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ABSTRACT i

Abstract

Typically polytopes arising from real world problems havéotof facets. In some
cases even no linear descriptions for them are known. Onttier band many of these
polytopes can be described much nicer and with less facetg axtended formulations,
i.e. as a projection of simpler higher dimensional polygp€he presented work studies
extended formulations for polytopes: the possibilitiesdostruct extended formulations
and limitations of them.

In the first part, some known techniques for constructionsxdnded formulations
are reviewed and the new framework of polyhedral relatises! (Kaibel and Pashkovich
]) is presented. We in particular elaborate on theiapease of reflection relations.
Reflection relations provide extended formulations foresalpolytopes that can be con-
structed by iteratively taking convex hulls of polytopedéaheir refelections at hyper-
planes. Using this framework we are able to derive smallredgd formulations for the
G-permutahedra of all finite reflection grou@s

The second part deals with extended formulations which pseial structures of
graphs involved in combinatorial problems. Here we presente known extended for-
mulations and apply a few changes to the extended formulafié&erards for the perfect
matching polytope in graphs with small genus in order to cedts size. Furthermore a
new compact proof of an extended formulation of Rivin for subtour elimination poly-
tope is provided.

The third part (partly based on joint work with Volker Kaib8amuel Fiorini and Dirk
Oliver Theis, see Fiorini, Kaibel, Pashkovich, and Theig1[Pa]) involves general ques-
tions on the extended formulations of polytopes. The primtarest here are lower bounds
for extended formulations. We study different techniquestitain these lower bounds, all
of which could be derived from so called non-negative faztiions of the slack matrix
of the initial polytope. The minimal such factorization piges the minimal number of in-
equalities needed in an extended formulation. We comp#erelit techniques, find their
limitations and provide examples of the polytopes for whingy give tight lower bounds
on the complexity of extensions.

The fourth part studies the impact of symmetry on the sizext#nded formulations.
In joint work with Volker Kaibel and Dirk Oliver Theis we she that for certain con-
strained cardinality matching and cycle polytopes thelistexo polynomial symmetric
extended formulations, but there are polynomial non-sytrimenes (for further details
SeeLKa.Lb_e_L_EaS_hkOALIQh.._aD_le\dJ_S_[_Zblo]) Beyond theagtsethe thesis also contains

a proof showing that the well known symmetric extended fdation for the permutahe-
dron via the Birkhoff polytope is the best (up to a constantdg) one among symmetric

extended formulations (see Pashkovich [2009]).




Zusammenfassung

Viele kombinatorische Polytope, die ihre Anwendung in pisghen Problemen fin-
den, haben eine grof3e Anzahl von Facetten. In manchen Bleisgst nicht einmal ei-
ne lineare Beschreibung dieser Polytope bekannt. Andstetassen viele Polytope eine
kompakte und schénere Darstellung mit Hilfe von erweiteff@rmulierungen (d.h. als
Projektion einfacherer hoher-dimensionaler Polytopepie vorgelegte Arbeit untersucht
Erweiterungen von Polytopen: Mdglichkeiten, eine kompdkitweiterung zu finden, und
Einschréankungen dieses Ansatzes.

Im ersten Teil, werden einige bekannte Konstruktionen filveiterungen dargestellt
und das neue Framework der Polyedrischen Relationen éimgefvelches Teil einer ge-
meinsamen Arbeit mit Volker Kaibel ist (siehe Kaibel andfiawich [2011]). Insbeson-
dere arbeiten wir den Fall von Spiegelungsrelationen apg8lungsrelationen liefern
erweiterte Formulierungen fir Polytope, die durch itegeBildung konvexer Hillen von
Polytopen und ihrer Spiegelungen an Hyperebenen kondtmerden kénnen. Mit Hil-
fe dieses Frameworks kdnnen wir kompakte ErweiterungenGrétermutaedern fir alle
endliche Spiegelungsgruppéhkonstruieren.

Der zweite Teil beschéatftigt sich mit Erweiterungen, welcpezielle Eigenschaften
von den Graphen ausnutzen, die in kombinatorischen Praniemftauchen. Hier prasen-
tieren wir einige bekannte Erweiterungen, und nehmen &ldinderungen in der erwei-
terten Formulierung von Gerards fur Perfekte Matching ®qlg in Graphen mit kleinem
Geschlecht vor, um die Grosse der Erweiterung zu reduzi®@zu prasentieren wir einen
einfachen Beweis flr die Erweiterung von Rivin des SubtdimiBation Polytops.

Der dritte Teil untersucht prinzipielle Grenzen des Korigefer erweiterten Formulie-
rungen. Das Hauptziel des dritten Teils ist es, untere $&eraflr die GroRe erweiterter
Formulierung herzustellen. Hier stellen wir einige gersame Ergebnisse mit Volker Kai-
bel, Samuel Fiorini und Dirk Oliver Theis dar (siehe Fiorikaibel, Pashkovich, and Theis
[M]). Wir vergleichen verschiedene Methoden, um en&ehranken zu bekommen,
und schauen uns verschiedene Beispiele von Polytopen maméftiche Polytope sind die
Schranken optimal).

Im vierten Teil prasentieren wir eine weitere gemeinsambe#rmit Volker Kai-
bel und Dirk Oliver Theis, die sich mit Symmetrien in Erweitegen beschéftigt (se-
helKaibel, Pashkovich, and Theis [2010]). Hier haben wird¥atg und Cycle Polytope
gefunden, welche keine symmetrischen Erweiterungen halben sich trotzdem mit Hilfe
von Erweiterungen kompakt darstellen lassen. Uber gemeiasArbeit hinaus, beweisen
wir Ergebnisse bezliglich Erweiterungen von quadratisGrésse, welche zum Beispiel
zeigen, dass das Birkhoff Polytop eine asymptotisch mileregmmetrische Erweiterung

des Permutaeders ist (sehe Pashkovich [2009]).
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CHAPTER 1

Introduction

Combinatorial optimization problems in many cases can &esformed into linear
optimization problems, where one identifies with every sotuof the given combinatorial
problem a point, and where the objective function can be rstded as a linear function
over the constructed points. Via such a transformation dmairs access to the complete
machinery of linear programming, since optimization of reeéir function over a set of
points is equivalent to optimization of the linear functiower the convex hull of these
points.

However, algorithms for linear programming require a lineéescription of the prob-
lem, what can cause difficulties, since the polytopes aatatiwith combinatorial prob-
lems usually do not admiteompact linear descriptign.e. a linear description of polyno-
mial size with respect to the size of the combinatorial pzol

Even though combinatorial polytopes may not possess a adrfipear description,
they may allow acompact extended formulatipne. such a polytope may be represented
as a linear projection of a higher-dimensional polytope a@f/pomial size. And an opti-
mization problem over the initial polytope can be transfedinto an optimization problem
over the extension.

Indeed, a lot of combinatorial polytopes do admit compadersted formulations,
where for an extensive overview on extended formulatiomscémbinatorial polytopes
we recommend_Conforti et al. [2010]. The power of this pheeoan relies on introduc-
ing additional variables, reflecting characteristics ahbiatorial objects, such that these
characteristics were "out of reach" for the linear prograngnusing initial variables only.

Since linear programming is solvable in polynomial timesrthwere a lot of attempts
to approach the famous complexity theoretical conjectua& P is not equalP, provid-
ing an easy to construct compact extended formulation ftrtvelling salesman polytope.
Inspired by the request to review several of such papersaldiimed compact extended
formulations for the travelling salesman polytope Yantddkéried to get an understanding
of what can be achieved using extensions. In a seminal paperYannakakis [1991])
he then showed that there is at least no symmetric extendatifation of polynomial
size for the perfect matching polytope, where "symmetrigams that the formulation is
invariant under permuting the nodes of the complete grapha &orollary in this paper
it was shown that there is no compact symmetric extendeduiation for the travelling
salesman polytope. This ruled out a lot of these constmstisince the majority of the
proposed extended formulations for the travelling salespaytope had been symmetric
or were easy to symmetrise, retaining the polynomial size.

Yannakakis also conjectured that the symmetry requiremventd just be a technical
condition for the proof: "We do not think that asymmetry fefpuch. Thus, prove that
the matching and TSP polytopes cannot be expressed by poighsize LP’s without the
asymmetry assumption." Indeed, it turned out recentlylfseeni et al. [2011b]) that there
is no compact extended formulation for the travelling sal@s polytope. However, until
now it is unclear whether there is a compact asymmetric sidarior the perfect matching
polytope.

One part of this thesis studies the impact of symmetry reguénts on the size of an
extended formulation for matching and cycles polytopes. diprove the conjecture of

1



2 1. INTRODUCTION

Yannakakis in general case in Chagfler 5, where we show thstfioe cardinality restricted
matching and cardinality restricted cycle polytopes tleist no polynomial symmetric ex-
tended formulations, but there are polynomial non-symimeties. The results presented
in that chapter have been published in Kaibel, Pashkoviuth Taneis [2010].

Furthermore, we study the role of symmetry requirementeféensions of the cardi-
nality indicating polytope and the permutahedron. Forehaslytopes we prove in Chap-
ter[ that the well-known symmetric extensions of them ayengsotically the best exten-
sions, which one can get preserving the symmetry of extassiee Pashkovich [2009]).

Actually, the interest for symmetric extended formulai@fithe permutahedron arose,
since@hs gave an elegant formulation of §¥e logn) for the permutahedron,
where the best known symmetric extension was of €l¢e?) via the Birkhoff polytope.
In his construction, Goemans used a novel approach, whichemeralize in Chaptéd 2
to the framework of reflection relations in order to produgterded formulations. Using
this framework we obtain well-known extended formulatioBssides that we give a com-
pact extended formulation for the Huffman polytope, for @hno linear description up to
now is known, as well as fafz-permutahedron of finite reflection groups The results
presented in that chapter have been published in Kaibel asikBvich|[2011].

s also showed that the size of his extended formuliatessymptotically min-
imal among all extended formulations for the permutahedrblis way to estimate the
minimum size of an extended formulation for a polytope psoet the extended formula-
tion for the Huffman polytope, which we construct in Chaffliés asymptotically minimal
as well. This motivated us to systematize methods to estithatminimum size of general
extended formulations. In Chapfdr 4 we study the limitatiohthese approaches and pro-
vide several examples of their usage (see Fiorini, KaiteshRovich, and Theis [2011a]).

We also found an extended formulation for the spanning tegtqpe for planar
graphs, where the size of the extension is linear in the nuwitedges in the graph. How-
ever, it turned out that the extension was already proviqm ]. We never-
theless describe the construction in Chalpter 3, and prasantlified extension of Geralds
[@] for the perfect matching polytope, which is compamt draphs with sufficiently
small genus, where our modifications were made in order toceethe size of the exten-
sion.
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1.1. Preliminaries

Here, we introduce some definitions and notions used in theapited work.

1.1.1. Polytopes.A polytopeP C R™ is defined as the convex hull of a finite set of
pointsX C R™, i.e.

P:conV(X)z{Z)\,;a:: Z)\,;:l, A>0}.
zeX rzeX
In turn, apolyhedronP C R is the Minkowski sum of the convex hull of a finite set of
points X C R™ and the convex cone of a finite set of vect&s R, i.e.

P = conv(X) + cone(R),

where the cone
rec(P) = cone(R) = {Z At A >0}
reR
is called theecession conef the polyhedronP, and

lineal(P) = — cone(R) N cone(R)

is called thdineality spaceof the polyhedronP.
A face’ C R™ of a polyhedronP C R™ is defined as the intersection

F=HNP,

whereH is a hyperplane, such that the polyhedi®ties in one of the closed halfspaces,
defined by the hyperplang. Additionally, the empty set and the polyhedro® are un-
derstood as faces of the polyhedBrC R™ as well. Afacetand avertexof a polyhedron
P C IR™ is a face of dimensiodim(P) — 1 and zero, respectively. The set of all faces
ordered by inclusion forms thface lattice(P) of the polyhedrorP.

The Weyl-Minkowski Theorem states that every polyhedidnC R™ can be de-
scribed as the solution set for a linear system, i.e.

P:{xeRm:Angbé,A:be:},

whereAS ¢ R/*™, b= € Rf, A= € R™™, b= € R". The minimum numbey of
inequalities, such that there exists a correspondingiisgstem, is equal to the number of
facets of the polyhedroR. A linear description with the minimum number of inequalgi
is called aminimal linear descriptiorof the polyhedronP. Since every polytope is a
polyhedron, it is easy to see that every polytope is the soliget for a system of linear
inequalities, where the solution set is bounded. In turenelinear system for which the
set of solutions is bounded defines a polytope.

The Farkas Lemma has diverse equivalent formulations, arel\we present the one
below.

Lemma 1.1. For a polyhedronP C R™, defined by the linear system
P={zxeR™: Ax <b},

whereA ¢ R/*™, b ¢ R/, anda € R™, 8 € R, the inequality(a, z) < j is valid for P
if and only if P is empty or there exists a non-negative veeter R/, such that

cA=a and cb<p.

For all notions and results from polyhedral theory, mergwim the presented work,

we refer td Zieglér [1995] arld Griinbaum [2003].




4 1. INTRODUCTION
1.1.2. Extended Formulations, ExtensionsAn extensiorof a polytopeP C R™ is
a polyhedror C R¢ together with an affine magp: R? — R™ satisfying
p(Q)=P.

A description of@ by linear equations and inequalities (together wijtis called anex-
tended formulatiorof P [l.

I
—_—
FIGURE 1. Example of an extension.

Thesizeof an extension is the number of its facets. Bireof an extended formula-
tion is its number of inequalities, not including equatio@$early, the size of an extended
formulation is at least as large as the size of the extensidescribes. Conversely, every
extension is described by an extended formulation of at thessame siz@ In this work,
the notion of size does not involve the encoding length ofcthefficients in extended for-
mulation. Thus, all lower bounds, obtained in Chapiérs 4Gpdovide lower bounds on
the number of inequalities in extended formulations. Neaadess, all extended formula-
tions constructed in this work involve coefficients of padymial size only (except for an
extended formulation for regular polygons).

In this work, we are interested minimal extended formulatiorend extensiongor
polytopes. In fact, we can assume that a minimal extensi@nai-empty polytopé’ is
given by a full-dimensional polytop@ C R? and an affine map : R* — R™. Indeed,
for every vectorr € R? from the recession cone of the polyhedr@nand every point
z € R?, we have

p(z +7) =p(2),

because&), p form an extension of the bounded polyhedrBn Thus, if we consider a
polyhedronQ* defined ag) — rec(Q), and the affine map* = p : RY — R™, we have

P (@) = p(Q —rec(Q)) =p(Q) = P,

what shows tha@*, p* form an extension of the polytopB. The recession cone of the
polyhedron@* is equal tarec(Q) — rec(Q), i.e. the recession cone of the polyhed@n
coincides with its lineality space. The size of the exteng)d, p* is bounded from above
by the size of the extensiaf, p for the polytopeP (Appendix: Lemm&&l]3). Now, let us
consider the polyhedro®** equal toQ* N rec(Q*)J' and the affine map** = p: R —
R™, which form an extension of the polytoge

P(Q™) = p Q7 Nrec(@Q™) ") = p* (Projyee(gey+ (@) = P(Q) = P,

1Analogously, an extension and extended formulation for ghgdron can be defined. Even if this is not an
object of the current work, this may be useful in the case wimeexéended formulation is constructed via some
polyhedron, which has a compact extended formulation.

2For symmetric extensions and symmetric extended formulatiefmet! in Chaptdrl5, the same equiva-
lence is shown, i.e. it is shown that for every symmetric extanthere exists a symmetric extended formulation
of the same size, and every symmetric extended formulation dedisgmmetric extension of the same size.
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whose size is less than or equal to the size of the extergiop*. The recession cone of
the polyhedrorQ* is equal tOproj,ec(g+)+ (rec(Q™)), i.e. is equal to the zero vector, and
thus the polyhedro®** is a polytope.

Finally, if the polytopeQ** C RR? is not full-dimensional, then we consider an ex-
tension given by the full-dimensional polytog¥ = ¢(Q**) € R% and an affine map
p =p*oqg!:RY — R™, where the mag : aff(Q**) — R is an affine embedding
of the affine hull of@** into the spac&®<’, with d’ = dim(Q**).

For an extensio) C R?, p : R — R™ of a polytopeP C R, we define aection
maps : vert(P) — @, such that for every vertex of the polytopeP

p(s(z)) ==,

wherevert(P) denotes the vertex set 6f.

Note that if the section : R™ — RR? is an affine map then the size of the extension
via () is at least as big as the size of the trivial extension via tiigtppe P itself. Indeed,
the dimension of the polyhedr@pnaff (s(vert(P))) is less than or equal to the dimension
of the polytopeP, if s : R™ — R is an affine map. On the other hand the polyhedron
Q N aff (s(vert(P))) with the affine magp : R? — R™ is an extension of the polytope
P C R™. Thus the polyhedro@ Naff(s(vert(P))) is isomorphic to the polytop®, what
shows that the number of facets of the polytdpés equal to the number of facets of the
polytope@ N aff (s(vert(P))) which is at most the size of the extensiQnp.

Of course, having an extensigh C R¢, p : R? — R™ of a polytopeP C R™, the
polyhedron

QN{zeR": (a,p(z)) = b}
together withp : R? — R™ is an extension of the polytope

Pn{z eR™: (a,z) =b}

of at most the same size. Thus, every extension of a polytapédes an extension of any
of its faces, where the last extension has at most the same siz

1.1.3. Combinatorial Polytopes.Here, we define three combinatorial polytopes with
a central role in the theory of extended formulations.

1.1.3.1. Spanning Tree PolytopéA treein the graphG = (V, E) is a connected sub-
graph ofG, which does not contain any cycle. The set of trees in a géapghdefined by
T(G), or T (n) if we deal with the complete graph,,.

Thespanning tree polytopE,,. (&) for a graphG is defined as follows

P (G) = conv({x(T) e R : T € T(G)}).
The following linear system describes the spanning tregtppé for a grapltz = (V, E)
(sed Edmond& [1971)
z(E(S) <|S|—1 for g £SCV
z(E)=1]V]—-1 and 0<z.

Here and later, for every € R% and! C [d] the expressiom(I) denotes the sumw., ., ;.
1.1.3.2. Matching Polytope A matchingin a graphG = (V, E) is a set of disjoint
edges in the grapty. The set of all matchings in the graghis denoted byM (G), and
by M (n), if we deal with the complete grapfi,,. The set of all matchings with edges
in the graphG' is denoted byM*(G), and by M*(n), if G is the complete graph with
vertices. A perfect matchings a matching, which covers all vertices of the graph
The perfect matching pontopE% (GQ) for a graphG with n vertices . is even) is

match

the convex hull of characteristic vectors for all perfectchéngs inG, i.e.

P2 (G) = conv({x(M) e R¥ : M € M™(G)}).

match
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mmﬂ gave a linear description of the perfect matcpolytope by: > 0 and
z(6(5)) > 1 for SCV,1<|S|isodd
z(d(v)) =1 for veV.

For the complete grapR,, this system defines a minimal linear descriptiorPélfatch(n).

The matching polytop@®......(G) for a graphG is the convex hull of characteristic
vectors for all matchings it, i.e.

P aien(G) = conv({x(M) e R : M € M(G)}).
[Edmonds([1965] gave a linear description of the matchingtppk byz > 0 and
z(E(S)) <|S| -1 for SCV,1<]|S|isodd
z(d(v)) <1 for veV.

For the complete graph,,, this system defines a minimal linear descriptio®gf,, .;,(n).
The cardinality constrained matching polytof. .. .. (G) is the convex hull of all
characteristic vectors fok1‘(G), i.e.

P aen (G) = conv({x(M) € R¥ : M € MY(G)}).

Hence, for the cardinality equal to the halved number ofieestin GG, the cardinality
constrained matching polytope is the perfect matchingtpp.

The cardinality constrained matching polytdﬁﬁatch(G) can be described as> 0
and

x(E(S)) <|S| -1 for SCV,|S|isodd

z(0(v)) <1 for veV

x(E)=1¢,
since the cardinalities of matchings, corresponding to @y adjacent vertices of the
matching polytope, differ at most by one ( ijver BN

1.1.3.3. Cycle Polytope.Let C*(G) denote the set of cycles in a gragh= (V, F) of
length/.

The cardinality constrained cycle polytopéﬁyd(G) is defined as the convex hull of
characteristic vectors of all cycl€s(G), i.e.

PLo(G) = conv({x(C) e R : C e CY(G)}).

If the cardinality of cycles is equal to the number of versicd the whole graph and
G = K,, the cardinality constrained cycle polytope is travelling salesman polytopén
contrast to the preceding two examples, we do not expectitbet is a "reasonable” linear
description of the travelling salesman polytope, as the@ated optimization problem is

NP-hard.
For all notions and results from polyhedral combinatonsntioned in the presented

work, we refer to Schrijver [2003&], Schrijver [2003b], Sigrer [2003¢].

1.2. Extensions of Combinatorial Polytopes

The three mentioned types of combinatorial polytopes amontant for our further
considerations.

For the spanning tree polyto@th} constructecedended formulation,
defined byz > 0 and

Tyu — Rvu,w — Fuv,w — 0 for v, U, W € [TL}

Ty + Z Zywu =1 for v,u € [n],
weV\{v,u}
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what shows that the spanning tree polytdpg;(n) admits an extension of siz@(n?).
The section of the mentioned extension can be defined asv&llg, ,, ., is equal to one if
the treeT” contains the edgév, v} and the path from to w in the treeT” does not involve
the vertexv, andz, ,, ., is equal to zero, otherwise.

As mentioned above, the travelling salesman polytope doeaamit a compact ex-
tended formulation, what was shown by Fiorini et al. [2011b]

For the perfect matching polytope and the matching polytbigenot known whether
there exists an extended formulation of polynomial sizet Bannakakis|[1991] showed
that there exists no compact symmetric extension of thebgopes of polynomial size.
Thus, itis still an open problem to construct a compact esitenfor the matching polytope
or to show that no such extension exists.







CHAPTER 2

Balas Extensions, Flow Extensions and Polyhedral
Relations

In this chapter, two central frameworks for the construttid extended formulations
are presented: disjunctive and dynamic programming.

The ideas of disjunctive programming can be implementeciereled formulations
via the Balas techniques (@998]) The Balas meathstructs an extended for-
mulation for the convex hull of some set of polytopes, hawmdiands an extended for-
mulation for each of them. Hence, this approach is effedtive&combinatorial polytopes,
whenever one is able to partition the combinatorial objeictducing the polytope, into
tractable subclasses, i.e. for which small extended faatiars are known.

In turn, the dynamic programming approach encodes mostlwHy to optimize over
the combinatorial objects, which induce the polytope. Ffmlytopes play a crucial role
in these extensions, since usually, the possible scenafitiee corresponding dynamic
algorithm are encoded as a path in an acyclic network. Heeealso present some

extended formulations constructed|by Fiorini, Kaibel,lfkasich, and Theis [2011a] and
Kaibel, Pashkovich, and Thels [2010].

In the end of the chapter, we develop the polyhedral relatfamework, and in par-
ticular, reflection relations (see Kaibel and Pashkovidhil[d). The reflection relations
construct an extension for the convex hull of a polytope asdniage under the reflection
map, with respect to a hyperplane. Note that the Balas apprdaes not have any re-
strictions concerning the polytopes in the constructiont iB comparison with reflection
relations, disjunctive programming produces extensidadigger size, what results in the
significant size of extension, constructed iteratively thia Balas method. With the help
of reflection relations, we reproved a series of results eonng extended formulations of
regular polygons (sée Ben-Tal and Nemirovski [2001]), thevutahedron (sée Goemlans),
the parity polytope (see Carr and Konjevod [2004]). Morepwe obtained asymptotically
minimal extensions for the cardinality indicating poly&oand the Huffman polytope (cur-
rently, no linear description for the Huffman polytope iokm).

2.1. Balas Extensions

One of the most important frameworks for the constructioexdénded formulations
is disjunctive programmin(ﬁe@@&). In this framework, an extended fornntat
of a polytopeP C IR™ is constructed, using already known extended formulatfona
set of other non-empty polytopés C R™, i € [k], such that

Theorem 2.1(Balas [1998]) If for each of the non-empty polytop&s C R™, i € [k],
there exists an extended formulation, described by thatisgstem

(2.1.1) Alz < b,
whereA’ € Rfi*4: p* ¢ RS, together with an affine magg : R* — R™, such that
p'(z) =¢'(2) +7',

9



10 2. BALAS EXTENSIONS, FLOW EXTENSIONS AND POLYHEDRAL RELATINS

whereg’ : R% — R™ is a linear map andy’ € R™, then the linear system
Alyt <b'N;  for i € [K]
k

Z)‘i =1 and 0<A\
2.1.2) e

k k
2= g'W)+> 7N,
i=1 i=1

together with the projection on variables, forms an extended formulation of size at most
k+ Zf’:l f: for the polytope

(2.1.3) P = conv( U P).

i€ k]

PROOF It is necessary to prove that the polyhedi@n defined by the linear sys-
tem [2.1.2), together with the projection anvariables, forms an extension of the poly-
topeP.

First, it is necessary to show that for every paine R" from the polytopeP, there
arey and )\ variables, which satisfy the linear systdm (2.1.2). Letgbimtz be written as
the convex combination

k
T = E izt
=1

k
Z/\i=1 and 0< A\,
=1

wherez’ € R™ lies in the polytopeP;. For every pointr?, definez’ € R% to be a point,
such that

AZP <b' and p’(r/) =z,
To finish the construction, define the vectdrto be equal to\;z! for all i € [k]. Clearly,
the defined values, y and\ satisfy the linear systeri (2.1.2).

Second, assume that for some paint R%, there are\ andy variables, satisfying
the constructed extended formulation. In the cgse 0, the vector,® lies in the recession
cone of the corresponding extension for the polytéheAnd thus, lies in the kernel of the
linear mapg® (P; is a non-empty polytope), i.e. the vectgi(y’) is equalo,,,, whenever
A; = 0. In the case\; > 0, the point

g+ =" Y
belongs to the polytop#;, due toA*(\; 'y?) < b'. Consequently, the point lies in the
polytope P, because: satisfies

k k
r=2 W)+ D whi= D g W)+ D wdi= D (g Ty + )

i€[k] i€[k] 1€[k]
Ai>0 Ai>0 Ai>0

and

k
Z)\izl and 0<)\.
=1

O

The vertex extensiownf a polytopeP C IR™ can be seen as a construction via the
Balas method, where the set of polytogéss the set of vertices of the polytoge Thus,
the size of the vertex extension for a polytapes equal to the number of vertices of the
polytopeP.
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Lemma 2.1. For every polytopeP? C R, there exists an extended formulation of size
equal to the number of vertices of the polytdpe

2.2. Dynamic Programming Extensions

Another important approach to construct extended forrranatisdynamic program-
ming(see Martin et al. [1990]). One of the possibilities to exjpdiynamic programming is
to solve an optimization problem as the shortest path pnolrtean acyclic network. Thus,
the extended formulations, constructed via the dynamignamming method, usually are
the path polytopes in some acyclic network.

Of course, for every polytope one is able to construct a netvguch that the shortest
path problem in the network is equivalent to the optimizatiwoblem over the polytope.
For this, let the network to consist of the souscand sinkt, and an arc for every vertex of
the polytope with capacity one. However, such way to coastn extension, gives us the
vertex extension of a polytope, what usually is not compact.

In this framework, a flow polyhedron for a netwalk plays a crucial role. Recall that
anetworkN = (V, A, ¢) is given by the set of nodds, containing the sourceand sinkz,
and by a set of arcd C V x V. Typically, the capacities € R“ of the arcs are assumed
to be one if nothing else is stated, in this situation we ohet¢apacities in the definition
of the networkV = (V. A).

The s-t flow polyhedrorP’_, 4. (N) € R4, which is the set of alb-t flows in the
network N of value /. The flow polyhedroP’_, 4...(N) is described as (sée Schrijver

[20034])

z(6°“ (v)) = (6" (v)) for veV\{st}

Clearly, the size of this linear formulation for the flow pbdronP*
to twice the number of arcs in the netwatk

Moreover, whenever the netwoiX = (V, A) is acyclic and the flow valuéis equal to
one, the flow polytop®’ _, 4., (V) C R is equal to the convex hull of the characteristic
vectors of all possible-t paths in the networky.

Recently/ Kaibel and Lobs [2010] developed a powerful gelimation of dynamic
programming, so called polyhedral branching systems, whéneralize the dynamic pro-
gramming framework of Martin et al. [1990]. One of the mostgaint applications of
polyhedral branching systems is a compact extended fotionlaf full orbitopes, i.e. the
convex hull of zero-one matrices with lexicographicallgered columns.

In this chapter, all dynamic extended formulations can béigd without a formal
proof. Namely, we state an acyclic network and define thesptimin and section maps. Itis
left to show that all source-sink paths in the network arégmted inside of the considered
polytope, and that the section map defines a source sinkitp#th provided network.

(N) is equal

s—t flow

2.3. Flow Extensions

It is worth to mention that not all extended formulationspnsucted via flow poly-
hedra, are considered to be dynamic programming extensRensicularly, the extended
formulation for the corner polyhedra of the perfect matghpolytope, which was pro-

vided byl Ventura and Eisenbrand [2003], and the extendedutation for the spanning
tree polytope, constructed by Padberg and Wolsey [1983iniDgham|[1985].

For example, the polyhedraR C R for a graphG = (V, E), described by < y
and

(2.3.1) y(6(S)) >¢ forall SCV,seS tgs,
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has an extension via the flow polyhed®f , 4., (IV), where the arcs capacitiess R*
are treated as variables, and where the network (V, A, ¢) has the set of arcs

A=A{(v,u) eV xV:{v,u} € E}.

and
Clo,u) = Yvu for all v,u e€V.

Indeed, due to the Minimum Cut Maximum Flow Theorem, theristexans-t flow of
value/ in the networkN = (V, A, ¢) if and only if the pointy belongs to the polyhedron
P, what provides us with an extended formulation for the petiion P of size less than
or equal tod| E|.

If the polyhedronP C R¥ is described by < y and

y(6(8))>¢ for o#ASCV,

then the polyhedrof® is the intersection of the polyhedra, described)by v and [2.3.1),
where the vertex is fixed and the vertexranges among the vertic&s\ {s}.

For example, consider treubtour elimination polytop®,.(G) C RF for the graph
G = (V, E), defined as

z(0(5)) > 2 for 34£SCV
z(6(v)) =2 for veV
0<zx.

From the discussion above, the following result can be obthi

Proposition 2.1 (Yannakakis/[1991]) There is an extended formulation of s@€ V|| E|)
for the subtour elimination polytope..(G), whereG = (V, E).

