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Abstract: Sulfonamides remain an important class of drugs, especially because of their inhibitory
effects on carbonic anhydrases. Herein, we have synthesized several sulfonamides and tested
them for their inhibitory activity against carbonic anhydrases hCA I, hCA II, hCA IX, and hCA
XII, respectively. Thereby, biphenyl- and benzylphenyl-substituted sulfonamides showed high
selectivity against hCA IX and hCA XII; these enzymes are common targets in the treatment of
hypoxic cancers, and noteworthy inhibitory activity was observed for several compounds toward
hCA I that might be of interest for future applications to treat cerebral edema. Compound 3 (4-
[3-(2-benzylphenyl)ureido]benzenesulfonamide) held an exceptionally low Ki value of 1.0 nM for
hCA XII.

Keywords: carbonic anhydrase; inhibitor; ureidobenzenesulfonamides

1. Introduction

The development of sulfonamides began as early as 1908 [1], when the antibacte-
rial effect of “Prontosil” (4-(2,4-diaminophenyl)diazinyl)-benzene sulfonamide [2] was
first successfully used to treat bacterial sepsis in humans [3]. While today, sulfonamides
have—more or less—lost their importance as antibacterial drugs due to the development
of other drug classes, a new era began with the observation that representatives of this
substance class are excellent inhibitors of the enzyme carbonic anhydrase [4].

Carbonic anhydrases (CAs; EC 4.2.1.1) are essential for life, as they balance acid and
base equilibria in tissues and blood through the conversion of carbon dioxide and water
into bicarbonate and protons. The importance of CAs can be seen from their high turn-over
numbers [5], which are even faster than those measured for the enzyme acetylcholinesterase
(AChE), being necessary for synaptic transmission and hence belonging to the fastest
catalyzing enzymes. Furthermore, it has been shown that an isoform, carbonic anhydrase IX,
is overexpressed in many types of cancer, thereby leading to an acidosis of the surrounding
tissue and, consequently, promoting tumor growth, invasion, and proliferation [6]. In
addition, changes in the tumor microenvironment that are induced by hypoxia promote
aggressive and resistant cancer phenotypes [7], thus resulting in a poor prognosis in cancer
patients [8]. Especially in recent years, the development of carbonic anhydrase inhibitors
(CAIs) is of major interest [9,10], as CAIs may be supportive in anticancer therapy [11].
Especially, targeting hCA IX and XII seems to be of major interest, as these enzymes are
overexpressed in hypoxic tumors including breast, cervix, and lung carcinomas [12–17].

These metalloenzymes play a role in numerous physiological and pathological pro-
cesses. Two out of the fifteen human CA isoforms, namely, hCA IX and XII, are heavily
expressed in hypoxic tumors due to the activation of HIF-1/2 (the transcription factor
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hypoxia inducible factor). CA XII is moderately present, while CA IX is almost nonexistent
in normal tissues. This renders them highly promising prospects for developing innovative
anticancer drugs. Thus, HIF-1 is associated with tumorigenesis and other physiological or
pathological processes, along with biochemical mechanisms that are responsible for these
phenomena. Indeed, in hypoxia and particularly in hypoxic tumors, numerous proteins
that are implicated in metabolism, pH regulations, angiogenesis, and immunological re-
sponse are overexpressed due to the HIF signal cascade, rendering these tumor cells rather
distinct from their normal counterparts.

However, the application of sulfonamide-based inhibitors acting on all different iso-
forms of CA may result in severe side effects like paresthesias and others, and especially
in patients with pre-existing renal, pulmonary, and hepatic diseases, the most important
concerns are acidosis, respiratory failure, and encephalopathy [15]. Consequently, isoform
selectivity is of the utmost importance in order to avoid or minimize undesired side effects.

Several sulfonamides have already been synthesized and extensively investigated for
their potential as inhibitors of CAs, as they appear to be very promising agents for the
treatment of hypoxic tumors, especially for inhibiting the CA isoforms IX and XII since they
are in vivo under the control of HIF-1, the transcription factor hypoxia-inducible factor.
In particular, SLC-0111 (Figure 1), a sulfonamide inhibitor in clinical trials, seems to be
very promising [18–20]. This compound is used in Phase 1b/II for combination treatment
together with gemcitabine of metastatic pancreatic ductal adenocarcinoma.
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Figure 1. Structure of SLC-0111 and of acetalzolamide (AAZ).

