Biology and Evolution **17**, 499-510.
- Barati M, Majidi MM, Mostafavi F, Mirlohi A, Safari M, Karami Z. 2018. Evaluation of wild barley species as possible sources of drought tolerance for arid environments. Plant Genetic Resources: Characterization and Utilization **16**, 209-217.
- Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R. 2017. Development and Evaluation of a Barley 50k iSelect SNP Array. Frontiers in Plant Science 8.
- **Begović L, Abičić I, Lalić A, Lepeduš H, Cesar V, Leljak-Levanić D**. 2018. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging. Plant Physiology and Biochemistry **133**, 142-148.
- Bi X, van Esse W, Mulki MA, Kirschner G, Zhong J, Simon R, von Korff M. 2019. CENTRORADIALIS Interacts with FLOWERING LOCUS T -Like Genes to Control Floret Development and Grain Number. Plant Physiology **180**, 1013-1030.
- **Bjørsvik H-R, Minisci F**. 1999. Fine Chemicals from Lignosulfonates. 1. Synthesis of Vanillin by Oxidation of Lignosulfonates. Organic Process Research & Development **3**, 330-340.
- Boerjan W, Ralph J, Baucher M. 2003. Lignin Biosynthesis. Annual Review of Plant Biology 54, 519-546.
- Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C. 2014. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature **509**, 376-380.
- Bretani G, Shaaf S, Tondelli A, Cattivelli L, Delbono S, Waugh R, Thomas W, Russell J, Bull H, Igartua E, Casas A, Gracia P, Rossi R, Schulman A, Rossini L. 2022. Multienvironment genome-wide association mapping of culm morphology traits in barley. bioRxiv, 2022.2003.2030.486427.
- Brinkmann K, Blaschke L, Polle A. 2002. Comparison of Different Methods for Lignin Determination as a Basis for Calibration of Near-Infrared Reflectance Spectroscopy and Implications of Lignoproteins. Journal of Chemical Ecology **28**, 2483-2501.
- Bundessortenamt. 2020. Anerkannte Saatgutmengen (dt) 2019 (Wirtschaftsjahr 2019/2020) www.bundessortenamt.de.
- **Campoli C, Shtaya M, Davis SJ, von Korff M**. 2012. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC plant biology **12**, 97-97.
- **Chang XF, Chandra R, Berleth T, Beatson RP**. 2008. Rapid, microscale, acetyl bromidebased method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem **56**, 6825-6834.
- Chen WY, Liu ZM, Deng GB, Pan ZF, Liang JJ, Zeng XQ, Tashi NM, Long H, Yu MQ. 2014. Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses. Genet Mol Res **13**, 1909-1925.
- Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher M. 2015. BARLEX – the Barley Draft Genome Explorer. Molecular Plant 8, 964-966.
- Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R. 2012. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics 44, 1388-1392.
- D'Hose T, Bart V, Greet R, Jane D, Johan Van V, Koen W, Nicole V, Thijs Vanden N, Wim C. 2016. Farm compost amendment and non-inversion tillage improve soil quality without increasing the risk for N and P leaching. Agriculture, ecosystems & amp; environment. **225**, 126-139.

Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G. 2012. Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences 109, 16969-16973.

Daly P, McClellan C, Maluk M, Oakey H, Lapierre C, Waugh R, Stephens J, Marshall D, Barakate A, Tsuji Y, Goeminne G, Vanholme R, Boerjan W, Ralph J, Halpin C. 2019. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family. Plant Biotechnology Journal 17, 594-607.

- **Fache M, Boutevin B, Caillol S**. 2016. Vanillin Production from Lignin and Its Use as a Renewable Chemical. ACS Sustainable Chemistry & Engineering **4**, 35-46.
- Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, DalŒ Aglio E, Valè G. 2005. Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture 82, 317-342.
- Frei M. 2013. Lignin: Characterization of a Multifaceted Crop Component. The Scientific World Journal **2013**, 436517.
- **Garrison E, Marth G**. 2012. Haplotype-based variant detection from short-read sequencing. arXiv: Genomics.
- Gemmer MR, Richter C, Jiang Y, Schmutzer T, Raorane ML, Junker B, Pillen K, Maurer A. 2020. Can metabolic prediction be an alternative to genomic prediction in barley? PLOS ONE **15**, e0234052.
- **Giurca A, Späth P**. 2017. A forest-based bioeconomy for Germany? Strengths, weaknesses and policy options for lignocellulosic biorefineries. Journal of Cleaner Production **153**, 51-62.
- **Gol L, Tomé F, von Korff M**. 2017. Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status. Journal of Experimental Botany **68**, 1399-1410.
- **Grabber JH, Hatfield RD, Lu F, Ralph J**. 2008. Coniferyl Ferulate Incorporation into Lignin Enhances the Alkaline Delignification and Enzymatic Degradation of Cell Walls. Biomacromolecules **9**, 2510-2516.
- Green AR, Lewis KM, Barr JT, Jones JP, Lu F, Ralph J, Vermerris W, Sattler SE, Kang
 C. 2014. Determination of the Structure and Catalytic Mechanism of Sorghum
 bicolor Caffeic Acid O-Methyltransferase and the Structural Impact of
 Three brown midrib12 Mutations. Plant Physiology 165, 1440-1456.
- Guo B, Wei Y, Xu R, Lin S, Luan H, Lv C, Zhang X, Song X, Xu R. 2016. Genome-Wide Analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) Gene Family in Barley (Hordeum vulgare L.). PLOS ONE **11**, e0161322-e0161322.
- Harwood WA. 2019. An Introduction to Barley: The Crop and the Model. In: Harwood WA, ed. *Barley: Methods and Protocols*. New York, NY: Springer New York, 1-5.
- Hatfield R, Fukushima RS. 2005. Can Lignin Be Accurately Measured? Crop Science 45, 832-839.
- Hedden P. 2003. The genes of the Green Revolution. Trends in Genetics 19, 5-9.
- Herbst F, Gans W, Völker U. 2018. Verlauf der Bodenreaktion und der pflanzenverfügbaren Nährstoffgehalte im 140-jährigen Ewigen Roggenbau in Halle/Saale. Die Bodenkultur: Journal of Land Management, Food and Environment **69**, 61-72.
- Herzig P, Backhaus A, Šeiffert U, von Wirén N, Pillen K, Maurer A. 2019. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. Plant Science **285**, 151-164.
- Herzig P, Maurer A, Draba V, Sharma R, Draicchio F, Bull H, Milne L, Thomas WTB, Flavell AJ, Pillen K. 2018. Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. Journal of Experimental Botany 69, 1517-1531.
- Huber GW, Iborra S, Corma A. 2006. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews **106**, 4044-4098.
- Ibrahim AK, Zhang L, Niyitanga S, Afzal MZ, Xu Y, Zhang L, Zhang L, Qi J. 2020. Principles and approaches of association mapping in plant breeding. Tropical Plant Biology **13**, 212-224.

- Igartua E, Moralejo M, Casas AM, Torres L, Molina-Cano J-L. 2013. Whole-genome analysis with SNPs from BOPA1 shows clearly defined groupings of Western Mediterranean, Ethiopian, and Fertile Crescent barleys. Genetic Resources and Crop Evolution **60**, 251-264.
- Ivanova L, P'Yankov V. 2002. Structural Adaptation of the Leaf Mesophyll to Shading. Russian Journal of Plant Physiology **49**.
- Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, Yang J, Zhang G. 2015. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics 16, 927.
- Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W. 2008. Population-Based Resequencing Reveals That the Flowering Time Adaptation of Cultivated Barley Originated East of the Fertile Crescent. Molecular Biology and Evolution **25**, 2211-2219.
- Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K. 2008. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theoretical and Applied Genetics 117, 749-757.
- Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4.
- Kuczyńska A, Wyka T. 2011. The effect of the denso dwarfing gene on morpho-anatomical characters in barley recombinant inbred lines. Breeding Science **61**, 275-280.
- Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England) **27**, 2987-2993.
- Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. 2009a. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England) **25**, 2078-2079.
- Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C. 2009b. FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Molecular Biology **69**, 685-697.
- Loqué D, Scheller HV, Pauly M. 2015. Engineering of plant cell walls for enhanced biofuel production. Current opinion in plant biology **25**, 151-161.
- **Ma Q-H**. 2010. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. Journal of Experimental Botany **61**, 2735-2744.
- Martinetz TM, Berkovich SG, Schulten KJ. 1993. 'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4, 558-569.
- Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K. 2015. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16, 290.
- Maurer A, Draba V, Pillen K. 2016. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. Journal of Experimental Botany 67, 2507-2518.
- Maurer A, Pillen K. 2019. 50k Illumina Infinium iSelect SNP Array data for the wild barley NAM population HEB-25. e!DAL Plant Genomics and Phenomics Research Data Repository (PGP), IPK Gatersleben, Seeland OT Gatersleben, Corrensstraße 3, 06466, Germany.
- Maurer A, Sannemann W, Leon J, Pillen K. 2017. Estimating parent-specific QTL effects through cumulating linked identity-by-state SNP effects in multiparental populations. Heredity 118, 477-485.

