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Abstract
This dissertation presents a novel approach to the problem of object tracking and
behavior understanding for non-crowded and crowded scenes within computer vi-
sion. In particular for non-crowded scenes, this dissertation contributes to both
tracking and behavior understanding components of a surveillance system. We pro-
pose an integrated top to down framework and incorporate the qualitative modeling
of human perception with the quantitative approach. In quantitative approach, a
Bayesian Matching Weight is devised to measure the matching weights among ob-
jects by exploiting Color Structure Code approach and Ellipse Histogram as object
representative features. In qualitative approach, we propose the axioms which are
not based on statistical measures of typicality, but upon building an understanding
of the way people percept the behaviors in tracking scenarios. Tracking of the ob-
jects is achieved by employing Kalman filter for localization in which every object
is modeled as a linear system. We have tested the robustness of proposed approach
on three benchmark datasets and have verified qualitatively the performance.

In particular for crowded scenes, we propose a top to down framework to un-
derstand the crowd behaviors and analyze the anomaly by modeling the crowd
dynamics in video sequences. We section the video sequence into spatio-temporal
regions named as flow-block which allows the marginalization of arbitrary flow
cloud data computed by optical flow. We apply the Social Entropy to address the
issues of optical flow noise and empirically determine a quantitative metric to ge-
nerate the refined flow cloud data. We employ mixture of Gaussians for modeling
flow cloud data to generate the flow patterns (flow features) in each flow-block. In
the context of characterization of crowd behaviors, we employ two classification
approaches named as Support Vector Machines and Conditional Random Field.
We have tested the robustness of the proposed approach on two benchmark data-
sets and have verified qualitatively the performance. Moreover, we have achieved
97% classification rate which is dominating when compared to state of the art ap-
proaches.
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Zusammenfassung
Diese Dissertation behandelt einen neuen Lösungsansatz für das Problem der Ver-
haltensanalyse von Szenen mit dicht gedrängten Personengruppen und Szenen mit
wenigen Personen durch Methoden der Computer Vision. Für Szenen mit we-
nigen Personen leistet diese Dissertation einen Beitrag sowohl für das Tracking
als auch für Komponenten zur Verhaltensanalyse von Überwachungssystemen. Es
wird ein integrierter Top-Down-Ansatz vorgeschlagen, der die qualitative Model-
lierung der menschlichen Wahrnehmung als auch den quantitativen Ansatz beinhal-
tet. Im quantitativen Ansatz wurde ein Bayes Matching Gewicht genutzt, um die
Gewichte des Objektmatchings zu berechnen. Als Objektmerkmale kamen hier der
Color Structure Code sowie Ellipsen Farbhistogramme zum Einsatz. Im qualitati-
ven Ansatz werden Axiome verwendet, die nicht auf statistischen Typizitätswerten
beruhen, sondern darauf, wie Menschen das Verhalten in Szenen wahrnehmen. Das
Objekttracking zur Lokalisierung der Personen wird durch Hinzunahme eines Kal-
manfilters erreicht, welcher für jedes Objekt ein lineares System modelliert. Die
Robustheit des vorgeschlagenen Ansatzes wurde auf drei Benchmark-Datensätzen
getestet und qualitativ validiert.

Insbesondere für Szenen mit vielen dicht gedrängten Personen wird ein Top-
Down-Ansatz vorgeschlagen um das Verhalten von grossen Menschenmengen zu
verstehen und um Anomalien zu analysieren, indem die Menschenmenge dyna-
misch modelliert wird. Die Videosequenz wird dazu in räumlich, zeitliche Absch-
nitte unterteilt, die Flussblöcke genannt werden, um das mittels optischem Fluss
bestimmte Flussfeld zu vereinfachen. Das Problem des Rauschens im optischen
Fluss wird durch die Anwendung von sozialer Entropie behandelt. Hierfür wurde
empirisch eine quantitative Metrik bestimmt, mit deren Hilfe verbesserte Flussfel-
der generiert werden. Um Muster innerhalb der Flussblöcke zu bestimmen, werden
Gauss-Mixtur-Modelle verwendet. Diese repräsentieren die Charakteristik der zu
Grunde liegenden Dynamik. Im Rahmen der Untersuchungen zum Verhalten von
gedrängten Menschenmengen wurden zwei Methoden verwendet: Support Vector
Machines und Conditional Random Fields. Die Leistungsfähigkeit beider Klassi-
fikationsschemata wurde anhand zweier Benchmark-Datensätzen quantitativ und
qualitativ verglichen. Darüber wurden in den Ergebnisse Klassifizierungsraten von
97% erreicht, womit die Ergebnisse aus dem state-of-art übertroffen wurden.
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CHAPTER 1

Introduction

The human visual system perceives, interprets and understands the multidimen-
sional structure of the world with apparent ease. Researchers from the field of
psychology, sociology, civil engineering, computer graphics, and computer vision
have spent decades in trying to discover the secrets of how the visual system works.
Particularly, in computer vision, understanding the behavior of objects has gained
an increasing attention because it directly interfaces and simulates the visual infor-
mation. Besides, it deals with a wide range of applications, such as surveillance in
non-crowded scenes, and situation analysis in crowded scenes.

In this dissertation, we are interested in understanding the behavior of objects,
such as where they are, what they are doing, and their collective interactions. Our
goal is to make computers, understand the object behaviors in the visual world as
the human perceives it which is valuable in security and commercial applications
for both non-crowded and crowded scenes. The non-crowded scene includes a
sparse number of people typically in a unruly way as shown in Figure 1.1(a). In
contrast, the crowded scene defines a gathering of large number of people together,
typically in an organized or disorganized way as shown in Figure 1.1(b). We have
developed methods that address some of the critical aspects of understanding the
object behaviors for visual scenes in two aspects. For non-crowded scenes, the be-
havior understanding is to discriminate varied object behaviors (e.g., normal walk,
occluded, leaving the scene, entering the scene, speed, and orientation of the walk.)
over time in the scene through object tracking. In contrast, the behavior analysis
and understanding in crowded scenes are to characterize various crowd behaviors
(e.g., normal walk, running, dispersion, or abnormal behavior) over time.

Although, we are analyzing the behaviors in both non-crowded and crowded
scenes, but we have developed a generic framework for low level processing to
perform object detection and visual feature computation. As the goal of behavior
understanding of non-crowded and crowded scenes are quite different so, we have
tackled these goals separately. Therefore, two frameworks are proposed to achieve
the objectives of behavior understanding in non-crowded and crowded scenes.
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Non-crowded Scene

a)

Crowded Scene

b)

Figure 1.1: shows an example of visual scenes from PETS2006 [1] and
PETS2009 [3] datasets. a) describes the scene containing few people moving with
random aims. b) shows a crowded scene where people are moving in groups with
some defined and undefined aims.

1.1 Motivation

An ideal behavior understanding system should be able to detect all entities, such
as people and meaningful objects in the monitored scene, track them over time,
and infer all the relationships among them. In the non-crowded scenes, these sys-
tems should be capable to easily detect the individual and collective activities like
running, group walk, or excessive loitering. In contrast, for the crowded scenes, it
should be able to characterize and detect large scale events like crowd formation,
panic, or abnormality patterns.

1.1.1 Non-crowded Scenes

Behavior understanding of objects in non-crowded scenes includes the basic com-
ponents, such as tracking of objects, and inference about their individual (e.g.,
normal walk, occlusion, speed and orientation of the walk) and collective beha-
viors (e.g., when two objects occlude, which object occludes the other object, or
when the objects split).

We are living in a surveillance environment where the security cameras are
installed at locations, such as train stations, subways, corridors, shops, and foyers
which are providing continuous video streams. The interested commodities can
utilize these videos and analyze the range of events and activities associated with
object behaviors that can be tracked and detected. For instance, security officials
might be interested in analyzing the behaviors of objects in the underlying scene
and to keep an eye on their activities. An example scenario from PETS2006 [1] is
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Frame:89 Frame: 9Frame: 69

Frame: 95 Frame: 110 Frame:130

Frame: 91

PETS2006

Figure 1.2: shows an example from PETS2006 [1] dataset where behaviors of ob-
jects are highlighted in Frames 9-130. It is noticed that object (i.e., highlighted in
Frame 9) enters in scene and keeps on strolling unlike other fellow pedestrians.

demonstrated in Figure 1.2, where the majority of people are walking across the
corridor of the train station, but a person is strolling suspiciously in the corridor. In
such public places, it is quite common to loose the track of objects due to severe
occlusion arising from the interaction of objects.

Therefore, it is crucial to have a framework that can help in overcoming these
difficulties by employing vision methods that focus on extracting all sources of
information and detecting the object behaviors in non-crowded scenes. The pheno-
menon of these methods should be synthesized with mathematical, inferential, and
statistical models. Moreover, the behavior understanding system for non-crowded
scenes should be able to perform persistent object tracking, infer, and understand
the semantics of their behaviors, such as normal walk, occluded object, overlap-
ping object, new and exit object over time. Further, it should be able to cop many
real-time situations containing issues, such as objects are not traceable due to the
failure of detection algorithm, fragmentation of objects, clutter due to occlusion,
and uncertainty due to noisy visual clues. These issues make object behavior un-
derstanding tasks, such as detection, tracking, and behavior inferencing challenging
which are the fundamental components of surveillance systems.

1.1.2 Crowded Scenes

Behavior understanding in crowded scenes at locations, such as city centers, social,
and religious gathering of people, is an emerging research domain in computer vi-
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Frame: 287 Frame: 315 Frame: 380
Frame:  200

UMN Dataset

Figure 1.3: shows an example from UMN [2] dataset where different beha-
viors (i.e., normal and abnormal) of the crowd are highlighted in Frames 200-380.

sion. Behavior understanding in crowded scenes includes the basic components,
such as motion analysis, and recognition of behaviors (e.g., normal, abnormal, run-
ning, and dispersion) at the individual and collective level, is a problem that arises
in a variety of different contexts and poses significant challenges to safety officials
from the scene monitoring point of view. Infact, security and incident management
for huge gatherings are a daunting task due to the dynamics of crowd formed by
the large number of individuals as shown in Figure 1.3.

Many multi-disciplinary studies have been conducted to reduce the incidents of
any catastrophic event in crowded situations through modeling the human psycho-
logy with the expected bottleneck areas [6]. However, such efforts are proven to
be unsuccessful in numerous events of stampedes in the recent past which did not
handle the management of crowds fully. For instance, in the year 2006 at Jama-
rat Bridge, Makkah, an event of stampede killed at least 346, and injured 289 [7],
where two million people were performing the ritual at the same time. Similar
kinds of stampede events are observed during social gathering around the world
where the panic and lethal crush result in massive deaths and injuries. During last
decades, many public places are constantly monitored by cameras due to security
concerns which makes us believe that computer vision algorithms can contribute
significantly towards the management of crowds and their behaviors, and can work
in consonance with the safety officials. Moreover, crowd behavior analysis me-
thods in computer vision research envision to automatically detect the events of
anomaly that assist and help the safety officials to take quick actions.

The main motivating factor for developing the algorithms, specifically for crow-
ded scenes is the limitations of existing surveillance systems. In general, state of
the art surveillance systems have been developed to estimate the behaviors of ob-
jects and people in the scene, in isolation or in groups. However, when the video
sequences are analyzed for crowded scenes, these systems are not appropriate and
the performance is usually degraded as soon as the density of objects in the scene
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increases [8]. Automated surveillance systems for crowded situations are almost
non-existent when taking a quick glance at the research literature and industrial
applications [6]. In recent years, quite limited research efforts have been spent in
building computer vision systems to model the crowded scenes which provide use-
ful information for safety officials. One obvious factor is the complexity and the
inherent challenges due to the evolving dynamics of crowds which are the main
obstacles in the direction of research efforts.

1.2 Challenges

Successful techniques for handling the non-crowded and crowded scenes must ad-
dress a variety of problems, such as,

Foreground Detection: The extraction of focused entities is a crucial task in ana-
lyzing the scene for higher level vision tasks, such as tracking, action re-
cognition, inferencing, and understanding behaviors in dynamic scenes. The
first challenge is the foreground detection under diversified situations, for
instance, gradual and sudden variations in light, small movements of non-
static objects, abrupt or permanent variation in backgrounds. However, the
criterion of performance is based on how robust an approach is under these
situations.

Visual Features: The expedient representation of objects is an essential and chal-
lenging task in the course of developing robust tracking and behavior unders-
tanding framework for non-crowded scenes. Conflicted situations can result
in the loss of correct estimation of visual parameters. However, if properly
handled, more than one characteristic of the objects can be combined for the
improvement of matching outcomes during tracking and behavior understan-
ding of objects.

Ambiguity and Uncertainty on Object Matching: Ambiguity and uncertainty are
raised from partial knowledge due to insufficient information or hazy contents.
During the conflicted situations, the incomplete visual information about the
occluded object makes it difficult to find the correspondence with previous
objects and results in incorrect matching outcomes. This entails us to ela-
borate the qualitative approaches to handle these situations when the visual
information is incomplete.
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Choice of Granularity: The crowd, particularly human formed crowd exhibits
both self-evolving dynamics and psychological characteristics which are di-
rected to the similar goal, often. In addition, crowded scene contains complex
interactions and frequent occlusions among the objects which make the com-
puted features, such as interest points, localized heads, and specific human
classifiers unreliable. Therefore, it is very challenging to come up with an ap-
propriate level of granularity for modeling the dynamics of a crowd. Should
a pixel-based model, individual-based model or something in between be
used? It is essential to answer these questions for appropriate modeling of
crowds.

Representation of Crowd Behavior: In the crowded scenes, complex interactions
among individuals are indiscernible, and therefore individual’s centric ana-
lysis of behaviors in crowds is implausible. In addition, the behavior of
the crowd (i.e., normal and abnormal) often extends quite randomly, which
makes it even more challenging to develop a general definition of the specific
behavior by gleaning the information from an individual behavior.

1.3 Overview of Our Approach

In this dissertation, we have developed the frameworks to understand the beha-
viors of objects in non-crowded and crowded scenes. Unlike the typical holistic
approach [9] [10] to process a video sequence for surveillance, we start by per-
forming the background modeling to extract the foreground objects in the scene.
The non-holistic level analysis eliminates the need for generating a representation
of the whole scene in an efficient manner. In particular, this is achieved by deve-
loping a segmentation algorithm that exploits the idea of weighted integration of
segmentation approaches to extract objects under complex situations. The segmen-
tation is then used by feature extraction approaches where color of the object is
the key feature for non-crowded scenes, and motion is the fundamental feature for
crowded scenes. There on, this information (i.e., foreground and features) is ex-
ploited by high level algorithms (i.e., the framework) enabling objects tracking and
behavior understanding for non-crowded scenes, and localization of normal and ab-
normal behaviors for crowded scenes. The repertoire of algorithms is proposed by
employing the concepts of human cognitive behaviors with statistical approaches
for vision system with the application to surveillance and object behavior unders-
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tanding. Finally, we have proposed algorithms for crowd behavior understanding
where the observed flow field in spatio-temporal bocks is parameterized with mix-
ture of Gaussians to constitute a sequence of flow patterns which are classified by
Support Vector Machine (SVM) [11] and Conditional Random Field (CRF) [12] to
characterize the crowd behaviors. The performances of the proposed frameworks
are demonstrated on the benchmark datasets along with quantitative and qualitative
analysis.

1.4 Research Contributions

In the following, the contributions introduced in this dissertation are presented.

1.4.1 Tracking and Object Behavior Understanding

The framework developed in the context of tracking and behavior understanding
for non-crowded scenes makes the following contributions:

Integrated Quantitative and Qualitative Approaches: The important contribu-
tion is the integrated quantitative and qualitative approaches which are moti-
vated to treat the tracking problem by axiomatizing, and reasoning the human
cognitive abilities. In quantitative approach, the matching weights are com-
puted using proposed Bayesian Matching Weight (BMW) method. In the
qualitative approach, the tracking axioms are proposed to handle the vague-
ness in the object matching when visual contexts of objects are lost, expli-
citly. Essentially, this feedback refines and handles the conflicted situations
to disambiguate the object behavioral states during tracking. Both, the quan-
titative and qualitative algorithms are bi-directionally linked and complement
their functionalities dramatically.

Bayesian Matching Weight (BMW): The proposed BMW approach employs Baye-
sian inference to measure the posteriori probability of objects and is referred
as matching weights of objects. We have used two different approaches wi-
thin Bayesian inference: 1) likelihood is computed as Kullback-Leibler (KL)
Divergence [13] among the objects detected in consecutive time instances,
and 2) prior information is measured with the Color Structure Code (CSC)
approach [4]. This methodology works efficiently in the situations where the
object proximity and scale changes, considerably.
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Formulating Tracking Axioms in Qualitative Approach: In the qualitative ap-
proach, human perception, learning, and knowledge acquisition abilities for
inferencing entities and its contexts are formulated into tracking axioms.
These axioms influence the object matching ambiguity effectively by assi-
gning the correct object’s identities, and their respective behavioral states.
The proposed tracking axioms are developed by taking into account the hu-
man cognitive abilities which provides an efficient mechanism to handle the
vagueness in quantitative approach.

Kalman Filter-Based Tracking System: Objects are tracked by employing Kal-
man filter in our problem, but it suffers from the violation of linearity condi-
tions. In object tracking, each detected object with unique identity is modeled
as a linear system and Kalman filter is used to estimate the state of the ob-
jects at each time instance. In this manner, the proposed approach maintains
the linearity condition even during the non-linear situations. Thus, we have
extended the applicability of classical Kalman filter for both the linear and
non-linear system without making any modification in its actual content.

1.4.2 Crowd Behavior Understanding

The framework developed in the context of crowd behavior understanding makes
the following contributions:

Flow Computation with Uncertainty Handling using Social Entropy: The idea
is motivated by observing the motion perception phenomenon under the in-
fluence of time dependent optical flow that reveals qualitatively, the domi-
nant dynamics in spatio-temporal space. So, the motion is computed using
optical flow approach [5] at the frame level (i.e., globally) over the detected
foreground. Moreover, at the heart of our approach, we apply Social En-
tropy (SE) [14] to address the issues of optical flow noise. The concept of SE
is originated from the field of social sciences which we have used to empiri-
cally determine a quantitative metric and it allows us to handle optical flow
noise.

Modeling Flow with Mixture of Gaussians: The next contribution is related to
optical flow modeling for computing the flow patterns. The mixture of Gaus-
sians is employed to uncover the organization of the flow cloud data in each
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spatio-temporal region named as the flow-block. The mixture of Gaussians
encodes the flow cloud data into flow patterns in a manner that helps in re-
vealing the representative characteristics of crowd dynamics.

Behavior Classification: The last contribution is in the context of characterization
of crowd behaviors. We have treated crowd behavior understanding and ano-
maly detection as two-class problem. Both Hidden Markov Model (HMM)
and Linear Discriminant Analysis (LDA) need strict requirements of condi-
tional independence among the observed flow patterns. So, we have modeled
the crowd behaviors using SVM [11] and CRF [12] to localize the crowd be-
haviors. Moreover, the performances of both classifiers are compared quan-
titatively and qualitatively.

1.4.3 Indirect Contributions

In this dissertation, frameworks are developed by adopting a top to down approach,
and started by performing a low level analysis1. Moreover, segmentation and
feature extraction are essential components which are later input to behavior un-
derstanding frameworks. So, state of the art approaches are investigated for fo-
reground detection and weighted integration approach is proposed that combines
the approximated median filter approach with adaptive background mixture mo-
del approach at the detection level. In this way, the segmentation is unaffected by
the problems of erroneous detection of static pixels and ghost regions in the image
when foreground object starts moving after a long period of time. Finally, an analy-
sis and comparison of suggested approach are performed with related approaches.

1.5 Outline of the Dissertation

This chapter introduced the behavior understanding problem for non-crowded and
crowded scenes, and described the key motivations and overall goals of this disser-
tation. The outline is structured as:

Chapter 2: In this chapter, state of the art approaches are categorized according
to the adapted research strategy. We have divided this chapter into two main

1By low or local level analysis, we mean the non-holistic approach that begins with segmentation
and feature extraction modules. These two modules are linked to high level analysis, which include
the matching, recognition, classification, and inference modules.



10 Chapter 1. Introduction

levels: 1) literature survey and discussion, and 2) related issues. In the first
level, we have reviewed the related literatures for segmentation, feature se-
lection, behavior understanding and tracking for non-crowded scenes, and
crowd behavior understanding and anomaly detection. Moreover, we are as-
pired to categorize the reviewed literature based on the methodologies used
to develop the solutions, provided a detail description of representative me-
thods in each category, and examined their pros and cons. In the second
level, the related issues are underlined based on the analysis and narrates our
research objectives more precisely.

Chapter 3: In non-holistic scene, object extraction from the background is an es-
sential requirement to perform object tracking and behavior understanding.
In this chapter, we have proposed a segmentation approach for both non-
crowded and crowded scenes.

Chapter 4: In this chapter, the visual features employed for non-crowded and
crowded scenes are described. Based on our analysis in Chapter 2, we have
presented the fundamental concept of feature fusion in Bayesian inference
approach for non-crowded scenes. Moreover, we have presented the idea of
modeling the flow field by mixture of Gaussians to obtain flow pattern as
feature for crowded scenes.

Chapter 5: In this chapter, we introduce algorithms in a unified framework that
are specifically designed for tracking the individuals and to understand their
behaviors in non-crowded scenes. In addition, this chapter discusses the steps
involved in the construction of tracking axioms, and show how they can be
integrated into a typical tracking methodology. Results are demonstrated on
the challenging datasets gathered from state of the art resources along with
the performance evaluation.

Chapter 6: This chapter presents the proposed framework for crowd behavior un-
derstanding, discusses the assumptions, and details about the steps involved
in the mathematical modeling of crowded scenes. The results are presented
on challenging benchmark datasets along with the comparative analysis and
evaluation.

Chapter 7: In this chapter, we have concluded this dissertation with a summary
of contributions and the description of future work.
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CHAPTER 2

State of the Art

Our contributions to behavior understanding in non-crowded and crowded scenes
center on the efficient tracking and behavior understanding of video sequences. The
proposed framework is based on a top to down scheme that begins with foreground
detection and visual feature extraction which are linked to high level behavior ana-
lysis. This dissertation is focused on various aspects that are crucial to perform
object tracking and behavior understanding. We have provided an in-depth study
of different segmentation and visual features computation approaches, tracking and
behavior understanding for non-crowded and crowded scenes. Our objective is to
provide a basic understanding for the following four chapters. Moreover, a detailed
technical presentation of related issues are provided which are the motivation for
the proposed framework.

State of the Art

Segmentation

Visual Feature

Tracking and Behavior 
Understanding in Non-crowded 

Scenes

Behavior Understanding in 
Crowded Scenes

Related Issues

 Background Segmentation

 Feature Selection 

 Tracking and Behavior    

Understanding in Non-

Crowded Scenes

 Behavior Understanding in 

Crowded Scenes

Figure 2.1: presents the organization of reviewed literature.

We have organized this chapter according to the development strategy used
in this dissertation as shown in Figure 2.1. Section 2.1 gives an overview of seg-
mentation approaches using background modeling and group them into appropriate
categories. Section 2.2 presents the related literature on feature extraction for non-
crowded scenes. Section 2.3 presents the related literature on feature extraction
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for crowded scenes. Section 2.4 reviews the behavior understanding through ob-
ject tracking for the non-crowded scenes. Section 2.5 presents the methodologies
suggested for behavior understanding in the crowded scenes. During the literature
survey, our key findings (i.e., related issues) are presented in Section 2.6 that define
our motivations and contributions with practical perspectives. Section 2.7 ends this
chapter with conclusion and discussion.

2.1 Segmentation Using Background Modeling

Much literature is available on segmentation [15] but we keep our focus on seg-
mentation approaches using background modeling and provide an analysis of these
approaches for non-crowded and crowded scenes. In video sequences, it is assu-
med that the background is monotonous and the foreground is exhilarating [16]
as shown in Figure 2.2. So, the segmentation of foreground is obtained by taking
a difference between the image of video sequence and the estimated background
using an opportune thresholding procedure.

a)

b) c)

Sample scene

Background Foreground

Figure 2.2: presents an example of scene components on a sample frame of
PETS2006 [1]. a) shows the actual scene, b) indicates the background containing
static part of the scene, and c) shows the foreground containing moving compo-
nents. It is observable that some of the background components are also included
in the foreground due to moving shadows and misclassified foreground pixels.

The classical background subtraction technique allows the extraction of fore-
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ground region (i.e. object of interests1) from a scene. For example, the simplest
estimate of background could be just an image of the scene without the foreground
region. Fundamentally, pixel’s values in each image of a video is subtracted from
an estimated background model. Mathematically, the foreground is yield as fol-
lows:

|I(k)−Bmodel|>Vth; (2.1)

where I(k) and Bmodel are the image and estimated background model respectively,
and Vth is an empirical threshold.

In many vision tasks, subtracting an estimated background from the image may
result in good segmentation. But, the question is how to estimate or model the
background? And is it enough to keep estimated background static? The static
background subtraction leads to poor results when the underlying scene’s back-
ground is not stable over time [18] due to light variations, camera trembling and
outdoor conditions of the scene. In the literature [19], a variety of methods have
been suggested to address these generic issues in real visual scenes. However, the
criterion of performance is based on how robust an approach is under such situa-
tions. In the following sections, we have focused on the related state of the art
approaches while these methods mainly differ in their background model type and
updation procedures.

2.1.1 Non-recursive Techniques

In non-recursive techniques, a sliding window of any arbitrary size is utilized to
estimate the background based on the temporal variation of each pixel within the
window. Moreover, the size of the window should be significant enough to handle
the slow moving objects in the scene. A series of research work is done in this
direction which employs median filtering for background modeling. For instance,
Cucchiara et al. [20] proposed an approach in which the background is estimated by
taking the median at each pixel from all the frames in certain time window with an
assumption that the pixel remains as background for more than half of the frames
in the window. Figure 2.3(a) shows the result of this approach [20] over the sample
scenes.

1The result of segmentation is the foreground region. In literature [17], the terms blob and
objects have been used frequently. Some researchers argument that a blob or region can contain
multiple objects in it. But, in this dissertation, we assume that the detected foreground region is
object whereas any non-object region is termed as segmentation error.
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b) PETS2006a) PETS2009 

Figure 2.3: presents the segmentation outcome of non-recursive approaches on
PETS2006 [1] and PETS2009 [3] datasets. a) shows segmentation result of median
filtering approach [20] where the learning time delay caused a ghost object which
is not presented in the actual scene. b) shows the segmentation result of the ap-
proach [21] where over segmentation is observed along with additional noise in the
final foreground detection.

With a different motivation, Elgammal et al. [21] proposed a holistic approach
to form a non-parametric estimate of pixel density by utilizing the entire history
of images in a sequence. The pixels are declared as foreground if they fall in the
distribution smaller than some predefined threshold. The median of the absolute
differences between successive frames is used as the width of the kernel in this
distribution. Moreover, the computational complexity of modeling the background
is similar to median filtering whereas the detection of foreground pixel is more
complex as it is computed for each pixel. Figure 2.3(b) shows the result of this
approach [21] over the sample scene.

2.1.2 Recursive Techniques

In recursive techniques, a single background model is updated based on each in-
put frame or a window of frames for the segmentation. The initial research ef-
forts [22] [23] have tried to address the background modeling and updation by
utilizing recursive methods. For instance, McFarlane and Schofeld [22], proposed
a simple recursive filter to estimate the median for modeling background and de-
tection. Later, Remagnino et al. [23] modeled the background to segment urban
traffic monitoring scenes in which the running estimate of the median is incremen-
ted by one, if the input pixel is larger than the estimate, and decreased by one, if
smaller. The resulting estimate is a converged value (i.e., median) for which half
of the input pixels are larger than this value, and half of them are smaller than this
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b) PETS2006 a) PETS2009 

Figure 2.4: presents the results of recursive techniques on PETS2006 [1] and
PETS2009 [3] datasets. a) shows the segmentation result of approximated me-
dian filtering approach [22] where an object is fragmented into parts due to slow
pace. b) shows the segmentation results of the approach [26] where under segmen-
tation (i.e., empty regions of holes in objects) is observed due to the constant region
in the object.

value. Figure 2.4(a) shows the implementation of approach [23] over the sample
scene. In a slightly different flavor, various authors used Kalman filter to model
and automatically update the background for dynamic streams. These approaches
mainly vary in their state space model, for instance, Karmann and von Brandt [24]
used intensity and its temporal derivative to model the background. In contrast,
Koller et al. [25] employed adaptive intensity and its spatial derivatives to model
background according to the known parameters of weather, such as day light and
darkness.

Moreover, there is another interesting and relevant body of work employing
multi-modal statistical techniques to model the background. These approaches
describe the consistent behavior of per-pixel background, and the foreground is
marked when the pixel value does not belong to any background distribution. A
classical work named as Running Gaussian Average (RGA)is presented by Wren
et al. [27] which maintains a multi-class statistical model for the tracked objects
where background model is represented by a single Gaussian. Since then, the idea
of employing Gaussian model [28] for background has gained tremendous attention
of researchers. For instance, Friedman and Russell [29] modeled the pixel intensity
as a weighted mixture of three Gaussian distributions (i.e., each for road, shadow,
and vehicle) for traffic surveillance. Similarly, Stauffer and Grimson [26] created
a multi-modal background using mixture of Gaussians. Each pixel is compared
with every Gaussian in the background model until a matched Gaussian is found.
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Mean and variance of the matched Gaussian are updated otherwise a new Gaus-
sian is created with initial mean (i.e., current pixel color) and initial variance (i.e.,
empirically selected). The pixels are classified as foreground, if they do not match
with the distribution in the background model. Figure 2.4(b) shows the imple-
mentation results of this approach [26] over the sample scene. A wide range of
research [30] [31] [32] has been done to modify and improve the classical concept
of mixture of Gaussians-based background modeling. The performance of these
approaches is superior than traditional difference algorithms, thus making the pro-
blem of threshold selection less critical. However, good empirical parameters are
pertinent to initialize these adaptive mixture models for the optimized learning and
cohesive foreground segmentation. To address these limitations, our proposed ap-
proach combines two approaches to perform segmentation in Section 3.1.

