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German Abstract

Enatiomere sind Stereoisomere mit spiegelsymmetrischer Struktur. Sie spielen eine

wichtige Rolle in der pharmazeutischen Industrie. Typischerweise haben sie identische

physikalisch-chemische Eigenschaften in einer achiralen Umgebung, können aber ver-

schiedene physiologische Effekte haben. Dies macht die Herstellung von enatiomeren-

reinen Medikamenten notwendig. Solche Produktionprozesse basieren oft auf einer

nicht-selektiven chemischen Synthese. Diese führt auf eine 50:50 Mischung der beiden

Enantiomere, die auch als Racemat bezeichnet wird. Folglich ist eine anschliessende

Trennung erforderlich, um das gewünschte Enantiomer in hoher Reinheit zu erhalten.

In der vorliegenden Arbeit werden dazu kontinuierliche chromatographische Tren-

nprozesse nach dem Simulated Moving Bed (SMB) Verfahren verwendet.

Zentrales Ziel dieser Arbeit ist die Verbesserung solcher Prozesse durch eine in-

telligente Kombination chromatographischer Trennunprozesse mit einer selektiven

Kristallisation und/oder einer chemischen Racemisierung. Die optimale Konfigu-

ration und die optimalen Betriebsbedingungen dieser kombinierten Prozesse hängen

entscheidend von den spezifischen Kostenstrukturen und den physikalisch-chemischen

Eigenschaften der betrachteten Systeme ab. Zur Bestimmung eines optimalen Design

werden in der vorliegenden Arbeit geeignete Optimierungsstrategien entwickelt. In

einem ersten Schritt werden Methoden der Nichtlinearen Optimierung verwendet, um

optimale Betriebsbedingungen für eine gegebene Prozesskonfiguration zu bestimmen.

Anschliessend wird eine erweitere Superstruktur-Formulierung zur simultanen Bes-

timmung einer optimalen Prozesskonfigurationen und optimalen Betriebsbedingungen

eingeführt und mit Methoden der Gemischt-Ganzzahligen Nichtlinearen Optimierung

gelöst. Als Anwendungsbeispiel dienen zwei verschiedene pharmazeutische Kompo-

nenten unterschiedlicher Komplexität.

Neben dem optimalen Design liegt ein weiterer Schwerpunkt der Arbeit im Gegen-

satz zu früheren Untersuchungen auch bei der dynamischen Betreibbarkeit und der

xiv



Regelung solcher kombinierten Prozesse mit Rückführungen. Für eine systematis-

che Analyse werden zwei charakteristische Konfigurationen betrachtet: (1) ein SMB

Prozess kombiniert mit einer enantioselektiven Kristallisation und (2) ein SMB Prozess

kombiniert mit einem Racemisierungsreaktor.

Um im ersten Fall bei unvorhergesehenen Störungen die gewünschte hohe Qualität

des kristallinen Produktes zu erzielen, ist es notwendig, die Kristallisation innerhalb

der zugehörigen Grenzen im Phasendiagramm zu halten. In einem ersten Schritt wird

der Einfluss von Störungen auf die Dynamik des ungeregelten Systems untersucht.

Es wird gezeigt, dass das dynamische Verhalten der kombinierten Prozesse entschei-

dend von der Pumpenkonfiguration der SMB Anlage anhängt. Je nach Störung kann

dabei die Kristallisation des unerwünschten Produktes beobachtet werden. Außer-

dem können Instabilitäten in Form nichtlinearer Oszillationen auftreten. Daher wird

in einem zweiten Schritt eine anlagenweite Regelungsstrategie vorgeschlagen, um eine

robuste Betriebsweise zu gewährleisten. Es wird gezeigt, dass die direkte Regelung des

SMB Prozesses nicht notwendig ist, um den Gesamtprozess zu stabilisieren und die

gewünschten Produktreinheiten einhalten zu können. Alternativ wird eine neues ein-

fach umzusetzendes Regelkonzept vorgeschlagen, bei dem nur die Menge des abzuziehe-

nden bzw. hinzuzufügenden Lösungsmittels geregelt wird. Weiterhin wird gezeigt,

dass sich diese Regelungsstrategie auch auf den zweiten Fall anwenden läst, wenn die

Racemisierungsreaktion im kinetischen Regime liegt und die Reinheitsanforderun-

gen an die Produkte moderat sind. Anschliessend wird gezeigt, dass eine direkte

Regelung des SMB Prozesses zwingend notwendig ist, wenn sich die Reaktion im

Gleichgewichts-Regime befindet.

Zum Schluss wird eine mögliche Erweiterung dieser einfachen Regelkonzepte für

komplexere SMB-Prozesskonfigurationen diskutiert.
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Abstract

Enantiomers are stereoisomers, which are structured like mirror images of each

other. They play an important role in pharmaceutical industries. Typically, they

have identical physico-chemical properties in an achiral environment but may have

different physiological effects. This requires the production of enantiopure drugs.

Such production processes are often based on a nonselective chemical synthesis deliv-

ering a 50:50 mixture of both enantiomers called the racemate. Hence, a subsequent

separation is required to obtain the desired enantiomer with high purity. In the

present work continuous chromatographic separation by means of simulated moving

bed (SMB) processes is considered.

The thesis aims at improving the production of single enantiomers by clever combi-

nation of the chromatographic separation with selective crystallization and/or racem-

ization. The optimal configuration and the optimal operating conditions of such a

combined process crucially depend on specific cost structures and physico-chemical

properties of the system to be considered. For model-based computer-aided optimal

design, various optimization strategies are developed in this thesis. In a first step,

nonlinear programming is applied to determine optimal operating conditions for a

given process configuration. Afterwards, an extended superstructure formulation is

introduced to determine optimal process configurations and optimal process condi-

tions simultaneously by means of mixed integer nonlinear programming. Application

is demonstrated for two different compounds from pharmaceutical industries with

increasing complexity.

Besides the optimal design, focus is on the dynamic operability and control of

such combined processes with recycles, which has not been considered so far. For

a systematic analysis two characteristic benchmark problems are considered: (1) an

SMB process combined with an enantio-selective crystallization, and (2) an SMB

process combined with a racemization reactor.
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To achieve the desired high purity of the crystalline product, in the first case, it

is required to keep the crystallizer operation within the corresponding region in the

phase diagram in the presence of unforeseen disturbances. In the first step, the effect

of such disturbances on the open loop dynamics is investigated. It is shown that the

dynamic behavior of the combined process crucially depends on the pump configu-

ration of the SMB plant involved. Depending on the disturbance, the formation of

the crystals of the undesired product is observed. Further open loop instability in

the form of self sustained oscillations may arise. Therefore, in a second step a simple

plantwide control strategy is proposed in order to ensure a robust process operation.

It is shown that the direct control of the SMB unit is not required to stabilize the

process combination while maintaining the desired product specifications. Instead,

we show that this can be achieved easily by controlling the amount of the solvent that

is removed or added to the system. Further, it is shown, that a similar strategy can

be applied to the second process combination. However, for good controllability in

the second case, it is required that the racemization reaction is in the kinetic regime

and that the product purities are not too high. Afterwards, it is illustrated that a

direct control of one of the SMB flow rates is mandatory when the reaction is in the

equilibrium regime.

Finally, the possibility of extending these simple control concepts to more com-

plicated process schemes involving SMB is also briefly addressed.
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Chapter 1

Introduction

1.1 Introduction

The production of pure enantiomers is essential and challenging due to their wide

application in pharmaceutical industries. Enantiomers are a class of stereoisomers.

They exist in two different forms, which are non-superimposable mirror images of

each other. The asymmetry in the three dimensional arrangement in space arises

from the presence of a chiral carbon atom, chiral axes etc. [1] [Figure 1.1]. Different

conventions have been used for classifying these two forms of enantiomers such as

+/-, D/L, R/S etc. The two enantiomers have identical physico-chemical properties

in achiral environments but may have different physiological impacts. The effects

of the two different forms of enantiomers can be widely dissimilar as in the case of

ethambutol where the human consumption of R-form could lead to blindness while

the S-form has antimycobacterial properties [2]. In these cases, the production of

pure single enantiomers is of fundamental importance.

Preparative large scale production methods for pure enantiomers can be broadly

classified into two major types. One of the approaches is to perform a stereo-selective

synthesis of the desired enantiomer. Methods based on selective synthesis rely on the

use of biological or chemical catalysis in order to produce the desired enantiomer.

Although this approach seems to be much more simple, asymmetric catalysis is in-

dustrially often not economical and requires elaborate process development. The

other method which is primarily used in industrial production is based on a non-

selective chemical synthesis of the racemic (50/50) mixture and a subsequent enantio-

separation. In this method the synthesis is comparatively easy while the separation

is the major challenge due to the identical physico-chemical properties of the two

enantiomers.
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Chapter 1. Introduction

Figure 1.1: Enantiomer forms of Lactic acid. Non-super imposable mirror images of
each other. Dashed lines represent a hypothetical mirror

Most of the enantiopure production methods are performed in an isolated manner

using stand-alone chromatography, crystallization, etc. These methods are feasible

and established, but there exists a significant potential for cost reduction by using

improved process concepts combining one or more of the separation methods and/or

(bio)chemical reactions which will be discussed within the course of this thesis.

Due to the tremendous advancements made in simulated moving bed (SMB) chro-

matography during the last decade, it has become a powerful option for separating

enantiomeric mixtures [3]. Main advantages compared to classical batch chromatog-

raphy are increased productivity and reduced solvent consumption.

Figure 1.2: Schematic of an SMB process

2
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An SMB chromatography unit consists of a series of interconnected columns with

a continuous flow of liquid along these as shown in Figure 1.2. A periodic switching

of the inlet and outlet ports in the direction of liquid flow is carried out to simulate a

counter-current flow of solid and liquid phases. A feed, consisting of a binary mixture

is introduced into the SMB. The less adsorbed component (component 2 in this thesis)

is carried along with the liquid flow and can be collected at the raffinate. The more

adsorbed component (component 1 in this thesis) can be drawn off at the extract.

Figure 1.3: Different possible SMB based process combinations to produce pure enan-
tiomers (a) stand-alone SMB process, (b) SMB-crystallization, (c) SMB-
racemization, (d) SMB-crystallization-racemization

It has been shown earlier that the productivity of an SMB process increases ex-

ponentially with decrease in purity requirements [4, 5]. As enantiomers are often

required in pure crystalline form, the combination of an SMB with crystallization can

be a very favorable process option. The scheme for such a process combination is

illustrated in Figure 1.3(b). This process combination helps to reduce the separation

load on the SMB and simultaneously distributes the load between the SMB and the

crystallization. Crystallization can be enantio-selective [6, 7] or preferential [8, 9].
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Another benefit of such a process combination arises from the use of less efficient

and shorter and therefore cheaper columns within the SMB. It can be seen from Fig-

ure 1.3(a), that half of the produced material becomes waste as it is of the undesired

enantiomer. This translates mathematically to a maximum yield of 50%. This limi-

tation of any pure separation process can be overcome by performing a racemization

(isomerization) of the undesired enantiomer and recycling the reactor outlet to the

feed of the separation unit [Figure 1.3(c)] and thereby increasing the yield of the de-

sired enantiomer upto 100%. The concept shown in the Figure 1.3(c) was considered,

for example, applying thermal racemization of Troeger’s base [10], Chlorthalidone

[11] and enzymatic racemization of amino acids [12, 13]. Further, it is also possible to

have a process combination involving SMB-racemization-crystallization such as the

one shown in Figure 1.3(d). Under such conditions, racemization occurs at the unde-

sired enantiomer outlet and crystallization at the desired enantiomer outlet. Besides

these, there are other non-intuitive process structures possible such as an SMB with a

crystallizer at the undesired enantiomer outlet which can improve the process perfor-

mance. These processes will be discussed in the subsequent chapter which focuses on

the optimal design. It is evident that there are a lot of new process variants available

which can enhance the efficiency of the state-of-the-art enantio-separations. Design

and operation of such novel processes forms the essence of this thesis.

1.2 State-of-the-art and Objectives

1.2.1 SMB-crystallization

The importance of SMB-crystallization in the enantiomer domain is clear from the

amount of literature which has appeared during the last decade. Lim et al. [14] ex-

perimentally showed that a partial resolution using SMB, followed by crystallization,

is a promising process route to produce pure praziquantel enantiomers. However,

they have not explored the benefits of operating such a process with reduced SMB

purity. Blehaut and Nicoud [15] were the first to promote the economic potential of

an integrated SMB-crystallization. They discussed it from an industrial perspective

and showed that the robustness of the process can also be improved. Lorenz et al.

[6] demonstrated the advantages of SMB-crystallization using numerical simulations

for mandelic acid enantiomers. Since numerical optimization of the complete process

is computationally challenging, an alternate shortcut method was developed. This

method was used to evaluate the potential of the process combination [7]. The au-

thors conclude that there is an optimal coupling purity (SMB outlet purity) at which
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the productivity of the process is maximized. These methods were later extended

to study an enantiomeric and an epimeric system. The importance of recycling the

mother liquor back to the chromatography unit was underlined in Gedicke et al.

[16]. Since there is an optimal coupling purity which is not known a priori, the

equilibrium design methods for SMB processes are insufficient for the design of SMB-

crystallization [5, 17]. A detailed dynamic optimization using multi-objective opti-

mization was employed to study the performance of the SMB-crystallization process

for different but fixed coupling purities which necessitates numerous computationally

expensive parametric optimizations [18] . In this work, a detailed model was used for

the SMB, while the Solid-Liquid-Equilibrium (SLE) was not accounted for in detail

and the recycle stream from the crystallizer was always at the eutectic composition

which implies that the crystallization process is highly unrobust. In Amanullah and

Mazzotti [18] as well as in Kaspereit [4] the focus was on the steady state design of

combined SMB-crystallization processes and the optimal coupling purities were de-

termined by performing extensive parametric studies. Most of the limitations of these

earlier works have been avoided within this thesis by performing a “total process”

design in a single step. This implies the SMB flow rates, the optimal coupling purities

and the solvent enrichment/dilution have been determined simultaneously, avoiding

extensive parametric optimization studies.

1.2.2 SMB-racemization

Another major drawback of the SMB is its yield limitation which becomes evident

from Figure 1.3(a). Combining the separation with the isomerization (racemization)

of the undesired enantiomeric form has the obvious benefit of increasing the yield of

the desired enantiomer from a maximum of 50% to a maximum of 100%.

There are three possible options to achieve this. The three different options are 1.

fully integrated processes [19–21], 2. partially integrated processes with side reactors

which is known as the Hashimoto process [22] and 3. classical reactor-separator

schemes.

In the third option discussed previously, an external racemization reaction is per-

formed to increase the yield to a theoretical maximum of 100% as shown in Fig-

ure 1.3(c). This option is studied within this thesis. Some of the recent applications

of such process schemes are available [12, 23]. The optimal design or dynamics of

such reactor-separator schemes involving SMB with an isomerization reactor has not

been discussed using mathematical optimization approaches. Further, the optimal

design of such processes is not straight forward due to the reduced purity at SMB
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outlet coupled to the reactor. Hence, in this work, we bridge this gap by using a

Non-Linear-Programming (NLP) optimization based approach to design such hybrid

process schemes and discuss the dynamics and control of such a combined process.

