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Abstract

Ecological restoration is critical for recovering degraded ecosystems but is

challenged by variable success and low predictability. Understanding which

outcomes are more predictable and less variable following restoration can

improve restoration effectiveness. Recent theory asserts that the predictability

of outcomes would follow an order from most to least predictable from

coarse to fine community properties (physical structure > taxonomic

diversity > functional composition > taxonomic composition) and that pre-

dictability would increase with more severe environmental conditions

constraining species establishment. We tested this “hierarchy of predictability”
hypothesis by synthesizing outcomes along an aridity gradient with 11 grass-

land restoration projects across the United States. We used 1829 vegetation

monitoring plots from 227 restoration treatments, spread across 52 sites. We fit

generalized linear mixed-effects models to predict six indicators of restoration

outcomes as a function of restoration characteristics (i.e., seed mixes, distur-

bance, management actions, time since restoration) and used variance

explained by models and model residuals as proxies for restoration predictabil-

ity. We did not find consistent support for our hypotheses. Physical structure

was among the most predictable outcomes when the response variable was rel-

ative abundance of grasses, but unpredictable for total canopy cover. Similarly,

one dimension of taxonomic composition related to species identities was

unpredictable, but another dimension of taxonomic composition indicating

whether exotic or native species dominated the community was highly predict-

able. Taxonomic diversity (i.e., species richness) and functional composition

(i.e., mean trait values) were intermittently predictable. Predictability also did

not increase consistently with aridity. The dimension of taxonomic composi-

tion related to the identity of species in restored communities was more pre-

dictable (i.e., smaller residuals) in more arid sites, but functional composition

was less predictable (i.e., larger residuals), and other outcomes showed no
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significant trend. Restoration outcomes were most predictable when they

related to variation in dominant species, while those responding to rare species

were harder to predict, indicating a potential role of scale in restoration pre-

dictability. Overall, our results highlight additional factors that might influ-

ence restoration predictability and add support to the importance of

continuous monitoring and active management beyond one-time seed addition

for successful grassland restoration in the United States.
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INTRODUCTION

Ecological restoration is a critical strategy for repairing
degraded ecosystems worldwide and is key to meeting
global environmental and climate commitments (Suding
et al., 2015; UNEP, 2019). However, achieving restoration
targets is challenging because similar restoration actions
often lead to varied results (Brudvig & Catano, 2021;
Brudvig et al., 2017; Suding, 2011). A broad range of out-
comes are used to evaluate success in restoration projects,
such as vegetation structure, community diversity, and
ecosystem functioning (Ruiz-Jaen & Mitchell Aide, 2005;
Wortley et al., 2013), but some of these outcomes might
be inherently more variable than others (Brudvig et al.,
2017). Understanding which outcomes are more predict-
able and less variable following restoration efforts could
help practitioners set realistic goals and improve restora-
tion effectiveness by more successfully anticipating out-
comes (Brudvig & Catano, 2021; Cooke et al., 2019;
Laughlin et al., 2017).

The so-called hierarchy-of-predictability hypothesis
(Brudvig et al., 2017; Laughlin et al., 2017) proposes that
the predictability of restoration outcomes would follow an
order from most to least predictable based on how many
different ways an outcome can be achieved. At one end,
the most predictable restoration outcomes would be coarse
metrics such as vegetation structure or total biomass, for
which similar results can be achieved with different com-
binations of species or levels of diversity (Lockwood &
Pimm, 1999; Yachi & Loreau, 1999). At the other end, the
least predictable outcome would be taxonomic composi-
tion, which requires specific combinations of species. If
stochastic processes such as dispersal and first-year
weather effects impact the species that become
established, we would expect these finer metrics to be
more variable and, thus, less predictable than coarse met-
rics (Brudvig et al., 2017). Hence, there would be a hierar-
chy of predictability between metrics according to their
nested nature (Figure 1).

The hierarchy of metrics that fall in the middle is less
certain (Laughlin et al., 2017), but we expect taxonomic
diversity indices (e.g., richness, evenness) to be less
constrained than functional indices (e.g., community
weighted mean of traits, functional diversity) (Brudvig
et al., 2017; Laughlin et al., 2017). The same values of
these metrics can be achieved with different species com-
binations (i.e., different taxonomic compositions), but dif-
ferent values can result in the same physical structure, so
they would be intermittently predictable. Taxonomic
diversity indices such as species richness consider all spe-
cies equally, where many different combinations of a spe-
cific number of species can be assembled from a finite
species pool. However, functional metrics add additional
constraints based on species traits and thus can be con-
sidered a more detailed outcome that would be more
constrained and less predictable than taxonomic diversity
(Brudvig et al., 2017; Laughlin et al., 2017).

The hypothesis also states that the predictability of res-
toration would depend on the number of factors
constraining the outcomes (Figure 1). That is, any given
outcome would become more predictable with a higher
number of constraints limiting the combinations of species
inhabiting a site (Brudvig et al., 2017). Environmental fil-
ters restricting which species are able to establish and sur-
vive would decrease variation and thereby increase the
predictability of restoration under more severe environ-
mental conditions (Brudvig et al., 2017). For example, as
site mean annual precipitation or precipitation in the year
following restoration decreases, the restored community
may be limited to species with drought-resistant strategies
(Butterfield et al., 2023). Evidence for the two aspects of
the hypothesis is, however, still in its initial stages. Previ-
ous tests of the hierarchy focused on single sites or ecosys-
tems and demonstrated contrasting results (Abella et al.,
2018; Laughlin et al., 2017). Moreover, to our knowledge,
no one has tested the secondary hypothesis that more con-
straints on vegetation development would increase the
predictability of restoration.
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Evaluating the predictability of restoration over larger
spatial extents, across multiple sites, and in different
environmental conditions can provide a powerful test of
the ideas and yield more generalizable evidence of pat-
terns of predictability between restoration outcomes.
Nonetheless, while the hierarchy-of-predictability
hypothesis does not explicitly incorporate scale, restora-
tion outcomes can be different at local and regional scales
(Ladouceur et al., 2023). For example, in a series of sur-
veys across grassland restoration sites, differences in spe-
cies richness as a function of time since restoration were
not as detectable at small local scales but were notable at

regional scales (Sluis, 2002). Moreover, the relative
importance of community assembly processes determin-
ing restoration outcomes can vary depending on the spa-
tial extent considered (Catano et al., 2021; de Bello et al.,
2013; Viana & Chase, 2019). This could in turn impact
the predictability of restoration outcomes when assessed
at a larger scale.

