

Neuroscience-Inspired Analysis and Visualiza5on
of Deep Neural Networks

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieurin (Dr.-Ing.)

angenommen durch die Fakultät für Informa?k
der OAo-von-Guericke-Universität Magdeburg

von M.Sc. Valerie Krug

geb. am 11.09.1991 in Burgstädt

Gutachterinnen/Gutachter

Prof. Dr. Sebas?an Stober
Prof. Dr. Eirini Ntoutsi
Prof. Dr. Peter Knees

Promo?onskolloquium am 22.01.2024

Magdeburg, den 12.02.2024

Otto-von-Guericke University Magdeburg

Department of Computer Science
Institute for Intelligent Cooperating Systems

PhD Thesis

Neuroscience-Inspired Analysis and Visualization
of Deep Neural Networks

Author:

Valerie Krug

12.02.2024

Supervisor
Prof. Dr.-Ing Sebastian Stober

Department of Computer Science
Institute for Intelligent Cooperating Systems

Otto-von-Guericke University
Universitätsplatz 2

39106 Magdeburg, Germany

Krug, Valerie:
Neuroscience-Inspired Analysis and Visualization of Deep Neural Networks
PhD Thesis, Otto-von-Guericke University
Magdeburg, 2024.

Contents

Abstract

Zusammenfassung

1 Introduction
1.1 Research Aims . 2
1.2 Structure of the Thesis . 4
1.3 Publications . 6

2 Background
2.1 Machine Learning . 9

2.1.1 Supervised Learning . 10
2.1.2 Unsupervised Learning . 11
2.1.3 Other Learning Types . 14
2.1.4 Particle Swarm Optimization 14

2.2 Deep Learning . 15
2.2.1 Training . 16
2.2.2 Evaluation . 20
2.2.3 Architectures . 22
2.2.4 Transfer Learning . 28

2.3 Dimensionality Reduction . 28
2.4 Audio Processing . 32

2.4.1 Speech Annotations . 34
2.4.2 Automatic Speech Recognition 35

2.5 Electroencephalography (EEG) . 36

3 Related Work
3.1 Terminology . 39
3.2 Inspecting Model Weights . 40
3.3 Inspecting Model Activations . 42
3.4 Feature Visualization . 42
3.5 Saliency Maps . 46
3.6 Analyzing Data Set Representations 53

4 Data and Models

iii

iv CONTENTS

4.1 Data . 59
4.1.1 MNIST . 59
4.1.2 Fashion MNIST . 61
4.1.3 Cifar10 . 61
4.1.4 LibriSpeech . 62
4.1.5 TIMIT . 62
4.1.6 FairFace . 64
4.1.7 Data Overview . 65

4.2 Models . 65
4.2.1 MNIST and Fashion MNIST Classifiers 65
4.2.2 Padded and Shifted MNIST Classifiers 67
4.2.3 VGG16 . 68
4.2.4 Wav2Letter-Based Models . 69

4.3 Data and Model Usage Overview . 74

5 Neuron Activation Profiles
5.1 Method . 78

5.1.1 Obtain Activations . 78
5.1.2 Define Groups . 80
5.1.3 Group-Averaging . 81
5.1.4 Averaging with Normalization 82
5.1.5 Handling Unaligned Data . 83
5.1.6 Masking Prediction-Irrelevant Information 86
5.1.7 Subgrouping . 87
5.1.8 Visualization and Similarity Analysis 90
5.1.9 Pipeline . 92

5.2 Averaging and Normalization . 94
5.2.1 Investigated Distance Metrics 95
5.2.2 Two-Dimensional Toy Example 95
5.2.3 Hidden Layer NAPs . 97

5.3 Aligning Data . 99
5.3.1 MNIST Variations . 99
5.3.2 ASR – Qualitative Alignment Evaluation 101
5.3.3 ASR – Quantitative Alignment Evaluation 103
5.3.4 Aligning Data – Summary . 107

5.4 Improve Efficiency . 108
5.4.1 Visual Inspection of Approximated NAPs 109
5.4.2 Quality and Robustness of Approximated NAPs 110
5.4.3 Relation of Class Size and Variance with Subset Size 114

5.5 Chapter Summary . 117

6 Topographic Activation Maps
6.1 Method . 119

6.1.1 Quantify Activation . 119

CONTENTS v

6.1.2 Topographic Map Layout . 121
6.1.3 Visualization . 124

6.2 Experimental Plan . 126
6.2.1 Evaluation Measures . 126
6.2.2 Topographic Map Quality for MLPs 129
6.2.3 Topographic Map Quality for CNNs 130

6.3 Results and Discussion . 131
6.3.1 Pre-Selecting Layouting Methods 131
6.3.2 Representativeness of Quality Measures 133
6.3.3 Quantitative Evaluation . 134
6.3.4 Comparison to Other Visual Quality Measures 140

6.4 Chapter Summary . 141

7 Application
7.1 Scalability . 143

7.1.1 Architecture – Deep Models . 143
7.1.2 Architecture – Wide Layers . 143
7.1.3 Architecture – Large Feature Maps 144
7.1.4 Data – Large Groups . 144
7.1.5 Data – Large Number of Groups 145

7.2 NAP Analysis of Automatic Speech Recognition Models 146
7.2.1 Experiment . 146
7.2.2 Results . 148

7.3 Error Detection with Topographic Maps 160
7.3.1 Toy Examples Design . 160
7.3.2 Annotation Errors in the Test Data 161
7.3.3 Annotation Errors in the Training Data 163

7.4 Detecting Bias with Topographic Maps 165
7.4.1 Experimental Setup . 165
7.4.2 Results – Sensitive Variables . 166
7.4.3 Results – Significance . 168
7.4.4 Diversity of Groups . 169

8 Extensions
8.1 Multi-Layer Visualization . 171
8.2 Training Processes . 173

8.2.1 Visualization Oriented at the Final Layout 173
8.2.2 Temporal Resolution . 175
8.2.3 Adapting the Layout over Training Time 175

8.3 Relation of Confidence and Activations 176
8.3.1 Experimental Setup . 176
8.3.2 Results . 177
8.3.3 Discussion . 179

8.4 Downstream Explanations . 179

vi CONTENTS

9 Conclusion
9.1 Research Aims . 181

9.1.1 RA1: Group-Specific Network Responses 181
9.1.2 RA2: Summarization through Visualization 183
9.1.3 RA3: Applicability to Visually Uninterpretable Data 184

9.2 Neuroscience Inspiration . 185
9.2.1 NAPs as an ERP-Like Analysis 185
9.2.2 Topographic Activation Maps 186

9.3 Future Work . 186

A Supplemental Figures
A.1 Alignment Evaluation . 190
A.2 Approximated NAPs . 194
A.3 NAP Approximation Errors . 196
A.4 Input Layer NAPs . 199
A.5 VGG16 Topographic Maps in Different Layers 202
A.6 Confidence and Activation over Training Time 203

B Supplemental Results
B.1 Extended Quantitative Topographic Map Evaluation 208

C List of Abbreviations

D List of Figures

E List of Tables

F Bibliography

vii

Abstract

Deep Neural Networks (DNNs) are very successful in various fields of appli-

cation. Their success, however, is mostly achieved by increasing the model

complexity in terms of types of architectures or the number of neurons.

At the same time, it becomes harder to interpret how DNNs solve their

learned task, which can be risky in critical applications like autonomous

driving or decision-making systems in healthcare. There are several tech-

niques to elucidate inner workings of DNNs and to explain their decisions

for individual examples. However, most of them are projecting information

to the input space such that results are typically most useful for images. For

many other types of data, for example, audio, visually inspecting the data

is not intuitive such that the results of the explanation techniques are less

intuitive to interpret, as well.

In this thesis, we aim to develop a more generally applicable method for

getting insight into DNNs which does not depend on input data that is

visually interpretable. Instead of projecting information to the input space,

we implement a comparative analysis of DNN responses to different groups

of inputs. For pre-defined groups that comprise related input examples, for

example, from the same category, we obtain typical activity of the DNN for

each of the groups. If the similarities of activity are in agreement with the

human expectation about the similarities of the groups, it indicates that the

model learned meaningful concepts about the data. For this comparative

analysis, it is only necessary that a person can estimate relative similarities

and differences between the groups, that means, telling whether two groups

are more similar to each other than to another group. For example, a person

might estimate that a spoken ‘a’ and ‘e’ are more similar to each other than

to a spoken ‘t’ and expect this to be reflected in the similarities of DNN

activations, too. In this thesis, we use audio, specifically speech in an

Automatic Speech Recognition (ASR) task, as a representative data that is

not visually interpretable.

To develop such technique, we take inspiration from neuroscience because

real brains are even more complex and opaque systems than DNNs and

have been studied for decades. Therefore, we research how well-established

methods from neuroscience can be adapted to analyze and visualize DNNs.

viii Abstract

In particular, we present two methods that build on top of each other.

First, we introduce a Event-Related Potentials (ERPs)-inspired technique

to characterize DNN activity for groups of examples, which we call Neuron

Activation Profiles (NAPs). This approach allows to describe how the DNN

responds to certain pre-defined groups of inputs and how the responses

differ between these groups. For example, this can reveal which neurons

are activated for specific groups and which activate for all similarly. While

this technique allows for comparisons, the activations themselves are not

directly interpretable. Therefore, as a second technique, we present a

visualization of activations as topographic activation maps, similar to how

brain activity is visualized in Electroencephalography (EEG).

Computing NAPs and visualizing them as topographic maps finally allows

to compare group-characteristic DNN responses visually. This way, we

provide a visual tool to inspect DNNs independent of whether the input

data are visually interpretable themselves. We perform experiments with

different image recognition models and for an ASR model which processes

audio data of speech as a representative task with data that are not visually

interpretable.

ix

Zusammenfassung

Tiefe neuronale Netze (TNN) sind sehr erfolgreich in einer Vielzahl unter-

schiedlicher Anwendungsgebiete. Allerdings wird dieser Erfolg oft durch

eine Erhöhung der Komplexität des Modells erreicht, beispielsweise indem

kompliziertere Architekturen oder eine größere Anzahl von Neuronen ver-

wendet werden. Gleichzeitig erschwert diese Komplexität, zu verstehen,

wie ein TNN seine Aufgabe löst, was ein Risiko in kritischen Anwendungs-

gebieten wie dem autonomen Fahren oder Entscheidungssystemen in der

Gesundheitsversorgung darstellt. Es existieren bereits verschiedene Meth-

oden, um die inneren Prozesse von TNN nachzuvollziehen sowie deren

Entscheidungen für einzelne Eingaben zu erklären. Die meisten dieser

Methoden projizieren jedoch Informationen auf den Eingaberaum, weswe-

gen deren Resultate am nützlichsten für Bilder sind. Andere Datentypen,

beispielsweise Audiodaten, sind als eine visuelle Darstellung nicht intuitiv

interpretierbar. Dementsprechend sind für diese Datentypen auch Erk-

lärungsmethoden, die eine visuelle Erklärung im Eingaberaum erzeugen,

nur schwer interpretierbar.

Das Ziel dieser Arbeit ist es, eine Methode zu entwickeln, die Einblick in

innere Strukturen und Prozesse von TNN gewährt, dabei aber unabhängig

davon ist, ob die Eingabedaten visuell interpretierbar sind. Anstatt Infor-

mationen auf den Eingaberaum zu projizieren, vergleichen wir, wie ein

TNN auf unterschiedliche Gruppen von Eingaben reagiert. Dazu ermit-

teln wir die Aktivierungen des TNN für vordefinierte Gruppen, welche

zusammengehörige Eingaben beinhalten, beispielsweise Eingaben der

gleichen Kategorie. Wenn die Ähnlichkeiten der Aktivierungen mit der

menschlichen Erwartung über die konzeptuellen Ähnlichkeiten der Grup-

pen übereinstimmen, deutet das darauf hin, dass die vom Modell gelernten

Konzepte sinnvoll sind. Um diese vergleichende Analyse durchzuführen,

muss eine Person nur die Ähnlichkeit der Gruppen einschätzen können,

das bedeutet, ob zwei Gruppen ähnlicher zueinander sind als zu einer

dritten Gruppe. Zum Beispiel kann eine Person einschätzen, dass ein

gesprochenes ‘a’ und ‘e’ sich ähnlicher sind als ein gesprochenes ‘t’ und de-

mentsprechend erwarten, dass diese Ähnlichkeit in den Aktivierungen des

TNN widergespiegelt ist. In dieser Arbeit nutzen wir Audiodaten, speziell

x ZUSAMMENFASSUNG

Sprachaufnahmen zur Anwendung für die Spracherkennung, als repräsen-

tative Daten, die nicht visuell interpretierbar sind.

Um eine geeignete Methode zu entwickeln, dienen uns die Neurowis-

senschaften als Inspiration. Im Vergleich zu TNN sind Gehirne noch kom-

plexere und undurchsichtigere Systeme, die seit Jahrzehnten untersucht

werden. Darum erforschen wir, wie etablierte Methoden aus den Neurowis-

senschaften auf TNN übertragen werden können, um diese zu analysieren

und zu visualisieren.

Im Speziellen stellen wir zwei Methoden vor, die aufeinander aufbauen.

Erstens zeigen wir einen Ansatz, um TNN Aktivierungen für Gruppen von

Eingaben zu charakterisieren, welchen wir Neuronen-Aktivierungs-Profile

(NAP) nennen. Diese Methode ermöglicht es, zu beschreiben, wie ein

TNN auf bestimmten vordefinierte Gruppen von Eingaben reagiert und

wie sich diese Reaktionen zwischen den Gruppen unterscheiden. NAP

erlauben es, Gruppen miteinander zu vergleichen, allerdings sind die Ak-

tivierungen, die sie beschreiben, nicht direkt interpretierbar. Aus diesem

Grund stellen wir eine zweite Methode zur Visualisierung der gruppenspez-

ifischen Aktivierungen als topographische Aktivierungskarten vor. Diese

Visualisierungs-Technik ist davon inspiriert, wie Gehirn-Aktivität bei der

Messung mittels Elektroenzephalographie (EEG) dargestellt wird.

NAPs und deren Visualisierung als topographische Karte ermöglichen es,

Reaktionen des TNN für unterschiedliche Gruppen visuell miteinander zu

vergleichen. Damit stellen wir ein Werkzeug zur Verfügung, um unabhängig

davon, ob Eingaben visuell interpretierbar sind, Einblicke in TNN zu gewin-

nen. Unsere Experimente umfassen unterschiedliche Bilderkennungs-

Modelle sowie ein Spracherkennungsmodell, das Audiodaten verarbeitet,

als repräsentatives Beispiel für Daten, die nicht visuell interpretierbar sind.

1
Introduction

Artificial Neural Networks (ANNs) have become a very popular tool for

solving challenging tasks across various fields of application. Increasing

their performance is often achieved through increasing their depth, the

number of neurons or by using more complex architectures [178, 53, 186].

At the same time, larger computational models become black-boxes, which

are harder to interpret [194]. This complicates detecting erroneous behav-

ior and understanding how they perform their task, which can be risky in

critical applications like autonomous driving or decision-making systems

in healthcare. Several introspection techniques have been proposed to

obtain insight into ANNs [196, 162]. However, most of them are designed

for certain applications or architectures. In particular, many introspection

techniques focus on images because the features of images are easy to

interpret visually. That means, it is easy for a human to identify parts of

an image or patterns that are characteristic for a particular object. There-

fore, humans can compare this expectation with introspection technique

results that highlight prediction-relevant input parts or visualize patterns

that the ANN uses to perform its task. Features in other data, for exam-

ple in the audio domain, are more difficult to interpret visually, making

established introspection techniques less suitable for understanding the

model. Humans can intuitively listen to sounds, but visualization of the

digital representation of audio data is not intuitive. Therefore, for example,

interpreting an explanation that visualizes which frequencies an ANN uses

for a prediction is difficult to visually interpret, too. In this work, we address

the consequent need for methods to also understand ANNs that process

data which are not visually interpretable, specifically focusing on audio

data of speech.

1

2 CHAPTER 1. INTRODUCTION

While complex ANNs are a recent technical development, real brains have

been studied in neuroscience for over 50 years. Brains and ANNs share

that they are highly complex and opaque information processing system.

Therefore, the rich experience from the field of neuroscience to analyze

such complex and opaque systems can potentially help to understand

ANNs better, too. In this thesis, we follow the idea of using well-established

methods that are used for understanding real brain activity and adapting

them to be used to get insight into ANNs.

1.1 Research Aims

Our aim is to develop a novel approach on performing Deep Neural Net-

work (DNN) model analysis that does not require visually interpretable data

but works by comparative analysis of the model’s activations for different

groups of inputs. For a set of predefined groups of inputs, for example,

groups that belong to different categories, we want to provide a means to

investigate similarities and differences in how the DNN activates for these

categories. This allows a person to evaluate whether the representation

of concepts in a DNN is reasonable based on the group similarity. For ex-

ample, consider a model that classifies animals in an image. Intuitively, a

human would expect that a cat and a lion are more similar to each other

than to an elephant. If such similarities are reflected in the activations of

a model, this indicates that the learned concepts are reasonable without

the need of characterizing them explicitly. As another example, consider a

speech recognition system that turns spoken sentences into text. We would

expect similar sounds (like a spoken ‘a’ and ‘e’) to activate more similar to

each other than to different sounds (like a spoken ‘t’). If this was not the

case, it is doubtful for a person to believe that the speech recognition is

based on actual acoustic concepts. The expected similarities can also be

preferences about the model representations. For example, if we prefer an

image recognition model to not distinguish people based on their skin color,

we would trust the model more if the DNN activates similarly for any group

of people of similar skin color. We like to emphasize that in this specific

example, the model does not necessarily discriminate against any group

of people with respect to its output only because internal representations

differ between the groups.

1.1. RESEARCH AIMS 3

To be able to perform such comparative analysis of DNN activity for differ-

ent groups, we require two main components. First, we need a method to

characterize how the DNN responds to groups of inputs. Second, as activa-

tions typically cannot directly be intuitively compared, we investigate how

to visualize these responses to allow for more intuitive visual comparisons.

These requirements motivate our following Research Aims (RAs) and to

pursue them, we adapt methods from neuroscience.

