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Abstract

Cavitation bubbles are known to explosively expand and collapse, creating high-velocity
liquid jets onto a nearby solid boundary and inducing strong shear flows and vortices
along the boundary. Allowing the boundary to deform can significantly change the bubble
and jetting dynamics and give rise to interesting flow phenomena. A viscous, compress-
ible volume of fluid model for simulating a single bubble at a large seeding pressure in
OpenFOAM is used to study its interaction with various boundaries. Three different com-
putational solvers are developed to study the behaviour of the bubble near a perforated
rigid boundary, a fluid-fluid interface, and an elastic solid boundary, respectively.
The use of a bubble-induced jet as a microfluidic pump through a perforation in a rigid
solid wall is investigated. The observed dynamics are categorised into three types of jet-
ting regimes as a function of the stand-off distance and the wall thickness.
Near a free boundary connected to a gaseous or liquid domain, a bubble may cause a
breakup of the interface and spray/droplet formation, as well as a jet away from or to-
wards the boundary, depending on the properties of both fluids on either side of the
interface. In the case of a liquid-liquid interface, this is an underlying mechanism of
bubble-based emulsification techniques. Water-in-oil emulsification mechanisms are in-
vestigated by creating a bubble in silicone oil near a similarly-sized water droplet. As a
function of the stand-off distance and the viscosity ratio of the two liquids, two regimes
of interface breakup are identified. A bubble created very close to a liquid-gas interface is
studied, and a new type of liquid jet is observed that can pierce deep into the liquid bulk,
the so-called “bullet jet”. A similar bubble is also placed inside a falling liquid droplet,
where the same type of jet is found, along with secondary cavitation bubbles created by
the reflection of the shock wave on the free boundary.
The fluid solver is coupled to a finite volume solver for a linear elastic solid, which is used
to model the stresses produced in the elastic solid by the jet and shock waves produced
by a nearby collapsing bubble. The induced wall shear stress is investigated as a function
of the stand-off distance, both for a planar and a ring-shaped wall geometry. A cavitation
bubble confined between two elastic plates induces a surface acoustic wave, preceding the
shock wave in the liquid and causing a tension region. This mechanism is used to investi-
gate the role of local gas supersaturation caused by localised heating as cavitation bubble
nuclei. With the same method, surface defects in glass are also found to be cavitation
nuclei, making surface wave-created bubbles a viable method for surface damage detection
and for creating bubbles with a controlled lifetime of less than 10 ns. Furthermore, it is
found that the waves created by a shaped cavitation bubble can cause controlled surface
damage. The role of the different waves in damage creation is evaluated by varying the
time delay between the creation of two concentric circular wave sources. Finally, an el-
lipsoidal wave source is shown to create a surface crack along its minor semi-axis, while a
point source can circularly extend the crack, thus enhancing the control over the length
and the direction of the damage.
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Kurzzusammenfassung

Es ist bekannt, dass Kavitationsblasen explosionsartig expandieren und kollabieren, dabei
Flüssigkeitsjets mit hoher Geschwindigkeit auf naheliegende feste Oberflächen sowie starke
Scher- und Wirbelströme entlang der Wand erzeugen. Ist es der Oberfläche erlaubt
zu deformieren, so ändert sich die Blasen- und Jetbildungsdynamik und interessante
Strömungsphänomene können auftreten. Ein viskoses, kompressibles Volume-of-Fluid-
Modell für die Simulation einzelner Kavitationsblasen mit einem hohen Anfangsdruck in
OpenFOAM wird verwendet, um die Wechselwirkung einer solchen Blase mit verschiede-
nen Oberflächen zu untersuchen. Drei verschiedene numerische Löser werden entwickelt,
um das Verhalten der Blase in der Nähe einer perforierten festen Oberfläche, einer Fluid-
Fluid-Oberfläche, und der Oberfläche eines elastischen Feststoffs zu untersuchen.
Die Anwendung eines durch eine Blase erzeugten Jets als mikrofluidische Flüssigkeitspum-
pe durch eine perforierte Wand wird untersucht. Die beobachteten Dynamiken werden in
Abhängigkeit des Blasenabstands und der Wanddicke in drei Jet-Regime kategorisiert.
Nahe einer freien Oberfläche zu einem Gas oder einer Flüssigkeit kann eine Blase zu einem
Aufbruch der Oberfläche und zur Spray-/Tropfenerzeugung führen, sowie, abhängig von
den Eigenschaften der Fluide auf beiden Seiten der Oberfläche, einen Jet in Richtung oder
entgegen der Oberfläche erzeugen. Im Fall einer Oberfläche zwischen zwei Flüssigkeiten ist
dies ein unterliegender Mechanismus für blasenbasierte Emulsifikationstechniken. Mecha-
nismen der Wasser-in-Öl-Emulsifikation werden untersucht, indem eine Blase in Silikonöl
nahe eines Wassertropfens ähnlicher Größe erzeugt wird. In Abhängigkeit des Blasenab-
standes und dem Verhältnis der Viskositäten beider Flüssigkeiten werden zwei Regime
des Oberflächenaufbruchs identifiziert. Bei einer Blase nahe einer freien Oberfläche wird
ein neuartiger Jet beobachtet, der tief in die Flüssigkeitsdomäne eindringen kann, der so-
genannte Bullet-Jet. Eine ähnliche Blase wird auch in einem fallenden Flüssigkeitstropfen
initiiert, wo ein gleichartiger Jet beobachtet wird, zusammen mit sekundären Kavitations-
blasen, die durch die an der freien Oberfläche reflektierten Stoßwelle erzeugt werden.
Der Fluidlöser wird an einen finite-Volumen-Löser für einen linear-elastischen Feststoff
gekoppelt. Dieser wird zur Modellierung der Spannungen verwendet, die durch den Jet
und die Stoßwellen einer kollabierenden Blase in einem elastischen Feststoff erzeugt wer-
den. Die erzeugte Wandschubspannung wird in Abhängigkeit des Blasenabstandes un-
tersucht, sowohl für eine planare, als auch für eine ringförmige Wandgeometrie. Eine
zwischen zwei elastischen Platten eingeschlossene Kavitationsblase erzeugt eine akusti-
sche Oberflächenwelle, die sich schneller als die Stoßwelle in der Flüssigkeit fortpflanzt
und eine Region negativen Drucks hervorruft. Dieser Mechanismus wird genutzt, um zu
untersuchen, ob eine durch lokales Heizen erzeugte lokale Gasübersättigung als Blasenkeim
fungieren kann. Mit der gleichen Methode wird beobachtet, dass auch Oberflächendefekte
als Blasenkeime dienen können, weshalb Oberflächenwellen eine Methode zur Detektion
von Oberflächenschäden und zur kontrollierten Erzeugung von Blasen mit einer Lebens-
zeit von unter 10 ns darstellen. Des Weiteren wird gezeigt, dass eine geformte Kavita-
tionsblase kontrolliert Oberflächenschäden verursachen kann. Die Rolle der verschiedenen
Wellen bei der Schadenserzeugung wird durch die Variation des Zeitversatzes zwischen
der Erzeugung zweier konzentrischer ringförmiger Wellenquellen untersucht. Schließlich
wird gezeigt, dass eine elliptische Wellenquelle einen Oberflächenriss entlang ihrer kleinen
Halbachse erzeugt, während eine Punktquelle einen Riss kreisförmig fortsetzen kann,
womit die Kontrolle über die Länge und die Richtung des Schadens verbessert wird.
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6 1 Introduction

1 Introduction

Bubbles are ubiquitous. They are found in carbonated drinks, where solved carbon diox-
ide agglomerates, in boiling liquids, where they are created from the liquid through a
phase transition, or in sloshing liquids like seawater, where they are mechanically intro-
duced into the liquid bulk and rise to the surface due to gravity. Generally, larger bubbles
quickly rise to the surface of the liquid and are hence removed from the liquid, while
smaller bubbles are of a longer lifetime, allowing them to interact with their surroundings
for a longer time. At the same time, nano-sized bubbles are difficult to observe and are
due to large surface tension forces and gas diffusion inherently unstable. The ability to
neglect the influence of gravity and the potential use in microfluidic and minimally in-
vasive medical applications are reasons why micro-sized bubbles are of scientific interest.
When perturbed, bubbles volumetrically oscillate around their equilibrium size, at which
the internal gas pressure is balanced by the external pressure and surface tension. The
interplay between inertia and compressibility gives rise to complex dynamics rich with
interesting phenomena.
Bubbles gained attention in modern science after D. Silberrad [1] reported erosive damage
on the propellers of the passenger ships “Lusitania” and “Mauretania” in 1912. Because
of the importance of long-distance ship transport, research on its origin has intensified.
The origin of this erosion was then to be found and suppressed. In 1917, Lord Rayleigh [2]
proposed cavitation bubbles as a cause for the observed propeller erosion. Rayleigh found
that the collapse of a spherical cavity can lead to localised high pressures. The collapse
behaviour of bubbles near a rigid boundary was modelled numerically by Hickling and
Plesset [3]. Plesset and Chapman [4], Blake and Gibson [5], and Best and Kucera [6]
showed that such bubbles move towards the boundary. When a bubble collapses near a
solid boundary or is subjected to another source of anisotropy, it commonly develops a
jet that pierces the bubble. If this jet impacts on a nearby solid boundary, it induces
large water hammer pressures and turns into a radial flow spreading across the boundary,
creating large wall shear stresses. When bubbles collapse, they emit strong shock waves,
which can then be reflected or refracted at nearby boundaries to another solid, liquid, or
gaseous medium, causing different phenomena in each case. For instance, when a shock
wave is reflected from a free boundary, it is turned into a rarefaction wave. Its energy
can be transformed into other kinds of waves, such as elastic waves, or into other forms
of energy, such as kinetic energy that translates, compresses, or expands another nearby
bubble or causes the formation of liquid jets. The coupling between bubbles, waves, and
other media can cause complex dynamics to arise from even rather simple geometries
[7]. Today, it is known that cavitation bubbles can damage even the hardest materials
available to mankind [8]. In the case of ship propellers or industrial flows, cavitation is
an undesirable phenomenon that is to be avoided.
Nevertheless, controlled cavitation also has applications. Many small bubbles are used in
ultrasound baths to clean jewellery, optical components, lab equipment, or medical tools
[9]. There, the otherwise destructive pressures and shear forces are utilised to remove
the dirt from surfaces. This is especially useful for small structures that are difficult to
clean conventionally. Acoustically driven bubbles are also potentially useful as contrast
agents for ultrasound imaging [10]. In medicine, acoustically induced cavitation is used
to destroy unwanted tissue such as kidney stones (lithotripsy), fat cells, cancer cells and
tumours (histotripsy). Drug-carrying bubbles may also be destroyed to release medicine
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once they have reached a desired position. Laser-induced cavitation is also used in a
controlled manner in laser eye surgery [11].
The use of bubbles to create high-speed liquid jets in air for the purpose of needle-free
injection is currently under investigation [12–14]. The strong flows induced by cavitation
bubbles are also used for the mixing of immiscible fluids [15]. Since an acoustically driven
bubble collapse can lead to very high gas pressures and temperatures, bubbles can be
used to induce a chemical reaction in the context of sonochemistry [16], or potentially
even to ignite nuclear fusion, called nuclear confinement fusion [17, 18].
To further our understanding of the behaviour of bubbles, both for the sake of avoiding
their destructive character and for applications as listed above, research on the behaviour
of single cavitation bubbles is required. The experimental investigation of cavitation bub-
bles proved difficult since they are often small (. 1 mm) and their dynamics happen on
short time scales (. 1 ms). Thus, instruments operating at high temporal and spatial
resolutions are required. Even today, the behaviour of bubbles is only partly understood
and is still a subject of ongoing research. Typically, high-speed cameras are used to
capture the dynamics of the flow and the behaviour of the bubble. Early photographic
studies of the dynamics of a bubble in the vicinity of a rigid boundary were carried out
by Shutler and Mesler [19], as well as Benjamin and Ellis [20]. To measure the pressure
at a specific position over time at high temporal resolution, hydrophones are used. There
are a multitude of methods to induce cavitation in an experimental setting. Yet, the use
of a focused laser pulse stands out due to its precise control and reproducibility [21].
Another point of scientific interest is the mechanism behind cavitation on the nanoscale.
While it is known that the presence of nucleation sites in the liquid greatly aids the
creation of cavitation bubbles, the precise nature of such nuclei is not fully understood.
A specifically simple geometry is that of a thin liquid layer sandwiched between two
solid plates [7], as this allows for optical observation of the entire region of interest while
eliminating the limitation caused by the depth of field. The same advantage holds for
the nucleation of bubbles through focused laser energy deposition. Additionally, the low
Reynolds number of this confined geometry typically enforces laminar, predictable flows.
Besides experimental investigations, numerical simulations are typically used as a way to
indirectly compare the experimental results with theoretical models. To study bubbles,
the Boundary Element Method (BEM) was widely used, which offers a computationally
efficient way to simulate two-phase flows in extended fluid domains. A more sophisti-
cated, but computationally intensive approach is the Volume of Fluid (VoF) method,
which allows one to account for viscosity, wave propagation, and surface tension. In re-
cent years, VoF simulations have got increasingly more viable with advances achieved in
computer technology. OpenFOAM is a highly versatile numerical framework based on
the VoF method. It offers a multitude of numerical solvers for different aspects of fluid
dynamics and allows for modifications of their code to suit the needs of a specific problem.
Once a numerical solver is verified by experimental observations, it offers a powerful tool
that allows one to inspect aspects of the flow of interest that are difficult to measure in
experiments, such as the full pressure and velocity fields in the simulated fluids.
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The present work is a cumulative dissertation, containing nine publications made over the
course of the author’s work at the department “Soft Matter” of the institute of physics in
the faculty of natural sciences, at the Otto-von-Guericke-University (OvGU) in Magde-
burg, Germany. All publications have been made in cooperation with fellow researchers
from within the group and from other universities. Three of them list the present work’s
author as the first or a main author, and the remaining six as one of the co-authors. In
all of these works, the author’s contribution consists of the numerical simulations made in
OpenFOAM, as well as taking part in the paper structuring, writing, and proofreading.
Each chapter from chapter 4 to chapter 12 contains the work from one of these papers,
including the full reference to the published version and published follow-up work, an
abstract, an introduction, experimental and numerical methods, results, and conclusions.
They can also be found in the list of references under [22–30]. Since the contributing au-
thors and the publishing journals vary, the writing styles slightly differ between the papers.
The author apologises for any perceived inconsistencies in the writing style throughout
the present work, as well as repetitions in the numerical methods sections due to similar-
ities between the papers.
Chapter 2 gives an introduction to fluid dynamics, linear elasticity, cavitation, and compu-
tational physics, and is aimed at beginners in the field. Derivations of the flow equations
are largely taken from Batchelor [31]. For an introduction to elasticity theory, the au-
thor recommends the book by Landau and Lifschitz [32]. On bubble dynamics, there are
books by Delale [33], Brennen [34], and Koukouvinis and Gavaises [35]. More references
to cavitation and bubble dynamics are given in section 2.5. That being said, the present
work merely provides the theoretical basics needed for modelling a single bubble inter-
acting with boundaries of varying kinds. It does not cover acoustically driven bubbles
and bubble clouds, an excellent review of which is given by Lauterborn and Kurz [36].
For an introduction to computational fluid dynamics, the author recommends the books
by Darwish and Moukalled [37], Höpken and Mooney [38], and Tryggvason et al. [39], as
well as the doctoral thesis of Prof. Jasak [40].
The software used for the CFD simulations is described in chapter 3. It describes three fi-
nite volume solvers within the OpenFOAM framework. CavBubbleFoam [41] is used in
chapter 4 to model a cavitation bubble near a perforated rigid plate. It models two com-
pressible, viscous, and immiscible fluids while neglecting mass and heat transfer. Since
MultiphaseCavBubbleFoam [42] can model more than two fluid components, it was
used to simulate a bubble interacting with a liquid-liquid interface in chapter 5, and with
a free boundary in chapters 6 and 7. Fluid-structure interaction is modelled in chapter
8 by CavBubbleFsiFoam [43], where an expanding and collapsing bubble is coupled
to a nearby linear elastic solid. This fluid-structure interaction solver is also used in the
four following chapters, in which a bubble between two glass plates is simulated, where it
excites Rayleigh waves that travel ahead of the shock waves emitted in the fluid, causing a
tension region to form. This is used to show that localised gas supersaturation can act as
a cavitation nucleus in chapter 9. In chapter 10 it is shown that nanoscopic cracks in the
glass surface can do the same. In chapter 11, damage to the surface caused by two bubbles
in the shape of concentric circles is studied in dependence of the time delay between their
creation. Finally, in chapter 12 the generation of damage by an elliptical bubble as well
as the effect of such a bubble on a pre-existing surface defect is investigated.
The work is concluded in chapter 13. The references from all chapters, including the pub-
lished papers, are listed at the end of the present manuscript, just before the declaration
of honour.
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2 Theoretical basics

2.1 List of physical quantities and operators

The following table gives an overview of the quantities (quant.) used in chapter 2 and
chapter 3. It includes variable and constant quantities in scalar, vectorial, and tensorial
form as well as operators, along with their corresponding units. A unit of “1” signifies
that the quantity is dimensionless.

Table 2.1: List of quantities and operators, along with their units and their meaning

quant. unit meaning quant. unit meaning

t, τ s time ζ kg·m-1·s-1 volume viscosity

m kg mass κ m·s2·kg-1 compressibility

ρ kg·m-3 mass density c, cl, ct m·s-1 wave velocity
~j kg·m-2·s-1 mass flux density D m2·s-1 diffusion coeff.

~x m location T K temperature

l, L m length λ kg·m·s-3·K-1 heat conduction coeff.

r,R m radius cp, cV m2·s-2·K-1 specific heat capacity

~u,~v, U m·s-1 velocity γ 1 adiabatic coeff.

~a m·s-2 acceleration σ kg·s-2 surface tension coeff.

A m2 surface area Re 1 Reynolds number

∂A m circumference of ∆A We 1 Weber number

~n 1 unit normal vector Fr 1 Froude number

V m3 volume Ca 1 cavitation number

∂V m2 surface of ∆V d 1 stand-off distance

E kg·m2·s-2 energy γ 1 stand-off parameter

w kg·m-1·s-2 energy density ~D m displacement

W kg·m2·s-2 work
↔

ε 1 strain tensor

F kg·m2·s-2 free energy density K kg·m-1·s-2 bulk modulus
~F kg·m·s-2 force λ,G kg·m-1·s-2 Lamé parameters

~p kg·m·s-1 momentum E kg·m-1·s-2 elastic modulus
~fA, ~fV kg·m-2·s-2 force density v 1 Poisson’s ratio

~M kg·m2·s-2 rotational moment h, k 1 step size
~L kg·m2·s-1 angular momentum Co 1 Courant number

p kg·m-1·s-2 pressure ω 1 relaxation parameter
↔

σ kg·m-1·s-2 stress tensor Γ 1 Gamma function
↔

s kg·m-1·s-2 deviatoric stress tensor ✶ 1 unity matrix

N m-3 number density δik 1 Kronecker delta

cN 1 concentration ǫijk 1 Levi-Civita tensor

η kg·m-1·s-1 dynamic viscosity ∇ 1 Nabla operator

ν m2·s-1 kinematic viscosity ∆ 1 Laplace operator
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2.2 Fluids

The branch of physics describing the properties of fluids is called fluid mechanics, or flow
mechanics. The time-dependent behaviour of fluids is described by fluid dynamics, also
called flow dynamics.
The defining property of fluids lies in their deformability under shear forces. The elements
that make up the fluid can be rearranged freely without changing the macroscopic state
of the fluid, as long as this rearrangement does not change its density ρ, which is a
macroscopic quantity. A fluid subjected to a finite shear force ~F will continuously deform
for as long as that force is applied. To be more precise, the fluid may offer some resistance
to a shear force acting on it (e.g. viscous or inertial forces), but it will not be able to
fully prevent the continuous rearrangement of its elements. This stands in contrast to
the properties of a solid. If it is in equilibrium with its environment, the elements of a
solid are arranged in a specific shape, which only changes if the environmental properties
change.
This definition of a fluid encompasses especially liquids and gases, but also plasmas,
solutions, foams, emulsions, suspensions, and aerosols. A plasma is a mixture of particles,
a significant number of which are free, charged particles (electrons and ions). Such a
plasma can be created through ionisation of a gas. A solution is a homogeneous mixture
of two substances. The rest of the examples given above are heterogeneous mixtures of
at least two substances, namely:

• foam: a gas in a liquid (or a solid)

• emulsion: a liquid in a liquid

• suspension: a solid in a liquid

• aerosol: a liquid or a solid in a gas (fog and smoke, respectively)

The categorisation between fluids and solids is not always clear. Some substances behave
partly like a fluid and partly like a solid. Examples of this are viscoelastic materials like
gelatine, non-Newtonian fluids like certain polymer solutions, liquid crystals, thixotropic
substances like gels, paint, or quicksand, as well as high viscosity liquids like pitch.
The focus in the following work will lie on Newtonian fluids, or more precisely, compress-
ible, isotropic liquids and gases that exhibit none of the above-listed properties of solids
and a linear relationship between the local strain rate and the resulting viscous stress.
One may refer to such a fluid as a “simple” fluid.

2.2.1 Molecular properties

To distinguish between a liquid and a gas, we will consider the molecular interactions
taking place between the elements that make up the fluid. In the following, the word
“particle” is representative of either atoms or molecules, which typically make up the
fluids of interest. Figure 2.1 shows the force between two non-reactive neutral particles as
a function of their distance d, as derived from the widely known Lennard-Jones potential
[44]. This force is strongly repulsive for small distances of the order 10-10 m, since for
sufficient proximity the particle’s electrons are partly forced to move to higher energy
states (Pauli repulsion). For larger distances, F is dominated by an electrostatic attrac-
tion (van-der-Waals force) between the particles, which stems from the particles being
polarised in the electrostatic field of the other. This attractive force strongly diminishes
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Figure 2.1: Force F between two simplified neutral particles as a function of their distance
d. d0 is usually of the order 3 ... 4 · 10-10 m.

as ∼ d-8 for d≫ d0, and can thus be neglected for large d.
One may argue that a liquid is typically of much higher density than a gas. While this
is an insufficient criterion to distinguish between liquids and gases, it is related to the
distance between neighbouring fluid particles. For gases, the average distance between
a particle and its nearest neighbour is much larger than their interaction cross-section
diameter (at least of the order 10 d0), and thus the intermolecular forces can be neglected
most of the time. When two particles do come close to each other, their interaction can
be approximated by a collision with an instantaneous transfer of energy and momentum.
The particle interaction is thus approximated via a hard-core interaction potential.
In the case of liquids and solids, each particle is in the vicinity of multiple neighbours,
and their attractive interaction is thus no longer negligible. In solids, the atomic grid
typically stays constant or only changes slowly over time and is often even periodic in
space, i.e. crystalline. Small groups of the particles of a liquid may temporarily arrange
into a crystalline structure, which can then move as a whole, split into multiple groups
or merge with others. It is remarkable that the density of a substance in a solid and a
liquid state only differs by a few %, yet they still exhibit such fundamentally different
properties.

2.2.2 The continuum hypothesis

Fluid mechanics is a branch of continuum mechanics, which describes substances as a
continuous medium in space. It uses field quantities like density ρ and temperature T ,
which are continuous functions of space which change slowly on the scale of single particles.
However, the mass distribution of a real fluid consisting of particles is far from such a
continuous function. The mass of a particle is mostly concentrated in its core, which is
much smaller than the particle itself. As a first approximation, the mass distribution of
particles making up a fluid can be described as a sum of mass points, which is strongly
discontinuous.
Despite this, continuum mechanics describes substances in macroscopic systems which are
much larger than the intermolecular distances. Thus the basic assumption of continuum
mechanics is made:

Substances macroscopically behave as if they were perfectly continuous.
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So instead of describing discrete particles using physical quantities like mass mi and
velocity ~vi, in the region of space (domain) occupied by the substance, field quantities
like the mass density ρ and the velocity field ~u are used. Those field quantities are
macroscopic and can be measured as a function of space and time. They can be defined
using a volume element ∆V , which is much smaller than the important length scales of
the described macroscopic system. Thus, all partial volumes considered in the system
should be larger than ∆V . The number of particles ∆N encompassed by the volume
element ∆V , and thus also the value of a field quantity, then depends on the choice of the
volume element’s shape. For a small ∆N , this field value would then also strongly vary
over time because of statistical fluctuations. Thus, ∆V should also be much larger than
the intermolecular distance d, such that it contains a large number of particles, ∆N ≫ 1.
This diminishes the statistical fluctuations of the field values (both in time and space) to
the point that they can be neglected.
Under these conditions, the density field ρ(~x, t) and the velocity field ~u(~x, t) can be defined
as follows:

ρ(~x, t) =
1

∆V

∆N∑

i=1

mi =
∆m

∆V
, (2.1)

~u(~x, t) =
1

∆N

∆N∑

i=1

~vi(t) = 〈~vi〉 . (2.2)

The position ~x denotes the position of the volume element and can be taken as an arbi-
trary point within ∆V . In the following, the functional dependence (~x, t) is omitted for
simplicity. Also, the word “field” is omitted when regarding the field quantities.

2.2.3 Volume forces and surface forces

The forces acting on a fluid element can be categorised into two groups.
Long-range forces like gravity act on macroscopic regions of the fluid. Such forces are
called volume forces. They typically change only slowly with the distance from their
source. Thus within a fluid element, they can be taken to be spatially independent.
The total volume force ~FV acting on the fluid element is thus proportional to its mass
∆m. Since the scale of the volume element is chosen such that density variations can be
neglected and thus ρ can be taken to be constant within the fluid element, its mass and
thus also ~FV is proportional to its volume:

~FV =

∫

∆V

~fV dV ≈ ~fV ∆V , (2.3)

where the volume force density ~fV does not depend on the choice of ∆V .
The gravitational force density is

~fV = ρ~g . (2.4)

A commonly considered case is a homogeneous, time-independent gravitational field,
which is a good approximation for the gravitational field in a stationary laboratory on
earth. Then, the gravitational acceleration is given by ~g = −g ~ez = const., where ~ez is the
unit vector in the vertical axis.
The second group consists of short-range forces that quickly diminish with the distance
from their source. Thus, as a first approximation, they only act on the surface of a fluid
element. These surface forces may occur at the interface between any two neighbouring
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fluid elements or at the interface between a fluid and another medium.
In gases, the main source of surface forces is the momentum transport through a given
surface by particles passing through that surface, i.e. pressure. In liquids, an additional
force occurs due to the attraction of neighbouring fluid particles, i.e. viscosity.
To describe surface forces, one may consider a planar surface element ∆A, which shall be
much larger than the range of intermolecular forces, but much smaller than the length
scale on which macroscopic quantities vary significantly. Thus, in the vicinity of ∆A the
field quantities can be taken to be constant. The surface force acting on the surface el-
ement must then also be constant everywhere on ∆A, and it follows that the total force
acting on the surface element is proportional to its area,

~FA =

∫

∆A

~fA dA ≈ ~fA(~n) ∆A . (2.5)

The surface force density ~fA here depends on the orientation of ∆A, given by the unit
normal vector ~n. If ~n points from fluid element A to fluid element B, ~fA gives the surface
force density that is acted on fluid element A by fluid element B at their interface ∆A. If
the sign (i.e. the direction) of ~n is flipped, then the sign of ~fA must also be flipped, i.e.,
~fA(~n) = −~fA(−~n). In other words, ~fA is an odd function of ~n.

The stress tensor

To examine the form of the surface force density ~fA, one can consider a triangular surface
element ∆A as shown in figure 2.2. ∆A is chosen such that each of its sides lies in
one of the three coordinate planes y-z, x-z, and x-y. The projection of ∆A on each of
these planes results in the triangular surface elements ∆Ax, ∆Ay, and ∆Az, respectively.
These four surface elements with the unit normal vectors ~n, ~ex, ~ey, and ~ez form an irregular

tetrahedron. The total surface force ~FA acting on this tetrahedron can thus be written as

~FA = ~fA(~n) ∆A+ ~fA(−~ex) ∆Ax + ~fA(−~ey) ∆Ay + ~fA(−~ez) ∆Az . (2.6)

The projections of ∆A can be expressed by ∆A itself,

∆Ax = ~ex · ~n ∆A = nx ∆A; ∆Ay = ny ∆A; ∆Az = nz ∆A . (2.7)

Combining the equations (2.6) and (2.7) gives

~FA =
(
~fA(~n) −

(
nx ~fA(~ex) + ny ~fA(~ey) + nz ~fA(~ez)

))
∆A . (2.8)

Newton’s second law relates the force acting on the fluid element with the rate of change
of its momentum,

~F = ṗ =
d(∆m~v)

dt
=
d(ρ∆V ~v)

dt
=
d(ρ~v)

dt
∆V

= ~FV + ~FA = ~fV ∆V +
(
~fA(~n) −

(
nx ~fA(~ex) + ny ~fA(~ey) + nz ~fA(~ez)

))
∆A .

(2.9)

For the last step in the first line, the volume element was chosen to be stationary and of
a constant size.
Rearranging equation (2.9) gives

(
~fA(~n) −

(
nx ~fA(~ex) + ny ~fA(~ey) + nz ~fA(~ez)

))
=
(d(ρ~v)

dt
− ~fV

) ∆V

∆A
. (2.10)
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Figure 2.2: Irregular tetrahedron made up of the surface element ∆A and its projections
on the coordinate planes ∆Ax, ∆Ay, and ∆Az.

In the limit of a very small volume element, the right side of equation (2.10) vanishes,
such that

~fA(~n) = nx ~fA(~ex) + ny ~fA(~ey) + nz ~fA(~ez) . (2.11)

The three vectors ~fA(~ex), ~fA(~ey), and ~fA(~ez) can now be interpreted as the columns of a
tensorial quantity

↔

σ that is independent of ~n,

~fA =
↔

σ · ~n ⇔ fA,i = σij nj . (2.12)

The right side of equation (2.12) uses index notation and Einstein’s summation convention,
i.e., for a term with a multiply occurring index variable, a sum of that term is taken over
all available indices.
This newly introduced tensorial quantity

↔

σ is called the stress tensor. Its components σij
give the i-th component of the force that acts onto a surface with its normal vector in the
j-direction.
To investigate the properties of the stress tensor, the rotational moment applied to a fluid
element by volume forces and surface forces is considered,

~M
(2.3),(2.5),(2.12)

=

∫

∆V

~x× ~fV dV +

∫

∆A

~x× (
↔

σ · ~n) dA

=̂

∫

∆V

ǫijk xj fV,k dV +

∫

∆A

ǫijk xj σkl nl dA

=

∫

∆V

ǫijk xj fV,k dV +

∫

∆V

ǫijk
∂(xj σkl)

∂xl
dV

∂xi
∂xj

= δij

=

∫

∆V

ǫijk xj fV,k + ǫijk

(
σkj + xj

∂σkl
∂xl

)
dV .

(2.13)

In the second step, the Levi-Civita tensor ǫijk is introduced along with index notation

(~a × ~b = ǫijkajbk). Its components are 1 (-1), if i,j,k is an even (odd) permutation of
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1,2,3, and 0 otherwise. In the third step, Gauss’s theorem is used to replace the surface
integral with a volume integral.
The equation for rotation analogous to Newton’s second law relates the rotational moment
to the rate of change of angular momentum and gives

~M = ~̇L =
d(~x× ~p)

dt
=

d

dt

∫

∆m

~x× ~v dm =
d

dt

∫

∆V

~x× ~v ρ dV

=̂
d

dt

∫

∆V

ǫijk xj vk ρ dV
(2.13)
=

∫

∆V

ǫijk xj fV,k + ǫijk

(
σkj + xj

∂σkl
∂xl

)
dV .

(2.14)

In the limit of ∆V → 0, if the coordinates are chosen such that ~x stays within ∆V , |~x|
also approaches 0. Then in that limit, the left side of (2.14) as well as the first and third
terms on the right side are proportional to |~x|∆V , while the second term on the right
side is only proportional to ∆V . This term must thus be 0 for any choice of ∆V ,

∫

∆V

ǫijk σkj dV = 0 ⇔ ǫijk σkj = 0 ⇔ σij = σji . (2.15)

The last step in equation (2.15) is done by executing the sum over j and k for all choices
of i.
↔

σ is thus symmetrical and only has six independent elements. The role of each element of
the stress tensor in two dimensions is illustrated in figure 2.3 (a). The diagonal elements
of

↔

σ are normal stresses in the sense that they represent the normal forces that act on a
surface element that is parallel to one of the coordinate planes. They tend to squish or
stretch a volume element along a coordinate axis. The non-diagonal elements meanwhile
are tangential stresses, also called shear stresses, since they stand for the tangential forces
acting on such a surface element. They tend to parallelly displace neighbouring layers of
the medium.
It is always possible to choose the coordinate system such that the non-diagonal elements
of a symmetrical tensor locally vanish. After such a main axis transformation, the diagonal
elements of the stress tensors are called the main stresses. The trace of a tensor (tr(

↔

σ) =∑
i σii = σii) is unchanged in a coordinate transformation. The stress tensor can thus be

split into two summands such that one of them is traceless,

↔

σ =
1

3
σii ✶ +



σ11 − 1

3
σii 0 0

0 σ22 − 1
3
σii 0

0 0 σ33 − 1
3
σii


 . (2.16)

The first term on the right side of equation (2.16) is the isotropic component of
↔

σ and
represents an isotropic compression or expansion (see figure 2.3 (b)). The pressure p is
thus defined as

p = −1

3
σii . (2.17)

The second term represents a compression in one axis, an expansion in another and either
a compression or an expansion in the third axis (see figure 2.3 (c)). Since the sum of
these three elements is 0, this term tends to deform the volume element without changing
its volume. In the case of a fluid, which is not able to prevent a rearrangement of its
particles, this term leads to an acceleration of parts of the fluid. Thus, in a fluid at rest,
only the first term is non-zero.
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(a) (b) (c)

Figure 2.3: Role of the stress tensor
↔

σ in two dimensions. Left: directions, in which the
components of the stress tensor

↔

σ act upon a fluid element. Centre: isotropic part of the
stress tensor. Right: Anisotropic part of the stress tensor.

2.2.4 Transport phenomena

The equilibrium state of a fluid is a state in which specific quantities are spatially constant
within the fluid. Such quantities are the temperature T , the velocity ~u, and if the fluid
consists of multiple different kinds of particles, the particle concentration cN . If one of
these quantities is not spatially constant, the system tends to smooth out non-uniformities
via an exchange of heat, momentum, and particles, respectively.

Diffusion

If a fluid consists of multiple components, the concentration of each component may be
non-uniform. Since a particle in a fluid frequently collides with other particles, its motion
is effectively a random walk. This is also called Brownian motion [45].
One can consider only the particles of one of the components of the fluid. If the concen-
trations cN = ∆N

∆V
on the two sides of a surface element ∆A are not equal, the random

motion of the particles will likely lead to a finite mass flux jA across ∆A to the side of
lower cN . This phenomenon is called diffusion of the considered particles. jA can be
expressed by a particle flux vector ~j that is independent of the choice of orientation of
∆A, which is given by its normal unit vector ~n,

jA = ~j · ~n ∆A . (2.18)

To find a relation between ~j and cN , the assumption is made that cN only varies slowly
in space, such that near a surface element it may be approximated by a linear function.
Then, ~j should only depend on the local properties of the fluid and the first-order spatial
derivatives of cN . The simplest form for ~j is then:

~j =
↔

k∇cN . (2.19)

The tensorial quantity
↔

k is called the transport coefficient. This term can be used for

any transport phenomenon, not just for diffusion.
↔

k can depend on the local properties
of the fluid, and thus also on space and time, and possibly also on cN . For isotropic
media, like the fluids considered here, the transport coefficient can be described by a
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scalar quantity,
↔

k = −k ✶. The negative sign was chosen so that ~j points in the direction
of lower concentration cN . k is then positive and equation (2.19) becomes

~j = −k∇cN . (2.20)

In practice, equation (2.20) holds well for a large range of ∇cN . The mass flux of the
considered particles out of a volume element ∆V is

∮

∂V

~j · d ~A = −
∮

∂V

k∇cN · ~n dA Gauss’s theorem
= −

∫

∆V

∇ · (k∇cN) dV , (2.21)

where ∂V is the surface of ∆V .
Since the total number of particles is conserved, the mass flux out of ∆V must be related
to a change in the particle number density in ∆V ,

∮

∂V

~j · d ~A Gauss’s theorem
= − ∂

∂t

∫

∆V

cN mdV
(2.21)
= −

∫

∆V

∇ · (k∇cN) dV

⇔
∫

∆V

m
∂cN
∂t

−∇ · (k∇cN) dV = 0 .

(2.22)

Here, m stands for the mass of a considered particle, which was taken to be constant.
Since equation (2.22) should hold for any choice of ∆V , the integrand must vanish ev-
erywhere in the fluid. With the assumption that k does not vary in space, it follows
that

∂cN
∂t

= D∆cN . (2.23)

Here, ∆ is the Laplace operator. The newly introduced quantity D = k
m

is called the
diffusion coefficient.
Equation (2.23) is the diffusion equation. It is one of the most important partial differ-
ential equations and its analytical and numerical solutions are well understood.

Heat conduction

Along with the migration of particles through a surface element ∆A, the kinetic energy
they carry is transported. Additionally, through intermolecular forces kinetic energy is
exchanged between neighbouring particles. These processes cause an energy flux, i.e. a
heat flux, that tends to smooth out spatial temperature variations. Analogously to the
arguments in the previous section, a heat flux caused by a local temperature gradient ∇T
is related to a change in the local energy density w = ∆E

∆V
,

∂w

∂t
= ∇ · (λ∇T )

λ=const.
= λ∆T . (2.24)

The associated coefficient λ is called the heat conduction coefficient.
At constant pressure, a change in the energy density w leads to a change in the temper-
ature T ,

∂w

∂t
= ρ cp

∂T

∂t
= ∇ · (λ∇T )

λ=const.⇔ ∂T

∂t
=

λ

ρ cp
∆T . (2.25)

This is the heat conduction equation, where cp is the specific heat capacity at a constant
pressure p.
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Momentum transport

Just like their kinetic energy, the momentum of the particles is transported through
their migration and through particle interactions. But unlike the previous transported
scalar quantities, the momentum ~p is a vectorial quantity, and thus needs to be treated
differently.
Consider the case of a simple shear flow, where only the x-component of the velocity is non-
zero. The velocity should also only depend on y, so ~u(y) = ux(y)~ex. The inhomogeneity
in ~u leads to tangential stress that tends to counteract this velocity gradient. Again a
simple, linear form for the dependence on the gradient is assumed,

σxy = µ
dux
dy

, (2.26)

where µ is the dynamic viscosity. It is interpreted as a measure of the inner friction forces
in the fluid. It is thus a measure of the resistance of the fluid against the rearrangement of
its particles and for the dissipation of macroscopic (or ordered) kinetic energy. This energy
typically gets transformed into unordered kinetic energy, i.e. heat. Thus, to describe an
energy dissipation, µ is necessarily positive. Often the kinematic viscosity is used, which is
defined as ν = µ

ρ
. The effect of the stress tensor

↔

σ on the velocity of the fluid is examined
in greater detail in section 2.3.3.

2.2.5 Surface tension

Interfaces between media are of special interest since they determine the boundary condi-
tions of the fluid and special phenomena occur at the boundary between different media.
As is known in thermodynamics, two media that are in contact tend towards an equi-
librium state, which is given by a constant temperature across both media. If there is a
temperature difference between the two media, a heat flux across the interface of the two
media towards the lower temperature occurs. Thus, the temperature must be continu-
ous across their boundary, since a hypothetical jump in the temperature would cause an
infinite heat flux. The heat fluxes on both sides of the interface must also be equal,

(λ~n · ∇T )medium 1 = (λ~n · ∇T )medium 2 . (2.27)

This means that, if the heat conduction coefficients of the two media are not equal, the
temperature gradient exhibits a jump at the boundary.
As long as the interface between the media stays intact, the velocity component normal
to the interface must be continuous as well.
Often, a mass flux across the interface does not occur, e.g. between a fluid and a solid (if
the solid is not porous or soluble), or between two immiscible fluids, so long as no phase
transitions occur.
Small liquid droplets in a gas or small gas bubbles in a liquid often take an approximately
spherical shape. For larger droplets and bubbles, gravitational effects become important
and they are forced to take a different shape. This behaviour can be explained by a form
of energy that is proportional to the surface of a fluid, E = σA since a sphere is the
body of minimal surface area (and thus minimal surface energy E) for a given volume.
The proportionality factor σ depends on the combination of the two media that form the
interface. It has the form of a specific energy per unit area, but can also be interpreted
as a line stress that tends to minimise the fluid surface, which is why it is referred to as
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the surface tension coefficient.
The origin of surface tension lies in the attractive forces of the particles that make up
the fluid. If the cohesive forces between the particles of one medium are larger than the
adhesive forces between different particles of the two media, a particle near the interface
experiences a non-zero force towards the fluid of its own kind, and the surface between the
media is stable. In the opposite case, a particle near the interface between the two media
gets pulled out of its own medium into the other. This corresponds to a negative value of
σ and thus the medium tends to maximise its surface area. This is achieved when every
particle of the medium is surrounded by particles of the other medium, if possible. Thus,
in that case, the two media are miscible and any interface between them is unstable.
σ typically decreases with increasing temperature, and can also heavily depend on the
presence of further components, like e.g. tensides, which decrease σ and can sometimes
even make immiscible fluids miscible. A common example of tensides is soaps, which are
used to decrease the surface tension of water with other media to improve the wettability of
surfaces so that unwanted contaminants can be removed more easily from those surfaces.

Equilibrium shape between two fluids

The shape of the interface between two fluids can change freely, as opposed to the inter-
face between a fluid and a rigid solid boundary. Consider two fluids in mechanical and
thermodynamic equilibrium. σ is then constant along their interface.
It is apparent from observations that surface tension tends to flatten out curved surfaces.
At a point P on an interface between two fluids, the coordinate system can be chosen
such that P is at the coordinate origin and the x-y plane is the tangential plane on the
surface at point P . Then, the shape of the surface near P can locally be described by a
function z = f(x, y), where the first-order spatial derivatives of f are zero. Near P , the
normal unit vector can be approximated by ~n ≈ (−∂f

∂x
,−∂f

∂y
, 1). Then, the surface tension

force acting on an element ∆A of the interface can be calculated as

∆~F = −σ
∮

∂A

~n× d~x = −σ ~ez
∮

∂A

−∂f
∂x

dy +
∂f

∂y
dx = σ ~ez

(∂2f
∂x2

+
∂2f

∂y2

)
P

∆A

⇒ ∆p = σ∆f .

(2.28)

In the second step, Stokes’ theorem was used and the second-order spatial derivatives were
assumed to be constant near P . The surface tension force is thus inversely proportional
to the local curvature of the interface.
The surface tension force generally causes a pressure jump ∆p at the interface,

∆F

∆A
= ∆p = σ∆f ⇒ ↔

σ1 −
↔

σ2 = ∆p✶ . (2.29)

The pressure is larger on the concave side of the interface. The pressure difference can be
expressed as a jump in the stress tensor

↔

σ at the interface according to the right side of
equation (2.29).
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2.3 Fluid dynamics

In this section, the temporal evolution of the flow field is considered, with the goal of
deriving the flow equations for simple fluids.
The flow field is typically described in one of two different ways. The Euler representation
~u(~x, t) gives the average velocity of the fluid particles near ~x at time t. In the case of ~u
being time-independent, the flow is called a stationary flow. In the Lagrange representa-
tion, ~x(~x0, t0) gives the trajectory of a fluid element that was at the position ~x0 at time
t0. ~x0 can be defined, for instance, as the geometric centre of ∆V . ∆V is assumed to be
small enough so that even after any deformation by the flow field, it can be considered
point-like at any relevant time t. In the preceding chapters, the Eulerian representation
has been used, and it will also be used in the following calculations.
A curve that is tangential to ~u everywhere at a given time t is called a streamline. Stream-
lines are helpful for visualising the flow field at a specific time t. Streamlines are solutions
of the following relation:

dx

dux
=

dy

duy
=

dz

duz
. (2.30)

A line made up of the points visited by a fluid element is called a path line. It shows
the trajectory taken by the fluid element and is a solution of the following differential
equation,

d~x

dt
= ~u(~x, t), ~x(t0) = ~x0 . (2.31)

Another useful definition is that of a streak line, which consists of the positions at time t
of all fluid elements that visit the position ~x0 at any time t′. Streak lines can be visualised
in practice through continuous injection of ink at ~x0, so long as that does not disturb the
flow field. An example of a streak line is the line made of smoke leaving a chimney. The
points of a streak line are obtained by integrating equation (2.31) from each starting time
t′ to a specific time t, where ~x(t′) = ~x0. In a stationary flow, streamlines, path lines, and
streak lines coincide.
In a stationary flow, d~u

dt
= 0. Nonetheless, a fluid element experiences an acceleration d~v

dt

if it moves along a path on which ~u is not constant everywhere. Since the fluid element
moves by d~x = ~u dt in time dt, its acceleration is given by

d~v

dt
=
~u(~x+ ~u dt, t+ dt) − ~u(~x, t)

dt
=
∂~u

∂t
+ (~u · ∇) ~u =

D~u

Dt
. (2.32)

In the last step, the material derivative D
Dt

= ∂
∂t

+~u ·∇ was introduced. A field quantity X
attributed to the fluid element, like temperature T , density ρ, or momentum ~p, changes
on one hand because of its local rate of change ∂X

∂t
, but on the other also because the fluid

element can move to another location where X takes a different value, ~u · ∇X. Thus, the
total rate of change of X for a given fluid element is given by DX

Dt
. The temporal evolution

of a surface defined by X(~x, t) = const. is given by DX
Dt

= 0.
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2.3.1 The continuity equation

If the mass of a fluid is conserved, then the mass flux ~j out of a volume element ∆V must
be related to the rate of change of the density ρ,

d

dt

∫

∆V

ρ dV = −
∫

∂V

~j · d ~A = −
∫

∂V

ρ ~u · ~n dA Gauss theorem
= −

∫

∆V

∇ · (ρ~u) dV

⇔
∫

∆V

∂ρ

∂t
+ ∇ · (ρ~u) dV = 0 .

(2.33)

Since this must be true for any choice of ∆V , the integrand in equation (2.33) must vanish
everywhere,

∂ρ

∂t
+ ∇ · (ρ~u) = 0 . (2.34)

This is called the continuity equation. It is one of the fundamental equations of flow
dynamics.
By factoring out the parentheses in equation (2.34), it can be written in a different form:

∂ρ

∂t
+ ~u · ∇ρ+ ρ∇ · ~u = 0 ⇔ 1

ρ

Dρ

Dt
+ ∇ · ~u = 0 . (2.35)

The first term in equation (2.35) can be interpreted as a relative rate of change of the
density ρ in a fluid element. The second term represents the expansion of the fluid caused
by the divergence of the velocity field. Thus, ∇ · ~u can be called the local expansion rate
of the fluid.
In the special case of an incompressible fluid, which is often a good approximation for
liquids, the density of the fluid stays constant everywhere in the fluid. It follows that
∇ · ~u = 0, as a special simple form of the continuity equation. In this case, since the
divergence of the vector field ~u vanishes, ~u is called a source-free vector field.

2.3.2 Material integrals

To derive the equations of motion for a fluid, the integral form of conservation equations in
a moving fluid is needed. Consider the time-dependent volume ∆VF(t) of a fluid element
in motion. The rate of change of ∆VF is given by equation (2.35) as

d∆VF
dt

=

∫

∆VF

∇ · ~u dV = ∇ · ~u ∆VF + O(∆V 2
F ) . (2.36)

The rate of change of a line element in motion ∆~xF is given by the difference of the
velocities of the two sides of the length element,

d∆~xF
dt

= (∆~xF · ∇) ~u+ O(∆~x 2
F ) , (2.37)

under the assumption that the line element stays approximately straight.
To calculate the rate of change of a surface element in motion ∆ ~AF, one can consider a
cylindrical volume element,

∆VF = ∆ ~AF · ∆~xF , (2.38)

with the base ∆ ~AF and the height ∆~xF. Combining the equations (2.36)-(2.38) gives

d∆VF
dt

= ∇ · ~u ∆ ~AF · ∆~xF =
d∆ ~AF

dt
· ∆~xF + ∆ ~AF · (∆~xF · ∇) ~u+ O(∆V 2

F )

⇔ ∆xF,i

(d∆AF,i

dt
+ ∆AF,j

∂uj
∂xi

− ∆AF,i
∂uj
∂xj

)
= O(∆V 2

F ) .

(2.39)
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Since equation (2.39) should hold for any choice of ∆~xF, the expression in the parentheses
should be small,

d∆AF,i

dt
= ∆AF,i

∂uj
∂xj

− ∆AF,j
∂uj
∂xi

+ O(∆ ~A 2
F ) . (2.40)

Now consider a quantity X attributed to the medium. The line integral
∫ Q
P
X d~xF only

depends on time and changes because of the local change of X and the change of the
length and shape of the curve ~xF from P to Q. To determine the time dependence of that
integral, it is written in sum notation,

d

dt

∫ Q

P

X d~xF =
d

dt

(
lim
n→∞

∑

n

Xn ∆~xF,n

)
. (2.41)

The length elements ∆~xF,n are time-dependent, but should stay small under the assump-
tion that ∇ · ~u is not very large.
The values Xn change because of a local change of X and because of the translation of
the length elements, according to the material derivative D

Dt
. The change of the length

and orientation of ∆~xF,n is given by equation (2.37). Thus, equation (2.41) becomes

d

dt

∫ Q

P

X d~xF = lim
n→∞

∑

n

DXn

Dt
∆~xF,n +Xn (∆~xF,n · ∇) ~u

=

∫ Q

P

DX

Dt
d~xF +

∫ Q

P

X (d~xF · ∇) ~u .

(2.42)

The derivations for the material surface integral and the volume integral are analogous,
with the use of equation (2.39) and equation (2.36), respectively:

d

dt

∫
X dAF,i =

∫
DX

Dt
+X

∂uj
∂xj

dAF,i −
∫
X
∂uj
∂xi

dAF,j , (2.43)

d

dt

∫
X dVF =

∫
DX

Dt
+X∇ · ~u dVF . (2.44)

2.3.3 The Navier-Stokes equations

An equation of motion is acquired by applying Newton’s second law, ~F = ~̇p, on a system
or a class of systems. In the following, it is applied to the class of simple fluids. Using ρ ~u
for X and equation (2.35) in equation (2.44) gives

~F =
d~p

dt
=

d

dt

∫

∆VF

ρ ~u dVF =

∫

∆VF

ρ
D~u

Dt
dVF . (2.45)

In section 2.2.3, the force ~F acting on a fluid element was categorised into volume forces
and surface forces. Combining the equations (2.3), (2.5), and (2.12) gives

Fi =

∫

∆VF

fV,i dVF +

∫

∂VF

σij nj dAF =

∫

∆VF

fV,i +
∂σij
∂xj

dVF . (2.46)

The equations (2.45) and (2.46) must hold for any choice of ∆VF. Thus, their integrands
must be equal everywhere in the fluid,

ρ
Dui
Dt

= fV,i +
∂σij
∂xj

. (2.47)
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The volume forces typically only consist of the gravitational force, ~fV = ρ~g, and even
that can often be neglected on microfluidic scales.
In section 2.2.3 it was also shown that in a fluid at rest, the stress tensor is described
by an isotropic pressure,

↔

σ = −p✶. Even in a fluid in motion, the pressure was defined
as p = −1

3
σii such that it describes the isotropic component of the stress tensor. The

anisotropic, trace-less component of
↔

σ is called the deviatoric stress tensor
↔

s,

↔

σ =
↔

s − p✶ . (2.48)

Since
↔

σ is a surface force density,
↔

s should only depend on the local state and properties
of the fluid. Furthermore, if

↔

s was a function of ~u, it would depend on the choice of frame
of reference. The flow fields developed in the different reference frames would lead to a
contradiction. Thus, under the assumption that the flow field varies slowly on the scale
of the considered volume elements,

↔

s can be taken to be linear in the first-order spatial
derivatives of ~u. The general form of

↔

s is then

sij = Aijkl
∂uk
∂xl

. (2.49)

The fourth-order tensor Aijkl depends on the local properties of the fluid, but not on the
flow field. Also, just like

↔

s, it should be symmetric in the indices i, j. All isotropic tensors
of an even order can be written via scalar coefficients and Kronecker deltas as follows:

Aijkl = µ δik δjl + µ′ δil δjk + µ′′ δij δkl . (2.50)

From the symmetry condition, it follows that µ′ = µ.
Inserting equation (2.50) into equation (2.49) gives

sij = µ
(∂ui
∂xj

+
∂uj
∂xi

)
+ µ′′ ∇ · ~u δij . (2.51)

Since
↔

s is trace-less by definition, taking its trace gives a further condition:

sii = (2µ+ 3µ′′) ∇ · ~u = 0 ⇒ 2µ+ 3µ′′ = 0 . (2.52)

Then, only one independent coefficient remains:

sij = µ
(∂ui
∂xj

+
∂uj
∂xi

− 2

3
∇ · ~u δij

)
. (2.53)

To obtain a comparison with equation (2.26), just like in section 2.2.4 the case of a simple
shear flow is considered, where ∂ux

∂y
is the only non-zero first-order spatial derivative of

the flow field. Then, the only non-zero elements of
↔

s are:

sxy = syx = µ
∂ux
∂y

(2.54)

Thus the coefficient µ introduced in equation (2.50) is the kinematic viscosity introduced
in equation (2.26). Inserting the equations (2.48) and (2.53) into equation (2.47) gives
the equation of motion for simple fluids,

ρ
Dui
Dt

= fV,i −
∂p

∂xi
+

∂

∂xj
µ
(∂ui
∂xj

+
∂uj
∂xi

− 2

3
∇ · ~u δij

)
, (2.55)
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the vectorial form of which is given by

ρ
D~u

Dt
= ~fV −∇p+ ∇ ·

(
µ
(
∇ ◦ ~u+ (∇ ◦ ~u)T − 2

3
∇ · ~u ✶

))
. (2.56)

These are the Navier-Stokes equations.
For many fluids, µ is mostly dependent on the temperature. If temperature variations
are sufficiently small, µ can be taken to be spatially independent, and equation (2.3.3)
becomes

ρ
Dui
Dt

= fV,i −
∂p

∂xi
+ µ

(∂2ui
∂x2j

+
∂2uj
∂xj∂xi

− 2

3

∂

∂xi
∇ · ~u

)

= fV,i −
∂p

∂xi
+ µ

(∂2ui
∂x2j

+
1

3

∂

∂xi
∇ · ~u

)
,

(2.57)

the vectorial form of which is given by

ρ
D~u

Dt
= ~fV −∇p+ µ (∆~u+

1

3
∇(∇ · ~u)) . (2.58)

The coefficient in front of ∇(∇ · ~u) is referred to as the volume viscosity ζ = µ
3
.

A special case commonly considered for liquids is that of an incompressible fluid, where
∇ · ~u = 0. Then, equation (2.58) becomes

ρ
D~u

Dt
= ~fV −∇p+ µ∆~u . (2.59)

Boundary conditions

As stated in section 2.2.5, the normal component of the flow velocity must be continuous
at an interface between two immiscible media. This should also be true for the tangential
components since a jump in the tangential velocity would lead to an infinite stress on the
interface according to equation (2.53). Even for fluids that can intrinsically be described
as approximately inviscid, viscosity still plays a role near boundaries. The region near
the boundary in which viscosity is important is called the boundary layer.
In the case of an interface between a fluid and a solid, it immediately follows that the
velocity of the fluid at the interface must be equal to that of the solid. Thus at the
surface of a solid wall at rest, it follows that ~u = 0. This is the so-called no-slip boundary
condition. It describes the property of fluids to stay on a solid boundary rather than
sliding freely across it.
Another boundary condition is required for the stress tensor

↔

σ. According to equation
(2.28), surface tension causes a finite pressure difference between both sides of a boundary.
The deviatoric stress tensor

↔

s is required to be continuous at the fluid surface.

2.3.4 Equation of state

The continuity equation (2.34) and the Navier-Stokes equations (2.58) are four equations
for the five fields ~u, ρ, and p. Thus, to solve the system of equations, another equation is
necessary. The equation of choice is typically of thermodynamic origin. It describes the
state of the considered medium by locally relating its properties to the pressure field. In
general, such an equation of state can be written as

ρ = ρ(p) . (2.60)
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An especially simple equation of state is that of an isothermal ideal gas, ρ = const. · p, or
that of an incompressible liquid, ρ = const. To describe weakly compressible liquids, e.g.
water, a commonly used equation is the Tait equation of state [46],

p = (p0 +B)
( ρ
ρ0

)γ
− B , (2.61)

where p0 and ρ0 is a reference pair of values for the pressure and the density. B is a fitting
parameter that can be obtained experimentally for the fluid considered. A positive value
of B allows the pressure to be negative for positive densities, which is not possible for an
ideal gas. For B = 0, equation (2.61) becomes the equation of state for an adiabatic ideal
gas. γ is the exponent that describes the functional dependence between p and ρ. For
an ideal gas, it has the meaning of the adiabatic exponent γ = cp

cV
, which is the ratio of

specific heats at constant pressure and a constant volume, respectively.
To describe the rate at which the volume V of a fluid changes with varying pressure p,
the compressibility κ is defined as follows:

κ = − 1

V

(∂V
∂p

)
=

1

ρ

(∂ρ
∂p

)
. (2.62)

To also describe the temporal evolution of the temperature T , one more equation is neces-
sary, which is typically the heat conduction equation (2.25). In that case, the temperature
dependence also needs to be included in the equation of state.

2.3.5 The Reynolds number

Consider the case of an incompressible flow without regarding any volume forces, ~fV = 0,
which is described by equation (2.59) and ∇ · ~u = 0,

ρ
(∂~u
∂t

+ (~u · ∇) ~u
)

= −∇p+ µ∆~u, ∇ · ~u = 0 . (2.63)

It is useful to express equation (2.63) using dimensionless quantities. For this, a char-
acteristic length L and a characteristic velocity U that describe the system are chosen.
Dimensionless quantities are introduced as

~u′ =
~u

U
, t′ =

U t

L
, ~x′ =

~x

L
, p′ =

p

ρU2
. (2.64)

Then, equation (2.63) becomes

∂~u′

∂t′
+ (~u′ · ∇′) ~u′ = −∇′~u′ +

1

Re
∆′~u′, ∇′ · ~u′ = 0 , (2.65)

where ∇′ and ∆′ denote derivatives by the primed coordinates ~x′ and the newly introduced
quantity Re = ρLU

µ
is called the Reynolds number.

Equation (2.65) is analogous to the Navier-Stokes equations for incompressible fluids
(2.63), but it now only depends on the geometry, the initial conditions, and the boundary
conditions in the primed coordinates, as well as the independent variables ~x′(t′) and t′

and the dimensionless parameter Re.
This form of the Navier-Stokes equations gives two significant insights. If the flow field
of a specific system is known, its non-dimensional form can be applied to the triple-
infinite family of systems with the same Reynolds number. Systems that may differ in
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the parameters ρ, L, U , and µ, but not in the Reynolds number, are called dynamically
similar.
The second insight is that, by calculating the Reynolds number of a specific system, one
can estimate the importance of the viscous term in equation (2.65) for that system. One
can thus categorise flow systems by the value of Re. In systems with a very low Reynolds
number, Re ≪ 1, the inner friction of the fluid is largely responsible for the structure of
the flow field. Typically, so-called laminar flows are created, in which the fluid flows in
layers that stay adjacent to each other. In the case of a large Reynolds number, Re≫ 1,
the viscous properties of the fluid should only play a minor role. Such flows are often
chaotic, in the sense that small variations in the initial conditions grow exponentially in
time. Such flows are called turbulent. This is the reason why weather predictions are very
mathematically challenging, since the inaccuracies in the measured weather conditions at
a certain time limit how far into the future the air flows can be predicted.
The nature of the whole flow field often cannot be described by a single number. In most
cases, there are multiple ways to define L and dependent on space and time. For instance,
even for flows with arbitrarily large Reynolds numbers, the no-slip boundary condition
causes a boundary layer near the boundaries of the fluid, in which the viscosity plays an
important role. Still, this approach is useful to make qualitative statements about the
nature of a flow, and especially for comparing similar systems in which the characteristic
length and velocity scales are similarly defined. Also, dynamic similarity allows one to
examine a large-scale flow system via a down-scaled physical model.
There are other non-dimensional quantities useful in fluid mechanics, such as the Weber
number We = ρU2L

σ
, which compares the influence of inertial effects to those of surface

tension σ. A large Weber number corresponds to a higher likeliness of a breakup of bubbles
or droplets. The Froude number Fr = U√

|~g|L
compares the influence of inertial effects to

those of gravity or buoyancy, and in the present work is commonly of the order of 103

or higher, such that gravitational effects can be neglected. The Mach number Ma = U
c

relates the flow velocity U to the fluid’s speed of sound c. For small Mach numbers, energy
dissipation due to acoustic wave radiation may be neglected. The cavitation number
Ca = p−pv

1
2
ρU2 characterises the likeliness of cavitation occurring in a liquid, where pv is

the vapour pressure of the liquid. To describe a specific experimental configuration, non-
dimensional length and time scales are often introduced, such as the non-dimensional
stand-off distance γ = d

Rmax
between a cavitation bubble and a wall, where d denotes the

distance between the wall and the centre of the bubble upon the bubble’s creation, and
Rmax the bubble’s maximum radius.
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2.3.6 Pressure waves

With the Ansatz of a planar wave, ~u = ux(x, t)~ex ≈ 0, p = p(x, t), and neglecting volume
forces and viscosity, equation (2.59) becomes

ρ
Dux
Dt

≈ ρ
dux
dt

= −dp
dx

⇔ dp = −ρ dx
dt
dux = −ρ ux dux . (2.66)

Also, assuming that the wave is of small amplitude, the density field ρ(x) stays approxi-
mately constant, and equation (2.34) becomes

ux
dρ

dx
+ ρ

dux
dx

≈ 0 ⇔ − ρ dux = ux dρ . (2.67)

Using this, equation (2.66) gives

dp = u2x dρ ⇔ ux = c =

√
dp

dρ

(2.62)
=

√
1

κρ
. (2.68)

This is the speed of sound in a simple fluid with a compressibility κ and a density ρ.
Evaluating this for the Tait equation of state (2.61) gives

c =

√
γ
p0 +B

ρ

( ρ
ρ0

)γ
(2.69)

In the context of a wave that lasts for many oscillation cycles, such a pressure wave is
called a sound wave. If it lasts for only one or a few cycles, it is typically referred to as a
shock wave. The low-pressure part of a wave is called a rarefaction wave. If the amplitude
exceeds the ambient pressure, such that negative pressures are achieved by a rarefaction
wave, it is referred to as a tension wave.
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2.4 Linear elasticity

Elasticity theory describes deformable solids in the scope of continuum mechanics. The
continuum hypothesis postulated in section 2.2.2 is thus also applied to elastic solids. In
contrast to simple fluids, a finite force on an elastic solid will lead to a finite deformation,
i.e. a rearrangement of the particles that make up the solid. This is due to inner elastic
stress forces counteracting external forces, thus allowing for an equilibrium state to be
established between them. The solids considered in the following are idealised. Non-
isotropic effects due to an inner crystalline structure, as well as viscoelasticity and heat
conduction are neglected.
Every point in a solid can be defined via its coordinates ~x0 at some time t0. Its displace-
ment from these original coordinates can then be defined as

~D(~x0, t) = ~x(t) − ~x0 . (2.70)

In the discussions of fluids, the Eulerian description was used, with a fixed coordinate
system that the fluid moves in. Here the Lagrangian description is used, where the move-
ment of mass elements is followed via its coordinates ~x(t).

While the displacement field ~D depends on the choice of the coordinate system and may
also include translation and rotation of the solid, all physical quantities related to the
elastic behaviour of the solid depend on derivatives of ~D that describe the local deforma-
tion or strain of the solid and are thus coordinate system invariant.
A choice can be made here. Since the coordinates ~x(t) and ~x0 describe the same element
of the solid, they are related via a diffeomorphism ~x(~x0, t) = ~x0(~x, t)

-1, where the super-

script denotes an inverse function. Thus, ~D can be chosen to be written either in terms
of the original positions of its elements ~x0, or equivalently, in terms of their positions ~x at
time t. The latter may be a more intuitive choice, since then ~D is defined at the current
positions of its elements, and in that way follows the motion of the solid. On the other
hand, the updated coordinates of the solid elements are already given by ~x0 + ~D and
do not need to be updated explicitly. Thus, to reduce redundancy the former option is
chosen in the numerical implementation discussed in chapter 3.
The distance vector between two infinitesimally neighbouring points that are at the po-
sitions ~x0, ~x

′
0 at time t0 can be written as d~l0 = ~x′0 − ~x0. At a later time t, the distance

between them is given by

d~l(t) = ~x′(t) − ~x(t)
(2.70)
= ~x′0 + ~D(~x′0, t) − ~x0 − ~D(~x0, t) := d~l0 + d ~D(t) . (2.71)

Using index notation with Einstein’s summation convention gives

dl2i = (dli,0+dDi)
2 = (dli,0+

∂Di

∂xj
dxj)

2 = dl2i,0+2
∂Di

∂xj
dxj dxi+

∂Di

∂xj

∂Di

∂xk
dxj dxk . (2.72)

By switching the indices i and j in half of the second term and i and k in the third term,
the right side of equation (2.72) becomes

dl2i = dl2i,0 + 2 εij dxj dxi, εij =
1

2

(∂Di

∂xj
+
∂Dj

∂xi
+
∂Dk

∂xi

∂Dk

∂xj

)
. (2.73)

The newly introduced quantity is the strain tensor
↔

ε. It is symmetric from its definition,
εji = εij. For small strains, the second-order derivative may be neglected and the strain
tensor becomes

εij =
1

2

(∂Di

∂xj
+
∂Dj

∂xi

)
=̂

1

2

(
∇ ◦ ~D + (∇ ◦ ~D)T

)
(2.74)
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Since εij is symmetric, it is diagonalisable. In the principle coordinates of εij, equation
(2.73) becomes

dl2i = dx2i
dl2i,0 = dx2i,0

= dx2i,0+2 εij dxj,0 dxi,0 = (δij+2 εij) dxj,0 dxi,0 = (1+2 εii) dx
2
i,0 , (2.75)

where ε11, ε22, ε33 are the Eigenvalues of εij. The deformation now consists of three inde-
pendent terms that can be considered as simple rarefaction or compression deformations
in the three principle axes of ε, dx1 =

√
1 + 2 ε11 dx1,0. The relative length difference is

then given by (dx1−dx1,0)

dx1,0
=

√
1 + 2 ε11 − 1 ≈ ε11. In the last step, a Taylor expansion

around ε11 = 0 was applied. Equivalent expressions hold for the coordinates x2 and x3.
The cubic volume element dV0 = dx1,0 dx2,0 dx3,0 thus gets transformed by εij into

dV = dx1 dx2 dx3 = (1 + ε11) (1 + ε22) (1 + ε33) dx1,0 dx2,0 dx3,0 ≈ (1 + εii) dV0 . (2.76)

In the last step, second-order terms such as ε11 ε22 were neglected. Thus, for a small strain
the relative volume change is given by (dV−dV0)

dV0
≈ εii = ε11 + ε22 + ε33.

The discussion of volume and surface forces in section 2.2.3 and the equation of motion
(2.46) derived in section 2.3.3 hold for solids as well. It is important to note that the
material derivative of the velocity field uses the Eulerian description, and is here replaced

by a partial derivative of the movement velocity ~̇D of the solid elements,

ρ
∂2Di

∂t2
= ρfV,i +

∂σij
∂xj

. (2.77)

The work done on an elastic solid against its internal stresses is

W =

∫

V

∆W

∆V
dV =

∫

V, ~D

∆~F

∆V
· d ~D dV =

∫

V, ~D

~f · d ~D dV

=̂

∫

V,Di

fi dDi dV
(2.46)
=

∫

V,Di

∂σij
∂xj

dDi dV ,

(2.78)

where volume forces were disregarded.
A partial integration along with Gauss’s theorem gives

W =

∫

∂V

σij dDi dAj −
∫

V,Di

σij
∂ dDi

∂xj
dV . (2.79)

For an infinitely extended solid which is not deformed at infinity, σij = 0 on its surface,
and thus the first integral in equation (2.79) vanishes. By using the symmetry of the
stress tensor, σji = σij, the second integral can be written in the following way:

W = −1

2

∫

V,Di

σij

(∂ dDi

dxj
+
∂ dDj

dxi

)
dV

= −1

2

∫

V,Di

σij d
(∂Di

dxj
+
∂Dj

dxi

)
dV

(2.73)
= −

∫

V,εij

σij dεij dV .

(2.80)

Thus, the free mechanical energy satisfies

dF = σij dεij dV , (2.81)

where F is the free energy density of the elastic solid.
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2.4.1 Hooke’s law

For a small strain, the free energy density can be developed about the non-deformed state,
εij = 0, F = F0 := 0. This is a local minimum in the free energy since work must be
done to achieve any strain of the solid. Hence, the terms linear in εij must vanish. Since
F is a scalar, the higher-order terms must also be a scalar. A general Ansatz for the
second-order terms is given by

F =
λ

2
ε2ii +Gε2ij . (2.82)

λ and G are the so-called Lamé coefficients.
Analogously to equation (2.16), equation (2.82) can be expressed using the traceless com-
ponent and the trace of εij,

F =
K

2
ε2kk +G

(
εij −

1

3
εkk δij

)2
, K = λ+

2

3
G . (2.83)

As is visualised in figure 2.3, the tensor is now split into its compressive and shear com-
ponents, which is why the coefficients K and G are called the bulk modulus and the shear
modulus, respectively. If only the diagonal elements of εij are non-zero, the deformation is
a pure compression or expansion. If εij is traceless, a pure shear deformation is achieved.
In both of these cases, the corresponding terms in equation (2.83) must be positive to
ensure the stability of the equilibrium state εij = 0. Thus, both coefficients must be
positive, K,G > 0.
To calculate the stress tensor σij, the differential of equation (2.83) is taken,

dF = K εkk dεkk + 2G
(
εij −

1

3
εkk δij

)
d
(
εij −

1

3
εkk δij

)

= K εkk dεkk + 2G
(
εij −

1

3
εkk δij

)
dεij

=
(
K εkk δij + 2G

(
εij −

1

3
εkk δij

))
dεij .

(2.84)

Comparing this with equation (2.81) yields

σij = K εkk δij + 2G
(
εij −

1

3
εkk δij

)
(2.83)
= λ εkk δij + 2Gεij . (2.85)

This is Hooke’s law. It states that the stress and the strain of an elastic solid are propor-
tional to each other for small strains. This approximation is also called linear elasticity.
Writing equation (2.85) for the trace of σij and for off-diagonal elements yields

σii = 3K εii, σxy = 2Gεxy . (2.86)

Using this, equation (2.85) can be written as

εij =
1

2G
(σij −K εkk δij) +

1

3
εkk δij

=
1

2G

(
σij −

1

3
σkk δij

)
+

1

9K
σkk δij =

1

2G
σij +

( 1

9K
− 1

6G

)
σkk δij .

(2.87)

Writing this for the diagonal elements yields

εxx =
( 1

9K
+

1

3G

)
σxx +

( 1

9K
− 1

6G

)
(σyy + σzz)

=
1

E
(σxx − v (σyy + σzz)), E =

9KG

3K +G
, v =

1

2
− E

6K
.

(2.88)
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The newly introduced variables are Young’s modulus E, which is also called the elastic
modulus, and Poisson’s ratio v. The elastic modulus E relates a linear strain to the stress
in the same direction. v is a number which typically lies between 0 and 0.5. It gives the
amount by which an elastic solid contracts in the directions normal to the direction in
which it is being stretched.

2.4.2 Equation of motion

Combining the equations (2.77), (2.85), and (2.74) yields equations of motion for linear
elastic solids:

ρ
∂2Di

∂t2
= ρ fV,i +

∂

∂xj

(
G
(∂Di

∂xj
+
∂Dj

∂xi

)
+ λ

∂Dk

∂xk
δij

)
. (2.89)

Converting this into vector notation gives

ρ
∂2 ~D

∂t2
= ρ ~fV + ∇ ·

(
G (∇ ◦ ~D) +G (∇ ◦ ~D)T + λ∇ · ~D

↔

1
)
. (2.90)

An alternative version of the equation of motion is acquired by factoring out the paren-
theses in equation (2.89) and rearranging the terms to

ρ
∂2Di

∂t2
= ρ fV,i +G

∂2Di

∂x2j
+ (λ+G)

∂2Dj

∂xi ∂xj
. (2.91)

Converting this version into vector notation then gives

ρ
∂2 ~D

∂t2
= ρ ~fV +G∆ ~D + (λ+G)∇(∇ · ~D) . (2.92)

To solve these equations, a continuity equation that relates the density ρ to the defor-
mation ~D of the solid is needed. For a hydrostatic compression, σii = −3 p, just as in
equation (2.17). Then, equation (2.86) becomes

εii = − p

K

(2.74)
= ∇· ~D (2.76)

=
V − V0
V0

=
ρ0 − ρ

ρ
, ρ0 =

m

V0
, ρ =

m

V
⇒ ρ =

ρ0

1 + ∇ · ~D
. (2.93)

The definition of the compressibility κ then yields

κ = − 1

V

∂V

∂p
=

1

ρ

∂ρ

∂p
=

1

K
. (2.94)

This is why the bulk modulus K is also referred to as the compressive modulus.

