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I. Introduction 

1. Cell Death 

 

Cell death plays an important role during development and in maintaining 

homeostasis in the adult organisms, especially in the immune system. Several 

forms of cell death have been described, amongst them the three major forms:  

apoptosis, necrosis and autophagy-associated cell death [1] (Fig. 1).  

 

During necrosis the cell swells, its content is leaking and may cause 

inflammation (Fig.1). Newer studies show some forms of necrosis and 

autophagy to be regulated on the molecular level similar to apoptosis, which 

used to be seen as solely “programmed” cell death form [2]. Therefore, this 

kind of cell death was named necroptosis to discriminate between the 

regulated forms and uncontrolled necrosis. Especially after inhibition of death 

receptor-induced apoptosis, molecular signaling cascades similar to apoptotic 

cascades, which lead to necroptosis can occur [3].  

 

Autophagy serves as a system to remove and recycle organelles and 

intracellular components [4]. The autophagy system helps the cell to eliminate 

pathogens, even though some pathogens evolved strategies to block it or even 

used it for survival [5]. Autophagy usually acts as survival mechanism for the 

cell, nevertheless there are some studies showing it can as well be involved in 

cell death [6] . Autophagic cell death has been shown in vitro, its role in vivo 

remains controversial [7]. 
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Figure 1. Forms of Cell Death 
Cells can die via apoptosis (left), autophagy (middle) or necrosis (right). 
Apoptotic cells shrink and form apoptotic blebs becoming apoptotic bodies, 
which are taken up by phagocytes. Auotphagic cells include cell material into 
autopagosomes, whilst necrotic cells swell and leak content into the 
surrounding areas, possibly causing inflammation.  
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Apoptosis, which was first described by Whylie and Kerr [8], is a tightly 

regulated form of cell death mediated by activation of caspases. Apoptotic cells 

show condensation of chromatin and the cytoplasm, DNA fragmentation and 

destruction of pro-survival factors [9]. Apoptotic cells expose posphatidylserine 

(PS), first bleb and later form apoptotic bodies, which are surrounded by a 

membrane [10]. These apoptotic bodies are taken up by surrounding 

phagocytic cells [10], preventing leakage of the cell content into the 

surroundings and inflammation [11]. Deregulation of apoptosis leads to several 

diseases. Excess apoptosis can cause tissue destruction in autoimmunity or 

neurodegenerative diseases. Insufficient apoptosis can lead to tumor growth or 

survival of autoreactive cells, thereby promoting autoimmunity [12].  

 

2. Molecules Involved in Cell Death 

2.1 Death Receptors  

So far 19 members of the tumor necrosis factor superfamily (TNF) are known. 

TNF is a highly pleiotropic molecule that elicits diverse cellular processes, 

which range from proliferation and differentiation to activation of apoptosis [13, 

14]. Their receptors belong to the tumor necrosis factor receptor (TNFR) 

superfamily, which includes 23 related receptors. Most receptors are type I 

transmembrane proteins, some are anchored to the plasma membrane by 

glycophospholipid moieties and some can be secreted [15]. Within the TNFR 

superfamily some receptors contain death domains (DD) and transduce 

signals, which may lead to cell death [15]. Therefore, these receptors are 

called death receptors (DRs) [16]. Next to death receptors, decoy receptors, 

lacking a DD completely or having a non-functional DD have been described 

[17]. Soluble decoy receptors have been reported to be capable of competing 

with death receptors for ligands and thereby modulate DR signaling [18].  

 

In humans six death receptors have been identified: TNFR1, CD95, DR3, DR4, 

DR5, and DR6 [14]. DRs do not solely signal cell death [15, 19], the outcome 

of their signaling can as well be proliferation, survival or secretion of cytokines 



 

 9 

[15]. Upon binding of their specific ligands DRs recruit DD containing adaptor 

molecules Fas associated-death domain (FADD) or TNF receptor associated- 

death domain (TRADD). FADD controls cell death signaling by recruitment of 

caspase-8, -10 and c-FLIP proteins [15]. TRADD recruits RIP1, TRAF2 and 

cIAPs and thereby controls non-apoptotic signaling [15]. Nevertheless 

crosstalk between pro- and anti apoptotic signaling does occur. TNFR1 for 

example can recruit FADD via TRADD or RIP1 and DR4 and DR4 can activate 

NF-kB and MAPK via caspase-8 and FADD dependent RIP1 activation [15]. 

Whilst CD95, DR4 and DR5 signaling primarily lead to cell death, TNFR1 

induces pro-inflammatory and immune stimulatory activity via JNK, p38-MAPK 

and NF-κB. Molecules involved in death receptor signaling are involved in 

other signaling pathways as well, for example signaling downstream of the T 

cell receptor (TCR) or pattern recognition receptors (PRRs) like Toll like 

receptors (TLRs) [15].  

 

Each death receptor has its unique ligand, apart from DR4 and DR5, which 

both bind TNF-related apoptosis-inducing ligand (TRAIL) [20]. Regarding DR6 

the ligand is less clear. For neurons beta-amyloid precursor protein (APP) has 

been shown as ligand [21, 22]. APP is expressed solely in the nervous system 

[21], where its role in DR6 signaling is discussed controversial [21]. DR6 is 

more broadly expressed, e.g. as a marker for several tumors, e.g. solid tumors 

[23] and sarcoma [24], which makes DR6 an interesting target for tumor 

treatment. 

 

CD95 is a classical DR belonging to the TNFR superfamily [25]. It is a type I 

transmembrane receptor, which is activated via external binding of its ligand 

and induces intracellular formation of a multiprotein complex named death 

inducing signaling complex (DISC) [26].  

 

TRAIL is a ligand, which occurs like CD95 ligand as trimer [27]. TRAIL 

signaling and its effect on disease is not as extensively characterized as 

CD95L signaling. TRAIL signaling is assumed to proceed in a similar fashion 

as CD95 induced apoptosis [28]. Initially, it was believed that TRAIL 

specifically kills tumor cells leaving non-transformed cells unharmed [29]. 
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However, recent evidence suggests that other cell types, e.g. hepatocytes, are 

affected, too, especially after cellular stress induced by triggers like alcohol or 

HCV infection [30].  

 

 

 

 

Figure 2. The Death Receptor Superfamily and their Ligands 
Each death receptor binds to its unique ligand. The exceptions are DR4 and 
DR5, which both bind TRAIL. DR6 is known to bind amyloid precursor protein 
(APP), which does not belong to the TNF superfamily. APP is solely expressed 
in the nervous system. 
 

TNFR1 CD95 DR4
(TRAIL-R1)

DR5
(TRAIL-R1)

DR3 DR6

TNF

CD95L TRAIL

TL1A APP

death domain
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2.2 Caspases 

 

The first discovered cysteine-dependent aspartate specific protease (caspase), 

caspase-1, was found to cleave interleukin-1β and, therefore was named at 

first interleukin-1β-converting enzyme (ICE) [31, 32]. In humans so far twelve 

caspases have been described. Depending on the cellular process they initiate 

or execute they are subdivided into inflammatory or apoptotic caspases. 

Nevertheless, most apoptotic caspases are known to have functions in survival 

and proliferation, too [33]. Inflammatory caspases in contrast are capable of 

inducing cell death as well, e.g. in associated with massive inflammation [34]. 

Based on their position in signaling cascades, structure of their prodomains 

and sequence homology apoptotic caspases are grouped into initiator 

(caspase-2; -8; -9; -10) and effector caspases (-3;-6; 7) [9]. Initiator caspases 

are activated via dimerization and stabilized by auto-proteolysis [35].  

 

All Caspases are synthesized as preforms called zymogens [9]. Caspase 

zymogens consist of a C-terminal prodomain and an N-terminal domain 

containing a large and a short subunit. Apoptotic signaling leads to a cascade 

where caspases activate further downstream caspases [36]. Initiator caspases 

activate effector caspases, which are already present as dimers, by 

proteolytical cleavage [9]. Activated effector caspases cleave directly or 

indirectly via activation of other proteinases substrates, which lead to the 

apoptotic phenotype of the cell as described above. Caspases have an active 

site cysteine (Cys285) and a specificity for substrate cleavage after an Asp 

residue [34]. The only other protease known to have an Asp preference for 

cleavage is granzyme B [37]. An Asp residue alone does not make a protein 

cleavage site though. Several other factors, like surrounding amino acids and 

resulting bonds, conformation etc. define if the protein is a possible substrate 

for a certain caspase [34]. The stable, active enzyme is a heterotetramer 

consisting of two large and two small subunits [38]. Apoptotic executioner 

caspases cleave preferable at DEV(DVG) sites, whilst inflammatory caspases 

prefer WEH(DVG) sites. Nevertheless caspase substrates do overlap.  
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Figure 3. Simplified Overview of Formation of a Stable Active Caspase 
Enzyme.  
After cleavage between the subunits two short and two long subunits form the 
enzyme. This step is needed for increased stability of caspases.  
 

 

Caspase-8 is the main initiator caspase within CD95-, DR4- and DR5-induced 

apoptotic signaling [39, 40]. Caspase-8 is present in the cell as inactive 

monomer. The current accepted model of caspase-8 activation is the induced 

proximity model [41]. According to this model caspase-8 is recruited to 

activated and oligomerized death receptors via FADD [41]. Within the DISC 

caspase-8 is brought in close proximity with another caspase-8, which would 

lead to dimerization as described below. During this process a conformational 

change takes place making the catalytic dyad consisting of His-237 and Cys-

285 accessible [42].  

 

Whilst caspases-8’s function and its role in apoptotic signaling have been 

extensively analyzed, the role of caspase-10, the closest homolog of caspase-

8, remains unclear [43-47]. Caspase-10 was lost in the rodent line [48], which 

may explain the research focus on caspase-8. Still caspase-10 seems not to 

be replaceable in humans, since mutations in its gene lead to autoimmune 

lymphoproliferative syndrome (ALPS) type II [49]. The term ALPS describes 

diseases caused by mutations in caspase-10, CD95 or the CD95 ligand. 

Patients with ALPS show heterogeneous disease syndromes, amongst them 

chronic lymphoproliferation and autoimmunity [50]. 
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Caspase-8 and caspase-10 share the same gene locus with c-Flip on 

chromosome 2q33-34 [51] [52]. They have probably arisen by gene 

duplication. Both enzymes are recruited to the DISC via DED [43]. Both 

caspases seem to have overlapping as well as distinct substrate specifies [43]. 

Fischer et al. could detect more efficient cleavage of receptor interacting 

protein (RIP) by caspase-10 than caspase-8 or -3 suggesting that caspase-10 

through the cleavage of RIP will also inhibit nuclear factor-kB (NF-κB) signaling 

[43]. Caspase-10 causes further cleavage of Bid at IEAD/A (caspase-8 at 

LQTD/G), which is likely to have consequences for downstream signaling. 

Cleavage sites are conserved within caspase-8 and -10. 

 

 

 

Figure 4. Chromosome 2 Gene Locus of Caspase-10.  
Caspase-10 localizes on chromosome 2 in one gene locus with c-FLIP 
(CFLAR) and caspase-8. Likely they have arisen from a common ancestor 
gene.  
 

Effector caspases have short prodomains and are present in the cell as 

inactive dimers [34]. They require cleavage by active initiator caspases or 

granzyme B for activation [53]. The best-characterized effector caspase is 

caspase-3. It is activated by almost all apoptotic initiator caspases and leads to 

cleavage of apoptotic substrates resulting in the apoptotic phenotype of the 

cell. Caspase-3 is involved in CD95-, DR4- and DR5-induced apoptosis 

signaling [54] and downstream of mitochondria [55]. In the absence of 

caspase-3 in vivo other caspases, e.g. caspase-7, can compensate [56]. 
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3. Death Receptor-induced Apoptotic Signaling 

 

After binding their ligand, clustering of death receptors is needed for induction 

of signaling [57]. The activated death receptors recruit adapter molecules, e.g. 

CD95 recruits FADD, which then leads to recruitment and activation of initiator 

caspases via autoproteolytical cleavage [58]. How the apoptosis cascade 

proceeds depends on the apoptosis type of the cell.  

 

Death receptor-induced apoptosis can be subdivided into type I and II 

apoptosis based on the signaling cascade leading to apoptosis [59]. Most cell 

types use almost exclusively one of the two apoptosis signaling pathways [59]. 

Nevertheless, for CD95 it has been shown that expression of the receptor and 

sensitivity towards CD95-induced apoptosis does not differ between type I and 

II cells, making the amount of the receptor unlikely as determining factor for the 

apoptosis type [59]. Tumor cell lines differ in a wide variety of hundreds of 

genes expressed due to being type I or type II apoptotic cells [60] [61]. During 

carcinogenesis tumor cells can develop from type II to type I cells [61].  

 

The classic model of signal transduction involves cell-surface receptors that 

are activated after binding a ligand [62]. The activation of many receptors also 

triggers endocytosis of ligand receptor complexes [62]. Endocytosis does not 

only mean termination of signaling; certain pathways require receptor 

internalization for full activation [62]. Type I cells recruit large amounts of 

caspase-8 to the DISC, at which caspase-8 is cleaved. Algeciras-Schimnich et 

al. could detect a strong link between actin and CD95 signaling in type I cells 

where internalization and clustering of CD95 is found [61]. The huge amount of 

activated caspase-8 activates in turn the effector caspases, caspase-3 and 

caspase-7. 
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Figure 5. Schematic Overview of Apoptosis Signaling via Death 
Receptors and External Stimuli, e.g. UV light 
Upon ligand binding transmembrane death receptors get activated and built a 
multiproteincomplex named Death Inducing Signaling Complex (DISC) in the 
cytoplasm. Caspase-8 gets cleaved and activated at the DISC and activates in 
turn caspase-3 by cleavage in type I cells. In type II cells caspase-8 cleaves 
Bid leading to truncated Bid (tBid). tBid mediates amplification of the apoptotic 
signal via the mitochondrial pathway. The mitochondrial pathway is induced by 
external stimuli like UV light as well. In this pathway caspase-9 is activated at 
the apoptosome. Caspase-9 activation results in caspase-3 cleavage as well. 
Caspase-3 cleaves directly or indirectly via activation of further downstream 
proteins apoptotic substrates leading to the apoptotic phenotype of the cell. 
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Type II cells depend on mitochondria for amplification of the apoptotic signal 

because caspase-3 and caspase-8 are primarily activated downstream of the 

mitochondria in this apoptosis type [59, 63]. In type II cells low amounts of 

caspase-8 are cleaved at the DISC and the apoptotic signal is amplified via the 

mitochondria. This is mediated by cleavage of Bid by activated caspase-8 [64, 

65].  

