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ABSTRACT

In this thesis, we study interpolation-based model order reduction techniques
for large-scale linear, bilinear and quadratic-bilinear control systems. A par-
ticular focus lies on the H2-optimal model reduction problem. Based on
existing theory for linear H2-optimal model reduction, we derive several new
results that find application in the approximate solution of large-scale lin-
ear matrix equations. This includes a new connection between the topic of
Riemannian optimization on matrix manifolds and the concept of rational
interpolation. We further propose a method for locally minimizing the resid-
ual of the Lyapunov equation for a given rank n̂. As is shown, the idea can be
interpreted as a special case of the H2-optimal model order reduction prob-
lem for bilinear control systems. Moreover, for this special class of nonlinear
control systems, we derive an abstract interpolation-based model reduction
technique that aims at minimizing the bilinear H2-norm. New optimality
conditions are computed and compared with existing ones that are based
on generalized Lyapunov equations arising in the context of bilinear control
theory. These matrix equations so far constituted a bottleneck within the
method of balanced truncation for bilinear systems. Based on results from
linear control theory, we show that under certain assumptions a fast expo-
nential singular value decay of the solution matrix allows to approximately
solve these equations via appropriate low rank methods. By means of nu-
merical examples ranging up to dimensions n = 562 500, we demonstrate
the efficiency of several new approaches. Finally, we investigate a recently
introduced framework for model reduction of more general nonlinear control
systems. This leads to the analysis of so-called quadratic-bilinear control
systems. We show how tools and results from tensor theory can be used to
improve the existing method with regard to computational efficiency as well
as approximation accuracy. Again, numerical examples resulting from the
spatial discretization of nonlinear partial differential equations are used to
compare our method with current state-of-the-art techniques.





ZUSAMMENFASSUNG

Die vorliegende Arbeit behandelt interpolationsbasierte Modellordnungsre-
duktionstechniken für große lineare, bilineare sowie quadratisch-bilineare Re-
gelungssysteme. Ein spezieller Fokus liegt hierbei auf dem Problem der H2-
optimalen Modellreduktion. Basierend auf existierender Theorie für das li-
neare H2-Modellreduktionsproblem leiten wir diverse neue Resultate her,
die Anwendung in der approximativen Lösung von großen, linearen Ma-
trixgleichungen finden. Unter anderem beinhaltet das eine neue Beziehung
zwischen dem Bereich der Riemannoptimierung auf Matrixmannigfaltigkei-
ten und dem Konzept der rationalen Interpolation. Weiterhin entwickeln
wir eine Methode, die für einen vorgegebenen Rang n̂ das Residuum der
Lyapunovgleichung lokal minimiert. Wir zeigen, dass die dahintersteckende
Idee als Spezialfall des H2-optimalen Modellreduktionsproblems für biline-
are Regelungssysteme interpretiert werden kann. Für diese spezielle Klasse
von nichtlinearen Regelungssystemen entwickeln wir eine abstrakte inter-
polationsbasierte Modellreduktionsmethode die zum Ziel hat, die bilineare
H2-Norm lokal zu minimieren. Neue Optimalitätsbedingungen werden be-
rechnet und mit existierenden Bedingungen verglichen. Letzere beruhen auf
verallgemeinerten Lyapunovgleichungen, die im Bereich der bilinearen Re-
gelungstheorie auftreten. Diese Lyapunovgleichungen wiederum wurden bis-
lang als großer Nachteil der Methode des balancierten Abschneidens für bi-
lineare Systeme angesehen. Mit Hilfe von Resultaten aus der linearen Re-
gelungstheorie zeigen wir, dass die Lösungen dieser Matrixgleichungen un-
ter gewissen Annahmen einen starken Singulärwertabfall aufweisen, der es
ermöglicht die Gleichung durch Niedrigrangmethoden approximativ zu lösen.
Anhand von numerischen Beispielen bis zur Größenordnung n = 562500 de-
monstrieren wir den Nutzen von verschiedenen, neuen Ansätzen. Schließ-
lich untersuchen wir einen kürzlich eingeführten Ansatz zur Modellreduktion
einer allgemeineren Klasse von nichtlinearen Regelungssystemen. Das wird
uns zur Analyse von sogenannten quadratisch-bilinearen Regelungssystemen



viii

führen. Wir bedienen uns bestimmter Techniken aus der Tensortheorie, die es
ermöglichen, den existierenden Ansatz im Hinblick auf numerische Effizienz
sowie Approximationsgüte zu verbessern. Anhand von numerischen Beispie-
len, resultierend aus der räumlichen Diskretisierung von partiellen Differen-
tialgleichungen, vergleichen wir unsere Methode mit anerkannten Methoden
der aktuellen Wissenschaft.
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NOTATION

N natural numbers {0, 1, 2, . . . }
R,C field of real, complex numbers

C− left half of the complex plane

D open unit disc around 0

R[s]p×m ring of p×m polynomial matrices in s with real coefficients

R(s)p×m quotient field of Rp×m[s]

Re (z) real part of a complex number z

i imaginary unit or index, depending on context

Rn×m vector space of real matrices with m rows and n columns

Rn equal to Rn×1

M manifold of symmetric positive semi-definite matrices of rank n̂

x vector ∈ Rn

A matrix ∈ Rn×m

AT transpose of a matrix A

A∗ complex conjugate transpose of a matrix A

diag (d) diagonal matrix with diagonal d ∈ Rn

In, I identity matrix of size n× n resp. of suitable size

0n×m,0 zero matrix of size n×m resp. of suitable size

ei i-th column of the identity matrix I

κA condition number of a matrix A

λi(A) i-th eigenvalue of a matrix A

σ(A) spectrum of a matrix A

Aij entry (i, j) of a matrix A

Ak:l,m:n submatrix of A with entries Ai,j, i ∈ {k, . . . , l} and j ∈ {m, . . . , n}
Ak k-th column of a matrix A

A = AT � 0 A is symmetric positive definite

rank (A) rank of a matrix A

span (A) subspace spanned by the columns of a matrix A
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CHAPTER 1

INTRODUCTION

Contents
1.1 Dynamical control systems and model order reduction . . . 1

1.2 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Mathematical background . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Dynamical control systems and model order
reduction

The mathematical study and analysis of dynamical processes, i.e., processes that vary
with time t, certainly is one of the most important and challenging topics in the wide
field of numerical analysis. In general, almost all real-life applications can be modeled as
systems of partial differential equations (PDEs) and/or ordinary differential equations
(ODEs). Sometimes, these are subject to additional algebraic constraints, leading to
differential-algebraic equations (DAEs). The demand of having accurate models fre-
quently leads to very complex mathematical systems that require a large amount of
computational resources when studied and analyzed on a computer. At this point, the
term complex can reflect rather different meanings. For example, the number of equa-
tions of the underlying mathematical system, i.e., the state dimension n, can define a
complex model. In fact, it is not uncommon that one encounters systems with n ∼ 106.
It is clear that the simulation time of such systems, usually called large-scale, directly
depends on n. However, there are other properties that can define a complex dynamical
system. For example, a system whose dynamics is of linear nature in general is less
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complex than one that is nonlinear. Despite the fact that, so far, we have not explicitly
defined a linear system, for readers with a mathematical background it should not be too
surprising that such systems belong to a special and, in some sense, easier case and thus
can be treated with exclusive methods. Finally, the already mentioned presence of alge-
braic constraints can easily complicate the desired analysis and, hence, also determines
the complexity of a system.

Let us now proceed with a more rigorous and formal introduction to the topic of this
thesis. Throughout this work, we study dynamical control systems, i.e., a set of ODEs
whose dynamics can be influenced through external forces by means of a control input.
In a general form, these systems are given by a state equation

ẋ(t) = f(x(t), t) + g(x(t),u(t), t),

where x(t) ∈ Rn is the solution trajectory of the system, f : Rn+1 → Rn and g :
Rn+m+1 → Rn are functions with smoothness properties that are specified later on and
u(t) : R → Rm is a bounded input function. Anticipating later examples, one can
think of, e.g., industrial cooling processes that are mathematically described by the
heat equation. Assuming that we can specify the temperature on some region of the
work piece that should be cooled allows to model the dynamics by a system of the
previous form. Moreover, it also explains why the state dimension n indeed can become
inconveniently large. Since in our setting we assume that x(t) only varies with time,
processes that exhibit a spatial distribution first have to be semi-discretized in space.
This can be done by, e.g., a finite difference method (FDM) or a finite element method
(FEM), respectively. However, even for one-dimensionally distributed processes, often
a very fine resolution of the discretization is required in order to guarantee an accurate
approximation of the underlying PDE. As a consequence, the state dimension n also
increases uncomfortably. Unfortunately, in this case, classical control theoretic concepts
such as stability analysis, frequency response analysis or optimal control problems are
stretched to their limits and can no longer be efficiently realized. On the other hand,
in most applications one often is not interested in the entire system state x(t) anyway.
Instead, a dynamical control system comes along with an output equation

y(t) = h(x(t), t) + k(x(t),u(t), t),

where h : Rn+1 → Rp and k : Rn+m+1 → Rp again are smooth functions. Coming back to
the mentioned example from industrial cooling, a typical interpretation of y(t) is given
by the average temperature of the work piece. The key to control dynamical processes
even for large n now is the fact that usually the dimensions m, p of the input and output
functions u(t),y(t), respectively, are much smaller than the actual system dimension n.
Hence, if we consider the system as a black box model for x(t) and rather decide to
analyze the mapping z : Rm → Rp, u(t) 7→ y(t), there might be parts of x(t) that are
less important than others and for this reason can be neglected without influencing z(t)
significantly. The mathematical concept of model order reduction (MOR) is motivated
by exactly this consideration and tries to replace the black box model for x(t) by another
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one of much smaller state dimension n̂� n, such that one can come up with a modified
input-output mapping ẑ(t) approximating the original one. To be more precise, in this
thesis we are interested in the construction of a reduced-order model

˙̂x(t) = f̂(x̂(t), t) + ĝ(x̂(t),u(t), t),

ŷ(t) = ĥ(x̂(t), t) + k̂(x̂(t),u(t), t),

with f̂ : Rn̂+1 → Rn̂, ĝ : Rn̂+m+1 → Rn̂, ĥ : Rn̂+1 → Rp, and k̂ : Rn̂+m+1 → Rp. Of
course, the essential goal of MOR lies in minimizing ||y(t)− ŷ(t)|| as well as n̂ for a large
class of system inputs u(t). Depending on the specific nature of the functions f ,g,h and
k, the development of appropriate numerical algorithms is of different complexity. As
we mentioned in the beginning, a special position among all models is taken by linear
time-invariant control systems

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m. Although theory is quite
well-established for such systems, there still exist open problems that are clearly worth
studying. Unfortunately, most real-life applications can hardly be described by a linear
model. A remedy is given by the linearization of an actually nonlinear model around an
operating point. However, a linearization often only allows for locally accurate approx-
imations. A more sophisticated approach can be realized by so-called bilinear control
systems, an important subclass of nonlinear control systems. Since we provide a detailed
description of these models later on, at this point we refrain from a further discussion of
the topic. In situations where even the latter systems fail to give a faithful representation
of the true dynamics, one can transform the model into a system of quadratic-bilinear
differential algebraic equations (QBDAEs) which than can be reduced by suitable MOR
techniques.

1.2 Motivating examples

In order to get a better understanding of processes that indeed can be handled by tools
from the area of MOR, we subsequently present three different motivating examples that
underscore its practical use.

A model of a CD player

According to the structure of this thesis, we start with a model from linear control
theory. The subject of interest is a classical CD player. From a control theoretic point
of view, following the description in [38], the task is to construct a controller that ensures
that the laser spot points to the track of pits on a rotating CD. The system theoretic
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Figure 1.1: Transfer function of a CD player model.

description of the underlying process can be found as part of the SLICOT benchmark
collection1 and is one of the standard test problems for MOR of linear systems. Despite
the fact that this model has been used in the literature for several years now, due to its
complicated nature, it is still useful if the efficiency of linear reduction techniques should
be tested.

In engineering applications, the behavior of a system often is studied in the frequency
domain rather than in the time domain. In particular, a clear picture of the system
dynamics can be drawn from the transfer function. Since we discuss the detailed con-
cept in Chapter 2, at this point, we interpret a transfer function H(s) = cT (sI−A)−1b
as a rational function in the frequency variable s, determined by the system matrices
(A,b, c). Basically, if this function is known, one can compute the output response of a
linear system to arbitrary input signals. Consequently, it is one of the most important
tools for classical linear control theory. For readers not familiar with those concepts,
in Figure 1.1, we see the transfer function of the CD player over the frequency range
[10−1, 106]. For the construction of a satisfying reduced-order model it is now important
that its transfer function is close to the one from Figure 1.1. We have chosen this partic-
ular example to demonstrate possible difficulties that can arise throughout the reduction
process. As is shown, the original transfer function exhibits many peaks. Interpreting

1http://www.slicot.org/index.php?site=benchmodred

http://www.slicot.org/index.php?site=benchmodred
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MOR as an interpolation problem, coming up with a good reduced interpolant is very
difficult since the function is not very smooth and, hence, a large number of interpo-
lation points is needed for a successful reproduction. Moreover, a central question for
the performance of a reduced-order model is the location of the interpolation points
and throughout the thesis we provide several (known) statements about optimality with
respect to a specific accuracy measure.

The Fokker-Planck equation

Despite the fact that in this thesis we are basically dealing with deterministic processes,
the second example actually has its origin in stochastics. However, as we see later on,
there is an interesting and very close connection between linear stochastic dynamical
processes and bilinear ones. For now, we simply describe the stochastic model and its
application. We give a brief recapitulation of the more detailed explanation in [77].
Let us assume that we are interested in the motion of a dragged Brownian particle on
the real line assuming states x ∈ R. According to [77], if the particle is confined by a

-2 -1 0 1 2
0

0.5

1

1.5

x

t

Figure 1.2: Spatio-temporal probability discribution of a Brownian particle.

double-well potential

W (x) = (x2 − 1)2,
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the dynamics of the motion can be described by the stochastic partial differential equa-
tion

dXt = −∇V (Xt, t)dt+
√

2σdWt,

with 0 < σ < 1
2

and V (x, t) = W (x) − ux. Here, Xt ∈ R denotes the location of the
particle at time point t, −∇V (Xt, t) denotes the drift term of the process and σ is
referred to as the diffusion coefficient. If we instead consider the probability distribution
function

ρ(x, t)dx = P [Xt ∈ [x, x+ dx]] ,

the system can be replaced by means of the Fokker-Planck equation

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ),

that, after a spatial discretization, automatically leads to a bilinear system. In Figure
1.2, we present a possible probability distribution evolving with time t. Here, the finite
difference discretization leads to a system of dimension n = 100. As we can see, initially
the particle is located in the left potential well and is dragged to the right potential well
by means of a suitable control function u. A reproduction of the entire system state, i.e.,
of the probability distribution unfortunately is hard to realize. Instead, we can consider
the probability of the particle being located in the right potential well as an output
of the system. As a consequence, the dimension of the output function is very small
compared to n, representing the desired setup for MOR purposes.

The FitzHugh-Nagumo system

Finally, from the area of nonlinear control systems, we present a model for the activation
and deactivation dynamics of a spiking neuron that goes back to FitzHugh and Nagumo.
Formally, the model is described by the following coupled nonlinear PDEs

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + g,

wt(x, t) = hv(x, t)− γw(x, t) + g,

with f(v) = v(v − 0.1)(1 − v) and constant terms ε, γ, h, g. Here, the spatio-temporal
variables v and w denote a voltage and a recovery term associated with the neuron that
is subject to an external excitation source. As soon as this excitation exceeds a certain
threshold value, the neuron begins spiking, i.e., the voltage increases. After a while, the
variables v and w return to their rest values. Mathematically, this phenomenon can be
nicely described by means of a characteristic limit cycle behavior as shown in Figure
1.3, where we see a three-dimensional phase space diagram given by the system state
consisting of v and w. Although discretizing these coupled PDEs does neither lead to a
linear nor a bilinear control system, in Chapter 5, we discuss possible model reduction
techniques appropriate for this case as well.
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Figure 1.3: Typical limit cycle behavior for the FitzHugh-Nagumo system.

1.3 Mathematical background

The essential part of this thesis certainly is based on fundamental concepts from nu-
merical linear algebra. However, since this field is a very wide field within numerical
mathematics, we give a brief summary of the different mathematical disciplines we use
throughout this work and refer to the most important references that provide the back-
ground for all following results.

Here we deal with MOR of dynamical systems and, hence, most of the ideas heavily
depend on results from classical control theory. Concepts of stability, reachability or
observability, respectively, are of particular importance for linear model reduction tech-
niques. Lots of fundamental developments have been established by, e.g., Hinrichsen
and Pritchard and can be found in one of the standard textbooks on control theory, see
[78]. For nonlinear model reduction, in Chapter 4 and Chapter 5 we make use of basic
results from nonlinear control theory. A crucial role plays, e.g., the Volterra series rep-
resentation of a nonlinear system as well as the concept of variational analysis, allowing
for a generalized input-output map which is the key tool for all our methods. A good
introduction and very detailed explanation of the corresponding techniques can be found
in, e.g., [82, 100, 115].

Furthermore, we build upon numerous results from linear and multilinear algebra such
as linear matrix equations and their multidimensional counterpart, tensorized linear
systems. While most of the results on algebraic operations such as the Kronecker product
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and the vectorization of matrices are well-known and can be studied in, e.g., [80, 94], for
multidimensional purposes a rather new mathematical area has emerged over the last
few years. To be more precise, although tensor theoretic ideas have been used within
the chemical and physical community for over 50 years, the study of its mathematical
foundation has recently experienced a lot of attention. Besides the detailed and rigorous
discussions in [74, 95], we refer to a very nice overview given in [87]. Additionally, for a
better understanding of the second part of Chapter 4, we also point to [68] for a detailed
insight into tensor theory.

One probably cannot get around the ideas of projection and iterative methods when it
comes to the construction of numerical algorithms that efficiently compute a reduced-
order model. Common techniques such as the Arnoldi method, Lanczos procedure or
the (Petrov-)Galerkin framework are fundamental for the remainder of this thesis and
for an entire understanding of the statements, the reader should be familiar with these
concepts. The author has mainly benefited from studying [117].

Finally, the central model reduction technique studied in this thesis has its origin in the
classical concept of rational interpolation. We have already discussed the significance of
transfer functions when it comes to linear control theory. Throughout all chapters, we are
constantly faced with finding (optimal) interpolation points needed for the construction
of appropriate rational interpolants. Although the rational interpolation framework has
a long and interesting history, for our purposes, the works by [3, 71, 73, 99] have played
an extraordinary role for the development of the results presented here.

1.4 Outline of the thesis

We begin with a review on tensor theory as well as linear control theory in Chapter
2. Regarding the tensor theoretic ideas, we present the most important properties of
the Kronecker product and the closely related operation of vectorization of a matrix.
Moreover, we define the tensor rank and matricizations of vectors which are important
in Chapter 4 and Chapter 5. For linear control systems, we give an introduction into the
previously mentioned concepts of reachability, observability and stability. Although we
restrict ourselves to the linear continuous time-invariant case, we point out differences
that occur in the discrete-time setting. We conclude the chapter with an explanation
of projection-based model reduction for linear systems, including the special cases of
interpolation and balancing, respectively.

In Chapter 3, we focus on model reduction of linear control systems. Due to its impor-
tance for this thesis, we discuss the problem of H2-optimal model reduction in detail and
state different optimality conditions. Subsequently, we derive new results concerning low
rank approximations of large-scale linear matrix equations. In particular, we pick up an
idea from Riemannian optimization, introduced in [125], and show how to achieve the
same results by means of the concept of rational interpolation. We differentiate between
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the symmetric and the unsymmetric case. While for the first case, the goal is to min-
imize the canonical energy norm induced by the Lyapunov operator, for unsymmetric
matrices, we extend the ideas to a more general setting which reappears in Chapter 4.

Chapter 4 reflects the main contributions of this work. Here, we deal with the problem
of MOR for bilinear control systems. After an introduction into the basic theory for this
class of systems, we extend the ideas fromH2-optimal model reduction for linear systems
to the bilinear case. We derive new abstract interpolatory optimality conditions that
we show to be equivalent to existing ones based on generalized linear matrix equations.
We further propose two iterative algorithms that theoretically as well as numerically are
proven to outperform other state-of-the-art techniques with respect to the bilinear H2-
norm. In the second part of Chapter 4, we discuss low rank approximation methods for
generalized matrix equations arising in the method of balanced truncation for bilinear
control systems. Besides a theoretical explanation for the often observed fast singular
value decay of the solution matrix, we investigate the generalization of several successful
low rank approximation methods known for the case of linear control systems.

In Chapter 5, we discuss a recently introduced method, see [72], for more general non-
linear control systems. The fundamentals for this approach again have their origin in
the idea of rational interpolation by projection. Here, the new contribution on the one
hand is an efficient construction of a reduced-order model and, on the other hand, is
the development of a two-sided projection method theoretically improving the existing
technique. We further extensively test the method by several examples arising from
the semi-discretization of nonlinear PDEs and compare the results with those obtained
by the proper orthogonal decomposition (POD) method, a commonly used method in
nonlinear MOR.

We conclude with a summary of the results and an overview of open questions for further
research in Chapter 6.





CHAPTER 2

MATHEMATICAL FOUNDATIONS
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In this chapter, we collect basic concepts and ideas that we use and assume to be known
throughout the rest of this thesis. Most of the tools presented in the first section are
well-known in the the context of matrix and tensor theory and can be found in, e.g.,
[65, 68, 80, 87]. The mathematical foundations of classical linear control theory are
discussed in nearly every textbook like, e.g., [78]. For a detailed introduction into the
topic of model order reduction, we refer to [3] and the references therein.

2.1 Tensors and matricizations

For what follows, one of the most important operations is the Kronecker product of
matrices together with the closely related vec (·)-operator defined as follows.

Definition 2.1.1. ([65, Section 12.1]) Let X = [x1, . . . ,xm] ∈ Rn×m and Y ∈ Rp×q.
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Then

vec (X) :=

x1
...

xm

 ∈ Rn·m×1, X⊗Y =

x11Y . . . x1mY
...

...
xn1Y . . . xnmY

 ∈ Rn·p×m·q.

From the above definition, one can immediately show the following useful properties,
see, e.g., [65, Section 12.1].

Proposition 2.1.1. Let A ∈ Rn×m, B ∈ Rp×q, C ∈ Rm×r, D ∈ Rq×s and E ∈ Rr×`.
Then it holds

a) vec (ACE) = (ET ⊗A) vec (C) ,

b) tr (AC) = vec
(
AT
)T

vec (C) ,

c) (A⊗B)(C⊗D) = (AC)⊗ (BD).

We further need some properties of the derivative of the trace operator. If f(X) is a
matrix function, let

∂ tr (f(X))

∂X
=

[
∂ tr (f(X))

∂Xij

]
ij

denote its derivative with respect to X. From [47], we cite a very useful result on its
computation. Note that the first part of the following statement is due to Kleinman and
Athans and can be found in [8, 85].

Theorem 2.1.1. Let f(X) be some matrix function, then

1) (by Kleinman and Athans) if

f(X + ε∆X)− f(X) = εM(X)∆X, ε→ 0, we have

∂ tr (f(X))

∂X
= MT (X);

2) (by Dulov and Andrianova) if

f(X + ε∆X)− f(X) = εM1(X)∆XM2(X), ε→ 0, then

∂ tr (f(X))

∂X
=
[
MT

2 (X)M1(X)
]T
.

For later purposes, we introduce a special permutation matrix which simplifies the com-
putation of Kronecker products for certain block matrices.

Proposition 2.1.2. ([20]) Let A, E ∈ Rm×m, B ∈ Rn×n, C ∈ Rn×m, D ∈ Rm×n.
Assume that a permutation matrix M is given as follows

M =

[
Im ⊗

[
In
0

]
Im ⊗

[
0T

Im

]]
. (2.1)
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Then it holds

MT

(
A⊗

[
B C
D E

])
M =

[
A⊗B A⊗C
A⊗D A⊗ E

]
.

Furthermore, we constantly make use of the tensor rank of a vectorized matrix.

Definition 2.1.2. ([68, 87]) Let x = vec (X) ∈ Rn2
. Then the minimal number k s.t.

x =
k∑
i=1

ui ⊗ vi,

where ui,vi ∈ Rn, is called the tensor rank of the vector x.

Remark 2.1.1. Due to the properties of the Kronecker product, it is easily seen that the
tensor rank of a vectorized matrix X coincides with rank (X) .

In recent years, more and more attention has been paid to tensors. Formally, a tensor
H is a vector indexed by a product index set

I = I1 × · · · × Id, |Ij| = nj.

Besides the concept of the above mentioned tensor rank, several tensor decompositions
have been discussed in detail in [68, 87, 89]. An important idea in understanding the
nature of tensors is to transform them into matrices. For a given tensor H, the corre-
sponding tensor operation is called t-matricization H(t) and is defined as

H(t) ∈ RIt×It′ , H(t)
(iµ)µ∈t, (iµ)µ∈t′

:= H(i1,...,id), t′ := {1, . . . , d}\t.

Since the concept is rather abstract, it might be helpful to consider a simple example.
Due to its importance later on, we restrict ourselves to a 3-tensor. For example, here
we can think of the Hessian matrix of a vector valued function.

Example 2.1.1. For a given 3-tensor H(i1,i2,i3) with i1, i2, i3 ∈ {1, 2}, we have the fol-
lowing matricizations:

H(1) =

[
H(1,1,1) H(1,2,1) H(1,1,2) H(1,2,2)

H(2,1,1) H(2,2,1) H(2,1,2) H(2,2,2)

]
,

H(2) =

[
H(1,1,1) H(2,1,1) H(1,1,2) H(2,1,2)

H(1,2,1) H(2,2,1) H(1,2,2) H(2,2,2)

]
,

H(3) =

[
H(1,1,1) H(2,1,1) H(1,2,1) H(2,2,1)

H(1,1,2) H(2,1,2) H(1,2,2) H(2,2,2)

]
.

Roughly speaking, for the t-matricization, the t-th index of the tensorHi1,i2,i3 determines
the row. The columns then are sorted according to a reverse lexicographic ordering.
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2.2 Linear time-invariant systems

In the following, we state the essential ideas and concepts developed in the context of
control theory of linear time-invariant (LTI) dynamical systems. All of the statements
can be found in standard textbooks like, e.g., [78, 86, 113, 122].

2.2.1 The continuous-time case

Since the results discussed in this thesis are mainly dedicated to continuous-time systems,
we give a more detailed background on continuous-time systems and only briefly mention
the differences in the discrete-time setting.

Time-domain characterization

Let us begin with the so-called state space representation of linear continuous-time con-
trol systems of the form

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), x(0) = x0,
(2.2)

where A ∈ Rn×n, B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m. Unless otherwise stated, we
always assume that A is an invertible matrix so that the above system indeed is a system
of ODEs. Here, x(t) ∈ Rn is the state of the system, x0 the initial condition, u(t) ∈ Rm

denotes an input signal while y(t) is a measurable output of the system. The dimension
n of the state vector x(t) is called the order of the system. Finally, D is the throughput
of the system which often is assumed to be zero. In case of m = p = 1, i.e., B = b and
C = cT , we speak of a single-input and single-output (SISO) system, otherwise we call
it a multiple-input and multiple-output (MIMO) system. From now on, we abbreviate
the state space representation (2.2) by Σ = (A,B,C,D). Note that by choosing an
arbitrary invertible matrix T and introducing a new state variable as x = T−1x̃, we
can perform a so-called state space transformation that changes the realization of Σ
according to

Σ = (A,B,C,D)→ Σ̃ = (TAT−1,TB,CT−1,D).

Although most of the following concepts remain invariant under such transformations,
they are important for the method of balanced truncation.

As can easily be verified, the solution of the state equation (2.2) is determined as

Φ(u; x0; t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ) dτ. (2.3)

Assuming a zero initial condition x0 = 0, by means of the above expression, we can
easily specify the so-called impulse response of the system, i.e., the response to an input
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signal with ui(t) = δ(t) and δ(t) denoting the Dirac delta function. The result is

H(t) = CeAt B + δ(t)D. (2.4)

One of the main assumptions for most model order reduction techniques is that the
system under consideration is stable in the following sense, see [3, Section 5.8].

Definition 2.2.1. Given a dynamical system Σ = (A,B,C,D). The system (2.2) is
called stable, if for every state trajectory x(t) it holds ||x(t)|| < M, ∀t and some constant
M. We call the system asymptotically stable, if additionally, lim

t→∞
||x(t)|| = 0 for an

arbitrary norm || · ||.

As is easily shown, for σ(A) ⊂ C−∪iR the system Σ = (A,B,C,D) is stable. Moreover,
for σ(A) ⊂ C− the system Σ = (A,B,C,D) is asymptotically stable. A further very
important concept now is the reachability of an LTI system which is specified in the
following definition, see [3, Section 4.2.1].

Definition 2.2.2. Given a dynamical system Σ = (A,B,C,D). A state x̄ ∈ Rn is
reachable from the zero state if there exists an input function ū(t), of finite energy, and
a time T̄ <∞, such that

x̄ = Φ(ū; 0; T̄ ).

The system Σ is called reachable if for the reachable subspace X ⊂ Rn it holds that
X = Rn. Furthermore,

R(A,B) =
[
B,AB, . . . ,An−1B

]
(2.5)

is the reachability matrix of Σ.

Having defined the concept of reachability already allows us to state one of the crucial
ideas behind model order reduction by balanced truncation which we discuss in detail
later on. Basically, the goal is to figure out which states are hard to reach, i.e., in terms
of the definition, states that require a large amount of energy to be reached. Those states
are less important and thus can be neglected without influencing the behavior of the
system essentially. However, so far the question remains how to check the reachability
of a system Σ. This can be done by means of the reachability matrix R, see, e.g., [3,
Corollary 4.8].

Proposition 2.2.1. A linear system Σ is reachable if and only if rank (R(A,B)) = n.

Recall that we are in general not interested in or even able to measure the entire state
vector x and instead focus on the output y which is given by a linear combination of
the states. Similarly to the concept of reachability, for control theoretic purposes it is
helpful to identify the observable subspace of Σ. To be more precise, we want to know
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which states of the underlying system can actually be observed. Since observability and
reachability are dual concepts, one can check observability of the system by analyzing
reachability of the dual pair (AT ,CT ). Before performing model order reduction of a sys-
tem, one should at least think about if this is a reasonable assumption and if the system
actually can be reduced or not. For this reason, we need the definition of minimality,
see, e.g., [3, Definition 4.36].

Definition 2.2.3. Given a dynamical system Σ with Markov parameters hk = CAk−1B ∈
Rp×m, k = 1, 2, . . . The triple (C,A,B) is then called a realization of the sequence hk.
(C,A,B) is a minimal realization if among all realizations of the sequence, its dimension
is the smallest possible.

In other words, it is impossible to reduce a minimal system without an approximation
error. Moreover, there is a useful link between the concepts of minimality, reachability
and observability, see [3, Lemma 4.42].

Proposition 2.2.2. A linear system Σ is minimal if and only if (A,B) is reachable
and (A,C) is observable.

The above statement means that a system that is not completely reachable or observable
is not minimal. Hence, we can replace it by a system with a smaller number of states. In
context of model order reduction this means that we can construct a reduced-order sys-
tem which exactly reproduces the dynamics of the original system. Therefore, from now
on we always assume that the system under consideration is reachable and observable,
hence minimal.

Frequency-domain characterization

In order to derive an explicit input-output relationship, instead of the state space rep-
resentation (2.2) it is useful to analyze the system in frequency domain. This is done by
applying the Laplace transform

L : x(t) 7→ x(s) =

∫ ∞
0

e−stx(t)dt (⇒ ẋ(t) 7→ sx(s)− x(0)) (2.6)

to the equations in (2.2). What we end up with is

sx(s)− x(0) = Ax(s) + Bu(s), (2.7)

y(s) = Cx(s) + Du(s). (2.8)

If we now solve the state equation for x(s) and insert the result into the output equation,
we obtain an explicit expression for the output

y(s) =
(
C(sI−A)−1B + D

)
u(s) + C(sI−A)−1x0.
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Assuming a zero initial state, the function

H(s) = C(sI−A)−1B + D ∈ R(s)p×m, (2.9)

representing the relation between inputs and outputs is called the transfer function of Σ.
Note that H(s) also results from the Laplace transform of the impulse response (2.4). For
the special case of a SISO system, the transfer function is a rational function of degree
n in the frequency variable s. Moreover, for H(s) = d(s)

n(s)
, the zeros of n(s) are called

the poles of Σ. Stable systems, i.e., systems that have poles only in the left half of the
complex plane are particularly important. If the system matrix A now is diagonalizable,
a useful representation is the pole-residue expression of the transfer function

H(s) = cT (sI−A)−1b + d =
n∑
i=1

Ri

s− λi
+ d, (2.10)

where
Ri = lim

s→λi
H(s)(s− λi),

and λi, i = 1, . . . , n denote the eigenvalues of A. Note that the assumption of a minimal
system implies that there is no so-called pole-zero cancellation. If this was the case, we
could have replaced the system by one of smaller dimension.

The Lyapunov equation

Most of the properties we have considered so far can be characterized by means of a
certain type of matrix equation for which we need the infinite reachability Gramian

P =

∫ ∞
0

eAsBBT eAT s ds. (2.11)

Similarly, the infinite observability Gramian of the system is given as

Q =

∫ ∞
0

eAT sCTCeAs ds. (2.12)

By definition of P and Q, it is clear that the Gramians are symmetric and positive semi-
definite. Moreover, for minimal and asymptotically stable systems, the Gramians are
positive-definite and additionally satisfy the so-called Lyapunov equations. The following
result is from [3, Section 4.3].

Proposition 2.2.3. Let Σ = (A,B,C,D) denote a stable minimal dynamical system.
Then P = PT � 0 and Q = QT � 0 are the unique solutions of the Lyapunov equations

AP + PAT + BBT = 0, (2.13a)

ATQ + QA + CTC = 0. (2.13b)
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The special name of the matrix equation results from the fact that for a positive definite
right hand side, the solution P can be used to prove that the system is stable in the sense
of the classical Lyapunov stability. For this, one can show that V (z) = zTPz indeed is
a Lyapunov function for the system Σ.

Besides their importance in the context of stability of LTI systems, the above equations
play an important role in the concept of balancing and balancing related methods as
we see in the following section. In particular, they allow to measure a certain energy
associated with each system state x(t). However, for large-scale systems, computing and
storing the solution matrices P and Q, respectively, is a major challenge. Note that in
general P and Q are dense matrices even if the system Σ = (A,B,C,D) is sparse. As a
trivial example one might think of A = −I which leads to P = 1

2
BBT and Q = 1

2
CTC.

On the other hand, for a variety of real-life applications, it is well-known that if the
number of inputs and outputs is small compared to the order of the system, i.e., m, p�
n, the Gramians P and Q exhibit a very strong singular value decay which allows for
accurate low rank approximations P ≈ LLT , L ∈ Rn×k and Q ≈ L̃L̃T , L̃ ∈ Rn×k̃, where
k, k̃ � n. For example, let us assume that the system matrix A results from a finite-
difference discretization of the two-dimensional heat equation on the unit square and

that the input matrix is given as B =
[
1, · · · , 1

]T
. In Figure 2.1, we see the normalized

singular values of the reachability Gramian P for a discretization with n = 100 grid
points. We show the data corresponding to computations done in single precision as
well as computations done in double precision. The comparison underscores a very
important drawback of numerical computations generated on a computer architecture.
For singular values close to machine precision, we can no longer trust the results. In
Figure 2.1, we see that the red circles coincide with the blue circles as long as the
numerical values are large enough. A similar phenomenon would occur if we had further
used quadruple precision. The point where the blue circles seem to stagnate indicates
the limit of computations done in finite arithmetic. Nevertheless, we can record that for
this example, a low rank approximation of order 10 already suffices to reproduce P up
to the common machine precision used in MATLAB.

Besides the practical occurrence itself, the theoretical explanation for this phenomenon,
of course, is of interest as well. Indeed, there exist several different approaches that show
why one can expect an exponential singular value decay in certain situations. Probably
the earliest results are discussed in [109], where the author focuses on the case of a
symmetric system matrix A = AT . Making use of an error expression based on the
so-called ADI iteration for Lyapunov equations, one can show that

λmk+1(P)

λ1(P)
≤

(
k−1∏
j=0

κ
(2j+1)/(2k)
A − 1

κ
(2j+1)/(2k)
A + 1

)2

,

where κA = ||A|| · ||A−1|| denotes the condition number of A. The unsymmetric case is
studied in [6]. Here, the authors derive an approximation result based on properties of
Cauchy matrices. For the SISO case, the final error bound for a rank-k approximation
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Figure 2.1: Singular value decay of the controllability Gramian for the 2D heat equation.
Computations in single precision vs computations in double precision.

Pk then is as follows

||P−Pk||2 ≤ (n− k)2δk+1(κ2(X)||b||2)2,

where X is the matrix containing the eigenvectors of A and

δk+1 =
−1

2 Re (λk+1)

k∏
j=1

∣∣∣∣λk+1 − λj
λ∗k+1 + λj

∣∣∣∣2 .
Finally, a similar bound for the unsymmetric case is given in [123].

However, for our purposes a rather different approach is more suitable. For convenience,
let us for a moment consider the SISO case, i.e., B = b. Using the tools from Section 2.1,
instead of equation (2.13a), equivalently we can consider its vectorization. Together with
the properties of the Kronecker product, this leads to a linear system of n2 equations of
the form

(I⊗A + A⊗ I)︸ ︷︷ ︸
L

vec (P)︸ ︷︷ ︸
p

= −b⊗ b︸ ︷︷ ︸
B

. (2.14)

As has been shown in [66, 89], the main advantage is that most of the low rank approaches
dealing with the above structure can be even generalized to the d-dimensional case with
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additional mass matrices appearing within the tensor structure(
d∑
i=1

E1 ⊗ · · · ⊗ Ei−1 ⊗Ai ⊗ Ei+1 ⊗ · · · ⊗ Ed

)
︸ ︷︷ ︸

Ld

X =
d⊗
i=1

bi. (2.15)

The important observation is that the special structure of equation (2.15) allows to diag-
onalize the left-hand side by a matrix of tensor rank 1, meaning that the approximation
procedure basically amounts to an approximation problem for the function

f(x1, . . . , xd) =
1

x1 + · · ·+ xd
.

In [66], for linear systems of the form (2.15), it is shown that there exists a vector X̃ of
tensor rank k that fulfills a profitable error bound.