RA1: Characterize group-specific network responses with minimal infor-

mation loss from aggregation. For our first aim of characterizing how

a DNN responds to groups of inputs, we take inspiration from a pop-

ular technique in the field of neuroscience, the Event-Related Poten-

tials (ERPs). The ERP technique is used for analyzing brain activity through

Electroencephalography (EEG) [112]. ERPs aim to measure brain activity

for a particular fixed event (stimulus) and average over multiple measure-

ments (trials) to denoise them. We analyze DNNs similarly, but as their

responses are deterministic, we use the averaging to remove particular

variations in the input data. For example, in a speech recognition model,

we characterize DNN responses to a particular sound by using averaging to

remove the variation that originates from different speakers and articula-

tions. Like the fixed event in ERPs, a challenge of this averaging approach

is that data and the ANN’s activations need to be aligned at the feature of

interest. In the DNN case, this means that the relevant patterns of interest

in different inputs or activations need to be aligned before applying the

averaging.

RA2: Summarize complex representations through visualization. To obtain

a more intuitive way of comparing activity between groups, we aim to be

able to visually compare it. Specifically, we aim to achieve this by adapting

how brain activity is typically visualized as a topographic map. For example,

brain activity recorded through EEG measurements [112] is represented

as a top view of the head with a superimposed topographic map of neural

activity [113]. Adapting this approach to be applicable to DNNs can help

to visualize and understand their internal representations more intuitively,

too. We would be able to see less and more active sets of neurons as regions

and could visually compare these regions between different classes to

4 CHAPTER 1. INTRODUCTION

identify commonalities and differences in the DNN activations. However,

in contrast to the brain, DNNs typically do not have an informative order

of neurons because there are no connections between neurons within the

same layer. Therefore, to be able to visualize activations of neurons in DNNs

as topographic maps, we research techniques to layout the neurons in a two-

dimensional space in which neurons of similar activity are in the vicinity of

each other. The idea of introducing a topographic neuron layout in ANNs

is not novel. Self-Organizing Maps (SOMs) [81] follow a similar motivation

and already constrain the neurons to form a topographical layout during

training. However, traditional SOMs are only shallow neural networks and

more recent approaches on training deep SOMs [102] have not gained

popularity as the topography constraint can decrease performance. Most

DNNs that are used in practice are implemented without a topographical

layout of the neurons. Our aim is to provide the possibility to create a

topographic layout visualization for any DNN, particularly those that are

already trained and potentially deployed in the real world.

RA3: Provide analyses and visualizations that do not rely on visually inter-

pretable data. This research aim cannot be addressed in isolation but

accompanies RAs 1 and 2. We aim to provide analyses based on the ERP-

inspired characterization of network responses and topographic activation

maps that do not require visually interpretable data. We intend to achieve

this by performing comparative analyses of DNN activities instead of pro-

jecting information to the input space. In this thesis, we use DNNs for

audio processing, specifically Automatic Speech Recognition (ASR), as rep-

resentative models that process data which are visually difficult to interpret.

1.2 Structure of the Thesis

This thesis comprises nine chapters. We start with a description of back-

ground and related work. Then, we introduce data and models we use in

this thesis. This is followed by the three main chapters of the thesis which

address the respective three research aims. Afterwards, we show promising

preliminary work and extensions of our methodology. Finally, we conclude

the thesis.

1.2. STRUCTURE OF THE THESIS 5

Chapter 2 presents the fundamentals of Machine Learning (ML) and Deep

Learning (DL) techniques and Chapter 3 introduces existing approaches of

analyzing and visualizing DNNs.

In Chapter 4, we introduce the different data sets and models that we use

in the thesis. Furthermore, we provide an overview of where we use the

different models in the thesis.

Chapter 5 and Chapter 6 are the central chapters of this thesis as they

present and evaluate our proposed neuroscience-inspired approaches to

pursue RAs 1 and 2, respectively. Both chapters focus on introducing the

respective method and evaluating it with suitable experiments. Application

examples are provided in the separate Chapter 7.

In Chapter 5, we introduce our novel ERP-like analysis called Neuron Activa-

tion Profiles (NAPs) which addresses RA1 of characterizing group-specific

DNN responses. First, we provide a detailed description of the individ-

ual steps of computing NAPs. Then, we organize them in a computation

pipeline with optional steps depending on the use case. For the critical

steps in the pipeline, which are averaging, normalization and alignment,

we perform a more detailed evaluation. To validate our introduced align-

ment procedure, we show toy examples based on MNIST and a real-world

data set with expected alignment positions.

Creating easily interpretable visualizations of DNN representations for RA2

with topographic activation maps is presented in Chapter 6. This chapter

builds on Chapter 5 as we visualize NAPs as topographic maps. Our aim

for Chapter 6 is to find a method to layout neurons in a two-dimensional

space in order to visualize them similar to a topographic activation map in

neuroscience. To this end, we introduce and evaluate different layouting

techniques that project the artificial neurons in a two-dimensional layout

where similarly activated neurons are in the vicinity of each other. We

perform this evaluation qualitatively by subjectively inspecting whether

the results visually resemble their neuroscientific counterpart. Also, we

investigate several measures to quantify the visual quality of the resulting

visualization. For the best suitable layouting technique and visual quality

measure, we further evaluate how alignment and aggregation techniques

affect the visual quality and whether there is a difference between layers in

the network.

6 CHAPTER 1. INTRODUCTION

Using NAPs and topographic activation maps, we discuss their applicabil-

ity to different models and data sets in Chapter 7. This evaluation of their

applicability includes addressing RA3 as it demonstrates that the analyses

and visualizations are useful regardless of whether the input data are vi-

sually interpretable. This chapter begins with a discussion on how well

the techniques scale with different model and data properties. Then, we

show several examples that demonstrate the applicability of our technique

to different models. Specifically, this involves a detailed analysis of the

representations of an ASR model with NAPs to show that we do not depend

on visually interpretable data. Moreover, we demonstrate how topographic

activation maps can be used to detect errors and to show representational

bias in DNNs.

In Chapter 8, we present extensions of the methodology that do not address

the research aims but provide additional exemplary applications of our

novel approaches. In particular, this involves a discussion on extending our

visualization to multiple layers and visualizing training processes with topo-

graphic activation maps. Moreover, we show an experiment on the relation

of DNN activations and its confidence in terms of output softmax value

using our visualization technique. Finally, we discuss how to potentially

use our visualization technique to use established explanation approaches

in a more targeted way.

Finally, Chapter 9 concludes this thesis. We summarize the findings and

discuss whether we were able to meet our research aims. Based on this, we

discuss most promising future research directions.

1.3 Publications

Parts of this thesis have been reviewed and published. We will point out

the references in the respective sections. In this section, we provide an

overview of our relevant publications and how they are integrated in this

thesis.

The largest contributions are published in “Analyzing and Visualizing Deep

Neural Networks for Speech Recognition with Saliency-Adjusted Neuron

Activation Profiles” [89] and “Visualizing Deep Neural Networks with Topo-

graphic Activation Maps” [92]. The first publication introduces our most

1.3. PUBLICATIONS 7

advanced version of NAPs and their application to an ASR model. Differ-

ent to this publication, we present NAPs as a more modular framework in

Chapter 5 because not every step of the ASR-suitable pipeline is necessary

for every application. From this paper, we report the speech-based align-

ment evaluation in Section 5.3 and the ASR application in Section 7.2. The

topographic activation maps publication [92] builds the basis for Chapter 6

and the application examples of error and bias detection in Sections 7.3

and 7.4. Different to the publication, we introduce size-weighted convex-

ity as an additional quality measure for topographic activation maps. We

further evaluate the suitability of the measures using manually created

topographic maps in Section 6.3.2 and focus on results using the most suit-

able measure in the main thesis in Section 6.3.3. Moreover, we extend the

bias detection example in Section 7.4 to more sensitive variables, multiple

layers and including the visual quality measure.

In earlier publications, we show initial versions of our NAP approach. With

“Introspection for Convolutional Automatic Speech Recognition” [85], we

introduce “Normalization and Averaging of Aligned Inputs (NAvAI)” which

can be considered an input layer NAP with saliency alignment but without

masking prediction-irrelevant positions. Therefore, plotted input layer

NAPs in Section 7.2.2 are related to this publication. “Neuron Activation

Profiles for Interpreting Convolutional Speech Recognition Models” [88]

is our first extension of the averaging approach to activations. This work

presents a version of NAPs that does not use alignment but tries to be

time-independent by comparing the distribution of neuron activity in dif-

ferent feature maps. From this work, we keep the idea of applying the

averaging approach to hidden layers but decide to use the saliency-based

alignment to obtain better representative NAPs. Further, we use the same

similarity-based clustering of NAPs and its visualization as heat maps with

dendrograms (clustermaps) as reported in Section 7.2.2.

Recently, parts of this thesis were accepted for publication. “Visualizing

Bias in Activations of Deep Neural Networks as Topographic Maps” [90]

covers the aforementioned extension of the bias detection example in

Section 7.4. “Relation of Activity and Confidence when Training Deep

Neural Networks” [91] presents an experiment that uses topographic maps

to investigate activity in dependence of the confidence of a DNNs, which is

reported in Section 8.3.

8 CHAPTER 1. INTRODUCTION

In this thesis, we create topographic maps based on activation similarity.

However, earlier, we investigated to create such topography in the filter

space, following the assumption that similar filters lead to similar acti-

vations. Arranging the filter space in a topographic layout is included in

“Adaptation of the Event-Related Potential Technique for Analyzing Artifi-

cial Neural Networks” [84], our first first version of ERP-based analysis of

DNNs. More explicitly, we investigate the topographic layout of filters in

“Visualizing Deep Neural Networks for Speech Recognition with Learned

Topographic Filter Maps” [86]. Based on the unexpectedly low correlation

of filter similarity and activation similarity, we decided to optimize for

activation similarity directly when creating topographic activation maps.

Therefore, results from these publications are not included in this thesis.

2
Background

In this chapter, we introduce relevant background knowledge for this thesis.

We begin with three sections on Machine Learning (ML)-related topics.

Section 2.1 introduces general concepts of ML, including different learning

types like supervised and unsupervised learning, as well as selected ML

techniques. In particular, this involves clustering approaches, Artificial

Neural Networks (ANNs), Self-Organizing Maps (SOMs) and Particle Swarm

Optimizations (PSOs) because they are used in this thesis. As we focus on

Deep Neural Networks (DNNs) in this thesis, Section 2.2 explains how

to train and evaluate DL models and introduces various components for

building them. Thirdly, we present common dimensionality reduction

techniques in Section 2.3.

In this thesis, we use image and audio processing tasks with DNNs. As

DL for audio data is not as commonly known as image processing, we

introduce fundamentals of processing recorded audio for using it as input

data in DL in Section 2.4.

Finally, because we use methods that are inspired by neuroscientific tech-

niques, in particular from Electroencephalography (EEG) data analysis, we

introduce fundamental techniques in Section 2.5. Specifically, we present

the Event-Related Potentials (ERPs) technique and visualization of brain

activity as topographic maps.

2.1 Machine Learning

ML comprises algorithms that are designed to perform tasks without explic-

itly programming them. To this end, ML algorithms learn from data and, in

some cases, annotations about this data, to solve a defined task [43]. This

9

10 CHAPTER 2. BACKGROUND

is particularly useful for tasks that are too complicated to be implemented

with manual instructions.

2.1.1 Supervised Learning

In supervised learning, the algorithm is trained on data for which the target

output is known. To this end, the training requires providing the algorithm

data in which each example is annotated with its expected output. The

algorithm learns to map the input data to the correct output by minimizing

the difference between its predictions and expected output. There is a wide

range of typical tasks in supervised learning, for example classification,

regression or transcription.

Classification is a learning task, where the target output is predicted from

a set of possible categories. Such classification can be binary, where the

model only distinguishes between two classes. For example, binary clas-

sification has applications in detection of diseases [119, 3] or to detect

defects in industrial applications [26]. If there are more than two classes

but only exactly one of them is the expected output, it is a multinomial

classification task. This is common in applications like image classification

[105, 163, 16] or speaker recognition [49]. Finally, multi-label classification

is a task where there are multiple possible output categories, but each ex-

ample can have more than one correct output prediction. Typically, this

involves tasks where output categories are not excluding each other like in

text sentiment classification where a statement can be, for example, both

fearful and worrying at the same time [103]. Also, this applies when output

categories follow a hierarchy, for example, in respiratory disease detection

which simultaneously predicts the presence and the specific type of the

disease [18].

Regression tasks are predicting continuous target values instead of cate-

gorical ones [99]. This is, for example, applied in weather forecasting [58],

stock market predictions [165] or prediction of prices at the housing market

[110].

Translation and transcription are tasks of predicting a sequence of outputs

for a given sequence of inputs. If input and output data come from the

same domain, for example, when translating words or sentences of one

language to another language [174], the task is referred to as translation.

2.1. MACHINE LEARNING 11

Transcription describes a translation from one domain to a different one.

Typical transcription applications are Automatic Speech Recognition (ASR),

which transcribes an audio input to a textual output [195] or phonemic

transcription, which transcribes written language to a sequence of sound

pattern descriptors, so-called phonemes [193].

In this thesis, we use models that are trained by supervised learning, par-

ticularly multinomial classification models for different image recognition

tasks and transcription models for speech-to-text and speech-to-phoneme

transcription.

2.1.2 Unsupervised Learning

Unsupervised learning involves ML models that learn from data without

providing target outputs. This can either be necessary because the target

outputs are not known or because the aim is to identify patterns, structures,

or relationships in the data without specific guidance.

The unsupervisedly extracted information can also be used for consecutive

tasks. For example, it facilitates anomaly detection [131] where the predic-

tion is made by whether an observation differs too strongly from the usual

patterns that the model learned for the data set. Anomaly detection is, for

example, used to detect fraud in credit card transactions [8]. Moreover,

extracted features through unsupervised learning can be used as inputs

for a supervised classifier which needs fewer annotated training examples

because the feature extraction does not need to (entirely) be learned to-

gether with the classification. This approach is referred to as unsupervised

pre-training [34].

Common approaches for unsupervised learning include clustering tech-

niques and ANNs. A recently less commonly used method, which we use

in this thesis, are Self-Organizing Maps (SOMs). Some dimensionality

reduction techniques, which we describe separately in Section 2.3, are

unsupervised learning approaches, too.

Clustering

Clustering algorithms group data according to their similarities [64]. Data

can be optimally assigned to a selected number of clusters, for example, in k-

12 CHAPTER 2. BACKGROUND

means clustering [52]. Setting a fixed threshold for cluster count, however,

can be inflexible. As an alternative, hierarchical clustering techniques

describe a hierarchy of data examples based on their similarities [126].

Then, a threshold can be set flexibly to divide the data into clusters based on

this hierarchy. A very commonly used clustering algorithm is DBSCAN [36],

which detects highly similar sets of examples as core clusters and further

groups points that are within a certain neighborhood size of this initial

core. The quality of clustering is typically evaluated with measures that

reward if distances within each cluster are smaller than between clusters,

for example, the Silhouette score [155]. There also are fuzzy clustering

algorithms [192] that do not assign a strict partitioning but probabilities of

being in each cluster.

Artificial Neural Networks

ANNs for unsupervised learning follow different approaches. Early research

employed energy-based models that modeled inputs and their learned

features as random variables. The training of this kind of models is based

on maximizing the likelihood of the data under the learned parameters [50].

That means, drawing a random sample from the trained model would yield

a sample from the data distribution. Well-known models in this category

are Boltzmann Machines (BMs), with the variations Restricted BMs, Deep

BMs and Deep Belief Networks [96].

More recently, DNNs are more popular for unsupervised learning of data.

This includes Autoencoder (AE) structures that are trained to reconstruct

data while needing to compress the information in a low-dimensional

representation. There are, for example, deterministic AEs [12] which com-

press information to a vector of numbers and probabilistic AEs like the

variational AE [75] which learn to compress information as parameters of

probability distributions. An illustration of the concept of these two AE

variants is shown in Figure 2.1. A more comprehensive introduction to

DNNs follows in Section 2.2.

2.1. MACHINE LEARNING 13

𝒓 𝒙′
𝑔!(𝒛)𝑓"(𝒙)𝒙

encoder decoderrepresentation
(a) Deterministic Autoencoder. It encodes data as a vector of numbers.

𝒛 𝒙′
𝑔!(𝒛)𝑓"(𝒙)𝒙 𝝁

𝝈

𝑧#~𝑁(𝜇# , 𝜎#)

inference
network

generator
network

latent
variables

(b) Variational Autoencoder. It encodes data as parameters of random distributions (here,
a normal distribution). This allows to draw samples from the variational AE by only using
the inference network.

Figure 2.1: Illustration of a deterministic and a variational Autoencoder. Green
indicates input and output pairs which, in the case of autoencoding, are expected
to be the same. Blue are network components that compress the input to a
low-dimensional representation. Orange are the respective network parts that
decompress this representation to the data in the original dimensionality.

Self-Organizing Maps

SOMs [81] are ML models that learn a set of vectors to represent the data.

Each data example is assigned to the vector it is closest to. The important

property of this model is that the learned vectors are connected in a grid

to preserve the topological structure of the data. The training process, as

illustrated in Figure 2.2, is the following. For a data example, the closest

vector of the SOM is obtained, and commonly referred to as the winner. This

vector is then updated to be closer to the data example. In addition, all other

vectors are as well moved closer to this example, but to a smaller extent

depending on how far on the grid the vector is from the winner. Iterating

14 CHAPTER 2. BACKGROUND

over all data examples (multiple times) distributes the vectors along the

grid and is expected to also distribute according to the data density. This

means, at the end of training, there are more vectors in regions with high

density than in low-density regions.

trained SOM
positions

SOM training

Figure 2.2: Illustration of a SOM training. Blue indicates the data distribution,
white dots with connections are the SOM grid and the red square is the training
example in one iteration of training.

2.1.3 Other Learning Types

Apart from supervised and unsupervised learning, there exist several other

learning types. For example, semi-supervised and self-supervised learning

are variations of the previously described approaches. Semi-supervised

learning is a training method with a combination of data with and without

target outputs [48]. Self-supervised learning is a version of supervised

learning where no separate target outputs are given but (variations of)

the data or the predictions by the model are used as output targets [35].

Reinforcement Learning (RL) is a conceptually different learning paradigm

in ML, where a model, typically called RL agent, is given an environment

to perform specified actions in as well as a reward function. Then, the RL

agent explores actions in the environment and optimizes them to maximize

the reward [7].