2.4.3 Elastic waves

Bulk waves

Using the Ansatz of a plane wave, ~D = ~D(x, t), in equation (2.90) and neglecting volume
forces gives

∂2Dx

∂t2
= c2l

∂2Dx

∂x2
, cl =

√
λ+ 2G

ρ
,

∂2Dy

∂t2
= c2t

∂2Dy

∂x2
, ct =

√
G

ρ
.

(2.95)
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This corresponds to a longitudinal elastic wave, also called a bulk wave, propagating at a
velocity of cl, as well as a transversal elastic wave, also called a shear wave, propagating
at a velocity of ct. These wave modes are shown in figure 2.4 (a) and (b), respectively. For
Dz, an equivalent transversal mode can be written. If λ and G are positive, it necessarily
follows that cl >

√
2 ct.

Using these definitions in equation (2.92) while still neglecting volume forces gives

∂2 ~D

∂t2
= c2t ∆ ~D + (c2l − c2t )∇(∇ · ~D) . (2.96)

Even in the general case of non-planar waves, the deformation field can be decomposed
into a longitudinal and a transversal component, ~D = ~Dl + ~Dt, that satisfy the conditions
∇× ~Dl = 0 and ∇ · ~Dt = 0. The divergence of equation (2.96) then gives

∇ ·
(∂2 ~D
∂t2

− c2t ∆ ~D − (c2l − c2t )∇(∇ · ~D)
)

=
∂2(∇ · ~Dl)

∂t2
− c2t ∆(∇ · ~Dl) − (c2l − c2t )∇ · (∇(∇ · ~Dl))

= ∇ ·
(∂2 ~Dl

∂t2
− c2t ∆ ~Dl − (c2l − c2t ) ∆ ~Dl

)
= ∇ ·

(∂2 ~Dl

∂t2
− c2l ∆ ~Dl

)
= 0 ,

(2.97)

where the identity ∇(∇ · ~D) = ∆ ~D + ∇× (∇× ~D) was used.
Analogously, the curl of equation (2.96) gives

∇×
(∂2 ~D
∂t2

− c2t ∆ ~D − (c2l − c2t )∇(∇ · ~D)
)

=
∂2(∇× ~Dt)

∂t2
− c2t ∆(∇× ~Dt) = ∇×

(∂2 ~Dt

∂t2
− c2t ∆ ~Dt

)
= 0 ,

(2.98)

where the identity ∇ × (∇(∇ · ~D)) = 0 was used. Since for both equations (2.97) and
(2.98), the divergence and the curl of the expression in the parentheses vanish, those
expressions must be zero everywhere, and the following wave equations are obtained:

∂2 ~Dl

∂t2
= c2l ∆ ~Dl,

∂2 ~Dt

∂t2
= c2t ∆ ~Dt . (2.99)

Each component of ~Dl and ~Dt satisfies a wave equation of the form ∂2D
∂t2

− c2 ∆D = 0.

Surface waves

A special kind of elastic wave is found near a free surface of an elastic solid. Consider the
example of an elastic solid occupying the infinite half-space defined by z < 0, and a wave
propagating near z = 0 in the x-direction according to the Ansatz D ∼ ei(kx−ωt)f(z).
Inserting this into the wave equation gives f ′′(z) = a2 f(z), with a2 = k2 − ω2

c2
. It thus

follows that f(z) = eaz. For a2 < 0, the case of a planar wave is recovered. For a2 > 0
and a < 0,

D = D0 e
i(kx−ωt)+az, a = −

√
k2 − ω2

c2
(2.100)

describes a wave propagating in the x-direction with an amplitude that decays exponen-
tially with decreasing z, i.e. with increasing depth in the elastic solid. This is a so-called
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Figure 2.4: Schematic showing the longitudinal and transversal bulk wave modes, the
Rayleigh wave, and the Lamb wave.

Rayleigh wave, as first described by Rayleigh [47]. The full deformation field ~D is obtained
via a linear combination

~D = ~Dl + ~Dt, ~Dl = ~Dl,0 e
i(kx−ωt)+alz, ~Dt = ~Dt,0 e

i(kx−ωt)+atz , (2.101)

which must satisfy the boundary condition of a free surface,
↔

σ · ~n = 0. Since in this case
~n = ~ez, it follows that σxz = σyz = σzz = 0. With equation (2.85) it then follows that

εxz = 0, εyz = 0, λ (εxx + εyy) + (λ+ 2G) εzz = 0 . (2.102)

Using equation (2.74) and the definitions of cl and ct then gives

∂Dx

∂z
+
∂Dz

∂x
= 0, Dy = 0, (c2l − 2 c2t )

∂Dx

∂x
+ c2l

∂Dz

∂z
= 0 . (2.103)

In the third equation, Dy = 0 was used. Dy = 0 means that the wave propagates in
the x-z plane. From the conditions that the curl of the longitudinal component and the
divergence of the transversal component of the wave vanish, it follows that

∂Dl,x

∂z
− ∂Dl,z

∂x
= 0,

∂Dt,x

∂x
+
∂Dt,z

∂z
= 0 . (2.104)

With the Ansatz in equation (2.100), this leads to conditions for the wave coefficients:

alDl,x − i k Dl,z = 0, i k Dt,x + atDt,z = 0

⇒ ~Dl,0 =




k bl
0

−i al bl


, ~Dt,0 =




at bt
0

−i k bt


 .

(2.105)

Using this, evaluating the first and third equations (2.103) at z = 0 yields

2 k al bl + (k2 + a2t ) bt = 0, c2l (a2l − k2) bl + 2 c2t k
2 bl + 2 c2t k at bt = 0 . (2.106)

Dividing the second equation by c2t and inserting a2l − k2 = −ω2

c2
l

= (a2t − k2)
c2t
c2
l

gives

(k2 + a2t ) bl + 2 k at bt = 0 . (2.107)

By isolating the parentheses in this and the first equation (2.106) and multiplying both
equations, one obtains

(k2 + a2t )
2 = 4 k2 al at . (2.108)
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Taking the square and using a2l = k2 − ω2

c2
l

, a2t = k2 − ω2

c2t
results in

(
2 k2 − ω2

c2t

)4
= 16 k4

(
k2 − ω2

c2l

)(
k2 − ω2

c2t

)
. (2.109)

This equation is fulfilled for the dispersion relation ω = d ct k. d ct is thus the propagation
speed of the Rayleigh wave. After factoring out the parentheses, this substitution turns
equation (2.109) into

d6 − 8 d4 + 8
(

3 − 2
c2t
c2l

)
d2 − 16

(
1 − c2t

c2l

)
= 0 . (2.110)

d thus only depends on the constant ct
cl

=
√

G
λ+2G

=
√

1−2v
2−2v

. d must be real and positive.

Furthermore, it must be smaller than 1 to ensure that at is real and positive. For any
given v, equation (2.110) has only one solution that fulfils these conditions, which can
be calculated numerically. For most materials, 0 ≤ v ≤ 0.5. In this range, d increases
monotonically from d ≈ 0.874 for v = 0 to d ≈ 0.955 for v = 0.5. The Rayleigh wave thus
propagates slightly slower than the shear waves in the bulk of the solid. The Rayleigh
wave is shown schematically in figure 2.4 (c). If the elastic solid is not bound by a free
surface, but a fluid, it will emit pressure waves into the fluid from its position. Then, the
Rayleigh wave is called a leaky Rayleigh wave.

Plate waves

Another special geometry of interest is that of an infinitely extended elastic solid plate
that is much thinner than the wavelength of elastic waves. For the general case of a bent
plate, one can choose an arbitrary point on the plate and define it as the coordinate origin,
with the centre of the plate in the x-y plane. One side of a thin bent plate must be convex,
on which it is stretched, while the opposite side is concave and the solid is compressed.
Then, in the centre of the plate, these strains must vanish. Just like in the last section,
from the boundary conditions at the free surface, it follows that σxz = σyz = σzz = 0.
These stresses can then also be neglected throughout the plate. Equation (2.85) then
gives

εxz = 0, εyz = 0, λ (εxx+εyy+εzz)+2Gεzz = 0 ⇔ εzz = − λ

λ+ 2G
(εxx+εyy) . (2.111)

This can be expressed by spatial derivatives of the deformation ~D using equation (2.74).
With the Ansatz of a planar wave propagating in the x-direction, the derivatives by y are
taken to be zero, which results in

εxx =
∂Dx

∂x
, εyy = 0, εxy =

1

2

∂Dy

∂x
⇒ εzz = − λ

λ+ 2G

∂Dx

∂x
,

εxz =
∂Dx

∂z
+
∂Dz

∂x
= 0, εyz =

∂Dy

∂z
= 0 .

(2.112)

By eliminating either the deformation normal to the plate Dz or the deformations within
the plate, Dx and Dy, one can derive the waves oscillating within the plate and its bending
waves, respectively.
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The former is done by taking Dz = 0 and calculating the components of the two-
dimensional stress tensor, by inserting the first line of equation (2.112) into Hooke’s law
(2.85),

σxx = 4G
λ+G

λ+ 2G

∂Dx

∂x
, σyy =

2λG

λ+ 2G

∂Dx

∂x
, σxy = G

∂Dy

∂x
. (2.113)

Combining this with equation (2.77) and neglecting external forces gives equations of
motion of the plate,

ρ
∂2Dx

∂t2
= 4G

λ+G

λ+ 2G

∂2Dx

∂x2
, ρ

∂2Dy

∂t2
= G

∂2Dy

∂x2
. (2.114)

This corresponds to a longitudinal wave with cl =
√

4G
ρ

λ+G
λ+2G

and a transversal wave with

ct =
√

G
ρ

. The transversal wave thus propagates with the same speed as in an infinitely

extended elastic solid. It corresponds to the schematic of the bulk shear wave shown in
figure 2.4 (b) if that is taken to be a top view of the plate. The longitudinal wave is also
called a symmetric mode Lamb wave and is shown on top in figure 2.4 (d). Its speed
differs from that of its bulk wave counterpart. This makes sense when comparing both
waves in figure 2.4. Because of the symmetry with respect to translation in the vertical
direction, the longitudinal bulk wave forces the solid to undergo rather strong density
variations, while in the case of a thin plate, the solid can partly avoid its compression by
extending in the z-direction, changing the nature of the wave and subsequently also its
propagation speed. Lamb waves were first described by Lamb [48].
Next, the bend waves of the plate are derived. The first line of equation (2.112) can be
integrated to

Dx = −z ∂Dz

∂x
, Dy = 0 . (2.115)

The integration constants were taken to be zero to fulfil Dx = 0, Dy = 0 at z = 0. With
this, the non-zero components of the strain tensor can be written as

εxx = −z ∂
2Dz

∂x2
, εzz =

λ

λ+ 2G
z
∂2Dz

∂x2
. (2.116)

Neglecting any deformation in the x- and y-directions, the only degree of freedom of each
volume element of the plate is Dz. A decrease of the free energy density in this degree of
freedom − dF

dDz
causes a positive local volume force ~fV in the plate. According to Newton’s

second law, this causes a local acceleration of the plate,

ρ
∂2Dz

∂t2
= − dF

dDz

. (2.117)

Multiplying by dDz and integrating over the volume of the plate gives

∫
ρ
∂2Dz

∂t2
dDz dV +

∫
dF dV = 0 . (2.118)

Executing the first integral in the z-direction turns this equation into

∫
ρ h
(∂2Dz

∂t2
dDz

)
dA+ d

∫
F dV = 0 . (2.119)
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With equation (2.82), the free energy density of the plate is

F = 2 z2G
λ+G

λ+ 2G

(∂2Dz

∂x2

)2
. (2.120)

The total free energy of the plate is then given by the volume integral

∫
F dV =

∫ h
2

−h
2

∫
F dAdz =

h3G

6

λ+G

λ+ 2G

∫ (∂2Dz

∂x2

)2
dA . (2.121)

The variation of this integral can be evaluated by using partial integrations and Stokes’
theorem,

d

∫
F dV =

h3G

3

λ+G

λ+ 2G

∫
∂2Dz

∂x2
∂2 dDz

∂x2
dA

=
h3G

3

λ+G

λ+ 2G

∫
∂

∂x

(∂2Dz

∂x2
∂ dDz

∂x

)
− ∂3Dz

∂x3
∂ dDz

∂x
dA

=
h3G

3

λ+G

λ+ 2G

∫
∂

∂x

(∂2Dz

∂x2
∂ dDz

∂x

)
− ∂

∂x

(∂3Dz

∂x3
dDz

)
+
∂4Dz

∂x4
dDz dA

=
h3G

3

λ+G

λ+ 2G

(∮

∂A

∂2Dz

∂x2
∂ dDz

∂x
− ∂3Dz

∂x3
dDz nx dl +

∫
∂4Dz

∂x4
dDz dA

)
.

(2.122)

For an infinitely extended plate, Dz and its derivatives can be taken to be zero, in which
case the line integrals vanish. Then, only the surface integrals remain and equation (2.119)
becomes ∫ (

ρ h
∂2Dz

∂t2
+
h3G

3

λ+G

λ+ 2G

∂4Dz

∂x4

)
dDz dA = 0 . (2.123)

This is true if

ρ h
∂2Dz

∂t2
+
h3G

3

λ+G

λ+ 2G

∂4Dz

∂x4
= 0 . (2.124)

With the Ansatz Dz = Aei(kx−ωt), one obtains a dispersion relation

ω =

√
h2G

3ρ

λ+G

λ+ 2G
k2 ⇔ c =

∂ω

∂k
=

√
4h2G

3ρ

λ+G

λ+ 2G
k . (2.125)

This bend wave is called an asymmetric mode Lamb wave and is schematically shown at
the bottom of figure 2.4 (d). Its nature is different from all other waves discussed so far,
as its propagation speed is inversely proportional to its wavelength.
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2.5 Cavitation

The phase diagram of water is illustrated schematically in figure 2.5. The phase transition
from a liquid to a gas, also known as boiling, can occur either by increasing the temper-
ature T or by decreasing the pressure p of the liquid. However, such a phase diagram is
only valid if the substance of interest undergoes a series of quasi-stationary phase changes
between equilibrium states. The term “cavitation” is used for highly dynamic, and thus
non-equilibrium events in which one or more cavities are formed in a liquid that is not
necessarily close to the boiling line. This is achieved either by a local heat deposition,
thereby increasing the temperature T of the liquid above the boiling temperature, or by
locally decreasing the pressure p of the liquid below the vapour pressure. The resulting
gas- or vapour-filled cavities are called cavitation bubbles.
Regarding the first case, the sudden local admission of heat at a high heat density can be
done in multiple ways, including the following examples, namely via dielectric breakdown
(spark-generated cavitation [49]), by irradiating a region in the liquid with a high-intensity
light source, typically a laser (laser-induced cavitation, [21, 50–52]), via plasmonic reso-
nance [53–55], or via explosive combustion [56].
When a simple fluid is expanded, its inner pressure p decreases. For a gas, the pressure
stays positive for an arbitrary amount of expansion. This is not the case for liquids. The
density of a liquid is only weakly dependent on the pressure. In turn, a small expansion
of the liquid leads to a strong pressure drop, where the resulting pressure can even be
negative. In cases of sufficient symmetry without any exceptional points, the liquid can
withstand such inner tensions and remain in an unstable state of tension, thus again not
conforming to the phase diagram shown in figure 2.5. The strongest tension a liquid can
withstand is called the cavitation threshold [57]. The value of the cavitation threshold
varies strongly with the measurement method and is typically found at much smaller
tension values than predicted by the theoretical limit [58], and is an ongoing point of
discussion. The cavitation resistance of a liquid is strongly influenced by the presence of
so-called cavitation nuclei, from which cavitation bubbles can be more easily expanded
than from a point in the liquid bulk. The identification of cavitation nuclei is also a point
of ongoing research. One might think that cavitation bubbles may simply originate from
micro- or nano-sized bubbles that can then be expanded to a visible size. However, this
idea is flawed. Larger bubbles in a gravitational field would rise to the top of the liquid
in a rather short amount of time. For the remaining smaller bubbles, surface tension
becomes more and more relevant, since the surface tension force is directly proportional
to the curvature of its interface, and thus inversely proportional to the radius of the bub-
ble. This causes an overpressure on the gas contents of the bubble, the so-called Laplace
pressure, which increases with decreasing bubble size. This overpressure would induce the
gas to dissolve into the surrounding liquid, or for sufficiently large pressure even condense.
This means that such small bubbles are inherently unstable, and can thus after a short
time be discarded as a candidate for cavitation nuclei in water. Additionally, expanding
these bubbles to a visible size would require an underpressure strong enough to overcome
the Laplace pressure. This pressure threshold for significantly expanding a small bubble
is called the Blake threshold. A widely spread hypothesis for cavitation nuclei is that
small solid particles may exhibit crevices in which gas could be trapped, which could then
expand with little resistance, lowering the cavitation threshold significantly. Even without
trapped gas, solid particles may act as cavitation nuclei. Recently, even small amounts of
dissolved gas in the liquid bulk [59] and in liquid droplets [60] have been suggested to act
as cavitation nuclei. In cases with exceptional points that break the symmetry, at such



2.5 Cavitation 39

0 273.16 647.096

T in K

611.657 Pa

22.064 MPa

p

triple point

critical point

solid

liquid

gas

Figure 2.5: Schematic of the phase diagram of water.

points cavities form that relaxate the tension and expand with little resistance, achieving
the required volume increase without a need for the pressure to drop further. Such points
may be given by the presence of cavitation nuclei as discussed above, or by the pressure
field being sufficiently inhomogeneous, such that cavities are created at preferred posi-
tions. Such pressure variations can be induced by diverging flows such as the flow caused
by a rotation propeller, a hydrofoil, or by pressure waves. Underpressures can also be
induced by surface waves on an elastic solid [7, 61].

2.5.1 Bubble dynamics

If gravity and gas diffusion can be neglected, a gas bubble at rest tends to take a spherical,
stable equilibrium shape. Its equilibrium radius is given by the total mass of the gas
contents of the bubble, the equation of state of the gas, and the condition that the internal
pressure is balanced by the external pressure and the Laplace pressure induced by surface
tension. If the bubble is compressed from this equilibrium state, its internal pressure
will increase and counteract the compression. If it is expanded from the equilibrium
size, its internal pressure decreases and the external pressure will counteract the bubble’s
expansion. Thus, the bubble is a volumetric oscillator. It will become evident in section
2.5.1 that the oscillation is non-linear, but like all classical oscillations it can be linearised
for small oscillation amplitudes. As cavitation bubbles are created from a very small
initial size, they typically expand past their equilibrium size and subsequently collapse
again to a small size. An excellent review article about bubble oscillations is given by
Lauterborn and Kurz [36]. If a bubble is driven to undergo a sufficiently strong collapse,
the temperature of its gas contents may get high enough for it to emit visible light. This
phenomenon is called sonoluminescence [62]. In the context of sonochemistry, these high
temperatures are used to trigger chemical reactions in the bubble [16]. For even stronger
collapses, the temperatures reached may be sufficient to ignite a nuclear fusion reaction.
This approach is called inertial confinement fusion [17, 18].
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The Rayleigh collapse time

Consider an infinitely extended, homogeneous, incompressible liquid. It shall be at rest
and at an equilibrium state, at a homogeneous pressure p0. At time t0, a spherical volume
of radius R0 shall suddenly disappear, leaving an empty spherical cavity. The centre of
the cavity is chosen as the coordinate origin. The liquid will then take some time τ to fill
the cavity.
Since the considered problem is spherically symmetric and the liquid is incompressible,
the volume flux of the liquid through any spherical shell outside the cavity and centred
at the origin should be the same,

∫

V (r)

~u · d ~A = 4 π r2 u = const. ⇒ u

Ṙ
=
R2

r2
, (2.126)

where Ṙ is the velocity at the surface of the cavity.
Using dm = ρ dV = ρ 4 π r2 dr, the kinetic energy of the liquid can be calculated as:

E =
ρ

2

∫ ∞

R

u2 4 π r2 dr =
ρ

2

∫ ∞

R

Ṙ2 4 π
R4

r2
dr = 2 π ρ Ṙ2R3 . (2.127)

The mechanical work done by the liquid on the cavity since time t0 is

W =

∫ R

R0

~F · d~r =

∫ R

R0

p0 4 π r2 dr =
4

3
π (R3 −R3

0) p0 . (2.128)

Since equation (2.127) and equation (2.128) must be equal, it follows that

E = W ⇔ Ṙ2 =
2p0
3ρ

(R3
0

R3
− 1
)
. (2.129)

This ordinary differential equation can be rewritten in an integral form,

dR

dt
= −

√
2p0
3ρ

(R3
0

R3
− 1
)

⇔ t =

∫ t

0

dt =

√
3ρ

2p0

∫ R0

R

1√
R3

0

R3 − 1
dR . (2.130)

Note that for a shrinking cavity, Ṙ is negative.
The integral in equation (2.130) can be solved by substituting R by the dimensionless
quantity α = R3

R3
0

:

τ =

√
3ρ

2p0

∫ R0

0

√√√√
R3

R3
0

1 − R3

R3
0

dR =

√
3ρ

2p0

R0

3

∫ 1

0

α− 1
6 (1 − α)−

1
2 dα

= R0

√
ρ

p0

Γ(5
6
) Γ(1

2
)√

6 Γ(4
3
)

≈ 0.91468R0

√
ρ

p0
.

(2.131)

The dimensionless integral was expressed by the Gamma function Γ(z) =
∫∞

0
xz−1 e−x dx.

τ is called the Rayleigh collapse time. It is the time it takes for the cavity to shrink from
R(t = 0) = R0 to R(t = τ) = 0 [2].
In most cases, a real cavity contains at least a small amount of gas, which may be an
incondensable gas, a vapour, or a mixture of both. Such a cavity exhibits an internal
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pressure, which will sharply rise as the cavity shrinks and counteract the collapse. It can
then only fully collapse if its contents fully transition to a liquid state. Otherwise, this
bubble will reach a finite minimum volume and then re-expand. This was neglected in
the derivation of equation (2.131). Thus, it can only be applied to cases in which the
influence of the cavity contents is negligible. The presence of any anisotropies like the
boundaries of the liquid, as well as liquid viscosity and liquid compressibility, influence
the collapse time of a real bubble and must be negligible for equation (2.131) to be a good
approximation.

The Keller-Miksis equation

To study the dynamics of cavitation bubbles, there have been several attempts to derive
a model for spherically symmetric bubbles that also holds for large oscillation amplitudes.
To derive a simple equation of motion, the incompressible Navier-Stokes equations (2.59)
are used. Since the model shall be spherically symmetric, only the radial coordinate needs
to be considered. Again, equation (2.126) applies. Viscous effects shall only be considered
at the boundary of the bubble, and hence the viscous term in equation (2.59) is neglected.
Equation (2.59) then turns into

Du

Dt
=
∂u

∂t
+ u

∂u

∂r
=
∂u

∂t
+

1

2

∂

∂r
u2 = −1

ρ

∂p

∂r
. (2.132)

Introducing the flow potential u := ∇Φ ⇒ Φ = −R2Ṙ
r

and integrating over r gives

∂2Φ

∂t ∂r
+

1

2

∂

∂r

(∂Φ

∂r

)2
+

1

ρ

∂p

∂r
= 0

⇒
∫ ∞

R

∂2Φ

∂t ∂r
+

1

2

∂

∂r

(∂Φ

∂r

)2
+

1

ρ

∂p

∂r
dr = 0

⇒ ∂Φ

∂t
+

1

2

(∂Φ

∂r

)2 ∣∣∣
R

=
∆p

ρ
=
p0 + pµ + pσ − pg

ρ
,

(2.133)

where p0 denotes the ambient liquid pressure at infinity, pσ and pµ are the pressure con-
tributions caused by surface tension and viscosity, respectively, and pg is the gas pressure
inside the bubble, which is assumed to be homogeneous within the bubble.
The first-order derivatives of Φ = −R2Ṙ

r
at r = R are

∂Φ

∂t

∣∣
R

= −R
2R̈ + 2RṘ2

r

∣∣
R

= −R R̈− 2 Ṙ2,
∂Φ

∂r

∣∣
R

=
R2Ṙ

r2
∣∣
R

= Ṙ . (2.134)

From equation (2.28) it follows that pσ = 2σ
R

, since the radius of the bubble is also the
radius of curvature of its surface. The viscous term µ∆~u, which was neglected in the
liquid bulk, now causes a pressure pµ at the bubble interface. If the viscosity of the
bubble gas can be neglected, µ is the viscosity of the liquid. pµ can be obtained from
equation (2.55) by only considering the radial component of the velocity ur and using
∇ · ~u = 0,

pµ =

∫ ∞

R

∂

∂r
µ
(∂u
∂r

+
∂u

∂r

)
dr = −2µ

∂u

∂r

∣∣∣
R

=
4µṘ

R
. (2.135)

Equation (2.133) then turns into

R R̈ +
3

2
Ṙ2 +

4νṘ

R
+

2σ

ρR
+
p0 − pg
ρ

= 0 . (2.136)
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This is the Rayleigh-Plesset equation [63]. To solve it, an equation of state ρ(pb) for the
bubble contents needs to be chosen, to express pb by the volume and thereby by the radius
of the bubble.
Since the liquid was taken to be incompressible, the Rayleigh-Plesset equation does not
describe the energy loss of the bubble due to the radiation of acoustic waves. To include
acoustic wave radiation, the flow potential is written as a retarded potential Φ = 1

r
f(t−

r
c
) ≈ 1

r
f(t)− ḟ(t)

c
, where c is the speed of sound in the liquid. It was assumed that c≫ Ṙ.

For c → ∞ the incompressible case, Φ = −R2Ṙ
r

, must be recovered. It thus follows that

f(t) = R2 Ṙ. Using the retarded potential in equation (2.133) results in an additional
term −1

c
d2

dt2
(R2 Ṙ) = −1

c

(
R2

...
R+6R Ṙ R̈+2 Ṙ3

)
on the left side of equation (2.136). The

Rayleigh-Plesset equation then turns into a third-order differential equation. At a glance
this may seem strange since the initial conditions for R and Ṙ are specified, but not the
one for R̈. This modified Rayleigh-Plesset equation features an unphysical solution that
grows exponentially. This unstable solution can be suppressed by choosing an appropriate
initial condition for R̈. But this method is impractical since any small numerical error
excites the unstable solution. To circumvent this issue, the new term is calculated by
multiplying the Rayleigh-Plesset equation (2.136) by R and differentiating by t,

R2
...
R + 5R Ṙ R̈ +

3

2
Ṙ3 + 4 ν R̈ + Ṙ

p0 − pg
ρ

− Rṗg
ρ

= 0 . (2.137)

By inserting equation (2.137) into the additional term, the third-order time derivative can
be eliminated,

R R̈+
3

2
Ṙ2+

4νṘ

R
+

2σ

ρR
+
p0 − pg
ρ

=
1

c

(
R Ṙ R̈+

1

2
Ṙ3−4 ν R̈−Ṙ p0 − pg

ρ
+
Rṗg
ρ

)
. (2.138)

With the assumption Ṙ
R
≫ R̈

c
or Ṙ

R̈
c
R
≈ τc

R
≫ 1, the term 4νR̈

c
in equation (2.138) can be

neglected. Here, τ is a characteristic time scale of the bubble dynamics, e.g. the bubble
collapse time. Values for τc

R
are typically in the range of 100 ... 1000, e.g. for cavitation

bubbles in water.
Equation (2.138) then turns into the Keller-Miksis-equation [64]:

R R̈
(

1 − Ṙ

c

)
+

3

2
Ṙ2
(

1 − Ṙ

3c

)
+

4νṘ

R
+

2σ

ρR
+
p0 − pg
ρ

(
1 +

Ṙ

c

)
− Rṗg

ρc
= 0 . (2.139)

The differences between these models are illustrated in figure 2.6. While the Rayleigh
collapse models an empty cavity collapsing to R = 0, the Rayleigh-Plesset equation takes
the gas content of the cavity, the liquid viscosity, and surface tension into account, causing
the bubble to rebound as an anharmonic oscillator, later regaining its initial radius. The
Keller-Miksis equation also takes into account the compressibility of the liquid, and thus
the bubble’s energy loss due to the radiation of pressure waves, causing the bubble to
reach a maximum radius smaller than R(0) after its rebound.
These are not the only useful models for spherical bubble dynamics. The mass loss of a
bubble due to gas diffusion was modelled by Epstein [65]. An alternative to the Keller-
Miksis model is given by the Gilmore model [66, 67]. Church [68] derived a model for
a bubble that is surrounded by an elastic shell in a viscous fluid. Adversely, Vincent
and Marmottant [69] modelled a bubble in a viscous fluid that is confined in an elastic
solid. Recently, Zhang [70] derived an ambitious model that unifies the Rayleigh-Plesset
model, the Gilmore model, and the Keller-Miksis model, and further takes into account
the effects of various non-spherical phenomena like the presence of boundaries, gravity,
and flow fields.
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Figure 2.6: Cavity radius over time R(t) showing the Rayleigh collapse of a cavity, as
well as solutions of the Rayleigh-Plesset equation and Keller-Miksis equation for a bubble
with R(0) = 500 µm and p(0) = 1 kPa.

Jet formation

The bubble models derived above assume spherical symmetry of the conditions around the
bubble, specifically homogeneity of the pressure field p. In the general case, the liquid pres-
sure is a function of ~x. If p varies slowly on the relevant length scales, e.g. the maximum
bubble size, the variations can be approximated by a linear function, p(~x) ≈ p0 + ∇p · ~x.
The coordinate system can then be chosen such that the z axis points in the direction of
∇p, i.e., p(~x) = p(z) = p0 + dp

dz
z. Consider an initially spherical bubble with its centre on

the z-axis. The system is then independent of the choice of direction of x and y, and is
thus axisymmetric with respect to the z-axis. A rather simple case is that of a collapsing
empty cavity, which is shown in figure 2.7 (a) at t = 0. If the liquid viscosity ν, surface
tension σ, compressibility, and the effect of non-radial liquid flow are neglected, each point
on the bubble surface evolves individually according to equation (2.130). Naturally, parts
of the bubble wall that experience a larger external pressure are accelerated more strongly
and thus reach the centre of the initial cavity sooner and with a higher velocity. Thus, a
one-sided liquid jet is created in the opposite direction of the external pressure gradient.
This is a well-known phenomenon in bubble physics. A bubble collapsing in a sufficiently
strong pressure gradient develops a liquid jet that pierces the bubble and thus turns it
into a toroidal shape. Such pressure gradients can be created by gravity [71], the flow
field [72], or a pressure wave [73]. During jet formation, the liquid and the gas that make
up the bubble gain a net momentum, which is also referred to as the Kelvin impulse [74].
The force accelerating the bubble caused by the pressure gradient is called the primary
Bjerknes force [75]. It is typically used in the context of a bubble moving in a sound field.
Momentum conservation still holds, but the opposite counterpart of the Kelvin impulse
is transferred to the bulk of the liquid and the container holding it, and its effects can be
neglected.
Generally, convergent flows lead to an acceleration of the fluid, and commonly to jet for-
mation. In the context of a collapsing cavity, this can also happen if the pressure on two
poles of the cavity is lower than in the radial directions, as shown in figure 2.7 (b). In this
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Figure 2.7: Jet formation from a cavity collapse in a pressure field. Jetting directions
are denoted by red arrows. (a) Cavity collapsing in a pressure gradient. Contours are
shown at t = 0, 10, 20, 30, 40, 43.7 µs, from outside to inside. (b) Cavity collapsing in
a parabolic pressure profile near the pressure maximum. Contours are shown at t =
0, 10, 20, 30, 40, 45.7 µs, from outside to inside. (c) Cavity collapsing in a parabolic pressure
profile near the pressure minimum. Contours are shown at t = 0, 10, 20, 30, 40, 43.7 µs,
from outside to inside.

special case, the parts of the cavity moving in from the radial directions reach its centre
first and impact onto each other. This causes two jets to be developed along the axis
of symmetry. A superposition of this phenomenon and the jet formation shown in figure
2.7 may result in either two jets, out of which one is stronger than the other, or only
one especially strong jet. The inverse effect may occur if the pressure on two poles of the
cavity is higher than in the radial directions, as shown in figure 2.7 (b), which would cause
two jets to emerge which then collide within the cavity. For two jets of equal strength,
this could result in a planar radially diverging flow, while jets of different strength result
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in a single, weaker jet. Even in a homogeneous pressure field, similar types of jets as
shown in figure 2.7 may form if the initial cavity is not spherical, as some parts of the
cavity wall would reach its centre before others.
The pressure gradient may also be induced by the interaction between the collapsing bub-
ble and a nearby interface. The geometry is typically classified using a non-dimensionalised
stand-off parameter γ = d

Rmax
, where d is the distance between the centre of the bubble

and the boundary, and Rmax is the maximum bubble radius. Since the bubble may be
deformed from a spherical shape, the radius of the bubble is no longer well-defined. Since
the part of the bubble furthest from the boundary may still be approximately spherical,
often the distance between the position of bubble creation and the point furthest from the
boundary is used. Another approach is to use the so-called unbound maximum bubble
radius of a bubble far from the boundary with the same amount of energy.
A well-studied case is that of a bubble collapsing near a rigid solid boundary [76, 77]. A
rigid boundary resists the acceleration of the nearest part of the bubble, which causes a
prolongation of the bubble’s collapse time [78], as well as a jet to be developed from the
opposite side towards the solid. The jet then impinges onto the solid wall and develops
into a vortex, causing large water-hammer pressures and shear stresses on the boundary.
This is used for ultrasonic cleaning [9, 79–81]. The leftover bubble commonly fragments
into a ring-shaped cloud of bubbles, which rebound and then collapse a second time. In
specific cases, the slightly asynchronous collapse of these bubbles causes a shock wave
focusing, resulting in surface stresses large enough to damage even very hard solids [82].
The destructive property of bubbles is to be avoided in most cases but also found ap-
plication in medicine, e.g. in lithotripsy [11]. If a bubble is created very close to the
rigid boundary, it expands into a hemispherical shape. During its subsequent collapse it
develops a planar radial inflow which self-impacts on the axis of symmetry and creates a
so-called “needle jet” or “fast jet” [83–86].
For more complex geometries, the bubble may still exhibit a singular jet, like in the case
of a bubble collapsing near a corner [87]. For such cases, the jet direction and strength
can be determined by an anisotropy parameter [88, 89]. In cases where boundaries are on
opposite sides of the bubble, their competing effects may cause complex bubble dynam-
ics, which can result in a jet in one or the other direction, or two jets and a splitting of
the bubble [90–92]. Further, more complex cases are that of a granular boundary [93], a
needle jet on a solid pillar [94], and a sheet jet on a fibre [95]. If a bubble collapses near a
free boundary, this boundary offers a lower resistance against the bubble’s collapse than
the liquid bulk, which results in the formation of a jet directed away from the boundary
[96, 97]. By incorporating free boundaries into a solid wall, the bubble may be forced to
jet away from the boundary, effectively protecting the wall against cavitation erosion [98,
99].
An elastic solid offers an intermediate case between that of a rigid and that of a free
boundary, and gives rise to complex flow phenomena during bubble collapse [100–103].
A bubble created near a liquid-liquid interface may also develop a jet, depending on the
properties of both liquids involved [104].
Bubbles also interact with other bubbles. This behaviour is highly dynamic and complex,
and the jetting direction depends on the sizes and oscillation phases of both bubbles [105].
The force acting between oscillating bubbles is called the secondary Bjerknes force [75].
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2.6 Numerical mathematics

Numerical mathematics is a branch of mathematics that focuses on computing solutions
to mathematical problems with numbers of finite precision. Numerical simulations can
approximately describe many physical models and laws without the need for a physical
experimental setup, only requiring a computer. Though it is immensely powerful and an
important supplement to experimental research, it also has some severe limitations. Just
like for analytical calculations, an appropriate model needs to be chosen for the considered
problem, and all assumptions and conditions for approximations made in the model need
to hold. The computer used for the simulations is also limited in its accuracy and speed.
Inaccuracies due to rounding of numbers and discretisation of time and spatial dimensions
are often unavoidable. This may also introduce instabilities of the mathematical solution,
in which the computed result diverges exponentially from the exact solution. A solution
with the desired accuracy is not always achievable in a reasonable computation time.

2.6.1 Numerical methods for ordinary differential equations

A first-order ordinary differential equation can be written in the following form:

d~x

dt
= ~f(t, ~x) . (2.140)

Since any N th-order ordinary differential equation can be written as a system of N first-
order ordinary differential equations, it can then also be written in the form of equation
(2.140).
Equation (2.140) consists of an independent variable t, which is often time or a spatial
coordinate, and an unknown variable ~x. Combined with an initial condition it makes up
an initial value problem,

d~x

dt
= ~f(t, ~x), t ∈ [t0, t0 + α]

~x(t0) = ~x0 ∈ R
N , t0 ∈ R, α > 0 .

(2.141)

To solve such a problem numerically, all derivatives, i.e. differential quotients, are replaced
by difference quotients, since computers can only store a finite number of values for ~x
and t. This method is called the finite difference method. There are multiple ways to
approximate a first-order derivative by a difference quotient. A few examples of these
are the forward difference d~x

dt
≈ ~x(t+h)−~x(t)

h
, the backward difference d~x

dt
≈ ~x(t)−~x(t−h)

h
, and

the central difference d~x
dt

≈ ~x(t+h)−~x(t−h)
2h

. h denotes a step size in t. Since these difference
quotients are approximations, their accuracy and their dependence on h are of interest.
For instance, for small step sizes the error made by the forward and backward differences
is proportional to h, while the error of the central difference is proportional to h2. They
are said to have an order of convergence of 1 and 2, respectively.
When such a finite difference method is applied to the initial value problem, equation
(2.140), a solution method is obtained. Using the forward difference results in the explicit

Euler method ~xn+1 = ~xn + h ~fn, the backward difference in the implicit Euler method
~xn+1 = ~xn+h ~fn+1, and the central difference in the leap-frog method ~xn+1 = ~xn−1+2h ~fn.
Here, the abbreviations fn = f(tn, ~xn), ~xn = ~x(tn), tn+1 − tn = h are used. For explicit
methods, the right side only depends on ~xn, ~xn−1,+..., but not on ~xn+1. Otherwise, the
method is called implicit. Thus, the leap-frog method is an explicit two-step method,
since the terms are at most two steps apart in t. An explicit N -step method can be
written in the form xn+1 = xn + h

∑N−1
j=0 cj fn−j, with N coefficients cj.
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The Runge-Kutta method

Further single-step methods can be derived by writing equation (2.140) in the following
form:

~xn+1 = ~xn +

∫ tn+1

tn

~f(t, ~x(t)) dt . (2.142)

Any approximation of the integral in equation (2.142) will result in a solution method
for ordinary differential equations. The simplest approximations for this integral are h fn
and h fn+1, which are called the left and the right rectangular approximation methods,
respectively. They result in the explicit and the implicit Euler methods, respectively.
Further integral approximation methods are the midpoint rule

∫ tn+1

tn
~f dt ≈ h ~fn+ 1

2
and

Kepler’s barrel rule
∫ tn+1

tn
~f dt ≈ h

6
(~fn + 4 ~fn+ 1

2
+ ~fn+1). Since the values of ~fn+ 1

2
and ~fn+1

at tn+ 1
2

and tn+1 are not known, they need to be approximated as well. To turn Kepler’s

barrel rule into a solution method for ordinary differential equations, ~fn is renamed as

~fn := ~k1,n . (2.143)

Applying the explicit and the implicit Euler methods with step size h
2

gives

~fn+ 1
2
≈ ~f(tn +

h

2
, ~xn +

h

2
~fn) = ~f(tn +

h

2
, ~xn +

h

2
~k1,n) := ~k2,n , (2.144)

~fn+ 1
2
≈ ~f(tn +

h

2
, ~xn +

h

2
~fn+ 1

2
) ≈ ~f(tn +

h

2
, ~xn +

h

2
~k2,n) := ~k3,n . (2.145)

Finally, the central difference with step size h
2

gives

~fn+1 ≈ ~f(tn + h, ~xn + h ~fn+ 1
2
) ≈ ~f(tn + h, ~xn + h~k3,n) = ~k4,n . (2.146)

By combining the equations (2.142)-(2.146), Kepler’s barrel rule turns into

~xn+1 = ~xn +
h

6

(
~k1,n + 2~k2,n + 2~k3,n + ~k4,n

)
. (2.147)

This is the so-called classic Runge-Kutta method, also referred to as the Runge-Kutta
method.
The generic form of the class of Runge-Kutta methods is as follows:

~ki,n = ~f(tn + h ci , ~xn + h
∑

m

aim ~km,n) ,

~xn+1 = ~xn + h
∑

i

bi ~ki,n .
(2.148)

Typically, the coefficients aim, bi, and ci, that define a specific Runge-Kutta method, are
written in the form of a so-called Butcher-tableau:

~c
↔

a
~b

0
1

1 1
1

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

(2.149)
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The first tableau represents the generic form of the Runge-Kutta method. ~c is written
as a column vector and ~b as a row vector. The second and third tableaus represent the
explicit and the implicit Euler methods, respectively. The fourth tableau represents the
classic Runge-Kutta method. For explicit methods,

↔

a is a strict lower triangle matrix,
meaning that the diagonal elements and the upper triangle elements are 0. Hence, those
elements are often omitted in tableaus for explicit methods. If

↔

a is a s × s-matrix, the
method is said to be of order s. To have an order of convergence of s, a Runge-Kutta
method needs to be at least of order s. The classic Runge-Kutta method is of order 4, and
its order of convergence is also 4. Thus, for small h the error in every step is proportional
to h4.

2.6.2 Numerical methods for partial differential equations

Partial differential equations (PDEs) contain derivatives of the unknown variable by at
least two independent variables. Often, these include temporal and spatial derivatives.
An example of such a differential equation are the Navier-Stokes equations. Similar to the
methods described in section 2.6.1, for numerical computation the derivatives are replaced
by difference quotients, and thus the independent variables are discretised.

The advection equation

A particularly simple partial differential equation is the linear advection equation,

∂~u

∂t
+ (~a · ∇) ~u = 0 (2.150)

It is used in mathematics as an example equation, on which the properties of different
discretisation methods or schemes can be examined. The advection equation describes
the propagation of a wave at a constant velocity ~a. The wave is solitary, i.e., its shape
does not change over time.
To solve this equation, a finite number of points in time and space need to be defined. An
especially simple choice is a cubic spatial lattice with a grid parameter of ∆xi = k and a
constant time step size ∆t = h.
Consider the one-dimensional case. One possible choice for the discretisation is a forward
difference for the time derivative and a backward difference for the spatial derivative,

∂u

∂t
+ a

∂u

∂x
→ un+1

i − uni
h

+ a
uni − uni−1

k
⇔ un+1

i = uni − a
h

k
(uni − uni−1) . (2.151)

For a > 0, this is called the upwind scheme. The coefficient Co = |a| h
k

is called the
Courant-Friedrichs-Lewy number, or for short CFL number or Courant number.
Figure 2.8 shows the behaviour of the solution of the advection equation when using the
upwind scheme, with different values of the Courant number Co. The solution turns out
to be exact for Co = 1. For Co < 1, numerical errors occur that tend to smooth out
the solution compared to the exact solution. Because of its similarity with diffusion, this
phenomenon is called numerical diffusion. For Co > 1 the solution is unstable, i.e., the
occurring numerical errors grow exponentially in time t. Thus, a stability condition, also
called CFL condition, can be formulated:

Co = |a| h
k
≤ 1 . (2.152)
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Figure 2.8: Numerical solution of the advection equation with a = 1, k = 0.01 using the
upwind scheme. (a) Initial conditions. (b)-(d) Solutions at t = 1 for different Courant
numbers Co = |a|h

k
= 100h.

If ~a is replaced by ~u, equation (2.150) turns into the non-linear advection equation, which
corresponds to the left side of the Navier-Stokes equations (2.58),

∂~u

∂t
+ (~u · ∇) ~u =

D~u

Dt
= 0 . (2.153)

Then, the CFL condition (2.152) becomes

Co = |~u| h
k
≤ 1 . (2.154)

Here, even for constant step sizes h and k the Courant number is a function of space and
time. For other grids, k is generally also not a constant. To ensure the stability of the
solution, equation (2.154) must be fulfilled everywhere. Thus, the time step size h needs

to be chosen according to the largest value of |~u|
k

.

The diffusion equation

Another term in the Navier-Stokes equations (2.58) is described by the diffusion equation,

∂~u

∂t
= ν ∆~u . (2.155)

The diffusion equation features second-order partial derivatives in space. Once again,
consider the one-dimensional case. Combining the forward difference and the backward
difference results in a central difference for a second-order derivative,

∂2u

∂x2
≈ ∂

∂x

ui+1 − ui
k

≈
1
k

(ui+1 − ui) − 1
k

(ui − ui−1)

k
=
ui+1 − 2ui + ui−1

k2
. (2.156)

With this and a forward difference for the time derivative, equation (2.155) turns into

un+1
i = uni + ν

h

k2
(uni+1 − 2 uni + uni−1) . (2.157)

Equation (2.157) also features a dimensionless coefficient, Cν = ν h
k2

.
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Figure 2.9: Numerical solution of the diffusion equation with ν = 0.001, k = 0.01 using
the discretisation scheme in equation (2.157). (a) Initial conditions. (b)-(d) Solutions at

t = 1 for different Cν = ν h
k

2
= 10h.

Solutions of the diffusion equation using the discretisation scheme in equation (2.157) are
shown in figure 2.9. The most accurate solution is found for Cν = 0.5. For larger Cν the
solution is unstable. Thus, the stability condition in this case is given by:

Cν = ν
h

k2
≤ 0.5 . (2.158)

Combining the equations (2.153) and (2.155) gives the so-called Burgers equation,

∂~u

∂t
+ (~u · ∇) ~u = ν ∆~u . (2.159)

The other terms of the Navier-Stokes equations (2.58) can be discretised in a similar
fashion as the terms discussed so far.

The Poisson equation

Some differential equations do not feature time as an independent variable. Such an
equation, along with the boundary conditions required to define the problem, is called
a boundary value problem. A prominent example occurring in physics is the Poisson
equation,

∆φ = f(~x) , (2.160)

where φ is an unknown, and f a known field. For f(~x) = 0, equation (2.160) turns into
the Laplace equation, ∆φ = 0.
Consider the two-dimensional case, ∂2φ

∂x2
+ ∂2φ

∂y2
= f(x, y). One can make an arbitrary initial

guess for the solution φ on the points (xi, yj), which shall lie on a square lattice with the
grid parameter k. Discretising equation (2.160) with the central difference (2.156) gives

1

k2
(φi+1,j − 2φi,j + φi−1,j + φi,j+1 − 2φi,j + φi,j−1) = f(xi, yj)

→ φn+1
i,j =

ω

4
(φni+1,j + φni−1,j + φni,j+1 + φni,j−1) + (1 − ω)φni,j −

k2

4
f(xi, yj)) .

(2.161)

In the second line, an iterative method for computing the solution φ was defined. For an
adequate choice of the newly introduced parameter ω, the computed field φni,j converges
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(b)(a) (c) (d)

Figure 2.10: Numerical solution of the Poisson equation with k = 0.01 using the iterative
method in equation (2.161). (a) f(xi, yj). (b) Boundary conditions. (c) Converged
solution for ω = 1. (d) Unstable solution for ω = 2.

towards the solution φi,j with subsequent iterations n. It is important to note that here,
n does not denote a number of time steps, but a number of iterations, which does not
have a physical meaning. ω is called the relaxation parameter of the iterative method.
For ω = 1, equation (2.161) corresponds to the discretised Poisson equation. Increasing
ω can lead to a quicker convergence, but may also make the solution method unstable.
This is called over-relaxation. Likewise, decreasing ω (under-relaxation) results in a more
stable method with slower convergence. Optimal values for ω often lie between 1 and 2.
Figure 2.10 shows an example for a numerical solution of the Poisson equation for f(xi, yj)
shown in figure 2.10 (a) and the boundary condition in figure 2.10 (b). Figure 2.10 (c)
shows the converged solution for ω = 1, while in figure 2.10 (d) a larger value of ω = 2
was chosen, which led to an unstable solution.

2.6.3 Computational physics

Applying the Finite Difference Method (FDM) introduced above to solve PDEs in three
dimensions requires a discretisation of the computational domain into a computational
mesh, i.e., in three dimensions the volumetric domain of interest is divided into volu-
metric cells, which is why this method is then called the Finite Volume Method (FVM).
By combining the terms of the PDEs above, one can solve the Navier-Stokes equations.
Since this method is computationally intensive, it is gaining popularity as the advances
in computational technology make it more accessible. Some popular software programs
for Computational Fluid Dynamics (CFD) are COMSOL [106], ANSYS [107], and Open-
FOAM, which is the software used for the present work. More details on OpenFOAM are
given in chapter 3
There are other methods to solve the flow equations, each of them having different advan-
tages and shortcomings compared to the VoF method. For the Boundary Integral Method
(BIM), also called the Boundary Element Method (BEM), the flow equations are rewrit-
ten into integral equations [108]. The integral equation is then solved for the discretised
boundary of the computational domain. This reduces the dimensionality by one, which
can save valuable computation time. The BEM is especially suited for problems with
open boundaries. However, it can only be applied to linear PDEs of which fundamental
solutions are known.
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The Finite Element Method (FEM) requires a computational mesh similar to the FVM
[109]. But instead of using the FVM to evolve the field values at each computational cell
to the next time step, a test function is chosen for each computational cell, resulting in
a linear equation system, which can be solved using matrix algebra. The FEM may be
harder to implement than the FVM, but it is more adaptable to complex geometries and
the approximation quality is higher in many cases.
Multiphase flows that contain multiple immiscible fluids can be modelled by explicitly
tracking the position of the fluid interfaces, or by using phase fraction fields αi, which for
each computational cell gives the fraction of the cell volume occupied by the i-th fluid.
To model an elastic material, typically the FEM is used, though the FVM method can
also be employed. Since the components of the deformation ~D are coupled, an iterative
solution of the linear elastic equation of motion (2.90) is required. There are multiple
ways to couple a fluid to an elastic solid structure. In such Fluid-Structure Interaction
(FSI) methods, one differentiates between weak coupling, in which the fluid acts upon
the solid via surface stresses at the fluid-structure interface, but the deformation of the
solid is negligible, and strong coupling, in which the deformation of the solid is imposed
onto the fluid boundary. To model FSI with strong coupling, generally a dynamic mesh
is required. OpenFOAM provides solvers for elastic solids as well as FSI using the FVM,
more details on which are given in chapter 3.

The finite volume method

Take a three-dimensional volume of interest, in which a set of partial differential equations
is to be solved. In the context of the finite volume method, this volume is divided into N
cells. These cells are usually regular or irregular polyhedra, but can also have curved faces.
Take the i-th cell, which has F faces, L edges, and X vertices, each of which is known
and well-defined. Each of the cell’s faces is either shared with one or more neighbouring
cells or lies at the outer boundary of the volume of interest. A sketch of such a cell is
shown in figure 2.11 (a).
The length of each edge is given by

l = lim
n→∞

n∑

j=1

|~f(tj) − ~f(tj−1)| = lim
n→∞

n∑

j=1

∣∣∣
~f(tj) − ~f(tj−1)

∆t

∣∣∣∆t =

∫ b

a

∣∣∣
~f(t)

dt

∣∣∣ dt , (2.162)

with its end points ~x0 = ~f(a) and ~x1 = ~f(b) coinciding with two of the cell’s vertices. For a

straight edge, ~f(t) = (~x1−~x0) t+~x0, a = 0, b = 1, its length is simply l = |~l| = |~x1−~x0|.
Similarly, the surface area of each face is given by A =

∫
dA. The evaluation of this

integral is non-trivial for an arbitrary curved surface, especially if it cannot easily be
parametrised. For the case of a planar surface, the surface area can be calculated using
Stokes’s theorem,

Af =

∫

Af

~n · d ~A =

∫

Af

(∇× ~B) · d ~A =

∮

∂Af

~B · d~l, ∇× ~B = ~n . (2.163)

It can be shown that the last condition is fulfilled by ~B = 1
2
~n×~x, with which the formula

becomes

Af =
1

2

∮

∂Af

(~n× ~x) · d~l =
∑

edges

1

2

∫ ~x1

~x0

(~n× ~x) · d~l . (2.164)
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The starting point ~x0 of each edge must be chosen to be an endpoint ~x1 of the neighbouring
edge, such that a closed integral loop is formed. In the case of straight edges, this further
simplifies to

Af =
∑

edges

(~n× (~x1 + ~x0)) · (~x1 − ~x0) , (2.165)

where (~x1 + ~x0)/2 is the midpoint of each edge ~l. The normal vector ~n can be calculated

from two of the face’s non-parallel edges as ~n =
~l1×~l2
|~l1×~l2|

. Similarly, the volume of the cell

can be calculated using Gauss’ theorem,

V =

∫
dV =

∫
∇ · ~x

3
dV =

∮

∂V

1

3
~x · ~n dA =

1

3

∑

faces

∮

Af

~x · ~n dA . (2.166)

For flat edges, this simplifies to

V =
1

3

∑

faces

~xf · ~nAf . (2.167)

The face centres ~xf can be calculated component-wise as

xf,i =

∫
Af
xi ~n · d ~A

∫
Af
~n · d ~A

=
1

Af

∫

Af

xi ~n · d ~A =
1

Af

∫

Af

(∇× ~B) · d ~A =
1

Af

∮

∂Af

~B · d~l

=
1

Af

∑

edges

∫ ~x1

~x0

~B · d~l, ∇× ~B = xi ~n ⇒ ~B =
1

2

∫
xi ~n× d~x .

(2.168)

Note that ~B differs for each component of ~xf, but is easily calculated in each case.
For straight edges, a similar simplification as above can be applied.
The centroid of the cell ~xV can be calculated as

xV,i =

∫
xi dV∫
dV

=
1

V

∫
∇ · xi~x

4
dV =

1

V

∮

∂V

xi
4
~x · ~n dA =

1

4V

∑

faces

∮

Af

xi ~x · ~n dA . (2.169)

For flat faces, this becomes

~xV =
1

4V

∑

faces

~xf (~xf · ~n)Af . (2.170)

The partial differential equations are discretised by integrating them over the cell volume.
The goal is to bring the considered equations into the form of an eigenvalue problem,
↔

M ~u = ~b, with the N × N × 3-dimensional coefficient tensor
↔

M , the unknown velocity
field ~u, and the source term ~b, since well-known and efficient solution algorithms for such
problems are available. The field values are stored at the cell centroid ~xV . Dividing
equation (2.58) by ρ and integrating it over the cell volume gives

∫

V

D~u

Dt
dV =

∫

V

1

ρ
~fV − 1

ρ
∇p+

1

ρ
∇ ·
(
µ
(
∇ ◦ ~u+ (∇ ◦ ~u)T − 2

3
∇ · ~u ✶

))
dV . (2.171)

Each of these terms is then evaluated individually.
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Figure 2.11: (a) Schematic example of a computational cell. A cell vertex ~x (red), edge l
(yellow), face Af (cyan), face normal ~n (blue), face centroid ~xf (red), volume V (grey), and
volume centroid ~xV (red) are highlighted. The neighbouring edges of its neighbour cells
are indicated by dash-dotted lines. (b) Top: Schematic comparison between interpolation
schemes, including the linear scheme (LS), upwind scheme (US), and linear upwind scheme
(LUS) indicated in purple; bottom: normal vector decomposition ~n = ~n1 + ~n2 for a non-
orthogonal correction using the over-relaxed approach ~n ⊥ ~n2 is shown.

Source terms that do not depend on ~u, like 1
ρ
~fV and −1

ρ
∇p, are approximated as varying

linearly on the scale of the cell size, corresponding to second-order accuracy, which results
in ∫

V

~aV dV = V ~aV . (2.172)

For the case of the i-th cell, this term then gets added to ~b(i).
Source terms proportional to ~u yield

∫

V

a ~u dV = aV

∫

V

~u dV = aV

∫

V

(~uV + (~x− ~xV )∇ · ~u) dV = aV ~uV V . (2.173)

Since ~xV is the cell centroid, the second integral vanishes. This term can then either be
treated explicitly by adding it to ~b(i), or implicitly by adding its negative, −aV V , to
↔

M(i, i). The former is done if aV ~uV V < 0, and the latter otherwise. This is because a

positive contribution to the diagonal elements of
↔

M increases its stability.
Higher-order source terms can be linearised by using the values of ~u from the previous
iteration, a ~u p → a ~u p−1

j−1 ~u.
The time derivative is discretised using a discretisation method as discussed in section
2.6.1, typically the explicit Euler method. The resulting terms are either independent
of or linear in the unknown velocity ~u, and can thus be treated like the terms discussed
above.
The advection term ~u∇ · ~u is evaluated using Gauss’ theorem,

∫

V

~u∇ · ~u dV =

∫

∂V

~u (~u · ~n) dA =
∑

faces

∫

Af

~u (~u · ~n) dA =
∑

faces

~uf (~uf · ~n)Af . (2.174)

Here, the interpolated velocity ~uf on the cell face centres ~xf is required. If the field values of
other cells (typically the cell’s face-sharing neighbours) are used for this interpolation, non-
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diagonal terms in
↔

M are introduced. The number and values of the diagonal terms depend
on the chosen interpolation scheme, the most simple examples of which are explained in
the following.
Take the centre of the shared face ~xf between the cell of interest with centroid ~xV and a
neighbour cell with centroid ~xN, as indicated at the bottom of figure 2.11 (b). The value
of the field φ is known at the cell centroids and is to be interpolated on ~xf. The linear
(also called central) interpolation scheme simply assumes a linear variation of ~u between
~xV and ~xN, as indicated by a purple line in figure 2.11 (b),

φf = a φN + (1 − a)φV , a =
|~xf − ~xV |
|~xN − ~xV |

. (2.175)

Due to this scheme being linear, it is second-order accurate. It is also unbounded and
prone to numerical oscillations. Due to its high accuracy but lack of stability, it is typically
used for the viscous term (which is discussed below), but often not for the advection term.
The linear upwind scheme calculates φf using φ and ∇φ at only one of the cell centroids,
the choice of which depends on the flow direction through the shared face,

φf =

{
φV + a (∇φ)V · (~xf − ~xV ), ~u · ~n > 0 (mass flow out)

φN + a (∇φ)N · (~xf − ~xN), ~u · ~n < 0 (mass flow in)
. (2.176)

This scheme is second-order accurate, and somewhat unstable since φf can be greater than
both φV and φN, which is unphysical. To counteract this, the introduced parameter a,
which should lie in the range from 0 to 1, can be chosen to ensure that φf lies between φV
and φN. This scheme is typically only used for advective terms.
The trade-off between the accuracy and the stability of the different interpolation schemes
means that the scheme should be chosen in accordance with the specific problem to be
modelled. The linear and upwind schemes can also be combined using a weighted average,
where the weights can also vary over the computational grid. Examples of such methods
are TVD (total variation diminishing) schemes and the gamma differencing scheme.
If the cell face is part of the boundary of the computational domain, the value of ~uf is
determined using the specified boundary condition.
Diffusive terms like the viscous term are treated in a similar fashion as the advective term,
∫

V

∇ · ~f(~u′) dV =

∫

∂V

~f(u′) · ~n dA =
∑

faces

∫

Af

~f(u′) · ~n dA =
∑

faces

~f(u′)|f · ~nAf , (2.177)

where ~f(u′) is a function of the first-order spatial derivatives of ~u.
Since the connection vector between both cell centroids may not be perpendicular to
the shared face, a non-orthogonal correction is required. For this, the normal vector
is decomposed into a component along the centroid connection vector and a residual
component, ~n = ~n1 + ~n2, ~n1 || ~xN − ~xV . This results in

∫

V

∇ · ~f(~u′) dV =
∑

faces

~f(u′)|f · ~n1Af + ~f(u′)|f,j−1 · ~n2Af . (2.178)

The second term is treated explicitly by using the value of uf,j−1 from the previous iteration

and added to ~b(i) as a source term. The length of ~n1 is a degree of freedom. Typically, the
condition ~n2 ⊥ ~n is chosen. This approach is generally more stable and converges quicker
than other choices, even for a relatively large skew angle between ~n and ~n1. For strongly
skewed cells, the explicit term may be limited or omitted to achieve a stable, although
inaccurate solution.
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3 Software

OpenFOAM is an open-source framework of simulation software based on the finite vol-
ume method. Here, “FOAM” stands for “Field Operation And Manipulation”. It is
written in C++ for Linux. It does not feature a user interface and is thus entirely text-
based. Simulation properties are specified in text files and simulations are run using
Linux terminal commands. The present work features three newly developed solvers us-
ing the OpenFOAM framework: CavBubbleFoam [41], MultiphaseCavBubbleFoam [42],
and CavBubbleFsiFoam [43]. These solvers are described in the following sections.
The simulations were carried out on two workstations, with the following system specifi-
cations:

specification work station 1 work station 2
processor 2 × AMD Epyc 7351 AMD Ryzen Threadripper 1900X
number of cores 2 × 16 8
processor clock speed 2.4 GHz 3.8 GHz
RAM 64 GB 64 GB
RAM clock speed 2933 MHz 2133 MHz
graphics card Nvidia RTX 2060 Super Nvidia GTX 1060
SSD storage capacity 1 TB 1 TB
HDD storage capacity 8 TB 10 TB
operating system Ubuntu 20.04 LTS Ubuntu 16.04 LTS

Table 3.1: Work station system specifications.

Workstation 2 was used for the OpenFOAM simulations for chapter 4. For the chapters
5-12, work station 1 was used.
For post-processing simulation data, ParaView [110] and Matlab [111] were used. Matlab
was also used for plots and Rayleigh-Plesset-type models. For image processing, mainly
ImageJ [112], InkScape [113], and GIMP [114] were used.

3.1 compressibleInterFoam

OpenFOAM contains different solvers for different classes of problems. For example,
compressibleInterFoam is a solver for two compressible, non-isothermal, immiscible flu-
ids. In the solvers used in the present work, heat conduction will be disregarded. It will
thus not be discussed here, despite being modelled in compressibleInterFoam.
Instead of using the equation of state in its explicit form, ρ = ρ(p), the compressibility of
the fluid κ is used to calculate density changes of the modelled fluids. κ can be calculated
according to equation (2.62) from the equation of state of choice (2.61),

κ = − 1

V

(∂V
∂p

)
T

=
1

ρ

(∂ρ
∂p

)
T

=
1

ρ
(
∂p
∂ρ

)
T

=
1

γ (p0 +B)
(
ρ
ρ0

)γ =
1

γ (p+B)
. (3.1)

In compressibleInterFoam, the compressibility is described by the quantity ψ = κ ρ =
dρ
dp

. It is calculated as a separate field quantity for each fluid at the start of the simulation
and is then assumed to be constant over time.



3.1 compressibleInterFoam 57

To describe a system with two fluid components, a dimensionless field α is introduced,
which is the volume fraction (or phase fraction) of a computational cell occupied by one
of the components. For a given cell, α = 0 and α = 1 stand for the cell being fully
occupied by one of the fluid components or the other. For 0 < α < 1, both components
are present in the cell. It thus also contains a part of the interface between both fluids.
In compressibleInterFoam, the notation α1 = α and α2 = 1 − α is used, from which
it follows that α1 + α2 = 1. This method to describe the two components is called a
“phase-fraction based interface capturing approach” in OpenFOAM.
The density fields ρ1 and ρ2, which each only describes one of the components, are calcu-
lated from the equation of state (2.61) using the pressure field p and the respective fluid
parameters,

ρj = ρ0j

( p+Bj

p0,j +Bj

) 1
γj , (3.2)

where the index j = 1, 2 stands for the two fluid components. The density field ρ can
be constructed from these component density fields as ρ = α1 ρ1 + α2 ρ2. The fluid
components individually fulfil a continuity equation,

∂(αj ρj)

∂t
+ ~u · ∇(αj ρj) + αj ρj ∇ · ~u =

∂(αj ρj)

∂t
+ ∇ · (αj ρj ~u) = 0 . (3.3)

From this, it follows that ρ also obeys the continuity equation (2.34). Though, this equa-
tion is posed locally for continuous fields. When implemented for computational cells of
finite size, the first term of equation (3.3) describes the rate of change of the density ρj
in the cell volume, while the second term describes the mass flux of this fluid component
through the surface of the cell. If the fields ρj and ~u are defined in the geometric centre of
each cell, their values on the cell faces are to be acquired via interpolation. The interpo-
lated values of the velocity field ~u on the cell faces are called ~φ in compressibleInterFoam.
With this, equation (2.34) and equation (3.3) turn into

∂ρ

∂t
+ ∇ · (ρ ~φ) = 0 . (3.4)

∂(αj ρj)

∂t
+ ∇ · (αj ρj ~φ) = 0 . (3.5)

The rate of change of ρj caused by pressure variations dp is given by

dρj =
dρj
dp

dp = ψj dp . (3.6)

In a time step, first the phase fraction field α1 is updated. From equation (3.6) it follows

that
Dρj
Dt

= ψj
Dp
Dt

. With this and j = 1, equation (3.5) turns into

∂α1

∂t
+
α1

ρ1

∂ρ1
∂t

+ ∇ · (α1
~φ) +

α1

ρ1
~φ · ∇ρ1 =

∂α1

∂t
+ ∇ · (α1

~φ) +
α1

ρ1

Dρ1
Dt

= 0 (3.7)

→ ∂α1

∂t
+ ∇ · (α1

~φ) +
α1

ρ1
ψ1

Dp

Dt
+ ∇ · (α1 α2

~φr) = 0 (3.8)

The discretisation methods used for the derivatives are specified in the simulation case
files, as explained in section 3.2.1. The last term in equation (3.8) was added as a correc-

tion to counteract numerical diffusion, where ~φr is defined as

~φr = cα
∑

i

|φi|
| ~Ai|

∇α
|∇α| , (3.9)
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with a parameter cα ≤ 1 and the cell faces ~Ai.
Next, α2 is updated according to α2 = 1 − α1, and ρ according to equation (3.4).
In the following step, the equation of motion, i.e. the Navier-Stokes equation (2.58), is
used to update the velocity field ~u. Afterwards, the pressure field p is updated. For this,
the equation of motion is written in the form

↔

M ~u = −∇p , (3.10)

where the tensor
↔

M is known. The partial tensor of
↔

M that contains only its diagonal

elements is named
↔

A. Since
↔

A is a diagonal matrix, it can easily be inverted. Additionally,

a further quantity ~H describing the non-diagonal elements of
↔

M is introduced as

~H = (
↔

M −
↔

A) ~u . (3.11)

With this, equation (3.10) turns into

↔

A~u− ~H =
↔

M ~u = −∇p ⇔ ~u =
↔

A
-1
~H −

↔

A
-1

∇p
⇔ ∇

(
−

↔

A
-1

∇p
)

=
↔

A
-1
~H −∇ · ~u .

(3.12)

This scalar equation can be used to update the pressure field p.
With this, the density fields ρj can be updated according to equation (3.6), and the
velocity field ~u according to equation (2.58).
The time step size h can be chosen to be constant, but in many cases it is advisable to
use an adjustable time step size to decrease the computation time. For this, a maximum
CFL number Comax is chosen, that shall not be exceeded. Then after every time step, the
current largest CFL number Co is calculated. Then, the time step size h is multiplied by
the factor min(Comax

Co
, 1 + 0.1 Comax

Co
, 1.2).

3.1.1 The Pimple algorithm

OpenFOAM includes three solution algorithms that solve the equations discussed in the
previous section in different ways.
The so-called simple algorithm stands for “semi-implicit method for pressure-linked equa-
tions”. It iterates over the steps discussed in the last section, i.e., it updates α and ρ
according to the continuity equation (3.8,3.4), ~u according to the equation of motion
(2.58) and p according to the pressure correction equation (3.12), followed by correcting
ρ and ~u according to equation (3.6) and equation (2.58), respectively, until the solution
is sufficiently converged or a specified number of iterations is reached. This algorithm
is especially useful for stationary flows since over many iterations it can reach a high
precision. For dynamic flows, in which many time steps need to be carried out, it is
too computationally expensive, meaning that it is too time intensive as compared to the
following algorithm.
The piso algorithm stands for “pressure-implicit with splitting of operators”. It is used
for transient, i.e. time-dependent flows. It also contains a loop, though in contrast to
the simple-loop it only contains the solution of the pressure correction equation and the
subsequent correction of ρ and ~u. To achieve numerical stability, the CFL condition must
be fulfilled, i.e., for a given cell size and velocity field ~u, the time step size may not exceed
a certain limit.
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The pimple algorithm is a combination of the two aforementioned algorithms and contains
both loops described above. Like the piso algorithm, it is suitable for transient flows. The
flow equations are solved iteratively in every time step according to the simple algorithm.
This leads to larger computation times for each time step, though a sufficient number
of iterations may inhibit instabilities, such that larger time steps can be used, even if
the CFL condition is not fulfilled. compressibleInterFoam uses the pimple algorithm,
though for the simulations carried out in the present work, the number of iterations of
the outer loop was set to 1, such that effectively the piso algorithm was used. Thus, the
CFL condition had to be fulfilled.

3.2 CavBubbleFoam

OpenFOAM has been used by Max Koch and Christiane Lechner to model the expansion
and collapse dynamics of a single bubble using a solver based on compressibleInterFoam,
[83–85, 115–117]. It was later also used by Qingyun Zeng [118, 119], who kindly provided
the solver called CavBubbleFoam, which the solvers described in the following are based
on. CavBubbleFoam has recently been used successfully by Wang et al. [120].
This solver was attained via modifications on the base solver compressibleInterFoam.
Firstly, it is assumed that all changes of state of each fluid are adiabatic, and thus all
heat conduction effects are neglected, and consequently disabled in the solver. This as-
sumption is supported by [121].
Furthermore, the fluid compressibility is taken to be constant in compressibleInterFoam.
This is an unacceptable simplification for the application of a strongly oscillating bubble,
and thus the compressibility is updated in every time step in CavBubbleFoam.
A further modification of the solver made by the author is that CavBubbleFoam exports
useful information in a file called info.csv where in every time step, the time t and
three further quantities

∑
i

Vi α2i,
∑
i

Vi α2i pi/
∑
i

Vi α2i, and
∑
i

Vi α2i ρi are written, each

of which is calculated by summing over all computational cells. Each of these quantities
is proportional to the volume V , the average pressure p and the mass m of the bubble.
To model an oscillating bubble more accurately, several corrections were implemented.
Despite the absence of a phase transition model, m varies over time due to numerical
inaccuracies. This is corrected in every time step by multiplying the density field by the
factor m0

m
, such that the bubble mass stays constant over time. In reality, a laser-induced

cavitation bubble loses mass over time due to condensation. This process is accounted
for by a simple correction, in which the pressure field is multiplied by a numerical factor
fp when the bubble shrinks in volume for the first time. Since in the initial time steps,
the smeared interface of the bubble contracts, this correction may be wrongly applied
by the solver there, which is why the condensation correction is only applied if t > 1 µs.
Lastly, numerical errors may lower the phase fraction field α slightly below 1, even in the
liquid bulk far from the main bubble. These small gaseous regions can expand upon the
occurrence of an under-pressure. To counteract this, in every time step α is set to exactly
1 in cells in which it exceeds a specified threshold, α > 1 − αlimit. This has the negative
side effect that cells near a slowly advancing bubble surface, that only change to a value
slightly below α = 1 in every time step, are forcefully kept at α = 1, which effectively
locks the bubble wall in place. To avoid this undesirable effect, αlimit must be well chosen
according to the configuration to be simulated. The inaccuracies of the underlying model
as well as of the numerical implementation are discussed in chapter 13
CavBubbleFoam uses the version OpenFOAM 4.0 [122]. It is available in the supplemen-



60 3 Software

tary material of [22], as well as on GitHub [41].

Figure 3.1: Example of yink and particles for a bubble, initiated at a stand-off d = 1 mm,
jetting towards a rigid wall (bottom). The frame width is 1 mm. The particles were
initiated up to 1 mm from the wall. The ink map is scaled from y = 0 (black) to y =
1.2 mm (light magenta).

Two additional features were implemented into the solver for better data visualisation
during post-processing. The first is a Lagrangian ink map, which is initialised as ~xink(t =
0) = ~x − ~x0, where ~x0 is the initial position of the bubble. It then obeys an advection
equation,

∂(~xink)

∂t
+ ∇ · (~xink ~φ) = 0 . (3.13)

Then for an incompressible fluid, at a time t the ink map ~xink(~x, t) gives the approximate
initial position of the fluid element found at the location ~x. This breaks down for com-
pressible fluids since an expansion or compression of the fluid also changes the value of
~xink, but it can still be used approximately for liquids since they are only weakly com-
pressible.
Additionally, Lagrangian particles that follow the velocity field ~u in a similar way to the
ink map are modelled. This so-called kinematicCloud is a feature of OpenFOAM, the
code of which was simply implemented into CavBubbleFoam. They are implemented as
passive particles that follow the flow field without affecting it and are thus only to be
used for visualisation purposes. They ended up not being used in the present work but
were kept in the published version of the solver for potential future applications.
An example of the Lagrangian ink map and particles is shown in figure 3.1.
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Figure 3.2: Tree view of the file structure of an example simulation case for
CavBubbleFoam.