 

Bid belongs to the B-cell lymphoma 2 (Bcl-2) family proteins, which can be 

divided into three groups. The anti-apoptotic Bcl-2-like and the pro-apoptotic 

Bcl-2–associated X protein (Bax) like proteins have four Bcl-2-homology 

domain 3 (BH3) domains, whilst the pro-apoptotic BH3 proteins have one [66]. 

The ratio of pro- to anti-apoptotic family members is essential for the outcome 

of signaling, apoptosis or survival. Bid cleavage results in translocation to the 

mitochondria where it induces via other Bcl-2 proteins the release of 

mitochondrial factors, which ultimately enhance the apoptotic signal [67] [66].  

The pore forming proteins Bax/Bak are essential for permabilization of the 

mitochondrial membrane and the release of cytochrome c (cytc) and other 

soluble pro-apoptotic factors from the mitochondria leading to apoptosome 

formation [68, 69]. Nevertheless the exact mechanisms of pore formation 

remains unclear [66]. Additionally at late stages of several apoptotic pathways 

the mitochondrial membrane is cleaved, the mitochondria break down and the 

pro-apoptotic factors are released, too [67].  Since type II DR mediated 

apoptosis relies on the function of the mitochondria it is regulated by Bcl-2 

family proteins overexpression of Bcl-2 and Bcl-xl in type II cells can block 

apoptosis [59]. 

 

4. FLIP Proteins as Regulators of Apoptosis 

 

Proteolysis is an irreversible process, in case of apoptotic caspases leading to 

cell death. To prevent unwanted cell death, caspase activation is not only 

regulated at mitochondrial level, but as well at death receptor level. Several 

cellular regulatory mechanisms interfering with cell death have evolved. 

Proteins of the Bcl-2 family [66] and XIAP [70] regulate mitochondrial apoptosis 
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signaling. Cellular FLICE inhibitory proteins (c-FLIP) proteins act directly at DR 

level interfering at different steps with caspase-8 [71]. Next to cellular 

mechanisms some pathogens interfere with apoptosis, as well. Viruses for 

example express viral Flip proteins (vFLIPs) [72]. 

 

c-FLIP proteins also contain DEDs, which allow them to compete with 

caspase-8 for FADD binding [64] [73], resulting in altered DISC composition 

and apoptosis inhibition. c-FLIP is expressed in different isoforms, which can 

have opposing functions [74] [75] and inhibit different steps of caspase-8 

activation [71]. For instance, c-FLIPL contains a caspase-like domain lacking 

proteolytical activity and acts pro-apoptotic when expressed in low amounts but 

anti-apoptotic when highly expressed [75]. In addition, humans generate two 

solely anti-apoptotic acting short isoforms called c-FLIPS and c-FLIPR [76] [64], 

whose expression is regulated by a single nucleotide polymorphism (SNP) 

[77]. Strikingly c-FLIPR expression in humans is associated with an increased 

risk of follicular lymphoma [77], whilst in mice c-FLIPR is the only short isoform 

[78].  

 

 

 

 
Figure 6. Comparison of Caspase-8, -10 and c-FLIP Isoforms 
All proteins contain N-terminal tandem DEDs, which allow them to interact. 
Caspase-8 and -10 and c-FLIPL contain C-terminal a small and a long subunit. 
The main difference between the two caspases and c-FLIPL is the enzymatic 
activity. c-FLIPL lacks an active site and is thereby inactive. The short c-FLIP 
isoforms, c-FLIPS and c-FLIPR contain a very short C-terminal fragment.  
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5. Dimerization and Activation of Initiator Caspases and their 

Regulator c-FLIP 

 

Fig. 7 Dimers Formed at the DISC 
Caspase-8 homodimers lead to apoptotic signaling, whilst the short c-FLIP 
isforms block apoptosis. c-FLIPL seems to act dose dependent. The role of 
dimers containing caspase-10 remains unknown. Most experiments have been 
performed in vitro or with altered recruitment domains. Dimer formation upon 
apoptotic stimuli has not been shown in living cells so far.  
 

 

As described above caspases-8, -10 and c-FLIP proteins are recruited to the 

DISC where they are brought into close proximity. Dimerization seems to be 

the essential activation process leading to a conformational change, which 

makes the active site dyad of caspase-8 accessible [42]. In vitro experiments 
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with kosmotrophic salts showed that caspase-8 forms caspase-8-caspase-8 

homodimers as well as dimers with c-FLIP isoforms [79]. Initiator caspases 

dimerize in vitro in kosmotrophic salts, which leads to enzymatic activity, even 

in the absence of proteolytical processing. If the salt is removed the proteins 

dissociate and loose their activity. Cleavable proteins, in contrast, retain the 

enzymatic activity. Thus, cleavage, which occurs after dimerization, is essential 

for the stability oft the active caspase [34]. Uncleaved active caspase-8 has a 

lower enzymatic activity and cleaves different substrates. Dimerization alone 

seems insufficient to induce apoptosis [35]. In contrast, activation without 

cleavage seems to be sufficient to prevent defects in T cell proliferation, which 

are caused by defects or lack of caspase-8 [80].  

 

Different known c-FLIP isoforms act at different steps of caspase-8 activation 

[71]. The short isoforms directly interfere with DISC binding and the first 

cleavage step of caspase-8 [71]. They lack a long C-terminal domain and 

thereby can’t stabilize caspase-8 in a conformation to form an active center 

dyad. Since caspase-8 becomes not activated they inhibit any possible 

processing steps. Due to its structural similarity with caspase-8 c-FLIPL is 

thought to form dimers with caspase-8 and stabilize caspase-8 in an active 

manner. This makes the first cleavage step possible [71]. Since c-FLIPL is 

enzymatically inactive, it is unable to cleave caspase-8 in return. The activated 

caspase-8 can cleave itself and c-FLIPL generating a p10 caspase-8 and a p12 

c-FLIPL fragment [71]. Reports in the literature regarding the pro- or anti-

apoptotic effect of the cleavage products are controversial. Using a system 

based on mathematical modeling Fricker and colleagues explain these varying 

results by multiple factors adding to the outcome of signaling: the amount of c-

FLIPL, cell type and strength of receptor signal [81]. Interestingly caspase-8-

cFLIPL heterodimers have been shown to protect cells from necrosis [35, 82]. 

This means the composition of dimers at the DISC is not solely a yes or no 

decision on death or survival, but rather a multi-step regulation between 

various pathways. Strong overexpression of c-FLIPL prevents apoptosis [59, 

83]. Most likely this block occurs due to competing with caspase-8 homodimers 

for receptor recruitment. If caspase-10 forms dimers with caspase-8 or c-FLIP 
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or if c-FLIP proteins dimerize with other c-FLIP isoforms or their same isoforms 

remains is currently unknown.  

 

6. DISC Molecules in Proliferation/ Non-apoptotic Signaling 

 

Several DISC components are found in non-apoptotic pathways as well. For 

example caspase-8 activity is also required for proliferation. Seemingly this 

does not require autoproteolytic cleavage processes. Mutants lacking cleavage 

sites do not interfere with T cell proliferation [84]. In humans a non-functional 

mutation of caspase-8 results in an immunodeficiency and reduced IL-2 

production [85, 86]. Mice lacking caspase-8 die prenatal at day 12.5 [40]. After 

T cell activation cleavage of known caspase substrates, such as c-FLIPL or 

RIP1, occurs but Bid is not cleaved [87]. c-FlipL has been described to 

associate with RIP1 and TRAF2 for NF-κB activation [88]. Cancer cells in 

general, regardless of their CD95 apoptosis sensitivity, depend on constitutive 

activity of CD95, stimulated by CD95L for optimal growth [84].  

 

7. Apoptosis in the Immune System 

 

The immune system is an organ system that is regulated by dramatic 

alterations in clonal populations. This is controlled by various mechanisms: 

clonal activation, expansion due to high rates of cell division after contact with 

an antigen and termination by cell death. Apoptosis, a highly regulated form of 

cell death, plays an important role in deletion of autoreactive and excess cells 

in the immune system [12].  
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Figure 8. T cell Activation During an Immune Response 
After antigen contact T cells enter the expansion/effector phase where they 
proliferate. During this phase they are resistant towards death receptor induced 
apoptosis. At the end of the immune response excess T cells become sensitive 
towards apoptosis and most cells are removed. Finally memory cells survive, 
which are resistant to apoptosis.  
 
 
The role of c-FLIPS in the human immune response has been extensively 

analyzed. T cells are protected from DR-mediated cell death during the initial 

phase of an immune response. Thus, c-FLIPS is highly induced in freshly 

activated human T cells and contributes to resistance to CD95-induced 

apoptosis in the early phase of an immune response [78, 89, 90]. The function 

of the other short isoform, c-FLIPR, however, remains unknown. This is very 

interesting since c-FLIPR is the solely short murine c-FLIP splice variant due to 

the gene structure in mice. In humans in contrast c-FLIPR is associated with a 

higher risk of developing follicular lymphoma [77].  
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8. Listeria Monocytogenes as Model for an Immune Response 

 

Listeria monocytogenes (L. monocytogenes) is a gram positive bacterium, 

which causes listeriosis [91]. L. monocytogenes can thrive in a variety of 

environments like soil, water or food products. This can, especially in immune 

compromised people, pregnant women and newborns, cause listeriosis [91]. L. 

monocytogenes enters the body via endothelial cells, but it is able to cross the 

fetal barrier as well and infect the fetus [91]. In addition, L. monocytogenes is 

able to penetrate the blood brain barrier and cause infection of meninges and 

brain [91].  

 

L. monocytogenes enters cells via two surface receptors, Internalin A (InlA; 

and Internalin B (InlB) [92], which both bind host cell proteins [91]. InlB binds to 

the c-Met receptor, whose endogenous ligand is the hepatocyte growth factor 

(HGF). c-Met is usually expressed by cells of epithelial origin. Binding of InlB to 

c-Met leads to rearrangement of the actin cytoskeleton and internalization of 

bacterium via clatherin-mediated endocytosis [91]. InlA binds the host protein 

E-cadherin [93], which is a transmembrane protein required for the formation of 

adherence junctions. After L. monocytogenes has entered the host cell forming 

a vacuole, it lyses the phagosome via two phospholipases (PlcA and PlcB) and 

Listeriolysin O (LLO) and enters the host cytoplasm [91, 94]. LLO is a 

cholesterol dependent cytolysin which is pH sensing and unique for Listeria 

[95]. LLO shows highest activity in the acidic phagosome [95]. In the cytoplasm 

L. monocytogenes can polymerize actin of the host cell and propel itself 

through the cell to a neighboring cell [96].  
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Figure 9. Intracellular Life Cycle of L. monocytogenes 
The bacterium enters the cell forming a primary vacuole, secretes escape 
proteins, which disrupt the membrane, this enables the bacteria to escape to 
the cytoplasm. In the cytoplasm it polymerizes cellular actin for motility. Listeria 
can spread to the next cell, where it is enclosed in a double membrane vacuole 
called secondary vacuole. Here it starts again to secrete virulence factors to 
escape into the cytosol.  
 

In contrast to humans mice are resistant to oral L. monocytogenes infection. 

This is due to murine E-cadherin differing in a single amino acid, which 

prevents binding of InlA [97]. Intravenous infection of mice is a dose-dependent 

model, which is widely used to study T cell activation. Infection with a sub-

lethal dose induces in mice a strong immune response with bacterial clearance 

[98].  

 

Minutes after injection Listeria can be detected in the liver and spleen where 

they are taken up by resident macrophages [98]. A strong T cell response is 

mounted to eliminate bacteria and memory cells are generated [98]. Protective 

immunity is only generated if the injected Listeria are alive and contain LLO 

[99]. The first phase of L. monocytes infection is controlled by innate immunity 

keeping growth in check and preventing spread into a systemic, lethal 

infection. Macrophages are very essential for Listeria infection since the 

bacteria replicate within them [100] and they are essential for mediating 

clearance [101].  
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Listeria induces IFNγ and type I Interferons, which are usually important for 

anti-viral responses and can induce apoptosis [98]. Recognition of bacteria by 

toll like receptors (TLRs) leads to activation of dendritic cells (DCs), which are 

a bridge between the innate and adaptive immune system [102]. Later on the 

adaptive immune system eliminates the pathogen and memory cells are 

formed. In Balb/c mice the adaptive response is mediated be CD8+ cells, whilst 

Black6 mice react to MHCII epitopes leading to a CD4+ immune response [98].  

9. Listeria monocytogenes and cell death  

 

Apoptosis is a component of several infections. Infected cells may be killed via 

apoptosis to prevent spread of the infection, but some microorganisms use 

apoptosis to their advantage, L. monocytogenes being such [101]. After L. 

monocytogenes infection two phases of cell death occur, a fast granzyme B 

induced one and slower one which is not really well understood. During the first 

phase LLO, which is a member of the cholesterol-dependent cytolysin/ 

membrane attack complex/ perforin superfamily of toxins [101]. LLO-induced 

apoptosis depends on the activation state of the T cells. Rapidly dividing 

lymphocytes are susceptible, whilst resting lymphocytes are resistant [103]. 

This process proceeds via granzyme B-induced activation of caspase-3, -6 and 

9 and therefore, this phase can be abolished by granzyme B depletion [104]. 

The following slower apoptotic phase seems to be independent of granzyme B. 

Death receptor mediated apoptosis is known to alter infection with L. 

monocytogenes, e.g. TRAIL-deficient mice show a reduction in apoptosis and 

a lower bacterial burden [105]. Nevertheless, different factors contributing to 

cell death after L. monocytogenes infection are discussed controversial. 

