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Abstract

Cavitation bubbles are known to explosively expand and collapse, creating high-velocity
liquid jets onto a nearby solid boundary and inducing strong shear flows and vortices
along the boundary. Allowing the boundary to deform can significantly change the bubble
and jetting dynamics and give rise to interesting flow phenomena. A viscous, compress-
ible volume of fluid model for simulating a single bubble at a large seeding pressure in
OpenFOAM is used to study its interaction with various boundaries. Three different com-
putational solvers are developed to study the behaviour of the bubble near a perforated
rigid boundary, a fluid-fluid interface, and an elastic solid boundary, respectively.

The use of a bubble-induced jet as a microfluidic pump through a perforation in a rigid
solid wall is investigated. The observed dynamics are categorised into three types of jet-
ting regimes as a function of the stand-off distance and the wall thickness.

Near a free boundary connected to a gaseous or liquid domain, a bubble may cause a
breakup of the interface and spray/droplet formation, as well as a jet away from or to-
wards the boundary, depending on the properties of both fluids on either side of the
interface. In the case of a liquid-liquid interface, this is an underlying mechanism of
bubble-based emulsification techniques. Water-in-oil emulsification mechanisms are in-
vestigated by creating a bubble in silicone oil near a similarly-sized water droplet. As a
function of the stand-off distance and the viscosity ratio of the two liquids, two regimes
of interface breakup are identified. A bubble created very close to a liquid-gas interface is
studied, and a new type of liquid jet is observed that can pierce deep into the liquid bulk,
the so-called “bullet jet”. A similar bubble is also placed inside a falling liquid droplet,
where the same type of jet is found, along with secondary cavitation bubbles created by
the reflection of the shock wave on the free boundary.

The fluid solver is coupled to a finite volume solver for a linear elastic solid, which is used
to model the stresses produced in the elastic solid by the jet and shock waves produced
by a nearby collapsing bubble. The induced wall shear stress is investigated as a function
of the stand-off distance, both for a planar and a ring-shaped wall geometry. A cavitation
bubble confined between two elastic plates induces a surface acoustic wave, preceding the
shock wave in the liquid and causing a tension region. This mechanism is used to investi-
gate the role of local gas supersaturation caused by localised heating as cavitation bubble
nuclei. With the same method, surface defects in glass are also found to be cavitation
nuclei, making surface wave-created bubbles a viable method for surface damage detection
and for creating bubbles with a controlled lifetime of less than 10ns. Furthermore, it is
found that the waves created by a shaped cavitation bubble can cause controlled surface
damage. The role of the different waves in damage creation is evaluated by varying the
time delay between the creation of two concentric circular wave sources. Finally, an el-
lipsoidal wave source is shown to create a surface crack along its minor semi-axis, while a
point source can circularly extend the crack, thus enhancing the control over the length
and the direction of the damage.



Kurzzusammenfassung

Es ist bekannt, dass Kavitationsblasen explosionsartig expandieren und kollabieren, dabei
Fliissigkeitsjets mit hoher Geschwindigkeit auf naheliegende feste Oberflachen sowie starke
Scher- und Wirbelstrome entlang der Wand erzeugen. Ist es der Oberfliche erlaubt
zu deformieren, so andert sich die Blasen- und Jetbildungsdynamik und interessante
Stromungsphanomene konnen auftreten. Ein viskoses, kompressibles Volume-of-Fluid-
Modell fiir die Simulation einzelner Kavitationsblasen mit einem hohen Anfangsdruck in
OpenFOAM wird verwendet, um die Wechselwirkung einer solchen Blase mit verschiede-
nen Oberflichen zu untersuchen. Drei verschiedene numerische Loser werden entwickelt,
um das Verhalten der Blase in der Nahe einer perforierten festen Oberfliache, einer Fluid-
Fluid-Oberflache, und der Oberflache eines elastischen Feststoffs zu untersuchen.