2.4. Cardinality Indicating Polytope

n
car:

The cardinality indicating polytop&®
the points

1 € R?"*!is defined as the convex hull of

{(x,2) € {0,1}" x {0,1}""" : 2, = 1andz; = 0 if j # k, wherek = > a; +1}.
i=1
Obviously, these points define the set of vertices of theigality indicating polytope
P_,..q- Forevery vertex oPl, 4, the firstn coordinates represent the characteristic vector
of a subset of the sén|, while the lastn 4+ 1 coordinates encode the cardinality of this
subset.

A minimal linear description of the cardinality indicatimmplytopeP

byKéppe et al.[[2008] and looks as follows

n
card

was given

IS| n
Yowi <Y G +IS] Yz fora#S5¢[n]
€S j=0 j=|S|+1

n n
E XT; = E jzj+1
i=1 7=0

n

E Zj41 = 1
Jj=0

0<z and 0<z.

Hence, the cardinality indicating polytof¥’, ., has exponentially many facets.
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We construct an extended formulation for the cardinaliticéating pontopePCard of
sizeO(n?). Namely, we apply the Balas techniques to the set of polgdhek € [n + 1],

n

Py, ={(z,z) e R" XIR”+1:inzk—l,ogxgl,zkzlandzj =01if j #k}.

1=1
The polytopeP;, is integral, since the matrix of the linear system, defining polytope
Py, is totally unimodular. Consequently, the polytaBeis the convex hull of al{2n + 1)-
dimensional zero-one points, where the firstoordinates involve exactly — 1 ones and
the lastn+1 coordinates are zeros except for thth coordinate. Hence, the vertices of the
polytopesP, partition the vertices of the cardinality indicating papeP;., 4 according
to the sum of the first coordinates, i.e.

vert(Pr,q4) = U vert(Py) ,
ke[n+1]

what shows thaf> is equal to the convex hutbnv (U ¢ (,,41) Pr)-

There is also an extended formulation of s@2é:?), which is constructed using the
dynamic programming approach for the netwdrk= (V, A), where

V={stU{t}U{(i,j) e NxN:1<j<i<n}
and

A={(s
{((
Considering the polytop®}_, 4..,(N) C R4, associated with-¢ paths in the net-

Work N = (V, A), we get an extended formulation of the cardinality indicgtpolytope
" «4» Where the projection is given by the affine mapR4 — R x R"*!

(1,7)) e VxVii=1}U{((4,7),t) e VxV:ii=n}U
730,605 €V XV j < <+ 1L, =i +1}.

Y(s.(1.1)) ifi=1
pi(y) = Z;Zl Y((i—1,j—1),6,5) T2<i<n
Y((n,i—n—1),t) fn+l1<i<2n+1.

This network imitates the process of scanning the vecton fitee first till the last coordi-
nate, saving the number of scanned ones and the currenbposit
Define the corresponding sectien vert(P.,.4) — P

x1 =0 if a = (s,(1,0))

ry =1 ' if a=(s,(1,1))
Sq(z,2) =< Tin1 :OAzzzlxt:j if a=((¢,5),(+1,7))

Tigr =1AY _jxe =7 fa=((,7),(i+1,j+1))

i T =] if a = ((n,4),1).

The expressions in the section map are understood as logickas, which evaluate to one
if the formula is satisfied, and to zero, otherwise.

Thus, both approaches lead to extended formulations of%izé) for the cardinality
indicating polytope?,

card*

Proposition 2.2. For the cardinality indicating polytop®”’ ., there exists an extended

formulation of sizeD(n?).

card?
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2.5. Parity Polytope

The parity polytopeP[,., € R" is defined as the convex hull of altdimensional
zero-one vectors, which have an even number of coordingjes €0 one. Analogously,
the parity polytopé,;, C R™ is defined, with the vertices involving odd number of ones.
Whenever nothiﬁ else is not stated, speaking about the paliftope, we refer t@7, .,

5] provided a minimal description of the pagolytopeP?,., C R",
which is given by0 < 2 < 1 and

inf Z z; < |S|—1 for S C[n],|S|is odd.
i€S 1€[n]\S

Thus, every linear description of the parity polytope in thitial space involves2(2")
inequalities.
Obviously, the face of the cardinality indicating polytope

Plian{(z,2) e R" x R"" : 2,41 =0,j € [n]oaa}

together with the projection anvariables, provides an extended formulation of the parity
polytopePy,.,. Hence, there exists an extended formulation for the ppatytopePy,..,,
of sizeO(n?), due to Proposition 212.

In addition, there is an extended formulation for the pasitjytopeP_..,, , constructed

via the Balas techniques and the polytopesC R™, k € [n + 1]o44, defined as
P, ={zeR": in:k—l,()gxgl}.

i€[n]
Because the linear system above is totally unimodular, tigape P, is the convex hull
of n-dimensional zero-one vectors withones. Every polytopé’, has a linear descrip-
tion of size O(n), what results in an extended formulation of si2¢n?), constructed

by|Yannakakis [1991].

Carr and Konjevad| [2004] provided a smaller extended foatioh, using the dy-
namic programming approach. Analogously to the cardinatiticating polytope, con-

struct the acyclic networly = (V, A), where
V={stU{t}U{(i,j) e NxZy:1<i<n}

and
A:{(S,(Z,j)) GVXVZ:].}U
{((Zvj)vt) cVx VZ:’I’L,] :O}U
{((@,4),G",j") e VxV:i" =i +1}.
The polytopeP!_, 4. (N) C R4, associated wits-t paths in the networkV, together

S

with the affine map : R4 — R”

Y(s,(1, ifi=1
pily) = YD) i .
Y((i-1,0),6.1) T Y((i-1,1),60) F2<i<n,

defines an extension of the parity polytopg,.,,. Moreover, define the section map:
vert(Pl, 4) — P as

card

ry =0 if a = (s,(1,0))
=1 ifa=(s,(1,1))

Salw,2) = 4 1 =0AY, =7 mod (2) ifa=((4,5)(i+1,5))
alT, Tig1 =1AY_ x=7 mod (2) ifa=((47),(i+1,j+1))
L if @ = ((n,0),)

0 if a=((n,1),).
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This network imitates the scanning process from the fitghil last coordinate, storing
the parity of the scanned number of ones and the currenliqndlit

Proposition 2.3 (Carr and Konjevad [2004])For the parity polytopeP.. ..., there exists

an extended formulations of sigkn).

2.6. Birkhoff Polytope and Perfect Matchings in Bipartite Graphs

Here, the Birkhoff polytope, i.e. the perfect matching pope in bipartite graphs, is
presented, which is used later as an extension for othetqpasy.

Recall that the perfect matching polytope for a gréph- (V, E) with 2n vertices is
defined as the convex hull of the characteristic vectors éofegt matchings i, i.e.

maten(G) = conv({x(M) : M € M"(G)}).

WhenG is bipartite, with the bipartitioV,, V* C V, such thatV.| = |V*| = n, the per-
fect matching polytop®, ..., (G) has a compact linear description ( i 03a]),

given by the non-negativity constrainis< = and the equations
z(d(v)) =1 forallveV.

Thus, there is a linear description of the perfect matchwlgtppeP;. ..., (G) for a bipar-

match

tite graphG, where the size of the linear description is equatio

Proposition 2.4 (Birkhoff [1946]). For the perfect matching polytoge” .. . (G), G =
K, n, there exists a linear description of sizé.

TheBirkhoff polytopePy;,,. € R™*™ is the convex hull of all zero-one x n matrices,
such that every row and every column contains 1 zeros and one one. A minimal linear
description (se 3a]) of the Birkhoff polgtoconsists of the non-negativity
constraint®) < z and

in’t =1 fori € [n] and me =1forjein].
t=1

t=1

Proposition 2.5 (Birkhoffl [1946]). For the Birkhoff polytopePy. .., there exists a linear
description of size:?.

Clearly, the Birkhoff polytopePy; . is affinely isomorphic to the perfect matching
polytope P ....(G), whereG is the complete bipartite grapi,, ,,. An affine isomor-

match

phism can be defined by the map RE(V=:V") — Rnxn
Pij(®) = Tpe 0., for (i) € [n] x [n],
where the bipartition of the graph is given as two vertex sets

Vi ={vs1y..,04np and V' ={v"1,...,0",}.

10of course, similar networks can be designed for the polytopkih are convex hulls of alt-dimensional
zero-one vectors, where the remainder from the divisionefdtal number of ones in the vector by some number
k belongs to a specified set of remainders. In this case, thendgmmaogramming approach provides us with an
extended formulation of siz&(kn). Moreover, these ideas could be generalized to the vangtiwhen the
vertices are not zero-one vectors, but general integeokgetith coordinate values from some given set of
numbers.
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2.7. Permutahedron
Thepermutahedroil,, C IR" is defined as the convex hull of the points
{(e(1),...,0(n)) : 0 € S(n)},

which are the vertices of the permutahedron. A minimal dpgson of I1,, in the spacéR™

looks as follows (sele Rado [195P], Conforti et al. [2010])

n

nn+1
S e

i=1
in27|5|(\5;|+1) fora #S5 C [n].
=

The Birkhoff polytopePy,,,., together with the affine mgp: R"*"™ — R"

pi(x) = ijm fori € [n],
j=1

forms an extended formulation of the permutahedigr(see Conforti et al [2010]), where
the section map : vert(Il,,) — Py, looks as follows

1 if €y :j
sij(x) = {

0 otherwise

Proposition 2.6 (seel Conforti et al. [2010])For the permutahedrofil,,, there exists an
extended formulation of size(n?).

2.8. Edge Polytope
Theedge polytop@.qq.(G) € RY for a graphG = (V, E) is defined as the convex
hull of the points
{x(e) eRY :e€ E}.
Hence, every vertex of the edge polytope corresponds to ga @cthe grapttz and indi-
cates two vertices, connected by the chosen edge. It is eaggtthat the linear system
x(S) —x(N(S)) <0 forall stable set§ C V
z(V(G)=2 and 0<z
is valid for the edge polytop®.qq..(G). |Kaibel and Logs|[2011]. Janssen and Kilakos
[1999] showed that the above linear system describes thegaigtopeP ... (G) [l

Clearly, there exists a vertex extension of the edge podffap,.(G) of size| E|, what
can be bounded from above by(|V|?).

Observation 2.1. For the edge polytopPeqq.e(G), G = (V, E), there exists an extended
formulation of sizeD(|E|).

But on the other hand, we are able to construct another extefadtmulation, using

the following theorem, which is due to Tliza [1984], Bscand Pybert [1997].

Theorem 2.2(Tuza [1984]) For every graphG = (V, E), |V| = n, there exists a covering
of the edges~ with a total cost at mosg;—zn by complete bipartite subgraphs, where the
cost of a complete bipartite subgraph is the number of ittces.

1|Kaibel and Lods[[2011] provided conditions, under which thequalities of the linear system define
facets of the edge polytope.
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Having a complete bipartite subgraph with bipartitidn V*, we define the polytope
Py, ={zecRY :2(V.)=2(V*)=1,2(V)=2,0< x}.

Thus, the vertices of the polytog®, - . are the characteristic vectors of the edg&¥, :
V*). Applying the Balas technique to the polytof®s- v, , corresponding to the complete
bipartite graphs participating in the edge covering fronediem 2.2, we show the next
resultd.

Proposition 2.7. For the edge polytop®.q..(G), G = (V, E), |V| = n, there exists an
extended formulation of size(

logn)

2.9. Cardinality Restricted Matching Polytopes

In this section, we provide extensions for the cardinakstricted matching polytopes.
To construct an extended formulation®f .., (n), we need the following result on the
existence of small families gferfect-hash functiorfsom|Alon et al. @B], where results

from|Fredman et all [1984], Schmidt and Siegel [1990] areluse
Theorem 2.3(Alon et al. [1995]) There are maps®, ..., gm,r : [n] — [r], such that

for everyW C [n] W|th |W| = r, there is someé € [¢(n,r)], for which the mapp; is
bijective onlV and the inequality(n, ) < 2°(") log n holdg.

Let ¢1, ..., ¢, be maps as guaranteed to exist by Thedrem 2.3 with2¢ andg =
q(n,20) < 29 1ogn, and denote

M; = {M € M (n) : ¢; is bijective onV' (M)}
for eachi € [¢]. By TheoreniZ13, we have
Min)=MiU---UM,.
Consequently, we construct an extended formulation, uBadgs techniques for the
polytopesP;, wherei € [q]
P, =conv({x(M): M € M;}).

To finish the construction, we have to provide extended fdéatrans for the polytopes
P;. From the linear description of the perfect matching quyir@a]) and
Lemmd6.2, we obtain

Pi={zeR”: z(B(¢;'(s)) =0 for se (2],
ac(E(¢);1(s) : qb;l(t))) =ysy for s, te2l,s#t,
0<zx,
y(0(S9)) >1 for S C[24],]S]is odd} .

As the number of inequalities in the descrlptlon}Qfls bounded by°*) 4+ 72, and
the number of differenP; is bounded by ®) log n, we obtain the following theorem

Theorem 2.4. For all n and ¢, there is an extended formulation &Y., (n) of size
2002 Jog n.

INote that the complexity of the construction of the mentionddresion is not clear for u@br
[@] proved a stronger result, namely that therergfieg n bicliques, covering the edges of the graghBut,
an approximation of a minimum biclique cover (minimum number ofitjies) withinn!/3—¢ seems to be a
hard problem, unlesB is equal to\"P (sed Gruber and Holzér [2007]). The proof of Bscand Pybbf [1997] is
constructive, but the "bottleneck” of the construction rglfng a biclique of sizéog n, what seems to be a hard
problem as well (sdm @bOG]).

2Moreover, the functions;, i € [g(n,r)] areO(1)-time computable, i.e. having an indé&e [g¢(n,r)]
andz € [n], the valuep; (x) can be calculated i®(1) running time in the uniform cost model.
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2.10. Cardinality Restricted Cycle Polytope

In this section, we construct an extended formulation ottmelinality restricted cycle
polytopePfyd(n), size of which is bounded bg°“)n?logn. Starting with the maps

b1, .., ¢, as guaranteed to exist by Theorler 2.3 with ¢ andg = g(n, £) < 2°(*) logn,
we define
C; = {C € C*n) : ¢, is bijective onV (C)}
for eachi € [g]. Thus, we have
Cin) =CLU---UC,,
and denote
P, = conv({x(C) : C € C;})

forall i € [q].

For the Balas method, it suffices to exhibit, for each [¢], an extension oP; of size
bounded byO(2/n?). Towards this, let us design the following netwakk = (W, A;),
where

W; ={s}u{t} U{(v,u,S) eV xV x 2l . oi(v) € S, (u) =1}
and
Ai ={(s,(v,u,8)) e W; xW; : S={1},u=0v}U
{((v,u, S),t) e W; x W; : S =[{]}U
{((U/,u/,S/), (U”,UH,SH)) EW, xW;:8"=8"U {¢i(vll)},¢i(vll) ¢S =u"}.

Consider the polytop®!_, ;... (NV;) and define the projection map : R4 — R” by its
coordinate mapg, ,» : R* — R as

Z Y v {1}),(v" 0’,8)) + Y((v' 0", [€]),t) »

SCle]

wheng;(v') is equal to one, and

Z y((v’,u,S/),('u”,u,S”)) + Z y((v”,u,S’),(’U’,u,S”))
ueV ueV
57,8 g2l 57,8 2l
when norg, (v") neitherg; (v") is equal to one.

The idea, of the network is the scanning process of vertiaasa the cycle, starting
from the vertex, which is mapped to one by, in any direction of the cycle. The stored
information consists of the last scanned vertex, of the gtatex and of the set of images
of the vertices for,;, which are scanned so far. This perspective helps to cantsisection
map, in a straight-forward manner.

Theorem 2.5. For all » and ¢, there is an extended formulation f@ﬁycl(n) of size
2033 10gn.

2.11. Polyhedral Relations

In the rest of the chapter, we deal with the framework of petal relations, devel-
oped by Kaibel and Pashkovich [2011]. This framework heeeiploits the structure of
polyhedra, which are in its scope. Due to this fact, the fraork keeps the size of the
constructed extensions small, even when polyhedral oglsitire applied iteratively.

A polyhedral relationof type(n, m) is a non-empty polyhedroR C R™ x R™. The
imageof a subsetX C IR™ under such a polyhedral relatidtis denoted by

R(X)={yeR™:(x,y) € Rforsomexr € X}.
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Clearly, the images of polyhedra and convex sets under pdhghrelations are polyhedra
and convex sets, respectively, sifgeX) is a linear projection oR N (X x R™).

A particularly simple class of polyhedral relations is defirby polyhedra? C IR™ x
R™ with

R={(z,y) e R" xR™ : y = o(x)}

for some affine map : R™ — R™. For these polyhedral relations, a linear description
of a polyhedronP C R" forms an extended formulation of the polyhed®(P) via the
projectiono.

Thedomainof a polyhedral relatiork C R™ x R™ is the polyhedron

dom(R) ={z € R": (z,y) € Rforsomey € R™}.
Clearly, we have
RX)= |J R@
zeXNdom(R)
for all X C RR™. Note that, in general, for a polytope = conv(X) with a finite set
X C R™ and a polyhedral relatioR C R™ x R™, the inclusion
(2.11.1) conv | J R(z) € R(P)
rzeX

holds without equality, even in case &f C dom(R) 0. In SectionZIB, the equality
in (ZI11) is guaranteed for an important class of polyakediations.

2.12. Sequential Polyhedral Relations

A sequence of polyhedral relatiorf®,, ..., R, such thatR; is a polyhedral rela-
tion of type(d;_1,d;) for eachi € [r], is called asequential polyhedral relationf type
(do, - - ., d,) andlengthr. For this sequential polyhedral relation, we denote by

R=R,0---0R;
the set of all(z?, ") € R4 x RY for which there is soméz?, ..., 2" 1) with
(12 eRr;, foral ielr].
SinceR is a linear projection of a polyhedroR, is a polyhedron, and thus, a polyhe-
dral relation of typgdy, d,.) with
Ryo...oR(X)=R,(...R1(X)...)

forall X C R%. We callR = R, o--- o R, the polyhedral relation that inducedby the
sequential polyhedral relatiaRy, . . ., R,.
For a polyhedrorP C R%, the polyhedror defined by

LepP and (2712 eR;, foralliclr],

together with the projection map on to tilevariables, forms an extension®f( P). Thus,
there is an extended formulation of the polyhedfP) with dy + - - - + d,. variables and
fo+ -+ + fr constraints, whenever we have linear descriptions of tighpdraP, Ry,
..., R.with fo, f1, ..., fr constraints, respectively. Of course, one can reduce timau
of variables in this extended formulation to the dimensibthe polyhedronQ.

In order to obtain useful upper bounds on this number by meétise polyhedral
relationsRy, ..., R,, let us denote, for any polyhedral relatighC R™ x R™, by 01(R)
ando» (R) the dimension of the non-empty fibers of the orthogonal pt@e of aff (R) to
the first and second factor & x R, respectively. Having

aﬁ(R) = {(-7572/) eR"xR™: Al‘—f—By = c}’

Iror example, we may considér = conv{0,2} C R andR = conv{(0,0), (1,1),(2,0)}.



20 2. BALAS EXTENSIONS, FLOW EXTENSIONS AND POLYHEDRAL RELATINS

we getd; (R) = dim(ker(B)) anddz(R) = dim(ker(A)). With these parameters, we can
estimate

dim(Q) < min{dy + Z 01(R;), d, + Z 02(R

Lemma 2.2. Let Ry, ..., R, be a sequential polyhedral relation of typé,, . . ., d,.) with
the induced polyhedral relatioR, and letf; be the number of facets &f;. If the polyhe-
dron P C R% has an extended formulation with variables andf’ inequalities, then we
can construct an extended formulation f&f P) with

min{d’ +Z51 ), dy +Z§2

variables andf’ + f; + - -- + f, constraints.

2.13. Affinely Generated Polyhedral Relations

We call a relationk C R™ x R™ affinely generatedy the familyo’, j € J, if the
setJ is finite and every’ : R — R™ is an affine map, such that

x) = conv U o (x)
jes
holds for allz € dom(R).

The maps’, j € J are calledaffine generatorsf R in this case. For such a polyhedral
relation R and a polytope”® C R with

P Nndom(R) = conv(X)
for someX C R"™, we find

R(P) = U R(z) = U conv U o ()

z€PNdom(R) z€PNdom(R) JjEJ
C conv U U o’ (z) = conv U U ¢’ (z) C conv U R(x
zePNdom(R) jEJ zeX jeJ reX

where, due td{Z.11].1), all inclusions are equations. Itiqdar, we have established the
following result.

Proposition 2.8. For every polyhedral relatiol? C R™ x R™ that is affinely generated
by a finite familyo’, j € .J, and for every polytop# C IR", we have

(2.13.1) R(P) = conv U o' (PNdom(R)).
jeJ
As we will often deal with polyhedral relatio’® = R, o --- o Ry that are induced

by a sequential polyhedral relatidy, .. ., R,., it is convenient to be able to derive affine
generators fofR from affine generators foRl, ..,R,.. This, however, seems impossible
in general, where the difficulties arise from the interpl@peen images and domains in
a sequence of polyhedral relations. However, one still eaivel a very useful analogue of
one of the inclusions if (2.13.1).

Lemma 2.3. If we haveR = R,. o - - - o Ry and for eachi € [r] the relationR; is affinely
generated by the finite famibii ji € J;, then the inclusion

) C conv U (PNdom(R))
jeJ

holds for every polyhedro® C R", whereJ = J; x --- x J, and g’ = g7 o --- 0 g/t
for eachj = (j1,...,4,) € J.
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PrROOF Trivially, if R(P) is empty, then the statement holds. Otherwise, for every
z" € R(P) thereis(z®, x!,...,2"), such that® € P Ndom(R) and(z'~!, 2%) € R; for
alli € [r]. Since every relatioR; is generated by the affine maps, j; € J;, we conclude
that for everyi ¢ [r], we havexr’ = 3=, _; p; 0’ (z'~") with somep; ;, > 0 for all
ji € Ji, satisfyingzji cJ, Hij; = 1. Applying this iteratively, we are able to represefit
as

er = Z /’Ll,jl [P Mr,j,,.Q(jl""’jr)(-%’O) ,

where all productg; ;, - - - i j, are non-negative, satisfying
Yo mgtrg = (0 g (Y peg) =1
(G100 dr)€J €L Jr€dr

This shows that" belongs taconv |, ¢ ; 07 (2°). O

2.14. Affine Generators and Domains from Polyhedral Relatin

In this section, we study, what polyhedral relatiddsC R"™ x R™ are affinely gen-
erated]. To do this, we consider the map: R™ x R™ — R", which is the projection
on the first factor ofR™ x R™. Moreover, we can assume thatR) = dom(R) is full-
dimensional.

Let us assume thdt is an affinely generated polyhedral relation with affine gators
o', j € J. Clearly, for every facd” € £(R) and for every point: from p(F), there exists
anindexj € J, such thatz, ¢/ (x)) lies in F, since

conv({(z,0’(x)):j€J})=RN{z€R" x R™ :p(z) = x}.
Consider a facé” € L(R), which is defined by
F={zc€R:(a,z) =b},
such thap(F) C R™ is full-dimensional. If for everyj € .J, the affine space
(2.14.1) {r €R™: (a,2) =b,z = (v, (v))},

is not full-dimensional, then there existse p(F'), such that for every € .J the point
(x, ¢’ (x)) does not lie inF. Thus, there existg € J for which the affine spac€(2.1%.1)
is full-dimensional, what implies that for everye p(R) the equatior{a, (z, ¢’ (x))) = b
holds. Consequently( R) is equal top(F), since(z, ¢’ (z)) belongs tak for all z € p(R).

On the other hand, let us assume tRét:) is a polytope for every: from p(R), and
for every facel’ € L(R), such thap(F) is full-dimensional, we have(F') = p(R). For
every facel’ € L(F'), we define the sefly

Ip={icl:{a',z)=0; foral z € F},
whereR is described by the linear system
(a',z) <b; foriel.
Denote byg : R™ x R™ — IR™ the projection on the second factorBf* x IR"*. Note
that for everyr € R"™ the polytopeR(z) is defined by the linear system
(a(a"),y) < bi = (p(a’), ) foriel.

Clearly, every vertex of the polytopB(x) corresponds to the solution of the linear
system

(2.14.2) (q(a’),y) = bi — (p(a’),2) foricIp
1Actua||y, the results of this section admit an elegant regmé&tion via chamber complexes (mbau

[1996] for more on such complexes). A polyhedral relatorC R™ x R™ is affinely generated if and only if
R CR"™ x R™, projgn : R™ x R™ — R"™ induce one maximal chamber and every fiber is bounded.
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for some face” € L(R), withz € p(F), where the constraint matrix fgrhas full column
rank. For a fixed facé’, the solution of such a linear system is the image of an affiap m
of : R™ — R™, i.e.y = of' () (multiplication ofb; — (p(a'), x), i € I by a matrix with
constant coefficients). And thus for all pointsrom p(R), except for some set of measure
zero (union of the sets(F'), with F' € L(R), wherep(F) is not full-dimensional), we get

R(z) = conv({o' () : F € F}),

where F denotes the face8' € L(R), wherep(F) is full-dimensional, and the linear
system[(Z.14]2) has full column rank. From continuity remsdhe above representation
of R(x) holds for allz € p(R).

Proposition 2.9. A polyhedral relationk C R™ x R™ is affinely generated if and only
if R(x) is a polytope for every: € dom(R), and for all facesF’ € L(R), such that the
dimension op(F') is equal to the dimension dbm(R), the imagep(F) is equaldom(R),
wherep : R™ x R™ — IR"™ is the projection on the first factor @™ x R™

2.15. Polyhedral Relations from Affine Generators and Domais

A particular task is to analyze, for what affine maps; € J, there exists a polyhedral
relationR C R™ x R™, which is affinely generated by, j € J. A more special question
is, for what affine map, there is a polyhedral relation affinely generated by thatite
map and the map. For both these questions, the domain plays a crucial rioleg sve can
choose arbitrary affine mapég, j € J, whenever the domain consists of one point.

For a non-zero vectar € R™ and € R, we denote the corresponding hyperplane
by

H™(a,8) = {z € R": (a,z) = B},
and by

H=(a,) = {zx € R" : (a,z) < B}
one of the corresponding halfspaces.

Lemma 2.4. If for an affine mapp : R" — R" there exists a polyhedral relatioR C
R™ x R™, which is affinely generated hyand the identity map, thenis equivalent to a
translation map on the domain @, or there exists a hyperplarié= (¢, 3) C R™ and a
vectorc € R™ such thafl

(1) the domain ofR lies in one of the closed halfspaces, defined by the hype¥plan
H™ (a,p), i.e.
dom(R) C H=(a, ) or dom(R)C HS(—a,—f)
(2) for every pointr € dom(R), the vectoro(z) — « is parallel to the vector and
(2.15.1) ({a,z) — B)e = o(x) — x.

PrROOF First of all, we show that the vectop$x) — x, o(y) — y are parallel for every
x, y from dom(R). Indeed, the pointsr, x), (x, o(x)), (y,y) and(y, o(y)) belong to the
polyhedral relation?. Hence, we have

z+y o) +y x+o(y)
long t —
5 9% belongto R(— =),
The polytopeR(%*y) is one-dimensional, since the polyhedral relatidis generated by
two affine maps. And thus, the vectarse) — z, o(y) — y are parallel.
Let us denote by the non-zero vectas(z) — « for somez from dom(R). If no such
non-zero vector exists, then the map : R™ — R is equivalent to the identity map on

r+vy

INote that the range of the affine maps described by Lefnla 2.4ds:btianslations, reflections with
respect to a hyperplane, shearing transformations etc.
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dom(R), i.e. a translation map. For simplicity of representative,may assume that the
vectorc is equal toe,,. Thus, for every point from dom(R), we have

z; ifl1<i<n—1
0i(z) =

Zie[n] o — B ifi=n ’
for some numbers; € R, i € [n] andg € R.

The affine mayp is equivalent to a translation map,df = 0 for i € [n — 1] and
a, = 1.

Otherwise, denote by € R™ the vector witha; = «;, i € [n — 1] anda,, = «,, — 1,
satisfying the equatio (Z.1%.1). Additionally, if therds two pointsz, y from dom(R),
such thata, z) > S and{a,y) < 3, then there exists from dom(R), which is a convex
combination ofz andy and which lies on the hyperplai& (a, 5), whereR(z) is one-
dimensional. But the hyperplad& (a, 8) defines the set of the invariant points fgrand
thuso(z) is equal toz.

(]

In the next section, we can see that Lenima 2.4 provides aatkération of affine
mapsp, for which there exists an affinely generated polyhedraltieh by the identity map
and the affine map.

2.16. Reflection Relations

The reflectionat the hyperplandl = H=(a, 3) is the affine map” : R* — R",
whereo! () is the point, such thai” (x) — x lies in the one-dimensional linear subspace
H*={)a:\c R}
that is orthogonal tdZ, and(a, o™ (z)) = 28 — (a, z).
Thereflection relation defined by a vectat € R™ and a numbeg € R, is
Ra,ﬁ = {(xvy) € Rn X Rn Y- € H:(avﬂ)la <a7x> S <a7y> S 25 - <CL,{E>} .

For the halfspacél = equal tOHS(a, 3), we also denot®,, s by R <. The domain of the
reflection relation is

dom(R, 3) = H=,
because iz, y) lies inR, g, then(a, z) < 28 — (a, x), and thusa, ) < . Furthermore,
for eachz from H=(a, ), the point(z, z) belongs to the polyhedral relatidt, s [. From
the fact that the vectay — z lies in H=(a, 8)*, it follows 91(Ra,3) = 1, what together
with Lemmd 2.2 leads us to the next result.

Remark 2.1. If R € R™ x R" is induced by a sequential polyhedral relation of length
consisting of reflection relations only, then for a polyhedP C R"™, an extended formu-
lation of R(P) with n’ + r variables andf’ + 2r inequalities can be constructed, provided
one has at hands an extended formulationfowith n’ variables andf’ inequalities.

Proposition 2.10. For every non-zero vectar € R™ and 8 € R, the reflection relation
R, is affinely generated by the identity map and the reflectiénwhere H denotes the
hyperplaneli~(a, 3).

PrROOF We have to show that for everye dom(R, z)
R (%) = conv{z, o™ (2)}.
Obviously, for everyr from dom(R, ), we have that
(z,2), (z, 0 (x)) belongto R,ps(z).

INote that, althougt{a, 8) and (—a, —3) define the same reflection, the reflection relati®)ss and
R_,,—p have different domains.
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On the other hand, let be an arbitrary point iR, (). Indeed, since both and o” ()
belong to the lingy + H+, and since

(a,2) < {a,y) <28~ (a,2) = (a,0" (2)),
we conclude thay is a convex combination af and o™ (). O

Note that for all affine maps, described in Lemmd 2.4, theamigxtended formula-
tion of the corresponding polyhedral relation, whose cansion is similar to the above
extended formulation for the reflection relation. From Risipon[2.8 and Propositidn 2.11.0,
one obtains the following result.