- McCaig BC, Meagher RB, Dean JFD. 2005. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta **221**, 619-636.
- McKim SM. 2019. How plants grow up. Journal of Integrative Plant Biology 61, 257-277.
- Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH, Waugh R, Braumann I, Pozniak C, Scholz U, Mayer KFX, Spannagl M, Stein N, Mascher M. 2019. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biology 20, 284.
- **Moody J, Darken CJ**. 1989. Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation **1**, 281-294.
- Moreira-Vilar FC, Siqueira-Soares RdC, Finger-Teixeira A, Oliveira DMd, Ferro AP, da Rocha GJ, Ferrarese MdLL, dos Santos WD, Ferrarese-Filho O. 2014. The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLOS ONE 9, e110000.
- Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. 2010. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. Journal of Integrative Plant Biology **52**, 360-376.
- Naz AA, Reinert S, Bostanci C, Seperi B, Leon J, Böttger C, Südekum K-H, Frei M. 2017. Mining the global diversity for bioenergy traits of barley straw: genomewide association study under varying plant water status. GCB Bioenergy **9**, 1356-1369.
- Park HL, Bhoo SH, Kwon M, Lee SW, Cho MH. 2017. Biochemical and Expression Analyses of the Rice Cinnamoyl-CoA Reductase Gene Family. Front Plant Sci 8, 2099.
- Patil V, McDermott HI, McAllister T, Cummins M, Silva JC, Mollison E, Meikle R, Morris J, Hedley PE, Waugh R, Dockter C, Hansson M, McKim SM. 2019. APETALA2 control of barley internode elongation. Development 146, dev170373.
- Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair Sudha K, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton Christopher P, Wicker T, Walther A, Waugh R, Fincher Geoffrey B, Stein N, Kumlehn J, Sato K, Komatsuda T. 2015. Evolution of the Grain Dispersal System in Barley. Cell 162, 527-539.
- Preisner M, Kulma A, Zebrowski J, Dymińska L, Hanuza J, Arendt M, Starzycki M, Szopa J. 2014. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties. BMC plant biology 14, 50.
- **Quinlan AR, Hall IM**. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England) **26**, 841-842.
- Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R. 2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics 48, 1024-1030.
- Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M. 2016. Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports **6**, 32586.
- Sakuma S, Salomon B, Komatsuda T. 2011. The Domestication Syndrome Genes Responsible for the Major Changes in Plant Form in the Triticeae Crops. Plant and Cell Physiology 52, 738-749.
- Sarkar P, Bosneaga E, Auer M. 2009. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. Journal of Experimental Botany 60, 3615-3635.
- Sato Y, Yajima Y, Tokunaga N, Whetten R. 2011. Comparison between tracheary element lignin formation and extracellular lignin-like substance formation during the culture of isolated Zinnia elegans mesophyll cells. Biologia **66**, 88-95.
- Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK. 2015. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol **178**, 178-186.

- Schmid K, Kilian B, Russell J. 2018. Barley Domestication, Adaptation and Population Genomics. 317-336.
- Schmidt P, Hartung J, Rath J, Piepho HP. 2019. Estimating Broad-Sense Heritability with Unbalanced Data from Agricultural Cultivar Trials. Crop Science **59**, 525-536.
- Schnurbusch T. 2019. Wheat and Barley Biology: towards new frontiers. Journal of Integrative Plant Biology 61, 198-203.
- Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham G, Sels B. 2018. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews 47.
- Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, Sablowski R. 2017. DELLA genes restrict inflorescence meristem function independently of plant height. Nature plants 3, 749-754.
- Sharma R, Draicchio F, Bull H, Herzig P, Maurer A, Pillen K, Thomas WTB, Flavell AJ. 2018. Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding. Journal of Experimental Botany 69, 3811-3822.
- Silva E, Zabková M, Araújo J, Cateto C, Barreiro MF, Belgacem MN, Rodrigues A. 2009. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chemical Engineering Research & Design 87, 1276-1292.
- **Simon SM**. 2006. Szenarien nachhaltiger Bioenergiepotenziale bis 2030 Modellierung für Deutschland, Polen, Tschechien und Ungarn, Technische Universität München.
- Statistisches Bundesamt Destatis. 2022. Wachstum und Ernte- Feldfrüchte 2022. Landund Forstwirtschaft, Fischerei, Vol. Fachserie 3 Reihe 3.2.1, 12-13.
- Sun RC, Sun XF, Wen JL. 2001. Fractional and structural characterization of lignins isolated by alkali and alkaline peroxide from barley straw. J Agric Food Chem **49**, 5322-5330.
- Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T. 2009. Highthroughput determination of thioglycolic acid lignin from rice. Plant Biotechnology **26**, 337-340.
- Tanksley SD, McCouch SR. 1997. Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science 277, 1063-1066.
- Tripathi S, Sayre K, Kaul JN, Narang RS. 2003. Growth and morphology of spring wheat (Triticum aestivum. L.) culms and their association with lodging: Effects of genotypes, N levels and ethephon. Field Crops Research 84, 271-290.
- Tuomela M, Vikman M, Hatakka A, Itävaara M. 2000. Biodegradation of lignin in a compost environment. A review 72, 169-183.
- Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 2005. The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science **310**, 1031-1034.
- Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiol **153**, 895-905.
- Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W. 2012. Metabolic engineering of novel lignin in biomass crops. New Phytol **196**, 978-1000.

Vatter T, Maurer A, Kopahnke D, Perovic D, Ordon F, Pillen K. 2017. A nested association mapping population identifies multiple small effect QTL conferring resistance against net blotch (Pyrenophora teres f. teres) in wild barley. PLOS ONE **12**, e0186803.

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 2017. 10 Years of GWAS Discovery: Biology, Function, and Translation. The American Journal of Human Genetics **101**, 5-22.

- Vogt T. 2010. Phenylpropanoid Biosynthesis. Molecular Plant 3, 2-20.
- von Bothmer RJ, N.; Baden, C.; Jorgensen, R.B.; Linde-Laursen, I. 1995. An ecogeographical study of the genus Hordeum (2nd edition).

von Bothmer RvH, T.; Knüpffer, H.; Sato, K. 2003. Diversity in Barley (Hordeum vulgare).

Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J. 2011. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes CIEXPA1 and CIEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnology Journal **9**, 486-502.

- Wang Y, Frei M. 2011. Stressed food The impact of abiotic environmental stresses on crop quality. Agriculture, ecosystems & amp; environment 141, 271-286.
- Wang Y, Sun X, Ding Y, Fei Z, Jiao C, Fan M, Yao B, Xin P, Chu J, Wei Q. 2019. Cellular and molecular characterization of a thick-walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm. J Exp Bot **70**, 3911-3926.

Whetten R, Sederoff R. 1995. Lignin Biosynthesis. The Plant Cell 7, 1001-1013.

- Wiegmann M, Backhaus A, Seiffert U, Thomas WTB, Flavell AJ, Pillen K, Maurer A. 2019a. Optimizing the procedure of grain nutrient predictions in barley via hyperspectral imaging. PLOS ONE 14, e0224491-e0224491.
- Wiegmann M, Maurer A, Pham A, March TJ, Al-Abdallat A, Thomas WTB, Bull HJ, Shahid M, Eglinton J, Baum M, Flavell AJ, Tester M, Pillen K. 2019b. Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues. Scientific Reports **9**, 6397.
- Yong W, Link B, O'Malley R, Tewari J, Hunter CT, Lu C-A, Li X, Bleecker AB, Koch KE, McCann MC, McCarty DR, Patterson SE, Reiter W-D, Staiger C, Thomas SR, Vermerris W, Carpita NC. 2005. Genomics of plant cell wall biogenesis. Planta 221, 747-751.
- Yu J, Holland JB, McMullen MD, Buckler ES. 2008. Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics **178**, 539-551.
- Zahn S, Schmutzer T, Pillen K, Maurer A. 2021. Genomic Dissection of Peduncle Morphology in Barley through Nested Association Mapping. Plants **10**, 10.