Here, we conducted a broad-scale analysis of the pre-
dictability of grassland restoration using multiple projects
along a gradient of environmental severity. Grasslands
cover over one-third of the Earth’s land surface
(Strömberg & Carla Staver, 2022) and are one of the most

F I GURE 1 The hierarchy-of-predictability hypothesis proposed that the variability among restoration efforts was expected to change

according both to the different outcomes (a) and to the number of factors constraining the outcomes (b). Panel (a) depicts how the nested

nature from fine to coarse metrics can determine a hierarchy of predictability among restoration outcomes. For example, communities with

different taxonomic compositions (different-colored boxes in the top row) can have similar functional composition (communities dominated

by species with similar traits grouped in the same box in second row) (1), while communities with different functional composition

(different-colored boxes in the second row) can have the same taxonomic diversity (communities with same number of species grouped in

the same box in the third row) (2). Finally, communities with different taxonomic diversity (different colored boxes in the third row) can

have the same physical structure (communities dominated by species represented by four-sided geometrical shapes grouped in the same box

in the fourth row) (3). Hence, more possibilities for different taxonomic composition exist than for physical structure, making the latter

potentially less variable and, thus, more predictable than the former. Panel (b) depicts how an increase in the number of factors constraining

restoration (e.g., environmental filters caused by increased aridity) can limit the species capable of occupying restoration sites, reducing

variability and potentially increasing predictability of restoration outcomes. In this paper, we posed two research questions, depicted above

in the figure, related to the two aspects of the hierarchy of predictability hypothesis.
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degraded ecosystems worldwide (Bardgett et al., 2021;
Blair et al., 2014), making their restoration a pressing
global issue (Buisson et al., 2022; Tölgyesi et al., 2022). In
the United States, thousands of restoration projects are
conducted in grasslands on public and private lands that
move billions of dollars annually (BenDor et al., 2015).
Most of these projects share comparable restoration
practices through the addition of seed mixes (seeding
treatments) containing a high abundance of grasses
(Barr et al., 2017; Török et al., 2021) and aim to achieve
similar outcomes. This includes reducing exotic species
cover and restoring native species diversity and a vegeta-
tion structure similar to undisturbed sites (Buisson et al.,
2022; Prach et al., 2017). Hence, projects like these
present a great opportunity to investigate drivers of
variation among restoration efforts. In addition, grass-
lands are strongly responsive to precipitation variability
and are found in the United States along an annual pre-
cipitation gradient of <200 mm in the west to 1000 mm
in the east (Lauenroth et al., 1999). This represents an
axis of environmental severity that can constrain commu-
nity assembly during restoration, allowing a test of the
hypothesis related to environmental constraints.

In this study, we tested whether some outcomes of
restoration actions were more predictable than others in
grassland restoration projects across the United States.
Specifically, we posed two questions (Figure 1): (1) Does
the predictability of grassland restoration outcomes fol-
low the hierarchy of predictability? (2) To what extent do
changes in environmental severity—as measured by
aridity—influence the predictability of each outcome? If
the nested nature of outcomes from coarse to fine metrics
influences restoration predictability as proposed in the
hierarchy-of-predictability hypothesis, then we expect
restoration outcomes to decrease in predictability in the
following order: physical structure, taxonomic diversity,
functional composition, and taxonomic composition
(Brudvig et al., 2017; Laughlin et al., 2017). Furthermore,
if stronger environmental filters constraining species
establishment and survival determines restoration pre-
dictability, then we expect that all outcomes would be
less variable and, thus, more predictable with increasing
aridity (Brudvig et al., 2017).

METHODS

To understand the variation in restoration outcomes and,
in turn, the predictability of various response variables of
interest, we conducted a synthesis of primary data
obtained from the Global Restore Project (GRP), the larg-
est database of restoration outcomes in the world
(Ladouceur et al., 2022; Ladouceur & Shackelford, 2021).

When synthesizing these data, our focus was not on the
effect of restoration treatments on restored communities
or on grand mean and variances of those effects, but
rather on variation in restoration outcomes as a way to
interpret predictability and sources of unpredictability.
Projects included in the database were also diverse.
Therefore, we directly used the raw data rather than
mean and variances of individual projects (Ladouceur &
Shackelford, 2021; Mengersen et al., 2013) to embrace
this variability and employ it to empower our under-
standing of variation in restoration outcomes
(Brudvig et al., 2017).

Our general methodological strategy (detailed in the
topics below) was to first quantify restoration outcomes
for physical structure, taxonomic diversity, functional
composition, and taxonomic composition of restored
communities based on raw data from restoration projects
(Figure 2). Then, to quantify the variation in these
responses to restoration treatments and, in turn, their
predictability, we fit a generalized linear mixed model for
each outcome with data from all projects at once
(Figure 2). Generalized linear mixed models are powerful
tools for such analyses because they allow for non-
normality of response variables and nonindependence of
observations and are flexible enough to deal with high
variability across studies (Bolker et al., 2009). We used a
common set of predictor variables (i.e., fixed effects) for
all models and had a common set of random effects. After
fitting the models, we analyzed the predictability of resto-
ration outcomes in two different ways. As the first ques-
tion focused on comparing predictability between
different outcomes, we used the total variance explained
by the model fitted for each outcome as an indicator of
predictability. We expected that outcomes hypothesized
to be more predictable based on the hierarchy of predict-
ability would have a higher proportion of variance
explained by the models (Figure 2). The second question
compared the predictability of the same outcome
between restored communities across different aridity
conditions. Hence, we extracted the model residuals for
each community as an indicator of unexplained variabil-
ity (or unpredictability) of restoration outcomes in those
communities. For this question, we expected that
unexplained variability (i.e., model residuals) would be
smaller in more arid conditions (i.e., smaller values of the
aridity index) (Figure 2).

GRP dataset

Restoration projects in the GRP database are organized
in a structure containing monitoring plots within restora-
tion treatments within restoration sites (Figure 2).
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For every project, the database contains plant species
canopy cover or density for each monitoring plot over
time, as well as metadata related to the restoration pro-
ject, such as location and associated characteristics of res-
toration sites (e.g., type of disturbance that prompted
restoration, aridity, mean annual precipitation) and man-
agement actions applied to each treatment (e.g., species
seeded, seeding rate, type of weed control, seedbed prepa-
ration) (Figure 2). All species names and measurement
units were standardized before being added to the data-
base, and the specific details for these processes as well as
other information included in the database are described
in Shackelford et al. (2021).