Die Anwendung eines durch eine Blase erzeugten Jets als mikrofluidische Fliissigkeitspum-
pe durch eine perforierte Wand wird untersucht. Die beobachteten Dynamiken werden in
Abhangigkeit des Blasenabstands und der Wanddicke in drei Jet-Regime kategorisiert.
Nahe einer freien Oberflache zu einem Gas oder einer Fliissigkeit kann eine Blase zu einem
Aufbruch der Oberfliche und zur Spray-/Tropfenerzeugung fithren, sowie, abhéngig von
den Eigenschaften der Fluide auf beiden Seiten der Oberflache, einen Jet in Richtung oder
entgegen der Oberflache erzeugen. Im Fall einer Oberflache zwischen zwei Fliissigkeiten ist
dies ein unterliegender Mechanismus fiir blasenbasierte Emulsifikationstechniken. Mecha-
nismen der Wasser-in-Ol-Emulsifikation werden untersucht, indem eine Blase in Silikonol
nahe eines Wassertropfens dhnlicher Grole erzeugt wird. In Abhéangigkeit des Blasenab-
standes und dem Verhaltnis der Viskositaten beider Fliissigkeiten werden zwei Regime
des Oberflachenaufbruchs identifiziert. Bei einer Blase nahe einer freien Oberflache wird
ein neuartiger Jet beobachtet, der tief in die Fliissigkeitsdoméane eindringen kann, der so-
genannte Bullet-Jet. Eine ahnliche Blase wird auch in einem fallenden Fliissigkeitstropfen
initiiert, wo ein gleichartiger Jet beobachtet wird, zusammen mit sekundaren Kavitations-
blasen, die durch die an der freien Oberflache reflektierten Stofiwelle erzeugt werden.
Der Fluidloser wird an einen finite-Volumen-Loser fiir einen linear-elastischen Feststoff
gekoppelt. Dieser wird zur Modellierung der Spannungen verwendet, die durch den Jet
und die Stofiwellen einer kollabierenden Blase in einem elastischen Feststoff erzeugt wer-
den. Die erzeugte Wandschubspannung wird in Abhéngigkeit des Blasenabstandes un-
tersucht, sowohl fiir eine planare, als auch fiir eine ringférmige Wandgeometrie. Eine
zwischen zwei elastischen Platten eingeschlossene Kavitationsblase erzeugt eine akusti-
sche Oberflachenwelle, die sich schneller als die Stofwelle in der Fliissigkeit fortpflanzt
und eine Region negativen Drucks hervorruft. Dieser Mechanismus wird genutzt, um zu
untersuchen, ob eine durch lokales Heizen erzeugte lokale Gasiibersattigung als Blasenkeim
fungieren kann. Mit der gleichen Methode wird beobachtet, dass auch Oberflachendefekte
als Blasenkeime dienen konnen, weshalb Oberflachenwellen eine Methode zur Detektion
von Oberflachenschéaden und zur kontrollierten Erzeugung von Blasen mit einer Lebens-
zeit von unter 10ns darstellen. Des Weiteren wird gezeigt, dass eine geformte Kavita-
tionsblase kontrolliert Oberflichenschaden verursachen kann. Die Rolle der verschiedenen
Wellen bei der Schadenserzeugung wird durch die Variation des Zeitversatzes zwischen
der Erzeugung zweier konzentrischer ringformiger Wellenquellen untersucht. Schlieflich
wird gezeigt, dass eine elliptische Wellenquelle einen Oberflachenriss entlang ihrer kleinen
Halbachse erzeugt, wahrend eine Punktquelle einen Riss kreisformig fortsetzen kann,
womit die Kontrolle tiber die Lange und die Richtung des Schadens verbessert wird.
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6 1  Introduction

1 Introduction

Bubbles are ubiquitous. They are found in carbonated drinks, where solved carbon diox-
ide agglomerates, in boiling liquids, where they are created from the liquid through a
phase transition, or in sloshing liquids like seawater, where they are mechanically intro-
duced into the liquid bulk and rise to the surface due to gravity. Generally, larger bubbles
quickly rise to the surface of the liquid and are hence removed from the liquid, while
smaller bubbles are of a longer lifetime, allowing them to interact with their surroundings
for a longer time. At the same time, nano-sized bubbles are difficult to observe and are
due to large surface tension forces and gas diffusion inherently unstable. The ability to
neglect the influence of gravity and the potential use in microfluidic and minimally in-
vasive medical applications are reasons why micro-sized bubbles are of scientific interest.
When perturbed, bubbles volumetrically oscillate around their equilibrium size, at which
the internal gas pressure is balanced by the external pressure and surface tension. The
interplay between inertia and compressibility gives rise to complex dynamics rich with
interesting phenomena.

Bubbles gained attention in modern science after D. Silberrad [1] reported erosive damage
on the propellers of the passenger ships “Lusitania” and “Mauretania” in 1912. Because
of the importance of long-distance ship transport, research on its origin has intensified.
The origin of this erosion was then to be found and suppressed. In 1917, Lord Rayleigh [2]
proposed cavitation bubbles as a cause for the observed propeller erosion. Rayleigh found
that the collapse of a spherical cavity can lead to localised high pressures. The collapse
behaviour of bubbles near a rigid boundary was modelled numerically by Hickling and
Plesset [3]. Plesset and Chapman [4], Blake and Gibson [5]|, and Best and Kucera [6]
showed that such bubbles move towards the boundary. When a bubble collapses near a
solid boundary or is subjected to another source of anisotropy, it commonly develops a
jet that pierces the bubble. If this jet impacts on a nearby solid boundary, it induces
large water hammer pressures and turns into a radial flow spreading across the boundary,
creating large wall shear stresses. When bubbles collapse, they emit strong shock waves,
which can then be reflected or refracted at nearby boundaries to another solid, liquid, or
gaseous medium, causing different phenomena in each case. For instance, when a shock
wave is reflected from a free boundary, it is turned into a rarefaction wave. Its energy
can be transformed into other kinds of waves, such as elastic waves, or into other forms
of energy, such as kinetic energy that translates, compresses, or expands another nearby
bubble or causes the formation of liquid jets. The coupling between bubbles, waves, and
other media can cause complex dynamics to arise from even rather simple geometries
[7]. Today, it is known that cavitation bubbles can damage even the hardest materials
available to mankind [8]. In the case of ship propellers or industrial flows, cavitation is
an undesirable phenomenon that is to be avoided.