7 Anhang

7.1 Beschreibende Statistik der Pedunkelmorphologie

Merkmal	Familie	n	Mittelwert ^a	SD ^b	Min ^c	Max ^d	CV e
DIA17	1	55	1197,62	122,48	979,52	1454,28	10,23
DIA17	2	45	1139,38	103,76	896,54	1384,39	9,11
DIA17	3	63	1175,17	153,33	776	1499,28	13,05
DIA17	4	37	1123,35	137,77	856,39	1367,12	12,26
DIA17	5	58	1229,61	128,61	946,27	1490,76	10,46
DIA17	6	55	1166,33	154,13	784,95	1560,72	13,21
DIA17	7	50	1178,16	140,91	849,2	1471,45	11,96
DIA17	8	54	1199,24	131,06	920,84	1454,36	10,93
DIA17	9	46	1273,08	126,95	994,85	1508,03	9,97
DIA17	10	48	1197,38	130,44	817,99	1431,81	10,89
DIA17	11	52	1207,28	130,75	825,57	1428,16	10,83
DIA17	12	59	1215,7	153,7	939,99	1640,91	12,64
DIA17	13	51	1236,32	115,96	1022,13	1502,23	9,38
DIA17	14	56	1188,45	151,04	892,22	1540,97	12,71
DIA17	15	49	1183,52	132,6	921,78	1542,05	11,2
DIA17	16	57	1200,4	132,54	850,14	1403,57	11,04
DIA17	17	41	1234,71	164,49	914,7	1537,64	13,32
DIA17	18	20	1201,56	129,9	929,99	1448,9	10,81
DIA17	19	54	1229,52	123,92	841,44	1525	10,08
DIA17	20	48	1185,34	137,12	847,08	1536,23	11,57
DIA17	21	44	1214,31	147,48	851,83	1573,23	12,15
DIA17	22	38	1256,9	132,39	998,84	1563,53	10,53
DIA17	23	57	1162,05	167,61	798,67	1622,19	14,42
DIA17	24	45	1262,38	129,26	875,38	1583,33	10,24
DIA17	25	50	1225,26	144,58	926,69	1529,01	11,8
DIA18	1	55	1202,93	135,73	987,63	1586,04	11,28
DIA18	2	49	1169,67	126,7	910,21	1589,27	10,83
DIA18	3	72	1154,92	127,46	833,5	1524,4	11,04
DIA18	4	42	1131,05	140,98	864,8	1580,72	12,47
DIA18	5	58	1219,85	129,93	963,37	1583,53	10,65
DIA18	6	58	1188,61	153,47	885,42	1640,17	12,91
DIA18	7	55	1174,8	150,23	896,01	1876,37	12,79
DIA18	8	56	1232,16	157,88	994,25	1931,1	12,81
DIA18	9	52	1251,45	132,35	1017,65	1604,35	10,58
DIA18	10	57	1218,81	142,5	913,9	1632,78	11,69
DIA18	11	56	1199,32	116,33	957,98	1468,78	9,7
DIA18	12	65	1228,8	139,68	958,32	1503,13	11,37
DIA18	13	54	1232,39	121,37	1006,03	1501,55	9,85
DIA18	14	58	1212,71	142,27	890,56	1500,14	11,73
DIA18	15	57	1179,09	147,77	872,02	1502,85	12,53
DIA18	16	55	1203,82	137,31	924,51	1584,5	11,41
DIA18	17	49	1194,91	152,26	841,86	1714,51	12,74
DIA18	18	21	1189,57	115,21	1018,32	1456,41	9,68
DIA18	19	59	1231,34	123,4	935,9	1559,91	10,02

Tabelle A1 Deskriptive Statistik der Pedunkelmorphologie je Familie.

67

Merkmal	Familie	n	Mittelwert ^a	SD ^b	Min ^c	Max ^d	CV e
DIA18	20	56	1193,63	138,25	908,48	1646,3	11,58
DIA18	21	49	1209,22	137,67	955,45	1542,42	11,39
DIA18	22	41	1234,22	128,44	988,33	1542,04	10,41
DIA18	23	60	1162,27	133,35	836,61	1478,44	11,47
DIA18	24	54	1260,53	125,86	953,76	1766,34	9,98
DIA18	25	55	1223,69	113,24	965,9	1442,69	9,25
DIA	1	59	1197,8	112,51	997,76	1427,35	9,39
DIA	2	51	1160,99	108,79	940,56	1588,92	9,37
DIA	3	75	1158,85	126,66	867,51	1455,43	10,93
DIA	4	43	1128,87	122,45	907,04	1389,42	10,85
DIA	5	64	1222,6	114,81	1034,67	1462,26	9,39
DIA	6	61	1178,74	136,75	877,21	1572,25	11,6
DIA	7	59	1182,52	145,59	895,9	1876,26	12,31
DIA	8	58	1217,71	132,75	920,95	1586,4	10,9
DIA	9	53	1257,53	114,84	1036,19	1493,59	9,13
DIA	10	60	1213,9	121,4	888,34	1470,21	10
DIA	11	58	1202,59	107,44	942,57	1413,99	8,93
DIA	12	68	1230,1	135,96	976,3	1525,8	11,05
DIA	13	55	1233,98	102,16	1034,88	1467,56	8,28
DIA	14	62	1201,08	132,79	912,6	1499,63	11,06
DIA	15	58	1179,95	122,99	931,74	1442,05	10,42
DIA	16	62	1203,24	114,82	913,32	1454,4	9,54
DIA	17	53	1212,22	147,16	841,76	1520,33	12,14
DIA	18	22	1192,32	112,63	974,16	1393,57	9,45
DIA	19	59	1229,63	106,11	942,63	1474,98	8,63
DIA	20	58	1195,86	133,66	956,04	1646,2	11,18
DIA	21	50	1215,21	133,67	958,33	1557,83	11
DIA	22	43	1238,9	119,73	988,22	1552,78	9,66
DIA	23	63	1162,3	140,01	848,2	1550,32	12,05
DIA	24	57	1264,02	111,57	953,65	1583,43	8,83
DIA	25	60	1224,71	118,46	926,79	1446,04	9,67
WAL17	1	55	272,57	21,77	217,48	302,67	7,99
WAL17	2	45	270,69	19,64	211,7	308,68	7,25
WAL17	3	63	289,02	27,35	221,23	351,34	9,46
WAL17	4	37	279,21	16,67	249,92	326,06	5,97
WAL17	5	58	286,05	25,02	229,32	352,94	8,75
VVAL17	6	55	270,01	24,24	196,82	327,07	8,98
WAL17	7	50	278,37	24,88	179,96	338,14	8,94
WAL17	8	54	274,94	22,87	225,27	319,81	8,32
	9 10	40	289,43	25,16	217,33	357,23	8,69
	10	40	270,31	24,02	222,40	319,5	8,09
	11	52	280,71	22,73	218,2	332,40	۵,1 ۵.24
	12	59 54	203,07	20,42	230,00	349,31	9,31
	13	51 56	272,91	21,00 10.02	201,10	344,30	0,01
	14	50 40	271,13	19,03	220,2	320,30	7,02
VV/\L / \/// 17	10	49 57	211,09 071 40	22,00 02 10	221,09 010 17	२८०,२७ २२२ ४४	0,UU 0 ED
νν ΑΓΙ (\Λ/ΔΙ 17	10	57 /1	21 1,42 220 11	20,12 21 56	212,11 226 25	333,11 352 22	0,02 Q 77
νν <u>π</u> μι/ \Λ/ΔΙ 17	1 <i>1</i>	4 I 20	200,14 281 01	24,00	230,33	332,22	0,77 11 01
νν <u>π</u> μι/ \Λ/ΔΙ 17	10	20 51	201,94 270 02	00,08 01 04	243,03	200,90	761
	19	04	219,02	۲۱,۷4	220,40	520,19	1,01

Merkmal Familie n Mittelwert ^a SD ^b Min ^c	Max ^d	CV e
WAL17 20 48 278,67 26,62 212,91	344,03	9,55
WAL17 21 44 280,2 23,54 243,02	325,23	8,4
WAL172238281,2321,5236,08	345,51	7,65
WAL17 23 57 283,71 26,31 226,9	334,72	9,27
WAL17 24 45 279,26 22,86 212,71	317,12	8,19
WAL17 25 50 287,77 19,26 241,31	330,74	6,69
WAL18 1 55 241,08 19,25 203,94	274,11	7,99
WAL18 2 49 245,76 16,74 205,6	297,44	6,81
WAL18 3 72 254,27 19,61 212,81	299,75	7,71
WAL18 4 42 246,97 19,5 209,82	293,79	7,9
WAL18 5 58 256,7 19,42 224,77	300,4	7,56
WAL18 6 58 242,35 16,24 205,1	282,06	6,7
WAL18 7 55 246,28 23,58 178,74	298,83	9,57
WAL18 8 56 243,49 19,94 203,28	285,47	8,19
WAL18 9 52 257,09 20,05 219,81	298,89	7,8
WAL18 10 57 243,43 20,2 200,82	293,79	8,3
WAL18 11 56 248,24 19,2 204,83	298,22	7,73
WAL18 12 65 255,71 23,84 211,04	306,66	9,32
WAL18 13 54 242,55 20,29 204,8	301,14	8,36
WAL18 14 58 242,27 18,83 198,36	282,42	7,77
WAL18 15 57 245,01 18,98 192,74	299,16	7,75
WAL18 16 55 234,69 17,99 201,96	273,41	7,67
WAL18 17 49 242,37 16,92 206,34	276,61	6,98
WAL18 18 21 247,77 18,59 218,01	287,03	7,5
WAL18 19 59 246,55 19,12 208,52	282,2	7,75
WAL18 20 56 251,07 19,3 211	295,5	7,69
WAL18 21 49 241,89 15,33 213,67	279,67	6,34
WAL18 22 41 248,36 18,12 211,37	293,36	7,3
WAL18 23 60 255,62 18,79 219,87	322,83	7,35
WAL18 24 54 246,23 20,38 203,01	295,45	8,28
WAL 18 25 55 252,78 17,01 205,8	291,64	0,97
WAL I 59 257,19 10,55 223,13	280,81	0,44
WAL Z 51 Z50,74 10,05 Z21,40 WAL 2 75 271,12 10,21 221,82	310,3 210 22	0,19
WAL 3 75 271,15 19,51 251,05	319,23	7,1Z
WAL 4 45 205,26 15,96 229,01 WAL 5 64 270.9 19.07 213.46	290,01	0,07
WAL 5 04 270,0 10,97 213,40 WAL 6 61 256.35 16.40 212.73 6	300 32	6.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300,52	0,45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206.08	674
WAL 0 53 272.66 18.23 234.60	290,00	6 60
WΔI 10 60 259.58 19.17 213.26	299	0,03 7 38
WΔI 11 58 263.92 16.95 221.35	200 85	6.42
WΔI 12 68 271.11 23.3 228.53	233,00	0, 4 2 8 59
WAI 13 55 258 46 18 86 225 55	316 99	7.3
WAL 14 62 256.83 16.67 221.05	304 53	6 4 9
WAI 15 58 261.06 16.98 214.43	300 99	6.5
WAI 16 62 253.91 18.31 217.97	317 25	7 21
WAL 17 53 260.59 17.96 222.19	511,20	· ,
	299 43	6 89
WAL 18 22 265.14 22.65 233.76	299,43 320.22	6,89 8.54