Lemma 2.5. If P C R™ is a polytope, then for every non-zero veaior R"™ andf € R,
defining the hyperplan& = H= (a, 3) and the halfspacél = = H=(a, ), we have

Ra,s(P) = conv (PN H=)U " (PN HS)).

2.17. Sequential Reflection Relations
LemmaZb describes images under single reflection relgtlmut for analyses of the

images under sequences of reflection relations we needadditesults. For each non-

zero vectorn € R™ andf € R the mapg*(HS) : R™ — R™, which assigns aanonical
preimageto everyy € R", is defined

ifye HS

(HS) () — Y
) {,QH(y) otherwise ’

Q*
whereH= = H=(q, 3), andH = H™(a, ). For ally € R", we have
(2.17.1) y €R(@ M) 00 g T (y),
whereR denotes the polyhedral relatidkh; 0...0 RHE'

Theorem 2.6. For the polyhedral relation
R:RHE 0...0RH15,

with haIfspacesHlS, ..., HS C R™ and boundary hyperplanes,, ..., H,, as well as
polytopesP, @ C R™ where@ = conv(X), X C R", we have) = R(P), whenever the
following two conditions are satisfied:

(1) PC Qandoi(Q) C Qforalli e [r].

) o*HD) 0.0 0*H)(z) € Plorall z € X.

PrRooOFE From the first condition it follows that the image Bfunder every combina-
tion of mapsp® liesin@Q. And from Lemmd&Z2.1, this leads to the inclusiBiP) C Q. By
the second condition and(2.117.1), we have- R(P), and henc&) = conv(X) C R(P),
due to the convexity oR(P). O

2.18. Signing of Polytopes

In order to provide simple examples of extended formulatja@btained from reflec-
tion relations, let us define ttgégningof a polyhedronP C R"™ to be

sign(P) = conv U eP,
ec{—,+}"

wheree.x is the vector, obtained from € R"™ by changing the signs of all coordinates
with ¢; being minus. For: € R™, we denote by:(3S ¢ R” the vector that is obtained
from 2 by changing every component to its absolute value.
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For the construction below, we use the reflection relatiBns, o, denoted bySy,
wherek € [n]. The corresponding reflectian, : R™ — R" is the sign change of thieth

coordinate, given by
ak(x)l _ {—.’Ei ifi =k

T otherwise
The map, which defines the canonical preimage with respebeteelationS,, is given by

ot (y); = {' |

y;  otherwise

Proposition 2.11. If R is the polyhedral relatiors,, o. ..o Sy, and P C R"™ is a polytope,
such that(@9 ¢ P for each vertex of P, then we have

R(P) = sign(P).

PROOF With @ = sign(P), the first condition of Theorefl 2.6 is satisfied. Fur-
thermore, we hav&) = conv(X) with X = {e.v : e € {—,+}",v vertex of P}. As,
for everyxz € X with 2 = e.v for some vertexr of P ande € {—,+}" we have
ofo---ook(x) = 2@ = 4@ ¢ P also the second condition of Theor€m]2.6 is
satisfied. Hence, the claim follows. O

The next result follows from Proposition 2111 and Renfark 2.1

Theorem 2.7. For every polytope”® C R, such that(@®9 ¢ P for each vertex of P,
there is an extended formulation €@gn(P) with n’ + n variables andf’ + 2n inequal-
ities, whenever the polytop@ admits an extended formulation with variables andf’

inequalities.

2.19. Reflection Groups

A finite reflection groups a groupG of finite cardinality that is generated by a finite
family oi : R® — R", i € I of reflections at hyperplaned; C RR", containing
the origin. We refer to_ Humphreys [1990], Fomin and Read2@Q[] for all results on
reflection groups that will be mentioned below. The seatfiection hyperplanes C R"™,
where o € @G, is called theCoxeter arrangementf G. Every Coxeter arrangement
cutslR™ into open connected components, which are calledatienscorresponding te-.
The groupG is in bijection with the set of its regions, and it acts trémely on these
regions. We distinguish the topological closure of one ehttas thdundamental domain
d of G. Additionally, for every point: € R™, there is a unique point(®s) € & that
belongs to the orbit of under the action of the grou@ onR™.

A finite reflection groupG is calledirreducible if the set of reflection hyperplanes
cannot be partitioned into two ses; and#,, such that the normal vectors of all hyper-
planes inH; are orthogonal to the normal vectors of all hyperplanes ffém According
to a central classification result, up to linear transforare, the family of irreducible finite
reflection groups consists of the four infinite subfamiliegn) onR?, A,, 1, B,,, andD,,
onR", as well as six special groups.

For a finite reflection groupr onR™ and a polytope” C R", the G-permutahedron
Il (P) of P is the convex hull of the union of the orbit f under the action of7, i.e.

a(P) = conv | J o(P).
0€G
In the next sections, we construct an extended formulatioilf; (P) from an extended
formulation for P, if G is one oflx(m), A,,—1, By, or D,,. The number of inequalities in
the constructed extended formulations will be bounded’by O(logm), in the case of
G = I;(m), and byf’ + O(nlogn) in the other cases, provided that we have at hands an
extended formulation of with f’ inequalities.
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By the decomposition into irreducible finite reflection gosuone can extend these
constructions to arbitrary finite reflection grou@gson R", where the resulting extended
formulations havg’+O(n logm)+0O(nlog n) inequalities, wheren is the largest number
such thatl,(m) appears in the decomposition@finto irreducible finite reflection groups.

To see this, let us assume that the set of reflection hyperpldrcan be partitioned
into two sets}, and?-, such that the normal vectors of all hyperplanegtinare orthog-
onal to the normal vectors of all hyperplanes frétp. Let 41, H» induce two reflection
groupsGy, G>. Then, we can represent thepermutahedron as

HG(P) = HG1(HG2(P)) .

Moreover, for every reflection map/2, H, € H,, and fora € R", b € IR, such that

Hy = H™ (a,b), H, € H1, we have(a,z) = (a, o'2(z)) for all z € R™. Hence, we can
apply Theoreni 216 for the polytodés, (P) and the grougs;, whenever the conditions
of TheoreniZ.b hold for the polytop® and for both groupé:; andGs.

2.20. Reflection grouply(m)

Let us denote byd,,, ¢ € R the hyperplanél™((— sin ¢, cos ¢), 0) and byHg the
halfspace= ((— sin ¢, cos ¢), 0). The groupl,(m) is generated by the reflections A
andH.,, what is the symmetry group of the regutargon. The grougs(m) consists
of the finite set of all reflectiong’+~/m | k € 7Z, and the finite set of all rotations around
the origin by angle€kn/m, k € Z. Here, we choose the fundamental region

(I)Iz(m) = {LL eR%: z9 > 0,2 € Hf/m}
Proposition 2.12. If R is the polyhedral relation
RH< O"'ORHg ORHg

2T /m 27 /m w/m
with » = [logm] and P C R? is a polytope, such that(®2cm) ¢ P for each vertex
of P, then we have

R(P) = Ipm)(P) -

PROOF. The first condition of Theorein 2.6 is satisfied t@r= II,,,,)(P). Further-
more, we have) = conv(X) with X = {~.v : v € Iz(m), v vertex of P}. Letx € X be
some point withe = ~.v for a vertexv of P andy € I>(m). Observing that

Q*(Hf/'m) le) Q*(H;T/m) O---0 Q*(HQSTW/WL)(Z‘)
is contained inb ), we conclude that it equals ®2(m) = v(®20m) € P. Therefore,
also the second condition of TheorEml2.6 is satisfied. O

From Propositioh 2.12 and Remark]2.1, we can conclude thanfiolg theorem.

Theorem 2.8. For each polytopeP C R?, such that(®2tm) ¢ P for every vertex
of P, there is an extended formulation Bff;,(,,)(P) with n" 4+ [logm] + 1 variables
and f’ + 2[log m] + 2 inequalities, wheneveP admits an extended formulation witf
variables andf’ inequalities.

In particular, we obtain an extended formulation of a regutagon with [log m] + 1
variables an@[log m] + 2 inequalities, by choosing = {(1,0)} in Theoreni2B, what
reproves the following result Ben-Tal and Nemirovski [2P01

Proposition 2.13(Ben-Tal and Nemirovski [2001])For every regularm-gon, there exists

an extended formulation of sizg m] + 1.
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2.21. Reflection groupA4,, _1

The groupA,,_; is generated by the reflections|i* at H™ (e, — e, 0) for all pair-
wise distinctk, ¢ € [n]. It is the symmetry group of thén — 1)-dimensional simplék
conv{er,...,e,} C R". We choose

Dy, ={reR":a; < <u,}
as the fundamental domain. The orbit of a paire IR™ under the action ofi,,_; consists

of all points, which can be obtained fromby permuting coordinates. Thus, thk, ;-
permutahedron of a polytopge C R™ is

14, ,(P) = conv U ~v.P,
vES(n)
where~.z is the vector, obtained from € R™ by permuting the coordinates according
to 7.

Let us consider more closely the reflection relatibp, € R"™ x R", given as
Re, —e,,0. The corresponding reflection, , = ofxe + R* — R”, where Hy, ¢ is the
hyperplandi™(ex — e/, 0) is the transposition of coordinatésand/, i.e.

Ty ifi =k
Tee(x)i=qxp ifi=1¢
r; otherwise

The mapr; , = o*(He.0) - R™ — R™, assigning canonical preimages, is given by

L (y) = Tre(y) iy > ye
y otherwise -

A sequenceky, ty),..., (k- ¢.) from [n] x [n], where numbers in every pair are
distinct, is called &orting networkf

* * _ sort)
The,t7 © 7 O T, (y) = y( )

holds for ally € R", where we denote by(s°® ¢ R" the vector that is obtained from
by sorting the components in non-decreasing order. Notddhaveryy € R™ we have

Y (®an 1) — g0

Proposition 2.14. If R is the polyhedral relation
Tkr,ﬁr ©...0 Tkl,él N

where the sequendé,, ¢),. .., (k., ¢.) is a sorting network, and® C R"™ is a polytope,
such thaw sV e P for every vertex of P, then we have

R(P) =1la,_,(P).

PROOF With @ =114, _,(P), the first condition of Theorem 2.6 is satisfied. Further-
more, we have) = conv(X) with X = {y.v : v € &(n),v € vert(P)}. As, for every
x € X with z = ~.v for some vertex of P andy € &(n), we have

T 0 ok o (7)) = 250 — (501 ¢ p
also the second condition of TheorEml2.6 is satisfied. Hereelaim follows. O

Since due td_Ajtai et al[ [1983], there are sorting networksipe r = O(nlogn),
from Propositio 2.14 and Remdrk P.1 we can conclude theviilg theorem.

IThis explains the index in the notatioh,, ;.
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Theorem 2.9. For each polytope? C R, withv(5°™ ¢ P for each vertex of P, there is
an extended formulation &f 4, , (P) with n’ 4+ O(nlogn) variables andf’ + O(n logn)
inequalities, wheneveP admits an extended formulation with variables andf’ inequal-
ities.

Note that the sorting networks describet 98an be constructed in
time that is bounded polynomially in.

For the polytope” = {(1,2,...,n)} C R", TheorenZD yields the same extended
formulation of the permutahedron

1L, = HAnfl(P) )

that has been constructed in Goemans, where the extendealétion involvesD(nlogn)
variables and inequalities.

Proposition 2.15@3) For the permutahedrohl,, C R", there exists an extended
formulation of sizeD(nlogn).

If we take the vertex extension for the polytopeC R™ x R"™*!, which is the convex
hull of n + 1 points(0,,_;+1,1;_1,®;) € R™ x R"*!, wherei € [n + 1]. Theoren{ 2B
yields an extended formulation with(n log n) variables and inequalities of the cardinality
indicating polytope

Iy, ,(P).

Proposition 2.16. For the cardinality indicating polytop®”., , € R" x R"*!, there
exists an extended formulation of si2énlogn).

2.22. Reflection groupB,,

The groupB,, is generated by the reflectionslitt* at the hyperplaned™ (e, + e/, 0),
H™ (e — e, 0) andH™ (e, 0) for all pairwise distinck, ¢ € [n]. Itis the symmetry group
of both then-dimensional cubeonv{—1,+1}" and then-dimensional cross-polytope
conv{+ey,...,te,}. We choose

Op ={zcR":0<z; <---<ux,}

as the fundamental domain. The orbit of a paire R™ under the action oB,, consists

of all points, which can be obtained framby permuting its coordinates and changing the
signs of some subset of coordinates. Note that we héke.) = 5(s°tab3 for all y € R”,
wherey(sotabs — (o) \wherey = 5(@09

Proposition 2.17. If R is a polyhedral relation
Spo...08 0Ty ¢ o...0Tk 4,

where(ky,¢1), ..., (k. ¢,) is a sorting network, and; are defined as at the end of Sec-
tion[ZI8, andP C R”" is a polytope, such that(s°3b$ < P for each vertex of P, then
we have

R(P) =Ilp, (P).

PrROOF With @ = IIp, (P), the first condition of Theorein 2.6 is satisfied. Further-
more, we have) = conv(X) with X = {y.cv : v € &(n),e € {—,+}",v € vert(P)}.
As, for everyx € X with 2 = ~.e.v for some vertew of P andy € &(n), e € {—, +}",
we have

iy 0+ Thyg, 001 -0 7h(z) = 2l = (s & p,
also the second condition of TheorEml2.6 is satisfied. Hetheeglaim follows. O

As for A, _1, we thus can conclude the following from Proposition 2.1d &e-
markZ.1.
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Theorem 2.10. For every polytope”? C R", such that(S°ta>9 < P for every vertex

of P, there is an extended formulation Hfs (P) with n’ + O(nlogn) variables and
f"+0(nlogn) inequalities, whenevdP admits an extended formulation withvariables
and f’ inequalities.

2.23. Reflection groupD,,

The groupD,, is generated by the reflectionsIii® at the hyperplaned™ (e;, + e, 0)
andH™ (e;, — e, 0) for all pairwise distinctt, ¢ € [n]. Thus,D,, is a proper subgroup
of B, but it is not the symmetry group of a polytope. We choose

Op, ={zeR":|x1|<mp < -+ <}

as the fundamental domain. The orbit of a poinE R™ under the action of),, con-
sists of all points, which can be obtained franby permuting its coordinates and chang-
ing the signs of an even number of its coordinates. For evethie pointz(®»-) arises
from (52353 by changing the sign of the first component;zithas an odd number of
negative components. For distinet! € [n], we denote byF), , the polyhedral relation
R—ek —e,0 © Rek—ez,o-

Proposition 2.18. If R is the polyhedral relation
Enfl,n O---0 E1,2 [e] Tk'rwe'r O0...0 Tkl)gl 5

where(ki1,¢1),..., (k- ¢.) is a sorting network, and® C IR™ is a polytope, such that
z(®rn) e P for each vertew of P, then we have

R(P) =Tp,(P).

PrROOF With @ = IIp, (P), the first condition of Theorein 2.6 is satisfied. Let us
denote by{ —, +}aenthe set of alk € {—, +}" with an even number of components equal
to minus. Then, we hav@ = conv(X) with

X ={yev:veB(n),ece{—,+}towen? € vert(P)}.
For distinctk, ¢ € [n], we define

Mho = Q*(Hé(ok—w,o)) o Q*(HS(—@k—w,o))_

For everyy € R", the vectony; ,(y) is the vector)’ € {y, 7ie(y), pr,e(¥): pr,e(Th,e(y)) }
with |y;.| < y;, wherepy ¢(y) arises fromy by changing the sign of both componets
and?. As, for everyz € X with x = v.e.v for some vertexs of P andy € &(n),
€ € {—, +}&en We have

To O 0T g oty 0 omy g, (x) = a®Pn) = p(®on) e P
also the second condition of TheorEml2.6 is satisfied. Heheeglaim follows. O

And again, similarly to the case$, | and B,,, we derive the following result from
Propositiod 2,18 and RemdrkP.1.

Theorem 2.11. For every polytope? C R™, such thaw(®2«)(v) € P for every vertex

of P, there is an extended formulation Bfp, (P) with n’ + O(nlogn) variables and
f'+0(nlogn) inequalities, whenevdP admits an extended formulation withvariables
and f’ inequalities.

Restricting our attention to the polytopes

P={(-1,1,....,)}CR" or P={(1,1,...,1)} CR",
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we can remove the reflection relatiofis ;,, ..., T;, ;. from the construction in Proposi-
tion[Z18. Thus, we obtain extended formulations with — 1) variables and(n — 1) in-
equalities of the convex hulls of all vectors{ir-1, +1}" with odd, respectively even num-
ber of minus ones. Thus, applying the affine transformatfdR'6given byqg : R™ — R”"

aly) = 5 (1~ ).

we derive extended formulations wigin. — 1) variables and(n — 1) inequalities for the
parity polytopes, what reproves Proposition 2.3.

2.24. Huffman Polytopes

A Huffman-vectoiis a vectorv € IR", such that there is a rooted binary tree with
leaves, which are labeled by the numbers friariy and for everyi € [n], the number of
arcs on the path from the root to theh leaf equals;;. We denote by 4 the set of all
Huffman-vectors inR™, and by

Pguff = COHV(V&IH)
the Huffman polytope Note that currently no linear description of the Huffmarypape
g INR™ s knowr{l.

Nevertheless, the properties of Huffman vectors and Huffpaytopes listed below
can be easily verified. Moreover, these properties appelae teseful for our further dis-
cussion.

Observation 2.2.
(1) Foreveryy € &(n)
- Vﬁuf‘f = Vlr'llui'f .
(2) Foreveryv € Vi,4, there are at least two componentswodéqual to

max vy, .
ke[n]

(3) Foreveryv € Vi, and

V; = Vj = Max vy
ke€[n]

for some pair of distinct, j, the point
(V1,0 01,0 — g1, oo V21, Vg1, - -, Un)
liesin Vi .
(4) Foreveryxz € Vi, the point
(1, T2, Ty + Ly 1 + 1)
liesinVy -
To construct an extended formulation of the Huffman polgtope need to define the
embedding
Pl ={(21,...,Zn 0, Tpn 1+ 1,2 1 +1): (21,...,20_1) € Pﬁl:ffl
of Pp into R™.
Proposition 2.19. If R € R™ x R", where3 < n, is the polyhedral relation
(2.24.1) Ty20Ta30--0Ty 9p-10TH 1,0
Ti20Ty30---0Ty 3,201 2,1,

then we havR (P"~1) = P} 4.

1in fact, it seems that such descriptions are extremely contpticaor instance, it was proved tiaf .

hasQ(n!) facetd Nauyen et al.[2010].
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PROOF With P = P"~! and@ = P} 4, the first condition of Theorefn 2.6 is obvi-
ously satisfied, what is due to parts (1) and (4) of Obsern&Ii2. We have) = conv(X)
with X =V} . Furthermore, for every € X andy = 7*(x) with

* * * * * * * * *
(224.2) " = Tn—2m—1°Tn—3n—2°""CT330T1 20T, 1 nOTp2n-1°"""0T23°T1 92,

we have

Yn = Yn—1 = MaxXx;,
i€[n]

the part (3) of Observatidn 2.2 implies(z) € P"~!. Therefore, the claim follows by
Theoren Z.b. O

Thus, from Remark?211, we obtain an extended formulatiodfy; with n’ +2n — 3
variables and’ + 4n — 6 inequalities, provided we have an extended formulatiorP(gg@fl
with n’ variables andf’ inequalities. Since the Huffman polytopg g is a single point,
inductive application of this approach leads to the follogvresult.

Proposition 2.20. For the Huffman polytop@}. «, there is an extended formulation of
sizeO(n?).

Actually, the Huffman polytop@} . has an extended formulation of si@én logn),
but this demands another sorting approach. In order toatelibe necessary modifications,
let us denote by, the sequence

(k—2k—1),(k—3,k—2),...,(1,2),(k—1,k),(k— 2,k —1),...,(1,2)
of index pairs, which are used in(2.24.1) ahd (2.P4.2). Feryesequence

@ = ((ilajl)a R} (i7”7.j7”))
of pairs of distinct indices, we define

*  o--.o0TK

*
To =T i odr

11,71
thus7g is denoted by in (Z24.2). Furthermore, let, : R* — R*~* to be the linear
map defined via

Te(Y) = (W15 Y2, Yp—1 — 1)
for all y € R*. For the above construction, we need that for every Vi 5 and every
k > 3 the vector
(2.24.3) a* = T8, O Mh41 0TS, 0 0my 0Th (V)

satisfies

x’,§71 = x],j = maxxf.
i€[k]

It turns out that this property is preserved, when replathiegsequenc®,, by an arbitrary
sorting network, and for everly > 3, the sequenc®,, by the sequence

(i§7i’f), (ZISC’ Zg)’ cr (iﬁkvifk—l)v (ilﬁk—lvifk—Q)ﬂ ] (Zlg,lg), (ngl’f)
with
k ift=1
i =3k—1 ift=2

i¥ | —2t=3 otherwise

and wherer;, is the maximat, such that’ is greater than zero. Denote by the set of
indices, involved in this sorting transformatién,, i.e.

Ji Z{’Lf ct €[]}
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o 0O O O 0O O 0. ©

FIGURE 1. The sorting procedure: first the comparators on the path
above are applied, and then the comparators on the path fteleamall-
est of two elements moves always into the left side).

Proposition 2.21. For every2 < k < n, the Huffman vectoz*, defined by (Z.24.3) is
sorted or it has the following form

k k k
T — ... = a7 — max "
k k—pr+1 ich] i
k k k
zk = ... =y =maxz; — 1
k—pk k—pr—aqr+1 iek] ¢
k ... _ .k _ k
Tk—pr—qr - = Tkpr—qp—tr+1 - Illé?k)](xl
k k k
T <- <xp_ . g <maxz! —1
1 = = Yk—pr—qr—"Lx = ek i )

where the index — p, — i + 1 belongs ta/* andpy is strictly greater thart,,.

PROOF The proof is by induction on the number i.e. we assume that if a vector
% € RF satisfies

k _ % *
¥ =T, 04107, 00Ty, (x)

for a sorted Huffman vector € R™, wherem < n, then the vectoz* satisfies the claim
above.
If the Huffman vector
yn_l = Tn O T(Sn (”)
is sorted, then we can apply the induction assumptiomfoe n — 1 and the Huffman
vector
=78 _

oMy o7y (V).

Otherwise, for the Huffman vectg" !, we have
yni=u—1 and yi ' <. <yiTi =,

wherew is the maximum value among the coordinates of the Huffmamovec'. After
application of the sorting transformati@, _; to 3"~ !, we get the Huffman vector™ !
with

n—1 _ _ .n—1 _

Tp—1 - - m(nfl)fpn,lJrl =u
n—1 o
x(n—l)—pn,1 w 1
n—1 .. _,.n—1 _
Lln—1)—pn-1-1 = = T =pu_1—ln1 =

n—1 n—1
(g < < Tn—1)—pn_1—Lln_1—1 Su-—1,

wherep,,_; = 2" and/,,_; < 2°~1. If the Huffman vector
2= TS, _, © Tn © Tén (v)
is sorted, i.el,,_; = 0, then the induction assumption for = n — 1 andz = ™! fin-
ishes the proof. Otherwise, the index— 1) — p,,—; belongs taJ,,_1, thus the assumption
of the proposition holds fok = n — 1.
Let us assume that for the Huffman vector

xk:q—ék o...oﬂ—nof;—én(v)
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the claim holds. Then, the Huffman vector

ykfl =, OTg)k. o---0mpy, OT(t)n(U)
reads
Yr1 —u—1
yg:ll)’v - :y]]:':;)k—q}c"rl =u—1
ylljiilm—qk = = y]]::;k—Qk—ek""l =u
:L']f = Sxﬁ*?k*%*& <u-—1,

Obviously, the set of indice$,,_; is obtained from the set of indice&, decreasing every
element by one and excluding the index zero. Hence, the ifidex1) — (pr — 1) — gx
belongs to the index sef, 1.

Let us consider the coordinates gf~! with indices inJ,_;, i.e. the coordinates
participating in©;_;. Note that there exists just onein this sequence before the— 1
block, since(k — 1) — (pr, — 1) — ¢x belongs to the indices sé},_; andpy, > [;. Clearly,
the action ofrg, _ is equivalent to swapping of the firgtvalue with the lastu — 1)-value
in this sequence of coordinates. Thus after the sortingtoamationrs,  the Huffman
vector

bl = T&,_, O Mk OTH, O 0Ty 0Ty (V)
has the desired form. Additionally, we halie 1 < pr—; and(k — 1) — pr—1 — qx—1 €
JkT
[

To finish the construction, we have to verify that
k k k

Iy = X = Maxx,; .

k—1 k i€k 7
for the Huffman vector:*, & > 3. Obviously, this follows from Propositidn .21, because
the inequalityp, > ¢ impliesp, > 2, since every Huffman vector has even number of
maximal elements, i.ea;, + ¢ has to be even. We obtain the following theorem, since the
numberry, is bounded by)(log k) and since there are sorting networks of i@ log n),
as in Sectioh 2.21.

Theorem 2.12. For the Huffman polytop®;, 4, there is an extended formulation of size
O(nlogn).






CHAPTER 3

Planar Graphs

In this chapter, we consider extended formulations for foqlgs, associated with com-
binatorial objects in planar graphs. Indeed, for a lot ofypmpes, for which no compact
extended formulation is known in the general case, there@mgpact extended formula-
tions, whenever we restrict our attention to planar graphs.

For the perfect matching polytope, which is one of the céptgytopes for the theory
of extended formulations, there exist compact extensiotisda case of planar graphs (see
Barahonlal[1993], Gerard 91]). Moreover, the cut p@gtdor planar graphs has a
compact extension (s 993]). This is an ifitiser example, since for the cut
polytope of the complete graph no linear description in thitail space is known, and no
compact extended formulation exists (see Fiorini et al1]2().

In Sectior3.R, we construct a compact extended formulditiothe perfect matching
polytope in graphs, with the genus not greater than the iftgaiof the number of vertices
in the graph. This construction is based on the extensim@y@@l}, which
is produced via thd-join polyhedron. The modifications we undertake in the rdésl
formulation lead to a size reduction.

In Sectiof_3.B, compact extended formulations for the clittppe and7-join poly-
tope oé@b?’] are presented, what gives a compgseided formulation of the
perfect matching polytopes of planar graphs.

In Section§ 3} arld 3.5, extended formulations for the sipgrtree polytope, which is
due td Williams [2002], and the subtour elimination polytopue td Rivinl[1996], Rivin
[2003],/Cheunlg|[2003], are presented. The initial exterfdechulation for the subtour
elimination polytope is constructed for planar graphs, mhevery face involves three ver-
tices, i.e. for graphs, defining triangulations. In this kare provide another extension
and a simple proof for the validity of the extended formulativithout the restriction to
triangulations. On the other hand, for the graphs, definiipgulations, the presented

extension and the extensiori in Rivin [1996], Rivin [2003heDng [2003] coincide.

3.1. Graph Embeddings

Thegenusy(G) of a graphG = (V, E) is the minimum genus of a closed orientable
surfaceS, such that the grap¥ can be embedded on the surf&without crossing edges.
A graphd is calledplanar if it is embeddable on the plane, i.e. on the closed orieatabl
surface with genus zero. We referlto_White [1973], Schiiiji2803c] for all relevant facts
about graphs and embeddings of graphs on surfaces.

Having an embedding of a gragghon a surfaceS without crossings, define trdual
graphG = (V*, E*), whereV* is the set of faces, induced by the gra@ion the surface
S, and the edge&’™* correspond to the edgds, where each edge froth* connects two
neighbor faces. ThEuler characteristicy(G) of a graphG = (V, E) is equal2 — 2v(G).
Moreover, if a connected grapgh is embedded into a surfack wherex(G) = x(S), the
Euler Formula states

V=Bl +|F| = x(G),

whereF' denotes the set of faces induced by the embedding of the gfaphthe surface
S.

35
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Note that an embedding of a gragh= (V, E) on a surfaceS can be obtained in

O(|V|O(’V(S))) running time (see_Filotti et all [1979]) In fact, we shouldt xpect an
algorithm with a running time, which is polynomial in bdti| and~(S), sincéﬁoiﬁssb
[@] showed that it is atwP-hard problem to determine the genus of a graph=
(V. E).

n

3.2. Extended Formulation of7T-join Polyhedron

Given a graphG = (V, E), define thel-join polytoperToin(G) C RF for some even

subset of vertice¥ C V, as
Ploin(G) = conv({x(T) € R" : T € T (G)}),

where 77T (G) denotes the set of dll-joinsin the graphG, i.e. the set of alkR C E, such
et T={veV:|o(v)N R isodd .
The T-join polytopeP?, (G) can be described by < z < 1 and the following linear
inequalities (see Edmonds and Johnson [1973], Schrij@a3a])

z(6(S)\F)—x(F)>1—|F| for SCV,FCd(S),|SNT|+ |F|isodd.
Note that the perfect matching polytope for the graphk- (V, E) is a face of thé/-join
polytoper‘gin(G), where the face is defined by the equations

z(0(v))=1 forveV.
TheT'-join polyhedronis the polyhedron
PLL(G)+RY.

Moreover, the linear inequalities
(3.2.1) z(6(9))>1  for SCV,|SNT]is odd,
together with the non-negativity constraints> 0, describe the&-join polyhedron (see

[Edmonds and Johns 73)).
Similarly, the perfect matching polytope is the face of thgoin polyhedron defined

by

z(d(v)) =1 forveV.
Thus, every extensio® C R?, p : R — R¥ of the V-join polyhedron (or thé/-join
polytope) provides an extension of the perfect matchingtppk via the polyhedron
Qn{zeR: 2z =p(z),z(0(v) =1forve V}
and the affine map : R? — R¥. Thus, in order to construct an extended formulation

for the perfect matching polytope, one can focus on extehol@aulations for ther'-join
polyhedron of-join polytope.

3.2.1. Vector SpacesConsider an embedding of a connected grépk (V, E) on
a surfaceS, such thaff
X(G) = x(5),
and the corresponding dual gragti = (V*, E*), whereG* may have loops and parallel
edges. Here and later, identify the edges of the gf@p¥ith the edges of the graph™.
Consider two vector spaces, defined over the Galois 6iéi(2) as

V={yeGF2)¥ :y=x(C), CCE* |CNJ@) isevenforalw e V*}
and
W = {y e GF(2)" :y = x(6(5)), SCV}.

Lin this chaptery (G) stands for the Euler characteristic of a gr&ghwhat applies also to a surface In
other casesy(.S) denotes the characteristic vectorfyfas it was in the previous chapters.
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Here adding a loodv,v} € E* to C C E* does not affect the parity a€ N d(v)| for
everyv € V*.

Indeed, it is not hard to see thdforms a vector space ovelF(2). On the other hand,
W is a vector space ovérF(2), since the sum of every two vectors froii belongs to
W, what is a fundamental property of cuts in a graph.