Nevertheless, controlled cavitation also has applications. Many small bubbles are used in
ultrasound baths to clean jewellery, optical components, lab equipment, or medical tools
[9]. There, the otherwise destructive pressures and shear forces are utilised to remove
the dirt from surfaces. This is especially useful for small structures that are difficult to
clean conventionally. Acoustically driven bubbles are also potentially useful as contrast
agents for ultrasound imaging [10]. In medicine, acoustically induced cavitation is used
to destroy unwanted tissue such as kidney stones (lithotripsy), fat cells, cancer cells and
tumours (histotripsy). Drug-carrying bubbles may also be destroyed to release medicine



once they have reached a desired position. Laser-induced cavitation is also used in a
controlled manner in laser eye surgery [11].

The use of bubbles to create high-speed liquid jets in air for the purpose of needle-free
injection is currently under investigation |12-14]. The strong flows induced by cavitation
bubbles are also used for the mixing of immiscible fluids |15]. Since an acoustically driven
bubble collapse can lead to very high gas pressures and temperatures, bubbles can be
used to induce a chemical reaction in the context of sonochemistry [16], or potentially
even to ignite nuclear fusion, called nuclear confinement fusion |17, |18].

To further our understanding of the behaviour of bubbles, both for the sake of avoiding
their destructive character and for applications as listed above, research on the behaviour
of single cavitation bubbles is required. The experimental investigation of cavitation bub-
bles proved difficult since they are often small (< 1 mm) and their dynamics happen on
short time scales (< 1 ms). Thus, instruments operating at high temporal and spatial
resolutions are required. Even today, the behaviour of bubbles is only partly understood
and is still a subject of ongoing research. Typically, high-speed cameras are used to
capture the dynamics of the flow and the behaviour of the bubble. Early photographic
studies of the dynamics of a bubble in the vicinity of a rigid boundary were carried out
by Shutler and Mesler [19], as well as Benjamin and Ellis [20]. To measure the pressure
at a specific position over time at high temporal resolution, hydrophones are used. There
are a multitude of methods to induce cavitation in an experimental setting. Yet, the use
of a focused laser pulse stands out due to its precise control and reproducibility [21].
Another point of scientific interest is the mechanism behind cavitation on the nanoscale.
While it is known that the presence of nucleation sites in the liquid greatly aids the
creation of cavitation bubbles, the precise nature of such nuclei is not fully understood.
A specifically simple geometry is that of a thin liquid layer sandwiched between two
solid plates |7], as this allows for optical observation of the entire region of interest while
eliminating the limitation caused by the depth of field. The same advantage holds for
the nucleation of bubbles through focused laser energy deposition. Additionally, the low
Reynolds number of this confined geometry typically enforces laminar, predictable flows.
Besides experimental investigations, numerical simulations are typically used as a way to
indirectly compare the experimental results with theoretical models. To study bubbles,
the Boundary Element Method (BEM) was widely used, which offers a computationally
efficient way to simulate two-phase flows in extended fluid domains. A more sophisti-
cated, but computationally intensive approach is the Volume of Fluid (VoF) method,
which allows one to account for viscosity, wave propagation, and surface tension. In re-
cent years, VoF simulations have got increasingly more viable with advances achieved in
computer technology. OpenFOAM is a highly versatile numerical framework based on
the VoF method. It offers a multitude of numerical solvers for different aspects of fluid
dynamics and allows for modifications of their code to suit the needs of a specific problem.
Once a numerical solver is verified by experimental observations, it offers a powerful tool
that allows one to inspect aspects of the flow of interest that are difficult to measure in
experiments, such as the full pressure and velocity fields in the simulated fluids.
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The present work is a cumulative dissertation, containing nine publications made over the
course of the author’s work at the department “Soft Matter” of the institute of physics in
the faculty of natural sciences, at the Otto-von-Guericke-University (OvGU) in Magde-
burg, Germany. All publications have been made in cooperation with fellow researchers
from within the group and from other universities. Three of them list the present work’s
author as the first or a main author, and the remaining six as one of the co-authors. In
all of these works, the author’s contribution consists of the numerical simulations made in
OpenFOAM, as well as taking part in the paper structuring, writing, and proofreading.
Each chapter from chapter {4] to chapter [12| contains the work from one of these papers,
including the full reference to the published version and published follow-up work, an
abstract, an introduction, experimental and numerical methods, results, and conclusions.
They can also be found in the list of references under [2230]. Since the contributing au-
thors and the publishing journals vary, the writing styles slightly differ between the papers.
The author apologises for any perceived inconsistencies in the writing style throughout
the present work, as well as repetitions in the numerical methods sections due to similar-
ities between the papers.