Thus, HIF-1 is associated with tumorigenesis and other physiological or pathological
processes, along with biochemical mechanisms that are responsible for these phenomena.
Indeed, in hypoxia and particularly in hypoxic tumors, numerous proteins that are im-
plicated in metabolism, pH regulations, angiogenesis, and immunological response are
overexpressed due to the HIF signal cascade, rendering these tumor cells rather distinct
from their normal counterparts. In response to hypoxia, tumor cells also experience tran-
scriptional reprogramming involving increased expression of hCA IX, which maintains the
acid–base balance. An overexpression of CA IX has been demonstrated to be associated
with a negative prognosis in multiple cancers.

Furthermore, SLC-0111 administration negated the hypoxia-triggered overexpression
of CA IX and reduced cell viability, and SLC-0111 also hindered cell migration in a wound
healing experiment. In addition, transcriptomic profiles exhibited contrasting responses
to SLC-0111 administration between normoxic and hypoxic conditions, despite eliciting
upregulation of various tumor suppressor genes in both scenarios.

SLC-0111 holds an ureido moiety that is found in several compounds used in a broad
variety of biomedical applications. Recently, some ureidobenzenesulfonamides have been
reported as efficient inhibitors of carbonic anhydrase II [21]. The inhibition of this enzyme
is essential in order to reduce intraocular pressure in patients suffering from glaucoma; it
is expected that in 2040, the number of persons suffering from glaucoma will increase to
111.8 million [22]. However, the treatment of primary open-angle glaucoma, a multifactorial
optic neuropathy that is linked to progressive retinal ganglion cell death and visual field
loss, is one of the primary uses of CA II inhibitors. Elevated intraocular pressure is the
primary risk factor for primary open-angle glaucoma, although there are numerous other
related variables. Because of the unsatisfactory side effect profile of oral carbonic anhydrase
inhibitors, topical CAIs took a long time to develop but have been shown to be a valuable
adjunct to the treatment of primary open-angle glaucoma. They work by preventing the
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ciliary epithelium’s CA II from functioning. As a result, fewer bicarbonate ions are formed,
which decreases intraocular pressure and fluid transfer.

Furthermore, out of all the organs studied, the mammalian central nervous system
(CNS) possesses the greatest number of CA isoforms (at least 9). Isoforms I, VB, VII, VIII, X,
XI, XII, and XIV are also found, with hCA II being the most prevalent. Carbonic anhydrase
inhibitors have been used therapeutically in a number of brain pathologies because of the
broad expression range of CA isoforms in the brain. In epilepsy and idiopathic intracranial
hypertension, where acetazolamide (AAZ, Figure 1) is one of the medications now in
clinical use, inhibition via CAIs has been shown to be clinically beneficial. Moreover,
migraine, neuropathic pain, diabetes-induced blood–brain barrier failure, and amyloid β-
induced mitochondrial dysfunction that is characteristic of Alzheimer’s disease are possible
therapeutic uses for CAIs targeting CNS isoforms.

Consequently, the treatment of cerebral edema became a subject of scientific inter-
est again, since swelling of the brain is a known side effect of some new drugs (e.g.,
lecanemab [23] and donanemab [24,25]) that were recently approved for the therapy of
Alzheimer’s disease. Treatment of cerebral edema might include the intravenous injection
of a CA inhibitor, especially of an inhibitor acting on hCA I [26,27].

2. Results

Starting from a readily available starting material, compounds 1–15 were synthesized
(Scheme 1) as previously described via the reaction of sulfanilamide with isocyanates [21].
This approach is especially suited for accessing the target compounds when the isocyanate
is readily available. Recently, an alternative one-pot procedure has been published [28].
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Scheme 1. Synthesis of compounds 1–15: (a) MeCN, 12 h, 23 ◦C: 1 naphthalen-1-yl, 2 4-benzylphenyl,
3 2-benzylphenyl, 4 4-methoxy-(1,1′-biphenyl)-3-yl, 5 4-methoxyphenyl, 6 3-methoxyphenyl, 7 3-
fluorophenyl, 8 ethyl, 9 isopropyl, 10 butyl, 11 hexyl, 12 benzoyl, 13 ethyl-4-benzoate, 15 5-chloro-2-
phenoxyphenyl; (b) KOH, MeOH, ∆, 4 h, 98%.