Clearly, the vector spadé’ is a subspace of the vector spagéecause the cardinality
of the intersection of every cycle with a cut is even. And, dimmensions of the vector
spaces’ andW over GF(2) satisfy

dim(V) = |E*| - |V*|+1=|E|— |F|+1
and

dim(W) = V| -1,

since the grapld- is connected. To verify this, one can construct basis vedtor) and
W. For the vector space), takey(d(v)) as basis vectors, where the verieranges over
V' except a fixed vertex;,s. For the vector spack, takex(C.), where the edge ranges
over E* except the edges of a fixed spanning treor the graphG*, andC. is the cycle
in G*, defined by the edgeand the tred” (loops are considered to be cycles).

From the Euler Formula, for the dimensions of the vector ep#¢ andV, one has
(3.2.2) dim(V) — dim(W) =2 — (|F| = |E|+ |V]) =2 — x(S),
what, for simplicity, is denoted as

k=2-x(S)=2v(S5).
Consequently, there exists a linear functionGF (2)F — GF(2)*, such that
(3.2.3) W={yeV:o(y) =04}.

Moreover, there exists another linear function GF(2)¥ — GF(2), such that
(3.2.4) {y € GF(2)¥ :y =x(0(5)), SCV, |SNT|is odd} =
{yeV:oly) =0k, v(y) =1}.
For example, the linear functian : GF(2)¥ — GF(2), defined as

¥(y) =y(R),
whereR C Eis aT-join in the graphG, satisfies[(3.214). Indeed, for a vectoe GF(2)7,
given as

y = x(6(5)),
whereS C V, overGF(2) the following holds

y(R) =) 16(w)NRl= > [s)nR|=|TNS|,
veS veTNS

becausdr is aT'-join in the graphG.

3.2.2. Extended Formulation of7-join Polyhedron. Now, the modified extended
formulation of Gerards [1991] for th&-join polyhedron is present&:l The variables in
the extended formulation of tHE-join polyhedron are indexed by triples

{(2,f,9): f € GF(2)",g € GF(2)}

and
{({v,u}, f,g9) :v,u € V*, f € GF(2)*, g € GF(2)}.

in [Gerards[[1991] , the extended formulation is divided intse of linear systems, what results in a
formulation of sizeD(2+* + 2% |V*|| E]), in comparison to the siz@ (2% |V* || E]) of the presented formulation.
Nevertheless, the fundamental ideas of both formulationsiariar.
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Consider the following system of linear inequalﬂes

(825)  zpuu}s+os{val)g+b{val) ~ 22ty S Tw
(82.6)  Zuw.fre({vub)gruv({v.u)) = Z{uw},f.g S Thw
(B27)  zorro(fvud)gtv({vu) ~ Z{uwhfig S T

for all f € GF(2)¥, ¢ € GF(2) and for all distinct vertices, w, u € V*, such that
{v,u} € E*, and

(3-2.8)  zo,r+o({voh)grbl{ved) ~ 28,19 o0}

(3-29)  Zwups+o({vod)gte{vo)) ~ b fg T{o,0} s

for all f € GF(2)*, g € GF(2) and for all distinct vertices, v € V*, such tha{v, v} €
E*, and

(3210) 22,0,,0 = 0 and 22,0,,1 >1

(3.2.11) 0<z.

In the linear system above, the expressiotsy, u}) andy({v, u}) are used as shortcuts
for ¢(x({v,u})) andy(x({v,u}), respectively.

Theorem 3.1. For every connected grapty = (V, E), the linear system, described

by (3.2.8)— (8:2.11) together with the projection on the variables, forms an extended
formulation of thel'-join polyhedron.

IAIA

PROOF. First, prove that for every point € R¥ from theT-join polyhedron in the
graphG, there are: variables to satisf{(3.2.5) £(3.2]11). For this, defineariables as
follows

20,1, = min z(R),
x(R)€EV
d(x(R)=f¥(x(R))=g

forall f € GF(2)*, g € GF(2), and

Ziva = min z(R),

foubfoo Regtvi(GY) (B)

d(x(R)=F(x(R))=g

for all distinctu,v € V* and for all f € GF(2)*, g € GF(2), where adding a loop
{w,w} € E*to R C E* does not affect the parity d? N J(w)| for everyw € V*
(the value is zero, if the set over which the minimum is defiredmpty). Obviously,
the constraintd(3.2.5)£ (3.2.9) are satisfied for the définealues. And the constraint

(E210)

2z,0,,1 2> 1
holds, since
23,0,,1 = JIQHCI%‘ z(R) = gnclg x(R)>1,
x(R)EV R=5(S)
?(x(R))=0p,(x(R))=1 |SNT| is odd

due to [3.Z11) and(3.2.4). Moreover, the variablgy, o is equal to zero, due to the non-
negativity of the vectot:.
On the other hand, for evenyc IR¥, such that there arevalues, satisfying the linear

system [(3.2)5) 1(3.2.11), the inequalities (3.2.1) hot, i
z(6(5)) 21

1 This linear system imitates a network, with the vertex seaétpithe index set of the additional variables
in the extended formulation, where the sousand sinkt in the network are defined as

s=(9,0,,0) and t=(2,04,1).

The extended formulation, describes upper bounds on théhenfa subset of arcs in the network, and demands
that the shortest path between the souread the sink is not less than one.
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for everyS C V, such thatS N T'| is odd. Indeed, the characteristic vector

y = x(6(5))
belongs to
{reV:é(r)=0k0(r)=1}.
The vectory defines a set of walks in the graptt, since this is true for all vectors from
V. Ordering these edge disjoint walks}, ..., e; ), ..., (el,... ¢} ), let us write these
edges in one sequence

1 1 2 t—1 ¢ t
(e1,...,e0) = (el,...,eel,el,...,eztil,elw..,ezt)

in the same order as they appear in the walk. Summing the atidgs [3.2.5) —[(3.2.70),
depending on the values

f= ¢(X(Ui§jei)) and g = 'L/)(X(Uigjei))
and at most two vertices, v € V*, with odd degrees in; < je;, the desired inequality
1 <2g,0,,1 — 22,0,,0 < 2(0(5))

is obtained. O

The constructed extension of tf&join polyhedron has siz&®(2¥|E*||V*|). This,
due to [3.ZP), leads us to the next generalization of theréme of Gerards.

Theorem 3.2. For every graphG = (V, E), |V| = n, andT C V, there exists a compact
extended formulation for th&-join polyhedron, whenever the genu§G) is equal to
O(logn).

Here, one can get rid of the connectivity condition, sincexended formulation can
be constructed for every connected component of the gtgpseparately.

Recall that the perfect matching polytope for a graph= (V, F) is a face of the
V-join polyhedron, what implies the next result.

Proposition 3.1. For every graphG = (V, E), |V| = n, there exists a compact ex-
tended formulation for the perfect matching polytope, veven the genus(G) is equal
to O(logn).

Moreover, since the inequality”| < 3|V| — 6 holds for every planar grapf’ =
(V, E), |V] > 3, the next proposition follows from the Euler Formula.

Proposition 3.2 (Gerards[[1991]) For every planar graphG = (V, E), |V| = n, there
exists an extended formulation for the perfect matchingtppk of size)(n?).

3.2.3. Construction of Extended Formulation. In the presented construction, it is
necessary to obtain the dual gra@ti from an embedding of the grapgh on a surface
S, where the genus(S) is equal toy(G), what can be done iﬁ)(|V|O(7(G))) time, due
to|Filotti et al. [1979]. The map : GF(2)® — GF(2)* can be obtained in polynomial
running time, using the basis vectors 0y, and the map) : GF(2)¥ — GF(2) can
be obtained in polynomial running time, since it is enougfirtd a7™-join in the graphG,

what can be done iﬁ)(\V\S) running time (seme@%p.

3.3. Extended Formulation of Cut Polytope in Planar Graphs

The next extended formulation of the perfect matching mggtin planar graphs, is
due t@bS], and is obtained via an extended fation for thecut polytope
P.ut(G), G = (V, E), which is defined as

Peut(G) = conv({x(6(S)) e RF : S C V})
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Clearly, the inequalities

(3.3.1) x(F)—z(C\F)<|F|-1 forCeC(G), FCC, |F|isodd
(3.3.2) 0<z<1

are valid for every point: from the cut polytope...(G), since the cardinality of the
intersection of a cut and a cycle is even. But, the linearesgdB.3.1),[(3.312) defines the
cut polytopeP.... (G) if and only if G is not contractible td<s (see

D)
For further discussion, defi@(G) C R” to be the polytope, described by the linear

system[(3.311)[(3.32).

3.3.1. Projecting Linear System.The relation between the linear systefis (3.3.1),
([3:3:2) for a graph and its subgraph is studied here.

Lemma 3.1. For every graphG = (V, E), the polytopeQ(G’) € R¥, whereG’' =
(V,E"), E' = E\ {e} for some edge < E, is obtained from the polytop@ (&), by the
projection to the variableg’.

PROOF The projection of the polytop@(G) to the variabled.’ satisfies the linear
system[(3.311)[(3.3.2) for the graph, since the set of cycle¥(G’) is a subset of the set of
cyclesC(G). To finish the proof of the lemma, it is necessary to show thanegualities,
which are valid for the projection of)(G) to the variablest’, follow from the linear
system [(3.311),[(3.3.2) for the graghi. For this, use the Fourier-Motzkin elimination
method, what leads to three possible cases.

Forz, <1landz(F)—xz(C\ F) <|F|—1,wheree e C\ F,C € C(G), F C C,
|F'| is odd, one gets

a(F) = z(C\ (FU{e})) <|F],

what follows from [3:3:R) foG".
For—z. <0andz(F)—xz(C\ F) < |F|—1,wheree € F,C € C(G), F C C, |F|
is odd, one gets

w(F\{e}) —2(C\F) <|F| -1,

what follows from [3.3.R) fol>".

ConSideringC(Fl) — .’L‘(Cl \Fl) < |F1| -1 andl‘(FQ) — LI,‘(CQ \ FQ) < |F2| -1,
wheree € Fy,e € Oy \ Fp, C1, Cy € C(G), Fy C Cy, F» C Cy, |Fy| and|F| are odd,
one gets

a(F1) —x(C1\ Fr) + o(F2) — 2(C2 \ F2) < ||+ [F2| = 2,
which can be transformed into the inequality
2(Fi\ {e}) + 2(Fo) — 2(C1 \ Fy) — 2(C2 \ (F2U{e})) < [Fy\ {e}| + |Fa| — 1,
what follows from [3:311) [[3.312) fof’'. Indeed, in the case of
N(Cy\ Fy) #£{e} or FonN(Ci\ F)#9@
the above inequality follows froni (3.3.2) f6¥'. Otherwise,
(Fi\{e})) AF> CC1ACy,

and the desired inequality follows from (3.8.2) ahd (3.3tdken for a cycle” from C; A
(5, such that the cardinality df = C' N ((F1 \ {e}) A F3) is odd. Note thaC; A Cy is
a union of edge disjoint cycles, and the cardinality Bf \ {e}) A F is odd. O
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3.3.2. Redundant Inequalities.

Lemma 3.2. For every cycleC' € C(G), which has a chord € E, the inequalitie{3.3.3)
for the cycleC

2(F) —2(C\F)<|F|—1 forF CC,|F|isodd
are implied by@.3.1)for two cyclesC;, Cs € C(G) such that
CruCy :CU{e} and N Cy :{6}.

ProOOF ConsiderF C C, such that the cardinality of' is odd. Assume that the
cardinality of /; = C; N F is odd. Definef, = (F N Cy) U {e}, the cardinality of which
is odd, too. Adding two inequalities

(1) —x(Ci\ Fi) < [Fi| =1 and @(F) —(C2\ Fy) < [Fo| — 1,
the inequality[[3.3]1) for the cycl€ and the sef" is obtained. O
Lemma 3.3. For every cycle” € C(G), |C| = 3, the inequalities
0<z. <1 foreecC
are implied by the inequalitie@.3.1)for the cycleC.

PROOF Let the cycleC be given as{v, u, w}, v,u,w € V, then there are four in-
equalities[(3.3]1), associated with the cy€le

(3.3.3) Ty + Tow + Tyw < 2
(3.3.4) Tou — Tow — Tu,w <0
(3.3.5) Tyw — Tou — Ty <0
(3.3.6) Ty — Tou — Tow < 0.

From [3:3.3),[(3.314), get, , < 1. On the other hand, the inequality, , > 0 follows
from (3:33), [3.35). O

3.3.3. Extended Formulation of Cut Polytope.Due to Lemm&3]1, for every graph
G = (V,E), |V| = n, the polytopeQ(G) is obtained from the polytop@(K,,) by the
projection on the variablek.

From Lemmad_3]2 arid 3.3, the polytaRéK,,) is described by

Tou +t Tow + Tuw < 2 forv,u,w e V

Tyu — Tow — Lu,w < 0 for v, U, W € V,

since in the complete graphi,, every cycle with more than three edges has a chord. Thus,
the above linear system, together with the projection owéhniablesE, forms an extended
formulation of the polytop&)(G), what for graphs not contractible #§5 is equal to the

cut polytope (see Barahona and Mah| 986]).
Theorem 3.3(Barahonal[1993]) For every graphG = (V, E), |V| = n, which is not

contractible to K, there exists an extended formulation of the cut poly®pg(G) of
sizeO(n?).

And since every planar graph is not contractibléstg an extended formulation of the
cut polytope for planar graphs is obtained.

Proposition 3.3 (Barahonal[1993]) For every planar graptG = (V, E), |V| = n, there
exists an extended formulation of the cut polyt®pg (G) of sizeO(n?).
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3.3.4. Extended Formulation forT'-join Polytope and Perfect Matching Polytope.
Let us consider a planar gragh= (V, E) and its dualG* = (V*, E*), which may have
loops and parallel edges.

EveryT-join in G can be obtained from any oth&kjoin as the symmetric difference
with a union of edge disjoint cycles. On the other hand, tharagtric difference of a
T-join and a union of edge disjoint cycles is agaifi'goin. Additionally, notice that the
set of unions of edge disjoint cycles @ corresponds to the set of cuts in the dual graph
G*.

Thus, having an extended formulatiGhC R%, p : R — R®" of the cut polytope
Peut (G*), the polyhedrorf) C R? and the affine map’ : R? — RF

1—pe(z ifeec R
P =4 |
Pe(2) otherwise
form an extended formulation of tHE-join polytoperToin(G), where R is a’T-join in
the gra%hG. Due to Propositiof 3]3, an extended formulation of Th@in polytope is
obtained.

Proposition 3.4dB_aThQn|a|E3]) For every planar graptG = (V, E), |V| = n, and
T C V, there exists an extended formulation for thgoin pontoperToin(G) of size
O(n?).

%
join

And since the perfect matching polytope for a grdpfs a face ofP
tion[3.2 is reproved.

(G), Proposi-

3.3.5. Construction of Extended Formulation. Note that for the construction of the
extended formulation for the cut polytope in planar grajhs not necessary to consider
a dual graph of7. On, the other hand in the case of thigoin polytope and the perfect
matching polytope, a dual graph of a planar graph is needeighvean be constructed in
polynomial time (see Filotti et al. [1979]). Additionallfor the T-join polytope and the

perfect matching polytope, it is necessary to firlt-gin in the graphz, what can be done
in polynomial running time as well (sﬁ%a]).

3.4. Spanning Tree Polytope

In this section, an extended formulation of the spanningpiaytope for planar graphs
is presented, which was proved|by Willidrhs [2002] and indefeatly reproved by us.

Consider a planar grapd = (V, E) and its dual graplG* = (V*, E*). Fix a
facev; € V* and a vertexsi,s € V, which belongs to the face);, and define the
following linear systerﬂ

(3.4.1) =z, + 2y A+ iew =1 for v,ueV* e={v,u} € E*
342 (1—=z) HYer +Yeu =1 for vyueV,e={v,u} €FE

INote that in Propositiof 3l 3 the graghis a simple graph, i.eG does not have loops and parallel edges.
On the other hand, if¥ has loops or parallel edges, the cut polytdhe: (G) arises from the cut polytope for
the simple graph, obtained frod by deleting all loops and leaving one edge for every set oélfgredges.
Indeed, the variables corresponding to loops are equalrtofpe all points fromP .t (G), and the variables,
corresponding to a set of parallel edges are equal for ex@ny ffom Pyt (G).

2For constraintd(3.413)(3.4.5), every loop appears amtiesi sum oved(v), v € V*. The same is true for
the constraint§(3.4.1). Actually, it is not critical, sénthe system gives an extended formulation for the spanning
tree polytope, even if every loop is written twice, but instltiase, we can not use the totally unimodularity of
the constraint matrix. Moreover, for every loop the variablis equal to zero in the provided extension of the
spanning tree polytope, since every loop corresponds to boichge, which participates in every spanning tree.
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(3.4.3) > zew =1 for veV*\ {v;}
e€d(v)

(3.4.4) > Yew =1 for veV\ {vw}
e€d(v)

(3.4.5) Z Zew =0 for v =,
e€d(v)

(3.4.6) Z Yev =0 for v = vins
e€d(v)

and the non-negativity constraints

(3.4.7) z>0 and y>0.

In this section it is shown that the linear systdm (3.4.1) 4.1 and the projection on
variables define an extended formulation of the spannirgodytopePs,. (G).

To prove this, use the fact that for every planar grépéind its dualz* spanning trees
in G are associated with spanning treegshin the following manner

T(G)={E\T:T € T(G")}.

Lemma 3.4. For every planar graptG = (V, E) and its dualG* = (V*, E*), the linear
systen{3.4.1)- (3.4.17) together with the projection map arvariables, forms an extended
formulation of the spanning tree polytope, (G).

PROOF First, show that for every vertex of the spanning tree polytoge,,.(G),
wherex = x(T), T € T(G), there arez, y variables, satisfying the above linear system.
To define these variables, consider arborescengesS™* C FE, defined by the tre& in G
and the tree& \ T in G*, rooted at the vertices,,s and v} ¢, respectively. The variable
Ye.v, Wherev € V ande = {v, u}, is defined to be equal one, if the &, v) belongs to
the arborescencd¥. Analogously, define variables for the arborescendg .

On the other hand, it is necessary to show that for everywértey, z) of the polytope,
defined by the linear systenf_(34.1)[=(314.7), the poiftelongs to the spanning tree
polytopePs,(G). For this, note that the linear system is totally unimodutire to the
Ghouila-Houri characterization of totally unimodular megs ¢, y variables participate
once in [3:4.1),[(34]12), and once i (3]4.3)[=(3.4.6), andhriables participate once
in (3:43) and once in(3.4.2), but with opposite coefficg¢nfAnd thus, the vertices of the
polytope, defined by the system (314.11=(3.4.7), have memeomponents, i.e. = x (7'
for someT’ C E.

Thus, it is necessary to show thatis a tree in the grapliz. For this, definelV,
N* C F as follows

N={(u,v) eV XV :y,=1e={u,v}ecE}

and
N ={(u,v) e V' x V" 2., =1,e={u,v},e € E}.

Due to [34.B),[(3:4]4), for every vertex from\ {vine}, V* \ {v;} there is exactly one
ingoing arc inN, N*, respectively. And due t¢ (3.4.5), (3.4.6), \y, N* there exists no
ingoing arc forviye, vy, respectively.

Hence, it is enough to prove that does not contain a directed cycle (every cycle in
N or N* is a directed). For this, define tir@erior for a cyclein G, G*, as that one of the
two regions, defined by the cycle, which does not contgjp vin¢, respectively. To make
the definition consistent, fix an embedding of the grépbn a surfaceS, what induces the
dual graphG*.

WheneverN contains a directed cycl€;, then due to[(3.4]11)[(3.4.2), all variables
z, involving the edges of the cycl€; are equal to zero. Hence, there exists no arcs in
N*, between the faces from the interior of the cy€lgin the graphz and the faces from
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the exterior of the cycl&’;. And sincev;;; does not lie in the interior of the cyclé,,
there exists a directed cycté in N*, lying in the interior of the cycle€; in G, because
for every vertexv € V* from the interior ofC; there is an ingoing arc. Due th (3.4.1),
(3:422), all variableg, involving the edges of the cyclté} are equal to zero. Analogously,
there exists a cyclé€’; in IV, which lies in the interior of the cyclé€’;. Iterating this, one
obtains a set of distinct cycl€s;, € C(G), i € N, since every cycle from the sequence lies
strictly inside the preceding cycles (no two cycles haveraroon edge). But, the number
of different cycles in the grap&' is finite. O

Theorem 3.4(1M ﬂmn For every planar graphG = (V, E), there exists an
extended formulation for the spanning tree polyt®ag, (G) of size4|E|.

3.5. Subtour Elimination Polytope

In this section, the subtour elimination polytopg.(G) C R®, G = (V, E), |V| > 3,
is considered. Recall the linear description of the subgtiorination polytope

(3.5.1) z(E(S)) <|S] -1 forall o#SCV
(3.5.2) z(d(v)) =2 forall veV
(3.5.3) 0<z.

As we saw in Section 2.3, there exists an extended formuldtiothe subtour elim-
ination polytopePy.(G) of sizeO(|V||E|) (see_Yannakakis [1991]). Here, a more com-
pact extended formulation is constructed, exploiting tlenarity. For this, fix a vertex
vint € V and a face} ;, such that the face’ ; contains the vertex;,s € V. Note that in

inf? in

Section$ 3.5]1,3.5.2, graphs are not restricted to be plana

3.5.1. Redundant Inequalities.

Lemma 3.5. For every graphGG = (V, E), the inequalitieg3.5.2) (3.5.3) and the inequal-
ities (3.5.3)for vertex setss’ C V/, such that the induced subgrapf§5), G(V \ S) are
connected and the vertex sgidoes not contain the verteyx,¢, form a linear description
of the subtour elimination polytoge.;.(G).

PROOF In the above system, every inequalliy (315.1), indexed $st4 is equivalent
to the inequality:(0(.S)) > 2, since

2(8(5)) = S (6(v)) — 22(E(S)) = 2/S| — 22(E(S)) .
veS

Thus, these constraints can be excluded, where thg sehtains the vertex;,¢, because
the constraintd (3.5.1) for the sgtand the set” \ S are equivalent.

Now, if G(S) is not connected, there are two sets of vertisgsS, C V

S =5US85, where Sl,SQ#Q, S1 ﬂSQZQ,(S(Sl)ﬁ(S(Sg)ZQ,

then the inequalitie$ (3.8.1) fci, Se imply the inequality[[(3.5]1) for the sé&, since

z(E(S)) = 2(E(51)) + 2(E(52)) < [S1] =1+ [S| -1 =S| =2 < |5 1.

Thus, the inequality[{3.5.1) for the sétis not tight for the subtour elimination poly-
topeP..(G). Analogously, one treats the case, wiiéfl” \ S) is not connected. O

3.5.2. Extended Formulation via Spanning Tree PolytopeHere, an extended for-
mulation of the subtour elimination polytope via the spagniree polytope is presented.
From Lemmd355 and from the linear descriptioh of Edmbhdg1] r the spanning tree
polytopeP, (G)

z(E(S)) <|S|—-1 forall @#SCV
0<z and z(E)=V -1,
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the next result followds
Lemma 3.6(Schrijver [2003b]) For every graph = (V, E), the following linear system

projg x € Pt (G') and  0<uz
z(d(w)) =2 for veV,

whereG' = (V/, E"), V! = V \ {vine }, E' = E \ 6(vine), defines the subtour elimination
polytopePg.(G).

For planar graphs, Lemmas_B.4 ahd 3.6 provide us with an @ésteformulation
for the polytopeP..(G) of size at most|E|. But there is a more compact extended
formulation of the polytop®..(G), which is constructed in the next section.

Lemma 3.7. For every planar graptG = (V, E), there exists an extended formulation for
the subtour elimination polytop..(G) of size4|E|.

3.5.3. Extended Formulation for Subtour Elimination Polytope. Now, we con-
struct an extended formulation of the subtour eliminatiotyfwpe P4 (G), using addi-
tional variablesz. , for every edge: € E, vins € e, and facev € V*, such thaw € e.
Consider the following linear system

(3.5.4) Te+ Zew + 2Zew =1 for wvine € e = {v,u}, v,u e V*
(3.5.5) Y zew=1 for veV* v & v
e€d(v)
and
(3.5.6) z(0(v))=2 forall veV and z>0, >0

together with the projection map anvariabled.
The presented extended formulation generalizes the extiefurmulation of Rivih

[1996] (see alsb Rivir [2003], Cheurlg [2003]). But whenebergraph defines a triangu-

lation, our extension is identical to the extensioh of R 1

Lemma 3.8. For every planar graphG = (V, E), the linear systenf3.5.2) - (3.5.6)
together with the projection map onvariables, defines an extended formulation of the
subtour elimination polytopBg.(G).

PROOF. We want, to show that every pointc IR, for which there are variables,
satisfying [3.5.4) -(3.516), belongs to the subtour elatiim polytope, i.e. to show that
satisfies[(3.5]1) £13.3.3). Fix the embedding of the gr@an the plane.

Due to Lemmd_3]5, the vertex,; is assumed to be not in the vertex sefor the
inequalities[[3.5]1) and the induced gragh&S), G(V \ S) are connected. We sum the
equations[(3.5]4), indexed by the eddess)

ES) = D (@et Y zew)=x(BEES))+ D Y zew,

e€E(S) veEV* vEe e€E(S)veV ™ vee

and consider the induced subgra@hs) = (S, E(S)) with the embedding, inherited from
the graphG. Let the setF” denote the faces, defined by the embedding'©%) into the

1This may be be also proved using the notiorgf;-tree (seé Schrijvel [2008b]).

2For constraintd (3.515), every loop appears once in the stané¢v), v € V*. The same is true for the
constraints[(3.5]4). Note that if the dual graph has loops the subtour elimination polytope is empty. The
same holds, if there exists only one face in the gréphe. G is a forest.
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plane, which are also faces for the graphThus,

Z Zew = Z Z Zew + Z Z Zew =

ecE(S)veV*, vee ecE(S)veF’, vee e€E(S)veV*\F' vee
E § Zev — § § Zew s
e€E(S)veF’ vee vEF ecd(v)

sinced(v) C E(S) for every facev € F’. From [3.5.5), we get the equation

Z Z Ze,v:|F/|7

veF e€d(v)
because the vertex, s does not belong t&. But note that there can be at most one face
among the face#'(S) of the graphG(S), which is not a face of the graphi, otherwise
the graphG (V' \ S) is not connected. Thus,

[E(S)| = 2(B(S)) + [F'| = x(E(S)) + [F(9)| - 1,

and since the grapfi(.S) is connected, apply the Euler Formula to get the desiredialeq
ity |S| —1 > z(E(S5)).

On the other hand, it is necessary to prove that for evdrpm P (G), there exist
variables, satisfyind(3.5.4) E(3.5.6). Fix the embeddifthe graph on the plane.

Due to Lemm4 34 and Lemriia B.6, we can g variables from the extended for-
mulation for the subtour elimination polytope, constractéa the extended formulation
for the spanning tree polytope. Recall that in this case, aresider the spanning tree
polytope Py, (G'), G' = G(V \ {vinr}). In the extension of the spanning tree poly-
tope Py (G'), choosevi*rif to be the face of7’, defining the region with the vertex,;
inside. Now, set the variables , to the variablez; o from the extension for the span-
ning tree polytop&®,,(G’), whenever the vertex,¢ Bfelongs to the face, otherwise set
the variablez. ,, to the variable:, O

Thus, the linear systerh (3.5.4)[=(3]5.6) provides an exeridrmulation of the sub-
tour elimination polytop&.;.(G) of size3|E|.

Theorem 3.5. For every planar graptG = (V, E), there exists an extended formulation
for the subtour elimination polytopR,:.(G) of size3|E)|.



CHAPTER 4

Bounds on General Extended Formulations for Polytopes

In this chapter, we describe lower bounds for sizes of exddridrmulations of poly-
topes. In 1991, Yannakakis showed that the size of a minixtaheded formulation for a
polytope is essentially equal to the non-negative rank daeksmatrix for this polytope
(se€ Yannakakis [1991]), what we tighten to the statemaeitttie extension complexity
of a polytope is equal to the non-negative rank of a slackimétie one-point polytope
is an exception). This result allows to establish a lowemabaon the size of an extended
formulation for a polytope as the minimum number of monoateatic non-zero combina-
torial rectangles of the entries in the slack matrix, whioh meeded to cover all non-zero
entries of a slack matrix. The lower bounds presented insiiision are coming from this
rectangle covering problem and provide lower bounds on ék&angle covering number
of the slack matrix. The results presented in this chap&epartly based on the joint work
with [Fiorini et al. [20114].

The rectangle covering problem is well known as the nonrd@testic communica-
tion complexity problem. Not so many techniques are knowestablish a lower bound on
the rectangle covering number. In Secfion #.14, we give anisw of the most used ones.
And in later sections, we give examples of their use in ordexstablish lower bounds for
extended formulations.

But we have to mention that the rectangle covering lower ddion extensions is,
in a certain sense, weak, since it takes into consideratiiy the combinatorial struc-
ture of a polytope. In his paper, Yannakakis showed thatebtangle covering bound is
equal toO(n*) for the perfect matching polytope of a complete graph witrertices, for
which up to now no extended formulation of polynomial siz&i®wn. Moreover, there
are polygons with: vertices, which do not admit any extension with size less tan
(see_Fiorini et al.[[2011c]), but with the covering numiggfiog n) for their slack matrix.
Thus, there is a size gap between extended formulationofgtgpes with the same com-
binatorial structure already in dimension two, since fgularn-gons there is an extension
of sizeO(log n) (see Proposition 2.13 duelto Ben-Tal and Nemirovski [2001])

Another question, which stays outside of our considerai®the coefficients in the
extended formulation for a polytope. From counting reasonge can conclude that there
aren-dimensional zero-one polytopes, which do not admit a canegtended formula-
tion, when the coefficients in the extended formulation hpekynomial size. Recently,
it was shown that there are matroid polytopes, which do natitad compact extended
formulation, even if no restrictions on the coefficients posed (sell]).

Results concerning the non-negative factorization carebeiglized for extended for-
mulations, which are defined by other cones, not necessamlyhqulral cone (for further
details see Gouveia et|al. [2011], Fiorini et al. [2011b]eré] we generalized the notion
of extended formulation to the notion of extended relaxgtimoaking properties and ideas,
used in the proofs, more evident. Moreover, even thesemotian be generalized to ex-
tended relaxations of a convex set up to a convex set, usirkjefsouveia et dl[[2011].

4.1. Minimal Extended Relaxation

In the beginning of this chapter, we consider a generatinatif extended formula-
tions, so called extended relaxations. Indeed, a lot oftiepuoved in this chapter can be

a7
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generalized, using this notion. Moreover, the notion okeged relaxations reveals the
nature of the used argumentation.