Chapter[2| gives an introduction to fluid dynamics, linear elasticity, cavitation, and compu-
tational physics, and is aimed at beginners in the field. Derivations of the flow equations
are largely taken from Batchelor [31]. For an introduction to elasticity theory, the au-
thor recommends the book by Landau and Lifschitz [32]. On bubble dynamics, there are
books by Delale [33], Brennen [34], and Koukouvinis and Gavaises [35]. More references
to cavitation and bubble dynamics are given in section [2.5] That being said, the present
work merely provides the theoretical basics needed for modelling a single bubble inter-
acting with boundaries of varying kinds. It does not cover acoustically driven bubbles
and bubble clouds, an excellent review of which is given by Lauterborn and Kurz [36].
For an introduction to computational fluid dynamics, the author recommends the books
by Darwish and Moukalled [37], Hopken and Mooney [38], and Tryggvason et al. [39], as
well as the doctoral thesis of Prof. Jasak [40].

The software used for the CED simulations is described in chapter 3] It describes three fi-
nite volume solvers within the OpenFOAM framework. CAVBUBBLEFOAM [41] is used in
chapter [4] to model a cavitation bubble near a perforated rigid plate. It models two com-
pressible, viscous, and immiscible fluids while neglecting mass and heat transfer. Since
MuLTIPHASECAVBUBBLEFOAM [42] can model more than two fluid components, it was
used to simulate a bubble interacting with a liquid-liquid interface in chapter |5, and with
a free boundary in chapters [6] and [} Fluid-structure interaction is modelled in chapter
by CAVBUBBLEFSsIFoAM [43], where an expanding and collapsing bubble is coupled
to a nearby linear elastic solid. This fluid-structure interaction solver is also used in the
four following chapters, in which a bubble between two glass plates is simulated, where it
excites Rayleigh waves that travel ahead of the shock waves emitted in the fluid, causing a
tension region to form. This is used to show that localised gas supersaturation can act as
a cavitation nucleus in chapter [9} In chapter [I0]it is shown that nanoscopic cracks in the
glass surface can do the same. In chapter[I1] damage to the surface caused by two bubbles
in the shape of concentric circles is studied in dependence of the time delay between their
creation. Finally, in chapter [12 the generation of damage by an elliptical bubble as well
as the effect of such a bubble on a pre-existing surface defect is investigated.

The work is concluded in chapter [13] The references from all chapters, including the pub-
lished papers, are listed at the end of the present manuscript, just before the declaration
of honour.
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2 Theoretical basics

2.1 List of physical quantities and operators

The following table gives an overview of the quantities (quant.) used in chapter 2| and
chapter 3] It includes variable and constant quantities in scalar, vectorial, and tensorial
form as well as operators, along with their corresponding units. A unit of “1” signifies
that the quantity is dimensionless.

Table 2.1: List of quantities and operators, along with their units and their meaning

quant. | unit meaning quant. | unit meaning
t,7 | s time ¢ | kgmt-st volume viscosity
m | kg mass k | ms?kg! compressibility
p | kgm mass density c,c,ce | mest wave velocity
7 | kgm?2s! | mass flux density D | m%s! diffusion coeff.
Z | m location T | K temperature
I,L | m length A | kg:m-s3-K | heat conduction coeff.
r,R | m radius Cp, CV m?.s2.K! specific heat capacity
0,7, U | m=s?! velocity v |1 adiabatic coeff.
a| ms? acceleration o | kgs? surface tension coeff.
A | m? surface area Re | 1 Reynolds number
0A | m circumference of AA We | 1 Weber number
|1 unit normal vector Fr |1 Froude number
V| m3 volume Ca |1 cavitation number
oV | m? surface of AV d|1 stand-off distance
E | kgm?s? | energy v |1 stand-off parameter
w | kgm™-s? | energy density D | m displacement
W | kgm?s? | work g1l1 strain tensor
F | kgm?.s? | free energy density K | kgmts? bulk modulus
F | kgm-s? force A G | kgmts? Lamé parameters
7 | kgm-s?! momentum E | kgm.s? elastic modulus
fa, fv | kgem™2.s2 | force density v |1 Poisson’s ratio
M kg-m?-s? | rotational moment hk |1 step size
L kg-m?-s! | angular momentum Co |1 Courant number
p | kgm™t-s? | pressure w |1 relaxation parameter
o | kgm™t-s? | stress tensor rfi1 Gamma function
S | kgm™-s2 | deviatoric stress tensor 1)1 unity matrix
N | m™3 number density i | 1 Kronecker delta
ey |1 concentration €ijk | 1 Levi-Civita tensor
n | kgem™'-s | dynamic viscosity Vil Nabla operator
v | m?st kinematic viscosity Al Laplace operator
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2.2 Fluids

The branch of physics describing the properties of fluids is called fluid mechanics, or flow
mechanics. The time-dependent behaviour of fluids is described by fluid dynamics, also
called flow dynamics.