Merkmal	Familie	n	Mittelwert ^a	SD ^b	Min ^c	Max ^d	CV e
WAL	20	58	264,61	18,89	226,86	308,97	7,14
WAL	21	50	260,5	15,38	229,52	294,04	5,9
WAL	22	43	263,26	18,05	227,22	319,43	6,85
WAL	23	63	270,27	19,86	232,98	338,69	7,35
WAL	24	57	262,8	17,86	224,6	311,3	6,8
WAL	25	60	269,88	16,06	225,46	307,5	5,95
AREA17	1	55	795455,2	137140,4	585115,1	1078284	17,24
AREA17	2	45	740930,8	111766,6	455472,2	1019724	15,08
AREA17	3	63	811871,4	177935	385567,3	1234565	21,92
AREA17	4	37	742597,3	135204,2	481045	1008561	18,21
AREA17	5	58	853102	157480,7	552370,3	1228339	18,46
AREA17	6	55	766647,5	169181,8	390318,3	1239291	22,07
AREA17	7	50	792176,8	158916,4	378363,3	1193758	20,06
AREA17	8	54	798835,9	132299,9	492264,3	1068140	16,56
AREA17	9	46	897966,4	151332,6	597193,4	1233069	16,85
AREA17	10	48	803036,1	144721,9	432684,6	1109690	18,02
AREA17	11	52	821661,3	146316,5	437031,9	1126346	17,81
AREA17	12	59	837655,7	182031,9	525871	1346913	21,73
AREA17	13	51	830122,4	141263,9	602451,2	1253200	17,02
AREA17	14	56	785365,2	154121,4	494326,7	1178140	19,62
AREA17	15	49	793637,5	146396,2	487891,6	1241667	18,45
AREA17	16	57	796496,9	144940,6	425238,1	1105990	18,2
AREA17	17	41	846557,4	181646,7	520040,1	1222244	21,46
AREA17	18	20	817551,7	162767,1	551232,1	1205666	19,91
AREA17	19	54	835525,3	132495,5	452587,7	1188273	15,86
AREA17	20	48	797391,1	153207,1	424177,6	1160848	19,21
AREA17	21	44	825986,9	162546,8	470338,2	1222379	19,68
AREA17	22	38	865582,8	150514,5	583247,6	1322093	17,39
AREA17	23	57	788410,4	181500,3	414636,5	1353836	23,02
AREA17	24	45	865787,1	142788	481494,4	1141591	16,49
AREA17	25	50	850436,5	154834,6	519588,4	1194300	18,21
AREA18	1	55	730811,1	126424,1	509347,6	1030346	17,3
AREA18	2	49	716204,4	124106,5	465335,1	1206904	17,33
AREA18	3	/2	/21910,6	125256,8	425428,2	1080996	17,35
AREA18	4	42	68/363,7	125983,6	437669,9	984028,1	18,33
AREA18	5	58	779905,3	133332,8	522437	1063365	17,1
AREA18	6	58	723077	139193,6	475040,1	1142326	19,25
AREA18	1	55	721027,4	141401,9	429419,7	1223652	19,61
AREA18	8	56	755684,4	136307,3	548010,3	1370738	18,04
AREA18	9	52	806597,9	139628,5	563825,1	1142238	17,31
AREA18	10	57	746298,6	124767,7	455853,7	1040009	16,72
AREA18	11	50	743656,1	117028,2	546732	1021828	15,74
AREA18	12	60 54	780924,8	153229,5	512922,1	1138058	19,47
AREA18	13	54	757393,1	126159,8	516947,2	1061613	16,66
AREA18	14	58	741396,8	134029,7	479868,4	1027680	18,08
	15	5/	122441,2	142209,4	452952,8	1000009	19,69
	10	55	11/31/,8	126000 0	410010,4	1034102	11,15
	10	49	12040U,1 725177 1	130900,0	411900,0 569557 7	1016640	10,19
	1Ŏ 40	21	1301/1,1	10910,3		1010018	10,91
AREATO	19	59	1,10001,2	120407,1	490429,4	1079895	10,38

Merkmal	Familie	n	Mittelwert ^a	SD ^b	Min ^c	Max ^d	CV e
AREA18	20	56	745931,5	137346,1	484515,4	1178447	18,41
AREA18	21	49	737186,3	123694,2	501300	1014470	16,78
AREA18	22	41	771494,4	125971,2	550056,1	1150801	16,33
AREA18	23	60	729756,7	128208,7	433882	1129341	17,57
AREA18	24	54	785293,7	115491,1	488578,1	1091646	14,71
AREA18	25	55	771325,9	103737,9	491445,9	983730,4	13,45
AREA	1	59	761788,3	112903,9	559485,3	1014310	14,82
AREA	2	51	736011,9	116429,1	516888	1255533	15,82
AREA	3	75	759770,8	133589,8	472798	1123466	17,58
AREA	4	43	717195,4	114590,9	512221,8	961204	15,98
AREA	5	64	812752,8	127496,9	587433,4	1103208	15,69
AREA	6	61	746049,3	134192,2	444077,5	1151638	17,99
AREA	7	59	761378,6	139406,8	403983,2	1292566	18,31
AREA	8	58	779549,5	118310,2	468116	1082594	15,18
AREA	9	53	846416,2	125829,2	592680,6	1070916	14,87
AREA	10	60	779387,9	118075,5	494267	985651,6	15,15
AREA	11	58	780517,4	112940,5	524124,8	1016058	14,47
AREA	12	68	822072	157163,9	551076,8	1197168	19,12
AREA	13	55	794684,2	115557,4	585158	1124292	14,54
AREA	14	62	764849,5	130182,3	482732,1	1067923	17,02
AREA	15	58	755635,3	122341,6	511646	1043138	16,19
AREA	16	62	759609	115060,5	476152	1034193	15,15
AREA	17	53	783789,2	148993,3	432483,3	1077958	19,01
AREA	18	22	774270,9	123956	571341,7	1037621	16,01
AREA	19	59	799678,1	111498,9	513254,8	1061530	13,94
AREA	20	58	776905,5	137675,2	547270,3	1219565	17,72
AREA	21	50	783299,9	128353,4	555838,3	1107267	16,39
AREA	22	43	809331,6	126839,4	579914,4	1237703	15,67
AREA	23	63	760528,9	142811,2	451481,1	1239051	18,78
AREA	24	57	827515,7	108596,7	514427,5	1063758	13,12
AREA	25	60	810217,5	112399,8	496752,1	1009075	13,87

^a Arithmetisches Mittel [OD]. ^b Standardabweichung [OD]. ^c Minimum [OD]. ^d Maximum [OD]. ^e Variationskoeffizient über die Population [%].

7.2 Beschreibende Statistik des Ligningehaltes (TGAL)

Tabelle A2 Deskriptive Statistik der TGAL Ergebnisse je Familie

aus gemessenen und via hyperspektralem Modell extrapolierten Werten der HEB-Linien sortiert nach ihren Mittelwerten.

Familie	Ν	Mittelwert ^a	SD ^b	Min ^c	Max ^d	CV e
14	62	0,5643	0,0305	0,4811	0,6155	5,41
9	53	0,5653	0,0339	0,4718	0,6346	6,01
6	60	0,5677	0,0347	0,4467	0,6219	6,12
10	57	0,5691	0,0339	0,4544	0,6412	5,96
21	49	0,5707	0,0338	0,423	0,6411	5,93
25	59	0,5708	0,0386	0,348	0,6404	6,77
15	57	0,5721	0,039	0,4327	0,6344	6,82
20	58	0,5737	0,0267	0,5074	0,6467	4,65

Familie	Ν	Mittelwert ^a	SD ^b	Min ^c	Max ^d	CV e
5	62	0,5741	0,0445	0,3357	0,6535	7,74
12	66	0,5743	0,027	0,4958	0,6459	4,70
7	58	0,5754	0,0324	0,4578	0,6437	5,64
1	58	0,5756	0,0293	0,4841	0,6311	5,09
2	51	0,576	0,037	0,3908	0,6244	6,43
23	62	0,5767	0,0276	0,5061	0,629	4,79
22	43	0,5771	0,023	0,5257	0,6181	3,99
18	22	0,5776	0,017	0,5537	0,6102	2,94
24	56	0,5781	0,034	0,4689	0,6461	5,88
4	42	0,5783	0,0266	0,5072	0,6431	4,60
8	58	0,5793	0,0213	0,5125	0,6307	3,68
3	73	0,5809	0,029	0,5073	0,6411	5,00
17	52	0,5809	0,028	0,4695	0,6381	4,83
Barke	10	0,5811	0,0172	0,5405	0,6038	2,95
11	57	0,5817	0,0259	0,495	0,6366	4,45
16	61	0,5818	0,0231	0,5211	0,6271	3,97
13	54	0,5828	0,0274	0,4939	0,6317	4,70
19	59	0,5829	0,0226	0,5038	0,6234	3,87

^a Arithmetisches Mittel [OD]. ^b Standardabweichung [OD]. ^c Minimum [OD]. ^d Maximum [OD]. ^e Variationskoeffizient über die Population [%].