2.1.4 Particle Swarm Optimization

PSO [69, 166, 32] is a biologically inspired metaheuristic algorithm used to

search for optimal solutions. It takes inspiration from swarm behavior of

2.2. DEEP LEARNING 15

animals that head towards a common target and each individual is drawn

towards other members of the swarm while also keeping some distance to

each other. In the ML counterpart, we use a set of particles in the solution

space and search the optimal solution by moving the particles based on

simple mathematical formulas. Each individual particle follows simple

local rules but it is influenced globally by all other particles allowing the en-

tire swarm to collectively find an optimal solution. To increase the diversity

in the swarm and avoid converging to local minima too fast, an attraction-

repulsion PSO has been introduced [154]. In this variation of PSO, repelling

particles are used to move particles out of potential local minima. Over

optimization time, the number of repelling particles is typically decreased

in order to converge at some point.

In this thesis, we use the idea of local and global influences on particles as

well as the concept of attraction and repulsion forces. However, our usage is

not a typical PSO because the particles do not aim to reach a common goal.

Rather, we use the concepts of distribution to optimize a positioning of the

particles. Details of our PSO-inspired techniques follow in Section 6.1.2.

2.2 Deep Learning

DL is a branch of ML that uses ANNs with multiple layers, hence called

DNNs. DNNs are able to learn complex feature representations by learning

simple patterns in the early layers and combining them to increasingly

complex patterns in the deeper layers. In general, a DNN consists of many

artificial neurons, each computing a weighted sum of its connected inputs

and applying a non-linear function, the activation function, to the result.

These neurons are organized in a series of hidden layers, where typically

only neurons of successive layers are connected but not neurons of the

same layer. Each of these connections is weighted by a trainable param-

eter. Because of the huge number of connections, resulting from having

several hidden layers, DNNs need massive amounts of data as input to

learn suitable connection weights for performing their task correctly. In

Figure 2.3, a simple structure of a DNN is shown. More specifically, it shows

an Multi-Layer Perceptron (MLP) with one input layer, two hidden layers

with three neurons and one output layer.

16 CHAPTER 2. BACKGROUND

𝑥!

𝑥"

𝑥#

𝑥$

ℎ1!
𝑜!

ℎ1"
𝑜"

ℎ1# ℎ2#

ℎ2!

ℎ2"

Figure 2.3: A simple Multi-Layer Perceptron. Green indicates the input layer, blue
the two hidden layers and orange the output layer and their respective associated
connections.

DL models are not restricted to this particular type of architecture. In the

following sections, we explain how to train and evaluate the models in

different learning tasks. Further, we present common building blocks of

designing the layers and their connections. Finally, we explain transfer

learning as a common training strategy to make use of unlabeled data in

supervised tasks or to re-use layers of trained models for learning a different

task. We give a explanatory overview of important concepts to follow this

thesis. For further details about Deep Learning, we recommend available

text books and surveys [45, 22, 27].

2.2.1 Training

DNNs are trained by defining their architecture, providing a data set and

a function to optimize. This optimization target is also referred to as the

loss function. The choice of the output layer of the network and the loss

function depend on the task that the DNN is supposed to solve.

Supervised Learning

In supervised learning, target predictions for each example of the training

data are available.

For a binary classification, the network requires one output neuron and for

multi-label classification it needs a output neuron for each possible class.

2.2. DEEP LEARNING 17

Further, the output layer applies a sigmoid activation (Equation (2.1)) to

each output neuron to obtain a probability value of being in each respective

category.

sigmoid(o) =σ(o) = 1

1+e−o (2.1)

The loss function then measures the discrepancy between the predicted

output probabilities and the target classes that are provided as vectors

with value 1 for each class the example belongs to and 0 for all others. For

binary and multi-label classification, binary cross-entropy (summed over

the neurons) is a suitable loss function. In a multinomial classification, the

output layer of the DNN is expected to only predict high probability for one

class. To achieve this, instead of using sigmoid activation, a softmax acti-

vation is applied over all output layer neurons. Softmax is the exponential

value of the output layer activations, normalized by dividing by the sum of

exponential values of all output neurons (Equation (2.2)).

softmax(o)i = eoi∑
o∈o

eo for each i = 1, ..., |o| (2.2)

This way, the sum of post-softmax activations in the output layer is 1. Simi-

lar to the other classification settings, cross-entropy is a suitable loss func-

tion. As we only have one target output class, this can be computed effi-

ciently by only considering the cross-entropy for the desired output class.

This efficient version is commonly referred to as categorical cross-entropy.

Regression tasks often have no restriction on the value range of the output.

Therefore, there is typically no activation function applied to the output

layer. To compute a loss for optimization, the predictions can be compared

with the targets with metrics like Mean Squared Error (MSE).

Unsupervised Learning

In unsupervised learning, there are no annotated target predictions for

examples in the training data. Instead, a common strategy is to use the

training examples themselves as a target. The DNN is built as an architec-

ture where the input and output have the same dimensions. Then, the loss

function is the difference between the original example and the example

18 CHAPTER 2. BACKGROUND

after being processed by the network, for example, measured by MSE. This

process only yields useful models, if the network cannot copy information

from the input to the output. This can, for example, be avoided by archi-

tectural choices, like the probabilistic layer in a variational Autoencoder.

Alternatively, the input can be lightly perturbed, for example by adding

noise, to prevent the possibility of copying information [187].

Optimization

Given the architecture, data and loss, the network weights can be optimized

to minimize the loss function across the training data set. In DL, we aim

to optimize the connection weights between neurons for this purpose. To

determine, how to change weights to minimize loss, the backpropagation

algorithm is applied [156]. Backpropagation computes the derivative of

the loss function value with respect to each weight. Due to the layer-wise

structure of DNNs, this involves a backwards layer-wise propagation of

the derivatives. The backpropagation algorithm offers an efficient and

largely paralellizable implementation of computing these derivatives. With

the term ‘gradients’, we describe the collection of obtained derivatives of

multiple (or all) weights.

Based on these gradients, the weights are updated. The simplest optimizer,

Gradient Descent, changes the weights by adding the negative gradient. As

the change would be large, this update it typically scaled down by a factor,

referred to as learning rate. This factor can be used as a constant value

or follow a schedule that, for example, adapts the learning rate over time

or considers gradients from previous training steps, called momentum.

Popular optimizers that use advanced learning rate schedules are Adam

[74], AdamW [104] or RMSProp [54].

Large Training Data Sets

In DL, we use large training data sets for the models to be able to learn.

This makes performing a step of optimizing weights for the entire data

set computationally infeasible. Therefore, each training step is commonly

performed for only small sets of data examples in a so-called mini-batch

training. To this end, the training data is partitioned into small subsets,

called mini-batches. Then, training is performed by iterating over the mini-

2.2. DEEP LEARNING 19

batches and updating weights based on only the small set of examples.

One iteration over all mini-batches is referred to as an epoch, that means,

each epoch, the entire data set is seen by the model once. In mini-batch

training, gradients in individual steps are only an approximation of the

gradients of the entire data set. Therefore, while minimizing the loss for the

current mini-batch, the overall loss might increase. In practice, by choosing

small learning rates, individual small updates still lead to a successful

optimization. Usually, it requires several epochs to training a model to

minimize the loss sufficiently. To avoid seeing the same order of examples

in every epoch, it is common to randomize the order of examples in every

epoch.

Regularization

DNNs minimize the loss function for the training data. If the model is

complex enough, it is therefore able to memorize the training data exam-

ples and the corresponding outputs. However, the actual aim of DL is to

train a model which performs well on both training examples and unseen

data. This property is also called being able to generalize to unknown ex-

amples. To achieve well-generalized models, regularization techniques

make it more difficult for DNNs to only memorize examples. For example,

common regularizers penalize highly-specific weights by adding a norm of

the weights to the loss function. The sparsity regularizer L1 penalizes the

sum of absolute weight values which encourages learning as few weights

as possible for solving the task. Weight decay (L2) penalizes the sum of

squared weight values prevents large weight values which the model might

use as indicators for a specific example. Given weights θ, the regularizers

added to the loss function are

L1 =
n∑

i=1
|θi | and L2 =

n∑
i=1

θ2
i . (2.3)

Regularization can also be achieved by perturbing the training data with

noise or data-dependent alterations. For example, images can be rotated,

sheared, cropped or resized and audio examples can be changed in speed

or pitch. These perturbations need to be applied carefully to still retain

realistic inputs for the given target.

20 CHAPTER 2. BACKGROUND

Perturbations can also be applied to hidden layers of the network, again,

for example, by adding noise to activations. Dropout is a related techniques

that deactivates random neurons by setting their activations to 0. These

approaches prevent that the model can rely on specific parts of the network

or exact values of activations.

Finally, memorizing the training examples typically only occurs when train-

ing for many epochs because the DNN is trained on the same examples mul-

tiple times. Stopping the training earlier in training is therefore a common

approach for regularization and is correspondingly called early-stopping.

Loss Function Extensions

Loss functions are not limited to the aforementioned cross-entropy and

MSE. Any differentiable function that compares the output of the DNN

to a target is usable. When using unbalanced data sets in classification,

underrepresented classes can suffer from poor performance using regular

cross-entropy. To counteract this, it is possible to weight the loss function

such that prediction errors are higher penalized for rare classes. Further,

loss functions often comprise different components, for example, one loss

that penalizes prediction errors and one regularization term. Such multi-

component losses are useful to optimize multiple targets simultaneously

but need careful balancing of the strength of each component’s influence.

2.2.2 Evaluation

If a model is not able to learn the training data, we speak of underfitting.

However, often also the opposite happens and DNN memorize training

data, which is referred to as overfitting.

Detecting underfitting is straight-forward from observing that the loss on

the training set is not decreasing enough. Avoiding underfitting typically

involves changing the model architecture, improving the loss function or

testing for errors in the training data.

Overfitting, on the other hand, can only be detected if there is a data set

available which the model has not been trained on. Therefore, it is unusual

to train DNNs on all available data. Instead, we split the data set into

three sets. The first is a large training set, which is used to train the model.

2.2. DEEP LEARNING 21

Second, we use a smaller validation set for optimizing hyperparameters

like architecture, learning rate and regularization. Both of these data set

parts are directly or indirectly used to optimize the model and hence not

suitable for evaluation on unseen data. Therefore, a third small set of data

is kept to only use it for evaluating the final model performance. All three

data sets need to be disjunct and optimally they should not be from the

same distribution. For example, if there is much redundancy in a data set,

creating a random split of training, validation, and test data is not suitable

to obtain independent sets of examples. In this case, it is advised to choose

the data split based on knowledge about the data. For example, taking the

training, validation and test examples from different conditions.

Using the data split, evaluation during training is performed with the train-

ing and validation data. Training data performance indicates whether the

model learns well enough. The validation data set indicates whether it

overfits on the training data. A learning process in which the training per-

formance increases while the performance on the validation data stagnates

or even decreases indicates overfitting. Based on the relation of the per-

formance on the two sets, the model can be improved, for example, by

stronger regularization in the case of overfitting. Finally, if the model is

optimized like this, the test set performance is reported as measure of how

well it generalizes to unseen data. Figure 2.4 shows idealized training and

validation accuracy curves in the case of underfitting (low accuracy), over-

fitting (only high training accuracy) and a well-generalized model (both

validation and training accuracy are high).

ac
cu

ra
cy

training step training step training step

underfitting overfitting good generalization

ac
cu

ra
cy

ac
cu

ra
cy

training accuracy validation accuracy

Figure 2.4: Illustrations of training and validation accuracy curves when a model
is underfitting, overfitting or learning to generalize well.

22 CHAPTER 2. BACKGROUND

As already indicated in Figure 2.4, evaluation metrics do not need to be the

loss function. On the contrary, often we use a loss function because we

need a differentiable target value but are interested in another performance

metric. Most commonly, in classification, we are interested in measures

of accuracy, precision and recall. As they are not differentiable, we train

the model with cross-entropy but measure the final performance during

evaluation with the actual target metric. Further, it is common to not only

report global evaluation metrics like the accuracy over all test data exam-

ples, but also investigating performance on data subsets. For example, the

performance for individual predicted classes can be reported and confu-

sion matrices can indicate which classification errors are frequently made

by the model.

Typical model evaluations focus on metrics, either directly via the loss

function value or non-differentiable evaluation metrics like accuracy. This

evaluation gives information that a model performs the task but does not

reveal how the model solves the task. This shortcoming of evaluation is

tackled by model introspection techniques that are described in Chapter 3

and which is also a focus of this thesis.

2.2.3 Architectures

DNNs can be built from a variety of components. We will explain the most

commonly used architecture components in the following paragraphs.

MLPs

The simplest DNN architectures are Multi-Layer Perceptrons (MLPs) which

are composed of several fully-connected layers (as shown in Figure 2.3). As

the name suggests, fully-connected layers connect every neuron of a layer

with every neuron in the succeeding layer. MLPs have, in theory, a high

capacity to learn tasks due to their large number of trainable parameters.

However, in practice, the same property complicates the learning process

for larger models or difficult learning tasks. Therefore, MLPs are rarely used

for practical real-world applications. Nevertheless, fully-connected layers

are an important building block in many architectures. For example, the

output layer of classification model requires a fixed amount of neurons

which is commonly implemented by a fully-connected output layer.

2.2. DEEP LEARNING 23

CNNs

MLPs are wasteful in terms of parameters and, additionally, for detecting

a particular pattern in different positions of the input, they need to learn

it for each position separately. Convolutional Neural Networks (CNNs), in

contrast, can detect patterns independent of their position in the input by

convolving the input with trainable filters. This means, instead of applying

different weights for each position, they learn small sets of weights that

are applied across the entire input. The receptive field of a filter describes

the region in the input that is used to compute a single output value of the

convolution layer. The receptive field of filters in deeper layers are com-

posed of the receptive fields of the connected positions in previous layers.

Correspondingly, the receptive field of the output layer is the part of the

input that is used for one prediction, up to the entire input in classification

tasks. An illustration of the convolution operation for one filter and in a

DNN setting where layers comprise multiple channels to convolve over

with individual filters are shown in Figure 2.5.

Convolutions are typically applied to consecutive regions in the input. For

reducing the resolution of the output, convolution can be applied with

a stride of s, meaning that it is applied to every sth region. To increase

the receptive field without adding layers or increasing filter size, dilated

convolutions can be used. These filters are not applied to adjacent positions

in the input but only to every d th position, depending on the dilation rate

d . This means, the receptive field is larger but not every position in this

larger receptive field is processed in one convolution operation.

The output of applying one convolution filter to the complete input is

called a feature map [45]. Each position in a feature map is a neuron of the

CNN, but due to the convolutional architecture not every pair of neurons

in subsequent layers are connected. This sparse connectivity and weight

sharing allows CNNs to perform tasks with substantially fewer parameters

than MLPs with fully-connected layers. CNNs are particularly suitable

for data in which features are spatially or temporally related, for example,

images or sequential data. Depending on the dimensionality of the data,

convolution filters can be used in different dimensionality as well. For

example, images are commonly processed with two-dimensional filters

and one-dimensional filters are better suitable for sensor signal processing.

24 CHAPTER 2. BACKGROUND

input
[#, 𝑥, 𝑦, 1]

feature map
[#, 𝑥 − 1, 𝑦 − 1,1]

weights
[2,2,1,1]

convolution for
one 2×2 filter 1 2 4 0

0 1 2 2

0 0 5 2

0 0 1 8

9 18 14

2 21 14

0 13 38

weighted sum

2 2

0 3
⊙ = 2 4

0 3
!

(a) The convolution operation visualized for one filter. The output in one position is
computed as a weighted sum of a window in the input with the convolutional filter, as
highlighted in orange for one exemplary window.

input
[#, 𝑥, 𝑦, 2]

feature map
[#, 𝑥 − 1, 𝑦 − 1,1]

convolution layer
with 2×2 filters

+
weights
[2,2,2,1]

(b) A convolutional layer with two input channels and one output channel. For each
input channel, a convolution operation like in Figure 2.5a is performed and the sum over
these results is used as a output in the output channel. There is a learned filter for every
input-output-channel pair.

Figure 2.5: Illustration of convolution. Blue shades indicate input channels and
green indicate output channels. Yellow indicates the input and outputs areas
affected by one convolution. For one operation, an area of the input channel of
the same size as the convolutional filter is affected and produces a single output
value.

The output of a convolution is smaller than the input because for each

applied window, only a single value is computed. In DNNs, it is some-

times desired to not change the dimensionality when using a convolutional

layer. Therefore, convolutions can be performed with different padding

modes. This means, before applying the operation, the input is enlarged by

appending values (typically zeros) at the beginning and end of the input

dimensions. Valid padding mode refers to not using padding and has the

advantage that only values from the input data are used in the convolution.

Same padding mode increases the input size such that the output size is

equal to the size of the original image. It is typically used if the size of the

feature maps has to remain constant, for example, if they are supposed to

be concatenated. Finally, full padding aims to guarantee that every input

2.2. DEEP LEARNING 25

position is visited by the convolutional filter the same number of times.

However, in practice, it is uncommon to use full padding as the gained

information is rarely improving the performance of models.

RNNs

While CNNs can process sequential data, it is difficult to process sequences

of variable length. Moreover, they are limited to their receptive field to

make a prediction. A neural network type that is able to process sequences

of a variable length while using information from the entire sequence to

produce an output are Recurrrent Neural Networks (RNNs).

RNNs are characterized by a recurrent connection in their hidden or out-

put layer. This means that there is a regular neural network structure for

each element in the sequence, which applies the same weights to every

element. In addition, there are recurrent connections of layers such that

… …

…

…

same-length
input and output

sequences

variable-length
input and output

sequences

computation graph
unrolled

computation graph

decoder

encoder

𝑜

ℎ

𝑥

ℎ!"# ℎ!ℎ!"$

𝑥!"# 𝑥!𝑥!"$

ℎ$ ℎ# ℎ%

𝑜$ 𝑜# 𝑜%

𝑐

𝑥!&$𝑥!"$ 𝑥!

𝑜!&$𝑜!"$ 𝑜!

ℎ!&$ℎ!"$ ℎ!

Figure 2.6: RNN architectures with one hidden layer h (gray) visualized for tasks
where input x (green) and output o (orange) sequences are of same length and
of different lengths. Variable-length requires an encoder that outputs a single
context vector c (blue), which is used as input for a decoder.

26 CHAPTER 2. BACKGROUND

the representation of one sequence element influences the succeeding ele-

ment (or the other way round). Figure 2.6 shows conceptual illustrations of

RNN architectures. RNNs that process sequences where the output has the

same length as the input can predict one output element per input element.