The defining property of fluids lies in their deformability under shear forces. The elements
that make up the fluid can be rearranged freely without changing the macroscopic state
of the fluid, as long as this rearrangement does not change its density p, which is a
macroscopic quantity. A fluid subjected to a finite shear force F will continuously deform
for as long as that force is applied. To be more precise, the fluid may offer some resistance
to a shear force acting on it (e.g. viscous or inertial forces), but it will not be able to
fully prevent the continuous rearrangement of its elements. This stands in contrast to
the properties of a solid. If it is in equilibrium with its environment, the elements of a
solid are arranged in a specific shape, which only changes if the environmental properties
change.

This definition of a fluid encompasses especially liquids and gases, but also plasmas,
solutions, foams, emulsions, suspensions, and aerosols. A plasma is a mixture of particles,
a significant number of which are free, charged particles (electrons and ions). Such a
plasma can be created through ionisation of a gas. A solution is a homogeneous mixture
of two substances. The rest of the examples given above are heterogeneous mixtures of
at least two substances, namely:

e foam: a gas in a liquid (or a solid)

e emulsion: a liquid in a liquid

e suspension: a solid in a liquid

e aecrosol: a liquid or a solid in a gas (fog and smoke, respectively)

The categorisation between fluids and solids is not always clear. Some substances behave
partly like a fluid and partly like a solid. Examples of this are viscoelastic materials like
gelatine, non-Newtonian fluids like certain polymer solutions, liquid crystals, thixotropic
substances like gels, paint, or quicksand, as well as high viscosity liquids like pitch.

The focus in the following work will lie on Newtonian fluids, or more precisely, compress-
ible, isotropic liquids and gases that exhibit none of the above-listed properties of solids
and a linear relationship between the local strain rate and the resulting viscous stress.
One may refer to such a fluid as a “simple” fluid.

2.2.1 Molecular properties

To distinguish between a liquid and a gas, we will consider the molecular interactions
taking place between the elements that make up the fluid. In the following, the word
“particle” is representative of either atoms or molecules, which typically make up the
fluids of interest. Figure [2.1]shows the force between two non-reactive neutral particles as
a function of their distance d, as derived from the widely known Lennard-Jones potential
[44]. This force is strongly repulsive for small distances of the order 107'°m, since for
sufficient proximity the particle’s electrons are partly forced to move to higher energy
states (Pauli repulsion). For larger distances, F' is dominated by an electrostatic attrac-
tion (van-der-Waals force) between the particles, which stems from the particles being
polarised in the electrostatic field of the other. This attractive force strongly diminishes
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do d

Figure 2.1: Force F' between two simplified neutral particles as a function of their distance
d. dy is usually of the order 3...4-1071% m.

as ~ d® for d > dy, and can thus be neglected for large d.

One may argue that a liquid is typically of much higher density than a gas. While this
is an insufficient criterion to distinguish between liquids and gases, it is related to the
distance between neighbouring fluid particles. For gases, the average distance between
a particle and its nearest neighbour is much larger than their interaction cross-section
diameter (at least of the order 10dp), and thus the intermolecular forces can be neglected
most of the time. When two particles do come close to each other, their interaction can
be approximated by a collision with an instantaneous transfer of energy and momentum.
The particle interaction is thus approximated via a hard-core interaction potential.

In the case of liquids and solids, each particle is in the vicinity of multiple neighbours,
and their attractive interaction is thus no longer negligible. In solids, the atomic grid
typically stays constant or only changes slowly over time and is often even periodic in
space, i.e. crystalline. Small groups of the particles of a liquid may temporarily arrange
into a crystalline structure, which can then move as a whole, split into multiple groups
or merge with others. It is remarkable that the density of a substance in a solid and a
liquid state only differs by a few %, yet they still exhibit such fundamentally different
properties.

2.2.2 The continuum hypothesis

Fluid mechanics is a branch of continuum mechanics, which describes substances as a
continuous medium in space. It uses field quantities like density p and temperature T,
which are continuous functions of space which change slowly on the scale of single particles.
However, the mass distribution of a real fluid consisting of particles is far from such a
continuous function. The mass of a particle is mostly concentrated in its core, which is
much smaller than the particle itself. As a first approximation, the mass distribution of
particles making up a fluid can be described as a sum of mass points, which is strongly
discontinuous.