Discussion

Most of the high level tasks in vision used fixed camera [33] where the extrac-
tion of foreground is an essential task. To start with, non-recursive methodolo-
gies [20] [21] have been used and explored for segmentation. In practice, these
approaches require continuous object motion in successive frames. However, when
the objects remain static, incomplete object regions are observed in many instances,
such as objects may be fragmented into several regions, or there can be ghost re-
gions in the image. As a result, the detected object may include the background in
it, significantly, and there will be no guarantee that the detected region is the fore-
ground as shown in Figure 2.3. In contrast, recursive approaches are widely used to
model the background and to extract the foreground. In earlier attempts [23] [27],
single Gaussian is used to track the evolution of background. However, multiple
colors may be observed at a certain location due to repetitive object motion, sha-
dows or reflectance. Therefore, a single Gaussian is not sufficient to model the
background [34] for outdoor scenes. To address these issues, mixture of Gaussians
is used in [35] [36] [32] and are further extended by [30] [37]. Indeed, mixture of
Gaussians results in effective segmentation of foreground for the dynamic scenes
which account for both multi-modality and clutter situations. Moreover, the recent
approaches [30] [37] are able to model the background under changing illumi-
nation, noise, and periodic motion of the background regions. However, these ap-
proaches are sensitive to the corresponding known parameters to initiate and update
the background model.
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2.2 Visual Features for Non-Crowded Scenes

In tracking and behavior understanding, unique features play a significant role.
Because, the uniqueness of a feature under diverse situation ensures that the object
can be distinguished over time. From last two decades, color, shapes, motion,
and texture are the commonly used features. Among these features, color can be
considered as a simple and effective representation of an object. Moreover, we
have described some practical approaches for detecting and modeling these features
to ensure efficient feature correspondences over time. In the following, we have
discussed in detail the relevant features along with the fundamental concepts.

2.2.1 Color Modeling

The color of an object forms a continuous visible spectrum that is influenced by the
physics of the object, its environment, and the characteristics of the perceiving eye
and brain. In the digital world, pure spectral colors are mapped into a predefined
color spectrum, namely color space which is divided into distinct color values, for
instance, RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), and YIQ (Y-
axis, In-phase, Quadrature).

We have used HSV color space, inspired by the way human visual system per-
ceives the object. In HSV, Hue is a color attribute which represents the dominant
color. The saturation is an expression of the relative purity or the degree to which
a pure color is diluted by white light. The brightness is a measure of luminous
intensity and embodies the achromatic notion of intensity. In the HSV color space,
the brightness component is separated from color-carrying information (i.e., Hue
and Saturation). In Section 4.1.1, we have demonstrated a comparative analysis
among color spaces (i.e., gray scale, RGB, and HSV) for similarity measure and it
is found that HSV color space is better in performance. In the following, we have
explained the color modeling approaches along with their categorization.

Color modeling gives an effective representation of an object’s color characte-
ristics and is preferred over an individual feature2. The common approaches for
color modeling are:

• Histogram: This approach is used to nonlinearly map the probability distri-
bution of the color spectrum of an image or a pattern. In general, the effect
of the histogram is homogeneous as all the pixels are subjected to the same

2It is not feasible to take into account the color values of each pixel of any object.
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functional mapping resulting in a compact representation of image characte-
ristics without requiring knowledge about them. Histogram is widely used in
many applications, for instance, in object tracking [33].

• Parametric Modeling: In this modeling, a specific functional form is assu-
med to model the probability density. A model is defined by several unk-
nown parameters, and the given data is used to compute these unknown pa-
rameters. However, it is in general difficult to find a suitable model and its
parameters if the distribution of data is not given. One of the most commonly
used parametric modeling approaches is mixture of Gaussians, whose para-
meters (i.e., mean and standard deviation) are optimized with Expectation
Maximization (EM) approach [38].

• Non-parametric Modeling: Kernel density estimation is a non-parametric
technique that does not assume any specific model. Kernel density estimation
is used in tracking, for example, Comaniciu et al. [39] proposed an approach
in which kernel density is computed by summing the probabilities computed
from individually modeled observations.

• Color Structure Code (CSC) Approach: In this approach, the object is seg-
mented into regions based on its color distributions [4] where homogeneity
or gradients have to be defined on vector valued functions for color images.
CSC approach has been used as the object descriptor in tracking problems [17].

The color based modeling approaches described so far result in a model which is
considered as a single entity inspite of taking many individual components (e.g.,
the pixels color) into account. Among different approaches, in the context of tra-
cking and behavior understanding of objects in the non-crowded scene, we have
employed the color histogram [40] and CSC [4] approach due to their flexibility
and robustness. In Section 4.1.1, we have described the formulation of color histo-
gram and in Section 4.1.2, we have explained CSC approach. Both of these features
are exploited in our tracking and behavior understanding algorithms.

2.2.2 Geometrical Features

Finding the geometrical features, such as contour, area, and boundaries of the de-
tected objects in images are apparently simple task but noise and poor segmentation
degrades the efficiency which results in errors. Inspite of the apparent diversity of
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a) Input 

c) Contour

b) Ellipse

Figure 2.5: shows the visual mapping of computed features (i.e., ellipse and
contour) on a sample frame of PETS2006 [1]. a) is the input image, b) demons-
trates the computed ellipse over the detected object given the contour of object as
input data. We have also labeled the parameters of the ellipse on object and c)
presents the results of computed contour around the detected object.

geometric features, it turns out that some basic features are used to support3 high
level tasks, such as tracking, behavior understanding, and crowd analysis. Among
many geometrical features, we have explained the following features used in this
research4.

• Ellipse: Ellipse is a smooth closed curve resulting from the intersection of a
circular cone by a plane which is symmetric about its horizontal and vertical
axes [41]. The distance between any pairs of points whose midpoint lies at
the center of the ellipse, is the maximum along the major axis and minimum
along the minor axis. Mathematically, on the ellipse, two special points (i.e.,
F1 and F2) are defined on the major axis called foci. These points are equi-
distant from the ellipse center (i.e., c) and separated by a distance. Given a
point P on the ellipse called a focus, the sum of the distance to these two foci
is constant and equal to major diameter (d1+d2 = 2a), where a is major axis
whose origin is at one of the foci and b is semi minor axis. Figure 2.5(b)
shows computed ellipse around the detected objects.

3The geometric features, such as bounding box can be employed to define the search space
criterion.

4The features are computed on the segmented outcome obtained from weighted integration seg-
mentation approach in Section 3.1
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a) Input 

b) Area

c) Bounding box 

Figure 2.6: shows the visual mapping of computed features (i.e., area and boun-
ding box) on sample frame of PETS2006 [1] sequence. a) is the input image, b)
demonstrates the computed area (i.e., transparent yellow color) of the correspon-
ding detected objects, and c) presents the results of computed bounding region
around the detected object. It is notable that due to strong shadows the object’s
area and bounding region includes some region of background as well (in the right
most zoomed object).

• Contour: Contour of a binarized segmented object represents a close boun-
dary measured using the chain code technique [41]. Generally, chain codes
are represented based on 4-or 8-connectivity of the segments (i.e., neigh-
bors) where the direction is coded by using a numbering scheme. Moreover,
it follows the boundary of object in clockwise manner and assigns a direction
to the segment that connects every pair of pixels resulting in the contour of
object. Figure 2.5(c) shows computed contour around detected objects.

• Area and Bounding Region: Area of the object is calculated from the ob-
jects pixels as shown in Figure 2.6(b). It is invariant of translation and ro-
tation [41]. The bounding box of an image represents the fully enclosed
rectangle which includes the detected regions in the image in Figure 2.6(c).

2.3 Features for Crowded Scenes

Many authors have proposed the methods for detecting the crowd behaviors by
applying state of the art feature set [42]. For example, detection of interest points,
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a) b) c) d)

Figure 2.7: shows an example that highlights some of the challenges in the crowded
scenes on a sample frame of PETS2009 [3] dataset. a) and c) indicate the complex
occlusion. b) and d) show the interactions among individuals in the group.

detection of the heads or legs, and color histogram. However, all of these features
tend to be impractical under crowded scenes due to the complex interactions of
objects as shown in Figure 2.7.

Therefore, researchers are more interested to compute and model the optical
flow at various levels (i.e., local, global and spatio temporal cubiods) to overcome
these shortcomings. However, computing an efficient and fast optical flow is cru-
cial. Besides, we contend that the behavior description at the individual level may
not be necessary, and thus, modeling the crowd at the spatio-temporal level is more
practical while the holistic approaches are computationally expensive. We have
computed the optical flow on the detected foreground and modeled flow cloud data
which acts as the fundamental feature for crowd behavior understanding (i.e., nor-
mal and abnormal behaviors) as described in Section 6.2.

2.3.1 Motion Modeling

Motion of objects in a video sequence is the source of temporal variations in a
scene. Typically, we are interested in determining the relative motion between ca-
mera and objects in the scene which are computed efficiently if the corresponding
parameters, such as rotation and translation are known. In contrast, the extraction
of motion comes down by projecting the actual motion onto 2D image plane. This
projective representation of actual motion describes the apparent motion or com-
monly referred as optical flow. Comprehensively, optical flow is specified by ob-
serving the pixel motion between two adjacent images or simply how much change
is observed in image intensities.

There are numerous computational models that have been developed in the
literature to estimate the motion from a video sequence, such as local and glo-
bal differential methods [43] [44], feature-based techniques [45], layers-based ap-
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proaches [46], and phase-based approaches [47]. Differential methods provide the
benefit of transparent modeling and rotation invariance as well as better qualitative
performance that makes the superiority of differential methods succinct [48].

Particularly in differential methods, accurate and consistent estimation of mo-
tion is challenging due to many factors, such as motion discontinuities, aperture
problems, and large illumination variations. These factors lead to direct violation
of assumptions which are taken into account by the prototypical approaches, such
as Horn and Schunck [43] and Lucas and Kanade [44] techniques. Therefore, a
variety of models have been proposed for effective flow computation, including
robust functions [49], integrating gradient information [50], estimating a symme-
tric flow field [51], combining local and global flow [52], and reasoning about
the pixels under the unusual situation, such as occlusion mode [53]. On the avai-
lable sequence (i.e., Yosemite sequence), the successful computational measures
are presented with an average angular error of 2◦ [54]. However, the situations and
conditions are not discussed where these algorithms fail. In the following, we have
explained briefly the commonly used flow modeling approach:

• Flow Histogram: The idea behind flow histogram is motivated by the typi-
cal color histogram. After performing the flow field computation, both flow
magnitude and direction of motion are quantized using 2D optical flow his-
tograms named as Histogram of Flow (HOF) descriptors. Many researchers
have used the flow histogram for the non-crowded and crowded scenes to
determine the object specific activities, such as walk, run, fall, and unusual
actions. For instance, HOF is used to match the motion of a player in a soccer
match [55] whereas [56] classifies the histogram of oriented flow for human
action recognition.

• Mixture of Gaussians: Parametric modeling, particularly mixture model is
one of the commonly used approaches where many methods are proposed to
optimize the performance of the modeling process. For instance, the para-
meters of mixtures are initialized by applying the clustering techniques such
as K-means whereas the optimization is performed the EM algorithm. The
main objective of representing the flow field in mixture of Gaussians is to
provide a vivid representation of huge and replicating flow field. Alternative
to the mixture of Gaussians, Principal Component Analysis (PCA) is also
used for the similar purpose. However, the computation cost of estimating
mixture model parameters is usually more expensive. In addition, the number
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of components used to represent the data is hard to estimate. Recently, in this
work, Saleemi et al. [57] have exploited mixture of Gaussians to represent the
dense flow field for unusual behavior recognition in the non-crowded scenes.

• Computational Flow Model: In sociology and behavioral sciences, mode-
ling of observed dynamics particularly in crowds is quite researched and an
active topic. Over years, a number of models have been developed for va-
rious situations with applicability, such as crowd management in Makkah
or more recently marriage ceremony of Prince William. For modeling the
crowd, discrete simulation of individual objects is an established methodo-
logy. A popular method of modeling flow field is Cellular Automata (CA)
where the local movements of the objects are modeled with a matrix of pre-
ferences, for instance, the probabilities for related walking directions, speed,
and goal-oriented directions. Another famous model is the Social Force Mo-
del (SFM) in which the individual is under the effect of long-ranged forces,
and its dynamics follow the equation of motion, similar to Newtonian mecha-
nics. Various researchers have exploited this concept, such as Ali et al. [58]
proposed a method for crowd segmentation, and Mehran et al. [59] detected
the anomaly in crowds.

The flow modeling approaches described so far result in a model which is consi-
dered as a concrete representation of flow field. Among different approaches, in
the context of crowd behavior understanding, we have employed the concept of
mixture of Gaussians to marginalize the flow cloud data in Section 4.2.

2.4 Tracking and Behavior Understanding in Non-
Crowded Scenes

Behavior understanding in the non-crowded visual scenes is one of the important
research domains of computer vision where tracking is a primary element. Briefly
speaking, tracking of object aims to generate an inference about object’s motion
in corresponding video sequences. However, practically, it is a difficult problem
due to the interferences during object movement in the scene such as occlusion
which is observed among objects very frequently as shown in Figure 2.8. There
are various types of occlusions such as: 1) object-to-object occlusion where ob-
jects intercept their appearances during motion, and 2) object-to-scene occlusion
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a) b)

Figure 2.8: shows various examples of direct interference (i.e., pointed by arrows)
on the sample frames of PETS2006 [1] and PETS2009 [3] datasets. a) indicates the
motion variation of an object and occlusion among the objects at the same time; b)
indicates the situation where the orientation of the object is changed significantly.

where object appearance is occluded by the corresponding obstacles in the scene
such as trees, walls, stands and other stationary objects. To address the later type
of occlusion, modeling the scene geography is an essential requirement [60]. Ho-
wever, in this research, we have focused on the object-to-object occlusion problem
during tracking; therefore, the topic of scene modeling is out of the scope.

The tracking algorithms usually follow a modular scheme which either perform
Detection prior to Tracking (DpT) or Tracking prior to Detection (TpD) in a flexible
architecture. In the DpT approach, the objects of interest are first detected at every
instance of time and tracking of the detected objects is performed, only. In contrast,
in TpD approach, a hypothesis is built about the object location in the generated
state space which is then evaluated by a computed set of features in an image.
Moreover, in recent years, object identity management is also gaining attention by
incorporating the concepts of data association through similarity measurements.
The objective is to assign unique identities to each object and to manage these
identities over time. Later, elementary trackers (i.e., Kalman filter or Mean shift
filter) are used to track these objects.

In the following, we have categorized the related tracking approaches in two
main directions. First, recent developments in tracking algorithms based on DpT
and identity management approaches are briefed along with their limitations in
terms of generality, and complexity. Second, the approaches using logical models
in computer vision, particularly for object tracking are examined.
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2.4.1 Tracking and Identity Management Approaches

In this section, we present the fundamentals and review the DpT and object iden-
tity management approaches. In DpT approach, two processes are involved for
multi-object tracking: 1) data association, and 2) object state estimation. The data
association process addresses the correspondence problem by determining the in-
formative measurement and deals with data uncertainty in the presence of noise
and motion perturbation. The estimation of object’s state deals with the measure-
ment inaccuracy. Usually, the measurements consist of the object proximal attri-
butes (i.e., location, speed, acceleration, etc.) in the image which is computed in
pre-processing (i.e., detection and feature computation) levels. For instance, what
is the true state of the object at a specific time instance based on the assumption
that the object’s measurement is correct?

Data association is probably one of the complicated problems in conflicted si-
tuations, such as occlusions, splits, enter or exit objects, and mis-detections. In
such situations, the difficulties are raised because it is not certain that the mea-
surement values convey information about the state of the object being tracked.
In multi-object tracking scenario when elementary trackers, such as Kalman filter,
Mean shift filter, or Particle filters are employed, it is essential to deterministically
associate the most likely measurements for a particular object to that object’s state.
So, the data association problem needs to be solved before applying these filters.
An incorrectly associated measurement can cause the filter to fail in the conver-
gence. To address these issues, there exist several statistical data association tech-
niques to tackle this problem. For instance, a detail review of these techniques is
provided in Bar-Shalom and Fortmann [9]. Moreover, in the earlier attempts, Joint
Probability Data Association (JPDA) and Multiple Hypothesis Tracking (MHT)
are two widely used techniques for data association.

JPDA is a famous approach for multi-object tracking and is based on the Baye-
sian estimate to find the correspondence between the detected features where many
targets are to be tracked. JPDA functions on some assumptions among many, such
as: 1) the number of established targets are known in the clutter, 2) measurements
from one target can fall in the validation region of a neighboring target where this
situation can happen over several sampling times, and acts as a persistent interfe-
rence, and 3) the states are assumed to be Gaussian with means and covariances
according to the approximated system. These assumptions limits the applicability
of JPDA approach in various real-scenarios.
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In MHT algorithm, several correspondences for every object at any time ins-
tance are maintained [10]. These correspondences are established using only two
consecutive frames which result in the finite chances of incorrect correspondences.
For accurate tracking, the correspondence decision is deferred until several frames
to examine the final correspondence [61]. As a result, the final track of the object
is the most likely set of correspondences over the time period of its observation.
Moreover, the algorithm has the ability to create new tracks for objects entering
the field of view and terminate the tracks when objects exit the scene. It can also
handle occlusions (i.e., continuation of a track) even if measurements are missing.

A wide range of literature has been published to handle the fundamental limi-
tations of data association approaches [62]. For instance, Cox and Hingorani [63]
have presented an efficient variant of MHT approach in which the k-best hypo-
theses are determined in polynomial time using Murty’s approach. However, the
suggested approach has limited the total number of hypotheses using pruning. With
the similar motivation, Isard and MacCormick [64] proposed Bayesian multiple
block tracking system. In their approach, a multi-blob likelihood function assigns
the direct comparable likelihoods to hypotheses containing different number of ob-
jects. This likelihood function is adapted from the theory of Bayesian correlation.
After that, Bayesian filter is used for tracking multiple objects when the number of
objects is unknown and varies over time. This approach has some fundamental li-
mitations, such as too many parameters assignment which play a crucial role in per-
formance. Similarly, Smith et al. [65] proposed a Bayesian framework for the fully
automatic tracking of variable number of interacting targets. They have employed
a joint multi-object state-space formulation and a trans-dimensional Markov Chain
Monte Carlo particle filter is used to recursively estimate the multi-object configu-
ration and efficiently search the state-space. The demonstrated results are impres-
sive, but the approach assumes that the motion is associated to one or more persons.
However, the actual blobs may contain multiple categories of objects, such as sha-
dows, reflection regions, and blobs due to camera motion parallax. More recently,
Ryoo and Aggarwal [66] presented a paradigm for tracking objects under severe
occlusion named as observe-and-explain. This approach has enumerated multiple
possibilities of tracking by generating several likely explanations after concatena-
ting a sufficient amount of observations. Further, the system chooses the hypothesis
path with the highest probability which enables the tracking of even fully occluded
objects with the cost of higher computational effort.

A different way to address the object tracking issues is through object identity
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recognition. In the literature, not much work has been reported for object identity
recognition in which a specific individual detected at certain time instance is mat-
ched with the previous observations. A framework is presented by Guo et al. [67]
for vehicle matching in aerial views but their main focus was blob extraction and
alignment rather than recognition. Gheissari et al. [68] presented a two layer me-
thod for human identification. In the first layer, a graph based spatio-temporal
segmentation is applied to group the human pixels that belong to the similar cloth.
The second layer used the decomposable triangulated graphs to segment and link
different parts of the human body. Even though, human recognition is not the direct
focus of the literature, but some seminal advances in human detection have been re-
ported that can be indirectly associated. For instance, Dalal and Triggs [69] trained
a SVM classifier using features of Histograms of Oriented Gradients (HOG) for hu-
man detection and localization. However, these methods are highly dependent on
image details for extracting the features, such as faces or body parts, and therefore,
can only be applied to high-quality images. Both, tracking and object identity re-
cognition are closely related problems, since solving the tracking implicitly accom-
plishes the task of identity recognition and solving identification over consecutive
frames is actually one of the fundamental tasks of object tracking.

Discussion

In the above, we have confined the underlying analysis to DpT and identity mana-
gement approaches. In typical DpT approaches, the major limitations are in data
association and estimation approaches under the cluttered, occlusion, or when the
numbers of objects are higher. For instance, the major limitation of JPDA algo-
rithm is its inability to handle new objects entering the field of view or already
tracked objects exiting the view. Since JPDA, the algorithm performs the data as-
sociation of a fixed number of objects tracked over two frames, serious errors can
arise if there is a change in the number of objects. On the other hand, MHT is an
iterative algorithm and makes the association in a deterministic sense which ex-
haustively enumerates all possible associations. Consequently, the MHT algorithm
is computationally expensive both in memory and time.

Another limitation in data association techniques is that the similarity measu-
rement criterion and estimation of object locations are solely based on the object
features, which are usually referred as low-level features. These approaches func-
tion optimally in a flexible environment with a limited number of objects that are
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being tracked, and search for these tracked objects within a spatial region. Mo-
reover, such techniques have proven their efficiency in continuous scenes where
disappearances and clutters are minor. However, under severe occlusions and in
complex environments, these data association algorithms do not perform well and
suffer from failure [70]. As, the problem shifts from solving the correspondences in
a smooth continuous video to individual detected objects with long temporal gaps,
all the assumptions of the continuous motion models become weak. So, the solu-
tion becomes the object identity recognition and management along with tracking
approaches.

With different perspective, considering the object identity recognition problem
in object tracking, we have to revise the theory of object identity recognition and
infuse it with tracking mechanism implicitly. For instances, in tracking, objects are
usually considered to have small displacements between observations which is not
mandatory in object identity recognition. In contrast, object identity recognition
methods are highly dependent on image details to extract features, such as faces or
body parts, and therefore, it can only be applied to high quality ground images.

In the view of above mentioned analysis to handle data association (i.e., mat-
ching5) ambiguities during clutters and occlusion, we have introduced the concepts
of human natural capabilities into our tracking framework. The idea is motivated
by the fact that in real-world, humans with unbeatable natural capabilities utilize
a number of so-called high level concepts while recognizing the objects around
them. Logical modeling of human cognitive abilities is the discipline that focuses
on developing methodologies and techniques to embed high level reasoning in as-
sociation with the typical vision algorithm [9]. However, so far, such techniques
are feasible and applicable only on context-based domains.

2.4.2 Tracking with Cognitive Modeling

Human beings always try to understand their environment, infer the actions and
behaviors accordingly. Suppose viewing a street view from one’s window, you are
curious about which object enters in the scene and how a person disappears imme-
diately while walking. This ability of object’s movement understanding seems so
natural and simple for ordinary people, but it actually requires complicated algo-

5The aim of data association is to find the matching among the observations through similarity
measure where this term is widely used in the context of tracking. But, infact it is a methodology that
can employ matching algorithms by exploiting the features of interest to find correspondences [71].
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rithms in the field of computer vision and Artificial Intelligence (AI) to perform
these tasks. Consequently, motivated by human perception, learning, and know-
ledge inferencing abilities, various researchers have modeled these human cogni-
tive abilities and incorporate them into the vision research. The goal is to enable
vision systems to have similar capabilities as humans for recognizing people’s ac-
tivities and behaviors. However, existing literature incorporating both vision and
cognition model to address the problem of tracking is very limited.

Among many, computer vision was identified as the earlier goals of AI. The
researchers make use of logical reasoning as a broad purpose mechanism for mo-
deling intelligent behaviors to address the vision problem. In [72], a collection of
papers is available for computer vision research involving the development of se-
mantic representations and inference mechanisms. Specific to tracking, Haritaoglu
et al. [73] proposed a real time surveillance framework for detecting, tracking, and
monitoring people activities in an outdoor environment. Their approach takes the
images from an infrared camera as input so, the color information is not taken into
account unlike many systems for tracking people [33]. Alternatively, a combina-
tion of shape analysis is employed to track the people along with their body parts
(head, hands, feet, and torso) and model of people appearance are created to ensure
the tracking during interaction or occlusions.

Sherrah and Gong [74] proposed a framework for tracking the objects and
handle the plausible interpretation of incomplete data due to the body parts interac-
tions (i.e., hand and face) by enforcing explicit domain knowledge and high level
semantics with Bayesian network. Thus, the efficiency of the suggested approach
is claimed by activating the inferencing when occlusion is observed. However, the
tracker assumes the whole high-dimensional state space to infer object positions
which can be computationally inexpensive when detecting face and hands of an
object. In addition, when tracking objects in the subways, the suggested approach
can be inapplicable and expensive to compute due to complex manipulation.

More recently, Bennett et al. [75] proposed a technique by applying the prin-
ciples of logical reasoning explicitly to rectify the imperfect output of an object
tracker (i.e., far more accurate than the raw output from the tracker). Their sug-
gested approach consists of three elements: object tracker, object classifier, and
reasoning engine to handle ambiguities. Moreover, the ambiguity is defined when
many objects merge due to occlusion and introduce the multiple hypothesis. So,
their reasoning engine handles these ambiguities in a unified framework to produce
a hypothesis by considering a globally consistent model that is maximally suppor-
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ted by a voting function based on the output of a statistical classifier. However,
in their work, uncertainties due to occlusion are disambiguated after classifica-
tion through long-term reasoning unlike our proposed work which incorporates the
logical modeling in parallel and more focused on exploiting the logics with the
matching scores computed by employing the statistical model [76].

Discussion

The research in computer vision directly addresses the real-time issues that turned
out to be much harder than the anticipated ones by the research community. It is ob-
served that there has been a significant divergence between the fields of knowledge
representation and computer vision. Unlike knowledge representation, computer
vision research has moved away to the logical concept and employed statistical
techniques for most of its algorithms. But, statistical methods alone have suffe-
red with many apparent limitations as discussed earlier. Particularly, in handling
the prediction of joint probabilities without considering the domain specific logical
constraints can manifest errors and require intensive computation.

However, employing the logical framework under such situations (i.e., occlu-
sion and cluttered) are relatively easy to state and reason with. Logical reasoning
can provide a powerful mechanism for determining consistent possibilities. Mo-
reover, the conceptual structure of possible situations is formulated and semantic
knowledge is used to infer and guide for plausible interpretations (i.e., in data as-
sociation) under occlusion situations. Our analysis at this stage is more biased
towards logical approaches by considering efficacious performance even if the dis-
crete data is incomplete and ambiguous. Thus, combining these two approaches
complement each other which is the motivation behind the proposed research.

2.5 Behavior Understanding in Crowded Scenes

Despite of significant efforts done by vision researchers, the surveillance assump-
tions about the density of objects often violates in real-world scenes, for instance,
Figure 2.9(a-b), shows example of crowded scenes where objects are moving in
groups with some specific goal whereas Figure 2.9(c) indicates that many objects
are gathered in unruly manner. Managing crowds and understanding their beha-
viors in public places are studied by many commodities, such as sociologists, psy-
chologists, civil engineers, computer graphics and computer vision researchers for
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a) b) c)

Figure 2.9: shows example of the crowded scenes containing objects in different
contexts and situations.

many applications including visual surveillance [6]. However, maintaining secu-
rity measures in these places is a daunting challenge to avoid catastrophic situa-
tions [77]. In the following section, we have investigated the approaches suggested
for crowd behavior understanding and anomaly detection. We have categorized the
research of behavior understanding in crowded scenes based on the methodology
that each work has used to solve this task. These methodologies are described as
follows:

2.5.1 Behavior Analysis with Individual Detection

These approaches are aimed to detect individual persons in the crowds and modeled
their activities and behaviors. For instance, a model-based segmentation scheme is
suggested to localize the individuals in crowded scenes by Zhao et al. [78] in a
Bayesian framework. In their approach, a person is defined with their associated
parameters maximizing the posterior probability which reflects the matching of 3D
human shape models with the foreground blobs while preferring small number of
objects. Their approach performs well on low dense crowds, but it is not scalable
to high dense crowds where high inter-occlusion prevents the visibility of the com-
plete human body quite often.

In previous years, it is observed that a number of researchers have experimen-
ted the behavior analysis of individuals in crowded scenes by detecting the interest
points. For instance, a global annealing optimization framework is proposed by
Tu et al. [79] using the clustering of interest points based on their (i.e., among)
geometric associations to segment the individuals in crowds. In their approach, the
crowd scene is taken from the top view. Therefore, such camera setup limits the
applicability of the approach. In similar context, Brostow et al. [80] proposed an
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unsupervised Bayesian clustering framework for grouping the trajectories of mo-
ving entities based on their space-proximity. In their approach, the image features
are tracked and grouped probabilistically into clusters where space-proximity and
coherence of the trajectory in image space is used as the probabilistic criteria for
clustering. The results are reported on a low-density scene. Recently, Stalder et
al. [81] proposed an adaptive grid-based classifier for object detection in crowds
based on the local context. In their approach, different classifiers are trained in-
corporating various contexts over time, such as scene specific samples from the
background, and object class. Moreover, these samples are used to update the spe-
cific object detectors and the results are shown on crowds having a normal walk.

Discussion

The main drawback of these methods is that they tend to be impractical in dense
crowded scenes which contain objects with varying scales or interacting in the
complex manner as shown in Figure 2.7. Because, most of these approaches are
essentially designed to perform the detection of individuals in low dense crowded
scenes. Moreover, the computed features, such as interest points, localized heads,
and specific human classifiers become unreliable. To overcome this shortcoming,
we argue that detection of individuals is not crucial; instead modeling the crowd at
a global level is more practical in the dense crowd with complex interactions. For
this purpose, we have proposed a framework which is capable of localizing crowd
behaviors in a scene at the global and specific level.

2.5.2 Behavior Analysis with Trajectory Modeling

Over years, tracking algorithms are focused to perform surveillance on non-crowded
scenes. In contrast, the particular challenges of surveillance in the crowded scene
are not fully addressed. Some interesting works are reported that try to track the
crowd of ants [82], flock of bats [83], and players in hockey ground [84]. Howe-
ver, most of these algorithms only use features (e.g., corners, contours, bounding
regions, etc.) for tracking purposes.

Surprisingly, little work has been reported in exploiting high level cues for hu-
man detection, tracking, and behavior analysis in crowded situations. For instance,
Antonini et al. [85] proposed the problem of detecting and tracking the crowds
using discrete choice models for pedestrian behavioral patterns. In their approach,
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prior knowledge of pedestrian dynamics is exploited to predict human motion pat-
terns and integrate it with the visual tracker for robust performance. Later, Ali and
Shah [58] suggested a methodology for tracking subjects by employing the strong
assumptions on subject behaviors in high dense crowded scenes captured at dis-
tance. In their approach, a floor field is formed that captures the expected motion
of the video subjects related to the physical nature of the scene. The results are
reported on structured crowded scenes such as marathon. In contrast, Rodriguez et
al. [86] proposed a framework for tracking unstructured crowded scenes in which
various behaviors of crowds are mapped at different locations of the scene by em-
ploying Correlated Topic Model (CTM). In their approach, low level quantized
motion features are treated as words and crowd behaviors determine the topics in
CTM model. In this manner, each location in the scene supports multiple crowd
behaviors and uses them as a prior information for tracking. The results are de-
monstrated on the footage of sporting events with strong restrictions (i.e., crowd
should be coherent) on the behavior of the video subjects.

Recently, Wu et al. [87], proposed a framework for tracking and modeling the
trajectories to localize the anomalies in crowds. Their method is constructed in
three layers: 1) particles are advected based on the flow field, 2) the similar tra-
jectories are grouped to obtain representative trajectory, and the chaotic dynamics
are extracted and quantified with the maximal Lyapunov exponent and correlation
dimensions, and 3) these chaotic features are learned by probabilistic model, and a
maximum likelihood estimation criterion is adopted to classify the scene as normal
or abnormal.