3.2.1 Case structure

Each simulation is contained in a separate folder. An example of the file structure of a
simulation in its initial state is given in figure 3.2. Example cases are given along with
each solver in their respective GitHub repositories [41–43]. The folder 0.org contains the
initial conditions and the boundary conditions for the considered fields α (alpha.water),
T (unused), ~u (U) and p. p rgh corresponds to the non-gravitational pressure field p−ρ g z.
Since gravity is neglected in the present work, this is equal to the pressure p. While the
simulation is running, at specified times t a folder with a name corresponding to t is
created, containing numerical data for the respective fields.
To apply physical models, relevant physical constants need to be provided. These are given
in the folder constant in the files transportProperties and thermophysicalProperties

and listed in table 3.2:

quantity symbol value for water value for vapour

density ρ0 1000 kg
m3 1 kg

m3

adiabatic exponent γ 7.15 1.33
pressure p0 101325 Pa 10320 Pa

B 303.6 MPa 0

dynamic viscosity ν 10-3 kg
ms

1.84 · 10-5 kg
ms

surface tension coefficient σ 0.07 kg
m2

Table 3.2: List of relevant physical constants.

The pressure factor fp for the mass correction accounting for condensation is also given
in transportProperties.
In the folder system, numerical parameters are specified. For instance, in controlDict

the name of the solver to be used is specified, as well as the initial time step size, the
field output time intervals, and the end time of the simulation. If an automatic time step
adjustment is used, the maximum acceptable Courant number Comax is also to be given
there. In fvSchemes, discretisation schemes to be used for any occurring differentiations
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Figure 3.3: Underlying geometry of an axisymmetric simulation. A thin slice with circular
boundary conditions between the front and back planes is modelled, representing the full
cylindrical domain.

are specified, e.g. the upwind scheme for divergences. fvSolution contains further pa-
rameters of the solution algorithm, like residual error tolerances and maximum iteration
numbers, as well as correction values like αlimit.
To run the simulation, Allrun is executed, which contains commands for a series of
preparation steps and for subsequently carrying out the simulation as a serial computa-
tion. Alternatively, AllrunPar may be executed to carry out the simulation as a parallel
computation. Before the simulation can be run, the geometry of the domain to be sim-
ulated as well as the computational mesh must be defined and turned into the format
used by OpenFOAM. This is further explained in section 3.2.2. The corresponding files
will then be located in a folder named polyMesh, which will be created within the folder
constant. At this point, if parallel computation is to be used, the mesh is decomposed
into chunks, each of which is designated to one processor core. Then, the fields are written
corresponding to the specified initial state of the bubble. Finally, the simulation is carried
out using the solver and the number of cores specified in the simulation files.
foam.foam is an empty file. It may be opened using ParaView to view the simulation
data for post-processing.

3.2.2 Geometry and mesh

Symmetries are very useful for computational mathematics, as the associated redundancy
allows for solving the equations of motion in only a partial domain that contains all the
information characterising the full domain.
Axisymmetric problems are particularly useful, as any radial cross-section of the domain
characterises the entire fields, and thus the dimensionality of the simulation is reduced by
1. Then, only a thin wedge of a cylindrical domain must be explicitly modelled, as shown
in figure 3.3.
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Figure 3.4: Example of a partly unstructured and partly structured mesh made with
Gmsh. The mesh represents two cylindrical fluid domains that are connected via a cylin-
drical channel. The top and bottom ends of the channel are shown using zoomed-in images
in the middle and on the right, respectively.

Gmsh

Gmsh [123] is a tool for creating three-dimensional geometries and computational meshes.
In the present work it was only used for chapter 4, where the version Gmsh 4.4.1 was
used.
Scripts for the creation of a geometry and the corresponding mesh are written in a .geo
file. The mesh is then generated using Gmsh and exported as a .msh file. An example
simulation case using a mesh made by Gmsh is shown in figure 3.4 and given in the
supplementary material of [22] as well as on GitHub [41], along with the corresponding
.geo and .msh files. In that case, two cylindrical fluid domains are connected by a filleted
channel along the axis of symmetry.
To create this mesh using Gmsh, first the front surface of a wedge as shown in figure 3.3
is defined. For this, numerical parameters characterising the geometry and the mesh are
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defined. Next, relevant points are defined using three-dimensional coordinates. Those
points are subsequently used to define straight lines (made of their two endpoints) or
circle segments (defined by their two endpoints and a third point along its path). The
lines are segmented as transfinite curves, giving the boundary conditions for the later-
created mesh. Using these lines, closed curve loops are defined that enclose each relevant
surface of the geometry. Note that the order and direction of the lines must be given such
that the curve loop is continuously followed, with the start and end points coinciding.
Those surfaces can be denoted as transfinite surfaces if they are to be discretised using a
structured mesh. Otherwise, an algorithmically generated unstructured mesh will be used.
Once the entire surface is created, it is extruded by rotation about an axis near the axis
of symmetry. The slight offset of this axis is used such that the left side of the domain
is represented by a finitely sized surface, which is necessary for usage in OpenFOAM.
Finally, the physical boundaries and the simulation domain are defined using the surfaces
and their extrusions, respectively.
The .geo file is then loaded using Gmsh and the meshing process is carried out. The
created mesh can then be exported as a .msh file for usage in OpenFOAM. Note that
Version 2 ASCII must be used for OpenFOAM to be able to interpret the mesh data.
With the command gmshToFoam, the .msh file is converted into OpenFOAM’s internal
mesh format.

BlockMesh

Instead of using an external mesh creation tool, the internal functions blockMesh or
snappyHexMesh may be used, only the former of which will be discussed here.
The mesh is defined in system/blockMeshDict. Note that in some versions of Open-
FOAM, this file is instead found in constant/polyMesh, where other files related to the
computational mesh are also located. Similarly to Gmsh, first useful numerical param-
eters are defined, and subsequently relevant vertices are defined using three coordinates
each. Then, hexahedra called blocks are defined using 8 vertices. Note that a specific
order of the vertices must be used, first following the circumference of one side of the
hexahedral, and then the circumference of its opposite side. The number of cells along
each axis of the hexahedron is defined alongside it, with the option of making the cells
denser on one side or the other. If circle segments are to be used for curved edges, they
are subsequently defined using their two endpoints and a third point along their path.
Finally, physical boundaries of the domain are defined as patches from curve loops around
the circumference of a surface, that consist of 4 vertices each. The mesh is then created
using the command blockMesh.
The mesh may subsequently be refined by splitting cells into two in every direction speci-
fied in system/refineMeshDict. For axisymmetric simulations, it is reasonable to refine
the mesh in the radial and axial directions, and not in the azimuthal direction. To refine
the mesh, the region to be refined is defined using simple shapes like cuboids or cylinders
in system/topoSetDict and applied using the command topoSet. The mesh is then
refined via the command refineMesh.
Figure 3.5 shows an example of a mesh defined using blockMesh and refined four times
using refineMesh.

Mesh decomposition

For parallel computation, the computational domain is decomposed into regions that are
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Figure 3.5: Example of a structured mesh made with blockMesh. A wedge representing
a cylindrical fluid domain was successively refined four times in the region of interest.

assigned to different processor cores. Information of cells near the border between two
regions must be exchanged between cores, which is slower than computation within a single
core. Because of this, it is advisable to choose regions with rather small borders. How the
decomposition is carried out thus affects the effectiveness of the parallel computation. The
decomposition method is specified in system/decomposeParDict. The decomposition
method simple divides the domain into regions of equal length in the directions specified.
For an inhomogeneous cell distribution, this may cause the created regions to contain
vastly different numbers of cells, in which case the parallel computation may not be
significantly faster than its serial counterpart. For this reason, the decomposition method
scotch is used, which is an algorithm that decomposes the computational domain into
regions with similar cell numbers while minimising the number of cells at the border
between regions. A similar alternative is the decomposition method metis, which uses a
different algorithm but achieves a similar result. The decomposition is carried out using
the command decomposePar.

3.2.3 Boundary conditions

For each field in 0.org, boundary conditions must be defined for all boundaries of the
computational domain. Take the example of a cylinder slice-shaped domain presented
in 3.3. For the large front and back faces of the slice, the boundary condition wedge is
used for all fields, which is a circular boundary condition between both faces and in this
case represents the cylindrical symmetry. On the left side, the domain meets the axis. In
OpenFOAM, it is represented by a very thin face imbued with the boundary condition
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Figure 3.6: Initial condition for a bubble. The colour scheme ranges from blue (α = 1,
p = 101325 Pa) to red (α = 0, p = 1.69 GPa). Superimposed is a plot of α as a function
of x along a line through the centre of the bubble.

symmetryPlane. This means that the normal component of any vectorial quantity van-
ishes, ~u · ~n = 0, as well as the normal component of the gradient of any scalar quantity,
∇α · ~n = 0.
Each of the three boundaries at the top, right, and bottom are chosen to represent either
a rigid or an open boundary.
A rigid wall is represented by the boundary condition noSlip for the velocity, which
means that ~u = ~uboundary. For scalar quantities, typically the zeroGradient boundary
condition is used, i.e., ∇α · ~n = 0. Since the entire field p is calculated from p rgh, the
boundary condition used is simply calculated. Reuter and Kaiser [124] showed that
cavitation bubbles created near a wall typically do not make direct contact with the wall.
In the simulation, this is enforced by setting the phase fraction field on the wall to α = 1
by using the boundary condition fixedValue.
Often, the simulated fluid domain is supposed to represent a large fluid domain, in which
case open boundary conditions are used. To avoid wave reflections on those boundaries,
the condition waveTransmissive is used for ~u, which determines the boundary value
according to an advection equation, ∂φn

∂t
+ (~un + c) · (∇ · ~n)φn = 0, with the speed of

sound c =
√

γ
κ

and the normal components of the velocity un and the interpolated ve-
locity at the cell faces φn. The boundary condition zeroGradient is used for α, and
fixedFluxPressure for the pressure field p rgh, which adjusts the pressure gradient ac-
cording to the mass flux through the boundary.

3.2.4 Initial conditions

For a bubble initiated by a sufficiently short laser pulse, one can make the assumption
that the laser energy deposition is much faster than any signification expansion of the
bubble contents. Then, the density field must be approximately unperturbed, and thus
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the initial density of the bubble contents is equal to that of the surrounding liquid. With
this assumption and the parameters given in table 3.2, equation (2.61) gives an initial
pressure of pb = 1.69 GPa. This value is used throughout most of the present work.
First, all fields are initialised as homogeneous, with ~u = 0, pl = 101325 Pa, and α = 1.
Then the script initBubble is executed to insert the bubble in its initial state. The
required information about the initial conditions is given in the file transportProperties
in the folder constant, including its initial radius Rb, position ~xb, and pressure pb. With
finitely sized square computational cells, a smooth curved bubble surface is not possible.
To approximate the bubble surface and to avoid instabilities, the bubble surface is smeared
by setting α in each cell according to the following function:

α =
1 − tanh

(
kb−1
εb

)

2
, kb =

(~x− ~xb
Rb

)2
. (3.14)

To cause further smearing, the following Laplace equation is solved:

α′ − εb,2 ∆α′ = α . (3.15)

The new field α′ then replaces α.
Then, the pressure is calculated as p = pl α + pb (1 − α). The resulting bubble is shown
in figure 3.6.
An alternative way to define the initial state of the simulated fields is by using the built-in
function setFields. The script initBubble was chosen because of its fewer limitations.

3.3 MultiphaseCavBubbleFoam

The version OpenFOAM-v2006 [125] features compressibleMultiphaseInterFoam, which
is largely similar to compressibleInterFoam, with the important difference that it can
be used to model n compressible fluids, instead of just two. Instead of outputting just
one phase fraction field α, it exports one for each fluid, αi. Additionally, the sum of all
phase fraction fields is calculated as αs =

∑
i αi, which is useful to visualise all fluids at

the same time during post-processing.
By making equivalent modifications as were done to compressibleInterFoam to ob-
tain CavBubbleFoam, compressibleMultiphaseInterFoam was used as a basis to create
MultiphaseCavBubbleFoam [42], which can be used to model a single expanding and col-
lapsing bubble in the presence of additional fluids.
The same corrections and features as explained in section 3.2 were implemented. The
fluids are meant to be named “air” for the bubble contents, and “water” and “oil” for two
additional fluids, regardless of whether their properties match those of air, water, and oil.
In the output file info.csv, additionally to the bubble mass

∑
i Vi αair,i ρi, the masses of

the other fluids
∑

i Vi αwater,i ρi and
∑

i Vi αoil,i ρi are written.

3.4 fsiFoam

The FluidStructureInteraction package [126] for the version Foam-Extend-4.0 [127] in-
cludes the solver fsiFoam, which couples a viscous fluid to an elastic solid.
Both the fluid and solid domains are given in separate subfolders in the simulation folder,
called fluid and solid, each of which contains initial and boundary conditions, phys-
ical constants, as well solver parameters and numerical schemes as discussed in section
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3.2.1. The solvers for the fluid and for the solid can be chosen individually. Those
choices are specified in the simulation folder under fluid/constant/fluidProperties

and solid/constant/solidProperties. The FluidStructureInteraction package features
for example icoFluid, which is a solver for a viscous, incompressible fluid.
The FluidStructureInteraction package provides a solver for a linear elastic solid called
unsTotalLagrangianSolid. It solves the linear elasticity equation of motion (2.90). Be-

cause of the last term in equation (2.90), the components of the deformation field ~D are
coupled. Because of this, the equation must be solved iteratively to achieve convergence
towards the correct solution, until either a certain number of iterations is reached or the
mismatch between successive iterations falls below a tolerance value, both of which are
specified in the file solid/constant/solidProperties. The physical properties of the
solid are given through its density ρ, elastic modulus E, and Poisson’s ratio ν, all of which
are given in the file solid/constant/rheologyProperties.
Two-way coupling is used, where viscous and normal stresses in the fluid at the fluid-
structure interface are imposed as boundary conditions to the solid solver, and the posi-
tion and velocity of the solid in its deformed state are imposed as boundary conditions to
the fluid solver. An important distinction from CavBubbleFoam is that a dynamic mesh
is used to conform the fluid domain to the motion of the fluid-structure interface. Other
than the deformation of the solid, the fluid mesh deformation is not tied to any physical
mechanism but can be chosen freely in compliance with the boundary conditions. To keep
the deformation of each cell small, a Laplace equation for the fluid mesh deformation is
solved, ∆ ~D = 0, using the mesh motion solver dynamicMotionSolverFvMesh.
Solving each of the solvers typically results in a mismatch between the deformation
~D and stress

↔

σ fields on both sides of the fluid-structure interface, which is why the
equations describing the fluid and the solid are solved alternatingly. Like before, both
the maximum number of iterations and the tolerance value are specified in the file
fluid/constant/fsiProperties.
Note that in Foam-Extend-4.0, the region of the mesh that is to be refined is defined in
system/cellSetDict and applied using the command cellSet instead of topoSet.

3.5 CavBubbleFsiFoam

To attain a solver capable of modelling an expanding and collapsing bubble, code of
compressibleInterFoam was implemented into icoFluid. This new fluid solver was
named CavBubbleFluid. Additionally, the same corrections as described in section 3.2
were implemented. Since this solver was used to simulate phenomena on very small time
scales, the threshold value αlimit is adjusted to α′

limit = 1− (1−αlimit) · h
3ns

if the time step
size h falls below 3 ns. This effectively weakens the correction to avoid the negative side
effect of the bubble surface being locked in place at a computational cell border.
The solid solver unsTotalLagrangianSolid was lightly modified to output the minimum
and maximum of each stress tensor component over time,

↔

σmin and
↔

σmax. The modified
solid solver was called CavBubbleSolid.
For the implementation of the code of compressibleInterFoam, the fluid-structure in-
teraction solver fsiFoam also needed to be modified, thus creating the overarching solver
CavBubbleFsiFoam. All of these solvers along with some example simulation cases can
be found on GitHub [43].
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4 Microscopic pumping of viscous liquids with single

cavitation bubbles

This work has been published in [22]:

H. Reese, R. Schädel, F. Reuter, and C.-D. Ohl. “Microscopic pumping of viscous liquids
with single cavitation bubbles”. Journal of Fluid Mechanics 944, A17 (2022)

A cavitation bubble expanding and collapsing near a rigid boundary develops a directed
jet flow towards the boundary. In the case of a perforated plate, some of the jet flow
passes through the plate and thus the bubble acts as a pump transporting liquid from
one side of the plate to the opposite side. The transport is rather complex, it is time-
dependent and varies with the geometric parameters of the bubble and the connecting
channel. Therefore, we first model the transport of liquid through a perforated rigid plate
for a large range of parameters and then compare some regimes with experiments using
single laser-induced bubbles. The simulations are based on a volume of fluid solver in
OpenFOAM and account for surface tension, compressibility, and viscosity. The resulting
flux and generated velocity in the channel obtained in the simulations are discussed in
dependence of the channel geometry, liquid viscosity, and stand-off distance of the bubble
to the plate. In general high flow rates are achieved for long cylindrical channels that
have a similar width as the jet produced by the collapsing bubble. At low stand-off dis-
tances combined with thick plates, an annular inflow creates a fast and thin jet, also called
needle jet, which is about a magnitude faster and significantly thinner than the usually
encountered microjet. In contrast, for thin plates and small stand-off distances liquid is
pumped in the opposite direction via a reverse jet.

4.1 Introduction

After Silberrad [1] reported propeller erosion on the ships “Lusitania” and “Mauretania”,
Rayleigh [2] proposed cavitation as the likely cause for the damage. The model named
after him describes a collapsing spherical, empty cavity. He found that such a collapse
creates high pressures in the liquid that may be responsible for the damage observed
on the steel propellers. Improved spherical bubble models for example by Hickling and
Plesset [3] and later on Keller and Miksis [64] include the pressure of non-condensable
gas inside the bubble, liquid viscosity, surface tension, and the energy loss from acoustic
radiation. Boundaries that violate the spherical symmetry of the flow are not accounted
for in these models. Early experimental investigations to understand the origin of erosion
studied the effect of boundaries and geometries that break the spherical symmetry. For
example, Shutler and Mesler [19] studied the dynamics and collapse of a non-spherical
spark-generated bubble near rigid plates, Benjamin and Ellis [20] used an evacuated free
fall device, and Lauterborn and Bolle [128] introduced laser-induced cavitation bubbles to
increase control on location and timing of the bubble. They all observed directed liquid
flows or jets that form during the shrinkage of the bubble. Blake and Gibson [5] developed
a boundary element method to simulate the inviscid flow which helped to understand the
mechanism of jet creation and the movement of the bubble towards the rigid boundary.
Very good agreement between the experimental and the simulated bubble dynamics was
found, see also Best and Kucera [6].

http://doi.org/10.1017/jfm.2022.480
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As we know that an infinitely extended rigid boundary induces a jet towards the bound-
ary, one may expect that a narrow diameter through-hole embedded in the boundary may
not much alter the jetting dynamics. As a result, some of the liquid volume of the jet
may be accelerated through the perforated boundary. This cavitation-based liquid pump
was first suggested by Khoo et al. [129] in a numerical work using the boundary integral
method to simulate a bubble near a plate with a small diameter through-hole. This was
followed by experiments from Lew et al. [130] and later Karri et al. [131], who used a
spark-generated bubble with a radius of several millimetres demonstrating the pumping
mechanism. Dijkink and Ohl [132] down-scaled the technique for microfluidic application
using considerably smaller, laser-generated bubbles.
Karri et al. [133] revealed that in the presence of a gaseous domain on the opposite side of
the perforated plate, the bubble dynamics result in high-speed liquid jetting into the gas.
The jet fragments into a spray of many smaller droplets. Initially, they used a lithotripter
to create a bubble with Rmax ≈ 250 µm, and later a spark discharge for a bubble with
Rmax ≈ 6 mm [134]. Further investigations of such jets and sprays followed by Gonzalez-
Avila et al. [135] and Kannan et al. [136] using a spark-generated bubble very close to a
plate with a hole, with Rmax = 1 mm and 8 mm, respectively.
Wang et al. [137] experimentally studied the dynamics of a spark-generated cavitation
bubble with length scales of millimetres near a thin perforated plate. Numerical investi-
gations followed by Dawoodian et al. [138] using the boundary element method to simulate
a bubble in a tube near a thin plate with a hole. Continuous pumping of the liquid has
been demonstrated by Cao et al. [139] with periodically created cavitation bubbles just
above a channel of radius rc = 2.5 µm. The particular shape of the plate has an effect
on the bubble and therefore on the pumping as demonstrated by Cui et al. [140], who
conducted cavitation experiments with relatively large bubbles on top of a curved perfo-
rated plate. The experiments were later simulated by Moloudi et al. [141] based on the
boundary element method and for certain parameters revealed a pronounced jet in the
opposite direction. However, the simulations stopped once the jet pierced the bubble and
the resulting fluid transport past that instant was not obtained.
While there is strong experimental support of the pumping effect of bubbles near through-
holes, there is a considerable lack in numerical simulations that include the jetting dy-
namics through the hole and the following bubble dynamics, and that study the influence
of various geometrical parameters of the hole as well as viscosity. These aspects are
addressed in the present work, which also accounts for the surface tension and the com-
pressibility of the liquid and the gas.
We start with a description of the governing flow equations and continue with the imple-
mentation in a volume of fluid (VoF) solver in section 4.3. Selected simulation results are
compared to experiments. Therefore, we describe a suitable experimental setup in section
4.4 that can reveal not only the bubble dynamics but also the liquid transport. The re-
sults section starts with a detailed description of the pumping mechanism (section 4.5.1).
Then, the influence of various parameters on the pumping effectiveness is revealed and
discussed in section 4.5.2. We then take a closer look at two particular flow phenomena
in section 4.6, namely the so-called needle jet and the reverse jet using and comparing
simulations with experiments, before we discuss and summarise the results.
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4.2 Governing equations

The simulation model describes two immiscible, isothermal, compressible, and viscous
fluids, i.e. water and a non-condensable gas and accounts for their surface tension. Mass
and heat transfer across the fluid-fluid interface are neglected. The initial process of
cavitation nucleation, e.g. from a laser or a spark discharge, is ignored. Instead, we start
the fluid mechanics model with a small gas bubble at a high pressure at time t = 0.
The fluids satisfy the continuity equation (4.1) and the law of conservation of momentum
(4.2) of Newtonian fluids,

∂ρ

∂t
+ ∇ · (ρ ~u) = 0 , (4.1)

ρ
D~u

Dt
= ρ ~f −∇p+ µ (∆~u+

1

3
∇(∇ · ~u)) . (4.2)

Here the physical quantities are density ρ, time t, velocity ~u, volume acceleration ~f (e.g.
gravity), and the dynamic viscosity µ. A liquid viscosity of µ = 1 mPa s and a gas
viscosity of µ = 0.0184 mPa s is used, as well as a surface tension of σ = 70 mN/m. For
both components, the Tait equation is used as an equation of state,

p = (p0 +B)
( ρ
ρ0

)γ
− B , (4.3)

where the constants are p0 = 101325 Pa, B = 303.6 MPa, ρ0 = 998.21 kg/m3, and γ = 7.15
for the liquid (water) and p0 = 10320 Pa, B = 0, ρ0 = 1 kg/m3, and γ = 1.33 for the gas.
With B = 0, the equation of state (4.3) describes the adiabatic change of state of an ideal
gas.
The Rayleigh collapse time is the idealised time it takes for an empty cavity under the
action of a constant external pressure to shrink to zero size. Lord Rayleigh solved the
energy equation for an inviscid, incompressible fluid initially at rest once a portion of the
liquid was instantaneously removed [2]. He obtained an equation for the bubble radius as
a function of time that could be integrated to obtain the Rayleigh collapse time

τ ≈ 0.91468Rmax

√
ρ

p0
. (4.4)

This Rayleigh collapse time is about τ = 46 µs for typical bubbles of Rmax = 0.5 mm.
The spherical bubble dynamics obtained from the VoF solver can be compared to the
Keller-Miksis model [64],
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)
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3
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(
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)
+

4νṘ

R
+

2σ

ρR
+
p0 − pg
ρ

(
1 +

Ṙ

c

)
− Rṗg

ρc
= 0 , (4.5)

which is a solution to the Navier-Stokes equation and accounts for compressibility in the
limit of linear acoustic waves.

4.3 Numerical implementation

4.3.1 Numerical solver

For the simulations a modified version of the VoF solver compressibleInterFoam from
the open-source framework OpenFOAM [125] is used. It models two compressible, non-
isothermal, immiscible fluids using a phase-fraction based interface capturing scheme.
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The solutions are obtained in 250,000 to 370,000 computational cells, each of which is
assigned its respective flow equations. The solver solves for the five fields pressure p,
non-gravitational pressure prgh = p − ρ ~g · ~r, velocity ~u, temperature T , and phase frac-
tion α, which is a non-dimensional scalar field ranging between 0 and 1 that specifies the
relative volume amount of a cell occupied by one of the fluids. In this case, α = 1 means
that a cell is fully occupied by water and α = 0 means it is fully occupied by gas. Since
gravitational effects are neglected, ~g is chosen to be 0, and thus prgh = p.
The solver is derived from CavBubbleFoam by Zeng et al. [118], which itself was a modifica-
tion of the original compressibleInterFoam. CavBubbleFoam updates the compressibility
field in every time step and neglects non-isothermal effects by removing the temperature
equation. This simplification has been used successfully for cavitation bubble simulations
by Zeng et al. [118].
In each time step the equations for α, ρ, ~u, and p are solved. In the following, the notation
α1 := α, α2 := 1−α is used. Since phase transitions are ignored, each component satisfies
the continuity equation separately (4.1), i.e.,

∂(αjρj)

∂t
+ ∇ · (αj ρj ~φ) = 0 , (4.6)

where ~φ denotes the interpolation of ~u at the cell faces since ~u is only defined at the centre
of each cell, and j = 1, 2 represents the two fluid components. By using the definition of
the compressibility, dρj = ψj dp, equation (4.6) yields

∂α1

∂t
+ ∇ · (α1

~φ) +
α1

ρ1
ψ1

Dp

Dt
+ ∇ · (α1 α2

~φr) = 0 . (4.7)

The last term on the left-hand side was added to counteract the smearing of the fluid-fluid
interface due to numerical diffusion [115]. The vector ~φr is defined as

~φr = cα
∑

i

|φi|
| ~Ai|

∇α1,i

|∇α1,i|
, (4.8)

with the parameter cα ≤ 1 and the cell face vector ~Ai. Solving equation (4.7) yields an
updated α1 for the new time t. The partial derivatives are discretised using low-order
discretisation schemes like the Euler scheme for temporal and the upwind scheme for
spatial derivatives. Numerical errors of this solution may result in α1 being slightly below
1 within the bulk of the liquid. Once such a cell is exposed to a low pressure we wrongly
observe the creation of new gas regions. We overcome this problem by a correction of
αi, i.e. cells with a value of αi > 0.9999 are clamped to αi = 1. This threshold value
was chosen to remove those wrongly created gas regions without significantly affecting
the main bubble dynamics.
Next the Navier-Stokes equation (4.2) is solved to update the velocity field ~u. Since

gravitational effects are neglected, the volume force term disappears (~f = 0). The pressure
field is computed iteratively, using the pressure-implicit method with splitting of operators
(PISO) scheme. For that, the Navier-Stokes equation (4.2) is written as

M ~u = −∇p , (4.9)

where M is a known tensor. Now the diagonal elements of M are defined as A and another
quantity ~H = (M − A) ~u is defined. Then, equation (4.9) can be written as

∇(−A-1 ∇p) = A-1 ~H −∇ · ~u . (4.10)
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Figure 4.1: Simulation geometry (not to scale) of a single bubble in the vicinity of a
plate with thickness l including bubble radius R and stand-off distance d. The plate is
perforated by a channel of radius rc.

This is solved to update the pressure field p and from there the velocity and density
fields are corrected. Discretisation errors cause the bubble mass, which is calculated
from m =

∑cells
i α2,i ρ2,i Vi, to fluctuate. To counteract this, the density is corrected

as ρ′2,i = m0

m
ρ2,i to keep the bubble mass constant, m0 being the initial bubble mass

calculated at t = 0.
The updated ~u and ρ are used to correct p, and are then corrected once again. Finally,
the density field ρ is updated using ρ = α1 ρ1 + α2 ρ2, and the new compressibility fields
ψ1 and ψ2 are obtained from

ψj =
1

γj(p+Bj)
. (4.11)

4.3.2 Geometry

The geometry of interest is axisymmetric. It consists of two cylindrical reservoirs (each
with a height of 5 mm and a radius of 5 mm) connected via a thin channel with a common
axis of symmetry, as shown in figure 4.1. Both orifices of the channel are filleted (with a
radius of curvature of 25 µm) to avoid numerical instabilities from sharp edges. Because of
the symmetry, only half of the geometry shown in figure 4.1 is calculated in the simulation.
The flow equations are solved in the x-y-plane, where the y-axis is the rotational axis of the
system. This results in an effectively two-dimensional simulation, which greatly reduces
the cost of computation.
Within the OpenFOAM framework, the geometry is reduced to a thin wedge that is
thinnest at the y-axis and is only divided into cells along the x- and y- directions.
The geometry is discretised into a square mesh as seen in figure 4.2, which close to the
location of the bubble is resolved with a cell width of 2.5 µm. Outside of this region of
interest, an unstructured mesh is used, where the cell size increases with the distance
from the bubble to approximately 100 µm width at the outer boundary of the geometry.

4.3.3 Initial conditions

The simulations are started with a small spherical bubble seed on the axis of symmetry
with 50 µm radius. The bubble interior is assigned α = 0 while the bubble exterior is
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Figure 4.2: Computational mesh of the channel geometry with rc = 50 µm and l = 1 mm.
An unstructured mesh is used far from the bubble and at the filleted channel orifices.
Close to the bubble and in the channel a structured mesh is used.

assigned α = 1. The field α is then smoothed by solving the Poisson equation,

α′ − 4 · 10-11 ∆α′ = α , (4.12)

where α′ denotes the replacement of the initial field α. This smoothing procedure reduces
Rayleigh-Taylor instabilities during the early stage of rapid bubble expansion. The pa-
rameter is chosen to provide minimum smoothing but a numerically stable bubble surface
during the early expansion phase.
The pressure field is set as p = α p0 + (1−α) pg with the atmospheric pressure p0 and the
initial gas pressure pg. pg is chosen such that the density of the gas is equal to the liquid
density, ρg = ρl. Using this and the Tait equation (4.3) for the gas, a gas pressure of
pg = 16.88 kBar is obtained. This is based on the assumption that for a laser-generated
bubble, the energy deposition by the laser pulse is much faster than the bubble expansion,
so that the liquid seed vapourises almost instantaneously before the bubble seed expands
significantly. Initially, the velocity field is zero in the entire fluid domain.
The simulations were carried out as parallel processes using 4 CPU cores of an AMD
Ryzen Threadripper 1900X at 3.8 GHz each with 64 GB of RAM. The time needed to
run a simulation is roughly proportional to the square of the number of cells computed.
For this work, the time taken ranged between 21 and 51 hours to simulate 200 µs of the
bubble dynamics after bubble initiation.

4.3.4 Boundary conditions

In the following, the directions x, y, and z in the simulation results are considered syn-
onymous with right, up, and front, respectively. The leftmost boundary is imposed with
the symmetryPlane boundary condition for all fields. Similarly, the boundary condition
wedge is used for the front and back planes of the geometry. The fluid boundaries of
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Figure 4.3: Schematic experimental setup (not to scale); left: optical path for bubble
generation as well as Schlieren imaging through the glass tank; right: cuvette with a per-
forated plate in side view submerged in the glass tank and position of bubble generation.

the two large fluid regions located at the top, bottom, and right in figure 4.2 represent
an infinitely large fluid domain, therefore their boundary conditions are p = 101325 Pa,
∇ui = 0, and ∇α = 0. The remaining boundary is the one separating the two fluid
domains, which also bounds the channel that connects them. This is a rigid wall with
a no-slip boundary condition, ~u = 0 and ∇p = 0. There we also impose a boundary
condition of α = 1. This can be justified to some extent by the experiments of Reuter
and Kaiser [124], who found that a bubble collapsing very close to a wall in water does
not touch the wall but is separated from it via a thin liquid film during its first collapse.
Their experiments covered the stand-off distances 0.47 < γ < 1.07, γ = d

Rmax
here de-

noting the dimensionless stand-off parameter with the maximum bubble radius Rmax and
the distance between the bubble centre and the wall d. In the present work, we assume
this separation of the gas and the wall for the full range of γ-values studied. Whether
this assumption holds true in an experimental setting may depend on the wettability and
structure of the surface. If in such a setting the bubble came into contact with the wall,
the contact angle would be expected to play a minor role in the bubble dynamics. Thus,
we would still expect the formation of the main jet to cause the pumping effect.

4.4 Experimental setup

The experiments utilise a laser-induced bubble in front of a perforated boundary. A
schematic representation of the setup is shown in figure 4.3. It consists of a glass tank
with dimensions 55 mm× 55 mm× 65 mm filled with deionised water. A microscope ob-
jective (Mitutoyo 50× Plan Apochromat Objective, 436-656 nm, 0.55 NA, 13 mm WD) is
sealed water-tight and incorporated into the bottom of the tank. This objective focuses
an Nd:YAG laser pulse (Litron Nano SG-100-2, λ = 532 nm, FWHM = 6 ns, pulse energy
≈ 5 mJ) into the water to seed the bubble. A smaller L-shaped cuvette that accommodates
a plate with a micro-perforation is submerged into the glass tank connected to a motorised
three-axis stage. The plate is made out of a flexible polymeric material used for printed
circuit boards (supplier: PCBWay). It has dimensions of 16 mm× 12 mm× 170 µm. The
perforation is a cylindrical drilled hole of 195 µm in diameter (measured with a light mi-
croscope). The bubble is produced axially in front of the perforation which is confirmed
by a high-speed camera with a perpendicular view of the plate surface (Photron FAST-
CAM MINI AX200). To avoid the generation of spurious bubbles on the plate, which can
happen as the laser energy is not entirely absorbed in the plasma, the laser is focused in
parallel to the plate. This implies a partial blocking of the focusing cone that is depen-
dent on the stand-off distance. To assure constant maximum bubble size over all stand-off
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Figure 4.4: Simulations of a cavitation bubble close to a rigid boundary with stand-off
parameter γ = 1.05, comparison of the flow dynamics for a boundary without (top) and
with a channel below the bubble (bottom); The left side of each frame shows the bubble
gas in red and water in blue, the right side shows the velocity field in the liquid.

distances, half of the laser beam is blocked at the input aperture side of the objective.
To visualise the pumping effect of the bubble, the L-shaped cuvette is filled with an
aqueous 3 wt% NaCl solution which results in optical Schlieren at the mixing interface.
Schlieren high-speed imaging is implemented to visualise the transport of two nearly iden-
tical liquids. For that the water tank is illuminated by a collimated pulsed laser beam
(Ekspla FemtoLux 3, λ = 515 nm, 1 MHz) parallel to the plate. After passing the tank,
the light gets focused by an objective where the undeflected part is blocked by a knife
edge and the deflected light is directed into a second high-speed camera (Shimadzu Hyper
Vision HPV-X2, camera 1 in figure 4.3, operated at 500 000 frames per second, shutter
opening time 1 µs, effective exposure time 0.3 ps, 7.8 µm/pixel). The imaging is also sen-
sitive to density changes in the liquid from shock waves which are emitted during the
creation and the collapse of the bubble and reflected at the boundaries.

4.5 Results

We start by demonstrating the effect of the presence of the channel in the rigid boundary
on the bubble dynamics via simulations.

4.5.1 Jetting through the perforated boundary

Figure 4.4 compares the axisymmetric fluid dynamics of a bubble expanding and collaps-
ing close to a rigid wall with an identical bubble close to a perforated wall. The bubble is
seeded at a stand-off distance of 500 µm and reaches a maximum radius of around 475 µm.
This gives a dimensionless stand-off distance of γ = 1.05. The cylindrical channel has
a radius of 50 µm and a length of 1 mm, which is the same as the thickness of the wall
separating the two fluid domains. In both cases the bubble expands and then collapses,
creating a jet towards the wall. As a result, the bubble re-expands as a torus close to the
wall.
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Figure 4.5: a) velocity uy at channel exit (near the solid surface facing away from the
bubble) and b) the liquid volume V (t) transported through the channel, each overlaid
with the bubble radius R to show the correlation between the bubble dynamics and the
flow through the channel

There are small but noticeable differences between the bubble dynamics in the two ge-
ometries: In the case with the hole, during the shrinking phase a small indentation on the
lower side of the bubble develops, which is not present in the continuous wall case. This
feature is caused by the axial inflow from the opposing fluid domain through the channel
and onto the lower bubble wall. The flow deforming the bubble is driven by the pressure
difference during the shrinking phase of the bubble, i.e. the low pressure in the bubble
and the atmospheric pressure far from the bubble below the boundary.
Overall, both bubbles form a jet starting from the wall distant pole of the bubble. After
this jet has pierced the lower bubble wall, in the continuous wall case we find a stagnation
point at the wall on the axis of symmetry. Further outside a radially spreading flow along
the continuous wall is formed. In contrast, in the perforated wall case the stagnation
point flow is lost and the liquid flows through the hole in the boundary. Viscous stresses
oppose the flow through the boundary and some of the jet flow still feeds into the radially
spreading flow along the wall. Overall, we find for these particular chosen parameters a
rather small effect of the perforation on the familiar bubble shape or timing of the bub-
ble dynamics during expansion and collapse, albeit there is a fluid transport occurring
through the plate.
To quantify this pumping effect of the bubble, the liquid flow velocity uy through the
channel outlet, i.e. on the plate surface facing away from the bubble, is measured (just
above the rounded edge, see figure 4.1) and averaged over the channel cross-section as
uy = 1

πr2c

∫ rc
0
α1 ~uy(r)·~ey ·2 π r dr. The result is plotted in figure 4.5 a). Here, a positive sign

of uy indicates a flow from the bottom water reservoir to the top, and a negative sign a flow
in the downward direction. The red line in figure 4.5 depicts the volume equivalent bubble
radius R to help the reader to link the bubble dynamics to the channel flow. Figure 4.5 a)
shows that during bubble expansion, the liquid is initially accelerated downwards to about
uy = −10 m/s before the velocity reduces to approximately 0 at the time of maximum
bubble expansion (t = 50 µs). Then, rather symmetrically, the liquid is transported in
the opposite direction and slowly accelerated during bubble shrinkage. Just prior to the
collapse a rapid acceleration sets in, reverting the flow direction and accelerating it to
about uy = −18 m/s at t = 105 µs. At this time the jet has developed and pushes the
liquid through the channel. Examining the bubble dynamics between t = 100 µs and
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t = 200 µs, we find a second oscillation cycle of the bubble with a reduced equivalent
bubble radius. We want to remind the reader that the bubble is not spherical but has
now transformed into a toroidal shape. While the fluid velocity uy is rather symmetrical
for most of the expansion and shrinkage of the first bubble oscillation, i.e. downward
during bubble expansion and upward during shrinkage, we see a different feature during
the second oscillation cycle. Here the velocity uy remains negative for most of the second
oscillation cycle, and only shortly before the second collapse the flow reverses. As a
consequence, we can expect that a net downward flow occurs during this part of the
bubble oscillation. This expectation is confirmed in figure 4.5 b). It plots the liquid
volume V transported through the channel as a function of time, which is calculated
as V (t) = π r2c

∫ t
0
uy(t

′) dt′. Again, a negative sign stands for a net liquid transport
downwards through the channel. Figure 4.5 b) shows a roughly symmetrical flow during
the first oscillation period as discussed above, pumping liquid downwards during bubble
expansion and upwards during bubble shrinkage. The cumulative volume flow V remains
negative for this entire oscillation cycle. Upon bubble collapse, the developed jet creates
a strong downward flow through the channel, which lasts until the maximum expansion
of the second bubble oscillation cycle and reaches up to 7 nl at 170 µs, before the flow
is reversed and the net amount of pumped liquid is slightly reduced. It is instructive to
compare the pumped liquid with the maximum bubble volume, which is about 500 nl, and
with the volume of the channel, which is approximately 8 nl.

4.5.2 Variation of parameters

The present fluid transport problem is rich in the choice of parameters, e.g. the geometry
of the channel (length l, radius rc, shape), the stand-off distance d of the bubble and the
properties of the liquid to name a few. In this section, we vary some of these parameters
individually and document their effect on the pumped liquid through the channel. The
flow behaviour in the channel in tandem with the evolution of the bubble radiusR observed
in figure 4.5 happens in a similar fashion in all the following cases studied, meaning
that the first bubble collapse is accompanied by the formation of a microjet towards the
perforated plate and a sudden acceleration to a high magnitude negative flow velocity uy
in the channel.

Variation of the channel length

The three channel lengths l = 200 µm (= 0.42Rmax), l = 400 µm, and l = 1000 µm (=
2.11Rmax) are studied. The main difference caused by this change is the viscous flow
resistance of the channel flow. As a result, for shorter channels we observe higher flow
velocities uy (see figure 4.6 a) at t = 110 µs), yet the duration of the flow driven by the
liquid jet also lasts shorter. This is because after the first collapse, the inertia of the
liquid jet transports gaseous fragments of the bubble along and through the channel.
Once the bubble content reaches the lower end of the channel (where the liquid flow is
measured), the liquid flow rate abruptly diminishes, which happens at about t = 110 µs for
l = 200 µm and t = 120 µs for l = 400 µm. Also, for shorter channels a stronger backflow
towards the collapsing bubble is created (around t = 150 µs), which affects and reduces
the net flow further. This is due to the second bubble collapse when the channel begins
to fill with liquid from the bottom again. During the third expansion (starting at around
t = 180 µs) the liquid is pushed downwards through the channel again. For l = 200 µm,
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Figure 4.6: Study of the liquid transport as a function of the length of the channel l for
rc = 112.5 µm, d = 500 µm, Rmax = 475 µm; a) velocity uy(t) at channel exit,
b) liquid volume V (t) transported through the channel, and c) transported liquid volume
normalised by the channel volume Vn(t)

similar amounts of liquid are being moved up and down through the channel, respectively,
creating a roughly periodic pattern in the volume transport curve V (t) in figure 4.6 b). The
bubble dynamics for short channels are discussed in greater detail during the comparison
with the experiments, see section 4.6.2. Since the transported liquid volume V increases
with increasing channel length l, one may suspect that the transported volume scales with
the channel volume (∼ l). Therefore, we plotted the transported liquid volume normalised
by the channel volume, Vn(t), in figure 4.6 c). This reveals that V (t) does not scale with
the channel length l and relatively smaller liquid volumes are pumped for longer channels.

Variation of the channel radius

Next the radius of the channel rc is varied between 25 µm (or 0.05Rmax) and 200 µm (or
0.42Rmax). Figure 4.7 a) shows that for thinner channels the liquid jet causes a higher
velocity uy, yet for a shorter duration compared to the wider channels (see 100 µs ≤ t ≤
150 µs). Similar to section 5.2.1, the faster decay in fluid velocity can be attributed to the
stronger viscous drag in the thinner channels. For wider channels, an increasingly larger
part of the bubble moves into the channel after collapse. In the case of rc = 200 µm,
the bubble collapses downwards after the second expansion, entirely entering the channel.
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Figure 4.7: Study of the liquid transport as a function of the radius of the channel rc for
l = 1000 µm, d = 500 µm, Rmax = 475 µm; a) velocity uy(t) at channel exit,
b) liquid volume V (t) transported through the channel, and c) transported liquid volume
normalised by the channel volume Vn(t)

This stands in contrast to the previous cases, where the second bubble collapse is directed
towards the axis of symmetry. The larger cross sections allow a much larger liquid flux to
pass through them compared to thinner channels (see figure 4.7 b). If the flow velocity uy
is almost unaffected by the channel width, which it is at least until the bubble collapse, we
expect the transported volume V to scale with the channel volume (∼ r2c). This is indeed
supported by figure 4.7 c), where the normalised transported liquid volume Vn during the
first bubble oscillation is approximately the same for each rc. Yet, after jetting Vn is
affected by the channel radius rc and reaches the largest magnitude value for rc = 50 µm.

Variation of the channel shape

The channel shape is varied by fixing the radius at the upper end of the channel at
rc,upper = 50 µm and changing the radius at the lower end to rc,lower = 25 µm to obtain a
narrowing channel, and rc,lower = 100 µm for a widening channel. The ends are connected
via a straight line, creating channels of a truncated cone geometry. Figure 4.8 d) schemat-
ically depicts these three channel shapes. In the narrowing channel, a higher absolute
pumping velocity is reached as seen in figure 4.8 a). For the widening channel, a higher
amount of fluid is transported through them (while the channel volume also increases) as
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Figure 4.8: Study of the liquid transport as a function of the shape of the channel for
rc,upper = 50 µm, l = 1000 µm, d = 500 µm, Rmax = 475 µm; a) velocity uy(t) at channel
exit, b) liquid volume V (t) transported through the channel, c) transported liquid volume
normalised by the channel volume Vn(t), and d) schematic of channel shapes used

seen in figure 4.8 b), but there is also a stronger backflow that acts against the net amount
of fluid pumped downwards through the channel, see figure 4.8 b) at 150 µs ≤ t ≤ 200 µs.
Plotting the transported liquid volume divided by the respective channel volumes, Vn,
reveals that the cylindrical channel transports the largest absolute volume over the first
200 µs (see figure 4.8 c)).

Variation of the liquid viscosity

Next, we increase the viscosity of the liquid from that of water (µ = 1 mPa s) by 1 and
2 orders of magnitude, respectively, while keeping the gas viscosity constant. Figure
4.9 summarises the results and reveals the expected drastic decrease of absolute pumping
velocity uy and pumped volume V , as well as a stronger damping of the flow in the channel.
Interestingly, the backflow towards the bubble is strongly reduced for µ = 100 mPa s. This
can be contributed to the strong viscous damping of the microjet. Unlike in the cases with
lower viscosity, the jet drags no bubble gas into the channel that would create a backflow
during the collapse later. The viscous damping also causes the bubble to have a 37 % larger
collapse time during its first oscillation and reach a 42 % smaller rebound volume upon
its second expansion than in the case of µ = 1 mPa s. In the appendix (section 4.8.3),
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Figure 4.9: Study of the liquid transport as a function of the liquid viscosity µ for rc =
50 µm, l = 1000 µm, d = 500 µm, Rmax = 475 µm; a) velocity uy(t) at channel exit and b)
liquid volume V (t) transported through the channel

we estimate the total pumped volume as a function of the viscosity (equation (4.16))
assuming a dissipating Hagen-Poiseuille flow. From that consideration, neglecting the
effect of viscosity on the jetting, the pumped volume can be considered to be proportional
to r4c and µ-1.

Variation of the stand-off distance

Increasing the stand-off distance of the bubble seed from d = −50 µm (γ = −0.11) up to
d = 750 µm (γ = 1.58) reveals a general trend that the velocity uy and the amount of liq-
uid pumped V decreases with the distance (see figure 4.10 a)). For the smallest distances
d, considerably higher velocities of up to uy = −55 m/s at d = −50 µm are achieved,
yet these distances also result in a stronger backflow during the second bubble oscillation
period. This can be partly attributed to the bubble expanding into the channel after jet
formation, pushing liquid down through it and dragging liquid up again during the sub-
sequent collapse. Overall, the highest pumped volume through the channel V is achieved
for the smallest distances d (see figure 4.10 b)). For large distances, i.e. d = 750 µm, a net
pumped volume of nearly zero is observed just prior to the first bubble collapse. This be-
haviour is expected for an inviscid, spherically oscillating bubble that does not translate,
i.e. one that can only be fulfilled for large stand-off distances. Interestingly, the decrease
in peak velocity and pumped volume up to the second collapse is not a monotonic func-
tion of d but contains a local maximum around d = 500 µm (γ = 1.05, see figure 4.10 a)
at t = 105 µs and 4.10 b) at t = 170 µs). The bubble dynamics change significantly as a
function of the stand-off distance d. As the bubble is generated closer to the boundary, it
becomes more deformed from a spherical shape until it obtains an almost hemispherical
shape at maximum expansion with a small protrusion reaching into the perforation in
the boundary. In the case of d = 100 µm, no pronounced jetting is visible, instead an
annular flow develops in the late stage of an almost hemispherical collapse. This flow
competes with the later-created microjet from above and mitigates jetting. For d = 0,
the bubble develops a considerably thinner jet that due to its higher speed pulls along gas
from the bubble into and through the channel during bubble re-expansion. This change
in jetting behaviour is discussed in greater detail in the following section. Figure 4.10 c)
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Figure 4.10: Study of the liquid transport as a function of the stand-off distance d for
rc = 50 µm, l = 1000 µm, Rmax = 475 µm; a) velocity uy(t) at channel exit, b) liquid
volume V (t) transported through the channel, and c) velocity uy(t) at channel exit after
jetting for d = −50 ... 100 µm

shows that for d < 0, the velocity peak is reached at a later time, which can be linked to
the bubble expanding further into the channel. There, the gas phase collapses only a few
microseconds after the collapse of the main bubble (see figure 4.11 at 103.0 µs).

4.6 Selected pumping regimes

After studying the pumping effect and the influence of parameters thereon in the preceding
sections, we now examine the effect of the channel on the bubble dynamics for two distinct
regimes in greater detail.

4.6.1 Needle jet regime: small stand-off distance and long channel

Figure 4.4 reveals that for γ ≈ 1 the shape of the bubble near a plane, unperforated
boundary is rather similar to the shape observed near one which is perforated with a
long and slender hole (l = 1 mm, rc = 50 µm). When the bubble is generated very close
to an unperforated boundary, the jetting behaviour of the bubble transitions from the
commonly known rather wide jets to a considerably thinner and faster jet, termed fast,
thin jet [83] or needle jet [86] that can reach a velocity with an order of magnitude of
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Figure 4.11: Simulation of cavitation bubble dynamics in the perforation of a rigid plate
in the plane of the upper wall of the plate (γ = 0); The left side of each frame shows the
bubble gas in red and water in blue, the right side shows the velocity field in the liquid.

1000 m/s as revealed in simulations and experiments. We want to address the question
of whether this needle jet may also occur at a perforated boundary. With a hole in the
boundary, the bubble can be initiated even closer and even within the channel, offering the
possibility to probe negative stand-off distances. Figure 4.11 shows a bubble initiated on
the boundary (γ = 0), where the bubble penetrates into the perforation during expansion.
There, the upper part of the bubble obtains an approximately hemispherical shape and
the lower takes on that of a cylinder filling the cross-section of the hole. As it starts to
collapse, a circular kink forms at the upper part of the bubble (t = 100.0 µs) As the bubble
shrinks, the kink remains roughly at the same distance from the wall, yet it converges in
diameter (see t = 102.0 µs and t = 102.2 µs in figure 4.11). This has been connected with
a wall parallel radially convergent inflow focusing on the axis of symmetry [83]. Upon
impact, this focused flow is responsible for the acceleration of liquid in the shape of a
needle to high speeds along the axis of symmetry (see t = 102.3 µs, t = 102.5 µs, and
t = 103.0 µs in figure 4.11). Please note that, besides the prominent downward needle-
like jet flow, in the perforation also a flow upwards is created that competes against the
spherically convergent main flow. The very thin downwards jet pierces the bubble with a
velocity of 367 m/s, whereas the commonly known jet flow of a bubble at larger stand-off
distances does not exceed about 100 m/s. It is important to note that the velocity of the
fast jet is strongly dependent on the grid size as reported by Lechner et al. [83] and thus
may here be underestimated. The present observation shown in figure 4.11 resembles the
bubble dynamics reported by Lechner et al. [83] and confirms that a needle jet can occur
in the presence of a perforated boundary, too.
The emergence of the needle jet phenomenon with decreasing γ is easily revealed by
plotting the maximum of the absolute velocity of the entire liquid domain, uj and the
radius of the jet rj in figure 4.12 a) and 4.12 b). Following the curves from a large γ-values
to smaller γ in figure 4.12 a), the velocity of the liquid jet uj decreases slowly at first from
about 100 m/s and then sharply rises to values of several 100 m/s, showing the lowest
value at γ = 0.3.
The radius of the jet rj is defined as the radius of the widest column along the axis of
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Figure 4.12: Study of the transition between jet and needle jet as a function of the
normalised stand-off parameter γ; a) jet velocity uj(γ), b) jet radius rj(γ), c) maximum
flow velocity at the channel exit uy(γ)

symmetry that is entirely filled with liquid after the jet has pierced the bubble (see figure
4.12 b)). This jet radius rj reveals a maximum at γ = 0.5 but sharply drops to a very low
value for γ . 0.2. Here, the jet becomes so thin that it is not fully resolved in the present
simulations and splits into small droplets without fully penetrating the bubble. Then, a
jet radius of rj = 0 is plotted in figure 4.12 b).
The velocity produced at the lower end of the channel uy (see figure 4.12 c)) shows a
pronounced rise for γ < 0.5. However, it is not as abrupt as during the formation of the
needle jet. Judging from these results, the needle jet occurs at γ . 0.2, while the standard
jet occurs at γ & 0.5, with a transition region between γ = 0.2 and γ = 0.5, where no
needle jet occurs, but the jetting behaviour changes.

4.6.2 Reverse jet regime: small stand-off distance and short channel

Next we investigate the bubble dynamics close to a short channel (l = 170 µm). We chose
this regime because in the experiments, both sides of the plate can be captured by a single
camera in the case of a thin plate. A second motivation was the report of a jet directed
away from the wall by Cui et al. [140] that formed only near a thin perforated plate
which is also absent for unperforated walls. In this regime, we provide two comparisons
between the simulated flow and the experiment in figure 4.13 with a stand-off distance of
d = 108 µm and figure 4.14 with d = 202 µm. In these figures, on the left the simulated
bubble and on the right the experiment is depicted. We present not only the shape but
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Figure 4.13: Comparison between simulation (left) and experiment (right) of a cavitation
bubble of maximum radius Rmax ≈ 460 µm at distance d = 108 µm from a perforated wall,
l = 170 µm, rc = 97.5 µm, bubble is shown in red, ink map of the liquid
above the channel in black, liquid below the channel in white

Figure 4.14: Comparison between simulation (left) and experiment (right) of a cavitation
bubble of maximum radius Rmax ≈ 460 µm at distance d = 202 µm from a perforated wall,
l = 170 µm, rc = 97.5 µm, bubble is shown in red, ink map of the liquid
above the channel in black, liquid below the channel in bright grey.
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also the transported liquid using a digital ink map in the simulations to visualise the net
fluid transport from the unsteady flow field of cavitation bubbles as introduced by Reuter
et al. [142]. This passive tracer field of different colours is advected with the simulated
flow field. Initially, the liquid in the upper reservoir is coloured black and that in the lower
with a bright grey. Additionally, the liquid in the perforation is coloured continuously
from the top to the bottom from black to red to yellow to bright grey at the bottom.
Adding the ink map we can not only depict the bubble shape but also the origin of liquid
at a later stage during the pumping. For example, the black blob in the lower reservoir in
the simulation part of figure 4.13 a) is liquid that has been pumped from the upper into
the lower reservoir.
The experiment uses the higher index of refraction of the aqueous NaCl solution to vi-
sualise liquid transport via Schlieren imaging. This allows for contrasted high-speed
recordings in regions of liquid entrainment. Note that due to the optical configuration,
the liquid leaving the channel at the lower side can only be observed once it has propa-
gated about 310 µm downwards into the bulk.
We start the discussion with the simulated bubble dynamics for a rather small stand-off
distance of d = 108 µm (γ = 0.23) as shown in figure 4.13. In this regime, in the case of
an unperforated boundary a needle jet is observed (see section 4.6.1) as well as when the
boundary is perforated with a long channel. However, in the presence of a short channel,
a different dynamics is observed: During early bubble expansion (t = 3 µs) some of the
liquid from the upper reservoir is pushed through the hole into the lower reservoir. This
liquid is visible as a small black and coloured blob below the boundary. During the later
expansion of the bubble (t = 21 µs) a small part of the bubble invades through the hole
into the lower reservoir. The two parts of the bubble are now exposed to different flow
fields. While the upper mostly hemispherical part of the bubble continuously expands
to a maximum size at t = 43 µs, the lower part pinches off from the main bubble near
the exit of the hole. The stagnation pressure from this pinch-off drives a liquid jet back
through the hole into the upper part of the bubble (see t = 61 µs in figure 4.13). This
reverse jet then impacts at the apex of the upper bubble and eventually injects liquid
from the lower reservoir into the upper one at t = 79 µs. A careful inspection reveals
that the upper hemispherically shaped bubble develops a kink about 100 µm from the
surface, starting from t = 73 µs. The location of the kink converges towards the axis
of symmetry at t = 79 µs. Yet, the reverse jet prevents a further convergence of this
annular flow towards the axis of symmetry. The main bubble collapses at t = 94 µs, while
the pinched-off bubble in the lower reservoir already collapses at around t = 73 µs. The
pinch-off (t = 43 µs) of the bubble protruding through the plate creates a complex mixing
flow below with vortices and bubble fragments transported deeper into the lower reservoir.
Overall we find a good agreement between experiments and simulations. It is important
to note that the bubble in the simulations collapses earlier than in the experiments. While
we have no definite proof, a likely explanation is the elastic deformation of the boundary
seen in the experiments and not accounted for in the simulation.
A comparison for a larger stand-off distance of d = 202 µm is shown in figure 4.14
(γ = 0.44). This results in a lesser invasion of the bubble into the lower reservoir during
the bubble expansion as compared to figure 4.13. Consequently, a smaller part of the
protuberant bubble is pinched off below the wall between 30 µs < t < 40 µs. As a con-
sequence, the reverse jet forms a thinner tip that partly breaks up into small droplets at
t = 50 µs. The vortex flow created upon pinch-off below the wall is more pronounced,
which is likely due to a weaker disturbance of the flow by oscillating gas fragments as
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Figure 4.15: Study of the liquid transport as a function of the stand-off distance d for
rc = 97.5 µm, l = 170 µm, Rmax = 475 µm; a) velocity uy(t) at channel exit and b) liquid
volume V (t) transported through the channel

compared to figure 4.13.
Further simulations using the same geometry as in figures 4.13 and 4.14 reveal the depen-
dence of the pumping behaviour on the stand-off distance d in figure 4.15. The backflow
is clearly visible in the channel velocity uy as a positive spike occurring prior to the bub-
ble collapse at t ≈ 100 µs in figure 4.15 a). This stronger backflow is mostly due to the
rather small channel length (see also figure 4.6). The highest amount of pumped liquid
can be achieved at d = 300 µm or γ = 0.63 (see figure 4.15 b)), which is in contrast to
the γ-dependence of the amount of pumped liquid for a longer channel reported in figure
4.10.

4.7 Discussion and conclusion

The simulations and experiments in this work present the flow through a perforation in
a thin rigid plate produced by a cavitation bubble collapsing in front of the perforated
plate. The effect of several geometric and liquid parameters are studied and overall reveal
clear trends on the transport of liquid from the bubble side to the opposite plate side,
i.e. the pumping of liquid: A longer channel increases the flow resistance and as a result
reduces the liquid exchange between the two fluid domains, i.e. not only the pumping of
fluid but also the backflow. For longer and longer channels the flow resembles more and
more that of a bubble close to an unperforated wall. Mixing of fluids rather than pumping
can be achieved with shorter channels. If a part of the bubble penetrates through the
perforation during bubble expansion, that part collapses earlier than the main body of the
bubble, resulting in an early jetting flow from the lower fluid domain (see figure 4.6). We
have termed the flow as reverse jet and confirmed it in experiments (see figures 4.13 and
4.14). The experiments utilise a Schlieren technique to reveal the mixing of rather similar
liquids, i.e. water and an aqueous NaCl solution. While for the mixing of two liquids it
may find applications, for the unidirectional pumping it should be reduced. This can be
done by increasing the channel length such that the bubble does not expand beyond the
lower end of the channel.
A straight cylindrical channel results in larger amounts of liquid being pumped as com-
pared to simple sloped channels. Yet we suspect that other geometries such that of a Tesla
valve [143] may reduce the backflow and increase the pumped volume. An optimisation
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of the geometry is open for future studies. Even without conducting a study, an optimal
value of the channel width rc for the highest amount of pumped liquid is to be expected,
since for the extreme cases of rc → 0 and rc → ∞ no liquid pumping will occur, i.e.
non-perforated wall and spherical bubble collapse with absence of jetting, respectively.
This has been confirmed and narrowed down in the present study. For the regular jet
the jet radius rj ranges between 0.1 ... 0.5Rmax (see figure 4.12). Figure 4.7 shows that
for rc = 50 µm (≈ 0.1Rmax), overall the highest flow velocities through the channel are
reached and the amount of liquid pumped relative to the channel volume reaches a maxi-
mum. Thus an optimum in pumping is achieved when the channel radius is similar to the
jet radius. Varying the stand-off distance d of the bubble near a long channel (l = 1 mm)
reveals two distinct regimes of strong pumping behaviour: one being around γ = 1, fea-
turing the typical jet, the other at very small stand-off distances, where the needle jet
is observed. This is very similar to the continuous rigid boundary for sufficiently small
stand-off distances.
Since the occurrence of the three regimes reverse jet, needle jet, and standard jet (jet-
ting without the former two particular jets) depends foremost on the stand-off distance d
and the channel length l, we summarise this in the regime map in Figure 4.16. It shows
the type of jet formation as a function of the normalised stand-off distance γ and the
normalised channel length l∗ = l

Rmax
and is collected from simulations and experiments.

The reverse jet occurs once a part of the expanding bubble reaches the lower end of the
channel. A rough criterion for that to occur is Rmax & d + l ⇔ l∗ . 1 − γ, the dashed
diagonal line shows l∗ = 1 − γ. Thus, as this line is approached from the standard jet
regime, an increasingly stronger backflow occurs. The transition region between the stan-
dard jet and the reverse jet spans nearly the entire regime map shown in figure 4.16. Only
for the case l∗ = 2.11, γ = 1.58 (data point on the top right of figure 4.16), the bubble
is seeded so far away from the boundary that we cannot detect an effect of the channel
on the bubble shape, i.e. the indentation in the lower bubble wall as seen in figure 4.4
(bottom row) is not formed. The needle jet is only found for γ . 0.25 and sufficiently
long channels. This region is indicated with the horizontal line in figure 4.16). For very
short channels the reverse jet and not the needle jet occurs. This is caused by the fact
that the reverse jet develops earlier than the main collapse and therefore prevents the
annular flow focusing necessary for the needle jet formation. Thus for small l∗ the reverse
jet region takes over even if γ . 0.25. The simulations presented in this work are limited
by the assumption of axisymmetry. This causes noticeable differences compared to the
experiments once fragmentation of bubbles or droplets occurs. In the simulation, this
yields torus-like structures that are unstable in reality [9]. Another important limitation
is the lack of a phase transition model, which prevents an accurate prediction of the
condensation of water vapour present in real cavitation bubbles. Instead, the simulated
bubble contains a non-condensable gas that cushions further bubble oscillations. This
affects the rebound but also the development of non-axisymmetric instabilities that grow
with time. Therefore we only show the first 200 µs of bubble dynamics, which includes the
first and second bubble collapse only. However, this may have important contributions
during the later bubble dynamics. The axisymmetric simulations reveal that not only the
first but also successive collapses transport considerable amounts of liquid through the
channel. With asymmetries and instabilities as well as energy losses due to condensation
influencing the fluid dynamics in reality, we expect lesser liquid transport than predicted
in the simulations.
While understanding the pumping mechanism of viscous liquids was the initial goal, the
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Figure 4.16: Regime map showing the parameter space of the standard jet, the reverse jet,
and the needle jet in dependence of the normalised stand-off distance γ and the normalised
channel length l∗ = l/Rmax, the dashed lines show γ = 1 − l∗ and γ = 0.25.

work could be extended to utilise the flow below the boundary. This flow affects the
strength of the bubble collapse as some of the kinetic energy is used for the transport
in the micro-channels. For example, a perforated plate with through-holes that are filled
with an immiscible and sufficiently viscous liquid may dissipate some of the kinetic energy
and therefore reduce the energy available that is focused during the near boundary bubble
collapse. This may reduce cavitation erosion as was discussed already for perforated plates
containing gas [98]. Also, we speculate that emulsification of liquids in an ultrasonic bath
where two liquids are separated by a perforated plate could benefit from the here-found
reverse jet. Another point of interest is the jet and spray produced by the bubble if the
domain on the opposite side of the perforated wall is filled with a gas instead of a liquid.
Potential applications include needle-less micro-injections via a fast liquid jet in air and
jet-based printing.
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4.8 Appendix

4.8.1 Supplementary material

Videos of the numerical and experimental results as well as the code of the numerical
solver CavBubbleFoam and an example simulation case can be found as supplementary
material to [22].

4.8.2 Verification of the simulations

Figure 4.17: a) Comparison between a VoF simulation of a cavitation bubble far from
any boundaries in a large geometry (100 mm× 50 mm) and a solution of the Keller-Miksis
equation for a radially oscillating bubble with equal maximum bubble radius Rmax and b)
grid dependence study for the case of a bubble near a perforated boundary for l = 1000 µm,
rc = 50 µm, d = 500 µm

Figure 4.17 a) shows a comparison between the volume of fluid simulation of a freely
oscillating (unbound) bubble and the prediction of the Keller-Miksis equation with equal
maximum bubble radius Rmax = 470 µm. It was done for a geometry of dimensions
100 mm× 50 mm, which is tenfold larger than what was used for the rest of this work to
avoid shock wave reflections at the outer boundaries of the simulation geometry. It shows
excellent agreement for the first oscillation period. Since the collapse of the bubble in
the VoF simulation is not perfectly spherical due to asphericities in the geometry and the
mesh grid, its second oscillation period shows a weaker expansion than the Keller-Miksis
equation predicts.
A mesh resolution dependence study is shown in figure 4.17 b), using the case of a bubble
near a perforated plate with the same geometric parameters as in figure 4.4, bottom row.
The grid resolution at the outer boundary of the geometry was kept constant, while the
region including the bubble and the channel was discretised using square cells with a
width of 10, 5, 2.5 µm. A cell width of 2.5 µm was used in the rest of this work. For a
better direct comparison between different cell sizes, a cylindrical bubble is seeded without
interface smearing, and the seed size is kept constant at a radius of 10 µm and a height
of 20 µm. For finer meshes, the bubble reaches a slightly larger maximum radius and
exhibits a sharper liquid-gas interface. The interface of the thin liquid film that forms
between the bubble and the wall after the first collapse is sharper with a finer mesh.
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4.8.3 Estimation of the pumped volume

Here we aim to estimate the pumped volume in dependence on the liquid viscosity µ and
the channel radius rc in general form including later times than the simulation covers,
i.e. t > 200 µs We neglect the driving force associated with the bubble dynamics. The
laminar volumetric flow rate V̇ in a cylindrical channel is given via the Hagen-Poiseuille
equation [144],

V̇ =
πr4c∆p

8µl
. (4.13)

The pressure drop ∆p is in equilibrium with the viscous forces acting upon the fluid in
the channel. Is the flow driving force taken away, viscosity decelerates the flowing liquid

via ∆p = −F
A

= −ρAlu̇
A

= −ρlV̈
πr2c

, turning equation (4.13) into a differential equation for

the flow rate V̇ ,

V̇ = −r
2
cρ

8µ
V̈ . (4.14)

Equation (4.14) is solved by

V̇ (t) = e
− 8µ

r2cρ
t
V̇0 . (4.15)

Integrating equation (4.15) from t = 0 to t = ∞ gives the total pumped volume,

V =
r2cρ

8µ
V̇0 =

πr4cρ

8µ
u0 . (4.16)
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5 Microemulsification from single laser-induced cav-

itation bubbles

This work has been published in [23]:

K. A. Raman, J. M. Rosselló, H. Reese, and C.-D. Ohl. “Microemulsification from single
laser-induced cavitation bubbles”. Journal of Fluid Mechanics 953, A27 (2022)

This work has been continued in [145]:

K. A. Raman, J. M. Rosselló, and C.-D. Ohl. “Cavitation induced oil-in-water emul-
sification pathways using a single laser-induced bubble”. Applied Physics Letters 121
(19), 194103 (2022)

We study the interaction between a laser-induced cavitation bubble and a submillimeter-
sized water droplet submerged in silicone oil. High-speed imaging reveals the pathways
through which droplet fragmentation occurs and three distinct regimes of bubble-droplet
interaction are identified: deformation, external emulsification and internal emulsifica-
tion. We have observed that during the bubble collapse the droplet elongates towards
the bubble, which acts as a flow sink pulling on the droplet. For silicone oils with higher
viscosity, the droplet jets into the cavitation bubble and forms a satellite water droplet
in the continuous oil phase. In contrast, for lower-viscosity oils the droplet encapsulates
the collapsing bubble as it jets inside and undergoes multiple cycles of expansion and
collapse. These internal bubble collapses create tiny oil droplets inside the parent wa-
ter droplet. The kinematic viscosity of the silicone oil, maximum bubble diameter, and
centre-to-centre distance between the bubble and the droplet are varied. The regimes are
separated in a parameter space set up by the non-dimensional distance and a cavitation
Reynolds number.

