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Summary

The present habilitation consists for five scientific papers: Prus (2022a), Prus (2023b), Prus
(2023a), Prus and Filová (2023) and Prus and Piepho (2021). Also four earlier works (Prus
(2020), Prus et al. (2020), Prus (2022b) and Harman and Prus (2018)) are related to the same
topic.

In the habilitation optimal designs in multiple-group mixed models were investigated. In these
models observational units (for simplicity called ’individuals’) are allocated to several groups.
Statistical properties of the individuals may differ from group to group. For each observational
unit many observations are possible, repeated measurements are allowed. The response depends
on unknown fixed and (unit-specific or ’individual’) random effects.

In the present work the main focus is on optimal designs for the prediction of random effects
or of linear combinations of fixed and random effects, based on the related best linear unbiased
predictors (BLUP). Also for the estimation of fixed effects (BLUE) some new aspects, especially
for the computation of designs, were considered. The resulting design criteria turned out to
depend on several designs (group-designs) simultaneously. For such design criteria the general
equivalence theorem proposed by Kiefer (1974) cannot be used.

In Prus (2022a) extended versions of the general equivalence theorem are provided. The (new)
equivalence theorems for the multiple-design problems are based on the assumptions of convexity
and differentiability of the design criteria. For the design problems with finite experimental
regions optimality conditions were formulated with respect to the designs themselves (Theorem
1). For the case where the optimality criteria depend on the designs via information (or moment)
matrices only, optimality conditions were formulated with respect to the information matrices
(Theorem 2).

Prus (2023b) investigated optimal designs for the prediction of the individual random pa-
rameters and the group difference in two-groups random coefficient regression (RCR) models
with multivariate response. A solution for optimal approximate designs is given in the form of
optimality conditions for the linear and D-criteria. The optimality criteria depend on the designs
via the (group-) information matrices, hence, the optimality conditions could be obtained using
Theorem 2 from Prus (2022a).

Prus (2023a) considered optimal designs for the prediction in the RCR models in which only
one observation per observational unit is possible. An analytical solution is given for optimal
designs for the prediction of random effects for a group of selected individuals. The optimal
designs have been obtained for individual effects via their arithmetic mean. The design criteria
turned out to depend on two (group-) designs simultaneously. The solution is given by optimality
conditions, which results from Theorem 2 in Prus (2022a).

Prus and Filová (2023) discussed the problem of the computation of optimal and efficient
designs for fixed effects in the multiple-group mixed models considered in Prus (2023b). In this
work equi- and invariance properties of designs have been analyzed, the proposed computational
method is based on the algorithm by Harman et al. (2016) and allows for additional constrains
on design.

Prus and Piepho (2021) considered allocation of trials to sub-regions in multi-environment
crop variety testing. A linear mixed model with random genotype effects has been assumed. For
this problem Bayesian optimal designs for an adjusted covariance matrix of genotype effects turn
out to be optimal.

Some other related results are presented in the earlier works Prus (2020), Prus (2022b), Prus
et al. (2020) and Harman and Prus (2018). Prus (2020) and Prus (2022b) investigated optimal
designs in particular multiple-group RCR models with several treatment groups and a control
group or two treatment groups, respectively. An application in medical research for simple
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RCR models has been discussed in Prus et al. (2020). Harman and Prus (2018) proposed a
computational approach for optimal designs with respect to the Compound Bayes Risk Criterion
(CBRC). This approach has been used for computing Bayesian optimal designs in Prus (2023b)
and Prus and Piepho (2021).
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Zusammenfassung

Die vorliegende Habilitation besteht aus fünf wissenschaftlichen Arbeiten: Prus (2022a), Prus
(2023b), Prus (2023a), Prus and Filová (2023) und Prus and Piepho (2021). Auch vier frühere
Arbeiten (Prus (2020), Prus et al. (2020), Prus (2022b) und Harman and Prus (2018)) beziehen
sich auf das Habilitationsthema.

In der Habilitation wurden optimale Versuchspläne (Designs) in gemischten Mehrgruppen-
modellen untersucht. In diesen Modellen werden Beobachtungseinheiten (’Individuen’) den Grup-
pen zugeordnet. Statistische Eigenschaften der Individuen können sich von Gruppe zu Gruppe
unterscheiden. Für jede Beobachtungseinheit sind viele Beobachtungen möglich, wiederholte
Messungen sind zugelassen. Die Antwortvariablen hängen von unbekannten festen und (indi-
viduellen) zufälligen Effekten ab.

Der Schwerpunkt der vorliegenden Arbeit liegt an optimalen Designs für die Vorhersage
zufälliger Effekte bzw. linearer Kombinationen von festen und zufälligen Effekten, basierend auf
der zugehörigen besten linearen erwartungstreuen Vorhersage (BLUP). Auch für die Schätzung
von festen Effekten (BLUE) wurden einige neue Aspekte, insbesondere für die Berechnung von
Designs, berücksichtigt. Die resultierenden Designkriterien hängen gleichzeitig von mehreren De-
signs (Gruppendesigns) ab. Für solche Designkriterien kann der von Kiefer (1974) vorgeschlagene
allgemeine Äquivalenzsatz nicht verwendet werden.

In Prus (2022a) sind erweiterte Versionen des allgemeinen Äquivalenzsatzes dargestellt. Die
(neuen) Äquivalenztheoreme für die Multiple-Design-Probleme basieren auf den Annahmen der
Konvexität und Differenzierbarkeit der Designkriterien. Für die Designprobleme mit endlichen
Versuchsbereichen wurden Optimalitätsbedingungen bezüglich der Designs selbst formuliert (The-
orem 1). Für den Fall, wenn die Optimalitätskriterien nur über Informations- (oder Moment-)
Matrizen von den Designs abhängen, wurden Optimalitätsbedingungen in Bezug auf die Infor-
mationsmatrizen formuliert (Theorem 2).

Prus (2023b) hat optimale Versuchspläne für die Vorhersage der individuellen zufälligen
Parameter und der Gruppendifferenz in Zwei-Gruppen-Regressionsmodellen mit zufälligen Ef-
fekten (random coefficient regression, RCR) untersucht. Eine analytische Lösung für opti-
male approximative Versuchspäne ist in Form von Optimalitätsbedingungen für die L- und
D-Kriterien gegeben. Die Optimalitätskriterien hängen von den Designs über die Gruppen-
Informationsmatrizen ab. Die Optimalitätsbedingungen wurden mithilfe von Theorem 2 in Prus
(2022a) erhalten.

Prus (2023a) hat optimale Versuchspläne für die Vorhersage in den RCR-Modellen, in denen
nur eine Beobachtung pro Beobachtungseinheit möglich ist, untersucht. Eine analytische Lösung
für optimale Designs zur Vorhersage zufälliger Effekte für eine Gruppe ausgewählter Individuen
wurde vorgeschlagen. Die optimalen Designs für individuelle Effekte wurden über ihren arith-
metischen Mittelwert erhalten. Die resultierenden Designkriterien hängen gleichzeitig von zwei
Gruppen-Designs ab. Die Lösung ist gegeben in Form der Optimalitätsbedingungen, die sich aus
Theorem 2 in Prus (2022a) ergeben.

In Prus and Filová (2023) wurde das Problem der Berechnung optimaler und effizienter
Designs für feste Effekte in den in Prus (2023b) betrachteten gemischten Mehrgruppenmodellen
berücksichtigt. In dieser Arbeit wurden Äqui- und Invarianzeigenschaften von Designs analysiert,
die vorgeschlagene Berechnungsmethode basiert auf dem Algorithmus von Harman et al. (2016)
und berücksichtigt zusätzliche Einschränkungen für Designs.

Prus and Piepho (2021) haben die Zuordnung der Feldversuche den Subregionen bei der
Prüfung von Kulturpflanzensorten in mehreren Umgebungen betrachtet. Es wurde ein lineares
gemischtes Modell mit zufälligen Genotypeffekten verwendet. Für dieses Versuchsplanungsprob-
lem zeigen sich Bayes’sche optimale Designs für eine angepasste Kovarianzmatrix von Genotyp-
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effekten optimal.
Einige weitere Ergebnisse, die für das Habilitationsthema relevant sind, wurden in den

früheren Arbeiten Prus (2020), Prus (2022b), Prus et al. (2020) und Harman and Prus (2018)
dargestellt. In Prus (2020) wurden optimale Designs in speziellen Mehrgruppen-RCR-Modellen
mit mehreren Behandlungsgruppen und einer Kontrollgruppe untersucht. In Prus (2022b) ging
es um Modelle mit zwei Behandlungsgruppen. Eine Anwendung in der medizinischen Forschung
für einfache RCR-Modelle wurde in Prus et al. (2020) vorgeschlagen. Harman and Prus (2018)
haben eine Berechnungsmethode für optimale Designs für das Compound Bayes Risk Criterion
(CBRC) entwickelt. Diese Methode wurde zur Berechnung optimaler Bayes’scher Designs in
Prus (2023b) und Prus and Piepho (2021) verwendet.

2



Extended Summary of Habilitation

Optimal Experimental Designs in Multiple-Group Mixed Models

of

Maryna Prus

at

Faculty of Mathematics

Otto von Guericke University of Magdeburg



Contents

1 Introduction 2

2 Structure of the Habilitation 4

3 Main Results of the Habilitation 5
3.1 Equivalence Theorems for Multiple-Design Problems . . . . . . . . . . . . . . . . 5
3.2 Optimal Designs in Multiple-Group RCR Models . . . . . . . . . . . . . . . . . . 5
3.3 Optimal Designs in Multiple-Group Models with one Observation per Individual 6
3.4 Computational Aspects for Optimal Designs . . . . . . . . . . . . . . . . . . . . . 6
3.5 Application in Multi-Environment Trials . . . . . . . . . . . . . . . . . . . . . . . 6

4 Other Related Publications 8
4.1 Some Particular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Application in Medical Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Computation of Optimal Designs for CBRC . . . . . . . . . . . . . . . . . . . . . 8

5 Discussion and Outlook 9

1



1 Introduction

The subject of this work is multiple-group linear mixed models. These models are popular in
many fields of statistical applications, for example in medical research, pharmacokinetic, agri-
cultural sciences (see Fedorov and Jones (2005), Schmelter (2007), Kleinknecht et al. (2013)).
In these models observational units (for simplicity called ’individuals’) are allocated to sev-
eral groups. Statistical properties of the individuals (for example variances and covariances of
individual random effects) may differ from group to group. For each observational unit many ob-
servations are possible, repeated measurements are allowed. The response depends on unknown
fixed and (usually unit-specific or ’individual’) random effects.

The purpose of the work is to determine optimal designs (experimental settings) for the
estimation / prediction of unknown parameters. The focus may be on fixed or random parameters
as well as on their linear combinations. The designs are generally considered here for the best
linear unbiased predictor (BLUP) (see e. g. Henderson (1975)). The design optimization problem
for the best linear unbiased estimators (BLUE) for fixed parameters is well investigated in the
literature (see e. g. Schmelter (2007). However some new aspects, especially for the computation
of designs, are being considered in the present work.

For determining optimal designs, the mean squared error (MSE) matrix of the BLUP (or the
covariance matrix of the BLUE) is being minimized via design criteria. The design criteria are
functions of the MSE (or covariance) matrix as for example the determinant (D-criterion), the
largest eigenvalue (E-criterion) or the trace (A-criterion) (see e. g. Fedorov and Hackl (1997),
Pázman (1986), Pukelsheim (1993)). If the criterion of interest is convex and differentiable, the
analytical solution may result in optimality conditions, that follow from the general equivalence
theorem (see e.g. Kiefer (1974)). In general optimal designs do not follow directly from the
optimality conditions. Therefore, a variety of computational methods have been developed (see
e.g. Sagnol and Harman (2015), Harman et al. (2016)).

The analytical solutions for optimal designs available in the literature are proposed in general
for design criteria depending on one design only (see e. g. Gladitz and Pilz (1982), Prus and
Schwabe (2016)). In the multiple-group models, however, different designs for different groups
are possible. Consequently, the resulting design criteria usually turn out to depend on several
(group-) designs simultaneously (see e.g. Schmelter (2007)). For such design criteria, the general
equivalence theorem cannot be used directly. Therefore, extended versions for the multiple-
design problems have been developed in Prus (2022a). Results of this paper have been used
for formulating optimality conditions for the multiple-group models discussed in Prus (2023b)
and Prus (2023a). Prus (2023b) considered the two-groups random coefficient regression models
with multivariate response. In Prus (2023a) optimal designs for the models with one observation
per observational unit were investigated. Both papers provide analytical solutions for optimal
designs in form of optimality conditions. An application in multi-environment trials has been
considered in Prus and Piepho (2021).

The most methods for the computation of optimal or highly efficient designs proposed so
far were developed for classical design criteria in the models without random effects (see e. g.
Harman and Filová (2019)). Some methods are developed for non-linear mixed models (see e. g.
Nyberg et al. (2012), Dumont et al. (2018)). These methods, however, do not allow for addi-
tional constraints (such as budget or other types of resources) that may arise in the experiment,
and are focused on the approximate designs or consider only the D-criterion. The problem of
the computation of optimal and efficient designs in the multiple-group mixed models has been
discussed in Prus and Filová (2023). In this work equi- and invariance properties of designs are
analyzed, the proposed computational method for exact designs is based on the algorithm by
Harman et al. (2016) and allows for constrained design problems.
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Some other related results are presented in earlier works Prus (2020), Prus (2022b), Prus
et al. (2020) and Harman and Prus (2018). Prus (2020) and Prus (2022b) investigated optimal
designs in particular multiple-group RCR models with several treatment groups and a control
group or two treatment groups, respectively. An application in medical research for simple
RCR models has been discussed in Prus et al. (2020). Harman and Prus (2018) proposed a
computational approach for optimal designs with respect to the Compound Bayes Risk Criterion
(CBRC), which includes the Bayesian linear criteria as a particular case. This approach has been
used for computing optimal designs in Prus (2023b) and Prus and Piepho (2021).

The structure of the habilitation is presented explicitly in the next section. The main results
are summarized in Section 3. The earlier works are briefly discussed in Section 4. The authors’
contributions are given for all joint works directly after their descriptions. Section 5 includes a
short discussion and an outlook. The scientific papers themselves are added after the discussion.
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2 Structure of the Habilitation

The present commutative habilitation consists of the following scientific works:

• Prus, M. (2022a). Equivalence theorems for multiple-design problems with application in
mixed models. Journal of Statistical Planning and Inference, 217, 153–164. (Accepted
manuscript attached).
https://doi.org/10.1016/j.jspi.2021.07.012

• Prus, M. (2023a). Optimal designs for prediction in random coefficient regression models
with one observation per individual. Statistical Papers.
https://doi.org/10.1007/s00362-023-01440-1

• Prus, M. (2023b). Optimal designs for prediction of random effects in two groups linear
mixed models. Journal of Multivariate Analysis, 198. (Preprint attached).
https://doi.org/10.1016/j.jmva.2023.105212

• Prus, M. and Filová, L. (2023). Computational aspects of experimental designs in multiple-
group mixed models. Statistical Papers.
https://link.springer.com/article/10.1007/s00362-023-01416-1

• Prus, M. and Piepho, H.-P. (2021). Optimizing the allocation of trials to sub-regions in
multi-environment crop variety testing. Journal of Agricultural, Biological and Environ-
mental Statistics, 26, 267–288. (Accepted manuscript attached).
https://doi.org/10.1007/s13253-020-00426-y

Other related publications:

• Harman, R., Prus, M. (2018). Computing optimal experimental designs with respect to a
compound Bayes Risk criterion. Statistics & Probability Letters, 137, 135–141.

• Prus, M. (2020). Optimal designs in multiple-group random coefficient regression models.
TEST, 29, 233-254.

• Prus, M. (2022a). Optimal designs for prediction in two treatment groups random coef-
ficient regression models. In J. Pilz, T. A. Oliveira, K. Moder, and C. P. Kitsos, editors,
Mindful Topics on Risk Analysis and Design of Experiments - Selected contributions from
ICRA8, Vienna. Springer.

• Prus, M., Benda, N., and Schwabe, R. (2020). Optimal design in hierarchical random
effect models for individual prediction with application in precision medicine. Journal of
Statistical Theory and Practice, 14, 24.
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3 Main Results of the Habilitation

In this section the main results of the habilitation, published in the five scientific papers listed
in Section 2 (Prus (2022a), Prus (2023b), Prus (2023a), Prus and Filová (2023) and Prus and
Piepho (2021)), will be described.

3.1 Equivalence Theorems for Multiple-Design Problems

Prus (2022a) considered design problems with optimality criteria depending on several designs
simultaneously. This work can be seen as the basic paper of the habilitation. It was motivated by
the fact that in many multiple-group mixed models, especially in the random coefficient regres-
sion (RCR) models with several groups of observational units, design criteria depend on several
(group-) designs (see e. g. Schmelter (2007)). For such design criteria the general equivalence
theorem proposed by Kiefer (1974) cannot be used. Therefore, for solving design optimization
problems in the multiple-group models an extended version of this theorem had to be developed.

Prus (2022a) formulated equivalence theorems for the multiple-design problems based on
the assumptions of convexity and differentiability of the design criteria. For the design problems
with finite experimental regions optimality conditions were formulated with respect to the designs
themselves (Theorem 1). For the case where the optimality criteria depend on the designs via
information (or moment) matrices only, optimality conditions were formulated with respect to
the information matrices (Theorem 2). The proposed optimality conditions were applied to
the multiple-group RCR models: Optimal designs for the estimation of fixed effects have been
discussed. As a by-product the following result has been obtained: If all observational units have
the same statistical properties and there are no group-specific design-restrictions, optimal designs
in the single-group models are also optimal as group-designs in the multiple-group models. In this
case the group sizes have no influence on the designs. However, if the numbers of observations
differ from group to group, optimal group-designs may depend on the numbers of observations
and the group sizes. This behavior has been illustrated by the example of straight line regression
models.

The results from this work have been used directly for formulating optimality conditions for
the design problems considered in Prus (2023b) and Prus (2023a) (see Sections 3.2 and 3.3).

3.2 Optimal Designs in Multiple-Group RCR Models

Prus (2023b) investigated optimal designs for the prediction of individual random parameters
and the group difference in the two-groups RCR models with multivariate response. Note that
in this and other works observational units are often called for simplicity ’individuals’. However,
in reality observational units may be (besides people or animals) studies, centers, plots, etc.
The solution for optimal approximate designs in the two-groups RCR models is given in the
form of optimality conditions for the linear and D-criteria. As the optimality criteria depend on
the designs via the (group-) information matrices, the optimality conditions could be obtained
using Theorem 2 from Prus (2022a) (see Section 3.1). Optimal designs for the prediction of the
group differences coincide, in the particular case of the same regression function and the same
design region for both groups, with the Bayesian optimal designs for an adjusted covariance
matrix of random effects. Optimal approximate and exact designs for Bayesian linear criteria
were computed using ”OptimalDesign” package in R (see Harman and Filová (2019)) and the
approach proposed by Harman and Prus (2018) (see Section 4) for Bayesian non-singular linear
criteria.
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3.3 Optimal Designs in Multiple-Group Models with one Observation per
Individual

Prus (2023a) considered optimal designs for the prediction of random effects in the RCR models
in which only one observation per observational unit (individual) is possible. For only two
observational units, these models may be in general considered as a particular case of the RCR
models discussed in Prus (2023b) (Prus (2022a)) with one individual per group. However, the
theory developed in that paper for optimal designs for the prediction, is based on the condition
of full column rank design matrices for both groups, i. e. the number of observations for each
observational unit should not be smaller than the number of unknown fixed parameters. This
condition is obviously not satisfied in the case of only one observation per individual. Therefore,
the results obtained in Prus (2023b) could not be used.

In Prus (2023a) analytical solution is given for optimal designs for the prediction of random
effects for a group of selected individuals. The optimal designs have been obtained for individual
effects (individual deviations from the population parameter) via their arithmetic mean. The
design criteria turned out to depend on two (group-) designs simultaneously. The solution is
given by optimality conditions, which result from Theorem 2 in Prus (2022a) (see Section 3.1).
The analytical results are illustrated by simple examples of straight line regression models.

3.4 Computational Aspects for Optimal Designs

An analytical solution for optimal designs for the estimation of fixed effects in the multiple-group
RCRmodels has been obtained in Prus (2022a). (Optimal designs for prediction of random effects
in these models were considered in Prus (2023b).) This solution was given in form of optimality
conditions, that allow to check if a candidate design is optimal or not. However, the question
arises how the candidate designs should be chosen. The answer to this question is in general
far from obvious. Hence, the problem of the computation of optimal or highly efficient designs
remained open.

Prus and Filová (2023) focused on computational aspects for optimal designs in the multiple-
group mixed models. In the first step of this work equi- and invariance properties of approximate
optimal designs were considered. These properties have been used to fix the support points and,
consequently, to reduce the number of unknown variables in first- and second-order models on
a symmetric square. These results were used to determine optimal designs analytically in a
few particular cases, as shown in the examples. In the second step, a modified version of the
algorithm of Harman et al. (2016) has been developed for the computation of exact designs.
As it has been illustrated by several examples, this modified algorithm is a useful tool for such
computations, even in the cases where there are several nontrivial constraints on the design.

Authors’ contributions: Prus, M. 60%, Filová, L. 40%.

3.5 Application in Multi-Environment Trials

Prus and Piepho (2021) considered allocation of trials to sub-regions in multi-environment crop
variety testing. A linear mixed model with random genotype effects has been assumed. Due
to its complicated covariance structure, this model is not a particular case of the RCR models
considered in Prus (2023b). The allocation of locations for different sub-regions with respect to
the prediction of genotype effects and their pairwise linear contrasts was optimized for A- and
particular linear (weighted A-) criteria. The proposed approach is based on the method of best
linear unbiased prediction (BLUP). For this problem, Bayesian optimal designs for an adjusted
covariance matrix of genotype effects turned out to be optimal. In the example, two kinds of
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models with respect to the covariance structure were considered: first-order factor-analytic and
compound symmetry. The resulting designs in both cases depend on the covariance structure,
observational errors variance and the total number of locations in all sub-regions. The only
exception is the standard A-criterion for the compound symmetry covariance structure: in this
case, balanced designs are optimal. For the weighted A-criterion the weighted design turned out
to be highly efficient for compound symmetry. However, one should be more careful with the
choice of design in case of the factor-analytic covariance structure, especially if there are large
differences between variances of genotype effects for different sub-regions. In this work Bayesian
optimal designs have been computed using the approach proposed by Harman and Prus (2018).
Linear constraints on designs have been used to avoid the situation with zero locations in some
sub-regions.

Authors’ contributions: Prus, M. 70− 80%, Piepho, H.-P. 20− 30%.
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4 Other Related Publications

This section briefly describes the results of the four earlier works of the author: Prus (2020),
Prus et al. (2020), Prus (2022b) and Harman and Prus (2018). These works are not directly
included in the habilitation. They are, however, related to the same topic. Results from these
works were used in the habilitation.

4.1 Some Particular Cases

In Prus (2020) multiple-group RCR models with several treatment groups and a control group
have been considered. The A-, D- and E-optimality criteria for the estimation of population
parameters and for the prediction of individual treatment effects have been obtained using the
covariance matrix of the BLUE (best linear unbiased estimator) and the mean squared error
matrix of the BLUP (best linear unbiased predictor), respectively. The optimal designs (optimal
group sizes) turned out to be different for the estimation and the prediction and do not coincide
with those in the corresponding fixed-effects model (one-way layout).

Prus (2022b) considered RCR models with two treatment groups. The A- and D-optimality
criteria for the estimation of the population parameters and the prediction of the individual
random effects have been derived. The efficiency of the balanced design, which assigns equal
group sizes, is relatively high only for small values of the variances of random effects and decreases
with increasing variance.

4.2 Application in Medical Research

Prus et al. (2020) discussed the problem of optimal designs in particular multi-center models.
In these models individuals are divided into several centers (laboratories, studies, etc.). Then in
each center individuals are assigned either to the treatment or to the control group. Only one
observation is available per individual. Optimal designs are obtained for the A-criterion of the
average of the mean squared error for the prediction of the center specific treatment effects. The
performance of the resulting optimal designs is compared with that of a conventional balanced
design with respect to the treatment and control allocations. The investigations show that bal-
anced designs are far from being optimal, for instance, if the treatment effects vary strongly as
compared to the residual errors, and more subjects should be recruited to the active treatment
group.

Authors’ contributions: Prus, M. more than 50%.

4.3 Computation of Optimal Designs for CBRC

Harman and Prus (2018) developed an approach for the computation of optimal approximate
and exact designs with respect to a general Compound Bayes Risk Criterion (CBRC). This more
general criterion includes various specific criteria, for example the Bayesian non-singular linear
criterion. The proposed approach even permits to solve problems under additional linear con-
straints on the designs. This approach has been used for the computation of optimal designs in
Prus (2023b) and Prus and Piepho (2021).

Authors’ contributions: Prus, M. 40%, Harman, R. 60%.
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5 Discussion and Outlook

The present habilitation consists for five scientific papers: Prus (2022a), Prus (2023b), Prus
(2023a), Prus and Filová (2023) and Prus and Piepho (2021). Also four earlier works of the author
(Prus (2020), Prus et al. (2020), Prus (2022b) and Harman and Prus (2018)) are related to the
topic. In the habilitation optimal designs in multiple-group mixed models were investigated. In
the basic paper Prus (2022a) extended versions of the general equivalence theorem are provided.
Prus (2023b) and Prus (2023a) considered optimal designs for the prediction of random effects in
two kinds of multiple-group RCR models. Analytical solutions are proposed in form of optimality
conditions for candidate designs. Prus and Filová (2023) considered computational aspects of
optimal designs for fixed effects in the models considered in Prus (2022a) and Prus (2023b). Prus
and Piepho (2021) considered an application in agricultural sciences: allocation of trials to sub-
regions in multi-environment crop variety testing. The earlier works Prus (2020) and Prus et al.
(2020) considered optimal designs in particular cases of the multiple-group RCR models. Prus
et al. (2020) proposed an application in medical research. Harman and Prus (2018) developed
an approach for computing optimal designs for CBRC.

In the present works optimal designs depend on the covariance matrices of random effects
in the model, and are therefore locally optimal. In the future research it may be reasonable to
consider robust design criteria (as minimax-criterion or maximin-efficient), that are independent
of the variance parameters. Also assuming particular covariance structure may be a solution
(as for example the compound-symmetry structure in Prus and Piepho (2021)). The problem of
computation of designs in solved only for the estimation of fixed effects in the multiple-group RCR
models (by Prus and Filová (2023)). For the prediction of random effects (Prus (2023b), Prus
(2023a)) this problem remains open (except of some particular cases, where Bayesian designs
turned out to be optimal). Computational aspects for optimal designs may be considered in
more detail in the future. Moreover, the results obtained in Prus (2023b) and Prus (2023a)
cover the situations with only one observation per individual or if the number of observations
m is not smaller than the number p of unknown fixed effects. The problem of sparse designs,
1 < m < p, also remains open. Another reasonable direction of future research is extension of
results obtained in Prus and Piepho (2021) for optimal designs in multi-environment trials. In
practice, the linear mixed models used in this research should e. g. incorporate the influence of
environmental factors and allow for multi-annual experiments.
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Abstract

In the present paper we consider design criteria which depend on several designs simul-
taneously. We formulate equivalence theorems based on information matrices (if criteria
depend on designs via information matrices) or with respect to the designs themselves (for
finite design regions). We apply the obtained optimality conditions to multiple-group random
coefficient regression models and illustrate the results by simple examples.