Moreover, the role of L. monocytogenes-induced cell death in macrophages 

and dendritic cells remains controversial. They are the first carriers of L. 

monocytogenes after infection [101]. 
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II. Aims  

 

Deregulated death receptor-induced apoptosis is known to play an essential 

role in the development of severe diseases, e.g. autoimmunity and immune 

deficiency in patients with nonfunctional caspase-8 mutations [12, 85]. 

Therefore, a better understanding of signaling downstream of death receptors 

is needed. Caspase-8 is assumed to form caspase-8-caspase-8 homodimers 

and heterodimers with c-FLIP proteins. Nevertheless, this has never been 

shown in living cells with unaltered recruitment domains. The exact 

localization, where dimerization takes place is unknown, too. Composition and 

localization of caspase-8 dimers will be analyzed to gain a better 

understanding of these processes. This will be done using bimolecular 

fluorescence complementation (BiFC), which allows in vivo visualization of 

dimer formation. This technique has been used prior for visualization of 

caspase-2 dimerization [106]. Here, dimer formation between caspase-8, -10 

and c-FLIP proteins and the localization will be analyzed using BiFC.  

c-FLIP proteins are  known to regulate death receptor signaling at the DISC 

level, e.g. during an immune response. Humans express two short c-FLIP 

isoforms, c-FLIPR and c-FLIPS, but solely c-FLIPR is expressed in the murine 

system [77]. While human c-FLIPS has been extensively analyzed, the role of 

murine c-FLIPR remains unknown. c-FLIPS is known to regulate lymphocyte 

apoptosis during an immune response [89, 90]. Here murine c-FLIPR’s 

functions during an infection as counterpart of human c-FLIPS will be analyzed. 

Therefore, vavFLIPR mice, which express c-FLIPR in cells of hematopoietic 

origin, will be infected with Listeria monocytogenes. Cell numbers, apoptosis, 

bacterial burden and histology will be analyzed. This will show if c-FLIPR alters 

the immune response. Taken together this project aims at clarifying the direct 

interactions of signaling molecules in the DISC and the physiological function 

of c-FLIPR in health and disease. This should lead to a better understanding of 

the role of death receptor-induced apoptosis and possible ways to interfere 

with it in diseases, e.g. infections or autoimmunity.  
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III. Material and Methods 

 

1.1 Chemicals 

 

If not stated otherwise chemicals were obtained from Sigma Aldrich (Munich, 

Germany), Roth (Karlsruhe, Germany) or Merck (Darmstadt, Germany).  

 

1.2 Cell Culture 

1.2 Cell Culture Materials and Devices 

 

Cell culture flasks, 10 cm dishes, 6- and 12-well plates were obtained from 

NUNC (Thermo Fisher Scientific, Rochester, USA). 15ml and 50ml plastic 

tubes used were from Greiner bio-one (Frickenhausen, Germany). 5ml, 10ml 

and 25ml sterile pipettes were obtained from Thermo Scientific (Rochester, 

USA). Sterile pipet tips were used from Starlab (Ahrensburg, Germany).  

 

1.3 Cell Culture Conditions 

All cells used were cultured at 37 °C, 5 % CO2 and 95 % humidity in a 

HERAcell a 240i incubator (Thermo Scientific, Vantaa, Finland). Cells were 

spun down in 5810R centrifuge at 1500rpm and RT (Eppendorf, Hamburg, 

Germany) and handled under a sterile Guard III clean bench (Baker Company; 

Sanford, FL, USA).  
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2. Cell Biological Analyses  

 

2.1 Caspase-8-deficient A3 Jurkat Cells 

 

Due to high endogenous caspase-8 expression caspase-8-deficient Jurkat 

cells generated in the lab of John Blenis were used [39]. The cells were 

cultured in RPMI1640 with 10% fetal calf serum. The parental cell line (A3) was 

used as control. A3 cells were cultured similar as caspase-8-deficient A3 cells. 

 

2.2 SH-SY5Y Cells 

 

SH-SY5Y cells are human neuroblastoma cells. The cell line used was a kind 

gift of Dr. Marcus Rehm (Dublin, Ireland). Caspase-8 is silenced in this cell line 

via methylation and can be induced by demethylation [107, 108]. SH-SY5Y 

cells were cultured in DMEM containing 10% fetal calf serum. 

 

2.3 HeLa Cells 

 

HeLa cells are a cell line derived from a human patient with cervical cancer 

[109]. HeLa cells were grown adherent in DMEM containing 10% fetal calf 

serum.  
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2.4 HT1080 Cells 

 

HT1080 cells are a human fibrosarcoma cell line [110]. They were grown in 

DMEM containing 10% fetal calf serum.  

 

2.5 293 and 293T cells 

 

293 cells were derived from a human embryonic kidney culture and were 

transformed with adenovirus 5 DNA [111]. 293T cells contain additionally the 

SV40 large T-antigen, which allows episomal replication of transfected 

plasmids [111]. 

 

 

antibody clone supplier 

CD95 2R2  2R2 kind gift of Dr. K. Schulze-Osthoff, 

Tuebingen, Germany 

TRAIL-R1 HS101 Enzo Life Sciences, Loerrach, Germany 

TRAIL-R2 DJR1 PE-conjugated, eBioscience San Diego, CA 

TNFR1 H398 kind gift of Dr. H. Wajant, Wuerzburg, 

Germany 

Table 1.  Antibodies Used for Staining of Cell Surface Markers on Cell 
Lines from Human Origin 
 

2.6 Transfection of Cells 

 

Chemical Transfection 

 

Adherent cells were transfected using JetPei (Polyplus Transfection-SA, 

Illkirch, France). SH-SY5Y cells were treated with a mixture of 2 μl Jetpei: 1 μg 
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DNA diluted with 150 mM NaCl solution (Polyplus Transfection-SA, Illkirch, 

France). 293 cells, HT1080 and HeLa cells were treated similar, but using 1μl 

Jetpei : 1 μg DNA. Transfection media was left on cells overnight, than media 

was changed and cells used for experiments.  

 

Electroporation 

 

Cell were grown at a density between 2x105/ ml and 3x105/ml. 20x106 cells 

were taken for electroporation, spun down (1500 rpm; RT) and washed once 

with PBS with Ca2+ and Mg2+ (BioChrom, Berlin, Germany), resuspended in 

350μl PBS and transferred to a 4mm gap cuvette (BTX Harvard Apparatus, 

Holliston, MA USA). 30 μg DNA were added, mixed by slightly shaking and 

pulsed with 230 V/950 µF on a gene Pulser (BioRad, Hercules, CA, USA) with 

capacitance on high. Particles formed were removed with a sterile pasteur 

pipette and cells transferred to a cell culture flask containing a 1:1 mixture of 

old and new cell culture media).  

 

2.7 Stimulation of Cells with TRAIL and CD95  

Cells were either stimulated with TRAIL (TEC-375, R&D; 1μg/ml) or CD95 

ligand supernatant 1 ng/ml (produced in 293T cells) or anti-CD95 antibody 

(2R2; 0.5 μg/ml) for 10minutes up to two hours as indicated. 

 

2.8 Flow Cytometry  

 

PI Uptake Assay (Nicoletti Assay) 

 

To analyze the amount of dead cells a Nicoletti assay was performed [112]. 

During a Nicoletti assay cells are stained with propidium iodide (PI). PI can’t 

cross the membrane, therefore a hypotonic buffer is used to lyse the cell 

membrane. This way apoptotic cells can be measured as sub G1 peak by flow 
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cytometry. Cells were harvested, spun down and incubated for 2 hours in 

Nicoletti buffer (0.1% v/v Trition X 100; 0.1% Trisodium citrate; ddH2O). Then 

cells were analyzed by flow cytometry using a FACScalibur (BD). In case of 

adherent cells supernatant was collected, cells washed with PBS and 

trypsinized, than treated like adherent cells described above.  

 

3. Bimolecular Fluorescence Complementation Analyses as a Tool to 

Study Caspase Dimerization  

 

Figure 10. Schematic Overview of BiFC Analyses 

 1. Cells are transfected with BiFC plasmids. 2. The plasmids code for the 
protein of interest coupled to a fluorescent fragment. 3. If a death receptor is 
stimulated by its ligand, e.g. CD95 ligand, the Death Inducing Signaling 
Complex (DISC) is formed. If both proteins of interest are recruited and 
dimerize at the DISC, the fluorescent fragments are brought into close 
proximity resulting in formation of the intact fluorescent molecule, which than 
can be detected via confocal microscopy or FACS analyses.   
 

Caspases are assumed to form homodimers and heterodimers with other 

caspases and regulatory molecules like c-FLIP proteins. Most techniques like 

conventional antibody staining do not allow visualization of homodimer 

formation. During BiFC the two proteins of interest are each labeled with a 
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fluorescent fragment, but not the complete fluorescent protein [113]. The 

fragments alone cannot be excited. If the proteins tagged with the fragments 

interact the fluorescent fragments are brought into close proximity and reunite 

to form the fluorescent molecule [113]. The fluorescent signal can be detected 

via confocal microscopy in localization studies or quantified by flowcytometry. 

Bouchier-Hayes and colleagues used this approach to show real time 

formation of caspase-2 homodimers [106].  

 

 

 

 

Figure 11. BiFC Constructs 
Overview of BiFC constructs used to analyze interactions between c-Flip 
molecules and caspases. Caspase-8 and -10 are mutated in the active site 
cysteine (C>S) to prevent toxicity for the cells. Additionally constructs of c-Flip, 
caspase-8 and -10 with a mutated hydrophobic patch, which prevents DISC 
recruitment, are used as negative controls. These constructs are brought into 
BiFC vectors via PCR cloning.  
  

4.  Confocal Microscopy 

 

Cells were grown untransfected or after transfection on poly-L-lysine coated 

coverslips, stimulated or left untreated, than fixed using 2% formaldehyde. If 
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using mitotracker or lysotracker cells were incubated before for 20 min in lyso- 

or mitotracker containing cell culture media. After fixation slides were washed 

with PBS and stained with DAPI (20 μM; 20 min; RT). If antibody stainings 

were done cells were treated with saponin containing blocking buffer (1% BSA, 

0.1% Saponin, 0.02% sodium azide in PBS), incubated with primary antibody 

overnight in a damp, dark chamber (4°C) washed 3 times and incubated with 

secondary antibodies (1:1000) for 2 hours at RT. Cover slips were put with 

Dako (Glostrup, Denmark) Mounting Medium onto slides and after drying for 2 

hours borders were closed with nail polish. Samples were analyzed using a 

Leica TCS SP5 confocal microscope (Leica Company, Wetzlar, Germany) and 

Leica LAS AF software for acquiring (Leica Company, Wetzlar, Germany). 

Samples were analyzed using Volocity 3D Image Analysis software 

(PerkinElmer, Waltham, MA, USA).  

5. Mouse Strains 

 

vavFLIPR Mice 

 

vavFLIPR mice express the c-FLIPR transgene under the control of the vav 

Promoter (see figure 12), which leads to expression in all cells of 

hematopoietic origin. The transgenic construct consists of three fragments of 

the vav promotor region surrounding the murine c-FLIPR cDNA attached to a 

SV40 polyadenylation sequence. The transgenic vector has been described by 

Ogilvy, et al. [114].  

 

6. Mouse Infection Experiments 

 

L. monocytogenes (EGD wildtype) were grown in brain heart infusion medium 

(BHI) and mice were infected intravenously via the tail vein with 5x103 colony 

forming units (CFUs).  Mice were sacrificed on day 5 past infection. Liver and 

spleen were separated into three parts and used for histology, CFU coun and 

FACS analyses. One third of the spleen and liver was weighed and 

homogenized in PBS containing 0.2% NP40. 1x10-2 to 1x10-5 dilutions were 
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plated onto BHI agar plates. Colonies were counted 24 hours after plating and 

CFU/g were calculated.  

 

 

Figure 12. Analyses of vavFLIPR Mice after L. monocytogenes Infection 
Mice were injected intravenously with L. monocytogenes. Mice were sacrificed 
on day 3, 4 and 5. Colony forming units were analyzed on day 3, 4 and 5. On 
day 3 apoptosis was measured using AnnexinV and 7AAD. On day 5 T and B 
cell numbers were analyzed and spleen and liver used for histopathology.  
 

 

6. Protein Biochemistry 

6.1 Cell Lyses 

 

1x106 cells were lysed in TPNE Buffer (300mM NaCl; 1% v/v TritonX100, 2 

mM EDTA in PBS (pH 7.4)) 100 x Protease Inhibitors (100μg/ml apopeptin; 

100 μg/ml leupeptin; 100 μg/ml chymostatin; 100μg/ml pepstatinA) and 

Na3VO4 (1mM) for 15 min at 4°C. Then lysates were centrifuged (15 min, 4° C; 

1400 rpmi) and the supernatant was used for further experiments. The pellet 

was discarded.  

 

6.2 Determination of Protein Content 

 

The protein concentration of lysates was determined using a bicinchoninic acid 

(BCA) protein assay (Pierce – Thermo Fisher Scientific). This assay is based 
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on two reactions. First peptide bonds reduce Cu2+ to Cu+. This process is 

proportional to the amount of protein in the sample. In the second step two 

bicinochoninic acid chelate with each Cu+, which results in an at 562nm 

wavelength light absorbing product. The absorption was measured using a 

TECAN infinite 200M (Männedorf, Switzerland) plate reader.  

 

6.3 SDS PAGE 

 

After determination of protein concentration via BCA assay the lysate was 

mixed with 5x Laemmli buffer (10% w/v SDS, 24% v/v β-mercaptoehtanol, 50% 

v/v glycerol, 0.25 mg/ml bromphenolblue) to a final 1 x concentration and 

incubated at 95°C for 3 min. 20 µg of protein lysate was separated in a 12% 

polyacrylamid gel in 1x running buffer using a Biorad tetra cell. Proteins were 

run in the upper gel at 80 V and separated on the lower gel at 160 V. 