For input and output sequences of different length, the input sequence is

encoded by a RNN into a single context vector (encoder) which is then used

as an input to a second RNN (decoder) that predicts the output sequence.

Either the context vector is provided to the first step of the decoder only

(solid arrow from c in Figure 2.6) or as a constant input to every decoding

step (dashed arrows from c in Figure 2.6).

Despite their architectural capability of accessing information from the

entire sequence, hidden layers need to simultaneously perform a prediction

task and the sequence memory task which is difficult to optimize. There are

RNNs-specific building blocks that circumvent this problem by separating

these two tasks into hidden state connections and a separate cell state that

is carrying information about the sequence. For example, this involves Long

Short-Term Memory (LSTM) cells [55] and Gated Recurrent Units (GRUs)

[21].

Transformer

More recently, a architecture called Transformer has gained huge popularity

[186, 30, 31, 14]. Like RNNs, Transformer models are suitable for processing

sequences of variable length. However, instead of recurrent connection,

they use attention mechanisms which allow the model to specifically learn

which elements of the sequence to use information from. In particular,

they use a so-called (multi-head) self-attention mechanism where the input

data itself is used to determine which part of the input to use for further

processing. This allows the model to learn complex relations between the

elements in the sequence and use it to make predictions.

Other Building Blocks

In addition to layers, the choice of applied activation function can be con-

sidered an architectural choice, as well. While some layers require partic-

ular activation functions to work correctly, for example, output layers in

classification that need sigmoid or softmax activation, other layers can gen-

2.2. DEEP LEARNING 27

erally use any (or no) activation function. There is a wide range of activation

functions of which very popular ones are the Rectified Linear Unit (ReLU)

and similar functions like leakyReLU or eLU, or sigmoidal functions like

sigmoid and tanh [152].

There are also layers that apply functions without trainable parameters.

The most common example are pooling layers, which are typically used

in CNNs to reduce the dimensionality of feature maps and to introduce

some translation invariance. Pooling layers apply an aggregation function

like averaging or obtaining the maximum value in a small sliding window

across the input, similar to convolution, as illustrated in Figure 2.7. Pooling

can also be applied globally to aggregate feature maps to a single value for

further processing, for example, to be able to use CNN models with inputs

of variable size.

pooling operation

1 2 4 0

0 1 2 2

0 0 5 2

0 0 1 8

2 4

0 8

aggregation
function

(min, max, average)

Figure 2.7: The pooling operation applies a non-trainable transformation to
feature maps in a CNN. Different aggregation functions can be applied. The
shown example uses maximum pooling with size 2×2 and stride 2. Blue and
orange indicate different exemplary input windows where the maximum pooling
is applied.

Connecting Building Blocks

The described building blocks of DNNs can be connected to each other

flexibly [179, 53, 62]. Different to the classical layer-wise structure, layers

that are not subsequent can also be connected by skip connections or resid-

ual connections. Multiple layers can also receive the same input to create

architectures that process data in different ways and later combine them

by, for example, addition or concatenation. The only important criterion

for purely backpropagation-based training is that the entire architecture

needs to represent a differentiable function.

28 CHAPTER 2. BACKGROUND

2.2.4 Transfer Learning

Training DNNs from scratch can be challenging when compute resources

are scarce or only few data are available. One common learning strategy

in such low-resource tasks is to make use of an existing pre-trained model

and adapting it to solve another task. This process is referred to as trans-

fer learning. The underlying idea of transfer learning is that similar data

share basic features but are differently combined in their specific context.

For example, while speech from different languages is different, there are

sounds that are shared in both languages. Therefore, features extracted by

a pre-trained model of one task can be re-used for a similar related task.

Very popularly, this is used for image recognition tasks. Trained on the

huge ImageNet data set which contains millions of images of thousand

different categories, several high-performing models are openly available.

These models can be used, excluding their top classification layer(s) as a

feature extractor. The outputs of this stack of layers can be used as input

for a smaller classification network to learn another image recognition task.

This way, only few layers need to be trained and correspondingly fewer data

examples are necessary for good model performance.

Often, the feature extractor weights are used without changing it during the

transfer learning process. Setting these layers to have non-trainable weights

is commonly called “freezing” the layers. However, it is also possible allow

training of these layers and fine-tune the entire model. To prevent that

the pre-trained layers unlearn information in the beginning of the transfer

learning, it is common to first only train the classification layers with frozen

feature extractor layers and then start the whole-model fine-tuning.

Unsupervised pre-training (compare Section 2.1.2) can be considered a

type of transfer learning too. Instead of using layers of a pre-trained classi-

fier to extract features, the feature extraction layers are used from a network

that is trained unsupervisedly.

2.3 Dimensionality Reduction

Dimensionality reduction techniques project the high-dimensional data

into a lower-dimensional space while preserving most information. The

low-dimensional projection can be used for more efficient analyses or for

2.3. DIMENSIONALITY REDUCTION 29

visualizing data which has too many dimensions to visually inspect. Com-

monly used dimensionality reduction techniques are Principal Component

Analysis (PCA) [60], t-Distributed Stochastic Neighbor Embedding (tSNE)

[185] and Uniform Manifold Approximation and Projection (UMAP) [116].

Figure 2.8 shows exemplary results of the three methods when reducing

differently complex data to two dimensions.

Principal Component Analysis (PCA) [146, 60, 66] is a traditional unsu-

pervised technique for dimensionality reduction. The method linearly

transforms the data points into a new coordinate system in which the new

coordinates are the principal components, which are typically obtained

from a Singular Value Decomposition (SVD) of the data matrix. The com-

ponents are ordered by how much variance they explain in the data, which

refers to how well the data distributes along the axis in the new coordinate

system. Therefore, commonly, the first and second principal component

are used for projecting the data into two dimensions because these ex-

plain most variance and therefore distribute the data maximally. However,

relevant information can get lost if it is not contributing enough to the

overall variation in the data. Moreover, because of the limitation to lin-

ear transformations, PCA is not able to project non-linear relations to the

two-dimensional space.

tSNE was first introduced by van der Maaten and Hinton [185]. Like PCA,

tSNE is an unsupervised algorithm but the projection is non-linear. tSNE

optimizes the pairwise similarities in the low-dimensional space to be sim-

ilar to those in the original high-dimensional data using a cost function.

To this end, it constructs probability distributions over pairs of high- and

low-dimensional data points, and minimizes the divergence between them.

The initial coordinates for tSNE can be randomly chosen or, for more sta-

bility, can be initialized with coordinates from PCA. tSNE is particularly

effective at preserving local structures. However, the global structures are

not preserved as well such that clusters of data can appear which are not as

distinct in the original data.

UMAP [116] is a recent non-linear dimensionality reduction algorithm.

Different to tSNE, UMAP is based on a mathematical framework called

Riemannian geometry. The algorithm assumes that the data points are

uniformly distributed in a Riemannian manifold or uniformly distributed

and the Riemannian metric is locally constant. It aims to approximate

30 CHAPTER 2. BACKGROUND

(a) Applying dimensionality reduction techniques to an already two-dimensional input,
more specifically, a picture of Otto von Guericke converted to a scatter plot, rotated by
225◦ clockwise. PCA is a linear transformation and, in the 2D case, only rotates the input.
tSNE and UMAP reproduce local similarities but the global structure is distorted.

(b) Reducing the dimensions of the MNIST test data. Each point represents a MNIST
example and is colored by the annotated class label. The dimensionality reduction is
applied to the flattened pixel values of the examples. As the data is high-dimensional
(784 dimensions), the non-linear techniques tSNE and UMAP are more suitable to find
clusters than PCA. However, as indicated in the two-dimensional example in Figure 2.8a,
they represent local structures better than global relations.

(c) DNN activations in a CNN trained on MNIST reduced to two dimensions. There are 8
dots for each feature map, activated by one out of 8 random input examples. The dots are
colored by the respective example. All three techniques identify clusters of activations
by the same example. In the PCA visualization they appear as linear clusters. tSNE and
UMAP show multiple small example-specific clusters and one large dense mixed cluster.
The focus on local similarities leads to a better distribution of points for tSNE and UMAP,
but does not necessarily represent global structures well.

Figure 2.8: Results of performing dimensionality reduction for different inputs.

2.3. DIMENSIONALITY REDUCTION 31

the topological structure of the data by constructing a low-dimensional

representation that preserves both local and global structures, which is why

the authors claim that UMAP preserves the global structure better than

tSNE. However, there is also counter-evidence by Kobak and Linderman

[80] who showed that, given the same initialization, UMAP does not per-

form substantially better than tSNE. Moreover, UMAP is preferred over

tSNE for very large data set as it is computationally more efficient.

Both tSNE and UMAP have several parameters that can heavily influence

the results. tSNE can be varied in perplexity, learning rate and the number

of iterations. Parameters of UMAP are the number of neighbors and the

minimum distance of points in the low-dimensional representation. Be-

cause of this dependence on parameter choices, it is recommended to not

rely on findings from the two-dimensional representations but to validate

them in the high-dimensional space.

Comparing the exemplary results in Figure 2.8, we see that tSNE and UMAP

show better distributed and more clustered structures than PCA. This al-

lows to interpret local similarities. Drawing conclusions about global re-

lationships should be avoided, though. This is particularly visible in the

two-dimensional examples in Figure 2.8a. Although there is a perfect rep-

resentation of the input in two dimensions, tSNE and UMAP only recover

local similarities, for example, the eye, nose, hair and tie, but distort the

global structure such that the shape of the head is barely recognizable. We

also observed tSNE and UMAP results in which the points belonging to the

eye occurred outside of the head. On the other hand, in high-dimensional

data, global structures are more complex and difficult to represent in two

dimensions. Therefore, as visible from Figures 2.8b and 2.8c, PCA does not

reveal clear clusters of related MNIST classes or input examples, respec-

tively, in contrast to tSNE and UMAP.

In summary, to project high-dimensional data to two dimensions, tSNE

and UMAP are the most suitable methods. However, it is important to

not rely on global relations between the data points. We consider the two

techniques to be similar in terms of the quality of the results, particularly

because the choice of parameters strongly affects the algorithms’ outcomes.

From this perspective, UMAP can be considered favorable compared to

tSNE because it is computationally more efficient. This makes it better

applicable the higher the dimensionality of the data is and, for individual

32 CHAPTER 2. BACKGROUND

results, it allows to optimize parameters over multiple runs in the same

time as computing one tSNE projection.

2.4 Audio Processing

Processing audio data with ML model typically requires preprocessing

steps. For recording audio, a microphone detects vibrations in the air.

Their amplitudes are digitally stored and represent the raw audio data as

a so-called waveform (Figure 2.9a). The vibrations have a high frequency,

therefore, a large number of amplitudes per second needs to be stored to

properly represent the acoustic input. This number is described by the

sampling rate. Figure 2.9a shows a recording with originally 22050 Hz

sampling rate which was downsampled to 16000 Hz. This means, in the

shown time frame of 2 s, a sequence of 32000 amplitude values is visible.

To make it easier for an ML system to process this data, it is common to

convert the audio waveform into a more suitable format.

In particular, the spectrogram representation is very popular for process-

ing audio with ML models [125]. A spectrogram is a representation that

describes which frequencies are present in the audio signal over time. To

create a spectrogram, a mathematical operation called Fourier transform is

applied, which, for a given segment of audio, detects which frequencies it is

composed of [136]. For obtaining information about how the frequencies

change over time, the Fourier transform is not applied to the entire se-

quence but to small overlapping time intervals of the sequence. The length

of these intervals is defined by the window size parameter and the overlap

can be controlled by setting the hop size as temporal distance between

two consecutive windows. This window-wise application is also called

Short-time Fourier transform (STFT) [161]. From this approach, we obtain

information about which frequencies are present over training time, that is,

the spectrogram representation shown Figure 2.9b.

This spectrogram shows the amplitude of the respective frequency as posi-

tive and negative values but the sign of the value is not important. There-

fore, the power is computed as the square of the values to obtain a power

spectrogram (Figure 2.9c).

2.4. AUDIO PROCESSING 33

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
time (s)

0.1

0.0

0.1

am
pl

itu
de

(a) Waveform.

(b) Spectrogram. (c) Power spectrogram.

(d) Mel spectrogram. (e) Log mel spectrogram.

Figure 2.9: Overview of different audio data formats.

The linear frequency scale in regular spectrograms has the disadvantage

that signals from natural speech are overrepresented in the lower frequency

ranges, as visible in Figure 2.9c. Therefore, it is useful to adjust the fre-

quency scale such that lower frequencies are considered in a higher resolu-

tion than higher ones. Using knowledge about natural speech, this can be

achieved by using the mel scale [147]. By converting a the power spectro-

gram into a mel spectrogram, we see that the relevant information is now

better emphasized (see mel spectrogram in Figure 2.9d).

34 CHAPTER 2. BACKGROUND

Still, the power values in the mel spectrogram are typically concentrated at

lower power values. This means there are many small values and only few

high values. To improve the contrast in these low power regions of the scale,

a logarithm is commonly applied to the mel spectrogram, leading to a log

mel spectrogram shown in Figure 2.9e. In this final log mel spectrogram,

we can nicely see log power values across the entire time and mel frequency

range. This more structured format of a log mel spectrogram is finally used

as input to the ML model.

It is noteworthy that converting the audio to a spectrogram is not lossless.

Firstly, the Fourier transform results in complex-valued outputs whose

imaginary part is typically neglected. Secondly, several processing steps are

not invertible, like computing the squared value of amplitudes or binning

frequencies when converting to mel frequencies. In practice, spectrograms

are very informative about the original input. However, they are less suit-

able when there is a need to recover information from the original audio.

2.4.1 Speech Annotations

Speech data are audio recordings of human speech. There are a wide range

of applications for processing speech with ML, like speaker recognition [49],

voice assistant systems [61] or ASR [195]. Here, we particularly focus on ASR

which is a transcription task from natural speech to a textual representation

of the spoken content of the speech.

Intuitively, ASR is used for dictation tasks to obtain a written text of what

a speaker says in the recording. In natural speech, it is impossible to ex-

actly associate every individual letter to the sound within the spoken word

because multiple letters can compose a single sound. Consider the word

‘though’, in which the letters ‘ough’ are pronounced as one sound. Moreover,

such mapping is difficult to obtain because the same letter combinations

can be pronounced differently, consider for example, the letters ‘ough’ in

the words ‘though’, ‘tough’ and ‘through’. Therefore, a data annotation of

individual letters to specific time steps in a recording is not possible. An-

notations of the spoken words can be provided for each word, that means,

as information about which word is spoken in which time frame. More

commonly, an entire sentence or text is provided for a longer recording of a

2.4. AUDIO PROCESSING 35

person who reads this text. This missing alignment from letters to the input

data is a challenge for supervised ML training.

eh ehkclkcl s s s s r r ey ey ey ey f f f f ih ih ih l l m m m z z z
phoneme annotation

8.0
6.0
4.4
3.3
2.5
1.8
1.4
1.0
0.7
0.5
0.2

fre
qu

en
cy

 (k
Hz

)

Figure 2.10: Mel spectrogram from the TIMIT data set including the phoneme
annotations for every time step. The audio shows the spoken words ‘X-ray films’.
Note that, in the visualization, the time dimension is stretched by a factor of 4
to allow for readable axis labels. That means, one ‘pixel’ in the plot is 4 times as
wide as high.

Alternatively, ASR can also be performed for a phonetic transcription. This

means, instead of predicting letters, the sequence of sounds is predicted. To

describe sounds, there exist phonetic alphabets which are sets of symbols

that describe common sounds, typically in an individual language. The

symbols used to describe these sounds are called phonemes. One popular

alphabet is the International Phonetic Alphabet (IPA) [94] but there are

different alphabets available, for example, CMUDict [23] or ARPABET [167].

An extension of the ARPABET is used in the TIMIT dataset [79], which we

use in this thesis. In contrast to letters, phonemes can be associated with

certain time frames in an audio recording because they describe sounds.

Figure 2.10 shows an exemplary mel spectrogram from the TIMIT data set

and the phoneme annotation for each time step. The entire sequence is

additionally annotated with the letter transcription ‘X-ray films’.

2.4.2 Automatic Speech Recognition

In this work, we use convolutional ASR, and therefore focus on background

about this approach. Usually, for two-dimensional data like images, CNNs

with two-dimensional filters are used. As speech is a one-dimensional

36 CHAPTER 2. BACKGROUND

signal, 1D CNNs are a suitable choice in speech processing. A 1D CNN can

operate directly on a waveform or on a spectrogram [76, 77, 82]. Further, for

operating on one-dimensional data, CNNs with one-dimensional filters are

preferred over 2D CNNs because of the lower computational complexity

[77]. Using CNNs for speech recognition is not uncommon [70, 20] but

is often combined with models from traditional ML or other DL models.

For example, such hybrid models involve Hidden Markov Models [2, 164]

or RNNs [184]. Besides ASR, CNNs are also used for other speech-related

tasks, for example learning spectrum feature representations [25] or speech

emotion recognition [10].

Nevertheless, ASR can also be performed by other model types like RNNs

[108] or LSTM [139]. More recently, there are successful ASR systems based

on the popular Transformer architecture [72, 37]

Often, ASR models are not used in isolation to produce a good transcription

but the output is refined by knowledge about natural language [28]. For

example, DNNs that are trained to learn structure of language, so-called

language models, can be applied to the output of an ASR model to correct

spelling mistakes or grammatical errors [93].

2.5 Electroencephalography (EEG)

In this work, we take inspiration from how neuroscience analyzes and

visualizes brain activity. Specifically, we adapt two approaches from EEG

data analysis. EEG is a technique to measure the electric activity of the

brain [106]. To this end, several electrodes are placed on the scalp, typically

as a cap such that the electrode locations are at specified positions of the

head (illustrated in Figure 2.11 left). Neurons in the brain communicate

via small electrical signals, which are detected and amplified by the EEG

electrodes on the scalp. The measured EEG signals are therefore a sequence

of electrical signals at each of the electrodes.

In simplified terms, the brain activity can then be visualized by projecting

the measured activity at each electrode to a schematic top-view of the head,

indicating the activation strength by different color values, like shown in

Figure 2.11 on the right. This visualization is called a topographic activation

map [113]. In reality, this mapping is not directly possible because the

2.5. ELECTROENCEPHALOGRAPHY (EEG) 37

electrode locations brain activity as
topographic map

Figure 2.11: Brain activity visualization with EEG. The left image indicates the
positions of the electrodes. On the right, the measured brain activity is mapped
to the electrode locations and interpolated in the regions without an electrode.

measured values contain a lot of noise. Because EEG is a non-invasive

techniques where the electrodes are placed on the outside of the head, there

is much signal interference from the skull and the neurons themselves. In

addition, the brain processes many signals at the same time which makes

it difficult to isolate, what task or sensory stimulus the recorded activity is

associated with.