A polyhedron@ C R¢ and an affine map : RY — R™ form anextended relaxation
of a polyhedronP, C R™ up to a polyhedro”* C R™, whereP, C P* C R™, if the
inclusion

P, Cp(Q) C P*

holds.

.
¥ 7

FIGURE 1. Example of an extended relaxation for polyhefra P*.

We call a relaxation via a polyhedrap C R? and an affine map : R — R™ a
minimal extended relaxatioof a polyhedronP, C R™ up to a polyhedroP* C R™, if
the size of the extended relaxationC R, p : R — R™, i.e. the number of facets of
the polyhedrorQ C R?, is equal to the minimum size among all extended relaxatidns
the polyhedronP, C R™ up to the polyhedro®* C R™.

Apparently, when a polyhedroR, C R™ is equal to a polyhedro®* C R™, an
extended relaxation of the polyhedréh C IR™ up to the polyhedro®P* C R™ defines
an extension of the polyhedrdn C R™, where

P=P =P,.

4.2. Slack Matrices of Polyhedra
Here, we define a central notion of this chapter. For a polydred
P*={z:{d',z)<b;,iecl},
given by a linear system with finite number of inequalitiesd a polyhedron
P, = conv(X.),

given as the convex hull of poinfs, C P* C R™, which is allowed to be infinite, slack
matrix Mjac (P*, P.) € RL **+ is defined as follows

Mslack(P*7P*)i,;p = bi - (ai,x>

for x € X, andi € I*. Clearly, the entries of the slack matiMgy,..(P*, P.) are non-
negative, since each inequalify’, #) < b;, i € I is valid for all pointsz in X,.. Despite
our notation, the slack matri..x(P*, P.) depends on the choice of the linear system
(a’,x) < b;,i € I* and the sefX,, rather than on polyhed®* and P..
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Obviously, the rank of the slack matrM... (P*, P.) is at mostm + 1, for every
choice of the linear system for a polyhedr&f C IR™ and the set of points for a polyhe-
dron P, C R™, since the matridM..x (P*, P.) is the product

Mslack(P*7P*) = (_A7b) (ii{i)
of matrices with dimensiong*| x (m + 1) and (m + 1) x | X,|, where the linear sys-
tem Az < b denotes the linear system, consisting of the inequalitiesc) < b;,i € I*.

Whenever polyhedr®,, P* C R™, m > 1, are full-dimensional polytopes, the rank
of every slack matrixXMg.ck (P*, P.) is equal tom + 1, for every choice of the linear
system for the polyhedroR* C R and the set of points for the polyhedréh C R™.
Indeed, in this case, there are+ 1 affinely independent points',... ™! in X,. And

hence, the matrix
x! .. gl
(5 )

is non-singular. Additionally, there are + 1 linearly independent vecto(a®:, b;, ), i; €
I*,t € [m + 1], and thus, the matrix

—ai bz‘1
—aim+1 bim+1
is non-singular. Finally, the product of these two matrices submatrix of the slack
Mgack (P*, Py), what shows that the rank of the slack matrix is at least 1.

As previously mentioned, a slack matif,. (P*, P;) for polyhedraP,, P* C R™
is not unique, due to possible reorderingsiéfand X, and due to possible introduc-
ing in I* some redundant inequalities for the polyhedi®h and into X, some addi-
tional points from the polyhedroR,. Nevertheless, later it is shown that every slack ma-
trix Mgk (P*, P.) can be used to determine the minimum size of an extendechtalax
for the polyhedronP, C IR™ up to the polyhedro®* C R™.

4.3. Non-Negative Factorization, Non-Negative Rank

A non-negative factorizatioof a matrix M € ]RerX is a representation of the matrix
M as the product

M=TS

of two matricesT’ € RY*", S € R}*¥, where the number is called thesize of the
non-negative factorization

The non-negative rankank (M) of a matrix M € R.** is the minimumr, such
that there is a non-negative factorization for the matof sizer.

Clearly, dropping the restrictions on the matricésc IRfr”, S e IRZFXX to have
non-negative entries, the definition of the non-negativi teansforms into the definition
of the rank for the matrixX}/. Thus, the obvious lower bound

rank(M) < rank (M)

for the non-negative rank of a matri¥ € R’*X is obtained.
Later, we establish a direct connection between non-neggctorization of a matrix
and finding extended relaxations for a pair of polyhedra.

4.4. Extended Relaxations from Non-Negative Factorizatits

Now, we transform a non-negative factorization of a slackrixdor a pair of poly-
hedra into an extended relaxation for these polyhedra ofdhee size, using the notation
from Section§ 412 arld 4.3.
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Lemma 4.1. For a non-negative factorization of sizefor Mg (P*, P,) for a pair of
polyhedraP. C P* C R'™, there is an extended relaxation of the polyhedignC R™
up to the polyhedro®* C R™ of sizer.

PROOFE Having a non-negative factorization
Mslack(P*ap*) =TS

of a slack matrixMy...(P*, P,), whereT € R *", § € R"***, define the polyhedron
Q C R™*" by the following linear system

(4.4.1) bi — {a',x) = (Ti.,2) forieI* and 2>0.

The polyhedron), together with the orthogonal projection anvariables, forms an ex-
tended relaxation of the polyhedrdt C IR™ up to the polyhedro®* C R™.

Indeed, the inclusiop(Q) € P* holds, i.e. for every point: from proj, (Q) all
inequalities(a’, z) < b;, i € I* are satisfied, because the vects. and > are non-
negative. On the other hand, for evernye X, definez to be equal teb, ,, what satisfies
the linear systeni{4.4.1), sin& .. is non-negative and

bi - <a’i7x> = Mslack(P)i,a: = <11i,*7 S*,z>
holds for everyi € I*. (]

The next observation strengthens Lenima 4.1 for extensionsliytopes, and follows
from the fact that minimal extensions for polytopes are gikig polytopes.

Observation 4.1. For a non-negative factorization of a slack mattif..x (P) of sizer
for a polytopeP C R™, there is an extension of the polytopeC RR™ of size at most
via a polyhedror) C R¢ that is bounded, i.e. that is a polytope itdhlf

4.5. Non-Negative Factorizations from Extended Relaxatits

For every extended relaxatigp C R?, p : R — R™ of a polyhedronP, C R™,
whereP, = conv(X,), X. € R™, up to a polyhedroP* C R™, asections : X, — Q
is a map satisfying

p(s(x)) =z,
for everyx € X.. Moreover, if the polyhedror is given as
(4.5.1) Q={2:(,2) <kj, j €[]},
wherec? € RY, k; € R, the correspondinglack covectorare the vectors! ,...,v" €
R*+, such that
(4.5.2) vl =k; —(,s(z)),
forall j € [r] andz € X,.

Lemma 4.2. For an extended relaxation of sizeof a polyhedronP, C R™ up to a
polyhedronP* C IR™, there is a non-negative factorization of size- 1 for every slack
matriX Mgjack (P*, Py).

PROOF. Having an extended relaxatiagp C R?, p : R — R™, we fix a minimal
linear description of)

(4.5.3) Q={z:(d,z) <k;, jelr]}.
For the polyhedrorP* C IR™, we fix its linear descriptioda’, z) < b;,i € I*, and for
the polyhedron?, C IR™ a set of pointsX.., P = conv(X,).
From the Farkas Lemma, every linear inequality, which igivalr the polyhedror@),
is a non-negative combination of the inequalities from thedr descriptior{(4.513) and the

lobservatiofiZ]1 holds also for extended relaxations, whemolyhedronP* is bounded, i.e. a polytope.
In this case, Observatign 4.1 can be shown via the proof of Leha



4.6. NON-NEGATIVE FACTORIZATIONS, EXTENSIONS OF POLYTOPES 51

trivial inequality0 < 1. Hence, for every € I*, there exists a vectat ¢ Rfl, such that
for all z € R? the equation

bi - <ai’p(z)> = t'f"#»l + Z t;(k] - <Cj,Z>),
JElr]

holds, sincen(Q) C P*.
Lets : X, — @ be a section for the extended relaxati@np. We obtain a non-
negative factorization of the slack matMg;,q(P*, P.), defined by two matrice¥ <

R, ¥ g e RUT*X where

Ti,j :t; forieI*
S;e=kj—(c,s(x)) for z € X,

in the casg € [r], and

T,; =t for i € I*
Sj.=1, for z € X,,
in the caseg = r + 1, which corresponds to the slack of the inequality 1. O

Observation 4.2. For every extensio) C R?, p : R — R™ with sizer of a non-trivial
polytopeP, there is a non-negative factorization of sizier every slack matri?VIgj,cx (P).

Moreover, rows of the right matrix in the non-negative faization can be chosen as
the slack covectors, corresponding to any linear desaiptf the polyhedro).

PROOF. Here, the proof of Lemm@a4.2 can be modified, exploiting theeovation
that the inequality) < 1 is a non-negative combination of the inequalities from thedr
system[(4.5]3) (see Appendix: Lemmal6.1). O

4.6. Non-Negative Factorizations, Extensions of Polytoge
Observationg4]1 arid 4.2, lead to the next result.

Theorem 4.1(Yannakakis!|[1991]) For a polytopeP C R™, |vert(P)| > 2, the size of a
minimal extension foP is equal to the non-negative rank of any slack maWlx, . (P).

Theorem 411 gives us the equivalence between finding thenmalnéxtension of a
polytope and determining the non-negative rank of its staekrix. For example, the next
observation, which does not appear to be trivial, initiatgn be derived from Theordm%.1.

Observation 4.3. For every full-dimensional polytop2 C IR, containing the origin in
its interior, the minimum size of an extension of the polgtbpis equal to the minimum
size of an extension of the polytope that is polar to the pplyP.

PROOF The proof follows from the fact that a slack math&)... (P) of the polytope
P C R™ is also a transposed slack matrix of the polar polytope. O

Nevertheless, even if the non-negative rank of a slack rptavides a minimal num-
ber of facets that an extension of a polytope can have, thisacterization of the extension
complexity of a polytope is hard to use, since even to deteznmwhether the non-negative
rank of a matrix is equal to its rank (the trivial lower bourig)\P-hard (seis

[2009]).
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4.7. Extended Relaxation Problem from Non-Negative Rank Riblem

In this section, we will see that not only the problems of mmal extended relaxation
and minimal extended formulation can be reduced to the mgative factorization prob-
lem, but the non-negative factorization problem can besfaamed into the problem of
finding a minimal extended relaxation. Due to Lenima 4.2 tohilg it is enough to show
that every matrix with non-negative entries is a slack mdti some pair of polyhedﬂa

Theorem 4.2. Every non-zero matrid/ € IRerX can be transformed, via deleting zero
columns and scaling columns by non-negative constantsaistack matrix\/’ for a pair
of polyhedra froniR™, wherem = rank(M) — 1, such that

rank, (M) = rank, (M').

PROOF. Delete zero columns from the mat{ € R.**, what changes neither its
rank nor its non-negative rank. Analogously, scaling catapsuch that the columnwise
sums of elements are equal, changes neither its rank naritaegative rank. Denote the
resulting matrix byM’ € RY <X

There exists a factorization (not necessary non-negétive)/’ of the form

S
!
M= (-4, ) (1X) ,
whereAd € R”"*™, b ¢ R andm = rank(M) + 1, since the columnwise sums of

elements are equal.
Define the set of pointX’, C R™

X,={S., eR™:z€ X'},

and the corresponding polyhedrédh = conv(X,) C R™, and define the polyhedron
P* C R™ by the linear systemil z < b. Hence, the matriX/’ is a slack matrix for the
polyhedraP, C P* C R™. (]

4.8. Lattice Embedding

Recall that théace latticeZ(Q) of a polyhedrorQ C R is the set of all faces of the
polyhedron C R<, including@ and@, ordered by inclusion.

Speaking about théace posetl(P*, P.) of polyhedraP* C R™ and P, C R™,
P, C P*, we refer to all set¢™ N P,, ordered by inclusion, wherg* is a face of the
polyhedronP* C R™. Note that the face poséf P*, P.) is a subposet of the face lattice
L(P,).

Lemma 4.3. For every extended relaxation of a polyhed®BnC R™ up to a polyhedron
P* C R™, given by a polyhedro) C R? and an affine map : R* — R, there is an
embedding, i.e. injective and order preserving map, of #te fposet(P*, P.) into the
face lattice£(Q) of the polyhedror).

PROOF Let us denote by? C R the polyhedrorp(Q). We define the desired em-
bedding as a combination of two embeddings: an embeddintgedce posef (P*, P.)
into the face latticeL(P), and an embedding of the face latti€éP) into the face lattice
£@Q).

For every faceF; from L(P*, P,), define a mag* : L(P*,P.) — L(P). For
every facel’” € L(P*, P,), choose the inclusion minimal fade* from £(P*), such that
F} C F*, i.e. the inclusion minimal face d?*, such thatF} = F* N P,, and set

J(F)=PNF",
what is a face of the polyhedrdp, becausé™ € L£(P*) andP C P*.

1A similar construction was used|in Gillis and Glirelur [2020here so called restricted non-negative rank

was studied.
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The mapj* is inclusion preserving, what follows from its definition. dvéover, the
map;* is injective, since for every* € L(P*, P,)

FFYNP, =(F*NP)NP, =F*NP, = F*,

whereF™ is the inclusion minimal face aP*, such that} = F* N P..
Define the mag : £L(P) — L£(Q), such that

J(F)=p H(F)NQ,
for each facd of the polyhedrorP. The mapj defines an embedding from the face lattice

L(P) into the face latticeZ(Q). Indeed, for the facé” € L(P), defined by an inequality
(a,x) < b, the imagej(F) is the face of the polyhedraf, defined by the inequality

(a,p(2)) <b.

Obviously, the mag is inclusion preserving. Moreover, for every fakeof the poly-
hedronP, we havep(j(F)) = F, what implies that the mayp(F'), F' € L(P) is injec-
tive. O

Corollary 4.1. For every pair of polyhedraP,, P*, P, C P* C IR™, the minimum
number of facets of a polyhedr@p, such that there exists an embedding of the face poset
L(P*, P,) into the face latticel(Q), defines a lower bound on the size of an extended
relaxation of the polyhedro®, up to the polyhedro*.

Corollary 4.2. For every polytope? C R™, the minimum number of facets of a polytope
@, such that there exists an embedding of the face latiid®) into the face latticeC(Q),
defines a lower bound on the size of an extension for the payto

4.9. Relaxations of Lattice Embeddings

Thus, the embedding of the posétP*, P.) provides a lower bound on the size of
extended relaxations for a polyhedréh C IR™ up to a polyhedrorP* C R™. But the
restriction that the face posg(P*, P,) has to be embedded into the face lattice of some
other polyhedron is hard to handle. Because of that, onadenssdifferent relaxations of
the conditions on the lattice, into whidl( P*, P.) has to be embedded.

For every latticeA, let us denote\® to be the poset, obtained from the lattieby
deleting the maximum and minimum of the latti€eln this setting, consider the following
embedding of the face posé{P*, P,) into a latticeA, where

for all Gy, G5 € A° with G4 £ G4 there is a maximal element
G € A’ such that?; £ G andG, < G.

The face latticeZ(Q) of every polyhedror) C R? satisfies the conditiori (4.9.1).
Thus, the minimum number of maximal elements in the padetcorresponding to the
lattice A that satisfies[{4.911), and in which the face posgP*, P,) can be embedded,
is a lower bound on the size of an extended relaxation for tighpdronP, up to the
polyhedronP*.

In fact, we will show that the conditiof (4.9.1) is a reformtibn of the lattice embed-
ding bound. Nevertheless, this reformulation reveals tbpgrties of the latticd, that we
use later, to prove the rectangle covering bound in the restion.

(4.9.1)

Observation 4.4. Every latticeA, satisfying the conditiof4.9.1) can be embedded into
the face lattice of a simplex with the number of facets equahé number of maximal

elements in the poset® plus one, if the poser® contains the minimum element, and
equal to the number of maximal elements\fh otherwisdl.

INote thatA® can have the maximum element, evenifis the face lattice of some polyhedron For
example, if the polyhedro@ is given as a polyhedral cone, the podétpossesses the minimum element. But
it is not hard to see that® has the minimum element just in case, wi@ris a polyhedral cone. Since we are
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PROOE Due to to the property (4.9.1), every element in the pasatan be uniquely
identified with the set of maximal elements bigger than it.réwer, for two elements',

Gs € A%, we haveG, < G5 if and only if the set of maximal elements i, which are
bigger thanGs, is a subset of the corresponding setdir.

Thus, the lattice\ can be embedded into the face lattice of the simplex with thne-n
ber of facets equal to the number of maximal elements’inor to the number of maximal
elements iM\° plus one, depending on the existence of the minimum elemeXy.i

Indeed, whenever the posé&t has the maximum or minimum element, there may
no be an element in the simplex face lattice (the simplex tighnumber of facets equal
to the number of maximal elements A¥) for the maximum or minimum elements of the
lattice A, respectively. In the case, when the pasghas the maximum element, then from
(@321) it consists from one element only, and thus, the mari is equal to the minimum
in Ag. In the case, when the poskf contains the minimum element, the dimension of the
simplex is increased, to embed the minimum element.of O

4.10. Rectangle Coverings from Lattice Embeddings
The set ofnon-zero rectangleR (M) for a matrix M € R!*X is defined as follows
R(M)={I'x X' Csupp(M):I' CI, X' C X}.

A rectangle coveringf the matrix M/ € R'*¥ is a setR C R(M), such that for ev-
ery (i,z) € supp(M),i € I,z € X there is arectangl® € R, such that the rectangle
contains(z, ), i.e.

supp(M) = U R.
RER
Therectangle covering numbdor a matrix M/ is the minimum number of rectangles in a
rectangle covering for the matrix.

Lemma 4.4. Having an embedding of the face pogéP*, P,) of a polyhedronP, C R™
and a polyhedronP* C R™, P, C P*, into a lattice A, which satisfies the condi-
tion (4.8.) there is a rectangle cover for every slack matrix for theybedraP,, P*,
with the size equal to the number of maximal elements in thetpd plus onefl.

PrROOF Here, we use the notation from Sectlon]4.2. There are ttee tfullowing
cases, for every point, € X, and every inequalitya’, z) < b;, i € I*, such that the
face F'* of the polyhedronP*, induced by the inequalityu?, x) < b;, does not contain the
point ..

First, the polytopeP, is the minimal face inC(P*, P.), containing the point,.. Sec-
ond, the intersectiof™ N P, is empty.

Third, we can assume

@#Fr#P, and @#F*NP,#P,,

interested in extended formulations of polytopes, we havete that only one-point polytopes admit extensions
given by polyhedral cones.

IThe size of the rectangle covering, given in Lemima 4.4, is tigNote that an additional rectangle
must be taken in some cases, eve®if and P* are polytopes. For example, the face po§éP*, P.) for
P, = conv({(0,0),(0,1),(1,0)}) andP* = {x € R?: 0 < 21 < 2,0 < x2 < 2} can be embedded into a
lattice A, satisfying [4:911), and wher&® has two maximal elements. But, the slack madvii;., .. (P*, Px)

N O N O

0
2
1
1

N O =

needs at least three monochromatic rectangles to be covered.
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where the facd’; € £L(P*, P,) is the minimal face inC(P*, P,), containing the point..
Due to the condition{4.911), there have to exist a maximaheintG € A°, such that

G=zj(F"NP) and GZj(F).

In turn, for a faceF™ € £(P*) and a pointz,. € X, whenever there exists a maximal
elementG in the latticeA?, such thailG > j(F* N P.) andG # j(F}), where the face
Fr e L(P*, P,) is the minimal face inC(P*, P,), containing the point.., the pointz,
does not belong to the fadée*.

Itis not hard to verify that the rectangles

{iel":j(F*NP.) <G and P, C F* where F* = {y € P*: (a',y) = b;}} x
{r € Xt Fy = P or j(F}) £ G where F;y = Npecepe pyl'},
zeF

indexed by maximal elements in A%, together with one additional rectangle to cover the
entries consisting of the columns with* N P, = &, form a rectangle covering for the
slack matrix ofP,, P*. O

Observation 4.5. For every embedding of the face latti¢¢ P) of a polytopeP C R™,
[vert(P)| > 2, into a latticeA, satisfying the conditio.9.1) there is a rectangle cover
for every slack matrix of the polytop@, whose size is equal to the number of maximal
elements in the posat’.

PRoOOF The proof of Lemm&4]4 can be modified for the claim of the abuhserva-
tion, using Lemm@a=®l1. O

4.11. Lattice Embeddings from Rectangle Coverings

Lemma 4.5. For a rectangle coveR, |R| > 1, of a slack matrix for polyhedr®, C
P* C R™, there is an embedding of the face pa8éP*, P,) into the face latticeC(Q) of
a simplexQ with |R| + 1 facetd].

PROOF. Associate the facets ofda— 1-dimensional simplex) C R? with the rectan-
gles from the rectangle cov@®. Thus, the face lattic€(Q) is associated with all possible
subsets of the rectangles from the coer

Define an embedding : £(P*, P,) — L(Q), taking for every face’; € L(P*, P,)
an element from the lattic&(Q), corresponding to the set

Rp» ={I'x X" € R: F} C F; for somei € I'}

of rectangles fromR, where F; € L(P*) denotes the face, induced by the inequality
(a’,x) < b;.

Obviously, the map : L(P*, P.) — L£(Q) is inclusion preserving. To prove that the
mapj : L(P*, P,) — L(Q) is injective, consider a non-empty fagéee L(P*, P,), and
thus,

F=P.n(() F)

iel”
FCF;

1The number of the facets of the simplex, given in Lenima 4.5, ig.tiybte that an additional facet must
be taken in some cases. For example, the face pbget, P.) for P. = conv({(0,0),(0,1),(1,0)}) and
P* = {z € R?: 0 < 21,0 < 22} can not be embedded into the face lattice of the one-dimerisonglex.
But, the slack matri®MIg e (P*, Py)
0 0 1
(o 1 0)

can be covered by two non-zero rectangles. But, an addittentangle is not needed, whenever and P* are
not trivial polytopes.
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and
FNX,=X.n([() F)= () X.nF)= [] (X\X).
SN iel” R=I"xX'
FCF; FCF; RERF

And since every facé’ € E(P* ) can be uniquely determined from the $&tN F', the
mapj is injective onﬁ(P* )\ {2} N{P}).
The faceo € L(P*, P,), can be embedded in the simplex face latii¢€)), unless

iel*
and the faceP, € L(P*, P,) can be embedded in the simplex face latiiti&)), unless
|R| = 1. In both these cases, the increasement of the number otfatéhe simplex
allows to define the desired embedding. d

Observation 4.6. For a rectangle covefR of a slack matrix for a non-trivial polytope
P C R™, there is an embedding of the face latti€éP) into the face latticeC(Q) of a
simplex@ with |R| facets.

ProOF. The proof of Lemma 4]5 can be modified, since for a non-tripi@ytope
there is no point, which belongs to every facet of the polgtodnd for every slack matrix,
there is no a rectangle cover with less than two rectangles. O

The lower bound on sizes of extensions for a polytépe R, which arises from the
minimum size of a rectangle cover for a slack matrix, is chtectangle covering bound
and is denoted byc(P). From Observations 4.5 afid %.6, the rectangle coveringrlowe
bound does not depend on the choice of the slack matrix, wieetiee polytopeP is not
a one-point polytope.

4.12. Communication Complexity

To determine the rectangle covering number of the suppogdme matrix is a non-
trivial task. This is an object of study in communication g@exity theory, known as
non-deterministic communication complexiee Kushilevitz and Nisah [1997]).

For example, the proof of the fact that the cut polytdhgt(n) does not have an
extended formulation of size less thal(™), due to | Fiorini et al.[[2011b], is conducted,
by determining a submatrix of a slack matrix, for which the+teterministic complexity
states the lower bour2{*("™) on the rectangle covering number, du@@zoos].

On the other hand, theterministic communication complexityhich produces a par-
titioning of the support of a matrix via non-zero rectariylesn produce extended formula-
tions (in the case, when the corresponding slack matrixé@sane entries). in Yannakakis
], for perfect graphs with vertices, an extended formulation of the stable set poly-
tope with sizen®°2") was constructed, using a deterministic protocol. Addaityn
in Faenza et al [2011], for claw-free perfect graphs witkertices, an extended formu-
lation with sizeO(n?) was constructed from a deterministic communication praffoc

Moreover, there is a reformulation of the non-negativeddeation problem for a
matrix as a communication complexity protocol, which cédtes matrix elements in ex-

pectation Faenza etlal. [2011].

Lin this case, not every partitioning of the support via regtes defines a deterministic communication
protocol, as it is with rectangle coverings and non-deteistimprotocols. Nevertheless, since the constructed
extensions do not use the fact that they are obtained frorteandimistic protocol, but rather, the fact that we deal
with partitionings, one can construct an extension fronmepartitioning of the same size.

2Actua||y, this deterministic communication protocol prodsiea extended formulation of siz&(n*) for
the stable set polytope of perfect graphs witkiertices, where no vertex hagairwise non-adjacent neighbors.
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4.13. Upper Bounds on Rectangle Covering Number

Here, coverings of slack matrices for certain polytopespaogided, what shows that
the lower bounds, obtained via rectangle coverings, carbadetter than the sizes of
the given coverings. Due to Observatidng 4.5 [andl 4.6, eueead description and inner
description of a polytope can be taken, to provide an uppenthon the rectangle covering
bound.

4.13.1. Matching Polytope.Yannakakis|[1991] showed that the rectangle covering
bound can not give a superpolynomial lower bound on the dizentinimal extension for
the perfect matching polytope. Namely, in the case of théepematching polytope for
the complete grapli,,, there exists a rectangle covering of a slack matrix of éize?),
due to Yannakakis [1991]. Nevertheless, there is no proaf fibr the perfect matching
polytope the covering bound can not be asymptotically béten the trivial bound, as the
rank of a slack matrix.

Now, a rectangle cover for the slack matrix, given for theiges of the perfect match-
ing polytope and for the linear descriptien> 0 and

x(6(S)) > 1 for S Cn], |S| isodd
z(6(v)) =1 for ve[n],

v

is constructed.
The non-zero entries in the slack matrix involving the negativity constraints > 0
are easy to cover by;) rectangles, i.e. one rectangle for every of the correspanaiws.
For the non-zero entries involving odd cut inequaliti€g(S)) > 1, S C [n], |S| €
[n]oaa, consider

Reye, ={S S [n] : [S] € [n]oda; €1,€2 € 6(S5)}x
{M € M2 (n):ep,eq € M},
whereeq, ey € (g) is a pair of disjoint edges. Obviously, the rectangles.,, e1, e2 €
(g) e1 Ney = @, form a rectangle covering for the rest of the slack matinge an entry

(S, M), whereM € M?% (n) andS C [n], |S| € [n]oad, iS non-zero if and only if there
are at least two edges in the 8é6) N M.

Proposition 4.1 (Yannakakis [[1991]) The rectangle covering bouna(P2 , , (n)) is
bounded from above b9 (n*) for every perfect matching P0|yt0l5*9§lamh (n).

4.13.2. Polytopes with Few Vertices on Every Facet-or a polytope” C R™ with
few vertices on every facet, Lemial6.4 provides an upperdbouarthe rectangle covering
number by associating with every facet the set of verticésnggng to it. In the setting
of Lemmd6.4, definé; to be the maximal number of vertices of the polytdpec R™,
belonging to the same facet, ahglto be equal one.

Observation 4.7. The rectangle covering bound(P) is bounded byO(k?logn), for
every polytope® C R, with |vert(P)| = n, such that the maximal number of vertices of
the polytopeP, lying on the same facet, does not excked

The most natural application of the above observation anplgiial polytopes, what
leads to the following observation.

Observation 4.8. The rectangle covering bound(P) is equalO(m?logn), for every
simplicial polytopeP C R™, with |vert(P)| = n.
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4.13.3. Edge PolytopesPropositiod Z.I7 states that there exists an extended farmul
tion of sizeO (. ) for every edge polytopBeage(G), G = (V. E), V = [n].

Corollary 4.3. The rectangle covering bound(Peqs.(G)) is bounded from above by

O(1=-;) for every edge polytopReag.(G) € R", G = (V, E), [V| = n.

Recall that the edge polytofe.q..(G) € R™ (seel Kaibel and Lobs [2011]) is de-
scribed byz > 0 and

x(S) —z(N(S)) <0 forallstablesets SC V.

The slack entries, associated with the non-negativity ttaims, can be covered by
n rectangles. Thus, the entries are left, which correspontheoinequalitiesc(S) —
z(N(S)) < 0, indexed by stable sefs C [n] of the graphG.

Consider the matrid/, indexed by pairs of stable sefsand edges of the graghe F,
where an entry//s . is non-zero if and only i ande are disjoint, butV(.S) ande are not.

Thus, it is left to construct a rectangle covering for thenwat/. For this, define two
matricesM’, M", indexed by pairs of a stable s&tC [n] and an edge € E, where

1 if =0 if N =0
M, = i Smle and M, — 0 i (S)me
’ 0 otherwise ’ 1 otherwise

Due to Lemmag4, foh/’ there exists a rectangle covef of sizeO(a? log n), where
« denotes the maximal size of a stable set in the gi@pRor the matrix)/”, there exists
a trivial rectangle coveR” by n rectangles, indexed by the vertices of the gréph

RI'={SCnl:veN(S)} x{e€ E:vEe}.

Since the entry//s . is non-zero if and only if both entnd&a[s o MS . are non-zero,
the rectangle coverR’, R” of the matrices\/’, M" induce a rectangle cover of the matrix
M of sizeO(a®nlogn) using the rectangleB’ N R, whereR’ € R/, R" € R".

Proposition 4.2. The rectangle covering bound(Peqg.(G)) equalsO(a’nlogn) for
every edge polytopBeqe. (G) € R"™, whereG = (V, E), |V| = n and« is the maximal
size of a stable set in the grajgh

From the Turan’s Theorem, which states

B > v
" 20(G)”

and the above proposition, a non-trivial class of edge pplys is obtained, for which the
vertex extension could not be proved to be optimal via regieacovering techniques.

Proposition 4.3. The rectangle covering bound(P.q..(G)) is equalo(|E|) for every
edge polytop@.q..(G) € R™, G = (V, E), |V| = n, such that

a:O(( )%>a

whereq is the maximal size of a stable set in the graph

n

logn

4.14. Lower Bound on Rectangle Covering

In this section different sorts of lower bounds on the sizeestangle covering are
presented.
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4.14.1. Fooling SetsA fooling setfor a matrix is a set of entries from the matrix
support, such that there is no non-zero rectangle, whiclkersomore than one element
from this set. Clearly, this implies that for every matrixetcardinality of a fooling set is a
lower bound on the rectangle covering number.

But, the fooling set technique is quite limited. For everytixad/ € R/*¥X, the
cardinality of a fooling set does not exceeak(M)?2. Thus, in the case of extensions for
a polytopeP C R™, the fooling set bound is at moét. + 1)? (sed Dietzfelbinger et al.
[1996],[Fiorini et al. [2011a]).