1.2.3 Advanced optimization approaches

Until now, the discussion was focused on the benefits which can arise by using

hybrid process combinations of an SMB. However, to design such processes, powerful

numerical optimization tools are necessary. Therefore, in this section we look at the

approaches which have been used to design such processes. As the number of process

alternatives available to produce enantiomers is quite large, it would be ideal if the

optimal process structure and the operating conditions are determined simultaneously.

This can be achieved using either a qualitative heuristic decision tree [24] or by means

of a rigorous Mixed-Integer-Non-Linear-Programming (MINLP) optimization. In this

thesis, the latter approach has been employed.

Early work in using MINLP optimization in chemical process design was con-

cerned, for example, with the determination of the optimal feed plate location and

the optimal number of stages in a single distillation column [25]. These studies on

single distillation systems were later extended to synthesize distillation sequences

using Generalized Disjunctive Programming (GDP) or MINLP reformulation [26].

MINLP optimization has been applied extensively for the optimal design of reactive

distillation columns [27, 28]. MINLP approaches have also been applied successfully

to optimize heat exchanger networks [29], water distribution networks [30], reactor

networks [31], etc. Lima and Grossmann [32] addressed the crystallizer design prob-

lem for p-xylene by formulating a superstructure entailing multiple possible process

streams. There the focus is on the superstructure for crystallization. The details

regarding the primary step which is often adsorption have been neglected.

Superstructure optimization approaches were employed by Kawajiri and Biegler

[33, 34] for SMB chromatography processes. However, focus in this work was on

optimizing SMB process operation using e.g. cyclic modulation of flow rates and

asynchronous column switching corresponding to the POWERFEED [35, 36] and

VARICOL [37, 38] concepts introduced earlier.

Palacios et al. [20] used a superstructure based optimization approach to design

an integrated reactive SMB process.

Besides the two approaches mentioned above, no further work on super structure

optimization for the design of SMB processes and its process combinations has been

done so far to the best of the authors knowledge. Due to the success achieved in
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other areas of process design, it is clear that the use of MINLP based superstructure

optimization for SMB based process combinations can have a huge potential. For this

purpose, a superstructure which subsumes all possible sub-structures and determines

the optimal process configuration and operating conditions simultaneously for a spe-

cific objective, physico-chemical parameters etc. is developed in this thesis for the first

time and applied to some challenging application examples from pharmaceutical in-

dustries with increasing complexity. Results have been published partly in Kaspereit

et al.[24]. Further, the applicability of these methods to large scale problems has also

been presented.

1.2.4 Process dynamics and control

It is clear from the earlier discussion that an efficient process design can create a

huge step forward in the enantiomer production. However, since most of the design

is performed at steady state, the practical implementation of these optimal process

schemes may not be straight forward as the most economical processes often contain

recycle streams. The dynamics of such processes are non-trivial and needs to be

addressed for the process operability. The effect of recycle on non-linear processes

could result in various phenomena such as snow balling (steady state sensitivity),

inverse response, loss of stability, multiple steady states, self sustained oscillations,

etc. Studies on the non-linear effects of reactor-separator recycle systems concentrated

mostly on distillation/flash separators. Pushpavanam and Kienle [39] investigated the

behavior of ideal reactor-separator systems. The importance of fixing the appropriate

flow rates was highlighted. One of the later investigations from the same group

revealed the importance of control structure selection on the overall process operation

[40]. A steady state phenomenon called the “snowball” effect was reported for systems

involving reactor-separator recycles [41]. It was reported that these effects crucially

depend on the control structure which has been chosen.

The earlier described literature advocates the necessity of controlling the appro-

priate flow rates (control structure) for a smooth plant operation. This problem

translates to the determination of a suitable pump configuration in SMB process

operation. Understanding the dynamics of stand-alone SMB systems itself is quite

challenging. The effect of SMB pump configuration plays a critical role on the perfor-

mance. The effect of different SMB pump configurations have already been presented

in [42, 43]. A sensitivity analysis with respect to a disturbance on flow rates for

an amino acid separation system was also published in Lee et al.[44]. However, to

the best of our knowledge, there has not been any work so far which focused on
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the pump configurations and the resulting process dynamics of SMB-crystallization

or SMB-racemization systems. Dynamic operability of such process combinations is

addressed in the present thesis for the first time.

It turns out that suitable control strategies are required to compensate the nega-

tive effects of unforeseen disturbances. The control of a stand-alone SMB represents

a challenging issue since it represents a switched non-linear system with distributed

parameters. SMB control has been addressed at various levels of complexities. Most

approaches have focused on model predictive control (e.g. [45–49]). Schramm et

al. [50] applied simple PI controllers based on non-linear wave propagation to control

the chromatographic unit. Another approach based on input-output linearization was

reported in [35]. Most recently, non-linear wave propagation was also used to find

a simple and efficient problem and controller formulation in discrete time [51, 52].

Though there has been numerous studies on stand-alone SMB control, there has been

no work to date which addressed plantwide control concepts for process combinations

involving SMB-crystallization or SMB-racemization processes.

From the literature analysis mentioned above, it is clear that there are many gaps

which need to be addressed. One of those involve applying advanced optimization

concepts to design SMB based enantiomer production processes, thus avoiding ex-

tensive parametric optimization or highly approximated shortcut methods. It is also

noticeable that the dynamics and control of SMB based processes has rarely been

addressed, which can be crucial in view of the practical operation. This gives rise to

the following objectives of the present thesis:

• To determine the steady state optimal design for chromatography based enantio-

separation processes

– Design for fixed process configurations involving SMB-crystallization, SMB-

racemization and multiple combinations of the above (NLP optimization)

– Determine the optimal process configuration and operating conditions si-

multaneously, thus developing new process routes for the production of

pure enantiomers (MINLP optimization)

• To understand the dynamics of process combination involving SMB-crystalliz-

ation and to develop simple control strategies to ensure a robust process oper-

ation

• To understand the dynamics of process combination involving SMB-racemiz-

ation and to extend the previously developed control strategies
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1.3 Outline of the thesis

In order to fulfill the objectives mentioned above and to convey the ideas smoothly,

the thesis has been structured as follows

Chapter 2: In the initial part of this chapter the modeling methodology which has

been used within the thesis is described. In the next section, optimization methods are

introduced for optimal design of combined processes for the production of pure enan-

tiomers. In a first step, methods from Non-Linear-Programming (NLP) are applied

to optimize the operating conditions for a given process configuration. Application

is demonstrated for two different compounds from the pharmaceutical industry. The

first is an intermediate named PDE [4]. The second is 2’,6’-Pipecoloxylidide which is

called PPX for brevity in the remainder. In a second step, Mixed-Integer-Non-Linear-

Programming (MINLP) is applied to determine optimal process configurations and

optimal operating conditions simultaneously.

Chapter 3: The chapter starts with the analysis of process dynamics correspond-

ing to the optimal design obtained in the previous chapter for SMB-crystallization

processes. Focus is on the PDE system. The effect of different disturbances are

studied which reveal the need for a controller to maintain the necessary product

specifications. It is shown that this can be achieved with a relatively simple control

concept using PI controllers. A direct control of the SMB plant is not required.

Chapter 4: The ideas developed previously for SMB-crystallization are extended

to SMB-racemization systems. Here two different case studies have been considered.

The first of these corresponds to slow reaction kinetics implying that the process

operation is in the kinetic regime. The second case study which was used had a

high reaction rate constant implying that the process operation is in the equilibrium

regime. A static controllability analysis was performed in a first step to evaluate

process controllability. For the first case study, a straight forward extension of the

elegant control concept developed previously for SMB-crystallization was found to be

sufficient. The static controllability analysis revealed the inadequacy of this control

concept for the fast kinetics scenario. Hence, a direct control based on manipulating

one of the SMB flow rates was developed.

Chapter 5: This chapter summarises the major findings of the thesis and gives

an outlook for possible future work in this field.
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Chapter 2

Optimal design methodology

In the initial part of this chapter, the mathematical modeling approach which

is used subsequently within the thesis is described. The SMB model equations have

been formulated in a generalized form. Reformulation of those equations if and where

necessary are highlighted in the corresponding sections. As it has been described in

the previous chapter, the process performance can be enhanced significantly by using

process combinations. The model equations necessary to describe these additional

units are also presented. In the second part of this chapter, we focus on the steady

state optimal design. Two different model compounds have been considered within

this work. The first of those corresponds to a well studied enantiomer called PDE.

Here, process configuration is fixed and a simple and commonly used objective func-

tion has been considered to optimize the operating conditions for the given process

structures. The second model compound which has been studied is an industrial

compound 2’,6’-Pipecoloxylidide (PPX). The efficiency of the previously developed

optimization approaches is illustrated for PPX which exhibits complex and highly

non-linear adsorption characteristics. A more detailed economic cost function has

been employed for this study in order to compare the potential of different process

combinations. The chapter concludes with the results of an MINLP optimization,

which optimizes process configuration and operating conditions simultaneously and

which is a promising option at an early design stage and has not been studied in the

frame work of SMB chromatography.

2.1 Mathematical formulation

Optimization of a real SMB model is extremely complex and time consuming due

to the presence of periodic switching within a distributed parameter system. Hence, it
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is quite a common practice to use a true moving bed (TMB) model as an approxima-

tion to the real SMB [53]. A TMB model assumes a continuous counter-current flow

between the solid and the liquid phase. Fluid flow rates are fixed correspondingly,

using pumps. The equivalent solid flow rate which is the same in all the four zones is

linked to the switching time of the SMB plant by

tswitch =
Vc(1 − ǫ)

Q̇solid

(2.1)

Continuous Chromatography model

In this work we have used an equilibrium stage TMB model. This model assumes

a series of equilibrium stages with the dispersion being captured by the number of

stages/cells. The mass balance for a component i on a stage k can be written as

ǫV
dci,k
dt

+ (1− ǫ)V
dqi,k
dt

= Q̇solid [qi,k+1 − qi,k] + Q̇k−1ci,k−1 − Q̇kci,k + Q̇externalci,external

(2.2)

0 = Q̇k−1 − Q̇k + Q̇external (2.3)

In Eqs.(2.2) and (2.3), i = 1, 2 and k = 1, ..N . V is the volume of the stage, ǫ is

the porosity, Q̇k−1 and Q̇k are the volumetric flow rates of the liquid that enter and

leave the stage k respectively. Q̇solid is the solid flow rate which is constant in all

the four zones. Q̇external refers to possible external streams due to feed, desorbent,

extract or raffinate and ci,external refers to the concentration of the corresponding

external stream. In Eq.(2.2), Q̇external is positive for the streams entering the plant

(feed, desorbent) and negative for the streams leaving the plant (extract, raffinate).

ci,k represents the concentration of the i th component in the liquid phase on stage

k where as qi,k is the solid phase concentration of the corresponding component.

The relation between the solid and the liquid phase is given by the thermodynamic

adsorption equilibrium. This can be written mathematically for a two component

system as

qi,k = fi(c1,k, c2,k) (2.4)

In this thesis, enantiomer ‘1’ i.e. i = 1 is assumed to be the stronger adsorbing

enantiomer and enantiomer ‘2’ is considered to be the weaker adsorbing enantiomer.

Since enantiomer ‘1’ is the stronger adsorbing enantiomer it would be enriched at the

extract outlet and can be collected at high purity at this outlet. Similarly, enantiomer

‘2’ being the weaker adsorbing enantiomer would be enriched at the raffinate outlet

and can be obtained in high purity at the raffinate.
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For the other units, simple mass balances have been applied and are assumed to

be quasi-static.

Crystallizer model

The governing equations for the enrichment step before the crystallizer can be written

as (see also Figure 2.1)

Q̇cryst
evap,F eed = Q̇cryst

evap + Q̇cryst
SR (2.5)

Q̇cryst
evap,F eedc

cryst
i,evap,F eed = Q̇cryst

evap c
cryst
i,evap (2.6)

ccryst
i,evap = ρxi,evap (2.7)

Figure 2.1: Figure illustrating the nomenclature for the solvent removal unit before
the crystallizer

where the index Q̇cryst
evap denotes the stream from the solvent removal to the crys-

tallizer. Q̇cryst
SR is the solvent removal rate. xi,evap is the mass fraction of component i

in the crystallizer inlet. Crystallization characteristics being defined in terms of mass

fraction in a Solid-Liquid-Equilibrium (SLE) diagram [Eqns.(2.8) - (2.10)]. This ne-

cessitates the conversion of concentration to mass fraction.

Depending on the composition of the feed to the crystallizer ccryst
i,evap or xi,evap, dif-

ferent regimes of operation of the crystallizer can be distinguished according to the

phase diagram in Figure 2.2. For simplicity, a SLE of conglomerate type is considered

in this thesis. For the ease of presentation, rectangular coordinates are used as shown

in Figure 2.2. The composition is specified in terms of mass fractions xi. The phase

diagram has four different regions which are labeled from I to IV in Figure 2.2 and

which give rise to different patterns of behavior. Region I corresponds to a single

liquid phase, whereas regions II and IV correspond to the two phase regions, where a

liquid phase coexists with pure crystals of enantiomer ‘1’ in region II, or pure crystals

of the enantiomer ‘2’ in region IV, respectively. Hence, pure crystals of the enantiomer

‘1’ can be produced by crystallization in region II and pure crystals of the enantiomer
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Figure 2.2: SLE for a conglomerate on a rectangular diagram

II by a crystallization in region IV. So the nominal operation for producing pure

crystals of enantiomer ‘1’ is located in region II. Accordingly, the nominal operation

for the production of pure crystals of enantiomer ‘2’ is in region IV of Figure 2.2. In

the region III, all the three phases coexist, i.e. a liquid phase and a mixture of pure

crystals of the enantiomer ‘1’ and pure crystals of the enantiomer ‘2’.

The simple crystallizer model to be used subsequently is based on the following

assumptions

• quasi-static behavior

• isothermal operation

• ideal solubility as in Figure 2.2

• equal density of the liquid and the solid

Under these assumptions the model of the crystallizer accounting for the different
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operational regions in Figure 2.2 is given by

Q̇cryst
evap = Q̇ml +

2
∑

1

Q̇i,crystal (2.8)

Q̇cryst
evap xi,evap = Q̇ml xi,ml + Q̇i,crystal (2.9)

Q̇i,crystal = ki [xi,ml − x∗i ] (2.10)

for all coupledprocessi = 1, 2

Figure 2.3: Figure illustrating the nomenclature around the the crystallizer and the
solvent makeup

where Eq.(2.8) represents the total mass balance of the crystallizer, Eqs.(2.9) are

the corresponding component mass balances, and Eqs.(2.10) represent the component

material balances of the solid phase. Therein, x∗i is the equilibrium composition of

the fluid phase. The ki values are assigned in such a way that in the two phase region

the corresponding ki is non-zero (e.g. in region II, k1 = 1000.0 and k2 = 0.0), for

the crystallization that occurs within the three phase region both ki’s are non-zero

(e.g. in region III, k1 = 1000.0 and k2 = 1000.0) and for the single phase region both

ki’s are zero (e.g. in region I, k1 = 0.0 and k2 = 0.0). ki can be understood as the

crystallization rate constant. A nonzero ki value of 1000 has been used for all the

studies within this thesis corresponding to the limit of thermodynamic equilibrium.