Discussion

In the crowded scenes, the objects are highly anticipated, and it is difficult to deter-
mine the low level features (i.e., color, spatial templates, interest points, contours,
etc.) owned by the specific individuals keeping the reliability of features at risk.
Moreover, due to the interaction among objects in the crowds, severe occlusions
are observed frequently; therefore, tracking over longer time durations is difficult.
To address these limitations, the authors use higher level knowledge and model
the pedestrian behaviors into the tracking algorithm based on the strong assump-
tions about the pedestrian behaviors. In contrast, due to the high variability in
pedestrian dynamics, crowded scenes tend to have less structure regardless of their
similar density. The resulting track of individuals (i.e., trajectories) are highly in-



34 Chapter 2. State of the Art

consistent and unable to discriminate between usual and unusual events. Therefore,
we contend that the tracking-based models may disregard the important correlation
between objects within close proximity of each other and is impractical to handle
a wide range of situations under flexible assumptions.

2.5.3 Behavior Analysis with Modeling Crowd Flow

Several methods have been reported with alternative solutions to avoid the above
discussed issues of detection and trajectory modeling in Section 2.5.1 and 2.5.2.
The commonly used features in these solutions are optical flow, gradient, spatio-
temporal volume to represent the dynamics of the crowd. In earlier attempts, Bo-
ghossian et al. [88] proposed a technique to model the dynamics of the scene by
online-illustrations to pinpoint the crowd-related emergencies in large crowds. In
their approach, the estimated optical flow is clustered based on direction and ma-
gnitude of the segmented crowd. Later, different events, such as circular flow paths
close to site exits (i.e., trapped event crowds), crowd-flow diverging from a point to
all directions (i.e., potential suspicious event, fights, fire), and obstacles in the flow
paths (i.e., disturbance event) are detected by employing Hough voting. Using the
optical flow, Andrade et al. [89] maintains a generative model (i.e., ergodic HMM)
at a global level for normal motion patterns. In their work, PCA is employed on
the flow vectors to obtain a reduced representation of the flow field during learning
stage. Further, only top eigenvectors are selected as representative features and
spectral clustering was performed to obtain feature vectors. The HMM model is
trained using these features to classify the distinct crowd behaviors in the under-
lying scene. The results are demonstrated on synthetic simulation on the top view
filmed sequences. With a different perspective, Kratz et al. [90] model the statistics
of spatio-temporal gradients (i.e., cuboids) with coupled HMM to characterize the
behaviors in dense crowds. In their approach, the motion variations in the cuboids
are captured and labeled by crowd behaviors. In this manner, the intrinsic structures
are captured, and unusual activities are detected as the statistical outliers.

Modeling the dynamics of pedestrian flow, particularly in crowds has been an
active research topic in the field of sociology and behavioral sciences. For this
purpose, over years a number of models have been proposed by simulating the in-
dividual behaviors in crowds. Among many, Social Force Model (SFM) [91] is
widely used and is famous to model the pedestrian behavioral dynamics due to
its simplicity and intuitive nature. Taking inspirations from pedestrian behavioral
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modeling, Mehran et al. [59] suggested a SFM with the optical flow based particle
advection technique and simulate the normal social forces of particles implicitly to
detect the deviations from pre-trained parameters. In their work, the particles over-
laid on the image are advected with the time-averaged optical flow. Further, these
particles are treated as individuals and their estimated interaction forces using the
SFM are mapped to obtain the force flow of every pixel in the image. Further, these
particle forces are modeled for normal behaviors where a bag of words approach is
employed to classify a frame as normal and abnormal. In their later work by Wu
et al. [87], trajectories of advected particles are modeled to localize the abnorma-
lity. However, the resulting tracks on the test dataset are highly inconsistent as it
is difficult to determine the objects at the pixel level and their associations in next
frames. In addition, discrimination between usual and unusual events is extremely
challenging.

Albio et al. [42] maintains the probabilities of optical flow at corner points and
constitutes histograms to detect the deviations and abnormalities on PETS2009 [3]
dataset. Instead of segmenting and tracking the objects in crowds, the interest
points are detected holistically along with their motion. The detected interest points
are refined based on the corresponding flows which are analyzed statistically to ex-
tract the events in crowds. In similar context, Benabbas et al. [92] build the online
probabilistic models for both density and orientation of flow patterns to detect the
crowd activities. They constructed an online mixture of Von Mises distributions
to model the direction of the optical flow vectors which reveal the major flows of
orientation from the mixtures. Moreover, the mean magnitude of the flow vector is
modeled probabilistically. Further, spatio-temporal relationship analysis is perfor-
med using the direction model, and directional statistics is used to categorize the
events in crowd.

Another work is presented by Chan et al. [93] to holistically model the crowd
flow in the scene using the dynamic texture model where Nearest Neighbour (NN)
and Support Vector Machines (SVM) are used as classifiers to detect the crowd
events. Their approach performs crowd counting based on the regression of holis-
tic (i.e., global) features besides the detection of crowd events using the dynamic
texture model to represent holistic motion flow in the video. Similarly, Mahadevan
et al. [94] proposed a framework to model the normal dynamics of the crowd using
mixtures of the dynamic textures hypotheses where the normalcy models indicate
joint representations of appearance and dynamics. In their approach, events of low-
probability indicate the temporal anomalies while discriminative saliency equates
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the spatial anomalies. Moreover, the likelihood map and saliency map are combi-
ned together to produce the final abnormality map and anomalies are detected as
outliers under this model with high computational cost. The experiments are de-
monstrated on a new dataset containing the different definitions of anomalies such
as walking in wrong direction or vehicles on walking area.

Discussion

In most of the above approaches, anomaly (i.e., abnormal: both terms used inter-
changeably, unless specified) is formalized as an outlier detection problem. The-
refore, in literature, anomaly detection is treated as a context-sensitive term that
merely relies on instantaneous motion features. Moreover, capturing the certain
motion properties in situations containing any number of concurrent and sparse
human activities are extremely difficult. Therefore, the observed flow field tends
to result in uncertain information and leads to the plausible outcome. For example,
in coherent crowds (e.g., marathon), the object may move with common dynamics
which is relatively easy to model. But many scenes (e.g., shopping centers) contain
completely random motion of objects resulting in a complicated dynamics, and it
is difficult to model the overall dynamics. Besides, it is also found that for an ap-
propriate modeling of scene, the reliable flow patterns play an important basis for
supporting effective detection of anomalies and crowd behaviors.

In the literature, generative modeling approaches [89] [59] (i.e., HMM and
LDA) require stringent conditional independence among the observed flow fields
for more tractable joint distributions. On the contrary, Mehran et al. [59] assume
the particles as individuals but they are not able to track anomaly due to the mul-
tiple interacting crowd because it requires the knowledge about physical quantities
which make this approach impractical. Further, particles are advected based on
flow, so the availability of accurate data (i.e., flow field) is an essential requirement.
Unfortunately, none of these approaches [90] [59] [87] consider the uncertainty in
the observed optical flow and overlooked the limitations of optical flow techniques
as described by Bruhn et al. [52].

2.6 Related Issues

We have adapted a top to down mechanism in this research and categorized the
related issues in similar hierarchy. This section underlined the related issues which
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are taken into account during the development of proposed framework for non-
crowded and crowded scenes.

2.6.1 Object Segmentation

We have investigated the research done for the segmentation on the basis of deve-
loped methodologies, and the specific task that each work is trying to solve. In the
following, we have outlined relevant issues:

• The non-recursive approaches work optimally on simple scenes with the
small number of objects but these approaches are not scalable to complex
situations where the background proximity is not stable, and the objects are
moving with the different pace. In addition, the scene could change from
time to time (e.g., sudden or slow illumination changes) therefore, the model
should be updated constantly to reflect the most current situations. Moreo-
ver, the scheme used to update the background model is not feasible (e.g.,
in [21]) and the selection of a priori thresholds become a difficult option.
The resulting detection contains incomplete information which requires an
additional post processing operations.

• The analysis of recursive methods reveals that the inherent idea is to update
the intensity values of pixels belonging to the estimated background model
which is selected according to the difference between the intensity value of
the current image and the corresponding value of the background model.
These methods work well when objects move continuously, and the back-
ground is not cluttered but are not robust in scenes where the objects are
either moving slowly or stop during the motion. Another drawback of these
algorithms is that they are not general enough and being heavily conditioned
on several heuristic choices. To overcome this shortcomings, we have propo-
sed a segmentation approach in Section 3.1, to combine two approaches for
solving these limitations.

2.6.2 Feature Selection

The expedient representation of objects is an essential and challenging task du-
ring the development of robust tracking and behavior understanding framework for
non-crowded scenes. Therefore, we have aimed in earlier sections of this chapter
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to investigate the approaches proposed in the direction of visual features. In the
following, we have brought some relevant issues and debate the need and use of
fusing multiple features to maintain objects identities when performing the object
tracking and behavior understanding in non-crowded scenes.

• Color histogram is one of the preferred choices for describing the objects
but it does not hold the spatial information. Various researchers have mo-
deled both the spatial position and color using nonparametric models for
instance [95], but this modeling results in an additional computational cost.
To overcome this shortcoming, we contend that the region specific informa-
tion using CSC approach can be incorporated and thus fusing both features
at the decision level are more practical. However, in CSC approach, it is es-
sential to assign proper thresholding criteria which is learned by hit and try
scheme. The non-feasible parameters results in the failure of region growing
mechanism in CSC approach.

• Object appearance can be modeled by exploiting primitive shape models.
But, its scope is limited to only rigid objects whereas these models are not
persistent enough to handle a variety of objects. For example, a person’s
shape varies significantly in different camera views. Contours of an object
defines both rigid and non-rigid objects but modeling the contours of objects
with small size can cause the ambiguous representation whereas the compu-
tation load is increased when object’s size is large.

The expedient representation of observed flow field which uniquely signifies the
dynamics of the underlying crowded scene is a daunting task. In aforementioned
sections, we have described the related literature of optical flow and outlined the
famous modeling approaches. In the light of related research and our analysis, we
have pointed out the relevant issues. The main objective is to design the proposed
approach keeping these issues under consideration and to address these limitations
to mark our contribution in this research domain.

• Modeling the flow with discrete simulation approaches is a very useful nu-
merical tool, for practical applications but as a research tool, it suffers from
the lack of analytical tractability [59]. For example, simulation community
performs manual studies to assign the floor field forces based on the scene.
But, if the floor field is directly relied on optical flow, it will lack the actual
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theme of CA approach and does not result in trustable analysis. Similarly,
the SFM suffers from these limitations.

• There are many assumptions which are taken into account, such as: 1) ob-
jects have a common sense of task, and 2) objects try to minimize their esti-
mated travel time and are very constraint to the context of application. Due to
these reasons, if the model is designed for single objects, it will not be able
to handle situations where multiple objects are interacting. Another point,
inherent limitation is the requirement of accurate flow field of the crowd.
Unfortunately, there are no reliable means to measure such physical quanti-
ties using the video data, which makes these approaches impractical for the
general scenes. Moreover, the parametric modeling approaches suffered with
the computational cost of dense flow field. Therefore, to address the issues
of computation, we have applied the modeling at the local level instead of
global or holistic level [59].

2.6.3 Tracking and Behavior Understanding in Non-Crowded
Scenes

In Section 2.4, we have discussed the related literature and based on our analysis,
we have pointed out some key issues which are crucial to address in the proposed
approach.

• In data association, uncertainty and ambiguity are two key issues which are
usually observed under conflicted situations for instance, data cluttering, and
occlusion. In both situations, the flow of information (i.e., the visual charac-
teristics of an object) is intruded, and the data association approach is unable
to measure the correct association about the corresponding objects because
the likelihood (i.e., similarity) is measured by taking into account the visual
features. So, in the situation when the full and long occlusions are observed,
tracking performance suffers considerably, and it can even become totally
inefficient when discontinuities are inherent in the video.

• The object identity recognition approach can be incorporated for tracking
but it is essential to revise the main objectives (i.e., recognition and catego-
rization of object type). Moreover, high quality images are required for the
object identity recognition whereas this condition is often violated in object
tracking scenarios.
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• Logical reasoning can provide a powerful mechanism to determine consistent
behavioral states in tracking mechanism and complement its performance.
However, it is essential to understand the conceptual structure of possible si-
tuations (i.e., object tracking) prior to formulate and design the axioms to in-
fer and address the problem of uncertain and ambiguous interpretations (i.e.,
in data association) under occlusion and cluttered situations.

2.6.4 Behavior Understanding in Crowded Scenes

In Section 2.5, we have reviewed the literature suggested in the domain of behavior
understanding for crowded scenes. Based on our analysis, the underlined issues
that are taken into account are:

• Due to the individuals complex interaction in the crowded scene, the compu-
ted features such as interest points, localized heads, and specific human clas-
sifiers become unreliable. Researchers have employed optical flow, which
provides the key clue about objects motion. However, capturing the motion
is a essential task in the crowded scenes that contains any number of concur-
rent and sparse human activities. Unfortunately, many suggested approaches
for crowd behavior understanding merely focused on the modeling of flow
field at the higher level thus the uncertainties in optical flow measurements
are overlooked.

• Another important issue is the definition of crowd behaviors. In most of the
above approaches, the anomaly is treated as an outlier detection problem in
one class labeling mechanism. This type of rough labeling helps in pinpoin-
ting the abnormal locations. However, this assumption is valid for specific
situations and handles only one type of behavior (i.e., abnormal). For this
reason, it is essential to define the term behavior and its interpretation. Be-
sides, it is also crucial to model the flow field in a manner that represents
the distinct flow pattern to play an important basis for supporting effective
detection of anomalies and crowd behaviors.

• The classification approaches used in the literature, such as generative mode-
ling approaches [89] and linear modeling [59] (i.e., HMM and LDA) require
stringent conditional independence among the observed flow fields for more
tractable joint distributions. In crowd behavior analysis where optical flow
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is used as the key feature, it is difficult to maintain the conditional indepen-
dence because, the flow field is significantly correlated during self-evolving
dynamic of crowds.

2.7 Discussion and Conclusion

In this chapter, we have presented an extensive survey of tracking and behavior
understanding methods and also give a detail insight of related issues. The survey
is divided in top to down hierarchy which we have used in this research. First, re-
cognizing the importance of low level processing of the scene, such as object seg-
mentation, and visual features for tracking and behavior understanding systems,
we have included a survey of popular object segmentation and feature selection
methods. Second, we have provided the detailed review of literature, including
the discussion on the data association, object identity management and cognitive
modeling, employed by the tracking and behavior understanding algorithms for
non-crowded scenes. Third, we have reviewed the approaches devised for crowd
behavior understanding along with their categorical discussion and analysis. In
the last part of this chapter, we have underlined the related issues which are taken
into account in the proposed framework. We believe that, this survey on behavior
understanding and tracking for non-crowded and crowded scenes with a rich biblio-
graphy content, gives an adequate insight to the readers in this important research
topic and encourages new research.
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CHAPTER 3

Segmentation

In computer vision, the direct processing of video sequences is computationally
expensive, so the first issue is the compact representation of the interesting objects
by segmentation. In this chapter, based on the underlined related issues in Sec-
tion 2.6.1, we aspire to describe the suggested approach for the segmentation in
Section 3.1. The results are demonstrated on PETS2006 [1] dataset and compa-
rative studies are conducted to prove the effectiveness of proposed approach for
segmentation. Section 3.2 concludes this chapter with a summary and its applica-
bility in the later chapters.

3.1 Weighted Integrated Segmentation Approach

In this section, we have described the algorithm for segmentation by employing
the idea of weighted integration of the binarized segmentation responses acquired
from different approaches to extract the final foreground under complex situations.
Figure 3.1 shows the integration of binary segmentation outcomes of Approxima-
ted Median Filter (AMF) [22] approach and Adaptive Background Mixtures Mo-
del (ABMM) [26] approach at the detection level, making our approach more ro-
bust against scene disturbances and is able to avoid the false detections due to small
movements of the surroundings. The motivations are based on two reasons:

• instantaneous variation in the background over time in the scene;

• unexpected behaviors of objects, such as walk, run, and stop in the scene.

The main idea of this work is the evaluation of the intensity variations ob-
tained by both ABMM [26] and AMF [22] approaches through weighted logical
constraint, and the final segmentation is achieved by integrating these approaches.
In this way, the algorithm is unaffected by the problems of erroneous detection of
static pixels and ghost regions in the image when foreground object moves after
a long period of time as shown in the results (i.e., ABMM [26] and AMF [22])
in Figure 3.3(f). The entire framework is presented in Figure 3.1 and consists of
following steps:
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Figure 3.1: shows the process flow diagram of proposed approach for segmenta-
tion. The foreground segmentation is performed with ABMM [26] and AMF [22]
approach. The segmentation outcome of both approaches are integrated to obtain
the final segmentation. Note. for visual display, we have switched the foreground
as 0 and background as 1.

3.1.1 Sub-Segmentation by AMF

We have implemented AMF [22] approach in which each successive image is sub-
tracted from a time averaged background model, and the difference image is thre-
sholded. The pixels are labeled as foreground (FG) when they are above the defined
threshold. The background (BG) model is estimated by taking a running median of
the image sequence, where each pixel in the background model is incremented by
one if the corresponding pixel in the current image is greater in value, or decreased
by one if the current image pixel is less in value. So, each pixel in the background
model is then converged to a median value for which half of the updating values
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are greater than, and half are less than the median value. During the update, the
background model is assisted by a mask and the corresponding locations around
the mask are not updated until the background model is adjusted according to sur-
rounding intensity levels. In this way, this approach handles the situations when
the object tends to slow down its motion or stop during the normal walk.

3.1.2 Sub-Segmentation by ABMM

We have implemented ABMM [26] approach for background modeling and fore-
ground detection. The inherent idea is to model the non-stationary temporal dis-
tributions of pixels in the video sequence through adaptive mixture of Gaussians.
Many variants of this approach have been proposed as explained in Section 2.1.
Each pixel in the background model is represented as mixture of Gaussians and an
adaptive evaluation1 is performed at every time step to update the parameters of
Gaussian. Two tasks are performed in this approach:

• Learning the Background Model: Each pixel in the scene is characterized
by the mixture of Gaussians [38]. At each time step, a new pixel value is re-
presented by one of the major components of the mixture models. Given the
image sequence I with pixel history ({x1, . . . ,xt}) is modeled by M Gaussian
distributions. So, the probability of pixel value is computed by ABMM [26]
approach as follows:

P(~xt ,BG+FG) =
M

∑
m=1

ŵ(m,t)N (~xt ,~̂µ(m,t), σ̂
2
(m,t)I); (3.1)

where ~̂µ(m,t) are the estimate of means, σ̂2
(m,t) are the estimate of variance,

ŵ(m,t) are the non-negative weights which are summed up to one, and N is
a Gaussian probability density function. However for computation reasons,
the covariance matrix is assumed in ABMM [26] approach as:

Σ(m,t) = σ̂
2
(m,t)I; (3.2)

In Equation 3.1, the value of ~xt for every new pixel is checked against the
existing M Gaussian distributions until a match is found2. However, we have

1A simple heuristic is used to hypothesize the pixels which are most likely to be a part of
background learning process.

2In the original implementation [26], the value of standard deviation is set to 2.5.
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selected the threshold ranging from 3 to 4 standard deviation, empirically. If
none of the M distributions are matched with current pixel value, the least
probable distribution is replaced with a distribution of the current value as
its mean value, an initial high variance, and low prior weight. These weights
ŵ(m,t) are adjusted in ABMM [26] approach as follows:

ŵ(m,t) = (1−α)ŵ(m,t−1)+α(R(m,t)) (3.3)

where α is the learning rate, and R(m,t) is 1 for matched model and 0 for the
remaining unmatched models. After this approximation, the weights (i.e.,
sum of weights is 1) are renormalized.

The µ and σ parameters of unmatched distributions remain the same whereas
the parameters of matched distribution are updated with the new observations
in ABMM [26] as:

~̂µ(m,t) = (1−ρ)~̂µ(m,t−1)+ρ~xt , (3.4)

σ̂
2
(m,t) = (1−ρ)σ̂2

(m,t−1)+ρ(~xt−~̂µ(m,t))
T (~xt−~̂µ(m,t)), (3.5)

where ρ =αη(~xt |~̂µ(m,t), σ̂(m,t)) is the learning factor which enables the adap-
tive characteristics, α is used to limit the influence factor of previous data.

• Classifying Pixels: After learning the parameters, mixture of Gaussians re-
presenting each pixel are sorted down according to their weights in descen-
ding topology and the minor weights are discarded. This process scrutinizes
the mixture of Gaussians for each pixel according to most likely background
distributions. As a result, lower transient background distributions are re-
placed by new distributions. The resulting distributions are chosen as the
background model BABMM in ABMM [26] as follows:

BABMM = argminb(Σ
b
m=1ŵ(m,t) >Vth) (3.6)

where Vth defines the criteria for background subtraction.

Indeed, the ABMM [26] has been employed in real-time surveillance systems for
background subtraction and object tracking. This approach is flexible enough to
handle variations in lighting, moving scene, multiple moving objects, and other
arbitrary changes in the observed scene, but the performance is degraded when the
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object stops gradually.

3.1.3 Foreground Detection by Weighted Integration

The segmentation outcomes from both approaches are combined to obtain the final
segmentation result by applying the weighted conditional similarity operator which
analyzes true and false detections. Let fAMF is the segmented binary outcome of
AMF [22] approach and fABMM is the binary outcome of ABMM [26] approach as
shown in Figure 3.2. Mathematically, we can express the combined segmentation
fintg as follows:

fintg(x,y) = (w1∧ fAMF(x,y))∨ (w2∧ fABMM(x,y)) (3.7)

Both the weights w1 and w2 are measured by applying median filter (i.e., non-
linear filter) on the segmented binary pixels of fAMF(x,y) and fABMM(x,y), res-
pectively. In median filter, a kernel of fixed size (i.e., 3× 3, 5× 5, or 7× 7) is
applied over the binary outcome (i.e., fAMF(x,y) and fABMM(x,y)) in a moving
window mechanism. The median value in the window is computed for each of
center pixel (i.e., fAMF or fABMM) and results in a binary outcome3 (w1 = 0|1 and
w2 = 0|1). The size of median filter is selected after conducting empirical studies
where filter of size (5× 5) gives optimal performance. These weights set the cri-
teria which defines level of confidence4 for the foreground pixel. In this way, the
foreground pixels (i.e., labelled as 1 in actual segmentation outcome) are obtai-
ned by these two approaches whereas the median-filter based weights enables us
to measure the confidence level of classified foreground pixel by considering the
characteristics of neighboring pixels.

In summary, both approaches require a single background model (i.e., non-
recursive background model) and therefore, the computational performance is quite
optimal. The AMF [22] approach has shown better segmentation than ABMM [26]
in situations where the object motion is not continuous. However, the precision
outcome in AMF [22] approach is effected due to over segmentation whereas in
ABMM [26], the segmentation outcome is suffered due to the generated holes and
fragmentation. In contrast, ABMM [26] outperforms when the objects are in conti-

3As the logical terms are used to obtain final foreground pixel, therefore binary terms are inter-
preted here as (0−→ f alse) and (1−→ true).

4Whether the selected pixel is in actual a foreground or not. The level of confidence is also a
binary value which is either 0 or 1.
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Figure 3.2: shows the process flow diagram of weighted integrated segmentation
on a sample frame of PETS2006 [1] dataset. a) shows the binary segmented out-
come ( fAMF ) of AMF [22] approach and the computed binary weight with median
filter. b) shows the binary segmentation outcome of ( fABMM) with ABMM [26] and
the computed binary weight with median filter. c) shows the integrated segmenta-
tion outcome ( fintg) of both approaches and the final segmentation.

nuous motion but the performance is degraded when objects gradually or suddenly
stops. Therefore, the idea of combining both approaches by weighted integration
complements the final segmentation process, and detects foreground under diverse
situations. In the following section, results are presented on challenging datasets
with the discussion.

3.1.4 Experimental Results and Analysis

The proposed approach is tested on video sequences taken from PETS2006 [1]
dataset which represents unique challenges, for example, strong reflections, light
variations, and shadows. For evaluation, we have demonstrated a comparative ana-
lysis on classical approaches, such as Moving Difference Image (MDI) approach,
Running Gaussian Average (RGA) background modeling approach [27], AMF [22]
and ABMM [26]. Figure 3.3 demonstrates qualitatively the segmentation on the
test PETS2006 [1] sequence where the objects are moving with varying directions
and pace. However, for quantitative analysis, ground truth of segmentation is a
necessary requirement which is computed manually on selected frames of the se-
quence as shown in Figure 3.3(a).

In Figure 3.3(b), it is observed that the MDI approach is not appropriate be-
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Figure 3.3: shows the foreground segmentation on sample frames from
PETS2006 [1] dataset. a) presents the manually created ground truth on test frames.
(b-e) present the colored and binary results of state of the art approaches, such
as Moving Difference Image (MDI) approach, Running Gaussian Average (RGA)
background modeling approach [27], Approximated Median Filter [22] back-
ground modeling approach, and Adaptive Background Mixtures Model [26] ap-
proach, respectively. f) demonstrates the colored and binary results of Weighted
integrated segmentation approach. Note. for visual display, we have switched the
foreground as 0 and background as 1.
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cause it relies on two factors: 1) prominent distance among frames, and 2) post-
processing operations on detected foreground. In the test sequence, objects are
moving with varying dynamics and the inter-frame difference is very small. Due
to these reasons, MDI approach results in poor segmentation. In Figure 3.3(c), the
RGA [27] approach is better than MDI, but the background modeling through ave-
raging is unable to handle the background which contains strong light reflections.
Figure 3.3(d) shows the results of AMF [22] approach where background updation
is independent of the foreground pixels so it is very robust against moving objects.
But, the only drawback is that it adapts slowly towards the large changes in back-
ground and needs some additional frames to learn the new background, for instance
when the objects in the scene starts moving after being stationary for a long time.
The ABMM [26] results are shown in Figure 3.3(e), it can be seen that the objects
moving with varying pace are segmented correctly with some under-segmentation
issues. However, ABMM [26] approach shows its own drawbacks, such as para-
meters require careful tuning and it is very sensitive to sudden changes in global
illumination. So, if a scene remains stationary for a long period of time, the va-
riances of the background components may become very small. Consequently, a
sudden change in global illumination can then turn the entire frame into foreground.
Besides, if object suddenly stops while loitering in the scene, it gradually becomes
the part of background model.

Figure 3.3(f) shows the result of segmentation obtained by weighted integra-
tion approach where the segmentation is preserved regardless of incoherent appea-
rances. Finally, the performance is evaluated by computing precision and recall
measures. In the context of binarized segmentation (i.e., 1 refer to background and
0 refer to foreground pixel for visual representation) , precision and recall measures
are defined as follows:

precision =
Number o f correct background or f oreground pixels

Number o f established background or f oreground pixels
, (3.8)

recall =
Number o f correct background or f oreground pixels
Number o f actual background or f oreground pixels

, (3.9)

where actual background or foreground pixel denotes the background or fore-
ground pixels available in the ground truth.

In Table 3.1, based on the computed ground truth and the segmentation out-
come, the precision and recall are computed to demonstrate the quantitative per-
formance. It is notable that both RGA [27] and AMF [22] approaches have high
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recall but low precision whereas ABMM [26] approach shows similar values. The
performance of MDI is poor among all. The results show efficiency in both the
qualitative and quantitative performance of proposed approach over state of the art
approaches and this enables us to extract the objects efficiently under various si-
tuations. The difference in the performance is more pronounced when shadows are
observed or when the objects are moving with different paces over time.

Table 3.1: Comparative analysis of segmentation approaches for PETS2006 [1]
dataset in Figure 3.3

Techniques Precision Recall

MDI 0.40 0.39
RGA [27] 0.70 0.80
AMF [22] 0.75 0.89
ABMM [26] 0.85 0.85
Our Approach 0.90 0.92

3.2 Discussion and Conclusion

This chapter aims to describe the methodology developed for segmentation within
the context of object detection in video sequences. The significance of this chapter
is that most of the high level vision tasks, such as tracking, and behaviors unders-
tanding, still rely on low level information. Our proposed method is geared towards
addressing some of the limitations of existing methods where the comparative ana-
lysis provides a clear distinction in performance. Though, segmentation is not a
direct objective of this dissertation, but it is a compulsory step to begin any high
level vision tasks, particularly related to tracking and behavior understanding. The
strength of our proposed approach lies in the fact that it combines the capabili-
ties of two segmentation approaches to ensure good segmentation under diversified
situations.
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CHAPTER 4

Visual Features

In this chapter, we present visual features that are employed by the proposed beha-
vior understanding approaches for non-crowded and crowded scenes. Section 4.1
describes the idea of ellipse histogram and color-patches of objects. Section 4.2
presents optical flow approach and the fundamental concept of modeling flow field
with mixture of Gaussians. Section 4.3 concludes this chapter with discussion.

4.1 Features for Non-Crowded Scenes

The expedient representation of objects is essential to develop robust tracking and
behavior understanding algorithm for non-crowded scenes. A number of practical
situations are taken into account, and it is found that multiple features can influence
substantially in the performance of object matching1[96]. In the first color based
approach, we have computed an ellipse around the detected object and built an
ellipse histogram based on color of the object pixels. In the second approach,
we have exploited CSC approach which segments the object into color segments
referred as color-patches. Besides, we have also taken into account the object’s
geometrical features. Our object feature set ( f f eat) is defined as:

f f eat = (εh,ζp,area,bb); (4.1)

where εh is normalized ellipse histogram, ζp shows the color-patches of object,
area defines the area, and bb represents the bounding box of object.

4.1.1 Ellipse Histogram

Histogram shows the distribution of color into a calculable form which is used in
our Bayesian feature fusion approach in Section 5.4.1. In the computation of ellipse
histogram, the main idea of computing histogram remains the same; however, ins-
tead of computing the object’s histogram directly, we have taken into account the
region for computing a histogram bounded by the ellipse as shown in Figure 4.1.

1We have exploited two approaches of object’s color characteristics to define the feature of the
object in our proposed Bayesian Matching Weight (BMW) approach (in Section 5.4.1).
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Figure 4.1: shows the process of computing ellipse histogram on a sample frame
of PETS2006 [1] dataset. a) shows the extracted objects through segmentation,
b) presents the computed contours around the objects, c) represents the computed
ellipse over objects along with Hue and Saturation histogram of selected object.
The histograms of normalized Hue (it ranges from 0 to 1 when normalized by 360
degrees) and Saturation (it ranges from 0 to 1) channels are formed by dividing
these values into 45 discrete intervals (along x-axis) whereas relative count (along
y-axis) presents number of pixel counts where the factor of count is obtained by
normalizing with number of pixels in ellipse.