In November 2021, we downloaded from the GRP
database plot vegetation data that were located in the
United States and that were classified when entered into
the database as grassland (i.e., less than 10% tree cover)
according to the description of World Formation Types
(Faber-Langendoen et al., 2016). From each site, we only

analyzed seeding restoration treatments to focus on the
variability in response across restoration treatments,
rather than average differences between restored and
unrestored sites (Brudvig et al., 2017). To calculate out-
comes for whole communities, we only used projects that
collected data for every species present and not just
seeded target species. Plots had to be monitored for at
least 2 years after seeding to allow for initial establish-
ment of restored communities, and we only used the first
monitoring point after 2 years of seeding. We also
excluded plots subjected to manipulation of irrigation or
to repeated restoration treatments more than 4 weeks
after seeding (Appendix S1: Section S1). Finally, we
excluded one project that had almost all plots completely
dominated by an invasive forb, resulting in most observa-
tions having the same value for outcomes and thus
inflating the variance explained by predictor variables
(see Appendix S2: Section S4 for results including this
project). The resulting data set encompassed 1829 plots

F I GURE 2 Flow diagram of methods used to answer the two research questions, with their specific predictions based on the hierarchy-

of-predictability hypothesis. CWM, community-weighted mean; NMDS, nonmetric multidimensional scaling; PCA, principal component

analysis; SLA, specific leaf area.
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from 227 different restoration treatments, spread
across 52 restoration sites and 11 projects (Figure 3,
Appendix S1: Section S1). This encompassed sites from
arid to humid conditions, with aridity index values vary-
ing between 0.12 and 0.87 (Figure 3).

Quantifying restoration outcomes

We used physical structure, taxonomic diversity, func-
tional composition, and taxonomic composition as the
restoration outcomes of interest. Of the 1829 plots
included in this study, 286 measured species density
while 1543 measured canopy cover (Appendix S1: Section
S1). To be able to compare outcomes across all plots, we
first transformed species density or canopy cover into rel-
ative abundances, with the exception of the calculation
for total canopy cover (see below). For physical structure,
we focused on grasses, as they are the most abundant
plant family in restoration seedings and contribute most
to vegetation structure of grasslands (Wilsey, 2018). Thus,
we used the relative abundance of grasses in each plot as
an indicator of structure (Table 1, Appendix S3:

Section S1). Different combinations of species composi-
tion, functional composition, and species diversity can
result in the same relative abundance of grasses, thus
being an indicator of physical structure (Brudvig et al.,
2017; Lockwood & Pimm, 1999). Moreover, the relative
proportion of grasses as opposed to forbs influences many
ecosystem processes in grasslands, such as seedling
recruitment and invasion susceptibility, and is thus an
important indicator for grassland restoration (Dickson &
Busby, 2009; Wilsey, 2021). We also used total canopy
cover as an additional indicator of physical structure
(Table 1, Appendix S3: Section S1), calculating it in a fil-
tered data set for which we excluded plots that measured
density. Because of differences in sample sizes between
the full and filtered data sets, caution must be taken
when comparing results for total canopy cover and other
restoration outcomes. Results for all other outcomes in
the subset of projects that measured canopy cover are
presented in the supplementary material (Appendix S2:
Section S1).

We used species richness for the taxonomic diversity
outcome. Due to the effect of scale of measurement
(i.e., plot area) on species richness (Spake et al., 2021),

F I GURE 3 Location of restoration sites used to test hierarchy of predictability in North American grassland restoration along aridity

gradient. Drier values are represented in red (lower values) and wetter in blue (higher values).

6 of 21 BERTUOL-GARCIA ET AL.

 19395582, 2023, 8, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2922 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



much of the variation in species richness across plots was
explained by plot area and not by restoration actions
(Appendix S4: Section S1). Hence, we used an indicator
for species richness that discounted this effect. To do this,
we first fitted a linear model of the log-transformed rich-
ness as a function of the log-transformed plot area, as this
is the function that best fits the species-area curve of
grasslands (Dengler et al., 2020). Then we used the resid-
uals of this model as the indicator of taxonomic diversity
(Table 1, Appendix S3: Section S1). This indicator
expresses how many more or fewer species were observed
in each plot when compared to what would be expected
based on plot area alone and, thus, represents the varia-
tion in richness that might be explained by restoration
action.

Plant functional traits are important drivers of ecologi-
cal processes and, hence, have received increasing atten-
tion as key indicators of restoration success (Laughlin,
2014). Here, we used a multivariate approach to identify
the main axis of variation in community functional com-
position for specific leaf area, seed mass, and plant height.
We focused on these traits because together they represent
the main dimensions of plant form and function
(Díaz et al., 2016; Westoby, 1998) and capture important
physiological and life history characteristics of plants
(Díaz et al., 2016; Reich, 2014; Wright et al., 2004).

We retrieved species-average values for these traits from
the TRY global trait database (Kattge et al., 2020;
Appendix S1: Section S2). By restricting our analysis to
more than 2 years after seeding, we ensured alignment
between plants in restored communities and values of
mature plants retrieved from TRY (Havrilla et al., 2021).
We calculated the mean of all values available for each
species if at least three different values were available.
Trait data were available for species comprising more than
80% of total abundance across all plots for all traits
(M�ajekov�a et al., 2016; Pakeman, 2014; Appendix S1:
Section S2). We then combined relative abundances from
the GRP database and the trait data from the TRY data-
base to calculate the community-weighted means (CWM)
for each trait in each plot, using only species for which
trait data were available. We performed principal compo-
nent analysis (PCA) on the CWMs and used the first prin-
cipal component representing the main axis of CWM trait
variation across the restored communities as the indicator
variable for functional composition (Table 1, Appendix S3:
Section S1). This axis represents a gradient from commu-
nities dominated by native perennial grasses and forbs that
are taller and have a smaller specific leaf area (SLA) and
seed mass to communities dominated by exotic annual
grasses and forbs that are shorter and have higher SLA
and seed mass (Figure 4, Appendix S4: Section S1).

TAB L E 1 Description of indicators of restoration outcomes of grassland restoration projects across the United States.