Despite this, continuum mechanics describes substances in macroscopic systems which are
much larger than the intermolecular distances. Thus the basic assumption of continuum
mechanics is made:

Substances macroscopically behave as if they were perfectly continuous.
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So instead of describing discrete particles using physical quantities like mass m; and
velocity ;, in the region of space (domain) occupied by the substance, field quantities
like the mass density p and the velocity field @ are used. Those field quantities are
macroscopic and can be measured as a function of space and time. They can be defined
using a volume element AV, which is much smaller than the important length scales of
the described macroscopic system. Thus, all partial volumes considered in the system
should be larger than AV. The number of particles AN encompassed by the volume
element AV, and thus also the value of a field quantity, then depends on the choice of the
volume element’s shape. For a small AN, this field value would then also strongly vary
over time because of statistical fluctuations. Thus, AV should also be much larger than
the intermolecular distance d, such that it contains a large number of particles, AN > 1.
This diminishes the statistical fluctuations of the field values (both in time and space) to
the point that they can be neglected.

Under these conditions, the density field p(Z, t) and the velocity field @(Z, t) can be defined
as follows:

1 X Am

| AN
iz, t) = m;vi(t) = (7). (2.2)
The position ¥ denotes the position of the volume element and can be taken as an arbi-
trary point within AV. In the following, the functional dependence (Z,t) is omitted for
simplicity. Also, the word “field” is omitted when regarding the field quantities.

2.2.3 Volume forces and surface forces

The forces acting on a fluid element can be categorised into two groups.

Long-range forces like gravity act on macroscopic regions of the fluid. Such forces are
called volume forces. They typically change only slowly with the distance from their
source. Thus within a fluid element, they can be taken to be spatially independent.
The total volume force ﬁv acting on the fluid element is thus proportional to its mass
Am. Since the scale of the volume element is chosen such that density variations can be
neglected and thus p can be taken to be constant within the fluid element, its mass and
thus also ﬁv is proportional to its volume:

B, = fordV =~ fr AV | (2.3)
AV

where the volume force density ﬁ/ does not depend on the choice of AV,
The gravitational force density is

fv=rg. (2.4)
A commonly considered case is a homogeneous, time-independent gravitational field,
which is a good approximation for the gravitational field in a stationary laboratory on
earth. Then, the gravitational acceleration is given by § = —g €, = const., where €, is the
unit vector in the vertical axis.
The second group consists of short-range forces that quickly diminish with the distance
from their source. Thus, as a first approximation, they only act on the surface of a fluid
element. These surface forces may occur at the interface between any two neighbouring



14 2 Theoretical basics

fluid elements or at the interface between a fluid and another medium.

In gases, the main source of surface forces is the momentum transport through a given
surface by particles passing through that surface, i.e. pressure. In liquids, an additional
force occurs due to the attraction of neighbouring fluid particles, i.e. viscosity.

To describe surface forces, one may consider a planar surface element AA, which shall be
much larger than the range of intermolecular forces, but much smaller than the length
scale on which macroscopic quantities vary significantly. Thus, in the vicinity of AA the
field quantities can be taken to be constant. The surface force acting on the surface el-
ement must then also be constant everywhere on AA, and it follows that the total force
acting on the surface element is proportional to its area,

Fo= | fadA= fa(R)AA. (2.5)
AA

The surface force density f;; here depends on the orientation of AA, given by the unit
normal vector 7. If 77 points from fluid element A to fluid element B, f_:4 gives the surface
force density that is acted on fluid element A by fluid element B at their interface AA. If
the sign (i.e. the direction) of 7 is flipped, then the sign of ﬁ; must also be flipped, i.e.,
Fa(it) = — fa(—7). In other words, f4 is an odd function of 7.

The stress tensor

To examine the form of the surface force density f;, one can consider a triangular surface
element AA as shown in figure AA is chosen such that each of its sides lies in
one of the three coordinate planes y-z, x-z, and z-y. The projection of AA on each of
these planes results in the triangular surface elements AA,, AA,, and AA,, respectively.
These four surface elements with the unit normal vectors 77, €, €,, and €, form an irregular

tetrahedron. The total surface force Fy acting on this tetrahedron can thus be written as
Fa = falit) AA + fa(=) AA, + fa(=8,) AA, + fa(—2.) AA. . (2.6)

The projections of AA can be expressed by AA itself,

AA, =é, -1 AA=n, AA; AA, =n, AA; AA, =n, AA. (2.7)
Combining the equations (2.6 and gives
Fa = (fa(i0) = (no fa(€) + 1y fa(@) + 1 fa(€))) AA (2.8)

Newton’s second law relates the force acting on the fluid element with the rate of change
of its momentum,
_, d(Amv) d(pAV 1Y)  d(p7)

b dt dt dt (2.9)

= Fy + Fa= fy AV + (fa(@) — (na fa(@) +ny fa(E,) +n. fa(€.))) AA.

For the last step in the first line, the volume element was chosen to be stationary and of
a constant size.
Rearranging equation (2.9) gives

(Fa(i) = (na Fa(E2) + ny Fa(E)) + ns Fa(E2))) = (cl(pﬁ) B a) AV
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Figure 2.2: Irregular tetrahedron made up of the surface element AA and its projections
on the coordinate planes AA,, AA,, and AA,.