7.3 Aus Exome Capture Daten abgeleitete Polymorphismen

SNP-Position: basierend auf Morex Referenzgenom v2 (Monat et al., 2019)

Genotypen: Elternlinien der HEB-25 NAM-Population, die 21 hochdivergente exotische Gersten-

Akzessionen und die Elitesorte Barke

Abkürzung	Bedeutung
A	A:A
С	C:C
G	G:G
Т	T:T
R	A:G
Υ	C:T
S	C:G
W	A:T
К	G:T
Μ	A:C
+	+:+ (Insertion)
0	+:-
-	-:- (Deletion)
Ν	Unbekannt

Tabelle A3 Legende der Nukleotid Codes nach IUPAC

					-					•				-		-													•												
	SNP Position	23.720.816	23.720.849	23.721.009	23.721.087	23.721.128	23.721.209	23.721.228	23.721.387	23.721.406	23.721.438	23.721.573	23.721.603	23.721.608	23.721.700	23.721.894	23.721.898	23.721.969	23.722.022	23.722.087	23.722.091	23.722.145	23.722.156	23.722.205	23.722.487	23.722.820	23.722.880	23.722.994	23.723.053	23.723.079	23.723.152	23.723.213	23.723.217	23.723.328	23.723.343	23.723.381	23.723.397	23.723.471	23.723.633	23.723.879	23.723.957
Familie	Genotyp																																								
-	Barke	Т	А	G	А	С	Т	С	G	G	А	Y	R	R	G	С	С	А	G	G	G	Т	Т	А	Т	G	т	G	G	G	А	G	С	G	G	G	G	G	G	С	С
2	HID004	С	С	G	А	С	С	Т	G	S	М	т	А	G	G	Т	Т	G	G	G	А	С	Т	А	G	G	т	С	А	А	А	G	С	С	G	А	С	S	R	G	G
3	HID055	С	С	G	А	Т	С	С	G	G	С	Т	G	А	G	С	Т	А	G	Т	G	Т	Т	А	G	G	Т	G	G	А	А	G	С	С	А	А	С	G	А	G	С
4	HID062	С	С	G	А	С	С	Т	G	С	С	Т	А	G	G	Т	Т	G	G	G	А	С	Т	А	G	G	Т	С	А	А	А	G	С	С	G	А	С	С	А	G	G
6	HID069	С	С	G	А	С	С	Т	G	С	С	Т	А	G	К	Т	Т	А	G	G	А	С	Т	А	G	G	Т	S	А	А	А	G	С	С	G	А	С	С	А	G	G
7	HID080	С	С	G	А	С	С	Т	G	С	С	Т	А	G	G	Т	Т	G	G	G	А	С	Т	А	G	G	Т	С	А	А	А	G	С	С	G	А	С	С	А	G	G
8	HID099	Y	М	G	А	С	Y	Y	G	S	Μ	Y	R	R	G	Y	Y	А	G	G	R	Y	Т	Α	К	G	т	S	R	R	А	G	С	S	G	R	S	S	R	S	S
9	HID101	С	С	G	А	Т	С	С	G	G	С	Т	G	А	G	С	Т	А	G	Т	G	Т	Т	А	G	G	Т	G	G	А	А	G	С	С	А	А	С	G	А	G	С
10	HID102	С	С	G	А	С	С	С	G	G	С	С	G	А	G	С	Т	А	G	G	G	Т	Т	А	G	G	Т	С	А	А	А	G	С	С	G	А	С	С	А	G	С
11	HID109	Y	М	G	А	С	Y	С	G	G	Μ	С	G	А	G	С	Υ	А	G	G	G	т	Т	A	Κ	G	т	S	R	R	А	G	С	S	G	R	S	S	R	G	С
12	HID114	С	С	G	А	Т	С	С	G	G	С	Т	G	А	G	С	Т	А	G	Т	G	Т	Т	А	G	G	т	G	G	А	А	G	С	С	А	А	С	G	А	G	С
13	HID138	Т	С	G	А	С	Т	С	G	G	С	С	G	А	G	С	С	А	G	G	G	Т	Т	A	Т	G	Т	G	G	G	А	G	С	G	G	G	G	G	G	С	С
14	HID140	С	С	G	А	С	С	Т	G	С	С	Т	A	G	G	Т	Т	R	G	G	А	С	Т	А	G	G	Т	С	А	А	А	G	С	С	G	А	С	С	А	G	G
15	HID144	С	С	А	G	С	С	С	G	G	С	С	G	А	G	С	Т	А	G	G	G	Т	С	А	G	Т	Т	G	G	A	G	G	С	С	G	А	С	G	А	G	С
16	HID219	С	С	G	А	С	С	Т	G	С	С	Т	A	G	G	Т	Т	А	G	G	Α	С	Т	А	G	G	Т	С	A	Α	A	G	С	С	G	А	С	С	А	G	G
17	HID249	Y	М	G	А	С	Y	Y	G	S	Μ	Т	R	R	G	Т	Т	A	С	G	R	Y	Т	A	G	G	Т	S	R	R	A	G	С	S	G	А	С	С	R	G	S
18	HID270	С	С	G	А	С	С	Т	G	С	С	Т	A	G	G	Т	Т	А	G	G	А	С	Т	A	G	G	Т	С	A	A	A	G	С	С	G	А	С	С	A	G	G
19	HID294	С	С	G	А	С	С	Т	G	С	С	Т	A	G	G	Т	Т	А	G	G	А	С	Т	А	G	G	Т	С	A	A	A	G	G	С	G	А	С	С	A	G	G
21	HID357	С	С	G	A	С	С	Т	G	С	С	Т	A	G	G	Т	Т	А	G	G	А	С	Т	A	G	G	Т	С	A	A	A	G	С	С	G	A	С	С	A	G	G
22	HID358	С	С	G	А	С	С	T	G	С	С	Т	A	G	G	Т	Т	А	G	G	А	С	Т	A	G	G	Т	С	A	Α	А	G	С	С	G	А	С	С	А	G	S
23	HID359	С	C	R	R	Y	C	С	A	G	С	Y	G	A	G	С	Т	A	G	K	G	Т	Т	R	G	G	Т	G	G	A	A	K	С	С	R	A	S	G	A	G	С
24	HID380	С	С	G	Α	С	С	С	Α	G	С	С	G	Α	G	С	Т	А	G	G	G	Т	Т	G	G	G	G	G	G	Α	А	Т	С	С	G	А	G	G	Α	G	С

Tabelle A4 Aus Exome Capture Daten abgeleitete Polymorphismen für PPD-H1 auf Chromosom 2H (HORVU.MOREX.r2.2HG0088300.1)

	SNP Position	468.289.626	468.290.064	468.290.094	468.290.270
Familie	Genotyp				
-	Barke	С	С	А	G
2	HID004	С	Т	G	G
3	HID055	С	С	А	G
4	HID062	G	С	А	А
6	HID069	С	Т	G	G
7	HID080	С	С	А	G
8	HID099	S	Y	R	G
9	HID101	G	С	А	G
10	HID102	G	С	А	А
11	HID109	S	Y	R	G
12	HID114	G	С	А	А
13	HID138	С	Т	G	G
14	HID140	С	Т	G	G
15	HID144	С	С	А	G
16	HID219	С	Т	G	G
17	HID249	С	С	А	G
18	HID270	С	Т	G	G
19	HID294	С	Т	G	G
21	HID357	С	С	А	G
22	HID358	С	С	А	G
23	HID359	С	С	А	G
24	HID380	G	С	А	G

Tabelle A5 Aus Exome Capture Daten abgeleitete Polymorphismen für HvCEN auf Chromosom 2H (HORVU.MOREX.r2.2HG0136910.1)