The liquid outlet from the crystallizer needs to be diluted before feeding back

into the SMB chromatographic unit. The unit is assumed to be an ideal mixer. A

constant diluent flow rate is maintained with a corresponding pump. This stream is
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in turn mixed with the fresh feed.

Q̇cryst
recycle = Q̇ml + Q̇Diluent (2.11)

Q̇cryst
recycle xi,recycle = Q̇ml xi,ml (2.12)

Reactor model

As in the case of crystallization, we have used an enrichment step before the reactor

which can be written mathematically as,

Q̇reac
evap,F eed = Q̇reac

evap + Q̇reac
SR (2.13)

Q̇reac
evap,F eedc

reac
i,evap,F eed = Q̇reac

evapc
reac
i,evap (2.14)

where the index Q̇reac
evap denotes the stream from the solvent removal to the reactor.

Q̇reac
SR is the solvent removal rate, which could be done by evaporation, nano filtration

etc. For the racemizer it is adjusted in such a way, that the concentration of the

undesired component in the recycle is equal to the concentration in the external feed

of the corresponding component.

Figure 2.4: Figure illustrating the nomenclature around the the reactor and the sol-
vent removal before the reactor

The racemization reactor is modeled as a continuous stirred tank reactor with an

isomerization reaction according to

Q̇reac
evap = Q̇reac

recycle (2.15)

Q̇reac
evapci,evap = Q̇reac

recyclec
reac
i,recycle − νiVreackforward

[

creac
1,recycle − creac

2,recycle

]

(2.16)

The reaction reads

enantiomer ‘1’ ⇋ enantiomer ‘2’
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with kforward being the reaction rate constant. Note that the equilibrium constant

is equal to 1 for a racemization. νi is the stoichiometric coefficient, which is equal to

+1 for the desired enantiomer ‘2’ and -1 for the undesired enantiomer ‘1’.

The recycle stream from the reactor and crystallizer or from the two crystallizers

are mixed with the fresh feed before feeding it to the SMB. It is assumed to be an

ideal mixer. It can be written as

Q̇feed = Q̇F0
+ Q̇reac

recycle + Q̇cryst
recycle (2.17)

Q̇feed ci,feed = Q̇F0
ci,F0 + Q̇reac

recycle c
reac
i,recycle + Q̇cryst

recycle c
cryst
i,recycle (2.18)

2.2 Model system 1: PDE (Simple system)

In this section, we show the results of the optimal design for a pharmaceutical

intermediate called PDE. The adsorption equilibrium is of Langmuir type and the

solid-liquid-equilibrium for the crystallizer assumes ideal solubilities. The physico-

chemical parameters for PDE are provided in Appendix A. SMB-crystallization has

already been proposed as an interesting option for this compound [4, 16]. Chro-

matographic separation parameters are also available [54]. SLE for this system is of

conglomerate type [55]. Crystallization is assumed to occur at a fixed temperature

of 40oC. This corresponds to a mass fraction of 0.4 at the eutectic. The SMB unit

considered within this section is assumed to consist of 400 stages distributed equally

among the four zones.

In order to perform an optimal design, it is necessary to define an objective func-

tion. As an initial case, a simple well studied objective function is used, which is the

specific solvent consumption. It can be written mathematically as

Q̇Solvent

Q̇F0
∗ (c1,F0 + c2,F0)

(2.19)

Solvent is defined as Q̇1 − Q̇4. The objective function given by Eq.(2.19) simultane-

ously minimizes solvent consumption and maximizes throughput. Optimization has

been performed within the modeling environment GAMS [56]. As fixed process struc-

tures such as SMB, SMB-crystallization, SMB-racemization etc. are optimized, it is

sufficient to solve a NLP problem. The CONOPT 3 solver based on a generalized

reduced gradient has been used for solution purposes [57].
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A general NLP problem can be written as

min f (x) (2.20)

s.t. h (x) = 0,

g (x) ≤ 0 .

Eq.(2.20) formulates the task of minimizing an objective or cost function f that

depends on continuous variables x. Equality constraints h are the mass balances,

thermodynamic relations and other process model equations. The inequality con-

straints g arise from the user restrictions such as minimum purity, yield etc. In the

present case, inequality constraints are imposed on SMB purities as well as on the

positive flow rates into and out of the SMB unit at the corresponding stages.

Optimal design is based on the steady state version of the model introduced in

the previous section.

2.2.1 SMB-crystallization

Depending on the location of the crystallizer two different scenarios can arise.

First of these would be called the extract configuration within this work. In this

configuration, the crystallizer occurs at the extract outlet and the stronger adsorbing

enantiomer, i.e. enantiomer ‘1’, is the desired product. The second scheme consists

of a crystallizer at the raffinate outlet of the SMB which is called the raffinate con-

figuration. This is the desired scenario when the weaker adsorbing enantiomer, i.e.

enantiomer ‘2’, is the desired product.

Slightly modified crystallization equations have been used for optimization pur-

poses. Instead of accounting for the different crystallization characteristics depending

on the region of the SLE, additional inequality constraints are imposed to restrict

the optimal design to region II for the extract configuration, or to region IV for

the raffinate configuration, respectively. The non crystallizing SMB outlet purity is

maintained at a value of 99% in order to limit the loss of the desired enantiomer.

The amount of diluent (Q̇Diluent) added to the recycle is adjusted in such a way that

the concentration of the crystallizing component in the internal feed is equal to the

concentration in the external feed.

SMB-crystallization for the extract configuration was found to be 23.7% more

efficient than a stand-alone SMB using cost function given by Eq.(2.19). While for

the raffinate configuration, the process combination outperformed the stand alone unit

by 26.3%. Improvement will be even more pronounced for the lower stage numbers.
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The effect of stage number will be discussed in detail for the PPX system.

Kaspereit [4] has shown earlier that such an SMB-crystallization can be highly

beneficial using a computationally intensive approach. He combined the SMB char-

acterisitcs obtained from extensive parametric optimization of TMB with algebraic

relations defining the mass balances across the solvent removal and crystallization

units. While in this thesis, a more elegant model formulation optimizing all the units

simultaneously has been performed whereby the computational efficiency is increased

drastically. Optimal operational variables to be determined by the optimizer are the

flow rates of the SMB unit, the coupling purity and the solvent removal/addition

(Q̇cryst
SR /Q̇Diluent) rate. The operational parameters corresponding to the optimal de-

sign for both the extract and the raffinate configurations are listed in Table 2.1.

Table 2.1: Optimal design for an SMB-crystallization process
Variables Extract Raffinate

Q̇1[ml/min] 2.1796 1.4644

Q̇2[ml/min] 0.2861 0.75

Q̇3[ml/min] 1.0876 1.511

Q̇4[ml/min] 0.6811 0.7209

Q̇solid[ml/min] 1.8696 1.8696

Q̇cryst
SR [ml/min] 1.8647 0.4168

Q̇Diluent[ml/min] 0.2009 0.075
Puritycoupling 78.75 83.23

Q̇F0
[ml/min] 0.5868 0.321

2.2.2 SMB-racemization

As has been done before, a steady state version of the model equations is used

here too. Two different case studies have been considered within this chapter. One

of them corresponds to what we call the “slow kinetics” for which Vreackforward =

0.1 and the purity requirements at the non-racemizing outlet have been fixed to 90

%. The second case study corresponds to a Vreackforward = 10000.0 which would be

referred to within this thesis as “fast kinetics”. The purity requirements for the latter

scenario has been maintained at a high value of 99 %.

The amount of solvent which needs to be removed (Q̇reac
SR ) is adjusted in such

a way that the concentration of the undesired enantiomer in the reactor outlet is

equal to the concentration in the external feed. Optimal operational variables to be

determined by the optimizer are the flow rates of the SMB unit, the coupling purity

and the solvent removal (Q̇reac
SR ). The optimal design parameters corresponding to
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the two case studies for racemization at the extract are given in Table 2.2. The

calculations have been repeated for the scenario when the racemization occurs at the

raffinate outlet and are provided in Table 2.3.

The primary benefit of SMB-racemization with respect to a stand-alone SMB

arises from the increase in yield from a maximum of 50% to a maximum of 100%.

In addition, a reduction of specific solvent consumption by around 20% was observed

when the reaction is in the equilibrium regime (fast reaction) for both the extract

and raffinate configurations. But, in the later part of this chapter it is shown that by

using a more detailed cost function, the improvement can be much more significant.

Table 2.2: Optimal design for an SMB-racemization process with racemization at the
extract

Variables slow reaction fast reaction

Q̇1[ml/min] 1.7432 2.1796

Q̇2[ml/min] 0.25 0.2857

Q̇3[ml/min] 1.2074 1.0876

Q̇4[ml/min] 0.9852 0.6811

Q̇solid[ml/min] 1.8696 1.8696

Q̇reac
SR [ml/min] 0.6127 1.3884
Puritycoupling 82.22 78.72

Q̇F0
[ml/min] 0.0769 0.2963

Table 2.3: Optimal design for an SMB-racemization process with racemization at the
raffinate

Variables slow reaction fast reaction

Q̇1[ml/min] 1.1291 1.4644

Q̇2[ml/min] 0.7313 0.7499

Q̇3[ml/min] 2.5 1.1511

Q̇4[ml/min] 0.6479 0.7209

Q̇solid[ml/min] 1.8696 1.8696

Q̇reac
SR [ml/min] 0.1579 0.1912
Puritycoupling 62.82 83.23

Q̇F0
[ml/min] 0.0746 0.1621

2.2.3 SMB-racemization-crystallization

After having discussed the optimal design of the two simple and straightforward

process combinations, we shift our attention to coupled processes which involve mul-

tiple combinations of the former two. The first multi-unit process combination which
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Table 2.4: Optimal design for an SMB-
extract.racemization and raffi-
nate.crystallization

Variables values

Q̇1[ml/min] 1.434374

Q̇2[ml/min] 0.315376

Q̇3[ml/min] 1.024929

Q̇4[ml/min] 0.635821

Q̇solid[ml/min] 1.8696

Q̇reac
SR [ml/min] 0.726818

Q̇cryst
SR [ml/min] 0.371214

Q̇Diluent[ml/min] 0.111113
Purityextract 75.321035
Purityraffinate 85.437920

Q̇F0
[ml/min] 0.198606

Table 2.5: Optimal design for an SMB-
raffinate.racemization and ex-
tract.crystallization

Variables values

Q̇1[ml/min] 1.32327440

Q̇2[ml/min] 0.39210279

Q̇3[ml/min] 1.00477873

Q̇4[ml/min] 0.63442873

Q̇solid[ml/min] 1.8696

Q̇cryst
SR [ml/min] 0.91194584

Q̇reac
SR [ml/min] 0.09062685

Q̇Diluent[ml/min] 0.14944738
Purityextract 81.05755237
Purityraffinate 80.96352825

Q̇F0
[ml/min] 0.17321029

is studied is called the “total process combination”. The scheme consists of an SMB

unit coupled with a crystallization at the desired enantiomer outlet and a racemiza-

tion at the undesired enantiomer outlet. Fast kinetics for racemization has only been

considered here. Two different possible options are available. Since it is a generic in-

vestigation, both the situations, extract being the desired product outlet or raffinate

being the desired product outlet have been considered. The result of the optimization

for this “total process combination” when crystallization is at the raffinate (desired

product) is shown in Table 2.4. In Table 2.5, the optimal design parameters for the

counter scenario, i.e. the extract outlet being the desired product has been provided.

It is also worth mentioning that including a crystallization can not only have an

economic impact, it can also increase the process robustness.

In such a process combination, the productivity can be improved because of the

presence of a crystallizer coupled to the SMB unit. This stems from the fact that

SMB can be operated at lower purities and simultaneously delivering pure crystals.

Further, due to the presence of racemization and recycle at the other outlet, the

separation scheme has a single product stream. Thus the yield of such a process

becomes 100%. In addition, the specific solvent consumption is reduced by about

44% irrespective of the location of the crystallizer and racemizer.
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2.2.4 SMB-crystallization-crystallization

Here, we calculate the optimal design of a process which involves crystallization

at both outlets. Unlike for racemization which can occur only at the undesired enan-

tiomer outlet, crystallization may occur at both the outlets irrespective of whether

both the enantiomers are desired or not. Table 2.6 shows the optimal operating con-

ditions for a hybrid process which involves SMB with enantio-selective crystallization

at both the outlets. In fact, it was observed that for certain cases, crystallizing the

undesired enantiomer alone may be economically beneficial depending on the stage

number, crystallizing outlet etc. (Results of section 2.3).

In contrast to a single crystallizer, here both the outlets can be operated at reduced

purities. This leads to a significant reduction in the solvent consumption. Also, since

the crystallizer delivers pure products, the loss of desired enantiomer at the undesired

outlet can be eliminated. These effects lead to a reduced specific solvent consumption.

An improvement of 57% is observed with respect to a stand-alone process in the

objective function. It needs to be mentioned that there are additional investments

and operating costs associated with the presence of additional crystallization and

racemization units. In this study, they have been neglected. These additional costs

may affect overall economics. Therefore, in the next section, a more detailed cost

function which takes into account these additional cost factors have been formulated

and the effect of those on process combinations have been discussed.

Table 2.6: Optimal design for an SMB-raff.crystallization and extr.crystallization pro-
cess

Variables values

Q̇1[ml/min] 1.460361

Q̇2[ml/min] 0.407649

Q̇3[ml/min] 1.049641

Q̇4[ml/min] 0.655810

Q̇solid[ml/min] 1.8696

Q̇cryst
SR,extract[ml/min] 1.033040

Q̇cryst
SR,raffinate[ml/min] 0.376999

Q̇Diluent,extract[ml/min] 0.144091

Q̇Diluent,raffinate[ml/min] 0.102864
Purityextract 82.348184
Purityraffinate 85.701256

Q̇F0
[ml/min] 0.378024
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2.3 Model system 2: 2’,6’-Pipecoloxylidide (PPX)

2’,6’-Pipecoloxylidide (PPX) is an intermediate in the manufacture of several

anaesthetics. It has a number of properties that make its production through an

integrated process interesting. A specific process combination for the production of

the pure S-enantiomer i.e enantiomer ‘2’ according to this thesis convention by steady

state recycling (SSR) chromatography, metal-catalyzed racemization and enantio-

selective crystallization has been studied very recently [58]. Here focus is on continu-

ous processing and a systematic evaluation of different process options. The discussion

in section 2.3 was in part already published in Kaspereit et al. [24].