To obtain informative EEG measurements, the Event-Related Potentials

(ERPs) technique is commonly used [112]. ERPs aim to isolate activity

that is related to a certain event, also called a stimulus. To this end, EEG

recordings are repeated multiple times for the same stimulus, called trials.

The multiple recordings across the trials are then averaged. Due to the

alignment at the stimulus, variations that are introduced by measurement

noise or by activity that is not related to the stimulus are removed by the

averaging. An illustration of the ERPs technique is shown in Figure 2.12 By

applying this approach to all electrode locations, we obtain denoised event-

related activity which can then be projected on the top-view representation

of the head as in Figure 2.11.

38 CHAPTER 2. BACKGROUND

averaged signal

time after stimulus (ms)

stimulus

measurement 1

measurement 2

measurement n 0 400200 500100 300

µV

+

−

Figure 2.12: The Event-Related Potentials technique. EEG recordings across
multiple trials for the same stimulus are averaged to obtain a stimulus-specific
activation. Each individual measurement contains a lot of noise due to measur-
ing the neural activity from outside the skull and due to the brain performing
many processes simultaneously. Averaging multiple measurements for the same
stimulus removes the noise while the consistent activity related to the stimulus is
retained. The figure illustrates multiple measurements of a single electrode and
the averaging result. In practice, this approach is applied to measurements of all
electrodes, respectively.

3
Related Work

This thesis addresses the topic of DNN model evaluation. While basic

evaluation techniques as described in Section 2.2.2 focus on whether the

model performs well, our aim is to further understand better how it solves

its task.

Model introspection is the process of analyzing or visualizing internal

structures or processes of computational models. This is of particular

interest in DL models as these work as black-boxes [194]. Research on

elucidating DL model internals has gained traction recently and several

introspection techniques have been proposed. However, most research is

done in the field of computer vision due to the ease of visual inspection of

image data [196, 162, 9].

In this chapter, we introduce relevant research in the field of DL model

introspection and how this thesis relates to existing work in this field.

3.1 Terminology

Commonly, techniques that provide insight into structures or processes in

DNNs is also referred to as explainable Artificial Intelligence (XAI) [59]. The

term indicates that methods in this field of research lead to models that

are better explainable. However, this is not the case for many techniques,

including this thesis, that aim to provide means to interpret models that

are not explainable themselves. We prefer to use the term ‘introspection’

because it reflects better that we provide insights into the model without

making it inherently more explainable. In psychology, introspection refers

to accessing one’s own thoughts and feelings. From this perspective, the

term is still not optimal for a analysis of DNNs performed by a person.

39

40 CHAPTER 3. RELATED WORK

Based on the difference between implementing inherently more explain-

able models and explaining black-box models after they are trained, two

research directions can be distinguished. Ante-hoc methods address creat-

ing models that perform their task in a human-interpretable way. Post-hoc

introspection applies methods to inherently not interpretable models to

gain insight into how they solve their task. In this thesis, we focus on

post-hoc techniques.

In the following sections, we present different approaches on performing

post-hoc model introspection. Commonly, these techniques are grouped

by their scope [120]. According to their scope, introspection techniques can

be categorized as local or global. Local methods explain single decisions

and global approaches aim to explain a model comprehensively. However,

the boundaries are not clear. On the one hand, analyzing results of local

methods for many examples can give more global information about the

model. On the other hand, global approaches that are applied to only

parts of a model, for example a layer, are not data-dependent but also not

entirely comprehensive. As the categorization by local and global scope is

not always clear, we choose to group the techniques by commonalities of

their approaches.

3.2 Inspecting Model Weights

A simple way of inspecting internal structures of a DNN is to visualize its

learned weights. In fully-connected neural networks, each neuron in the

first hidden layer is connected to all values in the input. To inspect the

pattern that a particular neuron in this layer responds to, the weights of

these connections can be visualized. To this end, the weight values are

plotted according to the position of the corresponding values in the input

[140] (Figure 3.1a). For image data or spectrogram inputs, the weights can

be visualized as image, too (Figures 3.1a and 3.1b). In time-series data

like speech recordings, weight visualization follows the one-dimensional

structure of the input. In deeper layers, neurons receive input signals

from neurons in the preceding hidden layer, however, neurons within

the same layer are not interconnected and therefore have no informative

ordering. Hence, in deeper layers, plotting the connection weights cannot

be interpreted by visual inspection.

3.2. INSPECTING MODEL WEIGHTS 41

(a) MLP. (b) 1D CNN. (c) 2D CNN.

Figure 3.1: Weight visualization for different models. All subfigures use a 0-
symmetrical color scale from blue over white to red. The range of the color
scale is chosen for each subfigure individually. (a) Weights in the first layer of a
MLP trained on MNIST. Each subfigure represents the connections of all input
neurons to one particular output neuron in the first layer, reshaped to the size
of the input 28×28 px. It is possible to interpret some features, like particular
strokes at digit-specific positions. For example, the bottom weights might detect
the upper left curved stroke of an eight. (b) 1D-convolutional filters in the first
layer of a spectrogram-based ASR model. Each figure represents all filters stacked
on top of each other, in the same order as the input channels. This ordering
allows to identify patterns in the weights. For example, the top set of filters might
detect changes of pitches in certain frequencies (diagonal shapes) and the other
two detect changes across all frequencies, typical for certain sounds like a “t” or
transitions from silence to a spoken word. Note that the filter size is relatively
large with 48 time steps. Smaller kernel sizes would be more difficult to visually
interpret. (c) Different 2D-convolutional filters in a CNN trained on Cifar10. The
small size strongly limits the possibility of interpreting their function.

42 CHAPTER 3. RELATED WORK

In CNNs, weights are applied as convolution operations with usually very

small filters. For example, 3×3 is a common size of filters in 2D CNNs.

For such small filters, it is almost impossible to understand their learned

features only by visual inspection of the plotted weights (Figure 3.1c). In

some cases, if the filters are large enough or if information can be con-

nected between the channels, there is the possibility of interpreting the

information, like for the shown 1D CNN example in Figure 3.1b.

3.3 Inspecting Model Activations

As visualizing weights in most CNNs, and generally in deeper layers, is

not interpretable, activations can be visualized instead. In CNNs, the ac-

tivations are arranged as feature map which can be interpretable to some

extent, as shown in Figure 3.2c. Each position in the feature map only

shows how strongly this convolutional filter activates for the corresponding

region of the input. Therefore, feature maps only reveal to which part of

the input a filter is responding but do not visualize the pattern which this

filter detects [194]. However, with increasing depth, feature maps become

more sparse as the detected patterns become more complex such that they

also are not directly interpretable anymore, as illustrated in Figure 3.2d.

In other model types like MLPs or 1D CNNs, activations are generally not

interpretable by plotting them as shown in Figures 3.2a and 3.2b.

3.4 Feature Visualization

A common way for visualizing the features learned in deeper layers is to

create an input which maximally activates individual neurons or sets of

neurons [194, 33, 124]. Such input is obtained by an optimization pro-

cedure similar to the DNN training. When training a model, parameters

of the network are updated to decrease the prediction error. For feature

visualization, input values are updated to increase the activation values

of a target set of neurons. In CNNs, complete feature maps are typically

used as the target set of neurons. For brevity, we refer to the obtained in-

puts as “optimized inputs”. Optimized inputs can differ substantially from

instances in the training data, making them difficult to interpret. For a

human, optimized inputs of images often look unrealistic, as in the basic

3.4. FEATURE VISUALIZATION 43

MLP

neurons

(a) MLP.

1D CNN

1D feature maps

(b) 1D CNN.

2D CNN

2D feature maps

(c) 2D CNN.

input image feature maps
deep layer

feature maps
early layer

(d) 2D CNN feature maps in different layers. Early layer feature maps still resemble
shapes that allow to interpret some detected features. Deeper layers activate for
more complex features such that only the location, where it is detected, is visible.

Figure 3.2: Activation visualization for different models (a – c) and in different
layers of a 2D CNN (d). Feature maps of (d) use a different color map to emphasize
the focus on layers instead of models. (a) Neuron activations in a MLP trained on
MNIST. There is no spatial relation between the neurons and the image, therefore,
it is impossible to obtain useful insight by visual inspection. (b) 1D feature
maps in a 1D CNN that processes spectrograms of audio data. They allow for
interpretation based on temporal relation, for example, that some feature maps
activate for silence and others for time frames with sound. (c) 2D feature maps in
a 2D CNN trained on Cifar10. The spatial relation to the input allows to connect
the active positions to the detected pattern. For example, the first feature map
seems to detect vertical edges and the second one might activate for brown color.

44 CHAPTER 3. RELATED WORK

feature visualization shown on the left in Figure 3.3a. In the speech domain,

optimized inputs often do not sound like natural speech or do not look like

spectrograms of natural speech [85, 86], as shown in Figure 3.3b.

Regularization This problem can be tackled by applying regularization

techniques to the optimization. Regularization adds constraints which, in

addition to increasing activation of neurons of interest, encourage the opti-

without
regularization

frequency
penalization

transformation
robustness

(a) Feature visualization for an image recognition model with and with-
out regularization. Regularization techniques help to obtain more
natural patterns in comparison to an unregularized maximization of
activations. Created with Tensorflow lucid [137, 158].

early
layers

deeper
layers

(b) Feature visualization for an ASR model in different layers with frequency penalization.
While in early layers, patterns resemble patterns of spectrograms, the visualized features
in deeper layers are highly unnatural.

Figure 3.3: Feature visualization results for exemplary data modalities.

3.4. FEATURE VISUALIZATION 45

mized input to be more similar to natural data. For example, natural data

typically has few high-frequency information. To avoid such patterns, the

optimization can be regularized with a L1 regularization (compare Equa-

tion (2.3)) or adding blur to the inputs during optimization. Figure 3.3a

shows an example of an optimized input with applying such so-called fre-

quency penalization. As another example, the activation of the neuron that

is supposed to be maximized should not depend on the exact location of

the features in the optimized input. Hence, applying input transformations

during the optimization helps in generating more natural features. An

optimized input that is regularized by performing image transformations

is shown in Figure 3.3a on the right. Such weak regularization techniques

for frequency penalization [111, 132] and encouraging transformation ro-

bustness [124] are easy to implement but still tend to not look entirely

natural.

Stronger regularization techniques encourage optimized inputs to be even

more similar to data examples. The most basic approach is to identify

examples in the data that highly activate a certain neuron [177]. However,

this is limited to only showing existing examples. More flexibly, the dis-

tribution of the data can be learned with an unsupervised model like a

Generative Adversarial Network (GAN) [133], an AE [134] or, more recently,

diffusion models [47]. This learned distribution can be used as regularizer

in the feature visualization by penalizing if the optimized input deviates

from the learned distribution. Although stronger regularization leads to

more natural visualizations, they might not represent the learned features

well. For example, additionally minimizing the distance to a data example

encourages the optimized input to be more natural but makes it impossible

to detect whether a filter also reacts to unrealistic patterns.

Remarks Feature visualization can be considered a global introspection

approach as it describes the model behavior independent of a given input

example. However, as discussed before, the result only describes a part of

the model and is not describing the model behavior in its entirety.

There is a relation between feature visualization and a concept called ad-

versarial examples [44]. Both approaches optimize an input to change a

neuron activation. Adversarial examples aim to minimally alter an input

such that the output of the model changes. The target is to decrease the

46 CHAPTER 3. RELATED WORK

neuron activation of the correct output neuron. Feature visualization has

the opposite optimization target because its aim is to increase a particular

neuron’s activation.

3.5 Saliency Maps

The strategy of another type of typical introspection techniques is to ex-

plain how a prediction for a single input example is made. To this end, such

methods quantify how relevant each individual value in the input example

is for the prediction [33, 171, 196, 173, 162, 73, 160]. In this sense, they

are DL-specific successors of methods that measure feature importance in

ML, like Local Interpretable Model-agnostic Explanations (LIME) [153] and

SHapley Additive exPlanation (SHAP) [107]. LIME approximates a model’s

predictions with a linear surrogate model. To this end, the technique per-

turbs the input data, observes how these changes alter the output and uses

this information to estimate the input feature importances. SHAP assigns

importance by investigating different combinations of input features to

derive their individual contributions to the importance, adapted from the

concept of Shapley values [51] in game theory. While LIME and SHAP can

be applied to DNNs, their results are not easy to interpret as the techniques

are tailored towards interpretable input features like tabular data or texts.

DL, however, typically is applied to data with large numbers of individually

not interpretable features.

Focusing again on the DL-specific methods, they generally follow the strat-

egy of first computing feature importance values, also called relevances.

To visualize the obtained relevance values, they are commonly plotted as

heat map overlayed on top of the input, particularly for image(-like) data.

This heat map of relevance values is referred to as a saliency map [171]. An

example is shown in Figure 3.4.

There is no definite method to compute relevance because the black-box

nature of DNN models makes it impossible to exactly determine the corre-

spondence between individual input values and the output of the model.

Therefore, various techniques for obtaining relevance values for saliency

maps have been proposed. A simple saliency map can be obtained by

computing the derivative of the output value with respect to each input

value. The resulting relevance describes how sensitive the output value is to

3.5. SALIENCY MAPS 47

input saliency map
input with

saliency map

Figure 3.4: Saliency map for showing prediction-relevant parts of the input. The
saliency is computed by sensitivity analysis, that is, the gradient of the predicted
output (“plane”) with respect to each pixel value, using the absolute gradient
value. The saliency map is colored by a rainbow color map from blue to red (0
to maximum absolute value). Finally, the saliency map is superimposed on the
input, with transparency of absolute gradients of less than 0.3. The sensitivity-
based saliency map is noisy but it highlights meaningful parts of the object while
showing less prediction-relevance of the background.

changes of each individual value of the input. Accordingly, this approach is

called sensitivity analysis [33]. Other saliency map techniques, for example,

approximate to invert the network (deconvnet [196]), use a decomposi-

tion approach (layer-wise relevance propagation (LRP) [9]) or combine

sensitivity analysis with feature map activation (Gradient-weighted Class

Activation Mapping (Grad-CAM) [162]). In the following paragraphs, we

present common approaches to compute saliency maps. We provide exem-

plary saliency maps after the description of the techniques and refer to the

respective figures in the individual paragraphs.

Gradient-Based Saliency Maps Gradient-based saliency maps focus on the

gradient of the output class with respect to the input, with sensitivity analy-

sis [33] as the simplest approach. Variations, for example, mask negative

gradients during backpropagation (guided backpropagation [171]) to ob-

tain relevance values. “Gradient × Input” [168], as the name of the method

suggests, computes the element-wise product of relevances from sensi-

tivity analysis and the input values to emphasize relevance of high input

values. Integrated Gradients [175] does not only compute gradients for the

original input, but for multiple interpolations between a baseline (zeros

48 CHAPTER 3. RELATED WORK

or random noise). Then, it approximates the integral over the gradients of

these interpolated inputs as relevance values.

This category of saliency maps assigns relevance to every input value but is

often spurious and can therefore be difficult to interpret. A saliency map

created with Integrated Gradients is shown in Figure 3.5b as representative

example of this category. We see that while the relevances are related to the

features of the shown building, the saliency map is very noisy.

Perturbation-Based Saliency Maps While gradient-based techniques focus

on sensitivity of the output to small changes in input values, perturbation-

based saliency techniques apply larger changes to the input. Similarly,

they then determine the effect on the model’s output to obtain relevances.

For occlusion sensitivity [196], patches of the input are replaced by zeros

or random noise. Relevance is therefore obtained for an entire patch. To

obtain a higher resolution of relevance values, overlapping patches can

be investigated and the corresponding relevances merged together as a

saliency map. Of course, more overlap of the patches requires more time to

compute and can limit the method’s applicability when wanting to create

saliency maps for many examples. A generalized approach of occlusion

sensitivity is feature ablation, which is not restricted to patches but uses

combinations of individual features. However, for data with many features,

it is infeasible to sample a representative amount of combinations. Instead

of replacing the features with zeros or noise for occlusion, a set of input ex-

amples can be provided among which the features are permuted [39]. This

way, the features are changed to more realistic values but the relevances

are highly dependent on the choice of inputs.

We present an exemplary perturbation-based saliency map using occlusion

sensitivity with patch size of 25×25 px for an image of size 224×224 px

in Figure 3.5c. The salient regions appear reasonable but the patched

approach leads to inaccuracies, as visible by salient regions extending

higher than the top of the building because the patch included both the

important building feature and the sky on top of it.

Decomposition-Based Saliency Maps Another set of methods combine gra-

dient and activation information and aim to propagate values from the

output neuron backwards through the network. LRP [9] follows the idea

3.5. SALIENCY MAPS 49

of starting with a fixed total relevance (typically) at the final output neu-

ron of interest, then distributing this value backwards through the layers

depending on the activation and weights of the previous layer. There are

different rules in LRP that allow to customize how total relevance is dis-

tributed from one layer to the previous one. For example, this controls

whether to separately consider negative and positive influences and how to

weight both against each other. Deep Taylor Decomposition [122] follows a

similar concept as LRP but performs the decomposition (that is, the back-

wards distribution of relevances) using a Taylor series expansion. DeepLift

[169] propagates relevance back in a network by contrasting to a reference

output. This means, the technique requires to define a reference input

which is then used to explain differences in the output in relation to it. The

reference input is a neutral state, therefore, the focus shifts to differences

to an expected state. For example, in a set of input images with a common

background, an image of the isolated background is suitable as a reference

input. Due to the contrasting approach, DeepLift is then expected to de-

scribe the relevance without the less interesting contributions from the

common background.

In Figure 3.5d, we show an exemplary LRP saliency map. It has a high

resolution of relevant features that appear reasonable as they are related to

the building structure. However, it is not very specific about which exact

features might be relevant for the model. Note that, in contrast to the other

shown techniques, LRP obtains positive and negative relevance values.