(HORVL	ORVU.MOREX.r2.2HG0153910.1)													_		_				_			-				
	SNP Position	586.799.194	586.799.209	586.799.251	586.799.305	586.799.376	586.799.419	586.799.421	586.799.483	586.799.537	586.799.835	586.799.919	586.800.002	586.800.194	586.800.347	586.800.381	586.800.413	586.800.421	586.800.450	586.800.497	586.800.526	586.800.528	586.800.559	586.800.580	586.800.772	586.800.879	586.800.996
Familie	Genotyp																										
-	Barke	G	Т	G	С	А	Т	С	G	G	G	А	С	А	С	С	G	С	С	G	С	G	С	G	G	G	С
2	HID004	G	Т	G	А	А	G	А	А	G	С	А	С	А	С	С	G	С	С	G	С	G	С	G	G	G	С
3	HID055	С	Т	G	С	G	Т	С	G	А	G	G	Т	А	С	С	G	Т	С	А	С	G	Т	G	А	G	С
4	HID062	С	Т	G	С	G	Т	С	Ν	Ν	G	G	Т	А	С	С	G	Т	С	А	С	G	Т	G	А	G	С
6	HID069	С	Т	G	С	G	Т	С	G	А	G	G	Т	А	С	С	G	Υ	С	R	С	G	Т	G	А	G	С
7	HID080	С	Т	G	С	G	Т	С	G	R	S	G	Т	А	С	С	G	Т	С	А	С	G	Т	G	А	G	С
8	HID099	G	Υ	K	С	R	Т	С	G	G	G	R	С	R	Y	С	G	С	С	G	Υ	G	С	R	G	G	С
9	HID101	G	Т	G	С	R	Т	С	G	G	G	R	С	А	С	Υ	G	С	С	G	С	R	С	R	G	G	С
10	HID102	G	С	G	С	G	Т	С	G	G	G	G	С	G	С	С	G	С	С	А	Т	G	С	G	G	G	A
11	HID109	G	Y	G	Μ	R	K	С	R	G	G	R	С	R	Y	С	G	С	С	G	Y	G	С	G	G	R	С
12	HID114	G	T	G	С	G	Т	С	G	G	G	G	С	Α	С	С	G	С	С	G	С	A	Ν	G	G	G	С
13	HID138	G	T	G	A	A	G	A	A	G	C	A	C	A	C	C	G	C	C	G	C	G	C	G	G	G	С
14	HID140	S	1 -	G	C	R		C	G	R	S	R	Ŷ	A	C	Ŷ	G	Ŷ	C	R	C	R	Ŷ	R	R	G	C
15	HID144	G		G		A	G	A	A	G	C	A		A	С т		G	C	C	G	C T	G	C	G	G	G	C
10		G				G		C	G	G	G	G		G			G			G A	1 -	G		G	G	G	
10		G	T	G	C	R D		C	G	G ۸	G	G	т	G A	C	C	G	Т	C	A		G	т	G	Å	C	A
10		G	T	G	C			C C	G	A	C	۸		Ā	C	т	G	C	C	G	C C	۵ ۸		۸	A	G	C
21		G	C	G	C	G	T	C	G	G	G	G	C C	G	т		G	C	C C	R	т	G	C	G	G	Δ	C
∠⊺ 22	HID358	G	Y	G	M	R	ĸ	M	R	G	S	R	C	R	Y	C	G	C C	C	G	Y	G	C C	G	G	R	C
23	HID359	C	Т	G	С	G	Т	С	G	A	G	G	Т	A	Ċ	C	G	Т	c	A	Ċ	G	Т	G	A	G	C C
24	HID380	G	Ť	G	C	A	T	C	G	G	G	A	C	A	C	Т	A	C	T	G	C	A	C	A	G	G	C

Tabelle A6 Aus Exome Capture Daten abgeleitete Polymorphismen für Expansin A5 auf Chromosom 2H

	SNP Position	586.801.289	586.801.438	586.801.464	586.801.488	586.801.546	586.801.566	586.801.569	586.801.571	586.801.603	586.801.673	586.801.691	586.801.761	586.801.777	586.801.796	586.801.849	586.802.222	586.802.317	586.802.358	586.802.401	586.802.417	586.802.468	586.802.593	586.803.905	586.803.971	586.804.614	586.804.653	586.804.770
Familie	Genotyp																											
-	Barke	А	С	Т	А	С	G	С	G	Т	Т	А	Т	С	А	А	G	Т	К	G	Т	Т	А	С	А	Т	Т	G
2	HID004	А	С	Т	А	С	G	С	G	Т	Т	Т	Т	С	А	А	G	Т	G	G	Т	Т	А	С	А	С	G	G
3	HID055	Т	Т	G	А	С	G	С	А	С	С	А	А	Т	G	G	G	С	G	G	С	С	G	G	С	С	G	G
4	HID062	Т	Т	G	А	С	G	С	А	Y	Y	А	А	Т	G	G	G	С	G	G	С	С	G	G	С	С	G	Т
6	HID069	Т	Т	G	А	С	G	С	А	С	С	А	А	Т	G	G	G	С	G	G	С	С	G	G	С	С	G	G
7	HID080	Т	Т	G	А	С	G	С	А	С	С	А	А	Т	G	G	G	Y	G	G	С	С	Ν	G	С	С	G	Т
8	HID099	W	С	K	А	S	G	S	G	Υ	Y	A	W	С	R	R	G	Υ	G	R	Y	Y	R	С	А	Υ	Т	G
9	HID101	Т	С	Т	G	С	G	Т	G	С	С	А	А	С	G	А	G	С	G	G	С	С	R	С	А	Т	Т	G
10	HID102	Т	С	G	А	G	G	G	G	С	С	А	А	С	G	G	Ν	С	G	А	С	С	G	С	А	С	G	G
11	HID109	W	С	K	А	S	G	S	G	Υ	Y	W	W	С	R	R	G	Υ	G	R	Y	Y	R	С	А	Υ	K	G
12	HID114	W	С	Т	G	С	G	С	G	С	С	А	А	С	G	А	G	С	G	G	С	С	G	С	А	С	G	G
13	HID138	Α	С	Т	А	С	G	С	G	Т	Т	Т	Т	С	А	А	G	Т	G	G	Т	Т	А	С	А	С	G	G
14	HID140	W	Y	K	А	С	R	С	R	С	Y	А	W	Y	R	А	Ν	Υ	G	G	Υ	Y	R	S	М	С	G	K
15	HID144	А	С	Т	А	С	G	С	G	Т	Т	A	Т	С	А	А	G	Т	G	G	Т	Т	А	С	А	С	G	G
16	HID219	Т	С	G	А	G	G	G	G	С	С	А	A	С	G	G	G	С	G	A	С	С	G	С	A	Т	Т	G
17	HID249	Ν	С	K	A	S	G	G	G	С	Y	A	W	С	R	R	Ν	С	G	А	Y	Y	G	С	А	С	G	K
18	HID270	Т	Т	G	А	С	G	С	А	С	С	А	А	Т	G	G	G	С	G	G	С	С	G	G	С	С	G	Т
19	HID294	Α	С	Т	А	С	А	С	G	С	Т	A	Т	С	А	А	А	Т	G	G	Т	Т	А	С	А	С	G	G
21	HID357	Т	С	G	А	G	G	G	G	С	С	А	A	С	G	G	G	С	G	A	С	С	G	С	A	Т	Т	G
22	HID358	W	С	Т	A	С	G	S	G	Υ	Y	W	W	С	R	А	G	Y	G	R	Y	Т	A	С	А	Y	K	G
23	HID359	Т	Т	G	А	С	G	С	A	С	С	А	W	Т	G	G	G	С	G	G	С	С	G	G	С	С	G	G
24	HID380	Α	С	Т	Δ	С	G	С	G	С	Т	Δ	Т	С	Δ	Δ	Α	Т	G	G	Т	Т	Α	С	Δ	C	G	G

Fortsetzung Tabelle A6 (Exome Capture Daten für Expansin A5 auf Chromosome 2H (HORVU.MOREX.r2.2HG0153910.1)

	SNP Position	572.329.303	572.330.579	572.330.798	572.330.911
Familie	Genotyp				
-	Barke	Ν	G	С	G
2	HID004	G	G	С	G
3	HID055	G	G	С	G
4	HID062	Ν	А	С	G
6	HID069	G	G	С	G
7	HID080	G	G	С	G
8	HID099	С	G	С	G
9	HID101	Ν	G	С	G
10	HID102	G	А	С	G
11	HID109	G	G	С	G
12	HID114	С	G	С	G
13	HID138	G	G	С	G
14	HID140	Ν	G	М	G
15	HID144	G	G	С	А
16	HID219	G	G	С	G
17	HID249	G	G	М	G
18	HID270	G	G	А	G
19	HID294	G	G	С	G
21	HID357	G	G	А	G
22	HID358	G	G	А	G
23	HID359	G	А	С	G
24	HID380	G	G	С	G

Tabelle A7 Exome Capture Daten für HvGA20ox2 auf Chromosom 3H (HORVU.MOREX.r2.3HG0256590.1)

7.4 TGAL Kandidatengen-Suche

Tabelle A8 Gene im Intervall von +/- einer Million Basenpaaren um den Marker JHI_Hv50k_2016_72531 auf Chromosom 2H bei 21.637.130 bp (Colmsee et al., 2015).