5.1 Introduction

Droplet deformation and fragmentation are the fundamental building blocks of emulsifi-
cation. Examples of conventional emulsification methods are the rotor-stator system and
the high-pressure valve homogeniser [146, 147]. There, droplets break up into smaller
droplets due to intense shear from turbulent flows in fast-rotating mechanical mixers or
from high-pressure pumping through the homogenising valves. For instance, the mechan-
ical energy imparted by the rotating rotors generates large eddies with a characteristic
length corresponding to the rotor dimension. Through the energy cascade, the flow is
driven into smaller and smaller scales down to the Kolmogorov length scales [148]. This
cascade provides the transfer of the energy necessary to break up the macroscopic phase.
Similarly, in a microfluidiser the transmission and collision of two strongly pressurised
streams of emulsions with macro-sized droplets through microchannels results in much
finer-sized emulsions [149–152]. Here, a combination of strong shear and cavitation in the
region of collision between the two streams leads to the disintegration of the macroscopic
phases. Localised intense stresses may also be generated by irradiating the liquid with
ultrasound. Here, the shear is not generated by the sound field directly. Instead, small gas
bubbles in the liquid are driven to large volume oscillations that generate the necessary

http://doi.org/10.1017/jfm.2022.971
http://doi.org/10.1063/5.0123894
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stresses. For example, during the collapse, mild asymmetries in the flow field are ampli-
fied. The resulting liquid jets drive shear flow [153–155]. Insights into the mechanism of
how a particular technique leads to droplet deformation and fragmentation are pertinent
for improving the current emulsification techniques [156].
There are several ways to realise the fragmentation of a single droplet. Droplet deforma-
tion and breakup could be triggered by either modulating the conditions in the surround-
ing ambient flow, such as shear flow, which in turn would interact with the droplet. In
another approach, localised disturbances are introduced inside or near the droplet inter-
face, which has been widely employed to explore the mechanism and the resulting breakup
regimes. For instance, the droplet deformation and breakup in a shear flow have been
investigated in great detail [157–162]. The flow-induced stress on the droplet surface leads
to either a steady ellipsoidal deformation or, by overcoming interfacial forces, the droplet
disintegrates into smaller droplets. The interplay between the viscosity ratio of the con-
tinuous and dispersed phases and the shear rate was found to determine the transition
between the deformation and the breakup regimes [163, 164]. The two major droplet frag-
mentation mechanisms - end pinching and capillary instability were reported through the
experimental findings by Rallison [165]. Formation and breakup mechanisms of double
emulsions in extensional flows have been explored numerically [166, 167]. The uniaxial
extensional flow deforms the double emulsion into a prolate spheroidal shape while the
recirculating flow inside the annular region deforms the core into an oblate spheroid.
Unlike the laminar transition from deformation to breakup observed in shear flow, a com-
plex fragmentation phenomenon is noticed when a droplet encounters a gas stream [168–
170]. The intricate synergy between the aerodynamic forces and surface tension-based
instabilities leads to varying droplet morphologies which are sensitive to the flow condi-
tions and fluid properties. Aerodynamic droplet fragmentation has been categorised into
five breakup modes: vibrational [171], bag breakup [172, 173], multimode breakup [174–
176], sheet thinning [177, 178] and catastrophic breakup [179, 180]. In certain circum-
stances, instead of altering the conditions of the surrounding flow, droplet fragmentation
is achieved when it undergoes a mechanical impact onto a solid surface [181–186]. In these
scenarios, the rim bordering the radially expanding droplet breaks up into fragments due
to Rayleigh-Taylor and Rayleigh-Plateau instabilities.
Droplet fragmentation can also be realised by introducing a localised region of high shear
near the droplet surface. Acoustic emulsification is a technique in which large droplets
are successively broken down into smaller scales through cavitation bubbles [153, 187–
190]. When acoustic waves travel through the continuous phase with amplitudes above
the cavitation threshold, cavitation bubbles are nucleated. The collapse of these bubbles
results in localised high pressures and temperatures, high-speed liquid jets, the emission
of shock waves, and strong localised shear fields [73, 191]. These intense hydrodynamic
effects facilitate droplet breakup and the formation of stable emulsions. As such, ultra-
sonic cavitation has been employed as an efficient technique to deliver highly localised
shear forces to small volumes for emulsification [192].
The quality of the emulsification process may be characterised by the emulsion droplet
size and the energy input. Here, we want to obtain a deeper insight into the sequence
of hydrodynamic events leading to emulsification. This will be achieved by studying
the interaction between a cavitation bubble and a droplet in well-controlled experiments
with a single bubble and a single droplet. The ability to precisely regulate the key pa-
rameters such as the location of the bubble, its maximum diameter, and the time of its
inception is vital to reveal the intricate bubble-droplet dynamics. To attain such flexi-
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bility and experimental precision, nanosecond pulsed lasers offer a convenient method to
generate cavitation bubbles inside a liquid with good control of location and time. For
instance, laser-induced bubble generation and its dynamics near a wall have been thor-
oughly investigated [193–195]. This flexibility in nucleating cavitation bubbles at specific
locations inside a liquid has been utilised previously to investigate droplet fragmentation.
Thoroddsen et al. [196] studied the evolution of a cylindrical liquid sheet and spray when
a laser is focused below the free surface of a hemispherical droplet. The structure of sheet
rupture was found to be similar to the crown structure observed in droplet impact sce-
narios. Fragmentation dynamics of acoustically levitated water droplets, when irradiated
with a laser pulse, were studied by Gonzalez-Avila and Ohl [197]. They identified three
distinct fragmentation scenarios: rapid atomisation, sheet formation, and coarse frag-
mentation. Owing to the substantially short time scales through which the laser-induced
nucleation of a cavitation bubble occurs, fragmentation dynamics of droplets in free fall
by laser pulses has been investigated [198–200].
While most of the works have focused on droplet deformation and breakup dynamics
when a laser pulse is irradiated on or in the droplet, the present study investigates the
hydrodynamic response of a droplet residing inside another liquid when a laser-induced
cavitation bubble is nucleated near its interface. The mechanism of cavitation-induced
emulsification has so far been explored only by very few works aiming to address the
same. The breakup of millimetre-sized oil droplets in water through ultrasonic cavitation
has been recently investigated [201]. They demonstrated additional intermediate steps
for the formation of oil-in-water (O/W) emulsions in which water-in-oil (W/O) emulsions
are formed in the bulk oil phase. These are later separated from the oil phase under
the influence of ultrasonic waves and undergo breakdown into O/W emulsions. Char-
acteristics of the liquid jet obtained during acoustic cavitation in water/gallium/air and
water/silicone oil/air systems were investigated numerically by Yamamoto and Komarov
[202]. They found that the maximum jet velocity depends on the initial distance between
the cavitation bubble and the liquid droplet. Yamamoto et al. [203] investigated the
emulsification process of a water-gallium system using ultrasound irradiation and high-
speed imaging. They observed the formation of fine gallium droplets when the maximum
radius of the cavitation bubble is large. The emulsification process is initiated during the
collapse phase of the cavitation bubble. Further investigations through numerical simula-
tions revealed that the fast-moving liquid jet that forms during the collapse phase of the
bubble is responsible for the emulsification. The interaction of cavitation bubbles created
by an electrical discharge near a water-oil interface was studied by Han et al. [204]. They
investigated the interaction dynamics by initiating cavitation bubbles separately in water,
oil, and at the water-oil interface. Mixing of the fluids was reported when the bubble is
initiated at the water-oil interface or in the oil phase below a critical standoff parameter.
In addition, the authors identified a secondary emulsification mechanism that occurred
due to the formation and pinch-off of an interface jet. Experimental investigation by
Orthaber et al. [205] further demonstrated these intermediate steps of O/W emulsifica-
tion using laser-induced cavitation bubbles. They attributed the initial jetting of water
droplets into the oil medium to primary Bjerknes forces. Later, oil droplets containing
large cavitation nuclei enter the bulk water phase due to Rayleigh-Taylor instability. The
present situation deviates from these two studies: both of the above-mentioned works
start with a cavitation bubble near an oil-water interface visible as a curved line. In the
current work, we consider a bubble and a droplet of similar sub-millimetre size. The
characteristic length scales of droplet deformation are expected to be similar to that of
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the collapsing bubble. Therefore, the shear forces created during bubble collapse should
lead to vigorous fragmentation and deformation dynamics as it affects the entire droplet.
Here we only look into the emulsification of a water-in-oil system. By varying the distance
between the bubble and the droplet, the continuous phase viscosity, and the size of the
cavitation bubble, distinct regimes of interaction are identified. We start with the details
of the experimental setup. We then present the three regimes and subsequently elaborate
on each of the regimes using fluid mechanics simulations.

5.2 Methodology

5.2.1 Experiment

Figure 5.1 depicts the central part of the experimental setup with the droplet dispenser
on top and the focusing optics for the laser on the right. The central element is an
acrylic cuvette with a square cross-section (1 cm width, 5 cm height) that contains silicone
oil (Carl Roth GmbH, Germany) with kinematic viscosities ranging from 5 mm2/s to
100 mm2/s. The water droplets are generated with a dispensing system (BioFluidix,
Pipejet toolkit) located above the cuvette. A frequency-doubled Nd:YAG laser (Q2-1064
series, pulse duration 10 ns, wavelength 1064 nm and pulse energy between 0.1 and 1 mJ)
is focused into the silicone oil using a microscope objective (Zeiss LD Achroplan 20X,
NA = 0.4, focal distance = 10 mm ). The bubble is generated to the right of the droplet.
By varying the pulse energy, the maximum bubble diameter can be adjusted between
0.95 and 1.7 mm. The laser is triggered once the droplet comes into the field of view of
the high-speed camera (AX-Mini 200, Photron) utilising its image trigger functionality.
The camera image trigger activates when it detects the change in the image grey levels,
starts recording, and triggers the laser to fire a single light pulse. The motion of the
sinking droplet is sufficiently slow so that the inherent jitter of approximately 25 ms of
this triggering technique does not pose a timing problem. The camera is equipped with
a macro lens (LAOWA f2.8 ) with a variable magnification of up to 2×. It views the
dynamics from the same direction as the reader in figure 5.1. The droplet from the
dispensing system can be adjusted in size by varying the shape, amplitude, and duration
of the current applied. Here we selected parameters to obtain a droplet with a diameter
of 616 ± 33 µm. Once generated, the droplet impacts on the air-oil interface and slowly
sinks into the oil due to gravity. To characterise droplet deformation caused by bubble
collapse near its vicinity, we use the elongation parameter El. It is defined as the difference
between the position of the extreme ends of the droplet along the direction of the line
joining the two centres normalised by the initial droplet diameter Dd. The geometric
schematic defining this parameter is shown in figure 5.1 (b).

5.2.2 CFD Simulation

Simulations were done using the open-source software OpenFOAM [125]. The pressure-
based Volume of Fluid (VoF) solver multiphaseCompressibleInterFoam for N viscous,
compressible, non-isothermal fluid components was modified to suit our purposes. Three
components were used to create a numerical representation of the present problem: water,
oil, and gas representing the bubble contents, i.e. the gas created during the optical
breakdown in oil. The component interfaces are modelled using a phase fraction approach,
meaning that each component is assigned a field called αi, which specifies how much of
a given cell is filled with that fluid. Each cell of the domain is filled completely with
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Figure 5.1: (a) Schematic diagram of the experimental setup and pertinent geometric
parameters of the cavitation-induced microemulsification problem. A droplet of diameter
Dd interacts with a bubble whose maximum diameter Dmax

b is varied based on the laser
energy. The centre-to-centre distance between the bubble and the droplet is denoted by
Cdist. (b) Schematic definition of the droplet elongation length (El ·Dd).

p0 in Pa ρ0 in kg/m3 γ B in MPa
oil 101325 960 6.4 150

water 101325 998.2061 7.15 404.6
gas 10320 0.12 1.33 0

Table 5.1: Physical parameters of the different fluid components used in the numerical
simulations.

fluid. This demands that the sum of all αi is 1. To model the fluid compressibility, the
Tait-equation of state was used,

p = (p0 +B)
( ρ
ρ0

)γ
− B . (5.1)

For B = 0 the Tait-EoS gets reduced to the ideal-gas-EoS. Table 5.1 shows the parameters
used for the different fluid components.

Several modifications from the base solver have been made: The temperature field is
omitted for simplicity. The compressibility field κ = 1

ρ
∂ρ
∂p

= 1
γ(p+B)

for each fluid is
calculated in every time step, instead of only once at the beginning of the simulation.
This is necessary since a cavitation bubble changes its internal pressure and density over
several orders of magnitude, which significantly changes the compressibility. We correct
the α-field to counteract the emergence of small bubbles throughout the domain as a
result of numerical errors. This is done by clamping all α values below 0.001 (above
0.999) to 0 (1). Furthermore, a correction was introduced to keep the bubble mass m =∑cells

i αair,i Vi ρair,i constant, since the model does not include any phase transitions and
all changes to the amount of vapour present in the bubble stem from numerical errors.
Apart from the cavitation process itself, significant phase transitions do happen in the
experiments, mainly the partial condensation of the bubble contents, which decreases the
bubble pressure and thus reduces the bubble size over time. For this reason, once the
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bubble reaches its first volume maximum, a one-time correction is applied which reduces
the bubble pressure by a factor (0.35), which was chosen to fit the bubble size in the second
oscillation period to the experiments. This correction accounts for the condensable gas
that drives the initial expansion, yet later condenses, and leads to a smaller size for the
subsequent oscillation periods.
The problem is modelled with axisymmetry. The axis of symmetry is the line that connects
the centres of the bubble and the droplet. The simulation geometry is a thin slice of a
cylinder with a radius of 5 mm and a height of 10 mm. The outer boundary conditions are
chosen to be open, wave-transmissive boundaries to mimic a larger fluid domain. This
geometry is divided into square cells with a width of 40 µm. Close to the bubble and
the droplet, the mesh is refined by successively splitting the cells into 4 so that a cell
width of 2.5 µm is reached. Initially, the bubble is at rest and contains a high-pressure
gas of p ≈ 16 kBar, which is chosen so that the gas density is equal to the density of the
surrounding oil. This is similar to a laser-created bubble, using the assumption that the
oil absorbs the energy of the laser pulse much faster than the created bubble seed expands.
We smear out the bubble-oil interface to reduce Rayleigh-Taylor instabilities that would
otherwise appear during early bubble expansion. In the experiments, the distribution of
the energy deposited by the laser is expected to be spread around the point of focus,
according to the local laser wave energy density. Thus just after the energy position,
instead of a bubble with a sharp interface, we assume a gradual transition from the liquid
to a supercritical fluid to a plasma, having the same effect of mitigating Rayleigh-Taylor
instabilities that could form on the later bubble surface.

5.3 Results

We now discuss the events that occur when a single laser-induced bubble inside silicone
oil undergoes multiple cycles of expansion and collapse next to a water droplet. We begin
by presenting an overview of three distinct regimes, followed by detailed investigations of
each regime.

5.3.1 Overview of the identified regimes

In the experiments the maximum diameter of the cavitation bubble (Dmax
b ), the centre-

to-centre distance between the droplet and the laser focus (Cdist), and the viscosity of
the oil is varied. From 106 experiments conducted, recorded, and analysed we can cate-
gorise three distinct regimes with typical examples presented in figure 5.2. These three
regimes are the deformation of the droplet by the flow induced by the oscillating cavitation
bubble (figure 5.2 (a)), the ejection of liquid from the droplet into the continuous phase
(figure 5.2 (b)), and the injection of the continuous phase into the droplet as shown in
figure 5.2 (c). For the latter two processes, we introduce the terms external emulsification
and internal emulsification, respectively. In the deformation regime, a bubble collapses
near the droplet without interfacial destabilisation that may result in fragmentation or
injection of liquid. However, the droplet loses its spherical shape due to the flow created
by multiple bubble expansions and rebounds while the bubble and the droplet remain sep-
arated by the continuous phase. After undergoing multiple shape oscillations, the droplet
slowly obtains back its spherical shape, see t = 2 ms, the bubble however has fragmented
into a number of smaller bubbles. These contain non-condensable carbon-based gases
that are created during the laser-induced optical breakdown in the oil.
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Figure 5.2: Three main regimes of interaction are identified when a laser-produced silicone
oil vapour bubble collapses near a water micro-droplet interface: (a) deformation (b)
internal emulsification and (c) external emulsification.

The events leading to the external emulsification regime are distinguished from the defor-
mation regime by an initial physical contact between the bubble and the droplet during
the first cycle of expansion, see figure 5.2 (b). As the bubble undergoes its first collapse,
the part of the droplet interface which was in contact with the bubble transforms into a
protruding ligament pointing outwards into the silicone oil. As time proceeds, the bubble
continues to oscillate on this structure resulting in a breakup of this ligament and the
formation of a satellite water droplet in the oil.
Parallel to the first cycle of external emulsification, during internal emulsification the
bubble is physically in contact with the droplet as it reaches its maximum radius, see
figure 5.2 (c). However, we notice that during the successive collapses and expansions
the bubble penetrates into the droplet. These events lead to the formation of a thick
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destabilised interfacial region as observed during the collapse in the third cycle, see fig-
ure 5.2 (c). The shearing of this interfacial region and the later expansions and collapses
of the bubble result in the formation of an oil-in-water emulsion.
We will now look closer into each of these regimes.

5.3.2 Deformation regime

Even if there is no contact between the bubble and the droplet, the flow created by the
bubble deforms the droplet. Selected snapshots of this bubble-droplet interaction are
shown in figure 5.3 where the frame before the bubble is first seen is defined as time t = 0.
In figure 5.3 a single bubble is created in the silicone oil with 20 mm2/s viscosity at a

Figure 5.3: (a) Comparison between experiments and numerical simulations illustrating
the evolution of the deformation regime. (b) Temporal evolution of the droplet interaction
with the collapsing bubble at later times illustrating directional deformation of the droplet
towards the oscillating bubble. The diameter of the droplet is 616 µm ± 33 µm and the
video was recorded at 216000 frames per second. The frame before the first appearance of
the bubble is defined as time t = 0. The maximum bubble diameter is 1583 µm which is
generated in silicone oil with 20 mm2/s viscosity. The centre-to-centre distance between
the bubble and the droplet is 910 µm. The sketch of a dashed circle on all the frames
represents the droplet shape before the generation of the laser bubble.

distance Cdist = 0.91 mm. During early expansion, t = 4.6 µs, the bubble is initially elon-
gated due to imperfection of the laser focus, yet at t = 63 µm the bubble has expanded to
an approximate sphere with a diameter of Db = 1.58 mm± 33 µm. The bubble expansion
results in a flattening of the droplet on the side facing the bubble. To visualise the extent
of droplet deformation and translation, the shape of the droplet before bubble generation
is superimposed on the photograph as a dashed curve. During the first bubble collapse
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at t = 125 µs the droplet regains its spherical shape and translates back to its original
location. The droplet is flattened again as the bubble undergoes a second expansion,
though the deformation is considerably weaker.
A comparison of the experimental images with interfaces obtained from numerical simula-
tions is shown in the second row of figure 5.3 (a). Note that the simulation is axisymmetric
and the axis of symmetry is horizontal while in the experiments it is under some angle.
Overall, a good qualitative agreement between the simulation and the experiment is ob-
tained, especially for the first two cycles of bubble oscillation. The shape of the deformed
droplet during primary and secondary expansion matches with the corresponding frames
observed experimentally. Similarly, relaxation of the droplet shape to a spherical con-
figuration is noted at t = 125 µs in both situations. At the time t = 300 µs the bubble
collapses a second time, now showing clear surface instabilities, see figure 5.3 (b), and the
droplet is elongated in the direction towards the bubble’s centre. As time proceeds and
the bubble undergoes subsequent cycles of expansion and collapse, the droplet regains
its original spherical configuration. Yet the droplet has translated towards the bubble.
It should be noted that the axisymmetric assumption employed in the numerical model
holds well for the first two cycles of bubble expansion and collapse. During this time,
as can be seen from figure 3(a), the bubble dynamics are approximately axisymmetric.
However, in later cycles, the bubble shows surface instabilities and undergoes jetting along
non-axial directions. It also breaks down into smaller bubbles. Therefore, for later times
the scenario is no longer axisymmetric and the axisymmetric boundary condition would
show deviations from the experimental results.
As the bubble expands and collapses, it acts as a flow source and sink that compresses
and elongates the droplet, respectively. We compare the deformation El(t) between
the experiment and the numerical simulation in figure 5.4 (a). The centre-to-centre
distance and the maximum bubble diameter considered here are Cdist = 1003 µm and
Db = 1.58 mm± 33 µm, respectively. We see a continuous increase of the droplet elonga-
tion until the full expansion of the bubble and a return to a spherical shape during the
first bubble collapse at t = 125 µs. For this analysis, we used a high-speed recording at
a lower magnification compared to the close-up frames shown in figure 5.3 that captures
the bubble and droplet in full. Overall, the experimental droplet deformation during the
primary and secondary bubble expansion shows a good agreement with the simulation.
The magnitude of the velocity field generated in the surrounding flow depends on the
amplitude and the frequency of the bubble oscillation, which is governed by the value of
Dmax

b . Similarly, Cdist determines the extent to which the surrounding flow field incurs
deviations in the droplet’s sphericity. Figure 5.4 (b) illustrates the temporal evolution of
El (t) for the first few cycles of bubble oscillation in silicone oil with 20 mm2/s viscosity.
Three cases with different Cdist and Dmax

b are selected. All cases reveal an initial dip of
El during the bubble expansion and recovery during the bubble collapse. A variation of
the magnitude and damping of the oscillations of El (t) is clearly observed. Generally, a
smaller bubble results in a faster decay of the droplet’s surface oscillation and a smaller
elongation during primary bubble expansion. For example, for the first case with low-
est Dmax

b and relatively large Cdist of 963 µm, we observe that after the primary dip the
oscillations in El cease quickly. In contrast, the largest amplitude in El is found for a com-
bination of a large bubble and a small distance, i.e. Cdist = 771 µm and Dmax

b = 1333 µm.
It is to be noted that, even though the maximum bubble diameter considered in this case
is lower than the third case with Dmax

b = 1583 µm, the maximum elongation is consider-
ably higher than in the other two cases. The deformation also lasts longer for this case
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Figure 5.4: Droplet elongation parameter (El) along the direction of bubble collapse.
(a) Comparison between the experimental and numerical temporal evolution of El in
20 mm2/s silicone oil (Cdist = 1003 µm, Dmax

b = 1.58 mm) (b) Temporal evolution of El for
three different cases of varying Cdist and Dmax

b with an oil viscosity of 20 mm2/s (b) Effect
of viscosity on the droplet elongation with the following parameters: 5 mm2/s, Cdist =
819 µm, Dmax

b = 1.45 mm; 20 mm2/s, Cdist = 771 µm, Dmax
b = 1.33 mm; 100 mm2/s, Cdist =

883 µm, Dmax
b = 1.40 mm.

than for the other two cases. For the case with Cdist = 771 µm and Dmax
b = 1333 µm, we

notice a consistent overshoot in the value of El above 1.0 after the first cycle, signifying
that the droplet is being pulled and elongated towards the bubble centre.
The effect of viscosity is demonstrated in figure 5.4 (c), with roughly constant parameters
Cdist and Dmax

b . Both the cases with lower viscosity sustain the oscillatory behaviour in
the temporal evolution of El. However, for the case with 100 mm2/s, we notice stronger
damping of the droplet oscillation, as expected.
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5.3.3 External emulsification

Figure 5.5: (a) Comparison of selected frames between experiments and numerical simu-
lations illustrating the evolution of external emulsification. (b) The temporal evolution of
the droplet interaction with the collapsing bubble at later time frames illustrates the for-
mation of a water-in-oil emulsion. The diameter of the droplet is 616 µm. The maximum
bubble diameter is 1.11 mm which is generated in silicone oil with 100 mm2/s viscosity.
The centre-to-centre distance between the bubble and the droplet is 335 µm.

In figure 5.5 (a), the bubble is generated closer to the droplet surface with a centre-to-
centre distance of 335 µm. Here the viscosity of the silicone oil is rather high at 100 mm2/s
and the applied laser energy generates a bubble with a maximum diameter of 1116 µm.
Similar to the initial phase in the deformation regime, the droplet flattens on the bubble
proximate side during the first expansion. Due to the proximity of the bubble the droplet
becomes crescent-shaped, see t = 51 µs in figure 5.5 (a) top row. An additional difference
as compared to the deformation regime is that during the bubble collapse, only on the
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bubble distant side the water droplet regains its spherical shape. The bubble-facing
part of the droplet develops an edge as a result of the disturbed and now non-spherical
converging flow field, t = 97 µs. The frame t = 157 µs in figure 5.5 (a) top row shows
the droplet during the second bubble collapse. Between the first and second collapse, the
bubble has translated towards the right and pulled the right part of the droplet towards
itself, forming a conical shape. Collapsing and translating bubbles are known to develop
jets [20]. Upon close inspection, one can see a fine protrusion of the droplet pointing
out of the right side of the bubble indicated with an arrow in figure 5.5 (a) top row at
t = 157 µs. This protrusion is the result of a thin water jet flow formed during the first
bubble collapse. Numerical simulations of the flow allow a look into the bubble. The
frames in the lower row of figure 5.5 (a) depict the surfaces of the bubble and the droplet,
yet some transparency for the rendering of the bubble offers a peek inside. We already
notice the formation of a jet during the first bubble collapse in frame t = 98 µs. This jet
however has not penetrated the opposite side of the bubble and therefore only becomes
visible during the second collapse t = 158 µs.
Figure 5.5 (b) shows that over the course of nearly 2 ms a satellite droplet is drawn from the
main water droplet. Early on at t = 203 µs the bubble collapses a third time during which
a thicker liquid filament becomes visible. The bubble continues to undergo subsequent
oscillations, albeit at a diminishing amplitude, and from t = 374 µs the thick droplet
filament gradually grows in size. At t = 532 µs the transformation of the jet tip into a
satellite droplet is clearly visible. With the bubble undergoing weaker oscillations, the
satellite droplet stops growing leading to the detachment of the satellite droplet from the
parent drop. At t = 717 µs the shape of the parent droplet consists of a spherical base and
a conical-shaped connecting neck which links to the satellite droplet through the oscillating
bubble. Eventually, as the parent droplet relaxes to regain its spherical configuration, a
pinch-off of the connecting neck occurs and the satellite droplet is detached. The result
of this process is the formation of the water-in-oil emulsion shown at t = 1.96 ms.
To investigate the mechanism of external emulsification, we show the simulated bubble’s
interface during the first oscillation cycle at different times in figure 5.6 (a). The direction
of the bubble’s radial displacement is indicated by the dashed arrow. After the nucleation
of the bubble inside the oil, it expands radially and contacts the water droplet. The left
part of the bubble surface displaces the oil and thereby forms a water-gas interface. During
the expansion phase of the bubble, it is almost spherical. Upon close inspection, the shape
of the bubble at maximum expansion is that of two half spheres with very similar radii
of curvature of approximately Rmax = 580 µm and their centres are separated by some
small distance. A similar behaviour is also reported by Han et al. [204] who proposed
an extended Rayleigh-Plesset model to study the dynamics of a bubble initiated at a
water-oil interface. During the expansion phase, they observed spherical expansion of the
upper half and the lower half of the bubble, respectively. During bubble shrinkage, the
part of the bubble making contact with the water droplet shrinks faster than the part
in contact with oil. The bubble also loses its spherical shape and becomes oval with the
longer semi-axis in the radial direction, i.e. at t = 92 µs in figure 5.6 (a). At t = 94 µs an
indentation in the bubble surface is observed that develops into a jet directed towards the
oil phase, t = 96 µs. At that time the bubble part in oil has not yet undergone collapse.
It is instructive to study the spherical problem of a bubble collapsing in water, in oil,
and in a droplet of water surrounded by oil. While the first two problems can be solved
with the well-known Rayleigh-Plesset model [34], a derivation of the equation of motion
for a bubble surrounded by two liquids of different density and viscosity is provided in
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Figure 5.6: (a) Interface profile of the cavitation bubble during its primary expansion
(top) and collapse phase (bottom) taken from the simulation in figure 5.5. The top part
shows the bubble expansion (oil on the left and water on the right) and the lower part the
primary bubble collapse. (b) Simulation of a collapsing bubble via the Rayleigh-Plesset
equation (5.7) in different environments with Rmax(t = 44 µs) = 580 µm. The parameters
are µ = 1 mPa s and ρ = 1000 kg/m3 for water and µ = 100 mPa s and ρ = 900 kg/m3 for
oil, the initial thickness of the oil layer at time t = 44 µs is 40 µm.

the Appendix. This derivation follows a model by Church [68] for coated bubbles used
in medical diagnostics. Ignoring viscosity, a bubble collapsing in the less dense oil would
collapse faster than in water. Yet, the normal viscous stresses oppose the pressure forces
and delay the collapse. Let us now compare these two cases of the collapse shown in
figure 5.6 (b) where the blue curve is a bubble in oil and the red curve is a bubble in
water. The initial size of Rmax = 580 µm is taken from the maximum bubble radius at
time t = 44 µs in figure 5.6 (a). For this viscosity, the bubble collapses later in oil, i.e. the
viscous stresses in oil are dominating the higher inertia of water. Yet, the bubble in the
experiment is not oscillating in bulk water but is only surrounded by a layer of water in
the continuous oil phase. We abstract the complex crescent shape of the water layer in
the experiment with a concentric shell of oil. This situation is shown in figure 5.6 (b) as a
black curve. The initial thickness of the water layer at maximum expansion is 40 µm. The
bubble now experiences lower inertia than water and less viscous stresses than oil. As a
result, the bubble covered with a thin layer of water collapses approximately 5 µs earlier
than the same bubble in oil and about 3 µs earlier than in water. This faster collapse
of the water-covered part of the bubble gives an initial clue why eventually a jet flow
develops from the water phase towards the continuous oil phase. In reality, the water
layer is not a concentric shell and it is expected that the varying thickness of the layer
contributes to the jet formation, too.
Figure 5.7 depicts the bubble’s and the droplet’s interfaces during the primary expansion
and collapse phases, the liquid velocity magnitude via a colour scale, and the direction
of the velocity field with arrows. At t = 36 µs the bubble reaches its first maximum
expansion. The magnitude of the velocity along the bubble-water interface is almost
constant. From t = 48 µs the velocity field on the left part of the bubble, i.e. the side in
contact with oil has changed direction and the bubble starts to shrink. This is in contrast
to the bubble-water interface where the bubble still expands and a non-uniform velocity
distribution with a stagnation point at the central region is visible. Thus the left part of
the bubble is expanding slower in water than in oil. The magnitude of the velocity depends
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Figure 5.7: Numerically obtained interfacial profiles of the droplet and bubble showing
the process of the initial jet formation. The velocity field shown in the liquid is coloured
by the velocity magnitude.

on the thickness of the water layer: along the thinner regions of the droplet, the direction
of the velocity vectors indicates an inward flow while the thicker central water layer is
approximately stationary. This leads to the formation of an oval-shaped bubble-water
interface, see t = 88 µs in Fig 5.7. As discussed in the solution of the Rayleigh-Plesset
equation for a bubble surrounded by two liquids in figure 5.6 (b), the presence of a thin
water layer leads to lower viscous stress than in bulk oil. This in turn leads to a faster
bubble collapse. It is instructive to note that the thickness of the water layer covering
the bubble-water interface is a significant parameter. It controls the degree to which
the water layer dampens the influence of viscous stresses exerted by the surrounding
100 mm2/s silicone oil. As the bubble continues to collapse, the thickness of the water
layer covering the central portion of the bubble-water interface increases. Therefore, a
sharp rise in velocity magnitude is observed in the central portion of the bubble-water
interface between t = 92 µs and t = 94 µs. We notice the formation of an indentation into
the bubble at the axis of symmetry at t = 94 µs. At the same time, the higher viscous
stresses exerted on the bubble-oil interface counteract its radially inward motion. The
non-spherical bubble collapse and subsequent expansion accelerate this indentation into
a jetting flow clearly visible at t = 96 µs. As a result, the jetting flow transports some of
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Figure 5.8: Numerically obtained temporal evolution of the interface profiles illustrat-
ing the process of the external emulsification mechanism. The colour map shows the
magnitude of the velocity field in the oil.

the water from the droplet into the oil phase.
Figure 5.8 reveals the second stage of the emulsification process, which starts with the
re-expansion of the bubble. Then the jet is stretched and remains entrained within the
bubble, see t = 104 ... 144 µs in figure 5.8. During the second collapse phase, t = 156 µs,
the jet eventually penetrates the opposite bubble wall.
Simultaneously, the bubble similar to the first collapse shrinks faster on the waterside,
resulting in a second jetting from the water to the oil. This flow is nicely visible during
the third bubble expansion at t = 170 µs in figure 5.8. Here, as in the experiments, we see
that the non-spherical bubble oscillation with jetting from the water droplet into the oil
results in the formation of a satellite droplet. Over time the amplitude of the oscillation
diminishes and the filament connecting the main droplet with the satellite droplet splits
due to the Rayleigh-Plateau instability.

5.3.4 Internal emulsification

Figure 5.9 illustrates the temporal sequence of the internal emulsification regime. In this
example, the bubble is generated in silicone oil with a viscosity of 5 mm2/s. Again, the
bubble (Db = 1283 µm) is created at a small distance of Cdist = 464 µm near a droplet
of Dd = 616 µm. Similar to the external emulsification regime, the bubble makes contact
with the droplet during its first expansion. A deviation in the dynamics from the external
emulsification arises at the end of the first collapse as the bubble begins to jet into the
droplet. After the first collapse, t = 102 µs, the bubble re-expands with nearly half of
its surface covered by the droplet as shown at t = 148 µs. We also notice the injection
of tiny bubbles from the main bubble into the droplet. The bubble translates towards
the water droplet and during its second collapse, it becomes fully encapsulated in the
droplet, t = 171 µs. A distinct feature at this time is the toroidal rim or lamella of water



108 5 Microemulsification from single laser-induced cavitation bubbles

Figure 5.9: Internal emulsification regime with maximum bubble diameter of 1.28 mm in
silicone oil with 5 mm2/s viscosity. The centre-to-centre distance between the bubble and
the droplet is 464 µm and the droplet diameter is 616 µm

on the right side of the droplet. During the re-expansion of the bubble within the droplet,
we notice the entrainment of tiny oil drops into the water droplet emerging from the
bubble’s front at t = 212 µs. This is in contrast to the external emulsification scenario
where the dispersed phase is injected into the continuous phase. During bubble collapse
at t = 226 µs these oil droplets are stretched by the radial flow and thereby fragment into
smaller droplets due to the Rayleigh-Plateau instability. Simultaneously the expansion
and contraction of the lamella occur on the opposite side of the bubble. Also during
bubble collapse, t = 226 µs, a finger-like structure of oil is injected from the lamella into
the droplet, see t = 282 µs. That is likely caused by the translation of the bubble to the
left. Over the next couple of bubble oscillations, the bubble moves further to the left
and eventually leaves the droplet. The flow induced by the bubble translation stretches
the oil finger. At t = 490 µs this structure breaks at the location indicated as oil finger
neck, likely due to the Rayleigh-Plateau instability. As a result, two larger oil droplets
are now suspended inside the water droplet, see t = 680 µs. Through this entire process,
an oil-in-water emulsion is formed where the large droplets are due to destabilisation of
the entrained column of oil, the oil finger, that is stretched by the translating bubble. In
contrast, the fine emulsion is formed due to radial stretching from the translating bubble
font. At this point, it is important to comment on the long-term fate of the engulfed gas
bubbles inside the droplet during internal emulsification. The entire process of internal
emulsification occurs within approximately two milliseconds. At such small time scales,
we have observed that the bubbles still remain inside the droplet. However, the engulfed
bubbles eventually move into the oil at later times (within a few seconds) due to buoyancy
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and some get dissolved. We have not observed any entrapped bubbles inside the water
droplets in the cuvette at later times.

Figure 5.10: Numerically obtained temporal evolution of the interface profiles illustrating
the process of the internal emulsification mechanism. The colour map shows the magni-
tude of the velocity field in the oil. The simulation parameters are chosen to correspond
to the experimental case shown in figure 5.9.

To investigate the mechanism leading to the oil-in-water emulsion as compared to the
previously observed water-in-oil emulsion we perform axisymmetric simulations with the
experimental parameters taken from figure 5.9. The temporal evolution of the flow field
and the fluid interfaces is illustrated in Figure 5.10. In the simulation, the bubble reaches
its maximum expansion at t = 50 µs similar to the experiment. At t = 108 µs, we observe
jetting of the bubble into the droplet at the end of the first collapse. Similar jetting of
the bubble into the droplet at the end of the first collapse is also noticed in figure 5.2 (c).
Unlike the external emulsification scenario, the inertial forces exerted on the bubble dom-
inate the viscous stresses. Therefore the bubble jets into the denser water droplet at
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the end of its first collapse. The bubble proceeds to undergo a secondary expansion and
attains its maximum radius in this cycle at t = 148 µs. At this time we notice a tiny
bubble fragment transported into the droplet. This matches well with the experimental
observation showing the entrainment of bubble fragments just ahead of the bubble into
the droplet at t = 148 µs in figure 5.9. Nearly complete encapsulation of the bubble inside
the droplet is found at t = 190 µs. Bubble encapsulation during the second collapse is
observed in the experiments as well at t = 171 µs. The bubble continues to jet into the
droplet as it undergoes multiple cycles of expansion and collapse. This internal bubble
jetting creates a pathway for the entrainment of oil inside the droplet. At t = 328 µs, we
observe entrainment of oil inside the droplet which leads to the formation of the oil finger.
Clearly, the viscosity of the continuous medium is a critical parameter that decides be-
tween the regimes of external and internal emulsification.

5.3.5 Regimes

After examining 106 experiments, we could identify that the interaction between the
cavitation bubble and the water droplet is most sensitive to the distance Cdist and the
viscosity of the fluid. For consistency, the regime is observed during the first 2 oscillation
periods of the bubble. If emulsification does not occur during these first two cycles
the case is categorised as deformation. In the experiments we have varied the bubble
diameter between 950 µm and 1733 µm, the distance Cdist between 330 µm and 1123 µm,
and the viscosity between 5 mm2/s and 100 mm2/s. The droplet diameter was fixed in all
experiments, i.e. Dd = 616 µm± 33 µm.
For small kinematic viscosities of the continuous phase, i.e. for ν ≤ 20 mm2/s only
deformation or internal emulsification are found. In this case, the dynamics are mostly
determined by the centre-to-centre distance. An example for ν = 5 mm2/s is depicted in
figure 5.11 (a). Above a value of Cdist ≈ 650 µm only the deformation regime is observed,
while internal emulsification is dominant below this distance. This value is slightly larger
than the droplet diameter, i.e. the bubble at maximum expansion forms a large contact
area with the droplet. As a result, upon collapse the bubble jets into the droplet. At such
a low viscosity, the inertia-dominated internal emulsification is the only emulsification
regime observed.
For higher viscosities, we observe a transition from the internal to the external emulsi-
fication regime. Therefore it is instructive to look into the role of the two predominant
forces acting on the cavitation bubble. Naturally, these are the inertial stress [34] given
by

τin =
3

2
ρoil Ṙ

2
b (5.2)

and the viscous stress given by

τvis = 4 ν ρoil
Ṙb

Rb

. (5.3)

Let us identify the velocity Ṙb with an average velocity of the bubble wall,
〈
Ṙb

〉
, that

can be obtained from the maximum bubble radius (Rmax
b ) and the Rayleigh collapse time

(TRayleighc ) [2] while ignoring viscosity,

TRayleigh
c = 0.91468Rmax

b

√
ρoil
Pa

, (5.4)
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Figure 5.11: Regime map obtained between (a) centre-to-centre distance Cdist and maxi-
mum bubble diameter Db

max for silicone oil with viscosity 5 mm2/s (b) ζ and Cdist/D
max
b at

Dd = 616 ± 33 µm (experiments), (c) Dd = 340 µm (simulations), (d) Dd = 980 µm (sim-
ulations) for viscosities in the range between 5 mm2/s and 100 mm2/s. The regime map
illustrates the three different regimes of micro emulsification: (i) deformation (⋄), (ii)
internal emulsification (△), and (iii) external emulsification (©).

〈
Ṙb

〉
=

Rmax
b

TRayleigh
c

≈ 1.09

√
Pa

ρoil
, (5.5)

where Pa is the ambient pressure taken as 105 Pa. Then the ratio of the inertial to viscous
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stresses is defined as

ζ =
τvis
τin

≈ 4.88
ν

Dmax
b

√
ρoil
Pa

. (5.6)

The number ζ can be considered a cavitation Reynolds number. Please note that the
viscosity of the droplet is ignored in this formulation.
Figure 5.11 (b) presents a parameter plot of the cavitation Reynolds number ζ as a
function of the non-dimensional distance Cdist/D

b
max that covers all experiments between

5 mm2/s and 100 mm2/s. We notice that around a value of Cdist/D
b
max ≈ 0.4 the bubble-

droplet interaction is split between emulsification and deformation, i.e. for distances
Cdist/D

b
max . 0.4 emulsification is predominantly observed. Notice here the overlap be-

tween deformation and internal emulsification near the transition boundary. In order
to be consistent, we have considered only the first two cycles of bubble oscillation to
categorise our regimes. In certain cases, we have noticed internal emulsification after
the first two cycles. However, based on our criterion to be consistent in defining ζ, we
have categorised these cases as deformation. Since the first expansion of the bubble is
approximately spherical, we can define ζ using its first maximum diameter Db

max. The
emulsification regime is additionally split into external and internal emulsification. This
is because the direction of the jet depends on whether the forces counteracting the bub-
ble collapse are dominated by viscosity (large ζ, jetting away from the droplet, external
emulsification) or inertia (small ζ, jetting towards the droplet, internal emulsification). It
should be noted that the transition boundary between internal and external emulsification
lies somewhere between ζ = 0.03 and 0.06. As we consider a fixed size of droplet diameter,
the transition boundary is determined by the ratio of oil viscosity and maximum bubble
diameter.
We now look into the role of the droplet diameter in the position of the transition boundary
between the deformation and emulsification regimes. Figure 5.11 (c) and (d) illustrate the
regime maps obtained from numerical simulations for Dd = 340 µm and 980 µm, respec-
tively. It is to be noted that Dd = 616 ± 33 µm for the experimental regime map shown
in figure 5.11 (b). When Dd is decreased to nearly half of this value in figure 5.11 (c),
we notice that the transition boundary (Cdist/D

max
b ) shifts from 0.4 to 0.3. Similarly, the

transition boundary is found to increase from 0.4 to 0.52 as we increase Dd to 980µm. At
a given Cdist/D

max
b , emulsification occurs if the oil-water and oil-gas interfaces come close

to each other over a large area, allowing the bubble and the droplet to strongly interact
such that a jet is formed. A smaller droplet inhibits this interaction and favours the defor-
mation regime. However, a droplet with a larger diameter facilitates this interaction and
promotes emulsification. For example, at Cdist/D

max
b = 0.4 we observe deformation for

Dd = 340 µm and emulsification for Dd = 980 µm. Another interesting observation from
figure 5.11 (c) and (d) is the influence of the droplet on the transition boundary between
internal and external emulsification. For Dd = 340 µm this transition boundary is found
for ζ between 0.015 and 0.03 at, while for Dd = 980 µm it is found at about ζ = 0.04.
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5.4 Conclusion

We have studied the interaction between water droplets in silicone oil and laser-induced
cavitation bubbles that are created near the liquid-liquid interface. From the experiments
we identify three distinct regimes of interaction, namely deformation, external emulsi-
fication and internal emulsification. The regimes are sensitive to the maximum bubble
diameter Dmax

b , the centre-to-centre distance between the bubble and the droplet Cdist, and
the viscosity of the oil µ. We observe the deformation regime when the centre-to-centre
distance was large. The droplet undergoes flattening and elongation as the cavitation
bubble expands and collapses. As the bubble goes through successive cycles of oscillation,
it acts as a flow source and sink, leading to a characteristic directional elongation of the
droplet towards the bubble centre. For closer distances, the droplet is fragmented, which
is primarily caused by a liquid jet formed by the collapsing bubble. The viscosity affects
the direction of the jet. High viscosities lead to a jetting into the water droplet, while low
viscosities to a jetting into the oil. The former leads to an oil-in-water emulsion (internal
emulsification) and the latter to a water-in-oil emulsion (external emulsification). The
experimental observations are nicely reproduced by simulations using a three-phase com-
pressible volume of the fluid solver. Particularly, they verify that the decaying rebounds
and collapses of the bubble contribute to a continuous transport of the two liquid phases
into each other. It is further shown that the three regimes are separated in a parameter
plot using the non-dimensional distance and a Reynolds number for cavitation.
The present work looked into the fundamental processes of cavitation bubble-induced
emulsification of a low-viscosity droplet into a higher-viscosity liquid. While this was
obtained with a laser-generated bubble with diameters in the millimetre range, emulsifi-
cation based on acoustic cavitation at ultrasound frequencies uses smaller bubbles. We
expect that these regimes and their boundaries also hold for ultrasound emulsification,
yet this would need to be confirmed. The smaller spatial and shorter temporal scales
together with lesser control of the bubble dynamics in acoustic driving add challenges
to experiments. Here simulations using well-tested codes could be a way to understand
emulsification from acoustic cavitation.
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5.5 Appendix

Church [68] has modelled a spherical bubble shelled with a layer of linear elastic material
that is surrounded by a viscous fluid. This model can easily be modified to describe a
bubble surrounded by two layers of different viscous fluids by replacing the stresses of
the elastic shell with the stresses of the viscous fluid. We start with equation (5) from
Church and replace the stress of the linear elastic solid TS,rr with the viscous fluid stress
of the shell of liquid 1, i.e. TL1,rr = 2µ1 ∂u/∂r and ∂u/∂r = 2R2 Ṙ/r3. Integrating this
expression from the bubble radius Rb to the shell radius Rd and keeping all other terms
results in the model used for figure 5.6 (b),

Rb R̈b

(
1 +

ρ1 − ρ2
ρ1

Rb

Rd

)
+ Ṙ2

b

(
3

2
+
ρ1 − ρ2
ρ1

4Ṙd
3 −Rb

3

2Rd
3

Rb

Rd

)
=

1

ρ1

(
pg − p∞ − 2σ1

Rb

− 2σ2
Rd

− 4 Ṙb

[
µ1

Rb

− Rb
2

Rd
3 (µ1 − µ2)

])
. (5.7)

Here, the dynamic viscosity of the droplet is µ1 and µ2 for the continuous phase. Similarly,
the density of the droplet and the continuous phase are ρ1 and ρ2, respectively. The
surface tension between the gas phase and the droplet phase is σ1 and the interfacial
tension between the droplet and the continuous phase is σ2. Because the liquid of the
droplet is incompressible, the time-dependent droplet radius is a simple function of the
bubble radius and the initial radius of the droplet,

Rd(t) =
3

√
Rb(t)3 + (Rd(t = 0) −Rb(t = 0))3 . (5.8)

Figure 5.12: Schematic representation of an oscillating bubble inside a droplet that is
suspended in a continuous phase.
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6 Dynamics of pulsed laser-induced cavities

on a liquid-gas interface: from a conical splash to

a “bullet” jet

This work has been published in [24]:

J. M. Rosselló, H. Reese, and C.-D. Ohl. “Dynamics of pulsed laser-induced cavities
on a liquid–gas interface: from a conical splash to a ‘bullet’ jet”. Journal of Fluid Me-
chanics 939, A35 (2022)

This work has been continued in [14]:

J. M. Rosselló and C.-D. Ohl. “Bullet jet as a tool for soft matter piercing and needle-free
liquid injection”. Biomedical Optics Express 13 (10), 5202–5211 (2022)

The inception of a cavitation bubble in a liquid by focusing a short and intense laser
pulse near its free surface develops not only an upwards-directed jet but a second jet of
opposite direction into the bulk liquid. When the laser is focused a few microns below the
surface, the rapid deposition of energy produces a splash, whose later sealing gives origin
to two particularly elongated opposing jets. Interestingly, the evolution of the downward
jet flowing into the liquid pool has many similarities to that observed in free water entry
experiments, e.g. the creation of a slender and stable cavity in the liquid. The downward
jet can reach speeds of up to 40 m/s and travels distances of more than 15 times the max-
imum radius of the laser-induced cavity before losing momentum. The longer lifetime of
this so-called “bullet” jet as compared to conventional cavitation-based jets, the alignment
of the jet perpendicular to the free surface, and the possibility to scale the phenomenon
open up potential applications when generated on small droplets or in shallow liquids. In
this work, the underlying mechanisms behind the formation of the bullet jets are initially
investigated by performing a set of experiments designed to address specific questions
about the phenomenon under study. Those were followed by numerical simulations used
to give a quantitative and detailed explanation of the experimental observations.

6.1 Introduction

The behaviour of air bubbles bursting into the atmosphere on a liquid-free surface has kept
the attention of researchers for decades, especially due to the fast and long liquid jets they
produce [206–209]. This natural phenomenon gave an explanation to the formation of sea
mist, which plays an important role in the physical and chemical processes occurring on
the ocean surface [210]. Thin liquid sheets that atomise into a mist may also be induced
from oscillating vapour bubbles near a free surface. These cavitation bubbles can be
created by an electrical discharge [211, 212], or by the dielectric rupture of the liquid
provoked by a high-power focused laser pulse [88, 97, 213–217]. Those studies discuss
the dynamics of cavities produced at different distances below the liquid level, and also
the formation of an upward liquid jet rising from the surface after the cavity collapse [5,
211, 218–220]. In most of the existing literature on this topic, the behaviour of both the
submerged cavity and the subsequent upwards-directed jet was classified using a single

http://doi.org/10.1017/jfm.2022.223
http://doi.org/10.1017/jfm.2022.223
http://doi.org/10.1364/BOE.469486
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parameter, the stand-off distance γ = h/Rmax, defined as the ratio between the depth
where the bubble is initially produced h (see figure 6.1 (a)) and the maximum radius
achieved by the bubble during the initial expansion phase Rmax [88]. The latter definition
carries with it some ambiguity issues related to the fact that, as the bubble gets closer
to the liquid boundary, its deviation from a spherical shape becomes more pronounced,
and thus the dilemma on how to measure Rmax sets in. In addition to the uncertainty
introduced by the bubble deformation, the cavity centre might displace during expansion.
These issues do not allow a direct comparison between results performed by different
authors, considering that in many existing studies the specific method used for measuring
Rmax is not even mentioned. Lauterborn et al. [117] proposed an alternative normalised
stand-off distance D∗ given by

D∗ =
h

Rmax,unbound

, (6.1)

where Rmax,unbound is the maximum radius of a bubble produced under fixed initial con-
ditions, for instance by using a defined laser pulse to generate a cavity far away from the
surface, i.e. in an unbounded liquid. This definition is useful for comparing cases of bub-
bles close to any kind of boundary (e.g. a solid or an elastic boundary, bubbles growing
next to a crevice or non-planar objects, etc.), but in particular for cases where the gas
cavity does not preserve its initial mass, like for example when the cavity is not perfectly
sealed. Further details about this discussion can be found in the appendix, section 6.5.1.
The fluid mechanics following the impact of rigid objects is catalogued in literature as
the water entry problem. Duclaux et al. [221] and Aristoff and Bush [222] studied the
water entry of small hydrophobic spheres into a liquid pool. Generally, the impact leads
to a splash above the water-air interface and the formation of a deep and slender cavity
in the liquid. A similar splash curtain was observed by Bergmann et al. [223] after a flat
disk was suddenly submerged in water. For sufficiently high impact speeds or high Weber
numbers the splash curtain closes from its top and seals the cavity from the ambient air.
Similarly, for impact velocities above 3 m/s in water, Mansoor et al. [224] noticed that
the cavity produced in the liquid by the passage of the object was partially filled with
a fine spray during the closure of the splash. Recently, Eshraghi et al. [225] performed
detailed measurements of the splash curtain closure dynamics and compared those with
an analytical model.
In this work we study the cavity and plume dynamics generated by a nanosecond laser
pulse focused close to a free surface, in particular, the case of a bubble initially produced
just below the liquid interface (i.e. a few tens of microns below the surface). Similar to
the fluid mechanics created by an object impacting on a free surface [226], laser focusing
gives origin to an explosive expansion of a cavity front into the liquid and a recoil-induced
material expulsion (or splash) into the air [196, 227, 228]. While typical impact velocities
of objects result in cavity front velocities of tens of meters per second, and splashes rising
in the opposite direction with similar velocities, laser-induced splashes are considerably
faster. For instance, in a case of a laser pulse focused on the surface of water with a
radiant exposure of 5 J/cm2, the induced plasma originates a gas cavity in (and below)
the liquid interface which expands at 590 m/s, and also producing a splash that rises up
with an average velocity of 150 m/s, as reported by Apitz and Vogel [228].
Here we present a phenomenon which combines the two physical mechanisms described
above, namely the splash dynamics and the formation of a jet from the collapse of a
transient cavity created just below a standing liquid surface. This finite-length liquid jet
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is formed after the closure of a splash canopy, which takes the shape of an inverted cup
usually referred to as a water “bell” [229]. While one would expect a splash moving away
from the surface, the initially outward splash changes direction and moves towards the
liquid bulk, resulting in a jet that penetrates into the water from the top. The dynamics of
a liquid splash produced by localised explosions (or even impacting objects) have already
received considerable attention. Nevertheless, the formation of such a downward jet has
not been fully addressed yet. The resulting shape of the elongated gas cavity linked to
this kind of jet resembles a bullet entering a liquid (see Bodily et al. [230] and Kiyama
et al. [226]) and we have therefore termed this regime the “bullet jet regime”.
In general, jets developed from the collapse of a bubble are defined by their boundary
conditions, for instance by the stand-off parameter and characteristics of the surround-
ing surfaces (e.g. geometry, hardness or elasticity) [84, 88, 98, 102, 231]. In contrast
to the bubble jets discussed in the current literature, the “bullet” jets presented in this
work are remarkably less sensitive to the presence of neighbouring surfaces, which makes
them an interesting case of study. Some unique aspects are: the relatively long distances
that the liquid stream can reach, and also the amount of fluid transported in the liq-
uid jet. Furthermore, this kind of jet could be of use in diverse applications like bubble
cleaning [80], or a drug delivery system that automatically directs the drug to a specific
location repeatably, like micro-vaccination or drug delivery platforms [12, 13, 232].

6.2 Experimental method

In this study, we nucleate a bubble with an IR laser pulse (Quantum Light Instruments
Q2, wavelength 1064 nm, energy of (850 ± 10) µJ, 4 ns of duration) focused with a mi-
croscope objective (Zeiss LD Achroplan 20×, NA = 0.4) at a distance h below the free
surface of water. The liquid was contained in an optical glass cuvette shaped like a rectan-
gular prism with sides of 1 cm and a height of 5 cm (see figure 6.1 (a)). The dimensions of
the plasma spot created by the laser pulse were measured using a combination of optical
filters to avoid the glowing effect and pixel saturation in the video frames, obtaining a
repeatable elliptical spot with a length of (92 ± 2) µm in the incident direction of the
laser beam and (60 ± 2) µm in the direction perpendicular to the beam. That plasma
produced spherical bubbles with a maximum radius of (585 ± 5) µm when focused far
away from the liquid surface (i.e. some millimetres). The position of the plasma spot
geometrical centre fluctuated within an interval of 15 µm in the direction of incidence of
the beam.
The water level in the cuvette was continuously monitored and h could be adjusted with
micrometric precision by modifying the relative distance between the liquid surface and
the laser focusing position. When the bubble was produced a few tens of microns below
the liquid surface, an accurate measurement of the plasma spot depth h was not always
possible, mostly due to the distortion of the image produced by the reflection (and diffrac-
tion) of rays on the inner side of the interface, and also caused by an imperfect camera
alignment. Therefore, we determined h with a pixel size precision from the distance be-
tween the shock wave emitted during the bubble generation and its reflection on the liquid
surface (see appendix, section 6.5.1). When the latter was not possible, for example when
the frame rate used was not fast enough to visualise the shock waves, h was estimated
from the geometrical centre of the plasma/initial bubble, although this alternative method
was less accurate.
High-speed video recordings of the surface liquid splash produced after the laser dielectric
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Figure 6.1: Experimental setup and bubble jet shape evolution for measurements with
different depths of the focused laser pulse. (a) A bubble is created in the bulk of a static
liquid by focusing an IR laser pulse at a depth h below the surface. The error in the
inception depth was 10 µm. (b) Jetting bubble at h1 = 580 µm. The times of the frames
are 60, 70.6, 73.8, 75.2 and 75.6 µs. (c) Jet formation at h2 = 194 µm. The times of the
frames are 10, 51, 66, 69 and 74 µs. (d) The “bullet” jet is produced at a depth h3 = 86 µm.
The times of the frames are 15, 26, 38, 49 and 53 µs. See online supplementary movies
1-3.

rupture and also of the resultant bubble dynamics were taken with a Shimadzu XPV-X2
camera. The optical magnification was performed with a 5× long-distance microscope
objective (Edmund Optics) in combination with a macro lens (LAOWA f2.8 ) with a vari-
able magnification of up to 2×. As the focal plane differs for objects above and below the
liquid-free surface. For instance, the liquid curtain composing the splash and the details
of the submerged gas cavity, a second high-speed camera (Photron AX-Mini 200 ) was
used in some of the experiments. In those cases, the two cameras were set to obtain si-
multaneous video recordings of the same event, duplicating the magnified image by means
of a 30:70 plate beamsplitter. As a measure to optimise the image quality, each one of
the cameras was set to have a defined focus (and zoom level) in a region occupied just by
one of the two media, the air or the liquid. Interestingly, this technique also allowed us
to record distinct aspects of the phenomenon with different characteristic speeds, using
two temporal resolutions and video lengths.
The light sources in the shadowgraphs were either given by a pulsed femtosecond laser
(Ekspla FemtoLux 3, λ = 515 nm;) emitting ultra-short pulses (230 fs) at a frequency of
5 MHz, or a continuous white LED lamp SMETec with 9000 lm. While the pulsed laser
illumination was ideal to capture the ultra-fast dynamics of the shock waves and the liquid
splash, the LED lamp was intense enough to visualise the internal structure of the jets
using diffused back illumination.

6.3 Experimental results

It is well established in the literature that the dynamics of both the induced bubble and
the subsequent jet (occurring after the cavity collapse), are strongly dependent on the
nucleation distance h [88, 211, 212, 220]. Figure 6.1 depicts the resulting dynamics for
laser-induced cavities produced at three decreasing distances (i.e. h1 > h2 > h3). For the
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larger distance, here h1 = 580 ± 10 µm (i.e. D∗
1 ≃ 1), a concavity (with a curvature similar

to the radius of the bubble) is observed on the bubble side closer to the liquid surface
during the collapse. At the minimum bubble volume, the concave side of the bubble hits
the opposite bubble wall along a contact line similar to a ring, and a complex sequence
of multiple shock waves is emitted (see last frame in figure 6.1 (b)). When the nucleation
distance h is reduced to h2 = 194 ± 10 µm (D∗

2 = 0.33) as in figure 6.1 (c), a broad jet is
visible within the bubble about 50 µs after its generation (see inset). This jet penetrates
the bubble along the direction normal to the liquid surface and impacts the lower side of
the bubble, folding the whole cavity into a tubular shape. If the distance h is progressively
reduced, this is if the laser-induced bubble is produced even closer to the liquid surface,
the thickness of the jet piercing the gas cavity is also gradually reduced. A limit case is
obtained when the laser is focused ∼ 100 µm below the surface (here at h3 = 86 ± 10 µm;
D∗

3 = 0.15) as shown in figure 6.1 (d). In the figure inset, a thin downward jet is clearly
visible. This liquid jet penetrates the lower bubble wall with a speed of around 40 m/s
and forms an elongated lower cavity. This cavity remains considerably more stable than
in the cases with depths h1 and h2, and it also does not undergo a violent collapse.
Both the dynamics of the bubbles and the jets of cases similar to the ones shown in
figure 6.1 (b) and (c) have already been extensively discussed in the literature, e.g. [5,
88, 97, 211, 219], therefore we will not discuss those cases in detail and will focus on the
bullet jets instead, i.e. the one in figure 6.1 (d). In what follows we will refer to the cases
with h & h3 as “standard jets”.
Now let us study the underlying mechanisms behind the bullet jet formation. figure 6.2 (a)
presents an image sequence taken at 72 kfps showing the complete jet dynamics, i.e. both
the splash above the liquid surface and the temporal evolution of the submerged cavity.
Those pictures reveal that the main difference between the bullet jet case (i.e. when
the laser is focused very close to the liquid surface) and the standard cases described in
figure 6.1 (b) and figure 6.1 (c) is caused by a shortly opened splash that is explosively
ejecting the vapour produced from the laser plasma into the atmosphere (see appendix,
section 6.5.2). The images also suggest that the thin downward jet observed in the bullet
jet case of figure 6.1 (d) is the result of the closure of a canopy formed during that initial
splash. The canopy first takes the shape of a water bell and then collapses towards the
liquid pool pushing the origin of the thin jet downwards. As the thin jet pierces the
bottom of the cavity, the gas surrounding the central laminar jet is driven downwards,
shaping a continuously growing cavity in the direction of the jet.
The later dynamics of this elongated cavity are depicted in figure 6.2 (b). The bottom
end of the cavity in the time series is connected with a solid blue line that has an initial
slope of 35 m/s and progressively slows down to a speed of 10 m/s. As discussed below in
section 6.3.5, the gas phase of the standard jets collapses shortly after the liquid jet passes
through the submerged cavity, which results in a violent fragmentation of the gas phase
and the “extinction” of the jet. When compared with the standard jets, the elongated
cavity found in the bullet jets is remarkably stable. As an example, the jet/cavity in
figure 6.2 (b) penetrates more than 3 mm deep before losing momentum, which is about
15 times the maximum radius of the laser-induced cavity.

6.3.1 Details of the bullet jet formation

A closer inspection of the liquid splash behaviour above the surface reveals the precise
way in which the canopy is sealed to form a water bell, and also how little liquid droplets
are sprayed back into the cavity, as shown in figure 6.3 (a) (i.e. in the frames between 8
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Figure 6.2: Overview of the resulting “bullet” jet dynamics. (a) The image sequence was
composed by combining two different high-speed videos taken simultaneously with two
cameras at 72 kfps. One of the cameras was set to focus on the splash above the water
level, while the remaining one was set to focus on the submerged cavity. Here, D∗ = 0.15.
(b) Long-term bullet jet dynamics (D∗ = 0.08.). The time between frames is 10 µs. The
solid blue line indicates the jet tip position extracted from the complete video. The liquid
jet pierces the wall of the cavity with a speed of 35 ± 2 m/s. After ∼ 130 µs, the jet slows
down and dissolves at a depth of ∼ 3 mm. See online supplementary movies 4.

and 26 µs). These images confirm that the origin of the “bullet” jets resides in the detail
of the superficial splash dynamics.
The key moments of the jet’s temporal evolution are summarised in figure 6.3 (b). Initially,
the laser shot produces a fine liquid spray upwards immediately followed by a conically
shaped splash curtain with a mean wall thickness of 20 ± 5 µm (obtained from an in-
spection of the experimental images). As the hemispherical cavity below starts growing,
the pressure of the gas in its interior is rapidly lowered. This pressure difference (∆p)
between the outside and the inside of the cone acts as the main driver of the splash, also
influenced by the surface tension (σ). Thus, the angle formed by the splash wall and the
water surface (θ) is increased and the cone closes from the top forming a water bell (e.g.
first row in figure 6.3 (a)). Right before cavity sealing, a fine mist is sucked into the bell
due to ∆p along the symmetry axis (Thoroddsen et al. [196]) at r = 0. Those liquid
particles are followed by the formation of a thin liquid jet directed downwards, together
with the vertical collapse of the water bell. As the water bell gets almost flattened the
thin jet pokes the wall of the laser-induced cavity and flows smoothly into the liquid
pool dragging the gas around the cavity centre with it, and also driving the gas into the
elongated part of the cavity by reshaping it with the jet tip.
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Figure 6.3: Details of the bullet jet formation process. (a) High-speed video frame
sequence composed from two equivalent measurements taken with 5 Mfps and 1 Mfps.
Here, D∗ = 0.14. The numbers indicate the time in µs after the focused laser shot.
Full video available in online supplementary movie 5. (b) Key moments in the bullet jet
formation. The red arrows represent the motion of the liquid.

6.3.2 Modelling the splash dynamics

The shape and closure of the splash can be modelled as an axisymmetric water bell
following the analysis of Clanet [229] and Aristoff and Bush [222]. This formulation is
derived from the Bernoulli equations for a flow in a stationary film. It takes into account
the Laplace pressure from the local curvature of the film and an additional pressure
difference ∆p across the sheet. The equations in non-dimensional form are

dφ

ds′
=

αr′ − cosφ

Wes − r′
, (6.2)

dr′

ds′
= sinφ , (6.3)

where φ is the angle of the splash to the vertical (i.e. π/2 − θ in figure 6.3 (b)), r′ =
r/Rc is the non-dimensional distance of the splash from the symmetry axis, s′ is the
arc length along the central line of the sheet, α = ∆pRc

2σ
the pressure coefficient and

Wes = ρ v2s δ0/(2 σ) the Weber number of the sheet. The pressure difference between
inside and outside the cavity is ∆p = p0 − pc (i.e. the difference between the ambient
pressure p0 and the pressure inside the conical cavity pc), vs is the speed of the splash, and
the average cavity radius at the surface level and sheet thickness is Rc and δ0, respectively.
The closure of the splash may be caused by surface tension and/or the pressure differ-
ence between the outside and the inside of the splash curtain ∆p. Here we model the
pressure reduction with the expansion of the gas contained in the hemispherically shaped
cavity below the splash. The dynamics of the gas within the splash is simplified to that
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Figure 6.4: (a) Comparison of the experimental splash of figure 6.3 (a) at time t =
20 µs with the water bell model. The solid line accounts for a pressure drop from the
piston-like expanding submerged cavity and the dashed line is the result in absence of
this pressure difference. (b) Development of the splash shape once it is closed and its
velocity reduces. The splash velocities and Weber numbers of the sheet from top to
bottom are vs = 20, 17, 14, 11, 8 m/s and Wes = 55.6, 40.1, 27.2, 16.8, 8.9 respectively. The
radial and vertical scale are non-dimensionalised with the cavity radius Rc.

resulting from the motion of a flat cylindrical piston moving downwards with velocity vc,
i.e. the velocity of the cavity bottom. This leads to a reduced pressure region between
the modelled cylindrical cavity and the far field static pressure p0 = 1 bar. From gas
dynamics [233], the pressure at a planar piston surface pc is

pc = p0

(
1 − γ − 1

2

vc
c0

)2γ/(γ−1)

, (6.4)

where γ is the ratio of specific heats and c0 =
√
γRT0 is the speed of sound at temper-

ature T0. Now we insert this pressure term into the water bell model [222]. First let us
investigate the shape of the splash around the time of closure, i.e. t ≈ 20 µs. Then the
velocity of the cavity wall has reduced to a measured vc = 40 m/s and the splash velocity
is approximately vs = 20 m/s, which can be determined by following the upward motion of
the wrinkles of the liquid curtain (see figure 6.3 (a)). The initial conditions for the equa-
tions (6.2) and (6.2) are given by the radius of the cavity and an initial angle of 0◦ to the
normal. Additionally, we estimated the mean thickness of the splash in δ0 = 20± 5 µm and
use as the coefficient of surface tension σ = 0.07 N/m. The remaining parameters going
into the model are γ = 1.4 and the liquid density ρ = 1000 kg/m3. The Weber number
of the sheet at t ≈ 20 µs is Wes ≈ 55. Applying these values to the water bell model
we obtain a shape that closely resembles the sheet in the experiment, see figure 6.4. In
contrast, when the pressure difference ∆p is ignored, the simulations predict a nearly
straight upward splash, as represented with dashed grey lines in figure 6.4 (a). There, a
potential closure of the splash would be only driven by surface tension, as investigated by
Aristoff and Bush [222].
In the experiment we find that once the splash closes, the opening angle of the approximate
cone-shaped splash increases and eventually a downward jet forms at the apex. Using the
splash model, these dynamics can be reproduced. For this, we assume that once the
splash has closed, the volume of the bubble remains approximately constant, i.e. while
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the hemispherically shaped lower part increases in volume, the volume of the conical
region enclosed by the splash decreases. This assumption was verified with the CFD
simulations presented in figure 6.6 of section 6.3.4. As a result, the bubble pressure
also remains constant. Yet, as the radial expansion of the cavity is decelerating, the
upwards velocity is slowing down too. In figure 6.4 (b) the shapes of the splash with
the same parameters as in figure 6.4 (a) are plotted for splash velocities ranging from
vs(t0) = 20 m/s to vs(t > t0) = 8 m/s. Remarkably, the deceleration of vs transforms the
shape of the closed splash from convex to concave, meaning that at later times, i.e for
the lower values of the splash velocity, the liquid in the splash will be focused downwards.
This may explain how the “bullet” jet is injected and focused centrally into the cavity.

6.3.3 Numerical simulations of the jet dynamics using OpenFOAM

The water bell formation model implemented in the previous section provides an analytic
interpretation of the cavity closure and also gives a rough explanation of the origin of
the water jet that produces the bullet jets. Although that simple model covers the very
basics, it is insufficient to address the details of such a complex phenomenon. Accordingly,
those details were studied by implementing numerical Volume of Fluid (VoF) simulations
carried out using OpenFOAM [125]. Specifically, a modified version of the numerical solver
multiphaseCompressibleInterFoam suitable to simulate N compressible, viscous, and
non-isothermal fluids was used. For the sake of simplicity, temperature non-homogeneities
are neglected in this work. The solver uses phase fractions to model interfaces between
components by assigning a scalar field αj to each component. αj specifies the relative
amount of each component in the respective cell, meaning that it assumes values ranging
between 0 and 1, and

∑
j αj = 1.

The present problem features 3 fluid components: a liquid domain (water), a gaseous
domain (air), and the bubble contents, which are treated as a non-condensable gas for
the lack of an implemented phase transition model. The properties of the gas inside
the bubble are considered to be the same as in the gaseous domain, but computed as a
separate component, to enable precise control over the amount of gas present in the bubble
in its early expansion phase. The surface tension between these two gaseous components
is kept at 0, making them physically the same type of gas; the distinction between them is
purely computational. The surface tension between the liquid and the respective gaseous
components is 0.07 N/m.
The compressibility is accounted for by the Tait equation of state

p = (p0 +B)
( ρ
ρ0

)γ
− B , (6.5)

with the values p0 = 101325 Pa, ρ0 = 998.2061 kg/m3, γ = 7.15, B = 303.6 MPa for
water and p0 = 10320 Pa, ρ0 = 0.12 kg/m3, γ = 1.33, B = 0 for the gas domains
(i.e. atmospheric and inside the bubble), turning the equation of state into the ideal gas
equation.
To counteract numerical errors that change the amount of gas within the bubble during its
initial expansion, the mass of the bubble gas is kept constant by applying the correction
ρ → m0

m
ρ at every time step, ρ being the density field of the gas component used to

produce the bubble and the mass of this gas being calculated as m =
∑cells

i αj,i ρj,i Vi. To
account for condensation, 70 % of the bubble mass is removed when the cavity reaches its
first maximum volume. For a closed bubble this gives a good approximation for the first
and second bubble oscillation cycles. If the cavity opens, the gas/vapour initially inside
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the bubble is almost completely replaced by the atmospheric gas, meaning that the applied
condensation correction is likely less accurate than for a closed bubble. Even so, the same
correction is applied in all cases for the sake of consistency, but it has a negligible effect
on the open cavity case. Another correction is imposed onto the αj fields to counteract
tiny bubbles and droplets forming amidst the bulk of the fluid due to numerical errors by
setting values of αj < 0.001 and αj > 0.999 to αj = 0 and αj = 1, respectively.
The computed domain describes a straight cylinder of length l = 15 mm and radius
r = 5 mm, which is filled to a height of 10 mm with water, the rest being filled with the
gaseous component. Due to the axisymmetric nature of the present problem, the geometry
is represented by a radial slice of the cylinder described above, creating an effectively two-
dimensional simulation. Compared to the size of the bubble, the outer boundaries are far
away and equipped with open, wave transmissive boundary conditions, representing an
infinitely extended fluid domain.
The bubble is created along the axis of symmetry at a variable height and initial radius.
The initial pressure is chosen to satisfy the condition ρbubble = ρliquid to resemble a plasma
spot produced by a short laser pulse that has not had time to significantly expand yet,
which with the fluid properties results in an initial pressure of p ≈ 16.8 kBar. The initially
spherical shape of the bubble tends to be perturbed by Rayleigh-Taylor instabilities, which
are avoided by smearing the initial bubble interface. The energy of the bubble and thus
its maximum radius can be modified by varying the initial bubble radius or pressure. In
the experiments, this can be done by adjusting the energy of the laser pulse that produces
the cavity.

6.3.4 Analysis of the bullet jets formation through numerical VOF simula-
tions

The OpenFOAM simulations were set up to match the experimental conditions and then
compare the dynamics of both simulated and experimental jets. Figure 6.5 presents an
image sequence detailing the simulated bubble dynamics for a prototypical case with
D∗ = 0.155. In general, the agreement between the simulation and the experiments (e.g.
the ones in figure 6.2 and figure 6.3) is excellent. While the model is not able to reproduce
the dynamics of the fine mist ejected after the plasma rapid expansion [234], the overall
dynamics of the splash and the characteristic features of the bullet jets were captured by
the model, as displayed in figure 6.5 (a). Some of these features are: the closure of the
splash/liquid curtain; the development of the elongated bubble with a central liquid jet
that occurs after the piercing of the submerged cavity; and the shape of the upward jet
produced after the water bell collapses towards the surface. The last frame of the sequence
in figure 6.5 (a) is represented using a volume of fluid tracking technique to demonstrate
that the liquid “injected” into the liquid pool by the bullet jet is coming exclusively from
the surface. This interesting feature can be relevant for certain applications as discussed
in section 6.3.8.
Figure 6.5 (b) present a qualitative comparison between the simulated results and an
experimental case with similar parameters (i.e. D∗ and Rcm). The evolution of both
the experimental and the simulated submerged cavities is similar until the jet pierces the
submerged cavity wall. After that, the times of the experimental and simulated matching
frames in figure 6.5 (b) have an increasing shift. The simulated jet advances into the
pool faster, differing from the experiment in 10 % at the beginning and ending the image
sequence with a speed difference of roughly 25 %. This can be explained by the difference
in the thickness and shape found on the simulated and experimental downward jets. A flat
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Figure 6.5: OpenFOAM simulation of the development of a bullet jet for a prototypical
bubble with D∗ = 0.155. a) Temporal evolution of the gas and liquid phases. The last
frame is represented using a fluid volume tracing technique where the liquid has initially
different colour at different depths (i.e. a Lagrangian ink map). The numbers indicate
the time in µs. b) Comparison between the simulated results and an experimental case
with similar parameters (i.e. D∗ and Rc). After the jet pierces the submerged cavity wall
the simulated jet advances faster (about 25 %) than the experimental. Then, the matched
frames in the sequence have an increasing temporal shift.

tip has a bigger drag coefficient than one, for example, with a sharp conical or spherical
tip [230], and will also lose more energy during the cavity piercing. The jet tip is mostly
defined by the specific way that the liquid converges to the centre of the water bell during
the splash closure. As seen in figure 6.2 (a) and figure 6.3, the initial part of the sealing
of the water curtain might not be perfectly symmetric in some cases. Then, the jet tip
might be thicker than in the numerical simulations and non-symmetrical at the moment
when it pierces the bubble. Once the jet penetrates into the liquid pool it self-stabilises
and a smooth front is observed in both the experiments and the simulations.
In the same way we did for the analytical model of section 6.3.2, the OpenFOAM model
was used to study the effect of surface tension (σ) and gravity on the development of the
bullet jets. This confirmed that σ has a small impact on the water bell dynamics but
plays an important role in stabilising the shape of the elongated gas cavity (i.e. preventing
fragmentation) once it is flowing into the pool. Gravity has a small impact on the bullet
jet in the range of bubble sizes comprehended in this study (as shown in section 6.3.7),
but according to the simulations its influence grows with increasing bubble size.
The numerical simulations also gave an insight into critical aspects involved in the jet
formation that were not visible in the experimental trials, like the pressure, velocity and
vorticity fields around the cavity. Those are depicted in figure 6.6 for both gas and liquid
phases. In figure 6.6 (a) it is possible to see how the water vapour produced by the laser
plasma (here modelled as a compressed gas) is explosively vented into the atmosphere,
but as the submerged cavity grows rapidly, the pressure inside it suffers a dramatic drop
and atmospheric air is driven into the cavity, replacing the water vapour originally in it.
By the time the liquid curtain is sealed (here at ∼ 28 µs), a stagnation point is developed
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Figure 6.6: Details of the physical mechanisms involved in the bullet jet formation. The
numerical simulations represent the pressure and vorticity fields of both phases (gas and
liquid) along with the flow streamlines. The numbers indicate the time in µs. The frames
composing the image sequence were divided into two halves. The half on the left always
shows pressure amplitude. The right side shows the gas exchange between the original
bubble and the atmosphere in subplot (a), and the vorticity field in subplot (b). See
online supplementary movie 6.

at its axis, where the radial and downward motion of the liquid splash converges. As
shown in the last column of figure 6.6 (a), the higher pressure at the stagnation point
gives origin to the downward liquid jet which causes the bullet jets. At this instant,
the submerged part of the cavity is still expanding, maintaining the pressure inside the
trapped gas below the atmospheric pressure, and at the same time provoking the collapse
of the water bell. The CFD simulations make clear how the evolution of the stagnation
point and the water bell is directly linked to the expansion of the submerged cavity. It
is important to remark that the previous mechanism of generation of the downward jet
is not exclusive of the open splash case associated with the bullet jets. This means that
once the canopy is closed and the water bell is formed, the downward jet observed on
both vented and closed cavities originates in a similar way (i.e. from a stagnation point).
That has been observed also in standard jetting bubbles [5, 97, 212, 218–220], like the
case described in figure 6.1 (c) and also shown in figure 6.12 (e) included in the appendix,
section 6.5.2.
The cavity evolution after the jet impingement can be followed from the image sequence
of figure 6.6 (b). The thin downward jet, driven by the stagnation pressure on its base,
grows through the gas pocket and pierces the lower side of the cavity without losing its
shape. When the jet impacts the bottom of the cavity, there is a transfer of impulse
(via added mass) which removes part of the jet momentum and imparts a velocity to the
cavity bottom. In the bullet jet case, the transfer of momentum is clearly lesser than
for standard jets, where it is common to observe shock waves emitted when the piercing
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occurs. From that moment on, the liquid column starts driving the surrounding gas as
it grows into the pool. This happens mainly because the jet tip pushes a section of the
cavity wall downwards turning it into an increasingly elongated shape, but also due to
the drag produced by the liquid flow along the cavity axis. This, along with the action
of the stagnation point on the neighbouring liquid, promotes the apparition of a vortex
ring on the upper part, i.e. where the cavity folds acquiring a toroidal shape. According
to the numerical simulation, there are regions with strong vorticity both inside the gas
phase cavity and also close to the interface. The transport of liquid from the surface to
deeper regions ceases when the water bell completes its collapse (at around ∼ 100 µs).
At that moment the stagnation point in the jet’s base disappears. As a consequence of
that collapse, the upward jet becomes significantly thicker and the elongated cavity flows
downwards along with the bullet jet.
As discussed in the previous section, the model accounts for the condensation inside
the elongated cavity by removing 70 % of the bubble mass when the cavity reaches its
maximum volume. In the bullet jet case, the gas created by the breakdown (modelled
as non-condensable air) is expelled and replaced by ambient gas. Considering that the
cavity never collapses, and thus the pressure never reaches a value far off the atmospheric
(as shown in figure 6.6 (b)), then the gas condensation has almost no effect on the bullet
jet dynamics.
In summary, these simulations confirm that the main driver of the bullet jets is the
closure of the water splash, which in turn is provoked by a sudden pressure drop due to
the expansion of the submerged part of the laser-induced cavity.