Class Activation Map-Based Saliency Maps Thirdly, there are saliency map

techniques which primarily use activations of CNN feature maps as indica-

tors of relevance. Most popular are CAM-related methods that are based

on projecting feature map activations of a particular layer for a single in-

put example to the input space. The earliest variant of CAM [197] uses

feature maps immediately before the output layer. It computes a weighted

sum of these feature maps, with the connection weights from the feature

maps to the predicted output as weighting factors. Later, Grad-CAM was

introduced which, instead of the weights, used the average gradient of the

feature maps as weighting factor [162]. Further, they suggested to multi-

ply Grad-CAMs with the result from guided backpropagation to make use

of its higher-resolution information. Averaging the gradient over feature

50 CHAPTER 3. RELATED WORK

(a) Input example

(b) Integrated Gradients (c) Occlusion Sensitivity

(d) LRP (e) Grad-CAM

Figure 3.5: Saliency maps for a image classification created with different meth-
ods. VGG16 was used as a prediction model using ‘triumphal arch’ as the target
class. The LRP saliency map was created with code from the original authors
[121], the others using the tf-explain library [117]. The LRP saliency map is shown
with a 0-symmetric blue-white-red color scale as relevance values can be negative
and positive. All others use a color map blue-green-yellow-red from 0 to the max-
imum value. Gradient-based techniques like (b) Integrated Gradients typically
produce noisy saliency maps that might show details but are not easy to interpret.
Occlusion Sensitivity (c) and Class Activation Mapping (CAM)-based saliency
maps (e) are more easy to interpret as they highlight relevant regions instead of
individual values. Occlusion Sensitivity is less accurate as it observes patches
while CAM-based methods upscale feature maps. Decomposition approaches
like LRP (d) again focus on details but are less noisy than gradient-based methods.
However, in some cases, they can overemphasize individual features.

3.5. SALIENCY MAPS 51

maps in Grad-CAMs favors large over smaller features. To represent smaller

features better, the successor called Grad-CAM++ adjusts the weighting

depending on the size of the detected feature [19]. The aforementioned

CAM approaches assign weights for entire feature maps. To account for

the possibility that parts of different feature maps are relevant for the pre-

diction, LayerCAM performs Grad-CAM-like relevance computation for

every feature map position [65]. Moreover, LayerCAM proposes to combine

the saliency maps from different layers to represent coarse localization

information and detailed relevance simultaneously. Finally, Score-CAM is a

CAM approach that does not require gradients [189]. To compute weights

for feature maps, it first computes the feature maps for the example of in-

terest. Then, each feature map is used to mask parts of the input, occluding

parts for which the activation is low, and the model output is obtained for

this occluded input. The difference between the output scores of the origi-

nal input and the occluded input is used as the weight for the respective

feature map when computing the weighted average.

CAM-related methods are often considered visually pleasing due to their

smooth regions. These, however, are due to upscaling the activation from

the feature map size to the input size using interpolation techniques. There-

fore, the shown relevances in the saliency map can be not directly related

to the individual input values they are superimposed on. An exemplary

Grad-CAM saliency map is shown in Figure 3.5e. While the low level of

detail is beneficial for coarsely localizing prediction-relevant areas in the

input, it is difficult to draw conclusions about whether meaningful features

are used for the prediction.

Applicability of Saliency Maps to Audio Data Saliency maps are easy to

interpret if the input data are interpretable by visual inspection themselves.

Hence, they are suitable for image data but less applicable to sensor data

like speech or EEG recordings. Using spectrograms, it is possible to use

saliency map methods, too [11, 182, 149], as shown in Figure 3.6. However,

interpreting the results is only possible for experts with domain knowledge

about reading spectrograms.

52 CHAPTER 3. RELATED WORK

Figure 3.6: Saliency maps for spectrograms using sensitivity analysis and LRP.
Both methods highlight features of the input that relate to some speech features.
As in the general discussion of saliency maps, sensitivity analysis is rather noisy
and identifies many features as relevant while LRP is more specific but potentially
overemphasizes features.

Remarks As a local introspection technique, saliency map methods work

on single examples. This makes it hard to assess the model comprehen-

sively. Furthermore, methods for computing saliency maps need to be

chosen carefully as some can be misleading. Adebayo et al. [4] demon-

3.6. ANALYZING DATA SET REPRESENTATIONS 53

strate this issue by investigating how saliency maps change when setting

layer weights to random values. They found that, for some methods, the

explanations barely change even when completely randomizing network

weights. Similarly, Nie et al. [135] explained why backpropagation-based

visualizations can be weakly related to network predictions. Sixt et al. [172]

identified similar behavior of more recent methods for computing saliency

maps.

In this work, we use sensitity analysis-based saliency maps as a tool to

identify prediction-relevant parts of inputs. However, we only use it as an

auxiliary technique within our analysis pipeline.

3.6 Analyzing Data Set Representations

More comprehensive insight into DNNs can be provided by analyzing rep-

resentations of different classes using the complete data set. For example,

Alain and Bengio [6] train linear classifiers on intermediate representations

to quantify their representative power for the prediction. Such linear clas-

sifiers are the basis for the research of Kim et al. [71] who derived vectors

that represent user-defined concepts. Fiacco et al. [38] introduced func-

tional neuron pathways, which are co-activated sets of neurons identified

through PCA. Representational similarity can also be investigated through

Canonical Correlation Analysis (CCA) [123] or by clustering of class-specific

neuron activations [128]. In speech, the latter type of analysis was con-

ducted for MLPs for speech-to-phoneme prediction [128, 129, 127] and

convolutional ASR [85, 88].

Clustering-based activation similarity analyses can be visualized as cluster

maps, which are similarity heat maps that are sorted by a hierarchical

clustering, as shown in Figure 3.7 for an exemplary MNIST CNN.

Further, there also are several interactive tools to investigate representa-

tions and learned features. The What-If Tool [190] focuses on data with

interpretable features and provides several interactive visualizations to help

understanding the model performance and how predictions change when

altering features in a specific input. One main functionality, as the name of

the tool indicates, is the possibility of investigating “what if”-hypotheses.

An interactive visualization allows to see feature differences between out-

54 CHAPTER 3. RELATED WORK

Figure 3.7: Visualizing relations of groups by creating a cluster map based on
their activations for the classes of an MNIST CNN. Here, average activations over
all examples from the same class are computed and their similarity is computed
with a hierarchical clustering using Euclidean distance. White indicates identity
and darker shades of red indicate less similarity.

puts of multiple examples and, for a selected example, shows minimal

changes necessary to obtain a desired different prediction. The user can

also manually change feature values and visualize how this affects the

model prediction. Figure 3.8 shows the view of this interactive visualiza-

tion. However, the What-If Tool does not provide information about model

internals.

An activation atlas [17] is a visualization technique that employs feature

visualization in a more data-oriented way. There are two general method-

ological differences to feature visualization as described before. First, to

obtain targets (neurons, feature maps or layers) to optimize for, activation

atlases investigate which parts of a network are active for a specific input

example. Second, instead of maximizing the activation of the target, they

optimize an input such that the model shows activations that are similar

to those of the original input. This allows activation atlases to produce

3.6. ANALYZING DATA SET REPRESENTATIONS 55

Figure 3.8: Datapoint editor in the What-If Tool. It shows prediction scores
of earning more than 50 thousand dollars per year for multiple examples. We
selected a negatively classified entry close to the decision boundary and let
the tool show the nearest example that is positively predicted. The tool allows
to manually change features and shows the changes in the model prediction.
Created with the What-If Tool’s example notebooks [141].

Figure 3.9: Activation atlas for InceptionV1 representations based on a set of
natural images. The final activation atlas shows a grid of feature visualization
results. Each grid position represents a set of image patches that are nearby in a
two-dimensional projection (UMAP) of DNN activations of the patches. While
the visualized features are not entirely natural, it is possible to interpret some
categories. For example, bottom grid positions might represent buildings with
sky, plant features are visible in the left grid positions and some animal features
like snouts or eyes in the top regions. Figure taken from the original publication
[17].

56 CHAPTER 3. RELATED WORK

a visualization of which patterns learned by the models are used to per-

form certain predictions. Further, as relevant features do not always span

the entire input, they apply their approach on patches of inputs, in their

case, image patches. The activation atlas is created in a multi-local way.

Activations are obtained for patches of many images. A UMAP projection

(compare Section 2.3) is used to obtain a two-dimensional representations

of the patches according to their activation similarity. Next, they divide

this representation into an equally-spaced grid and compute the average

activations in each cell of the grid. This average activation is then used as

target activation values for the feature visualization approach. The final

activation atlas is then a grid-view of visualized features which represent

the activation space for a large number of data examples. An illustration of

the activation atlas computation process is shown in Figure 3.9. As visible

from the figure, activation atlases inherit disadvantages from the feature

visualization component. For image data, it is possible to interpret some

of the visualized features, but they are generally unnatural images which

complicates drawing conclusions about the model’s inner workings from

the results.

Summit [56] and Neurocartography [144] are related visual analysis tools

for inspecting features learned by a DNN and how they relate to each

other. Summit focuses more on the classes while Neurocartography is more

neuron-focused.

Summit [56] provides a high-level overview of how classes are related ac-

cording to their activations. To this end, they represent the images by

obtaining activations for each example, applying global max-pooling to the

feature maps and keeping the 3 % highest active feature maps to represent

the activity for this example. This aggregated activation information is

then used to project the classes to a two-dimensional space using UMAP.

Further, it provides a detailed view of the identified features by allowing to

interactively look at feature visualizations of the features related to a class

and related features in adjacent layers. In addition to the feature visual-

ization, Summit also shows input examples that maximally activate the

respective feature. Figure 3.10 shows an exemplary view from the Summit

tool for inspecting the ladybug class.

Neurocartography [144] aims to visualize features maps and their relations.

To this end, they first determine conceptual similarity of the feature maps.

3.6. ANALYZING DATA SET REPRESENTATIONS 57

Figure 3.10: The Summit tool for visualizing features that are associated with
the selected class. We selected the ladybug class and looked into a feature that
appears to be activated by round red objects. Figure created with the Summit
tool [57].

Figure 3.11: The Neurocartography tool for visualizing feature maps and their
relations to each other. We selected to show features related to the ladybug class.
While some features reasonably belong to the ladybug class, others are not that
clearly related. Figure created with the Neurocartography tool [143].

58 CHAPTER 3. RELATED WORK

They follow the idea that feature maps are related if they activate for similar

parts of the same example. Therefore, they cluster the feature maps by their

similarity across many input examples. Similar to Summit, there is a UMAP

projection as a high-level overview, in this case of the feature maps accord-

ing to their activation similarity. The detailed view of Neurocartography

shows a view of the neuron clusters and how they are related between the

layers. For each of the clusters, it shows input examples that highly activate

it, as well as for the most strongly related similar clusters. An example of

using the Neurocartography tool to inspect features related to the ladybug

class is shown in Figure 3.11

Representation analyses can also incorporate information from the previ-

ously described introspection techniques. For example, Spectral Relevance

Analysis [95] uses LRP-based saliency maps and applies spectral cluster-

ing [188] to determine commonalities in the explanations instead of the

activations.

Like saliency maps, methods that analyze representations of many exam-

ples from the data set rely on the provided data examples for their expla-

nations. Behavior for inputs which are different from the training data

distribution can be analyzed by using appropriate test data. It is even pos-

sible to cover the behavior for inputs for which the network prediction is

ambiguous. To this end, a data set of adversarial examples can be gener-

ated, such that minimal changes in these inputs change the prediction of

the network [44], using the optimization approach of feature visualization.

However, it requires infeasibly huge amounts of additional data to cover all

possible inputs. Therefore, even by analyzing data set representations, it is

impossible to completely describe the behavior of the model.

Our approach also analyzes and visualizes representations. However, in

contrast to most existing work, we focus more on the ease of visual inspec-

tion and less on highly detailed information about activation similarity of

neurons. The closest to our work is the overview visualization of feature

maps in Neurocartography. They share the idea of projecting neurons to a

two-dimensional space based on their activation similarity across many

examples. We, however, use a different approach of obtaining activity of the

neurons, aim for a visually more appealing layout of the two-dimensional

space and additionally show activity of the neurons in the 2D space by

coloring them accordingly.

4
Data and Models

In this chapter, we describe data sets as well as model architectures and

their training parameters that we use in this thesis.

4.1 Data

4.1.1 MNIST

MNIST [97] is a common benchmark data set for Machine Learning. MNIST

contains grayscale images of handwritten digits from 0 to 9, which are of

size 28×28 px, centered and normalized in scale, as shown in Figure 4.1a.

There are 60,000 and 10,000 training and test data examples, respectively.

MNIST Variations For some evaluation experiments in this thesis, we cre-

ate a version of the MNIST data set in which the written digits are not

aligned at the center of the image. To this end, we randomly position each

28×28 px MNIST image in an empty 56×56 px image. For each image,

we draw two random numbers between 0 and 28 and use them as the top

left coordinate at which we insert the original image in the empty larger

image, resulting in examples as shown in Figure 4.1c. With this approach,

we remove the data property that all digits in the images are center-aligned.

This allows us to investigate the applicability of our approach to objects

of interest being at different locations in the input. To fairly compare this

altered MNIST data set to the original one, we further create a data set that

comprises the original MNIST images padded to a size of 56×56 px (see

Figure 4.1b). We refer to these two MNIST variations as shifted MNIST and

padded MNIST, respectively. As the MNIST variations are based on the

59

60 CHAPTER 4. DATA AND MODELS

original MNIST data set, they contain the same number of training and test

examples.

(a) MNIST with resolution of 28×28 px

(b) Padded MNIST with resolution of 56×56 px

(c) Shifted MNIST with resolution of 56×56 px

Figure 4.1: Exemplary inputs for each class of MNIST and of our padded and
shifted variations. Shifted MNIST positions the original 28×28 px images ran-
domly in an empty 56×56 px image while padded MNIST retains the alignment
at the center. The variations of MNIST are useful to investigate the influence of
alignment on the results of our methods.

4.1. DATA 61

4.1.2 Fashion MNIST

A similar data set to MNIST is Fashion MNIST [191]. Both data sets contain

the same number of training and test images, share a common image

size and are grayscale. Fashion MNIST, in contrast, contains of images of

10 different clothing items or accessories (see Figure 4.2). The objects in

Fashion MNIST are more complex than the digits in the MNIST data set.

Moreover, some sets of classes are similar which makes them more difficult

to distinguish than digits, for example, there are three shoe categories that

are more similar to each other than to the rest of the classes.

T-shirt/top Trouser Pullover Dress Coat

Sandal Shirt Sneaker Bag Ankle boot

Figure 4.2: Exemplary inputs for each class of Fashion MNIST. While sharing
the dimensionality and data set size of MNIST, the classes in Fashion MNIST
have more complex features and more variation within the classes. Moreover,
some classes are clearly more similar than others. For example, shoe classes are
similar as well as ‘Shirt’ and ‘Pullover’, while ‘Dress’ or ‘Bag’ are intuitively better
distinguishable.

4.1.3 Cifar10

Unlike MNIST and Fashion MNIST, the images in Cifar10 [83] are not in

grayscale. There are 50,000 training images and 10,000 test images. Each

image’s dimension is 32×32×3. One image contains only one object and

there are 10 different classes in this data set. Objects are not always in the

center of an image and an object might not be fully present in an image.

Figure 4.3 shows an exemplary input from each class.

62 CHAPTER 4. DATA AND MODELS

airplane car bird cat deer

dog frog horse ship truck

Figure 4.3: Exemplary inputs for each class of Cifar10. This data set is more
complex than MNIST and Fashion MNIST as it comprises colored images of
slightly larger size and of natural objects in different environments. However, the
small resolution makes it difficult for a human to detect the correct category in
several cases.

4.1.4 LibriSpeech

The LibriSpeech Corpus [142] is a common benchmark data set for ASR. It

consists of about 1000 hours of recordings from the audio book domain,

sampled at 16 kHz. The authors split their data set into sets based on how

much word error rate they observe on a pre-trained model. Recordings with

a low word error rate were used for a so-called “clean” data set. This “clean”

training data contains 363.6 h of audio from 921 speakers and the test data

5.4 h from 40 speakers. Each recording is provided with a transcript of the

spoken sentence.

We included LibriSpeech in this overview despite not using it in this thesis

specifically. However, we show in our previous work (Krug et al. [88]) that

our approach is applicable to large-scale audio data sets like LibriSpeech.

In this thesis, we focus on TIMIT because it provides phoneme annotations

and therefore allows for a more in-depth evaluation of our technique.

4.1.5 TIMIT

Typical audio benchmark data sets like the LibriSpeech corpus do not con-

tain phoneme annotation, which limits the analysis to investigating the let-

ter prediction. This is not optimal because letters in texts are often ambigu-

4.1. DATA 63

ous as to how they are pronounced. In our previous work [88], we addressed

this issue by obtaining a phoneme mapping through a letter-to-phoneme

translation model. This mapping transcribed words to phonemes, which

allowed analyzing how the letter prediction model responds to phonemes.

Still, it was not possible to compare the predicted letters with a ground

truth occurrence of phonemes in the speech recording.

For an in-depth analysis of our method, we require a data set which already

provides annotations of the phonemes in the input data. Therefore, to be

able to perform this kind of analysis, we train our ASR models on the TIMIT

data set [41] because it provides phoneme annotations.

TIMIT is a small speech corpus in English language, containing 6,300

speech recordings. Each of the 630 speakers recorded 10 out of 2,345

unique sentences, but the distribution of how often each sentence was

recorded is not uniform. In particular, TIMIT includes two sentences which

are recorded for each of the 630 speakers, causing these sentences to be

massively overrepresented. To avoid overfitting on these instances, we

exclude these sequences. We train model using the provided data split, but

exclude the majority of the recordings of said two sentences. For the NAP

analyses, we use available examples from both the training and test data.

The letter transcriptions are readily available for training letter prediction

models. Because the training of our model does not require targets for

each time step, we can use texts as targets without mapping the letters

to time steps. To obtain phoneme prediction targets, we need to adapt

the provided phoneme annotations in TIMIT. These annotations provide a

mapping of phonemes to time steps as a sequence of phonemes and their

duration until the spoken phoneme changes. To convert this annotation

into a target which can be used with the loss function of our model, we

discard the information about the exact time duration and only use the

phoneme sequences as transcription targets. Due to the small number of

examples and speakers in TIMIT, the models trained on this data set do not

generalize well in terms of ASR performance. However, this is no limitation

for this work because we do not aim for high speech recognition capability

but for demonstrating and evaluating our model introspection technique.