Keywords: Optimal design, optimality condition, multiple-group, mixed model, random
coefficient regression, multivariate response

1 Introduction

The subject of this work is multiple-design problems - optimization problems with optimality
criteria depending on several designs simultaneously. Such optimality criteria can be, for example,
commonly used design criteria for estimation of unknown model parameters in cases when the
covariance matrix depends on several designs (see e. g. Fedorov and Jones (2005), Schmelter
(2007a). For such criteria the general equivalence theorem proposed in Kiefer (1974) cannot be
used directly. In Fedorov and Jones (2005) optimal designs were obtained for specific regression
functions. In Schmelter (2007a) particular group-wise identical designs have been discussed.

In this paper we formulate equivalence theorems for two kinds of multiple-design problems:
1) problems on finite experimental regions and 2) problems with optimality criteria depending
on designs via information matrices. For both cases we assume the optimality criteria to be
convex and differentiable in the designs themselves or in the information matrices, respectively.
In case 1) we formulate optimality conditions with respect to the designs directly (as proposed in
Whittle (1973) for one-design problems). These results can be useful in situations when design
criteria cannot be presented as functions of information matrices (see e. g. Bose and Mukerjee
(2015). In case 2) optimality conditions are formulated with respect to the information matrices.
Therefore, no additional restrictions of the experimental regions are needed.

We apply the equivalence theorems to multiple-group random coefficient regression (RCR)
models. In these models observational units (individuals) are assigned to groups. Within one
group a single design (group-design) for all individuals is assumed. Group-designs for individuals
from different groups are in general not the same. The assumption of the same design for all
individuals within one group may be not feasible for some applications. This simplification is
needed for analytical purposes. Most of the commonly used design criteria in multiple-group
RCR models are functions of several group-designs. The particular case of these models with
one observation per individual has been considered in Graßhoff et al. (2012). Mentré et al.
(1997) and Dumont et al. (2018) proposed computational methods for determining D-optimal
designs based on the normality assumption. In Prus (2015), ch. 6, models with group-specific
mean parameters were briefly discussed. Bludowsky et al. (2015), Kunert et al. (2010), Lemme
et al. (2015) and Prus (2020) considered models with particular regression functions and specific
covariance structures of random effects. In Entholzner et al. (2005) and Prus and Schwabe (2016)
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a single design was assumed for all observational units. Other particular cases of multiple-design
problems have been considered in Wierich (1989) and Schwabe (1996).

In this work, we propose an analytical approach for determining optimal designs with respect
to all convex and differentiable criteria in multiple-design problems. In particular, linear and
D-criteria in the multiple-group models are considered in detail. The proposed approach is based
on moment assumptions only (no distributional assumptions are needed).

The paper has the following structure: Section 2 provides equivalence theorems for the
multiple-design problems. In Section 3 we apply the obtained optimality conditions to the
multiple-group RCR models. In Section 4 we illustrate the results by a simple example. The
paper is concluded by a short discussion in Section 5.

2 Optimality Conditions for Multiple-Design Problems

We consider a multiple-design problem in which ξ1, . . . , ξs are probability measures (designs)
on experimental regions X1, . . . ,Xs, respectively, and φ is a design criterion which depends on
ξ1, . . . , ξs simultaneously and has to be minimized. Ξi denotes the set of all designs on Xi,
i = 1, . . . , s. For any xi ∈ Xi, δxi denotes the particular design ξi with all observations at
point xi. For convenience we use the notation ξ = (ξ1, . . . , ξs) for a vector of designs ξi ∈ Ξi,
i = 1, . . . , s. Then ξ ∈ Ξ for Ξ = ×si=1Ξi, where ”×” denotes the Cartesian product.

As an example, consider the multi-center trials model (see e. g. Fedorov and Jones (2005),
where tij denote the number of patients on treatment j in center i for i = 1, . . . , s and j = 1, . . . , `.
Then the design ξi may be determined by the numbers of patients for each treatment in the i-th
center: ti1, . . . , ti`.

In Section 2.1 we consider the multiple-design problems, where all design regions are assumed
to be finite. We formulate an equivalence theorem (Theorem 1) with respect to the designs
directly.

In Section 2.2 we consider the design criteria depending on designs via information matrices
and we propose an equivalence theorem (Theorem 2) based on this structure. In this case no
additional restrictions for the experimental regions are needed.

2.1 Optimality conditions in case of finite design regions

In this section we restrict ourselves on the optimization problems on finite design regions: |Xi| =
ki < ∞ for all i = 1, . . . , s. φ : Ξ → (−∞;∞] denotes a design criterion. We use the notation
Φ(ξ, ξ̃) for the directional derivative of φ at ξ in direction of ξ̃:

Φ(ξ, ξ̃) = lim
α↘ 0

1

α

(
φ((1− α)ξ + αξ̃)− φ(ξ)

)
. (1)

Further we define the partial directional derivative of φ at ξi in direction of ξ̃i as follows:

Φξi′ ,i
′ 6=i(ξi, ξ̃i) = Φ(ξ, ξ̆), (2)

where ξ̆ = (ξ̆1, . . . , ξ̆s) with ξ̆i′ = ξi′ , i′ = 1, . . . , s, i′ 6= i, and ξ̆i = ξ̃i.

Theorem 1. Let φ : Ξ→ (−∞;∞] be convex and differentiable.

a) The following statements are equivalent:

(i) ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) minimizes φ(ξ)

(ii)
∑s

i=1 Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) ≥ 0, ∀ ξi ∈ Ξi, i = 1, . . . , s
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(iii) Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) ≥ 0, ∀ ξi ∈ Ξi, i = 1, . . . , s

(iv) Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , δxi) ≥ 0, ∀xi ∈ Xi, i = 1, . . . , s.

b) Let ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) minimize φ(ξ). Let xi be a support point of ξ∗i , i ∈ {1, . . . , s}. Then

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , δxi) = 0.

c) Let ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) minimize φ(ξ). Then the point (ξ∗, ξ∗) is a saddle point of Φ in that

Φ(ξ∗, ξ) ≥ 0 = Φ(ξ∗, ξ∗) ≥ Φ(ξ̃, ξ∗), ∀ ξ, ξ̃ ∈ Ξ (3)

and the point (ξ∗i , ξ
∗
i ) is a saddle point of Φξ∗

i′ ,i
′ 6=i in that

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) ≥ 0 = Φξ∗

i′ ,i
′ 6=i(ξ

∗
i , ξ
∗
i ) ≥ Φξ∗

i′ ,i
′ 6=i(ξ̃i, ξ

∗
i ), ∀ ξi, ξ̃i ∈ Ξi, (4)

for all i = 1, . . . , s.

Proof. a) (i)⇔(ii):

For this proof we present designs in form of row vectors ξi = (wi1, . . . , wiki), where wit ≥ 0 is
the weight of observations at xit, the t-th point of the experimental region Xi, t = 1, . . . , ki,∑ki

t=1wit = 1 (see e. g. Boyd and Vandenberghe (2004), ch. 7). Then ξ = (ξ1, . . . , ξs) is
the full (row) vector of all weights of observations at all points of all experimental regions.

We use the notations ∇ξiφ for the gradient of φ with respect to ξi: ∇ξiφ =
(

∂φ
∂wit

)
t=1,...,ki

,

and ∇ξφ for the gradient of φ with respect to ξ, which means ∇ξφ = (∇ξ1φ, . . . ,∇ξsφ).
(Gradients ∇ξiφ and ∇ξφ are row vectors).

According to convex optimization theory (see e. g. Boyd and Vandenberghe (2004), ch. 4)
ξ∗ minimizes φ iff Φ(ξ∗, ξ) ≥ 0 for all ξ ∈ Ξ. Then the equivalence of (i) and (ii) follows
from

Φ(ξ∗, ξ) = ∇ξφ(ξ∗)(ξ − ξ∗)>

=
s∑
i=1

∇ξiφ(ξ∗)(ξi − ξ∗i )>

=
s∑
i=1

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi).

(ii)⇔(iii): (iii)⇒(ii) Straightforward

(ii)⇒(iii): Let ∃ ξ̃i1 ∈ Xi with Φξ∗
i′ ,i
′ 6=i(ξ

∗
i1
, ξ̃i1) < 0. Let ξi1 = ξ̃i1 and ξi = ξ∗i , ∀ i 6= i1.

Then for all i 6= i1 we have Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) = Φξ∗

i′ ,i
′ 6=i(ξ

∗
i , ξ
∗
i ) = 0, which results in

s∑
i=1

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) = Φξ∗

i′ ,i
′ 6=i(ξ

∗
i1 , ξ̃i1) +

∑
i∈{1,...,s}\i1

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξ
∗
i )

= Φξ∗
i′ ,i
′ 6=i(ξ

∗
i1 , ξ̃i1) < 0.

(iii)⇔(iv): (iii)⇒(iv) Straightforward

(iv)⇒(iii) Let xi = xit be the t-th point in Xi, t = 1, . . . , ki. Then the one-point design
with all observations at xi is given by δxit = et, where et is the t-th unit (row) vector of
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length ki. A design ξi can be written as ξi =
∑ki

t=1wit. Then the directional derivative of
φ at ξ∗i in direction of ξi can be presented in form

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) =

ki∑
t=1

wit∇ξiφ(ξ∗)(et − ξ∗i )>,

which results in

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξi) =

ki∑
t=1

witΦξ∗
i′ ,i
′ 6=i(ξ

∗
i , δxit) ≥ 0.

b) Let the support point xi = xit′ be the t′-th point in Xi, t′ ∈ 1, . . . , ki. Then for ξ∗i =
(w∗i1, . . . , w

∗
iki

) we have w∗it′ > 0 and

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξ
∗
i ) =

ki∑
t=1

w∗itΦξ∗
i′ ,i
′ 6=i(ξ

∗
i , δxit).

Let Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , δxit′ ) > 0. Then since Φξ∗

i′ ,i
′ 6=i(ξ

∗
i , δxit) ≥ 0, t = 1, . . . , ki, we obtain

Φξ∗
i′ ,i
′ 6=i(ξ

∗
i , ξ
∗
i ) > 0.

c) The left-hand sides of both (3) and (4) are straightforward. From formula (1) and convexity
of φ we obtain

Φ(ξ̃, ξ∗) ≤ φ(ξ∗)− φ(ξ̃),

which is non-positive for optimal ξ∗ and all ξ̃ ∈ Ξ. Similarly using formula (2) we obtain
the right-hand side of (4).

2.2 Optimality conditions based on information matrices

We use the notation Mi(ξi) for a matrix which characterizes a design ξi. We assume Mi(ξi) to
be symmetric and positive semi-definite and to satisfy the condition

Mi(ξi) =

∫
Xi

Mi(δxi)ξi(dxi) (5)

for all i = 1, . . . , s. We call this matrix information matrix of a design ξi. However, we do
not require any specific form of Mi(ξi). In particular cases it may be, for example, the Fisher
information or the moment matrix in sense of Pukelsheim (1993). Mi denotes the set of all
information matrices Mi(ξi), ξi ∈ Ξi. For M(ξ) = (M1(ξ1), . . . ,Ms(ξs)) ,M denotes the set of
all M(ξ), ξ ∈ Ξ. ThenM = ×si=1Mi andM is convex. φ :M→ (−∞;∞] is a design criterion.
Φ(M, M̃) denotes the directional derivative of φ at M in direction of M̃:

Φ(M, M̃) = lim
α↘ 0

1

α

(
φ((1− α)M + αM̃)− φ(M)

)
. (6)

We define the partial directional derivative of φ at Mi in direction of M̃i as follows:

ΦMi′ ,i
′ 6=i(Mi, M̃i) = Φ(M, M̆), (7)

where M̆i′ = Mi′ , i′ = 1, . . . , s, i′ 6= i, and M̆i = M̃i.

Theorem 2. Let φ :M→ (−∞;∞] be convex and differentiable.
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a) The following statements are equivalent:

(i) ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) minimizes φ(M(ξ))

(ii)
∑s

i=1 ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi)) ≥ 0, ∀ ξi ∈ Ξi, i = 1, . . . , s

(iii) ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi)) ≥ 0, ∀ ξi ∈ Ξi, i = 1, . . . , s

(iv) ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(δxi)) ≥ 0, ∀xi ∈ Xi, i = 1, . . . , s.

b) Let ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) minimize φ(M(ξ)). Let xi be a support point of ξ∗i , i ∈ {1, . . . , s}.

Then ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(δxi)) = 0.

c) Let ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) minimize φ(M(ξ)). Then the point (M(ξ∗),M(ξ∗)) is a saddle point

of Φ in that

Φ(M(ξ∗),M(ξ)) ≥ 0 = Φ(M(ξ∗),M(ξ∗)) ≥ Φ(M(ξ̃),M(ξ∗)), ∀ ξ, ξ̃ ∈ Ξ (8)

and the point (Mi(ξ
∗
i ),Mi(ξ

∗
i )) is a saddle point of ΦMi′ (ξ

∗
i′ ),i
′ 6=i in that

ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi)) ≥ 0 = ΦMi′ (ξ

∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξ

∗
i ))

≥ ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ̃i),Mi(ξ

∗
i )), ∀ ξi, ξ̃i ∈ Ξi, (9)

for all i = 1, . . . , s.

Proof. a) (i)⇔(ii):

We use for the gradients of φ with respect to Mi and M the notations

∇Miφ =

(
∂φ

∂mkl

)
k,l

, Mi = (mkl)k,l

and
∇Mφ =

(
∂φ

∂mkl

)
k,l

, M = (mkl)k,l,

respectively.

ξ∗ minimizes φ iff Φ(M(ξ∗),M(ξ)) ≥ 0 for all ξ ∈ Ξ. The directional derivative can be
computed by formula

Φ(M, M̃) =
∂φ

∂α

(
(1− α)M + αM̃

)
|α=0. (10)

Then using some matrix differentiation rules (see e. g. Seber (2007), ch. 17) we receive

Φ(M(ξ∗),M(ξ)) = tr
(
∇Mφ(M(ξ∗))(M(ξ)−M(ξ∗))>

)
=

s∑
i=1

tr (∇Miφ(M(ξ∗))(Mi(ξi)−Mi(ξ
∗
i )))

=
s∑
i=1

ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi)),

which implies the equivalence of (i) and (ii).

(ii)⇔(iii): (iii)⇒(ii) Straightforward
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(ii)⇒(iii): Let ∃ ξ̃i1 with ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi1(ξ∗i1),Mi1(ξ̃i1)) < 0. Then for ξi1 = ξ̃i1 and

ξi = ξ∗i , ∀ i 6= i1, we obtain

s∑
i=1

ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi)) = ΦMi′ (ξ

∗
i′ ),i
′ 6=i(Mi1(ξ∗i1),Mi1(ξ̃i1))

+
∑

i∈{1,...,s}\i1

ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi))

= ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi1(ξ∗i1),Mi1(ξ̃i1)) < 0.

(iii)⇔(iv): (iii)⇒(iv) Straightforward

(iv)⇒(iii) The directional derivative of φ at Mi in direction of M̃i is linear in the second
argument:

ΦMi′ ,i
′ 6=i(Mi, M̃i) = tr

(
∇Miφ(M)(M̃i −Mi)

)
.

Then using formula (5) we obtain

ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξi)) =

∫
Xi

ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(δxi))ξi(dxi) (11)

for each ξi ∈ Ξi.

b) The result follows from formula (11), ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(δxi)) ≥ 0, for all xi ∈ Xi,

and ΦMi′ (ξ
∗
i′ ),i
′ 6=i(Mi(ξ

∗
i ),Mi(ξ

∗
i )) = 0.

c) The left-hand sides of both (8) and (9) are straightforward. From convexity of φ and
formula (6) we obtain

Φ(M(ξ̃),M(ξ∗)) ≤ φ(M(ξ∗))− φ(M(ξ̃)), ∀ ξ̃ ∈ Ξ,

which implies the right-hand side of (8). Similarly using formula (7) we obtain the right-
hand side of (9).

3 Optimal Designs in Multiple-Group RCR Models

We consider the multiple-group RCR models in which N observational units are assigned to s
groups: ni observational units in the i-th group,

∑s
i=1 ni = N . The group sizes ni are fixed.

Experimental designs are assumed to be the same for all observational units within one group
(group-design): mi observations per unit in design points xih, h = 1, . . . ,mi, in group i. However,
for units from different groups experimental designs are in general not the same: mi′ 6= mi′′ and
(or) xi′h 6= xi′′h, i′ 6= i′′.

Note that the experimental settings xi1, . . . , ximi in group i are not necessarily all distinct
(repeated measurements are not excluded).

Note also that observational units (often called individuals in the literature) are usually
expected to be people, animals or plants. However, they may also be studies, centers, clinics,
plots, etc.
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3.1 Model specification and estimation of unknown parameters

In multiple-group random coefficient regression models the h-th observation of the j-th observa-
tional unit in the i-th group is given by the following l-dimensional random column vector

Yijh = Gi(xih)βij + εijh, xih ∈ Xi, h = 1, . . . ,mi, j = 1, . . . , ni, i = 1, . . . , s, (12)

where Gi denotes a group-specific (l × p) matrix of known regression functions in group i (in
particular case l = 1: Gi = f>i , where fi is a p-dimensional column vector of regression functions),
experimental settings xih come from some experimental region Xi, βij = (βij1, . . . , βijp)

> are
unit-specific random parameters with unknown mean β0 and given (p × p) covariance matrix
Di, εijh denote column vectors of observational errors with zero mean and non-singular (l × l)
covariance matrix Σi. All observational errors and all random parameters are assumed to be
uncorrelated.

For the vector Yij = (Y>ij1, ...,Y
>
ijmi

)> of observations at the j-th observational unit in the
i-th group we obtain

Yij = Fiβij + εij , j = 1, . . . , ni, i = 1, . . . , s, (13)

where Fi = (G>i (xi1), ...,G
>
i (ximi))

> is the design matrix in group i and εij = (ε>ij1, ..., ε
>
ijmi

)>.
Then the vector Yi = (Y>i1, . . . ,Y

>
ini

)> of all observations in group i is given by

Yi = (Ini ⊗ Fi)βi + εi, i = 1, . . . , s, (14)

where βi = (β>i1, . . . ,β
>
ini

)>, εi = (ε>i1, . . . , ε
>
ini

)>, Ini is the ni × ni identity matrix and ”⊗”
denotes the Kronecker product, and the total vector Y = (Y>1 , . . . ,Y

>
s )> of all observations in

all groups results in

Y =

 1n1 ⊗ F1

. . .
1ns ⊗ Fs

β0 + ε̃ (15)

with
ε̃ = block-diag (In1 ⊗ F1, . . . , Ins ⊗ Fs) b + ε,

where block-diag(A1, . . . ,As) is the block-diagonal matrix with blocks A1, . . . ,As, b = β −
1N ⊗ β0 for β = (β>1 , . . . ,β

>
s )>, ε = (ε>1 , . . . , ε

>
s )> and 1ni is the column vector of length ni

with all entries equal to 1.
Using Gauss-Markov theory we obtain the following best linear unbiased estimator for the

mean parameters β0:

β̂0 =

[
s∑
i=1

ni((F̃
>
i F̃i)

−1 + Di)
−1

]−1 s∑
i=1

ni((F̃
>
i F̃i)

−1 + Di)
−1β̂0,i, (16)

where β̂0,i = (F̃>i F̃i)
−1F̃>i

˜̄Yi is the estimator based only on observations in the i-th group,
F̃i = (Ini ⊗ Σ

−1/2
i )Fi and ˜̄Yi = (Ini ⊗ Σ

−1/2
i )Ȳi (for the mean observational vector Ȳi =

1
ni

∑ni
j=1 Yij in the i-th group and the symmetric positive definite matrix Σ

1/2
i with the property

Σi = Σ
1/2
i Σ

1/2
i ) are the transformed design matrix and the transformed mean observational

vector with respect to the covariance structure of observational errors.
Note that BLUE (16) exists only if all matrices F̃>i F̃i are non-singular. Therefore, we restrict

ourselves on the case where design matrices Fi are of full column rank for all i.
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The covariance matrix of the best linear unbiased estimator β̂0 is given by

Cov
(
β̂0

)
=

[
s∑
i=1

ni((F̃
>
i F̃i)

−1 + Di)
−1

]−1
. (17)

In Fedorov and Jones (2005) similar results were obtained for the multi-center trials models.

3.2 Design criteria

We define an exact design in group i as

ξi =

(
xi1, . . . , xiki
mi1, . . . ,miki

)
,

where xi1, . . . , xiki are the (distinct) experimental settings in Xi with the related numbers of ob-
servationsmi1, . . . ,miki ,

∑ki
h=1mih = mi. For analytical purposes we also introduce approximate

designs:

ξi =

(
xi1, ..., xiki
wi1, ..., wiki

)
,

where wih ≥ 0 denotes the weight of observations at xih, h = 1, . . . , ki, and
∑ki

h=1wih = 1.
We will use the following notation for the information matrix in group i:

Mi(ξi) =

ki∑
h=1

wih G̃i(xih)>G̃i(xih), (18)

where G̃i = Σ
−1/2
i Gi. For exact designs we have wih = mih/mi and

Mi(ξi) =
1

mi
F̃>i F̃i.

We will also use the notation ∆i = miDi for the adjusted dispersion matrix of random effects
in group i.

Then we extend the definition of the variance-covariance matrix (17) with respect to approx-
imate designs ξ = (ξ1, . . . , ξs):

Covξ =

[
s∑
i=1

nimi

(
Mi(ξi)

−1 + ∆i

)−1]−1
. (19)

Further we focus on the linear (L-) and determinant (D-) criteria for estimation of the mean
parameters β0. The linear criterion is defined as

φL = tr
[
Cov

(
Lβ̂0

)]
, (20)

where L is some linear transformation of β0. For approximate designs we obtain

φL(ξ) = tr

[ s∑
i=1

nimi

(
Mi(ξi)

−1 + ∆i

)−1]−1
V

 , (21)

where V = L>L.
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Remark 1. The A-, and c-criteria for estimation of β0 are the particular linear criteria with
V = Ip and V = cc>, for a p-dimensional real column vector c, respectively.

The D-criterion is defined as the logarithm of the determinant of the covariance matrix of
the estimation, which results in

φD(ξ) = −ln det

(
s∑
i=1

nimi

(
Mi(ξi)

−1 + ∆i

)−1) (22)

for approximate designs.
Note that optimal designs depend on the group sizes ni only via the proportions ni/N ,

i = 1, . . . , s, and are, hence, independent of the total number of observational units N itself.
This statement is easy to verify by formulas (21) and (22).

3.3 Optimality conditions

To make use of the equivalence theorems proposed in Section 2 we verify the convexity of the
design criteria.

Lemma 1. The L- and D-criteria for estimation of the mean parameters β0 are convex with
respects to M(ξ) = (M1(ξ1), . . . ,Ms(ξs)).

Proof. The function φ(N) = N−1 is matrix-convex for any positive definite matrix N, i. e.

(αN1 + (1− α)N2)
−1 ≤ αN−11 + (1− α)N−12 (23)

in Loewner ordering for any α ∈ [0, 1] and all positive definite N1 and N2 (see e. g. Se-
ber (2007), ch. 10). Since φ is non-increasing in Loewner ordering, it is easy to verify that
ψi(Mi) =

(
M−1

i + ∆i

)−1 is matrix-concave for any positive definite Mi (see e. g. Bernstein
(2018), ch. 10). Then ψ(M1, . . . ,Ms) =

∑s
i=1 nimiψi(Mi) is matrix-concave with respects to

M = (M1, . . . ,Ms). The functions φ1(N) = −ln det(N) and φ2(N) = tr
(
N−1V

)
are non-

increasing in Loewner ordering and convex for any positive definite matrix N and any positive
semi-definite matrix V as the standard D- and L-criteria (see e. g. Pázman (1986), ch. 4, or
Fedorov and Leonov (2013), ch. 2). Then the functions φ1 ◦ ψ and φ2 ◦ ψ are convex.

We formulate optimality conditions for criteria (21) and (22) based on the results of Theo-
rem 2.

Theorem 3. Approximate designs ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) are L-optimal for estimation of the mean

parameters β0 iff

tr

G̃i(xi)

Mi(ξ
∗
i )−1

(
Mi(ξ

∗
i )−1 + ∆i

)−1 [ s∑
r=1

nrmr

(
Mr(ξ

∗
r )−1 + ∆r

)−1]−1
V

·

[
s∑
r=1

nrmr

(
Mr(ξ

∗
r )−1 + ∆r

)−1]−1 (
Mi(ξ

∗
i )−1 + ∆i

)−1
Mi(ξ

∗
i )−1

 G̃i(xi)
>


≤ tr

Mi(ξ
∗
i )−1

(
Mi(ξ

∗
i )−1 + ∆i

)−1 [ s∑
r=1

nrmr

(
Mr(ξ

∗
r )−1 + ∆r

)−1]−1
V

·

[
s∑
r=1

nrmr

(
Mr(ξ

∗
r )−1 + ∆r

)−1]−1 (
Mi(ξ

∗
i )−1 + ∆i

)−1 (24)
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for xi ∈ Xi, i = 1, . . . , s.
For support points of ξ∗i equality holds in (24).

Proof. We obtain the results using Lemma 1 and parts a) (equivalence of (i) and (iv)) and b) of
Theorem 2 for the partial directional derivatives

ΦL,Mi′ ,i
′ 6=i(Mi, M̃i) = −nimi tr


[

s∑
r=1

nrmr

(
M−1

r + ∆r

)−1]−1 (
M−1

i + ∆i

)−1
M−1

i (M̃i −Mi)

·M−1
i

(
M−1

i + ∆i

)−1 [ s∑
r=1

nrmr

(
M−1

r + ∆r

)−1]−1
V

 (25)

for i = 1, . . . , s.

Theorem 4. Approximate designs ξ∗ = (ξ∗1 , . . . , ξ
∗
s ) are D-optimal for estimation of the mean

parameters β0 iff

tr

G̃i(xi)

Mi(ξ
∗
i )−1

(
Mi(ξ

∗
i )−1 + ∆i

)−1 [ s∑
r=1

nrmr

(
Mr(ξ

∗
r )−1 + ∆r

)−1]−1
·
(
Mi(ξ

∗
i )−1 + ∆i

)−1
Mi(ξ

∗
i )−1

]
G̃i(xi)

>
}

≤ tr

Mi(ξ
∗
i )−1

(
Mi(ξ

∗
i )−1 + ∆i

)−1 [ s∑
r=1

nrmr

(
Mr(ξ

∗
r )−1 + ∆r

)−1]−1
·
(
Mi(ξ

∗
i )−1 + ∆i

)−1} (26)

for xi ∈ Xi, i = 1, . . . , s.
For support points of ξ∗i equality holds in (26).

Proof. The optimality condition follows from Lemma 1 and Theorem 2 with the partial direc-
tional derivatives

ΦD,Mi′ ,i
′ 6=i(Mi, M̃i) = −nimi tr


[

s∑
r=1

nrmr

(
M−1

r + ∆r

)−1]−1 (
M−1

i + ∆i

)−1
·M−1

i (M̃i −Mi)M
−1
i

(
M−1

i + ∆i

)−1} (27)

for i = 1, . . . , s.

Note that the results of Theorems 3 and 4 coincide for l = 1 and n1 = n2 = 1 with the
optimality conditions for group-wise identical designs in Schmelter (2007b), ch. 8.

3.4 Particular case

We consider the particular multiple-group models, where the regression matrices Gi, the numbers
mi of observations per observational unit, the covariance matrices Di and Σi of random effects
and observational errors and the experimental regions Xi are the same among all groups. For
these models we have mi = m, ∆i = ∆ and Mi(ξi) = M(ξi), i = 1, . . . , s. Then L- and
D-criteria (21) and (22) simplify to

φL(ξ) =
1

m
tr

[ s∑
i=1

ni
(
M(ξi)

−1 + ∆
)−1]−1

V

 (28)
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and

φD(ξ) = −ln det

(
s∑
i=1

ni
(
M(ξi)

−1 + ∆
)−1) (29)

(neglecting the constant term −p lnm in (29)).
We denote by ξ∗L an optimal design for the classical linear criterion

φL(ξ) = tr
(
M(ξ)−1V

)
(30)

and ξ∗D is an optimal design for the D-criterion in the single-group model

φD(ξ) = ln det
(
M(ξ)−1 + ∆

)
. (31)

Then it can be easily verified that the designs ξ∗i = ξ∗L and ξ∗i = ξ∗D, i = 1, . . . , s, satisfy the
optimality conditions in Theorems 3 and 4, respectively (see Fedorov and Hackl (1997), ch. 5,
for the optimality condition with respect to D-criterion (31)).