Nevertheless, there are examples of zero-one matricesavitt3™, for which there

are fooling sets of cardinality at least |Dietzfelbinger et dI.I_[LQ_QE] For combinatorial
polytopes, one of the most successful applications of thkrfg set technique is the stable

set polytope, due to Huang and Sudakov [2010]. There a fashiyaphs were given, such
that a slack matrix for the corresponding stable set poby/twgs a fooling set of cardinality
n%, wheren denotes the number of vertices.

A notion of afooling set of ordei was proposed in Dietzfelbinger et al. [1996], what
is defined as a set of entries from the matrix support, sudtetiemy . + 1 elements of this
set span arectangle, containing at least one element witlvakie. Thus, having a fooling
set of orderk and cardinalityr, the value; is a lower bound on the rectangle covering
number, since no non-zero rectangle contains more thalements from the fooling set
of orderk. Moreover, it was shown Dietzfelbinger et al. [1096] thatéwery matrix) €
R*X the rectangle covering numbet()) is equal toO (max; (%) log(|supp(M)))),
wherery, is the maximum cardinality of a fooling set of ordefor the matrix\/ B

4.14.2. Linear Relaxation. The next approach to bound the rectangle covering num-
ber for a matrix\ € R/*¥ is a linear relaxation of the corresponding set cover prable

¥ = min Z tr
RER(M)
Z tp>1 for (i,x) € supp(M)
R:(i,x)ER
tr >0 for ReR(M),

(see Karchmer et al. [1995]). Obviously, the optimal vajur this problem is a lower
bound on the rectangle covering numbgiM/ ). Moreover, for every matrid/, the rectan-
gle covering numberc(M ) does not exceefll + log(|supp(M)|))y (sed Lovas4 [1975]).

It is not hard to see that every fooling set of cardinatignd ordetk provides a lower
bound on the optimal valug. For this, sum the inequalities, indexed by the elements of
a fooling set of ordek, and obtain

Z YRIR 27T,
)

RER(M

where~r denotes the number of elements from the fooling set coveyefd, bwhat gives
us the lower bound
r
Y= D tr>,

RER(M)
since for allR € R(M), vg is at mostk.

Lin[Dietzfelbinger et 1/[1996] a matrix, having the ranknd a fooling set of cardinality is transformed
into another matrix, having the rank* and a fooling set of cardinality*, n > 0. Thus, to prove that the upper
boundrank(M)? for the cardinality of a maximal fooling in matri%/ is asymptotically tight, it is enough to
construct a matrix with a fooling set of cardinality equallte squared rank.

2 In the original paper df Dietzfelbinger etldl. [1996], theund O (maxy, (5) log(|1 x X|)) was stated,
but the proof of this bound implies also the bouBi@max;, (=) log(|supp(M)))).
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4.14.3. Measure of RectanglesThe next bound comes from the dual problem, cor-
responding to the fractional relaxation of the set coveblenm, i.e.

ymmex S e

(i,z)Esupp(M)

Z Yip <1 for ReR(M)
(i,2):(i,2)ER
Yiz >0 for (i,z) € supp(M).

This provides a well known lower bound, described in termmeasures. Introducing an
atomic measure : I x X — R, such thaju(i,z) = 0, foralli € I, z € X, where the
element, corresponding {¢, ) is equal zero, gives a lower boupd)) on the rectangle
covering number, whenever the measure of every non-zetamgle R € R(M) does not
exceed one.

Note that in the original definition of the fooling set of ordeit is not allowed to use
any of the entries from the support more than once. Withasititnstraint, the linear relax-
ation bound is achieved by some generalized fooling set mithiple usage of elements.
Considering an optimal dual solution

where botty; , andY are integer, construct a fooling set of ordértakingy; , copies of
every element:, x).

4.14.4. Number of Different Sign Patterns in Columns.Whenever a matrix(/
with non-negative entries, hasdifferent sign patterns of its rows, the rectangle cover-
ing number is at leaglog, n]. Otherwise, fixing a rectangle cover with less thasg, n]
rectangles and associating with each row the set of re@arfigim the cover, which in-
volve this row, there are two rows among thes®ws with the same set of rectangles, and
thus, with the same sign pattern.

Choosing for polyhedra?, € R™, P* C R™ a slack matristlack(P*,P*% €
R’ %X+ such that the sdt* contains an inequality for every face 6{P*, P,), S
obtained the lower bound

[logs (I£(P", P)I)]
on the rectangle covering numbet(M), since every face iL(P*, P.) is uniquely de-
termined by the set of incident points fro., and thus, rows corresponding to different
faces have different sign patterns.

Note that for a zero-one polytogeé C IR™ the face counting bound 9 (m log m),
since the number of faces of the polytapés equal2®(™ s ™) (see Fleiner et all [1999]).
If the coordinates of the vertices of a polytope C R™ are from the sefk], then the
face counting bound is equél(m log km) (see Fleiner et al. [1999]). Actually, both these
bounds can be tight for the extension complexity of a polgt(gee Section 4.1.8).

4.15. Rectangle Covering: Graph Point of View

Consider agraptv¥(M) = (V, E), V = supp(M ), and for every two vertice@;, '),
(i, %) there exists an edge between them if and only if at least otteecdntriesiy, 22),
(i2, x') does not belong to the support of the mathix

Lemma 4.6. For every matrix)/ € R'*X the coloring numbex (G(M)) is equal to the
rectangle covering number of the matrig € R/*X.

Moreover, every maximal stable set in the grapliM) defines a rectangle from
R(M), which is spanned by the corresponding entries in the mafix In turn, every
rectangle fromR (M) defines a stable set in the gragh(M), vertices of which corre-
spond to the elements from the rectangle.
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PrROOF Clearly, every rectangl® € R(M) is a stable set in the gragh(M). Thus,
having a rectangle covering, we color every vertexG¢f\/) by a color, corresponding to
some rectangle from the cover, which contains the vertexatwhtablishes the inequality
X(G(M)) < re(M).

On the other hand, for some coloring of the gra@hl\/), consider the rectangles,
spanned in the matrid/ by coloring classes. These rectangles are non-zero, siecg e
coloring class defines a stable set in the grafjf\/). Finally, this set of rectangles forms
a rectangle covering of the entriespp(M ), and thus, the inequality(G(M)) > rc(M)
holds. O

Additionally, fooling sets for a matrid/ € R’*X correspond to cliques in the graph
G(M). Thus, the lower bound, given by the clique numbé& (M), i.e.

w(G(M)) < x(G(M)),

is the fooling set bound.
For every matrixM, G(M) = (V, E) andW C Vdefined as , we have

W
G < XEOn),

where the graplG(M)y is the subgraph of7 (M), induced bylW. But, every set of
verticesW C V induces a fooling set of cardinalityi’| and of ordei(G(M)w ). On the
other hand, every fooling sé C supp(M) of orderk defines a set of verticd$” C V,

wherea(G(M)w) < k. And thus, the lower bound- YL~ ‘whereW C V, is the

generalized fooling set bound. It is well known (3 ee Loﬁ; ]) that the coloring
numbery(G) is bounded by

W]
O(%&%mlog\v\)y

what was reproved by Dietzfelbinger et al. [1996], for theesd = G(M).

The linear relaxation bounds can be obtained in this seétingell, since the coloring
numbery(G(M)) is equal to the covering number of the vertices of the gra@ph/) by
stable sets (inclusion maximal stable sets in the g@fh/) induce non-zero rectangles
in the matrix\1).

4.16. Lower Bounds on Rectangle Covering Number: Rectangeasures

Proposition 4.4. The rectangle covering numbet(P) is equal to2m for the cubeP =
[0, 1]™.

PROOF Let us fix the index sef’ and letR be a non-zero rectangle of the form
I’ x X', with the maximum number of elements, in the slack maidy..(P), defined
by
X ={0,1} and P={zeR™:0<uxz; <1}.

Thus, the rectangl& is empty, if the index sef’ contains both inequalities < z; and
z; < 1for somei € [m]. Otherwise)X’| = 2™, since every inequality id’ fixes one
of the coordinates. Consequently, the rectargiavolves2™~*k entries, wherel’| = k.

It is easy to verify that the functioh2™—* achieves maximum™~! atk = 1 or
k = 2. Moreover, the slack matrikI,,. (P) has2m2™~! non-zero entries, what proves
the statement of the proposition. O

Observation 4.9. The m-dimensional cube? = [0, 1]™ forms a minimal extension of
itself.
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From Observationg 4.9 ad 4.3, the vertex extension ofnth@éimensionalcross-
polytope which is defined as
m m
conv(U e; U U —&;),
=1 =1

states a minimal extension of the cross-polytope.

4.17. Lower Bounds on Rectangle Covering Number: Fooling $e

In this section, applications of the fooling set technigree@esented. For all examples
here, the fooling set technique gives a tight estimatiorhefrectangle covering bound.
Moreover, it is shown that the listed polytopes are minimxaérsions of themself.

4.17.1. Combinatorial Cube. Here, Proposition 414 is reproved, providing a fooling
set of the proper cardinality.

Proposition 4.5. The rectangle covering bound is eqah for the m-dimensional cube
P =10,1]™.

PROOF Associate to every inequality< z;, z; < 1,4 € [m] a vertex of the cub,
such that the resulting pairs form a fooling set. The vesték € R™, corresponding to
the inequality0 < z;, ¢ € [m], is defined by its coordinates

L0 it 1<5<q
I 00 i<j<m.

And for the inequalityr; < 1, € [m], we define the vertex!* € R™

i J 0 if 1<5<q
YTl 1 i i<j<m.

Clearly, the defined set of vertex-facet pairs forms a fapfiat of cardinality2m. O

4.17.2. Birkhoff Polytope.

Proposition 4.6. The rectangle covering bound(P};,, ) equalsn? for the Birkhoff poly-
topeP,, € R",n > 5.

ProoFr Recall that the Birkhoff polytopec(Py,,; ) is described a8 < x and

> wiy=1forallien] and > a;=1forallje[n].
t=1 t=1

For every inequalityr; ; > 0,4 € [n], j € [n], define a vertex:*/ € R", giving a
permutationt € S(n), i.e. xﬁjt is equal one if and only ifr(k) is equalt. Letn (i) = j
andr(i+1) = j+1 (indices are understood modutd. Moreover, setr(t) = i+j+1—t
for all t not equal ta ori + 1.

Let us assume that for two different inequalitiés< z; ;-, 0 < z;» j» (the pair
(7', 4") is notequali”, ")), wherer’, 7"/ € &(n) are the corresponding permutations, the
equationsr’ (i) = j” andn”(i") = j' hold. Thus;s” 4 j” —i' — 5’ is equall or 2 (modulo
n), due tor’(i"") = j”. Similarly, i + j* — " — 5" is equall or 2 (modulon). But this
is impossible because > 5, what shows that the constructed vertex-facet set is arfgoli
set. 0

Observation 4.10. The Birkhoff polytop®y;,,. R"’, n > 5, is a minimal extension of
itself.
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4.17.3. Matching Polytope in Full Bipartite Graph. From Section 4.17]2 and linear
isomorphism of the Birkhoff polytopB?,;,,. and the perfect matching polytopg .. ..(G),
whereG is the complete bipartite graphi,, ,,, one obtains the following result.

Proposition 4.7. The rectangle covering bound (P}, ..(G)), G = K, ,, is equaln?

match

for the perfect matching polytofe’ .., (G) € R™*, n > 5.

Actually, the fooling set constructed in the proof of Prdfios [4.8 can be extended,
to show the next result.

Proposition 4.8. The rectangle covering bound(P, ,...(G)), G = K(n,n), is equal
n? + 2n for the matching polytop®, ..., (G) C R™", n > 5.

PrROOF Considering general matchings, there 2weadditional inequalities

n n
> wiy<iforallicn] and > w;<1forallje[n],
t=1 t=1

indexed by vertice¥* = [n], V.. = [n], whereV*, V, define the bipartition of5.
For the non-negativity constraints- ,,, > 0, v* € V* = [n], v, € Vi = [n], take the
matchings, associated with the corresponding permusafiom Propositiof 416.
Additionally, for the inequalitieiz*:1 Ty v, < 1,0, €V, take the matching

{(w*wy) :w* =7+ 1Lw" € V' andw, = j,w. € Vi, j # vi}
of cardinalityn — 1. In the same way, define the matching
{(w*,wy) rw*=j,w* € V* andw, =j+ 1w, € Vi, j #£v"}

for the inequalityZZ*=1 Ty, < 1, v* € V*, to finish the construction of the fooling
set. O

Observation 4.11. The matching polytop® ...,(G) C R™, G = Kpn,mn>5,isa
minimal extension of itself.

4.18. Lower Bounds on Rectangle Covering Number: Face Couinig
4.18.1. Permutahedron.

Proposition 4.95) The rectangle covering bound(I1,,) for the permutahedron
I, € R™is equalQ2(nlogn).

PrROOFE The number of vertices of the permutahedibnis equaln!, what gives us
the lower boundog(n!) = Q(nlogn). O

Observation 4.12. The extended formulation in Sectlon 2.21 is an asymptdiogihimal
extension for the permutahedrdh, C R™.

4.18.2. Huffman Polytope.

Proposition 4.10. The rectangle covering boung (P}, ) is equal2(nlogn) for the
Huffman polytop&}, & € R™.

PROOF. [Nguyen et al.[[2010] showed that the number of facets of thinkan poly-
topePy ¢ is equal)(n!), what gives us the lower bourit{n log n). O

Observation 4.13. The extended formulation in Sect[on 2.24 is an asymptdtiogihimal
extension for the Huffman polytop¥, C R™.
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4.18.3. Cardinality Indicating Polytope.

Proposition 4.11. The rectangle covering boung(P_, ) is equalQ(nlogn) for the
cardinality indicatingP}, , C R?" .

car

n
car

PROOFE The cardinality indicating polytope
the rectangle covering lower boufitin log n).

Indeed, define a non-trivial face of the cardinality indicgtpolytopeP?, ., which is
indexed by a permutations€ G(n), as the intersection aof — 1 facets

q q n
Zxﬂfl(v)kazk_qu Z zgr1 =0 for 1<g<n-1.
v=1 k=0 k=q+1

q hasn! different faces, what proves

Two such faces are different, whenever they correspondffiereint permutationg’,
w'" € &(n). Namely, thereig, 1 < ¢ < n—1, such thap’~*([q]) is not equal to:”"~*([q]),
and thus, the vertex of the cardinality indicating polytdje,,, defined as
zi =1 if 4/ (i) € [q]
z; =0 otherwise
zj=1 ifj=q+1
zj =0 otherwise,
belongs to the face, indexed by the permutatiGrbut does not belong to the face, indexed
by the permutation.”. O

Observation 4.14. The extended formulation in Sectlon 2.21 is an asymptdgiogihimal
extension for the cardinality indicating polytof&. ., C R?" .

4.19. Lower Bounds on Rectangle Covering Number: Direct Aplication

Sometimes, one has to study the possible rectangle cosedingctly, what, for ex-
ample, is done in Lemn{a8.5. This lemma provides us a lowendbdor k-neighborly
polytopes withn vertices.

Proposition 4.12. The rectangle covering bound(P) is equal to

(k+1)(k+2)
2
for everyk-neighborly polytope® C R™, vert(P) = n.

—1)

min(n — k,

Thus, the above proposition provides an asymptoticallyttimpund on the extension
complexity whem = ©(v/k). In this case, the vertex extension provides an asymptigtica
minimal extension for everg-neighborly polytopeP? C R™, |vert(P)| = n = O(Vk).




CHAPTER 5

Bounds on Symmetric Extended Formulations of
Polytopes

A special type of extended formulations are extended foatiaris which preserve
symmetries of the initial polytope. Combinatorial polyéspare a natural field to study
symmetric extended formulations, since many objects whidace combinatorial poly-
topes are highly symmetric, what is inherited by the polg®themself. In some sense
it could appear natural to regard extended formulationschviespect the symmetries of
the initial polytope, and indeed, a lot of extended formiole are symmetric. But such a
restriction to symmetric extended formulations, as we shlbw, could be quite expensive
in terms of the size of the obtained formulations.

For many combinatorial polytopes we can provide strong tdveeinds on the sizes
of symmetric extended formulations in contrast to genenakl bounds. The first result
in this area was given hy Yannakakis [1991] in his pathbregkiaper, where he showed
that for the perfect matching polytope for the complete brafp, a compact symmetric
extended formulation does not exist. As a corollary the eristence of a compact sym-
metric extended formulation for the travelling salesmatyiope in the complete graph
K,, was obtained.

In his paper Yannakakis also conjectured that the symmetyyirement is not more
than a technical condition for the proof: "We do not thinktthaymmetry helps much.
Thus, prove that the matching and TSP polytopes cannot bessgd by polynomial size
LP’s without the asymmetry assumption". Indeed, the ttagkalesman polytope does
not admit a compact extension, what was shown by Fiorini/¢2al 1b].

Even though there is no known compact extended formulatiothie perfect match-
ing polytope, we will show examples of other related polg®pvhere no compact sym-
metric extended formulation exists, but nevertheless wiepnavide a compact extended
formulation, what establishes a significant size gap betvsgmmetric and non-symmetric
extended formulations in general (see Kaibel, Pashkowiot, Theis|[2010]).

Moreover, we will use the techniques, which were inventeddynakakis, to handle
such subtle cases as the permutahedron and the cardindiitating polytope, where the
symmetric extended formulations have sfz@:?), but one can provide an extended for-
mulation of sized(nlogn). These examples are interesting, since the bounds estdblis
for the symmetric and non-symmetric extensions are tight tfre parity polytope we will
prove that the symmetric extended formulations are of Sigelogn), but the minimal
known symmetric extended formulation has six@?).

5.1. Symmetric Extensions

Consider a polytop# C R™ with an extension, given by a polyhedrghC R<¢ and
an affine map : RY — R™. The size of this extension, as in the previous chapters, is
defined as the number of facets of the polyhedfopnMoreover, we assume that a finite
group of affine maps: acts on the polytop#’. The extensior, p is calledsymmetric
with respect to the symmetry group, if for every = € G, there exists an affine may; :
R? — RY, such that

(5.1.1) ke =Q

65
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and the map:, is compatible with the affine mgp: R — R™ in the following way
(5.1.2) p(kry) =m.p(y) forevery yeRY.

From [5.11), it follows that for eackr € G the affine mapx, maps the affine
hull aff(Q) to itself. Moreover, the linear map,., associated with:,, maps the reces-
sion conerec(@) and the lineality spackneal(Q) of @ to themselves.

As in the case of general extended formulations, we can shatvgymmetric extended
formulations of polytopes can be assumed to be realized lyygpes without any loss in
terms of size.

Lemma 5.1. For every symmetric extensidp C R?, p : R¢ — R™ of a polytopeP C
R™ with respect to a symmetry grodp, there exists a symmetric extension of smaller or
the same size, defined via a full-dimensional polytgpec R% and an affine map’ :
RY — R™.

PrROOF The polyhedrorp C IR? can be assumed to be full-dimensional. Otherwise,
consider an extensiaf* = ¢(Q) € R*", p* = pog~' : RY — R™ of the polytopeP C
R™, whered* is the dimension of the affine spag(Q), and the magp : aff(Q) — R%
defines an affine isomorphism betwesffi( @) and R?". To show that the constructed
extension is symmetric, define the affine magp= gor,oq™ ! : RY — R? . Obviously,
the conditions[(5.1]11) and(5.1.2) are satisfied for thersitmQ* C R?", p* : RY —

RR™ and the symmetry grou@.

Moreover, it can be assumed that the lineality sgaeeal(Q) coincides with the re-
cession coneec(Q) of the full-dimensional polyhedro®. Otherwise, we can transform
the extensiof) C R, p : R — R™ into another extensio®* C R¢, p* : R¢ — R™ of
the same or smaller size, such that the recessionee(@*) coincides with the lineality
spacdineal(Q*). Indeed, sinceP is a polytope, i.e. the recession care(P) is the zero
vector, the recession comec(Q) is contained in the kernel of the linear map, associated
with p. Namely, for every vector € R? from the recession conec(Q) of @ andy € R

(5.1.3) ply+r)=py)

holds, and thus the polyhedrit = Q —rec(Q) C R?, together with the affine map’ =
p: R? — R™, forms a symmetric extension of the polytopewhere the maps? = .,
7 € G, are defined as for the extensi@n p. Due to the equation (5.1.3)

p*(Q") = p(Q —rec(Q)) = p(Q) = P

and since the linear map, associated ta., 7 € G, mapsrec(Q) on itself, it follows that

Fr(QF) = Fir (Q — rec(Q)) = £x(Q) — pa(rec(Q)) = Q — rec(Q) = Q7

holds for everyr € G. Finally, the number of facets of the polyhed@n = Q — rec(Q)
is less or equal to the number of facets of the initial polybad) (Appendix: Lemm&gI3).

If the symmetric extensiof) C R?, p : R? — R™ is, such that the polyhe-
dron@ C R is full-dimensional and the recession canre(Q) coincides with the lin-
eality spacdineal(®), we can construct another symmetric extension via the ppéyt
Q* = QNlineal(Q)* C RY and the affine map* = p : R? — R™.

Indeed, from[(5.1]3) for the polyhedra@pr, the equation

p*(Q") = p(QNlineal(Q)*) = p(Q) = P

holds, since the intersectigpn lineal(Q)~ is the orthogonal projectioprojjiear (o) + (Q)
of the polyhedrony on the affine spackneal(Q)*. The recession cone of the polyhe-
dronQ* C R?is equal tolineal(Q) N lineal(Q)*~ = {04}, what implies thap* is a
polytope. The size of the extensig)t, p* is less or equal to the size of the extensi@n

p, since the number of facets of the polytape = @ Nlineal(Q)* is equal to the number
of facets of the polyhedro@.
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To show that the obtained extensi@f, p* is symmetric, define the affine maps,
7 € G to be equabrojiye,i () ok~ Due to [5.1B), we have
P*(Kr-y) = P(Projinear(@)L (kr-y)) = p(kx.y) = m.p(y) = 7.p"(y) ,

and since the maps, are non-degenerate (due [g_(511.1) and since the polyhe&giisn
full-dimensional)

Q) =

)
prthneal(Q)i K Qm“iﬂ' hneal(Q) ):
L) _

K- Q" =DProjiinea()+ (Fir-(Q N lineal(Q

(
(
PIOjlineal(@)+ (@ N Kir. lineal(Q)
PIOjlineal(@) L (@) N PrOjiineai(@)+ (Fir- lineal(Q Q") =
Q"N lineal(Q) =Q".
For the fourth equation, we used the equatipe- @ + lineal(Q), and thus

PIOjlineal(@) L (@ N U) = Projiipea@)+ (Q) N Projiinearg)+ (U)

holds for every selV C IR¢. The fifth equation is based on the fact that the non-degenera
linear mapp.,, associated with the affine mag., mapslineal(Q) on itself. And thus,
PIOjlineal(@)+ (1 lineal(Q)*) is equal tolineal(Q)*, what implies that the affine space
PrOjlineal(@)+ (K- lineal(Q) ) is equal to the affine spadimeal (Q)~.

As in the beginning of the proof, we transform the extengdn= Q Nlineal(Q)*+ C
RY, p* = p : R — R™ into a symmetric extension of the polytoge via a full-
dimensional polytop€’ C R% and an affine map’ : R¥ — R™. O

Lemma 5.2. For every symmetric extensigh C R?, p : R4 — R™ of a polytopeP C
R™ with respect to the symmetry grodfy there exists a symmetric extension of smaller
or the same size, defined via a full-dimensional polytopeC R? and an affine map
P : RY — R™, such that for eachr € G the affine maps/, : R¥ — R%, = € G are
isometries.

PROOF Due to Lemm&5]1, there is an extens@h C R%, p* : RY — R™ of the
polytopeP C R™, where@* is a full-dimensional polytope. The size of the extension
p* is less or equal to the size of the extensigrp.

The groupG*, generated by the affine map$, © € G is finite, since every element
of this group can be uniquely identified with some permutatibthe verticesrert(Q*) of
the polytopel*. Thus, the grougd*, which consists of the linear maps, corresponding to
the affine maps iiiz*, is also finite (in particular we havél*| = |G*|). Thus, we are able
to define a new scalar product &t

. Wz, p.y)
(z,y)" = Z g
Jiane  H

With respect to this new scalar product, every affine m&p e G* acts as an isometry,
since for every,** € H*

ko kok koK k

e e vk (™, ™y (W™, iy .
(W, )t =y ! > —>:<x’y>'

|H*| |H*|
,Uz*EH* #***GH*

To preserve the standard form of the scalar product as th@ﬁ;r@ x;y;, consider an-
other symmetric extension of the polytofeC R, given by the polytop€)’ = ¢(Q*) C
R? and the affine map’ = p*oq~! : R¥ — R™, where the affine map: R* — R*
is defined as a transformation from the standard orthonob@sis for the scalar product
(x,y) to an orthonormal basis for the scalar producty)*. The resulting extension is
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symmetric, where the affine mag§, = € G are defined ago x* o ¢~ . Additionally, we
have

1

(o, plhey) =(quiq™ .z, quiqty) =

(wrg i ) = (g g )t = (2 y)
forall z, y € RY". O

5.2. Symmetric Extended Formulations

An extended formulation of a polytoge C R™, given by the linear system
(5.2.1) ASy<bS and A= y=10b",

where AS € Rf*?, ps € Rf, A= € R™™4, b= € R" and an affine map : R? —
R™, is calledsymmetriawvith respect to the action of a grodp on the polytopeP, if for
everym € G there exists an affine map : R? — R?, such that it satisfie§ (5.1.2), i.e.
p(Cry) = m.p(y) for everyy € R4, and the linear system

(5.2.2) ASCry<bS and A= Cry=0b",

is the linear systeni (5.2.1) with reordered constraintte(afollecting the coefficients).
The size of the extended formulation is defined as the numidaequalities in the linear
system[(5.211).

The following lemma s a trivial observation from the defioiit of symmetric extended
formulation.

Lemma 5.3. For every symmetric extended formulation of a polytégpec R™, there
exists a symmetric extension of a smaller or the same size.

We call an extensio) C R¢, p : R* — R™ of a polytopeP C R™ a subspace
extensionif the polyhedron is an intersection of the first orthaft?. with some affine
subspace. Analogously, an extended formulation, given&ystemA=y = b=, y € IRi
and an affine map : R — R™, is called asubspace extended formulatio®@bviously,
the size of a subspace extension is less or equal to the donahsf the ambient space
R?, the same holds for subspace extended formulations.

The next lemma shows that every symmetric extension indasgsmmetric subspace
extended formulation of a smaller or the same size. Additigrthe group action ofz on
the ambient space of the extended formulation, could beictest to coordinate permuta-
tions.

Lemma 5.4. For every symmetric extensigh C R?, p : R? — R™ of a polytopeP C

IR™ with respect to a group-, there exists a symmetric subspace extended formulation of
a smaller or the same size, such that for everg G the affine mag, is a coordinate
permutation.

PRoOOF Due to Lemm&5]2, the symmetric extension can be assumesldivén by
a full-dimensional polytop€ C R? with f facets and an affine map: RY — R™, such
that the affine maps,., 7 € G are isometries.

The polytopeQ is defined uniquely (up to reordering of constraints) by aimal
system of linear inequalities
(5.2.3) 0<bS —ASy,

such thatd= € R/*4, ||A7,|| = 1 foralli € [f]. Collecting coefficients in the system
AS k.y < bS, we obtain another system of linear inequalities

(5.2.4) 0<bS — ASkpy=bS — A%y,

such thalﬂAS;*H = 1, because for every € G the affine maps, is an isometry. The
linear systemd<"y < b=<" describes the polytope; 1.Q = Q (affine mapss,, 7 € G
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are non-degenerate). Thus, since the sysfem [5.2.3) fgydlyeope@ € R is unique
(up to reordering of constraints), the linear systdm”y < b=" is obtained from the
systemA< y < b= by a constraint permutation, € &(f).

Consider the following extended formulation of the polygdp C R™ given by the
linear system

(5.2.5) ASy42=0bS, 2>0

and the affine map* defined a o proj,.

The system[(5.215), together with the mafy defines an extended formulation of
the polytopeP, since the projectioproj, (Q*) of the polyhedror* (actually, Q* is a
polytope), defined by the syster (5J2.5), is equal to thetppb(.

Moreover, this extended formulation is symmetric with tb#dwing affine maps;
for everyr € G

Gy, 2) = (Kn-y, 0x.2),
since the conditior{ {5.1.2) follows from

p*(Cr-(y,2)) = p(proj, (C-(y,2))) = p(kr.y) = 7.p(y) = 7.p"(y,2),

and [5.Z11) is satisfied from the construction of the extdrfdemulation [5.2.5).

Moreover, since the matrid< € Rf*¢ has full column rank@ is a polytope), there
exists an affine map : R/ — R¢, such thaty = ¢(z) for all (y, z), satisfying the linear
system[(5.2]5). This shows,that the projectin= proj.(Q*) of the polyhedrorQ* on
z variables, together with the affine map= po ¢ : Rf — R™ defines a symmetric
extension of the polytop®, where the affine maps,, = € G are defined as coordinate
permutations .. Indeed,

K7pQ = 07.Q" = 0. proj,(Q") = proj, (¢+.Q") = proj.(Q) = Q'
and
P (Wr-2) = p(q(0x-2)) = p(kr-q(2)) = 7.p(q(2)) = 7.0/ (2),
sincey = ¢(z) for all points(y, z) from Q* and(:.Q* = Q*.

The projection’ = proj.(Q*) C R/ is defined by a linear system of the form
A'z=1V,z>0,whered’ € R” %7 and no two rows ofd’ are equal. We can assume that
containing an equatiofu;, z) = b;, the linear equationd’z = ¥’ contain also the equation
(or.a;,z) = b; for every coordinate permutatiar., = € G, since the group generated by
on, ™ € Gisfinite (0, # € G are coordinate permutations). O

Further, we can assume that the affine transformations iarttieent space of symmet-
ric extensions, corresponding to elements of the symmety~, are given as coordinate
permutations.

Observation 5.1. Every symmetric extension of a polytope induces a symnsefospace
extension of smaller or the same size. Moreover, for ewery G the affine map:, :
R? — R for the induced symmetric extension is a coordinate pertimuta

5.3. Symmetric Section

Through the proofs of lower bounds, we do not use the symnwdtextensions di-
rectly, but the existence of so called symmetric sectionickvis a weaker condition.

A maps : vert(P) — Q is called asectionfor an extensior) C R?, p : R? — R™
of a polytopeP C R™, if for everyx € vert(P)

(5.3.1) p(s(x)) =x.
Thus sectiors assigns to every vertex € vert(P) a points(z) € @ from the fiber

p'(z) ={y e R : p(y) = z}.
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The sections induces a bijection betweerert(P) and the set(vert(P)) C @, whose
inverse map is defined hy

A section is calledsymmetrionith respect to the action of a grodpon a polytopeP,
if for every = € G, there exists an affine map : R¢ — RY, such that

(5.3.2) s(m.x) = ne.s(x)

for everyz € vert(P).