Theorem 2.2.1. ([66]) Let Ld denote a matrix of tensor product structure as in (2.15)
with tensor right-hand side B. Assume that the sum of the spectra of the E−1

i Ai is
contained in the strip Ω := −[λmin, λmax]⊕ i[−µ, µ] ⊆ C− and let Γ denote the boundary
of −[1, 2λmax/λmin + 1]⊕ i[−2µ/λmin− 1, 2µ/λmin + 1]. Let k ∈ N and for j = −k, . . . , k,
define the following quadrature weights and points

hst :=
π√
k
, (2.16)

tj := log
(

exp(jhst) +
√

1 + exp (2jhst)
)
, (2.17)

wj :=
hst√

1 + exp (−2jhst)
. (2.18)

Then there exists Cst s.t. the solution X to LdX = B can be approximated by

X̃ := −
k∑

j=−k

2wj
λmin

d⊗
i=1

exp

(
2tj
λmin

E−1
i Ai

)
E−1
i bi, (2.19)

with approximation error

||X − X̃ ||2 ≤
Cst
πλmin

exp

(
2µλ−1

min + 1

π
− π
√
k

)∮
Γ

∣∣∣∣∣∣∣∣λI− 2
Ld
λmin

∣∣∣∣∣∣∣∣
2

dΓλ

∣∣∣∣∣
∣∣∣∣∣
d⊗
i=1

E−1
i bi

∣∣∣∣∣
∣∣∣∣∣
2

.

Obviously, in the special case d = 2, E1 = E2 = E, A1 = A2 = A, the above statement
immediately reveals that the solution to the (generalized) Lyapunov equation

APET + EPAT + BBT = 0,

can be approximated by a low rank matrix P̃ = LLT , L ∈ Rn×k, with almost exponen-
tially decreasing approximation error ||P−P̃||2. The basic ideas for proving the assertion
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are, on the one hand, the exponential character of the solution matrix L−1
d corresponding

to a system of linear equations LdX = B as well as the Dunford-Cauchy representation
of the underlying matrix exponential. On the other hand, one can exploit the special
tensor structure which allows to decompose the approximant X̃ and thus leads to the
above tensor structure. However, for a more detailed analysis, we refer to [66].

Remark 2.2.1. The quadrature weights and points from Theorem 2.2.1 go back to the
quadrature formula of Stenger, see, e.g., [124]. Note that the constant Cst is independent
of the individual problem and has been experimentally determined as Cst ≈ 2.75, see [89].

Remark 2.2.2. As has been shown in [89], at least for the symmetric and supersymmet-
ric cases, respectively, one can construct even better approximations X̃ that, although
depending on the condition number of Ld, exhibit a true exponentially decreasing ap-
proximation error, i.e., the bound depends on exp(−k) rather than on exp(−

√
k) as in

Theorem 2.2.1. Moreover, for the unsymmetric case the bound is only of theoretical in-
terest since the spectrum and its bound usually is not known and one thus might largely
overestimate the true approximation error, see also the numerical study in [67]. Never-
theless, Theorem 2.2.1 theoretically provides an explanation for the often observed low
numerical rank of the reachability Gramian P.

In summary, we conclude that it is often possible to approximate the solutions to the
Lyapunov equations (2.13) by low rank factors appropriately. In Chapter 3, we briefly
review some important methods used in the context of model order reduction of LTI
systems that solely operate on these low rank factors making an efficient computation
possible for system dimensions up to n ∼ 106.

System norms

Let us come back to linear control systems of the form (2.2). For now, we assume
that the feedthrough term D vanishes. Especially for model reduction purposes, the
latter assumption is no restriction as we show within the next section. On the other
hand, if d = 0, the transfer function H(s) of a stable SISO dynamical system belongs
to the Hardy space H2. Recall that the latter space denotes the set of square integrable
functions that are analytic in the open right half of the complex plane, i.e., functions
f(x+ iy) with

sup
x>0

∫ ∞
−∞
|f(x+ iy)|2 dy <∞.

Throughout the thesis, H2 is of particular interest. According to, e.g., [73], with two
stable dynamical systems described by their transfer functions G and H, we can associate
the H2-inner product via

〈G,H〉H2 =
1

2π

∫ ∞
−∞

G(iω)H(iω) dω (2.20)
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and the corresponding norm via

||H||H2 =

(
1

2π

∫ ∞
−∞
|H(iω)|2 dω

) 1
2

. (2.21)

Since the above definition is rather of theoretical interest, in [73] the authors give two
alternatives to compute the H2-norm which we summarize below.

Lemma 2.2.1. Suppose A ∈ Rn×n and B ∈ Rm×m are stable. Given b, c ∈ Rn and
b̃, c̃ ∈ Rm, define associated transfer functions,

G(s) = cT (sI−A)−1b and H(s) = c̃T (sI−B)−1b̃.

Then the inner product 〈G,H〉H2 is associated with solutions to Sylvester equations as:

If P solves AP + PBT + bb̃T = 0 then 〈G,H〉H2 = cTPc̃. (2.22)

If Q solves QA + BTQ + c̃cT = 0 then 〈G,H〉H2 = b̃TQb. (2.23)

If R solves AR + RB + bc̃T = 0 then 〈G,H〉H2 = cTRb̃. (2.24)

Note that if A = B, b = b̃, and c = c̃ then P is the reachability Gramian of G(s),Q is
the observability Gramian of G(s), and R is the so-called cross Gramian of G(s); and

||G||2H2
= cTPc = bTQb = cTRb. (2.25)

Another formula can be provided by the pole-residue expression of the transfer function
(2.10). Again, we refer to [73] for a proof of the following useful statement.

Lemma 2.2.2. Suppose that G(s) has simple poles at λ1, . . . , λn and H(s) has simple
poles at µ1, . . . , µm, where both sets are contained in the open left half of the complex
plane. Then

〈G,H〉H2 =
m∑
k=1

G(−µk) res[H(s), µk]. (2.26)

So far, we only considered the SISO case. However, the extension to MIMO systems is
rather straightforward. For example, the H2-norm is given as

||Σ||H2 =

(
1

2π

∫ ∞
−∞

tr
(
H(iω)HT (iω)

)
dω

) 1
2

. (2.27)

Moreover, all the formulas from Lemma 2.2.1 still hold true when the right hand sides
are changed appropriately. Also, the pole-residue expression can be generalized to the
MIMO setting as well. Since the corresponding computation formula is rather technical
and does not yield additional insight, we refrain from a more detailed discussion here.

Before we proceed with the discrete-time case, we also introduce the H∞-norm for a
linear dynamical system Σ.



2.2. Linear time-invariant systems 23

Definition 2.2.4. Let Σ = (A,B,C,D) denote a stable dynamical linear control sytem.
Then, the H∞-norm of Σ is defined as

||Σ||H∞ := sup
ω∈R

σmax(H(iω)), (2.28)

where σmax denotes the maximal singular value of the matrix valued transfer function
H(s) ∈ R(s)p×m.

In conclusion, there are two system norms that obviously open up the possibility to
measure the approximation of a reduced-order model in different ways. While the H∞-
norm is of greater importance for balancing-type model reduction methods, in this thesis,
we mainly focus on interpolation-based methods that try to minimize the H2-norm.

2.2.2 The discrete-time case

Though the thesis is mainly dedicated to the continuous-time case, for the sake of com-
pleteness we give some details and differences that arise in the discrete-time setting.
Hence, let us have a look at systems of the form

Σd :

{
x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k), x(0) = x0,
(2.29)

where A ∈ Rn×n, B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m. Analogously to the previous
subsection, an explicit solution of the state equation can be derived as

Φ(u; x0; k) = Akx0 +
k−1∑
j=0

Ak−1−jBu(j). (2.30)

The concepts of reachability and observability now remain the same as in the continuous
case. Moreover, the transfer function exhibits the same structure, i.e.,

H(z) = C(zI−A)−1B + D. (2.31)

However, the frequency variable usually is denoted by z, obtained from a discrete-time
Laplace or Z-transform of the system. For the infinite reachability and observability
Gramians

P =
∞∑
k=0

AkBBT (AT )k, (2.32)

Q =
∞∑
k=0

(AT )kCTCAk, (2.33)

one can show the following counterpart to Proposition 2.2.3, see [3, Section 4.3].
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Proposition 2.2.4. Let Σ = (A,B,C,D) denote a stable minimal dynamical system.
Then P = PT � 0 and Q = QT � 0 are the solutions of the Stein equations

APAT + BBT = P, (2.34a)

ATQA + CTC = Q. (2.34b)

Finally, we want to state the definitions of the discrete-time system norms that require
the evaluation of the transfer function on the unit circle instead of the imaginary axis.
As a result, one can define the h2-norm as

||Σd||h2 =

(
1

2

∫ 2π

0

tr
(
H(eiθ)HT (eiθ)

)
dθ

) 1
2

(2.35)

and the h∞-norm as

||Σd||h∞ := sup
θ∈[0,2π]

σmax(H(eiθ)). (2.36)

Unsurprisingly, for the h2-norm, computation formulas similar to the continuous case
can be shown based on the solution of the Stein equations (see [3]) and the pole-residue
expression (see [36]). However, here we do not give the exact statements but instead
refer the interested reader to the given references.

2.3 Model reduction by projection

As we have seen in the preceding section, the analysis of important control theoretic
concepts like stability, minimality and frequency domain behavior require the solution
of linear matrix equations or the evaluation of complex integrals of the transfer function
matrix H(s) of the system. Moreover, we have already discussed the presence of high-
dimensional systems, i.e., state dimensions n reaching up to 106, in the context of typical
real-life applications. In what follows, we give a compact review of the most important
MOR techniques that can be found in, e.g., [3, 5, 28, 61, 106, 118]. Mathematically
speaking, we want to replace the system (2.2) by the following one

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t), x̂(0) = x̂0,
(2.37)

where Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂ and D̂ ∈ Rp×m. Obviously, for Σ̂ we require
n̂� n and the error ||y− ŷ|| to be small. Depending on the specific norm we choose for
the minimization problem, there are different techniques that have been proven to be very
successful. On the one hand, there are interpolation-based model reduction techniques
that try to minimize the error in the H2-norm and, on the other hand, methods like
balanced truncation focus on a small H∞-error of the reduced-order system.
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In order to measure the quality of a reduced-order approximation, we define the so-called
error system Σerr = (Aerr,Berr,Cerr,Derr), where the system matrices are given as

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, Cerr

[
C −Ĉ

]
, Derr = D− D̂. (2.38)

The special block structure of the error system is motivated by the fact that for the
transfer function it holds Herr = H−Ĥ. We now also see why it is reasonable to assume
that the feedthrough term D of the original system is the zero matrix. If this is not the
case, the feedthrough term of the reduced-order system obviously can be set to D̂ = D
so that the feedthrough term of the error system vanishes. Some approaches such as,
e.g., Hankel norm approximation and a recently proposed method from [57], use the
D̂-term of the reduced-order model to improve the approximation quality even in the
case D = 0. However, this is beyond the scope of this thesis and we therefore always
assume that D̂ = D = 0.

The question that immediately arises is how to construct Σ̂, given an original system Σ.
As it turns out, a reduced-order system can be obtained by a projection-type framework.
For this, let us briefly state the most important properties of projection matrices, see,
e.g., [117, Section 1.12] and [17].

Definition 2.3.1. a) A matrix P ∈ Rn×n is a projector (onto a subspace V ⊂ Rn)
if range (P) = V and P2 = P.

b) Let Z ∈ Rn×n with spectrum Λ(Z) = Λ1∪Λ2, Λ1∩Λ2 = ∅, and let V1 be the (right)
Z-invariant subspace corresponding to Λ1. Then a projector onto V1 is called a
spectral projector.

c) If P = PT , then P is an orthogonal projector (Galerkin projection), otherwise an
oblique projector (Petrov-Galerkin projection).

The following useful properties of (spectral) projectors can be shown, see, e.g., [117,
Section 1.12] and [17].

Proposition 2.3.1. Let Z ∈ Rn×n be as in Definition 2.3.1, and let P ∈ Rn×n be
a (spectral) projector onto V (in the spectral case, onto the right Z-invariant subspace
corresponding to Λ1). Then the following assertions hold true

a) rank (P) = dimV = |Λ1| := r,

b) P is the identity operator on V , i.e., Pv = v, ∀v ∈ V ,

c) range (P) = range (ZP) ,

d) ker (P) = range (I−P) , range (P) = ker (I−P) ,

e) I − P is a spectral projector onto the right Z-invariant subspace corresponding to
Λ2.
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f) Let V =
[
v1, . . . ,vr

]
be an orthonormal basis matrix for V , then P = VVT is an

orthogonal projector onto V .

g) Let W ⊂ Rn be another subspace of the same dimension as V with basis matrix
W =

[
w1, . . . ,wr

]
, then P = V(WTV)−1WT is an oblique projector onto V along

W .

In terms of the above properties, let us assume that for an original system Σ of the form
(2.2), the state vector x is approximated by an oblique projection P = V(WTV)−1WT ,
i.e., let x ≈ Px. Inserting our approximation into the state equation of (2.2) and impos-
ing a common Petrov-Galerkin condition on the residual, we obtain that

Pẋ−APx + Bu ⊥ W

which implies that

(WTV)−1WT (Pẋ−APx + Bu) = 0. (2.39)

Introducing a new state variable as x̂ = (WTV)−1WTx, the last equation can be inter-
preted as

˙̂x− (WTV)−1WTAV︸ ︷︷ ︸
Â

x̂ + (WTV)−1WTB︸ ︷︷ ︸
B̂

u = 0. (2.40)

Moreover, with this notation, for the output equation we thus get

y ≈ ŷ = CVx̂. (2.41)

Hence, a reduced-order system as in (2.37) can be obtained by a Petrov-Galerkin type
projection P = V(WTV)−1WT . It still remains open how to choose the projection
subspaces V and W such that ||y− ŷ|| is minimized. Below, we present two well-known
choices for V and W that are based on different ideas.

2.3.1 Interpolation-based model reduction

Recall that the transfer function H(s) of a SISO dynamical system is a rational function
in s of degree equal to the state dimension of the system under consideration. Hence,
following classical approximation theory, one might think of constructing a reduced-order
system described by a rational function of lower degree that interpolates the original
function at certain prescribed points within the complex plane. Similarly, in the MIMO
case, if we can ensure that for a complex number σ ∈ C we have

H(σ) = Ĥ(σ), (2.42)

then for frequencies s ≈ σ, the reduced-order system can be expected to faithfully
reproduce the original system dynamics. Using the properties of projections, one can
show that this can be achieved by solving a certain linear system, see [71, Theorem 3.1]
and [127].
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Theorem 2.3.1. Let an original system Σ = (A,B,C) be given. Assume that a reduced-
order model is given as

Â = (WTV)−1WTAV, B̂ = (WTV)−1WTB, Ĉ = CV,

with σ ∈ C\(Λ(A) ∪ Λ(Â)) and either

• (σI−A)−1B ∈ range (V) , or

• (σI−A)−∗C ∈ range (W) .

Then it holds
H(σ) = Ĥ(σ),

i.e., the reduced transfer function Ĥ is a rational matrix-valued interpolant of H in s = σ.

Although the above interpolation can easily be ensured, for MIMO systems it is often
desirable to keep the projection subspace as small as possible, leading to the concept of
so-called tangential interpolation, see, e.g., [62]. Here, for a given set of interpolation
points S = {σ1, . . . , σr}, together with left and right tangential directions b̃i ∈ Rm, i =
1, . . . , r and c̃i ∈ Rp, i = 1, . . . , r, respectively, the goal is to come up with a reduced-
order system such that

H(σi)b̃i = Ĥ(σi)b̃i, i = 1, . . . , r, (2.43a)

c̃Ti H(σi) = c̃Ti Ĥ(σi), i = 1, . . . , r. (2.43b)

It is clear that the choice of good or even optimal interpolation points is of particular
interest in order to guarantee a satisfactory performance of the reduced-order system
compared to the original behavior. However, if the frequency range of interest is not
known, this step within the model reduction process is far from being trivial. On the
contrary, many authors have discussed reasonable interpolation points that also try to
take care of preserving system properties such as stability or passivity, see e.g. [3, 4, 36,
44, 46, 52, 60, 62, 71, 73, 127].

2.3.2 Balancing-based model reduction

A more system theoretic model reduction approach is given by the method of balanced
truncation where the solutions of the Lyapunov equations (2.13) play an important role.
The idea originated within the design of digital filters (see [104]) and, in context of model
reduction of linear control systems, is further discussed in [103]. The main motivation of
this approach is to transform the system into a realization from which one can easily read
off system states that are important and less important for the input-output behavior,
respectively. For this, it is noteworthy that there is a direct connection between the
system Gramians P and Q and the energy associated with an arbitrary system state x∗.
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To be more precise, due to the assumption of a reachable system, the smallest amount
of energy needed to reach x∗ from the zero initial state x0 = 0 is given by

Jr = xT∗P
−1x∗. (2.44)

Similarly, the energy obtained by observing the output of an uncontrolled system Σ with
zero initial condition can be derived to satisfy

Jo = xT∗Qx∗. (2.45)

Hence, if a system satisfies P = Q = diag (σ1, . . . , σn) with decreasing eigenvalues σi,
then states that need a large amount of energy to be reached yield only a small amount
of energy if they are observed. This fact immediately suggest that these states do
not contribute much to the system behavior and thus may be neglected to obtain a
reduced-order system. In fact, systems with equal and diagonal Gramians are called
balanced realizations. Transforming a system into a balanced realization determines the
first step in the balanced truncation model reduction procedure. Moreover, the matrix
diag (σ1, . . . , σn) consists of the Hankel singular values of Σ which basically are the
nonzero singular values of the Hankel operator. Since it is of little importance for this
thesis, we refrain from a detailed discussion on the latter operator and instead just
refer to [3, Chapter 8]. Coming back to the balanced truncation method, the goal is to
transform a given minimal and stable system Σ by means of a state space transformation
Tb such that a balanced realization is obtained. This can be achieved by, e.g., the square
root balancing method proposed in [64]. According to Proposition 2.2.3, for a minimal
and stable system Σ, the Gramians P and Q are symmetric positive-definite. Hence,
assume that P = STS and Q = RTR. By simple algebraic multiplications it can be
shown that a state space transformation with Tb = D−

1
2 ZTR and T−1

b = STUD−
1
2 ,

where SRT = UDZT is the singular value decomposition, yields a balanced realization
which in partitioned form looks like

˙̃x(t) =

[
A11 A12

A21 A22

]
x̃(t) +

[
B1

B2

]
u(t) ỹ(t) =

[
C1 C2

]
x̃(t), (2.46)

with A11 ∈ Rn̂×n̂, B1 ∈ Rn̂×m and C1 ∈ Rp×n̂. As indicated by its name, the next step
consists of truncating the system states in order to obtain a reduced-order model. If
we set Σ̂ = (A11,B1,C1), following [103] and [3, Chapter 7], we conclude that Σ̂ is
a balanced realization, i.e., P̂ = Q̂ = diag (σ1, . . . , σn̂) . Moreover, the Hankel singular
values of the reduced-order system coincide with those of the original system and one
can show (see [49]) the following error bound

||Σ− Σ̂||H∞ ≤ 2(σn̂+1 + · · ·+ σn). (2.47)

In view of the theory of projections, the same model Σ̂ is obtained if we construct a
Petrov-Galerkin type projection P = VWT with

V = STUn̂D
− 1

2
n̂ , W = D

− 1
2

n̂ ZT
n̂R,
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and
Un̂ =

[
u1, . . . ,un̂

]
, D = diag (σ1, . . . , σn̂) and Zn̂ =

[
z1, . . . , zn̂

]
.
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3.1 Introduction

In this chapter, we focus on linear dynamical systems. Though the intrinsic nature of
most complex physical processes indeed is nonlinear, linear models often help to give a
first approximation of the underlying dynamics. Moreover, in several real-life applica-
tions, linearizing a system around a known operating point already yields a sufficient
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reflection of the original model allowing to design, e.g., controllers based on the analysis
of the linear system. The resulting trade-off of giving up accuracy is then compensated
by the fact that, as we have seen in the previous chapter, theory for linear control sys-
tems can be considered as well-understood. The goal is to point out some new aspects
of model order reduction of linear control systems that provide a unifying framework for
different reduction approaches that so far have been considered unrelated. In particular,
we study the solution of large-scale matrix equations of the form

AXE + MXH + BC = 0,

where A,M ∈ Rn×n, E,H ∈ Rq×q,B ∈ Rn×m and C ∈ Rm×q. We now proceed as fol-
lows. We start with a brief review of H2-optimal model reduction of linear systems,
including different necessary optimality conditions as well as algorithms converging to
corresponding local optima. Subsequently we show that for symmetric state space sys-
tems constructing locallyH2-optimal models is equivalent to minimizing a certain energy
norm that naturally arises for the Lyapunov equation of the system. For unsymmetric
systems, we give an interpretation of the H2-norm as an error measure for the approx-
imation of the controllability and the observability Gramian. Furthermore, we extend
some of the ideas to a more general setting which in Chapter 4 is shown to be inter-
pretable as a generalized interpolation-based framework as well. By means of some
numerical examples, we compare new and existing methods and underscore our theoret-
ical results. We emphasize that the results of this chapter are primarily of theoretical
interest. In particular, the discussed and proposed algorithms will not be competitive in
terms of computational efficiency when compared to state-of-the-art low rank solution
methods. However, they are optimal with respect to certain energy norms and should
help to improve the current understanding of low rank approximations to linear matrix
equations.

3.2 H2-optimal model reduction

Let us consider a continuous LTI control system of the form (2.2) with zero feedthrough
term and zero initial condition, i.e., x0 = 0. For systems with non-zero initial condition,
a transformation via introducing an artificial constant input signal as well as a reference
trajectory allows to embed all of the following concepts into the above case. Let us now
study the optimal H2-model reduction problem, where the goal is to find the best stable
n̂-dimensional model with transfer function Ĥ s.t.

||H− Ĥ||H2 = min
dim(H̃) = n̂

H̃ stable

||H− H̃||H2 . (3.1)
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3.2.1 Necessary optimality conditions

Since the set of all n̂-dimensional systems whose transfer functions are in H2 is non-
convex, finding a global minimum is infeasible and thus one usually aims at constructing
locally optimal models that fulfill first order necessary optimality conditions. Over the
last decades, several conditions have been derived and they have been shown to be
equivalent. Here, we give a brief review of the conditions that are of particular interest
for this thesis.

The Wilson conditions

Recall from Chapter 2 that the H2-error of a reduced-order model Σ̂ can be measured
by means of the solution of the Lyapunov equations (2.13). According to Lemma 2.2.1
and the corresponding extension to the MIMO case, we obtain

||Σ− Σ̂||2H2
= tr

(
CerrPerrC

T
err

)
= tr

(
BT
errQerrBerr

)
, (3.2)

where Aerr, Berr and Cerr are defined as in (2.38) and Perr and Qerr are the solutions
of the Lyapunov equations of the error system, i.e.,

AerrPerr + PerrA
T
err + BerrB

T
err = 0, (3.3a)

AT
errQerr + QerrAerr + CT

errCerr = 0. (3.3b)

In order to derive necessary conditions for H2-optimality, we can now interpret J :=
||Σ − Σ̂||2H2

as a cost functional depending on the reduced-order system matrices Â, B̂

and Ĉ. Hence, by computing ∇JÂ, ∇JB̂ and ∇JĈ and setting these expressions equal
to zero, we obtain

PT
12Q12 + P22P22 = 0, (3.4a)

QT
12B + Q22B̂ = 0, (3.4b)

ĈP22 −CP12 = 0, (3.4c)

where we assume that Perr and Qerr are partitioned as follows:

Perr =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
.

The above conditions, usually referred to as the Wilson conditions for H2-optimality,
were first discussed in [131] and, in [73], were shown to be equivalent to the subsequently
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following interpolation-based optimality conditions.

Interpolation-based conditions

Alternatively, one can characterize H2-optimality in terms of the transfer functions of
the original and the reduced-order system. For this, we cite a rather recently introduced
expression for the H2-norm of the error system based on the pole-residue expression
(2.26) and Lemma 2.2.2. For convenience we begin with the SISO case and briefly state
the extension for MIMO systems from [73].

Corollary 3.2.1. Given the original system Σ and a reduced-order system Σ̂, let λi
and λ̂j be the simple poles of Σ and Σ̂, respectively, and suppose that the poles of Σ̂ are

distinct. Let Φi and Φ̂j denote the residues of the transfer functions H(s) and Ĥ(s) at

their poles λi and λ̂j, respectively: Φi = res[H(s), λi] := lims→λi H(s)(s−λi), i = 1, . . . , n

and Φ̂j = res[Ĥ(s), λj] for j = 1, . . . , n̂. The H2-norm of the error system is given by

||Σ− Σ̂||2H2
=

n∑
i=1

Φi

(
H(−λi)− Ĥ(−λi)

)
−

n̂∑
j=1

Φ̂j

(
H(−λ̂j)− Ĥ(−λ̂j)

)
. (3.5)

Initially investigated in [99] in terms of orthogonality conditions for the transfer function,
a locally optimal SISO model now satisfies certain Hermite interpolation conditions. To
be more precise, the transfer function of a locally H2-optimal model interpolates the
transfer function and its derivative of the original system at its own system poles reflected
at the imaginary axis. One way to derive these conditions is to use the above formula
together with the reduced-order system poles λ̂j and the residues Φ̂j as optimization

parameters for Ĥ. This leads to the optimality conditions

H(−λ̂j) = Ĥ(−λ̂j), H ′(−λ̂j) = Ĥ ′(−λ̂j), j = 1, . . . , n̂. (3.6)

Although from Chapter 2 we know how to ensure that Ĥ(s) interpolates H(s) at arbi-
trary prescribed interpolation points σ ∈ C, here the problem we are faced with is that
these points are not known a priori. Nevertheless, in [73], the authors have proposed the
iterative rational Krylov algorithm (IRKA), see Algorithm 3.2.1, a very reliable iterative
scheme that, upon convergence, yields a reduced-order model fulfilling (3.6).

We already have seen that in the case of MIMO systems, the transfer function is a
matrix-valued rational function, i.e., H(s) ∈ R(s)p×n and the concept of interpolation
is usually understood as tangential interpolation as described in (2.43). Making use of
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this framework, a locally H2-optimal reduced-order model has to satisfy

c̃Tj H(−λ̂j) = c̃Tj Ĥ(−λ̂j), j = 1, . . . , n̂, (3.7a)

H(−λ̂j)b̃j = Ĥ(−λ̂j)b̃j, j = 1, . . . , n̂, (3.7b)

c̃Tj H′(−λ̂j)b̃j = c̃Tj Ĥ′(−λ̂j)b̃j, j = 1, . . . , n̂, (3.7c)

where RΛ̂R−1 = Â and Λ̂ = diag
(
λ̂1, . . . , λ̂n̂

)
, B̃ = B̂TR−T and C̃ = ĈR is the

spectral decomposition of the system.

Algorithm 3.2.1 Iterative rational Krylov algorithm (IRKA)

Input: Initial selection of interpolation points σi, i = 1, . . . , n̂ that is closed under
conjugation and a convergence tolerance tol.

Output: Â, b̂, ĉ
1: Choose V and W s.t. V = span{(σ1I − A)−1b, . . . , (σn̂I − A)−1b} and W =

span{(σ1I−AT )−1c, . . . , (σn̂I−AT )−1c} and WTV = I.
2: while relative change in {σi} > tol do
3: Â = WTAV,
4: assign σi ← −λi(Â) for i = 1, . . . , n̂,
5: update V and W s.t. V = span{(σ1I − A)−1b, . . . , (σn̂I − A)−1b} and W =

span{(σ1I−AT )−1c, . . . , (σn̂I−AT )−1c} and WTV = I.
6: end while
7: Â = WTAV, b̂ = WTb, ĉ = cTV

Remark 3.2.1. Note that the demand of having a set S of interpolation points that are
closed under conjugation means that if σi ∈ S is complex, then we also have σ̄i ∈ S.

3.2.2 The discrete-time case

For the sake of completeness, we briefly state the corresponding optimality conditions
for linear discrete-time systems. The Lyapunov-based approach then is replaced by the
solution of the Stein equations of the error system

AerrPerrA
T
err + BerrB

T
err = Perr, (3.8a)

AT
errQerrAerr + CT

errCerr = Qerr. (3.8b)
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Using the same partitioning as for the continuous-time case, if a reduced-order model Σ̂
is locally h2-optimal, it satisfies

QT
12AP12 + Q22ÂP22 = 0, (3.9a)

QT
12B + Q22B̂ = 0, (3.9b)

ĈP22 −CP12 = 0. (3.9c)

Similar to [73], in [36], the authors derive an interpolatory framework which states the
optimality conditions in terms of tangential interpolation of the transfer function. The
result from [36] is given in the following theorem.

Theorem 3.2.1. Given a large-scale linear discrete-time MIMO control system with
transfer function H(s). Let Ĥ(s) be the transfer function of the reduced-order system

given in an eigenvector basis Â = diag
(
λ̂1, . . . , λ̂n̂

)
, B̂ =

[
b̂∗1, . . . , b̂

∗
n̂

]∗
and Ĉ =[

ĉ1, . . . , ĉn̂
]
. If Ĥ(s) solves the h2-optimal problem, then the following conditions are

satisfied

c∗jH

(
1

λ̂∗j

)
= c∗jĤ

(
1

λ̂∗j

)
, j = 1, . . . , n̂, (3.10a)

H

(
1

λ̂∗j

)
b∗j = Ĥ

(
1

λ̂∗j

)
b∗j , j = 1, . . . , n̂, (3.10b)

c∗jH
′
(

1

λ̂∗j

)
b∗j = c∗jĤ

′
(

1

λ̂∗j

)
b∗j , j = 1, . . . , n̂, (3.10c)

where 1

λ̂∗j
are the mirror images with respect to the unit circle of the poles of Ĥ(s).

Analog to the continuous-time case, an iterative algorithm (MIRIAm) which fulfills the
above conditions upon convergence is discussed in [36].

3.3 Interpolatory methods for large-scale matrix
equations

In this section, we show that the problem of H2-model reduction is closely related to
the approximation of solutions of large-scale linear matrix equations. In particular, for
symmetric state space systems, we prove that a locally H2-optimal reduced-order system
automatically leads to a low rank approximation of the solution of the Lyapunov equation
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that minimizes the naturally induced energy norm of the underlying linear operator.
For unsymmetric systems, we investigate the use of the H2-norm as an adequate error
measure and provide a method to minimize the residual norm for the Lyapunov equation
by means of a generalized H2-optimality framework.

3.3.1 Existing low rank approaches

As we have already seen, in typical examples such as, e.g., the heat equation, the
Gramian P often can be well approximated by a low order subspace. This fact has
been exploited by several authors that proposed different methods. Here, we give a brief
overview on existing low rank techniques that have been proven successful over the last
years.

Projection-based methods

Due to their particular importance for this chapter, we begin with projection-based
methods that were first studied in [116]. The idea is to construct a low rank approxi-
mation Pn̂ = VP̂VT according to the following two steps. At first, one has to specify
a suitable projection subspace V ∈ Rn×n̂ such that VTV = I. Then, one solves the
reduced-order Lyapunov equation

VTAV︸ ︷︷ ︸
Â

P̂ + P̂ VTATV︸ ︷︷ ︸
ÂT

+ VTB︸ ︷︷ ︸
B̂

BTVT︸ ︷︷ ︸
B̂T

= 0,

and prolongates back to the original space Rn×n by setting Pn̂ = VP̂VT . Since the
reduced solution P̂ is only of dimension n̂ � n, it may be obtained by direct solution
techniques such as the Bartels-Stewart algorithm, see [12], or Hammarling’s method,
see [75]. However, in general one has to be careful when projecting the equation since
uniqueness and positive-definiteness of P̂ may not be guaranteed. At least for dissipative
A, i.e., σ(A + AT ) < 0, this always holds true. Of course, the quality of the approxima-
tion Pn̂ heavily depends on the choice of the projection subspace V for which several
possibilities have been proposed. In [116], the integral representation (2.11) has moti-
vated using V = Kn̂(A,B), i.e., the (block) Krylov subspace generated by the matrix A
and the input matrix B. Moreover, the author has shown that this approach actually is
equivalent to the approximation of the integral (2.11) by means of a numerical quadra-
ture technique. Later on, in [120], the so-called Krylov-Plus-Inverted-Krylov (KPIK)
method was introduced. Here, the projection subspace is constructed by the union of
the Krylov subspaces Kn̂(A,B) and Kn̂(A−1,A−1B). This slight modification has lead
to a significant improvement in the approximation quality and often turns out to be a
fast and easily implementable low rank method. We also refer to the works from [83, 84]
which point into a similar direction. Rather recently, more and more effort has been put
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into the use of rational Krylov subspaces that may further improve the approximations,
see [45, 55, 59]. In the next section, we give a theoretical explanation for the fact that
the rational Krylov subspaces corresponding to an H2-optimal ROM often lead to very
accurate low approximations.

The LRCF-ADI iteration

A quite different technique has its origin in solving elliptic and parabolic difference
equations, see [107]. Interestingly, due to the properties of the Lyapunov operator, the
alternating directions implicit (ADI) iteration can also be used to construct approximate
solutions of the Lyapunov equation, see [129]. In [96, 108], it is shown how to implement
the to-be-expected low rank structure of the solution within the ADI iteration. As a
consequence, for an appropriate set of complex shift parameters {p1, . . . , pq} ∈ C, the
following iteration converges to the true solution P.

Z1 =
√

2p1(A− p1I)−1B, (3.11a)

Zj =
[√

2pj(A− pjI)−1B, (A− pjI)−1(A + pjI)Zj−1

]
. (3.11b)

Besides the study of good or optimal shift parameters, over the last few years there
have evolved several works on an efficient implementation of the method, its extension
to Sylvester and Riccati equations and also on the use of the ADI subspaces within a
projection-based approach. Since a complete overview of all details is beyond the scope
of this thesis, we instead refer to some of the most standard references in this area of
research, e.g., [5, 26, 27, 28, 30, 31, 96, 97, 108, 110, 135] .

Iterative solvers for the linear system

Finally, instead of considering the matrix equation itself, one might construct low rank
approximations by means of the system of linear equations (2.14). The solution of the
system then can be obtained by means of an iterative Krylov-based solver like, e.g., CG,
BiCG or MinRes (see [50, 51, 90]). The crucial step is to observe that each intermediate
iterate also exhibits a low rank structure that allows to improve the efficiency of the
methods significantly. There exist further low rank techniques such as, e.g., the sign
function iteration, see [29], and approaches based on hierarchical matrices and multigrid
techniques, see, e.g., [14, 15, 67, 69]. However, in this thesis we mainly focus on (gen-
eralizations) of the previously mentioned methods and the subsequently following new
technique from [125].
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3.3.2 Riemannian optimization and the energy norm

A very recent and, at a first glance, completely different approach is proposed in [125,
Chapter 4]. However, this method actually is closely connected to the problem of H2-
optimal model reduction. Hence, let us make use of the setting of [125, Chapter 4] and
focus on symmetric dynamical systems of the form

Eẋ(t) = Ax(t) + Bu(t), (3.12)

y(t) = BTx(t), (3.13)

with E = ET � 0 and A = AT ≺ 0. From now on, whenever we write Σ = (E; A,B,B),
we refer to a system of this form. Although in Chapter 2, we mainly discussed standard
state space systems with E = I, we already indicated that for a generalized state space
system (3.12), the Gramians now satisfy

APET + EPAT + BBT = 0, (3.14)

ATQE + ETQA + CTC = 0. (3.15)

Moreover, as we have seen in Theorem 2.2.1, the singular values of the solutions P and
Q tend to decay exponentially fast also in the generalized state space setting, motivating
the search for accurate low rank approximations. Due to our symmetry assumptions,
the Gramians coincide and we are faced with solving

APE + EPA + BBT = 0. (3.16)

According to Chapter 2, equivalently we might consider the system of linear equations

L vec (P) = − vec
(
BBT

)
, (3.17)

with L = E⊗A + A⊗E. Since by assumption we have E = ET � 0 and A = AT ≺ 0,
it follows that L = LT ≺ 0 and, consequently, we can define an energy norm via

|| · ||L =
√
〈·, ·〉L with 〈U,V〉L = 〈−L vec (U) , vec (V)〉, (3.18)

where U,V ∈ Rn×n. In [125, 126], the authors construct a method based on Riemannian
optimization that computes a low rank approximation Pn̂ by minimizing the objective
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function

f :M→ R, P 7→ − tr (PAPE)− tr
(
PBBT

)
on the manifold M of symmetric positive semi-definite matrices of rank n̂, i.e.,

M = {P : P ∈ Ssymn ,P � 0, rank (P) = n̂}. (3.19)

The specific function f is motivated by the fact that it holds

||P−Pn̂||2L = −2 tr (Pn̂EPn̂A)− 2 tr
(
Pn̂BBT

)
− 2 tr (PEPA)

= 2f(Pn̂)− 2 tr (PEPA) .

Since the second term depends only on the true solution P, it is constant and it thus
suffices to minimize f. The first step now is to realize that there is a close relation-
ship between the elements inM and approximations constructed by a projection-based
approach. This is seen as follows. Let Pn̂ ∈ M. Hence it can be written as VP̂VT ,
where V ∈ Rn×n̂ is an orthogonal matrix and P̂ = P̂T ∈ Rn̂×n̂. In order to minimize the
objective function f, we compute the derivative of f with respect to P̂ and, according
to Theorem 2.1.1, obtain:

∂f

∂P̂
=

∂

∂P̂

(
tr
(
VP̂VTEVP̂VTA

)
+ tr

(
VP̂VTBBT

))
= ÂP̂Ê + ÊP̂Â + B̂B̂T .

(3.20)

Consequently, as a necessary optimality condition we obtain that P̂ has to be the so-
lution of the Lyapunov equation associated with the projected system matrices Ê =
VTEV, Â = VTAV and B̂ = VTB. In the context of matrix equations, this is also
known as the typical Galerkin condition, see [116]. For this reason, instead of using the
Riemannian optimization approach, we want to construct an approximation by project-
ing onto a suitable subspace V.

3.3.3 A lower bound property of the H2-Norm

In the following, we discuss a link between IRKA and the Riemannian optimization
method. The most important observation is that the energy norm of every low rank
approximant is bounded below by the H2-norm of the associated error system. For this,
we need the following result.
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Lemma 3.3.1. Let Σ = (E; A,B,BT ) denote a symmetric dynamical system with E � 0
and A ≺ 0. Further assume that Σ̂ = (Ê; Â, B̂, B̂T ) is a reduced-order system obtained
by a Galerkin-type projection P = VVT . Then it holds

||Σ− Σ̂||2H2
≤ ||Σ||2H2

− ||Σ̂||2H2
,

with equality in case of Σ̂ being a locally H2-optimal reduced-order system.