In the first, prior to fitting the ellipse around the object, contour of the object
is computed as mentioned in Section 2.2.2. After that, we have applied Principal
Components Analysis (PCA) [97] algorithm on the contour points of an object.
By doing so, a set of Eigen vectors is obtained which is sorted down in ascending
manner. The Eigen vector with maximum value is selected which is defined by
four parameters, such as height, width, minor angle, and major angle. After obtai-
ning these parameters, the ellipse around the object is computed and its bounded
region is extracted. As a result, the detected object is represented by an ellipse
whereas the RGB color space is transformed into HSV color space as described in
Appendix A.1. The next objective is to compute the histogram for Hue and Satu-
ration channels whereas Value channel is not taken into account. Figure 4.1 shows
the histogram of Hue and Saturation channels of objects which is a simple non-
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parametric approach where each entry stores the number of pixels of a given color
in the data2. The x-axis shows histogram intervals with in the range of normalized
Hue and Saturation values where the number of intervals is selected empirically3.
The y-axis shows normalized relative count of pixels in corresponding intervals of
Hue and Saturation channels of the object (i.e., bounded by ellipse). In the fol-
lowing, we have conducted experimental analysis on computed ellipse histograms
for different color spaces.

Experiments and Analysis

In this section, we have conducted experiments on a sample scene of PETS2006 [1]
dataset for determining the effects of color spaces (i.e., gray scale, RGB, and HSV)
in the performance of matching processes. Figure 4.2 demonstrates the ellipse
histogram computed for each object in the scene whereas Figure 4.3 presents the
effects of color space on different histogram similarity4 approaches as percent mat-
ching rate. The values in the graph show the similarity measurement (i.e., in percent
matching rate) for each histogram comparison method, such as Histogram Inter-
section (HI), Euclidean Distance (ED), and Kullback-Leibler (KL) divergence [13]
approach. Let the objects o j are detected at I(k) and oi are detected at I(k−1), the
corresponding normalized ellipse histograms are defined as o j(εh) and oi(εh). The
formulation of these similarity measurement methods are as follows:

HI(o j(εh),oi(εh)) = 1−
bins

∑
n=1

min(o j(εh(n)),oi(εh(n))), (4.2)

ED(o j(εh),oi(εh)) = 1−

√√√√bins

∑
n=1

(o j(εh(n))−oi(εh(n)))2, (4.3)

KLD(o j(εh),oi(εh)) = 1−
bins

∑
n=1

o j(εh(n))ln
o j(εh(n))
oi(εh(n))

, (4.4)

The values of HI ∈ [0,1], ED ∈ [0,1] and KLD ∈ [0,1] are non-negative values
where it gives one if the normalized ellipse histograms match exactly and zero if

2The image region bounded by an ellipse. However, it can be any region of interest.
3Based on the analysis presented in [98], we have selected 45 number of intervals for our histo-

grams.
4Histogram similarity is a method of measuring the similarity between the histogram of a refe-

rence object at k−1 and the histogram of the target object at k.
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Figure 4.2: shows Hue and Saturation histograms of object on a sample frame
of PETS2006 [1] dataset. There are five objects in the scene, and histograms of
normalized Hue (ranging from 0 to 1 when normalized by 360 degrees) and Sa-
turation (ranges from 0 to 1) channel are formed by dividing these values into 45
discrete intervals (along x-axis) whereas normalized relative count (along y-axis)
represents number of pixel counts.

normalized ellipse histograms do not match.
In Figure 4.3, results indicate that the gray scale color space has lower mat-

ching rate and is not able to provide an optimal similarity measure for matching
paradigm. In contrast, the similarity results of RGB color space is better when com-
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Figure 4.3: presents the results of similarity measures of various color spaces (i.e.,
gray scale, RGB, and HSV) for each individual color channel with different ap-
proaches (i.e., HI in Equation 4.2, ED in Equation 4.3, KL divergence in Equa-
tion 4.4) on a sample frame of PETS2006 [1] sequence in Figure 4.2. The graph
indicates that the gray scale color space has lower matching rate whereas the si-
milarity results of RGB color space is better when compared to gray scale color
space. It is notable that, the similarity measure of Hue (H) and Saturation (Sat) are
higher as compared to RGB color space.

pared to gray scale color space. In contast, both Saturation and Hue layers in HSV
color space provide the consistent matching values whereas Hue layer indicates
better matching results when compared to Saturation layer in HSV color space.
Besides, the similarity can be measured by utilizing a single layer which contains
color information, for instance, the color information in HSV color space is stored
in Hue layer. It can be observed that each color space has different color orga-
nization mechanism, for instance, both gray scale and RGB color spaces contain
brightness information embedded with color channels, so these color spaces can be
easily affected by uneven brightness levels over time. In contrast, HSV contains the
brightness information in Value layer and is separated from color information. The
results indicated that color spaces, such as gray scale and RGB that utilize bright-
ness information in the color layers has consistently lower matching performance
when compared to HSV color spaces. Based on the results shown in Figure 4.3,
HSV color space has better similarity measure as compared to the gray scale and
RGB color spaces. Therefore, we have used HSV color spaces in our algorithm for
consistent performance.

The histograms only record the color information and do not contain the spatial
information of pixels. Therefore, they are tolerant to camera viewpoint changes
and object movements. An alternative way is to use clustering approach in color
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space, but it is often ambiguous whereas the statistical methods used to address
this problem are computationally expensive. Therefore, we have utilized the CSC
approach along with ellipse histogram in our tracking and behavior understanding
algorithm and handle the limitations of the color histogram. The color segments of
the object obtained from CSC approach are treated as the features and are used in
our matching approach to address the issues of correspondence in our tracking and
behavior understanding algorithms as described in Section 5.4.

4.1.2 Color Structure Code Approach

The CSC approach [4] is employed as an object descriptor and is incorporated as se-
cond feature in fusion mechanism in Section 5.4. Conceptually, CSC [4] approach
is an improved region growing method used to segment the object corresponding
to its homogeneous region as described in Appendix A.3. Practically, it follows a
parallel hierarchical region growing method on a special hexagonal topology. The-
refore, the choice of the starting point and the order of processing are not required.
However, the performance of CSC approach relies on the values of its parameters,
such as thresholding criteria used in linking and splitting phase which we have
learnt by empirical experimentation5. The CSC object is treated as a matrix of its
CSC color-patches. The CSC [4] approach results in generation of N color-patches
for each of the corresponding object and it is described as follows:

ζp =
{

ck:id
n ;n = 1, ..,N

}
, (4.5)

ck:id
n = (carea,cncolorrgb

,cbb), (4.6)

where ζp is set of N color-patches contained by the object, ck:id
n is the nth color-

patch with a set of attributes6, such as carea is the area, cncolorrgb
is the normalized

RGB mean color of each color-patch, and cbb is the bounding region of the color-
patches. In the following, the CSC [4] approach is employed on our test datasets in
Figure A.3.

5Small threshold results in the formation of small color regions during splitting phase. In
contrast, the large threshold refrain splitting phase to divide the linked segments so, it is essen-
tial to select optimal threshold by empirical testing. We have selected the thresholds values 30 for
PETS2006 [1] and 45 for PETS2009 [3] datasets through empirical studies.

6It is possible to measure other attributes, for example color-patch histogram or Eigen vectors.
But currently, we are only taking into account the above attributes.
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Figure 4.4: a) shows results of CSC [4] approach on a sample frames k− 1 and
k of PETS2006 [1] sequence, b) describes CSC color-patches of object detected
at k− 1 and k and c) shows the normalized RGB mean color cncolorrgb

values of
color-patches.

Experiments and Analysis

This section presents the experiments and analysis of employing CSC [4] approach
to compute CSC color-patches of object as features. The CSC approach results in
the formation of color-patches for each object where each color-patch of the object
has its attributes, such as area, normalized RGB mean color, and bounding region
in Equation 4.6. The similarity among the color-patches of the objects detected at
frame k− 1 and k is computed through Euclidean distance by exploiting the nor-
malized RGB mean color of each color-patch. Moreover, the bounding region cbb

is used to define the search space criterion and area carea is used to select the pro-
minent color-patches (i.e., this criterion is empirically selected).

Figure 4.4 demonstrates the results of CSC [4] approach on a test sequence
from PETS2006 [1]. It is shown that each object is represented by a set of color-
patches. Figure 4.4(c) shows the color-patches of object where the color-patch with
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Table 4.1: Similarity measure through Euclidean distance among the object’s CSC
color-patches at k and k−1 on sample frame of PETS2006 [1] sequence

1:N 2:N 3:N 4:N
k

k−1 ck:1
1 ck:1

2 ck:1
3 ck:2

1 ck:2
2 ck:3

1 ck:3
3 ck:4

1 ck:4
2

ck−1:1
1 0.99 0.45 0.0 ck−1:2

1 0.98 0.41 ck−1:3
1 0.99 0.45 ck−1:4

1 0.98 0.21

ck−1:1
2 0.0 0.98 0.56 ck−1:2

2 0.41 0.98 ck−1:3
2 0.41 0.99 ck−1:4

2 0.21 0.96

ck−1:1
3 0.0 0.0 0.95

prominent area is selected to find the similarity measurement. Moreover, we have
also shown the computed normalized RGB mean color of color-patches.

Let the normalized RGB mean color of color-patches ck:id
n of objects detected

at k is defined as cncolorrgb
= (rk,gk,bk) and normalized RGB mean color of color-

patches ck−1:id
n of objects detected at k−1 is defined as cncolorrgb

=(rk−1,gk−1,bk−1).
The similarity measure among the color-patches of objects detected at k and k−1
is computed as:

ED(ck:id
n ,ck−1:id

n ) = 1− 1√
3

√
(rk− rk−1)2 +(gk−gk−1)2 +(bk−bk−1)2; (4.7)

The outcome of similarity measurement of ED ∈ [0,1] is a non-negative value
where ED= 1 represents that color-patches are matched exactly and ED= 0 means
that color-patches do not match.

Table 4.1 presents similarity measurement results between the normalized RGB
mean color of color-patches through Euclidean distance approach. In Table 4.1, it
can be observed that the diagonal values are prominently high among the corres-
ponding color patches. For example, object with label (3 : N) at frame k containing
color-patches ck:3

1 and ck:3
2 have shown high similarity (i.e., diagonal values) with

color-patches ck−1:3
1 and ck−1:3

2 of object (3 : N) at frame k− 1. Moreover, it is
notable that the color-patches acquired from CSC approach provides a consistent
representation of object over time as shown in Appendix A.4. Therefore, we have
employed the CSC approach as object feature to measure the prior in our BMW
algorithm in Section 5.4.1.

4.1.3 Fusing Features in Bayesian Framework

The aim of fusing features (i.e., obtained from different approaches) is to improve
the capability of the decision-making process for the tracking and behavior unders-
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tanding framework [99]. Typically, there are three possible strategies of feature
fusion:

• Early Fusion: Integrating various features extracted from different sources
into a single feature vector,

• Cascaded Fusion: Generates the intermediate results considering each fea-
ture at a time and makes the final decision based on these intermediate states,
and

• Late Fusion: Combine the decisions of different features in a single decision.

A variety of methods are proposed based on fusing features, such as motion and
boundary cues [95] [96], integrating Gabor filter along with spatial pixel to support
decision [100], combining local and global flow [52], and reasoning about pixels
under unusual situations [33]. With similar motivation, we employ the late fusion
strategy, and suggest a Bayesian framework to integrate the respective values7 ob-
tained by ellipse histogram and CSC approach for an object. This fusion is taken
place at the decision level, and the objective is to improvise the results and cop the
issues discussed in Section 2.6.2. In the following, we have explained the methodo-
logy used for object identity assignment problem which we utilize in our tracking
and behavior understanding algorithm in Section 5.4.1.

Late Fusion

Late fusion has been successfully used in the domain of biometric system [99] and
video segmentation [95]. With similar motivation, we extend this concept to ob-
ject tracking and behavior understanding problem by utilizing color-based features.
Conceptually, the idea behind late fusion is to combine the matching responses ac-
quired from more than one features. For example, if the feature is color histogram,
then any suitable histogram matching technique will be used to compute the mat-
ching value. In the following, we are intended to describe the fundamental concept
of our proposed late fusion approach called Bayesian Matching Weight (BMW)
where we have incorporated this idea in our tracking and understanding algorithm
as described in Section 5.4.1. Let the detected objects with corresponding fea-
tures, such as ellipse histogram and color-patches by CSC approach. These de-
tected objects at time k are defined as a set of target T = {ti; i = 1, ..,n} and the

7The term posterior probabilities, weights or matching response, and other terminologies can be
used according to the technique and its implementation.
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Figure 4.5: The logical diagram of late feature’s fusion. In the late fusion the
matching responses (i.e., acquired from more than one features) are combined in
prior to final matching score.

set of objects detected, identified, and tracked at frame k− 1 is defined as source
S =

{
s j; j = 1, ..,m

}
. Then, the maximum posterior probability [101] of the object

s j corresponding to the target object is denoted as:

PBMW (ti) = argmax︸ ︷︷ ︸
ti

PHist(ti|s j)PCSC(s j); (4.8)

where PHist and PCSC are the corresponding outcomes from the algorithms em-
ployed for ellipse histogram and CSC features. PCSC(s j) denotes the prior weight
assigned to target and PHist(ti|s j) represents the likelihood.

Equation 4.8 describes the fundamental concept of fusion scheme for the de-
cision and Figure 4.5 illustrates the mechanism of fusion. It can be observed that
all the features matching outcomes are combined together prior to any decision
making and the output of this combination is used for the final decision making
process.

4.2 Features for Crowded Scenes

Based on the our analysis and reflections in Section 2.6.2, our interest is to es-
timate fast and efficient optical flow and used it as a feature to locate the dy-
namics of distinct crowd block in a scene as explained in Section 6.3. We have
employed Anisotropic Huber-L1 [5] method to compute optical flow for video se-
quences on Graphical Process Unit (GPU) for fast processing. Anisotropic Huber-
L1 approach [5] is based on combining data by assuming fundamental constancy of
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image property (e.g., brightness) [43] spatially. It is a spatio-temporal regulariza-
tion approach in which the expected flow across the image is modeled by replacing
the isotropic TV regularization with an anisotropic Huber regularization. However,
the choice of correct parameters is crucial to obtain optimal optical flow on our
test video sequences. In the following, we present the results on test sequences for
various optical flow approaches and provide the comparative analysis.

Experiments and Analysis

In this section, we have presented the results of optical flow computed from four
state of the approaches. The performance is presented here qualitatively because
for quantitative analysis, the ground truth is an essential requirement. However, we
provide the computation time of these approaches in frames per second (fps).

Figure 4.6(b) shows the optical flow computed with Horn and Schunck ap-
proach whereas Figure 4.6(c) demonstrates the optical flow measured from Lucas
and Kanade approach. Moreover, we have also presented in Figure 4.6(d) the com-
puted optical flow with a recently proposed approach8 by Lie [48]. However, the
performance is better but computation time is not feasible. Figure 4.6(e), we have
employed Anisotropic Huber-L1 [5] approach on GPU for the optimized proces-
sing time. Figure 4.6 shows color-coded optical flows computed from different se-
quences in our datasets, and it is notable that GPU-based Anisotropic Huber-L1 [5]
approach offers good performance and is fairly insensitive to noise.

Mixture of Gaussians for Optical Flow

In this section, we have briefly described the fundamentals of applying parametric
modeling approach to obtain a meaningful representation of flow cloud data whe-
reas the detailed explanation is provided in Section 6.5. The optical flow is defined
as 2D flow points (i.e., ~fp = (vx,vy)) in each selected region of a frame. Since,
the observed flow field can be significantly different and correlated; therefore, it is
required to glean the information by applying the parametric approximation. The
motivation behind using mixture of Gaussians is that it provides theoretically a
straightforward way to model our data and forms a comprehensive representation
of the flow cloud data inside each selected region.

Our objective is to learn and model the components of mixture of Gaussians
over the computed flow cloud data (i.e., ~fp). Given the 2D distribution of flow

8This approach is implemented in Matlab so we have developed C++ wrapper for testing.
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Figure 4.6: shows the computed optical flow with different approaches on the
sample frame of PETS2009 [3] along with computation time in frame per se-
cond (fps) when executed in Debug mode, b) presents computed optical flow with
Horn and Schunck approach [43], c) presents optical flow computed with Lucas
and Kanade approach [44], d) shows the result of layered optical flow approach
by Lie [48], and e) presents the optical flow measured with Anisotropic Huber-L1
approach [5] on GPU (i.e., nVidia GeForce 9600 GT). The flow field is mapped
using the color wheel encoding scheme [102] to indicate its strength.

cloud data in each region as shown in Figure 4.7(a-b), instead to randomly se-
lect number of mixtures, we have employed K-means [38] clustering algorithm to
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Figure 4.7: shows the process of employing mixture model over observed flow
field (i.e., vx and vy). a) shows the input image, b) indicates the selected region
on which optical flow is computed (i.e., presented in color wheel [102] encoded
scheme). c) demonstrates in 2D, the plotted flow field where vx and vy are flow
velocities in x-direction and y-direction. The mixture of Gaussians is computed
from this flow cloud data.

initialize the mixture of Gaussians modeling process. This algorithm returns the
number of clusters, and the mixture modeling process is initialized. After that, the
Expectation Maximization (EM) [38] is used for finding the maximum likelihood
solution for the mixture distributions. Specifically, the parameters of the distri-
butions are estimated to transform the observations into C Gaussian models (i.e.,
C = 3). The Gaussian mixture distribution is written as:

p(~fp) =
C

∑
c=1

wcN (~fp|~µc,Σc); (4.9)

where C represents the Gaussian models, wc is the weight, ~µc is the mean, Σc

is covariance matrix which are the components of Gaussian model, and N is a
Gaussian probability density function.

Figure 4.7 shows the flow modeling using mixture of Gaussians on sample
frames of UMN [2] dataset. In Figure 4.7(c), the cloud of points shows the flow
data where as each ellipse indicates the Gaussian model fitted over the correspon-
ding flow cloud data. There are total six Gaussian distributions over the flow cloud
data. In Section 6.5, we have described the modeling flow cloud data in detail for
crowd behavior understanding.
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4.3 Discussion and Conclusion

In computer vision, most of the problems are ill-posed, therefore, the selection of
features and their modeling is essential. In this chapter, we have explained the vi-
sual features that are used by the proposed behavior understanding approaches for
the non-crowded and crowded scenes. For non-crowded scenes, we have introdu-
ced the idea of ellipse histogram and color-patches of the objects for the matching
approach. For crowded scenes, we have explained the optical flow approach and
the fundamental concept of modeling the flow field with mixture of Gaussians. The
aim of this chapter is to explain the relevant features in particular to color, geome-
trical features, and optical flow in detail due to their relevance to the proposed
methods in Chapters 5 and 6, and discussed the possible models used in the vision
community.
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CHAPTER 5

Tracking and Behavior
Understanding in Non-Crowded
Scenes

In this chapter, we propose a novel framework for object tracking and behavior
understanding by modeling the concepts of human cognitive abilities with statis-
tical approaches for the application of surveillance. Section 5.1 presents the pro-
posed top to down framework for tracking multiple objects and behavior unders-
tanding. The framework comprises of four main components presented in Sec-
tion 5.2, 5.3, 5.4, and 5.5. Section 5.6 demonstrates the experimental results on
complex situations and presents that we are not only tracking the objects but also
able to successfully infer their behavioral states during motion. The last part in
Section 5.7 concludes this chapter.

5.1 The Framework

The proposed framework comprises of four main components: i) object detection
through segmentation, and feature extraction, ii) tracking event detection, iii) quan-
titative and qualitative approach, and iv) tracking system. Figure 5.1 illustrates the
relationship between these components.

Segmentation and Feature Extraction: In the first part, segmentation is perfor-
med by employing the suggested approach in Section 3.1 and the foreground
regions (i.e., objects1) are extracted, and the visual features are computed in
Section 4.1. The detected objects and corresponding features at each time
instance are input to tracking event detection and qualitative and quantitative
approach to accomplish the task of high level vision.

1The result of segmentation is the foreground region. In the literature [17], the terms blob and
objects have been used frequently. Some researchers argument that a blob or region can contain
multiple objects in it. But, in this dissertation, we assume that the detected foreground region is
object whereas any non-object region is termed as segmentation error.



66 Chapter 5. Tracking and Behavior Understanding in Non-Crowded Scenes
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Figure 5.1: The proposed framework: in the first, objects are detected along with
their features. In the second approach, tracking events (e.g., occlusion or split) are
detected. In the third part, two different information processing approaches (i.e.,
quantitative and qualitative) are combined and unique identities are assigned to
objects. In the last, each object with unique identity is tracked by its respective
tracker in Kalman filter-based tracking system.

Tracking Event Detection: There are many events observed during tracking pro-
cess, such as occlusion, split, new entry, and exit. In this, we have detected
these events, and the respective logical functions are triggered.

Quantitative and Qualitative Approach: In this component, we have proposed
the two approaches (i.e., quantitative and qualitative) along with their in-
tegration. At conceptual level, the overall goal is to track and understand
the individual behaviors of objects. In dynamic scenes, identification of ob-
jects using typical statistical matching algorithms (i.e., as discussed in Sec-
tion 2.4.1) normally give very poor results under conflicted situations [70].
This is due to the interactions among moving objects, for instance, occlu-
sions in which the objects overlap or completely hide the other object. It is
evident that treating object tracking as the cognitive problem and use it with
the typical statistical algorithm can improve the overall tracking performance
under non-feasible situations [33].

At practical level, all the detected objects are considered as a node and consti-
tute an undirected graph [103]. Moreover, these objects are described by
unique identities (i.e., from Identity Pool) and data structure comprises of
quantitative (i.e., visual characteristics) and qualitative (i.e., cognitive cha-
racteristics) information at each time instance as illustrated in Figure 5.4.
First, the matching weights of the objects are computed. Second, the axioms
are developed by employing the principles of human-perception for the tra-
cking process. These axioms assign the behavioral states to detected objects
which are associated with the matching weights. Essentially, these two ap-
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proaches function together and the behavioral state of an object is inferred
by incorporating the reasoning functions while satisfying the fundamental
constraints of continuity of objects during tracking.

Tracking System: We have developed a Kalman filter-based tracking system where
every tracker is associated with an object and estimates its state over time.

5.2 Segmentation and Feature Extraction

The first task in tracking is to detect objects in a given video sequence which serves
as an input for further high level processes. For this purpose, we have suggested
a segmentation approach to detect objects in the test sequences as presented in
Section 3.1. The next objective is to compute features that depict the unique re-
presentation for each object. So, in Section 4.1, we have described our feature set
f f eat as follows:

f f eat = (εh,ζp,area,bb); (5.1)

where εh is the normalized ellipse color histogram, ζp is the CSC color-patches,
area is the objects area, and bb defines the object bounding region.

5.3 Tracking Event Detection

Challenges in real-time object tracking are multitudinous whereas highly constrai-
ned solutions have been proposed as mentioned in Section 2.4.1. In tracking pa-
radigm, an important issue is to detect efficiently the instances of events2 associa-
ted with tracking. In general, events like occlusion, split, new, exit, etc., are fre-
quently observed in the scenes where the detection of these instances is essential
to accomplish the tracking and behavior understanding task. For instance, various
approaches [104] [105] [106] directly or indirectly address the detection of these
events in tracking paradigm, however, it is very hard to find any concrete solution
in the literature.

We have categorized these events into four types of events: 1) new, 2) exit,
3) occlusion, and 4) split. The detection of these events is based on mapping the
spatial occupancy of objects at time k with the objects at time k− 1. So, ideally
each object should contain only one object which shares its spatial space in the

2The term events refer to occlusion, split, object entry and exit in scene during object motion.
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next frame where it is assumed that the objects are moving smoothly. Based on
this assumption, a "spatial mapping matrix" of the detected objects at k and k− 1
is built. Later, the criteria for these events are defined which are deduced based on
the spatial mapping matrix3.

Building Spatial Mapping Matrix

A detected object is a segmented region of input image from a sequence and is
defined as a 2D function I(k) = h(x,y) where h indicates the intensity and (x,y)
contains the spatial information. We consider the spatial information (x,y) of each
detected region at k and k− 1, for creating the spatial mapping matrix. The num-
ber of columns in the matrix is equal to number of the detected objects at k. In
contrast, number of rows in the matrix is equal to number of detected objects at
k− 1. Now, the main concept is to map the spatial correspondence of objects
whereas the objects that do not share spatial correspondence are excluded. Let us
assume that the detected objects at k are I(k) =

{
o j; j = 1, . . . ,m

}
and objects at

k−1 are I(k−1) = {oi; i = 1, . . . ,n}. The spatial correspondence is computed by
measuring the spatial occupancy which is the ratio of spatial region of an object
at k mapped over the spatial region of an object at k− 1. The area of the spatial
region of object at k is represented by I(k)sa and the area of spatial region of object
at k−1 is represented by I(k−1)sa . The ratio between the mapped spatial regions
is defined as the percentage of spatial mapping Sr which determines the relative
spatial occupancy of an object at k and is computed as follows:

Sr =

(
I(k−1)sa

I(k)sa

)
×100; (5.2)

where Sr defines the relationship among the objects at k and k−1. Based on above
spatial relationship quantity, we have developed a set of criterion for each of the
tracking event. Moreover, we have demonstrated a test case in Figure 5.2 to provide
an insight about each of following criteria to detect the respective events.

• New Event (nactive): Each new object entering the scene at k does not share
any spatial correspondence with the existing objects at k−1. The object does
not share any spatial correspondence results in Sr which is either very small
or close to zero as shown in Figure 5.2(a). The third column indicates that

3This matrix contains fields which are filled based on whether an object shares its spatial space
in the next frames or not.
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Figure 5.2: presents the concept of tracking event detection where 1 (i.e., true)
represents that spatial correspondence of object is found at k and 0 (i.e., false)
shows that the object does not find any relationship. The objects are given arbitrary
identities to explain the idea. Moreover, objects detected at k frame is represented
by its own visual attributes where the yellow transparent information shows the
objects at k− 1. In this figure, a) shows new event, b) represents exit event, c)
represents the occlusion event , and d) shows the split event.

no spatial correspondence (i.e., indicated by 0) is found with the object at k
and thus nactive event becomes true. This condition is formulated as follows:

i f (Sr ≤ 5 && Sr ≥ 0) == true

nactive = true
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• Exit Event (eactive): Object which leaves the underlying scene after mo-
ving around is said to be disappeared or exiting from the scene. When Sr is
computed, it is found that the spatial correspondence of the object with the
objects of frame k is missing as indicated by 0 (i.e., in entire third row) in
Figure 5.2(b) and eactive flag is set. This condition is formulated as follows:

i f (Sr ≤ 5 && Sr ≥ 0) == true

eactive = true

• Occlusion Event (oactive): The interception of visual attributes results in
the phenomenon of occlusion when multiple objects share the same spatial
space. The object which shows its spatial occupancy with more than one
object at k−1 is the merged object as indicated by 1 (i.e., in the entire second
row) in Figure 5.2(c). The Sr ranges from 30 to 70%4 and oactive = true. This
condition is formulated as follows:

i f (Sr ≤ 70 && Sr ≥ 30) == true

oactive = true

• Split Event (sactive): The end of visual interception among the objects results
in split event. This event is observed when more than one object at k shows
the spatial relationship with the detected objects at k−1 as denoted by 1 (i.e.,
in the entire second column) in Figure 5.2(d). In this event, Sr ranges from
30 to 70 % and sactive is set. This condition is formulated as follows:

i f (Sr ≤ 70 && Sr ≥ 30) == true

sactive = true

In this manner, we are able to detect the conflicted events which are linked to
quantitative and qualitative approaches.

4The percentage is empirically determined by experimental analysis.
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5.4 Quantitative and Qualitative Approach

In this section, we have suggested the quantitative and qualitative approaches which
are driven by segmentation and feature extraction approaches. The motivation is
to tackle the tracking problem by axiomatizing and reasoning the human-tracking
abilities as shown in Figure 5.3. At the broader level, each detected object is treated
as a node and an undirected network of detected objects is built in spatial space. At
the lower level, the object is described with a unique identity, and a data structure
comprising of both quantitative (i.e., visual features) and qualitative (i.e., logical
features) information. The matching weights are incorporated with the tracking
axioms to deduce the appropriate behavioral states of the objects at each time ins-
tance. However, during occlusion, the correspondence approaches lead to ambi-
guities by assigning wrong matching weights due to incomplete visual contents.
The qualitative approach handles these situations by employing tracking axioms.
For example, if oactive is active, then it calls the corresponding developed tracking
axioms for occluded and overlaper situations which infer the respective behavioral
states (i.e., overlaper or occluded) to the objects, explicitly. Essentially, this me-
chanism handles the conflicted situations to disambiguate the object’s behavioral
states and manage identities during tracking. Later, the objects are linked with the
tracking system and each object is associated with its respective tracker to estimate
the trajectories of these objects.

In quantitative approach, Bayesian inference is employed to measure the poste-
riori probability of the objects which is referred as matching weights of the objects.
The reason of using Bayesian inference is based on its philosophy ". . .all informa-
tion about the world is captured by the posterior. . . [107]". The first justification of
this view is that the posterior is actually a combination of prior information about
the world and a model of the process by which measurements are generated (i.e.,
so it covers every aspect and no information is missing from the posterior), and the
available information is combined in a proper manner. The second justification of
this view can be derived from the first, which is the way the posterior is computed,
produces good results. However, it is a great challenge to efficiently compute the
posteriors and this defines the first innovation of our work. We have aggregated two
different approaches within Bayesian inference. The KL divergence between the
objects gives the likelihood of the Bayesian inference whereas the prior informa-
tion is measured with CSC approach. This methodology works efficiently during
conflicted situations which are observed when object’s contextual information (i.e.,
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Figure 5.3: From the real scene to the concept, and the representation of an object
both in qualitative and quantitative manner are presented. The time instances repre-
senting conflicts are highlighted and the transformation of this information into the
spatial domain is shown in the logical view. Each detected object is defined by a
compound data structure with unique identity, visual features (e.g., normalized el-
lipse histogram, CSC color-patches, area), and behavioral states (e.g., Normal (N),
New (Ne), Exit (E), Overlaper (Ov), Occluded (Oc), Reappear (R)).

visual characteristics) is lost partially.

As the second innovation of this work, an explicit novel qualitative approach
is suggested to handle the ambiguities due to occlusions and conflicted situations.
The idea is motivated by human’s perception, learning, and knowledge acquisition
abilities to infer under observation entities and its context. We argument that, the
models designed by taking into account these abilities which are usually referred
as human cognitive abilities (i.e., these terms will be used interchangeably unless
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Figure 5.4: shows the illustration of object as node along with its characteristics.
I(k) is the image frame at k which contains m detected objects oid

j . The detected
objects are represented by their unique identities id, quantitative characteristics
Qq (i.e., visual features) which are processed by quantitative approach to measure
the matching weight wm, and set of behavioral states Ql which are inferred with
qualitative approach.

specified) provide an efficient mechanism to handle the ambiguities in quantitative
approaches. In the context of object tracking scenario, first, the problem of tra-
cking and the corresponding behaviors are studied with human perspectives which
are then mapped by employing the knowledge of logical modeling with proposi-
tional logic [108]. Each behavior is encapsulated with a logical expression named
as axioms to make inference about the corresponding behavioral states during mo-
tion and to manage the identities. Both quantitative and qualitative algorithms are
bi-directionally linked and complement their functionalities by improving the per-
formance dramatically. Moreover, the effects of uncertainty and ambiguity are ad-
dressed whereas the object behavioral states are inferred along with object identity
management and tracking.