6.3.5 Critical stand-off distance for the formation of a bullet jet

One still unanswered question regarding the bullet jets deals with the existence of a
critical stand-off distance D∗ for which this particular type of jet occurs. However, to
shed some light on that question we first need to precisely define what is a bullet jet
and what is a standard jet. For making such a classification of the jet’s behaviour we
will use four reference cases, namely the three cases introduced in figure 6.1 plus a case
where no jet is observed. As the change in the rather complex evolution of the jets with
D∗ takes place gradually, we will also identify the intervals where the transition from one
regime to another happens. Figure 6.7 presents a parametric plot including 126 individual
measurements classified according to the following criteria:

• Case of figure 6.1 (b): This kind of standard jet occurs when 0.7 . D∗ . 4. The
liquid intruding the bubble does not always pierce the bubble. Fragmentation of
the cavity is observed at collapse.

• Transition between cases of figure 6.1 (b) and figure 6.1 (c): For D∗ ∼ 0.7 the
situation is similar to the one in figure 6.1 (b), but this time a thick cylindrical jet
pierces the bubble and splits it into two toroidal halves. The two parts get atomised
after collapse.

• Case of figure 6.1 (c): Observed at 0.25 . D∗ . 0.7. As the piercing jet becomes
thinner it produces a cylindrical cavity after piercing the bubble. Typically, the
jet reaches a depth similar to the bubble radius before the gas phase collapses and
breaks.

• Transition between the case of figure 6.1 (c) and the bullet jet case: Around D∗ ∼
0.25, the piercing liquid jet is thin enough to pass through the hemispherical cavity
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and fold it into the elongated shape typically found in the bullet jets. However,
the cavity tip detaches from its upper part before the folding is complete. Even
when the jet tip reaches depths higher than 3 times Rcm, the structure breaks and
dissolves.

• Bullet jet case: The bullet jets were observed for stand-off distances ranging between
0.075 . D∗ . 0.25. The folding produced by the central jet happens in a smooth
way (see figure 6.6). The displacement of a section of the cavity drives the gas into
its elongated part. The jet tail can detach like in the transition case or not, the
difference between both is that the bullet jet can travel longer distances maintaining
the structure of the elongated cavity.

• No jet case: Here, the laser is focused on the very surface of the water (i.e. D∗ .

0.07) and the liquid above the plasma spot is not sufficient to produce a water
curtain splash. Then, only an open cavity is observed (without a later jetting).

Figure 6.7: Bubble jet behaviour as a function of the stand-off distance D∗. The para-
metric plot includes 126 individual measurements (high-speed videos) classified as one of
the cases described in figure 6.1. The image sequences exemplify each subgroup. Those
measurements have the same D∗ as the mean value of the subgroup they represent. The
piercing of the jets presents a sustained change for cases with D∗ . 3. The bullet jets
were only observed in a narrow band (0.08 . D∗ . 0.22). The numbers indicate time in
µs. The inter-frame time in the upper row is 10 µs. The length of the scale bar is 500 µm.
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The classification performed in figure 6.7 makes clear that the difference between the bul-
let jets and the standard jets is not only given by the reduced diameter of the liquid jet.
On top of that, there are at least four distinctive aspects observed exclusively in the bullet
jet case: 1- The splash is always open to the atmosphere (see appendix, section 6.5.2);
2- The gas cavity does not collapse but it folds into an elongated cavity; 3- due to 2 the
gas cavity shape is significantly more stable (it hardly fragments) and; 4- The liquid jet
reaches distances of several times the maximum radius of the initial cavity.
The differences in the shape stability observed for the distinct cavity types can be un-
derstood by analysing the maximum pressure reached within the gas phase in each case,
estimated from the numerical simulations. In the case corresponding to figure 6.1 (b), the
full collapse of the cavity occurs 1 µs after the jet touches the opposite wall (see figure 6.7),
reaching a gas pressure of around 23 bar. For the case in figure 6.1 (c), the collapse is com-
pleted approximately 15 µs after the jet pierces the cavity wall, reaching a lower pressure
of around 5.5 bar. In the case of the bullet jets, the maximum pressure reached during
the whole lifetime of the jet is barely above the atmospheric (i.e. 1.2 bar), explaining why
the cavity remains as a single piece in most of the cases.
The values forD∗ shown in figure 6.7 are strictly valid for h > 50 µm (i.e. D∗ . 0.085). For
smaller depths (blue dots) the portion of the laser plasma spot that is actually submerged
changes, and then there is a loss of accuracy. As shown in the appendix, section 6.5.2,
the cavities start to be open to the atmosphere at h . 175 µm. This value is in agreement
with the VoF simulations.

6.3.6 Shape factor of the bullet jets

The bullet jet formation dynamics are only dependent on the interplay of the inertially
driven ejection of liquid and the pressure-driven closure of the splash curtain. Therefore,
we expect that this type of jet can be produced for a broad range of cavity sizes. To
test that idea, we produced splashes/cavities of different sizes by adjusting the energy
of the laser pulses. In order to observe a bullet jet in each case, the distance where the
laser light was focused had to be corrected. Here, we defined Rcm as the mean radius of
the submerged hemispherical cavity just before the downwards jet crosses the water-free
surface level. Figure 6.8 shows a comparison of the shape of cavities with radii in the
range of 150 µm ≤ Rcm ≤ 600 µm. The upper row of figure 6.8 shows the submerged
cavities at Rc = Rcm. The images in the lower row present the same cavities in a later
moment when the bullet jet is fully developed, i.e. when the transition from a toroidal to
a “cylindrical” cavity is complete.
To study the jet’s shape we have defined two dimensionless quantities: a shape factor
given by lbj/wbj and a “volume reciprocity” factor V |Rcm

/Vbj. Here, lbj and wbj represent
the length and the equivalent diameter of a cylinder computed from the area of the
elongated cavity in the recordings. V |Rcm

and Vbj are the volume of the hemispherical
cavity at Rc = Rcm and the equivalent bullet jet cylindrical volume (i.e. gas plus liquid)
computed from lbj and wbj, respectively. Interestingly, both factors remain approximately
constant in the measurements included in figure 6.8, being lbj/wbj = 3.5 ± 0.1 and
V |Rcm

/V |lbj = 0.78 ± 0.03. Similarly, we have found a proportionality constant of ∼ 3.5
between lbj and Rcm, then the diameter wbj of the bullet jets is similar to Rcm (at least
in the studied range). These values may not hold for much bigger bubbles, where the
gravity and the buoyancy forces acting on the splash and the elongated cavity might play
an important role in the jet dynamics.
Regarding the jet tip velocity, we found a clear correlation between the speed at full
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Figure 6.8: Bullet jet shape factor. (upper row) It shows the submerged cavity just
before the liquid jet crosses the surface level. (lower row) These images present the
same cavities at the moment when the bullet jet is fully developed. (a) Rcm = 149 µm.
(b) Rcm = 229 µm. (c) Rcm = 316 µm. (d) Rcm = 393 µm. (e) Rcm = 564 µm. (f)
Rcm = 592 µm. See online supplementary movie 7.

development of the jets and the average area of the cavity (which is proportional to the
jet tip section). As a rule of thumb, we observed that thinner bullet jets move faster than
thick ones. This is consistent with the simulated results for bubbles/cavities of different
sizes (producing jets of different thicknesses). For the measurements included in figure 6.8,
the jet tip speed decays roughly by 40 % when comparing the smallest bubbles with the
bigger ones. The discrepancy in the speed of the jet tip exists also before the jet pierces
the lower part of the cavity but in a lesser proportion. This suggests that the energy loss
responsible for the tip deceleration is mostly due to the impact of the jet on the wall and
the posterior drag acting on the cavity front. In the long term, the higher speeds of the
smaller jets would lead to increased drag forces which make them lose their momentum
much faster as well. However, an extensive statistical study, supported by a theoretical
analysis, would be required to establish a robust correlation between the main parameters
involved in the jet’s translational dynamics.

6.3.7 Surface curvature effect

Due to the “local” nature of the phenomenon, the bullet jets can occur in a wide range of
curvatures of the liquid surface (i.e. as long as the cavity size is lower than the curvature
radius of the surface). Figure 6.9 presents a measurement of a bullet jet produced on the
top of a water meniscus sitting on a 3.6 mm glass capillary illuminated by a white LED
lamp. This configuration allows us to visualise the jet’s internal structure with remarkable
clarity, although the proportions of the cavity might look distorted in the region close to
the capillary surface due to its curvature [85]. The video corresponding to figure 6.9 makes
evident how the initially rough surface, observed when the liquid jet tip emerges from the
cavity lower wall, disappears as the jet penetrates further in the liquid. Both the gas and
liquid phase turn into a smooth and stable front probably due to the stretching of their
surfaces. The initial roughness is caused by the entrance of liquid drops (from the top)
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which happens during the downward jet formation. This feature is not well reproduced
by the numerical simulations.
When a slender object enters a liquid, the shape of the gas envelope around it is defined by
its tip [230]. Interestingly, the tip of the bullet jet resembles the one of a flat cylinder and
therefore displaces the water accordingly. Additionally, figure 6.9 depicts the characteristic
shape of the upward jet arising from the cavity’s initial location, which occurs shortly
before the jet’s tail detachment from the liquid surface. The shape of the upward jet is
clearly related to the spherical form observed in the downward jet tail (see the first frame
of the lower row in figure 6.9). More details about the bullet jets induced within a drop
are discussed below in figure 6.10.
Another interesting feature of “bullet” jets is that they always point in the direction
normal to the canopy at the moment of closure. Due to the fine focusing of the laser
pulse achieved in our experiment, the resultant plasma is confined to a small region (i.e.
with a size of tens of micrometres). As a consequence, the canopy/water bell axis points
normally to the liquid surface in the spot the laser cavity is produced. Panels (b) and
(c) of figure 6.9 show some examples of the latter. In figure 6.9 (b) three “bullet” jets
were produced by focusing the laser at different locations along the surface of the water
meniscus. The image is a superimposition of these three experiments which demonstrates
that for a hemispherical droplet, they point towards the geometrical centre. The same
behaviour was observed in a case where the laser was focused on the lower side of a
pendant drop, as shown in figure 6.9 (c). This last example gives an account of the weak
effect of gravity on the dynamics of these millimetric cavities.

6.3.8 Jet impact on a solid surface and potential applications

As discussed in the previous sections, the bullet jet’s evolution is mostly defined by the
“local” dynamics of the splash, instead of the boundary conditions outside of the region
where the laser cavitation takes place (for instance a neighbouring solid wall). This, com-
bined with the particularly long distances that the jet can reach (∼ 12 times Rcm) and
the total length of the liquid stream (∼ 3 times Rcm), make the bullet jets potentially
useful for certain applications, specifically, applications dealing with the cleaning of mil-
limetric surfaces [80], membrane poration [98] or even micro-vaccination or drug delivery
platforms [12, 13, 232]. The bullet jet could be particularly useful in systems with limited
access, for example one which can only be accessed by optical means.
This feature is analysed in figure 6.10 (a). There, the bullet jet is induced at the top of
a drop placed on a rigid surface covered by paraffin tape (hydrophobic). The temporal
evolution of the jet speed in this case is very similar to the one observed in figure 6.9 until
the jet tip hits the rigid wall, meaning that the jet is not aware of the wall’s presence
during its formation. Once the jet impacts the target (i.e. the rigid bottom), it can
produce a highly localised elevated pressure for a few microseconds. Taking into account
the optical distortion produced by the drop curvature on the displacement of the jet, the
water column hits the surface with a speed of ∼ 11 m/s in the example of figure 6.10 (a).
At this speed, the target surface experiences a quick transient overpressure (i.e. the water-
hammer effect) followed by a milder pressure given by the stagnation pressure [235]. A
representation of the liquid jet flow on the solid boundary is given in figure 6.10 (b). It
is worth mentioning that the impact speeds observed during these trials should be high
enough to produce the piercing of a soft material or biological tissue, as discussed in Cu
et al. [12], Oyarte Gálvez et al. [13], and Robles et al. [232].
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Figure 6.9: Bullet jet internal structure. The jet was produced on the curved surface
of a water meniscus sitting on the top of a (filled) glass capillary. The image sequence
reveals the details of the liquid jet inside the elongated cavity. (a) The width of the six
upper frames is 4.6 mm. The zoomed images have a width of 1.15 mm. In addition to
the clear view of the jet interior, the formation of an upward jet arising from the splash
location is shown. The numbers indicate time in µs. See online supplementary movie 8.
(b) Controllability of the jet direction. (c) Bullet jet on the side of a pendant drop of
∼ 2 mm.
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Figure 6.10: “Bullet” jet impacting a rigid surface. The numbers in the frames represent
the times (after the laser shot) in µs. (a) The water drop had a height of 1.4 mm and it
was sitting on paraffin tape fixed on a glass plate. (b) Illustration of the jet flow on the
target surface. (c) Simulation corresponding to the case in (a). The frames were split to
show the pressure (left) and velocity (right) fields. (d) Detailed view of the pressure/flow
around the region of impact of the jet. The jet hits the wall with U∼ 23m/s and reaches
a stagnation pressure of ∼ 3.4 bar. Full videos available in online supplementary movies
9 and 10.

The simulated dynamics of a bullet jet produced at the top of a drop is depicted in
figure 6.10 (c). The bullet jet’s internal structure noticed in the simulations are in excel-
lent agreement with the experimental observations presented in figure 6.9. The numerical
results also confirm how the jet “ignores” the presence of the solid boundary downstream
until it gets very close to it, as observed in figure 6.10 (a). Once again, we found some dis-
agreement between the speed measured from the experimental jet and the one computed
for the drop in figure 6.10. In this measurement, the thickness of the jet front is visible in
the images. The jet cross section in the experiment of figure 6.10 (a) was around 51 µm,
and just half in the simulated jet.
From an applied point of view, the impact speed of a bullet jet is much slower than the
one found in typical bubble jets used in particle removal [80, 117]. The same goes for
the overpressure they produce on a surface. In spite of that, the bullet jets exhibit an
extended flow duration (between 100 µs and 250 µs) compared with the ∼ 5-10 µs usually
observed in regular jets. This relative increment in the shear flow can be relevant for
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surface contamination removal. While the initial water hammer pressure can effectively
detach particles from the surface, the extended flow coming afterwards would drive the
particles away and prevent them to fall on the same spot. A detailed view of this process
is shown in figure 6.10 (d). After impact the liquid jet spreads over the surface presenting
some hydraulic jumps (e.g. at 240 µs). By the end of the sequence (i.e. at ∼ 380 µs) a
laminar flow is established close to the stagnation point and a vortex ring flow is formed
at its vicinity.

6.4 Conclusion

We have reported on a laser-induced liquid jetting phenomenon that is caused by the
closing of a splash sheet. This particular type of cavity is open to the atmosphere and
does not collapse inertially, as observed in previous reports on cavitation bubbles near a
free surface. Instead, a submerged gas volume is pierced by a liquid jet. Both the gas and
the liquid jet travel away from the free surface as a unit and considerably deeper into the
pool than typically observed in jetting bubbles.
The closure of the liquid curtain that leads to the formation of a water bell was first ex-
plained using a simple model in section 6.3.2. Those simulations revealed that the sealing
and later collapse of the water splash is provoked by a pressure difference between the
cavity interior and the atmosphere. Furthermore, they showed how the surface tension has
an almost negligible influence on the splash dynamics. These conclusions were confirmed
by the OpenFOAM simulations presented in section 6.3.3. The highly detailed numerical
simulations allowed us to further understand the physical mechanisms behind the bullet
jet formation.
In spite of the model’s failure to account for the fine “mist” initially expelled from the
ablated liquid surface (and later observed during the water curtain closure), the forma-
tion and later dynamics of the bullet jets were in good agreement with the experiments.
One aspect to improve on the simulations would be to reproduce the asymmetric splash
observed in the initial phase of water bell sealing by implementing a full 3D simulation
scheme. As the radial inflow is initially not perfectly symmetric, the experimental down-
ward jets are slightly thicker than the ones computed by the model. The latter has a
significant impact on the later evolution of the jet, in particular after it pierces the sub-
merged cavity and flows into the liquid pool. The simulations also explained the origin
of the two liquid jets emerging from a stagnation point at the top of the water bell im-
mediately after the closure of the canopy. While the upward jet grows away from the
liquid surface, the downward jet impinges on the submerged cavity and gives origin to
the toroidal bubble that evolves into the elongated gas cavity surrounding the bullet jet.
That particular liquid flow induces a vortex ring on both the gas and liquid phases on the
upper part of the cavity. The simulations proved that the bullet jet is solely a consequence
of the water bell’s inertial collapse, and not a vorticity-driven jet.
The specific conditions necessary for the generation of this kind of jet were found through
a parametric study, finding bullet jets only in a range of the normalised stand-off dis-
tance D∗ comprehended between 0.075 and 0.25. Additionally, the parametric analysis
has shown in detail the transformation happening in the bubble evolution when D∗ is
gradually reduced, also confirming a variation in the downward jet thickness as the main
changing factor.
We found within a small range of cavity sizes an invariability of the bullet jet’s shape
and expect that this holds for bubbles of larger volumes, too. While bigger cavities would
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be difficult to achieve with lasers, electric breakdowns through sparks or even explosive
charges at a proper shallow depth below the free surface may be used to explore this
further. Since gravity would start playing a relevant role for bubbles with a diameter of
the order of a meter, the bullet jets might occur in a different range of stand-off distances
or even have a slightly changed shape factor. Related to the jet size, we also observed a
clear difference in the jet speeds of bubbles with distinct thicknesses. While jets produced
by small splashes are much faster at the instant of the jet formation, the increased drag
forces make them lose their momentum much faster as well.
The bullet jets have many interesting properties like: 1- the possibility to control their
direction independently of the boundary conditions close to the inception point (e.g. ob-
jects or rigid walls); 2- the relatively “long” distances that the liquid jets can travel; and 3-
the sustained flow that they can deliver to a specific region of a surface accessible only by
optical means. The combination of these features could be relevant for targeted cleaning
through micro-jet applications, and also for the development of a micro-injection system.
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6.5 Appendix

6.5.1 Variation of the maximum cavity radius Rcm as a function of the depth
h.

As discussed in section 6.1, the presence of a boundary of any kind greatly affects the
shape taken by the laser-induced bubble during expansion. Due to the lack of sphericity
of the gas cavity, the maximum radius reached by a bubble produced with identical initial
conditions might change with the distance to the boundary (h). For the case of bubbles in
the vicinity of a free surface, the situation is more dramatic, since the bubble not only is
deformed, but also a part of its gas content is ejected into the atmosphere. In general, the
maximum radius achieved by the submerged cavity matches the definition of Rcm given
in section 6.3.2. The strong dependence of Rcm on h makes the adimensional parameter
γso = h/Rcm behave non-linearly in shallow water or even might take multiple values in
extreme cases, e.g. if Rcm(h) changes much faster than h.
The measurement of the depth h is another factor that might introduce uncertainties
in the definition of a stand-off distance. The distance h is usually measured from the
centre of the laser plasma captured through high-speed photography. However, a precise
determination of the plasma centre might be difficult for some experimental conditions
due to spurious reflection (and diffraction) of the plasma light on the surrounding media,
combined with the long exposure times of typical cameras (at least 1 µs). Additionally, h
has a strong dependence on how well-defined the air-water interface is in the video frames,
which in turn depends on the alignment of the liquid surface and the camera, the precise
liquid level and the illumination characteristics. In order to overcome those issues, we have
measured h from the reflection of the shock wave produced by the plasma, as shown in
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Figure 6.11: Characterisation of the cavities for different depths h. a) Measurement
of h using the shock wave reflection on the liquid surface. The inset shows an example
of the laser plasma spot next to a scale bar with 100 µm. b) Relationship between the
average maximum radius of the submerged cavities (Rcm), the stand-off distance D∗, and
the adimensional parameter γso = h/Rcm, for different depths (h). The curves summarise
126 individual measurements. The vertical dashed line indicates the minimum depth
producing a close cavity.

Figure 6.11 (a). The early interaction of the reflected shock wave with the bubble seems to
have a negligible effect on the bubble expansion dynamics, especially when compared with
the effect of the boundary displacement on the liquid surface. In any case, every aspect
affecting the bubble dynamics should be understood as a consequence of changing the
bubble inception distance, and then those are considered in the system characterisation
approach using D∗. In the inset of figure 6.11 (a), the laser plasma spot was photographed
using a combination of optical filters, setting the lowest exposure time available in the
camera (200ns) and adjusting the camera trigger to stop the image acquisition just before
the vapour starts to expand.
Figure 6.11 (b) presents a measurement of the dependence of the average Rcm as a function
of h. There, the non-linear relationship between Rcm and h becomes evident. For depths
below 800 µm (i.e. D∗ ∼ 1.4) the cavity radius (measured as depicted in the figure
inset) matches the unbounded bubble radius. For depths between 175 µm and 800 µm the
cavity remains closed, but as part of the gas expands above the water level (see appendix,
section 6.5.2), the maximum radius is significantly reduced. When the cavity is generated
above h = 175 µm the cavity starts to be open to the atmosphere, and then Rcm gets
smaller at an accelerated pace when the laser is focused closer to the surface. For h <
50 µm the size of the plasma starts playing a major role, considering that part of the
laser light might be focused outside the water, producing smaller amounts of vapour and
thus smaller cavities. Figure 6.11 (b) also presents a comparison between D∗ and γso.
These two adimensional parameters are quite similar for h > 700 µm (D∗ ∼ 1.2), but
for lower values of h the values of the parameters are progressively different. For depths
h . 300 µm the value of D∗ is around two thirds of the one of γso computed at the same
h, and half when h . 100 µm.
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6.5.2 Splash dynamics for different depths h.

As discussed in section 6.3.5, one of the conditions for the formation of a bullet jet is
that the cavity is produced close enough to the surface to have a splash open to the
atmosphere. Figure 6.12 presents high-speed video recordings of the splash produced
by the laser on a water meniscus at different depths. The meniscus was produced by
overfilling a 3.6 mm glass capillary with the liquid. The slight curvature of the water
surface has no effect on the type of splash produced. The images show how the evolution
of the splashes changes significantly with h. Those can be related to the dynamics of
the submerged cavities presented in figure 6.7. The transition from a closed to an open
cavity can be seen in figure 6.12 (d). Interestingly, the water “dome” of the gas pocket
becomes unstable during expansion and several small liquid filaments grow from it, as
previously shown by Thoroddsen et al. [196]. In all cases, the collapse of the cavities
above the liquid surface, for instance the water bell, gives origin to an upward jet (not
shown in figure 6.12) at around 120 µs [220]. For the sake of completeness, we included an
image sequence of this later vertical jet in figure 6.13. These measurements are the same
ones presented in figure 6.12, taken using a second camera (in simultaneous) set with a
lower temporal resolution and an extended temporal window. The images show how the
shape of the upward jet also depends significantly on the inception depth of the cavity,
as reported by Chen et al. [214], Li et al. [211], and Bempedelis et al. [217].
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Figure 6.12: Splashes produced on the top of a water meniscus by a laser-focused at
different depths h. a) h ≃ 0 µm. b) h ≃ 45 µm. c) h ≃ 91 µm. d) h ≃ 156 µm. e)
h ≃ 221 µm. f) h ≃ 327 µm. The gas cavity is open to the atmosphere for depths lower
than ∼ 175 µm. The time between frames is 1.8 µs (25 µs of total duration).
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Figure 6.13: Long term visualisation of the splashes presented in figure 6.12. The depth
(and labels) are the same as figure 6.12. Here, the videos were recorded at 72 kfps (333 µs of
duration). The frame height was 1.91 mm.
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7 Bubble nucleation and jetting inside a millimetric

droplet

This work has been published in [25]:

J. M. Rosselló, H. Reese, K. A. Raman, and C.-D. Ohl. “Bubble nucleation and jet-
ting inside a millimetric droplet”. Journal of Fluid Mechanics 968, A19 (2023)

In this work, we present experiments and simulations on the nucleation and successive dy-
namics of laser-induced bubbles inside liquid droplets in free-fall motion, i.e. a case where
the bubbles are subjected to the influence of a free boundary in all directions. Within
this spherical millimetric droplet, we have investigated the nucleation of secondary bub-
bles induced by the rarefaction wave that is produced when the shock wave emitted by
the laser-induced plasma reflects at the drop surface. Interestingly, three-dimensional
clusters of cavitation bubbles are observed. Their shape is compared with the negative
pressure distribution computed with a computational fluid dynamics model and allows
us to estimate a cavitation threshold value. In particular, we observed that the focus-
ing of the waves in the vicinity of the free surface can give rise to explosive cavitation
events that end up in fast liquid ejections. High-speed recordings of the drop/bubble
dynamics are complemented by the velocity and pressure fields simulated for the same
initial conditions. The effect of the proximity of a curved free surface on the jetting
dynamics of the bubbles was qualitatively assessed by classifying the cavitation events
using a non-dimensional stand-off parameter Υ− that depends on the drop size, the bubble
maximum radius and the relative position of the bubble inside the drop. Additionally,
we studied the role of the drop’s curvature by implementing a structural similarity algo-
rithm to compare cases with bubbles produced near a flat surface to the bubbles inside
the drop. Interestingly, this quantitative comparison method indicated the existence of
equivalent stand-off distances at which bubbles influenced by different boundaries behave
in a very similar way. The oscillation of the laser-induced bubbles promotes the onset of
Rayleigh-Taylor and Rayleigh-Plateau instabilities, observed on the drop’s surface. This
phenomenon was studied by varying the ratio of the maximum radii of the bubble and
the drop. The specific mechanisms leading to the destabilisation of the droplet surface
were identified.

7.1 Introduction

Phase explosion in confined liquid volumes has recently gained interest because of its con-
nection with thriving research areas like x-ray liquid crystallography [236], x-ray hologra-
phy [237, 238], extreme UV light, and plasma generation [239]. A better understanding
of the interaction of high-power lasers with small liquid particles is also relevant in laser-
based atmospheric monitoring techniques [240, 241] or in optical atomisation techniques
that can be applied to the production of airborne transported micro-drops used as drug
carriers [242]. At the heart of all of these research fields is the injection of high-power
photons into a small liquid sample, the initiation of phase transition from liquid to vapour,
the rapid pressure fluctuations, and the successive complex fluid mechanics driven by this
impulsive energy input. In this study, we want to shed light on the fundamental flows
that can be induced in liquid samples once this phase transition has been initiated. In
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particular, we focus on the fluid dynamics within a spherically confined liquid sample af-
ter the violent phase explosion of the vapour bubble induced by a high-power laser pulse.
We explore the non-spherical dynamics of vapour bubbles within a liquid droplet, i.e.
surrounded by free boundaries only. Bubble dynamics in droplets have so far mostly been
studied from the perspective of destabilisation of the liquid-gas interface of the droplet
[118, 196, 197, 243–247]. Here, we explore the bubble dynamics within the droplet [248].
Pulsed lasers can be focused into optically transparent media to induce explosive bubble
nucleation by dielectric breakdown. This process is accompanied by the emission of an
acoustic shock wave with an amplitude on the order of GigaPascals depending on the
pulse energy, duration, and wavelength. For instance, the initial amplitude of the shock
wave (i.e. at the edge of the plasma rim) in water can be in the range from 2.4 GPa to
11.8 GPa for a 6 ns laser pulse with an energy between 1 mJ to 10 mJ and a wavelength
of 1064 nm focused with a numerical aperture (NA) of 22◦ [249, 250]. Recently, the ini-
tial shock wave amplitude produced by similar nanosecond laser pulses of 24 mJ (NA =
10◦) was measured with a novel x-ray probing technique, obtaining peak values of around
20 GPa [237].
When a laser-induced cavity is produced in a confined space with free boundaries, like a
droplet, most of the sound wave energy reflects back from the interface with an inverted
phase, meaning that the original shock wave is transformed into a rarefaction wave. If
the negative pressure amplitude of the reflected wave is below the cavitation threshold
of the liquid, a trail of bubbles is nucleated after the wave passage. This effect is com-
monly observed upon wave reflection on the free boundary of a flat surface [251], nearby
bubbles [252], a liquid column [253] or, as we already mentioned, a drop [197, 248, 254–
258]. Laser cavitation in some of these configurations was lately applied in studies involv-
ing x-ray holography or x-ray diffraction to investigate the propagation of shock waves
in liquids [238, 259, 260]. The use of very small amounts of liquid prevents the X-rays
from being fully absorbed by the sample, thus improving the contrast of the X-ray im-
ages. This technique is suitable to study the properties of opaque liquids without optical
aberrations, it is less sensitive to distortions produced by wavy surfaces and also allows
retrieving information about the liquid density changes produced by the passage of the
pressure waves [237, 261], which represents an advantage over traditional optical imaging.
Another interesting aspect of the nucleation of bubbles in the proximity of a boundary
resides in their jetting dynamics. Laser-induced bubbles produced under different bound-
ary conditions have been widely studied, both experimentally and numerically. Perhaps
the case that got the most attention is the one of a bubble collapsing in the proximity of
a boundary of large extent, e.g. a solid boundary [4, 116, 128, 193, 262–265], an elastic
boundary [14, 101], or a free surface [24, 97, 211, 217]. In real-world conditions, the
boundary is of finite extent and the cavity may be spuriously affected by more than a
single boundary (for instance, the walls of a container or the liquid-free surface), exerting
a considerable influence on the direction of the jetting [89, 266].
The jet dynamics are frequently characterised by a stand-off parameter [88, 117, 193]
computed as the ratio of the distance between the bubble nucleation position and the
boundary (d) and the maximum radius attained by the bubble after its creation (Rmax).
If the cavity collapse occurs next to boundaries other than a plane, for instance, irregular
or curved surfaces [74, 194, 267–269] like pillars [94, 270], fibres [95], corners [18, 271],
crevices [272, 273], perforated plates [22, 135], or spheres [274–277], the anisotropy does
not have one predominant direction and thus the use of a single stand-off parameter (e.g.
d/Rmax) is no longer sufficient to fully characterise the system. The same situation arises
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in cases where the bubbles are produced in a constricted space, for example in narrow
channels [90, 91, 278], between two surfaces [231, 279], in a liquid column [280], or inside
a drop [118, 196, 197, 247, 248].
The dynamics of jetting bubbles inside drops or curved free surfaces have not been ex-
tensively explored. Recently, we have reported experimental and numerical results on the
formation of a jetting bubble in the proximity of a curved free boundary, given by the
hemispherical top of a water column or a drop sitting on a solid plate [24]. As a natural
extension of that work, we now present a study on the jet formation during the collapse
of laser-induced bubbles inside a falling drop. This is a particularly interesting case as
the bubble is surrounded entirely by a free boundary. From an experimental point, the
intrinsic curvature of the liquid surface offers a very clear view of the bubble’s interior.
The rapid acceleration induced by the bubble oscillations in the proximity of a free
boundary also gives rise to surface instabilities, in particular Rayleigh-Taylor instabili-
ties (RTI) [281–284]. This situation is more pronounced when the oscillating bubble wall
gets close to the free surface, as commonly occurs in reduced volumes like a drop [118,
200]. The Rayleigh-Taylor instability produces corrugated patterns on the liquid surface
that can grow and promote the onset of other instabilities like the Rayleigh-Plateau in-
stability. Furthermore, the multiple pits and ripples produced by the RTI on the liquid
surface can interact with the acoustic emissions of the oscillating bubble to generate a
fluid focusing which results in a thin outgoing liquid jet [285, 286].
This article is organised into different sections focusing on one of the above-discussed
aspects, i.e. the shock wave dynamics and the nucleation of secondary cavitation bub-
bles, the jetting dynamics of the collapsing laser-induced bubbles, and the formation of
instabilities on the drop surface as a consequence of the bubble oscillation.

7.2 Experimental method

The experimental method used to achieve controlled laser bubble inception inside a mil-
limetric drop is depicted in figure 7.1 (a). Individual drops were released from the tip of
a blunt metallic needle with an internal diameter of 330 µm (and an external diameter
of 600 µm) by the action of an electronic syringe pump KD Scientific - Legato SPLG110.
This device pushed a fixed volume of ∼ 12 µl of deionised water through the needle,
producing single drops with a radius of (1.42 ± 0.01) mm. After a drop was released it
travelled a distance of h = 30 cm in free-fall motion. Just before it impacted a glass plate
a pulsed laser was focused into the droplet to nucleate the cavitation bubble.
The pulse energy of the laser (Nd:YAG Q2-1064 series, pulse duration 4 ns, wavelength
1064 nm) could be varied between 1.9 mJ and 20.3 mJ and was focused with a microscope
objective (Zeiss LD Achroplan 20×, NA = 0.4) see bottom of figure 7.1 (a). In the ex-
periments, a standard microscope slide was placed on top of the laser focusing objective
in order to prevent wetting of its outer lens, which would provoke a significant distortion
of the laser beam. Accordingly, the protective glass was meticulously cleaned after each
drop impact.
The fall distance h was sufficient for the surface tension to stabilise the liquid into an ap-
proximately spherical shape, reaching a velocity of (1.7 ± 0.1) m/s upon laser arrival. At
the same time, the variation of the lateral position of the drop centre relative to the laser
focus was typically below 200 µm, which aids experimental repeatability. The vertical
position where the bubble is created within the droplet is controlled with some precision
by synchronising the laser pulse with the passage of the drop through a light gate. This
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Figure 7.1: Description of the experimental setup. (a) A water drop with a volume of
∼ 12 µl is detached from a cylindrical blunt needle (stainless steel, 600 µm of external
diameter) by gravitational forces. When the drop reaches a velocity of (1.7 ± 0.1) m/s
a cavitation bubble is produced inside it by a laser pulse with a duration of 4 ns and a
typical energy of (2.4±0.1) mJ. (b) Once reflected from the drop surface, the shock waves
emitted from the laser-induced bubble nucleate tiny bubbles inside the liquid drop. (c)
The bubble undergoes an asymmetric collapse with jetting, whose shape depends on the
position of the bubble inside the drop.

consists of a red laser diode paired with a photo-diode that triggers a digital delay gener-
ator Quantum 9520 which then fires the laser after a specified time.
The dynamics of the cavitation bubble within the droplet and the resulting surface insta-
bilities were captured in high-speed videos using a Shimadzu XPV-X2 camera equipped
with a photography macro lens Canon MP-E 65mm f/2.8 1-5×. A diffused back illu-
mination from a continuous white LED lamp SMETec (9000 lm) in combination with
the curved nature of the drops allowed us to obtain clear images of the droplet interior.
Furthermore, the curvature of the liquid refracted the light in a way that reveals the
internal structures of the jetting bubbles, knowing that it distorts the apparent position
and shape [85]. For direct comparison of the experimental and the numerical results, an
in-house script was applied to the simulated results to compensate for such image dis-
tortions [287]. This correction (based on Snell’s law) was also used to obtain the “real”
nucleation position of the laser bubble.
Due to the limited number of recorded frames, the framing rate of the high-speed videos
had to be adjusted to capture the important features of the phenomena under study. For
instance, to visualise the shock wave propagation and the resulting nucleation of bubbles
from the reflected rarefaction wave, see figure 7.1 (b)) required a frame rate of 5 Mfps
(i.e. the maximum achievable by the camera), while the temporal evolution of the jets
(depicted in figure 7.1 (c)) and the instabilities of the drop surface are captured already
at 200 kfps or 500 kfps, respectively.
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Figure 7.2: Schematic of the drop interior with relevant dimensional parameters.

7.2.1 Definition of a stand-off parameter for a curved boundary Υ−

In order to consider the curvature of the drop’s surface in the characterisation of the jet
dynamics, we defined a non-dimensional coefficient Υ− that combines two non-dimensional
numbers, each one representing a relevant dimension of the problem. First, we use the
stand-off distance D∗ [117] as the ratio of the bubble “seeding” position (d) and the
maximum radius achieved by the bubble when produced at the centre of the spherical
drop (R∗

max). The second non-dimensional distance χ is given by the ratio of the drop
radius (Rd) and the distance of the bubble from the drop centre (r). To summarise,

D∗ =
d

R∗
max

, (7.1)

χ =
Rd

r
=

Rd

Rd − d
, (7.2)

Υ− = χD∗ =
Rd

(Rd − d)

d

R∗
max

. (7.3)

A schematic representation of the aforementioned parameters is presented in figure 7.2.
Here, R∗

max is tightly related to the energy of the laser pulse [117] and, as we explain later
in section 7.4.3, it also varies slightly with the drop size as Rd −→ ∞. For the purpose of
having reproducible results, the use of Υ− should be limited to values of R∗

max for which
the bubble is contained inside the drop volume (i.e. 0 ≤ R∗

max < Rd) and the drop shape
is not significantly distorted by surface instabilities [118]. Additionally, the symmetry of
the drop/bubble configuration implies that d ≤ Rd.
In principle, the parameter Υ− behaves similarly as the traditional stand-off distance (e.g.
d/Rmax), however, the addition of χ as a weighting factor represents a measure of the
influence of the boundaries all around the bubble, and not only its closest point. This
means that the regions of the free surface in directions other than θ = 0◦ could also be
relevant to the bubble dynamics as the separation from the bubble and the boundary
in those angular directions gets smaller, i.e. when the radius Rd is decreased and the
bubble is located at a reduced d. Alternatively, Υ− could be understood as a measure of
the anisotropy, with high anisotropy at the liquid boundary (d −→ 0) and perfect isotropy
at the bubble centre, d = Rd.
The tight relation between the traditional stand-off distance and Υ− is also evidenced by
the following considerations and limiting cases:

• Υ− rises monotonically with d for a fixed laser pulse energy (or R∗
max).
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• In the limit Rd −→ ∞ the traditional stand-off distance is recovered.

• If the bubble is near the drop wall, d −→ 0, then Υ− −→ 0.

• If the bubble is near the drop centre, d −→ Rd, then r = 0, Υ− −→ ∞, and we recover
the traditional unbounded case, in which the bubble collapses spherically due to
symmetry.

It is important to note that Υ− can take the same value for different combinations of
d, R∗

max, and Rd. Therefore, two identical values of Υ− computed from two different
values of D∗ and χ do not necessarily result in identical bubble dynamics. A comparison
between cases could be made by fixing the value of one or two of the parameters. For
example, the effect of the surface curvature Rd on the bubble dynamics can be evaluated
by maintaining D∗, or the influence of the “seeding” depth d can be studied by fixing
the drop size Rd and the energy of the laser pulse. In this way, the parameter preserves
the same functionality as the traditional stand-off parameter [117] but now includes the
surface curvature dimension.

7.3 Numerical method

Volume-of-Fluid simulations were carried out in OpenFOAM-v2006 [125] using a modi-
fication of the solver compressibleMultiphaseInterFoam. This modified version is called
MultiphaseCavBubbleFoam and was already implemented in previous works to study the
formation of the “bullet jet” [24] and micro-emulsification [23]. In those works, similar
simulations of a single expanding and collapsing bubble in the vicinity of a liquid-gas
and a liquid-liquid interface were performed, respectively. Since the solver is explained
in detail there, we will only give the information that is specific to the present case of a
bubble created in a free-falling liquid drop.
Considering the approximate rotational symmetry of the experimental configuration, we
carried out the simulations as quasi-two-dimensional. The computational domain repre-
sents a slice of a cylindrical domain with a height of 3 mm and a radius of 3 mm, which
is filled with a gas representing the surrounding air at ambient pressure. The domain is
divided into a square mesh of cells with a width of 40 µm, which is then further refined
to a cell width of 10 µm in the region occupied by the liquid drop. The boundaries of the
domain in the radial and axial directions are open, wave transmissive boundaries.
A slightly prolate ellipsoidal liquid drop representing a falling water drop is initiated in
the centre of the cylinder with an axial radius of 1440 µm and a radial radius of 1400 µm.
We neglect the relative motion of the drop through the air and thus take the drop and the
air to be initially at rest. This is because the speed of the falling drop and the effects of
drag are negligible when compared with the speeds developed by the bubble wall and the
jets. We also neglect any subsequent gravitational acceleration, since its effect is negligible
on the time scales considered. Inside the drop, a bubble is seeded on the symmetry axis
with an initial over-pressure of 1.69 GPa and an initial radius of 25.7 µm. The initial
pressure was chosen such that the initial bubble gas density equals the density of the
surrounding liquid, in accordance with equation (7.4). This is based on the assumption
that the laser energy deposition occurs on a much smaller time scale than the expansion
of the bubble. The initial bubble radius R0 is chosen to match the maximum expansion
R∗

max in the experiment.
The bubble contents are modelled with the same properties as the gas surrounding the
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B in MPa ρ0 in kg/m3 p0 in Pa γ µ in mPa s
liquid 303.6 998.2061 101325 7.15 1
gases 0 0.12 10320 1.33 0.013

Table 7.1: Tait equation of state parameters and dynamic viscosities µ of the simulated
fluid components. Both gaseous components are treated as the same type of gas.

liquid droplet but are calculated as a separate component. This allows us to apply a mass
correction to the gas in the bubble only that accounts for the mass loss due to conden-
sation during the bubble’s first oscillation cycle. This is done as a one-time correction at
the time of maximum bubble expansion, at which the bubble gas density is reduced by
70 %. More details can be found in our previous work [24]. The surface tension between
the liquid and the gases is 70 mN/m, and that between the gases is 0. The Tait equation
of state is used for all components,

p = (p0 +B)
( ρ
ρ0

)γ
− B , (7.4)

with the parameters given in table 7.1. Here, γ is the adiabatic exponent.
The output of the numerical data was done in intervals of 10 ns to capture shock wave
propagation dynamics, and every 1 µs for the bubble and jetting dynamics.

7.4 Results and discussion

The inception of a laser-induced bubble inside a liquid drop gives rise to a rich and complex
chain of events. We start with an overview of the fluid dynamics that are observed
following the creation of the cavitation bubble by the dielectric rupture of the liquid,
as shown in figure 7.3. Here, the bubble is nucleated off-centre and close to the upper
interface of the droplet. The fluid dynamics can be divided into three stages, which are
discussed in detail in the later sections. For now, we provide a brief description of these 3
stages: (1) The bubble is nucleated into a rapidly expanding vapour cavity that launches
during its deceleration a shock wave into the droplet, not visible in figure 7.3. Upon
reflection at the acoustic soft liquid-gas interface, the rarefaction wave propagates through
the drop leaving behind a trail of cavitation bubbles in certain regions where the wave
convergence produces sufficient tension to induce local acoustic cavitation, 2 µs ≤ t ≤ 6 µs
in figure 7.3. Depending on the location of the laser bubble the rarefaction wave may focus
in a reduced volume close to the interface, creating secondary cavitation and provoking
the ejection of a single jet at the opposite side of the laser bubble nucleation site (e.g.
t > 6 µs in figure 7.3). (2) In the second stage, the laser-induced bubble undergoes an
asymmetrical collapse from its maximum size. Here, the anisotropy of the boundary
conditions results in the formation of a jet, which starts as an indentation on one side
of the cavity and grows to pierce the bubble at the opposite extreme. In cases where
the laser cavity is created near the drop surface, we also observe the destabilisation of
the liquid surface by a Rayleigh-Taylor instability. (3) In the third and last stage, the
bubble re-expands after jetting, adopting a liquid-gas structure that depends mostly on
the stand-off distance (i.e. Υ−). On its second collapse, the cavity fragments and later
disperses due to the complex flow created by its first collapse.
In the following, the reported values of Υ− are computed for a surface curvature of 1.42 mm,
which corresponds to the mean radius of the drops produced in this work.
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Figure 7.3: Stages of the events developing inside the drop. The numbers indicate the time
in µs after the laser shot. In the first stage, spanning from t = 0 µs to t = 52 µs(framed
in red), a rarefaction wave (i.e. the reflection of the shock wave) produces a trail of
cavitation bubbles. For low values of Υ− a liquid jet is ejected from the extreme of the
drop opposite to the bubble inception. In the second stage, defined between t = 60 µs and
t = 106 µs(framed in blue), the bubble collapses after reaching its maximum size and a
jet forms. In some cases, a Rayleigh-Taylor instability (RTI) is observed near the bubble.
The third stage (framed in green) runs from t = 108 µs until the end of the video at
t = 214 µs. Here, the bubble re-expands after jetting and adopts a characteristic shape
during its second collapse that depends mostly on Υ−. The width of each frame is 2.70 mm.

7.4.1 Acoustic cavitation nucleation

The specific shape of the cavitation bubble clusters produced by the passage of the rar-
efaction wave is highly dependent on Υ−. This is because the negative pressure focuses
differently when the original shock wave is emitted from a different location. As the acous-
tic nucleation only occurs below a certain pressure threshold, the resulting bubble clouds
can assume complex three-dimensional structures. Figure 7.4 presents experimental re-
sults showing the temporal evolution of bubble clouds generated for different values of Υ−.
In this study, the bubble “seeding” position was varied by changing the delay between the
drop release and the laser shot, thus shifting the laser focus position along the vertical
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symmetry axis of the drop.
As aforementioned, the shock waves emitted from the laser focal spot will reflect from the
free boundary of the drop as a rarefaction wave. Due to the nearly spherical shape of the
drop, the reflected acoustic waves will focus in a region located at a similar distance from
its centre r (where the laser bubble was created) but on the opposite side of the drop.
In the case where the shock wave originates near the surface (i.e. Υ−. 1), the resulting
pressure distribution is characterized by a negative pressure zone moving close to the
liquid surface which produces a spherical shell of tiny cavitation bubbles, as displayed in
the panels (a) to (c) (and also (i) to (j)) of figure 7.4. This phenomenon occurs when
the sound reflects multiple times on the drop walls and travels circumferentially near
the liquid surface without a significant loss of intensity, which is usually referred to as
the “whispering gallery effect” [288]. As the rarefaction waves focus at a similar depth
where the shock wave was emitted, it produces explosive cavitation events close to the free
boundary and on the drop’s vertical axis. The rapid expansion of those larger cavitation
bubbles gives rise to the liquid jets shown in the first row of figure 7.3. A more detailed
explanation of the formation and dynamics of this particular type of jet will be published
elsewhere.
As the laser focusing depth d is increased, the negative pressure is distributed in larger
regions, but still, the nucleation of bubbles predominantly occurs on the side opposite to
the laser focus. Additionally, the bubble clusters turn from having the structure of a shell
(see panels (g), (h), and (i) of figure 7.4) into a volumetric cavitation cloud when the laser
bubble is generated near the drop centre, as shown in the panels (e) and (f) of figure 7.4.
This transition can be explained by analysing the pressure distribution dynamics with
the numerical simulations [197, 252, 289]. Figure 7.5 demonstrates the clear correlation
between the evolution of the acoustic pressure profile and the nucleation of secondary
cavitation bubbles. Furthermore, this correlation can be used to determine the cavitation
pressure threshold of the liquid by comparing the shape and the location of the negative
pressure front with the shape of the bubble cloud within the drop. Such a comparison was
only possible after applying a numerical algorithm to the simulated results to compensate
for the image distortions induced by the drop curvature. The last frames in panels (a)
and (b) of figure 7.5 display an overlap of both the experimental video frames and the
simulated pressure profiles. From the measurements, we found a consistent cavitation
threshold of approximately 4.5 MPa. Considering that we did not filter the water sample
we assume that the cavitation is most likely heterogeneous.
The acoustic cavitation thresholds reported for water in the literature vary strongly, de-
pending on the measurement method, water purity, gas saturation, and water tempera-
ture. Atchley et al. [290] used distilled, deionised, and filtered (0.2 µm) tap water irra-
diated by pulsed ultrasound and found thresholds between 0.5 and 2.0 MPa, depending
on the pulse duration and frequency. Sembian et al. [253] subjected a water column to a
single shock wave and found a cavitation threshold between 0.42 and 2.33 MPa. Biasiori-
Poulanges and Schmidmayer [258] compared numerical simulations and experiments of a
liquid drop subjected to a planar shock wave and found a threshold between 0.37 and
2.4 MPa. A similar shock front can be found when a droplet impacts on a solid surface
at a high speed (e.g. higher than 100 m/s) as studied by Kondo and Ando [254], Wu
et al. [256], and Wu et al. [257]. Assuming homogeneous nucleation, Ando et al. [289]
and later Quinto-Su and Ando [252] found a cavitation threshold of 60 MPa and 20 MPa,
respectively, comparing experiments and simulations of a reflected shock wave at a free
boundary. Therefore, the threshold value obtained in this work falls around the middle
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Figure 7.4: Acoustic cavitation inside a water droplet. The distribution of bubbles in
the liquid changes significantly with the position of the laser-induced bubble. The frame
width is 3.15 mm. The time between consecutive frames is 600 ns. (a) Υ− = 0.65. (b)
Υ− = 1.1. (c) Υ− = 1.7. (d) Υ− = 2.5. (e) Υ− = 7.5. (f) Υ− = 68. (g) Υ− = 13. (h) Υ− = 5.4.
(i) Υ− = 1.8. (j) Υ− = 0.9. Full videos of panels (b), (d) and (f) are available in the online
supplementary movies 1-3.
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Figure 7.5: Acoustic cavitation bubble clouds for laser-induced bubbles at different
relative positions in the drop. The frames compare the advance of the shock/tension
waves within the drop with the observed nucleation sites. The average drop diameter is
(2.84 ± 0.05) mm in all cases. The last frame of each series presents an overlay of the
frames and the cumulative minimum pressure after the first reflection of the shock wave
at the free boundary. The red line indicates the isobar of -4.5 MPa, i.e. the approximate
nucleation threshold pressure. (a) Here, the bubble is slightly off-centre (i.e. d ≃ Rd). (b)
Υ−= 5.4. (c) Change in the cluster dimensions with increasing laser pulse energy (indicated
in mJ). (d) and (e) present evidence of the formation of complex hollow three-dimensional
bubble structures. Here, Υ− is 3.5 and 1.45, respectively.

of the spectrum of values measured by other authors. Figure 7.5 (c) evidences a growth
in the secondary bubble cluster with increasing energy of the laser pulse, demonstrating
the resulting shift in the location of the cavitation threshold isobar for higher amplitudes
of the initial shock wave. It is relevant to point out that VoF simulations are notorious
for numerical diffusion which causes the shock wave to smear out over time. Because of
this, the simulations may underestimate the pressures reached in the experiments. Please
note that the VoF model does not account for phase transitions and the subsequent in-
teraction of nucleated cavitation bubbles with the finite amplitude waves. A model for
high-frequency waves interacting with small cavitation clouds that may be applicable
was recently developed by Maeda and Colonius [291]. Finally, panels (d) and (e) of fig-
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Figure 7.6: Bubble jetting is produced by a laser-induced bubble generated at different
relative positions inside the drop. The numbers indicate the time in µs. The length of the
scale bars is 1 mm. (a) Spherical oscillation case, Υ− = 203. (b) Weak jet case, Υ− = 3.9.
(c) Standard jet case, Υ− = 1.5. (d) Υ− = 0.44. (e) Bullet jet case, Υ− = 0.22. Full videos
are available in the online supplementary movies 4-8.

ure 7.5 exemplify some of the hollow three-dimensional bubble structures observed in the
experiments.

7.4.2 Bubble jetting

In the second stage presented in figure 7.3 the laser-induced bubble reaches its maximum
radius and then collapses. At this point, it becomes clear that a non-uniform distance
between the bubble and the free surface produces an asymmetric collapse, which culmi-
nates in a liquid jet. In this section, we explore the effect of varying the parameter Υ− (as
performed in section 7.4.1), but this time we lay focus on the development of the jets, as
shown in figure 7.6.
The experiments reveal that, as the position of the laser focus is varied between the centre
and the surface of the drop, the characteristics of the jetting change smoothly: For large
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Figure 7.7: Detailed view of the interior of a jetting bubble. The time between frames
is 2 µs. (a) Jet formation for Υ− = 1.6. The frame width is 1.46 mm. (b) Comparison
between experimental data and a simulation performed for Υ− = 2.9. The frame width is
1.38 mm. (c) Spray produced by air entering the gas cavity (in which the pressure is lower
than the atmospheric pressure) while the jet is formed. The frame width is 2.11 mm.

values of Υ−, a spherical rebound of the bubble without any jetting is observed. The
values of Υ− & 3.5 are accompanied by the formation of a very thin liquid jet crossing
through the centre of a weakly deformed bubble. In this “weak jet” case, the tip of the
jet separates from the main cavity when it starts to collapse during its second oscillation
cycle (see figure 7.6 (b)). For 1.2 . Υ− . 3.5, as in panel (c) of figure 7.6, the “whispering
gallery” effect becomes relevant, causing the inception of larger acoustic bubbles on the
side opposite to the laser cavity and the ejection of liquid driven by their expansion. The
deformation of the bubble in its rebound phase is significantly stronger than in panel (b)
of figure 7.6. As the laser is focused closer to the drop’s surface, i.e. 0.3 . Υ− . 1.2,
the expansion of the bubble provokes the onset of a Rayleigh-Taylor instability. This
can be seen in figure 7.6 (d) by the formation of several “spikes” growing from the thin
liquid film trapped between the cavity and the surrounding air. At the same time, the
bubble collapse (from t = 66 µs) results in an elongated cavity, similarly as in the “bullet
jet” case [24]. This behaviour is more pronounced for even smaller stand-off distances, as
presented in figure 7.6 (e). The dynamics of this particular jet are described in detail in
Ref. [24] and correspond to the case where the laser cavity is generated almost directly on
the surface of the drop (i.e. 0.01 . Υ− . 0.3). Here, atmospheric gas is trapped after the
closure of a conical ventilated splash and later dragged into the liquid by the liquid jet
that grows from a stagnation point located on the top of a “water bell” (at the bottom of
the frame at t = 36 µs). As a result, an elongated gas cavity is shaped and driven across
the drop.
The combined effects of the curved shape of the drop in addition to the diffuse illumination
lead to images of the interior of the gas cavity with remarkable clarity. A few examples
of this are presented in figure 7.7.
Panels (a) and (b) of figure 7.7, reveal the temporal evolution of the liquid indentation
into the bubble, as well as the toroidal shape acquired by the gas upon its collapse. More-
over, figure 7.7 (b) demonstrates the accuracy of the numerical simulations to reproduce
the jetting process. In panel (c) we see how a perforation of the thin liquid sheet between
the cavity and the atmosphere resulted in a spray of aerosol droplets ejected into the
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Figure 7.8: Scalability of the bullet jet in a millimetric droplet. The measurements,
organised in columns, show bullet jets formed from different splash sizes. In each column,
the upper frame shows the time at which the water bell closes. In the lower frame,
composed of two vertical stripes, the time at which the bullet jet is fully developed is
shown on the left, and a frame illustrating the position of the jet tip at an advanced
time indicated in µs is shown on the right. (a) Rwb/Rd = 0.16. (b) Rwb/Rd = 0.27. (c)
Rwb/Rd = 0.37. (d) Rwb/Rd = 0.56. (e) Rwb/Rd = 0.74.

cavity during jetting. This event can be explained by the lower pressure inside the bubble
compared to the atmospheric pressure and the disruption of the liquid on the upper side
of the drop caused by the RTI. The spray front spreads into the cavity and collides with
the lower wall of the bubble, disrupting the smoothness of the interface.
The bullet jet case of figure 7.6 (e) distinguishes itself from the other cases by its unique
features, i.e. its enhanced shape stability during its formation from an open splash, but
also by the near robustness against the surrounding fluid and geometry. Bullet jets have
been observed in shallow waters [14] and near flexible or rigid materials, without these
conditions affecting their dynamics. Furthermore, in a previous work [24], we demon-
strated that the bullet jet is scalable and independent of the orientation of the surface
with respect to gravity. In figure 7.8, we expand the list of remarkable robustness by
showing it to exist of various sizes even within a highly curved and finite volume. Here,
the bullet jet size was characterised by the ratio between the radius of the water bell
at its base (Rwb) measured right after its formation and the initial drop radius Rd (i.e.
Rwb/Rd).
The images depict that the penetration depth of both the gas and the liquid conforming
to the bullet jet is proportional to the initial splash size. For instance, in figure 7.8 (a) the
jet loses its momentum and stops around the middle of the drop, but it crosses the drop
for the larger splashes shown in the panels (c) to (e). Remarkably, in the latter case the
bullet jet occupies almost the entire drop while still preserving its characteristic features.
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The physics behind the evolution of the bubble jetting cases classified in figure 7.6 can be
further explained with the aid of numerical simulations, as presented in figure 7.9.

Figure 7.9: Numerical simulations of the temporal evolution of jets produced inside the
drop for different Υ−. The simulated drop has a height of 2.88 mm and a width of 2.8 mm
as measured in the experiments. The plot shows the gas and liquid phases along with
the velocity field. The time between frames is 26 µs for (a)-(c) and 30 µs for (d) starting
at t = 1 µs in the first frame. (a) Spherical oscillation case, Υ− → ∞. (b) Weak jet case,
Υ− = 3.896. (c) Standard jet case, Υ− = 1.518. (d) Bullet jet case, Υ− = 0.028.

Figure 7.9 (a) depicts a purely radial oscillation of both the gas and liquid, found when
the bubble is placed in the centre of the drop (i.e. Υ− → ∞). The simulations shown
in panels (b) and (c) of figure 7.9 were computed using the same Υ− measured from the
experimental cases displayed in the corresponding panels of figure 7.6. In general, the
agreement between the simulations and the experiments is excellent, even though small
variations in the size of the experimental and simulated bubbles show some differences
in the specific timing of their oscillation cycle. The resemblance can be seen in some of
the morphological features that characterise the dynamics of each type of jet at different
stages, like the width of the indentation formed during bubble piercing, the shape of the
cavity after the first rebound, and the way in which the second collapse evolves in each
case. More details on noteworthy features are provided below in figure 7.10.
In panels (a) to (c) of figure 7.9 the bubble is initiated with a much larger pressure than
the atmospheric gas outside the drop. This pressure difference, which is constant in all
directions, accelerates the liquid between the two gas domains. Since this force is pro-
portional to the pressure gradient, the liquid gets accelerated more strongly between the
bubble and the nearest part of the drop surface (where the liquid is thinner), causing the
drop to bulge out in that location. Within the first few microseconds of the explosive bub-
ble expansion, the pressure within the bubble decreases rapidly and reaches values much
smaller than the atmospheric pressure. Thus, the pressure gradient changes its direction
and now accelerates the liquid towards the bubble, which first slows down the cavity’s
expansion and afterwards causes its collapse. In the same way as in the expansion phase,
the thinnest part of the liquid experiences the strongest acceleration, which ultimately
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leads to a liquid jet indenting the bubble from the nearest part of the drop surface.
The case presented in figure 7.9 (d) differs greatly from the previous cases by the fact that
now the bubble is close enough to the drop surface to generate an open cavity, allowing
the ejection of the initially pressurised gas inside it into the atmosphere, and later the flow
of gas into the expanded cavity before the splash closes again. Once the cavity is closed, it
remains with an approximate atmospheric pressure, which prevents it from undergoing a
strong collapse as it occurs in the previously discussed cases (a) to (c). The radial sealing
of the splash forms an axial jet directed toward the centre of the drop, which pierces the
bubble and drags its content through the drop. More details on the mechanisms behind
the bullet jet formation can be found in Ref. [24].
As a consequence of the conservation of momentum, the collapse of the gas cavity gives
origin to a stagnation point, from which the liquid flows both inside the pierced bubble
and away from it in opposite directions. In particular, the stagnation point is not sta-
tionary but moves along the axis of symmetry, following a different trajectory in each
case. In the case of figure 7.9 (b) the stagnation point shifts towards the surface as the
bubble moves deeper into the drop. For the case in figure 7.9 (c) the stagnation point
does not reach the surface and its movement is less pronounced. In the bullet jet case,
shown in figure 7.9 (d), the stagnation point forms on the apex of the water bell (i.e. the
splash after its closure). It then trails the bell’s collapse and remains very close to the
drop surface afterward, moving slightly towards the drop centre while the bullet jet moves
across the drop.

Cavity dynamics on its second collapse

After the jetting, the subsequent re-expansions and collapses of the cavities are charac-
terised by the bubble’s and the drop’s distorted shapes and even more complicated flow
fields. A good example of this can be found in the second collapse of the bubbles analysed
in figure 7.10, which shows a significant dependence on Υ−.
Figure 7.10 compares the shape taken by the bubble for two cases with Υ− = 3.9 (panels
(a) and (b)) and Υ− = 1.9 (panels (c) and (d)). Interestingly, the flattened side of the
“teardrop” shape acquired by the cavity after the re-expansion develops a curved inden-
tation during its second collapse. The numerical simulations make clear that such an
indentation is created by the flow produced by an uneven pressure gradient on the cavity
surface. The shape of this ring-shaped indentation visibly changes with Υ−. For example,
the case presented in figure 7.10 (c) displays an annular bubble necking with the detach-
ment of two gaseous rings as the cavity shrinks. These concentric rings have two different
diameters and are arranged in two distinct planes, as highlighted in figure 7.10 (d).

Influence of Rd on the jet dynamics: Behavioural similarity vs. structural
similarity

The bubble dynamics observed in the falling drop case have many similarities with what
is typically seen in bubbles collapsing near a planar rigid surface [117] or a planar free
surface [24, 88]. Moreover, the analysis of the values of the stand-off parameter D∗ reveals
that each type of jet (qualitatively classified according to figure 7 in Ref. [24]) occurs in a
comparable range of values of D∗. One example of the latter can be found in figure 7.11.
The parallel found between cases with dissimilar curvature of the liquid surface suggests
that, contrarily to the reported observations for bubbles collapsing near concave solid
surfaces [269], Rd does not have a dominant role in the particular jetting regime adopted
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Figure 7.10: Detailed collapse dynamics of the gas cavity immediately after the jetting of
the laser bubble. Experimental (a) and simulated (b) view of the “weak” jet obtained when
Υ− = 3.9. The images were taken at 200 kfps. (c) Ring formation after the necking of the
cavity typically observed on cases with Υ− ≈ 1.9. The images were taken at 500 kfps. (d)
Direct comparison between experiment and simulation, revealing the precise flow pattern
leading to the ring detachment (indicated by the white arrows). The time between frames
is 2.5 µs. The colour scale in the simulations corresponds to the one in figure 7.9.

by the cavities when the bubbles are located near the free boundary. This statement was
confirmed by the numerical simulations depicted in figure 7.12. There, the dynamics of
identical bubbles expanding and collapsing near the surface of the drop, or the flat free
surface of an ideally infinite pool, are compared for three stand-off distances D∗.
The simulations show that the correspondence between the flat and the curved surface
cases is gradually lost when the bubble is placed further away from the drop surface. The
deviation between the two cases is already visible in figure 7.11 (c) and (d). There, the jet
dynamics are matched only when D∗ takes a higher value for the flat free surface measure-
ment. The simulations indicate that this discrepancy starts at around D∗ = 1.2 (shown
in figure 7.12 (c)) and keeps growing for higher values. We can portrait these changes as
being enclosed between two extreme scenarios: (1) the bubble is produced right on the
liquid surface, generating a bullet jet, which is not affected by the characteristics of the
boundaries and thus is independent on Rd. As the cavity is placed closer to the drop
centre the surface curvature becomes increasingly relevant to the jet dynamics. This is
consistent with our definition of Υ−, since D∗ and Υ− take similar values for lower values
of d, and grow apart as the cavity is placed deeper in the drop. (2) When the bubble is
almost at the drop centre (i.e. Υ− −→ ∞) there is no jetting for the curved case. However,
in the flat surface case the jetting still occurs for comparable values of D∗ (e.g., D∗ ∼ 2),
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Figure 7.11: Comparison of cases with similar bubble dynamics and a different curvature
of the free surface Rd. The panels (a) and (c) show cases where the cavity is produced near
a flat free surface. The cases in (b) and (d) show similar bubbles generated inside a drop
with a mean radius of 1.42 mm. Here, the numbers represent the time normalised with
the time of collapse of the cavities from each case. (a) Here, D∗ = 0.85. (b) D∗ = 0.88.
(c) D∗ = 1.6. (d) D∗ = 1.37.

demonstrating how the curvature weighting factor χ becomes increasingly relevant.
It is important to stress that if the bubble is placed near the drop boundary, for instance
at D∗ . 1.4, the discrepancies found in the jetting dynamics of a bubble in the “semi-
infinite” liquid pool when compared with the droplet case are mainly provoked by the
surface curvature, and not by the dissimilar extension of the liquid below the gas cavity.
This particular point is corroborated in the appendix (section 7.6) by means of comple-
mentary measurements and numerical simulations of jetting bubbles in the proximity of
a hemispherical tip of a cylindrical water column.
So far, we have classified and compared the characteristics of the jetting regimes produced
at different D∗ qualitatively, i.e. based on their general morphological features as pre-
sented in previous works [24, 88]. In the following, we will refer to this as behavioural sim-
ilarity. An alternative and more precise way of analysing the spatial correlation between
the dynamics of two different jets can be achieved by contrasting the pixel distribution on
the video frames to find common features between images. This quantitative comparison
method is usually referred as structural similarity analysis and can be implemented using
different image scanning algorithms [292]. Here, we use the complex wavelet structural
similarity index (CW-SSIM) [293] to evaluate the correlation between the temporal evo-
lution of two different jetting cavities. The CW-SSIM approach has some advantages over
direct pixel to pixel comparison methods (e.g. intensity-based) or the simpler versions of
the structural similarity index (e.g. SSIM). For instance, it accounts (up to some point)
for both intensity variations and non-structural geometric distortions like object transla-
tion, scaling and rotation [292]. The CW-SSIM index can take values ranging from zero
(if there is no correlation at all) to one (when the images are identical).
In figure 7.13, we contrast the dynamics of two bubbles initially located at a distance D∗
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Figure 7.12: Jetting dynamics of identical bubbles produced near a flat surface or the
curved surface of a droplet (Rd = 1.42 µm). The non-dimensional time, indicated by the
numbers, was normalised with the collapse time of each bubble. (a) Here, D∗ = 0.61. (b)
D∗ = 1.02. (c) D∗ = 1.23.

from a flat or a curved surface as already done in figure 7.12, but this time using the
CW-SSIM index to evaluate their similarity. The non-dimensional time (t∗) was com-
puted using the collapse time of the bubbles for each case. Figure 7.13 presents plots
of the temporal evolution of the similarity index next to a series of selected frames at
t∗ = 0.3; 0.6; 0.9; 1.05; 1.2; 1.35; 1.5; 1.7; and 1.9, which illustrate and compare the shape
of the cavities in the flat boundary case (grey background on the left side) and the drop
case.
The results expose the differences between the behavioural similarity and the structural
similarity approaches, i.e. two bubbles can have the same jetting regime but still have
dissimilar structures. This is observed in bubbles at lower stand-off distances like the case
with D∗ = 0.47 in figure 7.13. The discrepancy can be explained by the higher degree of
fragmentation of the bubble after jetting, acquiring an elongated shape in regimes with
a ventilated cavity, or where the liquid layer between the gas in the bubble and the at-
mosphere is affected by the RTI. In particular, the cases producing an open cavity (i.e.
D∗ . 0.35) were not suitable for the structural similarity analysis. Here, the fluctuations
of the splashing dynamics observed in the numerical simulations and the impossibility to
define a collapse time due to the non-collapsing nature of those cavities (see figure 7.6 (d)
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Figure 7.13: Structural similarity of the dynamics of jetting bubbles produced near a
flat surface or the drop boundary at an identical stand-off distance. Here, the temporal
evolution of the CW-SSIM index is presented for three examples corresponding to cases
with D∗ = 0.47, D∗ = 0.88, and D∗ = 1.85. The insets show a comparison of the images
of both simulated bubbles. The frames are centered at specific non-dimensional times
(blue vertical lines), displaying a half frame corresponding to the flat surface case (grey
background on the left) and a half frame taken from the drop case with the same D∗.

and (e)) prevented us to perform a reliable assessment of the CW-SSIM index.
As the laser bubble is produced deeper into the liquid, both structural and behavioural
approaches lead to the same conclusions (previously discussed in figure 7.12). The sim-
ilarity found in the development of bubbles near surfaces with or without curvature is
excellent for some stand-off distances, e.g. around the middle point located between the
liquid surface and the drop centre. One example of this is shown in the central panel
of figure 7.13 corresponding to D∗ = 0.88. As we already mentioned, near the centre of
the drop (i.e., D∗ ≃ 2) the difference in the anisotropy in both cases produces dissimilar
bubble oscillations (see the lower panel of figure 7.13).
A more general overview of those three scenarios is presented in figure 7.14, where the
mean value of the CW-SSIM index is plotted along with D∗ and Υ−. Considering that all
the bubbles have a very similar initial expansion phase, only the times corresponding to
the first collapse and the complete second oscillation cycle were computed in the mean
value of CW-SSIM. After the second collapse, the bubble is heavily fragmented and there
is no longer a recognisable structure. Figure 7.14 confirms that the structural similarity
is rather poor for bubbles near the surface (i.e. 0 . D∗ . 0.7). Around D∗ = 0.9,
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Figure 7.14: Structural similarity between cases with bubbles seeded at different stand-off
distances from a flat free surface or inside the drop. The curve shows the mean value of
the “total” CW-SSIM index (green) computed as the average of the mean indices observes
in the first bubble collapse (red) and in its second oscillation cycle (blue). The sudden
increase in Υ− (black markers) as we seed the bubble close to the drop centre is linked to
a decay in the similarity between the cavities.

the similarity index reaches a peak where the match is excellent. A good agreement is
sustained over a range of D∗ values between approximately 0.7 and 1.7, meaning that
even when the features of the cavities are not identical they have a similar distribution of
the gas phase (and the same jetting regime). For D∗ & 1.7, the similarity index suffers
an abrupt fall and the value of Υ− diverges as the bubble seeding position gets closer to
the drop centre. This is consistent with the definition of Υ−, which relates its magnitude
to the influence of the drop curvature in the bubble dynamics.
The experimental results displayed in figure 7.11 suggest that there is a correspondence
between the dynamics of a bubble seeded with a given D∗

flat in the flat surface case and the
temporal evolution of a bubble with D∗

drop inside the droplet. We explore this apparent
“equivalence” between values of D∗

flat and D∗
drop in figure 7.15 and figure 7.16. Since the

result of the CW-SSIM analysis is affected by a significant translation of the objects being
compared, the initial positions of the bubbles were matched by performing a vertical shift
on the drop case simulations. Figure 7.15 shows evidence of the mentioned correspondence
by presenting two examples, one with D∗

flat = 1.02 and D∗
drop = 0.95, and a second one

where the bubble is closer to the drop centre, i.e., D∗
flat = 2.40 and D∗

drop = 1.68.
These two examples in figure 7.15 prove that there are pairs of D∗ values where the simi-
larity between the dynamics of bubbles produced near two surfaces with uneven curvature
is remarkable, at least during the whole period comprised in the first two oscillation cy-
cles. This correlation analysis was performed for an extended range of values of D∗ to
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Figure 7.15: Similarity study of the jetting dynamics of bubbles near a flat surface (grey
background) or a drop (white background) with a different D∗. The initial position of
the bubbles was matched by performing a vertical shift on the drop case simulations.
For each value of D∗

flat there is one value of D∗
drop with similar dynamics, i.e. producing

the maximum CW-SSIM index when a simulation of a given D∗
flat is compared against

simulations with every possible value of D∗
drop. The numbers indicate non-dimensional

time t∗. (a) For D∗
flat = 1.02 the maximum average CW-SSIM index was achieved with

D∗
drop = 0.95. (b) The best match for D∗

flat = 2.40 was D∗
drop = 1.68. (c) Temporal

evolution of the CW-SSIM index for the cases on panels (a) and (b).

find that for each value of D∗
drop, there is one value of D∗

flat with similar dynamics, i.e.
which maximises the CW-SSIM index when a simulation made with that particular D∗

flat

is compared against simulations with every possible value of D∗
drop. As shown in fig-

ure 7.16, the dependence of the equivalent stand-off distance starts as a linear function in
the proximity of the surface and grows rapidly as the bubble is placed deeper in the liquid.
Interestingly, the linear fit performed on smaller values of D∗, which meet the conditions
for the CW-SSIM analysis, projects a ratio between equivalent D∗

drop and D∗
flat near 1

when the seeding position approaches the surface. Now, bearing in mind the definition
of Υ− = χD∗, the previous observation is consistent with the limiting case at the surface



162 7 Bubble nucleation and jetting inside a millimetric droplet

Figure 7.16: Best match between the dynamics of bubbles in the flat boundary and the
drop cases for different stand-off distances, i.e. D∗

flat and D∗
drop. For each value of D∗

flat, the
best match was obtained by finding the corresponding value of D∗

drop that maximises the
mean CW-SSIM index. As indicated by the parameters of the linear fit, the best match is
found at similar values of D∗ at the lower depths, but they become increasingly different
as d → Rd, where the bubble is seeded at the drop centre (indicated with a vertical
dotted line). The dashed grey line was added as a visual reference. The vertical error
bars represent the deviation of CW-SSIM from the perfect similarity case (i.e. CW-SSIM
= 1)

where χ → 1, meaning that the curvature does not play a significant role for the bubble
jetting dynamics. At the other extreme, i.e. as d → Rd, Υ− diverges, indicating a strong
influence of the drop geometry on the bubble evolution. At this point, it is important to
stress that in this context, “equivalence” does not mean that the dynamics are identical,
but their structure is “as similar as it could be” for the matching of D∗

flat and D∗
drop. The

same clarification applies to bubbles with the same Υ−, which is a multivalued function as
explained in section 7.2.1.