Proof. By the definition of the H2-inner product, we know that it holds:

〈Σ− Σ̂,Σ− Σ̂〉H2 = 〈Σ,Σ〉H2 − 2〈Σ, Σ̂〉H2 + 〈Σ̂, Σ̂〉H2

= 〈Σ,Σ〉H2 − 2〈Σ− Σ̂, Σ̂〉H2 − 〈Σ̂, Σ̂〉H2 .

By the computation formulas from Lemma 2.2.1, we have that

〈Σ− Σ̂, Σ̂〉H2 = tr
(
CerrP̃B̂

)
= vec

(
CT
errB̂

T
)T

vec
(
P̃
)
,

where Cerr =
[
BT −B̂T

]
and P̃ is the solution of the generalized Sylvester equation

[
A 0

0 Â

]
︸ ︷︷ ︸

Aerr

P̃Ê +

[
E 0

0 Ê

]
︸ ︷︷ ︸

Eerr

P̃Â + BerrB̂
T = 0.

Multiplying from the left with

[
I 0
0 −I

]
, we get

[
A 0

0 −Â

]
P̃Ê +

[
E 0

0 −Ê

]
P̃Â + CT

errB̂
T = 0.
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Next, note that by Proposition 2.1.2, we have

vec
(
CT
errB̂

T
)T (

Ê⊗
[
−A 0

0 Â

]
+ Â⊗

[
−E 0

0 Ê

])−1

vec
(
CT
errB̂

T
)

= vec
(
BB̂T

)T
︸ ︷︷ ︸

xT

(
−Ê⊗A− Â⊗ E

)−1

︸ ︷︷ ︸
M−1

vec
(
BB̂T

)
︸ ︷︷ ︸

x

− vec
(
B̂B̂T

)T (
−Ê⊗ Â− Â⊗ Ê

)−1

vec
(
B̂B̂T

)
.

Hence, if we set Z = (I⊗V) , it holds that

〈Σ− Σ̂, Σ̂〉H2 = xT
(
M−1 − Z

(
ZTMZ

)−1
ZT
)

︸ ︷︷ ︸
S

x.

However, S is the Schur complement of S =

[
ZTMZ ZT

Z M−1

]
in M−1. Let s =

[
y
z

]
now

be an arbitrary vector. Then, it holds that

sTSs = yTZTMZy + yTZTz + zTZy + zTM−1z.

Defining q := MZy, it follows that

sTSs = (qT + zT ) M−1(q + z) ≥ 0.

This means that S as well as its Schur complement S are positive semi-definite. Hence,

this shows that 〈Σ− Σ̂, Σ̂〉H2 ≥ 0. Assume now that P̃ :=

[
P̃1

P̃2

]
. Then, it follows that

AP̃1Ê + EP̃1Â + BB̂T = 0, ÂP̃2Ê + ÊP̃2Â + B̂B̂T = 0,

and

〈Σ− Σ̂, Σ̂〉H2 = tr
(
BT P̃1B̂− B̂T P̃2B̂

)
.

Finally, due to the Wilson conditions for H2-optimality, a locally optimal reduced-order
model satisfies BT P̃1 − B̂T P̃2 = 0 which proves the statement.
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Remark 3.3.1. An alternative way of proving the above statement is given by the pole-
residue expression for the H2-error and results on the residues of symmetric state space
systems as well as on the difference of the transfer functions which have been shown in
[58].

However, it now easily follows that for symmetric state space systems, IRKA yields low
rank approximations Pn̂ that minimize the distance to the true solution P with respect
to the L-norm.

Theorem 3.3.1. Let Σ = (E; A,B,BT ) denote a symmetric dynamical system Σ with
E � 0 and A ≺ 0 and let V denote a projection matrix corresponding to a reduced-order
model Σ̂ = (Ê; Â, B̂, B̂T ). Let further P and P̂ denote the solutions of the associated
Lyapunov equations and set Pn̂ = VP̂VT . Then

||Σ− Σ̂||H2 ≤ ||P−Pn̂||L, (3.21)

with equality in case of Σ̂ being a locally H2-optimal reduced-order system.

Proof. First, note that the vectorized solutions of the original and reduced Lyapunov
equations are obtained as follows:

vec (P) = − (E⊗A + A⊗ E)−1︸ ︷︷ ︸
L−1

vec
(
BBT

)
,

vec
(
P̂
)

= − (Ê⊗ Â + Â⊗ Ê)−1︸ ︷︷ ︸
L̂−1

vec
(
B̂B̂T

)
.

Hence, we subsequently derive

||P−Pn̂||2L = vec (P−Pn̂)T (−L) vec (P−Pn̂)

= ||Σ||2H2
− 2 vec (Pn̂)T (−L) vec (P) + vec (Pn̂)T (−L) vec (Pn̂)

= ||Σ||2H2
− 2 vec

(
P̂
)T (

VT ⊗VT
)

(−L) vec (P) + vec
(
P̂
)T

(−L̂) vec
(
P̂
)

= ||Σ||2H2
− 2 vec

(
P̂
)T (

VT ⊗VT
)

vec
(
BBT

)
+ vec

(
P̂
)T

(−L̂) vec
(
P̂
)

= ||Σ||2H2
− 2 vec

(
P̂
)T

(−L̂) vec
(
P̂
)

+ vec
(
P̂
)T

(−L̂) vec
(
P̂
)

= ||Σ||2H2
− ||Σ̂||2H2

The assertion follows with the previous Lemma.

Remark 3.3.2. In summary, we conclude that the error with respect to the energy
norm of each low rank approximation obtained by orthogonally prolongating the solution
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of a reduced Lyapunov equation is bounded below by the H2-norm of its associated error
system. Since for IRKA this lower bound is not only minimized but at the same time
equality is attained, we thus know that the right-hand side of (3.21) is locally minimized
as well. However, this means that the corresponding low rank approximation to the
solution of the Lyapunov equation is locally optimal with respect to the energy norm.

3.3.4 Embedding the discrete-time case

We already presented the h2-optimal MOR framework for the discrete-time case before.
One might wonder if similar optimality properties for approximations to the solutions
of the Stein equations can be shown here as well. As it turns out, this can easily be
answered by means of the previous results. Let a stable symmetric discrete-time control
system be given, i.e., consider

Σd :

{
Ed x(k + 1) = Ad x(k) + Bd u(k),

y(k) = BT
d x(k),

(3.22)

with E = ET
d � 0, Ad = AT

d ∈ Rn×n and Bd ∈ Rn×m. Along the lines of this chapter,
assume that we are interested in a low rank approximation Pd,n̂ = VP̂dV

T to the true
solution Pd of the Stein equation

AdPdAd + BdB
T
d = EdPdEd. (3.23)

Analog to the continuous case, the approximation Pd,n̂ should be determined via the
solution of a reduced Stein equation. Hence, given a projection matrix V, we first solve

ÂdP̂dÂd + B̂dB̂
T
d = ÊdP̂dÊd, (3.24)

where Âd = VTAdV, Ê = VTEdV and B̂ = VTB before we prolongate to get the
approximation Pd,n̂. As a measure of accuracy for the approximation Pd,n̂, we use the
Stein operator

D = Ad ⊗Ad − Ed ⊗ Ed (3.25)

in order to introduce an energy norm via

|| · ||D =
√
〈·, ·〉D with 〈U,V〉D = 〈−D vec (U) , vec (V)〉, (3.26)
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where U,V ∈ Rn×n. Obviously, symmetry of Ed and Ad implies symmetry of D. More-
over, D is negative definite as is easily seen as follows. Assume that Ed = LLT ,L ∈ Rn×n

is the Cholesky decomposition of Ed. Hence, we have

σ(E−1
d Ad) = σ(L−TL−1A−1

d ) = σ(LT (L−TL−1Ad)L
−T ) = σ(L−1AdL

−T ).

However, for an arbitrary vector x ∈ Cn2
, we now obtain

x∗Dx = x∗(L⊗ L)
(
(L−1 ⊗ L−1)(Ad ⊗Ad)(L

−T ⊗ L−T )− I⊗ I
)

(LT ⊗ LT )x < 0.

The last step is due to the fact that the eigenvalues of E−1
d Ad lie within the unit disc.

Accordingly, so do the eigenvalues of L−1AdL
−T and we have that D = DT ≺ 0. Let us

now have a closer look at the Stein equation (3.23). Equivalently, we might simply solve
a special Lyapunov equation. For this, note that it holds

AdPdAd − EdPdEd =
1

2
(Ad − Ed)Pd(Ad + Ed) +

1

2
(Ad + Ed)Pd(Ad − Ed).

In view of the previous subsection, this means we have to solve the Lyapunov equation

APdE + EPdA + BdB
T
d = 0, (3.27)

where A = Ad − Ed and E = 1
2
(Ad + Ed). Due to symmetry of Ad and Ed, it trivially

follows that A = AT and E = ET . With the same arguments as before, for a stable
pencil (Ad,Ed), we additionally have A ≺ 0 and E � 0. Similarly, this holds true for
the reduced system and we conclude that it holds that

||Pd −Pd,n̂||D = ||Pd −Pd,n̂||L.

A similar analysis for the continuous-time error system yields Perr = Pd,err and it
therefore follows that

||Σ− Σ̂||H2 = ||Σd − Σ̂d||h2 .

Finally, let us discuss what happens if we construct an H2-optimal continuous-time
reduced-order system. At the beginning of the chapter we stated the Wilson conditions
only for standard state space systems with E = I. However, it is easy to show that in
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the generalized setting, we have

QT
12AP12 + Q22ÂP22 = 0, (3.28a)

QT
12EP12 + Q22ÊP22 = 0, (3.28b)

QT
12B + Q22B̂ = 0, (3.28c)

ĈP22 −CP12 = 0. (3.28d)

Comparing these conditions with the h2-optimality conditions (3.9), we see that the last
two coincide with those from the continuous-time case. Moreover, due to the special
structure of A and E, the first two equations from (3.28) are equivalent to

QT
12(Ad − Ed)P12 + Q22(Âd − Êd)P22 = 0, (3.29a)

QT
12

1

2
(Ad + Ed)P12 + Q22

1

2
(Âd + Ed)P22 = 0. (3.29b)

The simple calculation 1
2
(3.29a) + (3.29b) leads to

QT
12AdP12 + Q22ÂdP22 = 0. (3.30)

Analogously, from (3.29b)− 1
2
(3.29a), we can conclude that

QT
12EdP12 + Q22ÊdP22 = 0. (3.31)

In other words, constructing a continuous-time H2-optimal ROM is equivalent to con-
structing a discrete-time h2-optimal ROM. Altogether, the previous analysis shows the
following discrete-time version of Theorem 3.3.1.

Theorem 3.3.2. Let Σd = (Ed; Ad,Bd,B
T
d ) denote a stable symmetric dynamical sys-

tem Σd with Ed = ET
d � 0, Ad = AT

d and let V denote a projection matrix corresponding
to a reduced-order model Σ̂d = (Êd; Âd, B̂d, B̂

T
d ). Let further Pd and P̂d denote the so-

lutions of the associated Stein equations and set Pd,n̂ = VP̂dV
T . Then

||Σd − Σ̂d||h2 ≤ ||Pd −Pd,n̂||D, (3.32)

with equality in case of Σ̂d being a locally h2-optimal reduced-order system.

Recapitulating what we have just shown, the MIRIAm algorithm from [36] automatically
yields projection matrices that allow to construct locally optimal low rank approxima-
tions to the solution of the underlying Stein equation of the system. Due to the structural
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similarity between continuous-time and discrete-time systems, this observation is not too
surprising. However, for later purposes we keep in mind that the results immediately
follow as special cases from each other.

3.3.5 Problems in the unsymmetric case

So far, we have assumed that the system under consideration is symmetric. However,
these assumptions characterize a rather limited class of dynamical systems. For example,
let us consider the following simple two-dimensional system

E =

[
2 0
0 −1

]
, A =

[
−1 0
0 1

]
, b =

[
1
1

]
= c.

Although the above system is stable, dissipative and has only real eigenvalues, it can
be trivially shown that we can never transform it into a symmetric state space system
which would allow defining an energy norm. This is due to the fact that the spectra of
E and A lie on both sides of the imaginary axis and thus L = −E⊗A−A⊗E will be
indefinite. Otherwise, if it is transformed into a definite matrix, the inputs and outputs
will no longer be equal which is necessary for applying the techniques from the proof of
Theorem 3.3.1.

Moreover, all systems with complex poles automatically exclude the possibility of an
induced energy norm of the form −E ⊗ A − A ⊗ E. This is seen as follows. Assume
that an unsymmetric dynamical system Σ = (A,b, cT ) is given, with A having com-
plex eigenvalues. Assume now that the system can be transformed into a generalized
symmetric state space system of the form (Ẽ; Ã, b̃, b̃T ) and that the operator

L̃ = −Ẽ⊗ Ã− Ã⊗ Ẽ

is positive definite. Due to the Theorem of Stephanos, see, e.g., [94, Section 12.2], the
eigenvalues of Ẽ and Ã must all have equal or opposite sign since otherwise L̃ would
be indefinite. W.l.o.g. we assume that σ(Ẽ) ⊂ C+. This means that Ẽ is symmetric
positive definite and the eigenvalue problem for the pencil (Ã, Ẽ) can be transformed into
a symmetric one. However, this would imply that all eigenvalues of (Ã, Ẽ) are real. Since
the poles of a dynamical system are invariant under state space transformations, this
would mean that all eigenvalues of A are real which is a contradiction to our assumption.
Thus we cannot define the desired energy norm in a straightforward way.

Nevertheless, it remains the question if low rank Lyapunov approximations obtained by
an IRKA reduced-order model still can be expected to be accurate even if the under-
lying dynamical system is unsymmetric and exhibits complex poles. For this, it is an
interesting observation that the H2-norm of the error system vanishes if and only if the
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corresponding Lyapunov approximations that are generated by the reduced system are
exact.

Theorem 3.3.3. Let Σ = (A,B,C) denote a minimal stable dynamical system with
A ∈ Rn×n,B ∈ Rn×m and C ∈ Rp×n. Assume that a stable reduced-order model
Σ̂ = (Â, B̂, Ĉ) is constructed by a Petrov-Galerkin projection P = VWT with V,W ∈
Rn×n̂,VTV = I and WTV = I. Let further Pn̂ = VP̂VT and Qn̂ = WQ̂WT be obtained
by solving the reduced Lyapunov equations

ÂP̂ + P̂ÂT + B̂B̂T = 0, ÂT Q̂ + Q̂Â + ĈT Ĉ = 0.

Then, the H2-norm of the error system is zero if and only if Pn̂ = P and Qn̂ = Q,
where P and Q are the exact solutions of the original Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Proof. Let us assume that ||Σerr|| = ||Σ− Σ̂||H2 = 0. By the definition of the H2-norm
this means that ∫ ∞

0

||Cerr e
AerrtBerr||F dt = 0.

Hence, since Cerr e
AerrtBerr is continuous it has to be the constant zero function and

thus its derivatives evaluated at zero have to be zero as well, i.e.,

Cerr Ai
errBerr = 0, i ≥ 0.

Due to the structure of the error system this means that

C Ai B = Ĉ Âi B̂, i ≥ 0.

Thus, the Markov parameters of Σ and Σ̂ coincide. Since we assumed Σ to be a minimal
realization, from Definition 2.2.3, it follows that n̂ = n. Consequently, the projection
matrices V and W are (bi-)orthogonal. Let us now have a look at the transformed
Lyapunov equation

ÂP̂ + P̂ÂT + B̂B̂T = 0.
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Inserting the definition of Σ̂, we have

WTAVP̂ + P̂VTATW + WTBBTW = 0.

Multiplying from the left with V and from the right with VT , we see that Pn̂ solves the
original Lyapunov equation. Similarly, one can show that Qn̂ = Q.

Conversely, let us assume that the approximation is exact, i.e., Pn̂ = P. As we have
seen in the proof of Lemma 3.3.1, for the H2-norm of the error system, it holds that

〈Σ− Σ̂,Σ− Σ̂〉H2 = 〈Σ,Σ〉H2 − 2〈Σ− Σ̂, Σ̂〉H2 − 〈Σ̂, Σ̂〉H2 .

Since Pn̂ = P, it follows that

〈Σ̂, Σ̂〉H2 = ĈP̂ĈT = CVP̂VTCT = CPn̂C
T = CPCT = 〈Σ,Σ〉H2 .

Hence, in order to prove the assertion, it remains to show that it holds

〈Σ− Σ̂, Σ̂〉H2 = 0.

Once again, analog to the proof of Lemma 3.3.1, we know that

〈Σ− Σ̂, Σ̂〉H2 = tr
(
CMĈT − ĈP̂ĈT

)
,

where M is the solution of

AM + MÂT + BB̂T = 0.

Since A and Â are assumed to be stable, the solution M is unique. However, since Pn̂

is the exact solution of the Lyapunov equation, we have

AVP̂VT + VP̂VTAT + BBT = 0.

Multiplying from the right with W, it follows that

AVP̂ + VP̂ÂT + BB̂T = 0.
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Thus, it holds VP̂ = M and also 〈Σ− Σ̂, Σ̂〉H2 = 0.

Remark 3.3.3. Theorem 3.3.3 shows that the H2-norm of the error system is an objec-
tive function which is zero if and only if the low rank Lyapunov approximations are the
exact solutions. Hence, it seems reasonable to minimize this objective function in order
to obtain approximations which are close to the exact solutions. However, this is exactly
what the iterative rational Krylov algorithm aims at.

3.3.6 Minimizing the residual norm

An alternative way for measuring the quality of a low rank approximation Pn̂ for un-
symmetric systems clearly is given by the residual. In view of the formulation of the
Lyapunov equation as a system of linear equations

(I⊗A + A⊗ I)︸ ︷︷ ︸
L

vec (P)︸ ︷︷ ︸
p

= vec
(
−BBT

)︸ ︷︷ ︸
B

, (3.33)

for a given rank n̂, we can thus try to construct an approximation pn̂ that minimizes
the norm of

r = B − Lpn̂.

Again, this has been discussed within the framework of Riemannian optimization in
[126, Chapter 4], where it was further shown that it holds

||R||F := ||r||2 = (p− pn̂)TLTL(p− pn̂). (3.34)

Despite the fact that the residual often is a less accurate estimator for the true error
||P − P̂||F , it exhibits the obvious advantage that we do not have to assume that the
system is symmetric, see also the discussion in [126]. Furthermore, note that there exist
several other approaches that try to minimize the residual of the Lyapunov equation,
see, e.g. [83]. However, the big difference to the setting here is that these methods
construct an approximation that is optimal for a fixed projection matrix V, not for a
fixed rank n̂.

Since in this thesis we are especially interested in the topic of H2-model reduction, let
us have a closer look at the term LTL for which we obtain

T := LTL = I⊗ATA + ATA⊗ I + AT ⊗A + A⊗AT . (3.35)

Interestingly, this operator can be associated with the generalized Lyapunov-type equa-
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tion

ATAP̃ + P̃ATA + AP̃A + AT P̃AT + ATBBT + BBTA = 0. (3.36)

If we factor out A and AT from both sides, the previous equation is equivalent to

AT (AP̃ + P̃AT + BBT )︸ ︷︷ ︸
T

+ (AP̃ + P̃AT + BBT )︸ ︷︷ ︸
T

A = 0. (3.37)

Making use of the Kronecker product notation, the above can be transformed into

(I⊗AT + AT ⊗ I) vec (T) = 0. (3.38)

Assuming that A is a stable matrix, we can conclude that vec (T) = 0 and thus P̃ = P. If

we now denote M = ATA, F =
[
ATB B

]
and G =

[
BT

BTA

]
, we can rewrite equation

(3.36) as

MP̃ + P̃M + AP̃A + AT P̃AT + FG = 0. (3.39)

Analog to the derivation in (3.20), for constructing an optimal rank-n̂ approximation
Pn̂ = VP̂VT to P̃, as a necessary optimality condition it follows that P̂ has to fulfill
the reduced matrix equation

M̂P̂ + P̂M̂ + ÂP̂Â + ÂT P̂ÂT + F̂Ĝ = 0, (3.40)

where M̂ = VTMV, Â = VTAV, F̂ = VTF and Ĝ = GV. For a set of matrices

Ψ = (M,A,F,G), we introduce the objective function f(Ψ) = tr
(
−GP̃F

)
, where P̃

is determined via equation (3.39). Hence, for the residual (3.34), we can easily show
that it holds

||R||F = vec
(
P̃−Pn̂

)T
T vec

(
P̃−Pn̂

)
= vec

(
P̃
)T
T vec

(
P̃
)
− 2 vec (Pn̂)T T vec

(
P̃
)

+ vec (Pn̂)T T vec (Pn̂)

= f(Ψ)− f(Ψ̂),

where Ψ̂ = (M̂, Â, F̂, Ĝ) and P̂ is given by equation (3.40). Again, we can try to find a
lower bound for the difference f(Ψ)−f(Ψ̂) whose minimization automatically minimizes
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the residual itself as well. For this, let us consider the set of matrices Ψerr given as

Merr =

[
M 0

0 M̂

]
, Aerr =

[
A 0

0 Â

]
, Ferr =

[
F

F̂

]
, Gerr =

[
G −Ĝ

]
.

Due to the special structure of F and G, we have the following helpful relations

FG = GTFT , F̂Ĝ = ĜT F̂T , ĜTFT
err = F̂Gerr

[
I 0
0 −I

]
. (3.41)

Assume now that Perr =

[
P̃ X

Y −P̂

]
is the solution of the matrix equation of the form

(3.39) associated with Ψerr. Hence, it follows that

MX + XM̂ + AXÂ + ATXÂT − FĜ = 0, (3.42)

M̂Y + YM + ÂYA + ÂTYAT + F̂G = 0. (3.43)

In particular, it holds that X = −YT . Making use of the fact that P̃ and P̂ are the solu-
tions of equations (3.39) and (3.40) and the relation between F and G, we subsequently
obtain

f(Ψerr) = tr (−GerrPerrFerr)

= tr

(
−Gerr

([
P̃ 0
0 0

]
+

[
0 X

0 −P̂

]
+

[
0 0

Y −P̂

]
+

[
0 0

0 P̂

])
Ferr

)
= f(Ψ)− f(Ψ̂) + tr

(
−Gerr

([
0 X

0 −P̂

]
+

[
0 0

Y −P̂

])
Ferr

)
= f(Ψ)− f(Ψ̂)− 2 tr

(
Gerr

[
X

−P̂

]
F̂

)
.

From here, one can proceed completely analog to what we have seen before in order to
show that it holds

f(Ψerr) ≤ f(Ψ)− f(Ψ̂). (3.44)

Basically, the important point lies in realizing the analogy to the computation formula
for 〈Σ − Σ̂, Σ̂〉H2 which we used in the previous section. Then by the exact same
arguments, one can show that a special Schur complement is positive semi-definite which
immediately leads to the previous bound.
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Hence, if we can construct a local minimizer of f(Ψerr) that equals the previous bound,
this would automatically lead to a local minimizer of the Lyapunov residual. Since the
derivation of necessary optimality conditions for f(Ψerr) is very similar to the procedure
of finding optimality conditions for the H2-model reduction for bilinear systems from
[133], at some points we shorten our discussion. Let us now have a look at the objective
function J := f(Ψerr) that we want to minimize. For the derivative with respect to an
arbitrary parameter γ, such as, e.g., γ = (Perr)ij , we know that it holds

∂J

∂γ
= − tr

(
∂Perr

∂γ
FerrGerr

)
− tr

(
Perr

∂(FerrGerr)

∂γ

)
.

Recall that Perr is the solution of the associated matrix equation of the form (3.39), i.e.,

MerrPerr + PerrMerr + AerrPerrAerr + AT
errPerrA

T
err + FerrGerr = 0. (3.45)

Hence, we obtain that

∂J

∂γ
= tr

(
∂Perr

∂γ
MerrPerr

)
+ tr

(
∂Perr

∂γ
PerrMerr

)
+ tr

(
∂Perr

∂γ
AerrPerrAerr

)
+ tr

(
∂Perr

∂γ
AT
errPerrA

T
err

)
− tr

(
Perr

∂(FerrGerr)

∂γ

)
.

Next, we compute the derivate of (3.45) with respect to γ, leading to

−∂(FerrGerr)

∂γ
=
∂Merr

∂γ
Perr + Merr

∂Perr

∂γ
+
∂Perr

∂γ
Merr + Perr

∂Merr

∂γ

+
∂Aerr

∂γ
PerrAerr + Aerr

∂Perr

∂γ
Aerr + AerrPerr

∂Aerr

∂γ

+
∂AT

err

∂γ
PerrA

T
err + AT

err

∂Perr

∂γ
AT
err + AT

errPerr
∂AT

err

∂γ
.

Making use of a trick suggested in [133], we can multiply the last equation by Perr from
the left and take the trace. If we insert the result into the expression for ∂J

∂γ
, we arrive

at

∂J

∂γ
= −2 tr

(
Perr

∂Merr

∂γ
Perr

)
− 2 tr

(
∂Aerr

∂γ
PerrAerrPerr

)
− 2 tr

(
∂AT

err

∂γ
PerrA

T
errPerr

)
− 2 tr

(
Perr

∂(FerrGerr)

∂γ

)
.
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From here, it is straightforward (cf. the derivation in [133]) to show that a locally
optimal reduced set of matrices Ψ̂ = (M̂, Â, F̂, Ĝ) has to fulfill the following optimality
conditions:

YX + P̂P̂ = 0, YAX + P̂ÂP̂ = 0, (3.46a)

GX + ĜP̂ = 0, YF− P̂F̂ = 0. (3.46b)

In particular, the latter conditions imply that f(Ψerr) = f(Ψ)−f(Ψ̂). Hence, we propose
Algorithm 3.3.1 in order to iteratively construct an approximation Pn̂ which aims at
locally minimizing the residual for a given rank n̂. Although at this part of the thesis, it
might not be completely obvious why this method upon convergence indeed fulfills the
optimaliy conditions, in the next chapter, we show that the foregoing generalized matrix
equations play a crucial role in the context of H2-optimal model reduction for bilinear
control systems. Since there the goal is to construct an iterative algorithm minimizing
an objective function which basically coincides with f(Ψerr), we just refer to the next
chapter for further details.

Algorithm 3.3.1 Minimization of the Lyapunov residual

Input: A,B, M̂, Â, F̂, Ĝ
Output: Pn̂ = VP̂VT fulfilling (3.46)
1: Set M = ATA, F =

[
ATB B

]
, GT =

[
B ATB

]
.

2: while (not converged) do
3: Solve MX + XM̂ + AXÂ + ATXÂT − FĜ = 0.
4: V = orth (X)
5: M̂ = VTMV, Â = VTAV, F̂ = VTF, Ĝ = GV
6: end while
7: Solve M̂P̂ + P̂M̂ + ÂP̂Â + ÂT P̂ÂT + F̂Ĝ = 0.
8: Set Pn̂ = VP̂VT .

Remark 3.3.4. Recapitulating the essential steps of this section, it is worthwhile to note
the analogy to a system of linear equations Ax = b. For a symmetric positive definite
A, the Conjugate Gradient (CG) minimizes the error with respect to the energy norm
induced by the matrix A. On the other hand, for an unsymmetric A, one can instead
solve the normal equations ATAx = ATb and apply CG to the transformed system
ATA which again is symmetric and positive-definite. As a result one obtains the so-
called CGNR method, see [117, Section 8.3.1]. Since we also obtain a linear system
when we use the Kronecker product notation of the Lyapunov equation, we can interpret
the foregoing theory as an abstract extension of this method which in our case aims at
minimizing the residual for a given rank n̂.

Remark 3.3.5. Algorithm 3.3.1 should be understood more as a theoretical tool than
as a compatible algorithm for constructing low rank approximations. We already men-
tioned the conceptual similarity between Algorithm 3.3.1 and the CGNR method. As is
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well-known, see [117, Section 8.3.1], the latter approach often results in a very slow con-
vergence rate for common PDEs. Since the efficiency of Algorithm 3.3.1 also depends
on the convergence rate, we cannot expect it to outperform state-of-the-art low rank tech-
niques when it comes to computational efficiency. On the other hand, it obviously has
the advantage of locally minimizing the residual for a given rank.

3.3.7 Sylvester equations

Finally, let us briefly discuss the extension to more general matrix equations of the form

AXE + MXH + BC = 0, (3.47)

where A,M ∈ Rn×n, E,H ∈ Rq×q,B ∈ Rn×m and C ∈ Rm×q. Once again, we want to
assume that all involved square matrices are symmetric and have eigenvalues either in
C− or in C+. To be more precise, we require A = AT ≺ 0,H = HT ≺ 0,E = ET � 0
and M = MT � 0. This allows us to define an energy norm based on the following
symmetric negative definite matrix

LS = E⊗A + H⊗M.

We now seek for approximations of the form Xn̂ = VX̂WT of rank n̂ which minimize
the LS-norm between the original solution X and Xn̂, i.e.

||X−Xn̂||2LS = vec (X−Xn̂)T (−LS) vec (X−Xn̂) .

Here, X̂ again is determined by solving a reduced Sylvester equation

ÂX̂Ê + M̂X̂Ĥ + B̂Ĉ = 0,

while V and W denote projection matrices with VTV = WTW = I. From now on, let

Θ = (A,E,M,H,B,C)

denote an associated Sylvester equation of the form (3.47). Furthermore, let us consider
the following objective function

f(Θ) = tr
(
BTXCT

)
, (3.48)
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with X fulfilling (3.47). As it is easily seen, this function results from a slight modifica-
tion of the H2-norm of a dynamical system and thus can be computed as

f(Θ) = vec (BC)T (−E⊗A−H⊗M)−1 vec (BC) . (3.49)

For later purposes, it is helpful to note that f is invariant under orthonormal transfor-
mations.

Lemma 3.3.2. Let Θ = (A,E,M,H,B,C) denote a set of matrices and let X be the
solution of the associated Sylvester equation (3.47). Assume that Λ is a diagonal matrix
containing the eigenvalues of the matrix pencil (H,E) and that Q is a matrix containing
an orthogonal set of eigenvectors. Then it holds

f(Θ) = tr
(
BTXCT

)
= tr

(
BTYC̃T

)
,

where C̃ = CQ and Y is the solution of AY + MYΛ + BC̃ = 0.

Proof. Let Q be the matrix of eigenvectors for the matrix pencil (H,E), i.e., assume
that it holds QTEQ = I and QTHQ = Λ, where Λ is a diagonal matrix consisting of
the eigenvalues. Since H = HT ≺ 0 and E = ET � 0 this is always possible. If we now
postmultiply equation (3.47) with Q, we get

AXEQ + MXHQ + BCQ = 0.

Due to the orthonormality of Q, this can be transformed into

AXQQTEQ + MXQQTHQ + BCQ = 0.

If we denote Y = XQ and C̃ = CQ, it follows that

AY + MYΛ + BC̃ = 0,

which implies that

tr
(
BTYC̃T

)
= tr

(
BTXQQTC

)
= tr

(
BTXCT

)
.
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Assume now that we have constructed a reduced set of matrices

Θ̂ = (Â, Ê, M̂, Ĥ, B̂, Ĉ)

by the following projection:

Â = VTAV, Ê = WTEW, M̂ = VTMV,

Ĥ = WTHW, B̂ = VTB, Ĉ = CW.
(3.50)

Next, for Θ and Θ̂ we define the corresponding error set

Θerr = (Aerr,Eerr,Merr,Herr,Berr,Cerr),

with

Aerr =

[
−A 0

0 Â

]
, Eerr =

[
−E 0

0 Ê

]
, Merr =

[
−M 0

0 M̂

]

Herr =

[
−H 0

0 Ĥ

]
, Berr =

[
B

B̂

]
, Cerr =

[
C Ĉ

]
.

Similar to the previous cases, it is easy to show that a crucial lower bound is given by
the objective function f evaluated in the error set Θerr.

Corollary 3.3.1. Let Θ and Θ̂ denote two sets of matrices associated with large and
reduced generalized Sylvester equations of the form (3.47), respectively. Then, for the
associated error set Θerr, it holds that

f(Θerr) ≤ f(Θ)− f(Θ̂).

Hence, analog to the topic of H2-optimal model order reduction, we want to find a local
minimizer of f(Θerr). This can be done by deriving first order necessary conditions based
on the computation formula of f(Θerr). Due to the structural similarity to the previous
sections, we only briefly mention how to proceed. For convenience, let us start with the
case of B = b and C = cT . First of all, according to Lemma 3.3.2, we may w.l.o.g.
assume that Herr = Λerr and Eerr = I. Consequently, the objective function simplifies
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according to

f(Θerr) = bTerrXerrcerr

=
(
cTerr ⊗ bTerr

)
(−Λerr ⊗Merr − I⊗Aerr)

−1 (cerr ⊗ berr)

=
n+n̂∑
i=1

bTerr(−λiMerr −Aerr)
−1berr (c(i)

err)
2,

where c
(i)
err denotes the i-th component of cerr. Setting the derivative of f(Θerr) with

respect to ĉ(j) equal to zero yields

2 ĉ(j) bTerr(−λ̂jMerr −Aerr)
−1berr = 0,

with λ̂j being the j-th eigenvalue of (Ĥ, Ê). However, in terms of interpolation, the
above means that

bT (−λ̂jM−A)−1b = b̂T (−λ̂jM̂− Â)−1b̂. (3.51)

Similarly, for the derivative with respect to λ̂j, we obtain

bT (−λ̂jM−A)−1M(−λ̂jM−A)−1b = b̂T (−λ̂jM̂− Â)−1M̂(−λ̂jM̂− Â)−1b̂. (3.52)

Hence, these conditions are obviously an extension of the Hermite interpolation condi-
tions for H2-optimality. On the other hand, we have

f(Θerr) = bTerrXerrcerr = cTerrX
T
errberr

and the same argumentation leads to

G(−µ̂j) = Ĝ(−µ̂j), G′(−µ̂j) = Ĝ′(−µ̂j), (3.53)

with
G(s) = cT (sE−H)−1c, Ĝ(s) = ĉT (sÊ− Ĥ)−1ĉ

and µj being the eigenvalues of the matrix pencil (Â, M̂). Hence, we propose Algorithm
3.3.2 for iteratively constructing a reduced set of matrices fulfilling these conditions.

Remark 3.3.6. Due to the connection to optimal H2-model reduction, it should be
mentioned that instead of Step 5 of Algorithm 3.3.2, one can alternatively solve two
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Algorithm 3.3.2 IRKA for symmetric Sylvester equations ((Sy)2IRKA)

Input: Initial selection of real interpolation points σi and µi for i = 1, . . . , n̂ and a
convergence tolerance tol.

Output: Xn̂ = VX̂WT fulfilling first order necessary conditions
1: Choose V and W s.t. V = span{(σ1M − A)−1b, . . . , (σn̂M − A)−1b} and W =

span{(µ1E−H)−1c, . . . , (µn̂E−H)−1c} and VTV = WTW = I.
2: while relative change in {σi, µi} > tol do
3: Â = VTAV, M̂ = VTMV, Ê = WTEW, Ĥ = WTHW
4: assign σi ← −λi(Ĥ, Ê) and µi ← −λi(Â, M̂) for i = 1, . . . , n̂,
5: update V and W s.t. V = span{(σ1M −A)−1b, . . . , (σn̂M −A)−1b} and W =

span{(µ1E−H)−1c, . . . , (µn̂E−H)−1c} and VTV = WTW = I.
6: end while
7: b̂ = VTb, ĉ = WTc
8: Solve ÂX̂Ê + M̂X̂Ĥ + b̂ĉT .
9: Set Xn̂ = VX̂WT .

reduced Sylvester equations of the form

AVÊ + MVĤ + bĉT = 0,

EWÂ + HWM̂ + cb̂T = 0.

For a robust solver for these types of equations, we refer to, e.g., [25].

It remains to show that in the case of convergence of Algorithm 3.3.2, the lower bound
of Corollary 3.3.1 is actually attained. For this, we assume the following splitting of the
solution of (3.47) for the error system

Xerr =

[
X Y

Z X̂

]
=

[
X 0
0 0

]
+

[
0 Y

0 X̂

]
+

[
0 0

Z X̂

]
−
[
0 0

0 X̂

]
.

Hence, we get

f(Θerr) = f(Θ)− f(Θ̂) + bTerr

[
Y

X̂

]
ĉ + b̂T

[
Z X̂

]
cerr.

A closer look at the right hand side of the previous equation reveals that

bTerr

[
Y

X̂

]
ĉ = bTYĉ + b̂T X̂ĉ,
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where Y is the solution of

−AY −MYΞ + bĉT = 0.

Here, we again assumed that the reduced matrix pencil (Ĥ, Ê) is given in its eigenvalue
decomposition and that the eigenvalues are contained in the diagonal matrix Ξ. As a
consequence, it holds that

(
ĉT ⊗ bT

)
vec (Y) = −

(
ĉT ⊗ bT

)
(−Ξ⊗M− I⊗A)−1 (ĉ⊗ b) .

On the other hand, we know that

(
ĉT ⊗ b̂T

)
vec
(
X̂
)

=
(
ĉT ⊗ b̂T

)(
−Ξ⊗ M̂− I⊗ Â

)−1 (
ĉ⊗ b̂

)
,

which, together with the interpolation conditions, yields bTerr

[
Y

X̂

]
ĉ = 0. Similarly, we

can show that b̂T
[
Z X̂

]
cerr = 0.

Analog to the proof of Theorem 3.3.1, one can eventually show that

vec
(
X−VX̂WT

)T
(−LS) vec

(
X−VX̂WT

)
= f(Θ)− f(Θ̂).

Altogether, we have thus proven our main result.

Theorem 3.3.4. Let Θ = (A,E,M,H,b, cT ) denote a set of matrices determining a
Sylvester equation as in (3.47) with solution X. Let further Xn̂ be computed by Algorithm
3.3.2 with convergence tolerance 0. Then Xn̂ is a local minimizer of

min
Xk∈M

{vec (X−Xk)
T (−LS) vec (X−Xk)}.