In this publication a three step approach was proposed for the optimal design

of combined processes for the production of pure enantiomers [24]. The first of

these steps involves discarding/selecting the impossible/possible candidates based on

a qualitative criteria. For enantiomer production, the qualitative criteria can be based

on a decision tree such as the one shown in Figure 2.5. One of the characteristic exam-

ples of the use of a decision tree would be to discard hybrid SMB-crystallization pro-

cesses when the eutectic purity is high. In the second step, short cut methods which

are already available and based on equilibrium theory (analytical/semi-analytical) are

applied to analyze the potential of the selected process candidates. In the last step, a

detailed numerical optimization is employed to obtain optimal process configurations

and/or optimal operating conditions.

The three step approach has been employed for the development of improved pro-

duction processes for PPX. PPX is a compound-forming substance with a favorable

eutectic purity of 67%. Based on this property and the ease of racemization, the deci-

sion tree suggests a process combination consisting of chromatography, crystallization

and racemization as illustrated in Figure 1.3(d). Since the statement of a “reasonable”

eutectic composition is not quantitative, the chromatography-racemization process in

Figure 1.3(c) is also an interesting candidate.

The details of the chromatography, racemization and crystallization are available

elsewhere [58].

Since the adsorption isotherms are extremely complex i.e quadratic isotherm, as

can be seen from Appendix A, there are no shortcut methods available to design

SMB processes. Since it is not the primary topic of this thesis, we shift our attention

directly to the final step of the three step approach. For that purpose, a detailed

numerical optimization of the equations, developed in section 2.1 has been carried

out. .
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Figure 2.5: Decision tree based on simple qualitative criteria for the selection of a suitable combined or integrated process
concept for the production of a pure enantiomer [24].
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2.3.1 Design of fixed process structures (NLP optimization)

In order to compare the effect of the various process combinations, it is necessary

to formulate a more detailed objective (cost) function based on process economics

than the one used for the model system 1, i.e. Eq.(2.19). So, for that purpose, we

propose and apply a cost function which is sufficiently general and does not depend on

highly industry/compound specific cost structure. Here, costs are measured in money

units per kg of product, i.e. [MU/kg product]. The cost function used here comprises

of cost contributions due to the feed cost Cf , personnel costs Cop and investment

costs Cinv according to

f = Cf + Cop + Cinv (2.21)

Feed and investment costs depend on the amount of racemate to be processed

Mrac in [kg racemate/hr], personnel costs are fixed in a given time frame leading to

f =
(wf + winv)Mrac + wop

Y Mrac

=
(wf + winv)Mprod/Y + wop

Mprod

(2.22)

with cost or weighting factors wf in [MU/kg racemate], winv in [MU/kg racemate]

and wop in [MU/hr]. Mprod = YMrac in [kg product/hr] is the amount of desired

enantiomer produced, with Y being the yield.

Examining the expression in Eq.(2.22), it can be seen that at low production rates

Mprod, the personnel costs are dominating and tending to infinity as the production

rate goes to zero. At high production rates, the other costs are dominating and tend-

ing towards the asymptotic value (wf + winv)/Y .

Mathematical optimization using the cost function defined by Eq.(2.22) is applied

to determine the optimal operating conditions for different process configurations.

Process configurations which have been considered for this model system are:

1. Stand-alone SMB process

2. SMB with racemization

3. Three different types of SMB processes with crystallization, namely :

(a) SMB with a crystallizer at the raffinate (product stream)

(b) SMB with a crystallizer at the extract (waste stream)

(c) SMB with a crystallizer at the raffinate as well as the extract
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4. SMB with racemization at the extract and crystallization at the raffinate outlet.

The six different process candidates mentioned above have been compared using

the cost function given by Eq.(2.22). However, it is worth mentioning, that an im-

plementation of much more detailed cost functions such as in Jupke et al. [59] into

the optimization framework discussed here is straightforward.

The cost function given by Eq.(2.22) also allows a preliminary discussion of the

basic effects of racemization and crystallization on process economics. The initial ob-

jective is to evaluate the effect of racemization. In order to achieve that, a stand-alone

SMB chromatographic unit is compared with a coupled process, where the undesired

enantiomer is racemized and the reactor outlet is subsequently recycled back to the

SMB unit according to Figure 1.3(c). This corresponds to the 2nd candidate in the

list of possible process configurations mentioned previously. In the PPX example

the undesired enantiomer is obtained at the extract outlet of the SMB. The most

important effect of the racemization is an increase of the overall yield from 50% in

the stand-alone SMB to a maximum of 100% in the process combination. It is worth

noting, that this effect on the simple cost function can be readily predicted without

knowing the optimal process conditions, i.e. without a detailed mathematical opti-

mization. The effect is illustrated in Figure 2.6 as a function of the production rate.

For demonstration purposes, equal cost factors of 1.0 for wf , winv, wop are assumed for

the stand-alone process, whereas a 20% increase in investment and operational costs

are assumed for the process with racemization (i.e. winv, wop = 1.2 for the coupled

process) in Figure 2.6(a). At low production rates the personnel costs are dominant

and thus minimizing the benefit through an improved overall yield. At high produc-

tion rates, the other costs are dominating leading to a significant cost reduction for

the coupled process. In between, there is a break even point at a production rate of

0.1 in Figure 2.6(a). The difference between the stand-alone and the coupled process

increases with increasing feed costs as illustrated in Figure 2.6(b) for wf = 10, shifting

the break even point to even lower production rates not shown anymore in Figure

2.6(b). The cost reduction for the coupled process will tend to a maximum of 50%

for increasing production rates and increasing feed costs due to a 100% increase of

yield compared to the stand-alone process.

An additional scope for improvement of the coupled process follows from the fact

that the purity requirements for the feed to the racemizer can be relaxed leading to

an increase of productivity of the SMB unit. However, to quantify this effect, rigorous

optimization of the coupled process is required. Details will be discussed later in this

chapter.
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Figure 2.6: Costs as a function of production rate of a stand-alone SMB as in Figure 1.3(a) (dashed line), compared to an SMB
process coupled with a racemizer as in Figure 1.3(c) (solid line) for two different feed cost scenarios.
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A similar effect can be observed, when selective crystallization is coupled to an

SMB chromatographic unit to “share the separation workload” between the two pro-

cesses shown in Figure 1.3(b). The overall yield is not affected by this hybrid separa-

tion process but coupling purities can be relaxed, leading to an increased productivity

of the SMB sub-unit in this coupled process. Further, investment costs for the chro-

matographic columns may be reduced due to reduced purity requirements and finally,

the solvent consumption can also be reduced. To explain the main effects, solvent

cost contributions have been neglected within the thesis but could be included easily

in a more detailed cost evaluation.

To quantify the effects mentioned above for PPX, a parametric optimization study

is presented in the Figures 2.7 - 2.9 using the models described in section 2.1 and pa-

rameters in Appendix A. As in the case of PDE, the optimization has been performed

in the environment GAMS using the CONOPT3 solver [57] . In all the three cases, a

fresh feed concentration of 25 g/l of racemate is used, which was found optimal for the

present system due to the rather specific adsorption behavior described in Appendix

A.

Figure 2.7 compares the maximum production rate of a stand-alone SMB chro-

matographic unit with a coupled SMB-crystallization process, when the crystallizer

is located at the product, i.e. the raffinate port. The maximum production rate was

obtained by rigorous optimization for different numbers of theoretical stages of the

SMB unit. Furthermore, the corresponding coupling purities between the SMB unit

and the crystallizer are shown. For the optimization, the outlet purities of the SMB

were fixed to 99.8%. Coupling purities were restricted to a range between the eutectic

composition of 67.5% and 99.8%.

In Figure 2.7, a large difference in productivity between the stand-alone SMB and

the coupled process is observed for moderate numbers of theoretical stages below 300.

For a fixed number of 160 theoretical stages, the maximum production rate of the

coupled process is almost two times higher than that of the stand-alone SMB. On the

other hand, if the production rate is fixed in Figure 2.7, the number of theoretical

stages can be reduced significantly by using a coupled process in comparison to the

the stand-alone SMB. In the remainder, the total number of theoretical stages will

be fixed to 160.1 Similar effects can be observed in Figure 2.8, where the SMB is

coupled to a crystallizer at the extract outlet delivering the undesired enantiomer,

and in Figure 2.9 where each of the two outlets is coupled to a crystallizer.

1Rigorous optimization of the number of theoretical stages using an extended MINLP formulation
is discussed in Appendix B
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Figure 2.7: Maximum production rates and coupling purity as a function of the total
number of theoretical stages of a stand-alone SMB (dashed line) compared
to an SMB process with a crystallizer at the raffinate.
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Figure 2.8: Maximum production rates and coupling purity as a function of the total
number of theoretical stages of a stand-alone SMB (dashed line) compared
to an SMB process with a crystallizer at the extract.
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Figure 2.9: Maximum production rates and coupling purity as a function of the total
number of theoretical stages of a stand-alone SMB (dashed line) compared
to an SMB process with a crystallizer at the raffinate and a crystallizer
at the extract.
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After illustrating the basic effects, the effect of various process combinations men-

tioned above on the simplified cost functions will be evaluated in detail by means

of rigorous NLP optimization. Results are provided in Table 2.7. Cost factors

wf , winv, wop for the SMB unit are assumed to be equal to one. Again, for the

racemization a twenty percent increase in investment and operational costs are as-

sumed. Since crystallization is required anyhow in most cases to obtain crystalline

products, no extra costs for the crystallization have been taken into account.

Rigorous optimization results as presented in Table 2.7 are fully consistent with

our earlier discussion. Namely, the productivity of the overall process can be increased

significantly if a crystallizer is coupled to the SMB process. Although the effect

on costs is moderate for the present arbitrary cost model, it can be much more

pronounced if operational (personnel) costs have a stronger weight. The strongest

improvement is observed for the racemization, which leads to a reduction in costs

of 45%. Besides the increased overall yield by factor 2 an additional increase in

the optimal production rate is observed due to reduced coupling purity as discussed

above.

Table 2.7: NLP calculations for PPX for a total number of 160 theoretical stages
Process Objective function Optimal production rate raff., extr. purity
SMB 4.301 3.315 99.8, 99.8

SMB-raff.cryst 4.158 6.330 96.3, 99.8
SMB-extr.cryst 4.148 6.735 99.8, 87.3
SMB-two.cryst 4.113 8.831 97.0, 88.8

SMB-rac 2.364 7.289 99.8, 79.0
SMB-rac-cryst 2.318 10.211 96.2, 74.4

2.3.2 Simultaneous design of the process structure and operating condi-

tions (MINLP optimization)

Until now, the focus has been on the design of a priorily fixed process configura-

tions. But often, at an early design stage, the optimal configuration is not known and

needs to be determined along with the operating conditions for the same. This can be

achieved using either a Mixed Integer Non Linear Programming (MINLP) approach

or by an extensive enumeration techinique. In the latter approach, we evaluate all

the possible process options by means of NLP optimization and determine the best

candidate. This approach can be computationally challenging when the number of

process combinations is large.
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In this thesis, we use the more elegant MINLP approach for simultaneous determi-

nation of process structure and operating conditions. A generalized MINLP problem

can be written as

min f (x, y) (2.23)

s.t. h (x, y) = 0,

g (x, y) ≤ 0 .

Depending on the objective function, process constraints etc., the optimization

algorithm calculates the optimal process configuration (sub-structure) from the su-

perstructure by means of binary decision variables y ∈ {0, 1}. Since the formulation

involves both the integer y and continuous variables x, the optimal process struc-

ture as well as the optimal perating conditions are obtained simultaneously from

Eqs.(2.23).

The superstructure to be discussed subsequently is shown in Figure 2.10. In this

figure, ’SR’ stands for solvent removal, ’SM’ for solvent makeup, ’Rac’ for racemiza-

tion, ’Crys’ for crystallization. The binary decision variables yi with i = RR,RO,RC,

EC,ER,EO, also shown in Figure 2.10, specify, whether the corresponding flowrate

is zero (yi = 0) or finite (yi = 1). In this notation, the first index refers to the raffinate

(’R’) or extract (’E’) outlet of the SMB whereas the second index refers to the type of

process connected to this outlet, i.e. ’R’ for racemizer, ’C’ for crystallizer and ’O’ if

no further processing step is connected to the stream. In the present case, additional

constraints have to be taken into account according to

yRR = 0,
∑

i

yR,i = 1,
∑

i

yE,i = 1 (2.24)

meaning that exactly one flow is active at the raffinate and the extract side. Also,

additional conditions are enforced so that no racemizer is located at the raffinate side,

where the desired enantiomer is obtained with high purity. It is worth noting, that

the number of stages for the SMB unit can also be optimized in a similar way with

additional binary decision variables, which specify whether a tray in a given SMB

superstructure is active or not. Such strategies are illustrated in Appendix B. For

simplicity, however, focus in the following is on a fixed total number of 160 stages like

in the previous section.

For the MINLP optimization with fixed number of stages, the simplified cost

function from the previous section is extended to account for the various process
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Chapter 2. Optimal design of chromatographic process combinations

combinations in an explicit way. The extended cost function can be written as

f =
(wf + winv)Mrac + wop

((1 − yER)0.5 + yERY )Mrac

(2.25)

with

winv = winv,SMB + yRCwinv,RC + yECwinv,EC + yERwinv,ER

and

wop = wop,SMB + yRCwop,RC + yECwop,EC + yERwop,ER

Figure 2.10: Superstructure for MINLP optimization

Besides feed costs wf , the cost function comprises investment costs of the SMB pro-

cess winv,SMB, a possible raffinate yRCwinv,RC and/or extract crystallizer yECwinv,EC ,

and a possible extract racemizer yERwinv,ER. Additional operational costs are cov-

ered in a similar manner. As was considered in NLP, feed and investment costs are

proportional to the amount of racemate Mrac to be processed. Further, it should

be noted, that the formula for the production rate in the denominator also admits

racemization with overall yields smaller than 100%.

At this point it is important to mention that the optimal process configuration

depends crucially on the specific cost factors of the different cost contributions in the
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Chapter 2. Optimal design of chromatographic process combinations

Eq.(2.25). For a given cost function, the optimal process can be determined directly

by MINLP optimization. Exemplary results are given in Table 2.8.

The process configuration given in the first line of Table 2.8 is obtained when

using the same weighting factors as in the cost function of section 2.3.1. As expected,

the SMB plus the racemization at the extract and the crystallization at the raffinate

is the best configuration, if no additional costs for the crystallization are taken into

account according to our earlier argument. In the second line, additional costs for

crystallization are considered which counterbalances the benefit of potential crystal-

lizers leading to an elimination of the crystallizers in the optimal process structure,

given in the first row. In a similar way, the racemizer will be eliminated for an ex-

pensive racemization with reduced yields in line 3. High investment costs may be

due to an expensive catalyst, as an example. Racemizers and crystallizers will be

eliminated if the two previous cost factors are added which leads to a stand-alone

SMB in line four. In a similar way, the SMB plus the crystallizer at the extract or

raffinate are obtained in line 5 and 6 of Table 2.8 for an expensive racemization with

low yield, if the respective other crystallizer is penalized with high costs. The two

latter examples are a bit artifical, but are useful to demonstrate the full capacity of

the MINLP optimization employed here.