Genname	Start [bp]	Ende [bp]	Annotation
HORVU.MOREX.r2.2HG0086980.1	20.667.679	20.668.869	F-box family protein
HORVU.MOREX.r2.2HG0086990.1	20.676.721	20.678.572	Cytochrome P450
HORVU.MOREX.r2.2HG0087000.1	20.681.975	20.683.336	F-box domain containing protein
HORVU.MOREX.r2.2HG0087010.1	20.697.617	20.702.281	Cytochrome P450
HORVU.MOREX.r2.2HG0087020.1	20.705.665	20.705.916	CCT motif family protein
HORVU.MOREX.r2.2HG0087030.1	20.707.781	20.708.908	Ta11-like non-LTR retrotransposon
HORVU.MOREX.r2.2HG0087040.1	20.731.955	20.732.443	Cystathionine gamma synthase
HORVU.MOREX.r2.2HG0087050.1	20.817.832	20.819.636	Cystathionine gamma-synthase
HORVU.MOREX.r2.2HG0087060.1	20.859.551	20.861.728	Chaperone protein DnaJ
HORVU.MOREX.r2.2HG0087070.1	20.861.986	20.862.329	2-oxoglutarate (2OG) and Fe(II)- dependent oxygenase superfamily protein
HORVU.MOREX.r2.2HG0087080.1	20.867.525	20.873.406	disease resistance protein (TIR- NBS-LRR class)
HORVU.MOREX.r2.2HG0087090.1	20.952.066	20.953.093	DIS3-like exonuclease 2

Genname	Start [bp]	Ende [bp]	Annotation
HORVU.MOREX.r2.2HG0087100.1	20.988.234	20.989.475	F-box family protein
HORVU.MOREX.r2.2HG0087110.1	20.998.391	21.001.213	Leucine-rich repeat receptor-like protein kinase family protein
HORVU.MOREX.r2.2HG0087120.1	21.009.006	21.009.422	(LEA) hydroxyproline-rich glycoprotein family
HORVU.MOREX.r2.2HG0087130.1	21.011.959	21.012.966	MBOAT (Membrane bound O-acyl transferase) family protein
HORVU.MOREX.r2.2HG0087140.1	21.059.157	21.060.345	Cysteine protease
HORVU.MOREX.r2.2HG0087150.1	21.063.964	21.065.283	Clathrin light chain
HORVU.MOREX.r2.2HG0087160.1	21.078.064	21.080.427	Pentatricopeptide repeat- containing protein
HORVU.MOREX.r2.2HG0087170.1	21.083.288	21.083.683	carboxyesterase 18
HORVU.MOREX.r2.2HG0087180.1	21.083.956	21.085.179	Calcium-dependent lipid-binding (CaLB domain) family protein
HORVU.MOREX.r2.2HG0087190.1	21.120.726	21.121.034	Retrotransposon protein, putative, unclassified
HORVU.MOREX.r2.2HG0087200.1	21.121.142	21.121.636	Retrotransposon protein, putative, unclassified
HORVU.MOREX.r2.2HG0087210.1	21.155.437	21.161.125	S-acyltransferase
HORVU.MOREX.r2.2HG0087220.1	21.163.102	21.165.361	Glycosyltransferase
HORVU.MOREX.r2.2HG0087230.1	21.165.960	21.174.051	O-acyltransferase WSD1
HORVU.MOREX.r2.2HG0087240.1	21.182.720	21.193.421	O-methyltransferase-like protein
HORVU.MOREX.r2.2HG0087250.1	21.258.223	21.258.855	fiber (DUF1218)
HORVU.MOREX.r2.2HG0087260.1	21.291.068	21.292.301	Protein kinase superfamily protein
HORVU.MOREX.r2.2HG0087270.1	21.299.754	21.300.770	Sulfotransferase
HORVU.MOREX.r2.2HG0087280.1	21.303.194	21.306.052	Ribosomal RNA apurinic site specific lyase-like
HORVU.MOREX.r2.2HG0087290.1	21.308.892	21.312.169	Glycosyltransferase
IORVU.MOREX.r2.2HG0087300.1	21.317.703	21.317.972	cytochrome P450, family 705, subfamily A, polypeptide 15
IORVU.MOREX.r2.2HG0087310.1	21.323.845	21.324.651	Retrovirus-related pol polyprotein from transposon tnt 1-94
HORVU.MOREX.r2.2HG0087320.1	21.326.169	21.327.272	Retrovirus-related Pol polyprotein from transposon TNT 1-94
HORVU.MOREX.r2.2HG0087330.1	21.344.624	21.348.624	F-box family protein
HORVU.MOREX.r2.2HG0087340.1	21.349.401	21.353.818	5'-3' exoribonuclease 3
HORVU.MOREX.r2.2HG0087350.1	21.354.258	21.356.178	5'-3' exoribonuclease 3
HORVU.MOREX.r2.2HG0087360.1	21.405.720	21.410.128	Ubiquitin thioesterase
HORVU.MOREX.r2.2HG0087370.1	21.453.794	21.458.143	Ubiquitin thioesterase
HORVU.MOREX.r2.2HG0087380.1	21.460.389	21.460.937	F-box domain containing protein
HORVU.MOREX.r2.2HG0087390.1	21.470.441	21.471.970	F-box family protein
HORVU.MOREX.r2.2HG0087400.1	21.472.593	21.474.716	Pentatricopeptide repeat- containing protein
HORVU.MOREX.r2.2HG0087410.1	21.480.244	21.481.713	F-box protein
HORVU.MOREX.r2.2HG0087420.1	21.508.254	21.508.892	Germin-like protein
HORVU.MOREX.r2.2HG0087430.1	21.511.166	21.511.546	RNA-directed DNA polymerase (Reverse transcriptase)
HORVU.MOREX.r2.2HG0087440.1	21.511.758	21.512.357	LINE-1 reverse transcriptase-like protein
HORVU.MOREX.r2.2HG0087450.1	21.512.856	21.513.200	disease resistance protein (TIR- NBS-LRR class) family
HORVU.MOREX.r2.2HG0087460.1	21.515.302	21.518.307	Acelyltransferase component of pyruvate dehydrogenase complex

Genname	Start [bp]	Ende [bp]	Annotation
HORVU.MOREX.r2.2HG0087470.1	21.549.342	21.549.773	Retrotransposon protein, putative
HORVU.MOREX.r2.2HG0087480.1	21.563.622	21.567.360	Ubiquitin thioesterase
HORVU.MOREX.r2.2HG0087490.1	21.604.311	21.605.837	F-box family protein
HORVU.MOREX.r2.2HG0087500.1	21.622.128	21.624.388	Dihydroxy-acid dehydratase
HORVU.MOREX.r2.2HG0087510.1	21.636.893	21.641.531	Ubiquitin thioesterase
HORVU.MOREX.r2.2HG0087520.1	21.647.976	21.649.532	F-box family protein
HORVU.MOREX.r2.2HG0087530.1	21.687.336	21.688.710	Acyl-[acyl-carrier-protein] desaturase
HORVU.MOREX.r2.2HG0087540.1	21.712.194	21.717.490	Alpha-1,4 glucan phosphorylase
HORVU.MOREX.r2.2HG0087550.1	21.809.102	21.811.011	Pyruvate decarboxylase
HORVU.MOREX.r2.2HG0087560.1	21.812.854	21.813.153	phospholipase C 2
HORVU.MOREX.r2.2HG0087570.1	21.888.730	21.890.639	Pyruvate decarboxylase
HORVU.MOREX.r2.2HG0087580.1	21.900.662	21.900.910	Retrotransposon protein, putative unclassified
HORVU.MOREX.r2.2HG0087590.1	21.928.182	21.931.743	1-deoxy-D-xylulose-5-phosphate synthase, Transketolase
HORVU.MOREX.r2.2HG0087600.1	21.937.974	21.939.594	Acyl-[acyl-carrier-protein] desaturase
HORVU.MOREX.r2.2HG0087610.1	21.995.504	22.002.381	Cyclopropane-fatty-acyl- phospholipid synthase
HORVU.MOREX.r2.2HG0087620.1	22.022.483	22.026.693	Amine oxidase
HORVU.MOREX.r2.2HG0087630.1	22.037.002	22.037.664	RNA-directed DNA polymerase (reverse transcriptase)-related family protein
HORVU.MOREX.r2.2HG0087640.1	22.039.263	22.040.633	Retrovirus-related Pol polyproteir from transposon TNT 1-94
HORVU.MOREX.r2.2HG0087650.1	22.044.532	22.045.248	none
HORVU.MOREX.r2.2HG0087660.1	22.109.001	22.109.264	DNA topoisomerase
HORVU.MOREX.r2.2HG0087670.1	22.136.607	22.139.707	Cytochrome P450
HORVU.MOREX.r2.2HG0087680.1	22.151.886	22.154.408	myosin heavy chain, embryonic smooth protein
HORVU.MOREX.r2.2HG0087690.1	22.155.066	22.155.371	GDSL-like Lipase/Acylhydrolase superfamily protein
HORVU.MOREX.r2.2HG0087700.1	22.168.404	22.169.573	L-lactate dehydrogenase
HORVU.MOREX.r2.2HG0087710.1	22.183.941	22.184.618	FASCICLIN-like arabinogalactan
HORVU.MOREX.r2.2HG0087720.1	22.244.396	22.244.719	Retrotransposon protein, putative Ty3-gypsy subclass
HORVU.MOREX.r2.2HG0087730.1	22.248.679	22.250.538	Polyprotein
HORVU.MOREX.r2.2HG0087740.1	22.257.093	22.260.478	IAA-amino acid hydrolase ILR1
HORVU.MOREX.r2.2HG0087750.1	22.269.717	22.282.339	Methyl-CpG-binding domain protein
HORVU.MOREX.r2.2HG0087760.1	22.364.871	22.374.384	Elongation factor 1 alpha
HORVU.MOREX.r2.2HG0087770.1	22.583.960	22.587.617	ER membrane protein complex subunit 8/9-like protein
HORVU.MOREX.r2.2HG0087780.1	22.594.814	22.596.244	Glycosyltransferase
HORVU.MOREX.r2.2HG0087790.1	22.614.730	22.615.644	DNA-directed RNA polymerase subunit H
	22 616 037	22 618 126	ATP-dependent DNA helicase