Given a video sequence which is composed of K frames, it is assumed that
each detected object is a continuous function of time in the scene until it leaves
permanently. The detected object at frame k is:

I(k) =
[
oid

j ; j = 1, . . . ,m; id > 0
]

; (5.3)

where I(k) is the image frame at k time instance, oid
j are the m detected objects
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with unique identities id as shown in Figure 5.4. Each detected object contains a
unique identity id, its quantitative characteristics Qq (i.e., features as mentioned
in Section 5.2) which are processed by quantitative approach to measure the mat-
ching weight wm, and set of behavioral states Ql which are inferred with qualitative
approach. So, the object is defined as:

oid
k = (id,wm,Qq,Ql); (5.4)

Each individual object contains a set of attributes (id,wm,Qq,Ql) where,
id : is the unique identity of object.
k : is the frame number.
Qq : represents the visual characteristics of the object.

Qq =
(

f f eat
)

; (5.5)

the above expression can be rewritten from Equation 5.1 as:

Qq = (εh,ζp,area,bb) ; (5.6)

Ql : represents the object behavioral states as described in Table 5.2.

Ql = (N,Oc,Ov,R,Ne,E) ; (5.7)

5.4.1 Quantitative Approach-Bayesian Matching Weight

A multi-layered quantitative5 algorithm based on Bayesian inference is proposed
by formulating the detected object as an undirected graph in Figure 5.3. In this
approach, the main objective is to compute the matching weights of object in an
efficient manner during object tracking in both ideal and conflicted situations. To
achieve this task, we have aggregated two different techniques in Bayesian infe-
rence for computing the matching weights (i.e., posterior probability, unless speci-
fied) of an object as shown in Figure 5.5. First, the normalized ellipse histogram is
approximated around the detected objects at k−1 and k. Second, CSC approach is
exploited to compute the prior weights of the objects.

Inferencing about an object’s possible occurrence at I(k) is made by incorpora-

5In Section 4.1.3, we have described the fundamental concept of the proposed matching ap-
proach.
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Figure 5.5: shows the computation level of BMW approach on sample frame of
PETS2009 [3] dataset. The first level defines the main formulations of computing
matching weights wm among the objects detected at frame k and k−1. The second
level computes the likelihood through KL divergence D(o

′
j,o

id
i ) among the norma-

lized ellipse histogram of detected objects at frame k and k− 1. Both normalized
Hue(i.e., normalization factor of 360 degrees) and Saturation channels values (i.e.,
ranging from 0 to 1) are divided into 45 intervals. The third level finds the prior
weight w(oid

i )csc by measuring the Euclidean distance among the color patches of
objects using CSC approach.

ting prior probability measured from the possibilities I(k−1)=
[
oid

i ; i = 1, ..,n; id > 0
]
,

and the likelihood evidence of the observed data I(k)=
[
o
′
j; j = 1, ..,m

]
. The maxi-

mum a posterior probability (MAP) [101] of an object at I(k) corresponding to
objects at I(k−1) is computed as:

P(o
′
j = wm) = argmax︸ ︷︷ ︸

o′j

P(o
′
j|oid

i )P(o
id
i ); (5.8)
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where P(o
′
j|oid

i ) is the likelihood between objects at k and k−1 which is interpreted
as KL divergence D ∈ [0,1], between objects at I(k− 1) and I(k). The likelihood
computation can be measured as follows:

P(o
′
j|oid

i )⇒ exp(−D(o
′
j,o

id
i ); (5.9)

Similarly, P(oid
i ) is the objects prior probability at I(k− 1) which can be defined

as prior weight w(oid
i )csc assigned to each object at I(k− 1). The objects prior

probability is computed as:

P(oid
i )⇒ w(oid

i )csc; (5.10)

We can re-formalized the Equation 5.8 as follows:

P(o
′
j = wm) = argmax︸ ︷︷ ︸

o′j

(exp(−D(o
′
j,o

id
i )).w(o

id
i )csc); (5.11)

In the following, we have explained the methodology of measuring the KL diver-
gence D and CSC approach-based prior weight wcsc.

Measuring KL Divergence Between Objects

The Kullback-Leibler (KL) divergence measures the similarity matching as mini-
mum cost [13] among the detected object at I(k) and I(k−1). The KL Divergence
has the intimate relationship with likelihood theory and it measures the proximity
among the object’s normalized ellipse histogram. Let the object o

′
j is detected at

I(k) and object oid
i is detected at I(k−1), the corresponding histograms are defined

as o
′
j(εh) and oid

i (εh). The KL divergence is defined as:

D(o
′
j(εh),oid

i (εh)) =
bins

∑
n=1

o
′
j(εh(n))ln

o
′
j(εh(n))

oid
i (εh(n))

; (5.12)

where D is non-negative D ≥ 0, not symmetric in o
′
j(εh) and oid

i (εh(n)), zero if
the histograms match exactly and can potentially equal to infinity but we have
treated the infinity as 1 for bounded solution which means that objects have high
divergence.

It is worth to mention that several distance measures were considered, and ex-
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periments show the effectiveness of the proposed combination of distances as dis-
cussed in Section 4.1. Figure 5.6(a-b) illustrates the matching of two objects at k
and k−1 using KL divergence whereas Table 5.1 indicates matching scores on test
sequence.

CSC-Based Object Prior Weight

The prior weight is computed based on how much information an object carries
at I(k− 1) about the newly observed object at I(k) as shown in Figure 5.6. In
other words, given the set of color-patches representing an object as discussed
in Section 4.1.2, we have measured the similarity as prior weight6 and find the
most similar color-patches of the objects satisfying the search space criterion. The
computed prior weights of color-patches of objects are averaged to measure the
final prior weight. We have employed Euclidean distance to measure the simila-
rity among the color-patches of the objects. Let the object o

′
j is detected at I(k)

contains color-patches ζp = ck:′
s , and the object oid

i is detected at I(k−1) contains
color-patches ζp = ck−1:id

r . So, the prior weight indicates that how much an ob-
ject detected at I(k− 1) contains the contents of objects detected at I(k) and is
computed as follows:

w(oid
i )csc = 1−

√
(o′j(c

k:′
1 )−oid

i (c
k−1:id
1 ))2 + . . . +(o′j(ck:′

s )−oid
i (c

k−1:id
r ))2

R
,

(5.13)
r = {1, . . . ,R} , s = {1, . . . ,S} ;

where ck−1:id
r = cncolorrgb

contains normalized RGB mean color of R color-patches,

ck:′
s = cncolorrgb

contains normalized RGB mean color of S color-patches, and w(oid
i )csc

defines the prior weight of the detected objects based on previous observations (i.e.,
object detected at I(k−1)) as shown in Figure 5.6.

Figure 5.6 presents the process of computing matching weight (wm) for the
observations (i.e., o

′
j) detected at time k using Equations 5.11, 5.12, and 5.13. In

the first, KL divergence is measured among the normalized ellipse histogram of
objects detected at k and k− 1 using Equation 5.12. In the second, CSC-based
object prior weight is computed among the color-patches of each object detected at
k and k−1 using Equation 5.13. These two measured quantities are then combined

6We assume that object detected at I(k− 1) contains the more probable claims about it next
occurrence at I(k).
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Figure 5.6: shows the computation of matching weights using BMW approach on
a sample frame of PETS2009 [3] dataset. a) and b) describe the likelihood mea-
surement process through KL divergence D(o

′
j,o

id
i ) among the normalized ellipse

histograms of detected objects at frame k and k− 1. Both normalized Hue (i.e.,
normalization factor of 360 degrees) and Saturation channel values ranging from 0
to 1 which are divided into 45 intervals. c) and d) show the process of computing
prior weight w(oid

i )csc by finding the Euclidean distance among the color-patches
of objects using CSC approach. The results of matching weight are presented in
Table 5.1.

with our BMW (Bayesian Matching Weight) approach in Equation 5.11.

Table 5.1 presents the measured values of KL divergence (i.e., D), CSC-based
prior weight (i.e., wcsc) and final matching weight (i.e., wm) of the detected objects
at k and k− 1 in Figure 5.6. In the Table 5.1, KL divergence column shows the
measured divergence between the objects detected at k and k−1 where the diago-
nal shows minimum divergences. The CSC-based prior weight column shows the
computed prior weight among the color-patches of objects and the diagonal values
are averaged to obtain the final prior weight (wcsc) for each object. The final mat-
ching weight (wm) column shows the computed matching weight by fusing these
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quantities (i.e., D and wcsc) using Equation 5.11. However, in ideal situations, these
probabilities in Table 5.1 reflect the reliable correspondences among the detected
objects in consecutive frames (i.e., k and k− 1). But in conflicted situations (i.e.,
occlusion), these measured matching weight become uncertain due to incomplete
visual information. Therefore, it is inevitable to look for the alternative ways and to
continue the inferring mechanism correctly under conflicted situations. In the fol-
lowing section, we have explained the proposed qualitative approach which work
in conjunction with quantitative approach to handle object matching ambiguities
under conflicted situations.

Table 5.1: BMW matching approach on a sample frame of PETS2009 [3] dataset
in Figure 5.6

KL Divergence CSC-based prior-weight BMW (wm)

k
k−1 ok:1

1 ok:2
2

k
k−1 ck:1

1 ck:1
2

k
k−1 ck:2

1 ck:2
2 ck:2

3
k

k−1 ok:1
1 ok:2

2

ok−1:1
1 0.01 0.72 ck−1:1

1 0.99 0.43 ck−1:2
1 0.97 0.61 0.63 ok−1:1

1 0.96 -

ok−1:2
2 0.53 0.05 ck−1:1

2 0.52 0.95 ck−1:2
2 0.61 0.98 0.31 ok−1:2

2 - 0.94

ck−1:2
3 0.28 0.53 0.98

exp(−D) 0.99 0.97 wcsc 0.97 wcsc 0.97 P(o
′
k = wm) 0.96 0.94

5.4.2 Qualitative Approach-Inferencing of Behavioral States

We aimed to incorporate the cognitive model into the vision system to have the
similar capabilities as humans for recognizing object activities and behaviors while
moving across the scene. So, we can say that the cognitive modeling is empowe-
red by the conceptualization of human perception and inference ways. Therefore,
it complements and allows us to interpret the ambiguous (i.e., incomplete or clut-
ter) discrete data adequately in a bidirectional way. To achieve this goal, we have
developed axioms inspired from human cognitive abilities. These axioms reliably
recognize various states of objects, such as normal walk, occluded, overlaper, etc.,
and manage identities which dramatically improve the typical tracking mechanism.

In this manner, we are able to acquire the qualitative attributes during motion,
such as what is the speed of the object, when the object is occluded, which object
is the cause of occlusion and when the object leaves the scene. In addition, we
are able to measure the pace and orientation of the objects over time. We have
applied Bayesian inference approach to measure the matching weights based on
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the visual characteristics of the objects, earlier. The goal of inferring behavioral
states during tracking is achieved by the designed axioms. So, the suggested model
has a huge impact on behavior, social, and cognitive sciences and we are much
closer to develop the intelligent tracking system.

In the following, we have explained the primary concept of modeling human
perspective for tracking situations, the fundamentals of developed axioms, and the
constraints which are imposed on the inferencing mechanism.

Preliminary Concept with Basic Notations and Definitions

How to handle the uncertainties and ambiguities which are raised from the partial
knowledge due to insufficient data or hazy contents? Uncertainties in data reflects
the doubt in its source. The uncertainty is usually observed in situations where the
actual state of the underlying object is not completely determined, but we have to
rely on some human expert’s subjective preferences among the different possibi-
lities. In contrast, the notion of ambiguity refers to haziness in data related to a
questionable facet of the actual problem. Ambiguity arises whenever a data lacks
the desired precision; however, its meaning remains valid. For example, in Fi-
gure 5.7(a) there is no ambiguity since only one object is present in the scene but
in Figure 5.7(b) and (c), there are multiple objects and there can be uncertainties
since the actual outcome (i.e., matching weights from the quantitative approach) is
open in terms of accuracy when the identities of the objects are managed.

Before, we describe "the modeling" of axioms for the integrated treatment of
uncertainty and ambiguity in the range of knowledge based systems, the description
of some concepts and fundamentals are indispensable. According to our understan-
ding, the basic intention of any model is to reflect the properties of the real world
such that it enables the prediction of behaviors in the under observed context7.
Therefore, the model should directly relate itself to the underlying context instead
of allowing everything to happen which is of no use. So, the model should be ob-
jective and capable of handling the uncertainty and ambiguity. Besides, we have
focused on the subjective probability which is widely used in the field of knowledge
representation to reflect the degrees of rational belief.

Based on above theoretical aspects, we have investigated the behaviors and
properties of moving objects in the world domain and see how a human’s cogni-

7The term context refers to any particular situation which is taken into account for the experi-
ments and testing purpose.
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Figure 5.7: shows the examples of potential instances of uncertainty and ambi-
guity on sample frames of PETS2009 [3] dataset. a) contains only one object in
the scene and matching approach performs one-to one matching when object iden-
tities are managed, therefore there is no ambiguity in this scene, b) and c) contain
multiple objects and there can be uncertainties since the actual outcome (i.e., mat-
ching weights from the quantitative approach) is open in terms of accuracy when
the identities of the objects are managed.

tive system processes that information along with the quantitative approach. The
context of the situation is defined as an observer (i.e., camera) standing at a fixed
location and can view a specific range (i.e., a scene). Now, the observer infers and
extracts the knowledge from the overall scene where the observations are formula-
ted into the axioms and logical representation, and reasoning models are construc-
ted. Figure 5.3 presents an illustration whereas Table 5.2 shows the observations
and their respective inferred knowledge provided by the observer.

It is assumed that the position of each detected object is a continuous function
of time in the scene until it leaves permanently. For example, if the object is occlu-
ded during overlap, it still exists in its overlper. In our formulation, the time domain
is continuous and represented by the discrete real number. In n-dimensional space,
the detected objects at k time instance are mapped on the 2D plane as shown in Fi-
gure 5.3 whereas their attributes are defined in Equation 5.3. The Ql demonstrates
the behavioral states during tracking which are derived by the developed axioms.
The Ql contains six behavioral states, including normal (N), occluded (Oc), overla-
per (Ov), reappear (R), exit (E), and new (Ne) whereas to infer each state, a specific
axiom is designed by incorporating the human perception abilities. The developed
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axioms contain two types of functions:

• Logical Functions: In axioms, the function take input values and return the
logical output (i.e., true or false) whilst satisfying condition. There are three
functions performing this task:

� isMax()⇒ return(true| f alse): This function takes the list of objects
as inputs along with computed matching weights (i.e., wm) and returns
true if maximum correspondence exists as described in the logical func-
tion 1.

� isMin()⇒ return(true| f alse): This function takes the list of objects
as inputs along with computed matching weights (i.e., wm) and returns
true if minimum correspondence exists as described in the logical func-
tion 2.

� inSearch_Space()⇒ return(true| f alse): This function checks whether
the object is inside the predicted region or not as described in the logical
function 3.

• Assignment Functions: In the axioms, these functions perform the task of
assignment (e.g., object identity) and update the parameters of the object.
There are three functions performing this task:

� Assign_Id(): This function assigns the identity to corresponding object.

� Deactive_Id(): This function de-activates the object’s identity when
the object is not present in the scene.

Table 5.2: Inference of object’s behavioral states by an observer from a fixed point

Information: Observer Inferred Behavioral
States

object is moving with normal pace normal object (N)
object is entered in the scene and was not present earlier new object (Ne)
object does some functions and left the scene exit object (E)
object during motion intercepts the visual appearance of
another object

overlaper object (Ov)

object is hidden due to occlusion and lost its visual cha-
racteristics

occluded object (Oc)

object is reappeared from the interception and retains its
visibility

reappear object (R)
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� Make_Child(): This function creates a child parent (occluded object as
child and overlaper as parent) relationship when occlusion is observed.

Logical Function 1 isMax() Function
if (objects at k finds max correspondence with given observations) then

return true
else

return false
Logical Function 2 isMin() Function

if (objects at k finds min correspondence with given observations) then
return true

else
return false

Logical Function 3 inSearch_Space() Function
if (object exits any in the predicted region) then

return true
else

return false

Tracking Axioms

In this section, the tracking axioms (i.e., abstract qualitative reasoning) are presen-
ted. The objects at I(k) and I(k−1) are exploited to infer the behavioral states of
the moving object observed at I(k) and to assign the unique identities.

• Normal State Axiom: This axiom infers the normal behavioral state of ob-
jects based on the assumption that the objects are moving governing the laws
of continuous motion with consistent visual attributes.

normal(oid
j ) =

{
isMaxo′j∈I(k)(o

′
j,o

id
i )∧ inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

}
Ql = {N→ T,Oc→ F,Ov→ F,R→ F,E→ F,Ne→ F}

Assign_Id(oid
j ) =

{
oid

i

}
We have developed the above axiom to assign the normal behavioral state
(N → T ) when object is moving with consistent visual appearance. The
normal(oid

j ) state is assigned when two conditions are satisfied. First, the ob-
ject finds isMaxo′j∈I(k)(o

′
j,o

id
i ) matching weight with its previous possibilities
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Frame: 24
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Figure 5.8: shows the logical inferencing for normal behavioral state on sample
frame of PETS2009 [3] dataset. a) and b) show the visual representation of two
consecutive frames where two objects are moving with normal behaviors N and
unique identities 0 and 2. c) shows the logical interpretation of behavior inference
mechanism which is based on two conditions: first, object finds isMax() relation-
ship (i.e., matching weight) with its previous possibilities at frame k− 1; second,
object should fall in inSearch_Space() region predicted based on previous possibi-
lities at frame k−1. When these conditions are satisfied (i.e., true), the normal(oid

j )
behavioral state along with respective identity is assigned to objects.

oid
i at frame k−1. Second, object should falls in inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

region which is predicted based on previous possibilities oid
i at frame k− 1.

When these two conditions are satisfied, the normal(oid
j ) behavioral state is

assigned to objects. The qualitative list of behaviors Ql is updated where
normal behavioral state is set to true8 (N→ T ) and other behaviors are assi-

8In all of these axioms, T refers to true and F refers to false flag as short terms representation.
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gned false flag. In the last, the identity of the previous possibilities is assi-
gned to the detected object at frame k through Assign_Id(oid

j ) function. Fi-
gure 5.8(a-b) demonstrates this situation on sample frame of PETS2009 [3]
dataset where two objects are moving with normal conditions while maintai-
ning their identities in consecutive frames. Figure 5.8(c) describes the logical
interpretation of normal(oid

j ) axiom.

Frame: 15 Frame: 16

a) b)?

Tracking Axiom for New Behavioral State 

0:
1

Nok− 0: ( () _ () )No if Max Search Space truek = ∧ ==

2: ( () _ () )Neo if Min Search Space truek = ∧¬ ==

?

c)

Figure 5.9: shows the logical inferencing for new behavioral state on sample frame
of PETS2009 [3] dataset. a) and b) show the visual representations of two consecu-
tive frames where a new object is entered in the scene and assigned new behavioral
state (Ne) along with id 2. c) shows the logical interpretation of behavior infe-
rence mechanism based on two conditions: first, object finds isMin() relationship
with previous possibilities at k− 1; second, object does not fall in any predicted
inSearch_Space() region at Frame k−1. When these conditions are satisfied (i.e.,
true), new(o

′
j) behavioral state with new id is assigned to object.
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• New State Axiom: This axiom infers the new behavioral state of the object
and is triggered when new tracking event nactive occurs.

i f nactive == true

new(o
′
j) =

{
isMino′j∈I(k)(o

′
j,o

id
i )∧¬ inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

}
Ql = {N→ T,Oc→ F,Ov→ F,R→ F,E→ F,Ne→ T}
Assign_Id(oid

j ) = {idnew}

We have developed the above axiom to assign the new behavioral state (Ne→
T ) when a new object is entered in the scene. The new(o

′
j) state is assigned

when two conditions are satisfied. First, the object finds isMino′j∈I(k)(o
′
j,o

id
i )

correspondence (i.e., matching weight) with the previous possibilities oid
i at

frame k−1. Second, object does not fall in any inSearch_Spaceo′j∈I(k)(o
′
j,o

id
i )

region which is predicted based on previous possibilities oid
i at frame k− 1.

When these two conditions are satisfied, the new(o
′
j) behavioral state is as-

signed to object. The qualitative list of behaviors Ql is updated where both
new and normal behavioral states are set to true (N → T,Ne→ T ) and the
other behaviors are assigned false flag. In the last, a new unique identity
(idnew) is assigned to the object from the identity pool. In Figure 5.9(a-b),
we have demonstrated this situation on sample frame of PETS2009 [3] da-
taset when an object is entered in the Frame 16. Figure 5.9(c) describes the
logical interpretation of new(o

′
j) axiom.

• Exit State Axiom: This axiom assigns the exit behavioral state when the
object leaves the scene (i.e., field of view).

i f eexit == true

exit(oid
i ) =

{
isMino′j∈I(k)(o

′
j,o

id
i )∧¬ inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

}
Ql = {N→ F,Oc→ F,Ov→ F,R→ F,E→ T,Ne→ F}

Deative_Id(oid
i )o′i∈I(k−1) =

{
oid

i

}
We have developed the above axiom to assign the exit behavioral state (E→
T ) when the object leaves the scene’s field of view. The exit(oid

i ) state is assi-
gned when two conditions are satisfied. First, object finds isMino′j∈I(k)(o

′
j,o

id
i )
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Figure 5.10: shows the logical inferencing for exit behavioral state on sample frame
of PETS2009 [3] dataset. a) and b) show the visual representations of two conse-
cutive frames where the object with id 0 left the scene in Frame 30 and assigned
exit behavioral state (E). c) shows the logical interpretation of behavior inference
mechanism which is based on two conditions: first, the object finds isMin() re-
lationship (i.e., matching weight) with possibilities at frame k; second, the object
does not fall in any inSearch_Space() region. When these two conditions are sa-
tisfied (i.e., true), the exit(oid

i ) behavioral state is assigned along with deactivating
the unique identity of the object.

correspondence (i.e., matching weight) with the possibilities oid
i at frame

k− 1. Second, object does not fall in any inSearch_Spaceo′j∈I(k)(o
′
j,o

id
i )

region. When these two conditions are satisfied, exit(oid
i ) behavioral state

is assigned to that object. The qualitative list of behaviors Ql is updated
where exit behavioral state is set to true (E → T ) and the other behaviors
are assigned false flag. In the last, the assigned unique identity is deactiva-
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ted Deative_Id(oid
i )o′i∈I(k−1). Figure 5.10(a-b), demonstrates this situation

on sample frame of PETS2009 [3] dataset at Frame 30. Figure 5.10(c) des-
cribes the logical interpretation of exit(oid

i ) axiom.

• Overlaper State Axiom: This axiom infers the overlaper behavioral state
when occlusion tracking event oactive is activated.

i f oactive == true

overlaper(oid
j ) =

{
isMaxo′j∈I(k)(o

′
j,o

id
i )∧ inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

}
Ql = {N→ T,Oc→ F,Ov→ T,R→ F,E→ F,Ne→ F}

Assign_Id(oid
j ) =

{
oid

i

}
Make_Child(oid

j+1i f (∃(oid
j+1∈I(k))∈(Ql={oc==T})),o

id
j i f (∃(oid

j ∈I(k))∈(Ql={ov==T})))

The axiom is developed to assign the overlaper behavioral state (Ov→ T )
when the objects intercept each other during motion. The overlaper(oid

j )

state is assigned when two conditions are satisfied. First, object finds the
isMaxo′j∈I(k)(o

′
j,o

id
i ) correspondence (i.e., matching weight) with the possi-

bilities oid
i at frame k−1. Second, object falls in inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

region. When these two conditions are satisfied, overlaper(oid
j ) behavioral

state is assigned to object. The qualitative list of behaviors Ql is updated
where both overlaper and normal behavioral state9 are set to true (Ov →
T,N→ T ) and the other behaviors are assigned false flag. The unique identity
is transferred with Assign_Id(oid

j ) function. Make_Child() function creates
a parent-child relationship, and overlaper becomes the parent of the occluded
object. After the occlusion, child adopts the visual features of its parent and
is updated frame-by-frame using depth first search strategy. Figure 5.11(a-b)
demonstrates this situation on sample frame of PETS2009 [3] dataset when
two objects occlude each other in Frame 20. Figure 5.11(c) describes the
logical interpretation of overlaper(oid

j ) axiom.

• Occluded State Axiom: This axiom infers the occluded behavioral state
when object disappears due to the interception with other object.

9As, the overlaper object keeps its visual attributes while occlusion, therefore, we have also
assigned the normal behavior along with overlaper behavior.
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Figure 5.11: shows the logical inferencing for occluded and overlaper behavioral
states during occlusion on sample frame of PETS2009 [3] dataset. a) and b) show
the visual representations of two consecutive frames where objects with identities 0
and 2 intercept each other in Frame 20. It is notable that object with identity 2 keeps
its visual appearance visible and hides the object with identity 0, so it is assigned
overlaper behavioral state Ov. In contrast, object with identity 0 is fully occluded
and assigned occluded behavioral state Oc. c) shows the logical interpretation of
behavior inference mechanism which is based on two conditions: first, measuring
the objects relationship with possibilities at frame k−1; second, searching objects
the predicted in inSearch_Space() region. When these two conditions are satisfied
the corresponding behavioral states are assigned to objects.

i f oactive == true

occluded(oid
j ) =

{
isMino′j∈I(k)(o

′
j,o

id
i )∧ inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

}
Ql = {N→ T,Oc→ T,Ov→ F,R→ F,E→ F,Ne→ F}

Assign_Id(oid
j ) =

{
oid

i

}
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We have developed the above axiom to assign the occluded behavioral state
(Oc→T ) when objects intercept each other during motion. The occluded(oid

j )

state is assigned when two conditions are satisfied. First, object finds the
isMino′j∈I(k)(o

′
j,o

id
i ) correspondence (i.e., matching weight) with the possibi-

lities oid
i at k−1. Second, the object falls in the inSearch_Spaceo′j∈I(k)(o

′
j,o

id
i )

region. When these two conditions are satisfied, the occluded(oid
j ) beha-

vioral state is assigned to object and it becomes the child of the overlaper
object. The qualitative list of behaviors Ql is updated where occluded beha-
vioral state is set to true (Oc→ T ) and the other behaviors are assigned false
flag. The unique identity is transferred with Assign_Id(oid

j ) function. Fi-
gure 5.11(a-b) demonstrates this situation on sample frame of PETS2009 [3]
dataset when two objects occlude each other in Frame 20. In Figure 5.11(c),
describes the logical interpretation of the occluded(oid

j ) axiom.

• Reappear State Axiom: This axiom infers the object’s reappear behavioral
state when occlusion is ended and split tracking event sactive is activated.

i f sactive == true

reappear(oid
j ) =

{
isMaxo′j∈I(k)(o

′
j,o
∗id
i )

}
Ql = {N→ T,Oc→ F,Ov→ F,R→ T,E→ F,Ne→ F}

Assign_Id(oid
j ) =

{
o∗idi

}
The above axiom is developed to assign the reappear behavioral state (R→
T ) when visual interception among the objects is ended. The reappear(oid

j )

state is assigned when object finds isMaxo′j∈I(k)(o
′
j,o
∗id
i ) correspondence (i.e.,

matching weight) with the list of occluded objects o∗idi . When this condi-
tion is satisfied reappear(oid

j ) behavioral state is assigned to that object.
The qualitative list of behaviors Ql is updated where both reappeared and
normal behavioral states are set to true (R→ T,N → T ) and the other be-
haviors are assigned false flag. The unique identity of occluded object is
assigned with Assign_Id(oid

j ) function. Figure 5.12(a-b) demonstrates this
situation on sample frame of PETS2009 [3] dataset when the object is reap-
peared in Frame 23. Figure 5.12(c) describes the logical interpretation of
reappear(oid

j ) axiom.
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Frame: 20 Frame: 23
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Figure 5.12: shows the logical inferencing for reappear behavioral state a on sample
frame of PETS2009 [3] dataset. a) and b) show the visual representation of two
consecutive frames where object with identity 0 is reappeared (R) from occlu-
ded state in Frame 23. c) shows the logical interpretation of behavior inference
mechanism which is based on a condition that object finds maximum correspon-
dence (i.e., matching weight) with list of occluded objects. When this condition is
satisfied (i.e., true), the corresponding behavioral state (i.e., reappear) is assigned
to object.

Integrity Constraints

In this section, we have defined the constraints which are modeled by keeping
object behaviors under consideration. These constraints work with tracking axioms
to incorporate the real-time situations and motion-based obligations.

• Constraint 1: when the process of tracking is initialized, k = 1, all the objects
detected at I(k) are labelled as new (Ne→ T ) and normal (N→ T ) behavioral
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states. This statement is only valid for initialization process.

∀Ql = {N→ T ∧Ne→ T} i f k = 1

• Constraint 2: no behavioral state is assigned other than normal behavior (N)
during ideal tracking. If any other state is activated, then it should be discar-
ded until the valid tracking event is activated.

∃Ql = {N→ T}

• Constraint 3: when the occlusion event oactive = true is observed, the ob-
ject which is assigned the overlaper state (Ov→ T ) also possess the normal
state (N → T ). During occlusion, the visual characteristics are not intruded
and the association is possible over time unlike occluded object.

∃Ql = {N→ T ∧Ov→ T}

• Constraint 4: when an object is overlapped by another object, then its be-
havioral states is set to occluded (Oc→ T ) and all the other behaviors are
assigned false flags (i.e., F).

∃Ql(Oc→ T )→ ((N∧Ne∧R∧E ∧Ov)→ F))

In this approach, each detected object at I(k) is assigned a unique id with res-
pective behavioral states10. Now, the next task is to perform object localization
at each time instance. In the following, we have developed a Kalman filter based
tracking system to estimate the object trajectories over time.