Corollary 1. L-optimal designs in the fixed effects model are L-optimal as group-designs in
the multiple-group RCR model in which the numbers of observations mi, the regression matri-
ces Gi, the covariance matrices of random effects and observational errors Di and Σi and the
experimental regions Xi are the same for all groups.

Corollary 2. D-optimal designs in the single-group RCR model are D-optimal as group-designs
in the multiple-group RCR model in which the numbers of observations mi, the regression ma-
trices Gi, the covariance matrices of random effects and observational errors Di and Σi and the
experimental regions Xi are the same for all groups.

The latter statements are expected results in that all observational units in all groups have
the same statistical properties and there are no group-specific restrictions on designs. Note that
the group sizes have no influence on the designs in this case. However, as we will see in Section 4,
even for statistically identical observational units, optimal designs may depend on the group sizes
ni if the numbers mi of observations per unit differ from group to group.

4 Example: Straight Line Regression

We consider the two-groups model of general form (12) with the regression functions Gi(x) =
(1, x)> on the design region Xi = [0, 1], i = 1, 2:

Yijh = βij1 + βij2xih + εijh, h = 1, . . . ,mi, j = 1, . . . , ni. (32)

The covariance structures of random effects and observational errors are given by Di = diag(d1, d2)
and Σi = 1 for both groups. Group sizes ni and numbers observations per unit mi are in general
not the same for the first and the second group.

For model (32) the left-hand sides of optimality conditions (24) and (26) are parabolas in xi
with positive leading terms. Then L- and D-optimal approximate designs have the form

ξi =

(
0 1

1− wi wi

)
, (33)

where wi denotes the weight of observations in point 1 for the i-th group, and the information
matrices are given by

M(ξi) =

(
1 wi
wi wi

)
. (34)
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Table 1: A-optimal designs in random intercept model in dependence on group sizes ni and
numbers of observations mi for d1 = 1

Case no. n1 n2 m1 m2 m1/m2 w∗1 1− w∗1 w∗2 1− w∗2
1 1 1 2 8 1/4 0.298 0.702 0.450 0.550
2 1 1 5 5 1 0.414 0.586 0.414 0.586
3 1 1 8 2 4 0.450 0.550 0.298 0.702
4 1 1 4 16 1/4 0.300 0.700 0.450 0.550
5 1 1 10 10 1 0.414 0.586 0.414 0.586
6 1 1 16 4 4 0.450 0.550 0.300 0.700
7 1 2 2 8 1/4 0.256 0.744 0.439 0.561
8 1 2 5 5 1 0.414 0.586 0.414 0.586
9 1 2 8 2 4 0.460 0.540 0.338 0.662
10 1 2 4 16 1/4 0.258 0.742 0.439 0.561
11 1 2 10 10 1 0.414 0.586 0.414 0.586
12 1 2 16 4 4 0.460 0.540 0.339 0.661

4.1 Random intercept

We consider first the particular case of model (32) in which only the intercept βij1 is random,
i. e. d2 = 0. We focus on the A- and D-criteria, which are given by (21) for V = I2 and (22),
respectively. The D-criterion for the random intercept model is given by

φD(w1, w2) = −ln

 2∑
i=1

nimi

d1mi + 1

2∑
i=1

nimiwi(d1mi(1− wi) + 1)

d1mi + 1
−

(
2∑
i=1

nimiwi
d1mi + 1

)2
 . (35)

For all values of ni and mi, this function achieves its minimum at point w∗1 = w∗2 = 0.5, which
coincides with the optimal design in the fixed effects model and in the single-group random
intercept model (see Schwabe and Schmelter (2008). The A-criterion for the random intercept
model is given by

φA(w1, w2) =

∑2
i=1

nimi(d1miwi(1−wi)+1+wi)
d1mi+1∑2

i=1
nimi
d1mi+1

∑2
i=1

nimiwi(d1mi(1−wi)+1)
d1mi+1 −

(∑2
i=1

nimiwi
d1mi+1

)2 . (36)

In contrast to the D-criterion, the A-optimal weights in general depend on the group sizes ni and
the numbers of observations mi. Some numerical results for d1 = 1, are presented in Table 1. As
we can see in the table, if the numbers of observations mi are the same for both groups: cases
2, 5, 8 and 11, the optimal weight w∗A = 0.414 in the fixed effects model is also optimal for the
multiple-group model, which is in accordance with Corollary 1. In these cases optimal designs
are independent of the group sizes ni and the numbers of observations mi. For all other cases
the optimal weight w∗i is smaller (larger) than w∗A if the number of observations mi is smaller
(larger) than the mean number of observations (m1 +m2)/2. For the same group sizes (n1 = n2)
optimal designs ”swap places” if the numbers of observations ”swap places”: the optimal weight
w∗1 in case 1 is the same as the optimal weight w∗2 in case 3 (same for cases 4 and 6). This
property, however, does not hold for different group sizes (cases 7 and 9 or 10 and 12).
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Table 2: D-optimal designs in random slope model in dependence on group sizes ni and numbers
of observations mi for d2 = 1

Case no. n1 n2 m1 m2 m1/m2 w∗1 1− w∗1 w∗2 1− w∗2
1 1 1 2 8 1/4 0.725 0.275 0.181 0.819
2 1 1 5 5 1 0.290 0.710 0.290 0.710
3 1 1 8 2 4 0.181 0.819 0.725 0.275
4 1 1 4 16 1/4 0.579 0.421 0.145 0.855
5 1 1 10 10 1 0.232 0.768 0.232 0.768
6 1 1 16 4 4 0.145 0.855 0.579 0.421
7 1 2 2 8 1/4 0.823 0.177 0.206 0.794
8 1 2 5 5 1 0.290 0.710 0.290 0.710
9 1 2 8 2 4 0.155 0.845 0.618 0.382
10 1 2 4 16 1/4 0.651 0.349 0.163 0.837
11 1 2 10 10 1 0.232 0.768 0.232 0.768
12 1 2 16 4 4 0.125 0.875 0.500 0.500

4.2 Random slope

Now we consider the particular case of straight line regression model (32) in which only the slope
βij2 is random: d1 = 0. For this model the D-criterion is given by

φD(w1, w2) = −ln

(
2∑
i=1

nimiwi
d2miwi + 1

2∑
i=1

nimi(1− wi)

)
. (37)

In contrast to the random intercept model, D-optimal designs for the random slope depend on
the group sizes and the numbers of observations. Numerical results for d2 = 1, are presented in
Table 2. As we can see in the table, if m1 = m2 optimal designs are the same for both groups
(cases 2, 5, 8 and 11). However, they depend on the numbers of observations mi themselves
(optimal weights in cases 2 and 8 differ from those in cases 5 and 11). This phenomenon is in
accordance with Corollary 2 since the D-optimal weight w∗D in the single-group model (which
minimizes criterion (31)) also depends on the number of observations (via matrix ∆). In contrast
to the random intercept model, for the random slope the optimal weight w∗i is larger (smaller)
than w∗D if mi is smaller (larger) than (m1 +m2)/2.

The A-criterion for the random slope model is given by

φA(w1, w2) =

∑2
i=1

nimi(d2miwi(1−wi)+1+wi)
d2miwi+1∑2

i=1
nimiwi
d2miwi+1

∑2
i=1 nimi(1− wi)

. (38)

If the numbers of observations are the same for both groups: m1 = m2, the optimal weights are
also the same: w∗1 = w∗2 = 0.414, which is in accordance with Corollary 1. In case of different
numbers of observations the solution depends on m1 and m2 and on the group sizes n1 and n2.
If the group sizes are the same: n1 = n2 = 1, the optimal values (w∗1;w∗2) are given by (1; 0.263)
and (0.263; 1) for m1 = 2, m2 = 8 and m1 = 8, m2 = 2, respectively. For m1 = 4, m2 = 16 and
m1 = 16, m2 = 4 we obtain (1; 0.262) and (0.262; 1). These solutions lead to singular information
matrices. However, the behavior of the A-optimal designs is in general similar to that of the D-
optimal designs presented in Table 2: The optimal weight w∗i in the group with smaller numbers
of observations (mi < mi′) is larger than the optimal weight w∗i′ in the other one. The difference
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between the two weights w∗1 and w∗2 for the A-criterion is significantly larger than for the D-
criterion. Also in case n1 = 1, n2 = 2 optimal designs behave similarly. For m1 = 2, m2 = 8
and m1 = 8, m2 = 2 we obtain the values (1; 0.326) and (0.178, 1), respectively. For m1 = 4,
m2 = 16 and m1 = 16, m2 = 4 the solutions are given by (1; 0.324) and (0.184; 1). Although
these designs are singular (and hence not applicable), they can be used for determining optimal
exact designs. For example, it can be easily verified that in case m1 = 2, m2 = 8, n1 = n2 = 1,
the optimal exact design is given by m11 = 1, m21 = 3, i.e. 1 observation in both x = 1 and
x = 0 for all units in the first group, 3 observations in x = 1 and 5 observations in x = 0 for the
second group.

5 Discussion

In this work we considered design problems depending on several designs simultaneously. We
proposed equivalence theorems based on the assumptions of convexity and differentiability of
the optimality criteria. For design problems with finite experimental regions we formulated
optimality conditions with respect to the designs themselves (Theorem 1). If the optimality
criteria depend on the designs via information matrices only, optimality conditions are formulated
with respect to the information matrices (Theorem 2).

We applied the proposed optimality conditions to the multiple-group RCR models. If all
observational units have the same statistical properties and there are no group-specific design-
restrictions, optimal designs in the single-group models are also optimal as group-designs in the
multiple-group models. In this case the group sizes have no influence on the designs. However,
if the numbers of observations differ from group to group, optimal group-designs may depend
on the numbers of observations and the group sizes. This behavior has been illustrated by the
example of straight line regression models. For more complicated models, it may be difficult to
fix support points. The design problem can be solved numerically by using general-purpose tools
for constrained optimization. However, these tools are imprecise due to the design problem being
multi-dimensional. Standard tools for computing optimal designs, for example OptimalDesign
package (see Harman and Filová (2019), cannot be used directly because of the complexity of the
design criteria. Also the approach proposed in Harman and Prus (2018) for the compound Bayes
risk criterion, which covers a lot of linear criteria in mixed models, is useless for multiple-design
problems. Therefore, for the computation of optimal approximate and exact designs some new
approach has to be developed. This work is planned for a future research.

The proposed results solve the problem of optimal designs for the estimation of fixed effects
in the multiple-group RCR models. The problem of prediction of random parameters remains,
however, open. Moreover, we assumed fixed numbers of observational units ni and observations
per unit mi. Design optimization with respect to these numbers may be an interesting direction
for a future research.
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Abstract
The subject of this work is random coefficient regression models with only one obser-
vation per observational unit (individual). An analytical solution in form of optimality
conditions is proposed for optimal designs for the prediction of individual random
effect for a group of selected individuals. The behavior of optimal designs is illus-
trated by the example of linear regression models.

Keywords Experimental design · Mixed model · Prediction · Random effects

1 Introduction

The subject of this work is random coefficient regression (RCR) models in which
only one observation per observational unit (individual) is possible. These models are
popular e.g. in psychology (see Freund and Holling (2008)) and pharmacokinetics
(see Patan and Bogacka (2007)). The main purpose of the present paper is to obtain
an analytical solution for the designs that are optimal for the prediction of random
effects. Optimal designs for prediction in RCR models have been discussed e.g. in
Gladitz and Pilz (1982), Fedorov and Hackl (1997), Prus and Schwabe (2016) and
Prus (2023). In Gladitz and Pilz (1982) and Prus and Schwabe (2016) the number of
observations per individual is required to be not smaller than the number of unknown
model parameters, which excludes the case of only one observation. Also the same
design for all individuals has been assumed in the both papers. Fedorov and Hackl
(1997) investigated models with specific regression functions. The models considered
in the present work may be seen as a particular case (with one individual per group)
of the multiple-group models discussed in Prus (2023). However, the solution devel-
oped in that paper is based on the assumption of sufficient number of observations per
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individual, i.e. not smaller than the number of parameters.Models with only one obser-
vation per individual were discussed e.g. in Patan and Bogacka (2007) and Graßhoff
et al. (2012). Patan and Bogacka (2007) investigated non-linear mixed-effects models.
Graßhoff et al. (2012) proposed a solution for optimal designs in form of an optimality
condition for RCR models. In these papers optimal design were determined for esti-
mation of fixed effects. However, not much has been done for prediction of random
effects.

In the present work we determine optimal designs for prediction of random effects
for a group of selected individuals in RCRmodels with one observation per individual.
The obtained design criterion (linear criterion) results in amultiple-design problem, for
which the standard approach for design optimization proposed in Kiefer (1974) cannot
be applied. We make use of the optimality conditions for multiple-design problems
proposed in Prus (2022). The obtained analytical results are illustrated by examples
of linear regression models with particular covariance matrices.

The paper has the following structure: In the second section the model is specified
and the mean squared error (MSE) matrix for the best linear unbiased prediction
(BLUP) of the randomeffects is determined. In Sect. 3 the linear design criterion for the
prediction and the resulting optimality conditions are formulated. The analytical results
are illustrated by examples in Sect. 4. The paper is concluded by a short discussion in
Sect. 5.

2 Model specification

In this work we the consider RCRmodels with only one observation per observational
unit (individual) of the following form:

Yi = f(xi )�β i + εi , i = 1, . . . , n, xi ∈ X , (1)

where Yi is an observation at the i-th individual, n is the number of individuals, f =
( f1, . . . , f p)� is a vector of known regression functions, experimental settings xi come
from an experimental region X . The observational errors εi are assumed to have zero
mean and common variance σ 2 > 0. The individual parameters β i = (βi1, . . . , βi p)

�
have unknown expected value (population mean) E (β i ) = β and known covariance
matrix Cov (β i ) = σ 2D. All individual parameters β i and all observational errors εi
are assumed to be uncorrelated.

According toGraßhoff et al. (2012) the covariancematrix of the best linear unbiased
estimator (BLUE) β̂ for the population parameter (fixed effects) β is given by

Cov(β̂) = σ 2M−1, (2)

where

M =
n∑

i=1

M(xi ), (3)
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M(xi ) = g(xi )g(xi )�, (4)

g(xi ) = 1√
f(xi )�Df(xi ) + 1

f(xi ). (5)

In this work we focus on random effects, in particular on the individual deviations
from the mean: bi = β i −β (see e.g. Prus and Schwabe (2013)). Namely, we consider
the situation in which our main interest is in some selected individuals. We determine
optimal experimental settings for prediction of the individual effects for the k selected
individuals: � = 1

k

∑k
i=1 bi , for k ∈ [p, n − p]. We assume n ≥ 2p, otherwise

[p, n − p] = ∅. Note that the order of the individuals does not matter in this case.
Therefore, we can consider k first individuals without loss of generality.

Further we search for experimental settings that minimize the MSE matrix of the
BLUP �̂ for the individual deviations �.

Lemma 1 The MSE matrix of the BLUP �̂ is given by

Cov(�̂ − �) = σ 2
(
1

k
D − 1

k2
DMkD + 1

k2
DMkM−1MkD

)
, (6)

where Mk = ∑k
i=1M(xi ).

The proof of Lemma 1 is deferred to Appendix A.

3 Experimental design

We consider the following two groups of individuals: the k selected individuals build
the first group (Group 1), and the second group (Group 2) consists of the n − k
remaining individuals. We also allow for group-specific restrictions with respect to
experimental settings, i.e. the experimental regions for the two groups of individuals
may differ from each other. In practice it can be useful in case of some particular
restrictions in two centers/clinics/etc. Further X� denotes the experimental region for
group �, � = 1, 2, and X1 ∪ X2 = X . The particular case X1 = X2 = X will be later
considered more detailed. We add the group index to experimental settings for clear
notation and we define an exact design in group � as

ξ�,e =
(

x�1, . . . , x�N�

m�1, . . . ,m�N�

)
,

where x� j ∈ X� are the support point of ξ�,e, m� j > 0 is the number of observations

at x� j with
∑N1

j=1m1 j = k and
∑N2

j=1m2 j = n − k and N� = |{x�1, . . . , x�N�
}|. Note

thatm� j can be larger than one in case if observations for more than one individual are
taken at point x� j . Note also that the set {x11, . . . , x1N1} coincides with {x1, . . . xk} in
model (1) (and {x21, . . . , x2N2} coincides with {xk+1, . . . xn}).

123



1060 M. Prus

For analytical purposes we also introduce approximate designs:

ξ� =
(

x�1, . . . , x�Ñ�

w�1, . . . , w�Ñ�

)
,

where w� j > 0 denotes the weight of observations at x� j ,
∑Ñ�

j=1 w� j = 1, � = 1, 2,

and Ñ� = |{x�1, . . . , x�Ñ�
}|. Note that Ñ� = N� for exact designs. Further we use the

notation ξ = (ξ1, ξ2) for the pair of group designs.
We also define the information (or moment) matrices for the first and second design

as

M1,ξ =
Ñ1∑

j=1

w1 jM(x1 j ),

and

M2,ξ =
Ñ2∑

j=1

w2 jM(x2 j ),

respectively.
For exact designs we obtain w1 j = m1 j/k, w2 j = m2 j/(n− k),Mk = kM1,ξ and

M = kM1,ξ + (n − k)M2,ξ .

In this work we focus on the linear criterion for the prediction of individual devia-
tions for the selected individuals, which is defined for exact designs as

�L = tr
(
Cov(L�̂ − L�)

)
, (7)

where L denotes the transformation matrix.
Neglecting the constants that have no influence on designs, we obtain for approxi-

mate designs the following results.

Theorem 1 The linear criterion for the prediction of individual effects � is given by

�L(ξ) = −tr

[
L̃

(
1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ

)−1
]

, (8)

where L̃ = DLD and L = L�L.
The proof of this result is deferred to Appendix B.
Note that we assume matrices M1,ξ and M2,ξ and consequently Mk non-singular,

which requires k ∈ [p, n− p]. Otherwise linear criterion (7) cannot be written in form
(8).
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As we can see by formula (8), the linear criterion depends on two designs simul-
taneously. In this case the general equivalence theorem (see Kiefer (1974)) cannot be
directly applied. Instead we use the extended version for multiple-design problems
proposed in Prus (2022). To make use of the equivalence theorems presented in that
work, we have to verify convexity of the criterion.

Lemma 2 The linear criterion for the prediction of individual effects � is convex with
respect to (M1,ξ ,M2,ξ ).

For the proof of Lemma 2 see Appendix C.
As the linear criterion for the prediction of the individual deviations is differen-

tiable and convex with respect to both moment matrices, optimality conditions can be
formulated.

Theorem 2 Approximate designs ξ∗ = (ξ∗
1 , ξ∗

2 ) are L-optimal for the prediction of
the individual effects � iff

g(x)�M−1
1,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

M−1
1,ξ∗g(x)

≤ tr

[
M−1

1,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1
]

, (9)

for all x ∈ X1, and

g(x)�M−1
2,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

M−1
2,ξ∗g(x)

≤ tr

[
M−1

2,ξ∗

(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1

L̃
(
1

k
M−1

1,ξ∗ + 1

n − k
M−1

2,ξ∗

)−1
]

, (10)

for all x ∈ X2.
For support points of ξ∗

1 and ξ∗
2 equalities hold in (9) and (10), respectively.

The proof is deferred to Appendix D.
Note that optimal designs depend on the dispersion matrix of random effectsD, the

total number of individuals n and the number of selected individuals k.
Note also that in case where the design region is the same for all individuals X1 =

X2 = X , optimal designs may be also the same for both groups, i.e. M1,ξ∗ = M2,ξ∗ .
In this situation design criterion (8) simplifies to

�L(ξ) = −tr
[
L̃M1,ξ

]
, (11)

which is linear in design, i.e. singular designs (that result in a singular moment matrix)
or all permissible designs may be optimal. The optimality conditions simplify to the
following inequality:

g(x)�L̃g(x) ≤ tr
(
L̃M1,ξ∗

)
, ∀x ∈ X . (12)
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Behavior of such designs will be illustrated by Example 4.1.

4 Examples

We consider the linear regression model

Yi = β i1 + β i2xi + εi , (13)

which is the particular case of model (1) with f(x) = (1, x)�, and we assume the
diagonal structure of the covariance matrix of random effects: D = diag(d1, d2).

Further we distinguish between the two different cases: the same design region
for all individuals (Example 4.1) and different design regions for different groups
(Example 4.2). We focus on the A-optimality criterion, i.e. L = Ip, where Ip denotes
the p × p identity matrix.

4.1 Example 1

In this example we consider the situation where there are no particular restrictions
for the designs for the selected individuals (that are of our main interest) or for all
other individuals, i.e. the design region is the same for both groups:X1 = X2 = X . In
particular, we consider symmetric design regions:X = [−a, a], for a > 0. Further we
focus on the designs that are the same for both groups: ξ1 = ξ2 with all observations
at the endpoints:

ξ1 =
( −a a
1 − w w

)
, (14)

where w is the weight of observations at point a. The total number of individuals n
and the number of selected individuals k have no influence on designs in the present
case and do not need to be specified. If optimal designs of form (14) exist, they assign
w = 0 orw = 1 (and make the moment matrix singular) or all values ofw are equally
good.

For the present model we obtain

g(x) = 1√
d2x2 + d1 + 1

(1, x)�,

and

M1,ξ = M2,ξ = 1

d2a2 + d1 + 1

(
1 a(1 − 2w)

a(1 − 2w) a2

)
.
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The simplified linear criterion (11) is given by

�L(ξ) = − d2a2 + d21
d2a2 + d1 + 1

,

which is independent of the designs, i.e. all designs (all w ∈ (0, 1)) are optimal or
there is no optimal designs of form (14) at all. The optimality condition (12) is given
by

d2(d21 − d2(d1 + 1))(a2 − x2)

(d2a2 + d1 + 1)(d2x2 + d1 + 1)
≤ 0, ∀ x ∈ [−a, a],

which is satisfied only in case

{d2 ≥ d21
d1 + 1

} ∪ {d2 = 0}. (15)

Hence, under condition (15) all design are equally good. Otherwise, there is no
solution with ξ1 = ξ2, where ξ1 is of form (14).

4.2 Example 2

In this example we assume different design regions X1 and X2. In particular, we
concentrate on symmetric design regions of different lengths: X = [−1, 1] and X =
[−a, a], for a > 0. We consider the endpoints-designs

ξ1 =
( −1 1
1 − w1 w1

)
, (16)

and

ξ2 =
( −a a
1 − w2 w2

)
, (17)

where w1 and w2 are the weights of observations at points 1 and a for the first and the
second group, respectively. We simplified the notations w12 and w22 to w1 and w2, as
there are only two support points for each design. Further we consider two different
cases for the covariance matrix of random effects: random intercept and random slope.

Case 1 d1 = d and d2 = 0
In the case of random intercept we have

g(x) = 1√
d + 1

(1, x)�,

M1,ξ = 1

d + 1

(
1 1 − 2w

1 − 2w 1

)
,
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and

M2,ξ = 1

d + 1

(
1 a(1 − 2w)

a(1 − 2w) a2

)
.

Linear criterion (8) for thismodel will not be presented here because of its complex-
ity. We use software Maple2020 for further computations. For the following points
the first derivative of the criterion function is zero:

w1 = aw2 − a

2
+ 1

2
, (w1, w2) ∈ [0, 1]2. (18)

All designswith property (18) turn out to be optimal, i.e. they satisfy optimality con-
ditions (9) and (10) for all possible values of a. Note that the designs are independent
of the variance parameter d.

Case 2 d1 = 0 and d2 = d
For the random slope we obtain

g(x) = 1√
da2 + 1

(1, x)�,

M1,ξ = 1

da2 + 1

(
1 1 − 2w

1 − 2w 1

)
,

and

M2,ξ = 1

da2 + 1

(
1 a(1 − 2w)

a(1 − 2w) a2

)
.

Using the same approach as for the random intercept case, it can be verified that all
designs with

w1 = a + 2w2 − 1

2a
, (w1, w2) ∈ [0, 1]2, (19)

are optimal for all a > 0.
Note that in both cases: random intercept and random slope, the obtained designs

are optimal for all values of the total number of individuals n and the number of
selected individuals k ∈ [p, n − p]. Note also that a = 1 would lead to w1 = w2,
which is in accordance with Example 4.1.

5 Discussion

We considered RCR models in which only one observation per individual is possi-
ble. We focused on individual random effects for a group of selected individuals, in
particular on the mean random effect in the group. The solution for optimal designs
is proposed in form of optimality conditions. The number of selected individuals k is
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assumed to be between the number of parameters p and n − p, where n is the total
number of individuals, which is possible only for models with n ≥ 2p. If the main
interest is in a very small, i.e. k < p, or a very large number of selected individ-
uals, another approach is, however, needed. Optimal designs are determined for the
BLUP of the random effects, which depends on the variance parameters (covariance
matrices). The variance parameters are assumed to be known, which is in general not
the case in practice. In a practical situation, where the covariance matrices have to
be estimated, we deal with estimated BLUP (EBLUP). The obtained optimal designs
in general depend on the variance parameters and are, therefore, locally optimal.
The problem of local optimality may be solved for particular models by considering
robust design criteria, for example minimax-criterion. For specific covariance struc-
ture, optimal designs may be independent of variance parameters, which has been
illustrated by the example of the linear regression models with random intercept and
random slope. All observational errors were assumed to have the same variance. Het-
eroscedastic errors, especially depending on the experimental settings (as considered
by Graßhoff et al. (2012)), are analytically more challenging. However, an extension
may be considered in a future research. Moreover optimal designs have been obtained
for individual effects (individual deviations from the population parameter) via their
arithmetic mean. Design optimization for the prediction of the individual deviations
or individual parameters themselves turned out to be more challenging. It may also be
a subject of future investigations, especially for particular models.
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A Proof of Lemma 1

Model (1) can be rewritten in vector form as follows

Y = Xβ + Zb + εi , i = 1, . . . , n, xi ∈ X , (20)

with X = (f(x1), . . . f(xn))�, Z = block-diag
(f(x1)�, . . . f(xn)�) and block-diag (A1, . . . ,An) is the block-diagonal matrix with
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blocks A1, . . . ,An . This model is the classical linear mixed model considered e.g. in
Henderson (1975).

Then the MSE matrix for the BLUP b̂ for random effects b = (b�
1 , . . . ,b�

n )� can
be computed as follows:

Cov(b̂ − b) =
(
W − Z�R−1X(X�R−1X)−1X�R−1Z

)−1

= W−1 − W−1Z�R−1X
(
X�R−1ZW−1Z�R−1X − X�R−1X

)−1
X�R−1ZW−1,

where G = Cov (b), R = Cov (ε) and W = Z�R−1Z + G−1. For R = σ 2
In and

G = σ 2
In ⊗ D we obtain

W−1 = σ 2 (
In ⊗ D − block-diag

(
DMx1D, . . . ,DMxnD

))
,

(
X�R−1ZW−1Z�R−1X − X�R−1X

)−1 = −M−1,

and

X�R−1ZW−1 = (
Mx1D, . . . ,MxnD

)
,

which result in

Cov(b̂ − b) = σ 2 (
In ⊗ D − block-diag

(
DMx1D, . . . ,DMxnD

))

+σ 2

⎛

⎝
DMx1M

−1Mx1D . . . DMx1M
−1MxnD

. . . . . . . . .