All data are preprocessed to log mel power spectrograms using the librosa

library [114], applying an STFT with window size of 512 (32 ms) and hop

64 CHAPTER 4. DATA AND MODELS

size of 128 (8 ms) at 16 kHz and projecting the frequency bins to 128 mel-

frequency bins. For NAP analyses, we split the spectrograms into frames of

206 steps (2 s) corresponding to the receptive field size of the model, that is,

the time frame which the model uses for a single prediction. This results in

about 330,000 spectrogram frames.

4.1.6 FairFace

FairFace [68] is a balanced data set of images of people from different age

groups, races and binary genders. It was created with the aim of detecting

and mitigating bias in algorithmic decision making models. It comprises

108,501 facial images that were primarily obtained from the YFCC-100M

Flickr data set [181].

0-
2

30
-3
9

40
-4
9

50
-5
9

60
-6
9

>
70

10
-1
9

20
-2
9

3-
9

age

F
em
al
e

M
al
e

gender

B
la
ck

E
as
t

A
si
an

In
di
an

La
tin
o

H
is
pa
ni
c

M
id
dl
e

E
as
te
rn

S
ou
th
ea
st

A
si
an

W
hi
te

race

Figure 4.4: Exemplary inputs for each class of FairFace using variables age, gender
and race, respectively. This data set is particularly useful for investigating biases
in models as it is a balanced data set in terms of common sensitive variables.
As each example is annotated with gender, age and race, there are intersections
between the groups in different sensitive variables.

Each images is annotated with four properties: the age category (9 classes),

the binary gender and two race classes either in four high-level categories

(for example “Asian”) or in seven more low-level categories (for example,

dividing “Asian” into “East Asian” and “Southeast Asian”). Examples for the

categorization by age, gender and race are shown in Figure 4.4. We use this

4.2. MODELS 65

data set only as an evaluation data set and use the validation data provided

by the authors.

4.1.7 Data Overview

In Table 4.1, we provide an overview of the used data sets, including their

modality and dimensionality as well as the number of included training

and test examples.

name modality dimensions # training
examples

test
examples

MNIST grayscale image 28×28 60,000 10,000

padded MNIST grayscale image 56×56 60,000 10,000

shifted MNIST grayscale image 56×56 60,000 10,000

Fashion MNIST grayscale image 28×28 60,000 10,000

Cifar10 RGB image 32×32 50,000 10,000

TIMIT audio as log
mel spectrogram

t ×128 3,696 1,358

FairFace RGB image 224×224 86,745 10,955

Table 4.1: Overview of data sets. Note that the dimensions of TIMIT are dynamic
as each recording has a different duration and hence a different number of time
steps t in the log mel spectrogram.

4.2 Models

4.2.1 MNIST and Fashion MNIST Classifiers

We train a simple MLP on the MNIST data set. The MLP has one fully-

connected hidden layer of 128 neurons and uses ReLU [130] activation.

The input images are flattened before providing them to the model. For

both MNIST and Fashion MNIST, we train a simple CNN, respectively. The

CNN has two 2D-convolutional layers with kernel size 3 × 3, stride 2 and

128 filters, both using ReLU activation. The fully-connected classification

66 CHAPTER 4. DATA AND MODELS

layer takes the flattened feature maps of the second convolutional layer

as input. During training, we use dropout and spatial dropout for fully-

connected and convolutional layers, respectively, with a dropout rate of

0.5. An overview of the architectures is given in Table 4.2. Both models are

trained with Tensorflow [1], batch size 32 for 20 epochs using the Adam

optimizer [74] with default parameters and categorical cross-entropy as

the loss function.

model layer kernel stride padding neurons/ params
type size filters

MLP Flatten 0
Fully-Connected 128 100,480
Fully-Connected 10 1,290

Σ=101,770

CNN Conv2D 3×3 2 valid 128 1280
Conv2D 3×3 2 valid 128 147,584

Flatten 0
Fully-Connected 10 46,090

Σ=194,954

Table 4.2: Architecture details of the MLP and CNN models trained on MNIST
and Fashion MNIST. The respective layers for creating the topographic map
visualizations in the experiments in Section 7.3.3 are highlighted in bold print. We
do not train an MLP on Fashion MNIST as it does not obtain good performance.

Model performances measured by total and per-class accuracy are reported

in Table 4.3. For the MNIST data set, both MLPs and CNN perform well

on the training set and also generalize well to the test data. The CNN

shows about 2 % higher accuracy than the MLP. The CNN-based Fash-

ion MNIST classifier has approximately 12 % less accuracy than the one

trained on MNIST, which indicates slight underfitting. Nevertheless, the

performance on Fashion MNIST training and test data is similar, indicating

that the model generalizes well to unseen data. From the per-class accu-

racies, we observe especially low performance for the ‘Shirt’ and ‘Sneaker’

classes, likely because of their similarity to other classes. ‘Shirt’ is similar to

‘Pullover’ as both are long-sleeved clothing items for the upper body and

‘Sneaker’ is one of three shoe categories in the Fashion MNIST data set. The

performance could have been increased by using a more complex model

4.2. MODELS 67

but we aim to use the same architecture for both data sets for comparability

reasons.

MNIST MLP MNIST CNN Fashion MNIST
CNN

class training test training test class training test

96.95 % 96.07 % 98.68 % 98.25 % 84.79 % 83.59 %

0 97.07 % 98.27 % 99.19 % 99.29 % T-shirt/top 82.70 % 79.90 %
1 97.56 % 97.27 % 98.97 % 98.59 % Trouser 97.57 % 97.80 %
2 98.79 % 97.38 % 99.09 % 97.87 % Pullover 72.42 % 71.20 %
3 96.12 % 96.44 % 98.74 % 98.51 % Dress 82.37 % 80.90 %
4 96.03 % 95.32 % 99.08 % 98.88 % Coat 86.29 % 83.50 %
5 94.32 % 94.17 % 97.49 % 98.54 % Sandal 99.20 % 99.30 %
6 99.17 % 96.87 % 99.48 % 98.33 % Shirt 68.35 % 62.30 %
7 95.87 % 92.90 % 99.54 % 98.35 % Sneaker 64.92 % 68.10 %
8 98.51 % 97.74 % 97.52 % 96.92 % Bag 98.55 % 98.10 %
9 95.94 % 94.15 % 97.50 % 97.22 % Ankle boot 94.71 % 94.80 %

Table 4.3: MNIST and Fashion MNIST model performance, reporting accuracy
across the entire data set and per class.

4.2.2 Padded and Shifted MNIST Classifiers

Our CNNs for classifying the larger-size MNIST variations are similar to

those used for the original MNIST, but use an additional convolutional

layer to reduce the feature map size, as shown in Table 4.4. Note that we

use a high number of feature maps of 128 in each layer. Fewer feature

maps would suffice to learn the task but a higher number of feature maps

is beneficial for our topographic map visualization. As for the MNIST CNN,

we use ReLU activation as well as spatial dropout for the convolutional

layers with a dropout rate of 0.5, and use the same optimizer and loss

function. Also like for the MNIST CNN, we train the padded and shifted

MNIST classifiers with batch size 32 for 20 epochs using the Adam optimizer

with default parameters and categorical cross-entropy as the loss function.

Model performances measured by total and per-class accuracy are reported

in Table 4.5. Both models have a high accuracy across all classes and

generalize well to the test data. The shifted MNIST classifier has around 2 %

less accuracy than the padded MNIST classifier. Although the features for

detection do not differ between the data sets, they can vary in location in

68 CHAPTER 4. DATA AND MODELS

model layer layer kernel stride padding neurons/ params
type size filters

CNN 1 Conv2D 3×3 2 valid 128 1280
2 Conv2D 3×3 2 valid 128 147,584
3 Conv2D 3×3 2 valid 128 147,584
4 Flatten 0
5 Fully-Connected 10 46,090

Σ=342,538

Table 4.4: Architecture details of the CNN models that we trained on the shifted
and padded versions of MNIST.

the shifted MNIST data set. Therefore, the classification is a slightly more

difficult task for the model to solve and leads to the lower accuracy.

padded MNIST
CNN

shifted MNIST
CNN

class training test training test

98.46 % 98.18 % 96.91 % 96.00 %

0 99.50 % 99.69 % 98.49 % 97.35 %
1 99.62 % 99.56 % 98.59 % 98.77 %
2 98.38 % 97.48 % 96.06 % 94.86 %
3 97.48 % 97.92 % 97.86 % 96.93 %
4 98.78 % 97.96 % 97.56 % 96.74 %
5 96.72 % 97.76 % 95.19 % 96.08 %
6 99.79 % 98.02 % 98.55 % 96.66 %
7 99.27 % 98.64 % 97.61 % 94.94 %
8 97.62 % 97.02 % 93.76 % 92.61 %
9 97.19 % 97.52 % 95.11 % 94.75 %

Table 4.5: shifted and padded MNIST model performance, reporting accuracy
across the entire data set and per class.

4.2.3 VGG16

VGG16 [170] is a pre-trained CNN model that is commonly used as feature

extractor for downstream applications like image recognition DNNs. An

4.2. MODELS 69

overview of the architectures is given in Table 4.6. All convolutional and

fully-connected layers use ReLU activation except for the output layer.

model layer kernel stride padding neurons/ params
type size filters

VGG16 Conv2D 3×3 1 same 64 1,792
Conv2D 3×3 1 same 64 36,928

3 MaxPooling2D 2×2 2 valid 0
Conv2D 3×3 1 same 128 73,856
Conv2D 3×3 1 same 128 147,584

6 MaxPooling2D 2×2 2 valid 0
Conv2D 3×3 1 same 256 295,168
Conv2D 3×3 1 same 256 590,080
Conv2D 3×3 1 same 256 590,080

10 MaxPooling2D 2×2 2 valid 0
Conv2D 3×3 1 same 512 1,180,160
Conv2D 3×3 1 same 512 2,359,808
Conv2D 3×3 1 same 512 2,359,808

14 MaxPooling2D 2×2 2 valid 0
Conv2D 3×3 1 same 512 2,359,808
Conv2D 3×3 1 same 512 2,359,808
Conv2D 3×3 1 same 512 2,359,808

18 MaxPooling2D 2×2 2 valid 0
Flatten 0

Fully-Connected 4096 102,764,544
21 Fully-Connected 4096 16,781,312

Fully-Connected 1000 4,097,000
Σ=138,357,544

Table 4.6: Architecture details of the VGG16 model. The respective layers for
creating the topographic map visualizations in the experiments in Section 7.4
and Appendix A.5 are highlighted in bold print.

4.2.4 Wav2Letter-Based Models

We use a fully-convolutional architecture for ASR. This architecture is based

on Wav2Letter (W2L) by Collobert et al. [24], which is a 1D-convolutional ar-

chitecture consisting of 11 layers, trained using the Connectionist Temporal

Classification (CTC) loss [151]. This model can transcribe variable-length

inputs of speech recordings to sequences of characters.

In this work, we train the model using the TIMIT data set [41] to transcribe

speech as spectrogram to sequences of letters or phonemes. Furthermore,

70 CHAPTER 4. DATA AND MODELS

we made a few changes to the original architecture. As one adaptation, we

changed the number of convolution filters in each layer to the closest power

of two to improve computation efficiency on graphics cards [63]. Another

difference to the original W2L model is that our architecture comprises one

layer more in the stack of layers 2–9. We added one layer because a total of

12 layers allows for arranging information about all layers on a 2×6 or 3×4

grid. Although we do not make use of this property in this work, it makes the

architecture a more convenient exemplary architecture for demonstrating

visualization results. The parameters of the convolutional layers of the W2L

architecture according to our adaptations are shown in Table 4.7. Before

each convolutional layer, we use a batch normalization layer. In all layers

except the output layer, we use ReLU as activation function.

Usually an ASR system would use a subsequent language model to improve

the model’s output. As we focus on analyzing how an ANN-based acoustic

model processes speech, we do not apply additional post-processing to the

outputs.

Model Variations

For our experiments, we use five different variations of the W2L architecture.

The used parameters for the convolutional layers of all models are provided

in Table 4.7.

The W2L architecture for letter prediction is our reference model. In our

experiments, we continue to refer to the trained model as W2L.

For alignment evaluation (Section 5.3.3), we use W2L-based models that

predict phonemes. One model is identical to the original architecture, but

predicts phonemes. Accordingly, this model uses 62 output units in the

output layer. We refer to this model as Wav2Phoneme (W2P). As we expect

phoneme prediction to be an easier task than letter prediction, we also

expect a model with fewer layers to be capable of performing this task.

Therefore, we use a second phoneme prediction model that comprises only

5 convolutional layers and a final phoneme prediction layer, which we refer

to as W2P_shallow. The used parameters of the convolutional layers are

identical to the corresponding layers in the complete W2L architecture. We

train both phoneme prediction models using the transcriptions generated

from TIMIT phoneme annotations.

4.2. MODELS 71

model name layer
#convolution

kernel size stride
filters

1 256 48 2
W2L, 2–9 256 7 1
W2L_TL_frozen & 10 2048 32 1
W2L_TL_finetuned 11 2048 1 1

(output) 12 29 1 1

W2P

1 256 48 2
2–9 256 7 1

10 2048 32 1
11 2048 1 1

(output) 12 62 1 1

W2P_shallow
1 256 48 2

2–5 256 7 1
(output) 6 62 1 1

Table 4.7: Overview of parameters of 1D-convolutional layers in the used models.
The respective differences of W2P and W2P_shallow to the W2L architecture are
highlighted in bold print with underline.

For evaluating experiments on representational similarity (Section 7.2.2),

we train models such that there is an expected layer in which phonemes

are best represented. To this end, we first train the W2P_shallow model to

predict phonemes. From this model, we remove the final phoneme predic-

tion layer (layer 6). On top of the pre-trained layers, we add layers to form

the W2L model again, using letters as output. This approach is a transfer

learning from a shallow phoneme prediction model (W2P_shallow) to a

deeper letter prediction model. An illustration of this approach is shown in

Figure 4.5. In the first step of transfer learning, we only train the added lay-

ers by disabling parameter updates of the pre-trained layers. As disabling

parameter updates is commonly referred to as freezing, we call the resulting

model W2L_TL_frozen. In this model, we expect the base layers to encode

phonemes, while the top layers learn to map from the phoneme represen-

tation to letters. In the second transfer learning step, we unfreeze the base

layers and perform a fine-tuning over all layers (W2L_TL_finetuned). Note

that we do not fine-tune the batch normalization layers as this can lead to

unlearning the pre-training information. We use the W2L_TL_finetuned

72 CHAPTER 4. DATA AND MODELS

model to investigate to which extent the fine-tuning process changes the

pre-trained phoneme encoding in favor of better prediction of letters.

We train all W2L-based models with Tensorflow, batch size 16 for 300,000

batches using Adam optimizer with default parameters and the CTC loss.

A summarized overview of all W2L model variations used in this work is

shown in Table 4.8.

O _ A TB _

bcl b ow tcl t.

pretrained
layers

induced phoneme
encoding at layer 5

W2L W2P_shallow

Figure 4.5: Illustration of the W2P to W2L transfer learning approach. A shallow
model (right) is trained to predict phonemes and its initial pre-trained layers are
used as base layers (blue) for the deeper W2L architecture (left).

model name #layers output type
initializing weights used in
using model experiments

W2P 12 phonemes none AE
W2P_shallow 6 phonemes none AE
W2L_TL_frozen 12 letters W2P_shallow RS
W2L_TL_finetuned 12 letters W2L_TL_frozen RS
W2L 12 letters none PS, RS, LP

Table 4.8: Overview of W2L-based models and which experiments they are used
in. AE: Alignment Evaluation (Section 5.3.3), PS: Plotting SNAPs (Section 7.2.2),
RS: Representational Similarity (Section 7.2.2), LP: comparing letter and phoneme
representations (Section 7.2.2).

4.2. MODELS 73

Performances of all W2L-based models are reported in Table 4.9. As the

models perform a transcription, we compute the Levenshtein distance [98]

between the target and the prediction sequence of phonemes or letters,

respectively. We use the ‘editdistance’ package [180] for python to com-

pare the distance values. Note that the number of edits can only be fairly

compared if the models has the same type of outputs. For the phoneme

prediction models W2P and W2P_shallow, we observe a higher training

set performance of W2P compared to W2P_shallow. On the other hand,

the test set performance of W2P is lower than that of W2P_shallow. This

means, W2P_shallow is better generalizing to unseen data than W2P. This

is likely related to the deeper architecture of W2P which is, as discussed

above, too complex for phoneme prediction and therefore prone to over-

fitting. Our observations confirm this expectation. The letter prediction

models share the same architecture but differ in the way they are trained.

W2L has good performance on the training data but the largest test set

errors. W2L_TL_frozen has worse performance on the training data but a

better generalization capability than W2L. W2L_TL_finetuned shows the

best performance among the letter prediction models, both for training and

test data. The improved performance of W2L_TL_finetuned is likely also

related to a higher number of total training steps because it is initialized

with weights from W2L_TL_frozen, which in turn is partly initialized with

weights from W2P_shallow.

Table 4.9: W2L-based model performances, reporting total edit distance and
average edit distance per example. Training and test data comprise 3,696 and
1,358 examples, respectively.

training test
model # edits edits per

example
edits edits per

example

W2P 555 0.15 21,457 15.80
W2P_shallow 2,184 0.59 20,545 15.13

W2L_TL_frozen 1,584 0.43 10,958 8.07
W2L_TL_finetuned 217 0.06 10,635 7.83
W2L 843 0.23 12,052 8.87

74 CHAPTER 4. DATA AND MODELS

4.3 Data and Model Usage Overview

This section provides an overview of which models are used for which

experiments and points to the respective sections. A tabular overview is

shown in Table 4.10.

We perform our main evaluations with the W2L model and its variations

(see Section 4.2.4) and the models trained on the padded and shifted MNIST

data (see Section 4.2.2).

With the padded and shifted MNIST models, we discuss the effects of using

our alignment technique in Section 5.3. Further, we use these models to

investigate how well NAPs can be approximated with random subsets of

the groups in Section 5.4. Finally, a large part of the quantitative evaluation

of topographic activation maps in Section 6.3.3 is based on these models.

W2L and its variations are particularly useful for Section 5.3 as they allow us

to perform an evaluation of our alignment procedure based on the TIMIT

data set ground truth expectations for the alignment. For this evaluation,

we use W2P and W2P_shallow. TIMIT, with predictions from W2P_shallow,

also serves as an unbalanced data set for investigating NAP approximation

of groups of different sizes in Section 5.4. Finally, using the letter predic-

tion models W2L, W2L_TL_frozen and W2L_TL_finetuned, we show an

exemplary NAP analysis of ASR models in Section 7.2.