Furthermore, the ureido moieties incorporated into benzenesulfonamides holding an
extra ureido moiety can be regarded as an interesting class of CA inhibitors (CAIs), since
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the presence of a urea functionality in the zinc-binding group is among the most promising
trends in the design of CAIs.

In this study, we were especially interested in the investigation of benzylphenyl and
biphenyl derivates, since previous docking studies indicated high binding affinities, which
parallels previous results from the literature [21].

Compounds 1–15 were obtained in good yields and subjected to screening through
stop–flow experiments employing enzymes hCA I, hCVA II, hCA IX, and hCA XII, respec-
tively. Acetazolamide (AAZ, Figure 1) was used as a positive standard. The results from
these assays are summarized in Table 1; data for SLC-0111 were taken from the literature
for comparison [29].

Table 1. Ki values (in nM): Inhibition of human carbonic anhydrase I, II, IX, XII of compounds 1–15
with the standard inhibitor acetazolamide (AAZ) and SLC-0111 (positive control) and calculated
selectivity of hCA IX and hCA XII against hCA I and hCA II, respectively. Selectivity was calculated
as the ratio of the respective Ki values.

Cmp hCA I hCA II hCA IX S(I/IX) S(II/IX) hCA XII S(I/XII) S(II/XII)

1 242.8 33.5 42.9 5.66 0.78 15.5 15.66 2.16
2 785.2 356.2 15.2 51.66 23.43 6.4 122.69 55.66
3 78.3 61.5 8.2 9.55 7.50 1 78.30 61.50
4 6650 5034 188.6 35.26 26.69 32.9 202.13 153.01
5 94.4 56.5 149.7 0.63 0.38 79.6 1.19 0.71
6 84.5 56.8 210.4 0.40 0.27 90.4 0.93 0.63
7 263.3 53.6 165.3 1.59 0.32 6.7 39.30 8.00
8 871.6 595.2 134.3 6.49 4.43 86.5 10.08 6.88
9 447.7 98.6 183.7 2.44 0.54 45.9 9.75 2.15

10 86.2 84.9 84.9 1.02 1.00 2.9 29.72 29.28
11 693.9 497.1 57.7 12.03 8.62 6.8 102.04 73.10
12 948.5 209.2 207.7 4.57 1.01 63.9 14.84 3.27
13 773.3 63.5 216.7 3.57 0.29 60.7 12.74 1.05
14 368.1 84.4 174.9 2.10 0.48 53.4 6.89 1.58
15 591.1 300.4 161.4 3.66 1.86 14.2 41.63 21.15

SLC-0111 5080 960 45.1 112.6 21.3 4.5 1128.9 213.3
AAZ 250 12.1 25.8 9.69 0.47 5.7 43.86 2.12

As a result of these assays, most of the compounds showed inhibition for all isoenzymes.
However, it must be noted that compounds 2 and 3 exerted promising Ki values for

hCA XII (Ki = 6.4 and 1.0 nm, respectively), with 3 being also an excellent inhibitor for hCA
IX (Ki = 8.2 nm). A graphic comparison of all compounds is depicted in Figure 2.

Compound 3 exerted significantly lower Ki values for hCA I (compared with standard
AAZ) and proved to be a better inhibitor of hCA IX and hCA XII than AAZ (Figure 3A). A
comparison of the Ki values for compound 3 together with its isoform selectivity is depicted
in Figure 3B.

Compound 4 is not a good inhibitor of both hCA I and hCA II, with Ki values > 5 µM.
However, with Ki values of 188 nM and 32.9 nM for hCA IX and hCA XII, respectively,
compound 4 holds a noteworthy selectivity, especially for hCA XII, with selectivity factors
of 153 to 202, respectively, when compared with hCA I and hCA II. A comparison of the
selective index is depicted in Figure 4.

While the biphenyl motif proved to be a very weak binder to hCA I and hCAII, the
phenylbenzyl substituted ureas were good inhibitors of all tested isoenzymes and exhibited
extraordinarily low Ki values for hCA IX and hCA XII (15 nM and 6.4 nM for compound
2). Compound 3 even showed lower Ki values than AZZ with 8.2 nM against hCA IX and
1 nM against hCA XII. The low Ki values for compounds 2 and 3 also resulted in good
selectivity factors of 23 to 122 for compound 2. Compound 3, however, held no pronounced
selectivity for hCA IX but high selectivity of 78 and 62 for hCA XII.
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Figure 4. Comparison of selectivity index for compounds 1–15 with respect to the different isoforms.