DMxnM
−1Mx1D . . . DMxnM

−1MxnD

⎞

⎠ .

Then from � = 1
k

((
1�
k , 0�

n−k

) ⊗ Ip
)
b and consequently

Cov(�̂ − �) = 1

k2

(
1�
k , 0�

n−k

)
⊗ IpCov(b̂ − b)

(
1�
k , 0�

n−k

)� ⊗ Ip,

follows Eq. (6).

B Proof of Theorem 1

To determine the linear criterion for approximate designs, we use the basic formula (7)
and we replace matricesMk andM by kM1,ξ and kM1,ξ + (n− k)M2,ξ , respectively.
Then we suppress the first term (1k tr(D)), which is independent of designs, and the
multiplicator σ 2/k2, and we obtain

�L(ξ) = tr
{
LD

[
kM1,ξ

(
kM1,ξ + (n − k)M2,ξ

)−1
kM1,ξ − kM1,ξ

]
D

}
,
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which can be easily simplified to (8) using the properties of the trace and the standard
formula for the inverse of sum of two non-singular matrices.

C Proof of Lemma 2

The function h(N) = N−1 is non-increasing in Loewner ordering and matrix-convex
for any positive definite matrix N. Then

1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ ,

is matrix-convex and

(
1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ

)−1

,

is matrix-concave in (M1,ξ ,M2,ξ ), respectively (see e. g. Bernstein (2018), ch. 10).
Consequently,

−tr

[
L̃

(
1

k
M−1

1,ξ + 1

n − k
M−1

2,ξ

)−1
]

,

is convex with respect to (M1,ξ ,M2,ξ ) for any positive semi-definite matrix L̃.

D Proof of Theorem 2

According to Theorem 2 in Prus (2022), designs ξ∗ = (ξ∗
1 , ξ∗

2 )minimize a convex cri-
terion� if and only if the directional derivative of� at (M1,ξ∗ ,M2,ξ∗) in the direction
of (g(x)g(x)�,M2,ξ∗) is non-negative for all x ∈ X1, and the directional derivative
of � at (M1,ξ∗ ,M2,ξ∗) in the direction of (M2,ξ∗ , g(x)g(x)�) is non-negative for all
x ∈ X2. For support points of ξ∗

1 and ξ∗
2 the related directional derivatives are equal to

zero. By computing the directional derivatives for linear criterion (8), i. e.� = �L(ξ),
and setting them non-negative, we obtain inequalities (9) and (10).
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Optimal designs for prediction of random effects in two-groups
models with multivariate response

Maryna Prus

Abstract

We propose an analytical solution for optimal designs for the prediction of individual
random effects and the group difference in two-groups models with multivariate response.
The solution is given by optimality conditions for approximate designs. In particular two-
groups models with the same regression function for both groups, Bayesian optimal designs
are optimal for the prediction of the group difference. The results are illustrated by examples
of linear and bi-linear regression.

Keywords: Mixed model, multiple-group model, multivariate response, best lin-
ear unbiased prediction (BLUP), optimality condition, experimental design

1 Introduction

The subject of this paper is two-groups linear mixed models, where observational units (further
called “individuals”) are assigned to groups. Individuals within one group are assumed to have
the same statistical properties. Group sizes, numbers of observations per individual, experimen-
tal regions, regression functions and variance parameters may, however, differ from group to
group. Optimal designs for the estimation of fixed (population) parameters in these models have
been considered in Schmelter (2007) and Prus (2021). Computational methods for determining
efficient exact designs are presented in Dumont et al. (2018) and Filová and Prus (2021). How-
ever, besides population parameters the main focus may be on random effects as, for example,
genotype effects in multi-environmental trials (see e. g. Prus and Piepho (2021)), treatment and
control parameters (see e. g. Prus et al. (2020)) or center-specific effects in multi-center trials (see
e. g. Fedorov and Jones (2005) or Lemme et al. (2015)). Prus and Schwabe (2016) considered
optimal designs for the prediction of random effects in models with the same design for all indi-
viduals (one-group models). Optimal designs in fixed-effects models with multivariate response
have been discussed e. g. in Schwabe (1996). Liu et al. (2019) has proposed an extension of the
results presented in Prus and Schwabe (2016) for multivariate response models.

In this work we consider multiple-group models, where individual designs may differ from
group to group. For simplicity, we restrict ourselves on the experiments with two groups of
individuals. Such experiments are popular in many statistical applications, for example, in
medical research: comparing of two treatments or treatment and placebo. We consider optimal
designs for the predictions of the following random effects: the individual random parameters
and the group difference, which is given by the difference between the two group means. The
analytical solution for the designs is given by optimality conditions for the linear and D-criteria.
For the prediction of the group difference, in the particular case of the same regression function
and the same experimental region for both groups, Bayesian designs (that minimize Bayesian
information matrix) turn out to be optimal.

The paper has the following structure: In Section 2 the two-groups mixed models are specified
and the best linear unbiased predictions for the individual random parameters and the group
difference are introduced. Section 3 provides an analytical solution for the designs, which are
optimal for the prediction of the individual parameters or the group difference. In Section 4
analytical results are illustrated by examples of linear and bi-linear regression models. The
paper is concluded by a short discussion.
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2 Model Specification and Predictions

In this work we consider mixed effects models with two groups of observational units. The
observational units may be people, clinics, studies, centers, plots, etc. Further we call them
“individuals” for simplicity. The individuals are randomly allocated to the first or the second
group with the group sizes n1 or n2, respectively. The total number of individuals is n = n1+n2.
The vector of observations at individual j in group i is given by

Yij = Fiβij + εij , i = 1, 2, j = 1, . . . , ni, (1)

where Fi is the design matrix in group i, εij denote observational errors, which are assumed
to have zero mean and a given non-singular covariance matrix Cov(εij) = Vi. (Structure and
dimension for design matrices Fi and covariance matrices Vi will be specified in Section 3.)
βij = (βij1, . . . , βijp)

> denote individual random parameters with an unknown expected value
(population mean parameter) E(βij) = β0 and a given non-singular (p × p) covariance matrix
Cov(βij) = Di. All individual parameters βij and all observational errors εij are assumed to be
uncorrelated.

Note that the results presented in this section are valid for general design matrices Fi and
covariance matrices Vi. Further in Section 3 these two matrices will be specified. However, it
is worthwhile mentioning already now that multiple observations (repeated measurements) are
possible for each individual. Note also that the number of observations per individual may differ
from group to group. (See Section 3 for more details.)

The best linear unbiased estimator (BLUE) for the population mean parameters β0 is given
by

β̂0 =
[
n1((F̃

>
1 F̃1)

−1 + D1)
−1 + n2((F̃

>
2 F̃2)

−1 + D2)
−1
]−1

·
[
n1((F̃

>
1 F̃1)

−1 + D1)
−1β̂0,1 + n2((F̃

>
2 F̃2)

−1 + D2)
−1β̂0,2

]
(2)

where β̂0,i = (F̃>i F̃i)
−1F̃>i

˜̄Yi, F̃i = V
−1/2
i Fi, ˜̄Yi = V

−1/2
i Ȳi, Ȳi = 1

ni

∑ni
j=1 Yij and V

−1/2
i =

(V
1/2
i )−1 for the symmetric positive definite matrix V

1/2
i with Vi = V

1/2
i V

1/2
i (see Prus (2021)).

The covariance matrix of the BLUE β̂0 is given by

Cov
(
β̂0

)
=
[
n1((F̃

>
1 F̃1)

−1 + D1)
−1 + n2((F̃

>
2 F̃2)

−1 + D2)
−1
]−1

. (3)

The next theorem provides the best linear unbiased predictor (BLUP) for the individual
random effects.

Theorem 1. The BLUP for the individual parameters βij for individual j in group i is given by

β̂ij =
(
F̃>i F̃i + D−1i

)−1 (
F̃>i Ỹij + D−1i β̂0

)
,

where Ỹij = V
−1/2
i Yij.

A similar result has been obtained in Fedorov and Jones (2005) for the multi-center trials
models.

Besides the individual parameters themselves, the group difference µ = β̄1 − β̄2 for β̄i =
1
ni

∑ni
j=1 βij , may be of prior interest. The BLUP for the group difference µ can be easily

determined using Theorem 1 and the relation

µ =

((
1

n1
1>n1

,− 1

n2
1>n2

)
⊗ Ip

)
β,
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where β =
(
β>1 ,β

>
2

)> for βi =
(
β>i1, . . .β

>
ini

)>, 1s is the vector of length s with all entries equal
to 1, Is is the (s× s) identity matrix and ⊗ denotes the Kronecker product.

Corollary 1. The BLUP for the group difference µ is given by

µ̂ =
(
F̃>1 F̃1 + D−11

)−1 (
F̃>1

˜̄Y1 + D−11 β̂0

)
−
(
F̃>2 F̃2 + D−12

)−1 (
F̃>2

˜̄Y2 + D−12 β̂0

)
.

We measure the performance of a predictor in terms of its mean squared error (MSE) matrix,
which is presented for β̂ = (β̂

>
1 , β̂

>
2 )>, β̂i = (β̂

>
i1, . . . β̂

>
ini

)>, by the next theorem.

Lemma 1. The MSE matrix of the BLUP β̂ is given by

Cov
(
β̂ − β

)
=

(
B11 B12

B>12 B22

)
, (4)

where

B11 = (In1 − Jn1)⊗
[
(F̃>1 F̃1 + D−11 )−1

]
+ Jn1 ⊗

[
(F̃>1 F̃1)

−1(Ip − n2U(F̃>1 F̃1)
−1)
]
,

B12 = (1n11
>
n2

)⊗
[
(F̃>1 F̃1)

−1U(F̃>2 F̃2)
−1
]

and

B22 = (In2 − Jn2)⊗
[
(F̃>2 F̃2 + D−12 )−1

]
+ Jn2 ⊗

[
(F̃>2 F̃2)

−1(Ip − n1U(F̃>2 F̃2)
−1)
]

for

U =
[
n2((F̃

>
1 F̃1)

−1 + D1) + n1((F̃
>
2 F̃2)

−1 + D2)
]−1

and Jni = 1
ni
1ni1

>
ni
.

The MSE matrix of the BLUP µ̂ can be established by Lemma 1 and the relation

Cov (µ̂− µ) =

((
1

n1
1>n1

,− 1

n2
1>n2

)
⊗ Ip

)
Cov

(
β̂ − β

)(( 1

n1
1n1 ,−

1

n2
1n2

)
⊗ Ip

)
.

Corollary 2. The MSE matrix of the BLUP µ̂ is given by

Cov (µ̂− µ) =
1

n1n2

[(
n2

(
F̃>1 F̃1

)−1
+ n1

(
F̃>2 F̃2

)−1)−1
+ C

]−1
, (5)

where C = (n2D1 + n1D2)
−1.

The proofs of Theorem 1 and Lemma 1 are deferred to Appendix A.

3 Optimal Design

In this section we specify our model (1) in a more detailed way. In the two-groups model with
t response variables, the t-dimensional observational vector for the `-th observation of the j-th
individual in the i-th group is given by

Yij` = F(i)(xij`)βij + εij`, xij` ∈ Xi, ` = 1, . . . ,mi, (6)
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where mi is the number of observations per individual in group i, observational settings xij`
come from some experimental region Xi. For analytical purposes, we assume the experimental
settings (designs) to be the same for all individuals within one group: xij` = xi`. However,
the experimental regions - and consequently the designs - may differ between the two groups.
Observational errors εij` are assumed to be uncorrelated with each other and with all individual
parameters and to have zero mean and a non-singular (t × t) covariance matrix Σi. In this
work we allow for multivariate (t-variate) response and F(i) denotes a t× p matrix of regression
functions (regression matrix) in group i. In the particular case of univariate response: t = 1,
the regression matrices F(i) simplify to usual regression functions: F(i) = f>(i). Note that the
regression matrices may differ between the two groups. For Fi = (F>(i)(xi1), ...,F

>
(i)(ximi))

>,
Yij = (Y>ij1, ...,Y

>
ijmi

)>, εij = (ε>ij1, ..., ε
>
ijmi

)> and Vi = Imi ⊗Σi, our model (6) is of form (1).
We define an individual exact design for individuals in group i as

ξi =

(
xi1, . . . , xiki
mi1, . . . ,miki

)
,

where xi1, . . . , xiki are the experimental settings in Xi, |Xi| = ki and
∑ki

r=1mir = mi. For
analytical purposes we also introduce approximate designs:

ξi =

(
xi1, ..., xiki
wi1, ..., wiki

)
,

where wir ≥ 0, r = 1, . . . ki, and
∑ki

r=1wir = 1.
We will use the notation Mi for the moment matrix (in sense of Pukelsheim (1993)) in group

i:

Mi = Mi(ξi) =

ki∑
r=1

wir F̃(i)(xir)
>F̃(i)(xir), (7)

where F̃(i) = Σ
−1/2
i F(i). For exact designs we have wir = mir/mi and

Mi =
1

mi
F̃>i F̃i,

where F̃i is as defined after (2) for Fi as specified after (6).
We will also use the notation ∆i = miDi for the adjusted dispersion matrix of random effects

in group i.
Further we extend the definition of the MSE matrix (4) with respect to approximate designs:

MSEβ(M1,M2) =

(
B̃11 B̃12

B̃>12 B̃22

)
, (8)

where

B̃11 =
1

m1

{
(In1 − Jn1)⊗

[
(M1 + ∆−11 )−1

]
+ Jn1 ⊗

[
M−1

1

(
Ip −

n2
m1

ŨM−1
1

)]}

B̃12 =
1

m1m2
(1n11

>
n2

)⊗
[
M−1

1 ŨM−1
2

]
and

B̃22 =
1

m2

{
(In2 − Jn2)⊗

[
(M2 + ∆−12 )−1

]
+ Jn2 ⊗

[
M−1

2

(
Ip −

n1
m2

ŨM−1
2

)]}
.
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for

Ũ =

[
n2
m1

(M−1
1 + ∆1) +

n1
m2

(M−1
2 + ∆2)

]−1
.

For the MSE matrix of the prediction µ̂ for the group difference we obtain (neglecting the
constant 1

n1n2
) the following result:

MSEµ(M1,M2) =

[(
n2
m1

M−1
1 +

n1
m2

M−1
2

)−1
+ C

]−1
,

where C is defined after (5).

3.1 Optimal design for prediction of individual parameters

We define the linear (L-) criterion for the prediction of the individual parameters β as follows:

φL,β =
2∑
i=1

ni∑
j=1

tr

{
E

[(
L>i β̂ij − L>i βij

)(
L>i β̂ij − L>i βij

)>]}
, (9)

where Li is a group-specific matrix for a linear transformation. Then we extend this definition
for approximate designs and obtain the next result.

Theorem 2. The L-criterion for the prediction of the individual parameters β is given by

φL,β =
1

m1
tr

{[
M−1

1

(
Ip −

n2
m1

ŨM−1
1

)
+ (n1 − 1)

(
M1 + ∆−11

)−1]
A1

}
+

1

m2
tr

{[
M−1

2

(
Ip −

n1
m2

ŨM−1
2

)
+ (n2 − 1)

(
M2 + ∆−12

)−1]
A2

}
, (10)

where Ai = LiL
>
i , i = 1, 2.

Well-known particular linear criteria are the A- and c-criteria with Li = Ip, i = 1, 2, and
Li = ci, ci ∈ Rp, respectively. Another commonly used linear criterion is the IMSE-criterion.
For the prediction of the individual parameters in two-groups model (1) we define this criterion
as

φIMSE,β =
2∑
i=1

ai

ni∑
j=1

tr

(∫
Xi

E

[(
F(i)(x)β̂ij − F(i)(x)βij

)(
F(i)(x)β̂ij − F(i)(x)βij

)>]
νi(dx)

)
, (11)

where νi is a suitable measure on the experimental region Xi (typically uniform on Xi) with
νi(Xi) = 1 and ai is a coefficient related to the i-th group, a1 + a2 = 1. The coefficients a1 and
a2 may depend on the group sizes or, alternatively, equal weight may be given to each group.
IMSE -criterion (21) may be represented in form

φIMSE,β = tr
(
Cov

(
β̂ − β

)
block-diag (In1 ⊗ V1, In2 ⊗ V2)

)
, (12)

where Vi = ai
∫
Xi

F(i)(x)>F(i)(x) νi(dx), and results in the particular criterion (10) with Ai = Vi
for approximate designs.

The determinant (D-) criterion for the prediction of the individual parameters β may be
defined as the logarithm of the determinant of the MSE matrix:

φD,β = ln det
(
Cov

(
β̂ − β

))
. (13)

For approximate designs we obtain the next result.
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Theorem 3. The D-criterion for the prediction of the individual parameters β is given by

φD,β = −ln det (M1)− ln det (M2)

− (n1 − 1) ln det
(
M1 + ∆−11

)
− (n2 − 1) ln det

(
M2 + ∆−12

)
− ln det

[
n2
m1

(
M−1

1 + ∆1

)
+
n1
m2

(
M−1

2 + ∆2

)]
. (14)

The proofs of Theorems 2 and 3 are deferred to Appendix B.
Note that in the particular case with only two individuals: n1 = n2 = 1, both L- and

D-criteria significantly simplify:

φL,β =
1

m1
tr

{[
M−1

1 Ũ

(
1

m1
∆1 +

1

m2
(M−1

2 + ∆2)

)]
A1

}
+

1

m2
tr

{[
M−1

2 Ũ

(
1

m2
∆2 +

1

m1
(M−1

1 + ∆1)

)]
A2

}
,

φD,β = −ln det (M1)− ln det (M2)− ln det

[
n2
m1

(
M−1

1 + ∆1

)
+
n1
m2

(
M−1

2 + ∆2

)]
.

We will consider this case in more detail in Section 4.
Note also that in the case of identical groups: F(1) = F(2), m1 = m2, X1 = X2, D1 = D2

and Σ1 = Σ2, optimal designs in single-group models considered in Prus and Schwabe (2016)
are optimal for the prediction of the individual parameters in model (1).

Further we verify the convexity of the proposed design criteria, to be able to formulate
optimality conditions.

Lemma 2. The L- and D-criteria for the prediction of the individual parameters are convex
with respect to (M1,M2).

For the proof of Lemma 2 see Appendix C.
Note that the proposed L- and D-criteria depend on two designs simultaneously. Therefore,

the general equivalence theorem (see Kiefer (1974)) cannot be used directly. We formulate
optimality conditions using the results for multiple-design problems proposed in Prus (2021).

Theorem 4. A pair of approximate designs ξ∗ = (ξ∗1 , ξ
∗
2) is L-optimal for the prediction of the

individual parameters β iff

tr
{

F̃(1)(x1)
[
(n1 − 1)

(
M∗

1 + ∆−11

)−1
A1

(
M∗

1 + ∆−11

)−1
+ (M∗

1)
−1Ũ∗

(
K∗1A1K

∗
1 +

n1n2
m2

2

(M∗
2)
−1A2(M

∗
2)
−1
)

Ũ∗(M∗
1)
−1
]

F̃(1)(x1)
>
}

≤ tr
{[

(n1 − 1)
(
M∗

1 + ∆−11

)−1
A1

(
M∗

1 + ∆−11

)−1
M∗

1

+ (M∗
1)
−1Ũ∗

(
K∗1A1K

∗
1 +

n1n2
m2

2

(M∗
2)
−1A2(M

∗
2)
−1
)

Ũ∗
]}

, x1 ∈ X1, (15)

where

Ũ∗ =

[
n2
m1

((M1)
∗−1 + ∆1) +

n1
m2

((M∗
2)
−1 + ∆2)

]−1
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and K∗1 = n2
m1

∆1 + n1
m2

((M∗
2)
−1 + ∆2), and

tr
{

F̃(2)(x2)
[
(n2 − 1)

(
M∗

2 + ∆−12

)−1
A2

(
M∗

2 + ∆−12

)−1
+ (M∗

2)
−1Ũ∗

(
K∗2A2K

∗
2 +

n1n2
m2

1

(M∗
1)
−1A1(M

∗
1)
−1
)

Ũ∗(M∗
2)
−1
]

F̃(2)(x2)
>
}

≤ tr
{[

(n2 − 1)
(
M∗

2 + ∆−12

)−1
A2

(
M∗

2 + ∆−12

)−1
M∗

2

+ (M∗
2)
−1Ũ∗

(
K∗2A2K

∗
2 +

n1n2
m2

1

(M∗
1)
−1A1(M

∗
1)
−1
)

Ũ∗
]}

, x2 ∈ X2, (16)

where K∗2 = n1
m2

∆2 + n2
m1

((M∗
1)
−1 + ∆1).

For support points of ξ∗1 and ξ∗2 equality holds in (15) and (16), respectively.

Theorem 5. A pair of approximate designs ξ∗ = (ξ∗1 , ξ
∗
2) is D-optimal for the prediction of the

individual parameters β iff

tr

{
F̃(1)(x1)

(
(M∗

1)
−1 + (n1 − 1)

(
M∗

1 + ∆−11

)−1 − n2
m1

(M∗
1)
−1Ũ∗(M∗

1)
−1
)

F̃(1)(x1)
>
}

≤ p+ tr

{
(n1 − 1)

(
M∗

1 + ∆−11

)−1
M∗

1 −
n2
m1

(M∗
1)
−1Ũ∗

}
, x1 ∈ X1 (17)

and

tr

{
F̃(2)(x2)

(
(M∗

2)
−1 + (n2 − 1)

(
M∗

2 + ∆−12

)−1 − n1
m2

(M∗
2)
−1Ũ∗(M∗

2)
−1
)

F̃(2)(x2)
>
}

≤ p+ tr

{
(n2 − 1)

(
M∗

2 + ∆−12

)−1
M∗

2 −
n1
m2

(M∗
2)
−1Ũ∗

}
, x2 ∈ X2. (18)

For support points of ξ∗1 and ξ∗2 equality holds in (17) and (18), respectively.

Proofs of Theorems 4 and 5 have been deferred to appendix D.

3.2 Optimal designs for prediction of group difference

For the prediction of the group difference µ we define the linear criterion as follows:

φL,µ = tr

{
E

[(
L>µ̂− L>µ

)(
L>µ̂− L>µ

)>]}
. (19)

For approximate designs we obtain the following result:

φL,µ = tr


[(

n2
m1

M−1
1 +

n1
m2

M−1
2

)−1
+ C

]−1
A

 , (20)

where A = LL>. Note that this criterion is not a particular linear criterion of form (10).
The A- and c-criteria for the prediction of the group difference are the particular linear

criteria (of form (19)) with L = Ip and L = c, c ∈ Rp, respectively. The related IMSE -criterion
may be defined as

φIMSE,µ =
2∑
i=1

ai tr

(∫
Xi

E
[(

F(i)(x)µ̂− F(i)(x)µ
) (

F(i)(x)µ̂− F(i)(x)µ
)>]

νi(dx)

)
, (21)

7



which results in the particular linear criterion with A =
∑2

i=1 ai
∫
Xi

F(i)(x)>F(i)(x) νi(dx).
The D-criterion for the prediction of the group difference may be defined as

φD,µ = ln det (Cov (µ̂− µ)) .

For approximate designs we obtain

φD,µ = −ln det

[(
n2
m1

M−1
1 +

n1
m2

M−1
2

)−1
+ C

]
. (22)

Note that L- and D-optimal designs for the prediction of the group difference depend on the
covariance matrices of the random effects only via their weighted sum n2D1 + n1D2. Note also
that the designs depend on the group sizes only via the ratio n1/n2.

Lemma 3. The L- and D-criteria for the prediction of the group difference are convex with
respect to (M1,M2).

For the proof see Appendix C.
Now the optimality conditions for the linear and D-criteria for the prediction of the group

difference can be formulated.

Theorem 6. A pair of approximate designs ξ∗ = (ξ∗1 , ξ
∗
2) is L-optimal for the prediction of the

group difference µ iff

tr

{
F̃(i)(xi)(M

∗
i )
−1
[
Ip + C

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)]−1

A

[
Ip +

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)

C

]−1
(M∗

i )
−1F̃(i)(xi)

>

}

≤ tr

{
(M∗

i )
−1
[
Ip + C

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)]−1

A

[
Ip +

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)

C

]−1}
, ∀xi ∈ Xi, i, i′ = 1, 2, i 6= i′, (23)

where M∗
i = Mi(ξ

∗
i ).

For support points of ξ∗i equality holds in (23).

Theorem 7. A pair of approximate designs ξ∗ = (ξ∗1 , ξ
∗
2) is D-optimal for the prediction of the

group difference µ iff

tr

{
F̃(i)(xi)(M

∗
i )
−1
[
Ip + C

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)]−1

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)−1

(M∗
i )
−1F̃(i)(xi)

>

}

≤ tr

{
(M∗

i )
−1
[
Ip + C

(
ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)]−1(ni′

mi
(M∗

i )
−1 +

ni
mi′

(M∗
i′)
−1
)−1}

, (24)

for all xi ∈ Xi, i, i′ = 1, 2, i 6= i′.
For support points of ξ∗i equality holds in (24).
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The proofs of Theorems 6 and 7 are deferred to Appendix E.
Further we consider the particular two-groups model of form (1) in which the regression

matrices, the experimental regions and the covariance matrices of the errors are the same for
both groups: F(1) = F(2) =: F(0), Σ1 = Σ2 =: Σ0 and X1 = X2 =: X0. In this case optimal
approximate designs with respect to the Bayesian L- or D-criteria (see e. g. Gladitz and Pilz
(1982))

φL,B = tr
[(

M + D−1
)−1

A
]

(25)

and
φD,B = −ln det

(
M + D−1

)
,

where M denotes the moment matrix and D is the covariance matrix of random effects, are
optimal for the prediction of the group difference in model (1).

Theorem 8. Let the regression matrices, the experimental regions and the covariance matrices
of the observational errors in model (1) be the same for both groups. Let ξ∗b be the Bayesian L-
or D-optimal approximate design for the covariance matrix of random effects given by

D =
m1m2

n1m1 + n2m2
(n2D1 + n1D2).

Then the pair of approximate designs (ξ∗1 , ξ
∗
2) with ξ∗i = ξ∗b , i = 1, 2, is, respectively, L- or

D-optimal for the prediction of the group difference µ.

For the proof see Appendix E.
Note that the result of Theorem 8 holds also in cases where the covariance matrices of random

effects, the group sizes and (or) the numbers of observations per individual are not the same in
both groups: D1 6= D2, n1 6= n2 and (or)m1 6= m2 (see the next section for numerical examples).

4 Examples

In this section we consider numerical examples for the straight line and bi-linear regression
models. Because of complexity of the design criteria for the prediction of the individual pa-
rameters, we restrict ourselves to the case of two individuals: n1 = n2 = 1, and we focus on
the D-criterion, which is the simplest one from the mathematical point of view. These group
sizes may be suitable, for example, in the situation, where the observational units (that we for
simplicity call “individuals”) are some studies and mi observations in study i are related to mi

animals/plants/etc. available for the study.
As it has been established in part 3.2, optimal designs for the prediction of the group difference

depend on the group sizes only via the ratio n1/n2. For the group difference we consider more
general situations with larger group sizes and we compute also A-optimal designs.

4.1 Linear regression

We consider the two-groups model of general form (1) with the regression functions F(i)(x) =
(1, x) on the design region Xi = [0, 1], i = 1, 2:

Yij` = βij1 + βij2xi` + εij`, ` = 1, . . . ,mi, j = 1, . . . , ni. (26)

The covariance structures of the random effects and observational errors are given by Di =
diag(d1, d2) and Σi = 1 for both groups. Group sizes ni and numbers observations per individual
mi are in general not the same for the first and the second group.
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Table 1: D-optimal approximate designs for prediction of the individual parameters β and group
difference µ in straight line regression model for d1 = 0.1, d2 = 1, n1 = n2 = 1.