Extension to the MIMO case

So far, we have proved the result for a right hand side of rank 1, i.e., b and c being vectors.
As the extension to the ’MIMO’ case is straightforward, we only sketch the necessary
steps in the following. What remains to be clarified are suitable optimality conditions for
the MIMO case in terms of either matrix equations or tangential interpolation conditions.
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For this, let us have a look at the objective function f evaluated in the error set

f(Θerr) = tr
(
BT
errXerrC

T
err

)
,

where Xerr =

[
X Y

Z X̂

]
is partitioned as before. As we have done for the case of the

Lyapunov residual, the first step is to compute the derivate of f with respect to an arbi-
trary parameter γ that might be one of the entries of A,B,C,E,H or M, respectively.
Accordingly, we obtain

∂f

∂γ
= tr

(
∂Xerr

∂γ
CT
errB

T
err

)
+ tr

(
Xerr

∂(CT
errB

T
err)

∂γ

)
.

Taking into account that Xerr is the solution of the generalized Sylvester equation

AerrXerrEerr + MerrXerrHerr + BerrCerr = 0,

a careful analysis leads to

∂f

∂γ
= tr

(
Xerr

∂Eerr

∂γ
XT
errAerr

)
+ tr

(
XerrEerrX

T
err

∂Aerr

∂γ

)
+ tr

(
Xerr

∂Herr

∂γ
XT
errMerr

)
+ tr

(
XerrHerrX

T
err

∂Merr

∂γ

)
+ 2 tr

(
Xerr

∂(CT
errB

T
err)

∂γ

)
.

Depending on the specific choice of γ, we can derive different optimality conditions. For
example, setting γ = Êi,j, leads to the condition

−YTAY + X̂T ÂX̂ = 0. (3.54a)
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Similarly, for the derivatives with respect to Âi,j, Ĥi,j, M̂i,j, B̂i,j and Ĉi,j, we get

−ZEZT + X̂ÊX̂T = 0, (3.54b)

−YTMY + X̂TM̂X̂ = 0, (3.54c)

−ZHZT + X̂ĤX̂T = 0, (3.54d)

YTB + X̂T B̂ = 0, (3.54e)

ZCT + X̂ĈT = 0. (3.54f)

We already know that there is an equivalence between Sylvester equations and the
concept of tangential interpolation, see again [62]. Hence, it is not surprising that the
above matrix equation based conditions can alternatively be replaced by demanding that
a reduced-order transfer function matrix tangentially interpolates the original transfer
function matrix at given interpolations points. To be precise, let

G(s) = C(sE−H)−1CT ∈ R(s)m×m and F(s) = BT (sM−A)−1B ∈ R(s)m×m.

Moreover, assume that (Q,Λ) and (R,Ξ) are the eigenvalue decompositions of the
matrix pencils (Ĥ, Ê) and (Â, M̂), respectively. Here, Λ = diag (λ1, . . . , λn̂) and Ξ =
diag (µ1, . . . , µn̂) contain the eigenvalues while Q and R consist of a set of Ê and M̂-
orthogonal eigenvectors. A locally optimal reduced set Θ̂ of matrices now has to fulfill

G(−µj)b̃j = Ĝ(−µj)b̃j, (3.55a)

b̃Tj G(−µj) = b̃Tj Ĝ(−µj), (3.55b)

b̃Tj G′(−µj)b̃j = b̃Tj Ĝ′(−µj)b̃j, (3.55c)

F(−λj)c̃j = F̂(−λj)c̃j, (3.55d)

c̃Tj F(−λj) = c̃Tj F̂(−λj), (3.55e)

c̃Tj F′(−λj)c̃j = c̃Tj F̂′(−λj)c̃j, (3.55f)

with B̃ = B̂TR and C̃ = ĈQ denoting tangential directions. For the sake of complete-
ness, in Algorithm 3.3.3 we now see a matrix version that upon convergence yields a
local minimizer for the MIMO case. Consequently, we have the following result extend-
ing Theorem 3.3.4.

Corollary 3.3.2. Let Θ = (A,E,M,H,B,C) denote a set of matrices determining a
Sylvester equation as in (3.47) with solution X. Let further Xn̂ be computed by Algorithm
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3.3.3 with convergence tolerance 0. Then Xn̂ is a local minimizer of

min
Xk∈M

{(vec (X−Xk))
T (−LS) vec (X−Xk)}.

Algorithm 3.3.3 IRKA for MIMO symmetric Sylvester equations

Input: A,B,C,E,H,M, Â, B̂, Ĉ, Ê, Ĥ, M̂ as in (3.50)
Output: Xn̂ = VX̂WT fulfilling first order necessary conditions
1: while (not converged) do
2: Solve AVÊ + MVĤ + BĈ = 0.
3: Solve EWÂ + HWM̂ + CT B̂T = 0.
4: V = orth (X) ,W = orth (W)
5: Â = VTAV, M̂ = VTMV, Ê = WTEW, Ĥ = WTHW, B̂ = VTB, Ĉ = CW
6: end while
7: Solve ÂX̂Ê + M̂X̂Ĥ + B̂Ĉ = 0.
8: Set Xn̂ = VX̂WT .

Concluding remarks

In summary, we have theoretically shown several relations between the concept of ra-
tional interpolation and the approximate solution of large-scale matrix equations. In
particular, we have seen that for a symmetric dynamical system, constructing a locally
H2-optimal reduced-order model is equivalent to the minimization of the error of the
associated system Gramians with respect to to the energy norm naturally induced by
the underlying Lyapunov operator. Moreover, for the unsymmetric case, we discussed
an abstract and more general matrix equation approach which is further investigated
in the following chapter. However, we do not claim that the previous algorithms can
compete with existing Lyapunov equation solvers like, e.g., the ADI iteration and KPIK
when it comes to computational efficiency. The major drawback of our methods clearly
is that they heavily depend on the speed of convergence. Still, for a comprehensive un-
derstanding of the theory, it is interesting to note the close relation between the different
concepts.

3.4 Numerical examples

In this section, we study the performance of the proposed algorithms by means of some
standard numerical test examples. We stop the algorithms whenever the relative change
of the eigenvalues of the reduced system matrix fall below 10−5. All simulations were
generated on an Intel R© Dual-Core CPU E5400, 2 MB cache, 3 GB RAM, Ubuntu Linux
10.04 (i686), MATLAB Version 7.11.0 (R2012a) 32-bit (glnxa86). Since in the following
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Figure 3.1: Steel profile with n = 1357.

we always compare the constructed low rank approximations with the singular value
decomposition of the true solution, the dimensions of the considered matrix equations
are only medium-sized such that a fast and reliable computation of the exact solution can
actually be obtained by the lyap function from the MATLAB Control System Toolbox.
At this point, keep in mind that this comparison allows to point out the actual difference
between our approximations and the best rank-n̂ approximation which is given by the
SVD.

Energy norm for the Lyapunov equation

The first example is a semi-discretized heat transfer problem from the Oberwolfach
benchmark collection2. Here, we use the coarsest discretization leading to symmetric
matrices E,A ∈ R1357×1357 together with the input matrix B ∈ R1357×7, see [30]. In
Figure 3.1, we present a comparison between the SVD-based approximation of the exact
solution with the approximation given by the rational Krylov subspace obtained by
IRKA. As expected from Theorem 3.3.1, the relative error in the Frobenius norm is better
when the SVD approximation is used. However, the slope of the IRKA approximation is
almost parallel to that and for an approximation of rank 50, the relative error (≈ 8·10−5)
is almost as good as the best approximation (≈ 5 ·10−5) given by the SVD. On the other
hand, we see that IRKA outperforms the SVD for every rank n̂ when the relative error
is measured in terms of the L-norm. Although we have discussed a possible way of
minimizing the residual, for the symmetric case we do not include a comparison here.
As it has already been obtained in [125], the residual norm is a worse estimator of the true
error than the energy norm. Moreover, the corresponding minimizers may be suboptimal
and, thus, for symmetric state space systems it does not seem to make sense to minimize
the residual at all. Note that the phenomenon of IRKA producing nearly optimal low

2http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark

 http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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Figure 3.2: Tunable optical filter with n = 1668.

rank approximations has already been numerically observed and investigated in [45, 59].

The second example is also quite common in the context of model order reduction. The
symmetric system matrices E,A ∈ R1668×1668 and B ∈ R1668×5 stem from the finite
element discretization of a thermal model of a filter device and thus are sparse, see [79].
Similar to the previous example, from Figure 3.2 we can again conclude that the SVD
approximation dominates the performance with respect to the Frobenius norm while
the IRKA approach performs better when the L-norm is taken as a basis for judgment.
Moreover, starting from values n̂ = 10, the error resulting from IRKA approximations
follows the slope of the error of the SVD-based approximation showing that the subspaces
seem to be very close to the optimal ones. Interestingly enough, for dimensions n̂ < 10,
the energy norm does not seem to be a reasonable error estimator. In particular, although
the IRKA approximations outperform the SVD with respect to the energy norm, the
error almost stagnates with respect to the Frobenius norm. However, since the norms
are not equivalent, we cannot expect an exact one-to-one correspondence between the
errors.

Residual norm for the Lyapunov equation

Next, we consider examples that result in unsymmetric dynamical systems with complex
system poles that do not allow for a definition of an energy norm. Nevertheless, as we
have seen, we can still try to locally minimize the residual R = APn̂ + Pn̂A

T + BBT

by the iteration specified in Algorithm 3.3.1. The first example was introduced in [110]
and is one of the SLICOT benchmarks2. The transfer function exhibits three peaks
corresponding to six complex system poles while the rest of the poles is completely real.
In Figure 3.3, we compare the results given by the SVD of the true solution with the

2http://www.slicot.org/index.php?site=benchmodred

http://www.slicot.org/index.php?site=benchmodred


66 Linear Systems

5 10 15 20 25 30
10−16

10−11

10−6

10−1

Rank of Pn̂

||P
−

P
n̂
|| F
/|
|P
|| F

SVD
MinRes

5 10 15 20 25 30
10−14

10−9

10−4

101

Rank of Pn̂

||R
|| F
/|
|B

B
T
|| F

SVD
MinRes

Figure 3.3: Fom model with n = 1006.

low rank approximations obtained by Algorithm 3.3.1 and abbreviated with MinRes.
Similar to the symmetric case, we see that the latter approach follows the error slope
resulting from the SVD. However, there seems to occur some stagnation for larger ranks
n̂. On the other hand, we see that our method indeed yields residuals that are smaller
than those we get from the SVD. Again, for larger ranks, the approximations seem to be
suboptimal and are outperformed by the SVD. Recall Remark 3.3.4 and Remark 3.3.5.
Since we are essentially working with the normal equations, the condition number of the
problem is squared and we thus cannot expect the results to be as accurate as in the
symmetric case.

The second example is the CD player model we have discussed in Chapter 1. The system
matrices A and B are part of the SLICOT benchmark collection and are of dimension
n = 120 with m = 2 inputs. Again, the matrix A is unsymmetric and exhibits a
complex spectrum. In Figure 3.4, we compute the results for low rank approximations
varying from n̂ = 1, . . . , 20. While for ranks up to n̂ = 15, we do not observe problems
with convergence of Algorithm 3.3.1, the convergence criterion is not fulfilled for larger
approximations Pn̂. However, we still obtain the same results as in the previous case.
While the new method performs worse than the SVD when the Frobenius norm is used,
we obtain smaller residuals, even if the algorithm does not converge at all. Nevertheless,
note that for n̂ = 8 and n̂ = 10, the residuals are larger than those from the SVD. This
might indicate that minimizing the residual is not as robust as a minimization of the
energy norm as has already been pointed out in [125].

Energy norm for the Sylvester equation

Let us now briefly draw our attention to the more general case specified in (3.47). Analog
to the Lyapunov case, we consider an example given by the process of optimal cooling
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Figure 3.4: CD player with n = 120.
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Figure 3.5: Steel profiles with discretizations n = 5177 and n = 1357.

of steel profiles. In order to end up with a generalized Sylvester equation including
different matrix dimensions, we use a matrix set (A,E,M,H,B,C), where A,M,B
are as specified for the Lyapunov case, while E,H,C are obtained by a finer resolution
with mesh size m = 5177. In Figure 3.5, we see a comparison between the rational
Krylov subspace approximation computed by Algorithm 3.3.2 which is abbreviated with
(Sy)2IRKA and the SVD-based approximation. Due to the lack of an exact solver for the
original Sylvester equation, we use our new method with an approximation of rank 250
for reference values. It should be mentioned that the relative residual for this approach
is smaller than 10−13 and thus should be sufficient for comparison. Again, we see that
(Sy)2IRKA is dominated by the SVD approximation if the quality is measured in terms
of the Frobenius norm while it performs constantly better if we use the LS-norm.
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3.5 Conclusions

In this chapter, we investigated the approximate solution of large-scale matrix equations.
For a given prespecified rank n̂, the goal was to construct approximations that are op-
timal with respect to different norms. For symmetric state space systems, we showed
that IRKA yields subspaces that can be used to construct low rank approximations
that are optimal with respect to the energy norm induced by the symmetric positive
definite Lyapunov operator. So far, this could only be done by means of a Riemannian
optimization method proposed in [125]. Although the latter method is guaranteed to
globally converge to a local minimizer, IRKA has the advantage of being easily imple-
mentable without a deeper knowledge of interpolation-based MOR theory. We further
established a first connection between the Frobenius norm of low rank approximations
and the H2-norm of the associated error system. Moreover, for unsymmetric systems,
we derived optimality conditions that allow to minimize the Lyapunov residual for a
given rank n̂. Again, there is, on the one hand, a connection to the concept of Rieman-
nian optimization, and, on the other hand, a relation to the bilinear H2-optimal model
reduction problem. Consequently, we came up with an iterative algorithm that, upon
convergence, fulfills the necessary conditions, or equivalently, minimizes the Lyapunov
residual. Finally, we extended the ideas to the more general case of Sylvester equations
and slightly modified IRKA in order to ensure interpolation-based optimality conditions
similar to the ones obtained in [73, 99]. By means of different standard numerical test
examples, we underscored our theoretical results and demonstrated that the iterative
algorithms indeed yield very accurate low rank approximations that are optimal with
respect to different norms. Nevertheless, since all algorithms depend on the speed of
convergence, for typical real-life applications, they cannot compete with standard low
rank solvers such as, e.g., KPIK and the ADI iteration. Still, they provide a useful
insight into the topic of low rank approximations and might allow for constructing a
hybrid method, combining the best features of all of them.
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4.1 Introduction

In this chapter, we consider a more general class of dynamical systems. So far, we have
always assumed the system to be jointly linear in the state and in the control, leading
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to LTI systems of the form (2.2). However, in many typical real-life applications this
assumption does not hold true, resulting in a need for analyzing nonlinear dynamical
systems. As a first step into this direction, the class of bilinear systems has been pointed
out to be an interesting interface between fully nonlinear and linear control systems, see
[34, 100, 101, 102, 115]. More precisely, from now on we consider systems of the form

ΣB :

 ẋ(t) = Ax(t) +
m∑
k=1

Nkx(t)uk(t) + Bu(t),

y(t) = Cx(t) + Du(t), x(0) = x0,

(4.1)

with A,Nk ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, u(t) ∈ Rm and y(t) ∈ Rp.
Similar to the discussion on linear systems, for the remainder of this thesis, we assume
that we have a zero initial condition x0 = 0 and a vanishing feedthrough term D. Again,
if this does not hold true, one can easily embed all our results into the above setting by
incorporating x0 in an enlarged input vector of the form

[
B x0

]
.

As it is discussed in [34, 100, 101, 102], a variety of biological, physical and economical
phenomena naturally result in bilinear models. Here, models for nuclear fusion, me-
chanical brakes or biological species can be mentioned as typical examples. As it might
be obvious, the above systems are called bilinear due to the fact that for a fixed state
vector x one obtains linearity in the control u and vice versa. Although bilinear systems
formally belong to the class of nonlinear control systems, they clearly are a special case
of those. In the following, this turns out to be very useful in order to generalize several
successful linear model reduction concepts.

Following [24, 42, 43], a completely similar structure is obtained for Itô-type linear
stochastic differential equations of the form

dx(t) = Ax(t)dt+
N∑
i=1

Ai
0x(t)dωi(t) + Bu(t)dt,

y(t) = Cx(t), x(0) = x0,

(4.2)

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and dωi(t) are white noise processes
associated with Wiener processes ωi(t). Formally, the above is to be understood as a
notation for

x(t) = x(0) +

∫ t

0

Ax(τ)dτ +
N∑
i=1

∫ t

0

Ai
0x(τ)dωi +

∫ t

0

Bu(τ)dτ,

with dωi denoting the Itô integral. Later on, we use some interesting applications like,
e.g., the Fokker-Planck equation from Chapter 1, as test examples for our model reduc-
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tion techniques.

Coming back to the actual MOR problem, we want to construct another bilinear system

Σ̂B :


˙̂x(t) = Âx̂(t) +

m∑
k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

(4.3)

with Â, N̂k ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉ ∈ Rp×n̂. Analog to model order reduction of lin-
ear systems, we can basically distinguish between SVD-based approaches leading to
a reasonable generalization of the method of balanced truncation, see [24, 134], and
interpolation-based ideas that approximate generalized transfer functions by projecting
the original model onto appropriate Krylov subspaces, see [9, 10, 33, 40, 53, 111, 112].

The structure of the chapter is as follows. In the subsequent section, we provide a detailed
review on concepts and theory of bilinear control systems in general. This includes an
explicit solution formula, possible stability criteria, frequency domain characterizations
and an extension of the already discussed system Gramians to bilinear systems. We then
derive a generalized interpolation-based approach towards H2-optimality. We discuss
two equivalent algorithms and study their performance by means of several numerical
examples. Subsequently, we turn our attention to the method of balanced truncation for
bilinear systems. Here, we investigate possible approximations of the required bilinear
system Gramians. Besides a theoretical explanation of the fast singular value decay for
those Gramians, we propose different low rank solvers that generalize well-known ideas
from the linear case. Again, we show the performance of the proposed methods by means
of several large-scale bilinear test examples.

4.2 Control theoretic concepts

Here, we collect some important results and ideas used in the area of bilinear control
theory. Most of the statements can be found in any standard text book on bilinear
systems like, e.g., [48, 82, 100, 115].

Probably the first and most important question in the study of a dynamical system is
concerned with existence and uniqueness of a solution x(t). For bilinear control systems
such as (4.1), one basically needs the same assumptions as for the linear case. Hence, let
us consider a finite time interval I = [0, T ] and a bounded and continuous input signal
u(t) on I. For a SISO bilinear control system, one can show, see [115], that x(t) exists
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on I and can be computed as

x(t) =
∞∑
i=1

∫ t

0

∫ σ1

0

. . .

∫ σi−1

0

gi(t, σ1, . . . , σi−1) u(σi) · · ·u(σ1) dσi · · · dσ1, (4.4)

where gi(t, σ1, . . . , σi−1) is given as

gi(t, σ1, . . . , σi−1) = eA(t−σ1)N · · · eA(σi−2−σi−1)N︸ ︷︷ ︸
i−1 times

eA(σi−1−σi)b. (4.5)

As it is common for nonlinear systems, this can be shown by successive approximations,
each of them based on Picard-Lindelöf’s theorem, see [115, Section 3.1]. As a result,
instead of the bilinear system (4.1), we can now consider the following infinite series of
coupled linear systems

ẋ1(t) = Ax1(t) + bu(t),

ẋi(t) = Axi(t) + Nxi−1(t)u(t) + bu(t), i = 2, 3, . . . ,
(4.6)

which satisfies x∞(t) := limi→∞ xi(t) = x(t). This interpretation of a nonlinear system as
a series of coupled linear systems is important later on when we focus on more general
nonlinear control systems. The expression (4.4) is a so-called Volterra series and is
well-known in the context of nonlinear systems, see [48, 82, 115].

For our purposes, an explicit input-output representation is of particular interest. If we
perform a change of variables, it is easily seen that for a linear output equation as in
(4.1), we obtain that

y(t) =
∞∑
i=1

∫ t

0

∫ t1

0

. . .

∫ ti−1

0

hi(t1, . . . , ti)
i∏

j=1

u

(
t−

i−j+1∑
`=1

t`

)
dti · · · dt1, (4.7)

with regular degree-i kernels hi(t1, . . . , ti) of the form

hi(t1, . . . , ti) = cT eAtiN · · · eAt2N︸ ︷︷ ︸
i−1 times

eAt1b. (4.8)

In particular, note that the degree-1 kernel coincides with the impulse response of a
linear system h1(t) = cT eAtb. This is not too surprising after the given interpretation
(4.6) of a bilinear system as a series of infinitely many coupled linear systems. Recall that
in the linear case we have a one-to-one correspondence between the impulse response
and the transfer function of a linear system. In a similar fashion, we can make use of a
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multivariate Laplace transform, see [115, Section 2.1], for each of the degree-i kernels in
order to arrive at the i-th transfer function of a bilinear system. We thus obtain

Hi(s1, . . . , si) = cT (siI−A)−1N · · · (s2I−A)−1N︸ ︷︷ ︸
i−1 times

(s1I−A)−1b. (4.9)

Although a clear interpretation of the frequency variables s1, . . . , si and the meaning of
a multivariate transfer function is very ambiguous, it is important to note that there
is an abstract way of characterizing the output of a bilinear system in the frequency
domain by means of a mapping that extends the transfer function of linear systems.

Let us come back to the MIMO case. Though the formulas and concepts become rather
technical, everything we have seen so far still holds true. Due to the significance for this
thesis, we only state the corresponding frequency-domain generalization. For a more
detailed background on this topic, besides the textbooks mentioned in the beginning,
we also refer to [32]. The i-th transfer function of a bilinear system of the form (4.1) is
determined by

Hi(s1, . . . , si) = C

(
i−2∏
j=0

Imj ⊗ (si−jI−A)−1N

)(
Imi−1 ⊗ (s1I−A)−1B

)

with N =
[
N1, . . . ,Nm

]
.

In contrast to the asymptotic stability of a linear system, here we consider bounded-
input-bounded-output (BIBO) stability. The following important statement can be
found in [121].

Theorem 4.2.1. Let a bilinear system ΣB be given and assume that A is asymptotically
stable, i.e., there exist real scalars β > 0 and 0 < α ≤ −maxi(Re (λi(A))), such that

||eAt|| ≤ βe−αt, t ≥ 0.

Further assume that ||u(t)|| =
√∑m

k=1 |uk(t)|2 ≤ M holds uniformly on [0,∞[ with
M > 0, and set Γ =

∑m
k=1 ||Nk||. Then, ΣB is BIBO stable, i.e., the corresponding

Volterra series of the solution x(t) uniformly converges on the interval [0,∞[, if Γ < α
Mβ

.

Next, we have to introduce certain system Gramians that arise for bilinear control sys-
tems. First discussed in [41], the concepts of reachability and observability can be
generalized as follows. According to, e.g., [1], let

P1(t1) = eAt1B,

Pi(t1, . . . , ti) = eAti
[
N1Pi−1, . . . ,NmPi−1

]
, i = 2, 3, . . .
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and define the reachability Gramian P as

P =
∞∑
i=1

∫ ∞
0

· · ·
∫ ∞

0

PiP
T
i dt1 · · · dti. (4.10)

Analogously, we set

Q1(t1) = eAT t1CT ,

Qi(t1, . . . , ti) = eAT ti
[
NT

1 QT
i−1, . . . ,N

T
mQT

i−1

]
, i = 2, 3, . . .

and define the observability Gramian Q as

Q =
∞∑
i=1

∫ ∞
0

· · ·
∫ ∞

0

QiQ
T
i dt1 · · · dti. (4.11)

If (A,B) is reachable and (A,C) is controllable, all the Pi and Qi are symmetric and
positive semi-definite. Still, the series may diverge and P and Q will not exist. However,
under certain assumptions this is the case and P and Q additionally satisfy linear matrix
equations that extend the known Lyapunov equations for linear systems in a suitable
way. For this, we give the following result from [1, 133].

Theorem 4.2.2. The reachability Gramian P and the observability Gramian Q as given
in (4.10) and (4.11) exist if

i) A is stable,

ii) Γ1 <
√

2α
β
, where Γ1 =

√
||
∑m

k=1 NkNT
k || and α, β are as in Theorem 4.2.1.

From now on, unless stated otherwise, we always assume that the system ΣB under
consideration is BIBO stable according to the meaning of Theorem 4.2.1. The above
Theorem further yields the following result.

Theorem 4.2.3. ([1, 133]) Suppose that A is stable and the reachability Gramian P
and the observability Gramian Q exist. Then P and Q satisfy the generalized Lyapunov
equations

AP + PAT +
m∑
k=1

NkPNT
k + BBT = 0, (4.12a)

ATQ + QA +
m∑
k=1

NT
kQNk + CTC = 0. (4.12b)
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There exist different characterizations for P and Q to be unique and positive definite.
However, at this point we do not deepen this topic and just refer to [24, 42, 43] where
a more detailed discussion is presented.

Finally, in order to judge the quality of a reduced-order model, we need a system norm
that allows to measure the distance from the reduced output to the original output,
i.e., y(t) − ŷ(t). Since in the subsequent sections our goal is to adapt and extend the
interpolation-based results from [73], let us review a generalization of the H2-norm that
first was mentioned in [133].

Definition 4.2.1. Let ΣB be a BIBO stable bilinear systems. Then we define the H2-
norm as

||ΣB||H2 =

√√√√tr

( ∞∑
i=1

∫ ∞
0

. . .

∫ ∞
0

m∑
`1,...,`i=1

g
(`1,...,`i)
i (g

(`1,...,`i)
i )Tds1 · · · dsk

)
,

with g
(`1,...,`i)
i (s1, . . . , si) = CeAskN`1 · · · eAs2N`i−1

eAs1b`i .

The above definition is reasonable in the case that the generalized reachability and
observability Gramians exist. In particular, following [133], we can derive the H2-norm
via

||ΣB||H2 =
√

tr (CPCT ) =
√

tr (BTQB). (4.13)

Hence, the derivation of the H2-norm amounts to a computation similar to the one for
linear systems, cf. Lemma 2.2.1.

Finally, let us come to another important point that arises in the context of bilinear
control systems. Although there exist several real-life phenomena that indeed exhibit a
bilinear structure, often an accurate and detailed description of a process can only be
given by a nonlinear model. Of course, linearizing the system around a known operating
point might help to simplify the situation and opens up the way for known linear model
order reduction techniques. However, often the approximation given by a linear model
is not sufficient. Here, the so-called Carleman linearization is an interesting alternative
that at least theoretically allows to approximate a nonlinear system with any desired
accuracy. The first reference for this approach was given in [88]. We follow a similar
discussion from [115]. Assume that a SISO nonlinear system is given by

ẋ(t) = f(x(t), t) + g(x(t), t)u(t), (4.14)

y(t) = cTx(t), (4.15)

where f and g are functions that are analytic in x and continuous in t. Hence, the above
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equation is usually denoted as linear-analytic, essentially indicating that the dynamics
exhibit a certain smoothness that allows to approximate the system by one of a simpler
structure. As it is shown in [115], w.l.o.g. we can assume that x(0) = 0 and f(x(0)) =
f(0) = 0. Consequently, f and g can be expanded into a Taylor series about 0, leading
to

f(x) = A1x + A2 x⊗ x + · · ·+ Ak x⊗ · · · ⊗ x︸ ︷︷ ︸
k

+ . . . ,

g(x) = B0 + B1 x + · · ·+ Bk−1 x⊗ · · · ⊗ x︸ ︷︷ ︸
k−1

+ . . . ,

where Ai,Bi ∈ Rn×ni denote the matrices corresponding to the i-th derivative of f and
g. If we consider the enlarged state vector

x⊗ =


x

x⊗ x
...

x⊗ · · · ⊗ x︸ ︷︷ ︸
k

 ,

we can approximately describe the dynamics of x⊗ by a bilinear control system of the
form

d

dt
x⊗ ≈


A1 A2 · · · Ak

0 A2,1 · · · A2,k−1

...
. . .

. . .
...

0 · · · 0 Ak,1

x⊗ +


B1 · · · Bk−1 0

B2,0
. . .

... 0

0
. . . Bk−1,1 0

0 0 Bk,0 0

x⊗u+


B0

0
...
0

u,
y =

[
cT 0 · · · 0

]
x⊗, x⊗(0) = 0,

where

Ai,j = Aj ⊗ I⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗ I⊗Aj,

Bi,j = Bj ⊗ I⊗ · · · ⊗ I + · · ·+ I⊗ · · · ⊗ I⊗Bj,

with i− 1 Kronecker products in each of the i terms.

By increasing the number of terms in the Taylor series of f and g, the quality of the
approximation can be increased. However, the clear disadvantage is that the dimension
of the system rapidly increases. Note that for the above system, we have that x⊗ ∈
Rn×nk .

Nevertheless, in some situations the approach can be useful and we therefore discuss
the previous technique by means of a simple test example arising in the context of
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Figure 4.1: A scalable nonlinear RC circuit.

circuit theory, see also [32, 40, 111, 112]. The application of interest is an electrical RC
ladder network as shown in Figure 4.1. The network consists of nonlinear resistors g and
capacitors which, for simplicity, are assumed to be given by C = 1. Further, let u(t) be
the input signal to the independent current source and v =

[
v1, v2, . . . , vN

]
∈ RN denote

the state vector consisting of the voltages between each node and the ground. Finally,
we assume the voltage between node 1 and ground to be the measurable system output
y(t). Applying Kirchoff’s current law allows to set up the state equations describing the
corresponding nonlinear control system. Accordingly, for the nodes we obtain

Cv̇1 + g(v1) + g(v1 − v2) = u,

Cv̇k + g(vk − vk+1) = g(vk−1 − vk),
Cv̇N = g(vN−1 − vN).

Assuming that the current-voltage dependence of each resistor g is given as g(v) =
e40v + v − 1, we end up with a nonlinear control system

v̇(t) = f(v(t)) + bu(t),

y(t) = cTv(t),
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where

f(v) = f





v1

v2
...

vk
...

vN




=



−g(v1)− g(v1 − v2)
g(v1 − v2)− g(v2 − v3)

...
g(vk−1 − vk)− g(vk − vk+1)

...
g(vN−1 − vN)


, b = c =


1
0
...
0

 .

We now replace this nonlinear system by an appropriate bilinear system by applying a
second order Carleman linearization. Consequently, the resulting (N +N2)-dimensional
bilinear system is given by

ΣB :

{
ẋ = Ax + Nxu+ b̃u,

y = c̃Tx,

where

A =

[
A1

1
2
A2

0 A1 ⊗ I + I⊗A1

]
, x =

[
v

v ⊗ v

]
,

N =

[
0 0

b⊗ I + I⊗ b 0

]
, b̃ =

[
b
0

]
, c̃ =

[
c
0

]
.

Since the computation of the matrices A1 and A2 is straightforward, we immediately
give their final structures. For A1 we get

A1 =


−82 41
41 −82 41

. . . . . . . . .

41 −82 41
41 −41

 .



4.3. H2-optimal model reduction 79

0 0.5 1 1.5
0

0.005

0.01

0.015

t

v 1
(t

)

u(t) = e−t, N = 30

0 5 10 15 20
−0.2

−0.1

0

t

u(t) = 1.8 cos(π0.2t), N = 30

Original, n = 30
Linear, n = 30
Bilinear, n = 930

Figure 4.2: RC circuit. Transient responses for original, linearized and second order
Carleman bilinearized model.

For the nonzero entries of A2 we arrive at

A2(j, 1) = −3200, A2(j, 2) = 1600, for j = 1,

A2(j,N + 1) = 1600, A2(j,N + 2) = −1600, for j = 1,

A2(j, (j − 2)N + j − 1) = 1600, A2(j, (j − 2)N + j) = −1600, for 2 ≤ j ≤ N − 1,

A2(j, (j − 1)N + j − 1) = −1600, A2(j, (j − 1)N + j + 1) = 1600, for 2 ≤ j ≤ N − 1,

A2(j, jN + j) = 1600, A2(j, jN + j + 1) = −1600, for 2 ≤ j ≤ N − 1,

A2(j, (N − 2)N +N − 1) = 1600, A2(j, (N − 2)N +N) = −1600, for j = N,

A2(j, (N − 1)N +N − 1) = −1600, A2(j, (N − 1)N +N) = 1600, for j = N.

As it is shown in Figure 4.2, for this specific example, the previous second order Carle-
man linearization often yields accurate approximations that outperform a conventional
linearization about an operating point by far. However, as we see for the second input,
there exist excitations where a second order Carleman linearization also yields only a
moderate approximation of the original dynamics.

4.3 H2-optimal model reduction

In this section, we study the H2-optimal model reduction problem for bilinear systems
of the form (4.1). Similar to the linear case, we want to find iterative algorithms that
construct a reduced-order system Σ̂B that solves

||ΣB − Σ̂B||H2 = min
dim(Σ̃B) = n̂

Σ̃B stable

||ΣB − Σ̃B||H2 . (4.16)
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4.3.1 Preliminaries

Recall from Chapter 3 that a locally H2-optimal reduced-order system has to fulfill the
tangential interpolation conditions (3.7). For the generalization of these conditions to
the bilinear case, it makes sense to consider the corresponding vectorized conditions.
For this, let us have a look at the i-th column of the left hand side of (3.7a) which can
be rewritten as follows:

c̃Tj H(−λ̂j)i = c̃Tj C(−λ̂jI−A)−1bi

=
[
c̃T1 C, . . . , c̃Tn̂C

] −λ̂1I−A
. . .

−λ̂n̂I−A


−1

(ej ⊗ bi)

= vec
(
CT C̃

)T (
−Λ̂⊗ I− I⊗A

)−1

(eje
T
i ⊗B) ξm

= ξTp (C̃⊗C)
(
−Λ̂⊗ I− I⊗A

)−1

(eje
T
i ⊗B) ξm,

with ξm = vec (Im) and Λ̂ = diag
(
λ̂1, . . . , λ̂n̂

)
.

Hence, condition (3.7a) is the same as requiring that

ξTp

(
C̃⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â

)−1 (
eje

T
i ⊗ B̂

)
ξm

= ξTp

(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A

)−1 (
eje

T
i ⊗B

)
ξm,

(4.17)

holds for j = 1, . . . , n̂ and i = 1, . . . ,m. Similarly, instead of (3.7b) we can write

ξTp

(
eie

T
j ⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â

)−1 (
B̃T ⊗ B̂

)
ξm

= ξTp
(
eie

T
j ⊗C

) (
−Λ̂⊗ I− I⊗A

)−1 (
B̃T ⊗B

)
ξm.

(4.18)
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Finally, condition (3.7c) is the same as

ξTp

(
C̃⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â

)−1 (
eje

T
j ⊗ I

)
×(

−Λ̂⊗ I− I⊗ Â
)−1 (

B̃T ⊗ B̂
)
ξm

= ξTp

(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A

)−1 (
eje

T
j ⊗ I

)
×(

−Λ̂⊗ I− I⊗A
)−1 (

B̃T ⊗B
)
ξm.

(4.19)

Furthermore, the construction of the projection matrices in each step of iterative algo-
rithms like IRKA or MIRIAm can also be interpreted in terms of the Kronecker product
notation. More precisely, in order to guarantee Hermite-type tangential interpolation,
we need to compute

Vj = (σjI−A)−1 Bb̃j, (4.20)

Wj =
(
σjI−AT

)−1
CT c̃j. (4.21)

In vectorized notation, this means that

vec (V) = (diag (σ1, . . . , σn̂)⊗ I− I⊗A)−1 (B̃T ⊗B) ξm, (4.22)

vec (W) =
(
diag (σ1, . . . , σn̂)⊗ I− I⊗AT

)−1
(C̃T ⊗CT ) ξp. (4.23)

Finally, from (4.13) we know that there exists a close relation between the H2-norm and
the solutions of the generalized Lyapunov equations (4.12). In particular, in terms of
the Kronecker notation we easily obtain the following useful result.

Proposition 4.3.1. Let ΣB be a stable bilinear system. Then it holds that

||ΣB||2H2
= ξTp (C⊗C)

(
−A⊗ I− I⊗A−

m∑
k=1

Nk ⊗Nk

)−1

(B⊗B) ξm.

Proof. Making use of the vectorization of (4.12), we can express P as

vec (P) =

(
−A⊗ I− I⊗A−

m∑
k=1

Nk ⊗Nk

)−1

vec
(
BBT

)
.
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Since tr
(
CPCT

)
= tr

(
CTCP

)
, the statement easily follows from the properties of the

Kronecker product given in Chapter 2.

4.3.2 H2-optimality conditions for bilinear systems

Obviously, since the linear H2-model reduction problem already is a non-convex op-
timization problem, for the bilinear case we cannot expect to find the global opti-
mum of (4.16). Hence, in this section the aim is to derive first order necessary con-
ditions. As in the linear case, for this we have to consider the norm of the error system
ΣB,err := ΣB − Σ̂B, which is defined via

Aerr =

[
A 0

0 Â

]
, Nerr,k =

[
Nk 0

0 N̂k

]
, Berr =

[
B

B̂

]
, Cerr =

[
C −Ĉ

]
.

Based on the computation formula for the H2-norm, it is shown in [133] that the reduced
system matrices of a locally H2-optimal model have to fulfill conditions that extend the
Wilson conditions to the bilinear case. These are

QT
12P12 + Q22P22 = 0, Q22N̂kP22 + QT

12NkP12 = 0, for k = 1, . . . ,m,

QT
12B + Q22B̂ = 0, ĈP22 −CP12 = 0,

(4.24)

where

Perr =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
, (4.25)

are the solutions of the generalized Lyapunov equations

AerrPerr + PerrA
T
err +

m∑
k=1

Nerr,kPerrN
T
err,k + BerrB

T
err = 0, (4.26)

AT
errQerr + QerrAerr +

m∑
k=1

NT
err,kQerrNerr,k + CT

errCerr = 0. (4.27)

The authors of [133] further proposed an algorithm that constructs a system Σ̂B fulfilling
the above conditions. However, their procedure relies on a gradient flow optimization
technique and, thus, in each step the solution of a large-scale system of ODEs is required,
making the technique infeasible in typical real-life applications. For this reason, we want
to investigate the possibility of an interpolatory approach that uses the idea of IRKA.
As a first step, we have to generalize the interpolation-based optimality conditions from
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Chapter 3. Here, the computation formula from Proposition 4.3.1 together with a simple
analysis of the structure of the error system leads to the following expression for the error
functional J = ||ΣB,err||2H2

.

Corollary 4.3.1. Let ΣB denote a bilinear system. Further assume that a diagonalizable
reduced-order system Σ̂B is given. Then

J = ξTp
([

C −C̃
]
⊗Cerr

)
×(

−
[
A 0

0 Λ̂

]
⊗ I− I⊗Aerr −

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗Nerr

)−1([
B

B̃T

]
⊗Berr

)
ξm,

where RΛ̂R−1 = Â, B̃ = B̂TR−T , C̃ = ĈR, and Ñk = RT N̂T
kR−T is the spectral

decomposition of Σ̂B.