All MINLP calculations were done in GAMS [56] using the DICOPT MINLP

solver [60] with CPLEX for the MILP sub problems and CONOPT for the NLP sub

problems.

2.4 Summary

In this chapter, methods for optimal design of combined processes for the pro-

duction of pure enantiomers were introduced and illustrated with two case studies.

For the first system, an intermediate chemical compound called PDE, NLP opti-

mization was used to determine optimal operating conditions for some given SMB-

racemization-crystallization processes. For demonstrating the potential of the pro-

cess combinations, specific solvent consumption was considered as a simplified cost

function. A more detailed cost function together with a simultaneous MINLP opti-

mization pf process configuration and process structure was demonstrated here for

the first time for a second compound with highly nonlinear adsorption behavior called

PPX. For simplicity the number of stages was fixed in a first step. Extended formula-

tions with variable number of stages are presented in Appendix B. This gives rise to

a large number of additional binary variables which clearly underlines the usefulness
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Chapter 2. Optimal design of chromatographic process combinations

of advanced optimization methods in this context

In most of the cases, the optimal design consisted of single or multiple recycle

streams. The dynamics of these non-linear recycle systems is non-trivial and requires

a critical analysis. Therefore, in the next step, we study the effect of disturbances

on process behavior. This is decisive in view of practical operability of the process.

The results of these dynamic investigations are discussed in the next two chapters

for the two different process combinations namely SMB-crystallization and SMB-

racemization.

34



C
h
a
p
ter

2
.

O
p
tim

a
l
d
esign

o
f
ch

ro
m

a
togra

p
h
ic

p
rocess

co
m

bin
a
tio

n
s

Table 2.8: MINLP calculations for PPX for a total number of 160 theoretical stages. All MINLP calculations were performed
in GAMS using the DICOPT MINLP solver with CPLEX for the MILP sub-problems and CONOPT for the NLP
sub-problems.

Optimal process wf winv,SMB winv,ER winv,EC winv,RC wop,SMB wop,ER wop,EC wop,RC Y
SMB-rac-cryst 1.0 1.0 0.2 0.0 0.0 1.0 0.2 0.0 0.0 1.0

SMB-rac 1.0 1.0 0.2 0.2 0.2 1.0 0.2 0.2 0.2 1.0
SMB-two-cryst 1.0 1.0 0.5 0.0 0.0 1.0 0.2 0.0 0.0 0.7

SMB 1.0 1.0 0.5 0.2 0.2 1.0 0.2 0.2 0.2 0.7
SMB-extr.cryst 1.0 1.0 0.5 0.0 0.2 1.0 0.2 0.0 0.2 0.7
SMB-raff.cryst 1.0 1.0 0.5 0.2 0.0 1.0 0.2 0.2 0.0 0.7
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Chapter 3

Dynamics and control of

SMB-crystallization processes

It has already been shown that the process combinations such as SMB-crystallizati-

on, SMB-racemization, SMB-crystallization-racemization etc. outperform the stand-

alone SMB in terms of process performance. In the previous chapter, optimization

techniques were introduced to design those favorable process structures, one of them

being SMB-crystallization, which is the investigated process within this chapter. Since

the optimal process schemes are often multi-unit recycle systems with inherent non-

linearities, process dynamics is non-trivial. This implies that the steady state optimal

design described in the previous chapter alone is not sufficient to ensure process oper-

ability. Process dynamics is also very important in terms of practical implementation.

Thus, in the first step, we study the dynamics of an SMB-crystallization process sub-

jected to step disturbances of the external feed flow rate and concentration. Since

the dynamic investigations reveal undesired characteristics, simple feed back control

strategies are proposed. They form the basis for the current chapter. As a benchmark

problem the PDE enantiomers are considered [4, 55]. Numerical investigation for the

dynamic process models has been performed using the simulation environment DIVA

[61]

3.1 Open loop dynamics

3.1.1 Robust design

In chapter 2, optimal design of SMB-crystallization process has been addressed.

Figure 3.1 shows the optimal design for the extract and the raffinate configuration
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Table 3.1: Robust design for an SMB-crystallization process
Variables Extract Raffinate

Q̇1[ml/min] 2.1856 1.5721

Q̇2[ml/min] 0.3949 0.7571

Q̇3[ml/min] 1.1067 1.1861

Q̇4[ml/min] 0.6981 0.7344

Q̇solid[ml/min] 1.8696 1.8696

Q̇cryst
SR [ml/min] 1.7663 0.4374

Q̇Diluent[ml/min] 0.148 0.0806
Puritycoupling 85.77 86.96

Q̇F0
[ml/min] 0.5538 0.3429

in the rectangular phase diagram. The optimal process is always located at the

boundary between the two and the three phase regions in Figure 3.1. This is due to

the fact, that the maximum amount of crystalline product is obtained at the boundary.

However in view of practical operation, this may not be the ideal solution since process

operation around this point would be extremely sensitive. The smallest disturbance

in the wrong direction would move the process into the three phase region whereby

the product specifications would be lost. Hence, to be operable at all, an extra

safety margin was introduced in the optimization and a new set of design parameters

referred to as “Robust design” have been obtained. Robust design parameters have

been calculated with a safety margin of 15% with respect to the eutectic purity. This

corresponds to about 25% decrease in the mass fraction of the undesired enantiomer

from the eutectic composition of 0.4. They are also shown in Figure 3.1 and serve

as the optimal/nominal operating point for the dynamic analysis studied in the next

section. The robust design parameters are given in Table 3.1. The procedure has

been repeated for both the extract as well as raffinate.

3.1.2 Extract configuration

In order to study the process dynamics, a standard SMB pump configuration is

applied (see e.g. [62]). Figure 3.2 shows a combined SMB-crystallization process

with a crystallizer at the extract outlet of the SMB unit which is studied in the

initial part of this chapter. This is termed as the extract configuration within this

thesis. It is worth noting that the direction of the liquid flow in combination with the

pump configuration introduces a certain asymmetry. Operational consequences of this

asymmetry for the extract configuration will be discussed subsequently. Afterwards,

the consequences of this asymmetry on the process dynamics when the crystallizer is
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0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8

1.0

0.4
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IV
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III
E

Raffinate
configuration

Pure
solvent

Extract
configuration

Pure crystals of
enantiomer 1

Pure crystals of
enantiomer 2

X1

X2

Figure 3.1: Optimal and robust operating points obtained from steady state opti-
mization. Red indicates the optimal operating points and blue shows the
robust operating points. ◦ – composition of feed to the crystallizer, � –
composition of the mother liquor. xi represents the mass fraction of the
corresponding enantiomer.
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at the raffinate outlet of the SMB will also be treated.

Figure 3.2: Schematic diagram for an SMB-crystallization with a crystallizer at the
extract

Two different types of disturbances are investigated, namely step disturbances of

the external feed flow rate and of the external feed concentration. Disturbances of the

external feed composition show similar effects like external feed concentration and are

therefore not explicitly considered. Nominal operating points for the studies within

this chapter correspond to the robust design parameters presented in Table 3.1.

Let us first focus on the extract configuration shown in Figure 3.2. In Figure 3.2

Q̇external(Raffinate) denotes the raffinate flow rate which is given by Q̇3 - Q̇4. Fig-

ure 3.3 shows the effect of positive disturbances of the external feed concentration

with +5, +10 and +17.5% of magnitude. Figure 3.3(a) shows the mass flow rate of

crystals out of the crystallizer of the desired (thick lines) and the undesired enantiomer

(thin lines). Initially, only the desired enantiomer is crystallized. Due to the robust

design, i.e. the design of Table 3.1, the process can tolerate a small disturbance of

+5% of the external feed concentration without moving to the three phase region and

crystallizing the undesired enantiomer. In contrast to this, the larger disturbances of

+10 and +17.5% lead to the crystallization of the undesired enantiomer and loss of

the product specifications. In addition, for the largest disturbance of 17.5%, stability
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Chapter 3. Dynamics and control of SMB-crystallization processes

is lost, leading to self sustained oscillations located entirely in the three phase region.

A more detailed analysis revealed, that in this case, stability is lost through a Hopf

bifurcation [63].

The effect on the flow rates illustrated in Figure 3.3(b) and (c) is less pronounced.

This is a direct consequence of the type of disturbance and a consequence of the

pump configuration of the SMB unit illustrated in Figure 3.2. It must be noted

that this pump configuration implies that the extract flow rate is implicitly fixed.

As a consequence the recycle rate is almost constant. Changes in the flow rates of

the SMB unit are transmitted directly to the raffinate flow rate. This is even more

obvious regarding disturbances of the external feed flow rate to be discussed below.

Step disturbances of the external feed concentration in the negative direction were

also examined. For a decrease of the feed concentration from the nominal value, the

process moved further into the two phase region, which was therefore not critical and

is not discussed any further.

Figure 3.4 shows the effect of disturbances of the external feed flow rate by -

5, -10 and -33%. As explained above, the recycle flow rate is almost constant as

a consequence of the pump configuration. Changes of the external feed flow rate

are directly transmitted to the raffinate outlet and therefore have only a moderate

effect on the product purities of the SMB unit as illustrated in Figure 3.4(d) and

in turn also a moderate effect on the operation of the crystallizer. Only for a very

large disturbance of the external feed flow rate of -33%, small amounts of undesired

enantiomer are crystallized as illustrated in the zoom of Figure 3.4(a).

Disturbances of the external feed flow rate in the positive direction were found to

be even less critical.
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Figure 3.3: Effect of step disturbances of the external feed concentration for a crystallizer at the extract. Blue is for +5%
disturbance, red is for +10% and green is for +17.5%. Thick lines in the figure (a) denote the crystals of the
enantiomer 1 and thin lines in figure (a) denote crystals of the enantiomer 2. Thick lines in the figure (d) represent
the extract purities and thin lines in the figure (d) represent the raffinate purities.
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Figure 3.4: Effect of step disturbances of the external feed flow rate for a crystallizer at the extract. Blue is for -5% disturbance,
red is for -10% and green is for -33%. Meaning of the thick and the thin lines in figures (a) and (d) is as in Figure 3.3.
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3.1.3 Raffinate configurations

Next, discussion is extended to an SMB-crystallization process with a crystallizer

at the raffinate outlet of the SMB unit. In a first step a pump configuration according

to Figure 3.2 is also applied to the raffinate configuration (configuration 1). Due to

this pump configuration flow rate as well as the composition of the raffinate stream

may change. This makes this configuration much more sensitive to disturbances of

the external feed concentration as well as to the disturbances of the external feed flow

rate compared to the process configuration with a crystallizer at the extract of the

previous section. The amount of solvent removed from the system (Q̇cryst
SR ) remains

constant irrespective of the changes on the raffinate stream flow rate.

Figure 3.5 illustrates the open loop dynamics for a positive (+20% red)and a neg-

ative (-12.5%, blue) step disturbance of the external feed concentration. In general, a

larger sensitivity to negative disturbances was observed. However, in contrast to the

extract configuration, for both, the positive and negative disturbance, formation of

crystals of undesired enantiomer is observed in Figure 3.5. This is due to changes of

the composition and the flow rates in the recycle loop and their mutual interaction.

In contrast to the extract configuration, no oscillations were observed for the raffinate

configuration.

Due to the specific pump configuration, sensitivity with respect to the disturbances

of the external feed flow rate is even more pronounced. This is illustrated in Figure 3.6

for small disturbances of about ±0.5%, which have already large effects, especially

on the raffinate flow rate. For the positive disturbance (red lines in Figure 3.6), the

raffinate flow rate is decreased. Since the solvent removal rate is fixed, this causes a

shift to the three phase region leading to the formation of crystals of an undesired

enantiomer. For the negative disturbance (blue lines in Figure 3.6), the raffinate

flow rate is increased significantly and the process is shifted towards the single phase

region (region I in the Figure 3.1) leading to a drastic reduction in crystals of the

desired enantiomer.

43



C
h
a
p
ter

3
.

D
y
n
a
m

ics
a
n
d

co
n
tro

l
o
f
S
M

B
-cry

sta
lliza

tio
n

p
rocesses

0 5 10 15 20
0

1

2

3

4

5

6

7

Simulation time[hr]

M
as

s 
flo

w
 r

at
e 

of
 c

ry
st

al
s 

[m
g/

m
in

]

 

 

0 5 10 15 20
0.08

0.082

0.084

0.086

0.088

0.09

0.092

0.094

Simulation time[hr]

R
ec

yc
le

 fl
ow

 r
at

e 
[m

l/m
in

]

0 5 10 15 20
0.445

0.45

0.455

0.46

Simulation time[hr]

R
af

fin
at

e 
flo

w
 r

at
e 

[m
l/m

in
]

0 5 10 15 20
0.7

0.75

0.8

0.85

0.9

0.95

1

Simulation time[hr]

P
ur

ity

 

 

0 5 10 15 20
6

6.5

7

7.5

8

8.5

9

9.5

10

Simulation time[hr]

C
on

ce
nt

ra
tio

n st
ro

ng
ex

tr
ac

t  [g
/l]

0 5 10 15 20
2

3

4

5

6

7

8

9

10

Simulation time[hr]
C

on
ce

nt
ra

tio
n st

ro
ng

ra
ffi

na
te
 [g

/l]

(a) (b) (c)

(e)(d) (f)

Figure 3.5: Effect of step disturbances of the external feed concentration for a crystallizer at the raffinate (configuration 1).
Red is for +20% disturbance and blue is for -12.5%. Meaning of the thick and the thin lines in figures (a) and (d)
is as in Figure 3.3.
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Figure 3.6: Effect of step disturbances of the external feed flow rate for a crystallizer at the raffinate (configuration 1). Blue is
for -0.5% disturbance and red is for + 0.5%. Meaning of the thick and the thin lines in figures (a) and (d) is as in
Figure 3.3.
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Figure 3.7: Schematic diagram for the alternative raffinate configuration (configura-
tion 2)

This high sensitivity to disturbances of the raffinate configuration can easily be

rectified by adapting the pump configuration to fix the raffinate instead of the ex-

tract flow rate. One corresponding alternative pump configuration (configuration 2)

is shown in Figure 3.7. For validation, the open loop dynamics for disturbances of the

external feed flow rate with the alternative pump configuration are illustrated in Fig-

ure 3.8. From Figure 3.8 we conclude that the alternative configuration can tolerate

much larger disturbances (± 7.5% in Figure 3.8 compared to ± 0.5 % in Figure 3.6)

without the formation of crystals of the undesired enantiomer and achieves a similar

performance like the extract configuration in Figure 3.2. Nevertheless, tolerable dis-

turbances are of course limited, underlining the necessity of control which is discussed

in the next section.
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Figure 3.8: Effect of step disturbances of the external feed flow rate for a crystallizer at the raffinate (configuration 2). Blue
represents -7.5% disturbance and red represents +7.5% disturbance. Meaning of the thick and the thin lines in
figures (a) and (d) is as in Figure 3.3.
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3.2 Feedback control

In this section, suitable plantwide control concepts for SMB crystallization pro-

cesses are introduced. The focus is on the extract configuration illustrated in Fig-

ure 3.2. It should be noted, however, that analogous concepts can be applied to the

raffinate configuration. For the latter, the modified pump arrangement i.e. configu-

ration 2 according to Figure 3.7 should be used.