6.4 Western blot 

After SDS separation proteins were transferred to a nitrocellulose membrane 

(GE healthcare, Chalfont St Giles, GB) using a Biorad Mini Tetra Cell blotter 

(100 V; 60min) in 1 x transfer buffer (25mM Tris pH 8.0; 192 mM glycerol; 20% 

v/v methanol). After transfer the membrane was incubated in blocking buffer 

(5% non-fat dry milk; PBS; 0,2% Tween) agitating for one hour followed by an 

overnight incubation with an primary antibody in blocking buffer overnight. 

Before incubation in secondary antibody (in wash buffer; 2 hours) unbound 

protein was removed by washing the Blot three times (0.05% v/v Tween; PBS). 

Afterwards it was washed again three times. Detection was done using ECL 

(SuperSignal West Dura substrate, Pierce, Thermo Scientific).  
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antibody Species 

reactivity 

clone supplier 

caspase-3 hu CPP32 R&D Systems  

caspase-8 hu 12F5 Biocheck 

caspase-10 hu 4C1 MBL 

FADD hu; mu IF1 Biomol 

c-FLIP hu Dave-2 Enzo 

c-FLIP hu NF6 Alexis 

CD95 hu C-20 Santa Cruz 

Flag  M2 Sigma Aldrich 

HA  12CA5 Roche 

RIP Hu ms dog rt 

ch 

38 BD 

β-actin Hu ms dog rt 

ch 

AC-74 Sigma-Aldrich 

Table 5 Primary Antibodies Used for Western Blot Analyses 

 

 

reactivity origin clone/notation supplier 

Mouse IgG goat Sc-2055 Santa Cruz 

Mouse IgG1 goat 1070-09 Southern Biotech 

Mouse IgG2a goat 1080-05 Southern Biotech 

Mouse IgG2b goat 1090-05 Southern Biotech 

Goat donkey Sc-2056 Santa Cruz 

Rabbit goat 5030-05 Southern Biotech 

Rat goat Sc-2065 Santa Cruz 

Table 6. Secondary Antibodies (horseradish peroxidase conjugated) 
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6.5 DISC Immunoprecipitation 

2x107 caspase-8-deficient Jurkat cells were spun down (1500 rpm; RT), 

washed with PBS and suspended in 5 ml CD95L supernatant (1ng/ml) for 30 

minutes, then washed twice with PBS and pelleted. Pellets were lysed in 1ml 

DISC lysis buffer (15min; 4°C), centrifuged and supernatant was used for 

immunoprecipitation. To exclude unspecific binding the supernatant was first 

incubated with uncoupled sepharose beads, than with anti-FLAG agarose 

(Sigma-Aldrich, Saint Louis, MO, USA) overnight. Beads were washed three 

times with DISC buffer, then boiled at 96°C for 3min with 5xRSB Buffer (see 

Western blot) and loaded onto a 12% SDS gel (see WB).  

 

 

7. Molecular Biology 

7.1 PCR Cloning  

enzyme manufacturer 
BSA  

added 

incubation 

temperature 
Cat No Recognition Site 

BamH I HF NEB    37°C R3136S 
5’…G∨GATCC…3’ 

3’…CCTAG∧G…5’ 

EcoR I HF NEB   37°C R3101S 
5’…G∨AATTC…3’ 

3’…CTTAA∧G…5’ 

Hind III NEB   37°C R0104S 
5’…A∨AGCTT…3’ 

3’…TTCGA∧A…5’ 

Kpn I NEB x 37°C R0142S 
5’…GGTAC∨C…3’ 

3’…C∧CATGG…5’ 

Not I HF NEB x 37°C R3189S 
5’…GC∨GGCCGC…3’ 

3’…CGCCGG∧CG…5’ 

Sal I HF NEB   37°C R3138S 
5’…G∨TCGAC…3’ 

3’…CAGCT∧G…5’ 
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Xba I NEB x 37°C R0145S 
5’…T∨CTAGA…3’ 

3’…AGATC∧T…5’ 

Xho I NEB x 37°C R0146S 
5’…C∨TCGAG…3’ 

3’…GAGCT∧C…5’ 

 

 

Table 2. Restriction Enzymes 
Restriction enzymes, conditions and recognition sites used for PCR cloning of 
caspase-8, caspase-10 and c-FLIP proteins into BiFC vectors (all enzymes 
were purchased at New England Biolabs, Ipswich, MA, USA) 
 

 

 

Constructs for BiFC experiments were generated using PCR cloning. BiFC 

vectors and control vectors were obtained from Addgene (Cambridge, MA, 

USA). PCR primers with restriction sites were designed using Serial Cloner 

Software. As templates vectors coding for the protein of interest were used.  

Caspase-10a was a kind gift of Ute Fischer (Heinrich Heine Universität, 

Düsseldorf, Germany), caspase-8b from Frank Kischkel (TherapySelect, 

Heidelberg, Germany) and c-FLIP from Frida Ewald (HZI, Braunschweig, 

Germany). Inserts were generated via PCR with PhusionFlash polymerase 

(New England Biolabs, Ipswich, MA, USA). The final BiFC vectors (VN173; 

VC155) and PCR products were restricted generating complementary ends. 

PCR products were ligated into DNA vectors using T4 Ligase (NEB; Ipswich, 

MA, USA) for 10min at RT.  

 

7.2 Plasmid Amplification 

Bacteria from glycerol stocks or transformed bacteria were plated on agarose 

plates containing lysogeny broth (LB) media (1% NaCl; 1% bacto 

trypton/pepton; 0.5 % yeast extract, pH 7.0; 50 μg/ml kanamycin or 100 μg/ml 

ampicillin) and incubated at 37°C overnight. Single colonies were picked and 

grown in 2 ml liquid LB media. DNA was isolated from competent bacteria 

using Zyppy Plasmid Mini Kit (Zymo Research, Irvine, CA, USA)  and in case 
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of new constructs sequenced at MWG Operon Eurofins (Ebersberg, Germany) 

and sequences were analyzed using Geneious software (Auckland, New 

Zealand). For amplifying bacteria containing constructs were grown in 300ml 

LB medium containing ampicillin or kanamycin (as described above) and 

endotoxin free plasmids were isolated using Nucleobond Xtra Maxi Plus EF 

(Macherey-Nagel, Düren, Germany) according to the manufacturers 

instructions.  
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 Table 3. PCR Cloning Primer 

PCR Primers used for PCR cloning of genes coding for Proteins of interest into 
BiFC vectors (vectors and genes as indicated in primer names).  

Name Sequence 

BiFC C8 155 (fwd) aag cat GTC GAC gga gAT GGA CTT CAG CAG 

AAA TCTT 

BiFC C8 155 (rev) cga agt gGG TAC Cga tAT CAG AAG GGA AGA 

CAA GTTT 

BiFC C8 173 (fwd) aag cat GCG GCC GCg gag ATG GAC TTC AGC 

AGA AAT CTT 

BiFC C8 VN173 (rev) cga agt gGT CGA Cga tAT CAG AAG GGA AGA 

CAA GTT T 

BiFC C10 155 (fwd) tag gaa ttc cta caA TGA AAT CTC AAG GTC AAC A 

 

BiFC C10 155 (rev) tag cct cga gta tcT GAA AGT GCA TCC AGG GGC 

AC 

BiFC C10 173 (fwd) cta cga att cta gcg agA TGA AAT CTC AAG GTC 

AAC A 

BiFC C10 173  (rev) acg tgt cga cta tTG AAA GTG CAT CCA GGG GCA 

C 

BiFC_FLIPL 155 (fwd) tac gca tgt cga cta tgt ctg ctg aag tca tcc a 

 

BiFC FLIPL 155 (rev) ctc att agg tac ctg tgt agg aga gga taa gt 

BiFC FLIPL 173 (fwd) gcg gcc gca ATG TCT GCT GAA GTC ATC CA 

 

BiFC FLIPL 173 (rev) cga atg tct aga TGT GTA GGA GAG GAT AAG TT 

 

BiFC FLIPR 155 (fwd) gta cga att ccg tcg ATG TCT GCT GAA GTC ATC 

CA 

BiFC FLIPR 173 (rev) tgc agg tac cct aTG CTG GGA TTC CAT ATG TT 
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7.3 PCR Mutagenesis  

 

DEDs and active sites were mutated by quikchange site directed mutagenesis 

(Agilent Technologies; Loveland; CO). Within the DEDs the hydrophobic patch 

was mutated (FL>GG), which is known to prevent receptor recruitment. In the 

active center the cysteine was mutated into an serine, resulting in loss of 

enzymatical activity. This kit uses a PfuUltra high-fidelity DNA polymerase and 

two complementary mutagenesis primer containing the desired mutation. 

Plasmids were amplified via PCR followed by digestion of the parental DNA by 

DpnI. After digestion plasmids were transformed into competent bacteria (see 

below). Additionally some constructs were mutated using Phusion HF 

polymerase (Thermo Scientific, Vantaa, Finland) instead. After PCR 

mutagenesis samples were treated as described above. 

 

Mutation Mutagenese Primer 

Casp8M1f 
CA GAA TTG AGG TCT TTT AAG GGC CTT TTG CAA 

GAG GAA ATC TCC 

Casp8M1rev 
GGA GAT TTC CTC TTG CAA AAG GCC CTT AAA 

AGA CCT CAA TTC TG 

Casp8M2fwd 
G AGG TCT TTT AAG GGT GGC TTG CAA GAG GAA 

ATC TC 

Casp8M2rev 
GA GAT TTC CTC TTG CAA GCC ACC CTT AAA AGA 

CCT C 

Table. 4 PCR Primers Used for Mutagenesis  

8. Statistical Analysis 

 

Statistical analyses were performed by non-parametric Mann-Whitney U-test 

using GraphPad Prism software (Graph-Pad-Software, La Jolla, CA, USA). 

Data are presented as the mean with standard error of the mean (S.E.M.) and 

standard deviation (S.D.) used as error bars. 
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IV. Results 

1. Generation of vavFLIPR Mice 

c-FLIPR is the solely short c-FLIP isoform expressed in mice [77]. Transgenic 

mice were generated to analyze if c-FLIPR functions as murine counterpart of 

the human short isoform c-FLIPS. vavFLIPR mice express c-FLIPR under the 

vav promoter that directs expression to the hematopoietic lineage [114]; Fig 

12.A). The transgene is present in vavFLIPR mice as shown via genomic PCR 

(Fig 12.B). On protein level c-FLIPR is expressed in vavFLIPR mice in cells 

within the thymus and spleen (Fig. 12.C). 

Figure 12. (A) vavFLIPR Transgenic Mice The transgenic construct consists 
of three fragments of the vav promoter region surrounding the murine c-FLIPR 
cDNA attached to a SV40 polyadenylation sequence. The transgenic vector 
has been described by [114]. (B) Expression of the transgene was analyzed by 
genotyping with primers specific for c-FLIP (forward primer) and SV40 polyA 
(reverse primer) (C) Expression of the transgene on protein level in lysates 
from spleen and thymus of vavFLIPR mice and wildtype littermates. Detection 
of c-FLIP, caspase-8 and FADD analyzed by Western blot and β-actin as 
loading control.  

B
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2. c-FLIPR Overexpression Does not Alter Thymic T Cell Development  

 

Figure 13. Thymic CD4 to CD8 Ratio and CD25+ and CD44+ cells 
Representative dot blots for Thymic cellularity in 7-week-old wildtype (WT; n=6; 
upper panel) and vavFLIPR mice (lower panel; n=6).  (A) Comparison of CD4+ 
single positive, CD4+CD8+ double positive, CD8+ single positive and CD4-CD8- 
double negative cells. (B) Analyses of CD25+ and CD44+ ratio amongst double 
negative cells. 
 
 
Inhibition of CD95 signaling is often associated with abnormal lymphocyte 

numbers or development. Therefore, lymphocytes from the thymus of 7 weeks 

old vavFLIPR mice (n=6) and WT littermates (n=6) were analyzed. T cell 

developmental status in the thymus was determined by CD4+ and CD8+ 

expression. The ratio of single positive CD4+ and CD8+ did not differ between 

wildtype and vavFLIPR animals (Fig 13.A). Overexpression of the apoptosis 

regulator Bcl-2 is known to interfere with CD4-CD8- double negative progenitor 

cell survival and proliferation [115]. To determine whether the anti-apoptotic c-

FLIPR causes a similar effect double negative cells were further analyzed 

staining for CD25 and CD44 (Fig 13.B). No differences were detected between 
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vavFLIPR and WT animals (Tab.5). Therefore an effect of c-FLIPR on T cell 

development in the thymus is unlikely.  

3. B and T cell Ratios In the Spleen Are Not Altered in vavFLIPR Mice 

 

 

 

 

Figure 14. T to B Cell Ratio and CD4 to CD8 Ratio in the Spleen 
(A) Exemplary CD3 to CD19 ratios amongst live cells in the spleen and (B) 
CD4 to CD8 ratio within the CD3+ spleen cells of wildtype (upper panel) and 
vavFLIPR (lower panel) mice. 
 

 

Upregulation of the human short isoform c-FLIPS in vitro and its transgenic 

overexpression in mice in vivo lead to a reduction in lymphocyte apoptosis 

[116, 117]. To analyze if c-FLIPR interferes with T cell death and survival in 

vivo T cell numbers were analyzed in vavFLIPR mice and compared to wildtype 

littermates. The ratio of B to T cells in spleens from 7-week-old-mice did not 

differ between wildtype and vavFLIPR mice (Fig.14; Tab.5). T cells were further 

subdivided into CD4+ and CD8+ cells to see if subpopulations differ. There was 
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no difference detected regarding the CD4+ to CD8+ ratio between wildtype and 

vavFLIPR animals. Even though percentages may vary between individual 

animals (Fig 14), average percentages do not differ between wildtype and 

transgenic animals (Tab. 5).  