The above representation is motivated by the demand of having optimization parame-
ters Λ̂, Ñk, B̃, and C̃ that can be chosen to locally minimize ||ΣB − Σ̂B||2H2

. For the
differentiation with respect to those optimization parameters, we need an extension of
the product rule to Kronecker products.

Lemma 4.3.1. Let C(x) ∈ Rp×n, A(y),Nk ∈ Rn×n and B ∈ Rn×m, with x, y ∈ R. Let
L(y) = −A(y)⊗I−I⊗A(y)−

∑m
k=1 Nk⊗Nk and assume that C and A are differentiable

with respect to x and y. Then,

∂

∂x

[
ξTp (C(x)⊗C(x))L(y)−1(B⊗B)ξm

]
= 2 · ξTp

(
∂

∂x
C(x)⊗C(x)

)
L(y)−1(B⊗B) ξm

and

∂

∂y

[
ξTp (C(x)⊗C(x))L(y)−1(B⊗B) ξm

]
= 2 · ξTp (C(x)⊗C(x))L(y)−1

(
∂

∂y
A(y)⊗ I

)
L(y)−1(B⊗B) ξm.

Proof. For the first part, note that

vec (P(y)) :=

(
−A(y)⊗ I− I⊗A(y)−

m∑
k=1

Nk ⊗Nk

)−1

(B⊗B) ξm
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is the solution of the parameter-dependent Lyapunov equation

A(y)P(y) + P(y)A(y)T +
m∑
k=1

NkP(y)NT
k + BBT = 0.

Hence, we can conclude that P(y) = P(y)T . Next, we observe that

ξTp

(
C(x)⊗

(
∂

∂x
C(x)

))
vec (P(y)) = tr

(
C(x)T

(
∂

∂x
C(x)

)
P(y)

)
= tr

(
C(x)P(y)T

(
∂

∂x
C(x)T

))
= tr

((
∂

∂x
C(x)T

)
C(x)P(y)

)
= ξTp

((
∂

∂x
C(x)

)
⊗C(x)

)
vec (P(y)) .

The last equation implies that we can interchange the derivatives with respect to x. The
assertion now trivially follows. For the second part, recall that we have ∂

∂y
(A(y)−1) =

−A(y)−1 ∂A(y)
∂y

A(y)−1. Furthermore, by Q(x, y) we denote the solution of the dual Lya-
punov equation

A(y)TQ(x, y) + Q(x, y)A(y) +
m∑
k=1

NT
kQ(x, y)Nk + C(x)TC(x) = 0.

Hence, we end up with

vec (Q(x, y))T
(

I⊗ ∂

∂y
A(y)

)
vec (P(y)) = tr

(
Q(x, y)T

(
∂

∂y
A(y)

)
P(y)

)
= tr

(
P(y)T

(
∂

∂y
A(y)T

)
Q(x, y)

)
= tr

((
∂

∂y
A(y)T

)
Q(x, y)TP(y)

)
= vec

(
Q(x, y)

∂

∂y
A(y)

)T
vec (P(y))

= vec (Q(x, y))T
(
∂

∂y
A(y)⊗ I

)
vec (P(y)) .

Again, the last line proves the second statement.
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Before we proceed, recall that the permutation M from Proposition 2.1.2 fulfills

MT

(
A⊗

[
B C
D E

])
M =

[
A⊗B A⊗C
A⊗D A⊗ E

]
.

Finally, we are ready to derive the necessary conditions as follows.

∂J

∂C̃ij

= 2 · ξTp
([

0 −eie
T
j

]
⊗Cerr

)
×(

−
[
A 0

0 Λ̂

]
⊗ I− I⊗Aerr −

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗Nerr,k

)−1([
B

B̃T

]
⊗Berr

)
ξm

= 2 · ξTp
(
−eie

T
j ⊗Cerr

)
MMT×(

−Λ̂⊗ I− I⊗Aerr −
m∑
k=1

ÑT
k ⊗Nerr

)−1

MMT
(
B̃T ⊗Berr

)
ξm

= −2 · ξTp
(
eie

T
j ⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

+ 2 · ξTp
(
eie

T
j ⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
ξm.

Here, the last step is justified by the fact that M is a permutation matrix and, thus,
MTM = I and by the identities:

(
−eie

T
j ⊗

[
C −Ĉ

])
M =

[
−eie

T
j ⊗C eie

T
j ⊗ Ĉ

]
,

MT

(
B̃⊗

[
B

B̂

])
=

[
B̃⊗B

B̃⊗ B̂

]
.

Setting the resulting expression equal to zero reveals that Σ̂ has to satisfy:

ξTp
(
eie

T
j ⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

= ξTp

(
eie

T
j ⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
ξm.

(4.28)

In view of equation (3.7b) in the form of (4.18), we see that this demand naturally extends



86 Bilinear Systems

the interpolation-based condition known from the linear case. For the differentiation
with respect to the poles of Â, we use the second part of Lemma 4.3.1 in order to obtain

∂J

∂λ̂i
= 2 · ξTp

([
C −C̃

]
⊗Cerr

)
×([

A 0

0 Λ̂

]
⊗ I + I⊗Aerr +

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗Nerr,k

)−1([
0 0
0 eie

T
i

]
⊗ I

)
×([

A 0

0 Λ̂

]
⊗ I + I⊗Aerr +

m∑
k=1

[
Nk 0

0 ÑT
k

]
⊗Nerr,k

)−1([
B

B̃T

]
⊗Berr

)
ξm

= −2 · ξTp
(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

×

(
eie

T
i ⊗ I

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

+ 2 · ξTp
(
C̃⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1

×

(
eie

T
i ⊗ I

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
ξm.

Once more, we find an interpolation-based condition generalizing (3.7c) in the form of
(4.19) if we set the last expression equal to zero:

ξTp

(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

×

(
eie

T
i ⊗ I

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

= ξTp

(
C̃⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1

×

(
eie

T
i ⊗ I

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
ξm.

(4.29)

Finally, as a matter of careful analysis, we obtain similar optimality conditions when
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differentiating with respect to B̃ and Ñk, respectively:

ξTp

(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
eje

T
i ⊗B

)
ξm

= ξTp

(
C̃⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
eje

T
i ⊗ B̂

)
ξm,

(4.30)

ξTp

(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

×

(
eje

T
i ⊗Nk

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

= ξTp

(
C̃⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1

×

(
eje

T
i ⊗ N̂k

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
ξm.

(4.31)

Hence, the previous derivations can be summarized in the following theorem.

Theorem 4.3.1. Let ΣB denote a BIBO stable bilinear system. Assume that Σ̂B is
a reduced bilinear system of dimension n̂, locally minimizing the H2-norm of the error
system among all bilinear systems of dimension n̂. Then Σ̂B fulfills equations (4.28) –
(4.31).

Remark 4.3.1. At this point one might wonder why it makes sense to denote the above
conditions as being of interpolatory nature. Note that if the inverse

(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1

exists and the Volterra series converges, we can use the Neumann Lemma and obtain an
infinite series of the form

∞∑
i=0

((
−Λ̂⊗ I− I⊗A

)−1
(

m∑
k=1

ÑT
k ⊗Nk

))i (
−Λ̂⊗ I− I⊗A

)−1

.

Now each term of this series corresponds to a term of the Volterra series representation
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for bilinear control systems. For a more detailed insight, below we state a very interesting
result from Flagg that can be found in [56].

Theorem 4.3.2. Let ΣB be a SISO bilinear system of order n with finite H2-norm. Let
Σ̂B = (Â, N̂, b̂, ĉ) be an H2-optimal approximation of order n̂. Then, Σ̂ satisfies the
following multipoint Volterra series interpolation conditions

∞∑
k=1

n̂∑
`1=1

· · ·
n̂∑

`k=1

Φ̂`1,...,`kHk(−λ̂1, . . . ,−λ̂k)

=
∞∑
k=1

n̂∑
`1=1

· · ·
n̂∑

`k=1

Φ̂`1,...,`kĤk(−λ̂1, . . . ,−λ̂k)

and

∞∑
k=1

n̂∑
`1=1

· · ·
n̂∑

`k=1

Φ̂`1,...,`k

(
k∑
j=1

∂

∂sj
Hk(−λ̂1, . . . ,−λ̂k)

)

=
∞∑
k=1

n̂∑
`1=1

· · ·
n̂∑

`k=1

Φ̂`1,...,`k

(
k∑
j=1

∂

∂sj
Ĥk(−λ̂1, . . . ,−λ̂k)

)
,

where Φ̂`1,...,`k and λ̂`i are the (multivariate) residues and poles of the transfer functions

Ĥk associated with Σ̂B.

Note that Theorem 4.3.2 yields more explicit interpolation-based H2-optimality con-
ditions corresponding to the Volterra series representation for bilinear systems. As is
discussed in detail in [56, Chapter 4], our conditions and the ones from Theorem 4.3.2
are equivalent, but the latter ones benefit from being transferable to bilinear systems
with infinite H2-norm.

4.3.3 Generalized Sylvester equations and BIRKA

Now that we have specified first order necessary conditions forH2-optimality, we propose
two algorithms that iteratively construct a reduced-order system which locally minimizes
the H2-error. We start with a procedure based on generalized Sylvester equations which
in the linear case reduces to the concept discussed in [44]. For this, let us consider the
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following two matrix equations:

AX + XÂT +
m∑
k=1

NkXN̂T
k + BB̂T = 0, (4.32a)

ATY + YÂ +
m∑
k=1

NT
kYN̂k −CT Ĉ = 0. (4.32b)

Obviously, the solutions X,Y ∈ Rn×n̂ can be explicitly computed by vectorizing both
sides and making use of the Kronecker product. However, this requires solving two linear
systems of equations:

(
−I⊗A− Â⊗ I−

m∑
k=1

N̂k ⊗Nk

)
vec (X) = vec

(
BB̂T

)
,(

I⊗AT + ÂT ⊗ I +
m∑
k=1

N̂T
k ⊗NT

k

)
vec (Y) = vec

(
CT Ĉ

)
.

Throughout the rest of the thesis, we assume that there exist unique solutions satisfy-
ing these Sylvester equations. Due to the properties of the eigenvalue computation of
Kronecker products, this certainly is satisfied if the eigenvalues of Â are located in C−
and the norms of N̂k are sufficiently small. However, in view of Theorem 4.2.1 we have
already mentioned that this basically characterizes a stable bilinear system. Although in
general this cannot be ensured by our proposed algorithms, we did not observe unstable
reduced-order systems so far. For a similar discussion of the linear case we refer to [73].
Finally, we mention that, under appropriate assumptions, the solutions X and Y can
be computed as the limits of infinite series of linear Sylvester equations.

Lemma 4.3.2. Let L,Π : Rn×n̂ → Rn×n̂ denote two linear operators defined by the
bilinear systems ΣB and Σ̂B, with L(X) := AX + XÂT and Π(X) :=

∑m
k=1 NkXN̂T

k . If
the spectral radius ρ(L−1Π) < 1, then the solution X of the generalized Sylvester equation
(4.32a) is given as X = lim

j→∞
Xj, with:

AX1 + X1Â
T + BB̂T = 0,

AXj + XjÂ
T +

m∑
k=1

NkXj−1N̂
T
k + BB̂T = 0, j > 1.

A dual statement obviously is true for equation (4.32b). Since the statement is a direct
consequence of the theory of convergent splittings, we dispense with the proof and instead
refer to [43] for an equivalent discussion on bilinear Lyapunov equations.
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Remark 4.3.2. Although the aforementioned splitting at least theoretically yields a pos-
sible way of solving the generalized Sylvester equation (4.32a), the procedure strongly
depends on the spectral radius ρ(L−1Π). Moreover, so far it seems hard to state proper-
ties of a bilinear control system that automatically ensure the desired convergence.

Algorithm 4.3.1 Generalized Sylvester iteration

Input: A, Nk, B, C, Â, N̂k, B̂, Ĉ dimensioned as in (4.32)
Output: Â, N̂k, B̂, Ĉ locally minimizing ||ΣB − Σ̂B||H2

1: while (not converged) do
2: Solve AX + XÂT +

∑m
k=1 NkXN̂T

k + BB̂T = 0.

3: Solve ATY + YÂ +
∑m

k=1 NT
kYN̂k −CT Ĉ = 0.

4: V = orth (X), W = orth (Y), Z = W(VTW)−1

5: Â = ZTAV, N̂k = ZTNkV, B̂ = ZTB, Ĉ = CV
6: end while

Let us now focus on Algorithm 4.3.1 which in each step constructs a reduced system Σ̂
by a Petrov-Galerkin type projection P = V(WTV)−1WT , determined by the solutions
of the generalized Sylvester equations associated with the preceding system matrices.
Upon convergence, we have the following result.

Theorem 4.3.3. Assume that Algorithm 4.3.1 converges with convergence tolerance
zero, where the convergence criterion measures the change of the eigenvalues of Â. Then,
Â, N̂k, B̂, Ĉ fulfill the necessary H2-optimality conditions (4.24).

Proof. Let Ā, N̄k, B̄, C̄ denote the matrices corresponding to the next to last iteration
step. Due to convergence, Σ̂B is a state space transformation of Σ̄B, i.e., there exists
T ∈ Rn̂×n̂ nonsingular, such that

Ā = T−1ÂT, N̄k = T−1N̂kT, B̄ = T−1B̂, C̄ = ĈT.

Furthermore, according to step 4 in Algorithm 4.3.1, we have

V = XF, W = YG,

with F,G ∈ Rn̂×n̂ nonsingular. Thus, it holds that

(WTV)−1WT = (GTYTXF)−1GTYT = F−1(YTX)−1YT .
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From step 2, it follows that

AX + XĀT +
m∑
k=1

NkXN̄T
k + BB̄T = 0.

Hence, we have that

F−1(YTX)−1YT︸ ︷︷ ︸
=(WTV)−1WT

(
AX + XĀT +

m∑
k=1

NkXN̄T
k + BB̄T

)
F = 0,

which implies that

Â + F−1TT ÂTT−TF +
m∑
k=1

N̂kF
−1TT N̂T

kT−TF + B̂B̂TT−TF = 0.

Finally, we end up with

ÂF−1TT + F−1TT ÂT +
m∑
k=1

N̂F−1TT N̂T
k + B̂B̂T = 0.

From the last line and the fact that we assumed the reduced system to be stable, the
solution of the generalized Lyapunov equation is unique and we conclude that P22 =
F−1TT , were P22 is the lower right block from the partitioning of Perr in (4.25). Similarly,
we obtain

ATY + YĀ +
m∑
k=1

NT
kYN̄k −CT C̄ = 0.

This leads to

FTXT

(
ATY + YĀ +

m∑
k=1

NT
kYN̄k −CT C̄

)
(XTY)−1F−T = 0,
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which can be transformed into

ÂT +

(
FTXTYT−1Â +

m∑
k=1

N̂T
kFTXTYT−1N̂k − ĈT Ĉ

)
T(XTY)−1F−T = 0.

Thus it follows that

−ÂTFTXTYT−1 − FTXTYT−1Â−
m∑
k=1

N̂T
kFTXTYT−1N̂k + ĈT Ĉ = 0.

Again, the unique solution of the generalized Lyapunov equation of the reduced system
satisfies Q22 = −FTXTYT−1, with Q22 as defined in (4.25). Moreover, due to the
symmetry of the solution, it follows that Q22 = −T−TYTXF. Finally, we need the
solutions of the generalized Sylvester equations arising in (4.26). However, it holds that
the identity

AX + XĀT +
m∑
k=1

NkXN̄T
k + BB̄T = 0

is equivalent to

AX + XTT ÂTT−T +
m∑
k=1

NkXTT N̂T
kT−T + BB̂TT−T = 0,

yielding

AXTT + XTT ÂT +
m∑
k=1

NkXTT N̂T
k + BB̂T = 0.

Here, we make use of the unique solution of the generalized Sylvester equation. Thus,
it follows that P12 = XTT . Since the argumentation for the dual Sylvester equation is
completely analogous, we skip the derivation that leads to Q12 = YT−1. Let us now
show the optimality conditions (4.24)

QT
12P12 + Q22P22 = T−TYTXTT −T−TYTXFF−1TT = 0,



4.3. H2-optimal model reduction 93

Q22N̂kP22 + QT
12NkP12 = −T−TYTXFN̂kF

−1TT + T−TYTNkXTT

= −T−TYTXF(WTV)−1WTNkVF−1TT + T−TYTNkXTT

= −T−TYTXFF−1(YTX)−1YTNkXFF−1TT + T−TYTNkXTT = 0,

QT
12B + Q22B̂ = T−TYTB−T−TYTXFB̂

= T−TYTB−T−TYTXF(WTV)−1WTB

= T−TYTB−T−TYTXFF−1(YTX)−1YTB = 0,

ĈP22 −CP12 = ĈF−1TT −CXTT = CVF−1TT −CXTT

= CXFF−1TT −CXTT = 0.

Remark 4.3.3. Note that the two main steps of Algorithm 4.3.1 consist of finding
solutions to generalized Sylvester equation of the form

AX + XÂT +
m∑
k=1

NkXN̂T
k + BB̂T = 0,

determined by the large size matrix A from the original system and the small size ma-
trix Â from the reduced system. Similar to the generalized Lyapunov equations arising
for bilinear control systems, solving a matrix equation of this type might still pose a
severe challenge. However, one might think of considering the explicit system of linear
equations, given by the Kronecker formulation

(
−I⊗A− Â⊗ I−

m∑
k=1

N̂k ⊗Nk

)
vec (X) = − vec

(
BB̂T

)
,

which can be solved by means of an iterative Krylov subspace based solver. As a precon-
ditioning technique, one naturally might think of the corresponding simplified Sylvester
operator appearing in the linear case (i.e. Nk = 0) which can be efficiently applied by
means of a Schur decomposition of Â, see [25].

Remark 4.3.4. As in the linear case, a typical convergence criterion for Algorithm
4.3.1 is the relative change of the eigenvalues of the system matrix Â.

Remark 4.3.5. Note that Algorithm 4.3.1 generalizes a Sylvester equation based algo-
rithm for H2-optimality (see [44]) and thus does not require diagonalizability of Â.
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Let us turn our attention to an interpolation-based approach that can be directly derived
from Algorithm 4.3.1. For a similar derivation in the linear case, see, e.g., [73, 132].

Again, let Â = RΛ̂R−1 denote the eigenvalue decomposition of the reduced system. As
already mentioned before, the explicit solution of equation (4.32a) in vectorized form
reads:

vec (X) =

(
−I⊗A− Â⊗ I−

m∑
k=1

N̂k ⊗Nk

)−1

vec
(
BB̂T

)

=

(
−I⊗A− Â⊗ I−

m∑
k=1

N̂k ⊗Nk

)−1 (
B̂⊗B

)
ξm

=

[
(R⊗ I)

(
−I⊗A− Λ̂⊗ I−

m∑
k=1

R−1N̂kR⊗Nk

)(
R−1 ⊗ I

)]−1 (
B̂⊗B

)
ξm

= (R⊗ I)

(
−I⊗A− Λ̂⊗ I−

m∑
k=1

R−1N̂kR⊗Nk

)−1 (
R−1B̂⊗B

)
ξm︸ ︷︷ ︸

vec(V)

.

From the last line, we can now conclude that

(R⊗ I)−1 vec (X) = vec (V) and hence XR−T = V.

Similarly, starting from equation (4.32b), we obtain:

vec (Y) =

(
I⊗AT + ÂT ⊗ I +

m∑
k=1

N̂T
k ⊗NT

k

)−1

vec
(
CT Ĉ

)

=

(
I⊗AT + ÂT ⊗ I +

m∑
k=1

N̂T
k ⊗NT

k

)−1 (
ĈT ⊗CT

)
ξTp

=

[(
R−T ⊗ I

)(
−I⊗AT − Λ̂⊗ I−

m∑
k=1

RT N̂T
kR−T ⊗NT

k

)(
−RT ⊗ I

)]−1 (
ĈT ⊗CT

)
ξTp

=
(
−R−T ⊗ I

)
vec (W) .

Once again, this leads to

(
−R−T ⊗ I

)−1
vec (Y) = vec (W) and Y(−R) = W,

where

vec (W) :=

(
−I⊗AT − Λ̂⊗ I−

m∑
k=1

RT N̂T
kR−T ⊗NT

k

)−1 (
RT ĈT ⊗CT

)
ξTp .
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According to the proof of Theorem 4.3.3, as long as span{X} ⊂ V and span{Y} ⊂W,
we can ensure that the reduced system satisfies the necessary H2-optimality conditions.
Hence, we have found an equivalent method which obviously extends IRKA to the
bilinear case, see Algorithm 4.3.2.

Algorithm 4.3.2 Bilinear IRKA (BIRKA)

Input: A, Nk, B, C, Â, N̂k, B̂, Ĉ
Output: Â, N̂k, B̂, Ĉ locally minimizing ||ΣB − Σ̂B||H2

1: while (not converged) do
2: RΛ̂R−1 = Â, B̃ = B̂TR−T , C̃ = ĈR, Ñk = RT N̂T

kR−T

3: vec (V) =
(
−Λ̂⊗ I− I⊗A−

∑m
k=1 ÑT

k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

4: vec (W) =
(
−Λ̂⊗ I− I⊗AT −

∑m
k=1 Ñk ⊗NT

k

)−1(
C̃T ⊗CT

)
ξp

5: V = orth (V), W = orth (W), Z = W(VTW)−1

6: Â = ZTAV, N̂k = ZTNkV, B̂ = ZTB, Ĉ = CV
7: end while

Finally, we point out the equivalence between the optimality conditions (4.24) and (4.28).
For this, we need the following projection-based identity.

Lemma 4.3.3. Let V,W ∈ Rn×n̂ be matrices of full rank n̂.
(a) Let z ∈ span{vec (V)}. Then

(
I⊗V(WTV)−1WT

)
z = z.

(b) Let z ∈ span{vec (W)}. Then zT
(
I⊗V(WTV)−1WT

)
= zT .

Proof. By assumption, there exists x ∈ Rn·n̂ s.t.

(
I⊗V(WTV)−1WT

)
z =

(
I⊗V(WTV)−1WT

)
vec (V) x

= vec
(
V(WTV)−1WTV

)
x = vec (V) x = z.

The proof of the second statement is based on exactly the same arguments.

Theorem 4.3.4. Assume that Algorithm 4.3.2 converges. Then Â, N̂k, B̂, Ĉ fulfill the
necessary interpolation-based H2-optimality conditions.

Proof. Since the only difference in proving the conditions (4.28) – (4.31) lies in using
statement (b) of Lemma 4.3.3 and the combination of both (a) and (b), respectively, we
restrict ourselves to showing the optimality condition (4.28):

ξTp

(
eie

T
j ⊗ Ĉ

)(
−Λ̂⊗ I− I⊗ Â−

m∑
k=1

ÑT
k ⊗ N̂k

)−1 (
B̃T ⊗ B̂

)
ξm
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= ξTp
(
eie

T
j ⊗CV

)
×[(

I⊗ (WTV)−1WT
)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(I⊗V)

]−1

×(
B̃T ⊗ (WTV)−1WTB

)
ξm

= ξTp
(
eie

T
j ⊗CV

)
×[(

I⊗ (WTV)−1WT
)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(I⊗V)

]−1

×

(
I⊗ (WTV)−1WT

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

(4.3.3a)
= ξTp

(
eie

T
j ⊗CV

)
×[(

I⊗ (WTV)−1WT
)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
(I⊗V)

]−1

×

(
I⊗ (WTV)−1WT

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)
×

(
I⊗V(WTV)−1WT

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

= ξTp
(
eie

T
j ⊗CV

) (
I⊗ (WTV)−1WT

)
×(

−Λ̂⊗ I− I⊗A−
m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm

= ξTp
(
eie

T
j ⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
ξm.

Remark 4.3.6. Note that analogously to Lemma 4.3.2, it is also possible to construct
the matrices appearing in Algorithm 4.3.2 as the limit of an infinite series of linear
IRKA type computations. For this, in each iteration, one starts with

V1
i =

(
−λ̂iI−A

)−1

BB̃i,
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and continues with

Vj
i =

(
−λ̂iI−A

)−1
(

m∑
k=1

NkV
j−1(Ñk)i

)
.

The actual projection matrix V then is given as V =
∑∞

j=1 Vj. A dual derivation obvi-
ously yields the projection matrix W. At this point, the interpolatory interpretation of the
proposed algorithm is seen once more. The construction of each Vj in a way corresponds
to the tangential interpolation framework appearing for linear dynamical systems with
multiple inputs and multiple outputs. Furthermore, similar to the statement in Remark
4.3.3, another way of constructing the projection matrices is given by the use of an iter-
ative solver. This solver might be implemented with a natural preconditioner determined
by the simplified and underlying linear problem which can be easily tackled by IRKA.
Since the latter method is computationally more efficient than the Schur decomposition
based approach discussed in [25], the reformulation of Algorithm 4.3.1 into Algorithm
4.3.2 might turn out to be profitable for practicable computations and should be a topic
of further research.

A crucial observation is that if in Algorithm 4.3.2, the matrices V and W are re-
placed by the first q terms of the previously mentioned iteration, i.e., V =

∑q
j=1 Vj and

W =
∑q

j=1 Wj, one still can construct a reduced-order bilinear system that is optimal
with respect to a slightly modified H2-norm corresponding to an underlying polynomial
system of order q. Here, we refer to [56, Chapter 4] where a more detailed discussion on a
numerically efficient algorithm (TB-IRKA) is given. In particular, as has been reported
in [56], the latter algorithm usually outperforms Algorithm 4.3.2 for larger dimensions
n̂ of the reduced-order systems when it comes to computational efficiency.

Remark 4.3.7. Note that the numerical efficiency of both Algorithm 4.3.1 and Algo-
rithm 4.3.2 heavily depends on the number of iterations needed until the relative change
of the eigenvalues of the system matrix Â approaches zero. As has already been shown
for the linear case (cf. [73]), IRKA is a simplified Newton iteration where the Jacobian
matrix is neglected. Obviously, this means that there exist a lot of examples where both
algorithms diverge. Nevertheless, recently there have been some first convergence results
for symmetric state space systems, see [58]. However, at this point it seems very hard
to generalize those ideas to the bilinear case.

4.3.4 Generalizations to other cases

Before we test the efficiency of our new method by means of several numerical examples,
let us discuss differences that occur for other types of bilinear control systems. In
particular, so far we have focused on standard continuous-time systems. Below, we
present a few important details necessary for treating generalized state space systems as
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well as discrete-time systems. Similar to the theory from Chapter 3 for linear systems,
both cases can be tackled by the previous tools without larger modifications.

Generalized state space systems

As is common for linear control systems, the spatial discretization of a nonlinear PDE
often results in a mass matrix E 6= I as well. As a consequence, we obtain a generalized
state space system of the form

ΣB :

Eẋ(t) = Ax(t) +
m∑
k=1

Nkx(t)uk(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

(4.33)

with dimensions as in (4.1). For the derivation of the corresponding H2-optimality
conditions it obviously suffices to invert the mass matrix E and apply the results from
the previous subsections. Since this in general will destroy the sparsity of the matrices,
we certainly prefer to work with the original system data. As a first step, it is important
to note that the computation of the H2-norm itself does not change, only the underlying
generalized Lyapunov equations. To be precise, we have the following result.

Proposition 4.3.2. Let ΣB be a stable generalized bilinear system as in (4.33). Then
it holds that

||ΣB||2H2
= tr

(
CPCT

)
= tr

(
BTQB

)
,

where P and Q are the solutions of the generalized Lyapunov equations

APET + EPAT +
m∑
k=1

NkPNT
k + BBT = 0,

ATQE + ETQA +
m∑
k=1

NT
kQNk + CTC = 0.

Proof. The first part immediately follows from the fact that P is the solution of

(E−1A)P + P(E−1A)T +
m∑
k=1

(E−1Nk)P(E−1Nk)
T + (E−1B)(E−1B)T = 0,

which is the Lyapunov equation arising for the standard state space system that is
obtained after the theoretical inversion of E.

For the second part, assume that Q̃ is the solution of the dual Lyapunov equation for
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the standard state space system, i.e.,

(E−1A)T Q̃ + Q̃(E−1A) +
m∑
k=1

(E−1Nk)
T Q̃(E−1Nm) + CTC = 0.

Hence, it holds ||ΣB||2H2
= tr

(
BTE−T Q̃E−1B

)
. By introducing an artificial identity

I = E−1E = ETE−T , the above equation can be rewritten as

(E−1A)T Q̃E−1E + ETE−T Q̃(E−1A) +
m∑
k=1

(E−1Nk)
T Q̃(E−1Nk) + CTC = 0,

which implies that E−T Q̃E−1 = Q by the uniqueness of the solution.

Next, we state the generalized Wilson H2-optimality conditions for bilinear control sys-
tems in terms of the generalized system Gramians from Proposition 4.3.2.

Proposition 4.3.3. Let ΣB be a stable generalized bilinear system as in (4.33) and let
Σ̂B be a locallyH2-optimal stable reduced-order generalized bilinear system (Ê; Â, N̂k, B̂, Ĉ).
Then it holds that

QT
12EP12 + Q22ÊP22 = 0, (4.35a)

Q22N̂kP22 + QT
12NkP12 = 0, (4.35b)

QT
12B + Q22B̂ = 0, (4.35c)

ĈP22 −CP12 = 0, (4.35d)

where

Perr =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
(4.36)

are the solutions of the generalized Lyapunov equations

AerrPerrE
T
err + EerrPerrA

T
err +

m∑
k=1

Nerr,kPerrN
T
err,k + BerrB

T
err = 0, (4.37a)

AT
errQerrEerr + ET

errQerrAerr +
m∑
k=1

NT
err,kQerrNerr,k + CT

errCerr = 0 (4.37b)
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and Eerr =

[
E 0

0 Ê

]
denotes the mass matrix of the error system.

Proof. Due the proof of Proposition 4.3.2, we know that Perr and Q̃err = ET
errQerrEerr

are the solutions of the Lyapunov equations for the standard state space error system
that are obtained after inversion of Eerr. According to the theory for standard state
space systems, the first optimality condition is

Q̃T
12P12 + Q̃22P22 = 0.

Taking into account the relation between Q̃ and Q, this now implies

ÊTQT
12EP12 + ÊTQ22ÊP22 = 0.

Since we assumed Σ̂ to be stable, it follows that ÊT is invertible, showing (4.35a).
Similarly, one can prove the remaining optimality conditions.

Remark 4.3.8. For later purposes, it is important to note that (4.35a) can alternatively
be replaced by

QT
12AP12 + Q22ÂP22 = 0.

This is easily seen by computing (4.35a)ÂT + (4.35b)N̂T + (4.35c)B̂T and using the fact
that P12 and P22 are the solutions of the generalized Lyapunov and Sylvester equations,
respectively.

For readers with a background in linear control theory and H2-optimal model reduction,
the extension of the optimality conditions to generalized state space systems certainly
is not surprising. Nevertheless, especially for the subsequently following discrete-time
case, the derivation of optimality conditions simplifies significantly. In summary, we
keep in mind that even for generalized state space systems, we do not have to invert
the mass matrix in order to construct a locally H2-optimal ROM. Since the necessary
modifications for a suitable algorithm should be obvious by now, we refrain from a more
detailed discussion. Instead, we turn our attention to discrete-time systems.
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Discrete-time systems

As a further generalization of H2-theory, let us have a look at bilinear discrete-time
control systems of the form

Σd,B :

x(k + 1) = Adx(k) +
m∑
k=1

Nd,kx(k)uk(k) + Bdu(k),

y(k) = Cdx(k), x(0) = x0,

(4.38)

with dimensions again as in (4.1). While for continuous-time systems, the Volterra series
representation plays a central role in analyzing system properties, in the discrete-time
case, there exists an explicit solution formula as well, see [134]. However, the results are
only of little importance for this thesis and we thus refer to the given reference. Instead,
we give the definition of the h2-norm from [23].

Definition 4.3.1. Let Σd,B be a discrete-time bilinear system and let

Hi(z1, . . . , zi) = Cd

(
i−2∏
j=0

Imj ⊗ (zi−jI−Ad)
−1Nd

)(
Imi−1 ⊗ (z1I−Ad)

−1Bd

)
,

with N =
[
Nd,1, . . . ,Nd,m

]
, denote its generalized j-th transfer function resulting from

a multivariate Z-transform. Then we define

||Σ||2h2 = tr

( ∞∑
j=1

∫ 2π

0

· · ·
∫ 2π

0

1

2π

k

Hj(eiθ1 , . . . , eiθj)
(
Hj(e

iθ1 , . . . , eiθj)
)T

dθ1 · · · dθj

)
.

(4.39)

Along the theory for linear control systems, the computation via the solutions of special
matrix equations again is possible and is summarized in the following Lemma, see [23].

Lemma 4.3.4. Let Pd and Qd be the solutions of the generalized Stein equations

AdPdA
T
d +

m∑
k=1

Nd,kPdN
T
d,k + BdB

T
d = Pd, (4.40a)

AT
dQdAd +

m∑
k=1

NT
d,kQdNd,k + CT

dCd = Qd. (4.40b)
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Then the h2-norm of Σd,B can be computed as

||Σd,B||2h2 = tr
(
CdPdC

T
d

)
= tr

(
BT
dQdBd

)
.

With the above stated results, we can already derive necessary h2-optimality conditions.
As we have done in Chapter 3, the crucial trick is to transform the Stein operator into
an equivalent Lyapunov type operator. For example, we have

AdPdA
T
d +

m∑
k=1

Nd,kPdN
T
d,k −Pd = APdE

T + EPdA
T +

m∑
k=1

Nd,kPdN
T
d,k,

where A = Ad− I and E = 1
2
(Ad + I). The same argument obviously holds true for Qd.

Assume now that we are faced with a stable discrete-time bilinear system. While one
again might argue about a precise definition of stability in context of bilinear control
systems, here we restrict ourselves to the case where Ad has eigenvalues only in the
interior of the unit disc D. Moreover, we assume that the solutions Pd and Qd are
positive definite. For a more detailed discussion on stability issues, we additionally refer
to [119]. Of course, discrete-time stability of Ad implies continuous-time stability of the
transformed matrix pencil (A,E). Hence we have

||Σd,B||2h2 = ||ΣB||2H2

and we thus can apply H2-optimality theory for continuous-time generalized state space
system. As a generalization of the discrete-time Wilson optimality conditions (3.9), we
obtain the following.

Corollary 4.3.2. Let Σd,B be a stable discrete-time bilinear system as in (4.38). Let

Σ̂d,B = (Âd, N̂d,k, B̂d, Ĉd) be a locally h2-optimal stable reduced-order discrete-time bi-
linear system. Then it holds that

QT
d,12Pd,12 + Qd,22Pd,22 = 0, (4.41a)

Qd,22N̂d,kPd,22 + QT
d,12Nd,kPd,12 = 0, (4.41b)

QT
d,12Bd + Qd,22B̂d = 0, (4.41c)

ĈdPd,22 −CdPd,12 = 0, (4.41d)

where

Pd,err =

[
Pd,11 Pd,12

PT
d,12 Pd,22

]
, Qd,err =

[
Qd,11 Qd,12

QT
d,12 Qd,22

]
, (4.42)
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are the solutions of the generalized Stein equations

Ad,errPd,errA
T
d,err +

m∑
k=1

Nd,err,kPd,errN
T
d,err,k + Bd,errB

T
d,err = Pd,err, (4.43a)

AT
d,errdQd,errAd,err +

m∑
k=1

NT
d,err,kQd,errNd,err,k + CT

d,errCd,err = Qd,err. (4.43b)

Proof. Due to the transformation, we know that h2-optimality of Σd,B implies H2-
optimality of ΣB. According to Proposition 4.3.3 and Remark 4.3.8, we know that if
the transformed system ΣB is locally H2-optimal, it follows that

Qd,12EPd,12 + Qd,22ÊPd,22 = 0, (4.44a)

Qd,12APd,12 + Qd,22ÂPd,22 = 0. (4.44b)

Inserting E = 1
2
(Ad+I) and A = Ad−I and computing 2(4.44a)−(4.44b) yields (4.41a).

Conditions (4.41b) – (4.41d) immediately follow from the fact that Pd,err and Qd,err are
also the solutions for the transformed continuous-time error system.

Finally, we briefly explain how to extend the interpolatory optimality conditions (4.28)-
(4.31) to the discrete-time case. For the continuous-time case, we basically obtained
terms of the form

(
C̃⊗C

)(
−Λ̂⊗ I− I⊗A−

m∑
k=1

ÑT
k ⊗Nk

)−1 (
B̃T ⊗B

)
,

where the term −Λ̂ contains the mirror images of the reduced system poles with respect
to the imaginary axis. Taking into account linear h2-optimality theory, for discrete-time
systems, we expect a similar term including a matrix Λ̂−1, reflecting the mirror images
with respect to the unit circle. Let us have a look at (4.41d). If we multiply the equation
with ÂT

d ĈT
d , the second term (neglecting the sign) is of the form

CdPd,12Â
T
d ĈT

d ,

which in vectorized notation reads

(ĈdÂd ⊗Cd) vec (Pd,12) .
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Making use of the explicit solution formula for Pd,12, we obtain

(ĈdÂd ⊗Cd)

(
I⊗ I− Âd ⊗Ad −

m∑
k=1

N̂d,k ⊗Nd,k

)−1

vec
(
BdB̂

T
d

)
.

Assuming that Âd = RΛ̂R−1 is the eigenvalue decomposition with Λ̂ being nonsingular,
we conclude that

(Ĉd ⊗Cd)

(
Â−1
d ⊗ I− I⊗Ad −

m∑
k=1

N̂d,kÂ
−1
d ⊗Nd,k

)−1

vec
(
BdB̂

T
d

)
= (ĈdR⊗Cd)

(
Λ̂−1 ⊗ I− I⊗Ad −

m∑
k=1

R−1N̂d,kRΛ̂−1 ⊗Nd,k

)−1

vec
(
BdB̂

T
dR−T

)
.

Hence, if we denote C̃ = ĈdR, B̃d = BT
dR−T and Ñk = RT N̂T

d,kR
−T , we obtain

the desired expression for the interpolation-based optimality conditions. Interestingly
enough, in contrast to the continuous-time case, note that there is an additional term
Λ−1 within the bracket. Moreover, for vanishing Nd,k, we recognize the transfer function
character that arises for linear systems. In particular, basically the terms include the
evaluation of the transfer function at the mirror images of the reduced system poles with
respect to the unit circle. Indeed, those are included in the matrix Λ̂−1. At this point
we do not discuss further details such as, e.g., suitable iterative algorithms since the
main focus of this thesis is on continuous-time systems. Moreover, after the previous
results it should be rather straightforward to extend the corresponding methods to the
discrete-time case as well.