The main objective of the control is to guarantee high purity of the crystalline

product from the crystallizer also in the presence of unforeseen disturbances. This in

turn requires that the feed to the crystallizer has to stay all the time in the corre-

sponding two phase region of the phase diagram. In case of the extract configuration

in Figure 3.2, which will be discussed below, this is region II in Figure 3.1.

The aim of the control can be achieved via different approaches. A straight forward

approach would be to directly control the purity in the extract outlet of the SMB plant

by manipulating the corresponding flow rates. For this, different control concepts have

been developed during the last years as briefly summarized in Chapter 1. However,

easier options are available for the coupled SMB-crystallization process considered

within this chapter. Instead of controlling the SMB plant, crystallizer operation can

be manipulated directly by controlling the amount of solvent removed or added to

the system (Figure 3.2). In a first step, the solvent removal between the SMB unit

and the crystallizer (unit SR in Figure 3.2) is considered as a manipulated variable.

As a second option, solvent addition after the crystallizer is briefly discussed as a

manipulated variable. In both cases, the measured variable is the mass fraction of

the weaker adsorbing component in the crystallizer outlet, which is directly related

to the location of the feed to the crystallizer according to Figure 3.1. This quantity

could be measured relatively easily online using a combination of a UV detector and

a polarimeter.

For both control concepts discussed before, simple PI controllers are used. The

controller tuning was performed using the step response method by Ziegler and

Nichols [64]. However, any other tuning method for single input single output lin-

ear systems could be applied including auto tuning methods [65]. The controller

parameters are provided in Table 3.2

The performance of this simple control concept is displayed in the Figures 3.9

through 3.11 for some characteristic disturbances used already in the previous section.

All of these figures give a direct comparison between the open loop dynamics (red

lines) and the closed loop dynamics (blue lines). Figures 3.9 and 3.10 are for step
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Chapter 3. Dynamics and control of SMB-crystallization processes

Table 3.2: Controller parameters for an SMB-extr.crys process
Parameters Value
Kc[min/ml] 0.82
τI [min] 15.0

disturbances of the external feed concentration of +10 % and +17.5 %, respectively.

Figure 3.11 is for a step disturbance of the external feed flow rate of -33 %. In

all of these cases without control, formation of crystals of the undesired enantiomer

is observed and the product specifications are lost. In all cases with control, the

formation of crystals of the undesired enantiomer can be avoided leading to pure

product at all times. In addition, for a +17.5 % disturbance of the external feed

concentration in Figure 3.10 the process is stabilized and any undesired oscillatory

behavior is eliminated by proper feed back control. In summary, it is concluded that

the proposed control concept is simple but powerful and fully serves the purpose.
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Figure 3.9: Comparison of open loop and closed loop process behavior for a step disturbance of +10.0% of the external feed
concentration for a crystallizer at the extract. Blue represents the process with SR control and red represents the
uncontrolled process. Meaning of the thick and the thin lines in figures (a) and (d) is as in Figure 3.3.
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Figure 3.10: Comparison of open loop and closed loop process behavior for a step disturbance of +17.5% of the external feed
concentration for a crystallizer at the extract. Blue represents the process with SR control and red represents the
uncontrolled process. Meaning of the thick and the thin lines in figures (a) and (d) is as in Figure 3.3.
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Figure 3.11: Comparison of open loop and closed loop process behavior for a step disturbance of -33% of the external feed
flow rate for a crystallizer at the extract. Blue represents the process with SR control and red represents the
uncontrolled process. Meaning of the thick and the thin lines in figures (a) and (d) is as in Figure 3.3.
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Chapter 3. Dynamics and control of SMB-crystallization processes

The results in the Figures 3.9 to 3.11 have been obtained with a quasi-static model

of the crystallizer. To check the influence of finite crystallizer dynamics, an extended

version of this simple model with finite dynamics has also been implemented. The cor-

responding model equations are given in the Appendix C. The results of the open and

closed loop dynamic investigations with finite crystallizer dynamics are also provided

in the Appendix C. There it is shown that the simple control concept introduced with

a quasistatic crystallizer model can be directly applied to finite crystallizer dynamics

if the controller parameters are adjusted accordingly (see table C.1 ).

As mentioned earlier, instead of manipulating the amount of solvent which is re-

moved from the extract before being fed to the crystallizer, also the amount of solvent

added to the system after the crystallizer (Q̇Diluent) could be used as a manipulated

variable. In principle, this also works. However, since the crucial influence on the

crystallizer operation has an additional lag introduced by the SMB unit, performance

of this second control structure is not as good as with the first control structure.

During the transients some temporary formation of undesired crystals was observed.

3.3 Summary

This chapter discussed the dynamics and control of SMB crystallization processes.

The main control objective is to restrain the process operation within the correspond-

ing two phase region of the SLE thus ensuring a pure crystalline product. For this

purpose, the optimal design of the previous chapter had to be relaxed giving rise

to a so called robust design. The effect of disturbances on the “robust design” was

analyzed. It was observed that due to the asymmetry introduced by the direction of

the fluid flow in the SMB unit, an appropriate pump configuration turned out to be

crucial to avoid high sensitivity to disturbances, especially of the external feed flow.

From the investigations, it was recognized that the outlet flow rate of the SMB unit

coupled to the crystallizer should be fixed to limit the variation of the flow rates in

the recycle loop. This is in agreement with standard rules for plantwide control of

multi-unit chemical process with recycle [66]. Nevertheless, for larger disturbances,

the product purities could not be kept within the required specification. Therefore, a

feedback control based on manipulating the solvent removed or added to the system

was developed as a simple alternate option to standard complicated SMB control.

In the following chapter, we evaluate the dynamics of a second hybrid process

combination, namely SMB-racemization.
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Chapter 4

Dynamics and control of

SMB-racemization processes

In the previous chapter, the effect of disturbances of the external feed on the oper-

ability and process dynamics of SMB-crystallization process were studied. Although

some extra safety margins were introduced leading to a so called robust design, the

magnitude of tolerable disturbances was limited and some simple plant wide control

strategies were developed to compensate such disturbances. In the present chapter,

the investigation of dynamics and operability is extended to SMB-racemization pro-

cesses. Since dynamics and controllability crucially depends on the kinetics of the

chemical reaction, two different case studies are considered

• slow reaction with kforwardVreac = 0.1 and moderate product purity of 90%

• fast reaction with kforwardVreac = 100000 and high product purity of 99%

Adsorption isotherms are taken from the PDE system according to Appendix A.

4.1 Slow reaction kinetics and moderate purities

In this section, focus is on the first case study with slow racemization kinetics and

moderate product purity requirements. Figure 4.1 shows the schematic configuration

of the process. Nominal operating points are the optimal design parameters which

have been obtained in section 2.2.2 (Table 2.2). The consequence of step disturbances

of the external feed concentration and of the external feed flow rate imposed to

the nominal operating points have been investigated. In general, any permanent

disturbance of the external feed concentration/flowrate will lead to a permanent offset
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Chapter 4. Dynamics and control of SMB-racemization processes

Figure 4.1: Schematic diagram for an SMB-racemization process

of the product purity from its specification. To overcome this problem suitable control

strategies are introduced within this chapter step-by-step.

As an initial step, an extension of the control concepts developed previously in

chapter 3 for SMB-crystallization processes to SMB-racemization processes is con-

sidered. In these concepts, the solvent removal in the recycle loop is used as a ma-

nipulated variable and product purity of the raffinate is considered as the controlled

variable. Online measurement with reasonable effort is possible for the present class

of mixtures by a combination of a UV detector and a polarimeter, for example [67].

4.1.1 Static controllability analysis

To check the feasibility of this control concept, static controllability of the raf-

finate product purity by means of the solvent removal is investigated using steady

state continuation in DIVA [61]. Results are shown in Figure 4.2 for nominal opera-

tion and a 5% increase/decrease of the external feed concentration. In all cases the

desired steady state purity of 90% can be achieved with some suitable values of the

manipulated variable. Due to the maximum of the curves even two different values of

the manipulated variable are available in each case, corresponding to an input mul-

tiplicity. The solvent removal value which would be adjusted by the control system

depends on the controller tuning and/or the initial conditions and does not bother

us at this point of the discussion.
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Figure 4.2: Comparison of steady state parameter continuation profiles when sub-
jected to step disturbances of ± 5% of the external feed concentration.
The solid lines are for 5%, the dotted lines for nominal and the dashed
lines are for -5%. Case study corresponds to slow kinetics
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are for -5%. Case study corresponds to slow kinetics. Nomenclature is
same as in Figure 4.2
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Table 4.1: Controller parameters for an SMB-extract.racemization process for slow
kinetics

Parameters Value
Kc[min/ml] 7.86
τI [min] 18.1

Analogous patterns of behavior are illustrated in Figure 4.3 for a ± 5% in-

crease/decrease of the external feed flow rate.

4.1.2 Open loop and closed loop process dynamics

Here, we discuss the results of the dynamic simulation for the process scheme

shown in Figure 4.1. The dynamic behavior of the closed loop operation compared to

the open loop operation corresponding to the feed concentration disturbances (step

disturbance) in Figure 4.2 are shown in Figure 4.4, whereas the feed flow rate dis-

turbances corresponding to Figure 4.3 are shown in Figure 4.5. The open loop step

responses are illustrated in Figure 4.4 and Figure 4.5 by the dashed lines. In contrast

to the previous chapter, any permanent disturbances lead to a permanent offset of

the product purity. Further, from the symmetry of the open loop responses it is

concluded that the system is in the linear range. The reason for this is the moder-

ate product purity of the reference point. Further, it is concluded from Figures 4.4

and 4.5 that in closed loop operation the disturbances are well compensated by the

control system through readjusting the solvent removal (Q̇reac
SR ). For this purpose,

simple PI controllers were used. Controller parameters were calculated by numerical

optimization minimizing the integral of the squared controller error. The controller

parameters are provided in Table 4.1. The resulting closed loop dynamics is smooth

and relatively fast as shown by the solid line in the Figures 4.4 and 4.5 and it is

concluded that the proposed control strategy works nicely if the disturbances are not

too large.

For a larger disturbance of +7.5%, however, controllability fails for the above de-

sign specifications without safety margins as illustrated in Figure 4.6. In this figure,

the maximum product purity of the corresponding dashed line is clearly below 90%.

This implies that the desired product purity cannot be adjusted anymore by means

of the solvent removal rate. To overcome this problem and extend the range of dis-

turbances the control system is able to tolerate, the design is modified. In particular,

the process is overdesigned for a product purity of 92% instead of 90%. Modified

design parameters are determined with the optimization procedure described in the
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Figure 4.4: Comparison of an open loop and closed loop process for ± 5 % disturbance
of the external feed concentration. The solid lines are for the process with
control while the dashed lines are for the process without control. Red is
for -5 % while the blue curves are for + 5 %
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Figure 4.5: Comparison of an open loop and closed loop process for ± 5 % disturbance
of the external feed flow rate. The solid lines are for the process with
control while the dashed lines are for the process without control. Red is
for -5 % while the blue curves are for + 5 %
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Table 4.2: Robust design for an SMB-racemization process with racemization at the
extract for slow kinetics

Variables slow reaction

Q̇1[ml/min] 1.7846

Q̇2[ml/min] 0.25

Q̇3[ml/min] 1.2157

Q̇4[ml/min] 0.9858

Q̇solid[ml/min] 1.8696

Q̇reac
SR [ml/min] 0.6459
Puritycoupling 83.08

Q̇F0
[ml/min] 0.0770

previous chapter. Values are given in Table 4.2. Static controllability of a reference

point with 90% purity for a critical increase of the external feed concentration of

7.5% is illustrated in Figure 4.6 with the solid line. The dynamic performance of

the closed loop system compared to the open loop dynamics is shown in Figure 4.7

for 7.5% increase/decrease of the external feed concentration. The modified strategy

again shows very good characteristics.
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Figure 4.6: Comparison of steady state parameter continuation profiles when sub-
jected to step disturbances of 7.5 % disturbance of the external feed con-
centration. The solid lines are with a safety margin while the the dashed
lines are without safety margin
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Figure 4.7: Comparison of an open loop and closed loop process for ± 7.5% dis-
turbance of the external feed concentration. The solid lines are for the
process with control while the dashed lines are for the process without
control. Red is for -5% while the blue curves are for + 7.5%
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In summary, we find that the proposed control strategy of manipulating product

purity by means of solvent removal is very effective. It can be combined with an over

design to also handle large disturbances, if necessary. Results are however for slow

racemization kinetics with moderate purity requirement. Influence of fast racemiza-

tion kinetics with high product purity requirement is analyzed in the next section as

the second case study.

4.2 Fast reaction kinetics and high purities

Here, in this section, an increased product purity of 99% and a fast racemization

kinetics with Vreackforward = 100000 are considered. As in the previous section, the

effects of step disturbances of the external feed concentration and of the external

feed flow rate applied to the nominal operating points are investigated. Unlike in the

previous section, the recycle concentration of both components is almost symmetric

and is equal to the external feed concentration which confirms that the process is in

the equilibrium regime. Nominal operating points have been obtained in section 2.2.2

and are listed in Table 2.2.

4.2.1 Static controllability analysis

In order to examine if the simple control concept developed in the last section can

be applied for fast racemization kinetics with high product purity requirements, a

steady state continuation is applied as a first step. Results for the nominal operation

compared to a ± 5% increase/decrease of the external feed concentration are shown

in Figure 4.8 for the nominal design corresponding to Table 2.2. It is observed that

for the nominal operation (dotted line in Figure 4.8), the maximum value of the curve

coincides with the required product purity and that there is no room left for handling

disturbances in the positive direction, whereas disturbances in the negative direction

are not critical in that respect. Consequently, the control strategy applied to the

nominal design is not feasible.

Therefore, following the ideas in the previous section, in a second step, safety

margins by means of an overdesign are introduced. In the present case the process

was redesigned for a product purity of 99.5% instead of 99%. Parameters are given

in Table 4.3. Results of the steady state continuation can be seen in Figure 4.9.

Compared to Figure 4.8, the maximum lies now a bit higher than the nominal purity

of 99% giving little room to tolerate some disturbances in the positive direction.

However, a disturbance of the external feed concentration of 5% which is the solid
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5%, -5% disturbance of the external feed concentration. The solid lines
are for 5%, the dotted lines for nominal and the dashed lines are for -5%.
Design without safety margin. Nomenclature same as in Figure 4.2
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5%, the dotted lines for nominal and the dashed lines are for -5%. Design
with safety margin. Nomenclature same as in Figure 4.2
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line in Figure 4.9 is still clearly out of reach.