Restoration
outcome Indicator Description

Physical structure Relative abundance
of grasses

Sum of canopy cover or density of grass species in plot divided by total canopy cover or
density

Physical structure Total cover Sum of canopy cover values for all species in plot; calculated only for projects that
measured cover as an abundance metric

Taxonomic
diversity

Residuals of
richness-area
model

Residuals of linear model of log(richness) as a function of log(area); expresses how many
more or fewer species each plot had when compared to expectations based solely on
plot area

Functional
composition

First axis of variation Scores of each plot on first component identified by conducting PCA on community-
weighted means of specific leaf area (SLA), seed mass, and plant height calculated
using species relative abundances; represents a gradient from communities dominated
by taller plants with smaller SLA and seed mass to communities dominated by shorter
plants with higher SLA and seed mass (Figure 4)

Taxonomic
composition

Second NMDS axis Plot values on second axis identified by extracting three dimensions with NMDS on
species relative abundances; divides restored communities along broad-scale
vegetation types and whether dominant group of species was composed of exotics or
natives (Figure 4)

Taxonomic
composition

Third NMDS axis Plot values on third axis identified by extracting three dimensions with NMDS on species
relative abundances; represents identity of particular exotics or native species, among
the most dominant species, that were present in each plot (Figure 4)

Note: Each indicator was used as a response variable in models using the same set of predictor variables related to characteristics of restoration projects to

investigate the predictability of different restoration outcomes. Detailed methods for calculations of each outcome indicator are presented in Appendix S3:
Section S1.
Abbreviation: NMDS, nonmetric multidimensional scaling.
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Finally, for taxonomic composition, we reduced
the variation in our data set into two indicator vari-
ables that expressed differences in relative abundances
of species across plots. As recommended for species
composition data, we calculated the Bray–Curtis
pairwise species dissimilarity index between plots and
used nonmetric multidimensional scaling (NMDS) to
produce a visual representation that preserved as best
as possible the dissimilarity between plots (Borcard
et al., 2018). Many multivariate analyses identify axes
for interpretation based on amount of variability
explained (e.g., PCA), but NMDS axes are arbitrary
and do not necessarily align with axes of high varia-
tion (Borcard et al., 2018). Hence, to choose the most
relevant axes for our analysis, we first explored
extracting two and three dimensions. The first NMDS
axis of the solutions with two and three dimensions
separated plots of a single project that shared few spe-
cies with other plots (Appendix S4: Section S1.3).
Because we were not interested in predicting the spe-
cies composition of a single project, this axis did not
provide a meaningful description of variation in

community composition for our question. Hence, we
chose the second and third NMDS axes of the solution
with three dimensions (stress = 0.045) as indicators of
taxonomic composition because they provided infor-
mation about the variation in community composition
across all plots (Figure 4). The second axis (MDS2)
divided restored communities along broad-scale vege-
tation types and whether the dominant group of spe-
cies was composed of exotics or natives (i.e., lower
values on the axis represent communities dominated
by exotics while larger values represent communities
dominated by natives) (Table 1, Figure 4,
Appendix S3: Section S1). The third axis (MDS3)
represented the identity of the particular exotic or
native species, among the most dominant species, that
were present in each plot (i.e., different values on the
axis indicate presence of different species) (Table 1,
Figure 4). All calculations were conducted in the R
environment (R Core Team, 2021) using the tidyverse
(Wickham et al., 2019), traitor (Götzenberger, 2015),
FD (Laliberté & Legendre, 2010), ggbiplot (Vu, 2011),
and vegan (Oksanen et al., 2022) packages.

F I GURE 4 Multivariate analyses used to calculate outcome indicators for functional composition (a, b) and taxonomic composition of

restored grassland communities in the United States (c, d). (a) Principal component analysis of community-weighted means for specific leaf

area, seed mass, and plant height, showing plot scores (points) and trait relationships (arrows) with the two first components, as well as

(b) trends for functional groups along the first axis. (c) Nonmetric multidimensional scaling of species relative abundances, showing the location

of plots in the second and third dimensions with the location of the 20 most common exotic and native species on the multidimensional space

or (d) plots grouped by their vegetation type. Two plots with extreme values on MDS3 were excluded from the figures to facilitate the

visualization of patterns (see Appendix S4: Section S1 for figure with all plots). NVC, national vegetation classification.
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Statistical models

To explain the restoration outcomes, we fit each outcome
indicator as a function of restoration predictors, using
plots from all restoration sites together in a single univar-
iate model for each indicator (six univariate models in
total). Each outcome indicator was the response variable
in a generalized linear mixed model using the same struc-
ture for fixed and random effects in all models. A detailed
description of the modeling approach is presented in
Appendix S3: Section S3.

Fixed effects included variables that represented three
main predictors of restoration outcomes: previous land-
use history, restoration management actions, and species
inputs. For land-use history, we used a categorical vari-
able assigned by data contributors expressing the distur-
bance that prompted restoration efforts: agriculture,
invasion, and/or grazing (Table 2, Appendix S3: Section
S2). For management actions, we included the most com-
mon management actions (Appendix S1: Figure S2) as
four binary variables indicating whether or not each
action was applied at each plot (Table 2, Appendix S3:
Section S2). To represent species input, we used the char-
acteristics of the seed mixes. This variable was different
in each model, and it corresponded to the outcome indi-
cator used as the response variable in the model (Table 2,
Appendix S3: Section S2). For example, to predict species
richness in the restored communities, we used the num-
ber of species in the seed mix as the fixed effect related to
species input, but to predict the relative abundance of
grasses in the restored communities, we used the relative
abundance of grasses in the seed mix (Table 2,
Appendix S3: Section S2). Finally, we also included time
since restoration as an additional fixed effect because the
first monitoring point after 2 years of seeding was differ-
ent for each project (Table 2, Appendix S3: Section S2).

For random effects, we included treatments, sites,
and projects as nested random intercepts to consider the
nonindependence of plots within the data set (Table 2).
In addition, plots that share climatic conditions due to
similar macro-ecological drivers such as latitude and alti-
tude are expected to be occupied by similar vegetation
and, thus, have more similar restoration outcomes.
Hence, we also used the vegetation type of each site as a
random intercept (Table 2). Vegetation type was defined
as the formation subclass of the site where plots were
located according to the GAP/LANDFIRE National Ter-
restrial Ecosystems Dataset, classified following the
United States National Vegetation Classification (FDGC,
2008; USGS GAP, 2016). This level describes communi-
ties in terms of general appearance of vegetation and
growth forms of dominant taxa, which is adequate to
describe variation at continental scales (Faber-

Langendoen et al., 2014), such as in the case of the pro-
jects included in our data set (Figure 3). As this spatial
data layer was developed based on satellite imagery, the
specific subclass classification for each coordinate might
be different than the ecosystem description provided by
data contributors, but it is expected to group restoration
sites based on similar vegetation. Taken together, the ran-
dom structure of models captures the broad sources of
variability that influence outcomes such as the biogeo-
graphic location of each restoration plot and due to the
different experimental designs and methodologies among
studies.

To decide on the appropriate family of distribution
for the response variables, we compared models fitted
with different distributions and selected the best fit using the
lowest Akaike’s information criterion (AICc) (Appendix S4:
Section S3). All models were fitted using the glmmTMB
package (Brooks et al., 2017) in R (R Core Team, 2021), using
the following formula: outcome indicator ~ disturbance
+ bed preparation + weed control + shelter + grazer
removal + species input + time since restoration
+ (1jvegetation type) + (1jproject/site/treatment). The
assumptions of eachmodel were verified using theDHARMa
package (Hartig, 2021) to check for uniformity in simulated
residual distributions, zero inflation and overdispersion, and
the sjPlot package (Lüdecke, 2021) to inspect Q-Q plots of
random effects (Appendix S4: Section S4).