Numbers of observations Optimal designs for β̂ Optimal designs for µ̂
m1 m2 m1/m2 w∗1 1− w∗1 w∗2 1− w∗2 w∗ 1− w∗
6 24 1/4 0.772 0.228 0.514 0.486 ≈ 1 ≈ 0
9 21 3/7 0.669 0.331 0.535 0.465 0.897 0.103
12 18 2/3 0.616 0.384 0.557 0.443 0.847 0.153
15 15 1 0.582 0.418 0.582 0.418 0.833 0.167
18 12 3/2 0.557 0.443 0.616 0.384 0.847 0.153
21 9 7/3 0.535 0.465 0.669 0.331 0.897 0.103
24 6 4 0.514 0.486 0.772 0.228 ≈ 1 ≈ 0

For the predictions of the individual parameters and the group differences the L- and D-
optimal approximate designs have the form

ξi =

(
0 1

1− wi wi

)
,

where wi denotes the weight of observations in point 1 for the i-th group, and the moment
matrices are given by

M(ξi) =

(
1 wi
wi wi

)
.

According to Theorem 8, optimal designs for the prediction of the group difference are the same
for both groups:

ξi =

(
0 1

1− w w

)
, i = 1, 2.

Then only the optimal weight w∗ has to be computed. Table 1 illustrates the behavior of
D-optimal designs in both cases: for the prediction of individual parameters and the group
difference. We fix the values of the variance parameters and the group sizes by d1 = 0.1, d2 = 1,
n1 = n2 = 1.

As we can see in the table, optimal weights for the prediction of the individual parameters are
in general different in the first and the second group and depend on the numbers of observations
m1 and m2. In case m1 = m2 = 15 the optimal weight w∗1 = w∗2 is in accordance with the
optimal design in the one-group model considered in Prus and Schwabe (2016). Optimal design
for the prediction of the group difference coincides form1 = m2 with the Bayesian optimal design
for the covariance matrix of random effects D = D1 = D2. In case m1 = 6 and m2 = 24 (or
m1 = 24 and m2 = 6) a singular design minimizes the D-criterion. Such designs, however, lead
to a singular moment matrix and are, therefore, not admissible. The best exact design in this
case assigns 5 and 23 observations at point 1 in the first and the second group, respectively. Note
that in all cases considered in Table 1 optimal weights at point 1 (w∗1, w∗2, w∗) are larger than
0.5, which is the optimal weight in the fixed effects model (d1 = d2 = 0). This behavior may
be explained by the fact that the slope variance d2 is larger than the intercept variance d1 and,
therefore, more observations at point 1 are needed.

The optimal designs in Table 1 have been computed using the standard approach for deter-
mining the minimum of a convex function. The related equation / system of equations (gradient
equals 0) has been solved numerically using software Maple 2020. The derivatives are not pre-
sented here because of their complexity.
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Further we consider the A-criterion for the prediction of the group difference. To compute
A-optimal designs we use “OptimalDesign” package in R proposed by Harman and Filová (2019).
This package has been developed for classical design criteria and allows for additional constrains.
We convert the Bayesian A-criterion to the standard A-criterion with specific constraints using
the approach proposed in Harman and Prus (2018).

Figure 1 illustrates the behavior of the optimal weight in relation to the ratio a = m1/m2 of
the numbers of observations (for fixed values of m2) and the ratio b = n2/n1 of the group sizes.
The variance parameters are fixed by d1 = 0.1 and d2 = 1. We consider the behavior for all values
of a from the interval [1, 5]. As we can see on the graphics, the optimal weight decreases with
increasing ratio a. Also for larger values of m2 the optimal weight becomes smaller. Note that
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Figure 1: A-optimal weight w∗ for prediction of group difference in straight line regression model in dependence
on ratio a of numbers of observations for m2 = 8 (solid line), m2 = 16 (dashed line), m2 = 40 (dotted line) and
b = 1 (left panel), b = 2 (middle panel), b = 5 (right panel).

for the A-criterion (in contrast to the D-criterion) not all optimal weights at point 1 are higher
than 0.5. However they are all higher than the optimal weight in the fixed effects model (≈ 0.41
for A-criterion). We can also observe that for larger values of both m1 and m2 (solid lines and
larger values of a) optimal weights become more close 0.41, i. e. they become less sensitive with
respect to variance parameters. An intuitive explanation may as follows: If many observations
are possible, there is no need to require much more observations at point 1 to receive enough
information about the slope.

4.2 Bi-linear regression

We consider the two-groups bi-linear model with the regression functions F(i)(x) = (1, x1, x2) on
the design region Xi = [−1, 1]2, i = 1, 2:

Yijh = βij1 + βij2xih1 + βij3xih2 + εijh, j = 1, . . . , ni, h = 1, . . . ,mi.

According to Theorem 8, Bayesian optimal designs are optimal for the prediction of the group
difference. The left hand side of the optimality condition (34) for Bayesian linear criteria is
a convex paraboloid. Therefore, the only admissible support points for optimal designs are
x1 = (1, 1), x2 = (1,−1), x3 = (−1, 1), x4 = (−1,−1):

ξi =

(
x1 x2 x3 x4
wi1 wi2 wi3 wi4

)
,

where
∑4

h=1wih = 1. The covariance structures of the random effects and observational errors
are given by

Di =

 d11 0 d13
0 d22 0
d13 0 d33

 (27)
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and Σi = 1 for both groups. For this model the A-optimal designs turned out to have the
following design structure:

ξi =

(
x1 x2 x3 x4
w 1

2(1− 2w) w 1
2(1− 2w)

)
.

Then only the optimal weight w∗ at points (1, 1) and (−1, 1) has to be computed. This design
structure can be explained by the equivariance property of the Bayesian A-criterion.

To compute the optimal designs we use “OptimalDesign” package. As it also has been done
in section 4.1 for the A-criterion for linear regression, we convert the Bayesian A-criterion to the
standard A-criterion with specific constraints.

Figure 2 illustrates the behavior of the A-optimal weight in relation to the ratio a = m1/m2

of the numbers of observations (for fixed values of m2) and the ratio b = n2/n1 of the group
sizes. The variance parameters are fixed by d11 = d22 = d33 = 1 and the values 0.9, 0.5, −0.5
or −0.9 of d13. We consider the behavior for all values of a from the interval [1, 5]. Note that
for d13 = 0 the balanced design w∗ = 0.25 is optimal. For small values of d13 optimal designs
are close to the balanced design. Note also that in case of a positive (negative) correlation d13
the optimal weight is decreasing (increasing) with increasing values of ratio a. We can also see
on the graphics that for larger values of both m1 and m2 optimal weights become close to 0.25,
which is the optimal weight in the fixed effects bi-linear regression model. The same behavior
we observed for the linear regression model in part 4.1.

5 Discussion

In this paper we have considered optimal designs for the prediction of the individual parameters
and the group difference in the two-groups mixed models with multivariate response. The solution
for optimal approximate designs is given in the form of optimality conditions for the linear and
D-criteria. Optimal designs for the prediction of the group differences coincide, in the particular
case of the same regression function and the same design region for both groups, with the
Bayesian optimal designs for an adjusted covariance matrix of random effects. For Bayesian
linear criteria, optimal approximate and exact designs may be computed using “OptimalDesign”
package in R. For the prediction of the individual parameters, the problem of computation
remains, however, open. Also for determining optimal designs for the group difference in models
where regression functions and / or design regions differ between groups, a new method has to
be developed. If optimal approximate designs are already available and the number of weights
(variables in the criterion function) is low, as for example in Section 4, the related optimal exact
design can be determined by choosing the “best” of the neighbouring exact designs. Otherwise
some more complicated rounding strategy should be used. Moreover, the proposed approach
requires non-singular moment (or information) matrices, which is only possible if the numbers of
observations per individual are large enough. However, in many practical situations the number
of observations is restricted and may be even smaller than the number of parameters. For
determining of optimal designs in such cases a new approach has to be developed, which may be
a subject of future investigations. Furthermore, in this work we have restricted ourselves on the
situation with two groups of observational units. An extension of the analytical results to a larger
number of groups is (mathematically) challenging. However, for particular regression matrices
the problem may simplify significantly. In our model we have assumed the population parameters
to be the same for both groups. Although this assumption seems to be restrictive, statistical
analysis for random effects in the case of different population parameters turned out to be rather
simple as they may be performed separately in each group (see Prus (2015), ch. 6). Optimal
designs for the prediction of the group difference may be, however, a reasonable direction for a
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future research. Finally, it is worth-while mentioning that optimal designs obtained by using the
proposed approach depend on the covariance matrix of the random effects, which is in practice
unknown and has to be estimated. The quality of the resulting designs, however, depends on
the accuracy of the estimation. Alternatively, robust design criteria, as maximin criterion for
example, that are not sensitive with respect to variance parameters, may be considered in the
future.
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A Proofs of Theorem 1 and Lemma 1

To make use of the theoretical results that are available in the literature (see e. g. Henderson
(1975)) for the prediction of random parameters we will represent model (1) as a particular case
of the general linear mixed model

Y = Xβ0 + Zb + ε (28)

with design matrices X and Z for the fixed effects and the random effects, respectively. In
(28), β0 denotes the fixed effects and b are the random effects. The random effects and the
observational errors ε are assumed to have zero mean and to be all uncorrelated with positive
definite covariance matrices Cov (b) = G and Cov (ε) = R, respectively.

Our model (1) may be rewritten in the following form:

Y =

(
1n1 ⊗ F1

1n2 ⊗ F2

)
β0 +

(
In1 ⊗ F1 0

0 In2 ⊗ F2

)
b + ε, (29)

where Y = (Y>1 ,Y
>
2 )> for Yi = (Y>i1, . . . ,Y

>
ini

)>, ε = (ε>1 , ε
>
2 )> for εi = (ε>i1, . . . , ε

>
ini

)>, and
b = β − 1n ⊗ β0. Then model (29) is of form (28) with the design matrices

X =

(
1n1 ⊗ F1

1n2 ⊗ F2

)
and Z = block-diag (In1 ⊗ F1, In2 ⊗ F2) and the covariance matrices G = block-diag (In1 ⊗D1, In2 ⊗D2)
and R = block-diag (In1 ⊗V1, In2 ⊗V2).

According to Henderson (1975) the MSE matrix of the BLUP
(
β̂
>
0 , b̂

)>
is given by the

block-matrix

Cov
(

β̂0

b̂− b

)
=

(
C11 C12

C>12 C22

)
,

where
C22 =

(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−1X>R−1Z

)−1
,

C12 = −C11 X>R−1Z
(
Z>R−1Z + G−1

)−1
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and C11 corresponds to the covariance matrix of the BLUE β̂0 and is given by formula (3). The
BLUP for the random effects b is given by

b̂ = GZ>(ZGZ> + R)−1(Y −Xβ̂0).

Then for any predictable linear aspect Ψ = Kβ0 + Sb, where K and S are some matrices with
suitable dimensions, the BLUP is equal to

Ψ̂ = Kβ̂0 + Sb̂ (30)

and the MSE matrix of Ψ̂ can be computed as

Cov(Ψ̂−Ψ) = K C11 K> + K C12 S> + S C>12 K> + S C22 S>. (31)

Then using the relation β = (1n⊗Ip)β0+b and the two latter formulae (30) and (31) we obtain,
respectively, the results of Theorem 1 and Lemma 1.

B Proofs of Theorems 2 and 3

B.1 Proof of Theorem 2

The L-criterion (9) may be rewritten as the following function of the mean squared error matrix
of the random effects:

φL,β = tr
[
Cov

(
β̂ − β

)
block-diag (In1 ⊗A1, In2 ⊗A2)

]
, (32)

where block-diag (P1,P2) denotes the block-diagonal matrix with blocks P1 and P2. Then
criterion (10) follows directly from formulae (32) and (8).

B.2 Proof of Theorem 3

To compute the determinant of the mean squared error matrix (8) we use the formula for the
determinant of a block-matrix:

det (MSEβ(M1,M2)) = det(B̃11)det(B̃22 − B̃>12B̃
−1
11 B̃12).

After employing some linear algebra and some properties of the logarithm we obtain D-criterion
(14).

C Proofs of Lemmas 2 and 3

C.1 Proof of Lemma 2

The inverse of the MSE matrix (8) is given by

(MSEβ(M1,M2))
−1 =

(
A11 A12

A>12 A22

)
, (33)

where

A11 = m1

{
In1 ⊗M1 + (In1 − Jn1)⊗∆−11 + Jn1 ⊗

(
∆1 +

n1m1

m2n2
∆2

)−1}
,
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A12 = −(1n11
>
n2

)⊗
(
n2
m1

∆1 +
n1
m2

∆2

)−1
and

A22 = m2

{
In2 ⊗M2 + (In2 − Jn2)⊗∆−12 + Jn2 ⊗

(
∆2 +

n2m2

m1n1
∆1

)−1}
.

This matrix is linear in M1 and M2, which implies the convexity of the both criteria.

C.2 Proof of Lemma 3

The function φ(N) = N−1 is non-increasing in Loewner ordering and matrix-convex for any
positive definite matrix N. Then φ1(M1,M2) =

(
a1M

−1
1 + a2M

−1
2

)−1
+ C is matrix-concave

with respect to (M1,M2) for all positive definite M1 and M2, C ∈ Rp×p, ai > 0, i = 1, 2. The
functions φ2(N) = −ln det(N) and φ3(N) = tr

(
N−1A

)
are non-increasing in Loewner ordering

and convex for any positive definite matrix N and any positive semi-definite matrix A as the
standard D- and L-criteria (see e. g. Pázman (1986), ch. 4). Then the functions φ2 ◦ φ1 and
φ3 ◦ φ1 are convex.

D Proofs of Theorems 4 and 5

According to Theorem 2 in Prus (2021) a pair of designs ξ∗ = (ξ∗1 , ξ
∗
2) is optimal with respect to

a convex criterion φ(M1,M2) if and only if the directional derivative of φ at (Mi,Mi′) in the
direction of (M̃i,Mi′), given by the formula

ΦMi′ (Mi, M̃i) = lim
α↘ 0

1

α

(
φ((1− α)Mi + αM̃i,Mi′)− φ(Mi,Mi′)

)
,

is larger than or equal to zero for Mi = Mi(ξ
∗
i ), M̃i = F̃(i)(xi)

>F̃(i)(xi), all points xi of the
experimental region Xi, and i, i′ = 1, 2, i 6= i′. For all support points xi of ξ∗i the derivative has
to be equal to zero.

D.1 Proof of Theorem 4

For L-criterion (10) the directional derivatives of φL,β at (Mi,Mi′) in the direction of (M̃i,Mi′)
for i, i′ = 1, 2, i 6= i′, are given by

ΦM2(M1, M̃1) = − 1

m1
tr
{

(M̃1 −M1)
[
(n1 − 1)

(
M1 + ∆−11

)−1
A1

(
M1 + ∆−11

)−1
+ M−1

1 Ũ

(
K1A1K1 +

n1n2
m2

2

M−1
2 A2M

−1
2

)
ŨM−1

1

]}
and

ΦM1(M2, M̃2) = − 1

m2
tr
{

(M̃2 −M2)
[
(n2 − 1)

(
M2 + ∆−12

)−1
A2

(
M2 + ∆−12

)−1
+ M−1

2 Ũ

(
K2A2K2 +

n1n2
m2

1

M−1
1 A1M

−1
1

)
ŨM−1

2

]}
,

where K1 = n2
m1

∆1 + n1
m2

(M−1
2 + ∆2) and K2 = n1

m2
∆2 + n2

m1
(M−1

1 + ∆1). Then the optimality
condition follows directly from Theorem 2 in Prus (2021).
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D.2 Proof of Theorem 5

For D-criterion (14) the directional derivatives of φD,β at (Mi,Mi′) in the direction of (M̃i,Mi′)
for i, i′ = 1, 2, i 6= i′, are given by

ΦM2(M1, M̃1) = p+ tr

{
(n1 − 1)

(
M1 + ∆−11

)−1
M1 −

n2
m1

M−1
1 Ũ

}
−tr

{(
M−1

1 + (n1 − 1)
(
M1 + ∆−11

)−1 − n2
m1

M−1
1 ŨM−1

1

)
M̃1

}
and

ΦM1(M2, M̃2) = p+ tr

{
(n2 − 1)

(
M2 + ∆−12

)−1
M2 −

n1
m2

M−1
2 Ũ

}
−tr

{(
M−1

2 + (n2 − 1)
(
M2 + ∆−12

)−1 − n1
m2

M−1
2 ŨM−1

2

)
M̃2

}
.

E Proofs of Theorems 6, 7 and 8

To verify the results of Theorems 6 and 7, we use the same argumentation as in the proofs of
Theorem 4 and 5.

E.1 Proof of Theorem 6

For linear criterion (20) the directional derivatives are given by

ΦMi′ (Mi, M̃i) =
ni′

mi
tr

{[
Ip +

(
ni′

mi
M−1

i +
ni
mi′

M−1
i′

)
C

]−1
M−1

i (Mi − M̃i)M
−1
i[

Ip + C

(
ni′

mi
M−1

i +
ni
mi′

M−1
i′

)]−1
A

}
.

E.2 Proof of Theorem 7

For D-criterion (22) the directional derivative of φD,µ at (Mi,Mi′) in the direction of (M̃i,Mi′)
is given by

ΦMi′ (Mi, M̃i) =
ni′

mi
tr

{[
Ip +

(
ni′

mi
M−1

i +
ni
mi′

M−1
i′

)
C

]−1
M−1

i (Mi − M̃i)M
−1
i(

ni′

mi
M−1

i +
ni
mi′

M−1
i′

)−1}
.

E.3 Proof of Theorem 8

We will prove this theorem for the linear criterion only. For the D-criterion the result can be
easily verified using the same approach.

Let the group-designs be the same for both groups: ξ1 = ξ2 =: ξ0. Then we obtain M1 =
M2 =: M0 and inequality (23) from Theorem 6 simplifies to

tr
{

F̃(0)(x)
(
M∗

0 + D−1
)−1

A
(
M∗

0 + D−1
)−1

F̃(0)(x)>
}

≤ tr
{

M∗
0

(
M∗

0 + D−1
)−1

A
(
M∗

0 + D−1
)−1}

, ∀x ∈ X0, (34)
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which coincides with the optimality condition for the Bayesian designs (see e. g. Gladitz and Pilz
(1982)). Consequently, optimal designs with respect to Bayesian linear criterion (25) are optimal
for the prediction of the group difference.
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Figure 2: A-optimal weight w∗ for prediction of group difference in bi-linear regression model in dependence on
ratio a of numbers of observations for m2 = 8 (solid line), m2 = 16 (dashed line), m2 = 40 (dotted line) and b = 1

(left panel), b = 2 (middle panel), b = 5 (right panel), and for values 0.9 (first row), 0.5 (second row), −0.5 (third
row) and −0.9 (fourth row) of d13.
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Abstract
We extend the equivariance and invariance conditions for construction of optimal
designs to multiple-group mixed models and, hence, derive the support of optimal
designs for first- and second-order models on a symmetric square. Moreover, we
provide a tool for computation of D- and L-efficient exact designs in multiple-group
mixed models by adapting the algorithm of Harman et al. (Appl Stoch Models Bus
Ind, 32:3–17, 2016).We show that this algorithm can be used both for size-constrained
problems and also in settings that require multiple resource constraints on the design,
such as cost constraints or marginal constraints.

Keywords Optimal design · Exact design · Random coefficient regression ·
Equivariance · Invariance · Resource constraints

1 Introduction

The aim of this work is computation of highly efficient experimental designs in
multiple-group random coefficient regression models. Analytical approach for deter-
mining optimal approximate designs for this type of models has been discussed, i.e., in
Fedorov and Jones (2005), Schmelter (2007) and Prus (2022). In Fedorov and Jones
(2005), optimal designs were obtained for specific regression functions. Schmelter
(2007) proposed optimality conditions in the particular case of group-wise identical
designs for commonly used linear and determinant criteria. In Prus (2022), equivalence
theorems for the general form of multiple-group models have been formulated.
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For computing optimal designs in mixed-effect models, several solutions are avail-
able. However, most of them focus on computing approximate designs for several
traditional criteria, and we are not aware of any work that considers additional con-
straints besides the size of the design.

Namely, Dumont et al. (2018) created an R package for computing designs in
mixed-effects model that is predominantly focused on nonlinear models that are used
in drug development. However, they only consider the D-optimality criterion without
any additional constraints that may arise in the experiment (such as budget, material
or other types of resources). The software package (Aliev et al. 2012) is aimed at
computing approximate designs, mainly for mixed-effects models arising in pharma-
cokinetic applications. Finally, the software solution of Nyberg et al. (2012) seems
to be the most versatile, as it admits user-defined criteria, including their Bayesian
versions, but the focus is on approximate designs in nonlinear mixed-effect models
and no additional constraints can be included.

In our paper, we propose to use the algorithm of Harman et al. (2016), originally
developed for computing D-efficient exact designs in the linear regression model
with possibly multiple resource constraints, for the general form of multiple-group
models. We also propose analytical solutions based on equi- and invariance properties
of optimal designs for several particular models.

The paper has the following structure: In Sect. 2, we shortly introduce the multiple
group model, the design problem and the optimality conditions that are subsequently
used in Sect. 3 to show the equivariance and invariance properties of D- and L-optimal
designs. In Sect. 4, we show that the problem of computing optimal designs in the
multiple-group mixed model can be reformulated as a problem of computing optimal
designs with respect to a monotonous criterion function with resource constraints
on weights, and, hence, a modification of a recent algorithm for computing resource
constrained designs can be used to obtain efficient exact designs in our model. In
Sects. 5 and 6,we compute the D- and I MSE-optimal designs in bilinear and quadratic
models and show that we can easily solve problems with additional constraints that
cannot be solved analytically.

2 Multiple-group RCRmodel

2.1 Model specification

Inmultiple-group random coefficient regressionmodel the h-th observation of the j-th
observational unit in the i-th group is given by

Yi jh = F(i)(xih)β i j + εi jh, xih ∈ Xi , i = 1, . . . , s, j = 1, . . . , ni ,

h = 1, . . . ,mi , (1)

where ni is the number of observational units in group i ,mi is the number of obser-
vations per unit in group i , observational settings xih come from some experimental
regionXi . In this workwe allow formultivariate (l-variate) response andF(i) denotes a
group-specific (l× p) matrix of known regression functions in group i . In the particular
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case of univariate response we deal with “classical” regression functions: F(i) = f�(i),
and l = 1. Unit-specific random parameters β i j = (βi j1, . . . , βi j p)

� have unknown
mean β0 and given (p × p) covariance matrix Di , εi jh denote observational errors
with zero mean and non-singular (l× l) covariance matrix�i . All observational errors
and all random parameters are assumed to be uncorrelated.

The covariance matrix of the best linear unbiased estimator for β0 is given by

Cov
(
β̂0

)
=

[
s∑

i=1

ni ((F̃�
i F̃i )

−1 + Di )
−1

]−1

, (2)

where F̃i = (F̃�
(i)(xi1), . . . , F̃

�
(i)(ximi ))

� for F̃(i)(xih) = �
−1/2
i F(i)(xih), h =

1, . . . ,mi , and the symmetric positive definite matrix �
1/2
i with the property �i =

�
1/2
i �

1/2
i .

2.2 Design criteria

The experimental settings xi1, . . . , ximi in formula 1 are not necessarily all distinct.
We define an exact design in group i as

ξi =
(

xi1, . . . , xiki
mi1, . . . ,miki

)
, (3)

where xi1, . . . , xiki are the distinct support points in Xi with the corresponding num-
bers of observations mi1, . . . ,miki ∈ N,

∑ki
k=1 mik = mi .

For analytical purposes we also introduce approximate designs:

ξi =
(

xi1, . . . , xiki
wi1, . . . , wiki

)
,

where wik ≥ 0 denotes the weight of observations at xik , k = 1, . . . ki , and∑ki
k=1 wik = 1.
We will use the following notation for the moment (or information) matrix in group

i :

Mi (ξi ) = mi

ki∑
k=1

wik F̃(i)(xik)
�F̃(i)(xik). (4)

For exact designs we have wik = mik/mi and

Mi (ξi ) = F̃�
i F̃i ,

which follows from formula (4) and the definition of F̃i below formula (2).
Wewill also use the notation ξ for the tuple of all group-designs ξi : ξ = (ξ1, . . . , ξs).
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Further we extend the definition of the variance–covariance matrix (2) with respect
to approximate designs:

Covξ =
[

s∑
i=1

ni
(
Mi (ξi )

−1 + Di

)−1
]−1

. (5)

Wegenerally search for the designswhichminimize the variance-covariancematrix.
Instead of the minimization of the matrix itself (which is in general not possible), we
instead minimize suitable functions of this matrix which we call optimality criteria.
We focus on the commonly used linear (L-) and determinant (D-) criteria for the
estimation of the population parameters β0, which are given by

φL(ξ) = tr

⎛
⎝
[

s∑
i=1

ni
(
Mi (ξi )

−1 + Di

)−1
]−1

V

⎞
⎠ , (6)

where V is some non-negative definite (p × p) matrix, and

φD(ξ) = −ln det

(
s∑

i=1

ni
(
Mi (ξi )

−1 + Di

)−1
)

, (7)

respectively (see Prus 2022). (Note that matrix Mi (ξi ) here differs from that in Prus
Prus 2022 by constant mi .)

Frequently used particular cases of the L-criterion are the c- and A-criterion, which
are of the form (6) with V = cc�, c ∈ R

p, and V = Ip, where Ip is the p× p identity
matrix, respectively. Another frequently used linear criterion is the I MSE-criterion.
For the estimation of the mean parameters β0 in multiple-group model (1) we define
this criterion as follows:

φI MSE (ξ)

=
s∑

i=1

ai tr

(∫

Xi

E

[(
F(i)(x)β̂0 − F(i)(x)β0

) (
F(i)(x)β̂0 − F(i)(x)β0

)�]
νi (dx)

)
,

(8)

where νi is some suitable measure on the experimental region Xi (typically uniform
on Xi ) with νi (Xi ) = 1 and ai is a coefficient related to group i ,

∑s
i=1 ai = 1. The

coefficients a1, . . . , as may depend on the group sizes or, alternatively, equal weight
may be given to each group. I MSE-criterion (8) may be rewritten in form

φI MSE (ξ) = tr

(
Cov

(
β̂0

) s∑
i=1

ai

∫

Xi

F(i)(x)
�F(i)(x) νi (dx)

)
. (9)
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Then we extend it for approximate designs by using the extended variance-
covariance matrix (5) and we obtain the particular linear criterion with V =∑s

i=1 ai
∫
Xi

F(i)(x)�F(i)(x) νi (dx),which simplifies toV = ∫
X1

F(1)(x)�F(1)(x) ν1(dx)
if the regressionmatricesF(i), the experimental regionsXi and theweightingmeasures
νi are the same among all groups: F(i) = F(1), Xi = X1 and νi = ν1 for i = 1, . . . , s.

2.3 Optimality conditions

The optimality conditions for the L- and D-criteria are provided by the following
theorems (see Prus 2022):

Theorem 1 Approximate designs ξ∗ = (ξ∗
1 , . . . , ξ∗

s ) are L-optimal for estimation of
the mean parameters β0 iff

mi tr

⎧
⎨
⎩F̃(i)(xi )

⎡
⎣Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

V

·
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1 (

Mi (ξ
∗
i )−1 + Di

)−1
Mi (ξ

∗
i )−1

⎤
⎦ F̃(i)(xi )

�
⎫⎬
⎭

≤ tr

⎧
⎨
⎩Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

V

·
[ s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1 (

Mi (ξ
∗
i )−1 + Di

)−1

⎫
⎬
⎭ (10)

for xi ∈ Xi , i = 1, . . . , s.
For support points of ξ∗

i equality holds in (10).