4.3.5 Numerical examples

In this section, we study several applications of bilinear control systems and discuss
the performance of the approaches proposed above. As we have already mentioned,
the method of balanced truncation for bilinear systems is connected to the generalized
controllability Gramian and the reachability Gramian of the underlying system, respec-
tively. Hence, similar to the linear case, we expect this method to yield reduced models
with small relative H2-error as well and we thus use it for a comparison with our algo-
rithms. Due to the theoretical equivalence of Algorithm 4.3.1 and Algorithm 4.3.2, we
mainly report the results for the latter case. Nevertheless, we remark that if iterative
solvers are included in numerical simulations, there might occur differences with respect
to robustness and speed of convergence which will be subject of further studies. How-
ever, here we compute the projection matrices V and W by solving the large systems
of linear equations explicitly instead of using more sophisticated iterative techniques.
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Finally, all Lyapunov equations are solved by the method proposed in [43] which allows
for solving medium-sized systems. However, in the next section, we give a more detailed
insight into the method of balanced truncation for bilinear systems and propose some
techniques that also allow solving very large-scale systems.

All simulations were performed on an Intel R© CoreTMi7 CPU 920, 8 MB cache, 12 GB
RAM, openSUSE Linux 11.1 (x86 64), MATLAB Version 7.11.0.584 (R2010b) 64-bit
(glnxa64).

An interconnected power system

The first application is a model for two interconnected power systems which can be
described by a bilinear system of state dimension 17. The hydro unit as well as the
steam unit each can be controlled by two input variations resulting in a system with 4
inputs and 3 outputs. Since we are only interested in the reduction process, we refer to [2]
where a detailed derivation of the dynamics can be found. We have successively reduced
the original model to systems varying from n̂ = 1, . . . , 16 state variables. A comparison
of the associated relative H2-norm of the error system between our approaches and the
method of balanced truncation is shown in Figure 4.3.

As one can see, except for the case n̂ = 2, we always obtain better results with the new
technique. The initialization of Algorithm 4.3.1 and Algorithm 4.3.2 is done completely
at random, using arbitrary reduced-order models, interpolations points and tangential
directions, respectively. For both algorithms we use the same initialization and, as
shown in Figure 4.3, obtain the exact same results. This underscores the theoretical
equivalence and thus justifies to concentrate on Algorithm 4.3.2. As indicated in Figure
4.4, for system dimensions n̂ = 5, 10, 14, the algorithm does not always converge in a few
steps. On the other hand, we see that the relative H2-error stagnates very fast. Hence,
the stopping criterion, which is chosen as the relative change of the norm of the poles of
the reduced system, becomes smaller than

√
ε, where ε denotes machine precision, might

be too restrictive. Again, finding appropriate criteria seems to be a reasonable topic of
further research.

Fokker-Planck equation

The second example is the stochastic control example from Chapter 1. Recall that we
can describe the dynamics by its underlying probability distribution function such that
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Figure 4.3: Power system. Comparison of relative H2-error between the method of bal-
anced truncation and BIRKA.

we obtain the Fokker-Planck equation

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ), (x, t) ∈ (a, b)× (0, T ],

0 = σ∇ρ+ ρ∇V, (x, t) ∈ {a, b} × [0, T ],

ρ0 = ρ, (x, t) ∈ (a, b)× 0.

After a finite difference scheme consisting of 500 nodes in the interval [−2, 2], we obtain
a SISO bilinear control system, where we choose the output matrix C to be the discrete
characteristic function of the interval [0.95, 1.05]. Since we only pointed out the most
important parameters of the model, for a more detailed insight into this topic, we once
more refer to [77]. In Figure 4.5, we again compare the relative H2-errors between
balanced truncation and BIRKA for varying system dimensions. We observe convergence
for all reduced system dimensions and our new method clearly outperforms the method
of balanced truncation.
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Figure 4.4: Power system. Convergence history of the relative H2-error.

Viscous Burgers equation

Next, let us consider the viscous Burgers equation

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
, (x, t) ∈ (0, 1)× (0, T ),

subject to the initial and boundary conditions

v(x, 0) = 0, x ∈ [0, 1], v(0, t) = u(t), v(1, t) = 0, t ≥ 0.

Following [33], after a spatial semi-discretization of this nonlinear partial differential
equation using k nodes in a finite difference scheme, we end up with an ordinary differ-
ential equation including a quadratic nonlinearity. According to the beginning of this
chapter, we can approximate this system by means of the Carleman linearization tech-
nique. Here, we use a second-order approximation that yields a bilinearized system of
dimension n = k+k2. For the simulations, we use ν = 0.1 and k = 30. The measurement
vector C is chosen as the spatial average value for the quantity v. As shown in Figure 4.6,
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Figure 4.5: Fokker-Planck equation. Comparison of relative H2-error between balanced
truncation and BIRKA.

in all cases the relative H2-error for the reduced-order systems constructed by BIRKA
is smaller than that resulting from balanced truncation. Moreover, once more there are
no convergence problems at all although we again use random data for the initialization.

A heat transfer model

Finally, we study another standard bilinear test example resulting from a boundary
controlled heat transfer system, see, e.g., [31]. Formally, the dynamics are described by
the heat equation subject to Dirichlet and Robin boundary conditions, i.e.,

xt = ∆x in (0, 1)× (0, 1),

n · ∇x = 0.75 · u1,2,3(x− 1) on Γ1,Γ2,Γ3,

x = u4 on Γ4,

where Γ1,Γ2,Γ3 and Γ4 denote the boundaries of Ω. Hence, a spatial discretization using
k2 grid points yields a bilinear system of dimension n = k2, with 4 inputs and 1 output,
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Figure 4.6: Burgers’ equation. Comparison of relative H2-error between the method of
balanced truncation and BIRKA.

which is chosen to be the average temperature on the grid. In order to show that our
algorithm also works in large-scale settings, we implement the above system with 10 000
grid points. The results for reduced system dimensions n̂ = 2, . . . , 30, are given in Figure
4.7 and demonstrate that we can improve the approximation quality in the H2-norm
with our abstract interpolation-based framework. In order to show the superiority of
the new approach we further plot the results for the reduced systems obtained by IRKA
and those generated by the new interpolation framework together with some clever, but
non-optimal interpolation points. This means that we use real equi-distributed as well as
Chebyshev interpolations points between the smallest and largest real part of the mirror
images of the eigenvalues of the system matrix A and stop Algorithm 4.3.2 after the first
iteration step. However, the relative H2-error is only computed when the corresponding
reduced systems are stable, leading to positive definite solutions of the Gramians of the
error systems. Moreover, as we show in Figure 4.7, IRKA only converges for reduced
system dimensions up to n̂ = 18.

So far, most bilinear reduction methods have been evaluated by a comparison of the
relative error for outputs corresponding to typical system inputs. For this reason, we
compute the transient response to an input of the form uk(t) = cos(kπt), k = 1, 2, 3, 4.
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The results are plotted in Figure 4.8, where we test the performance for an original
bilinear system of order n = 2500 and different scaling values γ. This means that the
matrices Nk and B, respectively are multiplied with γ, while the input signal uk(t)
is replaced by 1

γ
uk(t). Similar experiments are studied in [24]. Interestingly enough,

while the convergence results for BIRKA do not change significantly, the relative error
is smaller for smaller values of γ. However, all tested values γ can certainly compete
with the approximation quality obtained from the method of balanced truncation.
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Figure 4.7: Heat transfer model. Comparison of relative H2-error between balanced
truncation and BIRKA.

4.3.6 Conclusions

Before we turn our attention to the solution of large-scale generalized matrix equations
arising within the method of balanced truncation for bilinear systems, let us briefly re-
capitulate the main results from the foregoing discussion. Based on the generalization of
the H2-norm from [133], we have derived first order necessary conditions for optimality.
As has been shown, these can be interpreted as an extension of those obtained for the
linear case and lead to a generalization of IRKA. We have further proposed an equiv-
alent iterative procedure that requires solving certain generalized Sylvester equations.
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Figure 4.8: Heat transfer model. Comparison of relative error to an input of the form
uk(t) = cos(kπt) for a bilinear system of order n = 2500 between balanced
truncation and BIRKA for varying scaling factors γ.

The efficiency of our approaches has been evaluated by several bilinear test examples for
which they yield better results than the popular method of balanced truncation. Finally,
it was shown that the new method can additionally compete when the approximation
quality is measured in terms of the transient response in time domain. As a topic of
further research, one should mention the possible effect of choosing reasonable initial
data in order to improve convergence rates of the algorithms as well as efficient solu-
tion techniques for the special generalized Sylvester equations one has to solve in each
iteration step.

4.4 Solving large-scale matrix equations arising for
balanced truncation

Let us now focus on balancing-based methods for bilinear control systems. First dis-
cussed in [81] and, later on, picked up in [2, 24, 40, 43], the concept of a balanced
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realization of a bilinear system of the form (4.1) allows to truncate states that con-
tribute less to the input-output behavior than others. As in the linear case discussed in
Chapter 2, the main idea relies on the fact that a balanced realization can be obtained
by solving the generalized Lyapunov equations (4.12). Although in the bilinear case the
meaning of the system Gramians is not as clear as in the linear case, the resulting model
reduction approach still allows to construct very accurate reduced-order models and, so
far, has been the first method of choice. Unfortunately, computing the solutions P and
Q for dimensions n > 104 is infeasible since the sole storage of the matrices already be-
comes a rather non-trivial task. In contrast to the linear case, where we made use of the
very fast singular value decay of P and Q in order to construct low rank approximation
techniques, for bilinear systems, except in the case that the Nk commute with A, little is
known about the singular value decay of P and Q. However, as already observed in [24],
the solutions P and Q still seem to exhibit similar properties as in the standard case
associated with a linear system. Moreover, in the context of high-dimensional eigenvalue
problems, in [91], the authors already have proposed some methods for the d-dimensional
case in which the solution P possesses good low rank approximations. The goal of this
section is to give a theoretical explanation of this phenomenon for some special cases.

4.4.1 Existence of low rank approximations

For showing the existence of low rank approximations for equations of the form

(
I⊗A + A⊗ I +

m∑
j=1

Nj ⊗Nj

)
vec (P) = − vec

(
BBT

)
, (4.45)

it makes sense to consider the explicit system of linear equations

A vec (P) := (L+ Π) p = B, (4.46)

with L = I⊗A+A⊗I, Π =
∑m

j=1 Nj⊗Nj and B = − vec
(
BBT

)
. As already indicated

in Chapter 2, an important tool in constructing low rank approximations is given by the
integral representation of the inverse of A. In particular, according to [66], for a stable
matrix A, we have that

A
(
−
∫ ∞

0

exp(tA)dt

)
= −

∫ ∞
0

∂

∂t
exp(tA) dt = exp(0 · A) = I,

implying that A−1 = −
∫∞

0
exp(tA) dt. Hence, constructing an approximation to the in-

verse ofA can be realized by approximating the latter integral with a suitable quadrature
formula similar to the one used in Theorem 2.2.1.
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Lemma 4.4.1. ([66]) Let G be a matrix with spectrum σ(G) contained in the strip
Ω := −[2,Λ]⊕ i[−µ, µ] ⊆ C−. Let Γ denote the boundary of −[1,Λ+1]⊕ i[−µ−1, µ+1].
Let k ∈ N and define the quadrature weights and points according to Theorem 2.2.1.
Then there exists Cst s.t. for an arbitrary matrix norm, we have

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

0

exp(tG)dt−
k∑

j=−k
wj exp(tjG)

∣∣∣∣∣
∣∣∣∣∣ ≤

Cst
2π

exp

(
µ+ 1

π
− π
√
k

)∮
Γ

||(λI−G)−1||dΓλ.

In case that G is symmetric, this simplifies to

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

0

exp(tG)dt−
k∑

j=−k
wj exp(tjG)

∣∣∣∣∣
∣∣∣∣∣ ≤ Cst

2π
exp

(
1

π
− π
√
k

)
(4 + 2Λ).

Keeping the above result in mind, let us come back to equations of the form (4.45). For
a better understanding of the problems that occur in showing the existence of low rank
approximations, let us have a look at the main aspects used in the case of the usual
Lyapunov equation (2.13) which we from now on refer to as the standard case. As we
have already mentioned in Chapter 2, one way of constructing low rank approximations
is based on the possibility of alternatively considering the approximation of the function

f(x1, x2) =
1

x1 + x2

.

This equivalence is easily seen as follows. Assume that an eigenvalue decomposition
A = QΛQ−1 is given. Then for the standard Lyapunov equation we have

(I⊗A + A⊗ I) vec (P) = − vec
(
BBT

)
which is the same as

(Q⊗Q) (I⊗Λ + Λ⊗ I)
(
Q−1 ⊗Q−1

)
vec (P) = − vec

(
BBT

)
.

However, this means that we can solve the transformed linear system of equations

(I⊗Λ + Λ⊗ I) vec
(
P̃
)

= − vec
(
B̃B̃T

)
, (4.47)
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with vec
(
P̃
)

= (Q−1 ⊗Q−1) vec (P) and B̃ = Q−1B. In (4.47), we have to invert a

diagonal matrix leading to expressions of the form 1
λi+λj

.

Obviously, to obtain an at least similar structure in the bilinear case, one has to impose
severe restrictions on the matrices A and Nj. Indeed, what one needs is a simultaneous
diagonalization as A = QΛQ−1 and Nj = QΓjQ

−1. As it is well-known, see, e.g., [80],
this means that A and Nj must commute which in practice is almost never the case.

Hence, let us consider what happens if we want to make use of the integral representation
from Lemma 4.4.1. For the inverse of the matrix A, we conclude that the inverse

A−1 = −
∫ ∞

0

exp (tA) dt,

can be approximated by

k∑
i=−k

wi exp (tiA), (4.48)

with the quadrature points ti and weights wi from Theorem 2.2.1. Once more, in the
standard case the computation of the above matrix exponentials (see [80]) boils down to

exp (ti(I⊗A + A⊗ I)) = exp (tiA)⊗ exp (tiA).

This in turn means that the approximate inverse of the matrix M is of tensor rank 2k+1,
leading to an approximative solution vec (P) of tensor rank or, equivalently, of column
rank (2k + 1) ·m, where m is the number of columns of B. Again, for the bilinear case
there arise some problems. Here, we end up with expressions of the form

exp

(
ti

(
I⊗A + A⊗ I +

m∑
j=1

Nj ⊗Nj

))
, (4.49)

where we can neither make an assertion on their tensor ranks nor on the column rank of
the solution P. As we can see, the crucial point is that the matrix exponential in general
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cannot be split up into its components if the matrices do not commute, i.e.,

exp

(
ti

(
I⊗A + A⊗+

m∑
j=1

Nj ⊗Nj

))

6= (exp (tiA)⊗ exp (tiA)) exp

(
ti

( m∑
j=1

Nj ⊗Nj

))
.

However, in case of commutativity and additional low rank structure of the matrices
Nj, we obtain a first simple result.

Proposition 4.4.1. Let A, Nj ∈ Rn×n be diagonalizable and assume they commute.
Further assume that rj = rank (Nj) , r =

∑m
j=1 rj < n and that the spectrum of A =

I⊗A + A⊗ I +
∑m

j=1 Nj ⊗Nj is contained in the strip Ω := −[2,Λ]⊕ i[−µ, µ] ⊆ C−.
Let Γ denote the boundary of −[1,Λ + 1]⊕ i[−µ− 1, µ + 1]. Then there exists a matrix
Ã of tensor rank (2k + 1) · (r + 1) s.t. for an arbitrary matrix norm it holds

||A−1 − Ã|| ≤ Cst
2π

exp

(
µ+ 1

π
− π
√
k

)∮
Γ

||(λI−A)−1||dΓλ.

In case that A is symmetric, this simplifies to

||A−1 − Ã|| ≤ Cst
2π

exp

(
1

π
− π
√
k

)
(4 + 2Λ).

Proof. The approximation error directly follows from Lemma 4.4.1. It only remains to
show that the tensor rank of Ã =

∑k
i=−k wi exp (tiA) does not exceed (2k + 1) · (r + 1).

First, due to commutativity of the matrices, it holds that

exp (tiA) = (exp (tiA)⊗ exp (tiA)) exp

(
ti

( m∑
j=1

Nj ⊗Nj

))
.

Thus, we only need to check the tensor rank of the latter term. Since we assumed
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commutativity, all Nj = TDjT
−1 can be diagonalized simultaneously, leading to

exp

(
ti

( m∑
j=1

Nj ⊗Nj

))
= (T⊗T) exp

(
ti

( m∑
j=1

Dj ⊗Dj

))
(T⊗T)−1

= (T⊗T) exp

(
ti

( m∑
j=1

rj∑
k=1

djkk ejkke
T
jkk
⊗Dj

))
(T⊗T)−1 ,

with jkk denoting the index of the k-th nonzero diagonal entry of Dj. The assertion now
trivially follows by the definition of the matrix exponential and the fact that ejkke

T
jkk

is
an idempotent matrix.

Remark 4.4.1. Similar to Theorem 2.2.1, for the symmetric case one could exploit the
results from [89] for a better error bound depending on exp(−k) instead of exp(−

√
k).

However, since we already discussed the rareness of commutative matrices in practice,
the result merely is of theoretical interest anyway.

Proposition 4.4.1 not only explains the singular value decay of the solution P of the
generalized Lyapunov equation (4.12), but yields an approximation of low tensor rank
to the inverse A−1 as well. Obviously, in general this is more complicated than showing
the singular value decay of P. However, for our purposes it suffices to show the property
for P. Let us now assume that the matrices Nj have a low rank representation given by
matrices Uj, Vj ∈ Rn×rj s.t. Nj = UjV

T
j . As discussed in [43], we can make use of the

splitting (4.46) in order to apply the Sherman-Morrison-Woodbury formula which helps
us to prove our main result of this section.

Theorem 4.4.1. Let A denote a matrix of tensor product structure as in (4.46) with
right-hand side B = − vec

(
BBT

)
. Assume that the spectrum of L is contained in the

strip Ω := −[λmin, λmax]⊕i[−µ, µ] ⊆ C− and let Γ denote the boundary of −[1, 2λmax/λmin+
1] ⊕ i[−2µ/λmin − 1, 2µ/λmin + 1]. Let further Nj = UjV

T
j , with Uj,Vj ∈ Rn×rj ,

r =
∑m

j=1 rj, U =
[
U1 ⊗U1, . . . ,Um ⊗Um

]
, and V =

[
V1 ⊗V1, . . . ,Vm ⊗Vm

]
.

Then, the solution p to Ap = B can be approximated by a vector of tensor rank
(2 · k + 1) · (m+ r) of the form

p̃ := −
k∑

`=−k

2w`
λmin

(
exp

( 2t`
λmin

A
)
⊗ exp

( 2t`
λmin

A
)) [
B −UY

]
, (4.50)

where Y is the solution of

(
I + VTL−1U

)
Y = VTL−1B (4.51)

and w`, t` are the quadrature weights and points from Theorem 2.2.1. The corresponding
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approximation error is given as

||p− p̃||2 ≤
Cst
πλmin

exp

(
2µλ−1

min + 1

π
− π
√
k

)∮
Γ

∣∣∣∣∣
∣∣∣∣∣
(
λI− 2

L
λmax

)−1
∣∣∣∣∣
∣∣∣∣∣
2

dΓλ

×

∣∣∣∣∣
∣∣∣∣∣BBT +

m∑
j=1

Uj vec−1
(
Yrj
)

UT
j

∣∣∣∣∣
∣∣∣∣∣
F

,

(4.52)

where Yrj denotes the r2
j elements of Y ranging from

∑j−1
i=1 r

2
i + 1 to

∑j
i=1 r

2
i .

Proof. Let us consider the tensor structure

(
I⊗A + A⊗ I︸ ︷︷ ︸

L

+
m∑
j=1

Nj ⊗Nj︸ ︷︷ ︸
UVT

)
p = B.

Making use of the low rank structure and the Sherman-Morrison-Woodbury formula,
the computation of the inverse of A simplifies to

A−1 = L−1 − L−1U
(
I + VTL−1U

)−1
VTL−1.

Hence, solving Ap = B is equivalent to solving

(I⊗A + A⊗ I) p = B −U
(
I + VTL−1U

)−1
VTL−1B︸ ︷︷ ︸

Y

.

However, the last equation is a standard Lyapunov equation for which we can apply the
results from Theorem 2.2.1. Nevertheless, for the assertion on the tensor rank of p̃, it
remains to show that the tensor rank of B − UY is m + r. This is easily seen by the
definition of U =

[
U1 ⊗U1, . . . ,Um ⊗Um

]
. In fact, what we obtain is

vec−1 (UY) = vec−1
([

U1 ⊗U1, . . . ,Um ⊗Um

]
Y
)

=
m∑
j=1

Uj vec−1
(
Yrj
)
UT
j︸ ︷︷ ︸

:=Y Tj

=
m∑
j=1

rj∑
i=1

Uj,iY
T
j,i.
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Consequently, it follows that

UY =
m∑
j=1

rj∑
i=1

Yj,i ⊗Uj,i,

where the second subscript i denotes the i-th column of the matrices. By assumption,
the rj sum up to r, leading to a tensor rank of (2 · k + 1) · (m+ r). The approximation
error follows by the same inversion of the vec (·)-operator and applying the results from
[66] for a modified right-hand side − vec

(
BBT

)
−UY .

Remark 4.4.2. We point out that we do not claim that Theorem 4.4.1 provides an
error bound useful for an estimation of the true error of the proposed approximation.
The result rather yields a theoretical evidence for the often observed fast singular value
decay of generalized Lyapunov equations of the form (4.12). Moreover, the numerical
techniques we propose later on are of different nature and do not approximate the integral
of A−1. Since at this point we simply are not aware of a suitable generalization of error
bounds known for the standard case, we refer to Theorem 4.4.1 that makes the search
for numerical methods reasonable.

Remark 4.4.3. Obviously, there exist special cases where the Nj are full-rank matrices
and we still can expect a strong singular value decay of the solution P. Here, one might
think of

AP + PAT + APAT + BBT = 0,

or the even easier case

AP + PAT + P + BBT = 0.

Both of the above equations reduce to a modified linear Lyapunov equation with right-
hand side of rank m. However, this is not surprising since N = A and N = I both
obviously commute with A. Nevertheless, so far it remains an open question if it is
possible to extend decay results for a more general setting as well. The numerical results
we show later on indicate that there seem to be conditions for low rank properties also
in other cases.

Although for the higher dimensional case

(
d∑
i=1

I⊗ · · · ⊗ I⊗Ai ⊗ I⊗ · · · ⊗ I +
k∑
j=1

Nj1 ⊗ · · · ⊗Njd

)
︸ ︷︷ ︸

Ad

vec (P) =
d⊗
i=1

bi, (4.53)



4.4. Solving large-scale matrix equations arising for balanced truncation 119

the tensor rank increases exponentially with the dimensions, it might be worth noting
that we can still expect low rank approximations as stated in the following corollary.
For this, let

Ld =
d∑
i=1

I⊗ · · · ⊗ I⊗Ai ⊗ I⊗ · · · ⊗ I.

Corollary 4.4.1. Let Ad denote a matrix of tensor product structure as in (4.53) with
tensor right-hand side B =

⊗d
i=1 bi and Nj` = Nj, with rank (Nj) = rj. Assume that the

sum of the spectra of the Ai is contained in the strip Ω := −[λmin, λmax]⊕ i[−µ, µ] ⊆ C−
and let Γ denote the boundary of −[1, 2λmax/λmin +1]⊕ i[−2µ/λmin−1, 2µ/λmin +1]. Let
further Nj = UjV

T
j , with Uj,Vj ∈ Rn×rj , r =

∑m
j=1 rj, U =

[⊗d
i=1 U1, . . . ,

⊗d
i=1 Um

]
,

and V =
[⊗d

i=1 V1, . . . ,
⊗d

i=1 Vm

]
. Then, the solution p to Adp = B can be approxi-

mated by a vector of tensor rank (2 · k + 1) · (m+ rd−1) of the form

p̃ := −
k∑

`=−k

2w`
λmin

d⊗
i=1

exp

(
2t`
λmin

Ai

)[
B −UY

]
, (4.54)

where Y is the solution of

(
Ird + VTL−1

d U
)
Y = VTL−1

d B (4.55)

and w`, t` are the weights from Theorem 2.2.1. The corresponding approximation error
is given as

||p− p̃||2 ≤
Cst
πλmin

exp

(
2µλ−1

min + 1

π
− π
√
k

)∮
Γ

∣∣∣∣∣
∣∣∣∣∣
(
λI− 2

Ld
λmin

)−1
∣∣∣∣∣
∣∣∣∣∣
2

dΓλ

×

∣∣∣∣∣
∣∣∣∣∣B +

m∑
j=1

(
d⊗
i=1

Uj

)
Y

∣∣∣∣∣
∣∣∣∣∣
2

.

(4.56)

Proof. The assertion on the tensor rank easily follows by iteratively applying the pro-

cedure from the proof of Theorem 4.4.1 to the terms
(⊗d

i=1 Uj

)
Y , e.g. for d = 3, we

obtain

(Uj ⊗Uj ⊗Uj)Y = vec
([

Uj1 ⊗ (Uj ⊗Uj)Y1, . . . ,Ujr ⊗ (Uj ⊗Uj)Yr
])
.

Since each of the terms (Uj ⊗Uj)Yi is of tensor rank r, it is clear that (Uj ⊗Uj ⊗Uj)Y
is of tensor rank at most r2. All other results can be proved analogously as before.

Remark 4.4.4. Though the rank of the approximation increases exponentially with d,
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so does the maximum possible tensor rank which is nd−1. Hence, the ratio between full

and approximate solution is ∼
(
r
n

)d−1
.

4.4.2 Low rank solution methods

Now that we have seen that we indeed can expect a reasonably fast singular value decay
of the solution matrix P of (4.12), we want to discuss possible extensions of existing
linear low rank Lyapunov solvers that have been proven to yield accurate low rank
approximations LLT ≈ P. Here, we point out the LRCF-ADI iteration, KPIK together
with the more general rational Krylov framework and finally approaches that solve the
explicit linear system in tensorized form by iterative methods like, e.g., BiCGstab. As
has been pointed out in [43], for the generalized Lyapunov equation

AP + PAT︸ ︷︷ ︸
L

+
m∑
j=1

NjPNT
j︸ ︷︷ ︸

Π

+BBT = 0,

it makes sense to demand that the spectral radius satisfies ρ (L−1Π) < 1, since otherwise
we cannot ensure that P is positive definite. However, at least in the bilinear case there
exist a lot of interesting applications that lead to indefinite solution matrices P and we
therefore address problems that might occur in these cases.

The low rank ADI iteration

Let us now focus on the low rank version of the ADI iteration we mentioned in the
beginning of Chapter 3. In general, the main idea is that for any parameter p > 0, the
Lyapunov operator L can be shifted according to

AP + PAT =
1

2p

(
(A + pI)P(A + pI)T − (A− pI)P(A− pI)T

)
. (4.57)

In [43], for a given set of shift parameters {p0, p1, . . . }, this circumstance is used to solve
(4.12) via the following fixed-point iteration

Pk+1 = (A− pkI)−1(A + pkI)Pk(A + pkI)T (A− pkI)−T

+ 2pk(A− pkI)−1

(
m∑
j=1

NjPkN
T
j + BBT

)
(A− pkI)−T .
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However, for dimensions n larger than 103 the above scheme is infeasible since in each
step we have to solve a linear system with a matrix right-hand side which might easily
become too expensive. Moreover, for even larger dimensions, the simple storing of the
generally dense matrix Pk already causes serious memory problems. On the other hand,
we can expect that the solution matrix P is symmetric and, according to the previous
section, tends to have a strong singular value decay as well. For this reason, as in the
standard case, suggested in [26, 97, 109], instead of the full-rank version, it is reasonable
to start with a symmetric initial guess, e.g. P0 = BBT , and then only compute the low
rank factors Zk according to

Zk+1 =
[
(A− pkI)−1(A + pkI)Zk,

√
2pk(A− pkI)−1N1Zk, . . . ,√

2pk(A− pkI)−1NmZk,
√

2pk(A− pkI)−1B
]
.

Obviously, the advantage is that we now only have to solve 2 + m systems of linear
equations with low rank right-hand side. In the standard case, it has been shown, see
[96], that the iteration can be rewritten in such a way that Zk+1 =

[
Zk Vk

]
, with

Vk ∈ Rn×m, making an appropriate algorithm much cheaper to execute. Unfortunately,
due to the non-commutativity of A and Nj, in our case this is not possible. If we as-
sume that the iterate Zk consists of r columns, at least theoretically Zk+1 consists of
(m+ 1) · r+m columns. However, we often obtain a deflation in the column spaces such
that a column compression can prevent a too strong column increase. Another problem
might arise in case of the already mentioned absence of a convergent splitting which is
quite common for real-life examples of bilinear control systems. Here, it should be noted
that the ADI iteration will not converge and we therefore recommend the use of one of
the other low rank solvers which we discuss in the next subsections.

Choice of shift parameters

For the standard case, a very important point in the competitiveness of the ADI iteration
is the choice of the shift parameters pk. If good shift parameters are known, the iteration
tends to converge very fast to an accurate approximation. On the other hand, for
bad shift parameters the iteration might stagnate. Moreover, the computation of such
parameters often can be one of the most expensive tasks for this approach, see, e.g.,
[27, 97]. It is known, see [128], that for the standard case a set of q optimal parameters
is given by the solution to the rational min-max problem

min
{p1,...,pq}

max
λ∈σ(A)

q∏
`=1

∣∣∣∣λ+ p`
λ− p`

∣∣∣∣ , (4.58)
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where σ(A) denotes the spectrum of A. For the generalized version considered here, the
situation becomes more complicated. In what follows, for the ease of presentation we
assume that m = 1, i.e., we consider

AP + PAT + NPNT + bbT = 0.

Moreover, let us focus on real parameters pk. According to the shifting (4.57), for the
solution P it holds that

P = (A− pkI)−1(A + pkI)P(A + pkI)T (A− pkI)−T

+ 2pk(A− pkI)−1
(
NPNT + bbT

)
(A− pkI)−T .

Hence, for the iterate Pk+1 we can compute

Pk+1 −P = (A− pkI)−1(A + pkI)(Pk −P)(A + pkI)T (A− pkI)−T

+ 2pk(A− pkI)−1N(Pk −P)(A− pkI)−T .

In other words, if we use the Kronecker product notation, iteratively applying the latter
equation yields

vec (Pk+1 −P) =
k∏
i=1

Gi vec (P0 −P) ,

with

Gi = (A− piI)−1 ⊗ (A− piI)−1

(
(A + piI)⊗ (A + piI) + 2piN⊗N

)
.

Obviously, this means that minimizing the error implies minimizing the spectral radius
of
∏k

i=1 Gi. Unfortunately, for general A and N this is by far more complicated than
solving the min-max problem (4.58). On the other hand, if we assume that A and N
commute, they can be simultaneously diagonalized and we conclude that for q optimal
shift parameters, we have to solve

min
{p1,...,pq}

max
λi,λj∈σ(A)
µi,µj∈σ(N)

∣∣∣∣(λi + p`) (λj + p`) + 2p`µiµj
(λi − p`) (λj − p`)

∣∣∣∣ , (4.59)

where σ(A) and σ(N) again denote the spectrum of A and N, respectively. Obviously,
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even the assumption of commutativity still leads to a more complex minimization prob-
lem for which a discussion of solution methods is beyond the scope of this thesis.

On the other hand, for the linear setting, it has recently been shown that so-called H2-
optimal shifts take a special position among ADI shift parameters. As the authors discuss
in [45, 59], H2-optimal shifts share the property that the ADI method in this case yields
exactly the same results as the rational Krylov subspace method, meaning that both
methods are equivalent in this setting. Moreover, in Chapter 3, for the special case of a
symmetric matrix A, we have seen that the corresponding subspaces for these shifts yield
optimal solutions with respect to the naturally induced energy norm of the Lyapunov
operator. Hence, we can can say that for the standard case, these parameters are a
reliable alternative to the optimal ones that solve problem (4.58). Since in the first part of
this chapter, we studied theH2-optimal model reduction problem for bilinear systems, we
make use of the corresponding theory later on. However, instead of optimal interpolation
points, we use so-called pseudo-optimal points, i.e., points that are constructed by a one-
sided projection. As a consequence, except in the symmetric case, these points only fulfill
a part of the presented optimality conditions. Nevertheless, these interpolation points
have a positive effect on the convergence rate of the bilinear ADI iteration as well.

Low rank solutions by projection

In Chapter 3, we already extensively discussed the idea of obtaining low rank approx-
imate solutions by projecting on certain (rational) Krylov subspaces. Although not
aiming at an optimal approximation for a given rank, we mentioned that a fast and reli-
able approach is given by the Krylov-Plus-Inverted-Krylov (KPIK) method from [120].
Recall that here we have to compute the two (block)-Krylov subspaces

Kq(A,B), Kq(A−1,A−1B)

and then construct V as an orthonormal basis of the union of the corresponding column
spaces. Alternatively, this may be achieved by the following iterative procedure

V1 = [B,A−1B], Vk = [AVk−1,A
−1Vk−1], k ≤ q.

Usually, the above subspaces are generated by a modified Gram-Schmidt process which
leads to orthonormal bases in each step. In order to extend the approach to our gener-
alized setting, we suggest to proceed as follows

V1 = [B,A−1B], Vk = [AVk−1,A
−1Vk−1,NjVk−1], k ≤ q, j = 1, . . . ,m.
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Again, the Galerkin condition demands an orthogonal V, such that we have V :=
orth (Vq) . Moreover, similar to the ADI iteration, one should perform a column com-
pression which keeps the rank increase in each step at a compatible level. Analog to the
discussions of the standard case given in [83, 84, 116, 120], one can use the nestedness of
the subspaces generated during the process to simplify the computation of the residual.

Theorem 4.4.2. Let Rk := APk + PkA
T +

∑m
j=1 NjPkN

T
j + BBT denote the residual

associated with the approximate solution Pk = VkP̂kV
T
k , where P̂k is the solution of the

reduced Lyapunov equation

VT
k AVkP̂k + P̂kV

T
k ATVk +

m∑
j=1

VT
k NjVkP̂kV

T
k NT

j Vk + VT
k BBTVk = 0.

Then, it holds that range (Rk) = range (Vk+1) and ||Rk|| = ||VT
k+1RkVk+1||, where || · ||

may denote the Frobenius norm or the spectral norm, respectively.

Proof. The first assertion follows from the fact that, due to the iterative construction of
Vk+1, we have

Vk ⊂ Vk+1, AVk ⊂ Vk+1, NjVk ⊂ Vk+1.

Moreover, with the same argument and the orthonormality of Vk+1, it holds

Rk = Vk+1V
T
k+1RkVk+1V

T
k+1.

This implies ||Rk|| = ||VT
k+1RkVk+1||.

Note that in contrast to the standard case it seems to be impossible to further simplify
the expression for the residual. The problem is that the Hessenberg structure of the
projected system matrix T = VT

k AVk is lost.

Also, so far we are not aware of a possible generalization of usable and, more importantly,
a priori computable error bounds as the ones specified in [16]. Although it seems to be a
complicate issue to extend the concepts presented therein to the setting (4.12), we think
that this is certainly an interesting topic of further research.

Iterative linear solvers

Finally, let us address the possibility of efficiently solving the tensorized linear system of
equations (4.45) by iterative solvers like CG (symmetric case) or BiCGstab (unsymmetric
case). The crucial point is to note that we can incorporate the to-expected low rank
structure of P into the algorithm which allows to reduce the complexity significantly.
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The symmetric case

Since a quite similar discussion for more general tensorized linear systems can be found
in [90], we follow the notations therein and only briefly discuss how to adapt the main
concepts to our purposes. Assuming that the matrices A and Nj are symmetric, we
can modify the preconditioned CG method. For this, let us have a look at Algorithm
4.4.1 which has already been studied in [90] in the context of solving equations of the
form (2.15). The application of the matrix function A to a matrix P here should

Algorithm 4.4.1 Preconditioned CG method

Input: Matrix functions A,M : Rn×n → Rn×n, low rank factor B of right-hand side
B = −BBT . Truncation operator T w.r.t. relative accuracy εrel.

Output: Low rank approximation Pn̂ = GDGT with ||A(P̂)− B||F ≤ tol.
1: P0 = 0, R0 = B, Z0 =M−1(R0), P0 = Z0, Q0 = A(P0), ξ0 = 〈P0,Q0〉, k = 0
2: while ||Rk||F > tol do

3: ωk = 〈Rk,Pk〉
ξk

4: Pk+1 = Pk + ωkPk, Pk+1 ← T (Pk+1)
5: Rk+1 = B −A(Pk+1), Optionally: Rk+1 ← T (Rk+1)
6: Zk+1 =M−1(Rk+1)

7: βk = − 〈Zk+1,Qk〉
ξk

8: Pk+1 = Zk+1 + βkPk, Pk+1 ← T (Pk+1)
9: Qk+1 = A(Pk+1), Optionally: Qk+1 ← T (Qk+1)

10: ξk+1 = 〈Pk+1,Qk+1〉
11: k = k + 1
12: end while
13: Pn̂ = Pk

denote the operation AP + PAT +
∑m

j=1 NjPNT
j . As a preconditioner M−1 we use

the low rank version of the bilinear ADI iteration which we studied before, whereas the
truncation operator T should be understood as a simple column compression as described
in e.g. [90]. The only point to clarify is that we indeed can ensure a decomposition
Pn̂ = GkDkG

T
k , with diagonal matrix Dk, in each step of the algorithm. We start

with R0 = B = −BBT which obviously can be decomposed into R0 = GR0DR0G
T
R0

by setting GR0 = B and DR0 = −Im. Next, we note that the bilinear ADI iteration is
not restricted to a factorization of the form ZZT but can also be applied to low rank
decompositions GDGT , cp. [27]. This is easily seen as follows. Recalling the iteration
procedure, we formally assume that Zk = Gk

√
Dk and obtain the new iterate

Zk+1 = (A− pkI)−1
[
(A + pkI)Gk

√
Dk,

√
2pkN1Gk

√
Dk, . . . ,√

2pkNmGk

√
Dk,

√
2pkG

√
D
]
,
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where G
√

D is the initial input to the ADI iteration. Forming the product Zk+1Z
T
k+1,

it is clear that we can replace the step by setting

Gk+1 = (A− pkI)−1
[
(A + pkI)Gk,

√
2pkN1Gk, . . . ,

√
2pkNmGk,

√
2pkG

]
,

Dk+1 = blkdiag(Dk,Dk, . . . ,Dk,D),

where we used the MATLAB notation blkdiag(·) for a block diagonal matrix. Now we
only have to check for a possible decomposition of the matrix that is returned after
applying the matrix function A to a factorized matrix GDGT . By the definition of A,
it follows that

A(GDGT ) = AGDGT + GDGTAT +
m∑
j=1

NjGDGTNT
j

=
[
AG,G,N1G, . . . ,NmG

]︸ ︷︷ ︸
Ĝ

0 D 0
D 0 0
0 0 Im ⊗D


︸ ︷︷ ︸

D̂

[
AG,G,N1G, . . . ,NmG

]T︸ ︷︷ ︸
ĜT

.