 

4. B and T Cell Ratios in the Peripheral Lymph Nodes are Not Altered in 

vavFLIPR Mice 

 

 

 

Figure 15. T to B Cell Ratio and CD4 to CD8 Ratio in Peripheral Lymph 
Nodes (A) CD3 to CD19 ratio amongst live cells in peripheral lymph nodes of 
wildtype (upper panel) and vavFLIPR mice (lower panel). (B) CD4 to CD8 ratios 
amongst CD3+ cells in peripheral lymph nodes. 
 

 

B and T cell ratios in peripheral lymph nodes were analyzed and within the 

CD3+ cells the CD4+ to CD8+ ratio was determined. There were no differences 

between the vavFLIPR mice and their WT littermates regarding percentages or 

absolute cell numbers (Fig.15; Tab.5). Similar to spleen lymphocyte numbers 
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peripheral lymphocytes numbers in young mice seem to be unaffected by c-

FLIPR expression. 

5. Numbers of Double Negative (DN; CD3+CD4-CD8-) Cells are not Enhanced in 

vavFLIPR Mice 

 

Mutations in CD95 signaling have been described to lead to autoimmunity in 

the human autoimmune lymphoproliferative disease (ALPS) and the murine lpr 

and gld mouse models. These conditions lead to an accumulation of DN cells. 

Numbers of DN negative cells analyzed in vavFLIPR mice and wildtype 

littermates did not differ (Fig. 16) in peripheral lymph nodes (Fig. 16). Numbers 

of B220+ cells within the DN cells were not elevated in vavFLIPR mice (Fig. 16). 

 

 

 

 

Figure 16. Double Negative (DN; CD3+CD4-CD8-) Cells in vavFLIPR 
Transgenic Mice (tg) Analyses of absolute cell numbers of double negative 
(DN; CD3+CD4-CD8-) cells and DN B220+ cells  in vavFLIPR mice (tg) and 
wildtype littermates (wt). 
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6. Altered B cell Developmental Stages in vavFLIPR Mice 

 

To further analyze B cell subsets B cells from bone marrow of three-month-old 

mice (wt n=2; tg n=2) were stained for subpopulations. Regarding the total 

amount of B220+ cells no difference could be detected between vavFLIPR mice 

and wildtype littermates. B cells were further subdivided into Hardy fractions 

separating them gating B220 against CD43 to identify the fractions D-F (pre B 

cells, immature B cells and recirculating B cells and A-C (earliest 

developmental phases; Fig. 17). Analyses of the two main groups (A-C and D-

F) did not show differences between vavFLIPR mice and their wildtype 

littermates. Interestingly within the fraction D-F a further subdivision showed in 

the wildtype more cells in fraction F (recirculating B cells) and less in fraction D 

(pre B cells) than in the vavFLIPR mice. However, the analyzed animal number 

is not sufficient enough to conclude a statistical significance.  

 

 

Table 5. Percentages and Absolute Cell Numbers in Young vavFLIPR Mice 
and WT Littermates DN = double negative (CD4-CD5-); DP = double positive 
(CD4+CD8+); thy = thymus; pLN = peripheral lymph nodes 
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Figure 17. B Cell Subpopulations/ Hardy Fractions 
B cell subpopulations in the bone marrow of vavFLIPR mice (n=2) and wildtype 
littermates (n=2). Cells were gated on lymphocytes and doublets being 
excluded. First B220+ cells were analyzed, than subdivided into Hardy fractions 
D-F and A-C (second panel). The D-F fraction was further subdivided into pre 
B cells (fraction F). 
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7. c-FLIPR Overexpression Does Not Effect Regulatory T Cell Numbers in 

Peripheral Lymph Nodes or Spleen 

 

 

 

Figure 18. Treg Frequencies in vavFLIPR Mice and WT Littermates 
Treg frequencies amongst CD4+ cells in vavFLIPR mice and WT littermates in 
peripheral lymph nodes (right) and spleen (left). 
 
 
 
Defects in CD95 signaling are often associated with autoimmunity and 

deregulation of regulatory T cells (Tregs) as well. To analyze if c-FLIPR 

overexpression interferes with Treg frequencies CD4+CD25+ cells were 

analyzed in peripheral lymph nodes and spleen of vavFLIPR and wildtype 

animals. No differences were detected. Therefore, it can be concluded, that c-

FLIPR has no effect on Treg frequencies in young mice (Fig. 18).  
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8. c-FLIPR Interferes with T Cell Numbers after L. Monocytogenes Infection 

 

L. monocytogenes infection is known to evoke an immune response and 

induce massive, unspecific T cell apoptosis [101]. To determine if c-FLIPR 

overexpression interferes with these processes frequencies of CD4+ and CD8+ 

cells in vavFLIPR mice were analyzed via flow cytometry and compared to cells 

from infected and uninfected wildtype animals. This showed lower T cell 

numbers in infected vavFLIPR mice and WT littermates compared to uninfected 

wildtype animals as expected. Infected vavFLIPR mice have higher cell 

numbers compared to infected wildtype animals (Fig.19). Therefore it can be 

concluded, that c-FLIPR overexpression modulates cell numbers after L. 

monocytogenes infection.  

 

Figure 19. Percentages of CD4+ and CD8+ T Cells after L. monocytogenes 
Infection  
Effect of L. monocytogenes infection on percentages of CD4+ and CD8+ cells in 
vavFLIPR mice, wildtype littermates (WT) and uninfected wildtype animals (ctr).  
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9. Percentages of B Cells Do Not Differ between L. monocytogenes Infected 

vavFLIPR Mice and Wildtype Littermates 

 

Even though there was no general difference between B and T cell ratios in 

young mice, B cell developmental stages were slightly altered. Therefore, B 

cell numbers in vavFLIPR mice after L. monocytogenes infection were 

analyzed. There was no significant difference regarding percentages of B cells 

in vavFLIPR or infected wildtype animals. L. monocytogenes infection does not 

significantly alter B cell apoptosis and c-FLIPR overexpression seems to have 

no effect on this process (Fig. 20).  

 

  
 
 
Figure 20. Percentages of apoptotic (7AAD-Annexin+) B cells after L. 
monocytogenes Infection Effect of L. monocytogenes infection (5x103) on 
percentages of B cells in the spleen of vavFLIPR mice (n=8), wildtype 
littermates (WT; n=9) and uninfected wildtype animals (ctr; n=6).  
 

10. Altered Apoptosis of CD8+ Cells in vavFLIPR Mice upon L. Monocytogenes 

Infection 

 

Cell numbers were altered in vavFLIPR mice at day three post-infection, which 

is most likely due to apoptotic cell death. To analyze the effect of vavFLIPR on 

apoptosis after L. monocytogenes infection an AnnexinV 7AAD staining was 

performed. Within the CD4+ T cell compartment no difference regarding the 

number of apoptotic cells could be detected. In contrast, apoptosis of CD8+ T 
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cells was increased in infected when compared to non-infected animals. Less 

apoptosis of CD8+ cells was detected in vavFLIPR mice compared to WT mice 

(Fig. 21). It can be concluded, that c-FLIPR does interfere with apoptosis of 

CD8+ cells after L. monocytogenes infection. 

 

Figure 21. Apoptosis of CD4+ and CD8+ Cells after L. Monocytogenes 
Infection 3-month-old vavFLIPR mice and wildtype littermates were infected 
with L. monocytogenes (5x103). Apoptotic CD4+ and CD8+ cells were stained 
with AnnexinV and analyzed by flowcytometry. (A) Percentages of apoptotic 
CD4+ cells and (B) of CD8+ cells.  
 

 

11. vavFLIPR Mice Show a Reduced Bacterial Burden after L. Monocytogenes 

Infection 

To understand if the bacterial load in vavFLIPR mice is altered after L. 

monocytogenes infection colony-forming units (CFUs) were determined in liver 

and spleen of vavFLIPR mice and wildtype littermates. During L. 

monocytogenes infection bacteria accumulate in spleen and liver and cause 

massive cell death [101]. CFUs in the organs indicate capability of mice to 

clear the infection. CFUs were measured on day 3 and 4 past infection. 

Strikingly vavFLIPR mice always showed a tendency for better bacterial 

clearance compared to wildtype littermates (Fig. 22).  
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Figure 22. Bacterial Burden of vavFLIPR Mice after L. Monocytogenes 
Infection  
Colony Forming Units at day 3 past L. monocytogenes infection. Livers and 
spleens from infected vavFLIPR mice and wildtype littermates were meshed 
and lysed with NP40 containing lyses buffer and plated onto brain heart 
infusion media agar plates. After 24 hours colonies were counted and CFUs 
calculated. 
 

12. Reduced Hepatocyte Necrosis After L. Monocytogenes Infection in 

vavFLIPR mice 

 

Since vavFLIPR mice show a lower bacterial burden the histology of liver and 

spleen was analyzed. All liver samples analyzed showed multifocal and 

randomly distributed necrotic foci with infiltration of predominantly neutrophils 

with fewer and scattered macrophages and neutrophils (Fig. 23). Strikingly 

infected vavFLIPR mice (0.39% SD +/-0.173) show a severely lower number of 

necrotic foci in the liver compared to infected wildtype animals (6.15% SD +/-

4.82). 
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Figure 23. Histological Analyses of Liver and Spleen Tissue after L. 
Monocytogenes Infection. Mice were infected with L. monocytogenes  and 
an H&E staining was performed. Livers of wt (A) and vavFLIPR mice (B) were 
analyzed for necrotic foci.  
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13. BiFC Constructs Coding for Caspase-8 are Expressed in 293T Cells in 

Lower Amounts than Endogenous Caspase-8 

vavFLIPR mice seem to be protected against L. monocytogenes infection due 

to c-FLIPR overexpression. This effect is probably partly due to different dimers 

being formed at death receptors. This highlights the importance of dimer 

formation at the DISC. Nevertheless how this protection is generated remains 

unclear since the exact interactions of DISC molecules are not known. In 

previously described analyses of DISC interactions altered recruitment 

domains were used or experiments were performed in vitro with kosmotrophic 

salts [34, 79, 118]. To gain a better understanding of interactions at the DISC 

Bimolecular Fluorescence complementation (BiFC) was applied. This method 

allows visualization of dimer formation in living cells (see material and 

methods). Constructs for DISC molecules coding for the molecule of interest, a 

tag and the Venus fragments were generated.  

 

 

 

Figure 24. Analyses of expression of BiFC constructs in 293T cells (A) 
and SH-SY5Y cells (B) Wildtype caspase-8 (wt), active center mutated 
caspase-8 (C>S) and a DED mutant were expressed in both BiFC constructs 
(indicated as 155 containing the c-terminal Venus fragment and 173 containing 
the N-terminal Venus fragment). Caspase-8 expression was analyzed via 
Western Blot and detected using an anti-caspase-8 antibody (12F5).  
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14. Death Receptor Expression on SH-SY5Y and Jurkat Cells 

 

 

 
Figure 25. (A) Receptor Expression on A3, caspase-8-deficient Jurkat 
cells (I9-2), SH-SY5Y and BJAB cells 
The death receptors CD95, DR4, DR5 and TNFR1 were analyzed by flow 
cytometry. Histograms for each death receptors are shown for all cell lines 
used later for analyses.  
 
 
Expression of constructs was analyzed by Western blot in 293T cells. Since 

BiFC constructs contain additionally a Venus fragment they differ in size 
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compared to endogenous expressed caspase-8 (Fig. 24). Therefore 

endogenous caspase-8 and the BiFC tagged versions can be distinguished 

based on their molecular weight. Interestingly the constructs showed lower 

expression levels than endogenous caspase-8. Caspase-8 is expressed 

endogenously at very high levels in 293T cells (Fig. 24).  

 

To prevent endogenous caspase-8 to interfere with dimer formation the 

following experiments were performed with cell lines lacking endogenous 

caspase-8 on the protein level. Caspase-8-deficient A3 cells, in which 

caspase-8 was knocked out by chemical mutagenesis [39] and SH-SY5Y 

neuroblastoma cells, in which caspase-8 is epigenetically silenced, were used. 

Since DISC formation is triggered by stimulation of death receptors [16], 

presence of such was analyzed. All cells used express CD95 (Fig. 26), 

therefore further DISC analyzes in these cell lines was carried out using CD95 

ligand or anti-CD95 (clone 2R2). Next to CD95 all cells analyzed express high 

amounts of DR5. 

 

15. Jurkat I9-2 Cells are Resistant Towards CD95-mediated Apoptosis 

 

All analyzed cells express CD95 (Fig. 25) and caspases for apoptosis 

signaling, apart from the caspase-8-deficient A3 clones and SH-SY5Y, which 

are caspase-8 knockout cells ([39]; Fig. 27). Susceptibility towards CD95-

induced apoptosis of Jurkat clones was analyzed stimulating them with CD95L 

To determine the amount of death cells a PI uptake assay was performed. As 

expected caspase-8-deficient Jurkat cells (I9-2) are, in contrast to their 

parental A3 and the E6.1 Jurkat-clone, not susceptible to apoptosis (Fig. 26) 

and thereby an excellent tool for reconstitution with caspase-8 containing BiFC 

constructs. 
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Figure 26. Susceptibility Towards CD95-induced Apoptosis 
Different Jurkat clones (E6.1 and A3) and caspase-8-deficient Jurkat cells (I9-
2) were analyzed for apoptosis susceptibility using a PI uptake assay modified 
after Nicoletti. Cells were stimulated with CD95 Ligand (200 ng/ml) for 24 or 48 
hours or left untreated (n=4).  
 

16. Expression of Proteins Involved in DR-Mediated Apoptosis 

 

Cells were analyzed by Western blot to investigate if lack of caspase-8 

expression interfered with expression of other proteins involved in death 

receptor-induced signaling. As expected A3 cells express caspase-8, caspase-

3 and FADD, which are essential for CD95- or TRAIL-induced apoptosis (Fig. 

27). The caspase-8-deficient I9.2 Jurkat clone and SH-SY5Y cells express 

normal amounts of FADD, caspase-3, but no caspase-8 (Fig. 27). Therefore, 

I9.2 and SH-SY5Y cells are suitable for BiFC analyses of caspase-8.  
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Figure 27. Expression of Apoptosis Proteins 
Expression of apoptotic proteins in SH-SY5Y, A3 and caspase-8 deficient 
Jurkat cells (I9-2). Western Blot Analyses of caspase-8, caspase-3, FADD and 
β-actin in cell lines used for BiFC analyses. 