7.4.3 Radial bubble oscillations

In the previous section, we studied features found in the dynamics of an axisymmetric
jetting bubble. Let us now have a closer look at the only case with spherical symmetry, i.e.
where the laser cavity is placed in the centre of the drop (Υ− −→ ∞). In this scenario, the
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bubble undergoes several spherical oscillations with a decaying amplitude, as commonly
observed in laser bubbles created in unbounded liquids [294]. Figure 7.17 (a) presents a
comparison between an experiment and simulated data computed using the VoF solver,
finding an excellent agreement. Like for the previously simulated results, here we applied
the correction script that accounts for the distortion induced by the drop curvature.

Figure 7.17: Direct comparison between the experiment and a numerical simulation
for a case where the laser bubble is placed at the centre of the drop. (a) The median
diameter of the drop is 1.42 mm. The simulated images showing the velocity field have
been remapped to account for the distortion provoked by the curvature of the drop. The
numbers indicate time in µs and the colour scale is given in m/s. (b) Radial dynamics of
the experimental and simulated bubbles. The experimental radius was obtained by fitting
a circle on the bubble. The radius in the simulations was estimated using the gas volume
(i.e. the spherical equivalent radius). The results were compared with the unbounded
case to find that the bubbles inside the drop have a shorter expansion/collapse cycle. (c)
Bubble dynamics are obtained with a modified Rayleigh-Plesset model for different drop
sizes. The radii of the larger drops remain almost unaltered during the bubble oscillation.

Figure 7.17 (b) depicts the temporal evolution of the bubble radius R(t) for the examples
in panel (a). In addition, it presents R(t) calculated for a case of a drop of an ideally
infinite size, which corresponds to the case of an unbounded liquid domain. The initial
conditions in the VoF model were chosen to match the experimental R∗

max, and then the
other cases were simulated maintaining the same parameters while changing the drop
size. Notably, the bubble computed with CFD reaches a slightly larger maximum radius
as the liquid layer thickness is increased to infinity (i.e. an unbounded bubble case)
and thus also has a larger collapse time. This might be due to the effect produced by
the consecutive (and alternating) tension and pressure waves interacting with the bubble
during its expansion (see figure 7.17 (a)).
To shed some light on this matter, we use a spherical bubble model based on a modified
Rayleigh-Plesset model (RP) [118, 248] that accounts for the finite droplet size, viscosity
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of the liquid and interfacial tension. It is worth noting that in those previous works
the millimetre sized droplet was sitting on the top of a blunt needle or deformed into
an ellipsoidal shape by a strong levitating acoustic field. This lead to a non-spherical
boundary conditions that affect the bubble dynamics. In the present analysis, the droplet
is nearly perfectly spherical, thus matching with the purely spherical RP model within
a droplet. The results, presented in figure 7.17 (c), show that the bubble grows up to
almost the same size independently of the drop size. For the same initial conditions set
in the VoF model (pg(t = 0) = 1.69 GPa and Rb(t = 0) = 17.3 µm) the work is almost
completely done against the surrounding pressure (p∞ = 1 bar) while surface energy and
viscous dissipation is negligible. Yet, for smaller droplet volumes, the inertia is reduced
and therefore the expansion time to maximum bubble radius and the almost symmetrical
collapse reduce, too.
For the particular initial conditions, both models agree on the elongation of the oscillation
cycle, however they predict dissimilar results on the maximum radius reached by the
bubbles. The simple Rayleigh-Plesset model is used to give a comparison to the VoF
simulations and to evaluate the impact of the shock wave (and its reflections) on the
bubble dynamics. From figure 7.17 (c) we can infer that the maximum expansion of
the bubble is nearly independent of the droplet size, while in the VoF simulations it is
not. The VoF model accounts for the reflected wave, thus the discrepancy suggests that
upon the acoustic soft reflection of the shock wave momentum is imparted on the droplet
interface. The importance of reflected waves on cavitation nucleation in confined liquid
samples was recently also found for an acoustic hard reflection where the bubble expansion
was lowered [295]. A more comprehensive formulation for the bubble dynamics than the
RP model which incorporates both the bubble-shockwave interaction and compressibility
effects can be found in Zhang et al. [70].

7.4.4 Drop surface instabilities

In the previous sections, the formation of radial liquid jets growing from the drop surface
in the shape of “spikes” was mentioned. As explained above, this phenomenon stems
from an initial perturbation of the liquid interface and the posterior ejection of liquid
produced by the Rayleigh-Taylor instability. This kind of instability occurs when the
rapid expansion or the collapse of the bubble wall accelerates a thin liquid layer trapped
between the cavity and the atmospheric gas, producing a pattern of ripples on the drop
surface that grow further in the consecutive bubble oscillations. A clear example of
the events leading to the onset of this kind of instability in this particular experiment is
shown in figure 7.18 (a). There, the acoustic emissions from the laser dielectric breakdown
nucleate a cloud of bubbles within the drop. As the cavity expands, all these smaller
bubbles are incorporated (by coalescence) into the main bubble, producing a series of
dimples on the bubble surface, visible at t = 50 µs of figure 7.18 (a). These dimples
may contribute to the later destabilisation of the drop surface, which is highly dependent
on the ratio R∗

max/Rd. Additionally, R∗
max/Rd determines the liquid layer thickness and

its acceleration by the bubble/drop dynamics. The ripples in the drop surface become
noticeable just after the first bubble collapse (i.e. t = 130 µs) and grow significantly
during the bubble re-expansion, as shown at t = 190 µs. However, the most dramatic
events take place after the second bubble collapse (i.e. at t = 230 µs). There, the ripples
grow into liquid “spikes” which lead to the detachment of small droplets due to the action
of the Rayleigh-Plateau instability, as shown in figure 7.18 (b). At the same time, the
second bubble collapse releases a strong shock wave in the radial direction. This shock
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wave interacts with the array of meniscus-shaped pits on the liquid surface to produce
fast radial jets (see the frame at t = 420 µs). The later sequence is clearly captured in the
frames of figure 7.18 (c). It is important to note that this complex phenomenon not only
depends on the shock wave strength but also requires certain conditions to be met [285,
286], like a minimum depth and curvature of the pits, which may explain the absence of
“spikes” during the first bubble collapse.

Figure 7.18: Drop surface destabilisation mechanisms. The mean drop radius is 1.42 mm
and the numbers represent time in µs. (a) As the main bubble expands, the secondary,
acoustic cavitation bubbles produce small dimples on the gas cavity surface (e.g. at
50 µs). Those may promote the formation of a series of ripples during the bubble collapse
(at 130 µs). As the bubble re-expands, the Rayleigh-Taylor instability causes the growth
of liquid “spikes” that later lead to the detachment of small drops due to the Rayleigh-
Plateau instability, as indicated with a green arrow in panel (b). There, the frame width
is 570 µm. At the same time, the second collapse of the bubble enhances the surface
irregularities and pits that appear in the areas between the ripples. The shock wave
emitted during the second collapse gives origin to fast liquid jets ejected from the centre
of the pits, as highlighted with a blue arrow in panel (c). The frame width in this sequence
is 490 µm. The full video is available in the online supplementary movie 9.

To further analyse the onset of these instabilities, we varied the energy of the laser pulse,
hence producing bubbles with various sizes and thus with distinct ratios R∗

max/Rd. The
results are presented in figure 7.19. Even when the extreme image distortion produced
near the drop interface prevent us to obtain an accurate value of the bubble radius, these
measurements make evident that the amplitude of the ripples increases with increasing
R∗

max and with each consecutive bubble oscillation.
In figure 7.19 (a) the expansion of the bubble is not sufficient to visibly disturb the drop’s
spherical surface. In the case shown in figure 7.19 (b) the bubble’s first collapse does not
break up the drop surface, however, a mild wave pattern is observed on the surface after the
bubble re-expansion (at t = 420 µs). In spite of the presence of these low amplitude ripples,
no radial jets are ejected from the drop upon the second bubble collapse. When the ratio
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Figure 7.19: Onset of the drop surface instabilities for bubbles produced with different
laser pulse energies. The mean drop radius is 1.42 mm and the numbers represent time in
µs. (a) Here, the energy of the laser pulse is L = 1.9 mJ. (b) L = 3.1 mJ. (c) L = 3.9 mJ.
For this energy, the RTI affects the drop surface enough to produce liquid ejection after
the second bubble collapse. (d) L = 4.6 mJ. (e) L = 5.2 mJ. (f) L = 6.4 mJ. Note that
the panels (d)-(f) are shown in wider frames than the panels (a)-(c) to show the larger
“spikes”. A full video of panel (f) is available in the online supplementary movie 10.
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R∗
max/Rd is further increased, as shown in figure 7.19 (c), we find very similar dynamics

of the bubble/drop system, but now the valleys between the ripples (and the acoustic
pressure wave) are deep enough to trigger the radial jetting. This confirms the existence
of threshold conditions for the “spikes” to be formed. In the remaining cases presented
in panels (d) to (f) of figure 7.19, the general dynamics of the bubble/drop system are
very similar to the previous cases, although as the laser pulse energy is increased the
instabilities become perceivable at an earlier time. For example, in figure 7.19 (f) liquid
“spikes” are already formed after the first bubble collapse [118].

Figure 7.20: Numerical simulations of the instabilities development at the surface of the
drop. (a) Selected frames for a case with R0 = 35 µm (left) and R0 = 45 µm (right). The
non-dimensional time t∗ is shown on the top-left of each frame. (b) Temporal evolution
of the Rayleigh-Taylor instability (RTI) spike height for various R0. An ad hoc threshold
for the instability onset is indicated by a dashed line at 1 % of Rd. (c) Selected frames
of a zoomed view of the drop surface for R0 = 45 µm (frame window indicated by a red
square in (b)), showing the RTI and the Rayleigh-Plateau instability.

Figure 7.20 shows VoF simulations of the Rayleigh-Taylor instability found on the drop
surface. From figure 7.20 (a) it is clear that the instability is grown by the volumetric
oscillation of the bubble, while the shock waves emitted from the bubble upon its creation
(and later at its collapse) accelerates the ripples on the drop surface and form the thin
“spikes”. This kind of simulation was previously performed by Zeng et al. [118] for an
ellipsoidal droplet with the RTI manifesting only in a reduced region of the surface located
on the drop poles. In the present work, we study a nearly spherically symmetric case where
the spikes have no preferred origin, i.e. they escape the droplet isotropically.
The instability was quantified by defining the spike height as half of the difference between
the maximum and minimum radial deviations from the initial drop shape, which was then
normalised with the average drop radius, Rd = 1420 µm. In figure 7.20 (b), it is evident
that the instability is formed immediately after bubble creation, as it grows during the
bubble’s initial expansion. It starts shrinking at R0 ≤ 40 µm during its first collapse and
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grows again upon its rebound.
For R0 = 25.7 µm, the normalised spike height stays below 0.2 %, meaning that the
instability does not further develop in the first bubble oscillation cycles. As the initial
radius R0 is increased in steps of 5 µm, the spike height approximately doubles. Thus, the
spike height is exponentially related to the bubble size, i.e. spike height/Rd ∼ eR0·const..
Considering that the instability increases continuously with increasing laser energy, a
threshold for the onset of the instability can only be chosen arbitrarily. Here, we choose
an ad hoc threshold value as the normalised spike height of 1 % of Rd, around which the
spike height does not shrink during most of the bubble’s first collapse.
Similarly to the observed in the experiments, the simulations of figure 7.20 (b) show how
the spikes are ejected earlier in time as the maximum radius reached by the bubble is
increased. For R0 = 35 µm, the spikes nearly cross the threshold (indicated in the plot
with a dashed line) in the second oscillation cycle, while for R0 = 40 µm, the threshold
is crossed shortly after the first collapse, and for R0 ≥ 45 µm it is already exceeded
during the first oscillation cycle. Figure 7.20 (a) compares the instability for a case below
(R0 = 35 µm) and above (R0 = 45 µm) the established threshold, showing a strong increase
in the spike size as well as the ejection of droplets for a larger bubble. This droplet
separation from the spikes, highlighted in the bottom row of figure 7.20 (c), was previously
discussed in figure 7.18 (b) as an example of the effect of the Rayleigh-Plateau instability.
An upper limit of the spike height is reached at ≈ 1Rd for R0 = 65 µm, where the outer
spikes reach about twice the drop size, while the inner spikes breach the liquid layer that
separates the bubble from the outside air. Because of this, the bubble interior is partially
filled with atmospheric gas and the cavity ceases to oscillate. At this point, the drop
can not be longer defined as such, as shown in the experiments of figure 7.19 (f) where
the liquid mass becomes an intricate collection of spikes and a significant portion of it is
ejected away as smaller droplets.

7.5 Conclusion

In this manuscript, we presented some of the complex fluid dynamics occurring once a
vapour bubble expands within a water droplet. Specifically, we analysed the appearance
of acoustic secondary cavitation, and the formation of liquid jets in the proximity of highly
curved free surfaces, and finally, we provided detailed experimental and simulated images
of the onset and the development of shape instabilities on the surface of the drop.
The first part of the research highlights that acoustic waves emitted from the micro-
explosion nucleate complex secondary cavitation clouds. Further, the study corroborates
the existing relation between the evolution of the negative pressure profile and the shape of
the bubble clusters inside the drop. A cavitation threshold pressure of around −4.5 MPa
was estimated by performing a direct comparison between the experiments and the simu-
lations. The numerical model does not account for the bubble nucleation induced by the
rarefaction waves. The implementation of this experimental technique to other liquids,
particularly in cases where large samples are not available, might contribute to achieving
a deeper understanding of the nucleation of bubbles by sound waves. The present exper-
imental setup may be modified to create a bubble within a superheated droplet to reveal
in a well-defined system the coupling of fluid dynamics with thermodynamics, and also
study how the liquid temperature affects the later fragmentation dynamics [296].
The secondary bubbles cluster and several types of jets, both caused by the generation
of laser bubbles at different positions inside the droplet, were classified using a stand-off
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parameter Υ−. The use of a single quantity to characterise the system simplifies the direct
comparison between cases. The optical lens effect linked to the spherical shape of the
drops allowed us to obtain images of the bubble jet’s interior with a remarkable level of
detail.
The numerical simulations were crucial to explain the complex flow fields generating these
jets, as well as to explain the shape acquired by the gas cavities during their second col-
lapse phase, including many interesting features like the annular bubble necking and the
detachment of multiple vapour rings.
The effect of the liquid surface curvature on the bubble jetting has been analysed, by
comparing the evolution of a bubble inside a droplet and in a semi-infinite pool, using
two complementary points of view. First, a qualitative assessment (here called behavioural
similarity) indicates that the jetting regime differs rather little when the cavity is seeded
nearby the free boundary. In this part of the study, we have shown that for the droplet
case, the non-dimensional distance D∗ is the most determining quantity, while the curva-
ture of the liquid does not have a dominant role in the evolution of the jetting cavities.
This conclusion is based on the analysis of numerical simulations where only the parameter
Rd was modified, and also by comparing the current results with the previously reported
for a flat surface.
A second type of analysis, which uses the CW-SSIM index to evaluate the structural sim-
ilarity of the cavities, was applied to the same numerical data to perform this time a
quantitative comparison of the jetting near a flat and a curved surface. Here, we found
that for bubbles in the vicinity of the liquid surface (i.e. 0 . D∗ . 0.7) the structural
similarity is rather poor, mostly due to the higher degree of fragmentation of the gas
phase developed in regimes with a ventilated cavity, or where the liquid surface is affected
by the RTI.
Both similarity criteria indicate the existence of a seeding depth around D∗ ∼ 1 where
the bubbles in the flat and curved cases resemble each other the most. In addition, as
the bubble seeding position is set further away from the surface, the jetting regimes are
progressively dissimilar, in particular when the laser cavity is generated nearby the drop
centre. The sudden drop in the CW-SSIM index found in this situation matches an equally
abrupt rise in the value of Υ− starting around Υ− = 10.
The CW-SSIM analysis confirmed that for each stand-off distance in the flat boundary
case (i.e. D∗

flat), there is another value of D∗ (i.e. D∗
drop) where the bubble dynamics of

both cases resemble each other the most. The relation between D∗
flat and D∗

drop supports
the definition and the functionality described for Υ−. This kind of similarity study could be
used to span a more comprehensive parameter space with D∗

flat and Υ− computed with dif-
ferent curvature radii, and thus achieve a more general picture of the group of parameter
values having “equivalent” jetting dynamics. Moreover, the jet matching would greatly
benefit from the implementation of more complex comparison methods or the use of ma-
chine learning techniques that consider both the behavioural and the structural criteria.
The spherical bubble oscillations observed in the experiments where the laser was focused
on the geometrical centre of the droplet were analysed using two different numerical mod-
els. Both models were in excellent agreement with the measured temporal bubble radius
evolution. More importantly, both models predict a reduction in the expansion/collapse
time when the drop size is decreased. Of course, this study is valid as long as the liquid
layer around the bubble is not thin enough to promote the onset of the RTI, as it happens
in cases with a low Rd/R

∗
max ratio.

The radial oscillations of a central bubble were also used to study the onset of shape in-
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stabilities at the gas-liquid interfaces, given by the Rayleigh-Taylor and Rayleigh-Plateau
instabilities. The destabilisation mechanism of each instability and its effect on the droplet
surface was illustrated by detailed high-speed images. Here, we have demonstrated how
the radial acceleration imposed by the bubble oscillation triggers the RTI, which in turn
induces a pattern of superficial ripples on the drop. Those acquire a concave shape during
the bubble collapse and give rise to liquid filaments due to the transfer of the momen-
tum from the bubble shock wave emissions to the curved pits formed on the gas-liquid
interface. The ejected filaments later break up by the action of the RPI causing the de-
tachment of smaller droplets and thus the atomisation of the drop.
The phase change from liquid to vapour within droplets is observed in a wide variety
of applications, such as in flash boiling atomisation [297], in spray-flame synthesis [298],
spray cooling [299], extreme ultraviolet light generation [300], and laser-induced break-
down spectroscopy of liquids [301] to name a few. They all have in common that through a
complex non-spherical symmetric process a liquid is fragmented through a micro-explosion
within. While Rayleigh-Taylor instabilities determine the growth of ripples on the surface
of the droplet, the non-spherical bubble dynamics that lead to jetting out of the droplet
affect the resulting size distribution of liquid particles, too. The high degree of control
achieved in the current experiments opens up the possibility of studying RTI of more com-
plex interfaces, e.g. the effect of particles covering the surface, surfactants, or complex
fluids. Those experiments could be supported by complementary numerical simulations
to optimise the workflow in the laboratory.
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7.6 Appendix: Bubble jetting in a liquid pool with a curved
free surface

Figure 7.21: Bubble jetting on a curved surface. (a) A cylindrical tube with an external
diameter of 3.6 mm, an internal diameter of 2.7 mm and a length of 4 cm was overfilled
with DI water to produce the curved top. Infra-red laser pulses were focused from the
top at different depths and slightly away from the cylinder axis. (b) Υ− = 1.9 (D∗ = 1.3).
(c) Υ− = 0.7 (D∗ = 0.6). (d) Υ− = 0.4 (D∗ = 0.3). The time between frames is 10 µs for
(b) and (c) and 20 µs in case (d).

In section 7.4.2, the role of the curvature of the free surface was analysed by comparing
the bubble jetting observed near a flat surface to the jetting dynamics of bubbles within
the falling droplet. There, both the experimental and numerical results indicate that the
effect of the curvature on the bubble jetting regime is almost negligible for low values
of D∗, but the specific shape acquired by the cavity during and after the jetting is no
longer similar as D∗ takes values larger than 1.2, as shown by the structural similarity
analysis. However, the curvature of the surface is not the only difference between these
two cases, since in one case the liquid is confined (i.e. the droplet), and in the other
the bubble is produced on top of an ideally “semi-infinite” liquid column (which has a
length of 5 cm in the experiments and was numerically infinite in the simulations). An
intermediate step between those two experimental scenarios is given by the configuration
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Figure 7.22: Comparison of the bubble jetting on the curved top of a long liquid column
(left half) and in a drop of equal radius (right half). The numbers represent the time
normalised with the time of collapse of the cavities from each case. (a) D∗ = 1.02. (b)
D∗ = 1.23. The dynamics of the bubbles are almost identical.

described in figure 7.21 (a). Here, the bubbles are also produced close to the free surface
of a liquid pool, but in this case the top of the liquid column presents a curved surface
with the shape of a dome. Panels (b), (c) and (d) of figure 7.21 show three examples
of jetting bubbles generated at different depths d. The bubbles were located away from
the symmetry axis to make evident that the jets always point in the direction normal to
the surface. As discussed in section 7.4.2, we observed a similar behaviour of the jetting
dynamics for both curved surfaces at comparable values of the stand-off parameter. The
example shown in panel (b) of figure 7.21 corresponds to the case (c) of figure 7.12, while
the jet dynamics of the case (c) of figure 7.21 matches the one of figure 7.12 (a).
Figure 7.22 compares the jetting of bubbles in the drop case with the jetting of bubbles
in a configuration as the one shown in figure 7.21 (a). The results present almost identical
bubble dynamics even in the case with D∗ = 1.23, meaning that the differences observed
between the case with the flat surface and the drop case are indeed caused by the effect
of the surface curvature and not by the difference in the boundary conditions below the
bubble or in the liquid volume. As previously discussed for the flat surface case, the
similarity found in the cases displayed in figure 7.22 will be eventually lost as the laser
bubble is produced closer to the drop centre.
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This work has been published in [26]:

H. Reese, S.-W. Ohl, and C.-D. Ohl. “Cavitation bubble induced wall shear stress on
an elastic boundary”. Physics of Fluids 35 (7), 076122 (2023). issn: 1070-6631

A cavitation bubble imposes shear stresses onto a nearby structure during its expan-
sion and collapse. Experimentally we probe the tangential stresses on an elastic surface
by measuring the displacement of embedded particles and the deformation of an elastic
structure. Corresponding numerical simulations are done using a fluid-structure interac-
tion Volume-of-Fluid solver in OpenFOAM, where a linear elastic solid is coupled to two
viscous, immiscible and compressible fluids. We find good agreement in terms of bubble
dynamics and displacement motions. During the initial bubble expansion and its first
collapse, the experiment agrees with the simulation that the strain of the elastic sheet
at a distance of 1.25Rmax from the stagnation point centre is larger than at 0.51Rmax.
The maximum lateral strain occurs at a non-dimensionalised bubble stand-off distance of
γ ≈ 1.1. The highest calculated wall shear stress is 250 kPa (for position y = 0). However,
the largest overall shear stress of 1.9 MPa is found within the elastic sheet at y = 24 µm
that corresponds to a maximum displacement of Dx = 44.5 µm. Thus fracture may start
from within the elastic material rather than from the surface. To further examine the
fluid-structure interaction, we construct a simple axisymmetrical elastic ring and analyse
its deformation. In this case, we find strong deformations during the bubble collapse but
also during the bubble’s initial expansion.

8.1 Introduction

Cavitation bubbles expanding and collapsing near solid boundaries first caught the at-
tention of the scientific community when they were found to be responsible for damages
to fast-rotating ship propellers. Lord Rayleigh modelled the spherical cavitation bubble
dynamics, enabling the calculation of the radius of an oscillating bubble as a function of
time [2]. However, the damage on the (steel or copper) propellers is not in fact due to
spherically collapsing bubbles but a result of non-spherical flow and shock wave emission
in close proximity to the boundary [20, 82, 302, 303]. Besides the shock wave emission, jet
impact and its successive radially spreading flow outwards on the surface, results in strong
wall shear stresses [8, 304–306]. Apart from experimental observations using high-speed
photography, cavitation bubble interaction with rigid boundaries has been modelled with
various numerical methods. The most popular ones are perhaps the Boundary Element
or Integral Method where only the boundaries of the domains are discretised, i.e. the
bubble surface and the solid (rigid) boundary [5, 307–309]. Other numerical methods
have also been used, such as the Free-Lagrange method [310], the Arbitrary Eulerian-
Lagrangian method [311, 312], the Level-Set method [77, 313] and the Lattice-Boltzmann
method [314].
When the solid boundary is sufficiently elastic, the cavitation bubble may collapse differ-
ently. Brujan et al. [101] studied experimentally how a laser-generated cavitation bubble
expands and collapses near a transparent polyacrylamide (PAA) gel with 80 % water con-
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centration (elastic modulus E = 0.25 MPa). As the bubble expands, it pushes the elastic
boundary away. During its collapse phase, the elastic boundary moves towards the bubble.
At certain stand-off distances, a radial in-flow of the liquid causes the bubble to split into
two and the resulting bubbles collapse with opposing jets away from the point of splitting.
The bubble behaviour near two boundaries of different stiffnesses was compared directly
by Ma et al. [102]. Bubble dynamics with more pronounced boundary movement were
reported by Turangan et al. [315] where an elastic membrane was used instead. However,
when the elastic layer is attached to a rigid plate, the bubble dynamics depend on both
the elastic modulus and the thickness of the elastic layer [316–318]. The numerical mod-
elling of the elastic layer was done either using the Boundary Element Method where the
layer was modelled as a linear elastic fluid [319, 320], or it was calculated using the Finite
Element Method for an elastic solid and coupled to the fluid domain [318, 321]. When the
elastic layer attached to the solid wall is very thin, the bubble expands and collapses in a
similar manner to one which is near a rigid boundary, i.e. the formation of a high-speed
jet is observed. Damages and erosion on the thin layer have been documented [322, 323].
The impact of the jet from a collapsing bubble creates high stresses on the material
surface (with or without an elastic layer). This phenomenon is being utilised for many
applications, such as ultrasonic cleaning [80, 324], lithotripsy for kidney stones [306, 325,
326] and sonoporation of cells [327, 328]. It is known that the jetting of the bubble is
correlated to the cleaned area generated in acoustic surface cleaning [9, 329]. The tran-
sient cleaning mechanisms, however, are not fully resolved. Yet the current understanding
is important to the aforementioned wall shear stresses. This wall shear stress was first
measured directly by Dijkink & Ohl [132] using a constant temperature anemometer.
A maximum stress of more than 3 kPa was recorded. Maisonhaute et al. [79] reported
higher estimates for the shear stress of 25-50 bar (2.5 to 5.0 MPa). More recently, Reuter
and Mettin [329] confirmed the initial measurement by employing electrochemical tech-
niques. Clearly, the measurements are limited in bandwidth and average over some areas,
thus they would not be able to resolve the amplitude of high-frequency and small-scale
stresses. Indeed these are found in numerical simulations based on the Volume-of-Fluid
(VoF) method. Zeng et al. [118] modelled the wall shear stresses as a function of the
bubble’s stand-off distance and the liquid viscosity. They found that the peak stresses are
more than one order of magnitude higher (between 50 and 100 kPa) than those measured
in the earlier experiments. The authors attributed this discrepancy to the experimental
limitations of the sensor used. The shear stress may even be enhanced when the bubble
is constrained in a narrow gap [330].
The main aim of the present work is to evaluate the shear stress a collapsing and jetting
cavitation bubble induces on solid boundaries. We chose a direct method to quantify
the shear stress through the elastic response using experimental high-speed imaging tech-
niques and compare the response with simulations using a Volume-of-Fluid (VoF) solver
coupled to an elastic solid. The work starts by describing the numerical and experimental
techniques. After that, we show the results of the lateral displacement of a thin elastic
sheet covering a rigid boundary as a bubble expands and collapses on top of it. We com-
pare the experimental observations and the simulation results in terms of bubble dynamics
and local displacement of the sheet surface. Then we show the results of an elastic ring
structure and its deformation. Specifically, we study the deformations of a corner of the
ring in the vertical and horizontal directions. The resulting stresses in both the ring and
the sheet are then presented and discussed.
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8.2 Numerical Model

The VoF (Volume-of-Fluid) simulations are carried out in OpenFOAM using the version
Foam-Extend-4.0 [127]. Coupled liquid and solid solvers are provided by the FluidStruc-
tureInteraction [126] package. The solver fsiFoam was modified to simulate a single
expanding and collapsing bubble near a deformable structure. We named the new solver
CavBubbleFsiFoam. This solver has already been shown to accurately describe the prop-
agation of waves in the liquid and a solid plate emitted by a bubble nucleated at high
pressure (see Pfeiffer et al. [27], Gutiérrez-Hernández et al. [29], Gutiérrez-Hernández et
al. [30]).

8.2.1 Governing equations

The solid is governed by the linear elastic equation of motion,

∂2ρD

∂t2
−∇ ·

[
G∇ ◦D +G(∇ ◦D)T + λtr(∇ ·D)

↔

1
]

= 0 , (8.1)

where D denotes the deformation,
↔

1 the unity matrix, · a scalar product, ◦ a tensor
product and λ, G the Lamé parameters given by

λ =
ν

1 − 2ν

1

1 + ν
E, G =

1

2

1

1 + ν
E . (8.2)

The fields in the solid are given in material coordinates. The equation of motion is solved
by the solver unsTotalLagrangianSolid.
To represent PDMS or SLA resin, which are used in the experiments, a solid density of
ρ = 1000 kg/m3 and a Poisson’s ratio of ν = 0.4 is used. To avoid numerical instabilities,
a very high Young’s modulus of E = 1000 GPa is used, along with the assumption that
the achieved deformation in the experiments is sufficiently small, such that its effect on
the fluid domain can be neglected, effectively resulting in a one-way coupling between
the fluid and the elastic solid. Furthermore, the assumption of linear elasticity allows
us to calculate the corresponding deformation at a lower Young’s modulus Eexperiment by
simply multiplying it by the ratio Esimulation/Eexperiment. This was done to improve the
convergence of the solver. This decision is discussed further in the results section.
A compressible Newtonian fluid is governed by the law of conservation of momentum,

ρ
D~u

Dt
= ρ~f −∇p+ µ(∆~u+

1

3
∇(∇ · ~u)) , (8.3)

the continuity equation,
∂ρ

∂t
+ ∇ · (ρ~u) = 0 (8.4)

and an equation of state, for which the Tait equation of state was chosen:

p = (p0 +B)
( ρ
ρ0

)γ
− B , (8.5)

The provided solver icoFluid only models one fluid. For this reason, it was replaced
by our solver CavBubbleFluid, which models two immiscible compressible fluids. The
Tait parameters for these fluids are chosen to be p0 = 101325 Pa, ρ0 = 998.2061 kg/m3,
γ = 7.15, B = 303.6 MPa to represent water and p0 = 10320 Pa, ρ0 = 0.12 kg/m3, γ =
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1.33, B = 0 to represent the bubble contents, which are treated as a non-condensible gas.
With B = 0, equation (8.5) corresponds to an ideal gas equation of state. Temperature
variations are not taken into account, and thus all state changes are modelled as adiabatic.
The fluid-fluid interface is modelled with a phase fraction field α, which for each cell gives
the fraction to which it is filled by water, while the rest is filled by the gaseous component.
As opposed to other multi-phase solvers like compressibleInterFoam, further corrections
are applied to mitigate numerical inaccuracies. The compressibility is calculated in every
time step, which is necessary because the gas density and thus also its compressibility
varies significantly during the bubble dynamics.
The model does not include any phase transitions, and thus the total amount of gas
contained in the domain should stay constant. Despite this, the total amount of gas
present in the simulated domain varies over time due to numerical errors. To counteract
this, the bubble’s mass, calculated as m =

∑cells
i α2,i ρ2,i Vi, is kept constant via the

correction ρ′2,i = m0

m
ρ2,i. This stands in contrast to a real bubble, which is partly filled

with water vapour that condenses over the course of the expansion and collapse. To
account for this condensation, a one-time correction reduces the pressure and thus the
total gas content by 70 % at the time of maximum bubble expansion. This has been
shown to give an accurate bubble behaviour during its first collapse and rebound [24].
New gaseous regions may be created in the liquid bulk when α falls slightly below 1 due
to numerical errors, which can then expand if the local pressure is low. To correct this,
cells with values above a limit value α > αl are set to α = 1. For large time steps, this
value is chosen to be αl = 0.998. For smaller time steps (dt < 3 ns) this limit becomes less
strict as αl = 1− 0.002 · dt/3 ns, because it would otherwise prevent existing slow-moving
liquid-gas interfaces to cross cell borders.
The fluid domain interacts with the solid structure via interfacial forces ~FSi =

↔

σ·~ni on the
fluid-structure interface and by conforming to the deformation D and velocity Ḋ of the
boundary. Here, Si are cell faces with normal vectors ~ni at the fluid-structure interface,

and
↔

σ = −p
↔

1 +µ
[
∇◦~u+(∇◦~u)T

]
is the stress tensor in the fluid. While the deformation

of the solid is calculated via a physics-based equation, the deformation of the conforming
fluid mesh is not tied to the motion of the fluid and can thus be chosen arbitrarily. The
mesh motion of the fluid domain is done by interpolation of the displacement at the
corresponding boundary conditions for the fluid-structure interface and the boundaries of
the simulation domain.

8.2.2 Geometry and initial conditions

In the configuration of interest, the bubble is created in a cylindrical, effectively infinite
fluid domain that sits on top of a solid boundary. The boundary is connected to a
deformable elastic sheet, or, to model a bubble near a more complex structure, an elastic
ring. This is placed at the bottom of the fluid tank on the (in this case rigid) boundary.
All cases are axisymmetric such that the problem becomes effectively two-dimensional
and the equations only need to be solved in the axial and radial directions. The solution
in the angular direction is trivially given by the symmetry condition.
Figure 8.1 shows the geometry used for a bubble near an elastic solid sheet and a bubble
near an elastic ring structure. It is bound by symmetric boundary conditions on the
left, front and back surfaces. The upper and right boundaries represent a continuation
of the fluid domain and the solid sheet. Here, waveTransmissive boundary conditions
are applied for the fluid velocity, which corresponds to an advection equation, ∂uf

∂t
+
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Figure 8.1: Geometries and computational meshes used along with an example of a
simulated jetting bubble. The solid domain is given in green, the fluid domain is in light
grey and the bubble in black. The fluid mesh is refined in the region occupied by the
bubble. (a) Case of an elastic sheet. The mesh is further refined at the wall to resolve
the boundary layer flow. (b) Case of an elastic ring.

(~u · ~n + c) (∇ · ~n) uf = 0, with the unit normal vector at the boundary cell face ~n, the
interpolated normal velocity at the boundary cell face uf = ~u · ~n|f and the speed of sound

c =
√

γ
ψ

, as calculated from the adiabatic exponent γ and the compressibility ψ. The

zeroGradient boundary condition is used for α. The solid deformation is fixed to 0 at its
lower boundary. At the fluid-structure interface, a noSlip boundary condition is applied
for the fluid velocity. Here, α is kept equal to 1 to prevent the bubble from making contact
with the solid wall, which is consistent with [124]. The deformation of the mesh is allowed
to slip along the outer boundaries such that the shape of the full domain is preserved.
In the axial and radial directions, the domain is divided into computational cells arranged
on a square grid. The cell width is chosen to be 10 µm in the fluid domain and 2.5 µm in
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the solid domain. In the fluid, the mesh is refined two times from a cell width of 10 µm to
2.5 µm in the region later occupied by the bubble. In the case of an elastic sheet, it is
refined a further three times to 0.3125 µm below the bubble to resolve the boundary layer
at the fluid-structure interface. Note that in the zoomed-out top image, the blue mesh
lines are drawn very close together, such that the solid domain does not appear green.
A bubble seed is initiated on the axis of symmetry with an initial pressure of pb = 16.9 kbar
and an initial radius of 19.3 µm. Elsewhere an atmospheric pressure of p0 = 101325 Pa is
applied. The bubble seed is initiated with a smeared interface in the form of

α = 1 − 1

2

(
1 − tanh

(
10

3

((~xi − ~x0
R0

)2
− 1
)))

, (8.6)

where ~xi are the cell coordinates, ~x0, the bubble center and R0 the initial bubble radius.
This is helpful to avoid Rayleigh-Taylor instabilities during the early expansion phase.

8.3 Experimental method

The top view of the experimental setup for the elastic sheet and ring experiment is pre-
sented in figure 8.2. The cavitation bubble is generated in water in the glass cuvette
with a focused pulsed laser (Quantum Light Instruments, Q2-E10-1064-SHG1). This is
a Class IV Nd:YAG laser where the pump diode current (LD1) is set to 105 V, and the
generator crystal temperature (SH) is set to 43 ◦C. The focusing of the laser is done using
a 5× microscopic lens. The bubble interacts with a rigid custom-made acrylic cap. A
60 µm thick PDMS sheet with embedded particles (particle diameter = 15 µm) is coated
onto an acrylic cuvette cap (see section 8.3.1). The particles’ movement is captured with
a 10× microscopic lens attached to a high-speed camera C1 (Shimadzu Inc., HPV-X2).
The magnification is necessary to provide sufficient resolution for the particle-tracking.
The framing rate is 1 million frames per second. The light is provided by a LED illumina-
tor (SMETech, SugarCube (Light source 1)). At the same time, the corresponding bubble
dynamics are captured using another high-speed camera C2 (Photron, Mini AX100) with
an LED light source (SMETech, LED P-40 (Light source 2)). This is needed because of
the high magnification for the particle resulting in C1 capturing only part of the bubble.
Since camera C2 is placed in line with the laser source, a notch filter is used to block out
the laser light, and a piece of the microscope glass slide is used to reflect some of the LED
light into the camera. This camera is recording with a framing rate of 160,000 frames per
second. The two cameras are synchronised using a delay generator (Berkeley Nucleonics,
BNC Model 525).
A similar setup is used for the elastic ring experiment (figure 8.2). Instead of the acrylic
cap coated with a PDMS layer, a stereolithography (SLA) 3D printed cuvette cap (see
section 8.3.2) in similar dimensions with a ring structure attached is used. Also, a smaller
magnification is used in this set of experiments. A 5× macro lens (Canon Inc, E 65 mm)
is used together with the high-speed camera C1.

8.3.1 Preparation of PDMS layer with micro-particles

Polydimethylsiloxane (PDMS) sheet preparation is a multi-step procedure. First, a small
number of fluorescent micro-particles with a diameter of 15 µm (Thermo Scientific, Fluoro-
Max) are added to the curing agent. The curing agent with micro-particles is then vor-
texed with a laboratory shaker (Heidolph Instruments, REAX 2000) for 1 minute in order
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Figure 8.2: Top view of the experimental setup (not to scale). Glass cuvettes of dimen-
sions 22.5× 12.5× 45 mm with custom-made caps (with embedded particles on an elastic
sheet or a printed ring) are filled with water. A bubble is created in the cuvette by a
focused laser beam. A high-speed camera C1 with a magnifying lens is used to record
particles or ring movement while the high-speed camera C2 is used to capture the bubble
dynamics simultaneously. Each camera is illuminated by an LED light source.

for the particles to be evenly distributed in the liquid. The next step in the preparation
is the mixing of the elastomer and the curing agent in a ratio of 10:1 by weight. The
mixture is stirred and then placed in a vacuum desiccator for approximately 5 minutes so
that residual air in the mixture is removed.
The PDMS mixture with micro-particles is then spin-coated onto the bottom side of the
cuvette cap. The cap is custom-made of acrylic and fits the cuvette top. It is fixed to the
spin-coater with double-sided tape and is spun at 300 rotations per second for approxi-
mately 10 seconds. The spin-coater is homemade out of a repurposed old hard drive disk.
The last step of the PDMS preparation involves thermal curing. The coated cap is placed
in a laboratory oven (UniEquip, Vacuum OvenVos-90A) at 100 ◦C for 2 hours.
The elastic modulus of a block of PDMS sample depends on the preparation procedure
and its elastomer to curing agent ratio. With thermal curing, the elastic modulus E, is
typically around 560 kPa [331]. However, the sheet we used in the experiment is very
thin. It has a height of only 60 µm. Liu et al. [332] confirmed that their bulk sample of
PDMS with 10:1 elastomer to curing agent ratio has indeed a measured elastic modu-
lus E = 500 kPa. However, when the thickness of their PDMS sheet is reduced to 60 µm,
they found that E has increased to 1.4 MPa. Therefore, we use the value E = 1.4 MPa for
our experimental elastic sheet data analysis and in comparison with simulation results.

8.3.2 Stereolithography 3D printed cuvette cap

A transparent elastic cuvette cap with the bottom dimensions 19.0 × 9.2 × 1.5 mm3 that
fits into the top of the cuvette is printed using a stereolithography 3D printer (Formlabs,
Form 3+). The top part of the cap is slightly bigger (22.0× 12.0× 1.5 mm3) to allow it to
sit on the cuvette. A ring of 450 µm radius is placed at the centre of the bottom surface
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Figure 8.3: SLA 3D printed ring structure on the cuvette cap. (a) Outline and dimensions
(in µm) of a cross-section of the printed ring. (b) A magnified photograph of the printed
ring. The ridges on the surface are from printing defects common in 3D printing. They are
however small (less than 50 µm in height) and therefore do not affect the bubble dynamics
or the ring deformation.

of the cap. These rings have a wall thickness of approximately 100 µm and a wall height
of about 400 µm (see figure 8.3 (a)). The 3D design is made using OpenSCAD and is
then ported to the specialised software of the printer (Formlabs, Pre Form) for printing.
The elastic resin (Formlabs, Elastic 50A) is used. Domingo-Roca et al. [333] measured
the elastic modulus of the printed samples using the same elastic resin. They used both
the standard tensile testing and a new measurement technique they proposed with laser
Doppler vibrometer. They reported an elastic modulus of E = 1.132±0.039 MPa from the
tensile testing, and a slightly higher value of E = 2.05±0.21 MPa from their new method.
We took the value E = 1.2 MPa for our experimental data analysis and in comparison
with numerical simulation.
The 3D-printed cap is transparent and elastic. The ring structure, however, is printed at
the resolution limit of the 3D printer for that particular resin and turns out to have a
slightly slanted wall and a top rim that is not very smooth (figure 8.3 (b)). Also, there
are visible lines (ridges) on the surface of the cap (outside of the ring). These are all
artefacts and imperfections from the printing process. However, these ridges are much
lower in height than the ring wall. In fact, their height is measured to be less than 50 µm.
Therefore we assume that they do not interfere with the bubble dynamics and the ring
wall movement as studied in this experiment.

8.4 Results

8.4.1 Bubble near elastic layer

Figure 8.4 (multimedia available online) shows the expansion and collapse of a laser-
generated cavitation bubble near an elastic layer of 60 µm thickness, with experimental
photographs on the left and VoF-simulation cross-section frames on the right. The elastic
layer is coated on a cuvette cap and therefore the actual video is flipped upside down for
comparison with the simulations. There is no scientific concern as gravity does not play
a significant part in the bubble dynamics in these time scales. The first frame shows the
circled particles that are tracked, particle 1 and particle 2. They are located to the left of
the bubble centre at a horizontal distance of sx = 710 µm and sx = 290 µm, respectively.
The bubble is created at time t = 0 µs at a stand-off distance of d = 875 µm (not shown as
it is outside the observation frame). Within the first microsecond after its creation, it sends
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Figure 8.4: Expansion and collapse of a cavitation bubble near an elastic layer. Layer
thickness s = 60 µm, Rmax = 569 µm at around t = 60 µs, stand-off γ = 1.5. The left side
of each frame shows experimental photographs, with particles 1 and 2 (in black circles)
at sx = 710 and 290 µm, respectively. The x- and y-axes are indicated. The framing rate
is 1 million frames per second (Mfps). The time in microseconds is given in each frame.
The frame height is 625 µm. The right side of each frame shows the numerical simulations
with the bubble in black, the liquid in bright grey and the flow field with arrows. The
absolute solid stress is indicated with the colour scale on the right (multimedia available
online).

Figure 8.5: Comparison of horizontal displacement Dx between (a) experimental observa-
tion and (b) simulation result for Rmax = 569 µm, sheet thickness s = 60 µm, E = 1.4 MPa
(1000 GPa in simulation, corrected by a factor of 106/1.4). Both show slight lateral sheet
movement during bubble initiation. When the bubble collapses, both experimental par-
ticle 1 and position 1 in simulation (at 710 µm from bubble centre) show a peak Dx of
4.68 µm and 5.52 µm, respectively. The nearer particle 2 and position 2 (at 290 µm) record
lower Dx of 3.32 µm and 4.33 µm, respectively. (c) Experimental vertical displacement Dy

displays similar peaks at bubble expansion and collapse. However, particle 2 which is
closer to the stagnation point, records a higher Dy of 4.05 µm compared to that of par-
ticle 1 (1.72 µm). The simulated Dy is not included because the model precludes the
validity of the sheet’s vertical movement. Also plotted on the secondary y-axis is (a) the
bubble radius in time and (b) the volume equivalent bubble radius over time.
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Figure 8.6: Streak plot of the deformationDx of the wall as a function of the radial position
r and time t in logarithmic scale, where for negative deformation values the logarithm
was taken as −log10(−Dx/nm E/MPa). Rmax = 535 µm, s = 100 µm, d = 500 µm,
E = 1000 GPa. The plot includes the volume equivalent bubble radius over time as a
black curve and the positions of position 1 and position 2 as the upper and lower white
dashed line, respectively.

out a shock wave that impacts the elastic wall and sets the liquid in motion away from the
bubble. Large stresses are observed in the simulated solid, σ = 2.27 MPa at x = 0, y = 0.

The stress magnitude is calculated from the stress tensor as σ =
√∑

i,j σ
2
ij. The bubble

then expands and reaches its maximum size of Rmax = 569 µm at around t = 60 µm,
which is measured in the radial direction parallel to the elastic wall. Thus the non-
dimensionalised stand-off distance is γ = d/Rmax ≈ 1.5. Then the bubble starts to collapse
while moving towards the solid wall and reaches its minimum size at around t = 103 µs
(t = 95 µs in the simulation). This collapse creates another shock wave similar to the one
emitted at t = 0, causing even larger stresses than before in the solid, σ = 3.71 MPa at
t = 96 µs. The bubble re-expands but has no longer a spherical, but a toroidal shape,
as can be seen in the last three simulated frames in figure 8.4. This behaviour is not
clearly visible in the high-speed photography images, but toroidal bubble formation is
widely known for such a bubble collapsing near a solid boundary [21, 142, 334]. A liquid
jet towards the solid surface has now developed and pulls the bubble along with it. The
bubble reaches the wall at t = 113 µs (t = 102 µs in the simulation), after which the
liquid jet impinges on the surface, causing a large localised water-hammer pressure which
dominates the stress, σ = 6.13 MPa. It then turns into a shear flow directed radially
outwards, achieving a maximum wall shear stress of 159.5 kPa near the axis of symmetry
(x = 25 µm) at t = 103 µs.
The movement of the particles is tracked using the software Trackmate, which is part
of the freeware Fiji (also known as ImageJ) [335]. The horizontal movement Dx of the
particles to the left of the frame (away from the bubble centre) is plotted in figure 8.5 (a),
the vertical movement Dy in figure 8.5 (c). There is an initial horizontal movement of
around 2.4 µm for particle 1 (around 1.4 µm for particle 2). The vertical movement is
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smaller, about 1.4 µm for particle 1 and 1.6 µm for particle 2. This happens during
the initial expansion of the bubble. During the first oscillation cycle of the bubble, the
particles remain close to Dx = 0 and Dy = 1 µm. The vertical displacement can perhaps
be explained by the acrylic cap bending or displacing by this value over a large area in
this time period. There are again strong particle movements when the bubble reaches
its minimum volume at around 103 µs. A horizontal displacement of 4.7 µm for particle
1 (around 3.3 µm for particle 2) as well as a vertical displacement of 1.7 µm (around
4.1 µm for particle 2) is observed. Thus the deformation of particle 1, which is further
from the bubble, is larger than that of particle 2 in the horizontal direction, but smaller
in the vertical direction. This makes sense because due to the symmetrical configuration,
a stagnation point must form below the bubble, where after its collapse the pressure is
highest. Since this pressure causes vertical displacement, a particle closer to the stagnation
point will be displaced further than one far away from it. At the same time, the horizontal
displacement on the axis of symmetry must be zero. The shear force caused by the
collapsing bubble must have a maximum at some horizontal distance from the stagnation
point, and thus a particle near the stagnation point will be displaced less than one near
this region of maximum shear.
The simulation is done using a much stiffer elastic solid of E = 1000 GPa, and thus the
deformation achieved is much smaller than that observed in the experiment. Nevertheless,
a comparison with the experiment can be made under the assumptions of linear elasticity
(whereD ∝ E-1) and negligible effect of the sheet deformation on the bubble behaviour, by
multiplying the calculated deformation by Esimulation/Eexperiment, the resulting horizontal
deformation Dx is shown in figure 8.5 (b). A reasonable agreement with figure 8.5 (a)
is achieved for both positions corresponding to the particles 1 and 2, showing smaller
deformation peaks just after bubble creation and, after some time of small displacement
from the initial positions, larger peaks, where the displacement of position 1 is larger than
that of position 2.
The deformation of the fluid-structure interface as a whole is visualised in figure 8.6 using
streak plots, where the deformation over a line from x = 0, y = 0 to x = 800 µm,
y = 0 is plotted on the vertical axis over time t on the horizontal axis, for the horizontal
deformation Dx. A logarithmic scale is used for better visualisation of the deformation
between the large deformation peaks, where positive values on the colour bar correspond
to positive deformation values and vice versa. For the deformation direction (x axis), the
reader is referred to frame 1 of figure 8.4. The peaks just after bubble creation and bubble
collapse are prominently seen. Some oscillations of the surface are also observed during
the bubble’s initial expansion. On the axis of symmetry, the horizontal deformation must
be zero. Therefore there is a transition to small Dx in green near x = 0.
When the bubble starts to re-expand, features spreading radially outwards corresponding
to the bubble expansion are observed.

Maximum displacements

The maximum displacement of the particles after the first collapse of the bubble is shown
in figure 8.7 for various experimental and simulated cases. The parameters governing the
displacement of the particles in the experiments are the stand-off distance between the
bubble centre and the top of the elastic sheet (γ) and the horizontal distance between
the particle and the bubble centre (sx). Both γ and sx are normalised by the maximum
bubble radius (Rmax) in the bubble’s first oscillation period in order to ease the compar-
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ison between experiments with slightly different maximum bubble radii. The maximum
bubble radius ranges between 486 µm and 690 µm for the 36 cases presented.
As shown in figure 8.7, for γ between 1.34 and 1.79, the bubble collapses before jetting to-
wards the elastic sheet and collapsing for a second time on the sheet. These dynamics have
been shown previously in figure 8.4. Considering only the first collapse, the increasing
maximum displacement (Dx,max) with decreasing γ is clearly observed. Large maximum
displacements are measured for bubbles with γ close to 1.1. At this stand-off distance, the
bubble jets towards the surface as it collapses. The jet blocks the view of the particles,
making tracking extremely challenging. However, for the two cases where the particles
could be seen and tracked, the maximum displacements are as large as 13.4 µm (γ = 1.07,
sx = 0.49) and 11.0 µm (γ = 1.09, sx = 0.83).
For cases with stand-offs γ ≤ 1.0, the bubbles are not spherical at their maximum ex-
pansion. Typically, the bottom bubble surface is flattened due to the nearby boundary.
For γ ≈ 0.5, the bubble is approximately hemispherical at its maximum size. Only parti-
cles with a large distance from the bubble, sx ≥ 0.89, are not blocked in view and therefore
could be tracked. Large maximum horizontal displacements, 9.6 ≤ Dx,max ≤ 12.1, are
recorded for these cases. The proximity of the collapsing bubble induces a strong jet and
water hammer pressure on the boundary [119, 336].
At a high stand-off distance of γ ≥ 2.2, the maximum displacements of particles as the
bubble collapses are all below 2.0 µm and they are not shown in figure 8.7. This low value
of displacement is due to the fact that at this stand-off, the bubble has collapsed far from
the boundary. The jet that has penetrated the bubble during the collapse, would proceed
to move towards the boundary. However, most of the jet’s energy has been dissipated by
the time it reaches and impacts the boundary.
Simulation results for the horizontal stand-offs sx = 0.2 and sx = 1.1 are also plotted.
Using the assumption of linear elasticity, the deformation values were corrected to match
the parameters in the experiments. Since the sheet thickness is s = 100 µm in the simu-
lations and s = 60 µm in the experiments, the deformation is corrected by a factor of 0.6.
Similarly, since the elastic modulus in the simulations is E = 1000 GPa, the deformation
was multiplied by a factor of 106/1.4 to reach the value for E = 1.4 MPa. The simulated
results are in the same order of magnitude and show a similar trend as the experimental
values, and thus are in reasonable agreement. The field data was sampled in time inter-
vals of 1 µs, though the maximum deformation may be reached in between those sample
points. In some cases, the maximum deformation may occur closer to one of the sample
points than in other cases. This explains the non-smooth variations between neighbouring
data points in figure 8.7.

Correlation of stress and deformation

Figure 8.8 (a) shows the maximum pressure, maximum wall shear stress (τx) and overall
maximum shear stress (σxy) in the elastic sheet for the different stand-off distances, γ.
The largest pressure calculated is found at γ = 1.17, where p = 12.2 MPa. For τx and σxy,
the maximum values are recorded for γ = 1.12, where τx = 250 kPa and σxy = 1.9 MPa.
In fact, the pressure is also near its maximum at this stand-off with p = 12.0 MPa.
For γ ≈ 1.1, the bubble is roughly spherical at its maximum size with its bottom surface
close to, but not touching the elastic sheet. Collapsing from this position allows for an
efficient transfer of the kinetic energy of the jet onto the boundary. For larger γ, some of
the energy is dissipated into the liquid when the jet pierces through the collapsing bubble
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Figure 8.7: Maximum horizontal displacements (Dx,max) of the particles from their initial
positions. The bubbles are initiated at different stand-off distances, γ. In the experiments,
the particles are initially located in the elastic sheet with a horizontal distance sx from the
bubble centre (see colour bar). The displacement is highest at the non-dimensionalised
stand-off, γ = 1.07. The displacement tends towards zero at large stand-offs. The maxi-
mum horizontal deformations from the simulation at two different normalised horizontal
distances sx = 0.2 and sx = 1.1 are also plotted, for Rmax = 535 µm, sheet thickness
s = 100 µm (corrected by a factor of 0.6), E = 1000 GPa (corrected by a factor of
106/1.4).

.

to reach the elastic sheet. On the other hand, for γ < 1.1, the bottom part of the bubble
is deformed. For γ ≈ 0.5, the bubble at its maximum size is approximately hemispherical
and its vertical size is decreased. The resulting jet gets formed over a smaller distance
than the jets created for larger γ and thus reaches a lower velocity. The largest stresses
are achieved for γ ≈ 1.1, since a high-velocity jet is created from the almost spherical
bubble, which pierces through the lower bubble boundary, leaving no time for the jet
energy to be dissipated.
Figure 8.8 (b) shows the observable deformation values for correlation with inner and
surface stresses caused by the bubble on the elastic solid wall, allowing for an estimation
of the stresses induced in the experiments. It is worth noting that the maximum shear
stress within the solid sheet is an order of magnitude larger than the maximum wall shear
stress. We suggest that this may be responsible for ruptures or crack formation and thus
could contribute to damage. A similar observation has been reported in Chahine and
Hsiao [337] (figure 11) where the maximum stress they found in their aluminium sheet is
0.2 mm below the surface of the sheet due to plastic deformation.
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Figure 8.8: Dependence of numerical quantities on normalised stand-off γ of the bubble
from the elastic layer. (a) Maximum pressure p at ~x = 0, maximum wall shear stress
τx, overall maximum shear stress σxy. The latter two quantities have been multiplied
by a numerical factor for better visibility. (b) Maximum horizontal deformation at the
surface Dxs, overall maximum horizontal deformation Dx for Rmax = 535 µm, s = 100 µm
(corrected by a factor of 0.6), E = 1000 GPa (corrected by a factor of 106/1.4).

8.4.2 Bubble near elastic ring structure

Apart from understanding the wall shear stress on an elastic boundary, we would like also
to extend the study to include stresses on structures due to a cavitation bubble collapse.
One of the simplest and axisymmetrical structures is a ring. Therefore we studied the
bubble dynamics near an elastic ring structure with two high-speed cameras as depicted
in section 8.3. The cavitation bubble collapses with a jet directed toward the centre of the
ring. The presence of the ring influences the bubble dynamics, especially if the bubble is
created close to the ring. We vary the size of the ring and the bubble stand-off distance
from the ring center (the top of the plate that the ring is attached to). There is also a
slight variation in the maximum bubble radii. They are, however, all around 500 µm.
Figure 8.9 (a) (multimedia available online) shows the expansion and collapse of a cavita-
tion bubble with a non-dimensionalised stand-off distance of about γ = 1, i.e. the bubble
is created about one maximum bubble radius away from the bottom surface of the ring
centre. Upon expansion, part of the bubble is inside the ring. A fringe forms on the
bubble surface near the ring rim (frames t = 50, 70, 88 µs). Nevertheless, in the bubble
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Figure 8.9: (a) Selected frames of a cavitation bubble collapse near a ring of 550 µm in
radius. The framing rate is 1 Mfps. The bubble is created about d = 555 µm from the
wall. It reaches its maximum radius of Rmax = 564 µm at t = 50 µs after its creation.
The timing in µs is given in each frame. The frame height is 1.35 mm. (b) Experimental
horizontal (Dx) and vertical (Dy) displacement of the ring corner (red square) is plotted
together with the bubble dynamics. The error bars for the bubble radius are plotted only
for 3 points but they apply to all radii. Maximum displacements are seen during the
bubble’s initial expansion and after its first collapse (around t = 105 µs). (c) Dx and Dy

were obtained from the simulation. E = 1000 GPa (corrected by a factor of 106/1.2).
Bubble radius over time is superposed (multimedia available online).

collapse phase, a jet develops on the top of the bubble and moves towards the bottom of
the ring centre.
The ring is deformed and the ring wall moves accordingly as the bubble oscillates. We
track the movement of the upper outer corner of the ring. The tracking is done using a
Python code developed by the authors. The basic algorithm is as follows:
The region of interest tracked is shown as a red square in figure 8.9 (a), frame t = 2.
The consecutive frames are cross-correlated. The location of the maximum of the dis-
placements is obtained. To measure sub-pixel displacement, a Gaussian curve in x- and
y-directions is fitted to 11 points centred upon the maximum. The x- and y-position of
the maximum of this Gaussian curve is reported as displacement in the horizontal and
vertical directions with sub-pixel accuracy, respectively.
Figure 8.9 (b) shows the tracked movement of the upper outer left corner of the ring in
figure 8.9 (a). The corner moves strongly during the initial bubble expansion and again
after its first collapse (around 105 µs). The small distance between the bubble and ring
results in a larger horizontal movement outwards (in the x-direction) of about 2.90 µm as
the bubble expands. During bubble collapse, before the formation of the jet (t = 96 µs and



188 8 Cavitation bubble induced wall shear stress on an elastic boundary

Figure 8.10: (a) Selected frames of a cavitation bubble expansion and collapse near a ring
of 550 µm in radius. The framing rate is 1 Mfps and timing in µs is given in each frame.
The bubble is created about d = 810 µm from the wall at the bottom centre of the ring. It
reaches its maximum radius of Rmax = 535 µm at t = 50 µs after its creation. The frame
height is 1.35 mm. (b) Experimental horizontal (Dx) and vertical (Dy) displacement of the
ring corner is plotted together with the bubble dynamics. The error bars for the bubble
radius are plotted only for 2 points but they apply to all radii. Maximum displacement
is seen during the bubble’s initial expansion and slightly less so during its collapse. (c)
Dx and Dy were obtained from the simulation. E = 1000 GPa (corrected by a factor of
106/1.2). Bubble radius over time is superposed (multimedia available online).

t = 98 µs in figure 8.9 (a)), most of the bubble has moved into the ring. During this period,
the ring corner is slowly pulled inwards in the x-direction by about 1.5 µm. After the mini-
mum bubble size, the ring corner is pushed outwards. The maximum lateral displacement
reached is Dx = 3.24 µm. the corner is also moved slightly downwards to Dy = 0.71 µm.
The configuration of the experiment is axisymmetrical. The upper outer right corner of
the ring structure shows displacements in x and y directions of similar magnitude. There-
fore the tracked movement is not shown here.
Figure 8.9 (c) shows the deformation obtained by the simulations. Again prominent peaks
after bubble creation and after bubble collapse are visible. While the first peaks stem-
ming from the bubble creation are of the same order as the deformation observed in the
experiments, the peaks that occur after bubble collapse are smaller by about a factor of
4. The strongest shear stresses by far are observed at the inner bottom corner of the ring,
reaching 17.04 MPa at t = 2 µs and 3.52 MPa at t = 108 µs. These strong stresses may
lead to failure and damage in some materials.
The movement of the ring’s corner of the case shown in figure 8.10 (multimedia available
online) can be compared to the previously shown case in figure 8.9. Both cases have the
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Figure 8.11: Streak plot of the deformation Dx and Dy of the ring surface as a function of
time t in logarithmic scale, where for negative deformation values the logarithm was taken
as −log10(−D/nm E/GPa). The deformation of the three fluid-structure interfaces of the
ring structure is plotted, as indicated by the numbers 1, 2 and 3 in the sketch on the left.
The ring corners are indicated by white dashed lines. Rmax = 535 µm, E = 1000 GPa.
The plots include the volume equivalent bubble radius over time as a black curve, the
axis ranging from 0 to 600 µm. (a) d = 550 µm (b) d = 800 µm.

same ring size. The main difference between them is the stand-off distance of the bubble.
In figure 8.10 γ = 1.5, while in the previous case γ = 1.
In general, similar dynamics are observed. The bubble expands spherically and reaches
its maximum size of Rmax = 535 µm at t = 50 µs. During the bubble’s initial expansion
(t = 0 to t = 15 µs), we observe a strong movement at the ring wall corner. As seen in
figure 8.10 (b), the corner moves about 4.3 µm in the positive x-direction and 2.9 µm in
the positive y-direction. This represents a sudden high pressure on the ring, causing its
corner to move downwards vertically and outwards horizontally. After that, the bubble
expands to its maximum size and starts to collapse (40 µs < t < 100 µs), and the corner
remains on average at about y = 0.96. In the x-direction, however, the corner moves
inwards towards the bubble and reaches x = −1.52 µm just before the bubble collapses.
During the bubble’s collapse (t = 100 µs to t = 110 µs), the corner is slightly pulled to-
wards the bubble in the y direction. However, when the bubble reaches its minimum size
at around t = 115 µs, the corner is pressed outwards strongly in the x direction (more than
3 µm, x increases from its minimum of −1.52 µm to 1.95 µm). It is also pressed slightly
downwards in the y-direction.
As shown in figure 8.10 (c), again a qualitative agreement between the experimental
and the numerical deformation is seen. Though again, the positive peaks observed in
the simulations are significantly smaller. The ring being pulled inwards due to the bub-
ble collapsing is also observed, but the effect is weaker than in the experiment. Again,
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at the inner bottom corner, the strongest shear stresses are achieved with 6.21 MPa at
t = 2 µs and 3.68 MPa at t = 106 µs.
The deformation Dx and Dy of the simulated ring cases shown in figure 8.9 and figure
8.10 are illustrated using streak plots in figure 8.11 (a) and (b), respectively. The y-axes
of the plots follow the fluid-structure interface, starting from the inner bottom corner
of the ring and going over the inner top corner and the outer top corner to the outer
bottom corner. The two top corners of the ring are indicated by white lines. The large
deformations after bubble creation and after bubble collapse are prominently seen over
the entire ring surface. Since the ring structure is fixed at the bottom and the top of the
ring moves horizontally, a bend in the structure is to be expected. For instance, when
the ring is deformed inwards (outwards), it is bent counter-clockwise (clockwise). This
behaviour can be observed in the plots for the vertical deformation Dy on the right side
of figure 8.11. During the bubble shrinking phase, the ring is pulled inwards and thus
the outer surface of the ring is stretched and deformed upwards (negative y-direction),
while the inner surface of the ring is compressed and deformed downwards (positive y-
direction). The signs of these deformations flip after the bubble collapse when the ring
is pushed outwards. Now, the outer surface is being compressed and the inner surface is
being stretched, which is reflected accordingly in the vertical deformation Dy.

8.5 Conclusion

In this paper, we presented experimental and numerical simulation studies attempting to
understand the shear stresses on elastic material during the expansion and collapse of a
single cavitation bubble. The fluid-structure interaction simulation is done by coupling a
finite-volume solver for two compressible, viscous fluids with a solver for a linearly elastic
solid. Refinement on the boundary layer is carefully done to ensure sufficient resolution
to resolve the wall shear stress. We compare the experimental tracked movement of
particles on the surface of an elastic layer with the displacement of the elastic material
from simulations at the same positions. Reasonable agreements between experimental and
simulated results lend confidence to the wall shear stresses calculated. From our summary
of maximum lateral displacements of particles due to a collapsing bubble at different
stand-off distances (γ), a maximum wall shear stress of 250 kPa is found for γ ≈ 1.1.
Wall shear stress values this large have not been reported before. Recently, Zeng et al.
[119] reported a wall shear stress of 100 kPa for a collapsing bubble at γ = 1. Denner
et al. [338] reported a peak wall shear stress of 68.3 kPa for a bubble at γ = 0.4. This
discrepancy by a factor of about 2.5 may be caused by an overestimation of the stresses
in this work, an underestimation of the cited works, or a combination of both. The
resulting stresses are highly sensitive to the details of the bubble and jetting dynamics.
Nonetheless, we argue that in this work the boundary layer is sufficiently refined, since a
further refinement yields similar stresses within a 10 % difference. Simulations with and
without fluid-structure interaction coupling also yield similar results with variations of
less than 5 %.
We also studied the interaction of a cavitation bubble with an elastic ring structure.
The vertical and lateral displacement of the ring corner is measured with high-speed
photography and compared with the numerical simulation. Both agree that the lateral
displacement is larger than the vertical displacement during the bubble’s initial expansion
and its first collapse. The complex interaction between the bubble and elastic structure
may shed some light on the mechanism of bubble cleaning on complex surfaces. We
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Figure 8.12: Developed shear flow near an elastic solid. Velocity is 0.01 m/s over 100 µm,
E = 1000 GPa, τx = 1000 Pa, Dx = 2.77 · 10−17 m (calculated: 2.8 · 10−17 m). The error
can be attributed to the boundary conditions.

express a note of caution as to the scope of validity for the linear elastic model that we
have utilised. At high strain rates, other non-linear or plastic behaviour may become
important. Also, because of the high elastic modulus used in the simulation, information
about wave propagation in the elastic solid is lost, since only quasi-static deformation can
be scaled linearly with the elastic modulus. Nevertheless, we believe that our model is valid
for the small displacement regime that we have presented. Lastly, we conclude that our
method of correlating the observed elastic material displacement with the calculated wall
shear stress is potentially useful for the generalisation of wall shear stress measurements
for different materials. An automated system using a high-speed camera and simulation
software, similar to commercialised Particle Image Velocimetry (PIV), could be developed.
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8.7 Appendix

8.7.1 Validation of the solver

A simple shear flow case over a thin elastic sheet of thickness d = 100 µm is employed
to check the validity of the solver to model linear elastic shear deformation. Above the
elastic solid, the horizontal flow velocity is chosen to be 0.01 m/s at a distance of 100 µm.
This relatively small velocity is chosen to achieve a Reynolds number of Re = 1, to ensure
a laminar flow. With a viscosity of 1 mPa s and an elastic modulus of E = 1000 GPa, the
wall shear stress is τx = 1000 Pa and the surface deformation is Dx = 2.77 ·10−17 m, which
is in agreement with the theoretical value of Dx = 2.8 · 10−17 m. The small discrepancy
can be attributed to the computational domain not being infinitely extended and the
deformation being restricted at the outer solid boundaries.
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Figure 8.13: Deformation D multiplied by E at ~x = 0 for a bubble expanding and
collapsing near an elastic layer at different Young’s moduli E. Rmax = 535 µm, stand-off
d = 500 µm, layer thickness s = 100 µm.

8.7.2 Elasticity dependence

Figure 8.13 shows that the deformation over time is approximately proportional to 1/E
in the range of 1 GPa ≤ E ≤ 1000 GPa. E = 1 GPa shows some and E = 0.1 GPa shows
much stronger oscillations, especially in the early stage (during bubble expansion). But
most importantly, the peak after jet creation is very similar across a large range of values
of E. Thus the effect of the fluid-structure interface deformation on the bubble dynamics
is negligible and simulations with a high elasticity modulus can be used to represent cases
with a softer material, for which the deformation found simply needs to be scaled up by
a factor of Esimulation/Eexperiment.