Since D̂ is symmetric, it follows that ĜD̂ĜT is also symmetric and thus can be factorized
as G̃D̃G̃T , where D̃ again is diagonal. All other computations in Algorithm 4.4.1 do not
influence the diagonal structure of D and thus allow to preserve the desired factorization
and solely operate on the low rank factors G and D, respectively.

The unsymmetric case

Similarly, one might implement more sophisticated algorithms, which are also applicable
in the case that A and Nj are unsymmetric. Obviously, there are numerous possible
iterative solvers which can be used. However, in this thesis we restrict ourselves to
the BiCGstab algorithm. Again, we refer to [90], for a similar discussion of Algorithm
4.4.2. Once more, the only difference is that our version here is dedicated to solving
equations of the form (4.12) which has to be taken care of in evaluating A and the special
preconditioner M−1 given by the bilinear ADI iteration. As it has been discussed in
[50, 51] for the standard case, unsymmetric matrices might also be tackled by a low rank
variant of the GMRES method together with a suitable preconditioning technique.

Just as solving the Lyapunov equation by a projection onto a smaller subspace, the
use of an iterative linear solver has the advantage that we do not need the assumption
σ (L−1Π) < 1 as long as we refrain from preconditioning by the bilinear ADI iteration
which in case of σ (L−1Π) ≥ 1 will not converge. For σ (L−1Π) ≥ 1, we can still
precondition with a number of linear ADI iterations which we assume to be at least
a rough approximation to the inverse of the bilinear Lyapunov operator, see also the
discussion in [43] and the following examples.
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Algorithm 4.4.2 Preconditioned BiCGstab method

Input: Matrix functions A,M : Rn×n → Rn×n, low rank factor B of right-hand side
B = −BBT . Truncation operator T w.r.t. relative accuracy εrel.

Output: Low rank approximation Pn̂ = GDGT with ||A(P)− B||F ≤ tol.
1: P0 = 0, R0 = B, R̃ = B, ρ0 = 〈R̃,R0〉, P0 = R0, P̂0 = M−1(P0), V0 = A(P̂0),
k = 0

2: while ||Rk||F > tol do

3: ωk = 〈R̃,Rk〉
〈R̃,Vk〉

,

4: Sk = Rk − ωkVk Optionally: Sk ← T (Sk)
5: Ŝk =M−1(Sk), Optionally: Ŝk ← T (Ŝk)
6: Tk = A(Ŝk), Optionally: Tk ← T (Tk)
7: if ||Sk||F ≤tol then
8: Pn̂ = Pk + ωkP̂k,
9: return,

10: end if
11: ξk = 〈Tk,Sk〉

〈Tk,Tk〉 ,

12: Pk+1 = Pk + ωkP̂k + ξkŜk, Pk+1 ← T (Pk+1)
13: Rk+1 = B −A(Pk+1), Optionally: Rk+1 ← T (Rk+1)
14: if ||Rk+1||F ≤tol then
15: Pn̂ = Pk,
16: return,
17: end if
18: ρk+1 = 〈R̃,Rk+1〉,
19: βk = ρk+1

ρk

ωk
ξk
,

20: Pk+1 = Rk+1 + βk(Pk − ξkVk), Pk+1 ← T (Pk+1)
21: P̂k+1 =M−1(Pk+1), Optionally: P̂k+1 ← T (P̂k+1)
22: Vk+1 = A(P̂k+1), Optionally: Vk+1 ← T (Vk+1)
23: k = k + 1
24: end while
25: Pn̂ = Pk
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4.4.3 Numerical examples

We now study the performance of the proposed methods by means of some standard
numerical test examples. The first and the second benchmark examples fulfill the as-
sumptions stated in Theorem 4.4.1, meaning that the bilinear coupling matrix N is
of low rank compared to the system dimension n. Hence, we know that we can in-
deed expect low rank approximations of the generalized Lyapunov equations as well.
However, the third benchmark contains a coupling matrix N which has full rank. Nev-
ertheless, we show that there still seems to be a significant singular value decay in
the solution matrix P which allows for low rank approximations. All simulations were
generated on an Intel R©Xeon R©Westmere X5650 with 2.66GHz, 48GB DDR3 RAM and
MATLAB R© Version 7.11.0.584 (R2010b) 64-bit (glnxa64).

Heat equation

The first example we want to discuss is the heat equation we already discussed in the
context of H2-optimal model order reduction of bilinear systems. This time, we consider
a setting with slightly different boundary conditions of the form

xt = ∆x in Ω = (0, 1)× (0, 1),

n · ∇x = 0.5 · u(x− 1) on Γ1,

x = 0 on Γ2,Γ3,Γ4.

The reason for changing the boundary conditions is to obtain only one bilinear coupling
matrix N that additionally is of low rank. Recall that for the case of H2-optimality, we
were particularly interested in the MIMO case which here would destroy the low rank
character of the solution matrix P. As it is shown in Figure 4.9, we solve the generalized
Lyapunov equation up to a system dimension of n = 562 500, corresponding to a grid
consisting of 750 grid points in each direction. As a stopping criterion we choose a relative
residual of 10−8. All truncation steps that aim at keeping the rank of the iterates small
are performed with a tolerance of 10−10. For the bilinear extension of the ADI iteration,
we test several choices of the shift parameters. As previously indicated, we compare the
interpolation points resulting from a locally H2-optimal reduced-order model obtained
by Algorithm 4.3.2 with the optimal shifts for the standard case derived by Wachspress,
see [129]. Interestingly, for H2-shifts, the residual significantly decreases within the first
few iteration steps and then almost stagnates. In particular, for 6 and 8 H2-shifts,
respectively, the stopping criterion is not reached after 100 iteration steps. On the other
hand, for 10 H2-shifts, the bilinear ADI iteration stops after 43 iterations. Moreover, we
see that the Wachspress shifts seem to be a very good alternative, leading to a constant
decrease in the residual and leading to an accurate approximation after 49 iteration
steps. Furthermore, in Figure 4.9, we see that the approximations obtained by using a
low rank implementation of the CG method perform the best for this specific example.
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Figure 4.9: Heat equation. Comparison of low rank solution methods for n = 562 500.

Here, as a preconditioner we use three steps of the bilinear ADI iteration. Note that the
rank of the final iterate is only 59, while the corresponding relative residual is smaller
than 10−8. On the other hand, the extension of the KPIK method stagnates at a relative
residual of the order 10−2 and for that reason is stopped after 20 iterations.

A nonlinear RC circuit

Our second example is the scalable RC ladder from Section 4.2. As we have seen, for this
example, the bilinearization process leads to a bilinear coupling matrix N which is only
of rank k, where k denotes the number of resistors in the system. Here, the computations
were done for k = 500 and consequently n = 250 500. Moreover, we scale the matrix N
by a factor of 0.5 in order to ensure a positive (semi-)definite solution P of the associated
generalized Lyapunov equation. We use the same stopping criterion and truncation error
as above. In Figure 4.10, we again compare the performance of the bilinear ADI iteration
for two different sets of shift parameters. Similar to the previous example, using H2-
optimal shift parameters leads to a very fast decrease of the residual within a few iteration
steps before the speed of convergence becomes drastically slower. Moreover, we see that
the residual curve is not monotone and exhibits several peaks starting from iteration
number 40. Again, the optimal linear parameters proposed by Wachspress outperform a
larger set ofH2-optimal shifts due to the fact that the residual decreases linearly without
being slowed down. Furthermore, in Figure 4.10, we see the results for two different
preconditioners for the low rank implementation of the BiCGstab method. The first one
is the low rank version of the bilinear ADI iteration which we have previously discussed
in detail and for which we compute the first four iterates in each step of the BiCGstab
algorithm. The second preconditioner is the standard low rank ADI iteration which
we expect to approximate only the inverse of the standard Lyapunov operator. As we
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Figure 4.10: RC circuit. Comparison of low rank solution methods for n = 250 000.

see in Figure 4.10, there is no visible advantage which might allow recommending the
first method since both methods perform similarly. However, for the latter approach
it takes an additional iteration compared to the bilinear ADI preconditioned method
before the stopping criterion is reached. Interestingly, within that last step the rank
of the iterate almost triples. Finally, the extension of the KPIK method converged
to a relative residual of 10−7. Note that the ranks of the approximations decrease after
several steps of the algorithm. This is due to the fact that we solve the reduced Lyapunov
equation by means of the bilinear ADI iteration (with residual tolerance 10−14) as well
so that in some cases the ranks of the solutions can be further reduced.

Fokker-Planck equation

In order to show that in some cases one might obtain a fast singular value decay even
if the bilinear coupling matrix is of full rank, as a final example we once more consider
the Fokker-Planck equation. Here, we use σ = 1

2
and spatially discretize the underlying

probability distribution function with n = 10 000 points. As shown in [77], this setting
leads to a bilinear matrix N of rank 10 000. Here, as a stopping criterion we choose a
relative residual of 10−9. Accordingly, the truncations are performed with a tolerance
of 10−11. In Figure 4.11, we see the convergence history for the bilinear ADI iteration
using 2 (pseudo) H2-optimal shifts. After only 5 iteration steps, the stopping criterion
is fulfilled and the rank of the iterate is only 17. On the other hand, the Wachspress
shifts require 23 iterations and lead to an approximation of rank 34. Both cases indicate
that the full solution P indeed exhibits a very strong singular value decay. Finally, also
the low rank implementation of the BiCGstab method as well as the bilinear KPIK
variant converged to approximations with the desired residual of 10−9, although the
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Figure 4.11: Fokker-Planck. Comparison of low rank solution methods for n = 10 000.

approximation of the latter one resulted in having the largest rank.

Remarks on the computational complexity

Based on the above results, it seems reasonable to recommend the use of an iterative
linear solver since the number of iterations as well as the rank of the final approximation
often is the smallest. However, when choosing a numerical algorithm, the computational
complexity clearly has to be taken into account. Unfortunately, a rigorous complexity
analysis of our algorithms is hardly possible. This is due to the fact that if the theoretical
costs were actually reached, all our algorithms would become infeasible. Let us for
example consider the bilinear ADI iteration. We have already seen that in each step we
have to solve (2 + m) systems of linear equations. The point is that the corresponding
right-hand side theoretically grows from size k up to size (m+ 1) ·k+m, where m is the
number of inputs. Hence, performing the truncation operation that keeps the growth
of the low rank approximation at a decent level, becomes more and more expensive.
Nevertheless, the actual growth of the iterates cannot be specified in general and usually
is much smaller than the theoretical expectation. Furthermore, the computation of good
shift parameters is even more complicated than in the standard case such that the total
costs might exceed those of the other methods, depending on the speed of convergence.

Regarding the costs of an iterative solver like CG or BiCGstab, one has to keep in mind
that using an appropriate preconditioner is essential to obtain a small iteration number.
Since we proposed to precondition with a few steps of the bilinear ADI iteration, the
complexity also depends on the rank of the current iterate. To be more specific, we
can record that the major costs result from the truncation operator and, in case of the
projection-based approach, from the necessary orthogonalization by a modified Gram-



132 Bilinear Systems

Heat equation RC circuit Fokker-Planck

Bilinear ADI 2 H2 shifts - - 1.733 (1.578)
Bilinear ADI 6 H2 shifts 144065 (2274) 20900 (3091) -
Bilinear ADI 8 H2 shifts 135711 (3177) - -
Bilinear ADI 10 H2 shifts 33051 (4652) - -
Bilinear ADI 2 Wachspress shifts - - 6.617 (4.562)
Bilinear ADI 4 Wachspress shifts 41883 (2500) 18046 (308) -
CG (Bilinear ADI precond.) 15640 - -
BiCG (Bilinear ADI precond.) - 16131 11.581
BiCG (Linear ADI precond.) - 12652 9.680
KPIK 7093 19778 8.555

Table 4.1: Comparison of computation times in seconds for different low rank methods.
Values in brackets denote the time needed for computing the shift parameters.

Schmidt process of the generated Krylov subspaces.

In order to provide a clear picture at least for the examples studied here, we list the total
computation times for all low rank methods in Table 4.1. For the bilinear ADI iteration,
we always include the time needed for the computation of the shift parameters. For the
first two large-scale examples, we conclude that the low rank implementations of the
iterative solvers perform the best. Recall that the small computation time for KPIK
in the case of the heat equation is due to the fact that the residual stagnated and the
method was stopped after 20 iteration steps. Although choosing 10 H2-optimal shift
parameters leads to faster convergence than 4 Wachspress shifts, none of the methods
can compete with the low rank CG implementation. A similar conclusion can be drawn
for the RC circuit. However, here it is important to note that preconditioning with the
bilinear ADI iteration does not seem to pay off and preconditioning with the linear ADI
iteration thus can be recommended. Finally, for the Fokker-Planck equation, the bilinear
ADI iteration implemented with 2 (pseudo) H2-optimal shifts performs the best. After
1.733 seconds an approximation of the solution is computed. On the other hand, for this
example the iterative solvers cannot compete with the other techniques. Still, based on
Table 4.1, it seems reasonable to recommend a low rank implementation of an iterative
solver as a first method of choice for very large-scale generalized Lyapunov equations.
Nevertheless, almost all methods allow to solve these equations approximately up to a
dimension of 106 in MATLAB in less than one day.

4.4.4 Conclusions

In conclusion, we have studied a class of generalized Lyapunov equations which natu-
rally arise in the context of model order reduction of bilinear control systems as well as
for the stability analysis of linear stochastic differential equations. Under certain low
rank assumptions on the involved matrices, we have shown that one can expect a rapid
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decrease of the singular values of the solutions, justifying the construction of low rank
approximations of the form P = ZZT and P = GDGT , respectively. We have further
proposed some extensions of successful linear low rank approximation procedures and
have investigated their usefulness by means of certain large-scale numerical test exam-
ples. While the performance is quite good and allows for solving generalized Lyapunov
equations of up to the order 562 500, some problems are still open. Here, we think of
the solution of the generalized rational Zolotarev problem which in the standard case
leads to optimal shift parameters for the ADI iteration. Moreover, it seems to be an
interesting topic of further research to study the observed fast singular value decay of
the solution matrix P in cases when the bilinear coupling matrix N is of full rank.

4.5 Applications to parametric model order reduction

Besides being large-scale, dynamical processes often are additionally subject to certain
parameter variations resulting from, e.g., optimization of geometry and topology in
micro-electro-mechanical systems (MEMS) design. MOR techniques usually should al-
low multiple simulations for varying parameter values in design studies or optimization
algorithms. In the case of parameters being constant during one simulation cycle, there
exist several generalizations of linear MOR methods like moment-matching, balanced
truncation and rational interpolation. For a detailed overview on this research topic, we
refer to [13] and references therein. However, the situation becomes rather complicated
if the parameters vary with time. Here, efficient reduction methods are still an open
question. Let us have a look at so-called linear parameter-varying (LPV) systems

ẋ(t) = Ax(t) +
d∑
i=1

pi(t)Ai x(t) + Bu(t), y(t) = Cx(t), x(0) = x0, (4.60)

where A,Ai ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. The crucial observation, see also [18], is
that the above structure almost coincides with the structure of bilinear control systems
of the form (4.1). In fact, setting ũ(t) = [u(t)T , p1(t), . . . , pd(t)]

T , B̃ =
[
B,0, . . . ,0

]
,

Ñk = 0 for k ≤ m and Ñm+k = Ak for k = 1, . . . , d, we can interpret the LPV system
(4.60) as a special type of a bilinear system (4.1) with m+ d input variables. Hence, if
we now reduce this bilinear system we certainly preserve its parametric character and
can return to the LPV structure by re-interpretation of the reduced bilinear system as
LPV system. Obviously, the tradeoff we have to accept is that instead of a parameter-
dependent system we are now faced with a parameter-independent system which exhibits
a bilinear nonlinearity. However, as we have seen throughout this section, there exist
several reliable techniques that can be used for the construction of a reduced model.
Another more subtle issue is that one usually knows a parameter range of interest that
may be used for the reduction. As the author has already discussed in [56], the interpre-
tation as a bilinear system does not take care of this fact and may not be the optimal
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reduction method. On the other hand, at least for time-varying parameters, there so far
do not really exist successful alternatives. Moreover, note that the quality of a reduction
can be influenced by scaling the parameter values. For example, if we use

pi(t)Ai =

(
1

γ
pi(t)

)
(γAi),

we can increase or decrease the impact of Ai on the model reduction procedure. Un-
fortunately, so far we are not aware of a rigorous analysis of the optimal choice of the
parameter values which still might be an interesting point of further research.
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Figure 4.12: Results for cyclic voltammetry for voltage du
dt

= ±0.5.

In order to show that the above idea still may be useful in parametric model reduction,
we present a numerical example which typically arises in electrochemical microscopy
and has been studied in detail in [54]. The original model is a time-varying system with
non-zero initial condition which can be interpreted as a linear parametric system, see
[54]. The results for the original model with n = 16912 are compared with the ones
produced by a reduced-order system with n̂ = 65 as shown in 4.12. Here, we use the
optimal H2-MOR technique specified in Algorithm 4.3.2. As one can see, for a common
excitation, our method leads to a very accurate reproduction of the system dynamics.
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5.1 Introduction

Now that we have carefully studied model order reduction for bilinear control systems,
we come to an even more general class of nonlinear control affine systems of the form

ΣN :

{
ẋ(t) = f(x(t)) + bu(t),

y(t) = cTx(t), x0 = 0,
(5.1)
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where f : Rn → Rn is a nonlinear state evolution function and b, c ∈ Rn are the usual
input and output vectors, respectively. While assuming a zero initial condition again
is no necessary assumption for the following concepts to be valid, we want to focus on
the simpler case of a SISO system which can be seen as a restriction. However, the
basic ideas also hold true in the MIMO case although the derivations will become rather
cumbersome.

As already mentioned in the previous chapters, if the state dimension n of the system be-
comes too large, one usually is interested in a reduced-order model of the same structure

Σ̂N :

{
˙̂x(t) = f̂(x̂(t)) + b̂u(t),

ŷ(t) = ĉT x̂(t), x̂0 = 0,
(5.2)

with f̂ : Rn̂ → Rn̂ and b̂, ĉ ∈ Rn̂. In contrast to linear systems, one of the main difficulties
clearly is the construction of a reduced evolution function f̂ . Trajectory-based methods
like proper orthogonal decomposition (POD) rely on a Galerkin projection P = VVT

and compute f̂ = VT f(Vx̂). While this definitely preserves the nonlinear structure of
the original system, it also displays a major bottleneck of the classical POD approach.
To be more precise, note that the function f still has to be evaluated on the original state
space Rn, making the simulation of the reduced-order system too expensive. However,
there exist several ways to circumvent this problem, e.g., the empirical interpolation
method (EIM), see [11], missing point estimation (MPE), see [7], best points interpola-
tion method (BPIM), see [105], and the discrete empirical interpolation method (DEIM),
see [39]. For a detailed discussion on POD, we refer to e.g. [35, 39, 92, 93]. Motivated
by the same idea, the reduced basis method is a further popular and successful approach
in the context of nonlinear model order reduction, see e.g. [11, 70].

Another way is to replace the nonlinearity by a weighted combination of linear sys-
tems which then can be efficiently treated by well-known linear reduction methods like
balanced truncation or interpolation. For a more detailed insight into the resulting tra-
jectory piecewise linear (TPWL) method, the reader is referred to [114], where more
information can be found.

So far, the above mentioned methods all share the common drawback of input depen-
dency, i.e., in order to construct a reduced-order model one at first needs some snapshots
of a given or computed solution trajectory of the original model. If this has been done,
one indeed can get very accurate approximations of the system. However, as soon as
the input function is varied, which is common in control, optimization and design prob-
lems, no rigorous assertions on the error for the new dynamics can be specified. In this
chapter, we pick up a method which extends the concept of interpolation or moment
matching, respectively, discussed for linear systems in, e.g., [71]. The main idea was
introduced in [72], where the author shows how to transform a specific class of non-
linear control systems into a system of so-called quadratic-bilinear differential algebraic
equations (QBDAEs). For those systems, in [72] an approximation procedure based on
generalized moment matching about the interpolation point 0 was discussed and evalu-
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ated by means of some typical numerical test examples in the context of nonlinear model
reduction. Basically, the method can be seen as a suitable extension of techniques that
have been discussed in [9, 33, 112, 111]. The main advantage of this approach is that
it tries to construct a reduced-order model that aims at capturing the input-output be-
havior of the underlying system, making it input independent and thus allowing to use
the reduced-order model for varying controls.

The structure of the chapter is as follows. In the next section, we review the basic
idea from [72] and further state the main properties of quadratic-bilinear differential
algebraic equations. This includes a recapitulation of the concept of variational analysis
which allows to replace the nonlinear system by a nested sequence of pseudo-linear
subsystems and subsequently opens up the possibility to derive generalized transfer
functions. In Section 5.3, we discuss how the computation of a reduced-order model can
be efficiently realized by means of basic tensor theoretic tools from Chapter 2. The main
result is proven in Section 5.4, where we show how to construct appropriate two-sided
moment matching methods for quadratic-bilinear differential algebraic equations that
extend existing concepts from the literature. Finally, we carefully implement and test
the method for some numerical examples in Section 5.5 and underline its advantages
and disadvantages, respectively. We conclude with a summary and an outlook for topics
of further research.

5.2 Quadratic-bilinear DAEs

In this section, we review the basic properties of QBDAEs. These systems are of the
form

ΣQ :

{
Eẋ(t) = Ax(t) + Hx(t)⊗ x(t) + Nx(t)u(t) + bu(t),

y(t) = cTx(t), x0 = 0,
(5.3)

where E,A,N ∈ Rn×n, H ∈ Rn×n2
, and b, c ∈ Rn. Analog to more general nonlinear

systems of the form (5.1), here u(t), y(t) ∈ R are input and output variables, respectively.
Note that the matrix H which denotes the Hessian of the right hand side exhibits a
special symmetric structure. To be more precise, for two arbitrary vectors u,v ∈ Rn,
we can always ensure that it holds

H (u⊗ v) = H (v ⊗ u) .

Since this might not be obvious, let us study a simple example that illustrates the main
point.

Example 5.2.1. Let us consider a two-dimensional purely quadratic control systems of
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the form

ẋ(t) = Hx(t)⊗ x(t), with H =

[
a b c d
e f g h

]
.

Writing down the dynamics explicitly, we obtain

ẋ1(t) = ax1(t)2 + bx1(t)x2(t) + cx2(t)x1(t) + dx2(t)2,

ẋ2(t) = ex1(t)2 + fx1(t)x2(t) + gx2(t)x1(t) + hx2(t)2.

Using j = b+c
2

and k = f+g
2
, the above system is equivalent to

ẋ1(t) = ax1(t)2 + jx1(t)x2(t) + jx2(t)x1(t) + dx2(t)2,

ẋ2(t) = ex1(t)2 + kx1(t)x2(t) + kx2(t)x1(t) + hx2(t)2.

Hence, we can replace H by H̃ =

[
a j j d
e k k h

]
. One now easily observes that for arbi-

trary u,v ∈ R2, it holds that

H̃ (u⊗ v) = H̃ (v ⊗ u) =

[
au1v1 + ju1v2 + ju2v1 + ku2v2

eu1v1 + ku1v2 + ku2v1 + fu2v2

]
.

Obviously, the above also holds true for n > 2.

5.2.1 Quadratic-bilinerization of nonlinear systems

As we have already mentioned, a large class of smooth nonlinear control affine systems
can be transformed into a system of QBDAEs. This is done via introducing new state
variables for the occurring nonlinearities of the underlying control system. The new
dynamics then can be derived by symbolic differentiation or adding algebraic constraints.
For example, if the dynamics of a nonlinear system are given via

ẋ1 = exp(−x2) ·
√
x2

1 + 1,

ẋ2 = −x2 + u,
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we can introduce two new state variables x3 := exp(−x2) and x4 :=
√
x2

1 + 1. As a
result, we can transform the above system as follows

ẋ1 = x3x4,

ẋ2 = −x2 + u,

ẋ3 = − exp(−x2)ẋ2 = −x3x2 + x3u,

ẋ4 =
1

2(
√
x2

1 + 1)
2x1ẋ1 = x1x3.

Hence, we have found a quadratic bilinear system of dimension 4 whose solution is also a
solution of the original nonlinear system. In a similar way, we may proceed for common
nonlinear functions such as sin(x), cos(x), xβ, x

k+x
, see [72]. In general, the transformation

is done in two steps. First, one tries to polynomialize the system by suitable variable
changes before in the second step, the polynomial system is iteratively simplified to a
quadratic bilinear system. As it has been discussed in [72], instead of computing the
Lie derivative of the artificially introduced state variables, in special situations it might
be advantageous to add the algebraic constraints resulting from the introduction of the
variables. However, for our purposes this is not of particular interest and we thus refer
to [72] for a discussion on this topic.

Of course, the transformation to a set of QBDAEs is not unique in general and the
question arises if there exists a minimal transformation. So far, this issue has not been
considered and there does not seem to be a trivial answer to that question. Moreover,
note that for the transformation of the original system it is desirable to have nonlinear-
ities that are given by (a composition of) uni-variable functions. Especially for systems
of ODEs that result from the semi-discretization of an underlying PDE, this is often
fulfilled, rendering this approach quite promising.

It should be mentioned that the idea of the above transformation has already been
known as McCormick-Relaxation for several years, see [98]. The fact that the idea has
not been used for model reduction purposes might be surprising. On the other hand, at
a first glance it seems counterintuitive to first increase the state dimension of a control
system which actually is to be reduced.

Before we proceed with the concepts of variational analysis for these systems, we mention
some differences to the theory discussed in [72]. There, the author includes a term of
the form

L(x(t)⊗ x(t))u(t), L ∈ Rn×n2

.

Although it might further increase the state dimension of a transformed system, it
should be emphasized that by introducing a new state variable z(t) := x(t) ⊗ x(t), the
nonlinearity becomes purely bilinear, i.e. Lz(t)u(t). Since this simplifies the structure
of the transfer functions that we introduce in the following, we always assume that the
system under consideration does not contain multiplicative couplings of quadratic and
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bilinear variables. Moreover, in [72], the systems are denoted as quadratic-linear since
the state variable x(t) appears quadratically while the input variable appears linearly.
Since one can interpret system (5.3) as a combination of a purely quadratic system and
a bilinear control system we use the notation QBDAE.

5.2.2 Variational analysis for nonlinear systems

Let us now turn our attention to the analysis of QBDAEs. The key idea in the analysis
of nonlinear systems is to express the solution by means of a Volterra series analog to
the one for bilinear systems in (4.4). Although this concept can also be applied for more
general linear-analytic systems (see [115, Section 3.4]), we illustrate the approach for the
special case of QBDAEs. Here, we follow the discussion in [115, Section 3.4] and present
the variational analysis approach. As a first step, we want to assume that the system
(5.3) is forced by an input of the form αu(t). Due to the fact that a system of QBDAEs
belongs to the class of linear-analytic systems, we may assume that the solution x(t) of
(5.3) exhibits an analytic representation and thus can be written as

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . (5.4)

where xi ∈ Rn. Next, we insert the above expressions for input and response, respectively,
into the state space representation of ΣQ. Hence, for the state equation (5.3), we obtain

E
(
αẋ1(t) + α2ẋ2(t) + . . .

)
= A

(
αx1(t) + α2x2(t) + . . .

)
+ H

(
αx1(t) + α2x2(t) + . . .

)
⊗
(
αx1(t) + α2x2(t) + . . .

)
+ N

(
αx1(t) + α2x2(t) + . . .

)
αu(t) + bαu(t).

Finally, if we collect all terms αi corresponding to powers of α, we obtain dynamical
equations for each of the state variables, i.e.,

Eẋ1(t) = Ax1(t) + bu(t),

Eẋ2(t) = Ax2(t) + Hx1(t)⊗ x1(t) + Nx1(t)u(t),

Eẋ3(t) = Ax3(t) + H (x1(t)⊗ x2(t) + x2(t) + x1(t)) + Nx2(t)u(t),

...

The advantage of this approach is that the solution x(t) can be derived by solving a
series of nonlinearly coupled linear systems. In particular, this means that we can start
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by integrating the first subsystem in order to get

x1(t) =

∫ t

0

eA(t−τ)bu(τ)dτ.

If we consider this expression as a pseudo-input for the second equation, we can easily
derive an expression for x2(t). Continuing in this manner, we finally arrive at the desired
Volterra series representation for ΣQ. As already mentioned, the basic idea is well-known
and its origin goes back to works by Euler, Cauchy and Poincaré, see [115]. Another
derivation of the variational expansion approach is discussed in detail in [63].

5.2.3 Generalized transfer functions of QBDAEs

A similar technique allows an input-output characterization in the frequency domain.
Again, we just recapitulate the presentation from [115, Section 3.5]. Here, the essential
idea is motivated by the following property of a stable linear continuous time-invariant
control system. Let us assume that such a system is driven by an input signal u(t) =
eλt, λ > 0. Due to the explicit solution formula, we know that it holds

y(t) =

∫ ∞
0

h(σ)e(t−σ)λdσ =

∫ ∞
0

h(σ)e−λσdσ eλt = H(λ)eλt,

where H(λ) = cT (λI−A)−1b denotes the transfer function of the linear system. Hence,
the output signal to a growing exponential signal is simply scaled by the transfer function.
Moreover, for a linear combination of growing exponentials, i.e.,

u(t) =

p∑
i=1

αie
λit, λ1, . . . , λp > 0,

the output is given by

y(t) =

p∑
i=1

αiH(λi)e
λit.

In order to keep the derivations clear, in the following we restrict ourselves to the compu-
tation of the first two transfer functions for the system ΣQ. Since we denoted the Hessian
of the system by H, we use a slightly different notation for the resulting transfer func-
tions G1(s1) and G2(s1, s2). Let us now consider an input of the form u(t) = es1t + es2t

which is supposed to yield a transient response

x(t) = G10e
s1t + G01e

s2t + G20e
2s1t + G02e

2s2t + G11e
(s1+s2)t.
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Inserting this expression into the state equation (5.3) and comparing the coefficients
then leads to the first two generalized symmetric transfer functions

G1(s1) = cT (s1E−A)−1︸ ︷︷ ︸
F(s1)

b,

G2(s1, s2) =
1

2
cT ((s1 + s2)E−A)−1 H (F(s1)⊗ F(s2) + F(s2)⊗ F(s1))

+
1

2
cT ((s1 + s2)E−A)−1 N (F(s1) + F(s2))

= cT ((s1 + s2)E−A)−1 H (F(s1)⊗ F(s2))

+
1

2
cT ((s1 + s2)E−A)−1 N (F(s1) + F(s2)) .

Similarly, one can derive higher order transfer functions, see e.g. [72, 115]. As we can
see, the first two transfer functions of ΣQ generalize the theory for linear control systems.
However, similarly to the case of bilinear control systems, a meaningful interpretation of
the frequency variables s1 and s2 cannot be given. The approach thus should rather be
considered as an abstract theoretical tool for interpolation-based model order reduction.
Especially, it is important to realize that G1(s1) and G2(s1, s2) formally describe the
input-output relationship of ΣQ in the frequency domain.

5.3 Computation of a reduced-order model

In this section, we analyze how to efficiently construct a reduced-order quadratic-bilinear
system. So far, we have not explicitly stated how to obtain the reduced dynamics.
Analog to the previous cases, the assumption that the solution x(t) can be approximated
in a low order subspace of dimension n̂, can formally be written as x(t) ≈ Vx̂(t), with
V ∈ Rn×n̂ and x̂ ∈ Rn̂. Consequently, we get

EV ˙̂x(t) ≈ AVx̂(t) + H (Vx̂(t)⊗Vx̂(t)) + NVx̂(t)u(t) + bu(t),

ŷ(t) = cTVx̂(t).

Assuming that a left projection subspace W ∈ Rn×n̂ is given such that it is orthogonal
to the residual from the state equation, i.e.,

W ⊥
(
EV ˙̂x(t)−AVx̂(t) + H (Vx̂(t)⊗Vx̂(t)) + NVx̂(t)u(t) + bu(t)

)
,
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we arrive at a Petrov-Galerkin type reduced-order model of the form

Ê ˙̂x(t) = Âx̂(t) + Ĥx̂(t)⊗ x̂(t) + N̂x̂(t)u(t) + b̂u(t), (5.5)

ŷ(t) = ĉT x̂(t), (5.6)

with Ê = WTEV, Â = WTAV, Ĥ = WTH(V ⊗V), b̂ = WTb, ĉ = VTc.

Although formally analog, in contrast to linear and bilinear control systems, computing
the reduced system matrices is quite a tricky task. Recall that even for originally sparse
systems, the reduced quantities in general are dense. Hence, we clearly do not ever
want to form the projection matrix V ⊗ V since already storing such a huge matrix
might be an unrealizable task even on modern computer architectures. Note that the
complexity would be of O(n2 · n̂2). Instead, we have to think about alternatives. Due to
the properties of the Kronecker product, an obvious way is given by the splitting

V ⊗V = (V ⊗ I)(I⊗V).

This still requires a computational storage complexity of O(n2 · n̂+ n · n̂2). The special
structure of the Hessian matrix H ∈ Rn×n2

is the key to overcome this problem. From
Chapter 2, we know that we can interpret H as the matricization of a tensor H ∈ Rn3

.
Moreover, we already discussed that H exhibits a special symmetric structure that can
always be ensured. Hence, if we assume that H is the 1-matricization of the 3-tensor
H, we can conclude that the remaining matricizations H(2) and H(3) coincide. This also
implies that

wTH(u⊗ v) = uTH(2)(v ⊗w) = uTH(3)(v ⊗w),

for arbitrary vectors u,v,w ∈ Rn. If we now want to compute the Hessian Ĥ of the
reduced-order model, we can proceed as follows. We start by a left multiplication with
the projection matrix WT . The result is a matrix HW = WTH which still exhibits the
symmetric structure of H. Also, we can assume that HW is the 1-matricization of a
tensor HW ∈ Rn̂·n2

. Hence, it follows that

HW(V ⊗V) = VTH(2)
W (I⊗V).

Since the above computation leads to a matrix HVW ∈ Rn̂×n̂·n, we can make use of
the matricization concept a final time in order to construct VTH(3)

VW ∈ Rn̂×n̂·n̂. Eventu-
ally, we transform the result by reshaping it into the 1-matricization and end up with
WTH(V⊗V). In summary, this allows to compute the reduced system Hessian without
ever explicitly forming the matrix V ⊗V, leading to a total storage complexity of only
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O(n · n̂). One might argue that the matrix HW that is obtained after the first projection
step is dense and thus the storage complexity still is O(n2 ·n̂). However, for common PDE
related problems, this is in general not the case. Note that the columns of the matrix
H correspond to terms of the form xi · xj. Hence, for typical discretizations with homo-
geneous nonlinearities, most cross terms vanish due to the local nature of FEM or finite
difference techniques. Consequently, the associated columns in H are zero columns and
the first left multiplication with WT does not create fill in, retaining a sparse structure
of HW. Still, in a worst case scenario where all nonlinearities are coupled among each
other, a reduction of the storage complexity is impossible since the HW would already
be a dense matrix. Fortunately, many typical real-life applications can be handled by
the previous procedure allowing for a more efficient computation of the reduced-order
model.

5.4 Multimoment matching for QBDAEs

In this section, we discuss how to construct a reduced-order model that approximates
the dynamics of the original system by means of interpolating the values and derivatives
of its first two transfer functions. In order to emphasize the close connection to known
linear concepts, we start with a very brief survey of moment matching methods for SISO
linear control systems. If the mass matrix E of the system under consideration is different
from the identity, the transfer function can be computed as G1(s1) = cT (s1E−A)−1b.
Assume now that σ ∈ C is given such that σ is not an eigenvalue of the matrix pencil
(E,A). We now can rewrite the transfer function as follows

G1(s1) = cT (s1E−A)−1b = cT ((s1 − σ)E + σE−A)−1b

= cT (I− (−1)(s1 − σ)(σE−A)−1E)−1(σE−A)−1b

Due to the Neumann Lemma, see, e.g., [130, Satz II.1.11], for σ sufficiently close to s
we can expand the first inverse and thus locally represent the transfer function as

G1(s1) =
∞∑
i=0

(−1)icT
(
(σE−A)−1E

)i
(σE−A)−1b (s1 − σ)i. (5.7)

For these terms, we introduce the following notation to keep the expressions straightfor-
ward.

Definition 5.4.1. Let E,A ∈ Rn×n, j ∈ N and σ ∈ C s.t. (σE−A)−1 exists. Then we
set

AjE,σ :=
(
(σE−A)−1E

)j
(σE−A)−1
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and

AT,jE,σ :=
(
(σET −AT )−1ET

)j
(σET −AT )−1.

Moreover, later on we make use of certain rational Krylov subspaces that we denote as
specified in the following definition.

Definition 5.4.2. Let E,A ∈ Rn×n, b ∈ Rn, q ∈ N and σ ∈ C Then we define the
associated rational Krylov subspace as

Kq (E,A,b, σ) := Kq
(
(σE−A)−1E, (σE−A)−1b

)
.

Let us come back to the expression (5.7). By means of the previous definitions, we
now conclude that it locally holds that G1(s1) =

∑∞
i=0mi b (s1 − σ)i, where mi =

(−1)i ·cTAiE,σb are the moments of the transfer function. The idea of moment matching
is to preserve a specified number q of these moments in a reduced-order model. As has
been shown in, e.g., [3, 71], this can be achieved by a projection V with Kq(E,A,b, σ) ⊂
span (V) . In other words, since the moments are the derivatives of G1 at σ, we can
obtain an interpolation-based reduced-order model by projecting onto a rational Krylov
subspace such that it holds

∂iG1

∂si1
(σ) =

∂iĜ1

∂si1
(σ), i = 0, . . . , q − 1.