17. Caspase-8 BiFC Constructs are Recruited to the CD95 Receptor 

To further analyze functionality of caspase-8 proteins transcribed from BiFC 

constructs, they were transfected into caspase-8-deficient Jurkat cells and a 

DISC immunoprecipitation (DISC IP) was performed (Fig. 28). Upon DISC 

stimulation FADD is always recruited to the DISC, in the active center mutants 

even without CD95 ligand treatment weak amounts of FADD are detectable. 

Caspase-8 is always present at the DISC if cells are transfected with active 

center mutants or DED mutants. This is surprising because the DED mutations 

should abolish DISC binding [119]. The controls used, non-BiFC caspase-8 

transfected A3 cells and untransfected A3 cells, show weaker recruitment of 

caspase-8 (Fig 28.; longer exposure time). Taken together BiFC constructs, 

even with mutated DEDs, are recruited to the DISC. 
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Figure 28. DISC Recruitment of Proteins Transcribed from BiFC 
Constructs Analyses of recruitment of Venus tagged caspase-8 to the DISC. 
Cells were transfected with active center mutants (C>S), DED mutants (DED) 
and a non- BiFC caspase-8 construct. As control A3 cells, which endogenously 
express caspase-8 were used. DISC proteins were pulled with Flag-tagged 
CD95 ligand supernatant after 30min incubation (+= incubated with ligand; - 
control incubated with cell culture medium).  
 

18. Dimerization is Abolished upon Mutation of the DEDs 

 

To further analyze if the observed dimer formation is rather an artifact of 

overexpression of fluorescent fragments or indeed is based on DISC 

recruitment/interaction of DISC proteins interaction between DED mutants 

were analyzed. DED mutations have been described to abolish DISC 

recruitment [119], but in the IP caspase-8 was detected at the DISC even with 

mutated DEDs (Fig. 28). Nevertheless dimer formation is abolished upon 

mutations of caspase-8s DED (Fig. 29). Therefore, dimer formation seems to 

be caspase-8 specific and not caused by fluorescent fragments.  
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Fig 29. DED Mutations abolish DISC Binding 
SH-S5Y5 cells were transfected with BiFC constructs coding for caspase-8 
with mutated DEDs (upper panel) and active center (C>S; lower panel). Cells 
were fixed and treated with DAPI. The green signal shows caspase-8 dimers, 
red Mitochondria and blue nuclei stained with DAPI. 
 

19. Dimerized Versus Single Caspase-8 

 

Overexpression leads to dimer formation and green fluorescence can be 

detected using confocal microscopy. Using BiFC, dimerized molecules can be 

shown, but single caspase-8 molecules are not visualized. To visualize all 

transfected caspase-8 molecules, cells were transfected with active center 

mutant BiFC constructs and counterstained with an anti-caspase-8 antibody 

(12F5; Fig. 30). More single caspase-8 molecules could be detected close to 

the cell surface, whilst within the cells more dimerized caspase-8 was present 

(Fig. 30). Addition of CD95 ligand did not alter ratios of single to dimerized 

caspase-8 or localization of caspase-8.  
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Figure 30. Dimerized Versus Single Caspase-8  
Confocal microscope images of SH-SY5Y cells overexpressing mutated active 
center (C>S) caspase-8 constructs and being stained with an anti-caspase-8 
antibody (12F5).  
 

 

20. Caspase-8 Dimers do Not Colocalize with the Golgi Apparatus  

The exact localization of caspase-8 dimer formation is unknown. Cell 

organelles were stained to see if colocalization with these organelles could be 

detected. To analyze if caspase-8 dimers colocalize with the Golgi a 

cotransfection with a Golgi marker (RFP Golgi) was performed. No 

colocalization between Golgi and caspase-8 dimers could be detected. 

Therefore, it seems unlikely that caspase-8 homodimers localize at the Golgi 

apparatus (Fig. 31).  
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Figure 31. Localization of Caspase-8 Dimers: No Colocalization with 
Golgi Apparatus SH-SY5Y cells were transfected with active centre mutated 
(C>S) caspase-8 constructs and additionally a plasmid coding for an Golgi 
marker in RFP. Cells were analyzed unstimulated and 20min after anti-CD95 
treatment (2R2). Cells were fixed and analyzed by confocal microscopy. 18. 
Dimerization of Caspase-8 with Caspase-10 and c-FLIP proteins 
 

21. Colocalization of Caspase-8 Dimers with Mitochondria 

 

Caspase-8 has been described to localize to the mitochondria [120], but it 

remains unclear if these are dimers or single caspase-8 molecules. Therefore, 

colocalization of Mitochondria with BiFC dimers was analyzed. Mitochondria 

were stained in caspase-8 transfected cells using Mitotracker red. The smaller 

dot like structures seen do not colocalize with mitochondria, but more vast 

dimer structures can be seen at the mitochondria (Fig. 32). Cells, where 

colocalization was detected, had an apoptotic seeming phenotype.  
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Figure 32. Colocalization of Caspase-8 Dimers with Mitochondria 
SH-S5Y5 cells were transfected with BiFC constructs coding for caspase-8 
with mutated active center (C>S). Cells were treated with Mitotracker and 
afterwards fixed and stained for caspase-8 (12F5). The green signal shows 
caspase-8 dimers, red Mitochondria and blue nuclei stained with DAPI. 
 
 

22. Dimers Containing c-FLIP and Caspase-10 

Caspase-8 is assumed to dimerize with c-FLIP proteins and caspase-10, but 

this has never been shown in living cells with unaltered recruitment domains. 

The role of caspase-10 remains enigmatic, therefore dimers containing c-FLIP 

and caspase-8 were analyzed. Transfection with BiFC constructs for these 

proteins showed Caspase-8 seems to form heterodimers as well with c-FLIP 

and caspase-10 (Fig. 33 B; Fig 34). Caspase-10 does as well form caspase-

10-caspase-10 homodimers (Fig. 33 A).  
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Fig. 33 Hetero and Homodimer Formation of caspase-10 (A) Expression of 
caspase-10/a and -10/a in HeLa cells. Caspase-10/a dimers are shown in 
green, nuclei in blue. (B) Overexpression of caspase-10/a and caspase-8/b in 
Jurkat (Caspase-8 deficient A3 I9.1) cells. Caspase-10/a dimers are shown in 
green, nuclei in blue.  
 

 
 
Fig. 34 Caspase-8-c-FLIPL dimer formation 
Expression of caspase-8/b and c-FLIPL in HT1080 cells. Caspase-8/b and c-
FLIP heterodimers are shown in green and nuclei are stained with DAPI (blue). 
 
 

A B 
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V Discussion 

Interactions of DISC Proteins 

Deregulation of death receptor signaling is often associated with severe 

diseases. Too much apoptosis may lead to neurodegenerative diseases or 

destruction of tissue, whilst too little may lead to cancer or survival of 

autoreactive cells [12]. One form of apoptosis signaling is death receptor-

induced cell death, where a protein complex named death inducing signaling 

complex (DISC) is formed inside the cell at the activated receptor. Most likely 

the exact protein composition of the DISC decides about the outcome of 

signaling [121]. To gain further understanding of DISC proteins and their 

interactions the role of c-FLIPR during Listeria monocytogenes infection in mice 

and dimerization of DISC proteins in living cells were analyzed in this study.  

c-FLIPR Overexpression Alters B Cell Maturation, but Does Not Interfere with T 

and B Cell Numbers in General 

c-FLIPR is the solely expressed c-FLIP isoform in the murine system [77], but 

still its function remains unknown. To analyze the function of murine c-FLIPR 

we generated a mouse model overexpressing c-FLIPR under the vav-promotor. 

The vav-promoter has been described to induce transgenic expression in all 

cells of hematopoietic origin [77, 114]. This makes analyses of the effect of c-

FlipR on the immune system possible. As Western blot analyses show, the 

vavFLIPR mice express the transgene. In wildtype littermates the expression is 

below detection level under steady state conditions. This is similar to c-FLIPS in 

humans, which is induced upon TCR stimulation [90]. vavFLIPR mice are viable 

and show no obvious defects. In that respect they resemble c-FLIPS transgenic 

mice reported in the literature [116, 117]. In contrast, complete c-FLIP 

knockout in mice is lethal [122]. Zhang and colleagues described c-FLIP 

knockout mice to be rescued by expression of human c-FLIPS via BAC 

transgene [123], showing short isoforms to have an essential impact on 

embryonic development. Nevertheless it remains questionable if this reflects 
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the natural occurring situation since without stimulation higher amounts of c-

FLIPL than c-FLIPR are expressed. Possibly high levels of c-FLIPS are in the 

absence of c-FLIPL capable of counteracting apoptosis and thereby 

substituting c-FLIPL regarding apoptosis inhibition. Altered CD95-induced 

signaling has been described to lead to accumulation of double negative (DN; 

CD3+CD4-CD8-) cells, e.g. DN cells have been described to accumulate in 

human ALPS patients and mice with lpr or gld phenotype [124]. Generation 

and function of DN T cells are being discussed rather controversial. One theory 

states DN survive thymic development due to lack of depletion via FAS-

induced apoptosis [125] other attribute regulatory effects to these cells [126]. 

Oberst and colleagues conclude that a caspase-8-c-FLIPL complex inhibits 

RIPK3 dependent necrosis during development [127]. Additionally, the 

presence of c-FLIP prevents caspase-8-dependent apoptosis, too. 

Endogenous c-FLIPL, FADD and caspase-8 are present in the vavFLIPR mice 

in amounts comparable to wildtype littermates and therefore do not affect the 

phenotype of vavFLIPR mice. Taken together c-FLIPR overexpression does not 

interfere with cell numbers in general.  

vavFLIPR Mice Show Normal T Cell Development  

Being phenotypically normal vavFLIPR mice were analyzed further with respect 

to T cell development. During thymic T cell development cell death is an 

essential process to remove potentially harmful cells, only 5% of the 

developing cells survive [128]. Whilst FADD-binding receptors seem to be non-

essential for negative selection [128], c-FLIP proteins have been described to 

protect thymocytes during the last maturation steps to the single positive stage 

[129]. To analyze if c-FLIPR overexpression impacts T cell development thymic 

T cells from vavFLIPR mice were compared to wildtype mice. vavFLIPR mice 

show no differences in thymic T cell developmental stages though, numbers of 

double positive (CD4+CD8+) single positive (CD4+ or CD8+) or double negative 

stages CD4-CD8-) are similar to wildtype littermates. This is in agreement with 

transgenic mice overexpressing the human short variant c-FLIPS, which show 

no alterations in T cell development [116, 117]. Taken together overexpression 

of short c-FLIP isoforms does not interfere with thymic T cell development. c-



 

 67 

FLIP knockout mice in contrast have been described to phenotypically 

resemble caspase-8 and FADD knockout which are embryonically lethal [130]. 

T cell specific c-FLIP knockouts are viable and show a severe lack of T cell 

developmental stages [122, 129]. Zhang and He describe a partial 

developmental block during transition to the SP stage [129]. They assume SP 

cells detected at later time points originate from homeostatic proliferation and 

not from thymic development [129]. Interestingly reconstitution with c-FLIPS is 

sufficient to rescue T cell development and prevent spontaneous apoptosis of 

in T cells [123]. This may be explained by redundancy between the long and 

short isoforms in their function during development.  

 

T Cell Homeostasis is Unaffected by c-FLIPR Overexpression 

Next to apoptosis-signaling c-FLIP proteins and other DISC-associated 

proteins play an essential role in modulating cell survival and proliferation [121, 

131]. This underscores the importance of c-FLIP as double-sided regulator of 

cell homeostasis. The short forms of c-FLIP proteins are assumed to act only 

anti-apoptotic [71, 76], therefore overexpression of c-FLIPR is likely to shift the 

live/death balance in a cell towards survival and proliferation. Looking at T cell 

numbers there is no increase in vavFLIPR mice, which show similar T to B cell 

ratios as wildtype mice. Within the T cell subgroup no altered CD3+, CD4+ and 

CD8+ ratios are detectable in vavFLIPR mice. This is in agreement with the 

normal thymic T cell development and phenotype described above. 

Consistently c-FLIPS overexpressing mice described by Oehme et al., and 

Hinshaw Makepeace and colleagues show no alterations of cell numbers in 

vivo [116, 117]. Both groups describe a defect in NF-κB activation in vitro, 

which they suggest to be counteracted in vivo by other mechanisms, which 

keep up immune homeostasis [117]. In the human system c-FLIPS in 

lymphocytes is known to be upregulated upon TCR stimulation [89, 90], whilst 

the long isoform is expressed constantly in humans and mice. The mice 

analyzed were kept under specific pathogen free (SPF) conditions and thereby 

without pathogen contact. Therefore, c-FLIPR in mice and c-FLIPS/R in humans 

may not be relevant for T cell homeostasis as long as c-FLIPL is present in 
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endogenous occurring amounts. This is as well supported by c-FLIP knockouts 

being rescued by BAC transgenic expression of one of the isoforms. 

Transgenic overexpression of the long isoforms in contrast has been described 

to cause a lupus-like syndrome at least on a BALB/c background [132]. 

vavFLIPR mice express the transgene heterozygous on a C57BL/6 

background, which renders them less lupus-prone and may dampen effects. 

Additionally the long isoforms is known to act pro- and anti-apoptotic, being 

able to support the first cleavage steps of caspase-8 [71]. c-FLIPR’s structure 

renders it unable to stabilize caspase-8 during cleavage. This difference in 

structure results probably in different functions and may explain why 

overexpression of the long and short isoforms leads to different phenotypes. 

Some viruses are known to express viral Flip (vFLIP) proteins, which prevent 

death receptor induced apoptosis [72]. Overexpression of the viral MC159 

variant in mice leads to an autoimmune phenotype resembling CD95 mutations 

described below [133]. Even though viral c-FLIP proteins resemble in some 

structural details the short c-FLIP isoforms, they prevent apoptosis in a 

divergent way from c-FLIPS [119]. Taken together the phenotype of vavFLIPR 

mice resembles most transgenic c-FLIPS mice and differs from mice 

overexpressing the long isoform or vFLIPs.  