8.7.3 Counter-jet for a bubble near a smaller ring

In the next case, a smaller ring with a radius of 250 µm, about half that of the previous
rings, is used. Figure 8.14 (a) (multimedia available online) shows the bubble dynamics
for a non-dimensionalised stand-off distance of about γ = 0.9. Similar to the previous
cases in which a larger ring is used, as the bubble expands, part of the bubble moves
into the ring structure. During bubble collapse, however, an upwards-directed liquid jet
is seen in the frames corresponding to t = 27, 50 and 72 µs. It is especially visible at
the bubble’s maximum size at t = 50 µs (see figure 8.14, red arrow). This counter-jet is
very reproducible, but it only occurs for γ ≈ 1, and only for this smaller ring, not for the
larger rings. We postulate that the counter-jet is caused by a large stagnation pressure
forming in the centre of the ring, which is confined by the elastic ring, the cap wall and
the bubble gas. This causes this liquid jet to form and enter the bubble before its collapse.
A remnant of this counter-jet is seen in frame t = 97 µs (figure 8.14) when the bubble has
collapsed.
The formation mechanism of this jet is elucidated by the corresponding finite-volume sim-
ulation shown in figure 8.14 (b). The simulation reveals that the liquid confined between
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Figure 8.14: (a) Selected frames of a cavitation bubble created near a ring of 250 µm in
radius. The framing rate is 1 Mfps. The bubble is created about d = 475 µm from the
wall. It reaches its maximum radius of Rmax = 551 µm at t = 50 µs after its creation.
A counter-jet formed inside the bubble is clearly seen (indicated by a red arrow). After
this, the bubble collapses with the counter jet piercing through the bubble top. The time
in µs is given in each frame. The frame width of the first frame is 1.62 mm. (b) Simulated
frames of a bubble near a ring of 160 µm inner radius and 500 µm outer radius and a
stand-off distance of d = 475 µm. Multiple jets are ejected from the lower bubble wall
and coalesce to form the counter-jet (multimedia available online).

the bubble wall, the elastic ring, and the solid substrate prevents a strong dissipation of
the shock wave initially emitted by the laser-induced cavitation bubble. This shock wave
is thus successively reflected back and forth between the bubble and the solid boundaries,
its phase being inverted at every reflection on the free boundary. Note that the phase
of the wave flips about two times per microsecond. The resulting alternating high and
low pressure in the confined liquid combined with the motion of the bubble wall gives
rise to the formation of a Rayleigh-Taylor instability on the lower bubble wall, eventually
leading to small liquid jets being ejected into the bubble. This phenomenon has been
reported to lead to the break-up of droplets [339, 340]. These jets then coalesce and form
a single upwards-directed jet moving through the bubble at a velocity of about 20 m/s.
The bubble then collapses, with a kink moving upwards from the outer part of the bubble
wrapped over the ring structure and meeting the axis of symmetry, causing the formation
of a needle jet [83] with a velocity of 217 m/s.
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9 Thermally assisted heterogeneous cavitation

through gas supersaturation

This work has been published in [27]:

P. Pfeiffer, J. Eisener, H. Reese, M. Li, X. Ma, C. Sun, and C.-D. Ohl. “Thermally
Assisted Heterogeneous Cavitation through Gas Supersaturation”. Physical Review Let-
ters 128, 194501 (19 2022)

This work has been continued in [60]:

P. Pfeiffer, M. Shahrooz, M. Tortora, C. M. Casciola, R. Holman, R. Salomir, S. Meloni,
and C.-D. Ohl. “Heterogeneous cavitation from atomically smooth liquid–liquid inter-
faces”. Nature Physics 18 (12), 1431–1435 (2022)

We demonstrate that besides gaseous pockets also a gas supersaturated spot on a sub-
strate can be a nucleus for cavitation. The supersaturation is achieved by either a formerly
dissolved bubble or by heating locally the surface below the boiling temperature. The
experiments are conducted in a thin film of water; one side of the water film is in con-
tact with a gold-coated substrate that is heated by a continuous laser through plasmonic
heating. For the nucleation of a bubble, the pressure at the heated spot is reduced by a
transient rarefaction wave. The experimental findings suggest that the local gas super-
saturation is responsible to nucleate cavitation and thus connects the phase transitions
of cavitation and boiling. Additionally, the pressure waves in the liquid gap are studied
numerically.

9.1 Introduction

The ubiquitous formation of gas bubbles in liquids is still challenging our understanding
of the origin of bubble nucleation. The ratio between gas concentration in the liquid and
its saturation concentration dictates if bubbles in a liquid grow or shrink by diffusion.
Concerning the origin of bubbles, Jones et al. [341] explain the heterogeneous nucleation
of bubbles from surfaces at low supersaturation levels of gas with preexisting nucleus
(type III nucleation), while in the absence of a nucleus high levels of gas supersaturation
are necessary for nucleation (type II nucleation). Supersaturation can be obtained, e. g.
through heating the liquid. Gas bubbles may be expanded by a transient reduction of
pressure. When the pressure reduction is sufficiently fast that gas does not diffuse into the
bubble, a mostly empty cavity is formed that upon pressure recovery will acceleratingly
shrink and collapse [20, 342]. In a widely accepted and tested model, preexisting gas
nuclei in non-oversaturated liquids require a hydrophobic pore [343–346]. The Laplace
pressure then leads to a stable gas pocket even in a gas under-saturated liquid. Yet, once
a sufficiently strong tension is applied, the gas pockets explosively expand into cavita-
tion bubbles. In real liquids, surfaces of the container and impurities from contaminant
particles can provide these stabilising hydrophobic crevices [347, 348].
In the present Letter, we test experimentally if locally and temporally modulated gas su-
persaturation is a nucleus for cavitation bubble formation. Typically, transient pressure
reduction is obtained with focused acoustic waves. They can easily reach several tens of

http://doi.org/10.1103/PhysRevLett.128.194501
http://doi.org/10.1103/PhysRevLett.128.194501
http://doi.org/10.1038/s41567-022-01764-z
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Figure 9.1: Experimental setup for cavitation inception by a focused pulsed laser in a
water-filled gap. The latter consists of a gold-coated microscope slide and a cover slip.
Between both glass plates, a 4-10 µm thick water layer is sandwiched. The pulsed laser
is focused onto the gold layer, creating a plasma and transverse Lamb-type wave. As it
pushes the glass plates apart, the pressure in its wake is positive (+p) and in its front
negative (−p), nucleating secondary cavitation bubbles. The visual wave is caused by the
second spatial derivative of the pressure gradients. A second laser (CW) used for local
heating is focused into the gap at a slightly different position compared to the pulsed laser.
The setup allows a simultaneous generation of cavitation bubbles and observation with a
high-speed camera. Illumination is provided from the opposite side with a femtosecond
laser. Two different cases are studied to act as a cavitation nucleus: 1) a vapour bubble,
created by localised boiling with sufficient time to dissolve, and 2) a locally heated spot
during the passage of a rarefaction wave. For comparison a preexisting vapour bubble is
studied as well [27].

Mega-pascals of negative pressure [57, 349]. Here, we use a rarefaction wave propagating
within a liquid sample sandwiched between two glass slides. The wave is a transverse
Lamb-type wave (tension or rarefaction wave), which first reduces the pressure in the liq-
uid, thereby nucleating cavitation bubbles while the trailing pressure wave may collapse
the bubbles afterwards [7]. The wave is launched from a dielectric breakdown spot created
with a focused nanosecond laser pulse. The pressure amplitude in the gap is determined
from numerical simulations.
Using sufficiently fast imaging modality we can observe if a nucleus was present by de-
tecting a bubble expanding larger than the optical resolution limit. The geometry and
technique offer a view of the details of the nucleation events microscopically and at a very
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Figure 9.2: Nucleation of a bubble by a rarefaction wave in a ≈ 4 µm thick gap. The
lower right shows part of the primary cavitation bubble. (a) A vapour bubble is created
and has dissolved at t = −4 ms at the blue cross. Upon the passage of the tension wave,
a cavitation bubble is nucleated (t = 60 ns) at the location where the vapour bubble
dissolved. t = 0 corresponds to the time when the laser pulse reaches the glass slide. (b)
A spot is heated (blue cross) below the boiling temperature. The heated spot acts as a
cavitation nucleus once the rarefaction wave passes.

high temporal resolution due to the high repeatability of the experiments.
Local supersaturation is achieved as follows: nucleating a vapour bubble through heating
and letting it dissolve or heating the surface below the boiling temperature. Both meth-
ods are probed with a rarefaction wave (figure 9.1). The case of a preexisting bubble is
shown in the supplementary material of [27].

9.2 Experimental setup

Figure 9.1 shows the experimental setup. The liquid gap is formed by placing a droplet of
water (10 µl) between a microscope slide (Paul Marienfeld GmbH & Co. KG, Germany)
and a coverslip (Menzel Gläser #1, Germany). The side of the microscope slide facing
the water is coated with a 40 nm thick gold layer [27] for laser heating through plasmonic
absorbance [350]. The gap is clamped and stabilised against evaporation by adding a
water reservoir around the edge of the coverslip. The thickness of the gap is controlled
either with a spacer (6 µm thick tin film; Sn98Sb2, Eppstein FOILS, Germany) resulting
in a gap thickness of 10 µm or in the absence of any spacer, where a film thickness of about
4 µm is achieved. The gap thickness is measured with a confocal fluorescence microscope.
Shock and rarefaction waves are created from the focus of a nanosecond Q-switched laser,
forming a plasma and a rapidly expanding vapour bubble. The latter emits a shock
wave in the liquid, which is preceded by a Lamb wave [7]. Transient waves and phase
transitions of the liquid are observed via high-speed video recording (HPV-X2, Shimadzu,
Kyoto, Japan at 5 × 106 frames/s). A laser line filter (FL514.5-3, Thorlabs) protects the
camera from the pulsed laser light but lets the illumination light pass. The focusing of
the lasers and the observation is done through the same Olympus LUCPlan FLN 60x/0.7
microscope objective at a spatial resolution of 1.2 µm per pixel. Each frame of the high-
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speed camera is exposed with a single light pulse from a femtosecond laser (FemtoLux 3
SH, EKSPLA, Vilnius, Lithuania, pulse duration 213 fs at a maximum repetition rate of
5 MHz, wavelength λ = 515 nm). The short exposure enables us to visualise the waves
travelling in the solid and in the liquid without motion blurring.
Localised heating and boiling of the liquid is done by focusing a continuous-wave (CW)
laser (frequency-doubled Nd:YAG DPSS laser, λ = 532 nm) for an adjustable time onto
the gold layer. The light path of the CW laser is slightly tilted with respect to the pulsed
laser, such that both lasers are focused at an adjustable distance from each other.
The output of the CW laser is controlled by a delay generator (Quantum Composers,
9520 series) and measured with a photodiode (APD430A2/M, Thorlabs). We measure
about 30 % of the light absorbed in the gold, which corresponds to a power of 25 mW.

9.3 Numerical model

Numerical finite-volume simulations are carried out to understand the pressure modula-
tion in the liquid gap using a modified strongly coupled fluid-structure-interaction solver
[27] (base solver fsiFoam, see [126]) for the OpenFOAM framework [127]. The modified
version we call CavBubbleFsiFoam couples a linear elastic solid representing glass (Young’s
modulus E = 67 GPa, density ρ = 2500 kg m−3, Poisson’s ratio ν = 0.21) to a multi-phase
Volume of Fluid (VoF) solver of two compressible, immiscible, isothermal, viscous fluids
using a phase fraction approach for interface modelling. The two fluids represent Tait-
compressible water and a non-condensible adiabatic gas representing the bubble contents.
The axisymmetric simulation sample consists of two glass plates of thicknesses 150 µm and
1 mm, respectively, sandwiching a water layer of 4 µm [27] or 10 µm thickness, modelled
as a slice of a cylinder.
A cylindrical gas bubble with the height of the gap and an initial radius of 11 µm (4 µm gap)
or 12.5 µm (10 µm gap) is seeded at an initial pressure of 100 MPa. This value was chosen
to fit the expansion velocity of the bubble in the simulations to that of the experiments.

9.4 Results

Figure 9.2 depicts two representative examples of the interaction of a rarefaction wave
with the heated region. (1) A vapour bubble is formed (blue cross). After stopping the
heating, the bubble quickly dissolves and is already optically undetectable after 200 ns
[27]. 4 ms later the rarefaction wave passes over the dissolution spot and nucleates a
single cavitation bubble at precisely the location where the vapour bubble dissolved (figure
9.2 (a)). (2) The liquid is heated (blue cross in figure 9.2 (b)) but prior to the nucleation
of a vapour bubble the rarefaction wave is applied, nucleating a cavitation bubble at the
heated spot. Here, bubble nucleation was only observed if the spot is still heated when the
rarefaction wave passes. The heating is done for 4 µs, starting 3 µs prior to the high-speed
recording and continues for 1 µs (with decreasing power) when the rarefaction wave passes.
Immediately before the rarefaction wave passes, a cavitation bubble is nucleated at the
heated spot (figure 9.2 (b) at t = 57 ns). For this experiment, stroboscopic illumination
at different delays (∆t = 2.5 ns between runs; every second frame shown) instead of a
continuous high-speed recording is conducted. The rarefaction wave (not visible in figure
9.2 (b)) precedes the shock wave, which explains the nucleation of the cavitation bubble
ahead of the visible wave, which travels at a speed of 1450± 250 m/s. The lifetime of the
cavitation bubbles is approximately 27 ± 3 ns.
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(a) ~ 10 µm thick gap

(b) ~ 4 µm thick gap 
50 µm

52 ns 57 ns 62 ns 67 ns 77 ns 87 ns

10 µm

(c) ~ 4 µm thick gap

67 ns-133 ns 267 ns

60 ns-140 ns 260 ns

Figure 9.3: Nucleation of a cavitation bubble from a dissolved bubble by a rarefaction
wave (a) in a ∼ 10 µm gap, (b-c) in a ∼ 4 µm gap. A CW laser is focused for 20 - 40 µs at
the position with the blue cross. It is switched off 1 ms before the high-speed recording
has started. (c) Detail image of (b) with higher temporal resolution. The red circles
(diameter: 25 µm) mark the region which is void of random cavitation.

In case (1) a vapour bubble is created and dissolved at least 1 ms prior to the passage
of the rarefaction wave. A single bubble is nucleated once the rarefaction wave passes
in the 10 µm gap (figure 9.3 (a)). Interestingly, when reducing the gap height (figure
9.3 (b)) besides the controlled nucleation of a bubble at the location of dissolution more
and seemingly randomly distributed cavitation occurs. These bubbles are considerably
smaller than the one nucleated at the position of the blue cross and are located in an
annular ring of about 60 µm width. The region around the induced cavitation bubble is
void of random cavitation, see inset (red ring) in figure 9.3 (b) at t = 67 ns.
The suppression of uncontrolled cavitation from the central induced nucleus is now re-
solved in time steps of 5 ns (figure 9.3 (c)). At t = 57 ns secondary uncontrolled cavitation
occurs in the lower right area of the frame which is part of the annular ring shown above.
Besides multiple cavitation, bubbles at the dissolution spot appear. At t = 62 ns these
bubbles coalesce and expand to a considerably larger size than the naturally occurring
cavitation bubbles. Interestingly, a region of about 25 µm (red ring) is cleared from any
cavitation bubbles. A reason may be the emission of a pressure wave of the explosively
expanding cavitation bubbles [351]. Yet, the speed at which this suppression wave travels
(2500 m/s) is too fast to travel in the liquid. A possible explanation could be a surface
wave on the glass that is radiating into the liquid.
Figure 9.4 (a) shows a numerical snapshot of the 10 µm gap. A Lamb wave is emitted from
the main cavity boundary, travelling with a speed of 1200 m/s in the thin and 1400 m/s in
the thick gap, respectively. Figure 9.4 (b) shows a zoomed view of (a). The deformation
from the initial configuration is multiplied by a factor of 200 to visualise the deformation
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Figure 9.4: Numerical simulations (a) in the 10 µm gap [27]. The bubble boundary
is indicated with a white line. σxy is component of the stress tensor, i. e. the shear
stress corresponding to a shear wave with vertical deflection (y-direction) and horizontal
propagation direction (x-direction). (b) shows a magnified view where the amplitude of
deformation is multiplied by a factor of 200. (c) Position of bubble boundary (radius) and
the Lamb wave over time with experimental values. (d) Pressure over time at a distance
of 110 µm from the bubble centre. The duration of the tension wave is estimated from the
time between minimum and maximum pressure, which are ≈ 41 ns in the thin gap and
29 ns in the thick gap.

of the glass. In (c) the positions of the bubble boundary and the wave is shown (solid
lines). Experimental values are added for comparison. The pressure wave at a distance
of 110 µm from the bubble centre (as in the experiments) is shown in figure 9.4 (d). In
the 4 µm gap the tension in front of the Lamb wave is −17.1 MPa and in the thicker gap
−11.6 MPa, followed by a region of high pressure [27].

As random cavitation occurs in the thin gap, the cavitation threshold is reached. The
value here although in a different geometry is not far from the value found by Caupin &
Herbert [57] of ≈ 25 MPa for water. Yet, we also want to note that higher values were
found for shock wave reflections [289]. In contrast, randomly occurring cavitation cannot
be observed in the thicker gap, meaning the maximum tension is lower than in the thin
gap. Only at the heated spot cavitation occurs, showing that the cavitation threshold has
been locally reduced.

9.5 Discussion

A simple 2D axisymmetric simulation of the heat introduced by the CW laser is carried
out using a finite element solver for the heat equation in Comsol. A region with a radius
of 40 µm and height of 40 µm is simulated in which the upper half contains water and the
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lower half is glass. Both materials are separated by a 40 nm thick gold layer (cf. inset
in figure 9.5). The plasmonic heating of the gold layer is modelled with a heat source
(radius 1 µm) located at the origin. The heat input is time-dependent. We model the
measured intensity of the laser by first increasing the power of the heater linearly from
zero to Pcw = 25 mW within 5 µs, then it remains at maximum for 5 µs before it is sud-
denly switched off. The resulting temperature distribution is shown in figure 9.5.
By neglecting phase changes, the model overestimates the temperature increase consider-
ably once boiling sets in. Yet the gross features fit nicely with the observed phenomena.
In particular, we obtain the minimum duration to reach the boiling temperature and how
long it takes to cool down back to ambient temperature. After a few microseconds of
heating, the boiling point is already exceeded and after switching off the heating, it only
takes a few tens of microseconds to distribute the heat. Increasing the size of the heated
area [27], heating slows down but the size is only marginally affected. This suggests that
after about 1 ms the temperature of the liquid has equilibrated. Heat and gas diffusion
are governed by the same diffusion equation, yet the diffusion constant of heat in water
is about 100 times higher than that of dissolved gas. This suggests that it is not the
higher temperature where the bubble has dissolved but a local gas supersaturation that
nucleates the cavitation bubble.
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Figure 9.5: (a) Temperature in the water on the axis of rotation above the centre of the
heated spot at a height of 0.1 µm (red), 0.5 µm (magenta) and 1 µm (blue) above the
gold layer. The green line shows the assumed heating power. The inset represents the
simulation setup. (b) Temperature at the end of heating (t∗ = 10 µs) and (c) 4 µs after
the heating has stopped. The dashed line in (b) and (c) represents the position of the
gold layer, water is simulated above and glass below. The orange and red lines represent
the temperature isoclines of 50 and 100 ◦C, respectively.
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Initially the bubble generated with the CW laser consists mainly of vapour. The conden-
sation time tcond of this bubble can be calculated as follows [352]:

tcond =
πR2

0

4 JaDl

, (9.1)

where Ja is the Jakob number, and Dl the liquid thermal diffusivity. For a typical vapour
bubble in the experiments, an initial radius of R0 = 2 µm is assumed, which gives a Jakob
number of 71.4 and Dl is 1.4×10−7 m2/s. This results in a condensation time of 300 ns, a
value compatible with the observed dissolution times of 200 ns [27]. Yet the bubble may
also contain gas as the liquid in the vicinity of the vapour bubble is heated and therefore
over-saturated with gas [211]. This may lead to a diffusion of gas into the bubble and the
realistic condensation times are longer than the one calculated above. Thus, for a time
interval ≥ 1 ms between vapour bubble condensation and tension wave, it is reasonable
to assume that no vapour bubble remains to act as a cavitation nucleus. Consequently, a
possible explanation for the bubble nucleation is a local over-saturation of gas in the liquid,
which acts as a cavitation nucleus. It has been shown by molecular dynamics simulations
that over-saturation of gas in water can reduce the hydrogen bonds between the water
molecules [59]. Additionally, the surface tension is reduced by the surface activity of gas
molecules, which can lower the threshold of cavitation inception, as well [353].

9.6 Conclusion

We created cavitation nuclei by locally heating a gold substrate and tested their activ-
ity by applying a rarefaction wave. Two techniques were demonstrated: First, a boiling
vapour bubble was created, which was allowed to dissolve. Yet the location of bubble
dissolution remained an active cavitation nucleus for a duration of up to 4 ms. Second,
the substrate was heated below the boiling temperature. Again, the heated spot became a
cavitation nucleus once the rarefaction wave passed over it. The possibility of a nanobub-
ble formation prior to the phase explosion cannot be entirely ruled out here. It is an
interesting line of research for future work. Both techniques may be explained by a local
increase in the concentration of dissolved gas molecules. This simple technique facilitates
the connection of boiling and cavitation nucleation. It opens the possibility to apply ex-
perimental techniques to understand molecular adsorbed gases on surfaces, for example
through surface-enhanced Raman [354] or high-resolution atomic force microscopy [355].
We are grateful to A. Dempewolf and O. August for the gold coating and SEM images. We
thank A. Eremin for the confocal thickness measurements of the liquid gap. This work was
financially supported by the European Social Fund (No. ZS/2019/10/103050) as part of
the initiative “Sachsen-Anhalt WISSENSCHAFT Spitzenforschung/Synergien”, and the
Deutsche Forschungsgemeinschaft (Programs No. OH 75/3-1, OH 75/4-1 and PF 951/3-1)
and the National Natural Science Foundation of China (NSFC, No. 11861131005).
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This work has been published in [28]:

U. J. Gutiérrez-Hernández, H. Reese, C.-D. Ohl, and P. A. Quinto-Su. “Controlled iner-
tial nano-cavitation above 100 MHz”. Journal of Fluid Mechanics 972, A16 (2023)

The maximum size and lifetime of an acoustically nucleated cavitation bubble is inversely
proportional to the driving frequency and has achieved a limit of about 10 MHz. Smaller
cavitation bubbles that are critical to microscopic applications require shorter lifetimes
which correspond to higher oscillation frequencies. Here we demonstrate that acoustic
cavitation in the 100 MHz range and beyond can be achieved through wave propagation
in a solid rather than in a liquid. The cavitation bubble is nucleated at a nano-sized
fracture on a glass substrate and its expansion is driven by a leaky Rayleigh wave, while
the inertial collapse is induced by a trailing shock wave. As both waves travel at different
velocities, the time interval between these two events is a function of the distance to the
source. In this way, we experimentally demonstrate control of the lifetime of the bubbles
in a range between 6 and 80 ns, corresponding to oscillation frequencies between 13 and
166 MHz. Our results agree with finite volume fluid-structure interaction simulations.

10.1 Introduction

Acoustic cavitation refers to bubble generation in a liquid using acoustic waves. These
bubbles have been used in various fields, e.g. medical research for drug delivery [356], cell
and cell organelle surgery [357, 358], semiconductor cleaning [81, 359], and nanochemistry
[360]. In the case of microscopic and submicroscopic applications, controlling the size of
the bubbles is important [361, 362]. In general, the maximum size of a cavitation bubble
is proportional to its lifetime (or oscillation time) [2], so that smaller bubbles require
shorter oscillation times and thus higher driving frequencies.
In particular, inertial acoustic cavitation (i.e. an explosive bubble expansion due to the
tension exceeding the cavitation nucleation threshold followed by the bubble’s collapse)
at high frequencies is difficult to achieve for two reasons. Firstly, since the time avail-
able for a bubble to expand to a significant size is inversely proportional to the driving
frequency, the driving forces expanding the bubble must be larger for higher frequencies
[363]. Secondly, the acoustic waves become strongly attenuated at high frequencies [364],
thereby making it difficult to reach the amplitude required to drive the bubble expansion.
This is why controlled acoustic cavitation has not exceeded MHz frequencies [365], with
bubble lifetimes of a few microseconds, while bubbles nucleated in a substrate have longer
lifetimes exceeding tens of microseconds [346, 366–368].
Cavitation has also been produced via surface acoustic waves (SAWs, [7]), also known
as Rayleigh waves, which propagate along the surface of an elastic material [47]. Their
amplitude decays exponentially with the distance from the surface (depth) and most of
the energy carried by the wave is concentrated in just one wavelength below the sur-
face. So far, the highest frequency attained for cavitation bubbles is around 30-40 MHz
(lifetimes of 27 ± 3 ns, [27]); it required a combination of localised heating and a Lamb
wave propagating in a very thin liquid gap. In the work of Rosselló and Ohl [54, 55], the
on-demand production of bulk nanobubbles through the passage of an intense laser pulse

http://doi.org/10.1017/jfm.2023.696
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Figure 10.1: Inertial cavitation process. (a) A schematic of the sample is shown. The
Rayleigh and shock waves are drawn. The Rayleigh wave travels faster in the elastic solid
than the shock wave in the liquid and thus arrives first at the position of the nano-crack.
(b) Close-up at the nano-crack position: (1) unperturbed nano-crack, (2) tension induced
by the Rayleigh wave, (3) cavitation inception due to the tensile pressure, (4) bubble
expansion due to ongoing tensile pressure, (5) bubble collapse induced by the arrival of
the shock wave.

in water was demonstrated. Transient bubbles appear within the region exposed to light
once a rarefaction wave passes through, attaining temporal and spatial control of the bulk
nanobubble nucleation.
In this work we have achieved controlled inertial nanobubble cavitation with continu-
ously adjustable lifetimes in the range between 6 ns and 80 ns (oscillation frequencies in
the range between 13 MHz and 166 MHz), nucleated at a nano-sized fracture on a glass
substrate. Control is attained with a transient rarefaction wave, induced by the passage
of a leaky Rayleigh wave on the glass surface. The tensile pressure explosively expands
the nanobubbles which are later collapsed by the trailing shock wave in the liquid. Both
pressure excitations are generated by a single laser pulse
The process of the nanobubble nucleation and collapse is illustrated in figure 10.1 (a),
where a laser pulse is focused in the vicinity of the nano-crack generating a cavitation
bubble and a Rayleigh wave in the substrate followed by a slower shock wave in the liquid.
Figure 10.1 (b) depicts the sequence of events (1-5) close to the nucleation site (1). The
second frame represents the time of arrival of the Rayleigh wave on the solid surface,
leading to a tension state (2) in the liquid (positive stress in the glass that “opens” the
crack). The induced tension is strong enough to nucleate nanobubbles at the nano-crack,
the uneven structure of which acts as a cavitation nucleation site (3). The enduring ne-
gative pressure state in the liquid, induced by the passage of the SAW, keeps expanding
the nucleated nanobubbles (4) until the shock wave induces the collapse of the bubbles
(5). The experiments are complemented with Finite Volume (FV) simulations, showing
an excellent agreement.

10.2 Methods

10.2.1 Experimental setup

The experimental setup is based on our previous work [369] where a laser pulse (6 ns,
λ = 532 nm, SOLO PIV NewWave Research) is focused at the bottom of a thin liquid
gap. The liquid (Epson printer ink, T6643 Magenta) is bounded by two borosilicate
glass substrates, a microscope slide of 1 mm thickness and a coverslip at the bottom
of 160 µm thickness. The mechanical properties of the substrates are provided by the
manufacturer (Fisherbrand, https://www.fishersci.es): elastic modulus E = 63 GPa,

https://www.fishersci.es
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Poisson ratio ν = 0.2 and density ρ = 2230 kg/m3. The height of the liquid is determined
by spacers (≈ 80 µm). The sample is mounted on a motorised x-y stage. The laser beam
is focused on a single spot above the lower substrate with a radius of 12 µm and an energy
of (200 ± 4) µJ. The linear absorption of the focused laser pulse causes the liquid to va-
porise and shock waves are emitted due to the sudden local increase of pressure [370]. In
the work of Quinto-Su et al. [121] it has been shown that, for laser-induced microbubbles
similar to those presented here, the rise in temperature is rather small with only a few
Kelvin and quickly decays.
Since the laser is focused near the lower substrate, the sudden expansion of the bubble
transfers energy to it almost instantaneously. This induces elastic deformation, transmit-
ted as a bulk wave and a surface acoustic wave (SAW), also known as a Rayleigh wave.
In its propagation over the solid surface, the SAW also causes pressure changes in the
liquid, inducing tensile pressures near the solid surface, i.e., the passage of the Rayleigh
wave on the fluid-structure interface induces a rarefaction in the former.
We use a nano-crack in the glass at a lateral distance d from the position at which the
laser bubble is generated, oriented orthogonally to the distance vector ~d. The nano-crack
is generated by convergent shock waves [29, 30], and has a width of less than 100 nm. The
distance d between the laser bubble and the nano-crack is controlled using the motorised
stage.
The events are imaged with a CCD camera (Sensicam QE, PCO) and illuminated strobo-
scopically by a 6 ns laser pulse (λ = 690 nm, Orion, NewWave Research) at different delay
times. Streak images are taken with a streak camera (SC-10, Optronis) and a 1 µs laser
pulse (λ = 637 nm, L637G1 Thorlabs). Both red light sources are transmitted through a
dichroic mirror of an inverted microscope.

10.2.2 Numerical model

Finite volume (FV) simulations are carried out using the FluidStructureInteraction (FSI)
package [126] of the CFD software OpenFOAM [127]. The numerical solver CavBubbleFsiFoam
is employed, which can model two compressible, immiscible fluids coupled with a de-
formable linear elastic solid. It has been used in previous works to model Rayleigh and
shock waves in a thin liquid domain between two glass plates, obtaining good agreement
with experimental observations [27, 29]. The borosilicate glass with Young’s modulus
E = 63 GPa, density ρ = 2230 kg/m3, and Poisson’s ratio ν = 0.2 is modelled as a linear
elastic solid, and solved for by the solver unsTotalLagrangianSolid. The linear elastic
equation of motion is

∂2ρ ~D

∂t2
−∇ ·

[
G∇ ~D +G (∇ ~D)T + λ tr(∇ ~D)✶

]
= 0 , (10.1)

where ~D is the deformation, given in the solid’s internal coordinates, ✶ the unity matrix
and

λ =
ν

1 − 2ν

1

1 + ν
E, G =

1

2

1

1 + ν
E (10.2)

the Lamé parameters.
The Newtonian fluids are modelled by the law of conservation of momentum,

ρ
D~u

Dt
= ρ ~f −∇p+ µ (∆~u+

1

3
∇(∇ · ~u)) , (10.3)
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Figure 10.2: Computational mesh used for one of the axisymmetric FV simulations. The
liquid is shown in light blue, the gas in dark blue, and the solid in light grey. A cylindrical
fluid domain with a height of 80 µm and a radius of 1 mm sits on top of a solid domain
with a height of 160 µm (not fully shown), which in turn sits on a gas-filled domain with
a height of 80 µm (not shown). A cylindrical ring-shaped gas-filled defect is defined at
x = 175 µm with a depth of 1 µm and width of 200 nm. The mesh is refined near the
defect. A bubble is initiated on the axis of symmetry (z) with a radius of 12 µm.

as well as the continuity equation,

∂ρ

∂t
+ ∇ · (ρ ~u) = 0 . (10.4)

Gravitational effects are neglected.
The fluids represent a bubble filled with a non-condensable gas in water satisfying the
Tait equation of state,

p = (p0 +B)
( ρ
ρ0

)γ
− B , (10.5)

with the values p0 = 101325 Pa, ρ0 = 998.2061 kg/m3, γ = 7.15, B = 303.6 MPa for
water and p0 = 10320 Pa, ρ0 = 0.12 kg/m3, γ = 1.33, B = 0 for the gas (which turns the
equation of state into the ideal adiabatic gas equation). p0, ρ0 is a known pair of values
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for the pressure and the density of a fluid. For water, γ and B are empirical parameters
describing its low compressibility. For an ideal adiabatic gas with B = 0, γ becomes the
adiabatic exponent. All changes of state are thus treated as adiabatic, and heat transfer
is neglected.
The interface is captured using a phase fraction field α with interface compression to
counteract numerical diffusion. Phase transitions and mass transfer between the fluid
components are not modelled. Due to numerical inaccuracies, the mass of each fluid
component is not exactly conserved, which is why in every time step the bubble mass is
corrected to stay constant over time.
The fluid-structure interaction is modelled using two-way coupling, where the elastic solid
is acted upon by the fluids via surface forces ~F Si =

↔

σ · ~ni that are given by the stress
tensor in the fluid,

↔

σ = −p✶+ µ
[
∇◦ ~u+ (∇◦ ~u)T

]
. The solid acts on the fluid-structure

interface by imposing its deformation ~D and velocity ~̇D onto the boundary of the fluid
domain. The solid and fluid equations of motion are solved alternatingly, either until a
residual value characterising the discrepancy between the solid and fluid domains falls
below a tolerance value, or for at most 100 iterations.
The numerical schemes used, such as the first-order upwind scheme, are at least of the
order of accuracy 1.
The simulated geometry, as in the experiment, describes a thin sheet of water (80 µm height)
between a rigid upper boundary and an elastic glass sheet (160 µm height). A defect in
the shape of a cylindrical ring with a height of 1 µm and a radial thickness of 200 nm
is inserted at the surface of the glass sheet. Since phase changes and thus cavitation
processes are not modelled, it is filled with a gas that represents either trapped gas or a
cavity created by the opening of the nano-crack in the experiment and acts as a cavitation
bubble nucleus. As in the experiment, a gas-filled domain of 80 µm height is added on the
opposite side of the glass plate, allowing it to move away from or towards the water-filled
domain. The outer boundaries as well as the bottom of the gas-filled domain below the
solid plate are modelled as open, wave transmissive boundaries. Because the geometry is
chosen to be axisymmetric, it becomes an effectively two-dimensional problem and only
a thin wedge of a cylinder with a radius of 1 mm has to be modelled.
On the axis of symmetry of the domain a spherical bubble with a radius of 12 µm and a
pressure of 1.69 GPa is initiated. The initial condition for the pressure is consistent with
previous works [29, 369, 371]. It is based on the assumption that the energy deposition
by the laser pulse happens on a much smaller time scale than the expansion of the cre-
ated bubble, and it is thus assumed that its initial density is equal to the density of the
surrounding liquid. The initial radius is chosen such that the shock wave position over
time closely matches that observed in the experiments. Since the shock wave velocity
depends on its amplitude (the wave is faster in a denser medium), this is an indirect
validation of the pressure amplitudes obtained in the simulations. Its vertical position is
chosen to be equal to its radius such that the lower end of the bubble touches the glass
plate. To smoothen the surface of the bubble seed it is smeared by applying the equation
α′ − 4 · 10−11∆α′ = α to the phase fraction field α. The geometry is discretised into cells
with a width of 10 µm in the gaseous domain below the glass plate and 1 µm in most of
the solid and the liquid domains. Near the crack, it is refined to a width of 125 nm. Since
the crack is thinner than the 1 µm mesh before refinement, the cells above and below it
are 5 times thinner than the surrounding cells.
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10.2.3 Modified Rayleigh-Plesset equation

To describe the dynamics of a spherical bubble including the compressibility of the liquid,
we consider the modified Rayleigh-Plesset equation [62, 372],

ρ

(
R R̈ +

3

2
Ṙ2

)
= pg(t) − p0 − P (t) − 4µ

Ṙ

R
− 2S

R
+
R

c

dpg
dt

, (10.6)

where R = R(t) is the radius of the bubble, Ṙ = dR
dt

, pg is the gas pressure inside
the bubble, p0 (101325 MPa) is the pressure in the liquid far away from the bubble,
S = 72.8 mN/m is the liquid surface tension, µ = 1 mPa s is the dynamic viscosity of
water, P (t) is the driving pressure at the location of the bubble, and c = 1500 m/s is the
speed of sound in the liquid. Considering the process as adiabatic, we use the Van-der-
Waals equation of state to describe the gas pressure inside the bubble,

pg(t) =

(
P0 +

2S

Ri

)(
R3
i − h3

R3(t) − h3

)γ
, (10.7)

where Ri is the initial radius, γ = 4/3 is the adiabatic index of water vapour and h =
Ri/8.86 is the characteristic Van-der-Waals hard-core radius of the gas inside the bubble
[373]. The external pressure P (t) is obtained from the FV simulation without a defect in
the glass and without any bubble besides the wave source in the centre of the domain.
We extract the pressure from the fluid just above the solid as a function of time P (t)
at different distances d. Then, P (t) for a given d is used in the modified Rayleigh-
Plesset equation as the external driving pressure. The initial conditions are Ṙ(0) = 0,
and R(0) = Ri. Although this modified Rayleigh-Plesset model models a spherical bubble
and does not consider complex interactions such as bubble-bubble interaction or proximity
to solid surfaces, it is sufficient to understand and explain the cavitation process in this
work.

10.3 Results and discussion

10.3.1 Bubble formation and collapse

The left side of figure 10.3 shows a direct comparison between the strobe photographs
taken in the experiment and simulation frames with a nano-crack placed at a lateral
distance d = 175 µm from the center of the laser bubble.
The top half of each frame shows strobe photographs (x-y plane) of the events produced by
the generation of the laser bubble at the sample. The strobe photographs are cropped (x-y
plane, x > 0) to have a better comparison with the simulation. The thick dark semicircle
on the left in the strobe photographs is the expanding laser-induced cavitation bubble,
while the thinner dark curve propagating to the right is the shock wave. The bottom
half of each frame shows FV simulation results of the same time as the photograph in a
cross-section of the x-z plane, where z is the axis of symmetry and is located on the left
border of the frame. The glass boundary is initially at z = 0, at half the height of the
frame. The upper half of the simulated frame contains the liquid, where we observe the
initial bubble and the shock wave (≈ 1800 m/s). In the solid at the bottom half of the
simulated frame, we can observe surface waves. In the first frame (50 ns), only the bulk
wave (≈ 5100 m/s, not shown) has reached the fracture position. In the frame at 65 ns
the Rayleigh wave (≈ 3150 m/s) has passed (on the solid surface) and the tension region
trailing behind it (in the liquid) causes the formation of nano-sized cavitation bubbles
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Figure 10.3: (a) Wave dynamics and nanobubble nucleation. The first row shows strobe
photographs (x-y plane), while the second shows frames extracted from a FV simulation
(x-z plane, z is the axis of symmetry). The size of each strobe photograph is 200 µm ×
70 µm. The simulation frames show the fluid in the top and the glass in the bottom half.
The size of each simulation frame is 200 µm × 60 µm. The zoomed square frames (7 µm ×
7 µm) on the bottom show a section of each frame centred at the fracture position in the
simulation. Colour bars represent pressure (left) and σxx (right), both in MPa. In the
fluid, negative values indicate tensile pressure. In the solid, the positive and negative
values of the σxx stress component mean tensile and compressive stress, respectively.
(b) Simulated σxx and σzz stress components and pressure at the fluid-structure interface

(z = 0) for a fracture at d = 175 µm. The arrival of the different waves is labelled at
their respective peaks: Bulk wave (BW), Rayleigh wave (RW) and shock wave (SW).

The shaded region represents the time period in which the bubbles are visualised (strobe
experiment). The stages drawn in figure 10.1 are indicated here as circled numbers.

at the nano-crack. In the simulation, the tension causes the gas in the surface defect
to begin to expand. In the next frames, the nanobubbles continue to expand until the
shock wave passes through the position and collapses the bubbles, as we can see in the
frames for 100 ns and 120 ns. We find an excellent agreement between the FV simulations
and the experiments. On the bottom, we show close-ups of the black squares drawn in
the simulation frames. There we can see in detail the behaviour of the gas in the cavity
that emulates the nano-crack in the experiment. The Rayleigh waves that propagate on
the solid are not visible in the experiment, likely because the deformation and density
variations are so small that the change in the index of refraction is too small to overcome
the noise of the image.
The calculated σxx (continuous black line) and σzz (dotted black line) stress components
in the solid surface, and pressure in the liquid (continuous grey line) are extracted from
the FV simulation and plotted in figure 10.3 (b) for a case in which the laser pulse is
focused at a distance of d = 175 µm from the nano-crack. There, the steps (1)-(5) of
figure 10.1 are labelled. In the fluid, negative values indicate tensile pressure. In the
solid, positive values of the stress components means tensile stress, while negative values
indicate compressive stress.
Initially, the nanocrack position (d = 175 µm) is undisturbed (1). Then, the bulk wave
(BW) in the solid, which is the fastest wave excitation, arrives at 33 ns and is detected
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as a small negative (compressive) peak of the σxx stress component (−5.44 MPa). It is
followed by the Rayleigh wave (RW) on the surface of the solid which creates a large
positive (tensile) peak of the σxx stress component, starting at 37 ns and reaching its
maximum (87.5 MPa) at 56 ns (2). Meanwhile, the pressure in the liquid and the σzz stress
component in the solid surface mirror each other. The σzz stress component has a small
negative (compressive) peak (−3 MPa) at 50 ns followed by a positive (tensile) stress
region which remains a few tens of nanoseconds, ending at 95 ns. On the other hand,
in the liquid, the pressure has a small positive (compressive) peak (3 MPa), followed by
a negative (tensile) pressure region. Two local minima are observed: −8.5 MPa at 62 ns
(3) and −9.94 MPa at 92 ns. The pressure remains negative until the arrival of the shock
wave (SW) in the liquid (5). This wave induces a pressure peak in the liquid of 61.6 MPa
at 101 ns. In the solid surface, the shock wave induces strong compressive stresses, both
in the σxx and σzz stress components, −61.24 MPa at 103 ns and −61 MPa at 101 ns,
respectively. The videos in the supplementary material, extracted from the simulations,
show the expansion and collapse of the nanobubbles at the fracture position for distances
d = 30, 40, 50, 75, 125, 175 and 235 µm. A simulation is performed for each position of
the fracture.

10.3.2 Control of the bubble lifetime

The time delay between the arrival of the Rayleigh wave and the shock wave is approx-
imately proportional to their travelling time and the difference between their velocities.
Hence, by adjusting the lateral distance d between the laser focus and the nano-crack, we
can control the lifetime of the nanobubbles. To observe these extremely fast cavitation
events in a single shot we use a streak camera, which sweeps a one-dimensional image
along a slit. The streak camera outputs a two-dimensional image (see figure 10.4 (a)),
where the vertical dimension is the slit and the horizontal dimension is time. The shock
wave is seen as a shadow that propagates at a speed of 1800 m/s (SW, slope of the dashed
red line). The laser-induced cavitation bubble is centred on the horizontal dashed white
line and appears dark. The dashed blue line is the predicted position of the Rayleigh
wave (RW, 3150 m/s) which is not captured. The bulk wave (BW) travelling at a speed
of 5100 m/s is also not captured. In comparison with the wave propagation dynamics,
the expansion of the laser-induced bubble is relatively slow (200 m/s). A few nanosec-
onds after the Rayleigh wave reaches the position of the nano-crack (d = 175 µm), one
or multiple bubbles are nucleated and expand for several tens of nanoseconds until the
shock wave arrives, which induces their collapse. The lifetime of the nanobubbles is the
horizontal dimension denoted as LF. The section of the lifetime after the shock wave has
passed is denoted as the collapse time tcol.
Figure 10.4 (b) shows the superposition of 21 streak images, each with a different distance
d between the nano-crack and the laser-induced bubble. We observe that the lifetime
increases monotonically with d. In particular, we highlight 4 distances d1 = 75 µm,
d2 = 125 µm, d3 = 225 µm and d4 = 235 µm, at which we also performed experiments
with stroboscopic illumination in order to image the nanobubbles in the x-y plane. Se-
lected frames at different time delays are shown in figure 10.4 (c).
In figure 10.5, the measured lifetime is plotted as a function of the lateral distance d be-
tween the laser focus and the nano-crack. The black square symbols are the measurements
from the streak camera for 21 distances. The error bars represent the standard deviation
over 40 repetitions. The streak images are analysed considering the light intensity at each
position in order to differentiate the bubble from the background.
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Figure 10.4: Control of the bubble lifetime. (a) Streak image for d = 175 µm. The
vertical scale bar height (spatial) is 50 µm, and the horizontal scale bar width (time)
is 25 ns. The red, blue and green lines represent the shock, Rayleigh and bulk waves
extracted from the simulations, respectively. (b) Superposition of the streak images for
different positions d. (c) Strobe images of the nano-crack and cavitation bubbles for four
distances: d1 = 75 µm, d2 = 125 µm, d3 = 175 µm and d4 = 235 µm. The size of each
strobe photograph is 30 µm × 30 µm (x-y plane)

The largest distance at which we observed a bubble is d = 235 µm, with a lifetime of
(71±6) ns. A decrease in the lifetime is observed as d gets smaller. The smallest distance
at which a bubble is observed is d = 50 µm. For this distance, we measured a lifetime
of (9 ± 3) ns. A further decrease of d is expected to result in even smaller lifetimes, but
because of the large values of the stress components, a modification in the fracture on the
glass surface was observed, so the conditions were modified in each shot.
To get a better understanding of the nanobubble dynamics, we use the modified Rayleigh-
Plesset equation [62, 372] that describes the bubble dynamics R(t) and considers the ef-
fects of the compressibility of the liquid (equation (10.6)).
The external pressure P (t) is obtained from the FV simulation without a defect in the
glass. In this way, we extract the pressure in the liquid just above the solid surface as
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a function of time P (t) at different distances d. The equation is solved with Ri in the
range of 10-1000 nm. In order to make an estimation of a realistic initial bubble radius Ri,
we consider the spatial resolution which yields 600 nm/px. Hence, we do not resolve the
initial stages of bubble expansion, but we can still detect the change in the transmitted
light intensity as the bubbles expand.

Figure 10.5: Bubble lifetime as a function of d. The black symbols represent the lifetime
measured from the streak experiments for 21 distances. The error bars represent the
standard deviation over 40 repetitions. The blue symbols indicate the lifetime extracted
from the FV simulations. The continuous lines represent the lifetime extracted from
the solution of the modified Rayleigh-Plesset equation using two different initial radii:
200 nm (grey) and 20 nm (light grey). The vertical dotted line at 26 µm indicates the
smallest distance d at which there is no bubble expansion in the modified Rayleigh-Plesset
equation, while the dotted vertical line at 32 µm indicates the smallest distance d at which
the bubble surpasses 10 times its initial radius. Inset: Rayleigh-Plesset equation solution.
Radius as a function of time for Ri = 20 nm and Ri = 200 nm (shown as horizontal dotted
lines) at d = 175 µm. The arrows denote the bubble’s lifetime. The external pressure as
a function of time is extracted from the FV simulation (figure 10.3 (b))

.

Since the initial bubble is invisible, we can assume that Ri < 300 nm. Furthermore, we
find that a bubble with Ri = 10 nm ceases to expand for larger distances (d > 175 µm),
since there the magnitude of the negative pressure does not reach Blake’s threshold. This
is explained in detail in the section 10.3.2. Hence, we consider Ri in the range between
20 and 200 nm. In this range, the maximum bubble radius and bubble lifetime are fairly
insensitive to Ri.
The results for the calculated lifetimes as a function of d are plotted in figure 10.5 as
continuous lines. The inset is a plot of the nanobubble dynamics R(t) for Ri = 20 nm
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(light gray) and Ri = 200 nm (grey) at d = 175 µm. For each case, the arrow denotes
the bubble’s lifetime. Since the bubble first experiences a small compression due to the
moderate over-pressure in the liquid, the measurement starts once the bubble exceeds its
initial size, and ends once it is again smaller than the initial radius. Figure 10.5 also
shows two vertical lines. The line at 26 µm indicates the smallest distance at which there
is no bubble expansion, while the line at 32 µm indicates the smallest distance at which
the bubble with Ri = 20 nm surpasses 10 times its initial radius.
The lifetimes extracted from the FV simulation are plotted as blue diamonds, which show
a similar trend as the measurements, including the absence of bubbles for d ≤ 26 µm. At
those distances, the pressure in the liquid does not reach negative values due to the lack
of separation between the Rayleigh wave and the shock wave. Hence, for such a small d
the nanobubbles do not expand regardless of their initial size. For d = 30 µm, the lifetime
obtained from the simulation is only 3 ns.
The results obtained from the experimental observations, the FV simulations and the
modified Rayleigh-Plesset equation are in excellent agreement for smaller d, with the
modified Rayleigh-Plesset equation slightly overestimating the lifetimes for larger d.

Initial radius

Figure 10.6: Solutions of the modified Rayleigh-Plesset equation with different initial radii
Ri. (a) The external pressure used is for a bubble placed at the distance d = 175 µm from
the origin. Ri = 8 nm is the first radius at which a strong bubble expansion is seen
(Rmax = 0.17 µm). We observe an approach to a maximum radius (Rmax ≈ 3 µm) for
bigger Ri. (b) Above, the extracted minimum pressure Pmin as a function of the distance
from the origin d is plotted. We observe the first negative pressure at d = 26 µm, an
absolute minimum at 46 µm, and an approach to zero as d gets bigger. Below, the graph
shows the critical radius (RC) obtained with equation (10.8), with the Pmin values from
the upper graph. The dotted line indicates d = 175 µm, where RC is close to 10 nm for a
pressure of −8.5 MPa.
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The radius evolution predicted by the modified Rayleigh-Plesset equation (10.6) for d =
175 µm and several initial radii Ri is plotted in logarithmic scale figure 10.6 (a). The
driving pressure used is shown in figure 10.3 (b). For Ri = 8 nm we observe a significant
expansion of the bubble at about t = 90 ns. Nevertheless, the maximum radius reached
is below 200 nm. For smaller initial radii Ri, the expansion is even smaller. For Ri in the
range from 10 nm and 1 µm the dynamics, lifetimes and maximum radii are similar. The
expansion starts at ≈ 57 ns and the maximum radius is attained at ≈ 100 ns. Hence, the
experimentally observable dynamics are only weakly sensitive to the initial condition of
the simulated bubble. For Ri = 10 nm the maximum radius is 2.14 µm at 99 ns, i.e. an
expansion of 214 times its initial size. For Ri = 200 nm the maximum radius is 2.74 µm,
at 100 ns, i.e. ∼14 times larger. This expansion factor becomes smaller for larger initial
radii. The maximum bubble expansion Rmax seemingly approaches an upper limit of
around 3 µm. For Ri > 200 nm we observe weak volume oscillations after the collapse.

Blake’s limit

Figure 10.7: Maximum radius as a function of the distance d. The solid lines are the
maximum radius plotted at each position, obtained from the solutions of the modified
Rayleigh-Plesset equation. Each curve with different initial conditions for Ri. The vertical
dotted line at 26 µm indicates the smallest distance at which we observe bubble expansion,
independently of the initial radius. At d = 25 µm no negative pressure occurs. The blue
symbols represent the maximum radius measured from the strobe experiments for the
distances d = 75, 125, 225 and 235 µm
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If a bubble’s surface tension force exceeds the external tension acting at its surface plus
its internal gas pressure, it does not expand. The critical bubble size RC below which the
bubble does not expand is given by Blake’s limit [34],

Pmin = pv −
4S

3RC

, (10.8)

where Pmin is the smallest external pressure (strongest tension) and pv the vapour pressure.
The upper graph in figure 10.6 (b) shows the minimum pressure extracted from the FV
simulation without a defect as a function of the distance d from the wave source. The
bottom graph shows the critical radius RC obtained with equation (10.8) using the values
for Pmin from the upper graph. We observe the first negative pressure at d = 26 µm,
with a corresponding critical radius of about RC = 34 nm. The strongest tension (Pmin =
−43 MPa) is found at d = 46 µm. Here, the critical radius is only RC = 3 nm. As is
expected, after the absolute minimum, the tension decays and the critical radius increases
with increasing d. The dotted line indicates the distance d = 175 µm used for figure 10.6,
where RC = 12 nm for a pressure of Pmin = −8.5 MPa. This threshold agrees with the limit
of Ri = 10 nm obtained from the modified Rayleigh-Plesset equation. The last distance
for which bubbles are observed is d4 = 235 µm, where the maximum tensile pressure is
−5.12 MPa and the corresponding critical radius has a value of 19 nm. It is important to
point out that the impurities in the liquid sample could cause the cavitation threshold to
be different from that of pure water.
Figure 10.7 shows the maximum bubble radius as a function of the distance d obtained
from the solution of the modified Rayleigh-Plesset equation, with different initial radii
Ri. For Ri = 10 nm at d = 195 µm, the maximum expansion Rmax is significantly smaller
compared to that for larger Ri. This is explained by Blake’s limit. The minimum pressure
at this distance is −7.74 MPa and the critical radius is 12.5 nm. Although an expansion
is observed, it does not exceed 600 nm. The vertical dotted line at 26 µm indicates the
distance at which no tensile pressure occurs.
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10.4 Conclusion

We demonstrate a novel approach to nucleate cavitation bubbles on a surface at a pre-
cise location on previously deposited nanometer-sized inhomogeneities. The expansion is
driven by a leaky Rayleigh wave that propagates on the surface of the glass, while the
inertial collapse is induced by a trailing shock wave that propagates in the liquid. Both
waves are generated by a single laser pulse. We show experimentally that the bubble
lifetimes can be controlled by varying the distance of wave propagation. For the largest
distance studied, the measured lifetime is (71 ± 6) ns, while for the smallest distance, the
measured lifetime is (9 ± 3) ns.
We find a good agreement between the experimental results and those obtained from the
finite volume simulations and the modified Rayleigh-Plesset equation. Although the latter
is a rather simple model valid only for a single spherical bubble, in which neither bubble-
bubble interaction nor its interaction with a nearby solid wall is considered, it shows an
excellent agreement with the experimental and finite volume simulation results in terms
of the bubble lifetimes and allows us to make a complete description of the expansion and
collapse of the bubbles at various distances d from the wave source.
This new regime of ultra-high frequency inertial cavitation scales the well-known energy-
focusing capability of cavitation bubbles from the micrometre world to the nanoworld,
still maintaining perfect and repeatable control over their dynamics in time and space.
In future works, by varying the geometry, we could explore even shorter bubble lifetimes.
In a previous study, using a ring geometry for the laser-induced bubble and the emitted
waves [29], we show a time delay of only 7 ns between the convergence of a Rayleigh wave
on the surface and a shock wave in the liquid. Therefore, we expect to study bubbles with
lifetimes below 10 ns. The present work opens up novel perspectives in frameworks such
as the detection of nano-fractures in surfaces using the expansion of nano-cavitation.
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cusing of cylindrical waves at a liquid–solid interface”. Physics of Fluids 34 (11), 112013
(2022). issn: 1070-6631

Two pairs of converging and superimposing shock and Rayleigh waves are generated on a
glass substrate by focusing laser pulses on two concentric rings in a bullseye configuration
(67 µm and 96 µm radii). We study experimentally the threshold for substrate damage
as a function of the number of repetitions and the delay (0-20 ns). The bullseye focusing
experiments are compared to a single focusing ring. Additionally, fluid-structure interac-
tion simulations using a volume of fluid framework are utilised to estimate the stresses.
The lowest number of repetitions to attain surface damage is found for constructive su-
perposition of the Rayleigh waves, i.e., here for a delay of 10 ns. The observed damage
is consistent with the simulations where the largest positive stresses (∼ 5.6 GPa) are
achieved for bullseye focusing with ∆t = 10 ns followed by ∆t = 20 ns which corresponds
to simultaneous shock wave focusing. In all these cases, the positive stresses are followed
(a few nanoseconds later) by negative stresses that can reach ∼ −6.4 GPa.

11.1 Introduction

Inertial confinement fusion is a prominent example where convergent shock waves cause
extreme states of matter [17, 374, 375]. The shock waves may be launched by a laser-
generated plasma from an absorbing spherical shell [376]. The group of K. Nelson [377]
demonstrated that a tabletop version of shock wave focusing is able to reach pressures
of up to 30 GPa near the focus point. There, a cylindrical shock wave in water at a
glass-water interface was driven by laser-induced vaporisation of the liquid along an an-
nular ring. After focusing, the outgoing wave creates a large reduction of pressure that
is sufficient to nucleate cavitation bubbles at the focal region [61]. This strong loading
of the substrate from gigapascals of positive pressure to many megapascals of negative
pressure causes material fatigue. The strength of the initial shock waves was enhanced by
replacing the initially used carbon nanoparticles in the liquid that act as a linear absorber
with a thin layer of gold as a plasmonic absorber [371]. As a result, not only longitudinal
shock waves in the liquid but also radially converging surface waves are launched into the
substrate. In absence of a liquid film, [378] obtained that the axial displacement of the
substrate at the point of focus reaches up to one micrometre within less than 5 ns. Simu-
lations reveal that at a threshold of tensile stresses of around 6 GPa cracks are formed in
their particular glass substrate. These extreme conditions can be utilised to explore the
response of matter to these high pressures, e.g. the transformation of pyrolytic graphite
[379] or the pressure threshold response of plastic explosives [380].
Using the same ring excitation geometry, Klokov et al. [381] studied experimentally the
propagation of converging SAW on a silicon surface with (001) and (111) orientations.
They found that the acoustic energy can be concentrated into a circle with dimensions
∼ 5-7 µm. In another study [382], a non-destructive method for characterisation of alu-
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minium grain size was developed using the convergent waves of the ring-shaped geometry.
Other techniques have been achieved for focusing acoustic waves, e.g., through an op-
tical approach, high-amplitude focused ultrasound has been achieved: a light-absorbing
coating is formed on concave lenses and used as an opto-acoustic source [383]. It also
has been shown that the waveform and the focus of acoustic waves can be arbitrarily
modified through 3D printing [384]. Recently, focused Rayleigh waves generated with an
electromagnetic transducer were used for characterisation of surface defects [385]. Zhao
et al. report focusing of Rayleigh waves using gradient-index phononic crystals using a
non-contact technique.
Glass is one of the most common materials, because of the wide range of applications.
Nevertheless, its dynamic properties are not fully understood at the nano-scale. During
the last decade, researchers elucidated important results about the physical properties of
silicate glasses [387–390]. Particularly, it is important to understand the dynamics and
the induced phenomena by shock waves in glassy materials. Xie et al. [389] investigated
the structural change and permanent densification of silica glass under shock compression
using atomistic simulations. Zhang et al. [391] utilised an electric discharge to excite
surface waves and show that damage on the fluid-glass interface may originate from flaws,
which are then grown through Rayleigh waves. Here, a single point of excitation, also
called a monopole source, was used. Amplification using monopole sources can be ob-
tained through time-delay focusing. The basic idea stemmed from a Fresnel lens and was
implemented with two sets of successively launched pairs of shock waves as demonstrated
by [369].
Here we extend that idea, replacing the two pairs of point sources with two concentric ring
excitations to superposition the longitudinal waves in the liquid with the surface waves on
the solid to amplify stresses in the solid substrate. Therefore, we investigate the damage
to the substrate as a function of the delay between their launch and compare the effect
of these double excitations with that of the individual sources.

11.2 Experimental setup

The experimental setup is derived from our previous work for transient focusing of ex-
citation pairs [369]. However, this time the two laser pulses are shaped into concentric
rings with a spatial light modulator (SLM, Hamamatsu, X10468-01).
Figure 11.1 (a) depicts a cross-section (x-z plane) of the thin liquid sample that is bounded
by two glass substrates. The top is a microscope slide (1 mm thick) and the bottom sub-
strate is a thin cover slip (160 µm thick). Both substrates are made of borosilicate with
density ρ = 2230 kg/m3, Poisson ratio ν = 0.2 and elastic modulus E = 63 GPa [392].
The height of the liquid sample is approximately 80 µm and it is determined by spacers.

The independent beams (Nd:YAG, SOLO PIV 6 ns, λ = 532 nm) are focused at the
bottom of the container and are absorbed by the liquid (Epson printer ink, T6643 Ma-
genta, viscosity and density are similar to water). The absorption of the focused laser
pulses leads to stress confinement [370, 393]. This generates cavitation bubbles with the
shape of the laser pulses and shock waves are emitted because of the sudden local rise of
pressure [369]. The shock wave hits the solid and transfers energy to it in the form of
deformation, which then becomes a bulk wave (BW) and a surface acoustic wave (SAW),
or Rayleigh wave (RW), in the solid [391]. Both the BW and RW, also induce pressure
changes in the liquid.
The two laser pulses are shaped into concentric rings with an axicon phase (corresponding
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Figure 11.1: (a) cross-section (x-z plane) of a single ring emitter. Detail of laser pulse
focusing on the liquid bounded between a microscope slide and a thin cover slip. (b)
Examples of (left) the two emitters launched at the same time (∆t = 0), and (right)
∆t > 0 ns resulting in simultaneous wave focusing at the centre.

to a conical lens) and with the radii R1 = 96 µm and R2 = 67 µm. The outer ring is fired
at t = 0 and the inner ring at time t = ∆t ≥ 0.
Figure 11.1 (b) shows the emission from the excitations represented by the thin lines (blue
for inner and red for outer), while the position of the laser beams is represented by thicker
shaded lines. An example for simultaneous (∆t = 0) arrival of the laser pulses is on the
left, while the right depicts a case with ∆t > 0 where the emitted waves are about to
converge simultaneously at the centre. In the drawing, the emitted waves can represent
either shock waves in the liquid or Rayleigh waves in the solid.
The energy per ring is set to (360 ± 7) µJ. Since the two independent laser pulses have
differences in their transverse profiles, with the width of the inner ring ∼ 12 µm and that
of the outer ∼ 8 µm, they have a similar fluence (∼ 7 J/cm2).
The dynamics of the events are captured stroboscopically using a third Nd:YAG laser,
(Orion, New Wave, 6 ns, 532 nm converted to 690 nm with a dye cell) and imaged with
a CCD (Sensicam QE). The red probe light is transmitted through the microscope con-
denser to illuminate the sample, and Schlieren photography is used to image the shock
waves. The Rayleigh waves are not visible, likely because the deformation and change in
density are so small that the created variation in brightness via a change in the index of
refraction is smaller than the noise of the image. Thus the presented information on the
Rayleigh wave propagation has been obtained through the simulations alone.
All instruments are synchronised with a programmable delay generator (Berkeley Nucle-
onics 575-8C).
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11.3 Numerical model

The FluidStructureInteraction (FSI) package [126] of the CFD software OpenFOAM [127]
provides the finite volume solver fsiFoam, which strongly couples an elastic solid and an
incompressible viscous fluid. It was modified to model a laser-generated cavitation bubble
expanding close to a linear elastic boundary. We call the new solver CavBubbleFsiFoam.
It has been used to accurately model the propagation of Rayleigh waves caused by a
cavitation bubble in a thin liquid-filled gap between two glass plates, showing good agree-
ment with the experiments [27]. Similar solvers in OpenFOAM have been used to model
an expanding and collapsing cavitation bubble in an infinitely extended liquid and have
been verified against experiments [115] and against other bubble models like the Rayleigh
collapse and the Rayleigh-Plesset equation [117]. They have further been used to model
an oscillating bubble near a rigid wall [78, 119], near a rigid perforated plate [22], between
two rigid walls [394] and near a free boundary [24]. For each of these works the numerical
results show good agreement with experiments. The acoustic pressure radiated by such a
bubble has been verified by Gonzalez-Avila et al. [265] who uses a similar volume of fluid
approach. In this work, the solver is additionally validated by a close match of the shock
wave propagation with the experimental observation.

11.3.1 Solid Solver

The solid is modelled as a linear elastic material representing borosilicate glass with
Young’s modulus E = 63 GPa, density ρ = 2230 kg/m3, and Poisson’s ratio ν = 0.2. The
solver unsTotalLagrangianSolid solves the equation of motion for a linear elastic solid,

∂2ρ ~D

∂t2
−∇ ·

[
G∇ ~D +G(∇ ~D)T + λ tr(∇ ~D)✶

]
= 0 , (11.1)

with the deformation field ~D, the unity matrix ✶ and the Lamé parameters

λ =
ν

1 − 2ν

1

1 + ν
E, G =

1

2

1

1 + ν
E . (11.2)

All coordinates, at which values for deformations and stresses of the solid are given,
correspond to the internal coordinates of the deformed solid.

11.3.2 Fluid Solver

Since the base fluid solver icoFluid is not suited to model an expanding bubble, a
new fluid solver we call CavBubbleFluid was made to suit our purposes. It uses code
from the solver compressibleInterFoam which can model two compressible, viscous,
non-isothermal, immiscible fluids. It uses a phase fraction field α to model the fluid-
fluid interface (for more details see [115]). The fluids of interest are water and a non-
condensable ideal gas describing the bubble contents. As thermal processes exceed the
scope of this study, the temperature equation is omitted and all changes of state are
treated as adiabatic, using the assumption that the presented dynamics are faster than
any significant heat exchanges. Due to numerical errors, the phase fraction can fall slightly
below α = 1 in the bulk of the liquid. A correction is applied which replaces the cell values
of α > 0.99 with α = 1 and of α < 0.01 with α = 0, thus removing the wrongly created gas
from the liquid bulk. The governing equations for the fluids are the law of conservation
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τ (N/m) µ (mPa s) p0 (Pa) ρ0 (kg/m3) γ B (MPa)
liquid

0.07
1 101325 998.2061 7.15 303.6

gas 0.013 10320 1.33 0.12 0

Table 11.1: Simulation fluid parameters, including surface tension τ , dynamic viscosity
µ and parameters of the Tait equation of state .

of momentum of Newtonian fluids,

ρ
D~u

Dt
= −∇p+ µ (∆~u+

1

3
∇(∇ · ~u)) , (11.3)

and the continuity equation,
∂ρ

∂t
+ ∇ · (ρ ~u) = 0 , (11.4)

with the velocity ~u, density ρ, and pressure fields p as well as the dynamic viscosity µ.
The compressible behaviour of the fluids is modelled via the Tait equation of state,

p = (p0 +B)
( ρ
ρ0

)γ
− B . (11.5)

The surface tension τ , the dynamic viscosities µ and the coefficients of the Tait equation
of state p0, ρ0, γ, B are given in table 11.1. With B = 0, the gas is modelled as an ideal
adiabatic gas where γ is the adiabatic exponent. For water, equation (11.5) shows the
relationship between its density and pressure without a temperature dependence.
Since the fluid-structure interface moves, the fluid mesh must be deformed to conform
to the boundary conditions. The dynamic mesh motion is done by solving a Laplace
equation for the mesh deformation field, with the condition that the mesh boundary must
coincide with the specified rigid boundaries and the deformed fluid-structure interface.

11.3.3 Fluid-Structure Interaction

The fluid exerts surface forces ~F Si =
↔

σ ·~ni onto the fluid-structure interface via the stress

tensor
↔

σ = −p✶ + µ
[
∇ ◦ ~u + (∇ ◦ ~u)T

]
. In turn, the deformation ~D and velocity ~̇D of

the solid boundary get imposed onto the fluid at the fluid-structure interface. The FSI
solver uses strong coupling, meaning that in each time step, the fluid solver and solid
solver get solved alternatingly until a maximum number of iterations (100) is reached or
the residual between the interfaces of the fluid domain and the solid domain falls below
a tolerance value. The maximum number of iterations is included for cases in which the
solver converges to some accuracy above our tolerance value but not further, perhaps
oscillating between multiple states. Even so, this only happens occasionally and the
accuracy of the solver is sufficient for our purposes.
The stress tensor in the linear elastic solid is given by σ = G (∇ ~D+(∇ ~D)T)+λ tr(∇ ~D)✶.
We analyse the horizontal stress σxx (equal to the radial stress due to axisymmetry), the
axial stress σzz and the shear stress σxz.

11.3.4 Geometry and initial conditions

The simulated geometry describes a thin sheet of water (80 µm height) between a rigid
boundary at the top and a linear elastic glass sheet (160 µm height) at the bottom.
As in the experiment, a gaseous domain is put on the opposite side of the glass plate
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(80 µm height), allowing it to move away from or towards the water-filled domain. Be-
cause of the rotationally symmetric nature of the experimental setup, the simulated ge-
ometry can be chosen to be axisymmetric. It thus becomes an effectively two-dimensional
problem, and only a thin wedge of a cylinder of radius 1 mm has to be modelled. The
geometry is divided up in the horizontal and axial directions into a square mesh of com-
putational cells with a width of 1 µm.
The ring bubbles are initiated at a major radius of 67 µm and a minor radius of 12 µm for
the inner ring, and a major radius of 96 µm and a minor radius of 8 µm for the outer ring.
The initial major and minor radii of the torus bubbles was chosen such that the shock
wave position over time closely matches that observed in the experiments. Their centre is
chosen to be at x = 0 µm and the height to be equal to the minor radius so that the lower
end of each ring touches the glass plate. To smoothen the surface of the bubble seed it
is smeared via α′ − 4 · 10-11 ∆α′ = α. The initial pressure is 1.69 GPa, which is consistent
with previous works [369, 371].
This pressure is chosen such that the initial gas density is equal to the liquid density, im-
plying that the laser energy absorption happens much faster than the bubble expansion.
symmetryPlane boundary conditions are applied to the front and back of the wedge, and
to the inner side representing the axis of symmetry. The outer boundary of the fluid
domain acts as an outlet and is imposed with waveTransmissive boundary conditions.
The fluid domains are bound by either rigid or deformable solid boundaries at the top
and bottom, which are treated with a zeroGradient boundary condition for the pressure
and a noSlip boundary condition for the velocity, which means that the relative motion
between the fluid at the boundary and the boundary itself it kept at 0. For the mesh de-
formation, a slip boundary condition is applied to the perimeter of the wedge geometry,
whereas the deformation of the fluid-structure interface is calculated within the solver.

11.4 Experimental results

In this section, we present the experimental results including the measured dynamics
of the shock waves compared with the simulations. We also show photographs of the
substrate damage and the statistics for repeated experiments.

11.4.1 Shock wave dynamics

Selected results for the inner and outer ring laser excitation are shown in figure 11.2 (a)
and (b), respectively.

The respective top rows of figure 11.2 (a) and (b) show strobe photographs (x-y plane)
of the events caused by the generation of the laser ring excitation at the sample, while
the bottom rows show the simulation results (x-z plane) for the same time. Notice that
the strobe photographs are cropped (x-y plane, y > 0) to have a better comparison with
the simulation.
The thick dark ring in the strobe photographs is the expanding cavitation bubble, while
the thinner ring that propagates towards the centre is the converging shock wave. The
bottom rows of figure 11.2 (a) and (b) show the corresponding simulated events for the
inner (figure 11.2 (a)) and outer ring (figure 11.2 (b)). The simulations show a cross-
section of the x-z plane. The glass boundary is at z = 0, at half height of the frame.
The upper half of the simulated frames contains the liquid, where we observe the bubble
ring and the shock wave. In the solid, we can observe the surface waves propagating at a
higher speed than the shock waves in the fluid.
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Figure 11.2: Shock wave dynamics of the two rings. The first row shows the strobe
photographs (x-y plane), while the second shows the frames extracted from the simulation
(x-z plane). The size of each strobe photograph is 150 µm× 300 µm (x-y plane). In
the results of the simulation, above is the fluid and below the glass. The size of each
simulation frame is 100 µm × 300 µm (x-z plane). Colour bars represent pressure (left)
and σxx (right), both in MPa. (a) Inner ring. (b) Outer ring.

The Rayleigh wave is marked by arrows in the first frame of figure 11.2. The position of
the Rayleigh waves was extracted by finding the maximum value of the horizontal stress,
σxx, until the moment where the waves converge at the centre, where it is no longer
possible to track the wave once it passes through itself at the centre due to interaction
with the stresses induced by the incoming shock waves. On the other hand, tracking the
shock wave after it passes through itself at the centre can be done as in the liquid the
induced pressure due to the surface waves is very small.
The position of the shock and Rayleigh waves over time is plotted in figure 11.3. The
waves emitted from the inner ring are drawn with black symbols and lines, and the outer
ones in grey colour. The continuous lines show the positions of the simulated shock waves
over time, while the dashed lines represent the dynamics of the Rayleigh waves on the
surface of the substrate extracted from the simulation.
In the simulation, the inner Rayleigh and shock waves arrive at the origin at 19 and 24 ns
and the outer ones at 29 and 42 ns, respectively. Assuming no interactions between inner
and outer excitations, the difference in time between the Rayleigh waves is 10 ns, while
for the shock waves the time difference is 18 ns.
Figure 11.3 shows that there is a reasonable agreement between the numerical simulations
and the experimental results for the positions of the shock waves (speed ∼ 1800 m/s), while
the initial speeds of the Rayleigh waves are ∼ 3000 m/s for the inner and ∼ 3100 m/s for
the outer ring, which agree with the expected value of vRW =

√
E/(2 ρ (1 − ν) (0.862 +

1.14ν)/(1 + ν) = 3116 m/s [395].
Furthermore, in the simulation we also identified other surface waves like the bulk wave
(BW) that propagates at ∼ 5350 m/s which is in reasonable agreement with the expected
speed of 5602 m/s. In this work, we do not consider the induced stresses by the BW
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Figure 11.3: Shock and Rayleigh wave dynamics. The symbols show the measurements of
the shock wave. The continuous lines represent the position of the shock waves extracted
from the simulations (pmax in the fluid). The dotted line represents the position of the
Rayleigh wave from the simulation (σxx,max in the glass). Gray for the outer, black for
the inner.

because these are a factor ∼ 30 smaller than those of the Rayleigh waves. Also, the
pressures that are induced in the liquid by the waves in the solid are much smaller than
those induced by the convergence of the shock waves. The bulk wave (BW) generates
negative stresses (compression) in the solid, inducing positive pressures in the liquid that
are between 45-49 times smaller than the pressures reached during shock wave conver-
gence. The Rayleigh wave propagates by generating positive stresses (tension) inducing
negative pressures in the liquid that are ∼ 17 times smaller than those induced by the
shock waves.