Theorem 2 Approximate designs ξ∗ = (ξ∗
1 , . . . , ξ∗

s ) are D-optimal for estimation of
the mean parameters β0 iff

mi tr

⎧⎨
⎩F̃(i)(xi )

⎡
⎣Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[

s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

·
(
Mi (ξ

∗
i )−1 + Di

)−1
Mi (ξ

∗
i )−1

]
F̃(i)(xi )

�
}

≤ tr

⎧⎨
⎩Mi (ξ

∗
i )−1

(
Mi (ξ

∗
i )−1 + Di

)−1
[

s∑
r=1

nr
(
Mr (ξ

∗
r )−1 + Dr

)−1
]−1

·
(
Mi (ξ

∗
i )−1 + Di

)−1
}

(11)

for xi ∈ Xi , i = 1, . . . , s.
For support points of ξ∗

i equality holds in (11).
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Example 1 We consider the two-groups model of general form (1) with the regression
functions F(i)(x) = (1, x), x ∈ Xi :

Yi jh = β i j1 + β i j2xih + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi , i = 1, 2, (12)

on the design regions Xi = [0, 1]. The covariance structures of random effects and
observational errors are given byDi = diag(di1, di2) and �i = 1 for both groups. For
this model the left hand sides of the optimality conditions (10) and (11) are parabolas
with positive leading terms. Therefore, D- and L-optimal approximate group-designs
have the form

ξi =
(

0 1
1 − wi1 wi1

)
, (13)

where wi1 denotes the weight of observations in point 1 for the i-th group and may
depend on the choice of the design criterion as well as on model parameters. The
moment matrices are given by

Mi (ξi ) =
(

mi mi1
mi1 mi1

)
, (14)

where mi1 = wi1mi . Optimal designs for random intercept and random slope have
been considered in more detail in Prus (2022).

3 Equi- and invariance considerations for construction of optimal
designs

Equi- and invariance of design criteria play an important role for determining optimal
designs in fixed effects models (see e.g. Heiligers 1992 or Schwabe 1996, ch. 3). Prus
and Schwabe (2016) investigated the related properties of designs, which are optimal
for prediction of individual random parameters in single-group mixed effects models.
Here we extend those results to multiple-group models.

We consider a one-to-one transformation g of the experimental regions Xi for all
i = 1, . . . s simultaneously with g(Xi ) = X g

i . We assume the regression matrices
F(i) to be defined on both Xi and X g

i . We also assume the existence of a non-singular
p × p matrix Qg such that

F̃(i)(g(x)) = Qg F̃(i)(x), ∀x ∈ Xi , i = 1, . . . , s, (15)

i.e. all F̃(i) are linearly equivariant with respect to the transformation g (see e.g.
Schwabe 1996, ch. 3).Wedenote by ξ

g
i the following transformation of an approximate

design ξi :

ξ
g
i =

(
g(xi1), . . . , g(xiki )

wi1, . . . , wiki

)
, (16)
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where the weight wik is the same for both ξi and ξ
g
i and only the design points xik are

transformed. Then we obtain the next property of the moment matrices:

Mi (ξ
g
i ) = Qg Mi (ξi )Q�

g , i = 1, . . . , s. (17)

Further we use the notations D = (D1, . . . ,Ds) and X = ×s
i=1Xi for the tuple

of covariance matrices and the Cartesian product of the experimental regions, respec-
tively, in all groups. For the covariance matrix (5) the following relation can be easily
verified:

Covξ g (Dg) = Q−�
g Covξ (D)Q−1

g , (18)

where ξ g = (ξ
g
1 , . . . , ξ

g
s ), Dg = (Dg

1, . . . ,D
g
s ), D

g
i = Q−�

g DiQ−1
g and Q−�

g =
(Q�

g )−1.We use the notationCovξ (D) [instead ofCovξ as in formula (5)] to emphasize
the dependence on the covariance matrices D of random effects.

Then the equivariance of the D- and L-criteria with respect to a transformation g
can be established.

Theorem 3 If the approximate designs ξ∗ are D-optimal for the estimation of β0
on the experimental regions X under the dispersion matrices D, then the induced
approximate designs ξ g are D-optimal for the estimation of β0 on the experimental
regions Xg = ×s

i=1X g
i under the induced dispersion matrices Dg.

Proof From the definition of the D-criterion for the estimation of β0 and formula (18)
we obtain

φD(ξ g,Dg) = −2 ln | det(Qg)| + φD(ξ ,D),

which proves the optimality of ξ g on X
g for ξ optimal on X. �	

Theorem 4 If the approximate designs ξ∗ are L-optimal for the estimation of β0
on the experimental regions X under the dispersion matrices D with respect to the
transformation matrix V, then the induced approximate designs ξ∗g are L-optimal
for the estimation of β0 on the experimental regions X

g under the induced dispersion
matrices Dg with respect to the induced transformation matrix Vg = QgVQ�

g .

Proof Using formulas (6) and (18) it can be easily verified that

φL(ξ g,Dg,Vg) = φL(ξ ,D,V),

which proves the optimality of ξ g on X
g . �	

Corollary 1 The A-criterion for the estimation of β0 is equivariant with respect to a
transformation g if Qg is orthogonal, i.e.:

QgQ�
g = Q�

g Qg = Ip. (19)
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To verify the equivariance of the I MSE-criterion we assume, besides the trans-
formed regression matrices F̃(i), the original regression matrices F(i) to be linearly
equivariant with respect to the transformation g:

F(i)(g(x)) = Qg F(i)(x), ∀x ∈ Xi , i = 1, . . . , s. (20)

Then if the measure νi is transformed to its image ν
g
i , we obtain

Vg =
s∑

i=1

ai

∫

X g
i

F(i)(x)
�F(i)(x) ν

g
i (dx) = QgVQ�

g .

Corollary 2 The I MSE-criterion for the estimation of β0 is equivariant with respect
to a transformation g if condition (20) is satisfied.

Example 1 (continued).We consider again the two-groups linear regression model
(12) on Xi = [0, 1] with diagonal covariance structure of random effects. For the
I MSE-criterion we chose the uniform weighting νi = λ[0,1], i = 1, 2, where λ[c1,c2]
denotes the Lebesgue measure on [c1, c2]. Let ξ∗

i be D-, A- or I MSE-optimal group-
designs of form (13) with the optimal weight of observations w∗

i1 (which generally
depends on the choice of the design criterion).

Now we consider the linear transformation g(x) = ax , a > 0, for which we obtain
Qg = diag(1, a). Then the D-, A- or I MSE-optimal group-designs in model (12) on
X g
i = [0, a] for Dg

i = diag(di1, di2/a2) and ν
g
i = 1

aλ[0,a] are given by

ξ∗
i
g =

(
0 a

1 − w∗
i1 w∗

i1

)
. (21)

Same behavior of optimal designs has been established for the prediction of random
effects in single-group model in Prus and Schwabe (2016).

Further we consider a finite group G of transformations g : Xi → Xi of the
experimental regionsXi onto themselves for all i = 1, . . . s simultaneously.We assume
the equivariance condition (15) to be satisfied and the dispersion matrices to be
invariant:Dg

i = Di , for all g ∈ G, i = 1, . . . , s.For the linear criteria we additionally
assume the invariance of the transformation matrices: Vg = V. Then the D- and L-
criteria are invariant with respect to all g ∈ G and the following statement can be
formulated:

Theorem 5 If the approximate designs ξ∗ are D- or L-optimal for the estimation of
β0, then the symmetrized designs ξ̄

∗ = (ξ̄∗
1 , . . . , ξ̄∗

s ) for ξ̄∗
i = 1

#G

∑
g∈G ξ∗

i
g are also

D- or L-optimal for the estimation of β0.

Proof Let the designs ξ∗ be D-optimal for the estimation of β0. Then it follows from
Theorem 3 and the invariance of the dispersion matrices that the induced designs ξ∗g
are also D-optimal, i.e.

φD(ξ g∗
,D) = φD(ξ∗,D), ∀g ∈ G.
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From the convexity of the criterion we obtain

φD(ξ̄
∗
,D) ≤ φD(ξ∗,D),

which implies the D-optimality of the designs ξ̄
∗
.

For the linear criterion the proof is similar. �	
The invariance of the A-criterion is straightforward if condition (19) is satisfied for

all g ∈ G.

Corollary 3 If the approximate designs ξ∗ are A-optimal for the estimation of β0 and
condition (19) is satisfied for all g ∈ G, then the symmetrized designs ξ̄

∗
are also

A-optimal for the estimation of β0.

For the I MSE-criterion we require the invariance of the weighting measures: νgi =
νi , which leads to Vg = V.

Corollary 4 If the approximate designs ξ∗ are I MSE-optimal for the estimation of β0

and condition (20) is satisfied for all g ∈ G, then the symmetrized designs ξ̄
∗
are also

I MSE-optimal for the estimation of β0.

Example 2 We consider the multiple-group model of the form (1) with the regression
functions F(i)(x) = (1, x, x2) on a symmetric design region Xi = [−a, a], a > 0,
i = 1, . . . , s:

Yi jh = β i j1 + β i j2xih + β i j3x
2
ih + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi .

(22)

For thismodel the left hand sides of the optimality conditions (10) and (11) for the L-
and D-criterion, respectively, are polynomial functions of degree four. Consequently,
the corresponding optimal group-designs ξi are supported by not more than three
design points including the two endpoints of the experimental region:

ξ∗
i =

( −a oi a
w∗
i1 1 − w∗

i1 − w∗
i2 w∗

i2

)
, (23)

where oi ∈ (−a, a) may differ for different design criteria or for different groups. We
assume covariance structures of random effects and observational errors to be given
by

Di =
⎛
⎝
di11 0 di13
0 di22 0

di13 0 di33

⎞
⎠ (24)

and �i = 1 for all groups. For the I MSE-criterion we chose the uniform weighting
measure νi = 1

2aλ[−a,a] for all i = 1, . . . , s.
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Further we consider the group of transformations G = {g1, g2} with g1(x) =
−x and g2(x) = x . Then we obtain Qg1 = diag(1,−1, 1) and Qg2 is equal to the
identity matrix. Hence, the dispersion matrices Di and the measures νi are invariant
and conditions (19) and (20) are satisfied for both g1 and g2. Then by Theorem 5 and
Corollary 3 group-designs of the general form

ξ̄∗
i =

( −a 0 a
w∗
i1 1 − 2w∗

i1 w∗
i1

)
(25)

are D-, A- and I MSE-optimal for the estimation of the mean parameters β0. The
optimal weights of observations w∗

i1 at points x = a and x = −a generally depend
on the design criterion, the variance parameters, the group sizes, the numbers of
observations and the length of the interval (see Sect. 6 for examples of the designs).

Further we consider some examples of multiple polynomial regression. For models
without random effects optimal designs for multiple polynomial regression have been
discussed, e.g., in Galil and Kiefer (1977) and Heiligers (1992).

Example 3 We consider the multiple-group bi-linear model with the regression func-
tions F(i)(x) = (1, x1, x2) on a design region Xi = [−a, a]2, a > 0, i = 1, . . . , s:

Yi jh = β i j1 + β i j2xih1 + β i j3xih2 + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi . (26)

For thismodel the left hand sides of the optimality conditions (10) and (11) for the L-
and D-criterion, respectively, are convex paraboloids. Therefore, the only admissible
support points for optimal designs are xi1 = (a, a), xi2 = (a,−a), xi3 = (−a, a),
xi4 = (−a,−a):

ξ∗
i =

(
xi1 xi2 xi3 xi4
w∗
i1 w∗

i2 w∗
i3 w∗

i4

)
, (27)

where
∑4

k=1 wik = 1. For the I MSE-criterion we use the product measure νi =
1
2aλ[−a,a] × 1

2aλ[−a,a] for all i = 1, . . . , s.
Further we assume the same covariance structures of random effects and observa-

tional errors as in Example 2 of quadratic regression and we consider the group of
transformations G = {g1, g2} with g1(x) = (−x1, x2)� and g2(x) = (x1, x2)�. We
obtain Qg1 = diag(1,−1, 1) and Qg2 is equal to the 3 × 3 identity matrix. Then the
dispersion matrices Di and the weighting measures νi are invariant and conditions
(19) and (20) are satisfied for both g1 and g2 and, consequently, group-designs of the
general form

ξ̄∗
i =

(
xi1 xi2 xi3 xi4
w∗
i1 w∗

i2 w∗
i1 w∗

i2

)
(28)

withw∗
i2 = 1

2 (1−2w∗
i1) are D-, A- and I MSE-optimal for the estimation of the mean

parameters β0. Only the optimal weights of observations w∗
i1 have to be determined.
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Note that besides the choice of the design criterion these numbers may also depend
on the model parameters (see Sect. 5 for illustrative examples).

For the particular case with diagonal covariance structure of random effects:
di13 = 0, we consider the group of transformationsG = {g1, g2, g3, g4}with g3(x) =
(x1,−x2)� and g4(x) = (−x1,−x2)�, for which we obtain Qg3 = diag(1, 1,−1)
and Qg4 = diag(1,−1,−1). The dispersion matrices Di and the measures νi are
invariant and conditions (19) and (20) are satisfied for all transformation in G. Then
the balanced group-designs

ξ̄i
∗ =

(
xi1 xi2 xi3 xi4
1/4 1/4 1/4 1/4

)
(29)

are D-, A- and I MSE-optimal.

Example 4 We consider the multiple-group bi-quadratic model with the regression
functionsF(i)(x) = (1, x1, x2, x1x2, x21 , x

2
2 ) on a design regionXi = [−a, a]2, a > 0:

Yi jh = β i j1 + β i j2xih1 + β i j3xih2 + β i j4xih1xih2 + β i j5x
2
ih1 + β i j6x

2
ih2 + εi jh (30)

for j = 1, . . . , ni , h = 1, . . . ,mi and i = 1, . . . , s. For this model the left hand
sides of the optimality conditions (10) and (11) are quadric surfaces in (x1, x2), for
which the projections on both x1 = 0 and x2 = 0 are polynomials of degree four.
Then the only admissible support points for L- and D-optimal designs are xi1 = (a, a),
xi2 = (a,−a), xi3 = (−a, a), xi4 = (−a,−a), xi5 = (oi1, a), xi6 = (oi2,−a), xi7 =
(a, oi3), xi8 = (−a, oi4) and xi9 = (oi5, oi6), where oil ∈ (−a, a), l = 1, . . . , 6. For
the I MSE-criterion we use the same weighting measures as in Example 3.

Further we assume the following simple covariance structure of the random effects
and the observational errors: Di = diag(di1, . . . di6) and �i = 1, i = 1, . . . s. Then
we consider the same group of transformations G as in the previous example and
we obtain Qg1 = diag(1,−1, 1,−1, 1, 1), Qg2 is equal to the 6 × 6 identity matrix,
Qg3 = diag(1, 1,−1,−1, 1, 1) and Qg4 = diag(1,−1,−1, 1, 1, 1). Then conditions
(19) and (20) are satisfied and dispersion matricesDi and the measures νi are invariant
for all gi ∈ G. Therefore, D-, A- and I MSE-optimal designs have the general form

ξ̄∗
i =

(
xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9
w∗
i1 w∗

i1 w∗
i1 w∗

i1 w∗
i2 w∗

i2 w∗
i3 w∗

i3 w∗
i4

)
, (31)

wherew∗
i4 = 1−4w∗

i1−2w∗
i2−2w∗

i3 and all oil = 0, i. e. xi5 = (0, a), xi6 = (0,−a),
xi7 = (a, 0), xi8 = (−a, 0) and xi9 = (0, 0). The weights of observations w∗

i2, w
∗
i3

and w∗
i4 depend on the choice of the design criterion and on the model parameters and

have to be optimized.
Then we additionally assume the conditions di2 = di3 and di5 = di6 to be satisfied

and consider the extended group of transformations G1 = G ∪ {g5} with g5(x) =
(x2, x1)�, for which we obtain Qg5 = block-diag(1,P, 1,P), where P is the (2 × 2)
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permutation matrix:

P =
(
0 1
1 0

)
.

The dispersion matrices Di and the measures νi are also invariant with respect to
g5 and conditions (19) and (20) are satisfied. Then the general form (31) of optimal
designs simplifies to

ξ∗
i =

(
xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9
w∗
i1 w∗

i1 w∗
i1 w∗

i1 w∗
i2 w∗

i2 w∗
i2 w∗

i2 1 − 4(w∗
i1 + w∗

i2)

)
. (32)

Note that similar behavior has been established for optimal designs for Kiefer’s
�p-criteria in fixed effects models (see Galil and Kiefer 1977). However, designs
obtained in that work depend on the choice of the design criterion only. In the model
under investigation optimal designs may also depend on the variance parameters, the
group sizes and the numbers of observations per observational unit.

4 Computing themultiple-groupmixedmodels designs

In this Section, we will show how to compute efficient exact designs for model
(1). To this end, let’s discretize each (possibly continuous) experimental region Xi ,
i = 1, . . . , s, into ki points xi1, . . . , xiki and denote the corresponding numbers of
measurements in these points by mi1, . . . ,miki ∈ N0, as is customary in optimal
design algorithms. Similarly to the notation adopted in Sect. 2, we define the ki -
dimensional vectors mi = (mi1, . . . ,miki ) and the

∑s
i=1 ki = u-dimensional vector

m = (m1, . . . ,ms).
Now, consider the optimization problem presented in Harman et al. (2016):

minm �(m)

subject to Am ≤ b.

Here, we minimize the function � on the set of permissible designs determined by
the linear inequalityAm ≤ b, whereA ∈ R

k×u and b ∈ R
k are such that the elements

ofA are nonnegative and the elements of b are positive. These kinds of constraints are
called resource constraints, i.e., we can view each measurement as consuming some
amount of each of the k resources, limit on which are given by the vector b.

The method described in Harman et al. (2016) is related to the Detmax procedure,
employing a tabu search principle. The algorithm is based on excursions in the set of
all feasible designs. More precisely, from a design ξ we can either make a forward
step to one of its upper neighbours or a backward step to one of its lower neighbours.
These excursions are directed by the attribute of each design (which can be, e.g.,
its criterion value), a tabu list of the attributes of already visited designs and a local
heuristic evaluation of the design that roughly estimates how promising a design is as
a part of an excursion leading to an efficient design.
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Note that although the algorithm is primarily developed for D-optimality in the
standard linear regression model, it can be easily adapted for different criteria that are
monotonous on the set of all approximate designs, which enables us to compute D-
and L-efficient exact designs in model (1).

To show this, we rewrite the covariance matrix (5) in the following form:

Covξ =
[(

1�
s ⊗ Ip

) (
M−1

ξ + D
)−1 (

1s ⊗ Ip
)]−1

, (33)

whereMξ = diag
(
M̃1(ξ1), . . . , M̃s(ξs)

)
is the block-diagonal matrix with the blocks

M̃i (ξi ) = ni Mi (ξi ) and D = diag(D̃1, . . . , D̃s) is the block-diagonal matrix with the
blocks D̃i = 1

ni
Di , 1s is the vector of length s with all entries equal to 1 and ”⊗”

denotes the Kronecker product.
Then the L- and D-criteria defined by (6) and (7) can be written as the function of

the design vector w in the following way:

φL(ξ) = tr

([(
1�
s ⊗ Ip

) (
M−1

ξ + D
)−1 (

1s ⊗ Ip
)]−1

V

)
(34)

and

φD(ξ) = −ln det

[(
1�
s ⊗ Ip

) (
M−1

ξ + D
)−1 (

1s ⊗ Ip
)]

. (35)

Note that both criteria (34) and (35) are monotonically decreasing with respect to
Mξ .

Further, model (1) can be viewed as a one-group model on X = ×s
i=1Xi with

marginal constraints (see, e.g., Cook and Thibodeau 1980) that constrict the number
of observations in each group to

∑ki
h=1mih = mi . This can be formulated in the form

of resource constraints by putting A = diag(1�
k1

, . . . ,1�
ks

) and b = (m1, . . . ,ms)
�.

Hence, the optimization problem to solve is

minm φ(m)

subject to diag(1�
k1

, . . . ,1�
ks

)m ≤ b,
(36)

where by φ we denote either of the optimality criteria in (34) or (35).
Note that the algorithm used here is heuristic, i.e., it does not guarantee that the

resulting design is optimal, although it is demonstrated in Harman et al. (2016) that it
is usually highly efficient. Therefore, in the following sections, wewill call the designs
obtained by the algorithm as efficient exact designs.

Further, we will demonstrate that it is of great practical use that the matrixA and the
vector b can be modified so that they incorporate additional linear resource constraints
on the weights, such as the limit on the number of measurements in particular points
or cost constraints (see Sect. 6 for an example of such constraints), simply by adding
suitable rows to the matrix A and elements to the vector b.

123



M. Prus, L. Filová

Fig. 1 The dependence of the number of observations in the point (1, 1) on the parameter d in the exact D-
efficient designs in bilinear model (26) on [−1, 1]2 with total numbers of observations in the groups given
by m = (10, 20, 40) (left) and m = (20, 20, 20) (right). The three lines denote the number of observations
in the point (1, 1) normalized by mi for the first (full line), second (dashed line) and third (dotted line)
group

5 Bi-linear regression

Let’s consider the model of bi-linear regression (26) with three groups,Xi = [−1, 1]2,
�i = 1, n = (1, 1, 1) and

Di =
⎛
⎝
1 0 d
0 1 0
d 0 1

⎞
⎠ , i = 1, 2, 3.

As the analytical results in Example 3 show, the approximate optimal designs are
supported on the four vertices of the square [−1, 1]2 and the number of observations
is identical in the points (1, 1), (−1, 1) and in the points (−1,−1), (1,−1). This
phenomenon was confirmed also for the exact D-efficient designs by our algorithm.

In this example, we will numerically illustrate the dependence of efficient designs
on the parameter d in the matrices Di , i = 1, 2, 3. To this end, let’s consider that
in all three groups, the parameter d is the same. Figure1 shows how the numbers of
observation in the point (1, 1) change with d varying from -1 to 1 for two different
settings: m = (10, 20, 40) (left) and m = (20, 20, 20) (right). We can see that in both
cases, the number of observations in (1, 1) decreases with increasing d.

Now, suppose that

Di =
⎛
⎝
1 0 di
0 1 0
di 0 1

⎞
⎠ , i = 1, 2, 3, (37)

where di ∈ {−0.5, 0, 0.5} are not necessarily the same between groups. In Table 1 we
show the behavior of the numbers of observation for several selected d1, d2, d3 in the
case m = (20, 20, 20).
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Table 1 Exact D-efficient designs in bilinear model (26) on [−1, 1]2 with total numbers of observations
in the groups given by m = (20, 20, 20) with di ∈ {−0.5, 0, 0.5}
(d1, d2, d3) (−1, −1) (1, 1) (−1,−1) (1, 1) (−1, −1) (1, 1)

(0, 0, 0) 5 5 5 5 5 5

(0, 0, 0.5) 4 6 4 6 7 3

(0, 0.5, 0.5) 4 6 7 3 7 3

(0.5, 0.5, 0.5) 6 4 6 4 6 4

(0, 0, −0.5) 6 4 6 4 3 7

(0, 0.5,−0.5) 5 5 7 3 3 7

(−0.5, 0.5,−0.5) 3 7 8 2 3 7

6 Quadratic regression on a symmetric interval

Consider the two-groupsmodel of the form (1) with the regression functionsF(i)(x) =
(1, x, x2)�, x ∈ Xi , and the design region Xi = [−1, 1], i = 1, 2:

Yi jh = β i j1 + β i j2xih + β i j3x
2
ih + εi jh, j = 1, . . . , ni , h = 1, . . . ,mi . (38)

The covariance structures of random effects and observational errors are given by
Di = diag(di1, di2, di3) and �i = 1 for both groups.

The corresponding approximate optimal group-designs ξi are supported by three
design points −1, 0, 1 (see Sect. 3):

ξ∗
i =

( −1 0 1
w∗
i1 1 − 2w∗

i1 w∗
i1

)
. (39)

This result was heuristically confirmed to hold also for the exact designs: we dis-
cretized the design region into q points−1 = x1 < x2 < · · · < xq = 1 and confirmed
that for all cases considered below, the support points are indeed −1, 0 and 1.

The exact D- and I MSE-efficient designs for this case and several particular m =
(m1,m2) are given in Table 2 in the Appendix.

We can see that for the criterion of D-optimality and the values of the diagonal
of the matrix Di equal to either (1, 1, 1) or (1, 1, 0), half of the measurements is in
the point 0 and the remaining half is distributed equally among the points −1 and
1. For (d1, d2, d3) equal either to (0, 1, 1) or (1, 0, 0), the measurements are heavily
concentrated in the support point 0, but the designs are still nonsingular. The case
(1, 0, 1) shows opposite phenomenon with the measurements being concentrated in
the points−1 and 1. For the remaining cases, the pattern is not so clear and the weights
depend more on m, sometimes even resulting in singular designs.

For the I MSE criterion, we get results identical to D-optimality if the diagonal
of Di is (1, 1, 1). For the rest of the cases, the situation is more varied and we refer
reader to Table 2 for details.

From practical point of view, it may not be desirable to only have three support
points for each group. Therefore, additional constraints on the design were suggested,
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where it is prescribed that, for each group, maximum one half of the measurements
can be taken at −1, 0 or 1. Formally, these constraints can be written in the form
A(1)w ≤ b(1) (see Sect. 4 for details), where

A(1) =
(
cq 0�

q
0�
q cq

)
∈ R

2×2q , b(1) =
(
m1/2
m2/2

)
, (40)

where cq = (1, 0, . . . , 0, 1, 0, . . . , 0, 1) ∈ R
q with 1 on the positions corresponding

to the points −1, 0, 1. The D- and I MSE-efficient designs for the discretization
Xi = {−1,−0.8, . . . , 0.8, 1} of the interval [−1, 1] with the step 0.2 (i.e. q = 11) are
given in Tables 3 and 4. Note that for both criteria, the tendency is to distribute the
measurements as close as possible to the original support points −1, 0 and 1.

Another type of constraint that is often used in practical situations, is the cost
constraint: this is natural, for example, in clinical trials, where taking a measurement
at a point x consumes a certain number of time, personal or material resources and the
total cost of the experiment is limited. In our case, let the measurement at the point
x cost |x | + 0.1 units, and, for group j , let the maximum admissible cost be m j/4.
This leads to adding the constraints A(2)w ≤ b(2) with the following A(2), b(2) to the
problem (36):

A(2) =
(
uq + 0.11�

q 0
0 uq + 0.11�

q

)
∈ R

2×2q , b(2) = 1

4

(
m1
m2

)
, (41)

where uq = (1, 0.8, . . . , 0.8, 1).
Again, we computed D- and I MSE-efficient designs with respect to this constraint

for the discretizationXi = {−1,−0.8, . . . , 0.8, 1}. Now, the designs are supported on
−1, 0 and 1, but, compared to the unconstrained designs, much more measurements
are made at the point 0, which is ’cheap’: the results are summarized in Table 5.

Finally, it is also feasible and possible to consider both types of constraints together,
resulting in A(3)w ≤ b(3) with

A(3) =
(
A(1)

A(2)

)
∈ R

4×4q , b(3) =
(
b(1)

b(2)

)
. (42)

The resulting D- and I MSE-efficient designs for this constraint are given in Tables
6 and 7.