 

Since short c-FLIP variants inhibit caspase-8 activation at the DISC level 

comparison with known mutations regarding CD95, CD95 ligand and DISC 

proteins are of interest. Mutations in CD95 lead in humans to ALPS, in mice to 

a gld/lpr phenotype. In both cases lymphoproliferation and accumulation of 

CD3+B220+CD4-CD8- have been described. No such drastic effect can be 

observed in vavFLIPR mice. This shows differences between inhibition at death 

receptor level or at caspase-8/c-FLIP level. This may be explained by 

comparison with the human c-FLIPS isoform. Inhibition of the human c-FLIPS 

isoform after CHX treatment does render cells only in part apoptosis sensitive, 

since resistance is regulated at multiple levels, e.g. Bcl-xL [90]. In contrast 

humans with mutations rendering caspase-8 non-functional show an 

immunodeficiency, but no accumulation of double negative cells or 

lymphoproliferation has been described. The situation in humans may not be 

completely comparable to mice since humans have caspase-10 as additional 
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initiator caspase [47]. Mutations in caspase-10 have been described to lead to 

ALPS type II [134]. Caspase-10s function remains enigmatic and its ability to 

substitute for caspase-8 is discussed controversial [43, 45, 135]. This makes 

comparison between mice and humans regarding caspase-8 and its regulation 

complicated.  

 

The necessity of c-FLIP, FADD and caspase-8 for cell proliferation can be 

seen in the knockout situation. Whilst overexpression of short isoforms does 

not interfere with T cell homeostasis conditional knockouts have been 

described to alter T cell proliferation. For example Chau and colleagues 

describe c-FLIP deficient rag-/- chimera [131]. These mice show reduced T cell 

counts in thymus and periphery resembling similar models for FADD and 

caspase-8 [131, 136]. Knockout of FADD abolishes c-FLIP and caspase-8 

binding to the DISC. FADD knockout mice show dramatic alterations in T cell 

numbers and development [136]. RAG chimera’s reconstituted with dominant 

negative FADD show during the first days normal T cell developmental stages, 

but by the time they reach 5 weeks of age almost completely lack cells in the 

double positive stage [137]. c-FLIP, FADD and caspase-8 are assumed to 

have various non-apoptotic functions as well, which may lead to different 

effects [138]. Since caspase-8 and c-FLIPL are both present in vavFLIPR mice 

at normal endogenous levels, their anti-apoptotic functions are most likely not 

affected in vivo in vavFLIPR mice. Interestingly a RIPK3 and caspase-8 double 

knockout is able to rescue mice from embryonic lethality [139]. RIPK3 and 

caspase-8 double knockout mice do not show double negative cells at young 

age, but later on [139]. Further analyses of aged vavFLIPR mice may be 

interesting to see if c-FLIPR overexpression does interfere with T cell 

homeostasis and lead to autoimmunity at later stages.  

 

vavFLIPR Mice Show Unaltered T cell Activation Status 

Unaltered T cell development and unaltered T cell numbers as described 

above lead to the assumption of steady-state T cell homeostasis being similar 

in vavFLIPR mice and wildtype littermates. This is further supported by lack of 
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obvious differences regarding T cell activation in vavFLIPR mice and wildtype 

littermates. In the human system c-FLIPS is upregulated in response to TCR 

stimulation [90]. Nevertheless c-FLIPR overexpression does not vice versa lead 

to activation of T cells in vavFLIPR mice.  

Treg Numbers are Not Altered by c-FLIPR Overexpression  

 

CD95-induced signaling is known to regulate Treg homeostasis [140]. Tregs 

from healthy mice are sensitive to CD95 ligand, even though they express less 

stimulation-induced CD95 ligand themselves [140]. Weiss and colleagues 

showed it is possible to deplete in vivo Tregs using CD95 [140]. Therefore, the 

effect of c-FLIPR overexpression on Tregs was analyzed. Nevertheless, this 

seems not the case since vavFLIPR mice show normal Treg numbers like c-

FLIPS transgenic mice described by Oehme and Hinshaw-Makepeace and 

colleagues [116, 117].  

c-FLIPR Interferes with B Cell Fractions 

Surprisingly further analyses of the B cell compartment did show a difference in 

certain Hardy fractions in vavFLIPR mice compared to wildtype littermates. The 

number of naïve B cells was higher in vavFLIPR mice compared to wildtype 

animals whilst the number of developed B cells was lower. This is in 

agreement with c-FLIP being essential for B cell homeostasis, c-Flip knockout 

mice showing less peripheral B cells [141]. c-FLIP has been described to be 

essential for the germinal center reaction in a model proposed by van Eijk and 

colleagues [142]. During clonal expansion and receptor diversification B cells 

are protected against apoptosis. Germinal center B cells behave like type I 

apoptotic cells and depend on CD40 ligation to upregulate c-FLIPL, which 

leads to apoptosis protection [142]. Loss of stimulation is followed by 

downregulation and increased apoptosis sensitivity. Thereby hyperreactive B 

cells as well as non-responsive B cells could be eliminated via c-FLIPL 

downregulation. Increased c-FLIPR expression in the vavFLIPR mice may 

interfere with this process and block death receptor signaling. This blockage 
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would prevent c-FLIPL as well as caspase-8 binding. Nevertheless one would 

expect more mature B cells, compared to wildtype littermates, and 

autoimmunity if c-FLIPR protects cells from apoptotic death. On the other hand 

c-FLIPL and caspase-8 have been implicated as well in proliferation and to 

counteract RIP1 at the DISC [88, 143]. Interference with these processes may 

lead to a decreased number of mature B cells. Data from B cell specific c-FLIP 

knockout mice are controversial. Zhang and colleagues describe reduced 

numbers of mature B cells, but no effect on the bone marrow during 

development [144]. This would make further analyses of B cell development in 

vavFLIPR mice and analyses of autoimmunity during aging highly interesting 

and supports a role for c-FLIP in B cell maturation, which would as well cause 

altered B cell numbers in vavFLIPR mice. A later publication by two of the 

authors attributes these effects rather to cre lox mediated inactivation of CD19 

and describes no significant developmental differences due to B cell specific c-

FLIP knockout [145]. Further analyses of the effects of c-FLIP isoforms on B 

cells and their development are needed. Comparison of vavFLIPR mice to 

knockout mice could reveal at which developmental or activation stages c-FLIP 

regulates B cells. Taken together lymphocyte numbers in young vavFLIPR mice 

are close to normal, showing differences regarding B cell developmental 

stages.  

 

vavFLIPR Mice Show Better Bacterial Clearance After L. Monocyotgenes 

Infection 

 

Though the function of murine c-FLIPR has not been analyzed before, its 

structure and expression makes it a likely functional counterpart of the human 

short isoform c-FLIPS. c-FLIPs has, like murine c-FLIPR, a short half-life [119]. 

c-FlipS is known to be upregulated in human T cells in response to TCR 

stimulation [89, 90]. This may explain why during the steady state only mild 

alterations could be detected between wildtype and vavFLIPR. Additionally viral 

Flip proteins, which resemble the short isoforms in structure, are known to 

modify immune responses [146]. vavFLIPR characterized here have been kept 

under specific pathogen free (SPF) conditions, which means mice have not 

encountered many pathogens. To investigate if alterations in vavFLIPR mice 
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can be detected during an immune response vavFLIPR mice and littermates 

were infected with L. monocytogenes, which causes lymphocyte apoptosis 

[101]. How this L. monocytogenes-induced cell death proceeds remains 

unclear. Death-signaling systems like TRAIL have been discussed to 

contribute to this massive cell death [105]. Similar to CD95 TRAIL receptor 

stimulation induces formation of a DISC, which contains c-FLIP proteins [28]. 

Knockout of c-FLIP has previously been shown to interfere with L. 

monocytogenes infection [122] making an involvement of DR-mediated 

apoptosis likely. We challenged vavFLIPR mice with L. monocytogenes to see 

if c-FLIPR interferes with the immune response and cell death triggered by L. 

monocytogenes and found vavFLIPR mice being better protected against L. 

monocytogenes than wildtype littermates.  

 

In detail, vavFLIPR mice showed a reduced bacterial burden in liver and 

spleen, the effect being stronger in the spleen. In agreement with this, c-FLIP 

knockout mice show the opposite phenotype: no CD8+ effector function in 

response to L. monocytogenes infection [122]. The lower bacterial load may be 

explained by c-FLIPR mediated protection of T cells from unspecific apoptosis 

occurring after L. monocytogenes infection and thereby making survival of 

more effector cells possible.  

 

Less Necrosis in vavFLIPR Mice After L. monocytogenes Infection  

 

To further investigate the above-described differences in bacterial load 

between vavFLIPR mice and wildtype littermates, spleens and livers from L. 

monocytogenes infected vavFLIPR mice and wildtype littermates were 

histologically analyzed. c-FLIP proteins are known to modulate apoptosis and 

necrosis [88, 121, 147]. Several inducers of death and various forms of cell 

death are discussed in the context of L. monocytogenes infection [101]. In 

accordance with lower bacterial burden vavFLIPR mice show in response to L. 

monocytogenes infection less necrotic foci. This reduction in necrotic foci is 

more pronounced in the liver, compared to CFUs differing stronger in the 

spleen. Different routes of infection and cell types involved in the two organs 

may explain this. In the liver the first peak of cell death occurs 12 hours after 
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infection and is caused by death of infected macrophages [148]. Within the 

liver resident Kupffer cells take up 80% of the bacteria and the majority of the 

bacteria is killed [148]. The exact mechanisms of this killing are not clear, but 

most likely neutrophils are involved in this process [149]. The remaining 

bacteria infect hepatocytes, which die later during the infection [150]. 20% of 

the inoculum is taken up by the spleen, which lacks a early inactivation 

mechanisms [148]. Microabscesses are formed in the spleen within 24 hours 

past infection [148]. These differences during the infection process are a 

possible explanation for differences seen between the two organs. Regardless 

of the involvement of different immune cells and infection routes c-FLIPR leads 

to better protection against L. monocytogenes infection in liver and spleen.  

 

Less T Cell Apoptosis in L. Monocytogenes Infected vavFLIPR Mice 

 

Within the necrotic foci massive, unspecific T cell apoptosis has been 

described. To gain a better understanding if c-FLIPR overexpression in 

hematopoietic cells does interfere with L. monocytogenes infection-induced T 

and B cell apoptosis cells from spleen and lymph nodes were analyzed. There 

were no differences regarding B cells, but less T cells from vavFLIPR mice 

were apoptotic. This is in accordance with TRAIL knockout mice described in 

the literature showing less apoptosis [105] and supports the theory of DR 

involvement in cell death after L. monocytogenes infection. Protection against 

the early phase of L. monocytogenes infection as seen in vavFLIPR mice and 

TRAIL null mice has been reported as well for SCID mice that lack T and B 

cells [151]. Comparing the different phenotypes L. monocytogenes-induced T 

cell death seems to be beneficial for the bacteria.  

 

Obvious differences regarding cell death, bacterial burden and liver necrosis 

show that signaling pathways regulated by c-FLIP proteins are involved in L. 

monocytogenes-induced cell death in mice. Listeria secrete LLO, which is 

known to induce cell death [103], but the exact pathways it triggers are not 

known. The first directly occurring cell death of infected cells is most likely to 

be granzyme based [104]. c-FLIPR interferes with cell death at death receptor 

level, while granzymes activate effector caspases directly [152] or via Bid 



 

 74 

cleavage [153]. Kataoka and colleagues showed that perforin/granzyme B-

induced apoptosis is unaffected by c-FLIP [154]. The cause of the second, 

slower phase of cell death after L. monocytogenes infection is less well 

understood. Here a contribution of death receptors and thereby an impact of c-

FLIPR overexpression seems to be very likely. The exact cause of 

spontaneous liver apoptosis after L. monocytogenes remains unknown, but 

three signaling events have been proposed. The first is signaling pathway is 

recognition of bacteria within lysosomes via diverse receptors, e.g. Toll like 

receptors, which signal via MyD88 [155].  

 

In L. monocytogenes infection one mode of recognition of the bacteria by the 

innate immune system strongly involves IRF3 (Interferon regulatory factor 3) 

[156], which eventually leads to TNFα expression. TNFR1 recruits FADD via 

the adaptor TRADD and c-FLIP is described as part of an TNFα signaling 

complex, modulating the balance between NF-kB activation and cell death [88]. 

Therefore overexpression of c-FLIPR may interfere with this aspect of signaling 

after L. monocytogenes infection. A second option of apoptosis induction after 

L. monocytogenes infection is type I interferon signaling [98]. Whilst type one 

interferon signaling is needed for clearance of many viral pathogens they seem 

rather detrimental to the host during L. monocytogenes infection [98]. In the 

literature c-FLIP has been reported to interfere with interferon-induced cell 

death. Caspase-8-deficient mice have been described to show impaired 

degradation of IRF3 resulting in high cytokine signaling [157]. This makes as 

well an impact of c-FLIPR on this pathway possible. In case of viral infections 

IRF3 signaling has been described to dampen the immune response, but in 

case of L. monocytogenes infection the effect seems to be beneficial. 

Interferon signaling has been described to be involved in immune regulation 

and macrophages apoptosis after L. monocytogenes infection, too [158]. In 

vavFLIPR mice all cells of hematopoietic origin express c-FLIPR, including 

macrophages and dendritic cells, which develop from monocytes. Therefore, 

interference with macrophage cell death or DC survival may be one factor 

contributing to less necrotic foci in the livers of vavFLIPR mice.  

 

Taken together c-FLIPR overexpression mediates a better protection against 
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the early phase of L. monocytogenes infection. This supports strongly the 

theory of death receptor involvement in cell death after L. monocytogenes 

infection. Since L. monocytogenes is the leading cause of food-borne 

infections this may be interesting for further therapeutic approaches. Therefore, 

analyses are required to investigate if clearance is complete and if a memory 

response is generated in vavFLIPR mice to mediate protection in the long run. 

c-FLIPR’s capability of modifying an immune response argues for functional 

homology with human c-FLIPS.  