 Tabelle A9 Gene im Intervall von +/- einer Million Basenpaaren um den Marker

 JHI_Hv50k_2016_163305 auf Chromosom 3H bei 32.366.059 bp (Colmsee et al.,

 2015)

Genname	AGP Start	AGP Ende	Annotation
HORVU.MOREX.r2.3HG0193650.1	31.416.457	31.417.376	DUF674 family protein
HORVU.MOREX.r2.3HG0193660.1	31.500.146	31.500.968	DUF674 family protein
HORVU.MOREX.r2.3HG0193700.1	31.688.286	31.689.221	Retrotransposon protein, putative, unclassified
HORVU.MOREX.r2.3HG0193740.1	31.702.361	31.702.867	Retrovirus-related Pol polyprotein from transposon TNT 1-94
HORVU.MOREX.r2.3HG0193750.1	31.702.952	31.703.260	Retrovirus-related Pol polyprotein from transposon TNT 1-94
HORVU.MOREX.r2.3HG0193900.1	32.370.233	32.370.643	Retrotransposon protein, putative, unclassified
HORVU.MOREX.r2.3HG0193670.1	31.609.381	31.621.239	SUMO-activating enzyme subunit
HORVU.MOREX.r2.3HG0193680.1	31.683.406	31.686.055	Transmembrane protein, putative
HORVU.MOREX.r2.3HG0193690.1	31.686.724	31.688.034	Ta11-like non-LTR retrotransposon
HORVU.MOREX.r2.3HG0193710.1	31.689.327	31.691.753	LINE-1 reverse transcriptase like
HORVU.MOREX.r2.3HG0193720.1	31.691.783	31.692.265	ribonuclease H-like superfamily protein
HORVU.MOREX.r2.3HG0193730.1	31.699.930	31.701.410	basic helix-loop-helix (bHLH) DNA-binding superfamily protein
HORVU.MOREX.r2.3HG0193760.1	31.712.014	31.712.337	Retrovirus-related Pol polyprotein LINE-1
HORVU.MOREX.r2.3HG0193770.1	31.823.922	31.824.233	GlutamatetRNA ligase 1
HORVU.MOREX.r2.3HG0193780.1	31.830.433	31.830.726	Transposon Ty3-G Gag-Pol polyprotein
HORVU.MOREX.r2.3HG0193790.1	31.830.808	31.831.023	Photosystem II reaction center PsbP family protein
HORVU.MOREX.r2.3HG0193800.1	31.835.757	31.839.127	carboxyl-terminal peptidase (DUF239)
HORVU.MOREX.r2.3HG0193810.1	31.998.396	31.998.942	DNA polymerase lambda
HORVU.MOREX.r2.3HG0193820.1	32.004.060	32.011.679	Protein DETOXIFICATION
HORVU.MOREX.r2.3HG0193830.1	32.236.370	32.237.683	F-box family protein
HORVU.MOREX.r2.3HG0193840.1	32.239.325	32.242.162	Ankyrin repeat protein-like
HORVU.MOREX.r2.3HG0193850.1	32.328.457	32.329.266	B-block-binding subunit of TFIIIC protein
HORVU.MOREX.r2.3HG0193860.1	32.329.463	32.334.279	Receptor-like kinase
HORVU.MOREX.r2.3HG0193870.1	32.365.277	32.365.819	CLAVATA3/ESR-RELATED 9 RING-finger. DEAD-like
HORVU.MOREX.r2.3HG0193880.1	32.365.999	32.366.316	helicase, PHD and SNF2 domain-containing protein
HORVU.MOREX.r2.3HG0193890.1	32.366.855	32.367.100	Cytochrome c oxidase subunit 5C
HORVU.MOREX.r2.3HG0193910.1	32.422.190	32.424.510	SH3 domain-containing protein
HORVU.MOREX.r2.3HG0193920.1	32.427.398	32.428.463	Late embryogenesis abundant protein Lea14
HORVU.MOREX.r2.3HG0193930.1	32.431.881	32.437.876	tRNA pseudouridine synthase A
HORVU.MOREX.r2.3HG0193940.1	32.443.501	32.444.349	LOB domain-containing protein
HORVU.MOREX.r2.3HG0193950.1	32.463.826	32.466.433	Serine/threonine-protein kinase
HORVU.MOREX.r2.3HG0193960.1	32.471.117	32.472.817	Pentatricopeptide repeat- containing protein
HORVU.MOREX.r2.3HG0193970.1	32.473.659	32.474.670	Universal stress family protein
HORVU.MOREX.r2.3HG0193980.1	32.475.841	32.479.321	cytochrome P450 family protein

Genname	AGP Start	AGP Ende	Annotation
HORVU.MOREX.r2.3HG0193990.1	32.480.131	32.481.586	F-box/LRR-repeat protein
HORVU.MOREX.r2.3HG0194000.1	32.631.813	32.632.073	Thiopurine S-methyltransferase
HORVU.MOREX.r2.3HG0194010.1	32.725.699	32.730.780	D111/G-patch domain-containing protein
HORVU.MOREX.r2.3HG0194020.1	32.735.772	32.736.206	Elongation factor 1-alpha
HORVU.MOREX.r2.3HG0194030.1	32.736.858	32.740.318	Receptor protein kinase, putative
HORVU.MOREX.r2.3HG0194040.1	32.778.225	32.781.513	carboxyl-terminal peptidase, putative (DUF239)
HORVU.MOREX.r2.3HG0194050.1	32.959.340	32.962.714	1-aminocyclopropane-1- carboxylate synthase
HORVU.MOREX.r2.3HG0194060.1	33.008.849	33.011.711	Raffinose synthase family protein
HORVU.MOREX.r2.3HG0194070.1	33.051.698	33.055.039	Proline-rich receptor-like kinase, putative (DUF1421)
HORVU.MOREX.r2.3HG0194080.1	33.061.550	33.062.115	DNA polymerase III PolC-type
HORVU.MOREX.r2.3HG0194090.1	33.162.084	33.162.324	Retrotransposon protein, putative, Ty1-copia subclass

8 Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegebenen Hilfsmittel und Literatur angefertigt habe.

Ort, Datum

Sebastian Zahn

Teile dieser Arbeit wurden bereits veröffentlicht im Artikel:

Zahn S, Schmutzer T, Pillen K, Maurer A (2021) Genomic Dissection of Peduncle Morphology in Barley through Nested Association Mapping. Plants 10:10. <u>https://doi.org/10.3390/plants10010010</u>

LEBENSLAUF

SEBASTIAN ZAHN

Seit 04/2021	Produkt Manager				
	BIOSS Rohstoffe Gm	BIOSS Rohstoffe GmbH, Erkelenz			
03/2017 - 01/2021	Wissenschaftlicher Mitarbeiter und Doktorand in der Pflanzenzüchtung Martin-Luther-Universität Halle-Wittenberg				
	Thema:	Genomweite Assoziationsstudien zu morphologischen Merkmalen und Ligningehalt von Gerstenpedunkeln anhand der NAM-Population HEB-25 (Projekt CBS-Uni-P3)			
10/2013 - 09/2015	Masterstudium der Agrarwissenschaften Martin-Luther-Universität Halle-Wittenberg				
	Vertiefung:	Agrarische Landnutzung			
	Masterarbeit:	Morphological Variability of Spanish Cucumis satius L. Accessions from the Spanish Genebank COMAV			
	02/2015 - 03/2015	Institute for Conservation & Improvement of Valencian Agrodiversity, Valencia			
	Student. Hilfskraft 06/2014 – 09/2014	Medizinische Grundlagenforschung Martin-Luther-Universität Halle-Wittenberg			
10/2009 - 09/2013	Bachelorstudium der Agrarwissenschaften Rheinische Friedrich-Wilhelms-Universität Bonn				
	Vertiefung:	Pflanzenproduktion			
	Bachelorarbeit:	Anpassung eines statischen Olfaktometers zur Testung der Reaktionen von Aulacorthum solani auf verschiedene Komponenten des Ätherischen Öles von Basilikum (Ocimum basilicum L.)			
	Auslandsstudium 09/2011 - 06/2012	Universidad Politècnica de València (Spanien)			
	Vertiefung:	Gemüsezüchtung, Arzneipflanzen,			
		Spanisch als Fremdsprache			
	Student. Hilfskraft	Morphologische Charakterisierung von Gurken			
	02/2012 – 06/2012	Institute for Conservation & Improvement of Valencian Agrodiversity			
	10/2009 - 05/2013	Extracurriculärer Erwerb der Internationalen Kompetenz Rheinische Friedrich-Wilhelms-Universität Bonn			
02/2007 – 06/2009	Ausbildung zum Pł	narmazeutischtechnischen Assistenten (PTA)			
2006	Abitur				