Predictability of restoration outcomes
(Question 1)

We were interested in the variability that can be
explained—and thus predicted—in the course of a resto-
ration project. Thus, we compared the proportion of vari-
ance between restoration plots that was explained by the
models to investigate if the predictability of outcomes
followed the hierarchy hypothesis (Figure 2). To do this,
we calculated the marginal (explained by fixed effects)
and conditional (explained by fixed and random
effects) variance of the models (Nakagawa et al., 2017;
Schielzeth & Nakagawa, 2013). Then we ordered out-
comes from most to least predictable based on decreasing
variance explained by fixed effects. The higher the vari-
ance explained by the fixed effects in the model, the more
predictable we considered the restoration outcome.

Effect of aridity on predictability of
outcomes (Question 2)

To investigate whether the predictability of restoration
outcomes increased with the severity of environmental

ECOLOGICAL APPLICATIONS 9 of 21
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TAB L E 2 Details of fixed (a–d) and random effects (e–h) used in six different models predicting restoration outcome indicators of

grassland restoration projects across the United States.

Predictor variable Description Transformation Model used

(a) Previous disturbance Categorical variable indicating
combinations of disturbances
that led to restoration efforts
(agriculture, invasion, grazing,
invasion and agriculture,
invasion and grazing, or all
three)

None All six models

(b) Management actions

Bed preparation Binary variable (yes/no) indicating
whether or not seedbed was
prepared (e.g., tilling, raking)

None All six models

Weed control Binary variable (yes/no) indicating
whether or not some sort of weed
control (chemical or physical
removal) was applied

None All six models

Shelter Binary variable (yes/no) indicating
whether or not some sort of
shelter (built shelters using
natural materials such as brush)
for seeded species was applied

None All six models

Grazer removal Binary variable (yes/no) indicating
whether or not grazers (livestock
or undomesticated animals such
as deer) were excluded from
restoration treatments

None All six models

(c) Species inputs

Relative abundance of grasses in
the seed mix

Continuous variable representing
proportion of seeds from grass
species in seed mix

Scaling Model predicting relative abundance
of grasses

Total seeding rate Continuous variable representing
sum of seeds from all species
seeded per square meter

Log, scaling Model predicting total cover

Seed mix richness Discrete variable representing no.
different species seeded

Log, scaling Model predicting richness

Seed mix functional
composition

Continuous variable representing
position of each seed mix in
gradient defined by functional
composition first axis variation;
species seeding rates were used to
calculate seed mix community-
weighted means for specific leaf
area, seed mass, and plant height
and used principal component
analysis (PCA) model to predict
values for each seed mix in first
axis of functional composition

Scaling Model predicting functional
composition

Seed mix first axis of variation Continuous variable representing
variation in richness, proportion
of grasses, and functional
composition between seed mixes,
calculated by performing PCA
with other seed mix indicators

Scaling Models predicting taxonomic
composition indicators

10 of 21 BERTUOL-GARCIA ET AL.
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conditions, we extracted the difference between the
observed value and the values predicted by the models
(i.e., the model residuals) and looked at how the residuals
varied along the aridity gradient. The larger these resid-
uals in absolute terms, the more variability is left
unexplained by the model and, hence, the less predict-
able the outcome.

For this question, we used treatments instead of
plots as observations, because monitoring plots are typi-
cally different replicates used to estimate average-
treatment outcomes. An outcome can differ greatly
between plots but still present an average for the treat-
ment that is similar to the model prediction, which
thus makes it highly predictable at the treatment level.
The hierarchy of predictability focuses on the variability
in outcomes across entire restoration treatments rather
than the variability that occurs at a meter scale from
one plot to another. This is a real-world approach to
how restoration treatments affect systems. Hence, we
first averaged the residuals of plots within each treat-
ment and then used the absolute value of this average
as the response variable.

We fit generalized linear models with the treatment-
level residuals as response variables and aridity as a
predictor variable (see Appendix S3: Section S3 for a

detailed description of modeling approach). Because the
number of plots in each treatment and plot area can
influence the variability of all community-level out-
comes (Spake et al., 2021), we included the plot area
and number of plots as additional predictor variables in
the models, using the following notation in R:
treatment-level residuals ~ aridity + plot area + number
of plots. We then focus on describing the effect of arid-
ity on model residuals after taking into account the
effect of plot area and number of plots. We also
conducted a supplementary analysis to investigate
whether the severity of environmental conditions due
to the temporal variability of precipitation, which is
usually higher in more arid sites (Paruelo & Lauenroth,
1998), influenced our results. For this, we retrieved
annual precipitation values for each site from the
PRISM database (Prism Climate Group, 2014) and ran
the same models with additional variables related to
absolute rainfall (in seeding or monitoring years) or
seeding-year rainfall relative to mean annual precipita-
tion (Appendix S2: Section S2). Number of plots and
plot area were log-transformed, and all predictor vari-
ables were standardized before being used in the analy-
sis. Exploratory analysis and model validation were
conducted as described above.

TAB L E 2 (Continued)

Predictor variable Description Transformation Model used

and extracting first principal
component (Appendix S4:
Section S2); with this variable,
taxonomic composition of
community is understood as
being result of multiple
components of seed mix

(d) Time since restoration Continuous variable indicating no.
weeks since species were seeded

Scaling All six models

(e) Vegetation type Categorical variable indicating
formation subclass of site where
plots were located, according to
United States National
Vegetation Classification
(FDGC, 2008; USGS GAP, 2016)

None All six models

(f) Project ID Categorical variable identifying each
unique restoration project

None All six models

(g) Site ID Categorical variable identifying each
unique restoration site

None All six models

(h) Treatment ID Categorical variable identifying each
unique restoration treatment

None All six models

Note: Values in bold represent different categories of predictor variables used in all models. Management actions (b, bold) were represented by four binary
variables (below b, normal text) indicating whether each action was applied or not at each plot. The specific predictor variable for species inputs (c, bold) was

different for each model (below c, normal text), and it corresponded to the outcome indicator used as the response variable in the model (rightmost column).
Detailed methods for calculations of each variable are presented in Appendix S3: Section S2.
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RESULTS

Predictability of restoration outcomes

We found that the most predictable outcome was the
dimension of taxonomic composition related to the domi-
nance of exotics or native species (second NMDS axis),
with 66.2% of the variance explained by fixed effects
(Figure 5). Second, physical structure indicated by rela-
tive abundance of grasses and functional composition
had over 25% of the variance explained by fixed effects
(Figure 5). Taxonomic diversity, total plant cover, and the
dimension of taxonomic composition related to fine-scale
species identity (third NMDS axis) were the least predict-
able outcomes, with less than 16% of the variance
explained by fixed effects (Figure 5).