In the limit of a very small volume element, the right side of equation (2.10f) vanishes,
such that

Fa(@) = ng fa(@y) +ny fa(@,) +n. fa(é) . (2.11)

The three vectors f(é,), ﬁ(éy), and f4(€.) can now be interpreted as the columns of a
tensorial quantity o that is independent of 7,

f:ngﬁ <~ fA,iZOijnj . (212)

The right side of equation uses index notation and Einstein’s summation convention,
i.e., for a term with a multiply occurring index variable, a sum of that term is taken over
all available indices.

This newly introduced tensorial quantity o is called the stress tensor. Its components Oij
give the i-th component of the force that acts onto a surface with its normal vector in the
j-direction.

To investigate the properties of the stress tensor, the rotational moment applied to a fluid
element by volume forces and surface forces is considered,

i 82eden fvadv+/ 7% (6-7)dA

AV AA

;/ €ijk T fV,k dV + / €ijk Tj Okl MY dA
AV AA
Oz, o) (2.13)

= €ijk Lj fV,k dVv + €ijk —a dV
AV AV L
dx;

oz, o Kl

=4
= / €ijk Tj fV,k:"‘EZ‘jk <0kj—|—xj 8_> v .
AV x

In the second step, the Levi-Civita tensor ¢ is introduced along with index notation

(@x b= €ijka;bg). Its components are 1 (-1), if 4,5,k is an even (odd) permutation of
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1,2,3, and 0 otherwise. In the third step, Gauss’s theorem is used to replace the surface
integral with a volume integral.

The equation for rotation analogous to Newton’s second law relates the rotational moment
to the rate of change of angular momentum and gives

M:i:M:i/ xddn=L [ #xipav
dt dt Jam dt Jay (2.14)
. d ) 0 '
= —/ €ijk L5 Uk pdv €ijk Lj fV,k +€z‘jk (O'kj —|—l’j ﬂ) v .
dt Jay AV 0w

In the limit of AV — 0, if the coordinates are chosen such that & stays within AV, |Z|
also approaches 0. Then in that limit, the left side of as well as the first and third
terms on the right side are proportional to |Z] AV, while the second term on the right
side is only proportional to AV. This term must thus be 0 for any choice of AV,

/ €ijk Okj dV =0 & €ijk Okj = 0 & Oij = 0j; - (215)
AV

The last step in equation is done by executing the sum over j and k for all choices
of 1.

o is thus symmetrical and only has six independent elements. The role of each element of
the stress tensor in two dimensions is illustrated in figure 2.3|(a). The diagonal elements
of ¢ are normal stresses in the sense that they represent the normal forces that act on a
surface element that is parallel to one of the coordinate planes. They tend to squish or
stretch a volume element along a coordinate axis. The non-diagonal elements meanwhile
are tangential stresses, also called shear stresses, since they stand for the tangential forces
acting on such a surface element. They tend to parallelly displace neighbouring layers of
the medium.

It is always possible to choose the coordinate system such that the non-diagonal elements
of a symmetrical tensor locally vanish. After such a main axis transformation, the diagonal
elements of the stress tensors are called the main stresses. The trace of a tensor (tr(c) =
> 0ii = 04) is unchanged in a coordinate transformation. The stress tensor can thus be
split into two summands such that one of them is traceless,

lO'ii 0 0

L1 011 — 3
g = —0y; 1 + 0 099 — lO'Z'Z‘ 0 . (216)

3
3 0 0 O35 — 30

The first term on the right side of equation lb is the isotropic component of ¢ and
represents an isotropic compression or expansion (see figure (b)) The pressure p is

thus defined as )

The second term represents a compression in one axis, an expansion in another and either
a compression or an expansion in the third axis (see figure 2.3|(c)). Since the sum of
these three elements is 0, this term tends to deform the volume element without changing
its volume. In the case of a fluid, which is not able to prevent a rearrangement of its
particles, this term leads to an acceleration of parts of the fluid. Thus, in a fluid at rest,
only the first term is non-zero.
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(a) |022 on (b) l (©
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Figure 2.3: Role of the stress tensor ¢ in two dimensions. Left: directions, in which the
components of the stress tensor o act upon a fluid element. Centre: isotropic part of the
stress tensor. Right: Anisotropic part of the stress tensor.

2.2.4 Transport phenomena

The equilibrium state of a fluid is a state in which specific quantities are spatially constant
within the fluid. Such quantities are the temperature T, the velocity «, and if the fluid
consists of multiple different kinds of particles, the particle concentration cy. If one of
these quantities is not spatially constant, the system tends to smooth out non-uniformities
via an exchange of heat, momentum, and particles, respectively.

Diffusion

If a fluid consists of multiple components, the concentration of each component may be
non-uniform. Since a particle in a fluid frequently collides with other particles, its motion
is effectively a random walk. This is also called Brownian motion [45].