5.5 Kalman Filter Based Tracking System

One of the essential steps in tracking framework is to localize the objects. To
achieve this task, many algorithms have been proposed that are used for stochas-
tic estimation of object locations (i.e., trajectory) from noisy measurements for
instance, object location and its velocity. One of the well-known approaches is

10Normal (N), New (Ne), Exit (E), Overlaper (Ov), Occluded (Oc), Reappear (R).
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Kalman filter [109], a recursive solution to the discrete data linear filtering pro-
blem. However, originally this tool is used for linear systems while implying Kal-
man filter in tracking problem may violate the linearity condition. To address this
fundamental limitation, various modifications have been suggested in literature for
instance, Extended Kalman filter. However, in our suggested approach, the linea-
rity condition is maintained even under non-linear situations. So, we have extended
the applicability of original Kalman filter for both the linear and non-linear system
without making any modification in its actual contents. Practically, the basics of
the Kalman filter are a set of mathematical equations that operates recursively in
the predictor-corrector way to minimize the estimated error covariance until some
presumed conditions are met [110]. Kalman filter has been an extensively resear-
ched topic, particularly in the area of assisted navigation and object tracking in
computer vision.

In our tracking framework, each detected object with unique identity is modeled
as a linear system and the Kalman filter is used to estimate the state of the objects at
each time instance k. For this purpose, the available measurements zk are exploited
to estimate11 the state of the object ~xk. Before, starting the estimation process,
the estimator should take these requirements into account after satisfying certain
assumptions about the noise that affects the tracking system of an object:

• the average value of our state estimate is equal to the average value of the true
state to avoid biased state estimation. Mathematically, the expected value of
the estimate should be equal to the expected value of the state.

• a state estimate should deviate from the true state as low as possible. Mathe-
matically, the estimator should find the smallest possible error variance.

The Kalman filter based tracking system for each detected object employed here
is derived from its original formulation where the measurements z ∈Rm and state
of the object x ∈Rn are observed at each time instance k. In our tracking system,
each Kalman filter is described by its process ~xk which is defined by the center of
gravity (i.e., xs and ys) and speed of objects (i.e., dxs/dk and dys/dk), measurement
model ~zk, and available information about the model’s initial conditions which are

11As, the objects localized (i.e., system) behavior can be expected according to the state equation
given the measurement information of the position and velocities so, how can we determine the best
estimate of the state~xk?
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governed by linear stochastic difference and measurement equation respectively:

~xk =


xs

ys

dxs/dk
dys/dk

 , ~zk =


xm

ym

dxm/dk
dym/dk

 , (5.14)

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , H =

[
1 0 0 0
0 1 0 0

]
, (5.15)

~xk = A~xk−1 +~wk−1, (5.16)

~zk = H~xk +~vk, (5.17)

The matrix A in Equation 5.16 relates the state at the previous time k− 1 to the
state at current time k, in the absence of either a driving function or process noise
~wk−1. H in the measurement Equation 5.17 relates the state ~xk to the measurement
~zk. In practice, both A and H matrices can change with each time step, but here we
assume that it is constant.

The random variables ~wk−1 and ~vk in Equations 5.16 and 5.17 represent the
process and measurement Gaussian white noise, respectively. Both noises are in-
dependent of each other and are defined as:

P(w)≈N (0,Q) (5.18)

P(v)≈N (0,R) (5.19)

In practice, the process noise covariance Q and measurement noise covariance R
matrices might change with each time step or measurement, but we assume that it
remains constant.

A Kalman filter based tracker estimates a process using a form of feedback
control: the filter estimates the process state at some time k and then obtains the
feedback in the form of noisy measurements. The equations for the Kalman filter
fall into two groups: time-update equations and measurement-update equations.
The time-update equations are responsible for projecting forward (i.e., in time),
the current state and error covariance estimates to obtain the a priori estimates
for the next time step. The measurement-update equations are responsible for the
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feedback (i.e., for incorporating a new measurement into a priori estimate) to obtain
an improved a posteriori estimate. Moreover, the time-update equations can also be
thought of as predictor equations, while the measurement-update equations can be
thought of as corrector equations. Indeed, the final estimation algorithm resembles
that of a predictor-corrector algorithm for solving the numerical problems. Both
time and measurement update are presented as follows:

5.5.1 Time-Update Equations

In the time-update equation, the process begins with system initialization by assu-
ming the initial values for error covariance estimate with Pk−1 or P0 = 0. So the
filter begins with an initial a posteriori state estimate x̂k or x̂0 = 0. The time-update
equation [110] are:

~x−k = A~xk−1 (5.20)

P−k = APk−1AT +Q (5.21)

where the time-update Equations 5.20, and 5.21 project the state and covariance
estimates forward from time k−1 to k where Q is from Equation 5.18.

5.5.2 Measurement-Update Equations

The measurement-update [110] Equations 5.22, 5.23, and 5.24 are defined as:

Kk = P−k HT (HP−k HT +R)−1 (5.22)

~xk =~x−k +Kk(~zk−H~x−k ) (5.23)

Pk = (I−KkH)P−k (5.24)

The first task during the measurement-update is to compute the Kalman gain Kk

in Equation 5.22. The next step is to measure the actual process to obtain ~zk, and
then to generate a posteriori state estimate~xk by incorporating the measurement in
Equation 5.23. The final step is to obtain a posteriori error covariance estimate Pk

from Equation 5.24. After each time and measurement-update pair, the process is
repeated with the previous a posteriori estimate that is used to project or predict
new a priori estimates.

In our framework shown in Figure 5.1, when a new moving object is detected,
a new tracker is assigned to it which estimates the object locations based on given
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Kalman filter based tracking (recursive cycle)
Predict from process model
Measurement from image
Correct the prediction

predict

correct

measure

k-1k-2 k-5k-3k-4

Figure 5.13: shows the object localization process of Kalman filter based tracking
on a sample frame of PETS2009 [3] sequence. During object localization, a Kal-
man filter based tracker estimates a process using a form of feedback control: the
filter estimates (i.e., predict) the process state at some time k and then obtains the
feedback in the form of noisy measurements (i.e., correct).

states ~xk and measurement ~zk values. After the initialization, in the next frames,
the normal state updation continues until any other tracking events (i.e., occlusion,
split, new, or exit) are detected which is a linear situation for Kalman filter based
tracker as shown in Figure 5.13. However, when the objects are occluded, the
linearity of the tracking system is effected. In this non-linear situation, the Kalman
filter of the occluded object follows the states and measurement information of
the corresponding overlaper object. In contrast, during the split, the Kalman filter
resumes the tracking by taking into account the parameters of its own object to
perform estimations. In this manner, we are able to perform object localization
with a classical Kalman filter in a linear and non-linear situations under occlusion
and split of objects in complex scenarios.

5.6 Experiments and Discussion

In this section, we demonstrate the performance of proposed quantitative and qua-
litative approaches in the tracking framework. Several experiments (see Appen-
dix A.4 for more results) are conducted on benchmark video sequences. Besides,
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Section 5.6.4 and 5.6.5 provide a detailed quantitative analysis along with discus-
sion of results and context of applicability.

5.6.1 IESK Dataset

The initial dataset is selected for the development of ideas intentionality from
IESK, OvG University called IESK dataset. The videos are filmed in the vici-
nity of campus to capture the video footages containing the real attitude of objects
using a single static camera. The IESK dataset been chosen for the following de-
monstration because it has many potential difficulties:

• no prior arrangement is done to avoid any fabricated situations,

• scene noise particularly camera jitter due to varying and windy weather,

• high shadows are observed due to weather variations,

• objects are occluded multiple times during motion over time.

Figures 5.14, 5.15, 5.16 and 5.17 show key frames from important instances of the
sequences. The results are visualized by trajectory of the object and labeling of
object identity with respective behavior. Moreover, Tracking and Behavior Infor-
mation Interface (TnBII) Panel is the program interface which describes the overall
information about all the information that includes: object identities with beha-
viors, object pace, orientation, and tracking events for each corresponding frame.
Figure 5.14 demonstrates the beginning of tracking and behavior understanding
task as:

Frame 39: This frame shows the initial situation of the tracking and behavior un-
derstanding. All the detected objects are assigned unique ids 0, 1, and 2
with trajectories indicating their tracks. The TnBII panel demonstrates the
pace (i.e., pixel motion) and orientation (direction in degree) of the objects.
It is observed that yellow truck and red cars shared similar spatial region.
Therefore, it is not possible to distinguish between them and the same iden-
tity is assigned.

Figure 5.15(a) and (b) demonstrate the tracking in complex situations as:

Frame 67: In this frame, the occlusion is observed multiple times for the object
with id 3 during parallel and cross movements in the scene with objects ha-
ving ids 0 and 4. Moreover, the tracking event indicates that occlusion event
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a) b)

Figure 5.14: shows the results on IESK dataset for Frame 39. a) shows the visual
scene captured for Frame 39 which represents the ideal situation where three ob-
jects are detected and tracked. b) shows the program interface which is named as
TnBII panel to demonstrate information about behavior, orientation (i.e., degrees),
and pace (i.e., pixel motion).

is observed in TnBII panel, and it is demonstrated that object with id 3 is
occluded by the object with id 0. It is also observed that pace of the object
with id 0 is increased due to occlusion.

Frame 76: This frame shows the split event and its impact on objects trajectories
and behaviors. Moreover, a new object is appeared in the scene and assigned
a unique id 5 from the identity pool. The object with id 3 carries the reappear
behavior and continues its motion in the scene. The TnBII panel demons-
trates the adapted information, such as the objects with ids 1 and 2 exit from
the scene, the objects with ids 0 and 4 are moving with normal behavior.

Figure 5.16(a) and (b) demonstrate the tracking during occlusion and split situa-
tions as:

Frame 82: This frame shows the occlusion situation which is observed between
objects with id 0 and 5. The object with id 0 is set to overlaper behavioral
state whereas the object with id 5 indicates the occluded behavior. It is also
noticed that object with id 4 and 3 is also under occlusion and the respective
behaviors are indicated in TnBII panel.

Frame 88: This frame shows the split event and its impact on objects trajectories
and behaviors. The occlusion between objects with id 0 and 5 is ended, and
the object with id 5 is reappeared and continues its normal motion. The TnBII



5.6. Experiments and Discussion 99

a) b)

c) d)

Figure 5.15: shows the results of tracking and behavior understanding on IESK
dataset for Frame 67 and Frame 76. a) and c) show the visual scene captured
for Frame 67 and Frame 76 which are representing the occlusion and split situa-
tion of objects with ids 0 and 3. In b) and d), the TnBII panel demonstrates the
behavioral state of the objects along with orientation and pace. It can also noticed
that both occlusion and split events are active in corresponding frames.

panel demonstrates the updated information about the object behaviors in the
scene.

Figure 5.17(a) and (b) demonstrate specifically the new and exit tracking events
with corresponding behaviors as:

Frame 49: This frame shows a new object which is entered in the scene from the
back view and is assigned a unique id 3. This object continues its path till
the end while the events of occlusion and split are observed multiple times,
and the behavior of the object is updated accordingly.

Frame 103: In this frame, object with id 3 has left the scene. Its respective tra-
cker terminates the estimation task, and the identity is released so that it will
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a) b)

c) d)

Figure 5.16: shows the results of tracking and behavior understanding on IESK
dataset for Frame 82 and Frame 88. a) and c) show the visual scene captured
for Frame 82 and Frame 88 which are representing the occlusion and split situation
for objects with id 0 and 5. In b) and d), TnBII panel demonstrates behaviors state
of the objects along with orientation and pace. It can also be noticed that both
occlusion and split events are active in corresponding frames.

be assigned to other objects. It is notable from the trajectory of the object
shows that how the object keeps its track during motion. The TnBII panel
demonstrates updated information about the object behavior, its pace, and
orientation along with the respective tracking events.

Discussion

The proposed approach is tested on a traffic sequence where objects are moving
in both crossing and parallel tracks as shown in above Figures. This complexity
is due to the frequent occlusions and separations which are observed in short time
intervals. Moreover, camera is not facing the road instead it is tilted which results
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a) b)

c) d)

Figure 5.17: shows the results of tracking and behavior understanding on IESK
dataset for Frame 49 and Frame 103. a) and c) show the visual scene captured
for Frame 49 and Frame 103 which are representing the entry and exit situations
of object id 3. In b) and d), TnBII panel demonstrates the behavioral state of the
objects along with orientation and pace. It can also noticed from the tracks that this
object has undergone many occlusions and splits while crossing through the scene.

in a perspective view. Due to this fact, the significant variation in object’s size
and proximity is observed from start to end. Another challenging aspect of this
sequence is the variation in lights due to the weather (i.e., cloudy to sunny). The-
refore, it is improved with our object detection method. Throughout the scene, all
real-time events are observed for instance, new, exit, occlusion, and split.

5.6.2 PETS2006 Dataset

The second dataset which is used for testing is taken from PETS2006 [1]. The
PETS series of workshops make available public datasets for tracking and beha-
vior understanding tasks which are provided with information about the actions,
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a) b)

Figure 5.18: shows the results of tracking and behavior understanding on
PETS2006 [1] dataset for Frame 3. a) shows visual scene which is captured
for Frame 3 representing the ideal situation where three objects are detected and
tracked. b) TnBII panel demonstrates information about behavioral states, orienta-
tion, and pace of the object.

locations and behaviors of the actors contained in it. Moreover, the PETS2006 [1]
video sequence has been chosen for the following demonstration because it has
many potential difficulties for people tracking:

• people strolling in the scene on the usual walk way,

• people occlude each other as they walk,

• high shadows of people due to strong background reflections,

• multiple people occlude each other and parted again.

Figure 5.18 demonstrates the tracking in normal situation as:

Frame 3: The detected objects are identified by their unique identities and associa-
ted behavioral states from our integrated approach of the framework where
the corresponding trajectories demonstrate the outcome of tracker. In the fol-
lowing, it is examined that how the proposed approach functions in complex
situations.

Figure 5.19(a) and (b) show the complex situations:

Frame 22: This scene shows the occlusion situation when multiple objects with
ids 1, 2, and 3 interact with each other. As a consequence, the object’s
tracker is unable to advance the localization process as the occluded object
is hidden by overlaper.
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a) b)

c) d)

Figure 5.19: shows the results of tracking and behavior understanding on
PETS2006 [1] dataset for Frame 22 and 34. a) and c) show the visual captured
for Frame 22 and Frame 34 representing the occlusion and split situations of ob-
jects with ids 1, 2 and 3. In b) and d), TnBII panel demonstrates the state of the
objects along with orientation and pace. Besides, it can also be noticed that both
occlusion and split events are active in corresponding frames.

Frame 34: This scene indicates the split event which is observed when the oc-
cluded object reappears from the occlusion phase. The tracker re-estimates
its path based on its own visual characteristics and physical location. The
TnBII panel demonstrates the respective behaviors of objects during normal,
occluded, and reappear situations.

Figure 5.20(a) and (b) demonstrates the occlusion and split situations as:

Frame 44: This scene shows the occlusion situation when two objects with ids 0
and 1 interact with each other. The object with id 0 is assigned overlaper
behavioral state whereas the object with id 1 is assigned the occluded beha-
vioral state. The tracker of occluded object is unable to advance localization.
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a) b)

c) d)

Figure 5.20: shows the results of tracking and behavior understanding on
PETS2006 [1] dataset for Frame 44 and 58. a) and c) show the visual scene cap-
tured for Frame 44 and Frame 58 which are representing the occlusion and split
situations of objects with id 0 and 1. In b) and d), the TnBII panel demonstrates the
state of the objects along with orientation and pace. It can also noticed that both
occlusion and split events are active in corresponding frames.

Frame 58: This frame indicates that the split event is observed and the occluded
object is reappeared from the occlusion phase. The tracker re-estimates its
path based on its own visual characteristics and physical location. The TnBII
panel demonstrates the respective behavior of objects during normal, occlu-
ded, and reappear situations. It is also noticeable that object with id 4 keeps
its motion and state quite suspiciously in the scene.

Discussion

Due to high contrast and reflecting surface of the ground, strong shadows are ap-
peared and detected as object itself. Moreover, appearances of objects are quite
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similar (i.e., objects are wearing dark coats) which intensify load on our matching
and identity management algorithm. However, despite of these issues, we are able
to successfully perform the tracking and behavior understanding in a unified man-
ner. In Appendix, Figure A.8 shows visual results of segmentation and feature
detection.

5.6.3 PETS2009 Dataset

The third dataset used for testing is PETS2009 [3] dataset which is especially aimed
for crowded scenes. This dataset is accessible publicly for tracking and behavior
understanding tasks along with the information about the actions, locations, and
behaviors of the actors. We have selected the dataset of the city center depicting
various object behaviors, such as the random walk, standing in a group, and interac-
tion with other passing objects (i.e., hand shake or meeting gestures). The scene is
captured in many views but to achieve the tracking and behavior understanding, we
have selected the view in which the visibility of objects are not very obscured. The
PETS2009 [3] video sequences have been chosen for the following demonstration
because it has many potential difficulties for people tracking:

• stationary people standing on the way of the scene in the group,

• people vary the scale while walking,

• people occludes multiple times in the scene.

In Figure 5.21 shows the normal situation:

Frame 10: In this frame, there are three objects but one object is standing alone
and assigned id 0, and two people are standing in the group and assigned id 1.
Object with id 0 is walking in the forward direction where the object with id 1
is leaning in the scene, and currently in standing position as indicated by their
pace and orientation in TnBII panel.

Figure 5.22(a) and (b) show the multiple occlusion and split situations as:

Frame 33: In this frame, objects with id 2 and id 0 occlude each other during
the passage on their ways. The behavior of these objects are updated due to
occlusion. Object with id 0 becomes overlaper and object with id 2 becomes
occluded. As the contextual information is lost, the tracker of object with
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a) b)

Figure 5.21: shows the results of tracking and behavior understanding on
PETS2009 [3] dataset for Frame 10. a) shows the visual scene captured for Frame
10 representing the ideal situation where three objects are detected and tracked. b)
shows the TnBII panel demonstrating the information about behavior, orientation
and pace of the object.

id 2 is unable to estimate the corresponding locations. This unusual situation
(i.e., non-linearity) is handled by the behavioral states of the objects. The
TnBII panel shows the corresponding information about the object behaviors
and the tracking events.

Frame 41: This frame shows the split event where the occluded object with id 2
is reappeared again and retains its visual information. The tracker estimates
the location based on the states prior to occlusion. The resulting track is
treated by b-spline for smooth representation. The TnBII panel shows the
corresponding information about object behaviors and the tracking events.

Figure 5.23(a) and (b) show the occlusion due to interaction and split situations as:

Frame 57: In this frame, objects with ids 1 and 3 are occluded due to usual hand
shake and interaction. Object with id 1 becomes overlaper and object with
id 3 becomes occluded. As the contextual information is lost, tracker is
unable to estimate the corresponding locations of object with id 1. The Tn-
BII panel shows corresponding information about object behaviors and the
tracking events.

Frame 71: In this frame, the objects are split and the occluded object with id 3 is
reappeared again and retains its visual information. The tracker estimates the



5.6. Experiments and Discussion 107

a) b)

c) d)

Figure 5.22: shows the results of tracking and behavior understanding on
PETS2009 [3] dataset for Frame 33 and Frame 41. a) and c) show the visual scene
captured for Frame 33 and Frame 41 which are representing the occlusion and split
situations of objects with ids 1 and 2. In b) and d), the TnBII panel demonstrates
the state of objects along with orientation and pace. It can also be noticed that both
occlusion and split events are active in corresponding frames.

location based on the states prior to occlusion. The TnBII panel shows the
corresponding information about object behaviors and the tracking events.

Discussion

The above sequence tries to depict the object behaviors in the places like city cen-
ters where the sequence containing objects with different behaviors. For instance,
objects are standing in the group or interacting through hand-shake while crossing
each other. This situation increases the level of complexity at various levels, such
as object detection may fail when objects are standing for a longer period of times.
The results demonstrate that both the tracking and behavior understanding during



108 Chapter 5. Tracking and Behavior Understanding in Non-Crowded Scenes

a) b)

c) d)

Figure 5.23: shows the results of tracking and behavior understanding on
PETS2009 [3] dataset for Frame 57 and Frame 71. a) and c) shows the visual
captured for Frame 57 and Frame 71 which are representing the occlusion and
split situations between objects with ids 1 and 3. In b) and d), the TnBII panel
demonstrates the state of objects along with orientation and pace. Besides, both
occlusion and split events are active in corresponding frames.

motion is performed successfully along with other related information which is
shown in TnBII panel at each time instance. In Appendix, Figure A.9 shows visual
results of segmentation and feature detection.

5.6.4 Evaluation

We have evaluated our tracking and behavior understanding framework on the ba-
sis generating the correct identities and behaviors corresponding to objects during
tracking. For such evaluation, the first essential requirement is ground truth. For
this purpose, we have manually assigned the identities to objects and interpret their
respective behaviors. Finally, the performance is evaluated by computing preci-
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sion and recall measures. In the context of identities (i.e., analogous to tracks) and
behaviors, precision and recall measures are defined as follows:

precision (pre.) =
Number o f correct identities or behaviors

Number o f established identities or behaviors
, (5.25)

recall (rec.) =
Number o f correct identities or behaviors
Number o f actual identities or behaviors

, (5.26)

where actual identities or behavior denotes the identities or behaviors available in
the ground truth. Moreover, the evaluation is performed based on their ability to
detect tracking events: 1) deal with entry and exit of objects, 2) handles occlusion
event, and 3) handles the split event when objects are reappeared from occlusion.

Table 5.3: Precision and Recall of Tracking and Behavior Understanding Frame-
work for IESK, PETS2006 [1] and PETS2009 [3] datasets

Dataset identities normal overlaper occluded reappear new exit

pre. rec. pre. rec. pre. rec. pre. rec. pre. rec. pre. rec. pre. rec.

IESK 0.88 0.89 0.94 0.90 0.91 0.91 0.81 0.85 0.85 0.9 0.83 0.79 0.65 0.83

PETS

2006

0.86 0.94 0.98 0.85 0.90 0.95 0.85 0.99 0.73 0.99 1 1 0.69 0.9

PETS

2009

0.90 0.89 0.80 0.81 0.88 0.79 0.91 0.90 0.90 0.90 1 1 0.91 0.91

Avg

Result

0.87 0.89 0.91 0.85 0.90 0.88 0.85 0.91 0.83 0.93 0.94 0.93 0.75 0.88

Table 5.3 presents the performance values for the framework which are pro-
posed for tracking and behavior understanding on test sequences. It is important
to observe that the precision and recall of object identity recognition and normal
behaviors are more prominent in performance. The precision and recall of the exit
and new event are interrelated, because, if the object is wrongly classified as exit
behavior then in the next instance, the algorithm will treat that object as a new.
It is also observed that the performance of overlaper behavior is dominant over
occluded behavior and it is due to the situation when the object features are over-
shadowed during the early phase of occlusion. The performance of reappear event
is also linked to some other factors, such as if the object is misclassified during
occlusion, then it will affect the reappear behavior as well. So, the recall is better
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but precision is degraded.
Table 5.4 presents the performance values for the tracking event detection al-

gorithm which is developed along with the tracking and behavior understanding
framework. Infact, the detection of accurate events will lead to significant impro-
vements in the results of Table 5.3, in some way. For instance, the axiom is called
when a particular tracking event is activated. However, the mechanism of assigning
identities, their management, and behavior inferencing is achieved by incorporating
tracking axioms which control this type of discrepancy up to some extent in inte-
grated qualitative and quantitative approaches. Moreover, it is observed that the
recall values are dominant over precision because of many factors. For instance,
mis-detections of objects may result in satisfying the condition for the exit events
which consequently activates the new events in the next frames. However, the de-
veloped constraints for object states prevent these situations, but at the same time it
affects the precision of the normal events (this event is defined when no conflicted
events is observed).

Table 5.4: Precision and Recall of Tracking event detection for IESK,
PETS2006 [1] and PETS2009 [3] datasets.

Dataset normal occlusion split new exit

pre. rec. pre. rec. pre. rec. pre. rec. pre. rec.

IESK 0.81 0.93 0.85 0.91 0.85 0.79 0.81 0.78 0.81 0.76

PETS2006 [1] 0.75 0.91 0.88 0.86 0.81 0.81 0.82 0.791 0.76 0.77

PETS2009 [3] 0.83 0.82 0.79 0.701 0.76 0.89 0.89 0.801 0.77 0.83

Avg Result 0.79 0.88 0.84 0.82 0.80 0.83 0.83 0.79 0.78 0.79

Remaining Problems

The following situations still pose a problem for proposed framework:

• Identifying Objects in Groups: The strategy of identity management of an
object is, infact takes the input visual features driven from segmentation. As
a result, it is impossible to assign the identities to every object walking in
the group. For instance, two people walking side by side close to each other
in a manner that the segmentation results in a form of the single blob. The
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identity management scheme assigns all the objects in the group a single
unique identity which will not be manageable if the objects are separated at
a later time instance.

• Identifying Objects in Crowds: The strategy of the identity management and
tracker are applied on normal and complex situations where the objects visual
information is suffered from occlusion due to their intercepting pass ways in
the image. In the presence of the crowd or in large groups of people who
overlap in the image, it is impossible to continue individual object tracking.

• Regain the Objects Identities and Tracks: There are two types of limitations:
first, if the object lost its identity, it is difficult to regain it at a later stage.
Therefore, one solution is to register the object and then perform the simple
comparisons for the identification of the object once again. Second, if the
object has left the scene, and then it re-enters in the scene again, a new iden-
tity and tracker are assigned. The object will not be resuming with its old
identity and tracker because we manage an identity pool and when an iden-
tity is freed, it is assigned to other objects. This is the reason that the reader
will not find "fancy" numbers as identities to our objects.

5.6.5 Context of Use and Applicability

The proposed framework as the name suggests is aimed to not only track the objects
in an unconstrained environment but also to interpret their respective behaviors and
object specific information, such as the orientation of object or pace of the walk.
While researching on this novel idea, we keep the certain context of application
domain and are not limited to object surveillance only. For instance, the scene
analysis can be performed to see when the objects are entering and how their be-
haviors are changing throughout their passage in the scene. Similarly, the system
can provide assistance to the concerned users for tracing where the object is and
if the occlusion is observed, then object should reappear after split. Besides, they
can keep an eye on objects suspicious activities (e.g., strolling ) to avoid the unli-
kely situations. Other domains of application can be explored by incorporating the
contextual information and human assistance to construct the proposed framework
for more practical real scenarios.
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5.7 Discussion and Conclusion

In this chapter, we have presented the proposed framework for object tracking and
behavior understanding in non-crowded scenes along with experimental results and
performance evaluation. The proposed framework is comprised in a top to down
modular hierarchy where the low level processing, such as object detection, and
visual features is the first part. In parallel, another approach is introduced to de-
tect tracking events which triggers corresponding axioms. At the core of this fra-
mework, we have described the integrated quantitative and qualitative approaches
which combine the statistical measurements (i.e., BMW approach) with the logical
models (i.e., tracking axioms). Each detected object contains a unique identity and
behavioral states are maintained by corresponding approaches. Finally, Kalman
filter based tracking system is developed that estimates the objects spatial locations
over time. The experiments are conducted on three dataset of different nature to
test the performance. Moreover, the ground truth is made to perform evaluation,
and remaining issues are elaborated. In the end, we have described the context of
use and degree of applicability of the proposed approach in real situations such as
surveillance and behavior monitoring.
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CHAPTER 6

Behavior Understanding in Crowded
Scenes

In this chapter, we aim to investigate crowded scenes and propose a framework
to understand the crowd behaviors. We begin with the definitions and terms used
scientifically by the vision research community for crowd behavior analysis in Sec-
tion 6.1. The proposed framework is presented in Section 6.2 which describes each
of its components briefly. The core of the proposed approach is presented in Sec-
tions 6.3-6.7 to analyze the overall dynamics and to characterize the behaviors in
distinct regions. In Section 6.8, we demonstrate the applicability of our proposed
approach on the task of crowd behavior understanding. We have conducted experi-
ments on two challenging benchmark crowd datasets PETS2009 [3] and UMN [2]
to demonstrate the performances of the proposed framework. In addition, the com-
parative analysis, remaining problems, and context of applicability in real situations
are also presented. This chapter closes with conclusive discussion in Section 6.9.

6.1 Crowds and Crowd Behavior Analysis

A crowd is defined as a place that contains a high density of objects. For vi-
sion community, the term "crowded scene" makes a generic reference to real-scene
crowds. The constituted crowded scenes may contain a variety of objects and are
not limited to people only, such as cars, flock of birds or a school of fish. Further-
more, the crowd itself can be categorized according to its corresponding dynamics
into structured/coherent and unstructured/incoherent.

The crowd behavior understanding is a very broad term which in general refers
to the inference of collective or individual behaviors of subjects forming crowd.
However, the scope and context of crowd behavior understanding can be defined
flexibly. Usually, there are many levels of crowd behavior understanding and ana-
lysis: 1) global level, 2) intermediate level, and 3) individual level as shown in
Figure 6.1. One natural view of behavior understanding and anomaly detection is
that we attempt to analyze the components which naturally characterize the "nor-
mal behaviors". In contrast, "anomaly or abnormal behaviors" detection refers to
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Figure 6.1: presents crowd behavior analysis at different level in graphical mode.
Vertical axis defines the level of analysis whereas horizontal axis signifies the level
of complexity. It is notable that the complexity increases from low to high as we
move from global to individual level of behavior analysis.

the problem of pinpointing the locations that do not conform to normal behaviors
or fall in its respective labeled class (i.e., abnormal). In literature, many techniques
have been developed for anomaly detection based on certain threshold criteria and
offer context specific solutions, while others suggested more generic ways by spe-
cifying each behavior with certain labels for example normal, abnormal, or specific
categories of abnormality including running, dispersion, etc. Crowd behavior ana-
lysis and anomaly detection finds an extensive use in a wide variety of applications,
such as localizing suspicious movement of individuals and assistance in emergency
situations.

6.2 The Framework

Both abrupt activities and complex dynamics of individuals in crowd define collec-
tively the self-organizing mechanism. To achieve the goals of crowd behavior un-
derstanding and anomaly detection, the proposed algorithm assume that the trans-
port of individuals from one region to another is governed by optical flow in the
video sequence. The idea is motivated by observing the motion perception pheno-
menon under the influence of optical flow that reveals the regions of qualitatively
dominant dynamics. So, we can say that these regions have a direct correspon-
dence with the distinct dynamics of crowds which emerge from the interactions of
individuals with each other and with the environment.
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Figure 6.2: shows the proposed framework for crowd behavior understanding.

We propose a top to down approach which is staged in several phases to model
and analyze the characteristics of crowd behaviors as shown in Figure 6.2. The
proposed framework has four main modules: i) video segmentation and flow-block
formation, ii) flow computation and uncertainty handling with social entropy, iii)
modeling the flow with mixture of Gaussians, and iv) behavior classification. In
the following, we have briefly described these modules and later explained them in
the subsequent sections.

Video Segmentation and Flow-Block Formation: Our proposed approach begins
by extracting the foreground through segmentation. The video sequence is
windowed into overlapping but fixed size segments which we referred as vi-
deo segments. Each video segment is spatially divided into non-overlapping
blocks which we referred as flow-blocks1.