The compound SLC-0111 (Figure 1, Ki = 454 nM for hCA XII), which is currently used
in clinical studies, was the best inhibitor of this study; compound 3, regarding hCA XII
(Ki = 1.0 nM), showed similar ADME profiles (Figure 5; calculated online www.swissadme.ch;
accessed on 1 July 2023); this makes this compound an interesting candidate for further
biological studies. The predicted ADME data for all compounds are compiled in the
Supplementary Materials file.
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As mentioned above, treatment of cerebral edema usually includes the application of
a CA inhibitor. It might be assumed that a selective hCA I inhibitor might be beneficial
for the therapy of this serious and life-threatening disease. Upon close examination of
our results, a striking inhibitory disparity between compounds 8 and 10 became evident,
approaching nearly 10-fold (with Ki values of 871.6 and 86.2 nM, respectively). Intriguingly,
these compounds displayed minimal scaffolding differences, underscoring the pivotal role
of subtle alkyl chain structural variances in dictating their divergent inhibitory activities
against the targeted isoform. To unravel the molecular basis of these differences, X-ray
diffraction experiments against hCA I were called for in order to obtain an insight into
the ligand–protein interactions at the atomic level and focus on the tail interaction that
underpinned the observed divergent potencies.

Regarding the complex between 8 and hCA I, after the initial rounds of refinement,
the calculated Fo-Fc map showed, inside the active site, a clear electron density that was

www.swissadme.ch
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compatible with the sulfonamide moiety (Figure 6B), which interacts directly with the
zinc atom in the active sites. In addition, the sulfonamide group formed the characteristic
hydrogen bond with residue Thr199, stabilizing the complex, which is typical of this class
of inhibitors (Figure 6A).
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Figure 6. (A) Compound 8 inside the active site of hCA I. Hydrophobic (blue), hydrophilic (red), and
π-stacking (green) interactions are labeled. (B) Electron density 2Fo-Fc map of 8 bound to zinc in
hCA I active site; contoured at the 1.0 σ level.

Other hydrogen bonds were observed for the ureido moiety with a side chain of
Gln92, and the benzene ring formed a π-stacking interaction with the aromatic ring of
His94. Finally, we observed hydrophobic connections between Leu198 and Ala121 with the
benzenesulfonamide moiety and between Ala135 and the end of the ethyl tail.

Moving on the second complex investigated, 10 with hCA I, we also found a clear
density for the sulfonamide moiety inside the active site of the protein (Figure 7B). The
benzenesulfonamide scaffold showed the same binding mode as mentioned above, with
the hydrogen bonds between the sulfonamide group and Thr199 stabilizing the binding of
the inhibitor, similar to the previous complex with hCA I (Figure 7A).
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Figure 7. (A) Compound 10 inside the active site of hCA I. Hydrophobic (blue), hydrophilic (red),
and π-stacking (green) interactions are labeled. (B) Electron density 2Fo-Fc map of 10 bound to zinc
in hCA I active site; contoured at the 1.0 σ level.

Although a structural comparison of the two inhibitors with hCA I showed similar
features, such as the same sulfonamide moiety interacting with the catalytic zinc ion and
hydrogen bonds with ureido group and π-stacking interactions, the longer butyl chain of
10 compared with the ethyl one of 8 allows for more hydrophobic interactions with the
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side chains of Pro202 and Tyr204. This simple modification could explain the different
inhibition potency against hCA I of nearly 10-fold between 8 and 10.

3. Experimental Procedure

Reagents were bought from commercial suppliers and used without further purifi-
cation. The solvents were dried according to usual procedures. TLC was performed on
silica gel (Macherey-Nagel (Macherey Nagel GmbH, Düren, Germany), detection with UV
absorption). Melting points are uncorrected (Büchi M-565). NMR spectra were recorded
using VARIAN spectrometers (Varian GmbH, Darmstadt, Germany) at 27 ◦C (δ given in
ppm; J in Hz, typical experiments for assignments: 13C APT, HMBC, HSQC). ASAP-MS
spectra were taken on an Advion expression CMS-L (Advion Interchim, Ithaca, NY, USA)
with an ASAP/APCI Ion source (capillary voltage 150 V, capillary temperature 220 ◦C, and
voltage of the ion source: 15 V; APCI source temperature 300 ◦C with 5 µA). IR spectra
were recorded on a Perkin-Elmer Spectrum Two (UATR Two Unit; Perkin-Elmer GmbH,
Rodgau, Germany. CA inhibition assays were performed as previously described.