Table 4.3: Robust design for an SMB-racemization process with racemization at the
extract for fast kinetics

Variables Fast reaction

Q̇1[ml/min] 2.2728

Q̇2[ml/min] 0.2865

Q̇3[ml/min] 1.0905

Q̇4[ml/min] 0.6830

Q̇solid[ml/min] 1.8696

Q̇reac
SR [ml/min] 1.4787
Puritycoupling 78.89

Q̇F0
[ml/min] 0.2963

Hence, in a last step, alternative handles for controlling the product purity are

explored. Results are summarized in Figure 4.10 for a critical increase of the external

feed concentration of 5%. Possible handles are indicated by the pumps in Figure 4.1.

Besides the solvent removal, flow rates in Zone II, Zone IV and the solvent feed of

the SMB plant can be manipulated. From Figure 4.10 it is concluded, that the flow

rate in Zone IV is the only choice which works for a 5% increase of the external feed

concentration.

4.2.2 Open and closed loop dynamics

The dynamics of the open loop system compared to the corresponding closed loop

system is described in Figure 4.11 for a ± 5% change of the external feed concen-

tration. Open loop dynamics show a strong asymmetry of the responses indicating

strong nonlinearity for the high product purity requirements. The blue dashed line

even shows an inverse response. Nevertheless, closed loop control works very well as

indicated by the solid lines. The controller parameters were obtained by numerical

optimization of the integral square error. The controller parameters are shown in Ta-

ble 4.4. Similar patterns of behavior are observed in Figure 4.12 for a ± 5% change of

the external feed flow rate confirming the feasibility of the alternative control concept.

Table 4.4: Controller parameters for an SMB-extract.racemization process for fast
kinetics

Parameters Value
Kc[min/ml] 8.93
τI [min] 15.0
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feed concentration through steady state parameter continuation for fast
kinetics
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Figure 4.11: Comparison of an open loop and closed loop process for ± 5% distur-
bance of the external feed concentration. The solid lines are for the
process with control while the dashed lines are for the process without
control. Red is for -5% while the blue curves are for + 5%
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Figure 4.12: Comparison of an open loop and closed loop process for ± 5% distur-
bance of the external feed flow rate. The solid lines are for the process
with control while the dashed lines are for the process without control.
Red is for -5% while the blue curves are for + 5 %
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4.3 Summary

The dynamics and control of coupled SMB-racemization processes has been ex-

plored for the first time within this thesis. Two simple control concepts have been pro-

posed to compensate unforeseen disturbances of the external feed flow and the exter-

nal feed concentration. It has been proven that for moderate product purity require-

ments an extension of the previous concepts for SMB-crystallization processes can

be applied successfully to the present class of processes, namely SMB-racemization.

For high product purity, this control concept is not applicable anymore and an al-

ternative strategy has been developed. In both cases, an overdesign of the nominal

operation point improved the controllability in respect to the magnitude of tolera-

ble disturbances. Further, from the results of the SMB-crystallization (chapter 3)

it was observed that a selective crystallizer at the product outlet introduces a cer-

tain robustness with respect to the disturbances and therefore a process comprising

SMB-crystallization-racemization is an interesting option.
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Chapter 5

Conclusions

Enantio-pure compounds play a decisive role in the pharmaceutical industry. Due

to their significantly different physiological effects, most of the drugs are marketed in

the enantio-pure form which accounts for almost 40% of the world wide drug market.

This asserts that the development of innovative and economically conducive produc-

tion processes is very important. Traditionally, these productions were performed

using stand-alone separation or reaction units. An enormous potential for improv-

ing the performance of pure enantiomer production is provided by “smart” process

schemes that combine the existing separation techniques such as chromatography

and crystallization with chemical reactions. Also, due to the ever increasing need for

enantio-pure drugs within the pharmaceutical industries, there is a strong demand for

faster process development. A three step approach can be employed for this purpose

which proves to be a useful tool to select and evaluate the interesting process options.

In the first step, promising process candidates are selected based on qualitative crite-

ria arising from industrial practice. In the second step, shortcut methods are applied

for preliminary process design and preliminary evaluation of process performance.

The final step of the three step procedure involves rigorous optimization of the chosen

process variants which is discussed in detail in the first part of this thesis. Initially,

Non-Linear-Programming (NLP) based optimization was used to evaluate six possi-

ble process candidates derived from a qualitative decision tree. The results revealed

that an ingenious and efficient approach would be to determine the optimal process

structure as well as operating conditions simultaneously. This can be performed el-

egantly using Mixed-Integer-Non-Linear-Programming (MINLP). For the first time

these advanced optimization approaches have been applied to design advanced pro-

cess schemes for enantiomer production.
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Chapter 5. Conclusions

The results of the steady state optimal design affirmed that the hybrid process schemes

involving combinations of SMB chromatography with enantio-selective crystallization

and/or racemization are economically more favorable than the corresponding stand-

alone processes. However, the dynamic operation of such non-linear processes with

mass recycle is delicate and non-trivial. Hence, in the second step, dynamics, oper-

ability and control of such processes were considered. The first process which was

investigated was the SMB-crystallization process. The operational objective of such

a process is to produce a pure crystalline product irrespective of the presence of un-

foreseen disturbances. The open loop investigations highlighted the importance of

the pump configuration on the process performance. It was also observed that the

process specifications were not adhered to for moderate to large disturbances. Also

for sufficiently large disturbances, the system stability was lost through a Hopf bifur-

cation leading to self sustained oscillations. This underlines the necessity of suitable

plant wide control which was achieved by manipulating the amount of solvent added

or removed from the system, thus avoiding a complicated direct SMB control.

The second process scheme which was considered for the dynamic investigations

was the SMB-racemization system. Here, two qualitatively contrasting scenarios for

racemization, one corresponding to the kinetic regime while the other in the equi-

librium regime of the chemical reaction were considered. A steady state parameter

continuation was employed as a tool to determine the necessary condition for control-

lability. It was observed that for the process in the kinetic regime, indirect control

based on a solvent removal rate is a simple and feasible option. A direct control

of the SMB plant was not required. It was further shown that this simple control

concept will fail for fast racemization kinetics with high purity requirements. In this

case readjustment of the SMB operational parameters is inevitable for good control

performance. Further, it was also emphasized that for SMB-racemization, including

an enantio-selective crystallization can improve the process robustness.

Here the design and control aspects have been dealt with sequentially. Future work

should focus on integrating design and control. This can be achieved by formulating

a dynamic optimization problem. An extension of this dynamic optimization with

parametric uncertainty can be an interesting option and would ensure a robust de-

sign. Also, by formulating a Mixed Integer Dynamic Optimization (MIDO) problem,

the pump configuration which can tolerate characterisitc disturbances irrespective of
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the location of the crystallizer can be determined which is challenging and worth

pursuing.

For a proof of concept, simple PI controllers were used in this thesis. Alterna-

tively, one could also think of more advanced control concepts like model predictive

control, for example, to explicitly account for non-linear process dynamics and hard

constraints on the process dynamics introduced by the boundaries of the desired

operational region in the phase diagram of enantioselective crystallization process.
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Appendix A

Physico-chemical parameters

Table A.1: Parameters for the model system: PDE

a2 a1 b2[l/g] b1[l/g] cfeed
i [g/l] x∗i Porosity Lc[cm] Dc[cm] Nc/zone

0.6 1.31 0.022 0.04 20.0 0.4 0.7 25.0 0.46 2

PDE follows a Langmuir adsorption behavior which is given by

qi,k =
aici,k

1 +
n

∑

k=1

bi,kci,k

. (A.1)

Table A.2: Parameter values for the model system: PPX
Parameter Unit S-PPX R-PPX
qI
sat [g/l] 46.78
bIi [l/g] 0.10351 0.20556
bqi [l/g] 0.00555 0.02581
bmi [l/g] 0.00334 0.01555
qII
sat [g/l] 64.66
bIIi [l/g] 0.03162 1.63e-8
λ 0.6331
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Appendix A. Physico-chemical properties

PPX follows a quadratic thermodynamic adsorption equilibrium given by [58]

qi = qI
sat

bIi ci + 2bqi c
2
i + cScR (bmS + bmR )

1 +
∑

j b
I
jcj +

∑

k b
q
kc

2
k + cScR (bmS + bmR )

+ qII
sat

bIIi ci
1 +

∑

l cl
+ λci (A.2)

The feed concentration which has been used for the PPX case studies is ci = 12.5

g/l.
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Appendix B

MINLP optimization of SMB processes

and process combinations with variable

number of stages

B.1 Model formulation

A schematic of an SMB unit allowing optimization of the number of stages i.e.

a variable size SMB unit is shown in Figure B.1(a). Later, such units are included

within a super structure such as the one studied in Chapter 2 [Figure B.1(b)]. The

approach which has been used here is similar to the one which has been proposed for

optimizing distillation columns [68].

In this work, an SMB unit is modeled using its equivalent TMB. The feed stage of

the TMB is fixed. The remaining inlet and outlet stages are variable and determined

by MINLP optimization. Binary variables are used to determine the location of

the extract (Ik
E), raffinate (Ik

R), desorbent (Ik
D) and final stage (Ik

L) according to

Eq.(B.1) and thereby define the length of the different zones. Adsorption equilibrium

is described by Langmuir isotherms with parameters for the PDE system as described

in Appendix A. The unit is assumed to be at steady state.

—————–
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(a) TMB modeling with variable stage
number

(b) Super structure

Figure B.1: Schematic models for stage number optimization for SMB processes and process combinations
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The dimension of the four binary variables can be written as

Ik
E , I

k
D, I

k
R, I

k
L ∈ {0, 1}FL−1 (B.1)

Single stage conditions can be written as

FL−1
∑

k=1

Ik
E = 1,

FL−1
∑

k=1

Ik
D = 1,

NMax
∑

k=FL+1

Ik
R = 1,

NMax
∑

k=FL+1

Ik
L = 1 (B.2)

The steady state mass balances of the TMB unit can be written as

I1
D [Des+Rec] − Q̇1 = 0, k = 1

Ik
D [Des+Rec] + Q̇k−1 − Q̇k = Ik

E ∗ Ex, k = 2, ...FL− 1

Q̇FL−1 − Q̇FL + Feed = 0, k = FL

Q̇k−1 − Q̇k − Ik
L ∗Rec = Ik

R ∗Ra, k = FL+ 1, ...NMax − 1

Q̇NMax−1 − Q̇NMax − INMax

L ∗Rec = 0, k = NMax

(B.3)

It needs to be mentioned that Q̇NMax is always fixed at zero.
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The component mass balances across each stage can be written as

Q̇solid[q
2
i − q1

i ] + I1
D

[

Des ∗ cDes
i +Rec ∗ cRec

i

]

− Q̇1 ∗ c1i = 0, k = 1

Q̇solid[q
k+1
i − qk

i ] + Ik
D

[

Des ∗ cDes
i +Rec ∗ cRec

i

]

+ Q̇k−1 ∗ ck−1
i − Q̇k ∗ cki = Ik

E ∗ Ex ∗ cki , k = 2, ..FL− 1

Q̇solid[q
FL+1
i − qFL

i ] + Q̇FL−1 ∗ cFL−1
i − Q̇FL ∗ cFL

i + Feed ∗ cFeed
i = 0, k = FL

Q̇solid[q
k+1
i − qk

i ] + Q̇k−1 ∗ ck−1
i − Q̇k ∗ cki − Ik

L ∗Rec ∗ cRec
i = Ik

R ∗Ra ∗ cki , k = FL+ 1, ..NMax − 1

Q̇solid[q
1
i − qNMax

i ] + Q̇NMax−1 ∗ cNMax−1
i − Q̇NMax ∗ cNMax

i − INMax

L ∗Rec ∗ cRec
i = 0, k = NMax

(B.4)

Purity constraints can be formulated as

FL−1
∑

k=1

Ik
E ∗ ck1 ≥ Pumin

[

FL−1
∑

k=1

Ik
E ∗ ck1 +

FL−1
∑

k=1

Ik
E ∗ ck2

]

NMax
∑

k=FL+1

Ik
R ∗ ck2 ≥ Pumin

[

NMax
∑

k=FL+1

Ik
R ∗ ck1 +

NMax
∑

k=FL+1

Ik
R ∗ ck2

] (B.5)

The above purity constraints have been written in such a way that the stronger adsorbing component is the first one.

A positive minimal zone length (Nminzone) condition has also been implemented which can be written mathematically as

FL−1
∑

k=1

Ik
E ∗ k ≥

FL−1
∑

k=1

Ik
D ∗ k +NMinzone,

NMax
∑

k=FL+1

Ik
L ∗ k ≥

NMax
∑

k=FL+1

Ik
R ∗ k +NMinzone

FL ≥
FL−1
∑

k=1

Ik
E ∗ k +NMinzone,

NMax
∑

k=FL+1

Ik
R ∗ k ≥ FL+NMinzone

(B.6)

Additional equations can be enforced or relaxed depending on whether equal zone lengths are necessary or not.
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Appendix B. MINLP optimization of SMB process combination for producing pure

enantiomers

In this formulation, a fixed order of desorbent, extract, feed, raffinate and recycle

stages according to Figure B.1(a) is explicitly taken into account . This reduces the

number of binary variables and leads to a computational efficient implementation.

The set of relations given by Eq.(B.2) ensures that there is only a single extract

stage, feed stage and so on. The first equation in the set of mass balances given by

Eqs.(B.3) ensures that if the first stage is inactive the fluid flow rate becomes zero.

Since the first active stage below the feed is the desorbent stage i.e. Ik
D = 1, sum of

the solvent and recycle from zone 4 represents the stream which enters and leaves this

stage. Inequality constraints given by Eq.(B.6) enforce positive zone lengths i.e. the

extract stage is located above the desorbent stage. Hence between the the desorbent

and the extract stages there is just a transfer of components between the two phases

while the solid and liquid flow rates are unchanged. Similar ideas are used in the

remaining zones of the SMB unit except in the final zone. When the stage NMax is

inactive, Ik
L = 0 as well as Q̇NMax = 0. This implies that the liquid flow rate is zero

everywhere till the last active stage is encountered. The entire liquid stream which

enters the last active stage is completely recycled back to the desorbent stage of the

SMB unit.

B.2 Results

B.2.1 Simple cost function

The efficiency of this modeling approach is illustrated in a first step by using a very

simple objective function. Here, the objective function corresponds to minimizing the

number of active stages of a stand-alone SMB for a fixed feed flow rate. Identical

purity requirements at both outlets ranging from 95 - 99.8% have been considered.

Further, in a first step, the number of stages in each zone is assumed to be equal.

In Chapter 2, an enumeration approach was used to determine the maximum feed

flow rate as a function of stage number. In such a calculation, the objective function

was to maximize the feed flow rate. Symmetric purity constraints were enforced and

the maximal feed rate was calculated for various stage numbers. Such a calculation

is repeated here for the PDE enantiomer system and is shown in Figure B.2. A high

purity of 99.8% was used in Figure B.2

The results of MINLP optimization needs to be validated which has been per-

formed by comparing them with that of the parametric enumeration procedure. For

this purpose, a fixed feed flow rate of 0.225 ml/s was used. This corresponds to the

horizontal dashed line in Figure B.2. With a fixed feed rate of 0.225 ml/s and out-

79



Appendix B. MINLP optimization of SMB process combination for producing pure

enantiomers
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Figure B.2: Enumeration approach illustrating the effect of stage number on the max-
imum feed which can be processed for outlet purity of 99.8%. Results
are for the PDE enantiomer
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Appendix B. MINLP optimization of SMB process combination for producing pure

enantiomers

let purities of 99.8%, MINLP optimization using DICOPT in GAMS [56, 57] with

CONOPT3 for the NLP subproblems and CPLEX for the MILP master problems.