Note that the maps,, = € G do not have to satisfy the conditiods (5]1.1) from the
definition for symmetric extensions, i.@,.QQ does not have to coincide with the polyhe-
dron@Q. However, the equatiop(n,..y) = m.p(y) is satisfied automatically for the maps
N, ™ € G and points from

aff({s(z) : © € vert(P)}).

Due to Observatidn 5.1, we can restrict our attention to sgtrimsubspace extensions
Q C R%, p: RY — R™, where affine maps,., 7 € G are coordinate permutatio®(d).
Thus, for further considerations we can assume that theittmmslof the following lemma
are satisfied.

Lemma 5.5. For every symmetric extension via a polyhed@r R¢ and an affine map
p: RY — R™ of a polytopeP with respect to a grougr, such that the affine magp, for
everym € (G is a coordinate permutation, there exists a symmetric sectind the affine
mapsn,., * € G can be chosen as the magps.

PROOF First, observe that a symmetric extension satisfies
(5.3.3) Kp.p H(z) = p~ Y (m.2)

for all 7 € G. The inclusions,.p~!(z) C p~!(x.z) follows already from[(5.1]2), what
leads to the equality since both affine subspacep—!(z), p~!(7.z) have the same di-
mension.

We assume that the grodpacts transitively on the set of verticesrt(P), otherwise
consider each orbit under the action®@bnvert(P) separately. Fix a vertex* € vert(P)
with a pointy™ € @, such thap(y*) = z*, and define

(5.3.4) (o) = Zmes

|5~
whereS* is a subroup of the finite grou@*, generated by, = € G, such that
(5.3.5) S*={ke G :rp Ha*)=p  (z")}.

The points(x*) lies in the polyhedror and its projectiorp(s(z*)) is equal tox*,
sinces(z*) is a convex combination of points with these properties.

For everyzr € vert(P), we chooser, € G, such thatr,.2* = z, using the transitivity
of the action ofG onvert(P), and define

(5.3.6) s(x) = Kig,.s(x¥),
and thus, the point(z) lies in@ N p~!(z) due to [E.I1) and(5.1.2).

To finish the proof, it suffices to show,.s(z) = s(o.x) for everyo € G andz €
vert(P). Let us show that the map;jwm,,mm belongs taS*, i.e.

k! Kokin,p (%) = k! Kkep Hz) =k pTN(ox) =p ' (2¥).

To.a

Therefore,

—1 *
> LKl Kok, K
(5.3.7) Frl Kokin,.s(z") = KES ”‘iSf*' oFm Y s(z*),

what implies the equation

Ko.S(T) = Kohkn, .5(2") = Kn, .s(2™) = s(o.2).
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5.4. Examples: Symmetric Extension, Symmetric Section

The spanning tree polytoge,,.(n) € R in the complete grapl,, onn vertices,
possesses a certain symmetry gréug S(n). Namely, for everyr € &(n)

Ty = Tr—1(y) n-1(w) TOF v, w E [N
, (v),m=*(w)

maps the spanning tree polytope,:(n) on itself. Indeed, the action of the gro@(n)
on the vertices of the spanning tree polytope is induced byptations of the vertices in
the graphi,,. And every vertex permutation for the grafh, maps the set of all spanning
treesT (n) on itself.

The extended formulation of the spanning tree polytBpg (n) (sed Martih[[1991)),
defined byz > 0 and

Towt Y, Zeww=1 for distinctv, u € [n]
weV\{v.u}
Tou — Zvuw — Zuvw =0 for distinct v, u, w € [n],

where the affine map, associated with the linear system, is the orthogonal ptioje on
x variables. The polytop@,(n), described by the linear system, together with the affine
mapp, defines an extension of the spanning tree polyiope(n).

This extended formulation of the spanning tree polytopgisraetric, since for every
7 € &(n) and for all vectorsr, z, there exists an affine maf..(z, z), which can be
defined agw.x, 7.2), where

(541) (7T~Z)'u’u)7u = Zp-1(v), 7 (w), 71 (u) for distinct v, W, u € [TL] .

Obviously, every affine mag, leads to a permutation of the constraints in the linear gyste
above. Moreover, affine mags, = € S(n) are compatible with the projectian since
forall m € &(n)

p(Cr-(2,2)) = p(mz,m.2) =72
The corresponding polytope, together with the affine maiprms a symmetric extension
of the spanning tree polytog&,,; (n), where the affine maps., 7 € &(n) are the affine
maps(,, m € &(n).

Note that the obtained extension (extended formulatioa)sgmmetric subspace ex-
tension (symmetric subspace extended formulation), wttereaffine maps.., = € G
(¢, m € G) are coordinate permutations, i.e. it satisfies the statewfeObservatiof 511
(LemmdB4, respectively).

A section maps is defined uniquely, and thus due to Lemmd 5.5 is symmetri@ Th
images(z) is equal to(z, z) for each vertex: = x(7'), T’ € T (n), wherez, , ,, is equal
to one if the tred’” contains the edggv, «} and the path from to w in the treeT” does not
involve the vertexs, andz, ,, ., iS equal to zero, otherwise. It is straightforward to check
that the defined sectionis symmetric with the affine maps,, = € &(n), defined as the
affine maps,;, m € &(n).

5.5. Faces of a Symmetric Extensions

Lemma 5.6. Let @ € R? be an extension of a polytogeé C R™ with projectionp :
R? — R™, and let a faceP’ of P be an extension of a polytoge C R* with projection
q: R™ — R*. Then the fac€)’ = p~'(P") N Q C R? of Q is an extension oR via the
composed projectiogpo p : R¢ — R,

If the extensiorgy of P is symmetric with respect to the action of a grodppn R™
(with 7.P = P for all = € G), and a groupH acts onR* such that, for every € H, we
haver.R = R, and there is some, € G with 7..P’ = P’ andq(r,.x) = 7.q(x) for all
2 € R™, then the extensiof’ of R is symmetric with respect to the action of the grdilip
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ProoF Due tog(p(Q’)) = q(P’) = R, the polyhedror)’, together with the projec-
tion ¢ o p is an extension oR.

In order to prove the statement on the symmetry of this eidanset - € H be an
arbitrary element off with 7, € G as guaranteed to exist ferin the statement of the
lemma, and lek,. € &(d) be a permutation, as guaranteed to exist by the symmetry of
the extension) of P. Since we have

a(p(kx,.y)) = q(mrp(y)) = 7.(a(p(y))) ,

it suffices to shows, .Q" = Q. Asy — k., .y defines an automorphism &f (mapping
faces of(Q to faces of the same dimension), it suffices to show.Q” C @’. Due to
k. .Q = Q, this relation is implied by:,_.p~1(P") C p~*(P’), which follows from

p(kin, p Y (P)) = mrp(p” (P)) =n,.P =P
O

Thus, from every lower bound on size of symmetric extensfonshe polytopeR C
R* with respect to the action of the group, we automatically obtain the same lower
bound on size of symmetric extensions for the polytédpeC R™ with respect to the
action of the groud:. This is due to the fact that the polyhed@h= p~!(P')nQ C R¢,
together with the map o p : RY — R¥, providing a symmetric extension of the polytope
R C R* with respect to the action of the group, is a face ofQ, and thus has not more
facets than the polyhedrdp.

5.6. Yannakakis’ Method

This section describes the modified method, where the aligirethod was used to
prove a lower bound on size of symmetric extensions for thiéepematching polytope

bylYannakakis/ [1991].

5.6.1. Action of Group G. Due to Observation 5.1 and Leminals.5, we can assume
that a symmetric extension for a polytopeC R™ with the minimum size is a subspace
extension, given by a polyhedrap C R¢ and an affine map : R? — R™, with a
symmetric sectios : vert(P) — Q. Moreover, the affine maps,, 7 € G are defined as
coordinate permutations.

In this setting, we define an action of the gradmn the component functions of the
sections

S = {81,...,801},
where the component functions do not have to be pairwisadigtinctions, via

7T.Sj = Sﬁ;il(j) .
The action of the symmetry group on the component function is well-defined and yields
a group action. To show this, consider the following equatio

(5.6.1) (m.sj)(x) = sn;il(j)(x) = (kip-1.5(1)); = s;(7 " .2)

foreverym € G, j € [d] andz € vert(P), what implies thatlg.s; = s; andno.s; =
m.(0.s;) foreveryrm, o € G.
Theisotropygroup ofs; € S under the action off is defined as

isog(s;) ={m e G:ms; =s;}.

The component functios; : vert(P) — R has the same value on every orbit of the action
isoc(s;) onvert(P), since due to[{5.611), the equatienr.xz) = s;(x) holds for every
x € vert(P) and everyr € isog(s;).
Obviously, in general settings it is not possible to idgtiife isotropy groufsoc (s;),
but we are able to estimate the index of the isotropy ghisug(s;) in the groupG. The
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indexG : iso(s;) is equal to the cardinality of the orbit for the componentdiimn s
under the action off on S, and thus
(5.6.2) G :isog(s;) <|S| < d,

since the cardinality of the orbit can not exceed the calitjynaf S.

5.6.2. Action of Group G = &(n). For many combinatorial polytopes the symme-
try group G is given as the symmetric group(n) for somen. In this case, to study
the structure of subgroups of the groGpwith small indices, we apply the theorem be-

low [Yannakakis[[1991] (Appendix: Theordmb.1)

Theorem 5.1. For each subgroug/ of &(n) with (S(n) : U) < (), 1 < k < %, thereis
someW C [n], |[W| < k, such that

{reUn):n(v)=vforalve W} CU

holds.

Thus, whenever we hawe < (7), 1 < k < 2, there exists a sét; C [n] with

|Vj| < k for everys; € S, such that
(5.6.3) {meUn):n(v) =vforallv e V;} Cisog(s;).

Moreover, if for everyr € vert(P) and everyV C [n], |V| < k, there exists an odd
permutatiors € &(n), such that

cx=xz and ocw=w,forveV,
then the following inclusion holds
(5.6.4) {re&(n):n(v)=vforallv e V;} Cisog(s;).

Indeed, for every vertex € vert(P) and an odd permutation € &(n), such that
v =wv,v €V, weletc € &(n) to be an odd permutation, such that = z and
owv =v,v € V;. Then the permutations is an even permutation, such that.v = v,
v € Vj, and thus, the permutatiary lies in the isotropy grougsoc(s;). And thus, the
equation

si(z) = mo.sj(z) = m.s;(0 ) = m.s;(2).
holds for every vertex: € vert(P), what shows that € isoc(s;), and thus finishes the
proof.

An information about some subgroup of the isotropy grougsog(s;), s; € S
enables us to consider orbits under the action of this suipgfb on the set of vertices
vert(P). The component functior; has the same value on such orbits, since these orbits
are subsets of the orbits under the actioisof; (s;) onvert(P).

5.6.3. Section Slack CovectorsThe extensior) C R¢, p : R — R™ is a sub-
space extension and thus all facet defining inequalitiegHerpolyhedron® are non-
negativity constraints. Here, we assume that the polyf®p not trivial, i.e. not a one-
point polytope.

We obtain a contradiction to the fact th@t p is a subspace extension of the polytope
P, if there exist number3,, = € vert(P) and an inequalitya, z) < b, which is valid for
P, such that

(5.6.5) > si(@)A, >0 forallje[d]
zevert(P)
(5.6.6) > (b= (a,2) <0.

zevert(P)
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Indeed, if the sumy__ .., py A= IS €qual zero, the vector
r= Z Azs(z),
zevert(P)
belongs to the recession core(Q), since, p is a subspace extension. And the vector

pr)= > Aps@)+B8 Y. A=

zevert(P) xzevert(P)
Yo dapls@) = D A
zevert(P) zevert(P)
is not equal to zero, since
Z (b—{a,x)) Az = Z (a, \zz) = {(a, Z Azx) <0,
zevert(P) zevert(P) zevert(P)

here the projectiop(y) is represented as(y) + 3, wherey : R¢ — R™ is a linear map
andg € R. This contradicts the fact thdt is a polytope.
If the sum}_ () Az IS not equal zero, the point

1

xrevert

=— Aes(z),

ZmEVert(P) Az zEvert(P)

belongs to the polyhedro@, since(@, p is a subspace extension, but the projection of
this point does not satisfy the constraint ) < b. Note thatzxevert(P) Az > 0, since
from the Farkas Lemma, for every extensiQhwhose recession cone does not have the
dimension equal to the dimension @f(in this cas&) can be an extension of trivial poly-
topes only), the functiow : vert(P) — R, whereg(z) = 1 for all = € vert(P), can be
obtained as a non-negative combination of the section coemidunctionss;, j € [d].

5.7. Matching Polytope

In this section, we prove the following theorem, which giwessa lower bound on
size of symmetric extended formulations for the cardigakistricted matching polytope
P! in(n) C RE.

match

Theorem 5.2. For every odd) < ¢ < %, 6 < n, there is no symmetric extended formula-
tion for the matching polytopB! ... (n) C R¥ of size less thaf.”, ).
2

match

This theorem gives also a lower bound on the size of symmextiensions for the
0

polytopeP.,..... (), when the numbef is not restricted to be odd. Because the face
P! en(m) N {z € RG) 12y, =13

of the polytopeP?, ... () provides a symmetric extension of the polytdjfe.t , (n — 2)

with respect to the action of the gro@(n — 2). From Lemmd75J6, we obtain the lower

bound
() =32
)2l
when0 < ¢ < 3 is even anch > 6.

Theorem 5.3. For every0 < / < %, 6 < n, there is no symmetric extended formulation
for the matching polytop®?, ..., (n) € R” of size less thag (L&J).
2

match

And from Theorem§ 214 arld 5.3, we can conclude that/fer ©(logn) there ex-
ists a compact extended formulation for the matching pplkgtB’, (n), but there is

match
no compact symmetric extended formulation for the matciiolgtopeP®, ., . (n), what
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establishes a gap between symmetric and non-symmetrieséaies for the cardinality re-
stricted matching polytopes.

Corollary 5.1. For Q(logn) < ¢ < n, there is no compact extended formulation for
P’ ... (n), that is symmetric with respect to the groggn).

5.7.1. Action of GroupG = &(n). Due to Observation 5.1, there exists a symmetric

subset extensio® C R?, p : R — RF with d < (}), % > ¢ = 2k + 1, such that the
affine maps:, : R? — R?, 7 € &(n) are coordinate permutations.
The results of Section 5.8.2 imply that under the assumptien (7) there is a sub-

setV; C V of nodes with|V;| < k for eachj € [d], such that
Hj={r e &(n):n(v)=vforalve V;} Cisogm)(s;) -

Indeed, for every vertex = y (M), M € M?**+1(n) ,and every setV C V, |[W| <
k, there exists an edge = {w,u}, w,u ¢ W, in the matchingM, which defines the
transposition(w, u) as an odd permutatiom € S(n), such that(v) = v, v € W and
o.xr =2X.

Hence, two vertices (M) andx(Ms), My, My € M?F+1(n), are in the same orbit
under the action of the groufd; if and only if we have

(5.7.1) MyNE(V;)=M,nE(V;) and V;\ M, =V;\ M,.
This implies that if
My 0 (E(V;) US(V;)) = Mz 0 (E(V;) US(V;))
for two verticesy (M), x(Ms), then
si(x(M1)) = s;(x(Ma)) ,
due to [B.7.11).

5.7.2. Section Slack CovectorsChoose two disjoint set®,,V* C V, such that
|Vi| = [V*| = 2k + 1, recall the inequalitRk + 1 < . And define an extension of the

polytopeP2**1 (4k + 2) by the polyhedron

match
Q=0Qn{yeR:x2=py),z.=0forec E\ E(V*UV,)}

and the affine map’ = projgy-uy,) o p.

A sections’ : vert(P25tY (4k +2)) — R is the restriction of the sectionto the
characteristic vectors of matchingst**1(n), which cover the nodes df, U V*.

From [5.7.1), we have/(x(M1)) = s;(x(My)) for My, My € M+ (4k +2),
whenever

M0 (B(V)) US(V))) = My 11 (E(V) US(V;)) .
whereV] is the set of nodeg;; N (V, U V*).

Denote byA; the set of all matching of, U V*, such thatd C E(V}) U é(V),
hence|A| < |V;| = k. And denote bys’(A), A € A;, the values;(x(M)), where
M e M?*+1(4k + 2), such thatd = M N (E(V]) U (V).

Now, we find\,, z € vert(P2"1 (4k 4 2)) as described in Sectidn 5.6.3. For this,
define

M:={Me M* 4k +2): IMNE(V, :V*)|=1}.
Thus, M7 is the set of perfect matchings én(V, U V*), with exactly:; edges betweel,
andV*. Note that the set81*, i € [2k + 1,44 form a partition of the seM 2 1 (4k + 2),
since the cardinalities of the sdfs, VV* are odd.
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Choose the numbers,, z € M7 to be equalm forall i € [2k + 1]oaqa. In turn,

the numbers\}, i € [2k + 1],qq are chosen as a solution to the following linear system
> x=t
1€[2k+1]0da
> iftAr=0 forall te k.
1€[2k+1]0da

The matrix, defining the linear system, is a Vandermonde igpand thus non-singular.
Hence, there exist such numbexs, i € [2k + 1],qq. Note that this definition of\},
1 € [2k + 1]oaq iImplies the equation

(5.7.2) Soain=a Y XN+ a Y i =g =q(0)
1'6[2/64—1]0(1(1 i€[2k+l]odd tE[k’] i€[2k+1]0(1d

for every polynomy = ¢qg + Zje[k] q;a7, i.e. for every polynom with degree at mdst
First, we show that the inequality (5.6.5) holds for evgry [d], i.e

0< Z Aw s’y ()
'cEvert(PQ}‘ ton (4k+2))
for everyj € [d]. For this, let us rewrite the left size of the inequality adov

Y. hans((M) = ) > A s, (4) =

MeM?2k+1(4k+2) A€A; ACMeM?2k+1(4k+2)

Z Z A {M e M} : AC M}|s|(A) =

*
A€A; i€[2k+1]0aa M|

s > | *||{MEM3:A§M}|.
AcA; i€[2k+1]oda '
From the symmetry in definition of}, i € [2k + 1],q44, it follows that the value
> Al cAC MY,
1€[2k+1]0qa | |

corresponding to a matching, is equal for all matchings! from the set4,: 4, 4+, CON-
sisting of all matchings\’ C E(V* NV, ), wherea* = |A' N E(V*)|, a, = |[A' N E(V4)|,
af = [A'NEV*:V,)|. And, sinces;(x(M)) is non-negative for all matchingd/ <

M?k+L(4k + 2) andj € [d], it is enough to show that the inequality

> >

A€AL* ay ax 1€[2k+1]0aa

*

H{MeM :ACMY >0

M|
holds, what can be seen from the following chain of equations

>, D

1€[2k+1]oaa A€ AG* a,, ax

PN

1€[2k+1]oaa MEMF

* 2k+1 1 - 2k+1—1
* * * -
a a a
i€[2k+1]paq MEM} |M * *
2k+1—1 i 2k+1—1
E ¥ 2 2
2 * * ’
a ax Qs
€

MeM:;:ACM
|M||{ )=

‘M* \{AGAQ*H*Q* AC MY =
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where the last expression can be considered as a polynong@ede* | + |a*| + |a.| < k,
which evaluated at the poiftgives a non-negative value.
On the other hand, the inequal'm(E(V* : V*)) > 1, which is valid for the polytope

P2E+L (4k 4 2), can be used in the constraiff{516.6)

match
o Am(MNEV VY==Y. Y Aanli-1) =

MEM2k+1(4k+2) i1€[2k+1]oqq MEM]
\F
* i . _ w (s _
1€[2k+1]0aa 1€[2k+1]0ad

sincei — 1 is a polynom of degree smaller than(in the case: = 0, the lower bound is
trivial).

5.8. Cycle Polytope

Theorem 5.4. For 6 < ¢ < n, the size of every symmetric extensionﬂ’é;cl(n), with
respect to the grou(n), is bounded from below by
1( 15 )
16\ (L) - 1/2)/)
PROOF Let us define
f—tmode, n'—|"=f and k=i =20
3 6 6

Choose three pairwise disjoint subsets, V,, V> C V of nodes with the cardinality
n’ each. And denote the elements of these three sets as follows

Ve={o],...,v5} Vi={ve1,.. ., v} VZ={v]1,. .00}
Define the set of edges
Ey={{v",v}eE:v eV 50eV\(V*UV)IU
{{vr, v} € Erien],v e V\{v' v},
and letF' be the following face oP, . (n)

F=PLaym)n{zeR” :z.=0forallec Ey}.
Every cycleC € C%(n), such thatC N E, = @, satisfies the inequality
V(C)n VI <2[¢/6],
because the cycl€ goes through at least three edges between any two visit$ tand
there has to be an even number of these visits, since aftengoml’* from V*, the cycle
goes intoV,, and vice versa. Therefore, denoting

C'={CeCn):CNEy=2,|V(C)NV*| =2[(/6]},

we define the following face dPl, . (n)

F' =conv({x(C):Cel'})={x e F:z(6(V}))) =4[£/6]}.

Moreover, for everyC' € C’, we have
[CNEWV*)| > |£/6].
Thus, if we denote
C'"={Cel:|ICNnEWVY =|(/6]},

we find that

F'"=conv({x(C):Cel"y={z e F:2(E(V*") = |{/6]})
is a face ofP’ (n).
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A cycle C € C*(n) is contained irC” only if C' N E(V*) is a matching of sizé’ =
[£/6]. And every matchingy/ in E(V*) of size!’ = |¢/6], can be extended to some
cycleC € C*(n). Thus, for the orthogonal projectian: R® — RF(V"), the following
equation holds

Q(F”) = Pfrllatch(n,) )

after an identification of/* with the node set of the complete grafily. .
Moreover, for everyr € &(n’) the permutationr, € &(n) with

7TT(’U*i) = ’U*Tfl(i)7 7T-,—(’U*i) = ’U*‘rfl(i)7 WT(UIZ‘) = U:-rfl(i)
foralli € [n/], andn,.(v) = v forallv ¢ V*, V,, Vr, satisfiesr,.F” = F, and

q(mr.x) = .q(x) forallz € RF.

Due to Lemmd5]6, a symmetric extension of the restrictediacgolytopePﬁyd(n)

yields a symmetric extension of the restricted matchingmlePf;mh(n’) of at most the
same size. From Theordmb.3, we obtain the lower bound

i(L(LétJnielj)/%) - %6 (L(LéJLﬁJl)/%)

on size of symmetric extensions for the polytdrfgd(n).
O

Corollary 5.2. For Q(logn) < ¢ < n, there is no compact extended formulation for

Pﬁyd(n), that is symmetric with respect to the grogign).

From TheoremE2]5 afid 5.2, we can conclude that fer ©(logn), there exists a
compact extended formulation for the cycle polytdbfgd(n), but there is no compact
symmetric extended formulation for the cycle polytdtﬁgd(n).

5.9. Symmetric Subspace Extensions of Quadratic Size

In this section, we study symmetric subspace extensions aflgtrary polytope® C
R"*™, n > 6. The groupS(n) acts on the vertex setert(P) by permuting the first
n coordinates.

Due to Observatioh 5.1, we assume that a polyhedpo R?, 2d < n(n — 1)
andp : R* — R™*", which forms a minimal extension of the polytopeis a symmetric
subspace extension of the polytaevith respect to the action ¢f = &(n), where affine
mapsk,, 7 € G, are coordinate permutations. A symmetric sectiorvert(P) — Q is,
such that the corresponding affine mgps R? — R?, 7 € G, are given as the coordinate
permutations:, : R — R%, 7 € G.

The main result of this section is the following theorem, ethilescribes the action of
the groupi(n) on the component functions.

Theorem 5.5. There exists a partition of the sgf] into setsA4; and B3;, such that each
setB; contains exactly one elemelyt and each set; consists of: elements:?, aj,. ..,
al, with

(5.9.1) Sqi (M) = 540 (z) sp, (m.x) = sp, ()

==1(b)

for every vertexz € vert(P) and allw € (n).

Before proving Theorefn 3.5, we would like to show the follogiresult, which can
be extremely useful in case of zero-one polytopes.
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Theorem 5.6. In the case, when the vertex sett(P) belongs to{0,1}" x R™, there
exists a partition of the s¢tl] into sets4; andB;, such that each séf; contains exactly
one element;, and each set; consists of. elementsi?, a,... al, with

(5.9.2) a1 (T) = 841 () if £, = 2y
(5.9.3) sy, () = sp, (y) if e =mny forsomer € &(n)
for all vertices z, y € vert(P).

PrROOF Consider a partitiotd;, 5;, which is guaranteed to exist by Theorem 5.5. We
prove that this partition satisfies the statement of theerutheorem.

Letus assume that, andz,, are equal, but,; () ands,: (z) are not. We can choose
two distinct elements’, v’ different fromv, w such thatz, is equal taz,,, (sincen > 6).
For the even permutatian= (v, w)(v’,w’) from Theorenl 55, the valugx) is not equal
to s(w.z). But this contradicts the definition of a section, sincandr.x represent the
same vertex.

By Theoreni{5B, the equation, (7.z) = s, () holds for all permutations: €
2(n) and vertices: € vert(P). Assume that this equation is not satisfied for some odd
permutationt and vertex:. We can choose two elements w’ such thatz,. is equal to
Z (sincen > 6). Consider the transposition = (v/,w’) and the corresponding even
permutationt’ = 7. For this even permutatioxt, the equation

e =nrT="20
holds. From Theorefn 3.5, we can conclude
sy, () = sp, (1'.2) = s, (m.)

what contradicts our assumption thaf(x) # sp, (7.2). O

The proof of Theorem 515, presented below, consists of asefismall lemmds

5.9.1. Action of Group 2(n) on Component Functions. As in Sectior[ 5.612, for
all j € [d], we are able to establish

{m e Un): n(v) =vforalv eV} Cisog(s;)

for some set/; C [n], |V;| < 2, due to Lemm&35Il1 and the assumptibr: (}). In the

next lemma, we prove that the détcan be chosen to contain not more than one element.
Lemma 5.7. For eachj € [d], there is some; € [n], such that

{m e A(n): 7(vj) =v;} Cisoc(s;).
This element; is uniquely determined, unleSgn) C isog(s;)

PROOF. Let us assume the s&} to contain two elements andw. If V; is a fixed
block for the grougsog(s;), then the following inequality

n(n —1)
2

d< < (&(n) :isoc(s;))

holds, but(&(n) : iso(s;)) is equal to the cardinality of the orbit fer, under the action
of the group&(n). Thus, there is a permutatione isoc(s;), such that without loss of
generalityr (v) # v and7(v) # w.

For convenience, we prove that the permutatiaran be chosen, such thatw) = w
andr € 2(n). Wheneverr(w) # w orr ¢ 2(n), consider the permutatiaf = 7187 €
2(n), whereg € 2(n), such that

B(v) = v, B(w) = w, B7(w) = 7(w) and 57 (v) # 7(v).

Actually, the proof of TheorediB.5 can be significantly reeti¢seé Braun and Pokiitfa [2D11]), due to
Lemmd5.Y and the fact that the isotropy groupsufpands;, considering the action @ (n), are equal.
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Such a permutatiofi exists sincer(v) is not equal to any of the three elemenisv, 7 (w)
(noten > 6). The construction of’ guarantees that

7'(w) = w, 7'(v) #v and 7’ € isoc(s;) .
Hence, we assume thatw) = w andr € 2(n).

To prove that the elemenj described in the lemma exists, we show that the element
has the desired properties, i.e.

(5.9.4) {m e A(n) : 7(w) = w} Cisog(s;).
Every permutationr € 2(n), 7(w) = w, 7(v) # v can be represented as
7= (m(ra) Hra
for anya € G(n). Choose a permutatian € 2((n), such that
a(v) =v, a(w) =w andar ' (v) = 771 (v).

The existence of thisx can be trivially proved, since > 6. Thus, the permutation
belongs tdsoc (s;), because all three permutationse andr(ra)~! belong toisoc(s;)
(note thatr(ra)~! and« are even permutations, which fix elementav). Thus, every
permutationr € 2((n), 7(w) = w, belongs tdsos(s;), wheneverr(v) = v. Therefore,

the inclusion[(5.9}4) holds.
Having another element € [n], u # w, such that

(5.9.5) {meAn): m(u) =u} Cisog(s;),
one can prove thali(n) C isog(s;), Since every permutation € 2((n) is a composition
of not more than four permutations, described[by (5.9.4)@&®3). O

5.9.2. Action of Cycles on Component FunctionsTo prove Theorermi 515, define
permutationg,,, v € [n — 2], consisting of the cyclév, v+ 1, v+2), respectively. Initially,
we find a partitionA4;, {b;}, such that Theorem 8.5 is satisfied for the permutatjans
v € [n — 2]. Finally, since every permutation € 2((n) is a product of permutations,,
the proof of Theorerfi 515 follows.

Note that two permutatior’ and x from &(d) are equivalent in our discussion, if
the equatiors,., -1 (;)(x) = s.-1(;)(z) holds for allz from vert(P) and for allj from [d].
For example, we can take the identity permutation instead ofs,.-1 ;) (z) = s;(z) for
all x € vert(P) and allj € [d].

Lemma 5.8. For eachm = (wy,ws, w3) € 2A(n), there exists a permutation in &(d),
which is equivalent ta, such that all cycles ir are of the form(ji, jo, j3), withv;, = w,
and(n) < isog(s;,) forall t € [3].

PrROOF The permutation:? is equivalent to the identity permutation, since the per-
mutations? is the identity permutation.

Thus, every cycle’ of the permutation:,. of length not divisible by three, permutes
indices of the identical component functionssoHence, we can assume that the length of
every cycleC' in k. is divisible by three.

The same augmentation allows us to transform every dygle, - - - j3;) of the per-
mutations,. into the following cyclesj1, j2, j3), - - -, (Jai—2, jai—1, j31), Offering an equiv-
alent permutation te.. Thus, we may assume that contains cycles of length three only.

Now, we consider one of the cyclég, j2, j3) in the permutations,. If the el-
ementv;, does not belong tqw,, w2, w3} or A(n) C isog(sj,), then we haver <
isoc(s;, ), and thusr, 72 € isog(s;, ), what yields

sp(@) = s (ma) = s gn(@) = s5(2)

s (1) = 85,(22) = s -2 (@) = 85, (@).
This shows that the component functioss, s;,, s;, are identical, and thus, the cy-
cle (j1, j2, j3) can be omitted.