Note that in some cases, the additional constraints on the designs were saturated
for a number of measurements that is lower than the maximum attainable number
of measurements given by (m1,m2)

�. This is demonstrated in a more detailed way
in Fig. 2, where we again consider the D-efficient design with (m1,m2) = (20, 40)
and the cost constraints (41), but now the cost b(2) can vary between 0 and mi for
the i-th group. All the designs are supported in the points −1, 0 and 1 and the figure
shows that when the maximum allowed cost is too low, the total maximum number of
measurements is (sometimes significantly) lower than the corresponding mi .
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Fig. 2 The numbers of measurements in the point 0 (full line), −1 (dashed line) and 1 (dot-dashed line) for
the second group in the D-efficient design in model (38) with (m1,m2) = (20, 40) and constraints of the
type (41) with the maximum cost b(2) in the second group varying between 0 and 40

7 Discussion

In the paper, we have considered equi- and invariance properties of approximate opti-
mal designs in multiple-group mixed models. We have used these properties to fix the
support points and, consequently, to reduce the number of unknown variables in first-
and second-order models on a symmetric square. As we currently have no universal
computational tool for approximate designs, these results can be used to determine
optimal designs analytically in a few isolated and easy cases, as shown in the examples
in Sect. 3.

However, from practical point of view, it is more important to be able to compute
efficient exact designs, possibly even with some additional constraints given by the
experimental conditions. We have shown a modified version of the algorithm of Har-
man et al. (2016) is a useful tool for such computations, even in the cases where there
are several nontrivial constraints on the design.

In themodels considered here, covariancematrix of random effects is assumed to be
known. A natural question that arises while reading this work is how to perform in the
situation where no prior knowledge about variances and covariances is available. In
this case an estimation can be used. However, the quality of obtained designs depends
on the accuracy of the estimation. For some particular structures of the covariance
matrix it may happen that optimal designs turn out to be independent on the variance
parameters (consider, for example, compound symmetry structure in Prus and Piepho
2021).
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Appendix

See Tables 2, 3, 4, 5, 6 and 7.

Table 2 Exact D- and I MSE-efficient designs in quadratic model on the interval [−1, 1] with respect to
the numbers of observations mi for Di = diag(d1, d2, d3), i = 1, 2

criterion D IMSE

(d1, d2, d3) m1 m2 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1

(1, 1, 1) 20 80 5 10 5 20 40 20 5 10 5 20 40 20

50 50 12 25 13 13 25 12 13 25 12 12 25 13

80 20 20 40 20 5 10 5 20 10 20 5 10 5

40 160 10 20 10 40 80 40 10 20 10 40 80 40

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 40 80 40 10 20 10 40 80 40 10 20 10

(1, 1, 0) 20 80 5 10 5 20 40 20 9 2 9 15 49 16

50 50 12 25 13 13 25 12 13 25 12 12 25 13

80 20 20 40 20 5 10 5 15 49 16 9 2 9

40 160 10 20 10 40 80 40 19 2 19 31 98 31

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 40 80 40 10 20 10 31 98 31 19 2 19

(0, 1, 1) 20 80 2 16 2 1 78 1 10 0 10 13 54 13

50 50 1 48 1 1 48 1 12 26 12 13 24 13

80 20 1 78 1 2 16 2 13 54 13 10 0 10

40 160 2 36 2 1 158 1 20 0 20 27 106 27

100 100 1 98 1 1 98 1 25 50 25 25 50 25

160 40 1 158 1 2 36 2 27 106 27 20 0 20

(1, 0, 1) 20 80 8 4 8 40 1 39 4 12 4 25 30 25

50 50 25 1 24 24 1 25 13 25 12 12 25 13

80 20 39 1 40 8 4 8 25 30 25 4 12 4

40 160 18 4 18 80 1 79 8 25 7 49 61 50

100 100 50 1 49 49 1 50 25 50 25 25 50 25

160 40 80 1 79 18 4 18 49 61 50 8 25 7

(1, 0, 0) 20 80 2 16 2 1 78 1 1 19 0 26 28 26

50 50 1 48 1 1 48 1 13 25 12 12 25 13

80 20 1 78 1 2 16 2 26 28 26 1 19 0

40 160 2 36 2 1 158 1 1 38 1 53 54 53

100 100 1 98 1 1 98 1 25 50 25 25 50 25

160 40 1 158 1 2 36 2 53 54 53 1 38 1
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Table 2 continued

criterion D IMSE

(d1, d2, d3) m1 m2 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1

(0, 1, 0) 20 80 10 0 10 19 42 19 10 0 10 16 48 16

50 50 12 26 12 13 24 13 25 12 13 13 25 12

80 20 19 42 19 10 0 10 16 48 16 10 0 10

40 160 18 4 18 38 84 38 20 0 20 32 96 32

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 38 84 38 18 4 18 32 96 32 20 0 20

(0, 0, 1) 20 80 9 2 9 19 42 19 10 0 10 17 46 17

50 50 12 26 12 13 24 13 12 26 12 13 24 13

80 20 19 42 19 9 2 9 17 46 17 10 0 10

40 160 18 4 18 38 84 38 20 0 20 35 91 34

100 100 25 50 25 25 50 25 25 50 25 25 50 25

160 40 38 84 38 18 4 18 34 91 35 20 0 20

Table 3 Exact D-efficient designs in quadratic model on the interval [−1, 1] with constraints given by 40
and numbers of observations mi for Di given by 37 with di = 0.5, i = 1, 2

m1 m2 − 1 − 0.2 0 0.2 1 − 1 − 0.2 0 0.2 1

20 40 4 5 2 5 4 8 10 4 10 8

40 20 8 10 4 10 8 4 5 2 5 4

25 100 5 7 2 6 5 21 26 9 24 20

100 25 21 27 9 23 20 5 6 2 7 5

Table 4 Exact I MSE-efficient designs in quadratic model on the interval [−1, 1] with constraints given
by (40) and numbers of observations mi for Di given by (37) with di = 0.5, i = 1, 2

m1 m2 − 1 − 0.2 0 0.2 1 − 1 − 0.2 0 0.2 1

20 40 5 5 0 5 5 9 10 1 10 10

40 20 9 10 1 10 10 5 5 0 5 5

25 100 6 6 0 7 6 23 26 3 24 24

100 25 24 25 3 25 23 6 6 0 7 6
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Table 5 Exact D- (left) and I MSE-efficient (right) designs in quadratic model on the interval [−1, 1] with
constraints given by (41) and numbers of observations mi for Di given by (37) with di = 0.5, i = 1, 2

(m1,m2) − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1

(20,40) 2 17 1 3 34 3 2 6 2 4 23 3

(40,20) 3 34 3 2 17 1 4 23 3 2 6 2

(25,100) 3 14 3 8 74 8 3 14 3 9 52 9

(100,25) 8 74 8 3 14 3 8 63 9 3 14 3

Table 6 Exact D-efficient
designs in quadratic model on
the interval [−1, 1] with
constraints given by (42) and
numbers of observations mi for
Di given by (37) with di = 0.5,
i = 1, 2

(m1,m2) −1 −0.2 0 0.2 1 −1 −0.2 0 0.2 1

(20,40) 2 3 7 0 1 3 3 14 3 3

(40,20) 3 0 13 3 4 2 0 6 0 2

(25,100) 3 5 7 1 2 8 7 34 6 8

(100,25) 8 7 34 6 8 2 4 8 5 2

Table 7 Exact I MSE-efficient designs in quadratic model on the interval [−1, 1] with constraints given
by (42) and numbers of observations mi for Di given by (37) with di = 0.5, i = 1, 2

(m1,m2) −1 −0.2 0 0.2 1 −1 −0.2 0 0.2 1

(20,40) 2 0 6 0 2 4 0 12 3 3

(40,20) 4 0 12 0 4 2 0 6 0 2

(25,100) 3 1 7 2 3 8 2 38 0 12

(100,25) 9 1 35 0 11 3 2 7 1 3
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Abstract
New crop varieties are extensively tested in multi-environment trials in order to obtain

a solid empirical basis for recommendations to farmers. When the target population of
environments is large and heterogeneous, a division into sub-regions is often advantageous.
When designing such trials, the question arises how to allocate trials to the different sub-
regions. We consider a solution to this problem assuming a linear mixed model. We propose
an analytical approach for computation of optimal designs for best linear unbiased prediction
of genotype effects and their pairwise linear contrasts and illustrate the obtained results by
a real data example from Indian nation-wide maize variety trials. It is shown that, except
in simple cases such as a compound symmetry model, the optimal allocation depends on the
variance-covariance structure for genotypic effects nested within sub-regions.

Keywords: Target population of environments, multi-environment trials, mixed models,
optimal design

1 Introduction

New crop varieties are usually evaluated for their performance in a target population of envi-
ronments (TPE), where environments correspond to locations in specific years. This evaluation
requires conducting randomized field trials at several environments sampled from the TPE. Such
trials are called multi-environment trials (MET). Analysis of MET is routinely performed using
linear mixed models comprising effects for genotypes, environments and their interaction (Isik
et al. (2017)).

If the TPE is large and can be suitably stratified along geographical borders or agro-ecological
zonations, it may be advantageous to subdivide the TPE into sub-regions. If the same set of
genotypes is tested at a number of locations in each of the sub-regions, a linear mixed model may
be fitted with random genotype-within-sub-region effects that allows estimating a genotype’s
average performance in each sub-region using best linear unbiased prediction (BLUP) (Atlin
et al. (2000); Piepho and Möhring (2005)). If a covariance is assumed between a genotype’s
performance in different sub-regions, the model allows borrowing strength across sub-regions,
meaning that estimates of mean performance in a sub-region become more accurate than when
based on data from the sub-region alone (Kleinknecht et al. (2013)).

Whereas analysis of sub-divided TPE data has received some attention in the recent past,
to the best of our knowledge the design of MET when a sub-division is envisaged has not been
considered. The design of such trials has gained interest recently in endeavours to integrate trial
networks across country borders (e.g., Horizon 2020 project INVITE = INnovations in plant
VarIety Testing in Europe). The efficiency, and hence the optimal design is of great importance
for the performance of trialling systems. The opportunity to integrate trials across sub-regions,
potentially even across national borders, promises substantial efficiency gains but at the same
time complicates both the design and analysis, because efficient estimates are still needed at the
sub-region level. Our objective in this paper is to tackle this important design problem.

The design of MET for a sub-divided TPE involves two decisions: (1) The total number
of environments at which to conduct the trials and (2) the allocation of this total number of
environments to the different sub-regions. This paper is devoted to the second decision.
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2 Model Specification and Prediction

In this work we use for design purposes a hierarchical linear mixed model (LMM) with K vari-
eties (genotypes), P sub-regions, J locations and L replications per genotype in each location.
Locations are nested lexicographically within sub-regions, i. e. there are Ji locations within sub-
region i and J =

∑P
i=1 Ji. In this model observation l of genotype k in location j within the i-th

sub-region is given by the random variable

Yijkl = µi + αik + λij + γijk + bijl + εijkl (1)

for l = 1, . . . , L, k = 1, . . . ,K, i = 1 . . . P and j = 1, . . . , Ji, where µi denotes the mean (fixed)
effect of the i-th sub-region, αik is the interaction effect of genotype k in sub-region i, λij is the
effect of the j-th location within the i-th sub-region, γijk denotes the effect of the k-th genotype
in the j-th location within the i-th sub-region, bijl is the effect of the l-th replication in location
j in sub-region i and εijkl denotes the observational error. All effects besides µi are random. All
random effects and observational errors are assumed to have zero mean. The variances are given
by var(εijkl) = σ2, var(λij) = σ2λ = σ2v1, var(γijk) = σ2γ = σ2v2 and var(bijl) = σ2b = σ2v3 and
the covariance matrix of the genotype effects αk = (α1k, . . . , αPk)

> is Cov(αk) = σ2D, where D
is some positive definite matrix. We note that the error variance typically varies among locations
and hence our assumption of a homogeneous error variance constitutes an approximation. The
approximation is a necessity at the design stage, as the error variance of individual locations is
unpredictable. We also note that there is a justification in randomization theory for the use this
model, despite the empirical evidence that error variances vary between locations (Caliński et al.
(2009)).

Our main focus is the prediction of the genotype effects α = (α>1 , . . . ,α
>
K)> and their

pairwise linear contrasts θk,k
′

= αk −αk′ , k, k′ = 1, . . . ,K, k 6= k′. For a given total number of
locations J we search for the numbers of locations J1, . . . , JP within the sub-regions, which are
optimal for the prediction. Optimal designs for the estimation of fixed effects in LMM are well
discussed in the literature (see e.g. Fedorov and Jones (2005) or Entholzner et al. (2005)). Less
has been done for the prediction of random effects: the most general case - hierarchical random
coefficient regression models - has been considered by Prus and Schwabe (2016). However, due
to its more complicated covariance structure, model (1) is not a particular case of those models.
Therefore, the proposed approach cannot be used here. Also, in the recently published work of
Prus (2019) a simpler covariance structure has been assumed.

The next Lemma provides the BLUPs for the genotype effects α and for their pairwise linear
contrasts θk,k

′
.

Lemma 1. a) The BLUP α̂k of the genotype effects αk is given by

α̂k =

(
diag(J1, . . . , JP ) +

Lv2 + 1

L
D−1

)−1 (
J1 (Ȳ1·k· − Ȳ1···), . . . , JP (ȲP ·k· − ȲP ···)

)>
, (2)

where Ȳi·k· = 1
JiL

∑Ji
j=1

∑L
l=1 Yijkl and Ȳi··· =

1
JiKL

∑Ji
j=1

∑K
k=1

∑L
l=1 Yijkl.

b) The BLUP θ̂
k,k′

of the pairwise linear contrasts θk,k
′
is given by

θ̂
k,k′

=

(
diag(J1, . . . , JP ) +

Lv2 + 1

L
D−1

)−1 (
J1 (Ȳ1·k· − Ȳ1·k′·), . . . , JP (ȲP ·k· − ȲP ·k′·)

)>
. (3)

We measure the performance of the prediction in terms of the mean squared error (MSE)
matrix. The MSE matrices of the BLUPs for the genotype effects α and for their pairwise linear
contrasts θk,k

′
are provided by the next lemma.
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Lemma 2. a) The MSE matrix of the BLUP α̂ of α is given by

Cov(α̂−α) = σ2

[
1

K
1K1

>
K ⊗D + (IK −

1

K
1K1

>
K)⊗

(
1

Lv2 + 1
F>F + D−1

)−1]
, (4)

where F = block-diag(1LJ1 , . . . ,1LJP ), 1s is the vector of length s with all entries equal to 1, Is
is the s× s identity matrix and ⊗ denotes the Kronecker product.

b) The MSE matrix of the BLUP θ̂
k,k′

of θk,k
′
is given by

Cov(θ̂
k,k′ − θk,k′) = 2σ2

(
1

Lv2 + 1
F>F + D−1

)−1
. (5)

The proofs of the Lemmas 1 and 2 are deferred to the appendix.
Note that in Lemma 2 the MSE matrix (5) is the same for all k, k′. Therefore, we can fix k and

k′ and use the simplified notation θ instead of θk,k
′
. Note also that both MSE matrices depend

on the numbers of locations Ji only through the design matrix F. Moreover, F coincides with
the design matrix in a one-way ANOVA for P groups with sample sizes LJi under a group-mean
parametrization.

Further, for a given total number of locations J , we search for the numbers of locations within
sub-regions Ji, which minimize the MSE matrix (4) or (5) of the prediction for the genotype
effects or for their pairwise linear contrasts, respectively.

3 Optimal Design

For the present optimization problem, we define (exact) designs as follows:

ξ :=

(
x1 ... xP
J1 ... JP

)
, (6)

where x1, . . . , xP denote the sub-regions.
For analytical purposes we also introduce approximate designs (see e. g. Kiefer (1974)):

ξ :=

(
x1 ... xP
w1 ... wP

)
, (7)

where wi = Ji/J is the weight of locations within sub-region i. For these designs the requirement
of integer values of Ji is dropped and only the conditions

∑P
i=1wi = 1 and wi ≥ 0 have to be

satisfied.
We define the information matrix as

M(ξ) = diag(w1, . . . , wP ) (8)

and note that for exact designs the following condition is satisfied:

M(ξ) =
1

LJ
F>F. (9)

Then we extend the definitions of MSE matrices (4) and (5) with respect to approximate
designs and obtain

MSEα(ξ) = σ2

[
1

K
1K1

>
K ⊗D + (IK −

1

K
1K1

>
K)⊗

(
LJ

Lv2 + 1
M(ξ) + D−1

)−1]
(10)

and

MSEθ(ξ) = 2σ2
(

LJ

Lv2 + 1
M(ξ) + D−1

)−1
. (11)
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3.1 A-optimal designs

The A-criterion for prediction may be defined as the trace of the MSE matrix (see e. g. Prus and
Schwabe (2016)). For approximate designs this definition can be generalized using the extended
MSE matrices (10) and (11). Then we evaluate (neglecting the constant factor 2σ2

LJ (Lv2 + 1)) for
the pairwise linear contrasts θ the criterion

ΦA(ξ) = tr
(
M(ξ) + ∆−1

)−1
, (12)

where ∆ = LJ
Lv2+1D. Note that A-optimal designs depend on the number of replications L

through the dispersion matrix ∆. This number needs to be fixed by the experimenter and is not
subject to the optimization. A common number of replications per location in multi-environment
trials is L = 2.

The A-criterion for the genotype effects α differs from (12) only by the constant term σ2tr(D)

and the multiplicator σ2

LJ (K−1)(Lv2 +1), both of which have no influence on the solution to the
optimization. Therefore, optimal designs for the prediction of the genotype effects and the linear
contrasts are the same. The next theorem provides the optimality condition for approximate
designs.

Theorem 1. An approximate design ξ∗ is A-optimal for the prediction of the genotype effects α
and their pairwise linear contrasts θ iff

tr
(
M(ξ∗)

(
M(ξ∗) + ∆−1

)−2) ≥ e>i
(
M(ξ∗) + ∆−1

)−2
ei, i = 1, . . . , P, (13)

where ei is the vector of length P with the i-th entry equal to 1 and all other entries equal to 0.
For all i with w∗i > 0 equality holds in (13).

Proof. The A-criterion (12) may be recognized as a particular Bayesian A-criterion. The opti-
mality condition follows from Theorem 1 in Gladitz and Pilz (1982) for the linear transformation
matrix H = IP , the regression functions f(xi) = ei and the design region X = {x1, . . . , xp}.
(The notations H, f and X are those used in Gladitz and Pilz (1982)).

Corollary 1. Let ξ∗ be an A-optimal design for the prediction of the genotype effects α and their
pairwise linear contrasts θ. Let xi and xi′ be support points of ξ∗ (wi > 0 and wi′ > 0). Then
the following equality holds:

e>i
(
M(ξ∗) + ∆−1

)−2
ei = e>i′

(
M(ξ∗) + ∆−1

)−2
ei′ . (14)

Note that the terms on both sides of equation (14) denote the i-th and i′-th diagonal entries
of the matrix (M(ξ∗) + ∆−1)−2.

Example 1: Compound symmetry (CS) model. We consider a (CS) model with the
particular covariance structure of genotype effects D = a1P1

>
P + b IP with positive b and real

valued a with a > −b/P . For this model some optimal designs can be obtained explicitly.

Theorem 2. In the CS model the (balanced) design ξP with wi = 1
P , i = 1, . . . , P , is A-optimal

for the prediction of the genotype effects and their pairwise linear contrasts.

Proof. For the balanced design ξP the information matrix is given by M(ξP ) = 1
P IP . Then

it can be easily verified that all diagonal entries of the matrix
(
M(ξP ) + ∆−1

)−2 are the
same. For ξP the trace on the left-hand side of (13) is the average of the diagonal elements
of
(
M(ξP ) + ∆−1

)−2. Then we obtain equalities in (13) for all i = 1, . . . , P .

Note that the result of Theorem 2 can also be verified using symmetry considerations with
respect to permutations of the sub-regions.
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3.2 Optimal designs with respect to weighted A-criterion

In this and the following sections we focus on the prediction of the pairwise contrasts θ. We
define the weighted A-criterion as the weighted sum across all sub-regions of the variances of the
differences between the predicted and the real contrasts:

ΦAw =
P∑
i=1

`ivar(θ̂i − θi), (15)

where `1, . . . , `P > 0 denote coefficients, which are related to the sub-regions. One possible
choice is the size of the sub-regions. Alternatively, equal weight may be given to each sub-region,
meaning that `i = 1

P for all i. (In this case the weighted A-criterion coincides with the standard
A-criterion (12)). Then we extend this definition with respect to approximate designs and obtain
the following criterion:

ΦAw(ξ) = tr
(
L
(
M(ξ) + ∆−1

)−1)
, (16)

where L = diag(`1, . . . , `P ). The next theorem presents the optimality condition for approximate
designs.

Theorem 3. A design ξ∗ is optimal for the prediction of pairwise linear contrasts θ with respect
to the weighted A-criterion iff

tr
(
M(ξ∗)

(
M(ξ∗) + ∆−1

)−1
L
(
M(ξ∗) + ∆−1

)−1)
≥ e>i

(
M(ξ∗) + ∆−1

)−1
L
(
M(ξ∗) + ∆−1

)−1
ei, i = 1, . . . , P. (17)

For all i with w∗i > 0 equality holds in (17).

Proof. The weighted A-criterion (16) may be recognized as a particular Bayesian linear criterion.
Optimality condition (17) follows from Theorem 1 in Gladitz and Pilz (1982) for the linear
transformation matrix H = L.

Corollary 2. Let ξ∗ be an optimal design with respect to the weighted A-criterion for the pre-
diction of the pairwise linear contrasts θ. Let xi and xi′ be support points of ξ∗ (wi > 0 and
wi′ > 0). Then the following equality holds:

e>i
(
M(ξ∗) + ∆−1

)−1
L
(
M(ξ∗) + ∆−1

)−1
ei = e>i′

(
M(ξ∗) + ∆−1

)−1
L
(
M(ξ∗) + ∆−1

)−1
ei′ .
(18)

For the weighted A-criterion the optimal designs are not as easy to guess as for the standard
A-criterion. Specifically, it is worth mentioning that the design ξ` with wi = `i/`, ` =

∑P
i=1 `i,

which intuitively could be a solution of the optimization problem, is in general not optimal (see
Example 2 below and the real data example in Section 4).

Example 2. We consider a simple example with P = 2 sub-regions, L = 1 replications
and the following values of variance parameters: v2 = 1 and D = diag(1, 1). Then the optimal
approximate designs are of the form

ξ :=

(
1 2
w 1− w

)
,

where w = J1/J is the weight of locations in the first sub-region, and the information matrix is
given by M = diag(w, 1 − w). The present model is of the CS type and, therefore, the weight

5



Table 1: Numbers of locations J `1 in the first sub-region with respect to the weighted design ξ`
and the optimal numbers of locations J∗1 in dependence on total number of locations J

J 15 30 45 60
J∗1 11 21 31 41
J `1 12 24 36 48

w∗ = 0.5 is optimal for the A-criterion (12). For the weighted A-criterion we use the coefficients
matrix L = diag(4, 1) and assume J ≥ 5. Then the weighted design is given by

ξ` :=

(
1 2

0.8 0.2

)
.

For the weighted A-criterion (16) we obtain the formula

ΦAw(ξ) =
4

w + 2/J
+

1

1− w + 2/J

and the resulting optimal weight w∗ is

w∗ =
2J + 2

3J
.

Table 1 summarizes the results for the numbers of locations J `1 = 0.8J in the first sub-region
with respect to the weighted design ξ` and the optimal numbers of locations J∗1 = w∗J (rounded)
for different values of the total number of locations J . As we can see in the table the weighted
design ξ` is in general not optimal.

3.3 Enforcing the same efficiency in each sub-region

For some studies it is required that the variances of the differences between the real and the
predicted effects are the same for all sub-regions. For the model under investigation (model (1))
this condition is given by

e>i
(
M(ξ∗) + ∆−1

)−1
ei = e>i′

(
M(ξ∗) + ∆−1

)−1
ei′ , i, i′ = 1, . . . , P. (19)

Under this condition the numbers of locations J1, . . . , JP can be obtained as a solution of a
system of P −1 equations (for example fix i = 1 and i′ = 2, . . . , P ) with P −1 unknown variables
(JP = J −

∑P−1
i=1 Ji) and no further optimization is needed.

Remark 1. For the CS model the balanced design is a solution of (19).

Note that the latter statement can be easily verified by symmetry considerations with respect
to permutations of sub-regions or (more technically) by the fact that all diagonal entries of the
matrix

(
M(ξP ) + ∆−1

)−1 are the same for the balanced design ξP . Note also that not all A-
optimal designs for the prediction of the genotype effects and their pairwise linear contrasts
satisfy condition (19).

4 Real Data Example

We here consider variance components from a study on maize variety trials in India with P = 5
agroecological sub-regions and L = 2 replications per genotype in each location. The dataset
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Table 2: Variance components used in this example (column "Variance in Model (1)") and how
they are derived from the variance parameter estimates in Kleinknecht et al. (2013)

Effect Model (1) Model in Kleinknecht
et al. (2013)

Variance in Model (1) Variance in Kleinknecht
et al. (2013)

Zone + mean µi µ+ zh + zahk + ak fixed 426+107+153
Genotype×zone αik gi(h) + gzaihk + gaik σ2D for αk V + 31151

>
5 + 18 I5

Location×zone λij + bijl ljh + lajhk σ2λ + σ2b = σ2(v1 + v3) 1129+1000
Gen×loc×zone
+ Obs errors

γijk+εijkl glijh + ehijk σ2γ + σ2 = σ2(v2 + 1) 160+333

comprises four maturity groups of maize. Here, we consider only the extra-early maturity group
(Kleinknecht et al. (2013), Tables 6 and 7). Based on the variance components reported in the
paper, we derived variance components to be used in our design problems.

In Table 2 we summarize the variance components in the model under investigation (Model
(1)) and how we determined these from the parameter estimates for the model considered by
Kleinknecht et al. (2013). The matrix V = Cov(gi(h)) denotes the covariance structure of
genotype×zone effects in that paper. As we can see the values of σ2 and v2 are not given
explicitly. Therefore, we consider different values of σ2 and consequently of v2 determined from
the formula σ2(v2 + 1) = 493. Then the adjusted covariance matrix ∆ from formula (12) may
be computed as

∆ =
J

493− σ2/2
(V + 31151

>
5 + 18 I5). (20)

We consider both the standard and the weighted A-criterion for first-order factor-analytic
(FA) and compound symmetry (CS) variance-covariance structures, which were discussed in
Kleinknecht et al. (2013) (see also Piepho (1997) for FA models).