The specific restoration predictors explaining the vari-
ability in restoration outcomes across communities varied
across indicators. Seed mixes appeared as significant pre-
dictors for total cover and species richness, with higher
seeding rates and seed mix richness resulting, on average,
in higher total cover and species richness (Figure 6).
Time since restoration affected relative abundance of
grasses, total cover, and species richness, with longer
times since restoration resulting in, on average, higher
relative abundance of grasses, lower total cover, and
fewer species (Figure 6). Previous disturbance and spe-
cific management actions were a significant predictor of
relative abundance of grasses, functional composition,
and the dimension of taxonomic composition related to
the dominance of native or exotic species (second NMDS
axis). In addition, disturbance also affected richness
while specific management actions affected the dimen-
sion of taxonomic composition related to fine-scale spe-
cies identity (third NMDS axis) (Figure 6).

Effect of environmental severity on
predictability of restoration outcome

The unexplained variability of restoration—as measured
by model residuals—was higher at sites with intermediate
levels of aridity for most outcomes (Figure 7), but this was
mostly explained by the fact that these residuals were aver-
aged across treatments that had fewer and smaller plots
(Appendix S4: Section S4). When keeping plot area and
number of plots constant, most relationships between arid-
ity and unexplained variability of restoration outcomes
were weak and nonsignificant (Figure 7). Functional com-
position, however, showed significantly lower predictabil-
ity (i.e., higher unexplained variability) with increasing
aridity, while the dimension of taxonomic composition
related to fine-scale species identity (third NMDS axis)

became significantly more predictable (i.e., smaller
unexplained variability) with increasing aridity (Figure 7).
These effects were the same when including additional
variables related to the temporal variability of precipitation
in the models (Appendix S2: Section S2).

DISCUSSION

Predictability of restoration outcomes

We did not find consistent support for the hypothesis that
the predictability of outcomes would decrease from
coarse to fine response metrics according to their nested
nature (physical structure > functional composition >
taxonomic diversity > taxonomic composition). On the
one hand, in accordance with our predictions, one indica-
tor of physical structure (relative abundance of grasses)
was among the most predictable outcomes, and one
dimension of taxonomic composition (related to fine-
scale species identity) was among the least predictable
(Figure 5). On the other hand, total plant cover was one
of the least predictable outcomes (Figure 5), contradicting
the expectation that structural attributes would be highly
predictable. Additionally, although taxonomic composi-
tion was hypothesized to be unpredictable, our measured
dimension of taxonomic composition related to domi-
nance of exotics or natives (second NMDS axis) was the
most predictable outcome (Figure 5). While previous
research in a ponderosa pine restoration site found spe-
cies composition to be unpredictable (Laughlin et al.,
2017), these results are similar to findings from a study
encompassing 24 oak-savanna prairie sites that did not
follow the hierarchy of predictability but rather found
species composition to be among the most predictable
restoration outcomes (Abella et al., 2018). Overall, these
results indicate that coarse to fine organization of
response metrics might have a role in influencing the
predictability of some restoration outcomes, but that
additional factors are also at play.

First, how outcome metrics are measured might be an
important factor influencing their predictability. We mea-
sured physical structure and taxonomic composition
using two different indicators each, and those indicators
showed different predictability trends. Physical structure
represented by the relative abundance of grasses was
highly predictable but unpredictable if represented by
total canopy cover, and the same pattern occurred for the
two dimensions of taxonomic composition. Indeed, com-
munity taxonomic composition is a multivariate property
of communities composed both of species identities and
the relative abundances of each species (Blowes et al.,
2022; Magurran & McGill, 2011). As such, it can be

12 of 21 BERTUOL-GARCIA ET AL.

 19395582, 2023, 8, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2922 by Fak-M

artin L
uther U

niversitats, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



described by different dimensions, with potentially differ-
ent degrees of predictability. The dimension related to
the identity of native and exotics species, captured by the
third NMDS axis in our study, is a highly specific mea-
sure of taxonomic composition. Hence, the low predict-
ability encountered for this dimension is in accordance
with the original hypothesis that fine/specific restoration
goals achieved by particular combinations of species are
less predictable than coarse/broad goals (Brudvig et al.,

2017). Nonetheless, this represents only one potential
measure of taxonomic composition. Our results indicate
that if taxonomic composition is alternatively measured
as coarser patterns in dominant species, such as predomi-
nance of exotics or natives captured in our second NMDS
axis, it might be more predictable in the course of a resto-
ration project.

Another factor potentially influencing the predictabil-
ity of restoration outcomes in our study is differences in

F I GURE 5 Proportion of variance explained by fixed and random effects and residual error in each of the models predicting restoration

outcomes, organized from least predictable (top) to most predictable (bottom). Indicators of the same outcome are shown in the same color.

Total plant cover was calculated using a subset of projects that used canopy cover as an abundance metric. NMDS, nonmetric

multidimensional scaling.

F I GURE 6 Estimated model coefficients (circles) and CIs (lines) for each predictor of each restoration outcome. Significant coefficients

are presented in color and with continuous lines, while nonsignificant coefficients are presented in gray and with dashed lines. The

reference level for the disturbance variable was the “agriculture” category. *Total plant cover was calculated using the subset of projects that

used canopy cover as an abundance metric. Agric, agriculture; Graz, grazing; Inv, invasion; NMDS, nonmetric multidimensional scaling.
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F I GURE 7 Results of generalized linear models of effect of aridity on predictability of restoration outcomes. Plots show predicted lines

and 95% CIs for effect of aridity on treatment-average residuals when keeping area and number of plots constant at their mean values.

Significant relationships are shown in color and with continuous lines, while nonsignificant relationships are shown in gray and with

dashed lines. *Total plant cover was calculated using the subset of projects that used canopy cover as an abundance metric. NMDS,

nonmetric multidimensional scaling.
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predictability between dominant and rare species of
restored grassland communities. The three most predict-
able indicators were the dimension of taxonomic compo-
sition related to the dominance of exotics or natives
(second NMDS), the relative abundance of grasses, and
the first axis of variation in functional composition. These
indicators are driven by variations in the most dominant
species within communities rather than changes in rare
species. Moreover, the dimension of taxonomic composi-
tion related to the identity of dominant species (third
NMDS axis), although harder to predict based solely on
fixed effects, was mostly explained by random effects
representing the biogeographic location of restored sites
(Figure 5). This can be a result of species pools being dif-
ferent between regions, suggesting that when comparing
sites across a larger spatial extent, it might be possible to
determine the identity of dominant species of restored
grassland communities based on site location. At the
same time, richness, which essentially captures the num-
ber of rare species because it disregards species abun-
dances (Magurran & Henderson, 2011), was harder to
predict in our study, even when considering random
effects (Figure 5). Hence, predicting variation in domi-
nant species might be easier than predicting variation in
rare species among restored grassland communities.