Flow Computation and Uncertainty Handling with Social entropy: The optical
flow is computed at frame level (i.e., globally) over the foreground. Next, we
make use of recent advances in the areas of social entropy for handling op-
tical flow uncertainties. The concept of social entropy is originated from the
field of social sciences and used in Social Entropy Theory [14]. Social en-

1Both block and flow-block terms are used interchangeably, unless mentioned.
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tropy empirically determines a quantitative metric that enables us to extract
the refined optical flow.

Modeling Flow with Mixture of Gaussians: The idea is to use mixture of Gaus-
sians to uncover the spatial organization of the flow cloud data in each flow-
block. At the conceptual level, the implication of using mixture of Gaussians
is to parameterize the computed flow cloud data in flow-block which helps
in assimilating the motion information in spatio-temporal space. In practical
terms, mixture of Gaussians quantifies and prototypes the flow cloud data
observed in flow-block over an interval (i.e., temporal space of flow-block)
containing significantly correlated and uncorrelated flow cloud data. There-
fore, it helps in revealing the representative characteristics of the underlying
dynamics, such as static objects moving with different paces. As, the flow
field is directly related to the dynamics of individuals in crowd, these charac-
teristics have a direct relationship with the behaviors of objects in crowded
scenes. So, these mixture of Gaussians distributions result in the distinct flow
patterns referred to as feature vectors for flow-block.

Behavior Classification: We have treated the crowd behavior understanding and
anomaly detection as two class problem. But a fundamental question is how
to model feature vector representing flow patterns in each flow-block. For
this purpose, we have performed classification first by using Support Vec-
tor Machine (SVM) [11]. In the next phase of experiments, we have used
Conditional Random Field (CRF) to localize the crowd behaviors. The per-
formance of both classification schemes are compared both quantitatively
and qualitatively.

6.3 Video Segmentation and Block Creation

Given a video sequence E with K frames, the first task is to perform segmentation
and extract foreground of the scene. We have used the suggested approach for
segmentation as described in Section 3.1 and an example of extracted foreground
is shown in Figure 6.3. As, it is observed in crowded scenes, the occupancy region
at every frame is important and provides the distinctive attributes. So, we begin by
marginalizing the video sequence into equally sized segments (i.e., video segments)
as presented in Figure 6.4(a). The selection of segment size depends upon the
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Figure 6.3: shows an example of detected foreground in the PETS2009 [3] crowded
scenes.

dataset and frame rate of the video sequence. In our case, we kept the size (i.e.,
segsize = 3) for each video segment Sn and the segmented video V is as follows:

V = [Sn;n = 1, . . . ,K− segsize +1]; (6.1)

Our next objective is to create flow-blocks for each video segment (Sn). For this,

Frame: k-1 Frame: k-2 Frame: k-3

a

b

c
16

16

Frame: 1

Frame: K

Flow-block

Figure 6.4: presents the different level of algorithm process performed on
PETS2009 [3] dataset. For instance, a) shows the video segment containing three
consecutive frames in it, b) presents the process of fixed size block formation over
the frame, c) illustrates the flow-block creation.

we have divided every video segment into M fixed size non-overlapping patches2,
2The size of non-overlapping patch is selected (i.e., 16×16×segsize) after conducting empirical

studies over the dataset (i.e., PETS2009 [3]).
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Figure 6.5: shows the results of optical flow approach [5]. The sequences are taken
from PETS2009 and UMN which indicate both normal and abnormal situations.
The flow field is mapped using the color wheel encoding scheme [102] to indicate
its strength.

named as flow-blocks. These flow-blocks are obtained inside each video segment
in Figure 6.4(b-c) and described as follows:

Sn =
{

F(m,l);m = 1, . . . ,M; l = 1, . . . ,segsize
}

; (6.2)

where each video segment Sn contains M flow-blocks F(m,l).

6.4 Optical Flow Computation and Social Entropy

We have computed optical flow as described in Section 4.2 between the consecutive
frames of the given video sequence. The optical flow technique considers both the
global and local aspects of grey value constancy, gradient constancy, smoothness,
and multi-scale constraints to estimate the optical flow. Figure 6.5 shows color-
coded optical flow computed from different sequences in our datasets.

Given a crowded sequence of K frames, the optical flow is computed at frame
level over the extracted foreground and a flow cloud data is generated for each
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flow-block. So, each flow-block contains the computed flow at P locations (i.e.,
16×16× segsize) which is defined as follows:

F(m,l) = ( fp; p = 1, . . . ,P) , (6.3)

~fp = (vx,vy), (6.4)

where flow-block F(m,l) contains P flow cloud data computed at frame level and
treated at flow-block level for further modeling, each flow field contains flow velo-
cities ~fp = (vx,vy). As indicated, vx and vy represent the velocities along with the
horizontal and vertical axis of the motion field.

Handling Optical Flow Uncertainties with Social Entropy

Analyzing the pixel movements in a video sequence allows the inference of overall
motion that includes the motion of object and self-motion of the image capturing
device. In general, these motions are estimated by processing spatial and temporal
derivatives of image values, for instance pixel intensities which hold the motion
information of image structure. However, the measured motion of given images
is noisy due to the transformation of 3D real scene onto 2D image which is based
on some approximations, for instance, the physical relationship between spatio-
temporal image values and motion due to self-movement within 3D environment.
The approaches suggested for optical flow analysis should be able to cope with: 1)
correspondence problems due to ambiguities (e.g., periodicity or lack of texture)
in the image structure, 2) camera noise, 3) spatial motion discontinuities, and 4)
temporal movement changes.

We have employed Anisotropic Huber-L1 approach [5] which is based on com-
bining data by assuming fundamental constancy of image property (e.g., bright-
ness) [43] spatially. It is a spatio-temporal regularization approach in which the
expected flow across the image is modeled by replacing the isotropic TV regulari-
zation with an anisotropic Huber regularization. However, the choice of parameters
is crucial because it is difficult to trace the influence [111] on the accuracy of optical
flow for a wide range of video sequences. Therefore, we have addressed the optical
flow uncertainty by incorporating an explicit approach called social entropy. Mo-
reover, we have given a generic formulation and its concept to deplete the flow field
uncertainties observed when incorporating social entropy which faithfully reveals
the characteristics of crowd dynamics.
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Figure 6.6: shows the computation of social entropy over training dataset of
PETS2009 [3] dataset for normal and abnormal behaviors. a) and b) show the
values of flow field of training samples. c) and d) present the probability (i.e.,
green curve) Pi and the corresponding Shannon entropy (i.e., red curve) Hi of the
flow field ~fp.

Social entropy[14] empirically determines a quantitative criteria and is used as
an optimization strategy to handle the uncertain flow field distribution. Given the
training datasets (i.e., for normal behavior and abnormal behavior) as shown in
Figure 6.6 (a-b) for crowd behavior understanding, we have first measured the pro-
bability of flow cloud data containing velocities in horizontal and vertical directions
in Figure 6.6(c-d). These distributions uncover the homogeneity and heterogeneity
in the flow cloud data of the training dataset in Table 6.1. After that, social entropy
is measured in Figure 6.6(c-d) over this distribution of flow cloud data to reveal
their uncertain characteristics which allows us to define the criteria for uncertain
data in flow fields. Mathematically, the social entropy of the flow cloud data is
described as Shannon [112] information entropy Hi:

Hi =−Pilog2Pi; (6.5)

where i is the number of flow samples, Pi is the probability of the flow field and Hi

is the corresponding entropy measure.

It is observed that both probability distribution and entropy of corresponding
flow cloud data is monotonically inversely proportional to each other. The low en-
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tropy Hi is observed in the distributions Pi which are sharply peaked around few
values, whereas the values which are spread more evenly have higher entropy va-
lues Hi. Based on these statistical analysis, we have obtained a criteria as marked
by grey line in Figure 6.6(c-d) which substantiates the reliable and unreliable flow
cloud data which can either be removed or shifted to low entropy range. We argue
that the measured entropy of flow cloud data reflects the uncertain optical flow
computed from the suggested method which results in the characterization of in-
correct crowd behaviors.

Incorporating Social Entropy During Testing. In the above, we have learned
and measured the social entropy for flow cloud data which represents both normal
and abnormal behaviors of crowded scenes as shown in Figure 6.6. During the
testing, prior to flow modeling with mixture of Gaussians, we first handle the flow
uncertainties. Each of our flow-block (i.e., F(m,l)) is treated as an independent social
system, so, the 2D distribution of ~fp in each flow-block either represents certain
or uncertain flow cloud data marked as grey line in Figure 6.6. As, observed in the
figure, we consider the flow field value below the grey line as certain and keeping
them for flow modeling whereas the uncertain flow field is treated as noise (i.e.,
uncertain) and thus is not considered for flow modeling.

6.5 Modeling Flow with Mixture of Gaussians

In common vision practice, mixture of Gaussians acts as mode finding approach
to model feature vectors associated with each pixel (e.g., position, color, flow)
which are taken as samples from an unknown probability density function and the
clusters are formed in this distribution. Based on this, we have used this property
of mixture of Gaussians to obtain a set of feature vectors instead of modeling the
feature space (i.e., flow cloud data) for analyzing the crowd behaviors directly. The
main concept lies on the fact that the given flow cloud data in each flow-block
are significantly different and correlated which are required to be gleaned prior to
model as feature vectors by applying parametric approximation.

Let us consider a cloud of flow field in flow-block as shown in Figure 6.7.
How would you learn and classify the behaviors of crowd based on these flow
fields in each flow-block alone? There can be many possible ways, for instance
taking the mean of the flow field which returns a value but not a feature, so the
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Figure 6.7: shows the modeling flow cloud data computed on sample frame of
PETS2009 [3] dataset with mixture of Gaussians. In this, we have selected a region
and optical flow is computed over it. Next, the flow field is plotted and the mixture
of Gaussians is fitted. The green color shows the normal flow cloud data and red
color represents the abnormal flow cloud data.

compromise is on the precision. In Figure 6.7, we have presented a visualization
of flow field ~fp. How many obvious flow patterns do you see? How would you
interpret the underlying behaviors from these flow cloud data alone? Therefore,
without losing generality of flow field in each flow-block, we have learned and
fitted mixture of Gaussians as flow field representatives. Moreover, the feature
vectors (i.e., flow patterns) are computed from these mixtures and are characterized
by the classification approaches.

We define the cloud of flow field (i.e., ~fp) in each flow-block (see Equation 6.3)
as 2D random samples which are extended over the spatio-temporal range as shown
in Figure 6.7. So, given our 2D distribution of flow field in each flow-block, K-
means clustering algorithm is employed to initialize the model and to find the op-
timal number of mixtures. Next, EM approach is used as an optimization function
for finding the maximum likelihood solutions for our distributions, iteratively. So,
we have used this clustering approach to iteratively re-estimate the parameters of
corresponding mixture of Gaussians for density function and is written as:

P(~fp) =
C

∑
c=1

wcN (~fp|~µc,Σc); (6.6)

where c represents the mixture of Gaussians, wc is the mixing coefficient, ~µc is the
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mean, covariance Σc matrix and are the parameters of each component of Gaussian
model in respective order.

The EM algorithm works in two stages to iteratively compute the maximum
likely estimate for the unknown mixture parameters {wc;~µc;Σc}:

E-Step: Expectation stage is used to estimate how likely a flow field sample ~fp is
generated from c-th Gaussian and estimates the responsibilities:

zpc =
1

Zpwc
N (~fp|~µc,Σc), with ∑

c
zpc = 1, (6.7)

where zpc is the cluster label for data points and Zp is the missing or unob-
servable samples.

M-Step: Maximization stage is used to update the parameter values and to esti-
mate the number of samples Nc = ∑p zpc assigned to each cluster.

~µc =
1

Nc
∑
p

zpc~fp, (6.8)

Σc =
1

Nc
∑
p

zpc(~fp−~µc)(~fp−~µc)
T , (6.9)

wc =
Nc

N
, (6.10)

The computed parameters of c mixture of Gaussians for each flow-block pre-
sents a concrete representation of flow cloud data characteristics as presented in
Equation 6.6 whereas Figure 6.7 illustrates graphically the mechanism. The para-
meter of mixtures, particularly~µc presents the mean in each dimension of flow field
cloud bounded by corresponding Gaussian components (i.e., µcvx and µcvy). So, we
have computed the mean density (i.e., d~µc) for each Gaussian resulting in the se-
quence of flow patterns for each flow-block, which is then given to classifiers (i.e.,
SVM and CRF) for detecting the normal and abnormal behaviors. The size of the
of flow patterns (i.e., FV or~x) is directly related to the number of mixtures C. We
can write it as:

~µc = (µcvx ,µcvy), and d~µc =
√

µ2
cvx

+µ2
cvy
, (6.11)

~x =
{

d~µc;c = 1, ..,C
}
, (6.12)
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6.6 Behavior Analysis with Support Vector Machine

We have employed structured SVM [11] for crowd behavior analysis which has
many good practical and theoretical properties where it allows us to handle crowd
datasets (i.e., PETS2009 [3] and UMN [2]). We define~x ∈ X as an input sequence
(i.e.,~x= x1, . . . ,xn) of flow patterns in Equation 6.12 and~y∈Y is the corresponding
label sequence (i.e., ~y = y1, . . . ,yn) of normal and abnormal behavior classes. So,
the approach we pursue is to learn a discriminant function F : X ×Y −→R over
input-output pairs from which we can derive a prediction by maximizing F over the
response variable for a given input~x. Hence, the general form of our hypotheses f
is defined as:

f (~x;~w) = argmax︸ ︷︷ ︸
~y∈Y

F(~x,~y;~w); (6.13)

where ~w ∈Rn is the parameter vectors of model, F acts as linear function and
measures the compatibility of input~x and output~y pairs:

F(~x,~y;~w) = 〈~w,Ψ(~x,~y)〉 ; (6.14)

where Ψ(~x,~y) is the combined feature representation of input~x and output~y.

For training the weights ~w of the linear discriminant function, the standard
SVM [11] optimization problem can be generalized in several ways where n−slack
formulations are commonly used which assign a different slack variable to each of
the n training examples. We have used slack-rescaling in which the slope is adjus-
ted while the position of the hinge is fixed [11].

We have employed Radial Basis Function (RBF) as a kernel because it does
not require the feature space in its explicit form. It is due to the fact that only
the inner products between support vectors and vectors of the feature space are
sufficient. Therefore, the problem that arises from the higher dimensional feature
space is alleviated because it allows the computations to take place in the original
feature space. The use of kernel functions is usually referred as "kernel trick". In
the generalized formulation of inner product in the joint representation, the joint
kernel function [113] is written as:

J((~x,~y),(~x
′
,~y
′
)) =

〈
Ψ(~x,~y),Ψ(~x

′
,~y
′
)
〉

; (6.15)

Once kernel SVM [11] is trained on a scan (~x,~y), we can find the most probable
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labeling of Equation 6.13 for a scan ~x
′

where α is a vector of dual variable. This
process is defined as:

argmax︸ ︷︷ ︸
~y′

∑~y′α~y′ [J(~x
′
,~y
′
,~x,~y)− J(~x

′
,~y
′
,~x,~y)]; (6.16)

In order to use combinatorial optimization , a RBF kernel should be decompo-
sable to factors [114] and can be written as:

J(~x,~y,~x
′
,~y
′
) =

J

∑
j=1

N

∑
n=1

N

∑
n′=1

exp(−γ||xn− x
′
n||2)y j

ny j
n′
+ (6.17)

J

∑
j=1

J

∑
l=1

∑
(n,m)

∑
(n′ ,m′)

exp(−γ||xnm− x
′

n′m′
||2)y j

nyl
my j

n′
yl

m′
;

where (n,m) ∈ ξ and (n
′
,m
′
) ∈ ξ

′
are the scan edges ~x and ~x

′
and γ is set to 1.0.

Using structured SVM [11] as a classifier with our flow patterns (i.e., ~x ) in Equa-
tion 6.12, we can distinguish specific and overall crowd behaviors. As, discussed
earlier, the computed flow feature vectors reveals the reliable characteristics in the
scene, which corresponds to the respective crowd behaviors.

6.7 Behavior Analysis with Conditional Random Field

Conditional Random Field is a probabilistic framework for inferencing a particular
label sequence given the observation sequence, a detailed description is presented
by Lafferty et al. [12] on CRF. Particularly, in our case, ~x is input sequence (i.e.,
~x = x1, . . . ,xn) of n flow patterns in Equation 6.12 and ~y is the corresponding la-
bel sequence (i.e., ~y = y1, . . . ,yn) of normal and abnormal behavior classes. We
assume that both sequences ~x and ~y are of same length. The probability of label
sequence P(~y |~x ;θ) given the observation sequence [12] is defined as:

P(~y |~x ;θ) =
1

Z(~x,θ)
exp∑

i
θiFi(~x,~y); (6.18)

where the numerator Fi(~x,~y) is the feature function which represents the paired
mapping Fi : X ×Y −→R of the data space X and the label space Y at the dif-
ferent levels of granularity. Therefore, feature function Fi can be arbitrarily corre-
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lated [12] and is defined as follows:

Fi(~x,~y) = ∑
j

fi(y j−1,y j,~x, j); (6.19)

where fi is the low level feature function which is influenced by the subset of the
above entities such as, previous label y j−1, current label y j, observation sequence
~x, and current position j.

The denominator Z(~x,θ) in Equation 6.18 is the partition function commonly
termed as normalization factor which ranges over all the label sequence but we
assume here that the feature-function depends on at most two labels. So, instead of
enumerating all possible ~y, this assumption allows us to enumerate the possible ~y
efficiently. The formulation of Z [12] is as follows:

Z(~x,θ) = ∑
~y

exp∑
i

θiFi(~x,~y); (6.20)

Training CRF. We perform the training using stochastic gradient methods based
on the gradient of conditional likelihood function for nonlinear optimization. The
goal of this learning task is to compute parameter θ (i.e., weights) values of our mo-
del and learns the conditional log-likelihood (CLL) of the training sequences and
so our objective here is to maximize the CLL. For this purpose, among many so-
phisticated techniques, we used stochastic gradient ascent method for training [12].
The formulation is defined in the following:

∂

∂θi
logp(~y|~x;θ) = Fi(~x,~y)−

∂

∂θi
logZ(~x,θ); (6.21)

In the above equation, for each θi, the partial derivative of CLL is evaluated for
a single training sequences (i.e., one weight for each feature-function). Precisely,
the partial derivative with respect to θi is the i-th value of the feature function for
its true label ~y, minus the averaged feature-function values for all possible labels
~y
′
(i.e., E). So, the above equation can be rewritten as:

∂

∂θi
logp(~y|~x;θ) = Fi(~x,~y)−E~y′≈p(~y′ |~x;θ)

[
Fi(~x,~y

′
)
]

; (6.22)

In practice, the function log(θ) does not maximize in a closed form solution
therefore, we invoke BFGS (Broyden Fletcher Goldfarb Shanno) as an optimization
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routine that estimates the curvature numerically from the first derivative of the CLL
and avoids the requirement of exact Hessian inverse computation with stochastic
gradient ascent [12].

Inferencing CRF. Given the test sequence of flow patterns for each flow-block
~x and the learned parameter values of θ from the training data, the corresponding
label (~y∗) for the sequence is obtained as:

~y∗ = argmax︸ ︷︷ ︸
~y

p(~y |~x ;θ) = argmax︸ ︷︷ ︸
~y

∑
i

θiFi(~x,~y); (6.23)

Using the definition of feature function [12] in Eq.6.19, we get:

~y∗ = argmax︸ ︷︷ ︸
~y

∑
i

θi ∑
j

fi(y j−1,y j,~x, j); (6.24)

Each label sequence is aggrandize from < start,end > states of labels (i.e.,
y0 to yn+1), so for the efficient computation, an alternative choice is to employ
matrices. For this, g j is a q×q matrix where q is the cardinality of the set vectors
in the label sequence ~y and is defined over each pair of labels y j−1 and y j [12] as
follows:

g j(y j−1,y j |~x) = exp(∑
i

θi fi(y j−1,y j,~x, j)); (6.25)

So, for each j, we will get different g j functions which depends on weight θ ,
test observation sequence ~x and the position j. The sequence probability of the
label ~y given observation sequence ~x can be rewritten in compact manner in the
following:

P(~y |~x ;θ) =
1

Z(~x,θ)∏
j

g j(y j−1,y j |~x); (6.26)

Z(~x,θ) = ∏
j

g j(y j−1,y j); (6.27)

Our main aim in obtaining the flow patterns for each flow-block is that, it is
difficult to reveal the required level of details which can differentiate the coherent
and incoherent dynamics at the global level. Therefore, the flow patterns obtained
through modeling with mixture of Gaussians faithfully characterizes the behavior
of the crowd dynamics which are modeled with CRF [12] to characterize the nor-
mal and abnormal behaviors in the crowd physics.

A bank of CRF [12] models is constructed, one for each flow-block to model the
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flow patterns with corresponding label sequence and to characterize the crowd be-
havior at the specific and global level in an unconstrained environment. In contrast,
generative modeling approaches [89] [59](i.e., HMM and LDA) require stringent
conditional independence among the observed flow fields for more tractable joint
distributions. Moreover, the evaluation is based on the two benchmark datasets by
PETS2009 [3] and UMN [2] whereas the comparative analysis is performed with
two related literatures [93] [59] addressing the similar problem.

6.8 Experiments and Discussion

This section presents experimental setup and datasets used in the experiments (see
Appendix A.5 for more results). In addition, we have demonstrated the results of
behavior analysis and anomaly detection along with a discussion and the context
of applicability.

Table 6.1: Training process of PETS2009 [3] dataset

training scenario training set (time stamps) total training frames
Dataset S1, Level 1 13-57 220
Dataset S1, Level 1 13-59 240
Dataset S1, Level 2 14-06 200
Dataset S1, Level 3 14-17 90
Dataset S1, Level 3 14-33 343

6.8.1 Data Preparation, Train and Test Process

The proposed approach is tested on two publicly available benchmark datasets from
PETS2009 [3] and UMN [2]. The first dataset used for the development of ideas is
taken from PETS2009 [3] dataset. The PETS series of workshops make available
public datasets for the comparison of tracking and surveillance technologies. These
datasets are available with the information about the behaviors of the actors contai-
ned within and came up with new motivations and challenges to handle crowded
scenes. The dataset comprises of three categories along with specific tasks for each
category. For example, Dataset1 (i.e., S1) is used for person count and density es-
timation of crowds, Dataset2 is focused to perform tracking on objects in crowded
scene, and Dataset3 (i.e., S3) is aimed to perform flow analysis of crowd and to
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determine the respective events. This research is aimed to perform behavior ana-
lysis and anomaly detection using Dataset3 (i.e., S3) on PETS2009 [3] dataset test
sequences in Table 6.2. PETS Dataset1 (i.e., S1) is used for training in Table. 6.1
which indicates the scenarios and the datasets used for the training process along
with creating our own artificial dataset for training the abnormal situations in a
similar way as suggested in [115]. The normal situations are represented by the
usual walk of large number of people whereas the corresponding abnormal situa-
tions (i.e., running, panic and dispersion) are observed when individuals or a group
of individuals deviate from the normal behavior. The dataset has been chosen be-
cause it has many potential difficulties:

Table 6.2: Testing sequences of PETS2009 [3] and UMN [2] dataset

testing scenario testing set (time stamps) total testing frames
Dataset S2, Level 1 13-57 400
Dataset S3, Level 3 14-16 100
Dataset S3, Level 3 14-31 380
Dataset S3, Level 3 14-33 100
Dataset UMN Seq 1 not given 400
Dataset UMN Seq 2 not given 390
Dataset UMN Seq 3 not given 300
Dataset UMN Seq 4 not given 500
Dataset UMN Seq 5 not given 400

• scene contains disturbances from external sources, for instance, camera fli-
ckering or weather conditions, and

• the objects behaviors are transformed from start till end. The starting frames
contain few people, which gradually increase as the time passes. In the simi-
lar manner, objects in crowd do not adapt to sudden changes in behaviors but
in a gradual manner.

The second dataset is from the UMN [2] dataset test sequences in Table 6.2 contai-
ning indoor and outdoor crowded scenes with normal and abnormal (i.e., run or
dispersion) behaviors. The scenes were filmed in open garden, sitting and foyer
places from the top view and contains about 25 to 30 actors moving in random
direction and with random pace. Due to the long duration of these clips and low
resolution of scene, the performance of our algorithm is fast. The dataset has been
chosen because it has many potential difficulties:
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• the scene is taken from top view where the observed flow field have very low
values, and

• the characterization of crowd behavior is difficult when the objects are mo-
ving in parallel to camera view.

There is a major distinction between these two datasets, for example, in PETS2009 [3],
the abnormality begins gradually unlike UMN [2] dataset, which makes PETS more
challenging due to the transitions from normal to abnormal situations.

Frame: 25

Frame: 61

Frame: 72

Frame: 94

Frame: 87

Figure 6.8: shows the detection results on PETS2009 [3] sequence. The normal
behaviors are indicated by green blocks and abnormal behaviors are marked with
red blocks.



6.8. Experiments and Discussion 131

6.8.2 Experiments with SVM

This section presents the qualitative analysis performed using structured SVM [11]
classification over test sequences in Table 6.2. The behaviors are visualized for
each flow-block where green patches indicate the normal and red patches show the
abnormal behaviors (see Appendix Figures A.12-A.15). Moreover, the trends of
events for complete sequence are also presented.

Qualitative Analysis

Figures 6.8 and 6.9 show the behavior understanding results on the selected frames
of sequences from PETS2009 [3] datasets.

The first sequence, shown in Figure 6.8 depicts a group of people moving across
the walking track of the scene. In this sequence, people are entering in the scene
with common dynamics and desirable goal at Frame 25. But, after some instance
of time, the leading persons in the group start running at Frame 61. As, the people
are walking with some specific goal, so the people following the leading members
also start running at Frame 72 and Frame 87. As a consequence, the common
dynamics of the group is now in transition (i.e., normal to abnormal) where some
people (i.e., in the end) are still walking whereas the people at the front are running.
Some instances later, we have seen that, at Frame 94, all the people are running
in similar direction and once again the crowd is in common dynamics but with
different behavior (i.e., abnormal or run).

In the sequence shown in Figure 6.9, people are entering in the scene from
various directions with desirable goal to gather at the center of the scene in Frame
25. The group of people remains gathered for sometime in Frame 51. But, at Frame
294, it is shown that some people start running at random. As soon as, the other
people observed this panic, they have also started running in random directions
in Frame 299. The common dynamics of the gathered group is now turned into
dispersion where the people are running in various directions in Frame 310.

The graphs in Figure 6.10 present the overall detection of corresponding beha-
viors including the total flow-block (TB), the flow-block detected as normal (NB)
and the flow-block detected as abnormal (AbNB) at every time instance. The
graphs in Figure 6.10(a) and (b) illustrate the crowd behaviors of sequence shown
in Figure 6.8 and Figure 6.9, respectively where the initial frames of the sequence
exhibits absolute normal crowd behavior while it tends towards abnormality in gra-
dual and abrupt manner. For instance, in the graph of Figure 6.10(a), after Frame
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Frame: 25

Frame: 51

Frame: 294

Frame: 317

Frame: 299

Frame: 310

Figure 6.9: shows the detection results on PETS2009 [3] depicting the events of
gathering and dispersion. The normal behaviors are indicated by green blocks and
abnormal behaviors are marked with red blocks.

56, the abnormality started to appear which is increased monotonically whereas the
normal behavior tends to decrease. In contrast, graph in Figure 6.10(b) shows the
crowd behaviors where frames till Frame 300 exhibits absolute normal crowd be-
havior while it indicates the abrupt abnormality (i.e., dispersion) after Frame 305.

Figures 6.11 and 6.12 show the behavior understanding results on the sequences
taken from UMN [2] dataset. In the first sequence, shown in the Figure 6.11,
people are standing in group and moving around the scene. The corresponding
behaviors are detected as normal in Frame 200. After some instance of time, a few
people start running, randomly in Frame 284. As a consequence, people standing in
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Figure 6.10: shows the detection results on PETS2009 [3] depicting the events of
gathering and dispersion. a) and b) present the detected behaviors (i.e., normal
flow-block (NB) and abnormal flow-block (AbNB)). The graph presents the cor-
responding detected behaviors with respective trends in Figure 6.8 and Figure 6.9.

surroundings observed this situations and started running in the similar direction as
depicted in Frame 285. In this particular case, the people are not pretending to have
any common goal but when panic begins in Frame 305, all the people respond to
the situation and escape from the scene following the similar direction (i.e., towards
the right side of the scene).

Figure 6.12 presents a quite challenging scene in terms of people detection and
flow computation because the objects are very small in scale. This scene infact
mimics the first case but the behaviors of the people are different when they have
started running. The objects are standing in the lawn with common pace as shown
in Frame 100 and Frame 200. Some people start running aimlessly in Frame 402
which consequently led the people standing nearby to start running in various di-
rections and resulting in panic as shown in Frame 415.

The graphs in Figure 6.13(a) and (b) illustrate the crowd behaviors of sequence
shown in Figure 6.11 and Figure 6.12, respectively where the behaviors of objects
in the crowd is quite uniform. But, it can be seen that in the graph of Figure 6.13(a),
after Frame 280, the detection of abnormal flow-block is increased instantaneously
whereas the detection of normal flow-block is decreased. Similarly, graph in Fi-
gure 6.13(b) shows the crowd behaviors where the frames till Frame 380 exhi-
bits the normal crowd behaviors while the abnormal behaviors are observed very
promptly after Frame 410. The results demonstrated here have shown the perfor-
mance of the proposed approach in detecting the specific and overall behaviors of
crowds under different contexts.
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Frame: 200

Frame: 284

Frame: 285

Frame: 305

Figure 6.11: shows the detection results on UMN [2] dataset depicting the events
of gathering and dispersion. The normal behaviors are indicated by green blocks
and abnormal behaviors are marked with red blocks.

6.8.3 Experiments with CRF

In this section, we have presented the result conducted with CRF [12] classification
approach over test sequences in Table 6.2. Moreover, the detection of normal and
abnormal behaviors are mapped on respective frames for visual representation (see
Appendix Figures A.12-A.15). In the next sections, we have described the anomaly
detection and quantitative analysis of the results.
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Frame: 100

Frame: 200

Frame: 402

Frame: 415

Figure 6.12: shows the detection results on UMN [2] dataset depicting the events
of gathering and dispersion. The normal behaviors are indicated by green blocks
and abnormal behaviors are marked with red blocks.

Qualitative Analysis

Figures 6.14 and 6.15 show the behavior understanding results on PETS2009 [3].

The first sequence, shown in Figure 6.14, the people are walking with normal
pace in the scene at Frame 25 but after some time instances at Frame 61, the leading
member of the group starts running. As, the people follows a specific goal so, the
people walking nearby also started running at Frame 72. The common dynamics of
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Figure 6.13: shows the detection results on UMN [2] sequences. a) and b)
present the detected behaviors (i.e., normal flow-block (NB) and abnormal flow-
block (AbNB)). The graph presents the corresponding detected behaviors with res-
pective trends in Figure 6.11 and Figure 6.12.

crowd is now turned into the transition mode where some people are still walking
whereas the people at the front are running at Frame 87. Later in Frame 94, we
have seen that all the people started running in the scene.