Parametric enumeration was done using CONOPT3. The minimum number of stages

which is necessary to achieve this separation corresponds to 136 which is identical

with the result of the above enumeration as indicated in Figure B.2. This proves that

the number of stages determined by the NLP based enumeration approach and the

more elegant MINLP approach is identical. The solid flow rate was assumed to be

1.0 ml/s.

Once the validation between the two methods was established, the computational

efficiency of the two methods were compared. For this purpose, the feed flow rate

was fixed to 0.225 unit/time in MINLP optimization and the extract and raffinate

purities were varied. In the parametric enumeration based approach, the maximum

feed flow rate as a function of stage number was calculated similar to Figure B.2

for different purity requirements as shown in Table B.1. In the case of parametric

enumeration, the entire curve was generated ranging from a maximum of 400 stages

to a minimum of 40 stages irrespective of the location of the desired operating point.

Table B.1 clearly demonstrates the efficiency of the MINLP optimization compared

to the parametric approach.

In Figure B.3(a), we show the effect of product purity on the number of stages.

The results have been generated using MINLP optimization. The number of stages

required to achieve the necessary purity decreases exponentially with a decrease in

purity requirements which is perfectly along the lines of expectation. These are for a

feed flow rate of 0.225 units/time which is identical to that in the Table B.1.

Figure B.3(b) shows the effect of feed flow rate on the minimum number of stages

which is necessary to achieve a certain separation. These are similar to the calcula-

tions shown earlier. Here the blue curve is for a product purity of 99.8% while the red

curve is for 97.5%. The circles in the figure are the outcome of MINLP calculations.

As expected, the amount of feed which can be processed increases by relaxing the

purity requirements. Further, for a fixed purity, the minimum number of stages which

is necessary to achieve the desired purity decreases significantly with a decrease in

the feed flow rate.

Upto now focus has been on stand-alone SMB processes. In a next step, such

variable stage number SMB models were coupled to other process units such as crys-

tallization and racemization. Here, the discussion is limited to fixed process candi-

dates. For the stand-alone SMB process, a feed flow rate of 0.225 ml/s is considered.

For a feed concentration of 20 mg/ml, this corresponds to 4.5 mg/s of product. Since
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Appendix B. MINLP optimization of SMB process combination for producing pure

enantiomers

Table B.1: Comparison of CPU time for the two methods to perform stage num-
ber optimization. Computations were performed on a linux 2GHz, AMD
Athlon single core processer

Purity Ntot TIME (sec) Method
95.0 % 40 70 MINLP
97.5 % 60 66 MINLP
99.0 % 84 47 MINLP
99.5 % 104 101 MINLP
99.8 % 136 92 MINLP
95.0 % 40 289 Parametric
97.5 % 60 259 Parametric
99.0 % 84 251 Parametric
99.5 % 104 243 Parametric
99.8 % 136 257 Parametric

Table B.2: Minimum number of stages for the different process schemes
Process Ntot

SMB 136
SMB-cryst 60
SMB-rac 132

SMB-rac-cryst 28

SMB units have to be compared with the SMB-racemization systems, the calcula-

tions here are based on a product rate of 4.5 mg/s at the extract. This in turn makes

sure that the stand-alone SMB which has already been optimized previously can be

compared with the more advanced process options. Table B.2 shows the results of

the optimization for four different processes. It can be seen that there is a significant

reduction in the number of stages necessary to produce the fixed amount of products

by using a crystallization. This is clear from the results for SMB-crystallization as

well as for SMB-racemization-crystallization. In the case of SMB-racemization, there

is no significant improvement for this hypothetical cost function. This is due to the

fact that the reduction in feed material cost by half does not have a direct effect on

the number of stages.

Another important parameter which has a significant effect on the number of

stages is the separation factor. In order to evaluate the effect of separation factor, the

adsorption isotherm parameter of the stronger adsorbing enantiomer is varied while

simultaneously maintaining the weaker adsorbing isotherm parameter constant. The

separation factor is defined as the ratio of the adsorption isotherm parameters i.e.
a1

a2

according to the convention used in this thesis. The results of such an investigation
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enantiomers
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Figure B.3: (a) Minimum number of stages as a function of the product purity (b)
Minimum number of stages as a function of the feed flow rate
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enantiomers
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Figure B.4: Effect of separation factor on the number of stages

is shown in Figure B.4. The results have been generated for a feed flow rate of 0.225

ml/s and extract and raffinate outlet purities of 99.8%. It can be seen from the figure

that the qualitative profiles are in accordance with intuition.

Upto this point, the number of stages were assumed to be equally distributed

among the four zones of the unit. But it is interesting to realize that an optimization

formulation such as the one given by Eqs.(B.1 - B.6) allows to optimize unequal

number of stages in the four zones of the SMB. Table B.3 shows the results for

this second set of optimization. By using unequal stage numbers in each zone, the

minimum number of stages required to achieve the separation is much smaller. The

results correspond to a fixed feed flow rate of 0.225 ml/s which has already been

investigated for the equally distributed scenario. It must also be mentioned that here

the number of stages in the zones 1 and 4 are very small. This could be due to the

fact that in the present formulation there is no restriction on the amount of solvent

added to the SMB. Nevertheless, these results emphasize the computational potential

of such a formulation.
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Appendix B. MINLP optimization of SMB process combination for producing pure

enantiomers

Table B.3: Minimum number of stages for unequal stage number for stand alone SMB
with symmetric purities

Purity No. of stages in zone Ntot

1 2 3 4
95.0 % 3 12 9 3 27
99.0 % 6 15 27 3 51
99.8 % 5 30 26 4 65

B.2.2 Super structure based optimization for process combinations

From the results of the MINLP optimization with fixed stage numbers in Chapter

2, it is clear that the weighting factors, production rates etc. play a critical role

in determining the optimal process scheme. Figure B.1(b) shows a super structure

which includes a variable stage SMB unit coupled with a racemization reactor and

enantio-selective crystallizer. Here, additional binary variables are used to denote

the existence/non-existence of the different auxiliary units. Optimizing such a super

structure for the user defined process and product specifications as well as user defined

cost factors would provide the optimal process structure including the SMB size and

the optimal operating conditions. A more detailed cost function along the lines of

chapter 2 can be written for a variable stage SMB unit as

f =
(wf + winv)Mrac + wop

((1 − yER)0.5 + yERY )Mrac

(B.7)

with

winv = w̃inv,SMB ∗Ntot + yRCwinv,RC + yECwinv,EC + yERwinv,ER

and

wop = wop,SMB + yRCwop,RC + yECwop,EC + yERwop,ER

Here, Ntot is the total number of active stages of the SMB unit. Depending on the

different weighing factors, various process schemes were obtained as optima.

Until now, the results were calculated using a hypothetical TMB model. But in

reality, the parameters obtained need to be converted to SMB design parameters.

For designing an SMB unit, the Q̇k and Q̇solid values need to be converted to real

flow rates and switching times along with an additional pressure drop constraint.

Converting the optimized TMB results to actual SMB operational parameters can be

performed using relations already available in the literature [53]. In the next section,

we use these translation strategies to design an SMB unit incorporating the additional

restriction on pressure drop.
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B.2.3 SMB design using TMB parameters

In order to design an SMB, the model equations used in the previous section are

appended to the Eqs.(B.8) - (B.22). This in turn ensures that the optimal Q̇k values

which are determined are in accordance with the minimum switch time or maximum

pressure drop limitations. The additional optimal design parameters besides the ones

which were determined for the TMB calculations are the column length (Lc), column

diameter (Dc), switch time (tswitch). The equations which are used for the TMB to

SMB translation can be written as.

Ac = 3.1416 ∗Dc ∗Dc/4 (B.8)

Vc = Ac ∗ Lc (B.9)

tswitch =

Vc ∗ (1 − ǫt) ∗

[

FL−1
∑

k=1

ID ∗ Q̇k −
FL−1
∑

k=1

IE ∗ Q̇k

]

QE
(B.10)

HETP = (aV D + bV D ∗ ULIN) (B.11)

NTPCOL ∗HETP = Lc (B.12)

NTP = 4 ∗NTPCOL (B.13)

NTP = (FNP −DPR + 1) (B.14)

dPj =
1 ∗KdP ∗ Lc ∗Q1

ǫb ∗ Ac

(B.15)

Q1 ∗ tswitch =
FL−1
∑

k=1

ID ∗ Q̇k ∗ (1 − ǫt) ∗ Vc + ǫt ∗ V c (B.16)

Q2 ∗ tswitch =

FL−1
∑

k=1

IE ∗ Q̇k ∗ (1 − ǫt) ∗ Vc + ǫt ∗ V c (B.17)

Q3 ∗ tswitch = Q̇FL ∗ (1 − ǫt) ∗ Vc + ǫt ∗ V c (B.18)

Q4 ∗ tswitch =

NMax
∑

k=F l+1

IR ∗ Q̇k ∗ (1 − ǫt) ∗ Vc + ǫt ∗ V c (B.19)

ULIN =
Q1 +Q2 +Q3 +Q4

4 ∗ PORB ∗ Ac
(B.20)

dP1 + dP2 + dP3 + dP4 ≤ ∆PMax (B.21)

QE ∗
FL−1
∑

k=1

IE ∗ Q̇k ∗ ck2 = MPEX (B.22)

Here we discuss the results obtained using a more detailed cost function. The cost
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function can be written as C = CInv + CFeed + CSolv + COper + Cads [59]. Here CInv

represents the investment cost arising from the different units. CFeed and CSolv corre-

sponds to the feed material and solvent cost respectively. COper is the operation/labor

cost while Cads arises from the cost of chiral stationary phase.

The studies in this section have been performed for a fixed production rate of 2

mg/s. The extract is assumed to be the desired product. The cost function incorpo-

rating all the former contributions can be written as

C = Wf∗Mrac+Winv,SMB+Winv,Cry+Winv,Rac+Wsolv∗SC+Wop+Wads∗V c∗4 (B.23)

Since the investment and operation costs are not known explicitly, it is assumed in

a first step that the effect of these contributions is same for all three processes. This

implies that additional equipments and operation costs associated with a crystallizer

and racemizer are insignificant. Under such scenarios, the three processes namely

SMB, SMB-cryst, and SMB-rac-cryst can be compared. The results for this case is

given in Table B.5. Irrespective of the weighing factors as well the process scheme, the

length of the column (Lc) was always observed to be at the lower bound. Hence, there

was no significant effect of the number of stages on the process optimum though there

is a significant reduction in the objective function value for the process combinations.

A maximum pressure drop restriction of 200 bar across the four zones was considered

as the limit and was always at the bound. It can be seen that there is a significant

reduction in the cost by using process combinations. This arises mainly from the

use of columns with smaller diameters which reduces Cads. Since the effect of feed

material cost is not significant in comparison with the adsorbent cost, the effect of

racemization is not so pronounced. By using a larger Wf , and lower Wads, the effect

of racemization would be much more evident as there is a reduction in the amount of

feed material by half.
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Table B.4: Comparison of different processes with translation to SMB
Process Wf Wsolv Wads Winv,SMB Winv,Cry Winv,Rac Wop

Case 1 1.0 0.1 0.01 0.0 0.0 0.0 0.0

The entries which are in bold implies they are at their lower/upper bounds.

Table B.5: Comparison of different processes with translation to SMB for case 1 in Table B.4
Process Q1 Q2 Q3 Q4 F0 Lc Dc ts NTP Objective

SMB 2.983 1.722 1.822 1.615 0.1 10.0 3.248 60.0 200 1.066
SMB-cryst 2.316 0.635 0.814 0.593 0.1 10.0 2.294 60.0 188 0.686

SMB-cryst-rac 2.019 0.951 1.071 0.951 0.05 10.0 2.544 60.0 200 0.665
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Dynamic crystallizer model

In this Appendix, a dynamic version of the simple crystallizer model in the

Eqs.(2.8) - (2.10) is introduced. Let ψ be the void fraction of the crystallizer, i.e.

the volumetric fraction of the liquid phase. Further, let δ be the fraction of crystals

of the enantiomer 1 of the solid phase of the crystallizer. If we assume that ψ and

δ in the product removal are the same as inside the crystallizer and - as before -

the densities of the solid and the liquid are constant and identical, a simple dynamic

model can be formulated in the following form:

Total material balance of the liquid phase

d(ψV )

dt
= Q̇evap − ψQ̇out −

2
∑

1

ki [Xi,ml −X∗

i ] (C.1)

Component material balances of both solutes in the liquid phase

d(ψVXi,ml)

dt
= Q̇evap Xi,evap − ψQ̇outXi,ml − ki [Xi,ml −X∗

i ] (C.2)

Component material balance of enantiomer 1 in the solid phase

d((1 − ψ)V δ)

dt
= k1 [X1,ml −X∗

1 ] − δ(1 − ψ)Q̇out (C.3)

Total material balance for equal and constant densities of the solid and the liquid

phase can be written as

Q̇out = Q̇evap (C.4)

This arises from the equal density assumption whereby they cancel off.

The effect of finite crystallizer dynamics on the open loop behavior is illustrated

in Figure C.1 for a capacity of 0.1 (red), 1 (blue) and 10 (black) volume units of
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model

the crystallizer for a +17.5 % increase of the external feed concentration. For very

small volumes, similar patterns of behavior as predicted with the quasi-static model

are observed. In particular, instability in the form of self sustained oscillations is

obtained. As can be expected, the oscillations are being damped away with increasing

volume of the crystallizer. However, formation of undesired crystals, which is the

major problem in this disturbance scenario remains independent of the volume of the

crystallizer. Irrespective of the volume, the control strategy proposed above can be

used to solve this problem. This is illustrated in Figure C.2 for the three different

cases of Figure C.1. The controller parameters for the closed loop process is given in

Table C.1.

Table C.1: Controller parameters for an SMB-crystallization process with a dynamic
crystallizer model

Parameters Value
Kc[min/ml] 0.55
τI [min] 120.0
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Figure C.1: Open loop dynamics for a step disturbance of +17.5% of the external feed concentration for a crystallizer at the
extract with finite dynamics with a capacity of 0.1 (red), 1 (blue) and 10 (black) volume units. Meaning of thick
and thin lines in diagrams (a) and (d) is as in Figure 3.3.
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Figure C.2: Closed loop dynamics for a step disturbance of +17.5% of the external feed concentration for a crystallizer at the
extract with finite dynamics with a capacity of 0.1 (red), 1 (blue) and 10 (black) volume units. Meaning of thick
and thin lines in diagrams (a) and (d) is as in Figure 3.3.
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