11.4.2 Substrate damage

The experiments are done for the cases of individual rings (inner/outer) and the bullseye
configuration with a time delay between both rings ∆t = 0, 10 and 20 ns where the
outer ring is fired first at t = 0 and the inner ring at time t = ∆t. For each case, the
experiments are performed repeatedly at a rate of 0.5 Hz in pairs where the first shot
fires the excitations and then one second later a photograph is acquired in bright-field to
analyse the damage after the bubbles have disappeared.
Typical examples of the progression of damage at one position for repeated figure 11.4 (a).
The different rows represent the five cases, and show the respective developments of the
damage in terms of the number of repetitions (labelled in the bottom right corner of each
image).
We observe that for the outer ring (first row), damage is visible after ∼ 240 repetitions,
while in the case of the inner ring (second row), the number of repetitions to observe
damage is lower at about 50.
It is worth noting that in the case of the outer ring, a blurred circle starts to emerge in the
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Figure 11.4: Damage as a function of the number of repetitions. The first row is with
only the outer ring. Second row with only the inner ring. Third row: simultaneous firing
of both rings. Fourth row: Time delay of 10 ns (superposition of inner and outer Rayleigh
waves at the centre). Last row: Time delay of 20 ns (superposition of inner and outer
shock waves at the centre). Each individual frame has a width of 150 µm.

Figure 11.5: Probability of glass damage as a function of the number of repetitions for
the five different conditions: outer ring, inner ring, and two rings with time delays of 0,
10 and 20 ns. The continuous lines are fitted to the cumulative distribution functions of
the standard normal distribution.
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Inner Outer ∆t = 0 ns ∆t = 10 ns ∆t = 20 ns

a 81.54 219.27 76.23 10.16 29.55
b 34.51 120.88 14.46 3.24 7.72

Table 11.2: Fitting parameters for a Gaussian distribution of the number of repetitions at
which damage occurs, for the five cases studied. Mean value (a) and standard deviation
(b).

second frame (after ∼ 180 repetitions), which was identified as damage to the upper glass
substrate. This indicates that high pressures are achieved that can induce high enough
stresses to damage the upper solid boundary. We only observe that kind of damage (upper
substrate) for the individual outer ring.
Surprisingly, in the case of the two rings appearing simultaneously (third row), the dam-
age is smaller than that produced by the individual inner ring for a similar number of
repetitions. The case of ∆t = 10 ns (fourth row) is the one that shows the strongest
damage to the substrate with a smaller number of repetitions. This is followed by the
delay of ∆t = 20 ns, in the fifth row.
To measure the probability of damage as a function of the number of repeated excitations
we start the experiment in an undamaged region of the substrate, then the excitations are
fired N times, where N varies between 20 (for ∆t = 10 ns) and 400 (individual outer ring)
depending on the configuration (individual or bullseye) which changes the rate at which
the substrate is damaged. Then, the substrate is displaced to expose an undamaged area
to another N excitations. The process is repeated n times so that n · N = 2000, with n
between 5 and 100 (smallest for the outer ring, largest for ∆t = 10 ns). The probability
for observing damage is φ(N) =

∑n
i=1 pi(N)/n, with pi(N) = 1 when damage is observed

(at the N -th shot) and pi(N) = 0 with no visible damage at the N excitation. Note that
the experiments are independent for each condition, which is why we have to adjust the
number of repetitions N at a single position and the number of sampled positions n in
order to have enough points for φ(N).
Figure 11.5 shows the probability of observing damage (φ) in the glass as a function
of repetitions (N) for the five different cases (individual outer and inner and both with
∆t = 0, 10, and 20 ns). The symbols represent the experimental data and the continuous
lines are fitted cumulative distribution functions of the standard normal distribution for
each case,

φfit =
1

2

(
1 + erf

(N − a

b
√

2

))
, (11.6)

where a is the mean, b the standard deviation and erf is the error function. Table 11.2
contains a and b for all cases. We find the smallest mean value (10.16) for the case
∆t = 10 ns, while the largest is for the individual outer ring (219.27). The values are
similar for the individual inner ring (81.54) and for ∆t = 0 (76.23). However, the observed
damage after some repetitions, subsequent to the first damage, is larger for the inner ring.

11.5 Numerical results and discussion

In this section, we show the numerical results including the deformation of the solid, the
calculated stresses for the individual rings and for the bullseye configuration and discuss
the results considering the experimental observations.
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11.5.1 Details of the solid deformation

Snapshots from the simulation of the individual inner ring are shown in figure 11.6 (a),
where pressures and stresses are plotted in the x-z plane for the inner ring.

Δ
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Figure 11.6: Solid deformation. (a) Frames extracted from the simulation for the inner
ring. The dashed line represents the original position of the solid boundary (z = 0). The
height of the frames is 10 µm and the width is 75 µm. The horizontal coordinate goes from
x = 0 to x = 75 µm. The colour bars represent pressure (upper) and σxx (lower) both
in MPa. (b) Deformation in the axial dimension (∆z of the solid at the centre (z = 0,
x = 0) for all focusing conditions.

Figure 11.6 (b) shows the deformation in the axial dimension ∆z = z − z0 of the solid
surface at the centre (x = 0, z = z0 = 0) for all focusing configurations. We observe
that a lesser deformation is reached for the outer ring, with a minimum value of about
−2.3 µm. The inner ring results in ∆z reaching ∼ −3 µm and the result for ∆t = 0 is
similar up to 27 ns but ∆z does not reach −3 µm. The largest ∆z is close to −5 µm for
∆t = 20 ns. The case for ∆t = 10 ns does not converge past 33 ns. However, we observe
that it reaches the largest positive ∆z. It is also worth noting that in all cases due to
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σ Minimum Maximum
value pos. t value pos. t
(GPa) ( µm) (ns) (GPa) ( µm) (ns)

Inner
xx -4.97 (0,0) 26 3.67 (0,0) 19
zz -5.65 (0,-3) 25 0.88 (0,-7) 20
xz -1.13 (11,-8) 20 1.31 (6,-6) 26

Outer
xx -3.86 (0,0) 43 2.14 (0,0) 29
zz -4.46 (0,-3) 43 0.61 (0,-10) 30
xz -0.60 (17,-19) 20 0.91 (5,-5) 44

Table 11.3: Maximum and minimum stress values (σxx, σzz, σxz), their position (x,z)
and time of occurrence t for the individual inner and outer ring.

the excess pressure in the liquid, the glass plate keeps being pushed downwards over the
course of the simulation. Unsurprisingly, this only occurs in places the shock wave has
already passed over. For example, in the case of the inner ring (black dotted line in
figure 11.6 (b)) ∆z = −3 µm at 29 ns due to the focusing of the shock wave, but later the
substrate does not return to its original position (∆z = 0) but reaches ∆z ∼ −1 µm. At
later times t ∼ 85 ns (not shown in the plot) there is another negative peak due to the
rebound of the shock wave. After that, the glass is still pushed downwards in its entirety
due to the enduring overpressure. At t = 150 ns the displacement has reached −3.39 µm.

11.5.2 Individual rings

The calculated pressures and stresses at the centre of the rings (x = 0) on the fluid-
structure interface in the case of individual rings are plotted in figure 11.7.
In the plots, the grey continuous line shows the pressure in the liquid at the fluid-structure
interface at the origin (x = z = 0). The peak of the pressure curve indicates the shock
wave converging at the axis of symmetry. However, prior to shock wave convergence,
there is a slight increase in the pressure due to the previous passage of the bulk wave and
a subsequent slight decrease to negative values due to the Rayleigh wave. The stresses
σxx, σzz and σxz at the same point of the solid are represented by the continuous black,
dotted grey and black dashed lines, respectively. The arrows point out the peaks created
by the convergence of the different waves. Notice that σxz is multiplied by a factor of 10,
as the amplitudes are much smaller.
We observe that in the case of σxx (continuous black line), at first there is a slight decrease
to negative values due to the bulk wave convergence which induces (negative) stresses
much smaller (in magnitude) than those of the Rayleigh wave, the inner ring bulk wave
reaches σxx= −0.16 GPa at t = 11 ns, and the one from the outer ring σxx= −0.12 GPa
at 17 ns.
The stress reaches a significant positive peak (tension) when the Rayleigh waves converge,
followed by a negative peak (compression). A similar trend is observed with σzz, where
the initial increase is moderate and the drop to negative values is similar to σxx. The case
for the shear stress, σxz, has a similar trend to the pressure, which initially shows a small
increase followed by a more significant decrease to negative values and an increase as the
shock wave arrives at the centre.
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Figure 11.7: Calculated pressures and stresses at the centre of the rings (x = 0) at the
solid/liquid interface (z = 0). The arrows indicate the peaks associated with the arrival
of the bulk wave (BW), Rayleigh wave (RW) and shock wave (SW). (a) Inner ring. (b)
Outer ring.

In the case of the inner ring, the Rayleigh wave induces positive stress (tension) on the
glass, with a maximum of σxx= 3.67 GPa at t = 19 ns. At t = 26 ns, as the shock wave
reaches the centre with a positive pressure peak of about 5 GPa, it induces a negative
peak of σxx= −4.97 GPa. The corresponding minimum in σzz= −5.65 GPa is reached one
nanosecond earlier, at t = 25 ns.
The stresses induced by the outer ring reach a maximum of σxx= 2.14 GPa at t = 29 ns.
The positive pressure peak of around 4 GPa, at t = 42 ns induces negative peaks of σxx=
−3.86 GPa and σzz= −4.46 GPa. These stresses have the smallest amplitudes (considering
all five studied cases), which could explain the large number of repetitions required to
start observing damage (a = 219 repetitions, mean value of the cumulative distribution
function).
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11.5.3 Bullseye configuration

Figure 11.8 shows the corresponding results for ∆t = 0, 10 and 20 ns. The first column (a)
contains the plot of pressures in the liquid and stresses at the solid surface at x = z = 0
as a function of time.
First, we analyse the case of ∆t = 0 ns (figure 11.8 (a)). As in figure 11.7, the pressure
in the liquid is plotted with a grey continuous line. We observe a similar trend to that of
the individual inner ring (figure 11.7 (a)). The stresses σxx, σzz and σxz are represented
by a black continuous, grey dotted and black dashed line, respectively.

(a) Δt = 0 ns (b) Δt = 10 ns (c) Δt = 20 ns

xx xz

Figure 11.8: Calculated pressures and stresses at the centre of the rings (x = 0) at the
solid/liquid interface (z = 0). (a) ∆t = 0. (b) ∆t = 10 ns. (c) ∆t = 20 ns.

σ minimum maximum
value pos. t value pos. t
(GPa) (µm) (ns) (GPa) (µm) (ns)

∆t = 0 ns
xx -4.22 (0,0) 26 3.84 (0,0) 20
zz -5.90 (0,-3) 25 0.88 (0,-9) 19
xz -1.10 (11,-7) 20 1.30 (5,-5) 26

∆t = 10 ns
xx 5.56 (0,0) 30
zz 1.30 (0,-9) 29
xz

∆t = 20 ns
xx -6.38 (0,0) 42 4.18 (0,0) 38
zz -8.46 (0,-3) 40 0.81 (0,-5) 37
xz -1.50 (6,-5) 38 1.92 (7,-8) 42

Table 11.4: Maximum and minimum stress (σxx, σzz, σxz) values at a given position (x,
z) and time for ∆t = 0, 10 and 20 ns.

In the case of σxx we observe a large increase when the inner Rayleigh waves arrive at the
origin at t = 19 ns with a peak of 3.84 GPa, followed by a rapid transition to a negative
peak with a gradual relaxation and several smaller negative peaks. The first negative
peak in σxx is due to the arrival of the inner bulk wave, this is followed by a positive
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maximum when the inner Rayleigh wave converges, then a negative minimum is reached
with the convergence of the inner shock wave, followed by other negative peaks due to
the arrival of the outer Rayleigh and shock waves. σzz shows a smaller first positive peak
than σxx, followed by a large drop to negative values, with small subsequent variations
during relaxation.
We note that for ∆t = 0 the minimum has a value of −4.43 GPa, while for the individual
inner ring it reaches −4.98 GPa. That might explain the less destructive effect of ∆t = 0
compared with the individual rings once the substrate is damaged (figure 11.4).
The case of ∆t = 10 ns shows the largest peak in σxx among all cases (5.56 GPa) as
the Rayleigh waves from both sources converge in the centre at the same time (figure
11.8 (b)), then the code seizes to converge shortly after the pressure becomes negative
(with a larger amplitude than for the individual rings). We suspect that this case should
achieve the strongest negative stresses because with this delay time we observe the max-
imum amount of damage (figure 11.4) in the experiments. To avoid the numerical model
collapse, we explored adjusting different parameters including finer meshes, smaller time
steps and others. However, in all cases, the simulation does not converge for delay times
∆t between 8 and 16 ns. This might be explained by a sudden decrease of the stresses (if
it follows the trends for the other delay times), preventing convergence of the elasticity
equation. The experimental results for ∆t = 10 ns (figure 11.4) show that only after 10
repetitions, there is significant glass damage. After 37 repetitions, the damage is extensive
and reaches the opposite side of the glass coverslip (height of 160 µm).
The case of ∆t = 20 ns (figure 11.8 (c)) corresponds to simultaneous convergence of the
shock waves, so the increase in pressure in the liquid appears at a later time as expected,
with a larger amplitude. σxx has two main positive peaks: one at t = 29 ns due to the
arrival of the outer Rayleigh wave and another at t = 38 ns induced by the inner Rayleigh
wave. Then, as the pressure in the liquid increases to 6.44 GPa, σxx shows a rapid decrease
from 4.38 GPa at t = 38 ns to −6.38 GPa at t = 42 ns, staying negative for about 20 ns.
The case of σzz again shows a moderate increase, followed by a decrease to a negative
peak of −7.26 GPa. The plot or σxz (dotted black line) shows an abrupt change from
negative to positive values, from −0.46 GPa at t = 39 ns to 0.37 GPa at t = 40 ns.
In another study [371], using a gold-coated glass substrate, the authors mentioned that
it was possible that the observed glass delamination is caused by the rapid changes in σ.
σzz achieves the largest negative values, but σxx undergoes the largest changes in ampli-
tude (positive/negative) as it reaches large positive values and swings to large negative
values. Those results are consistent with our simulations and the experimental results.
Another important observation is that while the maximum/minimum values of σxx are
reached at x = z = 0, the largest amplitudes for σzz are reached at x = 0 inside the glass
at heights z between −3 µm and −10 µm. In the case of σxz, the maximum/minimum
values are reached inside the glass as well, at heights ranging from −5 µm to −19 µm,
and at horizontal positions x between 17 µm and 5 µm. The tables 11.3 and 11.4 list the
positions and times at which the maximum and minimum stresses are reached for each
case.
Out of the delay times (8-16 ns) for which the code does not converge, the maximum
positive amplitude (5.81 GPa) is reached for ∆t = 13 ns.
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11.6 Conclusion

Two cylindrical shock and Rayleigh waves launched at different radii from a common cen-
tre, when superpositioned constructively, significantly increase the magnitude of stresses
as compared to a single focused wave. We have termed this focusing strategy of two
cylindrical waves “bullseye focusing”.
In the experiments, the initial radius of the two cylindrical waves was kept constant, yet
the delay between their launches was varied. Here, bullseye focusing works best for a
delay of ∆t = 10 ns, where the largest damage to the substrate is obtained, also with the
lowest number of runs. The simulations reveal for this delay the highest tension on the
substrate due to the focused Rayleigh waves. Here the simulations did not converge, yet
the highest compressive stresses were found for a delay of ∆t = 20 ns. Utilising a more
advanced model for the glass may allow us to overcome the convergence problem. Then we
expect the highest compressive stresses in the simulations also for the delay of ∆t = 10 ns.
Interestingly, for a delay of ∆t = 0 the same number of runs as for a single inner ring
is necessary to cause damage. Still, the superposition of the two waves has an effect:
the area of the central damage. There the damaged area is considerably smaller than
in the case of a single inner ring. We explain this observation with a partial destructive
interference of the two Rayleigh waves. In all simulated cases, we observe abrupt changes
in the sign of the stress components σxx and σzz. The biggest positive peak is caused by
the arrival of the Rayleigh waves at the centre (tension) while the following negative peak
that is caused by the arrival of the shock wave (compression). In the case of σxz, the trend
is reversed; the first peak due to Rayleigh waves convergence compresses the substrate,
while the second, generated by the convergence of the shock wave, is applying a tension.
These peaks last for a few nanoseconds and drop from positive to negative within a few
nanoseconds. The induced stresses range between 5.56 GPa and −6.38 GPa.
The concept of bullseye focusing as presented here is not limited to two rings. It can
be extended to more rings to potentially achieve even larger stresses at their common
focus. For example, adding a third pulsed laser and illuminating a separate region of the
spatially multiplexed digital hologram would give rise to a third converging wave with
arbitrary timing. The finding that the size of the damage can be controlled, too, could be
another advantage of the present focusing scheme. Here we envision using the setup to
explore the possibility to control the damage size to the substrate with the idea to create
a bullseye cutter for glass.
The simulations of the fluid-structure interaction can be improved, too, e.g., through a
more realistic model for the structural deformation that accounts for non-linearities and
plastic deformation and by implementing more accurate numerical schemes to improve
convergence.
Overall, we have demonstrated a comparatively simple method to generate stresses in
solids that can easily overcome the yield strength of many materials. Enhancing the am-
plification of the stresses and utilisation for cutting of brittle materials are two straight-
forward extensions of the bullseye focusing technique.
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12 Nano-cracks and glass carving from

non-symmetrically converging shocks

This work has been published in [30]:

U. J. Gutiérrez-Hernández, H. Reese, F. Reuter, C.-D. Ohl, and P. A. Quinto-Su. “Nano-
Cracks and Glass Carving from Non-Symmetrically Converging Shocks”. Advanced
Physics Research 2 (10), 2300030 (2023). eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/apxr.202300030

We present a method to carve into a glass submerged in water with laser-induced sur-
face and shock waves. We start with an elliptic wave source that launches an elliptically
converging Rayleigh and shock wave. At the wave focus a single microscopic crack with
controlled location and orientation is induced that has a length of a few micrometres
and a width of about one hundred nanometers. Through successive surface waves, this
crack may be extended along a specific direction which can be controlled by adjusting
the distance, shape, and orientation of the laser focus. Here, either point-like or elliptical
laser foci are generated using a spatial light modulator. Furthermore, When the crack is
guided along a closed circular path using a point-like laser focus, a conchoidal hole may
be carved through the glass slide demonstrated with a 160 µm thick cover slip. We model
the shock waves in the fluid and the elastic waves in the glass in 3 dimensions with a finite
volume framework that accounts for fluid-structure interaction. The resulting pressures
and stresses for both the elliptical and point-like Rayleigh and shock wave sources are
reported.

12.1 Introduction

To break glass along a line, one typically creates a small crack with a glass cutter and then
applies a force on the sample for the crack to propagate and split the glass apart. While
this method is simple and straightforward, an understanding of what exactly happens on
the microscopic scale is far from complete. There contradicting views on the nature of
fracture propagation in glasses exist. For example, Guin and Wiederhorn [396] found using
atomic force microscopy that the crack propagates in silicate glasses without forming a
cavity at its tip suggesting a completely brittle fracture. While Célarié et al. [397] report
on the nanoscale ductility in crack propagation thus fracture propagates similarly to that
in metal, recently, Shen et al. [398] revealed that crack propagation in various glasses is
dominated by self-organised nucleation, growth, and coalescence of nano-cavities resulting
in nano-patterns on the crack’s surface, arguing that these cavities confirm the presence
of nano-scale ductility of brittle glasses.
There are different methods to generate cracks and modify the properties of glass. Some
require direct contact like the case of indenters and others are contactless and rely on
lasers or/and acoustic waves. For example, diamond-tipped indenters can generate the
formation of cracks at micro- and nano-scale by pressing the surface with controlled
forces [399–403]. Nano-scratching is another technique based on indentation, but the tip
that presses the surface moves laterally, generating microscopic channels on the material
surface [404]. Recently, abrasive nanoparticles driven by ultrasonic vibration [405, 406]
have been used to study the hardness of materials and also for micro-machining.
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Among the optical methods for micro structuring, the application of ultrashort laser
pulses (femtoseconds) direct writing technology stands out. It has been widely used for
the microfabrication of optical devices. The quality of the structures generally depends
on the optical characteristics of both the experimental setup and the sample. The three
main types of nano-scale modifications to materials: melting, high-density cavity, and
nano-grating, are based on the energy of the laser pulse used [407].
Shock waves have also been used to damage materials including glass. Zhang et al. [391]
studied the generation and propagation of leaky Rayleigh waves induced by a spherical
shock wave at a water-glass interface. Symmetric convergent laser-induced shocks and
acoustic waves have induced fracture in glass [371], where a picosecond laser pulse shaped
into a ring is absorbed by a gold coating deposited on the glass surface. The induced
stresses resulted in the removal of a small fragment of the gold film (∼ 15 µm) at the
centre of the ring. Other studies with the same system [378] investigated glass failure at
the nanosecond scale, generating craters with a depth of about 4-5 µm and a diameter
of 10-20 µm. Their simulations estimated a tensile stress threshold of at least 6 GPa for
borosilicate glass.
Other experiments with shocks and acoustic waves have used time-delayed excitations
[369], including converging ring sources [29] where shock waves were induced in the liquid
and Rayleigh waves in the solid. It was shown that the greatest damage induced on the
surface was generated with the time delay corresponding to constructive superposition
from the simultaneous focusing of Rayleigh waves.
In the present manuscript, we propose a novel non-contact method to nano-structure
borosilicate glass in a controlled way. A shaped laser pulse focuses into the liquid close to
the glass substrate; unlike direct laser writing methods, the laser energy is not deposited
within the substrate. A nano-sized crack is induced via the convergence of laser-induced
elliptical shock and surface waves. The direction of the cracks is along the minor axis
of the ellipse with a width on the order of 100 nanometers, which allows control via the
orientation of the elliptically-shaped laser pulse. The optical detection of the nano-sized
crack relies on the observation of the induced cavitation when it is exposed to the acoustic
waves. We also demonstrate the controlled propagation of those cracks drawing different
geometric shapes with sizes of tens of microns. Repeated exposure to the shocks and
surface waves can carve the glass, drilling out a piece of the substrate.

12.2 Methods

12.2.1 Experimental setup

The experimental setup is based on previous works [29, 369] and is shown as a schematic
in figure 12.1 A. The laser pulse (Orion, New Wave, 6 ns) is shaped into an elliptical ring
using a spatial light modulator (SLM, Hamamatsu, X10468-01). The sizes of the major
(104 µm) and minor (78 µm) axes in the focal plane are controlled through the hologram
displayed on the SLM screen, which can be easily modified in real-time to change the
shape of the laser pulse.
The liquid (ink, EPSON T6643, Magenta) with a similar density and viscosity as water,
is bounded by a microscope slide of 1 mm thickness at the top and a microscope slide of
160 µm thickness at the bottom. The properties of the glass are provided by the manu-
facturer: ρ = 2230 kg/m3, ν = 0.2 and E = 63 GPa (Fisherbrand, www.fishersci.com).
The thickness of the liquid layer is about 80 µm, set by a spacer (double-sided tape) placed
between both glass substrates. As the top glass substrate is far from where the laser pulse

www.fishersci.com
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is focused, it is not shown in figure 12.1 A.
The shaped pulse is focused at the bottom of a liquid container by a microscope objective
(Olympus, 10×, NA 0.4). Due to the low intensity of the pulse within the glass, the laser
pulse by itself does not damage the substrate. Instead, it is linearly absorbed by the dyed
liquid, forming an elliptic ring bubble. Consequently, a shock wave front with the shape
of the elliptical torus bubble is emitted. The outer front propagates outwards from the
bubble and diverges, thus decaying in amplitude over time. The inner front propagates
inwards from the elliptical bubble, leading to energy focusing near the centre of the el-
lipse. In figure 12.1 A, the laser bubble in water is shown in blue, while the convergence
of the inner shock wave front is shown in shades of red. Since the laser-induced bubble
is formed at the bottom of the liquid, the bubble expansion loads this surface almost
instantaneously, resulting in an energy transfer that deforms the surface and generates
the Rayleigh wave.
The energy of the elliptically-shaped laser beam is set to (202 ± 7) µJ, measured between
the SLM and the dichroic mirror of the inverted microscope. This energy is used to induce
crack formation.
Later, to circularly propagate the induced crack, the hologram displayed on the SLM
screen is modified to induce the formation of a single spherical bubble of 12 µm radius,
which leads to the formation of a shock wave in the liquid and a Rayleigh wave on the
solid surface. The energy of the laser pulse is set to (300 ± 8 µJ).
To capture the fast dynamics of the events, we use stroboscopic photography. For illu-
mination, we use a second laser pulse with a wavelength of 532 nm that is converted to
690 nm using a dye cell. The pulse illuminates the sample, and propagates through the
dichroic mirror of the microscope, after which the light reaches a CCD camera (Sensicam
QE).
The fracture topology is measured via areal confocal microscopy (Mahr nanofocus µ surf
custom P). As the measurement principle makes use of the light reflected at the sample
surface, reflectivity is increased by sputtering the glass samples with a thin gold layer
(thickness approximately 40 nm). A difficulty encountered with the fracture topologies
here is that planar surfaces may easily overexpose the camera sensor while curved sur-
faces are underexposed as they reflect light out of the microscope’s objective aperture.
This has been solved by performing measurements of the same region four times with
increasing light intensity. The data was combined by choosing at each pixel position the
darkest measurement run that still yielded a reliable result which has been performed
with a Matlab script.

12.2.2 Numerical model

For the numerical simulations, a finite volume solver of two compressible, viscous fluids
is coupled to a solver for a linear elastic solid. One of the fluids represents water and
the other is the gas within the bubble, which represents the bubble created by the laser
in the experiments. All changes of state are treated as adiabatic, assuming that the
presented dynamics are faster than any significant heat exchanges. Indeed, for nanosecond
laser-induced microbubbles similar to those generated in the experiments of the present
investigation, Quinto-Su et al. [121] has shown that the rise in temperature is only a few
Kelvin. The elastic solid represents the microscope slide made of glass that neighbours
the created bubble. The solver CavBubbleFsiFoam is a modified version of fsiFoam,
which is found in the fluid-structure interaction package [126] in the OpenFOAM version
foam-extend-4.0 [127]. Details on the solver method can be found in [27, 29], where we
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τ (N/m) µ(mPa s) p0 (Pa) ρ0 (kg/m3) γ B (MPa)
liquid

0.07
1.00 101325 998.2061 7.15 303.6

gas 0.013 10320 1.33 0.12 0

E (GPa) ν ρ (kg/m3)
solid 63 0.20 2230

Table 12.1: Simulation fluid and solid parameters, including surface tension τ , dynamic
viscosity µ and parameters of the Tait equation of state, as well as the elastic modulus
E, Poisson’s ratio ν and density ρ.

have used it to simulate similar configurations.
The parameters characterising the properties of the two fluids involved and of the elastic
solid, as well as the initial conditions are given in table 12.1. The fluid domain containing
the liquid and the bubble has a thickness of 80 µm and is sandwiched between a rigid
boundary and the elastic solid plate, which has a thickness of 160 µm. On the opposite
side of the plate, another gas-filled fluid domain with a thickness of 80 µm is placed which
is bounded by an open boundary, allowing the plate to move freely with respect to the
liquid-filled fluid domain. The outer boundaries far from the region of interest are open
boundaries, representing an infinitely extended domain.
Two simulation cases with different initial bubble shapes are presented, where we take
advantage of their respective symmetries. In the first case, the seeded bubble is an
elliptical torus, as seen in figure 12.1, and thus has two symmetry planes, the x-z and y-z
planes. Thus, only a quarter of the full domain is simulated. The computational mesh
is initiated as a cubic grid with a grid parameter of 20 µm. In the liquid-filled domain
near the bubble, the cells are successively split into 8 cells of halved grid parameter for 4
iterations to reach a grid parameter of 1.25 µm. The initial conditions are chosen to match
the experimentally observed shock wave dynamics. The initial length of the major semi-
axis is 52 µm, while that of the minor semi-axis is 39 µm. The ellipse width is 5 µm, which
is close to the diffraction limit of the microscope objective that is used in the experiment.
The centre of the bubble is placed 2.5 µm above the elastic solid wall, such that they are
in contact.
In the second case, a small spherical bubble is seeded on the (vertical) z-axis, in which
case the configuration is axisymmetric. Thus, a quasi-two-dimensional simulation can be
employed, and the governing equations only need to be solved in the x-z plane. For the
computational mesh, a square grid with a grid parameter of 1 µm is used. The initial
bubble radius is chosen to be 12 µm and its centre is placed 12 µm above the solid wall
such that they again are in contact. In both cases, the initial bubble pressure is chosen
to be 1.69 GPa, such that the initial gas density is equal to the liquid density, implying
that the laser energy absorption happens much faster than the bubble expansion, as it
was done in [29, 369, 371]. This resembles the very fast energy deposition from the
nanosecond laser pulse used in the experiment. Our solver is additionally validated by a
close match of the shock wave propagation with the experimental observation. The initial
sizes of the bubbles (radius, and/or minor axis and major axis, depending on the case)
were chosen such that the shock wave position over time closely matches that observed
in the experiments.
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12.3 Results and discussion

12.3.1 Nano-crack generation

Figure 12.1: A Schematic of the experimental setup. The laser bubble in water is shown
in blue, while the propagation of the wavefront is shown in shades of red. B Dynamics
of the elliptical bubble. The top of each frame is a strobe photograph, while the bottom
is extracted from a finite volume method simulation. The size of the individual frames
is 200 µm × 200 µm. C Stresses on the surface of the solid (z = 0) close to the centre to
which the waves converge. In the top row for a line on the major axis (x = −15 µm to
x = 15 µm), in the bottom row for a line on the minor axis (y = −15 µm to y = 15 µm).

Figure 12.1 B depicts the dynamics of the elliptical bubble and its shock wave emission
in top view. At the top of each frame, strobe photographs are shown, while at the bot-
tom, frames extracted from the simulation are presented. Both the simulated and the
experimental frames are cropped along y = 0 for ease of comparison. The frames from
the simulation are extracted from a slice in the x-y plane at z = 2.5 µm. The bubble
appears grey. The size of the bubble and the locations of the pressure wavefront show a
good agreement between simulations and experiments.
In the first two frames, corresponding to 10 ns and 16 ns, we find an expanding laser-
induced bubble that has emitted a shock wave front with the shape of the bubble (ellip-
tical torus), propagating with a velocity close to 1900 m/s. The convergent shock wave
front is indicated with an arrow.
The negative pressures (induced by the Rayleigh wave) reach the centre first (t ≈ 16 ns).
Thus, at t = 18 ns they are already diverging, while the positive pressures are still con-
verging towards the centre. The top and bottom fronts (y-axis) of the inner shock wave
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front reach the centre first, before the side fronts (x-axis). At 18 ns, we observe two
large pressures along the major axis (p = 1050 MPa at x = ±8 µm, y = 0). Later, at
22 ns, the highest pressure overall is reached when the two high-pressure regions converge
at the centre creating an elongated focus (p = 1090 MPa, at x = 0 and along a line of
10 µm on the minor axis). In the next frames, 28 ns and 34 ns, the inner shock wave front
has passed through the centre and is now diverging. As a result of the superposition
of converging and diverging waves and the higher positive pressure amplitudes, negative
pressures are diminished for later times. Due to the convergence of the waves, in the time
interval shown in figure 12.1 B (10-34 ns), the maximum values of pressure in the liquid
and stresses in the solid are reached.
Figure 12.1 C depicts the evolution of the stresses σxx (left), σyy (centre) and σzz (right)
on a line on the surface of the solid along the major axis (above), and along the minor
axis (below). The vertical and horizontal axes are the spatial and temporal coordinates,
respectively. The spatial coordinate ranges from −15 µm to 15 µm, while the temporal
coordinate ranges from 5 ns to 35 ns. A region of positive stress (i.e. tensile stress) is ob-
served, followed by a region of negative stress (i.e. compressive stress). Although similar,
the stresses on the two axes show several differences.
The positive stress is induced by the Rayleigh wave, which propagates with a velocity of
about 3200 m/s. For σxx, the maximum value is 650 MPa, reached at 15 ns. It is approx-
imately constant along 4 µm on the major axis and along 2 µm on the minor axis. For
σyy, the maximum value is 875 MPa, reached at 13 ns. It is approximately constant along
10 µm on the major axis and along 2 µm on the minor axis. For σzz, the maximum value
is 132 MPa, reached at 17 ns. It is approximately constant along 6 µm on both axes.
The negative stress is induced by the shock wave, which propagates slower than the
Rayleigh wave, with a velocity of about 1900 m/s. The minimum value of σxx is −1230 MPa,
reached at 24 ns. For σyy, the minimum value is −1120 MPa, reached at 23 ns. For σzz,
the minimum value is −1077 MPa, reached at 23 ns. Similar maximum values are reached
along 10 µm on the minor axis and only along 2 µm on the major axis.
In absolute value, the maximum compressive stress (−1230 MPa for σxx) is 1.4 times larger
than the maximum tensile stress (875 MPa for σyy). The values for this ratio (|max. ten-
sile stress/max. compressive stress|) are 1.89, 1.28 and 8.16, for each component, σxx,
σyy and σzz, respectively.
The strongest compressive stress for σxx, σyy and σzz is reached along a line on the surface
in the direction of the minor axis, −5 µm < y < 5 µm. These minima for the stresses in
the solid are reached only one and two nanoseconds after the greatest pressure in the
liquid is reached, due to the convergence of the shock wave. The videos in the supple-
mentary material show the dynamics of the bubble and the shock wave fronts for almost
100 ns, both for the simulation and for the experiment. The dynamics in the x-y plane
are shown for the pressure p (z = 2.5 µm), as well as the stress components σxx, σyy and
σzz separately (z = 0). Additionally, a 3d view is given showing the pressure in the fluid,
along with each of these stress components separately.
The waves induced by the elliptical laser torus bubble create lines on the surface with
almost constant values of tensile and compressive stresses. In comparison, for a circular
ring bubble (rotational symmetry case), the convergence of a Rayleigh wave and a shock
wave induces stresses with maximum and minimum values at the centre of convergence,
which rapidly decays in the radial direction [29].
Figure 12.2 A depicts how a nano-crack is generated through a sequence of successive
experimental runs of the elliptical laser focus shown in figure 12.1. After wave focusing, a
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Figure 12.2: A Sequence of experimental runs leading to the formation of a nano-crack.
The number indicates the number N of experimental runs performed in the same position.
Here, after 20 experimental runs, the crack becomes visible through the expansion of small
bubbles formed on the crack. In the successive runs, i.e. from N = 21 to N = 25, the
nano-crack grows vertically. The photographs are taken at 15 ns after the laser bubble
generation. The last frame corresponds to the same position without the elliptical laser-
induced bubble after 25 runs. Although present, the nano-crack is not visible. The size of
the individual frames is 200 µm × 200 µm. B Probability of glass damage φ as a function
of the number of repetitions N . The continuous line is a fit to the cumulative distribution
function of the normal distribution. The expectation value is E(N) = 17.92 and the
standard deviation is s = 5.73.

rarefaction wave induces tension in the liquid that is strong enough to nucleate cavitation
at the position of the crack. Thus the crack becomes visible by the presence of small
bubbles which is accomplished by recording the images at 15 ns, after the time of Rayleigh
wave focusing.
After 19 repetitions, no damage to the glass is observed. After the 20th run, a small
bubble at the centre becomes visible. In the subsequent runs, a vertical line of small
bubbles expands, indicating that the crack has now grown vertically. As the propagating
shock wave is of high-pressure amplitude as it reaches the centre, it collapses the nucleated
bubbles, limiting the lifetime of the bubbles to the interval between the high stresses
induced by the Rayleigh wave and the high pressure induced by the convergent shock
wave. For the present experiments, this duration is less than 10 ns! The direction of the
nano-crack, along the ellipse’s minor axis, is explained by the strong and approximately
constant compression in σxx, σyy, and σzz over 10 µm along the minor axis mentioned
above (figure 12.1 C).
To determine the probability of crack generation φ as a function of the number of repeated
shots N , the experiment is repeated n = 50 times, each time in a new region of the glass.
Each time, the number of shots after which the damage is first observed is noted as Ni.
The probability for observing the crack after N shots is then φ(N) =

∑n
i=1 pi(N)/n, with

pi(N) = 1 if the crack is observed at the N -th shot, i.e. if N ≥ Ni, and pi(N) = 0
otherwise. φ(N) is plotted in figure 12.2 B. The symbols represent the experimental
data and the continuous line is a fit to a cumulative distribution function of a normal
distribution. The expectation value is E(N) = 17.92 and the standard deviation is
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s = 5.73.
Continuing the experiments for many more runs after the initial crack is formed results
in cracks in other directions and eventually the ejection of small glass fragments.

12.3.2 Controlled crack patterns

Figure 12.3 A shows the process of creating a 150 µm long vertical crack. A first nano-
crack is created in the centre of the elliptical laser-induced bubble. Then a motorised
stage moves the glass downwards by about 5 µm and a second bubble is created. This
is repeated 30 times. The movement can be seen by following the movement of marks
on the glass, see the blue and red dashed circles in figure 12.3 A. While multiple shots
(E(N) = 17.92, mean of the cumulative distribution function) are needed to initiate the
first crack, each successive shot of the laser propagates the crack further.

Figure 12.3: A Generation of a vertical nano-crack of 150 µm length. In each frame, the
vertical nano-crack is observed in the centre of the elliptical laser bubble. The sample is
moved upwards in steps of 5 µm using a motorised stage. On the right, two marks in the
glass with a distance of 150 µm are labelled. The nano-crack grows downwards. In the
bottom row, a second fixed mark in the glass is labelled. B visualisation of the finished
150 µm long crack using a smaller circular laser pulse shape. The emitted Rayleigh wave
causes tension in the liquid, inducing cavitation bubbles, which make the path of the
crack visible. C SEM photograph of the crack (SEI, 5 kV, x50000).

To visualise the crack, we change the hologram to create a smaller circular bubble that
launches a radially outgoing Rayleigh wave. The stresses of this wave nucleate small
bubbles all over the line, see figure 12.3 B. The photograph is recorded 50 ns after the
generation of the laser-induced bubble. While the shock wave in the liquid visible as a
dark circle in the image has not reached the crack, the Rayleigh wave already has reached
the crack and expanded the bubbles.
The resulting crack is further characterised using SEM, see figure 12.3 C. Here, the non-
conductive glass surface has been coated with ∼ 10 nm thick gold layer. The SEM image
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Figure 12.4: Nano-cracks on the sides of a triangle (left) and a square (right). The laser
is focused in the centre of each shape, the emitted Rayleigh wave inducing bubbles on the
cracks which make them visible. The images are the superposition of several photographs.

reveals a width of the crack of less than 100 nm.
The orientation of the crack can be changed by displaying different digital holograms on
the SLM during the experiments. Together with the ability to translate the glass sample
with the motorised stage, linear cracks can be arranged into patterns. This feature is
demonstrated in figure 12.4. There, we have oriented cracks along the sides of a square
and an equilateral triangle.
To visualise the crack patterns within the means of the experimental setup, we again
changed the hologram to create a smaller circular bubble and varied the timing of the
image recording. Figure 12.4 is the overlay of several photographs taken with different
delay times (15-85 ns) to fully observe the bubbles induced on the crack positions on the
created pattern. Since the bubbles formed on the crack reach their maximum size shortly
before the shock wave reaches that position, the photos are circularly cropped close to
the position of the shock wave.
By increasing the laser energy (with constant ellipse size) the number of shots needed to
induce a crack is reduced, and eventually a single shot would be required. However, we
did not use higher energies because it prevented good control when expanding the crack.
Once the damage was induced with higher energy, extending it detached small shards of
glass (∼ 3 µm, i.e. visible) along the crack.

12.3.3 Carving

Zhang et al. [391] showed that concentric circle-like patterns can be created on a glass
surface from pre-existing flaws via shock wave impact generated with a Nano-Pulse
Lithotripsy (NPL) probe. They observe and study circumferential crack propagation
induced by the symmetric radial stress.
In this section, we study the circular propagation of the crack induced by the described
elliptical configuration. Once the crack in the centre of the ellipse is observed, the shots
with that configuration are stopped.
The hologram displayed on the SLM screen is modified to induce a single spherical bubble
at the bottom of the liquid. The crack is placed at a distance d from the position where
the laser-induced bubble is created, as shown in figure 12.5 A. The laser pulse, with an
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Figure 12.5: Carving process. A Above, the elliptical configuration to induce a crack
on the solid surface. Below, the geometry used to circumferentially propagate the crack.
The laser bubble in water is shown in blue, while the propagation of the wavefront is
shown in shades of red. B Circumferential crack propagation progression. The number
of shots is indicated in each frame on the top left. After 45 shots, the circle-like crack is
fully closed. C Conchoidal structure before its detachment. The small conchoidal marks
are enclosed by the propagated crack and a blurry line (bottom) on the opposite side of
the glass. D Topography of the conchoidal structure (seen from the bottom). E Profiles
of the conchoidal structure, along x = 0 (top) and along y = 0 (bottom).

energy of (300 ± 8) µJ, induces a spherical bubble and the emission of a shock wave. Al-
most instantaneously, the bubble expansion loads the surface which results in an energy
transfer that deforms the glass surface and causes the formation of a surface acoustic wave
(Rayleigh wave). This is represented schematically in figure 12.5 A, where the red shaded
circular lines represent either the shock wave or the Rayleigh wave emitted by the bubble.
As in the previous case, those waves allow us to observe the crack through small bubbles
nucleated on it.
Figure 12.5 B shows the progression of the circularly propagating crack, each photograph
is labelled with the corresponding experimental run number. The dark circle in the centre
is the laser bubble, while the blurred dark line is the emitted shock wave. The Rayleigh
wave is not visible in the photographs. To observe the small bubbles on the crack, the
photographs are taken at a delay of 35 ns after the generation of the laser bubble, only
the last one (45 runs) is taken with a delay of 45 ns, where the approximately circular
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Figure 12.6: Maximum radial stresses on the glass over the full simulated time (200 ns).

damage has closed completely.
Figure 12.5 C shows the damage created after 54 experimental runs performed in the same
position. The full frame is not large enough to observe the entire fracture. In the subse-
quent 55th run, a piece of glass is completely detached, remarkably in one piece.
The detachment can be seen by the blurred thick line on the bottom and the several curved
conchoidal marks. The fracture is further analysed via the surface topology presented in
figure 12.5 C, measured using areal confocal profilometry. It shows the glass now from
the bottom with the depth colour-coded with z = 0 being the top and z = −160 µm the
bottom of the plate. Around the circular through hole of about 100 µm (white), a larger
region of spallation is present. In figure 12.5 E a profile through the structure is shown,
along x = 0 (top), and along y = 0 (bottom).
The fracture reaches a depth of z = −50 µm near the perimeter of the circular hole, mea-
sured at a radial distance of about 75 µm from the perimeter of the circle, or 175 µm mea-
sured from the centre of the circle (x = y = 0). This depth is reached with an approximate
rotational symmetry. From z = −50 µm to the bottom side of the glass (z = −160 µm),
the propagation of the damage is not axisymmetric but shows only an approximate pla-
nar symmetry with respect to the y-z plane. The lateral outer edge of the damage is at
x ≈ ± 380 µm, the top is at y ≈ 215 µm, and the bottom is at y ≈ −250 µm.
The conchoidal marks appear as half circles in the area where the first surface crack is
placed. These marks grow to form a shape similar to the ends of a cardioid that closes in
the zone where the circular crack has closed on the surface.
In figure 12.6 we show a cross-section (x-z plane) of an axisymmetric finite volume simu-
lation of a circular bubble. The liquid in which the bubble is induced and the shock wave
is emitted is shown on the top. The elastic plate where the Rayleigh wave is transmitted
is shown on the bottom. In the solid, the maximum radial stress over the full simulation
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Figure 12.7: Close-up of conchoidal marks in the glass. Hackle lines can be seen perpen-
dicularly to the conchoidal marks.

time (200 ns) is shown. As expected, the highest stresses are reached on the surface of
the glass. Nevertheless, at the bottom of the glass, a region in which large radial stresses
are reached extends laterally for about 300 µm. That region reaches a height of about
50 µm. The simulation and the corresponding maximum stress distribution may explain
the conchoidal fracture of figure 12.5 D. The radial stress σxx creates the complex fracture,
but the vertical stress σzz eventually causes its detachment. Even so, in the experiment
the situation is more complex. As the damage grows, the distribution of maximum stress
changes with each shot.
We identify the curvilinear marks as shell-like or conchoidal marks [408]. The conchoidal
marks are typical in isotropic rocks such as obsidian and limestone. As is explained by
Li and Moelle [409], an individual conchoidal mark is a ridge delineated by a change
of fracture orientation. If the conchoidal marks are periodically repeated, the result is a
conchoidal structure. McJunkins and Thornton [408] has described how the characteristic
lines between the conchoidal marks represent the locations of maximum tensile stress.
In figure 12.7, a close-up of the marks on the glass is observed using confocal microscopy.
We identify hackle marks [410] intersecting conchoidal marks perpendicularly. The hackle
marks are parallel to the crack propagation.
We also study the experimental case without an initial crack. There, only a circular laser
bubble is created in the liquid sample close to the glass surface. Using the same laser
energy as for the case presented in figure 12.5, the conchoidal structure is observed, but
the crater has just half of the size compared to the previous case. The number of shots
necessary to detach the conchoidal structure is significantly larger if there is no initial
crack, with 156 shots compared to the previous 55.
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12.4 Conclusion

We have developed a simple tool for micro- and nano-structuring on glass in a controlled
way using shaped laser-induced shocks and surface waves. In contrast to existing direct-
writing methods, energy is not deposited directly into the glass. The laser pulse focuses
into the liquid, close to the solid surface, which leads to the formation of shock waves in
the liquid and Rayleigh waves in the glass. The results are compared with finite volume
simulations with reasonable agreement.
A directed nano-crack with a width of less than 100 nm can be created by focusing a pulsed,
elliptically-shaped laser beam. The nano-crack is created by repeated loading (∼ 18
events) in the direction of the minor axis of the ellipse. The crack can be propagated by
displacing the sample and changing the rotation angle of the laser ellipse which is digitally
controlled in real-time with the SLM. In this way, arbitrary shapes can be engraved on
the glass surface (e.g. triangle, square). The presented method, as it is not dependent on
ablation, produces much fewer unwanted material fragments, in comparison with other
methods for micro- and nano-structuring. Also, as the technique relies on “cutting” along
a surface rather than gradually removing material, larger volumes should be easier to
carve. In future studies, this technique, together with others of fine measurement, could
help to determine the nature of the propagation of damage in this type of material (brittle
or ductile).
Since the width of the crack is too small to observe with optical microscopy, we utilise the
nucleation of secondary cavitation bubbles in the crack, thereby indicating its location.
Focusing the laser into a point near a crack generates diverging shocks and surface waves
with a circular shape, propagating the crack around the focused spot and eventually
closing a loop. This also generates several conchoidal marks in the glass, leading to
the formation of a conchoidal structure. Hackle marks, perpendicular to the conchoidal
marks, are also observed. The crater size is determined by the initial distance between
the nano-crack and the laser-induced bubble. The biggest crater radius observed with the
energy used in this manuscript was about 115 µm. The smallest radius, of about 50 µm,
was observed in a case in which no previous crack was induced.
To fully explain the conchoidal structure, a simulation would require considering the
repeated loading and changes in the glass structure. However, the calculated maximum
radial stresses on the glass (figure 12.6) help understand the structure of the crater.
In future work, we could use objective lenses with shorter focal lengths to reduce the length
and width of the shaped laser pulse, which might yield even better control of the crack.
Another possible future experiment could involve trying to observe the crack-generating
mechanism, but that will require combining our asymmetrical acoustic wave excitation
with other techniques. This non-contact method of crack generation and propagation
may be used for micro-structuring delicate surfaces. It would be interesting to expand it
from amorphous to crystalline materials where currently microcracks are induced through
thermal ablation [411].
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The results and their reliability are to be critically assessed.
A popular choice to visualise numerical data is through rainbow-like colour schemes, es-
pecially the colour scheme “jet”. These offer visually pleasing colour transitions but have
the disadvantage that some colours stand out over others, such that in images relatively
sharp lines are created, where actually a continuous transition occurs. Such lines are thus
misleading and have no physical meaning. An example of this is shown in figure 13.1,
where the colour schemes “grayscale” and “jet” are compared using the velocity field
u = |~u| of an expanding bubble. The comparison reveals that only one of the lines visible
on the right half of the image has a physical meaning.
“Grayscale” is a specifically good choice, as it only consists of a gradual transition from
one colour to another. A colour scheme commonly used in the present work is “cool to
warm”, which is a gradual transition between the three colours blue, white, and red. This
commonly causes an apparent white line to occur at the midpoint of the chosen colour
scale. In the case of the phase fraction field α ranging from 0 to 1, this line occurring
at α = 0.5 has the physical meaning of the fluid-fluid interface. If it is used to visualise
a stress field (e.g. p, σij, |↔σ|), and its range is chosen to equally include negative and
positive values, the white line denotes the absence of stress.
Another commonly used colour scheme is “black body radiation”, which offers an espe-
cially smooth transition between its colours. Some lines as described above can occur, but
they are much weaker than the ones encountered with the colour scheme “jet”. In some
cases, the colour scale range is chosen to be smaller than the range of values encountered
in the image, with the aim of being able to more clearly see transitions in that smaller
value range. In such a case, all cells exceeding those values are shown in the same colour,
which is equivalent to overexposure in photography. If this only affects few cells, this
might be a good trade-off. This has to be judged for each case individually.
The deviations of the results from reality, i.e. their error, essentially have two origins. On
one side stand any errors of the underlying physical model used to describe the problem,
including any assumptions, omissions, and approximations that have led to the equations
used for the simulations. On the other side stand all numerical errors including discreti-
sation errors and rounding errors.
Regarding the former, the Navier-Stokes equations are a widely accepted model for the
flow behaviour of Newtonian fluids. It uses the continuum hypothesis. The system de-
scribed should thus be large enough to fulfil it. Since the size of a water molecule is of
the order of 10-10 m and the cell width typically used in the present work is of the order
of 10-6 m, the continuum hypothesis should be a very good approximation.
Furthermore, heat conduction was neglected in the finite volume simulations. This is
based on the assumption that any temperature variations occur on such short time scales
that the variation of the bubble’s energy over time due to heat conduction is negligible.
This assumption may not be fulfilled in all cases, though it is a widely used and accepted
simplification of the model.
A very important simplification for the numerical implementation is the axisymmetry of
most of the systems considered in the present work since this greatly reduces the computa-
tional cost of the simulations. This symmetry is never exactly fulfilled in the experiments
and presents an unstable special case, especially during the bubble’s collapse. The shape
of the bubble commonly deviates from approximate symmetries of the considered sys-
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Figure 13.1: Example of the difference between colour schemes. Shown is the velocity
magnitude u for an expanding bubble. Left: colour scheme “grayscale”, ranging from
white (u = 0) to black (u = 50 m

s
). Right: colour scheme “jet”, ranging from blue (u = 0)

to red (u = 50 m
s
).

tem due to Rayleigh-Taylor instabilities [11]. In reality, small, unavoidable deviations
of the system from spherical or even rotational symmetry cause the bubble to disperse
into smaller bubble fragments, that then oscillate separately as a bubble cloud, while in
axisymmetric simulations these can only be approximated by toroidal bubble rings. This
is a limitation of such simulations and must be taken into account during the discussion
of each case considered. In the present work, simulations were used to gain insight into
phenomena that even in the experiments maintain an approximate axisymmetry on the
time scales considered, namely the interaction between a bubble and various boundaries
and the thereby induced jet formation, as well as the propagation of waves emitted by
the bubble. It was not an aim of the simulations to model the bubble’s dispersion into a
bubble cloud.
The other important source of inaccuracies is numerical errors. Rounding errors stem-
ming from the limited information content of a number in a computer are especially
important when two similar numbers are subtracted from one another, since the result-
ing, much smaller number carries the absolute error of the previous numbers, resulting in
a large relative error. The optimisation of the implemented code through the developers
of simulation software programs partly consists of avoiding such operations. But even in
optimised code, the error of each numerical operation is generally finite, such that it may
eventually accumulate into a large error.
Further errors stem from the discretisations of the differentiations in the flow equations
considered, as well as the discretisation of time into time steps and space into computa-
tional cells. This error depends on the chosen discretisation scheme, the time step size,
and the cell size, respectively. This is especially relevant when the considered field quan-
tities vary strongly on the scale of the cell size.
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Figure 13.2: Bubble mass variation due to numerical errors. m0 is the initial bubble
mass. τ is the bubble oscillation period. m decreases by 68 % in the first time step, and
subsequently increases by 25 % over the course of the simulation.

Whether a computational mesh is sufficiently resolved is often tested by carrying out a
mesh refinement study, in which the simulation of interest is carried out at various mesh
resolutions. If for increasing refinement the results of the simulation converge to a specific
solution, all the meshes that yielded a result that is close to that solution are deemed to
be sufficiently fine. For the reason given above, this is not always the case. If the results
of the simulations do not converge, further arguments for their validity are to be pro-
vided, such as a sufficiently accurate match with the experimental observations without
much artificial tweaking of the simulation parameters. This has been done for the results
presented in the present work.
On a solid wall, the no-slip boundary condition is applied, i.e., the velocity of the fluid
relative to the boundary is taken to vanish. Thus, between a flow and the boundary a
boundary layer forms, in which the flow velocity relative to the boundary decays to zero.
This boundary layer must be sufficiently resolved to accurately model the flow and specif-
ically the stresses onto the boundary. A sufficient resolution means that over at least two
cells, the flow velocity ~u decays approximately linearly to zero.
The temporal resolution of the data output of the simulations is limited by the storage
space available on the workstation. Near a maximum (minimum) of a rapidly varying
value, such as the flow velocity of a liquid jet, the value obtained may be underestimated
(overestimated), as the sample times likely do not coincide exactly with the time of the
peak.
The numerical diffusion of the phase fraction field α is counteracted by an additional
term in equation (3.8), with the aim of keeping the interface between the immiscible flu-
ids sharp. Nonetheless, the highest achievable sharpness of the interface depends on the
mesh resolution, i.e. the cell size, which is why the interface still exhibits some thickness
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despite the applied correction. For bubbles with sizes of the order of the cell size, this
leads to a large error in their representation and their behaviour. Thus, the simulations
can only accurately describe bubbles or droplets that are much larger than the cell size.
This is the case for the main bubble in the simulations considered in the present work,
as it is initiated at its smallest size and the cell size is chosen accordingly to resolve it in
this initial state. Nevertheless, small bubbles or droplets that have been pinched off the
main bubble or the liquid bulk are not accurately described.
The nucleation of secondary cavitation bubbles is possible in reality if the pressure in the
liquid locally falls below its vapour pressure. However, this phenomenon is not modelled
in the solvers used throughout the present work. Still, secondary small bubbles can appear
in the simulations, which can be attributed to numerical instabilities in the calculation
of the phase fraction field α according to equation (3.8). This is due to α being under-
estimated in the presence of strong pressure variations due to the term containing Dp

Dt
in

equation (3.8). These specifically occur near shock waves or near solid boundaries. This
behaviour corresponds to similar situations in which cavitation occurs in reality, such that
this error may in some cases even increase the accuracy of the model. Nonetheless, since
this effect occurs due to numerical errors and not on physical equations describing reality,
it is highly dependent on the settings of the solver and is thus to be avoided.
Figure 13.2 shows the mass m of a simulated bubble as a function of time. In reality,
the mass of a bubble generally changes due to condensation of its contents or due to
evaporation or boiling of the surrounding liquid, which occurs especially near the bubble
surface. Since the underlying model describing the bubble does not include any mass
transfer between the fluids considered, the observed variations in the bubble mass are
caused by numerical errors. In the simulation considered in figure 13.2, in the first time
step m decreases by 68 %. Since the accurate description of this early expansion of the
bubble is not of interest in the present work, this initial large error may be ignored. Over
the course of the simulation, m mostly increases, except for short time periods after its
collapse, reaching a total mass increase of about 25 %. To counteract this, the bubble
mass is kept constant by implementing a mass correction in the solver. To account for
the condensation process over the bubble’s first oscillation cycle, a one-time correction of
the bubble mass is applied at the time of its maximum expansion, as explained in section
3.2. These corrections contribute to an improved accuracy of the simulations.
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OpenFOAM is a powerful tool for computational fluid dynamics. Its simulations show a
remarkable match with experimental observations of single expanding and collapsing cavi-
tation bubbles near various boundaries, as well as the dynamics of waves emitted by them.
Furthermore, its open-source status and common availability make OpenFOAM attrac-
tive for academia, as it opens the possibility to reliably reproduce the results presented by
other researchers. Over the course of the present work, three separate solvers have been
developed for different classes of problems and used to gain insight into the underlying
physics of several microscopic, dynamic processes, including micro-pumping through a
perforated plate using a jetting bubble, special jets including the “needle jet” and the
“bullet jet”, micro-emulsification as it likely occurs near sonotrodes, cavitation nucleation
on a localised gas-supersaturated spot in a liquid and on surface defects on a solid, and
the formation of stresses and microscopic damage in an elastic solid due to elastic waves
and pressure waves induced by a nearby laser-induced cavitation bubble. Specifically,
the developed fluid-structure interaction solver CavBubbleFsiFoam is useful to model a
laser-induced bubble near an elastic solid, and the stresses and waves induced therein.
Of course, as is always the case in research, the present thesis does not nearly exhaust
the work that is worthwhile to be done in the field. Some specifically interesting ideas are
listed in the following.
The solver MultiphaseCavBubbleFoam could be modified to model multiple expanding
and collapsing bubbles and study their interaction. The option to model more than two
fluids allows for the application of mass corrections to each bubble individually.
The simulated bubble could be driven by an external sound field or pressure wave, which
could bring the model closer to bubbles oscillating in ultrasound fields, as they do in some
applications.
The solvers MultiphaseCavBubbleFoam and CavBubbleFsiFoam could be combined to
create a solver for a bubble in presence of another fluid and an elastic solid, though since
both solvers are made in different versions of OpenFOAM, this may prove to be very
difficult to do.
Unfortunately, due to numerical instabilities, the fluid-structure interaction solver is lim-
ited to relatively stiff elastic materials. An improved solver could use the finite element
method to model the elastic solid, which may improve the stability of the computation,
though such a solver is not currently available in OpenFOAM, and thus might have to be
created from scratch.
If a large computational power and a lot of storage space are available, or if only few
simulations are needed, the bubble could be computed at a higher cell resolution, the
feasibility of which is to be evaluated for each case individually. Similarly, other config-
urations might require full three-dimensional simulations, as was done for the elliptical
bubble in chapter 12, which is computationally expensive and thus can not be done for
a large number of simulations. To alleviate some of this computational cost, an adaptive
mesh refinement method could be implemented.
The effect of particles on the bubble could be modelled if the implementation of the La-
grangian particles is modified to support a two-way coupling between the particles and
the fluid.
Specifically interesting additions to the model could be to account for heat conduction,
phase transitions, i.e. condensation, evaporation, boiling, and specifically a cavitation
model such as the Schnerr-Sauer model [412].
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[340] J. M. Rosselló, H. Reese, K. A. Raman, and C.-D. Ohl. “Bubble nucleation and
jetting inside a millimetric droplet”. arXiv (2023).

[341] S. F. Jones, G. M. Evans, and K. P. Galvin. “Bubble nucleation from gas cavities
— a review”. Advances in Colloid and Interface Science 80 (1), 27–50 (1999).

[342] L. van Wijngaarden. “Mechanics of collapsing cavitation bubbles”. Ultrasonics
Sonochemistry 29, 524–527 (2016).

[343] A. A. Atchley and A. Prosperetti. “The crevice model of bubble nucleation”. Jour-
nal of the Acoustical Society of America 86 (3), 1065–1084 (1989).

[344] H. B. Marschall, K. A. Mørch, A. P. Keller, and M. Kjeldsen. “Cavitation inception
by almost spherical solid particles in water”. Physics of Fluids 15 (2), 545–553
(2003).

[345] M. Arora, C.-D. Ohl, and K. A. Mørch. “Cavitation Inception on Microparticles:
A Self-Propelled Particle Accelerator”. Physical Review Letters 92, 174501 (17
2004).

[346] B. M. Borkent, S. Gekle, A. Prosperetti, and D. Lohse. “Nucleation threshold and
deactivation mechanisms of nanoscopic cavitation nuclei”. Physics of Fluids 21
(10), 102003 (2009).

[347] J. W. Holl. “Nuclei and Cavitation”. Journal of Basic Engineering 92 (4), 681–
688 (1970).

[348] L. A. Crum. “Tensile strength of water”. Nature 278, 148–149 (1979).

[349] M. E. M. Azouzi, C. Ramboz, J.-F. Lenain, and F. Caupin. “A coherent picture
of water at extreme negative pressure”. Nature Physics 9, 38–41 (2013).

[350] G. Baffou, J. Polleux, H. Rigneault, and S. Monneret. “Super-Heating and Micro-
Bubble Generation around Plasmonic Nanoparticles under cw Illumination”. Jour-
nal of Physical Chemistry C 118 (9), 4890–4898 (2014).

[351] M. Ida, T. Naoe, and M. Futakawa. “Direct observation and theoretical study of
cavitation bubbles in liquid mercury”. Physical Review E 75, 046304 (4 2007).

[352] A. Prosperetti. “Vapor Bubbles”. Annual Review of Fluid Mechanics 49 (1), 221–
248 (2017).

[353] S. D. Lubetkin. “Why Is It Much Easier To Nucleate Gas Bubbles than Theory
Predicts?” Langmuir 19 (7), 2575–2587 (2003).

[354] V. Shvalya et al. “Surface-enhanced Raman spectroscopy for chemical and bio-
logical sensing using nanoplasmonics: The relevance of interparticle spacing and
surface morphology”. Applied Physics Reviews 7 (3), 031307 (2020).

[355] K. Iwata et al. “Chemical structure imaging of a single molecule by atomic force
microscopy at room temperature”. Nature Communications 6, 1–7 (1 2015).

[356] E. Stride and C. Coussios. “Nucleation, mapping and control of cavitation for drug
delivery”. Nature Reviews Physics 1 (8), 495–509 (2019).

[357] H. Chen et al. “Blood Vessel Deformations on Microsecond Time Scales by Ultra-
sonic Cavitation”. Physical Review Letters 106, 034301 (3 2011).

[358] P. Prentice et al. “Membrane disruption by optically controlled microbubble cavi-
tation”. Nature Physics 1 (2), 107–110 (2005).

http://doi.org/10.48550/arXiv.2303.15047
http://doi.org/10.1016/S0001-8686(98)00074-8
http://doi.org/10.1016/j.ultsonch.2015.04.006
http://doi.org/10.1016/j.ultsonch.2015.04.006
http://doi.org/10.1121/1.398098
http://doi.org/10.1121/1.398098
http://doi.org/10.1063/1.1535940
http://doi.org/10.1103/PhysRevLett.92.174501
http://doi.org/10.1063/1.3249602
http://doi.org/10.1115/1.3425105
http://doi.org/10.1038/278148a0
http://doi.org/10.1038/nphys2475
http://doi.org/10.1021/jp411519k
http://doi.org/10.1021/jp411519k
http://doi.org/10.1103/PhysRevE.75.046304
http://doi.org/10.1146/annurev-fluid-010816-060221
http://doi.org/10.1021/la0266381
http://doi.org/10.1063/5.0015246
http://doi.org/10.1038/ncomms8766
http://doi.org/10.1038/s42254-019-0074-y
http://doi.org/10.1103/PhysRevLett.106.034301
http://doi.org/10.1038/nphys148


270 References

[359] T. Yamashita and K. Ando. “Low-intensity ultrasound induced cavitation and
streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical
cleaning agents”. Ultrasonics Sonochemistry 52, 268–279 (2019).

[360] A. Sesis et al. “Influence of acoustic cavitation on the controlled ultrasonic dis-
persion of carbon nanotubes”. The Journal of Physical Chemistry B 117 (48),
15141–15150 (2013).

[361] S. Xu et al. “Dependence of pulsed focused ultrasound induced thrombolysis on
duty cycle and cavitation bubble size distribution”. Ultrasonics Sonochemistry
22, 160–166 (2015).

[362] Y. Fu et al. “Size-dependent inertial cavitation of soft materials”. Journal of the
Mechanics and Physics of Solids 137, 103859 (2020).

[363] A. Brotchie, F. Grieser, and M. Ashokkumar. “Effect of Power and Frequency on
Bubble-Size Distributions in Acoustic Cavitation”. Physical Review Letters 102,
084302 (8 2009).

[364] E. M. Strohm and M. C. Kolios. “Sound velocity and attenuation measurements of
perfluorocarbon liquids using photoacoustic methods”. 2011 IEEE International
Ultrasonics Symposium, 2368–2371 (2011).

[365] C. T. Wilson et al. “Comparative study of the dynamics of laser and acoustically
generated bubbles in viscoelastic media”. Physical Review E 99, 043103 (2019).

[366] N. Bremond, M. Arora, C.-D. Ohl, and D. Lohse. “Cavitation on surfaces”. Journal
of Physics: Condensed Matter 17 (45), S3603–S3608 (2005).

[367] N. Bremond, M. Arora, C.-D. Ohl, and D. Lohse. “Controlled Multibubble Surface
Cavitation”. Physical Review Letters 96, 224501 (22 2006).

[368] L. Y. Yeo and J. R. Friend. “Ultrafast microfluidics using surface acoustic waves”.
Biomicrofluidics 3 (1) (2009).

[369] U. Gutiérrez-Hernández, F. De Colle, P. A. Quinto-Su, and C.-D. Ohl. “Transient
time-delay focusing of shock waves in thin liquids”. Journal of Fluid Mechanics
910 (A27) (2021).

[370] L. M. Lyamshev. “Optoacoustic sources of sound”. Soviet Physics Uspekhi 24
(12), 977–995 (1981).

[371] D. Veysset et al. “Acoustical breakdown of materials by focusing of laser-generated
Rayleigh surface waves”. Applied Physics Letters 111 (3) (2017).

[372] B. P. Barber et al. “Defining the unknowns of sonoluminescence”. Physics Reports
281 (2), 65–143 (1997).

[373] R. Toegel, B. Gompf, R. Pecha, and D. Lohse. “Does Water Vapor Prevent Up-
scaling Sonoluminescence?” Physical Review Letters 85, 3165–3168 (15 2000).

[374] K. Niu. “Shock waves in gas and plasma”. Laser and Particle Beams 14 (2), 125–
132 (1996).

[375] T. R. Boehly et al. “Velocity and timing of multiple spherically converging shock
waves in liquid deuterium”. Physical Review Letters 106 (19), 1–4 (2011).

[376] D. W. Larson. “NIF laser line-replaceable units (LRUs)”. Optical Engineering
at the Lawrence Livermore National Laboratory II: The National Ignition Facility
5341, 127–136 (2004). Ed. by M. A. Lane and C. R. Wuest.

http://doi.org/10.1016/j.ultsonch.2018.11.025
http://doi.org/10.1021/jp410041y
http://doi.org/10.1016/j.ultsonch.2014.06.024
http://doi.org/10.1016/j.jmps.2019.103859
http://doi.org/10.1016/j.jmps.2019.103859
http://doi.org/10.1103/PhysRevLett.102.084302
http://doi.org/10.1109/ULTSYM.2011.0588
http://doi.org/10.1109/ULTSYM.2011.0588
http://doi.org/10.1103/PhysRevE.99.043103
http://doi.org/10.1088/0953-8984/17/45/054
http://doi.org/10.1088/0953-8984/17/45/054
http://doi.org/10.1103/PhysRevLett.96.224501
http://doi.org/10.1063/1.3056040
http://doi.org/doi:10.1017/jfm.2020.1005
http://doi.org/10.1070/pu1981v024n12abeh004757
http://doi.org/10.1063/1.4993586
http://doi.org/10.1016/S0370-1573(96)00050-6
http://doi.org/10.1103/PhysRevLett.85.3165
http://doi.org/10.1017/S0263034600009885
http://doi.org/10.1103/PhysRevLett.106.195005
http://doi.org/10.1117/12.538467
http://doi.org/10.1117/12.538467


References 271

[377] T. Pezeril et al. “Direct Visualization of Laser-Driven Focusing Shock Waves”.
Physical Review Letters 106, 214503 (21 2011).

[378] D. Veysset et al. “Glass fracture by focusing of laser-generated nanosecond surface
acoustic waves”. Scripta Materialia 158, 42–45 (2019).

[379] D. Veysset et al. “Laser-induced versus shock wave induced transformation of
highly ordered pyrolytic graphite”. Applied Physics Letters 106 (16) (2015).

[380] L. E. Dresselhaus-Cooper et al. “Pressure-Thresholded Response in Cylindrically
Shocked Cyclotrimethylene Trinitramine (RDX)”. The Journal of Physical Chem-
istry A 124 (17), 3301–3313 (2020). PMID: 32009390.

[381] A. Y. Klokov, V. S. Krivobok, A. I. Sharkov, and N. Y. Frolov. “Optical Excitation
of Converging Surface Acoustic Waves in the Gigahertz Range on Silicon”. Sensors
22 (3), 870 (2022).

[382] R. Xue et al. “Nondestructive characterization of aluminum grain size using a
ring-shaped laser ultrasonic method”. AIP Advances 12 (4), 045114 (2022).

[383] H. W. Baac et al. “Carbon-nanotube optoacoustic lens for focused ultrasound
generation and high-precision targeted therapy”. Scientific Reports 2, 1–8 (2012).

[384] W. Chan, T. Hies, and C.-D. Ohl. “Laser-generated focused ultrasound for arbi-
trary waveforms”. Applied Physics Letters 109 (17), 174102 (2016).

[385] C. Thring, Y. Fan, and R. Edwards. “Focused Rayleigh wave EMAT for charac-
terisation of surface-breaking defects”. NDT & E International 81, 20–27 (2016).

[386] J. Zhao et al. “Focusing of Rayleigh waves with gradient-index phononic crystals”.
Applied Physics Letters 108 (22), 221905 (2016).

[387] S. C. Chowdhury, E. A. Wise, R. Ganesh, and J. W. Gillespie. “Effects of surface
crack on the mechanical properties of Silica: A molecular dynamics simulation
study”. Engineering Fracture Mechanics 207, 99–108 (2019).

[388] P. Renganathan, T. S. Duffy, and Y. M. Gupta. “Hugoniot states and optical
response of soda lime glass shock compressed to 120 GPa”. Journal of Applied
Physics 127 (20), 205901 (2020).

[389] Y. F. Xie et al. “Mechanical and microstructural response of densified silica glass
under uniaxial compression: Atomistic simulations”. Chinese Physics B 29 (10)
(2020).

[390] W. Liu, S. Yuan, and X. Guo. “Atomic understanding of the densification removal
mechanism during chemical mechanical polishing of fused glass”. Applied Surface
Science 591, 153166 (2022).

[391] Y. Zhang, C. Yang, H. Qiang, and P. Zhong. “Nanosecond shock wave-induced
surface acoustic waves and dynamic fracture at fluid-solid boundaries”. Physical
Review Research 1 (3), 33068 (2019).

[392] Fisherbrand. “Focus on Glassware & Plasticware”. Focus on Glasssware & Pas-
ticware, 12 (2016).

[393] B. Wu, C. Frez, and G. J. Diebold. “Photoacoustic transients produced by laser
generated, ultrahigh thermal gradients”. Applied Physics Letters 103 (12) (2013).

[394] Q. Zeng, S. R. Gonzalez-Avila, and C.-D. Ohl. “Splitting and jetting of cavitation
bubbles in thin gaps”. Journal of Fluid Mechanics 896 (2020).

http://doi.org/10.1103/PhysRevLett.106.214503
http://doi.org/10.1016/j.scriptamat.2018.08.026
http://doi.org/10.1063/1.4918929
http://doi.org/10.1021/acs.jpca.9b07637
http://doi.org/10.1021/acs.jpca.9b07637
http://doi.org/10.3390/s22030870
http://doi.org/10.1063/5.0076918
http://doi.org/10.1038/srep00989
http://doi.org/10.1063/1.4964852
http://doi.org/10.1016/j.ndteint.2016.03.002
http://doi.org/10.1063/1.4953168
http://doi.org/10.1016/j.engfracmech.2018.12.025
http://doi.org/10.1063/5.0010396
http://doi.org/10.1063/5.0010396
http://doi.org/10.1088/1674-1056/aba5fe
http://doi.org/10.1016/j.apsusc.2022.153166
http://doi.org/10.1016/j.apsusc.2022.153166
http://doi.org/10.1103/physrevresearch.1.033068
http://doi.org/10.1103/physrevresearch.1.033068
https://static.fishersci.eu/content/dam/fishersci/en_EU/suppliers/fisherbrand/Literature_Page_Documents/EN/focus_on_glassware_EN_original.pdf
https://static.fishersci.eu/content/dam/fishersci/en_EU/suppliers/fisherbrand/Literature_Page_Documents/EN/focus_on_glassware_EN_original.pdf
http://doi.org/10.1063/1.4821739
http://doi.org/10.1017/jfm.2020.356


272 References

[395] J. Achenbach. “Chapter 5 - Plane Harmonic Waves in Elastic Half-Spaces”. North-
Holland Series in Applied Mathematics and Mechanics 16, 165–201 (1973).

[396] J. P. Guin and S. M. Wiederhorn. “Fracture of silicate glasses: Ductile or brittle?”
Physical Review Letters 92 (21), 21–24 (2004).
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