Uneven species abundance distributions, with a few
abundant species and many rare species, are a common
pattern in ecological communities (McGill et al., 2007),
and research suggests that dominant and rare species
might respond to different assembly processes
(Magurran & Henderson, 2003; Matthews & Whittaker,
2015). While dominant species typically respond to deter-
ministic niche-based mechanisms, the presence and iden-
tity of rare species might be more influenced by stochastic
processes such as random dispersal (Matthews &
Whittaker, 2015). Moreover, the richness and composition
of rare species typically respond more to interannual
weather variation in grasslands than dominant species
(Cleland et al., 2013). Hence, more variation would be
explained by the niche-based mechanisms of our restora-
tion predictors (e.g., previous disturbances or management
actions manipulating biotic filters such as grazer removal)
for those indicators responsive to dominant species. The
increasing effect of stochastic processes and interannual
variability on determining rare species could then in turn
explain why richness was less predictable than expected.

The potential importance of dominant and rare spe-
cies in our predictability results might also be related to
the continental extent of our study, which spans different
vegetation types and a wide environmental gradient. The
relative importance of niche-based versus stochastic
assembly processes is scale dependent, with the former
usually being stronger when studied across larger spatial

extents (Shinohara et al., 2023; Viana & Chase, 2019). It
is thus possible that the higher predictability of indicators
responsive to the dominant species is related to a stronger
signal of niche-based mechanisms when comparing com-
munities across a regional scale. The original hierarchy
of predictability hypothesis relies on stochastic processes
such as random dispersal and priority effects driving
which particular combination of species becomes
established, resulting in outcomes that can be achieved
by multiple combinations of species (e.g., structure, spe-
cies diversity) being more predictable than outcomes that
can only be achieved by a single combination of species
(e.g., species composition) (Brudvig et al., 2017). We sug-
gest that this might still be the case at smaller spatial
extents, where such stochastic processes are expected to
be more evident (Viana & Chase, 2019). This effect of
spatial extent could explain why Laughlin et al. (2017),
looking at a single site, encountered support for the
hypothesis, while Abella et al. (2018), looking at multiple
sites across a landscape, did not. Moreover, when
predicting outcomes separately for each restoration site
in a supplementary analysis, we found that richness was
one of the most predictable outcomes, as expected by the
hierarchy-of-predictability hypothesis, although trends
for other outcomes remained similar between the
regional and site-level analysis (Appendix S2: Section S3).
Still, the patterns of predictability among restoration out-
comes and the different predictability of richness encoun-
tered between the regional and site-level analyses
indicate that further research on the effect of scale on
predictability of recovery, regeneration, and restoration is
warranted (Ladouceur et al., 2023).

Finally, plant cover was one of the least predictable
outcomes. Total cover was only measured on a subset of
the data, but it remained one of the least predictable out-
comes even after being compared to other outcomes mea-
sured on the same subset (Appendix S2: Section S1). On
the one hand, this could be a result of the unreliability of
plant cover as an estimate of species relative abundance
(Klimeš, 2003). On the other hand, similar results were
found by Abella et al. (2018), in which restoration out-
comes related to physical structure such as herbaceous
cover were also unpredictable. This suggests that plant
cover might indeed be an unpredictable outcome in
grassland restoration. Total biomass is highly variable
in grassland ecosystems, and it usually responds to
interannual variations in precipitation (Briggs & Knapp,
1995; Gherardi & Sala, 2019). If the variation in biomass
results in variable canopy cover, this could partly explain
the higher unpredictability of this metric. Moreover, in
cases where vegetation structure is dependent on other
outcomes, for example, when initial species composition
impacts the development of total cover because of
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processes such as plant–soil feedbacks (Heinen et al.,
2020) or apparent competition (Orrock & Witter, 2010),
physical structure would be less predictable than other
outcomes (Abella et al., 2018). Hence, how each individ-
ual outcome is affected by processes driving community
assembly and species abundances, as well as the number
of different processes impacting each outcome, might be
important additional factors causing differences in pre-
dictability among restoration outcomes.

Effect of environmental severity on
predictability of restoration outcomes

We also did not consistently find support for our hypoth-
esis relating environmental severity to predictability of
restoration. While we expected all outcomes to become
more predictable with increasing aridity, only the dimen-
sion of taxonomic composition related to fine-scale spe-
cies identity (third NMDS axis) showed this trend. The
predictability of outcomes related to physical structure,
taxonomic diversity, and dominance of exotics versus
natives was not affected by environmental severity, nor
was the predictability of outcomes when predicted sepa-
rately for each restoration site (Appendix S2: Section S3).
The hierarchy-of-predictability hypothesis proposed that
harsher environmental conditions would limit the poten-
tial combinations of species that are able to establish
(Brudvig et al., 2017), but our results suggest this process
might not be impacting the predictability of all response
metrics. Interestingly, the dimension of taxonomic com-
position that showed higher predictability in more arid
environments is the one related to species identities,
which likely responds more than other indicators to vari-
ations in the combinations of species inhabiting a partic-
ular restoration site. Hence, this indicator expresses more
closely the mechanisms behind the original hierarchy-
of-predictability hypothesis. Thus, the smaller number of
species able to establish and survive in arid grasslands
across the United States (Cleland et al., 2013) could
underpin the higher predictability of species identity in
those sites.

Nonetheless, most outcomes did not follow the origi-
nal hypothesis. Aridity is an important factor to consider
in restoration projects, but the lack of variation in pre-
dictability along the aridity gradient for some outcomes
suggests that at least some processes impacting restora-
tion outcomes do not vary along the aridity gradient. For
example, this might be the case of disturbance as a driver
of dominance of exotic species in restored communities.
The dimension of taxonomic composition related to the
dominance of exotic or native species was strongly
impacted by previous disturbance, with sites previously

exposed to invasion being more dominated by exotics
(Figure 6). The mechanisms determining the establish-
ment and dominance of non-native species in North
American grasslands are complex, but disturbed habitats
typically provide an opportunity for non-native species to
become established, irrespective of the environmental
severity or resource availability of the site (Seastedt &
Pyšek, 2011). Because restoration by definition occurs in
previously disturbed habitats, it makes sense that
predicting the dominance of native and exotic species in
restored grassland communities would be equally feasible
across the aridity gradient. However, we focused on how
broad types of disturbance could predict restoration out-
comes, while we did not investigate the effect of different
magnitudes of disturbance, which could still potentially
vary along the aridity gradient.