A similar approach can be derived for quadratic-bilinear system of the form (5.3). As we
have seen, the concept of (generalized) transfer functions also exist for QBDAEs. Hence,
analog to what we have seen above, we can also expand the second transfer function

G2(s1, s2) =
1

2
cT ((s1 + s2)E−A)−1 H (F(s1)⊗ F(s2) + F(s2)⊗ F(s1))

+
1

2
cT ((s1 + s2)E−A)−1 N (F(s1) + F(s2))

= cT ((s1 + s2)E−A)−1 H (F(s1)⊗ F(s2))

+
1

2
cT ((s1 + s2)E−A)−1 N (F(s1) + F(s2)) .

Although the existence of two frequency variables s1 and s2 results in a lot of freedom
in choosing a pair (σ1, σ2) of interpolations points, here we stick to the case were both
points coincide, i.e., σ1 = σ2 = σ. Since the physical meaning of the frequency variables
s1 and s2 is ambiguous anyway, this is not a too severe restriction. Moreover, in the pro-
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cedure described in Theorem 5.4.1, this assumption allows to recycle vectors for certain
Krylov subspaces and thus reduces the required complexity of the resulting algorithm.
Accordingly, we then obtain the following multivariate Taylor expansion of the second
transfer function

G2(s1, s2) =
∑
i,j,k

mi,j,k(s1 + s2 − 2σ)i(s1 − σ)j(s2 − σ)k

+
∑
i,`1,`2

mi,`1,`2(s1 + s2 − 2σ)i
(
(s1 − σ)l + (s2 − σ)m

)
,

with multimoments given as

mi,j,k = (−1)i+j+k+1 · 1

2
cTAiE,2σ H

(
AjE,σb⊗A

k
E,σb +AkE,σb⊗A

j
E,σb

)
,

mi,`1,`2 = (−1)i+`1 · 1

2
cTAiE,2σ NA`1E,σb + (−1)i+`2

1

2
· cTAiE,2σ NA`2E,σb.

Analog to the transfer function G1 of the linear subsystem, it is easily seen that mi,j,k

and mi,`1,`2 basically determine the partial derivatives of the second transfer function G2.
Hence, it seems reasonable to construct a reduced-order system in such a way that for a
given pair of interpolation points (σ, σ), the derivatives of Ĝ2 coincide with those of the
original transfer function up to a certain order q. The following result now states how
to choose an appropriate sequence of nested Krylov subspaces that extends the known
results for the special case of a one-sided projection about 0, see [72].

Algorithm 5.4.1 Two-sided multimoment matching for QBDAEs

Input: A, H, N, b, c, σ ∈ C, q1, q2 ∈ N, with q2 ≤ q1.
Output: Â, Ĥ, N̂, b̂, ĉ
1: V1 = Kq1 (E,A,b, σ) , W1 = Kq1

(
ET ,AT , c, 2σ

)
2: for i = 1, . . . , q2 do
3: Vi

2 = Kq2−i+1 (E,A,NV1(:, i), 2σ)
4: Wi

2 = Kq2−i+1

(
ET ,AT ,NTW1(:, i), σ

)
5: for j = 1, . . . ,min(q2 − i, i) do
6: Vi,j

3 = Kq2−i−j+2 (E,A,HV1(:, i)⊗V1(:, j), 2σ)
7: Wi,j

3 = Kq2−i−j+2

(
ET ,AT ,H(2)V1(:, i)⊗W1(:, j), σ

)
8: end for
9: end for
10: V = orth

(
span (V1) ∪

⋃
i span (Vi

2) ∪
⋃
i,j span

(
Vi,j

3

))
,

11: W = orth
(

span (W1) ∪
⋃
i span (Wi

2) ∪
⋃
i,j span

(
Wi,j

3

))
12: Ê = WTEV, Â = WTAV, Ĥ = WTHV⊗V, N̂ = WTNV, b̂ = WTb, ĉ = VTc
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Theorem 5.4.1. Let Σ = (E,A,H,N,b, c) denote a system of quadratic-bilinear dif-
ferential algebraic equations of dimension n. Let q1, q2 ∈ N with q2 ≤ q1. Assume that a
reduced QBDAE system is constructed by Algorithm 5.4.1. Then, it holds:

∂iG1

∂si1
(σ) =

∂iĜ1

∂si1
(σ),

∂iG1

∂si1
(2σ) =

∂iĜ1

∂si1
(2σ), i = 0, . . . , q1 − 1,

∂i+j

∂si1s
j
2

G2(σ, σ) =
∂i+j

∂si1s
j
2

Ĝ2(σ, σ), i+ j ≤ 2q2 − 1.

Proof. The assertion for the first transfer function Ĝ1 immediately follows from known
moment matching results for linear systems, see e.g. [3, 71]. Hence, we only have to
consider the second transfer function Ĝ2. Here, it suffices to focus on the contributions
of the quadratic part of the system. For the bilinear contributions, we refer to e.g. [33],
where two-sided multimoment matching for these systems is studied. Using once more
that ∂

∂y
(A(y)−1) = −A(y)−1 ∂A(y)

∂y
A(y)−1, aside from constant factors, we thus have to

concentrate on terms of the form

cTAjE,2σH
(
AkE,σ b⊗AlE,σ b

)
,

with j + k + l ≤ 2q2 − 1 and, w.l.o.g., k ≥ l. From the results for the first transfer
function, we know that

VÂi
Ê,σ

b̂ = AiE,σb, WÂT,i
ÊT ,2σ

ĉ = AT,i
ET ,2σ

c, (5.8)

for i = 0, . . . , q1 − 1. This yields the statement for j, k, l ≤ q2 − 1. Let us now assume
that j = 2q2 − 1, k = l = 0. Note that we have

VVTA0
E,2σH

(
A0

E,σb⊗A0
E,σb

)
= A0

E,2σH
(
A0

E,σb⊗A0
E,σb

)
. (5.9)

This follows from the construction of span (V) and the property of V being orthonormal.
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Next, it holds that

VÂ0
Ê,2σ

Ĥ
(
Â0

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)

= VÂ0
Ê,2σ

WTH
(
VÂ0

Ê,σ
b̂⊗VÂ0

Ê,σ
b̂
)

= VÂ0
Ê,2σ

WTH
(
A0

E,σb⊗A0
E,σb

)
= VÂ0

Ê,2σ
WT

(
A0

E,2σ

)−1A0
E,2σH

(
A0

E,σb⊗A0
E,σb

)
= VÂ0

Ê,2σ
WT

(
A0

E,2σ

)−1
VVTA0

E,2σH
(
A0

E,σb⊗A0
E,σb

)
= VVTA0

E,2σH
(
A0

E,σb⊗A0
E,σb

)
= A0

E,2σH
(
A0

E,σb⊗A0
E,σb

)
.

With the same arguments, one can iteratively show that

VÂi
Ê,2σ

Ĥ
(
Â0

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)

= AiE,2σH
(
A0

E,σb⊗A0
E,σb

)
, (5.10)

for i = 0, . . . , q2 − 1. Hence, let us consider

ĉT Â2q2−1

Ê,2σ
Ĥ
(
Â0

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)
.

By Definition 5.4.1, we have

Â2q2−1

Ê,2σ
=
(

(2σÊ− Â)−1Ê
)q2−1 (

(2σÊ− Â)−1Ê
)(

(2σÊ− Â)−1Ê
)q2−1

(2σÊ− Â)−1

= Âq2−1

Ê,2σ
WTEVÂq2−1

Ê,2σ
.

Thus, it follows

ĉT Â2q2−1

Ê,2σ
Ĥ
(
Â0

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)

= ĉT Âq2−1

Ê,2σ
WTEVÂq2−1

Ê,2σ
Ĥ
(
Â0

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)
.

From (5.8) and (5.10), we can conclude that this is equal to

cTAq2−1
E,2σEAq2−1

E,2σH
(
A0

E,σb⊗A0
E,σb

)
.

However, this is the same as

cTA2q2−1
E,2σ H

(
A0

E,σb⊗A0
E,σb

)
.
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In the following, we assume that k = 2q2 − 1, j = l = 0. Analog to (5.9), one easily
obtains

WWTAT,0E,σH
(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
= AT,0E,σH

(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
.

Again, this is true since

AT,0E,σH
(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
∈ span (W)

and WTW = I. With this in mind, we subsequently observe that

WÂT,0
Ê,σ

VTH(2)
(
VÂ0

Ê,σ
b̂⊗WÂT,0

Ê,2σ
ĉ
)

= WÂT,0
Ê,σ

VTH(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
= WÂT,0

Ê,σ
VT

(
AT,0E,σ

)−1

AT,0E,σH
(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
= WÂT,0

Ê,σ
VT

(
AT,0E,σ

)−1

WWTAT,0E,σH
(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
= WWTAT,0E,σH

(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
= AT,0E,σH

(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
.

Iteratively using the above arguments, we finally get

WÂT,i
Ê,σ

VTH(2)
(
VÂ0

Ê,σ
b̂⊗WÂT,0

Ê,2σ
ĉ
)

= AT,iE,σH
(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
, (5.11)

for i = 0, . . . , q2 − 1. What we have to consider for k = 2q2 − 1, j = l = 0 is the term

ĉT Â0
Ê,2σ

Ĥ
(
Â2q2−1

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)
.
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According to Definition 5.4.1 and (5.8) and (5.10), this term is rewritten as

ĉT Â0
Ê,2σ

Ĥ
(
Âq2−1

Ê,σ
WTEVÂq2−1

Ê,σ
b̂⊗ Â0

Ê,σ
b̂
)

= ĉT Â0
Ê,2σ

Ĥ
(
Âq2−1

Ê,σ
WTEAq2−1

E,σ b⊗ Â0
Ê,σ

b̂
)

= ĉT Â0
Ê,2σ

WTH
(
VÂq2−1

Ê,σ
WTEAq2−1

E,σ b⊗VÂ0
Ê,σ

b̂
)

= bTAT,q2−1
E,σ ETWÂT,q2−1

Ê,σ
VTH(2)

(
VÂ0

Ê,σ
b̂⊗WÂT,0

Ê,2σ
ĉ
)

= bTAT,q2−1
E,σ ETAT,q2−1

E,σ H(2)
(
A0

E,σb⊗A
T,0
E,2σc

)
= cTA0

E,2σH
(
Aq2−1

E,σ EAq2−1
E,σ b⊗A0

E,σb
)

= cTA0
E,2σH

(
A2q2−1

E,σ b⊗A0
E,σb

)
.

Since the previous extremal cases contain the essential ideas, we omit a detailed deriva-
tion for the remaining combinations j, k, l with j + k + l ≤ 2q2 − 1.

To sum up, we have seen that we indeed can construct two-sided projection methods
for systems of QBDAEs. At least theoretically, the new approach doubles the number
of interpolated derivatives of the first two transfer functions and thus should lead to
more accurate reduced-order models. However, as has already been indicated in [33], in
context of nonlinear model reduction, the benefit of matching more multimoments might
come along with a loss of numerical stability and thus has to be treated with caution.

5.5 Numerical examples

In this section, we now want to study the procedure specified in Theorem 5.4.1 by
means of some numerical examples. Besides the already discussed scalable RC circuit,
we investigate different large-scale ODEs resulting from the semi-discretization of several
nonlinear partial differential equations. Here, we refrain from sophisticated finite element
discretizations and instead use a simple finite difference scheme for all test cases.

In general, moment matching type methods only allow to make an assertion on the ap-
proximation of the input-output behavior of a dynamical system. However, one can often
reconstruct the full state vector x ≈ Vx̂ by a prolongation with the projection matrix
V. Moreover, for some problems one might only be interested in the steady state behav-
ior without controlling the process. In this context, we investigate the approximation
quality for two uncontrolled systems with nonzero initial condition.

All simulations were generated on an Intel R© Dual-Core CPU E5400, 2 MB cache, 3 GB
RAM, Ubuntu Linux 10.04 (i686), MATLAB Version 7.11.0 (R2010b) 32-bit (glnx86).
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5.5.1 A nonlinear RC circuit

The first example we want to study is the scalable nonlinear transmission line circuit
which we already studied in the context of model reduction for Carleman linearized
large-scale bilinear systems in Chapter 4. In order to demonstrate the advantage of
transforming a nonlinear system into an equivalent quadratic-bilinear one, we give a
review of the transformation from [72]. Recall from Chapter 4 that the dynamics of the
corresponding nonlinear control system are given as follows:

v̇(t) = f(v(t)) + bu(t),

y(t) = cTv(t)),

where

f(v) = f





v1

v2
...

vk
...

vN




=



−g(v1)− g(v1 − v2)
g(v1 − v2)− g(v2 − v3)

...
g(vk−1 − vk)− g(vk − vk+1)

...
g(vN−1 − vN)


, b = c =


1
0
...
0

 ,

and g(v) = e40v + v − 1 describes the nonlinear input-voltage characteristics of each
resistor. As has been discussed in [72], a transformation to quadratic-bilinear form is
easily obtained by introducing additional state variables xi = e40vi and zi = e−40vi .
However, the resulting system will have a state dimension 3 · N. On the other hand, if
we first rewrite the system by defining new state variables as x1 = v1 and xi = vi− vi+1,
followed by introducing additional state variables z1 = e40v1−1 and zi = e40xi , it is even
possible to construct an equivalent quadratic-bilinear system of dimension 2 ·N. To be
precise, the final system is determined by

ż1 = 40(z1 + 1)(−x1 − x2 − z1 − z2 + u(t)),

ż2 = 40(z2 + 1)(−x1 − 2x2 + x3 − z1 − 2z2 + z3 + u(t)),

żi = 40(zi + 1)(xi−1 − 2xi + xi+1 + zi−1 − 2zi + zi+1),

żN = 40(zN + 1)(xN−1 − 2xN + zN−1 − 2zN).

At this point, we see that the non uniqueness of the transformation indeed can lead to
rather different results with different complexity.

In Figure 5.1, we see a comparison between the new method discussed here and the
classical one-sided method discussed in [72] for a state dimension n = 2 · 1000. More-
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Figure 5.1: A nonlinear RC circuit. Comparison of moment matching methods and POD
subject to boundary control u(t) = e−t.

over, we compute a POD-based approximation by taking 100 snapshots of the original
solution for the input excitation u(t) = e−t. Obviously, the POD reduced-order model
performs the best. However, the two-sided method exhibits a comparable approximation
quality while the one-sided approach performs the worst. All reduced-order models are
of dimension n̂ = 11. The moment matching based techniques are generated according
to Theorem 5.4.1 with values σ = 1, q1 = 5, q2 = 2.

In order to test our method with respect to input variations, in Figure 5.2, we show
the approximations for the input signal u(t) = (cos(2π t

10
) + 1)/2. Clearly, the POD

approximation shows a significant deviation from the original output. On the other side,
the two-sided method still reflects the dynamics very accurately and also outperforms
the one-sided technique as well.

5.5.2 Burgers’ equation

Next, let us consider the one-dimensional viscous Burgers’ equation on Ω = (0, 1)×(0, T ),
leading to the following set of equations

vt + v · vx = ν · vxx, in (0, 1)× (0, T ), (5.12a)

αv(0, ·) + βvx(0, ·) = u(t), in (0, T ), (5.12b)

vx(1, ·) = 0, in (0, T ), (5.12c)

v(x, 0) = v0(x), in (0, 1), (5.12d)
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Figure 5.2: A nonlinear RC circuit. Comparison of moment matching methods and POD
subject to boundary control u(t) = (cos(2π t

10
) + 1)/2.

where ν is the viscosity parameter and v0(x) denotes the initial condition of the system.
This equation can be seen as a standard numerical test example for nonlinear model
reduction and optimal control, respectively, and has already been extensively studied in
e.g. [92, 93]. In the context of this paper, the above PDE is of particular interest since
a semi-discretization automatically leads to a quadratic-bilinear control system of the
form (5.3).

Boundary control

Let us assume that the equation is subject to a boundary control on the left side of the
interval, i.e. α = 1 and β = 0. Furthermore, we assume the initial state of the system
to be zero, i.e. v0(x) = 0. For the viscosity parameter ν we start by choosing the value
0.02. However, while for larger values of ν, the accuracy of the reduced-order models
often becomes better, decreasing ν makes the model more difficult to reduce.

In Figure 5.3, we show the results for the reduction of system (5.12) which was spatially
discretized using n = 1000 points and T = 10. The reduced-order models are of dimen-
sion n̂ = 9 and are generated by Algorithm 5.4.1 with σ = 0.0288, q1 = 4 and q2 = 2. The
specific interpolation point σ is computed by IRKA applied to the linearized system.
For the one-sided projection method, we simply set W = V. The measured output of
the system is assumed to be the value of the right boundary, leading to an output vector

c =
[
0, . . . , 0, 1

]T
. Besides a comparison between one-sided and two-sided projection, we

compute a POD approximation by using the SVD of the solution matrix of the original
problem over the whole interval range. As can be seen in Figure 5.3, for the control
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Figure 5.3: Burgers’ equation. Comparison of moment matching methods and POD
subject to boundary control (ν = 0.02).

u(t) = cos(πt), all approaches faithfully reproduce the dynamics of the original system
although the one-sided approach exhibits some smaller oscillations. In order to investi-
gate the methods with regard to robustness to input variations, we slightly change the
control to u(t) = 2 sin(πt). Increasing the amplitude of u(t) seems to make the reduction
process more difficult. For the POD approximation, we use the projection subspace
derived by the first input signal. As expected, we see that this results in a less accu-
rate reduced-order model indicating the input dependency of POD. On the other hand,
for the two-sided projection we observe overshoots at the sharper fronts of the curve.
Nevertheless, altogether for this parameter configuration of σ, q1, q2, we can conclude
that the new method performs well and seems to outperform the one-sided projection.
It has to be mentioned though that for the two-sided approach many of the parameter
constellations lead to unstable reduced-order models. A similar observation already was
discussed in [33]. Hence, a reasonable choice of the interpolation points together with
the order of the matched derivatives seems to be an important aspect of further research.

The uncontrolled case

In order to test the efficiency of the reduction method, we also want to investigate
the performance when the system under consideration exhibits a non-zero initial con-
dition. In view of (5.12), we use α = 0, β = 1 and v0(x) = 1 + sin((2x + 1)π). After
a semi-discretization with n = 1000, the system is rewritten to a system with zero
initial condition, leading to a single-input and single-output (SISO) QBDAE system
with constant input vector u(t). The viscosity parameter is ν = 0.01 while we choose
T = 2. In contrast to the previous example, we now consider the entire state x. Since
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Figure 5.4: Burgers’ equation. Comparison of moment matching methods and POD
subject to boundary control (ν = 0.01).

we want compare to the results for a two-sided reduction method, we artificially have to
choose a certain output matrix c such that we can run Algorithm 5.4.1. Here, we use

c = 1
k

[
1, . . . , 1

]T
, i.e., the average value of v(x, t) on the interval (0, 1).

In Figure 5.5, we show the different steady state solutions for the original system, see
Figure 5.5(a), the reduced-order system obtained by an orthogonal projection, see Figure
5.5(b), and the reduced-order system resulting from an oblique projection, see Figure
5.5(c). For the reduction process we choose σ = 5, q1 = 10 and q2 = 2, leading to
reduced-order models of dimension n̂ = 13. Here, the interpolation point now is chosen
as the one performing the best among several random choices. Obviously, the one-sided
approach deviates significantly from the original solution, while the two-sided method
produces some undesired peaks. However, one still has to keep in mind that we cannot
make a theoretical assertion on the reconstruction of a state vector but only on the
input-output behavior of the system. If we keep this in mind, the approximations still
might be appropriate for the analysis of the uncontrolled dynamics. Note that we do not
compare the results with POD at this point since we do have a specific constant input
which does not vary. Hence, it is clear that POD will outperform the moment matching
approaches due to its intrinsic properties. Recall that for a given input which is not
subject to variation, the approximation given by POD is optimal due the properties of
the singular value decomposition.
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Figure 5.5: Burgers’ equation. Comparison of uncontrolled solutions.

5.5.3 Chafee-Infante equation

Next, we consider the one-dimensional Chafee-Infante equation. For more details on this
nonlinear PDE, we refer to [37, 76]. The equation exhibits a cubic nonlinearity and is
subject to similar initial and boundary conditions as the Burgers’ equation, namely

vt + v3 = vxx + v in (0, 1)× (0, T ), (5.13a)

αv(0, ·) + βvx(0, ·) = u(t), in (0, T ), (5.13b)

vx(1, ·) = 0, in (0, T ), (5.13c)

v(x, 0) = v0(x), in (0, 1). (5.13d)

Following the discussion in [76], we once more use a finite difference scheme for the spatial
discretization. The resulting system of nonlinear ODEs then has to be transformed to
quadratic-bilinear structure. This is done by introducing a new state variable wi = v2

i .
Computing the derivate of wi leads to ẇi = 2viv̇i which can be rewritten in the desired
QBDAE form (5.3).
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Figure 5.6: Chafee-Infante equation. Comparison of moment matching methods and
POD subject to boundary control u(t) = (1 + cos(πt))/2.

Boundary control

Completely analogously to Section 5.5.2, we start with the boundary controlled equation
with T = 10 and a zero initial condition v0(x) = 0. We further use the same output,

i.e., the value at the right boundary, leading to an output vector c =
[
0, . . . , 0, 1

]T
. The

discretization was done with n = 750 points. Hence, after transformation to QBDAE
form, the system consists of 2 · 750 states.

The reductions are generated with σ = 1, q1 = 4 and q2 = 3, yielding systems of
dimension n̂ = 9. Similar to the Burgers’ equation, we run IRKA in order to get an H2-
optimal interpolation point for the linearized system, leading to the specific choice σ = 1.
Again, in Figure 5.6, we visualize the approximations of our new method and compare
them with a one-sided projection as well as POD. For the input u(t) = (1 + cos(πt))/2,
we see that the new approach clearly outperforms the one-sided projection. On the other
hand, it cannot compete with POD.

But if we change the input signal to u(t) = 25 · (1+sin(πt))/2, the corresponding results
are given in Figure 5.7. Though a bit surprising, we observe that the reduced-order
model for the one-sided approach completely fails in reproducing the original dynamics.
Once more, we do not vary the projection subspace of POD but simply use the one
for the first test signal specified above. Here, we now see that POD indeed also has
problems in the approximation of the maxima of the transient response which is not the
case for the two-sided approach.
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Figure 5.7: Chafee-Infante equation. Comparison of moment matching methods and
POD subject to boundary control u(t) = 25 · (1 + sin(πt))/2.

The uncontrolled case

For the uncontrolled case, we set α = 0, β = 1 and implement a non-zero initial condition
which was already discussed in [76]. To be more precise, we have v0(x) = 1

10
+ 7

10
·

sin2((2 · x+ 1)π). In Figure 5.8, we compare the full state vector for the time interval
T = 0.02 for a semi-discretization with n = 750. The reduced-order systems are of
dimension n̂ = 10 and result from the model reduction parameters σ = 3, q1 = 3, q2 = 3,
which basically are chosen at random. As we can see, both approaches yield very accurate
reconstructions. However, due to several parameter studies, it seems that the one-sided
projection method performs more robust with respect to stability issues of the reduced-
order model.

5.5.4 FitzHugh-Nagumo system

Finally, as a last example we study the FitzHugh-Nagumo system modeling activation
and deactivation dynamics of a spiking neuron. This model has been under consideration
in the context of POD-based model reduction in [39]. Formally, the model is described
by the following coupled system of nonlinear PDEs

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + g, (5.14a)

wt(x, t) = hv(x, t)− γw(x, t) + g, (5.14b)
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Figure 5.8: Chafee-Infante equation. Comparison of uncontrolled solutions.

with f(v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, 1], (5.15a)

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0, (5.15b)

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 5 · 104t3 exp(−15t). Again, one
can easily use a finite difference scheme, resulting in a system of cubic ODEs. Similar
to the Chafee-Infante equation, introducing an additional dynamical variable zi = v2

i

allows to reformulate the dynamics as a system of QBDAEs of dimension 3 · n, where
n is the number of degrees of freedom used in the finite difference scheme. However,
in contrast to the first two examples, the system no longer is of SISO type since the
constant parameter g as well as the stimulus i0(t) have to be incorporated within the
modeling process. In order to apply the previously discussed reduction techniques, we
run the corresponding algorithm once for each column of the input vector.

Here, we follow the setting in [39] and use a discretization with n = 1000 points. In
Figure 5.9, we show the reduction results measured in terms of the limit cycle behavior
which is a typical phenomenon when modeling neuronal dynamics. For the comparison
between one-sided and two-sided projections, we assume the output matrix C ∈ R2×3n

to sort out the values v(0, t) and w(0, t), i.e. the limit cycle at the left boundary. The
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Figure 5.9: FitzHugh-Nagumo system. Limit cycles for original and reduced systems.

results shown in Figure 5.9(a) are constructed with parameter values σ = 100, q1 =
2, q2 = 2 and the reduced-order models both are of dimension n̂ = 14. Although the
approximation of the two-sided reduced model performs better, based on this specific
example we cannot recommend using the new approach. This is due to the fact that
nearly all generated reduced-order models become unstable and it does not seem to be
obvious how to circumvent this significant drawback. On the other hand, most reductions
obtained by using random interpolation points yield accurate approximations for the one-
sided technique. For example, in Figure 5.9(b) we plot the limit cycle behavior similar
to the one studied in [39] for a discretization of n = 1000 and the parameter setting
σ = 14, q1 = 5, q2 = 2 and a reduced-order system of dimension n̂ = 18. Although the
results are not as accurate as in [39], where a sufficient reduction to a system of dimension
n̂ = 10 is obtained, we are certainly able to construct an appropriate reduced-order
model.

5.6 Conclusions

In this chapter, we have studied a recently introduced new approach for model order
reduction of nonlinear control systems. In contrast to other methods in this field, the
technique relies on generalized moment matching and thus is input independent. Be-
sides a slight extension of existing results for the case of σ = 0, we have shown how
the sequence of nested Krylov subspaces has to be chosen in order to interpolate at
arbitrary interpolation points σ 6= 0. Moreover, we used some basic tools and properties
known from tensor theory to show how one can improve the efficiency of the necessary
projection step leading to the reduced-order system. In particular, we have seen that
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one can avoid building up the matrix V ⊗V which easily might exceed given memory
capacity. The main contribution of this chapter was the construction of an appropri-
ate two-sided projection method which theoretically allows to double the number of
interpolated derivatives of the first two transfer functions. However, here one has to
be careful in applying the new method since the gain of accuracy sometimes destroys
the stability of the underlying system making a reduction unreliable. Nevertheless, by
means of several nonlinear partial differential equations, we have proven that the mo-
ment matching approach indeed seems to have potential and even allows to reconstruct
typical dynamics observed in fluid mechanics and neuron modeling. Moreover, for two
examples we could show that the new method can compete with POD and, in some
cases, might be advantageous if the input signal is known to exhibit larger variations.
Hence, it might be an interesting field of further research. In particular, the study of
optimal interpolation points seems to be an important issue. Similarly, investigating
structure preserving methods which ensure stable reduced-order models should be one
of the major challenges in order to improve the applicability of the new method.
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6.1 Summary and conclusions

In this thesis, we have studied the topic of model order reduction for large-scale dynam-
ical control systems. Most of the results and numerical approaches are based on the
concept and the extension of rational interpolation, previously studied for the purely
linear case in [71]. In particular, a special focus of this work has been on the H2-optimal
model order reduction problem, initially investigated in [99, 131] and, later on, picked
up in [36, 73]. Starting out from the special case of linear control systems, we have
developed and extended several interpolation-based concepts to nonlinear systems. A
large part of this thesis has been dedicated to a special class of nonlinear control systems,
so-called bilinear control systems, that can be seen as the connection between linear and
fully nonlinear systems. Based on the previous works in [24, 42, 66, 97, 120, 133], we have
discussed numerically and computationally efficient model order reduction techniques for
these systems. The results have been theoretically explained and interpreted and have
been, in several numerical simulations, practically verified. For an even more general
class of smooth nonlinear control-affine systems, we have enhanced a rather recently
introduced method from [72] by means of basic tools from tensor theory.

In Chapter 3, we have considered linear control systems and the associated problem of
approximately solving large-scale matrix equations. For the symmetric case, we have
shown that the Riemannian optimization technique from [125] can alternatively be re-
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alized by solving the H2-optimal model reduction problem, i.e., by the iterative rational
Krylov algorithm from [73]. In particular, the latter algorithm generates subspaces
that, by means of the rational Krylov subspace method, lead to approximations that
are locally optimal with respect to a certain energy norm naturally induced by the cor-
responding Lyapunov operator. Moreover, we have derived an extension of this theory
that can be applied to unsymmetric linear systems and, in this case, locally minimizes
the residual of the Lyapunov equation. Moreover, in view of the results from Chapter
4, we can interpret this technique as a modified H2-model reduction problem, closely
related to the one for bilinear control systems. Finally, we have studied the case of the
Sylvester equation and derived interpolation-based optimality conditions that lead to an
algorithm which constructs approximations that are optimal with respect to the induced
energy norm of the Sylvester operator.

In the first part of Chapter 4, the problem of H2-optimal model reduction for bilinear
control systems has been discussed. We have shown how to generalize the interpolation-
based optimality conditions from [73, 99] and proposed an iterative algorithm (BIRKA)
that, upon convergence, yields an optimal reduced-order model fulfilling these conditions.
Moreover, we have proven the equivalence between the new conditions and the ones
obtained in [133]. Motivated by the latter work, we have implemented a further iterative
algorithm that relies on the solution of certain generalized Sylvester equations. This
approach has been shown to be theoretically as well as numerically equivalent to BIRKA.

The second part of Chapter 4 has been dedicated to the solution of large-scale generalized
Lyapunov equations arising in the method of balanced truncation for bilinear control
systems. By means of several results from [66, 67] and properties of tensors, we have
given a theoretical explanation for the in [24, 43] observed fast singular value decay of
the solution matrix. Here, we have made the additional assumption that the bilinear
coupling matrices are of low rank. Despite that restriction, to the best of authors’
knowledge, this is the first result that theoretically underscores the observations in [24,
43]. Moreover, based on the foundations of projection-based and ADI-based low rank
solvers for the standard case, we have extended the basic concepts to our setting and
implemented different low rank methods that easily allow to solve these generalized
matrix equations up to the order of 105.

In Chapter 5, we have studied the topic of model order reduction for a very general
class of nonlinear systems. The results and concepts strongly depend on the fact that,
according to [72], smooth nonlinear control-affine systems can be transformed into an
equivalent system of quadratic-bilinear differential algebraic equations. Based on similar
techniques for bilinear control systems, we have proposed an oblique projection method
that essentially allows to double the number of matched multimoments when compared
to the original method from [72]. Since we have discussed the equivalence between these
multimoments and the derivatives of the generalized transfer functions, this approach
can again be interpreted as an interpolation-based technique. Besides this extension, a
further contribution has been the efficient computation of a projection-based reduced-
order model. This has been achieved by some basic tools from tensor theory. Moreover,
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we have studied different numerical applications and compared the results with the com-
mon reduction techniques for nonlinear systems, POD. The main advantage of the new
method is that it is input independent, a feature that no other known reduction method
shares. Although several points still have to be discussed further, we can conclude that
the new method seems to be a promising new field of research.

6.2 Future research perspectives

The thesis has revealed some new aspects within the area of model order reduction
of linear, bilinear and nonlinear control systems. Though, there are several questions
and problems that remained open and should be discussed in future research. In par-
ticular, we have seen that bilinear as well as quadratic-bilinear control systems share
some concepts that so far only have been used for linear control systems, such as, e.g.,
transfer functions and system Gramians. However, due to the complex nature of the
corresponding extensions, a computationally efficient realization often is the bottleneck
of the methods and can prevent from reducing very large-scale systems with dimensions
n > 105. In the following, we present some open problems that deserve further attention.

When it comes to model order reduction of linear systems, a common misconception
clearly is that there is nothing else to be investigated. As we have seen in Chapter 3, de-
spite the fact that there exist numerous different low rank techniques for approximating
solutions of large-scale Lyapunov equations, most of them are closely related in some
sense and so far have been considered independently from each other. However, there
still remains the interesting question of a possible connection between the method of
balanced truncation and rational interpolation. To be more precise, it would be desir-
able to find the interpolation points that determine a balanced reduced-order model. On
the other hand, for rational Krylov methods like IRKA, besides the property of being
locally optimal, little is known about a priori error bounds, neither with respect to the
H2-norm nor the H∞-norm. Moreover, a better understanding between the Riemannian
optimization method and IRKA might give insight into the construction of more efficient
descent techniques that yield H2-optimal reduced order models.

In the context of H2-model reduction for bilinear systems, especially the issue of a com-
putationally efficient implementation is of great interest. So far, the proposed iterative
algorithms such as, e.g., BIRKA solve the generalized Sylvester equations

AX + XÂT +
m∑
k=1

NkXN̂T
k + BB̂T = 0,

by means of the explicit system of linear equations, requiring a theoretical complexity of
O(n3n̂3) for the LU decomposition. Since the sparsity of the matrix A and Nk is carried
over to the Kronecker system, an iterative solver might only require a complexity of O(n·
n̂) to obtain the solution and should be a topic of further research. Moreover, in contrast
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to the linear case, even for symmetric systems nothing is known about the convergence of
the algorithms. Further, suitable initialization techniques might be interesting in order
to improve the speed of convergence of the method. Of course, due to the similarity to
linear systems, for the symmetric case a lower bound property of the bilinear H2-norm
of the error system, analog to the linear one, might be proven. This would immediately
allow to make an assertion on the optimality of the projection subspaces in terms of the
energy norm of the generalized Lyapunov operator

A = I⊗A + A⊗ I +
m∑
k=1

Nk ⊗Nk.

Regarding the method of balanced truncation and the associated generalized Lyapunov
equations, we think that the mathematical area of tensor theory holds a lot of interesting
ideas that can improve the efficiency even of the proposed low rank techniques by far.
Nevertheless, for methods like the generalized ADI iteration, we have seen that the
choice of shift parameters is a crucial point and certainly requires more attention. In
particular, even for commutative matrices A and N, the min-max problem

min
{p1,...,pq}

max
λi,λj∈σ(A)
µi,µj∈σ(N)

∣∣∣∣(λi + p`) (λj + p`) + 2p`µiµj
(λi − p`) (λj − p`)

∣∣∣∣ ,
is an interesting topic that could yield important insights. As we mentioned in Chapter
4, real-life applications often are accompanied with a high-dimensional parameter space,
leading to the curse of dimensionality. Here, appropriate and optimal model order
reduction techniques are still desirable and allow for several research topics.

Of course, the theory for nonlinear model order reduction is known the least. Sev-
eral minor and major issues have to be resolved. Starting with the characterization of
minimal or optimal transformations to QBDAE structure and automatic differentiation
tools that might help to derive the desired structure by a black box technique. Further,
the meaning of the transformation itself is not very clear. Perhaps there is a relation
to known nonlinear model order reduction techniques such as, e.g., DEIM. For more
general nonlinear systems, the transformation might lead to a system of DAEs, making
all proposed model reduction techniques by far more complicated. However, an entire
classification of QBDAEs probably cannot be given and the approach has to be studied
for individual examples instead. As we have seen in Chapter 5, the model reduction
procedure itself heavily depends on the choice of the interpolation points. Although
this is common for interpolation-based reduction techniques, we observed in several ex-
amples that for QBADEs this choice is particularly important to ensure stability of
the resulting reduced-order model. Finally, a possible extension of balancing-based or
balancing-related techniques for these types of systems certainly would be a significant
contribution to nonlinear model order reduction.



THESES

1. This thesis deals with the problem of interpolation-based model order reduction
for linear, bilinear and quadratic-bilinear control systems. A special emphasis lies
on the H2-optimal model order reduction problem.

2. Several well-known and important reduction techniques for linear systems are re-
viewed. This contains a discussion on H2-model reduction as well as balanced
truncation. For nonlinear systems, the common POD technique is compared with
a recently introduced interpolation-based approach.

3. For symmetric state space systems and the associated Lyapunov equations, the
Riemannian optimization from Vandereycken is shown to be realizable by means of
the iterative rational Krylov algorithm (IRKA) from Gugercin/Antoulas/Beattie.
In particular, the already practically observed phenomenon of accurate low rank
approximations is theoretically explained.

4. Within the same context, for unsymmetric systems, a new connection between the
Frobenius norm of low rank approximations and the H2-norm of the associated
error system is presented.

5. An abstract extension of IRKA, minimizing the Lyapunov residual of low rank
approximations, is proposed. The approach can be interpreted as a modified H2-
model reduction problem, similarly arising for bilinear control systems. Moreover,
the method connects another Riemannian optimization technique from Vanderey-
cken with the concept of rational interpolation.

6. The more general case of a Sylvester equation is considered. Optimality conditions
in terms of interpolation of transfer functions are derived and an iterative algorithm
for symmetric Sylvester equations is discussed and tested by means of a numerical
example.

7. New necessary H2-optimality conditions for bilinear control systems are derived.
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An interpretation of their meaning and relation to the known interpolation-based
conditions for linear systems is given. The new conditions are shown to be equiv-
alent to existing ones.

8. Two iterative algorithms generalizing IRKA are presented and tested in detailed by
means of different numerical examples. The new approach is shown to outperform
the method of balanced truncation for bilinear systems with respect to the bilinear
H2-norm.

9. For large-scale bilinear control systems, the applicability of the method of balanced
truncation is investigated. The often observed fast singular value decay of the
bilinear system Gramians is theoretically explained by the use of tensor theoretic
tools and quadrature formulas for the matrix exponential.

10. Three known low rank techniques for the standard Lyapunov equation have been
extended to the more general case arising for bilinear control systems. For the
extension of the Krylov-Plus-Inverted-Krylov (KPIK) method, an efficient com-
putation of the Lyapunov residual that in a way automatically arises within the
iteration is proposed. For the generalized low rank ADI method, the choice of
(optimal) shift parameters is discussed and the use of H2-optimal interpolation
points is proposed. Finally, iterative linear solvers such as CG and BiCGstab are
implemented in a way that allows to make use of the low rank structure of the
iterates in each step.

11. A new and alternative method for nonlinear model order reduction is reviewed
and precisely tested by means of interesting real-life applications. The approach
extends existing interpolation-based techniques proposed for linear and bilinear
control systems and thus is input independent.

12. The computation of a projection-based reduced-order model is efficiently realized
by making use of tensor theoretic concepts such as matricizations.

13. A new two-sided projection method is derived and theoretically shown to double
the number of moments of the first two transfer functions that are matched by a
one-sided projection method. Numerical examples underscore the potential of the
new method.
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