3
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Hence, we may assumg, = w;. For every permutation’ € (n), 7/(w3) = ws,
and the permutation = 77/7~! € 2(n), we have

7(w1) = 77'm " Hwy) = 77’ (w3) = w(w3) = wy,

and thusy € isog(s;, ), sincer € A(n) andr(w;) = wy.Therefore, the equation

sj(m7lrma) = s, 1y (rT ) = s, (nn T )
= 85, (Tm.2) = 85, (1.(1.2)) = 85, (7.2) = 55,13, () = 85(2)

holds for allz € vert(P), and thusy’ € isoc(s;,). Hence, the element;, is equal the
elementws, unlesA(n) C isoi(s;,) (Wherel(n) C isog(s;, ) would allow us to remove
the cycle(j1, j2, j3)). Similarly, one can obtain that the elemenis, w, are equal. O

5.9.3. Interaction of Two Cycles.

Lemma 5.9. For every two permutations = (w1, wa, ws) ando = (wsq, ws, w4 ), wy #
wy, and the corresponding permutations andx,, satisfying the conditions in Lemralb.8
the following holds: if the permutatior, contains a cycl€ i, jo, j3) with v;, = w; for
all t € [3], then one of these statements is true:

(1) The permutation:, contains a cycléjs, js, j1) With v;, = wa.

(2) The permutation:, contains two cyclesj», js, j;) and (jz, js, ji') with vy =
wa, vj, = wz andvy, = vy = wy. Additionally, the component functieg, is
identical tos;, and the component functiay, is identical tos;, .

PROOF Assume that the permutatiery does not contain any cycle involving the in-
dexj,. Every permutatiop € 2((n) can be represented as a combinatinr, wherer’, 7
are even permutations with(ws) = 7(w2) = wy. Thus, for every permutation € 2(n),
we have

Sjp (o) = s, (T'oT.2) = 55, (07.2) = 8,0 ~1(j,) (T.) = 55, (T.x) = 55, () .

This contradicts the conditions an in Lemmd5.8. Similarly, we treat the case, when no
cycle ink, involves the indexjs.

Let us assume that there are two different cydlgsjs, j5) and (54, js, j5) in the
permutationx,. And let us consider the permutatierr which could be written as a
combination of two disjoint cyclegu;, w» ) (ws, w4). From this, conclude thédtro)? is the
identity permutation, what implies thét., ., )? is equivalent to the identity permutation.

For every vertex: € vert(P), we have

sj,(z) = 55, ((m0)*.1) = Spp—1(js) (OTO.T) = 55, (0TO.T) =
Sky—1(jo)(TO.T) = 851 (o) = 85 (0.7) = 8, ~1(51)(T) = 851, (7).

Thus, the component functiors, ands;; are identical. Considering;, ((r0)?.x), we get
that the component functions, ands;, are identical as well.
(]

5.9.4. Construction of Partition A;, B;.

Lemma 5.10. For every cycl€j1, jo, j3) in the permutation,,, , satisfying the conditions
in Lemmd5.B, there is a set

S(jhjz»js) = {jlvj% T »]n} )

such that, for every, there is a permutation equivalent tg,,, which contains the cy-
cle (ju, ju+1, Jore) and has the properties, required in Leminal 5.8.
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PROOF. Let us construct the s&;, ;, ;,) iteratively. We start with

(5.9.6) S jags) = 11, J2, 93}
which satisfies the claim of the lemma foequal to one.

From Lemmd5R forr = py, 0 = po, there are two possible cases, concerning
the cycle(j1, jo, j3). In the casel{l) of Lemma§.9, extend the Sgt ;, ;. to the set
{j1, 72,73, ja}, and thusS;, ;, ;. satisfies the claim of the lemma forequal one and
two. In the casd{2) of Lemnia®.9, updatg by changing cycle$js, j5, 7). (45,43, j1)
to (42, js, j4), (J4,J4,74), what produces a permutation equivalentg, and choose the
SetS(.h,jz;]é) to be equal tqj17j27j37j4/1}-

Going fromv equal to three tilh — 2, and settingr to bep,_; ando to bep,, extend
the setS;, j,.;,), and, if necessary, update the permutatign O

Due to Lemm&35.70, construct disjoint séls, ;, ;,) indexed by cycles of,, . More-
over, there is no cycles iR,,, - ,K,,_,, Which does not contain any index from the
constructed setS;, ;, j,), due to Lemm@5]9.

Now, we can choose the seft to be the sets;, ;, j,), where the singletonel@, }
involve the rest of component functions. Lemma 5.10 guaesmequatioi (5.9.1), and
thus, we finish the proof of Theordmb.5.

5.10. Permutahedron

Here, we establish a lower bound on sizes of symmetric extes$or the permutahe-
dron.

Theorem 5.7. For everyn > 6, there exists no symmetric extension of the permutahe-
dron P = 1I,, of size less thar—’%@, with respect to the grou@ = G(n).

Define the function\ : &(n) — R™ as
A(Q)=(¢T1(1),¢7H2), -, ¢ ().

Thus, we have

vert(Il,,) = {A({) : ( € &(n)},
and the action o&(n) on the vertex setert(I1,,) is defined as
(WA(C))U = A(C)ﬂ'_l(v)

holds for allr € &(n), ¢ € &(n).
Theorem 56 provides an information about the actior2(6f) on the component
functionss;, j € [d], and we fix the provided partitiod;, b; of the component functions.

Lemma 5.11. There exists an element 1 < w < n — 1, such that the statements

(5.10.1) if  su (A(ls(m)) >0 then D s (Mls(m) >0
v>w

(5102) if 5. (Allg(m)) >0 then > s (Mlg(n)) >0
v<w

hold for all setsA,.

PROOF Each set4; consists ofn components, what implies that the number of dif-
ferentA; is less thaﬁg—l, sinced < w

For every set4,;, there is at most one elemeat from [n — 1], which violates the
statemen{(5.101), since it should be the maximal element[f» — 1] for which the value
sai (A(1e(n))) is positive. Analogously, for every sgt;, there is at most one element
from [n — 1], which violates the statemehi(5.10.2).

Thus, for at least one elemente [n — 1] both [5.10.1) and(5.10.2) are satisfied for
all setsA,;. O
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Choose an element, satisfying Lemmd 5.11, and define the following subgroup
of A(n)
H = {r€An): n(jw]) = [w]}.
Now, to disprove the possibility of such a symmetric extensive apply the results
of Sectiof 5.6 8. For this, choosg, = € vert(P), wherex = A((), as follows
1 if (eH
Apg=¢— € if (€HT
0 otherwise
wherer € 2(n) is given as the cyclél, w, w +1) or (n, w + 1, w), depending on whether
w is equal to one, andl ~ denotes the right coset féf and the element € (n).
We have to guarantee that the inequalities (5.6.5) holddorez > 0, i.e.

(5.10.3) > sy, (z) >0 forevery b;€B
zevert(P)
(5.10.4) > Aasg(x) >0 forevery af € A;.
zevert(P)
The left side of[(5.10]3) can be rewritten as follows
DT asy @)= D Mmsn,(Am) = D Ay, (T A(lsw))) =
zevert(P) TeS(n) TeS(n)
Z Sb; (ﬂ'A(lG(n))) - Z €Sp; (T‘-A(le(n))) = ‘H|(1 - G)Shj (A(le(n))) )
TeH meHT

what is non-negative for adl, ¢ < 1.
The left side of[(5.10]4) can be rewritten as follows

S hsa(@) = 3 sa(A(m) = 3 es,(Alr) =

zEvert(P) neH TeHT

Z Sai (TFA(IG(TL))) —¢ Z Sai (WA(16(71))) .

TeH meHT
Fort < w this expression is equal

> su(mA(lsm) —€ Y su(mAllem)) =Y. . Su(Alswm))—

reH neHT v<w =1 (t)=v
TeH
Z Z esal 16 n))) Z €Sqi (A(lG(n)>) =
v<w 1 () =y 7 () =w+1
neHT TeHT
H
B s (o) — ¢ 3 sy (ML) — s, (ML)
v<w v<w-—1

Fort > w this expression is equal

> sa(mAlem)) € Y su(mA(lemw) = Y Z A(lem))-

TE€EH weHT v2w+l =1 (¢)=v
TeH
YooY esaAlem) = D, €Sa(Mlsm)) =
v>w+1l =1 (1)=y ! (t)=w
TEHT weEHT

] (D sa(Mlem)) —€ Y Sa(Mlgm)) = €sar (A1) -

n—uw
v>w+1 v>w—+2
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Since for the element the conditions[(5.1011)[(5.10.2) are satisfied, the abave e
pressions are non-negative for some choice sf0.
But on the other hand, considering the inequality

ZJ;UZM

2
vE[w]

which is valid for the permutahedron, the conditibn (3.6o@ks as

Z /\ va— erl))_

zevert(P) vE[w)
1 w(w + 1)
(A, — 2D R
71'EZH uez[w] ﬂEZHT Uez[w] 2

- Z e<0,
TeHT
what finishes the proof of Theordm b.7.

In Sectiol 2.V, a symmetric extended formulation for thempgahedroril,, of size
O(n?) was presented, and thus, Lemma.10 provides an asymfitotight bound on
the size of symmetric extensions fir, .

In turn, there is an extended formulation of si2én log n) constructed by Goemans
(Section[2.211), what is an asymptotically minimal extensior the permutahedrof,,
(Section[4.18]1). Hence, we established a gap between syimrapd non-symmetric
extensions of the permutahedron.

5.11. Cardinality Indicating Polytope

Theorem 5.8. For everyn > 6, there exists no symmetric extension of the cardinality
indicating polytopeP = P_, , of size less thaﬁl(’g—’l), with respect to the groupr =
S(n).

The operatoi (1) maps every sé” C [n] to the vector(x (W), ey |+1). Thus, we
have
vert(P) = {A(W) : W C [n]},
and for every permutation € S(n) and sei?” C [n]

(WA(W))U = A(W)Tr—l(v) for 1 <v<n
( A(W)) = AW forn+1<k<2n+l.

Note that for the cardinality indicating polytope the gragiprn) does not act transitively
on the vertex setert(P), i.e. all vertices are divided into orbits, correspondiogossible
cardinalities.

From Theoren 516, we get that for every 88tC [n] the values,: (A(W)) depends
only on the cardinality of the séV’, and whethep belongs to the sét’. In the same way,
the values;; depends on the cardinality of the d&t only. Introduce shortcuts for these
values

) forv ¢ Wand|W| =k
) forv e Wand|W| =k
cj(k) = sp, (A(W)) for |W| =k
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Lemma 5.12. There exists, a cardinality*, 1 < k* < n — 1, such that the statement

(5.11.1) if (k*)>0 or cf(k*)>0 then

Yo Ak + D> c(k)>0
0<k<k* k*<k<n
holds for all setsA4;.

PROOFE Each set4; consists ofi components, and thus the number of séfss less
than”51, sinced < %=1,

For every setd;, there are at most two cardinalities, such that the comd{®al1.1) is
not satisfied. To prove this, assign.tp the minimum cardinalityt,,;;, and the maximum
cardinality k.. for which the statemenf(5.11.1) is violated. Frdm (5.1,1bbxh values
(k) and c}(k) are equal ta) for all cardinalitiesk, kmin < k& < kmax. Thus, the
statementf(5.1711) holds for the sét and for all cardinalitieg, kin < k < Fmax.

Hence, there exists at least one cardinality frbtitl » — 1, which satisfies the condi-

tion (511.1) for allA4,;. O

Applying the results of Sectidn 5.6.3, we choosg x € vert(P), for x = A(W),
W C [n], as follows

1 if W=[t,0<t<n, t#k"
N = 1+4e€ if W =[k*]
N it W=[k—1U{k*+1}
0 otherwise

wherek*, 1 < k* < n — 1is a cardinality, satisfying Lemnia5J12.
We have to guarantee that the inequalify (3.6.5) hold foresom 0, i.e.

(5.11.2) > dasy(x) >0 forevery b; B
zevert(P)

(5.11.3) > Aasg(x) >0 forevery af € A;.
zevert(P)

The left side of[(5.11]2) can be rewritten as follows
D7 dasy (@)= Y cilk) Feci (k) —eci (k) = Y k),

zevert(P) 0<k<n 0<k<n

what is non-negative for adl.
The left side of [5.1113) for ¢ {k*, k* + 1} is equal
Yo dasa@) = Y SR+ Y k),
zEvert(P) 0<k<t—1 t<k<n

what is non-negative.
And fort = k* is equal

S Nesul@)= Y S+ Y k) - (k) + ek (k) =

zevert(P) 0<k<k*—1 k*<k<n
S Ak + D> el (k) —edd(E) + (1+e)cf (),
0<k<k* k*<k<n

and fort = k* 4 1 is equal

Yo sl = D A+ D cilk) —eci (k) e (k) =

zEvert(P) 0<k<Ek* k*+1<k<n

S Ak + D> el (k) —ect () + (1+e)c) (k7).

0<k<k* k*<k<n
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Due to the condition{5.11].1), there exists- 0, such that all above expressions are non-
negative.
Use the inequality

(5.11.4) Sooww— > ku— Y Kz <0,

1<v<k* 1<k<k* k*<k<n

which is valid forP”, ,, to guarantee the condition (5.5.6)

card?

Z Ao (—xy + Z kzy, + Z k*zp) =

zevert(P) 1<k<k* k*<k<n

AN (B —1]n{k 41} = —€ < 0,

since for all vertices: € vert(P), except the verted ([k* — 1) N {k* +1}), the coefficient
). or the inequality[(5.11]4) is satisfied at equality.

Since in Sectiofi 2]4, a symmetric extended formulationHerdardinality indicating
polytope of sizeD(n?) was presented, Lemrhah.8 provides an asymptotically tighnd
on size of symmetric extensions fBE, 4.

In turn, we constructed an extended formulation of si{e logn) in Section 2211,
which is an asymptotically minimal extension for the caddity indicating polytope (Sec-
tion[4.18.3). And thus, we established a gap between syrmagtd non-symmetric exten-
sions for the cardinality indicating polytope.

5.12. Parity Polytope

Theorem 5.9. For everyn > 6, there exists no symmetric extension of the parity poly-
tope P = P{, ., of size less than log(% ), with respect to the groufy = &(n).

even

Due tma, the parity polytop¥, ., can be described &< = < 1 and

(5.12.1) >awy— > wy<[S|-1  for SC[n], |S|isodd.
veS ve[n]\S

5.12.1. Symmetric Non-Negative Factorization of Slack Maix. Consider a sym-
metric subspace extensihC R, p : R — R™ of the parity polytope, wheré is less
thann log(% ), with a symmetric sectios : vert(P) — Q.

From Observatioh 412, there exist vectofs) € R, S C [n],
that the equation

S| € [n]oda, such

(5.12.2) (t(S),s(x)) =15 —1= "z + > @0,

veS ve[n]\S

holds for everyr € vert(P).

Theoren{ 5.6 describes the structure of the sectian. But, we want to study also
the structure of the vector$S), whereS C [n], |S| € [n]odd-

To do this, consider a permutatianc S(n), such thatr.S is equalS. Due to [5.12.P),
the slack variable, corresponding to a verieand the inequality, indexed by the sgtis

equal to
Z Ztaf, (S)Sa; ($> + thj (S)Sbj (‘T) .
ve[n] A;i b
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Since the slack variables, corresponding to the verticesz and the inequality(5.12.1)
for the setS, are equal, we have

3>t (S)sar (@) +th]-(5)8b () =
ve[n] Ai j
Zth 7.8)8qi (T.2) +th 7.5) sy, (T.1) =

ve[n] A;

D2t (9)s th

ve[n] A;

UEZ[W] -Azita% (S)sajrfl( ) + th]
Z Ztair(v) Saf) x) + thj (S)Sbj ().
vE[n] A;i b;

Thus, we have

Zzt‘“ (m.8)84q: (T +th (m.S)sp, (m.w) =

veln] A;
% 3 Z S)sai () + th,.(S)Sb (z) =
sve[n] Aj
S F gy 2 e 23 sule Bt iy ) +th
4 ves G Ai v¢S Gs

where the groujgr s is defined as follows
Gs={re€6&(n):n.5=S}.
This allows us to assume that the condition
t(S)ai = t(S)ai if v,weS or vwgs

w

holds.
Similarly, we can assume that for two séts, S; C [n], cardinalities of which are
equal and odd, we can assume

t(Sl)afJ = t(SQ)air(v) and t(Sl)bj = t(SQ)bj
for every permutatiomr € S(n), where the image..S; is equalS;.

Due to the structure of the vectos$x), = € vert(P), and vectorg(S), S C [n],
|S| € [n]oaqa, we may introduce the following notation

* = s, (X(R)) for R C [n], |R| = k € [n)even andv ¢ R
er* =5, (X(R)) for R C [n], |R| = k € [n)even andv € R
c? = sp, (X(R)) for R C [n], |R| =k € [n]even
and
= tq: (S) for S C [n], |S| =¢ € [n|oaa andv ¢ S
=14 (9) for S C[n], |S| =¢ € [n]oaa @andv € S
tj = ty,(S) for S C [n], [S| = £ € [n)oad -

Additionally, letc®*, cVF k € [n]even andt®*, ¢4, ¢ € [n],qq denote the vectors, indexed
by the sets4;, which have the corresponding coordinates. In the same enatefine the
vectorsck, k € [n]even @andr?, £ € [n]oqq, that are indexed by elements from the gets
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Due to [5.IZ.R), the slack variable corresponding to thguaéty, indexed by a sef,
S C [n], |S| = ¢ € [n]oaa and vertexe = x(R), R C [n], |R| = k € [n]eyen, IS €qual
(5.12.3) |SNR| (", M) + S\ R| (54, %) + | R\ S| (t%, Ry +-
(n —|(SUR)|) %, cOF) + (t°, cF).
5.12.2. Lower Bound on Symmetric Non-negative Factorizabins. Now, consider

asetS C [n], |S| = £ € [n—1]oaa @and two setsR; and Ry, |Ri| = |Rs| = k €
[n — 1]even, SUch that the equation

[SONRy=|SNRy—1
holds.
From [5.1Z.B), we get
IS N Ry (£, ¢V FY 419\ R [(t, OF) 4 |Ry \ S| (%, b+
(n = (S U R, %) + (1, *) =
(IS N Ra| — 1)tV cVFY + (IS \ Ra| + 1) (t54, ®F) + (|R2 \ S| 4 1) (%, cMF)+-
(n = (S U Ry)| = )(", ™) + (¢, ") =
1S N Ra|(tH%, M%) 1S\ Ra| (£, OF) + | Ry \ S| (1%, cbF)+
(n _ ‘(S U Rg)‘)<t0’e,co’k> T <t€,ck> + <t1,€ _ to’e,CO’k _ Cl,k>7
and calculating the relation between the correspondirgk slariables
15| =1 = [RiN S|+ R\ S| =|5] =1~ [RaN S|+ [R2\ S| +2,
we get that the equation
(5.12.4) 2 4 (thE 0 LR Oky —

holds for allk € [n — 1]eyen @nd? € [n — 1]oaqa. From the non-negativity of the vectors
CO,k, Cl’k, tO,Z, tl,é, we get

(5.12.5) (B, cOF) 4+ (17, ) > 2.

Let us assume that there dre < k1 < |5 ], ki1, k2 are even, such that the vectors
¢k, cLk2 have the same supplrt

First, consider the case, when a $etC [n], |S| = ¢ = k; — 1 is disjoint to a
setR C [n], |R| = k1. From [5.1Z.B), we have

0,6 0,k1 0,6 1,k1 1,4 0,ky 0 k\ __
— Lt = Nl ) ) ) ) - )

(n—0— k)", M) + k(800 M) + 000, M) + (5, =k + 00— 1

what leads to
(C+ 1), MMy 4ot PRy < 20,

and thus, from the inequaliti (5.12.5)
5.12.6) t9f bRy =0,
(

On the other hand, consider the case, when & setjn], |S| = ¢ = k; — 1 is disjoint
to a setR C [n], |R| = k2. From [5.12.B), we get

(n — € — ko) (%, OF2) o o (104 bRy (18 OF2) 4 (14 P2y = kg + 0 — 1,
and thus
o (19, cbF2) 4 (1 OF2) <y 40— 1,
but due to[(5.12]4), the inequality
(ko — O)(t% PPy 1 20 < ky +0—1,

IHere, we apply an argumentation similar to the argumentati@eatio Z_14H4.



5.12. PARITY POLYTOPE 89

holds, what leads to (note, < ¢ = k; — 1)
ko —0—1  ki—ko
ko —0  kp—ko—1

Due to the equatiori{5.12.6) and inequalfy (5.12.7), thetors ¢-*1, c!*2 cannot
have the same support. The vecter&k, ), c!(k2) are indexed by the set4;, and thus the
number of setsd; is at leastog(% ), what states the lower boundog(’ ) on the number
of variables in symmetric extensions of the parity polytogiace every setl; containsn
elements. This finishes the proof of Theollen 5.9.

And since in Sectiof 215, an extended formulation of thetpardlytope with size
O(n) was presented Carr and Konjevod [2004], we establishedeagsip between sym-
metric and hon-symmetric extensions for the parity polgtop

But it is unknown, whether Theorefn 5.9 provides an asymgati tight bound on
size of symmetric extensions for the parity polytope, sitheebest known symmetric ex-
tensiorl_ Yannakakis [1991] has si@én?) (Sectio 2.b, Balas approach).

(5.12.7) (t0F cbhzy > > 0.







CHAPTER 6

Appendix

In Appendix, we collected results, which were used in thetdra below, but were left
out of the consideration, in order to focus the attentionhendontent of the corresponding
chapter.

6.1. Polytopes, Extended Formulations, Extensions

Lemma 6.1. For a polyhedronP C IR, the trivial inequalityd < 1 can be obtained as
a non-negative combination of the inequalities in a linegstem, defining the polyhedron
P, unless the dimension of the recession congP) is equal to the dimension of the
polyhedronP.

PROOF Let us assume that the linear system
cA=04,(c,b)=1andc>0
does not have a solution, for a matrixe R/*¢ andb € R/, such that
P={reR*: Az <b}.

From the Farkas Lemma, the system

Ay < —b
has a solution’ € R?. Takingdim(P) + 1 affinely independent points!, ..., zdmF)+1,
obtaindim(P) + 1 affinely independent pointg + ', ...,y +z3™(")+1 in the recession
conerec(P). O

Lemma 6.2. Whenever the linear system
(6.1.1) Ar<b and 0<uz,
whered € Rf*? b € R?, defines an integral polyhedron, the linear system
Ax <b and 0<y
(6.1.2) zi=y yi for icld
ted;
defines an integral polyhedron as well.

PROOF. It is enough, to show that for all integer vecterg 7Z< andc' € Z%, i
[d], the maximum of the linear functio{t,mi + E |[ ¢, y'), with respect to the linear
system[(6.112), is integer or is infinite ( i 198 Consider the optimization
problem

1 d
(tl,...,td)ggﬁx...x[dd] mfx(cl +ep )+ (ca+cf,))rg

over the system of linear inequalitiés {6]1.2). It is notchtar see that the optimal values
for both problems coincide, what finishes the proof. O

Lemma 6.3. For every polyhedroi)) C R?, described by
(6.1.3) (a',y) <b; forall iecT,

91
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the polyhedror — rec(Q) C R is described by the linear system

(6.1.4) (a',y) <b; forall iecl,

wherel’ consists of all indices € I, such that{a’, 7) = 0 is satisfied for al- € rec(Q).
PROOF. Let Q' be the polyhedron, described by the liner system (b.1.4p iblu-

sion@ — rec(Q) C Q' is trivial, since@ satisfies the linear systein (6.11.4) andec(Q)

belongs to the recession cone(Q’). _
Note that for each inequalitya’,y) < b;, i € I\ I', there exists a vectat’ €

rec(Q), such that(a’, 7*) < 0. Thus, for every poiny’ € @Q’, there exist non-negative
numbers\; € R, j € I\ I’, such that

{a',y' + Z M) < b,
JEINI
fori e I\ I’, and obviously
@y + 30 Ard) = (ay) + 30 Alalrd) < (' y) < b
jenr jelnr
fori e I, i.e. the point/ +3, 1\ v \;r7 satisfies the linear systei (611.3), and this
Q — rec(@Q). O

6.2. Rectangle Covering

Lemma 6.4. For a matrix M € RI*7, where
I={S Cln]:[Si|<k} and J={SsC [n]:|Ss| < ksl

whereks < ki < n, such that the entry/g, g, is non-zero if and only if the sefs, So
are disjoint, there exists a rectangle cover for the maiixe R7*" of size

O((k1 + k‘g)(kl I:; k2)k2 logn).
PrROOF Consider the rectanglg®;, U C [n], defined in the following way
{81 Cn:5CU}x{S2C[n]:5nNU=g}.

Obviously, if a pair(Sy, S2) lies in the rectangle?y, U C [n], then the sets$, S, are
disjoint, hence, every rectangl®; is a non-zero rectangle.

Choose a sdt C [n], taking elements ofn] independently with probability

k1
L.

Thus, for a fixed paif.5y, S2) of disjoint setsS;, S2 C [n], the probability to be covered

is at least
ki \k ki \k ko ko
1— ko k1 _ 1— 2 1
=p" =070 7 w) 2 Gos ki + ko
Let us bound the logarithm of the expected number of entr@s fupp(1/), which
are not covered, if we choose independentfuch rectangles

g (" 1) (" 11 1= 07) < g (200" 2n)) + rlog1 —g) =

K2k,
k1 + ko
Whenever the above upper bound for the logarithm of the egdemimber of uncovered
entries fromsupp(M) is negative, we can conclude that there exists a rectangér éor
the matrix M € R?*/ of sizer. Thus, there exists a rectangle cover of si2@k; +
ko) (EtE2)k2 og ).

2

)kz e > (

)t

(k1 + k2)log(2n) — r(

O
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Lemma 6.5. For a matrix M € R!*X, wherel = {S C [n] : |S| <k}, X = [n] for
k < n, such that the entry}/s ,, is non-zero if and only i ¢ S, the rectangle covering
number of the support of the matrb{ € R7*” is at leastmin(n — k, $Fk2) 1),

PROOF. For every rectangle cov& for the matrixM € R’*¥X, we can assume that
every rectanglé? € R is induced by some sét C X in the following way

R={SCn:SNV=0}xV,

since the maximal non-zero rectangles have the above fonus, e are able to consider
the set), consisting of these sets C [n], which induce the rectangle coverifiy Addi-
tionally, for eachr € X denote by, the set of all set¥ € V, such thatr € V. Moreover,
assume tha¥,, = {{x}}, whenevefz} € V,, what can be achieved by excludinge X
from all other sets inv.

Define X’ as follows

X' ={zeX:V,={{z}}}.

Choosek distinct elementsy,. .. x; from the setX \ X', which is possible, since other-
wise|R| > n — k. Fori € [k] consider the set

Vi=Va N U V),
jeli—1]
i.e. all sets inY, which containz; but do not contain any;, j € [i — 1].

Assume that the cardinality of the gt is smaller thark + 2 — i for somei € [k].
Construct a seV”’ by choosing an element from each setih Thus, we get thai”’| <
k + 1 — i from the assumption on the cardinaliy. Define the set' C [n], |S| < k as

S = V’U{vl,...,vi_1},
such thatc; does not belong@, but every set iV, is not disjoint to the sef. Thus, there
exists no rectangle iR, which covers the entr{S, x;).

So the cardinality of every sét/, i € [k], is at least + 2 — 4, and since the seld/,
i € [k] are disjoint
(k+2)(k+1)

—-1.
2

Rl =
6.3. Groups
The next theorem is the central theorem in Chdfter 5, andsisaMannakakis [1991].
Theorem 6.1(Yannakakis|[1991]) For every subgroup/ of the groupS(n), whereS(n)

Uisatmost(}), k < %, there existd¥ C [n], such that
{medAn):rw=w foral weW}.

PROOF Let us assume that the grodpis not transitive. Consider an orbi? of
U with maximal cardinality. The cardinality B is at leastn — k, since otherwise the
cardinality of the grougd’ is less tharn(n — k)!k!, what contradicts the condition on the
index of U in &(n). If the action of the grouf’ on B is not primitive, witht > 2 blocks
of imprimitivity and ¢ elements in each, then the cardinalityl6fs at most

tH( (n — to)!,

wheret/ is at least: — k. It is not hard to see that under these condititd&)*(n — ¢¢)!
is smaller thark!(n — k)!, and thus, the action of the groGpon B is primitive.

Let us denote by/,, U the permutation groups defining the action of the grbupn
the setsB, I, respectively, wher&” denotes the sét] \ B. And letU; be the subgroup
of Uy, which is defined by the action of the group

{relU:rw=w foral weW},
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on the setB. Obviously,|U] is equal to|U;||Uz| andU; is a normal subgroup df;.
Thus,U; acts transitively orB, sincelU;" is a non-trivial normal subgroup of the primitive
permutation grou@/;. The groupl; acts primitively onB, due to the cardinality reasons
above. Thus, the group; contains2(B), because the index of every primitive subgroup
of 6(B)isat Ieast[‘m%lj 1, unless it isS( B) or 2A( B) (see Wieland{[1964]), and because
the inequality

B!
25!
holds. O

(n—k)!>




Mslack(P)
supp(M )
R(M)
L(P*, P,)
L(P)
rank M
re(P)
x(S)

(a,b)
S(n)
2A(n)
isog(s)
GF(2)

[n]

[n]odd
[n]even

Og

14
anatch(G)

Peya(G)

cycl

PTL

card
Pegge(G)

{a;irk
Pjoin(G)
Pcut(G)
P;LVGII
Pgdd

ﬁuff
Pﬁ—t flow (N)
Pstc(G)
lineal(P)
rec(P)
vert(P)
aff (X)
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6.4. Notation List

graph with verticed” and edges”
complete graph with vertices

complete bipartite graph with andm vertices in bipartition
edges, having one vertex Inand one vertex it/
stable set number a¥

genus of¢

clique number of~

coloring number of7

incoming edges for vertex sét

outgoing edges for vertex skt

cycles of siz¢ in G

T-joins inG

matchings of sizé in G

spanning trees itr

n-dimensional Huffman vectors

slack matrix for polyhedra’, and P*
slack matrix for polyhedro®

support ofM

non-zero rectangles af/

face poset for polyhedr®, and P*

face lattice for polyhedro®
non-negative rank o/

rectangle covering bound fdr
characteristic vector of with respect to the corresponding superset
Z‘j:l a;b; fora, b € R?

symmetric group om elements
alternating group on elements

isotropy group ofs with respect to the action ¥
Galois field

set of numbers from one tift

set of odd numbers from one till

set of even numbers from one till
d-dimensional vectof0, . .., 0)
d-dimensional vectofl, ..., 1)
cardinality restricted matching polytope
cardinality restricted cycle polytope
cardinality indicating polytope

edge polytope

Birkhoff polytope

T-joins polytope

cut polytope

parity polytope

parity polytope

Huffman polytope

flow polyhedron

spanning tree polytope

lineality space ofP

recession cone af

vertices ofP

affine hull of X
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conv(X) convex hull of X
cone(X) convex cone ofX
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