One can consider only the particles of one of the components of the fluid. If the concen-
trations cy = 2—]‘\/[ on the two sides of a surface element AA are not equal, the random
motion of the particles will likely lead to a finite mass flux j4 across AA to the side of
lower cy. This phenomenon is called diffusion of the considered particles. j4 can be
expressed by a particle flux vector 5 that is independent of the choice of orientation of
AA, which is given by its normal unit vector 7,

ja=J-TAA. (2.18)

To find a relation between j and cy, the assumption is made that cy only varies slowly
in space, such that near a surface element it may be approximated by a linear function.
Then, j should only depend on the local properties of the fluid and the first-order spatial
derivatives of cy. The simplest form for j is then:

=k Ven . (2.19)

The tensorial quantity k is called the transport coefficient. This term can be used for

any transport phenomenon, not just for diffusion. k can depend on the local properties
of the fluid, and thus also on space and time, and possibly also on cy. For isotropic
media, like the fluids considered here, the transport coefficient can be described by a
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scalar quantity, k = —k 1. The negative sign was chosen so that jpoints in the direction
of lower concentration cy. k is then positive and equation (2.19)) becomes

j=—kVey . (2.20)

In practice, equation (2.20) holds well for a large range of Vcy. The mass flux of the
considered particles out of a volume element AV is

]{ jodA = —7{ ke Ve - iidA G2 sLheoren —/ V- (kVey)dV (2.21)
ov ov AV

where OV is the surface of AV.
Since the total number of particles is conserved, the mass flux out of AV must be related
to a change in the particle number density in AV,

f 7o dA Costeorem _ 0 / eymdv 8 [ v (1 vey)av
oV ot AV AV 299
Den (2.22)
& | mEX V. (kVey)dV =0,
s ot

Here, m stands for the mass of a considered particle, which was taken to be constant.
Since equation ([2.22)) should hold for any choice of AV, the integrand must vanish ev-
erywhere in the fluid. With the assumption that k& does not vary in space, it follows

that

)
% = DAcy . (2.23)

Here, A is the Laplace operator. The newly introduced quantity D = % is called the
diffusion coefficient.

Equation is the diffusion equation. It is one of the most important partial differ-
ential equations and its analytical and numerical solutions are well understood.

Heat conduction

Along with the migration of particles through a surface element AA, the kinetic energy
they carry is transported. Additionally, through intermolecular forces kinetic energy is
exchanged between neighbouring particles. These processes cause an energy flux, i.e. a
heat flux, that tends to smooth out spatial temperature variations. Analogously to the
arguments in the previous section, a heat flux caused by a local temperature gradient V1T’

is related to a change in the local energy density w = 2—5,
8w A=const.
57 =V (AVT) TETAAT (2.24)

The associated coefficient A is called the heat conduction coefficient.
At constant pressure, a change in the energy density w leads to a change in the temper-

ature T',
ow oT A=const. OT A
— = — =V - (A\VT & —=—AT. 2.25
o~ "o ( ) ot pe (225)
This is the heat conduction equation, where ¢, is the specific heat capacity at a constant

pressure p.
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Momentum transport

Just like their kinetic energy, the momentum of the particles is transported through
their migration and through particle interactions. But unlike the previous transported
scalar quantities, the momentum p is a vectorial quantity, and thus needs to be treated
differently.

Consider the case of a simple shear flow, where only the x-component of the velocity is non-
zero. The velocity should also only depend on y, so u(y) = u,(y) €,. The inhomogeneity
in u leads to tangential stress that tends to counteract this velocity gradient. Again a
simple, linear form for the dependence on the gradient is assumed,

di,
dy ’

where p is the dynamic viscosity. It is interpreted as a measure of the inner friction forces
in the fluid. It is thus a measure of the resistance of the fluid against the rearrangement of
its particles and for the dissipation of macroscopic (or ordered) kinetic energy. This energy
typically gets transformed into unordered kinetic energy, i.e. heat. Thus, to describe an
energy dissipation, p is necessarily positive. Often the kinematic viscosity is used, which is
defined as v = %. The effect of the stress tensor o on the velocity of the fluid is examined
in greater detail in section [2.3.3]

2.2.5 Surface tension

Interfaces between media are of special interest since they determine the boundary condi-
tions of the fluid and special phenomena occur at the boundary between different media.
As is known in thermodynamics, two media that are in contact tend towards an equi-
librium state, which is given by a constant temperature across both media. If there is a
temperature difference between the two media, a heat flux across the interface of the two
media towards the lower temperature occurs. Thus, the temperature must be continu-
ous across their boundary, since a hypothetical jump in the temperature would cause an
infinite heat flux. The heat fluxes on both sides of the interface must also be equal,

(>\ - vizj)medium 1= (Aﬁ . VT)medium 2 - (227)

This means that, if the heat conduction coefficients of the two media are not equal, the
temperature gradient exhibits a jump at the boundary.

As long as the interface between the media stays intact, the velocity component normal
to the interface must be continuous as well.

Often, a mass flux across the 