3.1. General Procedure for the Synthesis of Compounds 1–13 (GP)

A solution of sulfanilamide (2.5 mmol, 431 mg) and the corresponding isocyanate
(1 eq.) in dry acetonitrile (10 mL) was stirred for 12 h at 23 ◦C, and the precipitate was
filtered off and subsequently washed with acetonitrile, ethanol, and diethyl ether (5 mL
each), and dried in vacuo to afford 1–13 each as a colorless crystalline solid.

3.1.1. 4-[3-(Naphthalen-1-yl)ureido]benzenesulfonamide (1)

Following GP, 1 was obtained in 72% yield; Rf = 0.54 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 252–254 ◦C (lit.: [21] 254 ◦C); MS (APCI): m/z (%) = 342.1 ([M+H]+, 88).

3.1.2. 4-[3-(4-Benzylphenyl)ureido]benzenesulfonamide (2)

Following GP, 2 was obtained in 48% yield; Rf = 0.50 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 230–232 ◦C (lit: [21] 231 ◦C); MS (APCI): m/z (%) = 382.1 ([M+H]+, 40).

3.1.3. 4-[3-(2-Benzylphenyl)ureido])benzenesulfonamide (3)

Following GP, 3 was obtained in 45% yield; Rf = 0.59 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 219–221 ◦C (lit.: [21] 220 ◦C); MS (APCI): m/z (%) = 382.1 ([M+H]+, 31).

3.1.4. 4-{3-[(4-Methoxy-(1,1′-biphenyl)-3-yl]ureido}benzenesulfonamide (4)

Following GP, 4 was obtained in 42% yield; Rf = 0.53 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 271–272 ◦C (lit.: [21] 270 ◦C); MS (APCI): m/z (%) = 398.2 ([M+H]+, 25).

3.1.5. 4-[3-(4-Methoxyphenyl)ureido])benzenesulfonamide (5)

Following GP, 5 was obtained in 65% yield; Rf = 0.45 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 227–229 ◦C (lit.: [21] 229 ◦C); MS (APCI): m/z (%) = 322.4 ([M+H]+, 18).

3.1.6. 4-[3-(3-Methoxyphenyl)ureido]benzenesulfonamide (6)

Following GP, 6 was obtained in 53% yield; Rf = 0.45 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 238–239 ◦C (lit.: [21] 238 ◦C); MS (APCI): m/z (%) = 322.1 ([M+H]+, 17).

3.1.7. 4-[3-(3-Fluorophenyl)ureido]benzenesulfonamide (7)

Following GP, 7 was obtained in 70% yield; Rf = 0.42 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 240–241 ◦C (lit.: [21] 240 ◦C); MS (APCI): m/z (%) = 310.3 ([M+H]+, 97).

3.1.8. 4-(3-Ethylureido)benzenesulfonamide (8)

Following GP, 8 was obtained in 68% yield; Rf = 0.37 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 229–231 ◦C (lit.: [21] 232 ◦C); MS (APCI): m/z (%) = 244.0 ([M+H]+, 35).
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3.1.9. 4-(3-Isopropylureido)benzenesulfonamide (9)

Following GP, 9 was obtained in 54% yield; Rf: = 0.65 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 221–223 ◦C (lit.: 223 ◦C); MS (APCI): m/z (%) = 256.3 ([M+H]+, 96).

3.1.10. 4-(3-Butylureido)benzenesulfonamide (10)

Following GP, 10 was obtained in 68% yield; Rf = 0.43 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 194–196 ◦C (lit.: [21] 195 ◦C); MS (APCI): m/z (%) = 272.3 ([M+H]+, 25).

3.1.11. 4-(3-Hexylureido)benzenesulfonamide (11)

Following GP, 11 was obtained in 71% yield; Rf = 0.49 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 202–203 ◦C (lit.: [21] 201 ◦C); MS (APCI): m/z (%) = 300.3 ([M+H+], 35).

3.1.12. N-[(4-Sulfamoylphenyl)carbamoyl]benzamide (12)

Following GP, 12 was obtained in 51% yield; Rf = 0.71 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 262–264 ◦C (lit.: [21] 263 ◦C); MS (APCI): m/z (%) = 320.5 ([M+H]+, 11).