In the second sequence, shown in Figure 6.15, people are entering with com-
mon goal that is to gather in the center of the scene at Frame 25 and Frame 51. The
group of people stayed gathered for sometime in Frame 294. But, at Frame 299, it
is shown that suddenly some people starts running at random. As soon as, the other
people observed this attitude (i.e., panic), the surrounding people started running
too, in various directions in Frame 310. The common dynamics of the gathered
group is now turned into dispersion (i.e., people are running in various direction).

The graphs in Figure 6.16 present the overall detection of corresponding be-
haviors at each time instance. The graphs in Figure 6.16(a) and (b) illustrate the
crowd behaviors of sequence as shown in Figure 6.14 and Figure 6.15, respectively.
The initial frames of both the sequences exhibit absolute normal crowd behavior
whereas the abnormal behaviors including running and dispersion is observed in
later time instances. For instance, in the graph of Figure 6.10(a), the abnormality
started to appear which is increased monotonically in Frame 56, whereas the nor-
mal behavior tends to decrease in Frame 80. In contrast, graph in Figure 6.10(b)
the crowd behaviors turned from normal to abnormal behavior after Frame 310.

Figures 6.17 and 6.18 show the behavior understanding results on the sequences
in the UMN [2] dataset. In Figure 6.17, a number of people are standing in group
and moving around the scene in Frame 200. Some people, at sudden started run-
ning in Frame 284 and Frame 285 randomly. As a consequence, people standing



6.8. Experiments and Discussion 137

Frame: 25

Frame: 61

Frame: 72

Frame: 94

Frame: 87

Figure 6.14: shows the detection results on PETS2009 [3]. The normal behaviors
are indicated by green blocks and abnormal behaviors are marked with red blocks.

nearby observed this situation and adapt it by start running in the similar direction
as depicted in Frame 305. In this sequence, it is observed that, when panic be-
gins, all people follow the similar direction to escape (i.e., towards the right side of
the scene). The sequence presented in Figure 6.18, people are standing in a lawn
and walking in usual manner at Frame 100 and Frame 200. After some instance,
couple of people started running aimlessly at Frame 402 which consequently re-
sults in panic. The people standing in surrounding vicinity at Frame 415 reacted in
the similar manner and start running in random direction.

The graphs in Figure 6.19(a) and (b) illustrate the crowd behaviors of sequence
as shown in Figure 6.17 and Figure 6.18. In the graph of Figure 6.19(a), after Frame
280, the detection of abnormal flow-block is increased instantaneously whereas the
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Frame: 25

Frame: 51

Frame: 294

Frame: 310

Frame: 299

Figure 6.15: shows the detection results on PETS2009 [3]. The normal behaviors
are indicated by green blocks and abnormal behaviors are marked with red blocks.

detection of normal flow-block is decreased. Similarly, graph in Figure 6.19(b)
shows crowd behaviors where the frames till Frame 380 exhibits the normal crowd
behavior while the abnormal behavior is observed very promptly after Frame 410.
The results show that the proposed approach is capable of locating the specific and
overall crowd behavior in the flow-blocks that are occupied by the crowd.

6.8.4 Evaluation

In this section, we have presented the anomaly detection criteria based on our clas-
sification results. Next, we provide quantitative analysis, comparative analysis of
classification outcomes, and analysis with state of the art approaches. Further, in
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Figure 6.16: shows the detection results on PETS2009 [3] sequence. a) and b)
present the detected behaviors (i.e., normal flow-block (NB) and abnormal flow-
block (AbNB)). The graph presents the corresponding detected behaviors with res-
pective trends in Figure 6.14 and 6.15.

the quantitative analysis, we also demonstrate the improvement in performance
when social entropy is incorporated to handle optical flow noise. Finally, we have
underlined the remaining problems which are not addressed in this work.

Anomaly Detection

The definition of anomaly (i.e., abnormality) is specific to the context. We assume
that the categorization of a scene as normal and abnormal is somehow fuzzy. There-
fore, we have provided both behaviors for the scene analyst to take assistance from
the graphical and visual representation. However, for the sake of automization, we
have provided a statistical illustration and an option of defining a threshold (i.e.,
suppose if the abnormal behavior approaches to more than 50%) which is compu-
ted as follow:

%Anomaly =
AbNB

Nb+AbNB
∗100; (6.28)

where %Anomaly defines the total abnormal behavior in the scene which is compu-
ted as the ratio of total flow-blocks detected as abnormal relative to the total normal
and abnormal classified flow-blocks. In this manner, we can define the status of a
crowded scene and analyse the scene behavior at each time instance. Based on our
results presented in Sections 6.8.2 and 6.8.3, we have measured the abnormality
percentage of each sequence as shown in Figure 6.20.

Quantitative Analysis
We have evaluated our crowd behavior understanding algorithms on the basis of
whether they generate correct behaviors corresponding to each flow-block in the
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Frame: 200

Frame: 284

Frame: 285

Frame: 305

Figure 6.17: shows the detection results on UMN [2] dataset depicting the events
of gathering and dispersion. The normal behaviors are indicated by green blocks
and abnormal behaviors are marked with red blocks.

sequence. For such evaluation, the first essential requirement is ground truth. For
this, we have programmatically create the ground truth3 for the corresponding be-
haviors in each flow-block and interpret their respective behaviors. Finally, the
performance is evaluated by computing the precision and recall measures. In the

3After performing the analysis of normal and abnormal flow ranges on training dataset. We have
created a program to label the behavior (e.g., normal and abnormal) of each flow block because, it
is quite tedious task to assign labels on each flow-block, manually.
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Frame: 100

Frame: 200

Frame: 402

Frame: 415

Figure 6.18: shows the detection results on UMN [2] dataset depicting the events
of gathering and dispersion. The normal behaviors are indicated by green blocks
and abnormal behaviors are marked with red blocks.

context of behavior (i.e., normal abnormal), precision and recall measures are de-
fined as follows:

precision (pre.) =
Number o f correct behaviors

Number o f established behaviors
, (6.29)

recall (rec.) =
Number o f correct behaviors
Number o f actual behaviors

, (6.30)
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Figure 6.19: shows the detection results on UMN [2] sequence. a) and b)
present the detected behaviors (i.e., normal flow-block (NB) and abnormal flow-
block (AbNB)). The graph presents the corresponding detected behaviors with res-
pective trends in Figure 6.17 and 6.18.

where actual behaviors denote the behaviors available in the ground truth (i.e.,
normal and abnormal). Moreover, we have performed two levels of analysis. First,
we have presented the classification results without incorporating social entropy.
In the second, we have shown the quantitative measurements by incorporating the
social entropy.

Table 6.3: Crowd Behavior Detection with SVM Classification on test sequences

Behavior Detection without SE Behavior Detection with SE
normal abnormal normal abnormal

Datasets pre. rec. pre. rec. pre.. rec. pre. rec.
PETS2009 [3] 0.81 0.87 0.71 0.79 0.97 0.98 0.96 0.98

UMN [2] 0.85 0.89 0.70 0.81 0.90 0.91 0.93 0.99

Avg.Values 0.83 0.88 0.70 0.80 0.93 0.94 0.95 0.98

Table 6.3 shows the precision-recall measurements of normal and abnormal
behavior classification with SVM [11] for each class. Each column presents the
respective precision and recall analysis of each class (i.e., normal and abnormal
class). Moreover, the impact of irregular flow on the results is observed due to
inter-frame differencing and prominent motion field at objects legs as compared to
body and head of the objects as shown in Table 6.3 where flow is modeled without
incorporating social entropy (SE). However, the improvements are very vivid in
Table 6.3 when social entropy (SE) is incorporated before modeling the observed
flow fields.
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a) Anomaly Detection with SVM

b) Anomaly Detection with CRF
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Figure 6.20: graphs demonstrate statistically the relative anomaly observed in se-
quences from PETS2009 [3] and UMN [2] datasets. a) shows the statistical compu-
tation of abnormal behaviors using SVM [11] classification in Seq1 ( Figure 6.8),
Seq2 (Figure 6.9), Seq3 (Figure 6.11) and Seq4 (Figure 6.12), b) shows the statis-
tical computation of abnormal behaviors using CRF [12] classification in Seq1 (Fi-
gure 6.14), Seq2 (Figure 6.15), Seq3 (Figure 6.17), and Seq4 (Figure 6.18).

Table 6.4 shows the precision-recall measurements of normal and abnormal be-
havior classification with CRF [12] for each behavior class. Each column presents
the respective precision and recall analysis of normal and abnormal classes. Table
6.4 shows the classification performance on flow field without incorporating social
entropy. It is shown that, the impact of uncertain flow effects the performance in
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Table 6.4: Crowd Behavior Detection with CRF Classification on test sequences

Behavior Detection without SE Behavior Detection with SE
normal abnormal normal abnormal

Datasets pre. rec. pre. rec. pre.. rec. pre. rec.
PETS2009 [3] 0.85 0.81 0.73 0.79 0.97 0.98 0.96 0.98

UMN [2] 0.83 0.79 0.70 0.81 0.99 0.98 0.96 0.97

Avg.Values 0.84 0.82 0.72 0.80 0.98 0.98 0.96 0.97

Table 6.5: Comparative analysis with state of the art approaches for PETS2009 [3]
and UMN [2] datasets

Methods Results(%)

Mehran et al.[59] 96
Chen et al.[93] 81
Our Method 97.3

overall precision and recall. However, the improvements is observed in Table 6.4
when social entropy is incorporated before modeling the observed flow fields.

Comparative Analysis

In this section, we have performed a two level comparative analysis. In the first, we
have discussed the performance of SVM [11] and CRF [12] classifiers as shown
in Table 6.3 and 6.4 and it is observed that CRF has superior performance than
SVM [11]. In the second, to analyze the performance of our proposed approach
in detecting the crowd dynamics effectively, we have a made comparative analysis
from two recent proposed techniques [59] [93]. In the first approach, the computed
social forces are modeled with LDA whereas in the second approach, SVM [11] is
used to classify the behaviors. It can be seen in Table 6.5, the performance of our
method is promising and achieve higher detection rates in the localization of the
crowd behaviors when compared with related approaches.

Remaining Problems

In our proposed approach, we have aimed to address the issues of crowd behavior
analysis and achieve our defined objectives. However, the proposed approach has
certain limitations which can be addressed in our future research.
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• Tracking in Crowds: In the proposed approach, we are not tracking indivi-
duals because the objects are highly anticipated which results in heavy occlu-
sions. It is possible to employ higher level knowledge and model pedestrian
behavior model (i.e., computation flow dynamics) into the tracking algorithm
based on the strong assumptions about the pedestrian behaviors.

• Detection of Individual Behaviors: Human forming the crowd has complex
physics and self-evolving nature. It is very challenging to detect specific in-
dividual and examines the corresponding behaviors because the computed
features, such as interest points, localized heads, and specific human classi-
fiers become unreliable. Therefore, currently, we have aimed to localize the
crowd behaviors in a scene at the global and specific level.

• High Level Events: The definition of crowd behaviors is very context spe-
cific problem. The broad level description includes normal and abnormal
behaviors. However, these event can be further categorized into many high
level event, such as recognition of dispersion, falling down of persons, and
detection of fights. However, these further interpretation can be built on top
of proposed approach by employing the strong assumptions according to the
social behaviors of individuals and the contexts of application.

6.8.5 Context of Use and Applicability

The proposed framework is aimed to perform analysis of behaviors for crowded
scenes such as whether the state of the crowd is normal or abnormal. While re-
searching on this active research idea, we keep the certain contexts of application
domain when typical surveillance systems limit. For instance, the way in which
crowds move is of central concern for security officials, civilian authorities, and
disaster relief agencies to monitor the situations and manage the emergency situa-
tions. Moreover, the scenarios such as individual passing through a combat zone
to escape conflict, and persons fleeing natural disasters, such as earthquake and
fire can be monitored by incorporating the contextual information which will tune
the analysis according to specific application. Other domains of application can
be explored by incorporating the contextual information and human assistance to
construct this proposed framework for more practical real scenarios.
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6.9 Discussion and Conclusion

In this chapter, we have aimed to investigate crowd behaviors and detect the trends
of anomaly observed during the course of time. To achieve this task, we have
proposed a top-to-down framework which begins with low-level analysis (i.e., fo-
reground detection). The sequence is sectioned into video segments and concept of
flow-block is introduced where the computed optical flow is treated at flow-block
level. Prior to model the observed flow cloud data, optical flow uncertainty is hand-
led by employing the concept of social entropy at each flow-block level whereas
the evaluation criteria are learned from the training sequences. Next, the key ob-
jective of computing flow features are achieved by parameterizing with mixture of
Gaussians and flow features (i.e., flow patterns). These flow features are mapped
as two class problem and classified as normal and abnormal using SVM [11] and
CRF [12], respectively. The results of our method indicates that the proposed ap-
proach is effective in detection and localization of specific and overall behaviors
in the crowd. The presented results show promising performance and outperforms
when compared to the related works.



147

CHAPTER 7

Conclusion and Future Directions

In this dissertation, the main theme is to understand object behaviors in the scene
depicting both non-crowded and crowded situations. Typical examples of the non-
crowded scenes include: train station, subways, and foyer, whereas the crowded
scenes include: sporting events, religious festivals, and shopping malls. We have
provided a detailed analysis and underlined the related issues in Chapter 2 accor-
ding to our adapted strategy of research. Chapter 3 begins with segmentation (i.e.,
low level analysis) and eliminates the need for global level analysis that requires
high computational efforts. This is achieved by developing a weighted integrated
approach which employs both adaptive background mixture model approach and
approximated median filter approach to detect the foreground under diversified si-
tuations. This segmented information is then used to extract visual features for
both non-crowded and crowded scenes in Chapter 4. In the non-crowded scene,
we have used the color as a fundamental feature and is then treated in the form of
ellipse histogram and CSC [4] approach for the detected objects. In contrast, the
motion is used as a fundamental feature for crowded scenes.

Next, the segmented information and visual features are employed to develop a
tracking and behavior understanding framework in Chapter 5 that is used to track
and understand objects movement behaviors within the scene. For this purpose, we
have proposed a new methodology that integrate the quantitative (i.e., statistical
modeling) and qualitative approaches with the motivation to address the tracking
problem by axiomatizing and reasoning the human-tracking abilities. The results
are demonstrated on three benchmark datasets containing conflicted situations. Fi-
nally, in Chapter 6, we have proposed crowd behavior understanding and anomaly
detection algorithms that are aimed to analyze the behaviors of objects in crow-
ded scenes. The proposed algorithm used the optical flow as a main feature and is
modeled with mixture of Gaussians to generate flow patterns. These flow patterns
are classified with SVM [11] and CRF [12] to detect any changes in crowd beha-
vior, thus enabling localization of normal and abnormal events or behaviors within
crowd.
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7.1 Summary of Contributions

In this section, we have provided a summary of contributions in this dissertation.

• Segmentation and Feature Computation

� Improvement in the segmentation approach by conditional weighted in-
tegration of two approaches (i.e., adaptive background mixture model
and approximated median filter approach).

� Introduction of the idea of using CSC approach and ellipse histogram
as object features in non-crowded scenes.

� Representation and modeling of optical flow (i.e., flow cloud data) by
employing of mixture of Gaussians to obtain crowd flow features.

• Tracking and Behavior Understanding in Non-crowded Scenes

� A framework is proposed for understanding and tracking the objects in
non-crowded scenes containing objects moving in the complex manner.

� Introduction of a new concept to integrate statistical approach (quanti-
tative) with cognitive modeling (qualitative) for the vision community
to address the problems of object tracking particularly during conflicted
situations (e.g., occlusion or split among the objects).

� Fusion of computed features (i.e., CSC color-patches and ellipse his-
togram) with Bayesian inference, named as Bayesian Matching Weight
method to compute the correspondence weights in consecutive time ins-
tances.

• Behavior Understanding and Anomaly Detection in Crowded Scene

� A framework for understanding the crowd behaviors and anomaly de-
tection is proposed.

� Introduction of the idea of computing global flow and treating at local
level by forming flow-blocks.

� Handling optical flow uncertainty by incorporating the social entropy
approach.
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� Behavior classification is addressed as binary class problem and clas-
sification approaches are employed to localize the corresponding beha-
viors. Besides, the anomaly is computed at frame level that allows us
to use the proposed approach as an application of the abnormal event
detection in crowds.

7.2 Future Directions

The work described in this research can be improved and extended in a number
of directions for both non-crowded and crowded scenes. There are some evident
enhancements which can improve the performance and applicability. Some of these
ideas are described as follows:

Non-Crowded Scenes

There are many possible directions which include the improvement of the deve-
loped algorithms and building new approaches on top of it. The performance of
matching algorithm used in tracking framework can be greatly improved at the
detection and visual feature level. The robust segmentation provides a good foun-
dation to compute the features that best discriminate the objects in the scene over
time. The matching methods proposed in this dissertation use a BMW method to
combine computed ellipse histogram and CSC color-patches. However, the same
feature (i.e., color) may not be the most discriminative for an object over time.
One possible direction is to consider different features such as motion and textures.
Then, fusion of these features can be performed by the classification algorithm
such as SVM to obtain the best matching performance. Given a large set of fea-
tures, SVM classifier can be trained for each feature treating as an individual class.
So, the classifier discovers weighted combination of classification outcomes.

In this work, we have provided the logical interpretation of object motion beha-
viors only. Further, high level logical modeling can be incorporated to infer activi-
ties, such as sitting or lying in the scene. Another possible future work is to detect
the object’s belonging such as bags. For this purpose, specific approaches, such as
the histogram of gradients can be used for object detection and Adaboost for bags
detection. These detection results are then mapped logically in owner-belonging
relationships which can be tracked and un-attended belonging are detected at the
same time.
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Crowded Scenes

In this dissertation, we have performed crowd behavior analysis to understand ob-
jects behavior and to detect anomaly. However, we have not tried the tracking
of objects in the crowded scene due to various limitations and constraints (e.g.,
heavy occlusions and complex interactions among individuals). So, the work can
be extended to track the specific targeted objects in the crowded scenes. For this
purpose, the target-specific particle filter system can be employed. It will add ano-
ther level of analysis related to specific object behaviors in the crowds, and the
tracking axioms proposed for non-crowded scenes can be derived for the behaviors
in crowded scenes.

The behaviors which we have considered are categorized as normal or abnor-
mal. However, a more refined analysis of crowd behavior can be performed by
incorporating crowd psychological research. For instance, the common types of
crowd behaviors that can be detected includes: lane formation, bottlenecks, inter-
sections, dispersions, and panic effects. This can be achieved by incorporating the
context semantics on top of the current behavior understanding algorithm. Moreo-
ver, the temporal history of the classified outcome of flow-blocks for each crowd
behavior can be taken into account and mapped on the models of the crowd psy-
chological conditions. In this manner, we will be able to generate a representation
of the crowded scene that is easier for human operators to understand and interpret.
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APPENDIX A

Appendix

A.1 HSV Color Space

A widely used color space to represent the color information of an image is RGB
but HSV is preferred as the color space because it represents human perception of
colors in better way. HSV color space comprises of Hue (H) as color component,
Saturation (S) as intrinsic color and describes purity of color, and Value (V) is the
measure of brightness component. The HSV color model is simply computed by
using standard formulation as:

H =



0 i f max = min
60o× G−B

max−min +0◦ i f max = Rand G≥B
60o× G−B

max−min +360◦ i f max = Rand G<B
60o× B−R

max−min +120◦ i f max = G
60o× R−G

max−min +240◦ i f max = B

(A.1)

S =

{
0 i f max = 0

max−min
max otherwise

(A.2)

V = max (A.3)

A.2 Histogram Computation

In this section, we have presented the fundamental formulation of computing color
histogram for the images. The colors of image are mapped into a discrete color
space R which is divided into N intervals. In practice, these intervals are regularly
spaced, but it can also be irregular. Given a HSV color space R which is divided
into N intervals as follows:

Rn ⊂R, (A.4)

with
N−1⋃
n=0

=R, (A.5)
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The probabilities of given observations are computed by counting the number
of observations that fall in a specific interval. As an example, we assume that Ln

of M observations fall into Rn histogram interval, we get the following estimated
probability Pn:

Pn := P(s ∈Rn) =
Ln

M
; (A.6)

As, our color space is divided into a regular interval of volume Q. Therefore,
the probability density of an observation s ∈Rn can be modeled using piecewise
constant function, given as follows:

p(s) =
Ln

MQ
, s ∈Rn, n = 0, . . . ,N−1; (A.7)

The Equation A.6 can be written as follows:

Pn =
∫
Rn

p(s)ds = p(s |(s ∈Rn))Q =
Ln

M
; (A.8)

The histogram intervals are indexed by numbers and called number of bins (i.e.,
intervals) where the selection of intervals is empirical1.

A.3 Color Structure Code Approach

The CSC algorithm is an improved region growing method used to segment object
corresponding to its homogeneous regions. The approach [4] follows a parallel
hierarchical region growing method on a special hexagonal topology; therefore
the choice of the starting point and the order of processing are not required. The
hierarchical topology is constituted by islands which form at different levels. An
island consists of seven pixels, one at the center with six equidistant neighbors. A
partitioned image contains islands which are overlapping in a manner where each
second pixel of each second row is a center of an island of level 0. Likewise, an
island of level (n+1) is built up consisting of seven overlapping islands of level n.
This process is repeated until one island covers the whole image and the number of
islands decreases by a factor of 4 from one level to another level.

In practice, the hexagonal topology leads to some difficulties due to orthogonal
lattice produced by cameras. So it is assumed that all the pixels are presented in a
hexagonal arrangement which is achieved by simulating a conventional orthogonal

1Based on the analysis presented in [98], we have selected 45 intervals for our histograms.
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a) Hierarchical structure of 

hexagonal island

b) Hexagonal island

c) Orthogonal structure d) Island on level 2 

over orthogonal bitmap

Island of level 2

Island of level 1

Pixel

Island of level 1

Figure A.1: shows the CSC Hierarchy [4]. a) describes the hierarchical structure
of hexagonal architecture, b) and c) presents the hexagonal island and orthogonal
structure, d) indicates the islands of level 0 upon the orthogonal lattice.

images as shown in Figure A.1. The generation of the CSC segments operates
essentially in three phases:

b) Linking the code 

elements

c) Two regions r1 and r2 with 

common sub-region

r1

S
r2

a) Initialization of two 

homogenous regions

Island of level 0 

with 7 pixels

Figure A.2: demonstrates the phases of CSC methods: a) shows initialization phase
of two homogeneous regions (i.e. black and white), b) presents linking mechanism
of homogeneous regions, and c) demonstrates splitting phase based on selected
parameters and final segments are formed after satisfying the given criterion.

Initialization

In the initialization phase, image homogeneous color regions within level 0 of is-
land of seven pixels are divided up and mapped to initial code elements. These
code-element comprises of neighboring pixels within level 0 islands whose co-
lors are similar (i.e. their mutual color distance is under a certain threshold). A
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code-element is a data structure containing the information about the shape and the
mean-color of a region in an island. For example, in Figure A.2(a), there are two
code-elements in this island due to two different colored regions. Next, in the lin-
king phase, connected color segments grow hierarchically by checking these small
color patches.

Linking

In linking phase, the color-elements of level n grow in a hierarchical manner to
new code-element of level n+1 in the seven neighbored overlapping islands of the
hexagonal island structure. The linking of code-elements within one island is simi-
lar to initialization phase where instead of linking single pixels, regions are linked.
Similarly, the criteria for linking code-elements are based on their similarity in co-
lor whereas two code-elements are connected if they share a common sub-region
in their common sub-island as shown in Figure A.2(b). The linking operations
are repeated for all islands on every level, starting from level 1 and ending on the
topmost level which covers the whole image.

Splitting

In splitting phase, a chain of changing colors segments which are observed du-
ring linking are split again into segments representing homogeneous color. In this
manner, the problem of linking different colored regions by local region growing
techniques is resolved. During splitting, additional color similarity is checked bet-
ween connected code-elements at every linking level. The decision of connectivity
is based on their color distance which should satisfy the empirical selected thre-
shold, although they are connected by a chain of similar color pixels. For example
in Figure A.2(c), the two regions r1 and r2 are not linked anymore because the
color distance is too high. Moreover, this mechanism enables the smooth transition
from one region to another at global level.

The CSC method suggested in [4] is employed on our test datasets in Figure A.3
with the goal of revealing the distinct ability of detected objects and segments ob-
jects according to its color structures. For instance, in Figure A.3(b-c), object itself
contains different color shades relative to dress, bags, and hat.
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c1

c3

c4

c2

c)

Input Image CSC Segments

a) b)

Figure A.3: a) is the input image of PETS2006 [1] sequence, b) shows results of
CSC [4] approach on a sample frame of PETS2006 [1] sequence. c) indicates CSC
color-patches which are encoded with different colors codes for better visibility.
The zoomed object is comprised of four major color: 1) hat, 2) coat, 3) trouser, and
4) briefcase, in the actual image. Each color-patch is linked through arrows with
its corresponding color.

A.4 Tracking and Behavior Understanding in Non-
crowded Scenes

In this appendix, we have presented additional results in Figure A.4-A.6 of our pro-
posed approach for tracking and behavior understanding of objects in non-crowded
scenes. In Figure A.4(a) shows the input sequences from PETS2006 [1] data-
set. Figure A.4(b) shows the segmentation results in Section 3.1 on the test se-
quence from PETS2006 [1] dataset. Figure A.4(c) shows the visual mapping of
bounding box in Section 2.2.2 on the test sequence from PETS2006 [1] dataset.
Figure A.4(d) shows visual mapping of contours in Section 2.2.2 on the test se-
quence from PETS2006 [1] dataset. Figure A.4(e) shows visual mapping of com-
puted ellipse in Section 2.2.2 on the test sequence from PETS2006 [1] dataset.
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Figure A.4(f) shows results of CSC approach in Section 4.1.2 on the test sequence
from PETS2006 [1] dataset. Figure A.4(f) shows results of quantitative and quali-
tative approach to infer object’s behavioral states and manage unique identities over
time in Section 5.4 on the test sequence from PETS2006 [1] dataset. Figure A.4(h)
shows the results of Kalman filter-based tracker in Section 5.5 for object localiza-
tion on the test sequence from PETS2006 [1] datasets.

A.5 Behavior Detection and Understanding in Crow-
ded Scenes

In this appendix, we have shown the additional results Figure A.10-A.11 of our
proposed approach for crowd behavior detection. In Figure A.10(a) shows input
sequences from PETS2009 [3] dataset. Figure A.4(b) shows computed optical flow
on foreground region in Section 6.4 on the test sequence from PETS2009 [3] data-
set. Figure A.10(c) shows visual mapping of motion vectors based on optical flow
in Section 6.4 on the test sequence from PETS2009 [3] dataset. Figure A.10(d)
shows behavior detection with CRF classification approach in Section 6.7 on the
test sequence from PETS2009 [1] dataset. Figure A.10(e) shows behavior detec-
tion with SVM classification approach in Section 6.6 on the test sequence from
PETS2009 [1] dataset.
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Figure A.4: shows results on PETS2006 [1]. a) input sequence, b) the extracted
objects from segmentation, c) the computed bounding region over the detected
objects, d) contour of the objects, e) ellipse around the object which are used to
compute the ellipse histogram, f) CSC color-patches of each detected object, g)
and h) demonstrate the results tracking and behavior understanding approach.
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Figure A.5: shows results on PETS2006 [1]. a) input sequence, b) the extracted
objects from segmentation, c) the computed bounding region over the detected
objects, d) contour of the objects, e) ellipse around the object which are used to
compute the ellipse histogram, f) CSC color-patches of each detected object, g)
demonstrates the results tracking and behavior understanding approach.
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Figure A.6: shows results on PETS2009 [3]. a) input sequence, b) the extracted
objects from segmentation, c) the computed bounding region over the detected
objects, d) contour of the objects, e) ellipse around the object which are used to
compute the ellipse histogram, f) CSC color-patches of each detected object, g)
and h) demonstrate the results tracking and behavior understanding approach.
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Figure A.7: shows results on IESK dataset. a) input sequence, b) the extracted
objects from segmentation, c) the computed bounding region over the detected
objects, d) contour of the objects, e) ellipse around the object which are used to
compute the ellipse histogram, f) CSC color-patches of each detected object, g)
demonstrates the results tracking and behavior understanding approach.
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a) Segmentation b) Bounding Region c) Elliptical Region d) CSC color-patches
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Figure A.8: shows results on PETS2006 [1] dataset. a) the extracted objects from
segmentation, b) the computed bounding region over the detected objects, c) ellipse
around the object which are used to compute the ellipse histogram and d) shows
the CSC color-patches of each detected object.
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a) Segmentation b) Bounding Region c) Elliptical Region d) CSC  color-patches
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Figure A.9: shows results on PETS2009 [3] dataset. a) the extracted objects from
segmentation, b) the computed bounding region over the detected objects, c) ellipse
around the object which are used to compute the ellipse histogram and d) shows
the CSC color-patches of each detected object.
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Figure A.10: shows results on UMN [2] dataset. a) input sequence, b) the optical
flow computed on segmented region which is presented by using the color enco-
ding scheme [102], c) shows the flow vectors, d) demonstrates the classification of
flow-blocks with CRF [12], and e) presents the classification of flow-blocks with
SVM [11].
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Figure A.11: shows results on PETS2009 [3] datase. a) input sequence, b) the
optical flow computed on segmented region which is presented by using the color
encoding scheme [102], c) shows the flow vectors, d) demonstrates the classifica-
tion of flow-blocks with CRF [12], and e) presents the classification of flow-blocks
with SVM [11].
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Frame: 25
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Frame: 72

Frame: 94

Frame: 87

b) Segmentationa) Image c) Optical flow

Figure A.12: shows results on PETS2009 [3] dataset. a) input sequence, b) indi-
cates the segmented region, and c) the optical flow computed on segmented region
which is presented by using the color encoding scheme [102].

b) Segmentationa) Image c) Optical flow
Frame: 25

Frame: 51

Frame: 294

Frame: 317

Frame: 299

Frame: 310

Figure A.13: shows results on PETS2009 [3] dataset. a) input sequence, b) indi-
cates the segmented region, and c) the optical flow computed on segmented region
which is presented by using the color encoding scheme [102].
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b) Segmentationa) Image c) Optical flow
Frame: 200

Frame: 284

Frame: 285

Frame: 305

Figure A.14: shows results on UMN [2] dataset. a) input sequence, b) indicates
the segmented region, and c) optical flow computed on segmented region which is
presented by using color encoding scheme [102].

b) Segmentationa) Image c) Optical flow
Frame: 100

Frame: 200

Frame: 402

Frame: 415

Figure A.15: shows results on UMN [2] dataset. a) input sequence, b) indicates
the segmented region, and c) optical flow computed on segmented region which is
presented by using color encoding scheme [102].
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