4.1 Standard A-criterion

For the first-order factor-analytic model we take the covariance matrix V from Table 6 in
Kleinknecht et al. (2013) (right part):

V =


567 254 239 485 328
254 155 118 240 162
239 118 155 226 153
485 240 226 488 310
328 162 153 310 215

 . (21)

Table 3 summarizes results for optimal designs in the first-order factor-analytic model. Note
that optimal designs may assign zero locations in some sub-regions. Such designs are, however,
not suitable when sub-region specific variances and covariances need to be estimated as is the
case for the factor-analytic model underlying (21). Therefore, from here on we use the additional
constraints of at least one location per sub-region: Ji ≥ 1, i = 1, . . . , 5. For computing efficiencies
of the balanced design compared to the optimal designs we used standard formulae

Effa =
ΦA(ξ∗a)

ΦA(ξP )
(22)

and
Effe =

ΦA(ξ∗e )

ΦA(ξP )
, (23)
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Table 3: Optimal numbers of locations per sub-region and efficiency of balanced design compared
to optimal designs

with respect to the standard A-criterion in the FA model for different values of the total
number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa
1 Exact design ξ∗e Effe

2

w1 w2 w3 w4 w5 J1 J2 J3 J4 J5
10 50 0.37 0.10 0.10 0.33 0.10 0.91 4 1 1 3 1 0.91

200 0.37 0.10 0.10 0.33 0.10 0.92 4 1 1 3 1 0.92
400 0.34 0.10 0.15 0.31 0.10 0.94 3 1 2 3 1 0.94

20 50 0.33 0.13 0.18 0.31 0.04 0.95 7 3 3 6 1 0.95
200 0.31 0.15 0.19 0.29 0.06 0.96 6 3 4 6 1 0.96
400 0.29 0.16 0.20 0.27 0.09 0.97 6 3 4 5 2 0.97

40 50 0.27 0.17 0.20 0.25 0.10 0.97 11 7 8 10 4 0.98
200 0.26 0.18 0.20 0.24 0.12 0.98 10 7 8 10 5 0.98
400 0.25 0.19 0.21 0.23 0.13 0.98 10 8 8 9 5 0.99

100 50 0.23 0.19 0.21 0.22 0.15 0.99 23 19 21 22 15 0.99
200 0.23 0.19 0.21 0.21 0.16 0.99 23 19 21 21 16 0.99
400 0.22 0.20 0.21 0.21 0.17 0.99 22 20 20 21 17 0.99

1Computed using formula (22)
2Computed using formula (23)

where ξ∗a and ξ∗e denote optimal approximate and exact designs, respectively. As we can see
in Table 3, optimal designs depend on both the total number of locations J and the error
variance σ2. In particular, the optimal proportion of allocation to sub-regions changes as the
total number of environments changes. This behavior is typical for designs in mixed models and
can be explained by the dependence of the covariance matrix: As we can see by formula (12), the
influence of the covariance matrix D decreases with increasing total number of locations J . Note
also that optimal designs generally tend to the balanced design if σ2 or J increase. For designs
without constraints this fact can be explained by formulae (12) and (20): According to (20) the
adjusted covariance matrix ∆ increases with increasing σ2 and J . For large ∆ the A-criterion
(12) tends to the A-criterion in the fixed effects model, for which the balanced design is optimal.
For constrained designs the same behavior can be observed with respect to σ2. However, it does
not necessarily hold in relation to J . For the compound symmetry model the covariance matrix
V is taken from Table 6 in Kleinknecht et al. (2013) (left part, CS model):

V =


308 270 270 270 270
270 308 270 270 270
270 270 308 270 270
270 270 270 308 270
270 270 270 270 308

 . (24)

For the CS model we obtain optimal designs Ji = J/5, i = 1, . . . , 5, which is in accordance with
Theorem 2.

4.2 Weighted A-criterion

For the weighted A-criterion we used the coefficients `1 = 813685, `2 = 432716, `3 = 477365,
`4 = 995298, `5 = 1174818, which correspond to the areas of the sub-regions, respectively, as
determined from a digitized version of the map shown in Kleinknecht et al. (2013).
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Table 4: Optimal numbers of locations per sub-region and efficiencies of balanced and weighted
designs compared to optimal designs with respect to the weighted A-criterion for the FA model
for different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa,P
1 Effa,`

2 Exact design ξ∗e Effe,P
3

w1 w2 w3 w4 w5 J1 J2 J3 J4 J5
10 50 0.35 0.10 0.10 0.35 0.10 0.88 0.92 3 1 1 4 1 0.88

200 0.34 0.10 0.10 0.36 0.10 0.89 0.93 3 1 1 4 1 0.89
400 0.34 0.10 0.10 0.36 0.10 0.90 0.94 3 1 1 4 1 0.90

20 50 0.34 0.05 0.09 0.37 0.15 0.91 0.95 7 1 2 7 3 0.91
200 0.33 0.05 0.11 0.35 0.16 0.92 0.96 7 1 2 7 3 0.92
400 0.30 0.08 0.12 0.32 0.18 0.94 0.97 6 2 2 6 4 0.94

40 50 0.28 0.09 0.13 0.30 0.19 0.94 0.97 11 4 5 12 8 0.95
200 0.27 0.10 0.14 0.29 0.20 0.95 0.98 11 4 6 11 8 0.95
400 0.27 0.10 0.14 0.29 0.20 0.96 0.98 10 5 6 11 8 0.96

100 50 0.24 0.13 0.15 0.26 0.22 0.97 0.98 24 13 15 26 22 0.97
200 0.24 0.13 0.15 0.25 0.22 0.97 0.98 24 13 15 25 23 0.97
400 0.23 0.14 0.16 0.25 0.23 0.97 0.98 23 14 15 25 23 0.97

1Computed using formula (25)
2Computed using formula (28)
3Computed using formula (26)

Table 4 summarizes the results for optimal designs under the factor-analytic model. The
optimal designs for the compound symmetry model are presented in Table 5. For computing
efficiencies of the balanced design ξP compared to optimal approximate and exact designs we
used, respectively, formulae

Effa,P =
ΦAw(ξ∗a)

ΦAw(ξP )
(25)

and
Effe,P =

ΦAw(ξ∗e )

ΦAw(ξP )
. (26)

Efficiencies of the weighted design ξ` with weights wi = `i/` for ` =
∑P

i=1 `i:

ξ` =

(
1 2 3 4 5

0.21 0.11 0.12 0.26 0.30

)
(27)

compared to optimal approximate designs have been obtained by formula

Effa,` =
ΦAw(ξ∗a)

ΦAw(ξ`)
. (28)

We do not compare optimal exact designs with weighted design ξ` since ξ` is not in the class of
exact designs.

As we can see in the tables the results for the factor-analytic and compound symmetry models
are different, illustrating that the optimal designs depend on the variance-covariance structure
of genotypic effects within sub-regions. In case of compound symmetry optimal designs are less
sensitive to J and σ2 than for the factor-analytic model. The efficiency of the weighted design
for the CS model turned out to be very high. However, the weighted design is in general not
optimal. To illustrate this fact, we used the (rather unrealistic for practical applications but
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Table 5: Optimal numbers of locations per sub-region and efficiencies of balanced and weighted
designs compared to optimal designs with respect to the weighted A-criterion for the CS model
for different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa,P Effa,` Exact design ξ∗e Effe,P
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

20 50 0.21 0.11 0.12 0.26 0.30 0.97 0.99 4 2 3 5 6 0.97
200 0.21 0.11 0.13 0.26 0.29 0.97 0.99 4 2 3 5 6 0.97
400 0.21 0.12 0.13 0.25 0.29 0.97 0.99 4 2 3 5 6 0.97

40 50 0.21 0.12 0.14 0.25 0.28 0.97 0.99 9 5 5 10 11 0.97
200 0.21 0.13 0.14 0.25 0.27 0.97 0.99 8 5 6 10 11 0.97
400 0.21 0.13 0.14 0.25 0.27 0.97 0.99 8 5 6 10 11 0.97

100 50 0.21 0.14 0.15 0.24 0.26 0.96 0.99 21 14 15 24 26 0.96
200 0.21 0.14 0.15 0.24 0.26 0.96 0.99 21 14 15 24 26 0.96
400 0.21 0.14 0.15 0.24 0.26 0.96 0.99 21 14 15 24 26 0.96

400 50 0.21 0.15 0.15 0.23 0.26 0.96 0.98 84 59 62 93 102 0.96
200 0.21 0.15 0.16 0.23 0.25 0.96 0.97 84 59 63 93 101 0.96
400 0.21 0.15 0.16 0.23 0.25 0.96 0.97 83 60 63 93 101 0.96

considered here to study the design properties) case J = 400, for which the efficiency goes down
to 0.97.

All computations were performed using the procedures od.SOCP and od.MISOCP from the
package OptimalDesign in R (see Harman and Filová (2016)) for optimal approximate and exact
designs, respectively. The package has been originally developed for determining optimal designs
in fixed-effects models. Harman and Prus (2018) proposed an approach for using it for compound
Bayes risk criteria (CBRC) and, in particular, the Bayesian linear criteria. We used this approach
here. Note that the exact designs obtained using od.MISOCP are optimal in the class of exact
designs for the model under investigation for the given data. R code for our computations is
given in the Supporting Information to this article. Note that the code produces the optimal
allocation directly. All that is required from the user is the input of the variance values, the total
number of locations, the number of replications per trial and the number of sub-regions.

4.3 Enforcing the same efficiency in each sub-region

When using the CS structure (24) in D, we obtained the trivial solution wi = 0.2, i = 1, . . . , 5.
When using the factor-analytic structure in (21), the solutions were as shown in Table 6. The
exact designs were obtained by efficient rounding (see Pukelsheim and Rieder (1992)). We used
the function nlphqn in SAS/IML to solve the nonlinear system of equations in (19). Since the
presented results were obtained without using any optimization algorithm, we do not compare
them with other designs.

5 Discussion

In crop research, the design of experiments is mainly considered in the context of a single envi-
ronment and assuming that treatment effects are fixed (John and Williams (1995); Mead et al.
(2012)). Recently, there has been an increased interest in design for experiments when treatments
are modeled as correlated random effects using kinship or pedigree information (Bueno Filho and
Gilmour (2003), Bueno Filho and Gilmour (2007), Cullis et al. (2006), Butler et al. (2014), Cullis
et al. (2020), Heslot and Feoktistov (2020)). Also, the design of multi-environment trials has
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Table 6: Optimal numbers of locations enforcing the same efficiency in each sub-region for FA
model for different values of the total number of locations J and the error variance σ2

J σ2 Approximate design Exact design
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

20 50 0.342 0.148 0.205 0.302 0.003 6 3 4 6 1
200 0.320 0.158 0.209 0.284 0.029 6 3 4 6 1
400 0.291 0.172 0.211 0.260 0.065 6 3 4 5 2

40 50 0.274 0.179 0.212 0.247 0.088 11 7 8 10 4
200 0.262 0.183 0.212 0.239 0.104 10 7 9 10 4
400 0.247 0.189 0.211 0.228 0.125 10 8 8 9 5

100 50 0.231 0.194 0.209 0.217 0.150 23 19 21 22 15
200 0.226 0.195 0.208 0.214 0.157 22 20 21 21 16
400 0.219 0.197 0.206 0.210 0.167 22 20 20 21 17

been considered in a few papers, most notably in the context of partially replicated (p-rep) trials
(Williams et al. (2014)), but also in broader contexts (González-Barrios et al. (2019)). To the
best of our knowledge, however, the problem of allocation of location numbers in subdivided
TPE has never been considered in any detail. The problem is reminiscent of optimal allocation
in stage-wise sampling based on a nested random-effects model (Snedecor and Cochran (1967), p.
529) but the approach needed is more complex due to the linear mixed model involving several
fixed and random effects and the optimization being targeted to the prediction of random effects.
There is also some relation to small-area estimation in surveys where mixed models are used for
estimation (Jiang and Lahiri (2006), Torabi and Jiang (2020)), but design in that context is not
usually targeted at individual domains or small areas, and there is no notion of a larger number
of treatments as in MET.

Our main focus was the optimal allocation of locations for different sub-regions with respect to
the estimation of genotype effects and their pairwise linear contrasts for A- and particular linear
(weighted A-) criteria. The proposed approach is based on the method of best linear unbiased
prediction (BLUP). For our problem Bayesian optimal designs for a transformed covariance
matrix of genotype effects turn out to be optimal. In the example we considered two kinds
of models with respect to the covariance structure: first-order factor-analytic and compound
symmetry. The resulting designs in both cases depend on the covariance structure, observational
errors variance and the total number of locations in all sub-regions. The only exception is the
standard A-criterion for compound symmetry: in this case balanced designs are optimal.

A general problem in the design of experiments under an assumed mixed model is that the
optimal solution depends on the variance values. Our application here is no exception. For
the design to be robust, it is therefore necessary to have reliable variance estimates, based on
a sufficiently large database. Where there is uncertainty about the variance components, it is
useful to try a range of values and inspect the sensitivity of the design. We have done this by
considering four sets of variance values, originating from different maturity groups.

In a similar vein, all of our efficiency equations assume that at the analysis stage the variance
components are known and are based on the optimal statistical properties of BLUP for this
case (Searle et al. (1992)). In practice, variance components need to be estimated, in which
case BLUP loses its optimal properties, and the efficiency realized with a design will usually be
slightly diminished relative to the efficiencies reported here for known variance components. The
Achilles’ Heel in this context will usually be the estimation of genetic variances and covariances
for the sub-regions (Piepho and Möhring (2005)). When the number of varieties is large, which is
often the case, the loss in efficiency will be small. The loss in efficiency from the use of variance
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component estimates in place of known values can be accounted for in analysis by using suitable
small-sample inference methods (Kackar and Harville (1984), McLean and Sanders (1988)).

We have assumed that the trials at each location are laid out according to a randomized
complete block design. While such designs are still very popular in variety testing, including the
Indian maize trials we considered, it is common for trials involving a large number of varieties
to be laid out in incomplete blocks (John and Williams (1995)). Our optimization approach can
be adapted for these kinds of design, which typically display more complex variance-covariance
structures with heterogeneity of variance as well as covariance among the BLUPs. We conjecture,
however, that the optimal allocation of locations will be dominated by the variance components
for the genotype-by-sub-region effects and hence an approximation for the within-trial variance
structure would suffice for most practical purposes. Specifically, a resolvable incomplete block
design could simply be analyses as a randomized complete blocking design, for which there is
backing in randomization theory (Speed et al. (1985)). Alternatively, an effective error mean
square based on a full analysis as a resolvable incomplete block design (Cochran and Cox (1957))
could be used as the error variance of an approximating optimization assuming a randomized
complete block design.

Our criterion integrates the efficiencies for BLUPs of interest across sub-regions. There
are three variations to this approach. Two of them take a weighted or unweighted average
across sub-regions, and optimization typically leads to allocations that imply unequal efficiency
between sub-regions. The third approach imposes the additional restriction that efficiency be
the same for each sub-region. We think this latter approach is particularly relevant when several
administrative entities (federal states or countries) join forces to link up their trialling networks
for cross-boundary analyses. For such efforts to be successful it is vital that the benefit, in
terms of efficiency gain compared to independent analysis, can be split equally between the
administrative entities involved.

For the compound symmetry model the balanced design is optimal and the weighted de-
sign turned out to be highly efficient for the standard and weighted A-criterion, respectively.
However, one should be more careful with the choice of design in case of the factor-analytic co-
variance structure, especially if there are large differences between variances of genotype effects
for different sub-regions. Under a factor-analytic model, for the designs to be used in practice it
is important to have accurate estimates of the variance structure, most importantly that of D.
The good news from a practical point of view is that with an increasing number of environments
(J), the optimal designs under a factor-analytic model depend less on the exact variance values
and approach that under a compound symmetry model. Hence, if reliable parameter estimates
of the factor-analytic model are not available, deriving the design under a compound symmetry
model seems a viable option.

A Proof of Lemmas 1 and 2

To make use of the theoretical results that are available in the literature (see e. g. Henderson
(1975)) for the prediction of random parameters we will represent the model (1) as a particular
case of the general LMM

Y = Xβ + Zζ + ε (29)

with design matrices X and Z for the fixed effects and the random effects, respectively. In
(29), β denotes the fixed effects and ζ are the random effects. The random effects and the
observational errors ε are assumed to have zero mean and to be all uncorrelated with positive
definite covariance matrices Cov (ζ) = G and Cov (ε) = R, respectively. Random effects and
observational errors are assumed to be uncorrelated.
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To present model (1) in form (29) we follow the next steps:

Yijk = 1L µi+1L αik+1L λij +1L γijk+bij +εijk, i = 1 . . . P, k = 1, . . . ,K, j = 1, . . . , Ji,

where bij = (bij1, . . . , bijL)>.

Yik = 1LJi µi + 1LJi αik + (IJi ⊗ 1L)λi + (IJi ⊗ 1L)γik + bi + εik, i = 1 . . . P, k = 1, . . . ,K,

where λi = (λi1, . . . , λiJi)
> and γik = (γi1k, . . . , γiJik)

>.

Yk = Fµ+ Fαk + Hλ+ Hγk + b + εk, k = 1, . . . ,K,

where H = (IJ ⊗ 1L), µ = (µ1, . . . , µP )>, λ = (λ>1 , . . . ,λ
>
P )> and γk = (γ>1k, . . . ,γ

>
Pk)
>.

Y = (1K ⊗ F)µ+ (IK ⊗ F)α+ (1K ⊗H)λ+ (IK ⊗H)γ + (1K ⊗ ILJ)b + ε,

where γ = (γ>1 , . . . ,γ
>
K)>.

The latter equation may alternatively be written as

Y = (1K ⊗ F)µ+ (IK ⊗ F)α+ ε̃, (30)

where ε̃ := (1K ⊗ H)λ + (IK ⊗ H)γ + (1K ⊗ ILJ)b + ε. Model (30) is of form (29) with
X = (1K ⊗ F), Z = (IK ⊗ F), G = Cov(α) = σ2IK ⊗D and

R = Cov(ε̃) = σ2((v11K1
>
K + v2IK)⊗ IJ ⊗ (1L1

>
L ) + v3(1K1

>
K)⊗ ILJ + ILJK).

According to Henderson (1975) the BLUP of the random effects ζ (which corresponds to α
in our model (30)) is given by

ζ̂ =
(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−X>R−1Z

)−1
·
(
Z>R−1 − Z>R−1X(X>R−1X)−X>R−1

)
Y. (31)

Using this formula we obtain the BLUP for the genotype effects α, which results in formula (2).
The MSE matrix of the BLUP of the random effects ζ is given by

Cov(ζ̂ − ζ) =
(
Z>R−1Z + G−1 − Z>R−1X(X>R−1X)−X>R−1Z

)−1
, (32)

where A− denotes a generalized inverse of A. By this formula we obtain MSE matrix (4). Then
using the relation θk,k

′
= αk−αk′ = ((ek−ek′)

>⊗ IP )α between the genotype effects and their
pairwise contrasts we obtain formulae (3) and (5).

B Sensitivity Analysis

B.1 Standard A-criterion

We take values of the covariance matrix V from Tables 3, 4 and 5 in Kleinknecht et al. (2013)
for late, medium and early maturity. Tables 7, 8 and 9 summarize the results for optimal designs
for the standard A-criterion in FA model for late, medium and early maturity, respectively.

13



Table 7: Optimal numbers of locations per sub-region and efficiency of balanced design compared
to optimal designs with respect to the standard A-criterion in the FA model (late maturity) for
different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa Exact design ξ∗e Effe
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

10 50 0.31 0.10 0.19 0.25 0.15 0.96 3 1 2 3 1 0.96
200 0.31 0.10 0.20 0.24 0.15 0.96 3 1 2 2 2 0.96
400 0.30 0.10 0.21 0.23 0.16 0.96 3 1 2 2 2 0.96

20 50 0.30 0.12 0.21 0.21 0.16 0.97 6 3 4 4 3 0.97
200 0.29 0.13 0.21 0.21 0.16 0.97 6 3 4 4 3 0.97
400 0.28 0.16 0.21 0.19 0.16 0.98 6 3 4 4 3 0.98

40 50 0.27 0.17 0.21 0.19 0.16 0.98 11 7 8 8 6 0.98
200 0.26 0.18 0.21 0.19 0.16 0.98 11 7 8 8 6 0.98
400 0.25 0.18 0.21 0.19 0.17 0.99 10 7 9 7 7 0.99

100 50 0.24 0.19 0.21 0.19 0.17 0.99 24 19 21 19 17 0.99
200 0.23 0.20 0.21 0.19 0.17 0.99 23 20 21 19 17 0.99
400 0.22 0.20 0.21 0.19 0.18 0.99 22 20 21 19 18 0.99

Table 8: Optimal numbers of locations per sub-region and efficiency of balanced design compared
to optimal designs with respect to the standard A-criterion in the FA model (medium maturity)
for different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa Exact design ξ∗e Effe
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

10 50 0.30 0.10 0.21 0.29 0.10 0.91 3 1 2 3 1 0.91
200 0.30 0.10 0.22 0.28 0.10 0.91 3 1 2 3 1 0.91
400 0.29 0.10 0.24 0.27 0.10 0.91 3 1 2 3 1 0.91

20 50 0.31 0.05 0.27 0.32 0.05 0.90 6 1 5 7 1 0.90
200 0.31 0.05 0.27 0.32 0.05 0.90 6 1 6 6 1 0.90
400 0.30 0.05 0.27 0.29 0.09 0.92 6 1 5 6 2 0.92

40 50 0.29 0.06 0.27 0.27 0.11 0.93 11 2 11 11 5 0.93
200 0.28 0.08 0.26 0.26 0.12 0.94 11 3 11 10 5 0.94
400 0.27 0.11 0.25 0.24 0.13 0.95 11 4 10 10 5 0.95

100 50 0.25 0.14 0.24 0.22 0.15 0.97 25 14 24 22 15 0.97
200 0.24 0.15 0.23 0.22 0.16 0.98 24 15 23 22 16 0.98
400 0.23 0.16 0.23 0.21 0.17 0.98 23 16 23 21 17 0.98
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Table 9: Optimal numbers of locations per sub-region and efficiency of balanced design compared
to optimal designs with respect to the standard A-criterion in the FA model (early maturity) for
different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa Exact design ξ∗e Effe
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

10 50 0.42 0.10 0.15 0.23 0.10 0.93 4 1 2 2 1 0.93
200 0.40 0.10 0.17 0.23 0.10 0.94 4 1 2 2 1 0.94
400 0.37 0.10 0.20 0.23 0.10 0.95 4 1 2 2 1 0.95

20 50 0.35 0.09 0.22 0.23 0.11 0.96 7 2 4 5 2 0.96
200 0.33 0.11 0.22 0.22 0.12 0.96 7 2 4 4 3 0.96
400 0.31 0.14 0.22 0.20 0.13 0.97 6 3 4 4 3 0.97

40 50 0.29 0.16 0.22 0.20 0.13 0.98 12 6 9 8 5 0.98
200 0.28 0.17 0.22 0.19 0.14 0.98 11 7 9 8 5 0.98
400 0.26 0.18 0.22 0.19 0.15 0.98 11 7 9 7 6 0.98

100 50 0.24 0.19 0.22 0.19 0.16 0.99 24 19 22 19 16 0.99
200 0.24 0.19 0.22 0.19 0.16 0.99 24 19 22 19 16 0.99
400 0.23 0.20 0.21 0.19 0.17 0.99 23 20 21 19 17 0.99

Table 10: Optimal numbers of locations per sub-region and efficiencies of balanced and weighted
designs compared to optimal designs with respect to the weighted A-criterion for the FA model
(late maturity) for different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa,P Effa,` Exact design ξ∗e Effe,P
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

10 50 0.30 0.10 0.10 0.28 0.22 0.93 0.97 3 1 1 3 2 0.93
200 0.31 0.10 0.11 0.26 0.22 0.93 0.97 3 1 1 3 2 0.93
400 0.30 0.10 0.12 0.25 0.23 0.93 0.97 3 1 1 3 2 0.94

20 50 0.31 0.05 0.14 0.26 0.24 0.93 0.97 6 1 3 5 5 0.93
200 0.31 0.06 0.15 0.26 0.24 0.94 0.97 6 1 3 5 5 0.94
400 0.29 0.08 0.15 0.24 0.24 0.95 0.97 6 2 3 5 4 0.95

40 50 0.29 0.10 0.15 0.23 0.23 0.95 0.97 11 4 6 9 10 0.95
200 0.28 0.11 0.15 0.23 0.23 0.96 0.97 11 4 6 9 10 0.96
400 0.27 0.12 0.16 0.23 0.23 0.95 0.97 11 5 6 9 9 0.95

100 50 0.25 0.14 0.16 0.22 0.23 0.97 0.97 25 14 16 22 23 0.97
200 0.25 0.14 0.16 0.22 0.23 0.97 0.97 25 14 16 22 23 0.97
400 0.24 0.14 0.16 0.22 0.24 0.97 0.97 24 14 16 22 24 0.97
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Table 11: Optimal numbers of locations per sub-region and efficiencies of balanced and weighted
designs compared to optimal designs with respect to the weighted A-criterion for the FA model
(medium maturity) for different values of the total number of locations J and the error variance
σ2

J σ2 Approximate design ξ∗a Effa,P Effa,` Exact design ξ∗e Effe,P
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

10 50 0.31 0.10 0.13 0.36 0.10 0.89 0.92 3 1 1 4 1 0.89
200 0.31 0.10 0.14 0.35 0.10 0.89 0.92 3 1 1 4 1 0.90
400 0.30 0.10 0.16 0.34 0.10 0.90 0.93 3 1 2 3 1 0.90

20 50 0.32 0.05 0.18 0.37 0.08 0.88 0.91 6 1 4 7 2 0.89
200 0.31 0.05 0.19 0.34 0.11 0.89 0.91 6 1 4 7 2 0.89
400 0.30 0.05 0.19 0.32 0.14 0.90 0.92 6 1 4 6 3 0.90

40 50 0.29 0.03 0.20 0.30 0.18 0.90 0.92 12 1 8 12 7 0.90
200 0.29 0.03 0.20 0.39 0.19 0.91 0.93 12 1 8 12 7 0.91
400 0.28 0.04 0.19 0.28 0.21 0.93 0.94 11 2 8 11 8 0.93

100 50 0.26 0.07 0.19 0.26 0.22 0.94 0.95 26 7 19 26 22 0.94
200 0.25 0.09 0.18 0.26 0.22 0.95 0.96 25 9 18 26 22 0.95
400 0.24 0.10 0.18 0.25 0.23 0.96 0.96 24 10 18 25 23 0.96

Table 12: Optimal numbers of locations per sub-region and efficiencies of balanced and weighted
designs compared to optimal designs with respect to the weighted A-criterion for the FA model
(early maturity) for different values of the total number of locations J and the error variance σ2

J σ2 Approximate design ξ∗a Effa,P Effa,` Exact design ξ∗e Effe,P
w1 w2 w3 w4 w5 J1 J2 J3 J4 J5

10 50 0.42 0.10 0.10 0.28 0.10 0.91 0.95 4 1 1 3 1 0.91
200 0.39 0.10 0.10 0.28 0.13 0.91 0.95 4 1 1 3 1 0.91
400 0.39 0.10 0.10 0.28 0.13 0.93 0.96 4 1 1 3 1 0.93

20 50 0.35 0.05 0.13 0.27 0.20 0.92 0.96 7 1 3 5 4 0.92
200 0.34 0.05 0.13 0.27 0.21 0.93 0.96 7 1 3 5 4 0.93
400 0.32 0.05 0.15 0.26 0.22 0.94 0.97 6 1 3 5 5 0.94

40 50 0.30 0.08 0.15 0.25 0.22 0.95 0.97 12 3 6 10 9 0.95
200 0.29 0.09 0.16 0.24 0.22 0.96 0.98 12 3 6 10 9 0.96
400 0.28 0.10 0.16 0.24 0.22 0.96 0.98 11 4 6 10 9 0.96

100 50 0.26 0.12 0.16 0.23 0.23 0.97 0.98 26 12 16 23 23 0.97
200 0.25 0.13 0.16 0.23 0.23 0.97 0.98 25 13 16 23 23 0.97
400 0.24 0.14 0.16 0.23 0.23 0.97 0.98 24 14 16 23 23 0.97
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B.2 Weighted A-criterion

Tables 10, 11 and 12 summarize the results optimal designs with respect to the weighted A-
criterion in the FA model for late, medium and early maturity, respectively.

Figure 1 illustrates the behavior of efficiencies of balanced and weighted designs with respect
to optimal approximate and exact designs (Effa,P , Effa,` and Effe,P as in Section 4) in depen-
dence on the total number of allocations J for weighted A-criterion in the CS model. For J
we considered all multiples of 5 between 15 and 200. The error variance is fixed at σ2 = 50,
σ2 = 200 and σ2 = 400.
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Figure 1: Efficiencies Effa,P (dark dots) Effa,` (big light dots) and Effe,P (small light dots) in dependence on
the total number of allocations J for weighted A-criterion in the CS model for late (left panel), medium (middle
panel) and early (right panel) maturity for σ2 = 50 (first row), σ2 = 200 (second row) and σ2 = 400 (third row)
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