The predictability of functional composition, on the
other hand, decreased in more severe environments.
More arid sites typically have higher intra-annual and
interannual variability in precipitation (Paruelo &
Lauenroth, 1998), and anomalously wet or dry periods in
comparison to baseline conditions or long-term averages
could potentially make restoration less predictable in
those sites. However, the predictability of functional com-
position was also smaller in more arid sites even after
including variables related to interannual variability in
precipitation in addition to aridity in supplementary
models (Appendix S2: Section S2). Functional composi-
tion was also less predictable with lower seeding-year
rainfall relative to mean annual precipitation as well as
with lower absolute seeding-year rainfall and
monitoring-year rainfall (Appendix S2: Section S2). Over-
all, this suggests that the low predictability of functional
composition occurs in more arid sites and in sites that
received below average rainfall during and immediately
after restoration, indicating that water limitation can
increase the variability of functional composition in
restored communities. Given the lack of restoration data
on temporal resolutions finer than a year, we were not
able to assess the impact of intra-annual variability of
precipitation on our results. Nonetheless, if relatively
larger rainfall events or longer dry spells in arid grass-
lands led to larger variation in restoration outcomes, we
would expect to see a decrease in predictability with
increasing aridity for all restoration outcomes. The fact
that we only encountered this relationship for our func-
tional composition outcome suggests that other mecha-
nisms might be at play.

A possible mechanism for the smaller predictability
of functional composition under higher water limitation
is that there may have been stronger priority effects in
more arid sites. Priority effects occur when species that
arrive early reduce resources available for later arriving
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species or modify the abiotic conditions making the envi-
ronment less harsh (i.e., nutrient enrichment, shading)
(Fukami, 2015; Hess et al., 2019). Hence, it is reasonable
to expect these effects might be stronger under already
harsh environmental conditions (Goodale & Wilsey,
2018; Weidlich et al., 2021). Our results indicate that pre-
vious exposure to biological invasion can increase the
dominance of exotic annuals (i.e., higher values for our
indicator of functional composition) in restored grass-
lands (Figure 6) but that arid sites also have higher or
lower dominance of these species (i.e., higher residuals;
Figure 7) when compared to what would be expected
based on previous disturbance. We thus propose that
stronger effects of early arriving species on subsequent
communities in more sites could be causing this higher
variability. Indeed, North American arid and semi-arid
grasslands are notoriously invaded by annual grasses
(Corbin & D’Antonio, 2004; D’Antonio & Vitousek,
1992), which preempt resources from native seedlings, in
particular native perennials in more arid sites (Davies
et al., 2021; Ray-Mukherjee et al., 2011). Moreover, exotic
grassland species have been shown to have strong prior-
ity effects, by having a larger impact when arriving first
(Schantz et al., 2015; Wilsey et al., 2015) or by benefiting
more from facilitation, in particular exotic annuals
(Lucero et al., 2019). Thus, if priority effects are stronger
in more arid sites, they could cause a higher dominance
of exotics annuals when they arrive first or lower domi-
nance of exotics when by chance a native species arrives
first in arid grasslands. This could in turn explain the
higher variability of outcomes related to exotic versus
natives and annuals versus perennials in more arid sites,
such as our indicator of functional composition
(Figure 4).

Still, our data set includes varied restoration projects
implemented and monitored at different spatial and tem-
poral scales. Although we grouped restoration predictors
into broad categories, specific restoration actions and dis-
turbance history differ between sites, most certainly con-
tributing to some unexplained variability in restoration
outcomes. Other factors known to be important drivers of
restoration, such as soil, topography, and landscape con-
text, were not included in our models due to a lack of
information or consistent measurement across sites. This
heterogeneity in the data prevented us from making
strong inferences linking specific restoration characteris-
tics to specific restoration outcomes. Though interesting,
these more detailed explorations of restoration drivers
were not the focal point of our investigation, which was
instead centered on identifying coarse, broad-scale pat-
terns on sources of variation across multiple projects and
a large spatial extent. In addition, it is important to note
that increasing model complexity does not necessarily

increase model performance, and often simpler models
can generate better generalizations (Clark et al., 2020).
To take advantage of our data set, we focused on how the
early results of grassland restoration were predicted by a
simple set of restoration characteristics. Most restored
communities will, however, continue to develop long
after these initial years, but the potential impacts of these
changes to the predictability of restoration over longer
timescales lies outside the scope of our study.

Implications for restoration science and
practice

Overall, our results indicate that the predictability of cer-
tain restoration outcomes in grassland restoration across
the United States, such as indicators related to species
identities, might follow the hierarchy-of-predictability
hypothesis in the initial years of restoration. Predicting
whether early-restored grassland communities will con-
tain a specific combination of species is difficult,
although this might be more feasible under more severe
environments where fewer combinations of species are
able to survive. Nonetheless, the trends for other out-
comes suggest the mechanisms behind the original hier-
archy of predictability hypothesis are not sufficient to
explain variation in the predictability of grassland resto-
ration across the United States, both between outcomes
and along a gradient of environmental severity. Specifi-
cally, our results indicate that looking into differences
between processes driving dominant and rare species in
restored grassland communities, how those processes
might change with scale, and how the strength of priority
effects vary along environmental gradients might be
important avenues for further research on the predict-
ability of restoration.

Furthermore, we found that restoration outcomes
related to the most dominant species of restored commu-
nities were easier to predict in grassland restoration pro-
jects across the United States. In particular, previous
disturbance appeared as an important predictor for the
dominance of exotic species in restored communities.
This information could serve as a foundation for develop-
ing landscape-level tools that help land managers select
more favorable restoration sites, develop achievable
goals, and estimate effort necessary for restoration plans
that account for simultaneously establishing desired spe-
cies and controlling undesired exotic species. In particu-
lar, richness as a metric had low predictability,
suggesting that the presence and diversity of rare species
were likely less predictable. Dominant and common spe-
cies are typically important to maintain ecosystem func-
tion, but supporting native species diversity, including
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rare and dispersal-limited species, is also an important
goal of many restoration efforts (Baur, 2014; Maina &
Howe, 2000). Thus, our findings also highlight the need
for investing in continuous monitoring and active man-
agement beyond one-time seed addition for restoration
plans that strive to establish rare species (Svejcar et al.,
2023; Young & Hamerlynck, 2023). Overall, our results
add support to the importance of long-term post-
restoration management to achieve multiple goals for
grassland restoration in the United States.
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