3.1.13. Ethyl 4-[3-(4-sulfamoylphenyl)ureido]benzoate (13)

Following GP, 13 was obtained in 91% yield; Rf = 0.35 (silica gel, CHCl3/DMF/MeOH,
16:1:1); m.p.: 261–263 ◦C (lit.: [21] 263 ◦C); MS (APCI): m/z (%) = 364.3 ([M+H]+, 23).

3.1.14. 4-[3-(4-Sulfamoylphenyl)ureido]benzoic acid (14)

To a suspension of 13 (200 mg, 0.55 mmol) in MeOH (10 mL), finely grounded KOH
(310 mg, 5.5 mmol) was added, and the mixture was heated under reflux for 4 h. The
precipitate was filtered off, washed with MeOH, and dried to afford 14 (196 mg, 98%) as a
colorless solid; Rf = 0.10 (silica gel, CHCl3/DMF/MeOH, 16:1:1); m.p. 310–313 ◦C (lit.: [21]
277–303 ◦C); MS (APCI): m/z (%) = 336.4 ([M+H]+, 97).

3.1.15. 4-[3-(5-Chloro-2-phenoxyphenyl)ureido]benzenesulfonamide (15)

To a solution of sulfanilamide (206 mg, 1.2 mmol) in acetonitrile (10 mL), 5-chloro-
2-phenoxyphenylisocyanate (295 mg, 1.2 mmol) was added, and the mixture was stirred
at 21 ◦C for 1 day. The volatiles were removed under reduced pressure, and the residue
subjected to column chromatography (silica gel, hexane/ethyl acetate, 2:1) to afford 15
(361 mg, 72%) as a colorless solid; Rf = 0.40 (silica gel, hexanes/ethyl acetate, 2:1); m.p.:
209 ◦C (lit: [21] 290 ◦C); MS (APCI): m/z (%) = 418.3 ([M+H]+, 21%).

3.2. Crystallization and X-ray Data Collection

Crystal of hCA I was obtained using the hanging drop vapor diffusion method using
a 24-well Linbro plate. Then, 2 µL of 10 mg/mL solution of hCA I in Tris-HCl 20 mM pH
9.0 was mixed with 2 µL of a solution of 28–31% PEG4000, 0.2 M sodium acetate, and 0.1 M
Tris pH 8.5–9.0 and was equilibrated against the same solution at 296 K. The complex was
prepared by soaking the hCA I native crystals in the mother liquor solution containing the
inhibitor at a concentration of 10 mM for two days. All crystals were flash-frozen at 100 K
using a solution obtained by adding 15% (v/v) glycerol to the mother liquor solution as
cryoprotectant. Data on crystal of the complex were collected using synchrotron radiation
at the XRD2 beamline at Elettra Synchrotron (Trieste, Italy) with a wavelength of 1.0 Å and a
DECTRIS Pilatus 6M detector. Data were integrated and scaled using the XDS program [30].
Data processing statistics are shown in Supporting Information.

3.3. Structure Determination

The crystal structure of hCA I (PDB accession code: 1JV0) without solvent molecules
and other heteroatoms was used to obtain initial phases using Refmac5 [31]. Then, 5%
of the unique reflections were selected randomly and excluded from the refinement data
set for the purpose of Rfree calculations. The initial |Fo − Fc| difference electron density
maps unambiguously showed the inhibitor molecules. Refinements proceeded using
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normal protocols of positional, isotropic atomic displacement parameters alternating with
manual building of the models using COOT [32]. The quality of the final models was
assessed with COOT and RAMPAGE [33]. Crystal parameters and refinement data are
summarized in Supporting Information. Atomic coordinates were deposited in the Protein
Data Bank (PDB accession code: 8CDX, 8CDZ). Graphical representations were generated
with Chimera [34].

4. Conclusions

In conclusion, the synthesized ureidobenzenesulfonamides exhibited remarkably
favorable Ki values within the enzyme assay. Notably, the ureidobenzenesulfonamides
featuring biphenyl (4) and benzylphenyl (2 and 3) substitutions demonstrated exceptional
selectivity toward tumor-associated hCA IX and hCA XII. Compound 3 showed a low Ki
for the latter enzyme of 1 nM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28237782/s1.
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