 

Bimolecular Fluorescence Complementation (BiFC) to Analyze Dimerization 

Processes at the DISC 

 

Signaling at DISC level and regulation of DISC proteins is a very complex 

procedure. As discussed before overexpression of c-FLIPR alters the immune 

response to L. monocytogenes. Another example are knockouts of DISC 

proteins, that show a lethal phenotype, which can be rescued by knocking out 

a second protein component, e.g. caspase-8 and RIPK3 [139]. Alterations in 

these pathways can cause severe diseases like cancer, neurodegeneration 

and autoimmunity [12]. Autoimmune lymphoproliferative syndrome (ALPS) 

being probably the most striking example for deregulated death receptor 

signaling. ALPS patients show lymphoproliferation and autoimmunity [159]. A 

better understanding of interaction of DISC proteins on a molecular level is 

needed to gain insights into these conditions. Here dimerization processes 

involving caspase-8, c-FLIP and caspase-10 were analyzed using bimolecular 

fluorescence technique (BiFC). This approach allows visualization of hetero-

and homodimers as well [160]. Each protein analyzed is tagged with a 

fragment of a fluorescent protein. Only if the proteins interact the fluorescent 

fragments are brought into close proximity and the complete fluorescent 

protein is formed. The fluorescence can be detected using FACS or confocal 

laser scanning microscopy. The current model of caspase-8 activation is the 

induced-proximity model. This model assumes caspase-8 dimerizes with 

another caspase-8 molecule and is fully activated by subsequent self- 
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processing [41, 161, 162]. In addition, caspase-8 is assumed to dimerize with 

c-FLIP proteins, dimerization with the long isoform c-FLIPL leading to an 

intermediate cleavage product [71]. The molecules, recruited after death 

receptor stimulation, decide about whether the outcome of signaling is cell 

death, survival or proliferation [81, 163]. The actual process of caspase-8-

caspase-8 interaction is not detectable with antibody staining, since it is 

impossible to distinguish between two molecules bound by the same 

antibodies. Ex vivo dimerization was analyzed with kosmotrophic salts and in 

vivo with altered recruitment domains, which make dimerization inducible [79]. 

Nevertheless altered prodomains may affect dimerization dynamics since the 

DEDs are crucial for DISC recruitment [119]. Here BiFC constructs of caspase-

8,-10 and the c-Flip isoforms c-FLIPR and c-FLIPL were generated and used for 

visualization of dimers. This technique has been shown by Bouchier-Hayes 

and colleagues to work efficiently for visualization of caspase-2 dimerization 

[106].  

 

BiFC as Tool to Analyze Dimerization of DISC Proteins  

Analyses of caspase-8 expressed from BiFC constructs in 293T cells showed 

expression to be weaker than endogenous caspase-8 expression. This makes 

dimerization of the constructs with endogenous caspase-8 more likely and 

thereby diminishes the fluorescent signal. Therefore, cell lines were chosen, 

which do not express caspase-8 on the protein level. SH-SY5Y, a 

neuroblastoma cell line, in which caspase-8 is silenced [108], and an I9.2 

Jurkat cell, in which caspase-8 is mutated by the frameshifting agent ICR191 

and therefore not expressed [39], were used for further experiments. Another 

criterion, by which both cell lines were chosen, is expression of death 

receptors. Caspase-8-deficient Jurkat cells and their parental cell line A3 

express high amounts of CD95, which makes them suitable for DISC analyses. 

SH-SY5Y express TRAIL receptors and have been shown to undergo 

apoptosis after demethylation of caspase-8 [108].  
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To exclude fluorescence signals, which were detected being caused by 

unspecific interactions additionally DED mutants were used.  Constructs with 

mutated DEDs do not show dot-like or larger structures. They show only 

background fluorescence. In contrast analyses of caspase-8 overexpression 

revealed caspase-8-caspase-8 homodimers in 293T cells, SH-SY5Y, caspase-

8-deficient Jurkats and A3 cells. Two different structures were formed by 

dimers, dot-like structures, which spread over the whole cells and larger 

structures, which localized closer to the nucleus.  

 

 

This shows the fluorescent signals detected do not result from unspecific 

interactions of the fluorescent fragments. Additionally the fact that expression 

in 293T cells did show low expression of BiFC caspase-8 compared to 

endogenous caspase-8 argues against the fluorescent signal being caused by 

simple overexpression. Constructs are expressed in SH-SY5Y cells, but only 

on a moderate level. Since SH-SY5Y cells and caspase-8-deficient A3 cells 

lack caspase-8 on protein level the overall amount should be very low. 

Stimulation of cells with TRAIL, CD95 ligand or anti-CD95 (2R2) did not show 

any increase in dimer formation. Therefore dimerization of BiFC constructs is 

not inducible.  

 

Caspase-8-Caspase-8 Dimers Are Formed in Living Cells 

Nevertheless the fact that caspase-8-caspase-8 dimers are formed in large 

quantities shows the capability of caspase-8 molecules to form homodimers in 

living cell. Previous models made before were based on in vitro experiments 

with kosmotrophic salts [35, 118]. The data generated here using living cells 

shows, that caspase-8 forms indeed homodimers. Pop and colleagues and 

Oberst and colleagues showed that caspase-8 forms caspase-8-caspase-8 

homodimers in vitro [35, 118]. Initiator caspases, even if containing mutated 

cleavage sites, dimerize in vitro in kosmotrophic salts. After removal of salt the 

proteins dissociate and loose their activity due to conformational changes 

showing that dimerization leads in part to activation [35, 118]. Cleavable 
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proteins, in contrast, retain the enzymatic activity. This means that cleavage, 

which occurs after dimerization, is essential for the stability of active caspases 

[118]. For apoptosis signaling coordinated dimerization and cleavage of 

caspase-8 is essential, whilst the uncleaved form of caspase-8 is able to signal 

for NF-κB activation [84]. The cell culture cells used here for the BiFC analyses 

are tumor cell lines, which proliferate strongly. Proliferation signaling caused by 

caspase-8 is not as well understood as apoptotic signaling.  

 

Rather large structures detected are in accordance with recent publications, 

which show chains of DED containing proteins instead of simple caspase-8 

dimers being formed at the DISC [82, 164]. The described chain formation may 

explain the rather large structures resulting from caspase-8 and cFLIPL dimers 

as well. The caspase-8-caspase-8-homodimers visualized prove, that caspase-

8 with unaltered recruitment domains dimerizes in living cells. If these dimers 

result from cell proliferation or simple overexpression needs further 

investigation.  

 

Caspase-8 and c-FLIP form Heterodimers in Living Cells 

Even though the role of c-FLIP within the DISC has been analyzed extensively, 

direct dimerization of c-FLIP proteins had never been shown before. The BiFC 

experiments done here show Caspase-8 forms in living cells heterodimers with 

c-FLIP proteins, most prominent with c-FLIPL. 

 

Different known c-FLIP isoforms act at different steps of DISC formation [71]. 

c-FLIPL has been described to be cleaved at the DISC, whilst the short 

isoforms directly block any cleavage processes at the receptor [64, 71]. All 

three isoforms require DISC recruitment for their action. The chain model 

showed lower amounts of c-FLIPL present within the DISC chains [164, 165]. 

Here c-FLIPL was highly overexpressed. Therefore, the amount of c-FLIPL was 

above the endogenous occurring levels. This may be the cause of huge dot-

like structures, which could be detected. This supports the hypothesis of c-

FLIPL being in large amounts able to interfere with caspase-8 dimerization and 
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chain formation at the DISC. This was as well supported by c-FLIPL being able 

to form large quantities of homodimers as well. In contrast heterodimers of 

caspase-8 and c-FLIPR or caspase-10 always lead to smaller dots and no vast 

structures. One possible explanation for this difference may be c-FLIPR and 

caspase-10 being not capable of supporting further chain formation at the 

DISC and thereby terminating the chains. Another explanation may be, that 

they block the receptor and terminate recruitment of other DISC proteins. This 

is in accordance with the assumed role of the short c-FLIP isoforms c-FLIPR 

and c-FLIPS as apoptosis inhibitors. Differences in dimerization behavior 

between c-FLIPR and c-FLIPL are as well in agreement with the data from 

vavFLIPR mice described above leading to a different phenotype than c-FLIPL 

overexpression described by Zhang and colleagues [122].  

 

Caspase-10-Caspase-8 Heterodimers Are Formed in Living Cells  

The role of caspase-10 in the human system has been discussed very 

controversial. Some reports argue that it can, at least partially replace 

caspase-8, other doubt its function in death receptor-induced apoptosis [43-45, 

47, 135]. Human patients with mutations of caspase-8 rendering it non-

functional are able to survive whilst mice die upon caspase-8 knockout since 

mice do not have a caspase-10 gene. The smaller dots observed in the current 

study may argue for a weaker mode of action and explain why caspase-10 

cannot substitute caspase-8 completely. This is as well in accordance with the 

experiments by Schleich and colleagues showing weak amounts of caspase-

10 within the DISC chains [164]. The moderate levels of dimer formation by 

caspase-10 and -8 and different substrate specificities described in the 

literature may explain why caspase-8 deficient patients are viable, but show 

immunodeficiencies [85]. Nevertheless, this study shows clearly caspase-8 and 

-10 are capable to dimerize in living cells. 
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Localization of Dimers  

Localization is an important factor influencing the outcome of signaling 

processes. Lee and colleagues could show that during CD95-induced signaling 

internalization of the receptor has an important impact on the outcome [166]. In 

the absence of CD95-internalisation proliferation and NF-κB activation are 

induced instead of apoptosis [166]. Due to the difficulties of visualizing 

homodimer formation reports on the activation site are quite controversial. The 

BiFC technology allows direct visualization of dimers and thereby makes 

localization analyses of these processes possible [160].  

Colocalization with Mitochondria 

Caspase-8-caspase-8 homodimers show two structures. Whilst the dot-like 

structure does not colocalize with mitochondria, the larger structures do. This is 

very interesting because Stegh and colleagues reported that caspase-8 

localizes at the mitochondria in the human breast cancer cell line MCF7 [120]. 

One possible explanation may be that the small dots are the first initiation 

platform of apoptotic signaling. This is in accordance with small dots being on 

cells, which are morphological normal cells, whilst the cells containing larger 

structures are often rounded up suggesting an apoptotic phenotype. In the 

model proposed by Stegh and colleagues dimerization occurs at the receptor 

and than dimers are activated at the mitochondrial membrane [120]. The BiFC 

constructs used for confocal microscopy contained an active center mutation. 

Therefore cleavage, which is supposed to take place at the DISC, does not 

occur. The large structures, which colocalize with the mitochondria, may be 

accumulating caspase-8 dimers.  

 

Crosstalk Between Apoptosis and Autophagy 

Recently a new complex named intracellular death-inducing signaling complex 

(iDISC) containing FADD, caspase-8, which associates with components of the 

autophagy system has been described [167]. After stimulation with the cancer 

drug SKI-I, a caspase-8-ATG5 complex is formed, which colocalizes with LC3 
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and p62 at autophagosomal membranes [167]. SH-SY5Y cells expressing 

BiFC constructs were analyzed for colocalization of dimers with LC3 to see if a 

similar complex is formed. There was no detectable colocalization of c-FLIP, 

caspase-8 or caspase-10 dimers with LC3 with or without TRAIL or CD95 

stimulation. This may be explained by crosstalk having an impact on LC3, but 

no direct interaction between apoptotic components and LC3 [167].  

No Colocalization with Endosomes or Golgi 

As mentioned above Schütze and colleagues describe a receptor 

internalization processes [62]. This would make localization in endosomes 

likely. Staining for Rab5 and EEA1 did not show any colocalization with 

endosomes. Neither could co-localization with lysosomes or Golgi be detected 

with or without DR stimulation. No colocalization of caspase-8 with Golgi has 

been described in the literature; therefore the lack of interaction is to be 

expected. 

 

Taken together, the BiFC constructs allow visualization of dimers in living cells. 

This showed strong homo- and heterodimer formation between c-FLIPL and 

caspase-8 and weaker dimer formation with c-FLIPR and caspase-10. 

Colocalization analyses showed vast dimer structures co-localizing with 

mitochondria, whilst smaller structures localize to a different, yet unknown 

compartment. This makes the smaller structures most likely locations, where 

signaling is initiated and dimerization occurs, whilst the larger structures could 

be the place where caspase-8 would be cleaved. 
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VI. Abbrevations 

B cell    B lymphocyte 

BiFC    Bimolecular fluorescence complementation 

c-FLIP   celluar FLICE inhibitory protein 

C>S cysteine to serine mutation; used here as abbreviation for 

active center mutation 

CD95   cluster of differentiation 95; fas 

CD95L  CD95 ligand 

CHX   cyclohexamide 

DD   death domain 

DED   death effector domain 

DISC   death inducing signaling complex 

DR4   death receptor 4 (TRAIL receptor 1) 

DR5   death receptor 5 (TRAIL receptor 2) 

FACS   fluorescence activated cell sorting 

FADD   fas-associated protein with death domain 

FLICE   FADD-like interleukin-1 beta-converting enzyme 

FLIP   FLICE inhibitory protein 

HGF   hepatocyte growth factor 

H&E   hematoxylin and eosin 

InlA   internalin A 

InlB   internalin B 

IP   immunoprecipitation 

IRF3   interferon regulatory factor 3 

LLO   lysteriolysin O 

L. monocytonges Listeria monocytogenes 

Met   HGF-SF receptor 

NF-κB   nuclear factor kappa beta 

RT   room temperature 

T cell   T lymphocyte 

tg   transgene 
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TNFα   tumor necrosis factor-alpha 

TNFR1  tumour-necrosis factor receptor-1 

TRAIL   TNF-related apoptosis-inducing ligand 

Tregs   regulatory T cells 

vavFLIPR mice transgenic mice expressing c-Flip under the vav promoter 

vFLIP   viral FLIP 

WT   wildtype 
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