The MNIST and Fashion MNIST CNNs (see Section 4.2.1) and the VGG16

model (see Section 4.2.3) are used for exemplary applications of topo-

graphic activation maps. With MNIST and Fashion MNIST and a simple

CNN architecture, we demonstrate error detection in Section 7.3. Our bias

detection experiments in Section 7.4 are based on the VGG16 model and

the FairFace data set.

Lastly, in Chapter 8, we present multiple extended use cases using a very

simple MNIST MLP model (see Section 4.2.1). We use it to demonstrate

multi-layer visualization in Section 8.1, visual inspection of activations dur-

ing the training process in Section 8.2 and the relation of model confidence

and activity in Section 8.3.

4.3. DATA AND MODEL USAGE OVERVIEW 75

data model used in

padded MNIST,
shifted MNIST

3-layer CNN alignment evaluation (Section 5.3)
NAP approximation (Section 5.4)
topographic map evaluation
(Section 6.3.3)

TIMIT W2P, W2P_shallow alignment evaluation (Section 5.3)
NAP approximation (Section 5.4)

TIMIT,
(LibriSpeech)

W2L, W2L_TL_frozen,
W2L_TL_finetuned

Analysis of an ASR model (Section 7.2)

MNIST,
Fashion MNIST

2-layer CNN topographic map use cases (Section 7.3)

(ImageNet),
FairFace

VGG16 bias visualization with topographic
activation maps (Section 7.4)

MNIST 1-layer MLP multi-layer visualization (Section 8.1)
training process visualization (Section 8.2)
relation of confidence and activity
(Section 8.3)

Table 4.10: Overview of models and where they are used in this thesis. Note that
ImageNet was used to train VGG16 but we use a pre-trained model and therefore
do not work with the data set directly.

5
Neuron Activation Profiles

In this chapter, we address our first research aim (RA1, Section 1.1). To

characterize group-specific DNN responses, we introduce Neuron Activa-

tion Profiles (NAPs) which are an ERP-inspired averaging approach. The

ERP technique characterizes brain activity for a specific event (stimulus) by

averaging multiple EEG measurements (trials) that are aligned at the same

stimulus. As the event is consistent across all trials, aligning the data at this

stimulus and averaging the signals yields event-specific information [106].

Averaging of a random signal over multiple measurements, in contrast,

returns the expected value of its random distribution. This way, in ERPs,

variations in brain activity that are unrelated to the stimulus are removed

from the measurements. In DNNs, activations of any hidden layer can be

obtained directly, therefore, removing noise from the measurement is not

necessary. Instead, in our ERP adaptation for DNNs, we average activations

over multiple examples that belong to a common group. This way, the aver-

aging removes variations that come from the individual examples while it

retains the information that is common between the examples of the group.

Like in ERPs, this averaging approach requires that the measurements are

aligned properly. Therefore, in its essence, NAPs are computed by aligned

averaging to obtain information that is common within a group of inputs.

Publications We introduced different aspects and improvements of NAPs

in several publications for interpreting convolutional speech recognition

models. First, we averaged activations of particular spoken words [84], as-

suming that the predictions provide suitable alignment positions. However,

in the used model, the predictions were made with a non-systematic offset

with respect to the input data. Therefore, we introduced an alignment

technique that makes use of information about the prediction-relevance of

input positions [85]. In this publication, we demonstrated the technique

77

78 CHAPTER 5. NEURON ACTIVATION PROFILES

for the input data itself and later generalized the approach to any hidden

layer activations [88]. Finally, we integrated the above approaches into a

common NAP technique [87, 89]. Additionally, these final NAP publications

improved the aligned averaging approach by masking out information that

is irrelevant for the prediction. With this applied mask, we obtain NAPs

that characterize both which activations are observed across the group

and which of these activations are important for the prediction that the

network makes. Our latest NAP publications referred to the technique as

Gradient-Adjusted Neuron Activation Profiles (GradNAPs) and Saliency-

Adjusted Neuron Activation Profiles (SNAPs), respectively, to emphasize

the incorporated prediction relevance. In this thesis, we will use the term

NAP to describe the general approach of which there are variations, for

example, the masking of irrelevant information.

Chapter structure First, we describe the NAP approach and its variations

in Section 5.1. After that, we evaluate the individual steps in more detail

and discuss requirements and limitations of the applicability of the ap-

proach (Sections 5.2 – 5.4). Finally, we end with a summary of the chapter

(Section 5.5).

5.1 Method

In this section, we describe the individual steps and variations of the NAP

approach. We follow a conceptually logical order to introduce the steps,

therefore, they do not reflect the order in which the steps are applied in.

Section 5.1.9 gives a summarized overview of the entire approach and its

variations in a chronological order.

To support the understanding of each step, we show exemplary results from

specific data sets or layers as a visual aid. Nevertheless, each of the steps is

applicable to hidden layer activations and to other data sets equivalently.

5.1.1 Obtain Activations

The core idea of NAPs is to obtain and analyze DNN activations for a large

number of input examples. Obtaining the activation values is straight-

forward by performing a forward pass through the network and storing

5.1. METHOD 79

the outputs of each individual layer. We will refer to the outputs of each

individual layer l , given the input example Xi as Al (Xi), using A to fit to the

term activations. Further, we consider the input data itself a layer, such that

we also consider the input values to be activations. That means, Al (Xi) = Xi

for l being the input layer.

Depending on the model and layer, the activations Al are of different dimen-

sionality. For example, the input layer Al follows the input dimensionality,

activations of 2D-convolutional layers are three-dimensional and output

layer activations are one-dimensional. Figure 5.1 shows exemplary activa-

tion patterns for an MLP (Figure 5.1a), 1D CNN (Figure 5.1b) and 2D CNN

(Figure 5.1c).

MLP

neurons

(a) MLP.

1D CNN

1D feature maps

(b) 1D CNN.

2D CNN

2D feature maps

(c) 2D CNN.

Figure 5.1: Obtained activations for individual input examples from different data
and model types. For demonstration purposes, only a small subset of neurons
or feature maps is shown. In the bottom row, color intensity indicates higher
neuron activation. (a) Neuron activations in an MLP trained on MNIST. (b) 1D
feature maps in a 1D CNN that processes spectrograms of audio data. (c) 2D
feature maps in a 2D CNN trained on Cifar10.

80 CHAPTER 5. NEURON ACTIVATION PROFILES

Because the range of values and dimensionality of each layer are almost

always different, the largest instance for which a NAP can be computed

is a layer. In principle, it would be possible to compute NAPs for smaller

instances, like for feature maps. However, aiming for the most comprehen-

sible characterization of the activations, we suggest to use layer NAPs.

Choosing Layers of Interest In practice, the term layer is not precisely

defined. Some implementations treat the layer that applies the learned

weights (for example, a convolutional layer) separately from the activation

function, such that there are two individual layers. Other implementations

treat the activation function as part of the layer. In more complex archi-

tectures, what appears to be an individual layer in the implementation

can also be a custom building block comprising multiple layers. Moreover,

some layers only scale the outputs of a preceding layer without altering its

information content, like batch normalization layers. To reduce the usage

of storage and computation resources, we suggest to only investigate a

representative subset of layers. The applied activation function is the main

reason for the expressive power of DNNs, therefore, we use the outputs

after the activation function is applied. In the case of custom building

blocks, if this block defines a conceptually related module, like a Dense

Block [62] or an Inception Module [179], we recommend to only use the

output of the block. If, in contrast, the building block comprises many

layers, for example, when using a pretrained network as a fixed set of layers

in a transfer learning task, it is beneficial to also investigate the contained

individual layers. Finally, layers that do not change the information con-

tent during inference should be omitted, as the resulting NAPs would be

redundant with those of the preceding layers. This includes, for example,

batch normalization and dropout layers.

5.1.2 Define Groups

Because NAPs characterize network activations when processing groups of

examples, the groups of interest first need to be defined. Consider a data

set X that comprises n examples Xi ∈ X, with i ∈ 1, ...,n. A group G can be

any subset of the entire data set G ⊂ X. For our approach, useful groups are

supposed to have a conceptual similarity, for example, belonging to the

same category or sharing a common feature. The most typical grouping of

5.1. METHOD 81

a data set describes a collection G of m groups, such that the groups are

disjunct and that their union is the entire data set.

grouping G= {
G j

}
j=1...m with G j ∩Gk =;,∀ j ̸= k

and
⋃

j=1...m
G j = X (5.1)

In a multinomial classification task, an intuitive grouping is to use the

annotated or predicted classes as groups. Each example Xi belongs to

exactly one group, therefore, the set of groups corresponding to classes

satisfies the definition of a grouping according to Equation (5.1). Groupings

provide the most comprehensive way to define groups of interest because

they encompass the entire data set and all examples are represented exactly

once. This does not imply that every grouping is also useful, which will be

discussed later in this chapter.

Note that our method is not limited to groupings according to Equa-

tion (5.1). Any set of groups can be investigated, including groups which

partly intersect or that only cover parts of the entire data set. Section 5.1.7

discusses other useful groupings as well as applications where incomplete

groupings or overlapping groups can be reasonable.

To explain the next steps, we continue to use the grouping by annotated

class label because it is most intuitive.

5.1.3 Group-Averaging

The basic form of computing NAP values is to compute the average of the

activations over a group of examples. Given the activations of a layer Al (Xi)

for all Xi ∈ G, the NAP of group G is computed as

N APG = 1

|G|
∑

Xi∈G
Al (Xi). (5.2)

With this averaging, variation of the individual examples is removed and

group-common information are retained. A NAP of a single group is of

only little use as it misses the relation to other groups. Therefore, the more

useful NAP is the set of group-NAPs according to a grouping.

NAPG = {N APG}G∈G (5.3)

82 CHAPTER 5. NEURON ACTIVATION PROFILES

5.1.4 Averaging with Normalization

While the averaging characterizes the activations over the groups of inputs,

we are particularly interested in the differences between the activations.

For example, there can be neurons that are highly activated by the inputs

from each group. The activity of such neurons can overshadow other neu-

rons that are less active but more class-distinctive. Therefore, to improve

the class-specificity of the information, we propose to apply a normaliza-

tion of the averaged activations NAPG (Equation (5.3)). As normalization

approach, we compute the average activation over the entire data set and

subtract this global average from each group NAP. The normalized NAPG
cannot be interpreted as activations anymore but as the difference from

the baseline activations. Positive values indicate a characteristically high

neuron activation in comparison to the entire data set and negative values

a comparably low neuron activation. With this approach, the activation

differences between the groups are emphasized. The enhanced contrast

is shown in an exemplary activity visualization of an MNIST MLP in Fig-

ure 5.2.

normalizer: Al =
1

|X|
∑

Xi∈X
Al (Xi)

normalized NAPG =
{

N APG − Al

}
G∈G

(5.4)

In practice, computing the normalizer over the entire data set has two

disadvantages. Firstly, the computation can be expensive due to the high

number of examples. Secondly, for strongly imbalanced data sets, the

normalizer can become close to the N APG of the most overrepresented

group. This leads to normalized values that effectively are relative to one

group instead of to the common baseline activations across the groups. To

circumvent these problems, we propose another normalization approach

which computes the normalizer as an average over the group NAPs.

normalizer: N APG = 1

|G|
∑

G∈G
N APG

normalized NAPG =
{

N APG −N APG

}
G∈G

(5.5)

5.1. METHOD 83

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1.0

0.5

0.0

0.5

1.0

activation normalized activation

Figure 5.2: NAPs for a hidden layer in a MLP trained on the MNIST data set before
and after normalization. Row and column orders are based on the group and
neuron similarities, respectively (compare Section 5.1.8).

This type of normalization overemphasizes small groups in the baseline.

However, the group comparability suffers less from this effect compared to

one group dominating the baseline. For computational efficiency and to

improve group comparability in the presence of overrepresented groups,

we use the second normalization as the default normalization approach.

5.1.5 Handling Unaligned Data

In order to obtain useful averaging results, we require data that are aligned.

If the features of interest in the input data are in different positions, the

averaging removes both the variation between the inputs and the charac-

teristic features. Unfortunately, data are rarely obtained such that they are

readily aligned. Most data sets also come without detailed annotation that

informs about properties with a high-resolution. Often, the only annota-

tions are categories that the data fall into. For specific use cases, there exist

registration techniques to align data to each other [46, 29, 78]. However,

these alignment methods are not generally applicable to every type of data,

in particular considering that we require to not only align the input data

but also activations. Therefore, we propose a fast approach to estimate the

position of important features.

Our estimation of important features is based on how sensitive the model

prediction is to them. We follow the assumption that an input or activation

value is relevant for the prediction if its change affects the model predic-

84 CHAPTER 5. NEURON ACTIVATION PROFILES

tion strongly, and that this relevance indicates the presence of a relevant

feature.. These features are what we want to align our data on to move the

group-specific information to a common alignment position. To obtain

the prediction-relevance, we compute saliency information using sensi-

tivity analysis as described in Section 3.5. Consider a data example Xi ,

its activations Al (Xi) in layer l and the logit of the highest active neuron

Npr ed = Aout (Xi)
[
arg max(Aout (Xi))

]
in output layer out . We compute

the saliency as

Sl (Xi) = ∂Npr ed

∂Al (Xi)
. (5.6)

From the saliency values, we obtain the position of the highest value as the

alignment point. Then, we perform the alignment of the corresponding

activations such that, for each dimension, the most salient point is in the

center of the activations. We achieve this by cropping values on one side of

each dimension and padding with zeros on the opposite side. We apply the

equivalent transformation to the saliency values to keep them aligned to

the activations for later steps.

Figure 5.3 demonstrates the alignment step for two examples in the input

layer. The alignment does not need to be performed for every dimension.

For example, in audio data, it is more suitable to only align along the

time dimension, while image data is more suitably aligned in both image

dimensions. In the 1D-convolutional case (Figure 5.3a), we align the data

in the time dimension only. The 2-dimensional activations of the image

example (Figure 5.3b) are aligned in both image dimensions. Generally,

alignments along the channel dimension are strongly discouraged because

changing the location of neurons or feature maps leads to not being able to

identify them in the resulting NAP.

Improvements Saliency values can be positive and negative indicating

whether a decrease or increase of the activation value improves the pre-

diction, respectively. As sensitivity in both directions of effect indicates

a relevance, it can be helpful to use the saliency values as their absolute

values Sl (Xi) = |Sl (Xi)|. This way, patterns that improve the prediction

by decreasing their values can also be identified as features to align the

activations on.

5.1. METHOD 85

activation
activation

with saliency

aligned activation

center time

aligned activation
with saliency

(a) Alignment in the time dimension.

activation
activation

with saliency

aligned activation

center

center

aligned activation
with saliency

(b) Alignment in both image dimensions.

Figure 5.3: Procedure of aligning activations such that they are centered at the
point of highest prediction-relevance. For (a) and (b), respectively, the top row
shows activations and superimposed saliency values before the alignment and
the bottom row displays results of the alignment procedure. The purple circles
indicate the respective position of highest absolute saliency value.

86 CHAPTER 5. NEURON ACTIVATION PROFILES

If there is a channel dimension in the saliency values, it is useful to average

them along this dimension and obtain the most salient position from the

channel-averaged values. This way, instead of finding a position which

is most salient in any of the channels, the method identifies the position

which is most prediction-relevant across all channels.

Because sensitivity analysis is known to produce high-frequency patterns,

the saliencies Sl (Xi) can be optionally smoothed with average pooling with

a small kernel. The smoothed saliency values then indicate the average

prediction-relevance of the respective value and its neighbors.

5.1.6 Masking Prediction-Irrelevant Information

Characterizing the network response through its activations is group-

specific but independent of whether the activations are relevant for the

network prediction. To improve NAPs such that they become prediction-

relevant in addition to being group-specific, we propose to weight its values

based on the saliencies. Specifically, we create group-averaged absolute

saliencies corresponding to the NAP over a group. We then scale the values

of the averaged saliencies to the range of [0,1] and multiply them with the

NAP to obtain a prediction relevance-weighted NAP. As we weight down

values with low saliency while keeping those which are important for the

prediction, we refer to this procedure as masking prediction-irrelevant

information. Figure 5.4 shows the effects of applying the mask for NAPs

without and with normalization. Many neurons that initially show a high

activation value are weighted down by the masking, which can be observed

from an increased amount of neurons of white color. This, in turn, high-

lights the prediction-relevant neurons that are not weighted down and

hence appear more active in comparison.

Sl G = 1

|G|
∑

Xi∈G
|Sl (Xi)|

saliency mask: MG = Sl G −min(Sl G)

max(Sl G)−min(Sl G)

masked NAPG = {N APG ·MG}G∈G

(5.7)

5.1. METHOD 87

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.0

0.1

0.2

0.3

0.4

1.0

0.5

0.0

0.5

1.0

0.4

0.2

0.0

0.2

0.4

activation normalized activation

with
mask

without
mask

Figure 5.4: NAPs for a hidden layer in an MLP trained on the MNIST data set. Top:
Activations averaged over the respective class without and with normalization.
Bottom: Resulting NAPs when removing prediction-irrelevant activations based
on saliency values. All plots use the same row and column orders, which are
based on the group and neuron similarities, respectively (compare Section 5.1.8).

5.1.7 Subgrouping

Choosing useful groupings is crucial for performing analyses with NAPs.

Here, we discuss different ways to adapt the aforementioned standard

approach of using the annotated or predicted classes as grouping.

Annotation-Based and Manual Subgrouping

Groupings do not need to be based on the annotated classes. If available,

additional annotations can be used to define groupings. For example,

consider a data set which includes labels that are not used for the model

task, but only exist as meta data. These labels can be used as a grouping as

well. If there are no additional annotations, it is also possible to manually

create them. As creating annotations for the entire data set involves huge

amounts of manual work, this approach is better suitable for creating

88 CHAPTER 5. NEURON ACTIVATION PROFILES

incomplete groupings to relate specific smaller groups of interest to each

other, which we discuss in a following paragraph in this section.

Subgrouping by Prediction Errors

The groupings into annotated and predicted class naturally extend to sub-

groupings that can be used to investigate prediction errors made by the

model. One possible subsetting is to use the grouping by the predicted class

Gpr ed with |C| groups according to the classes C, and divide each group

into subsets of correctly and wrongly classified examples.

Gc+ = {
Xi ∈ X where pr ed(Xi) = c = lbl (Xi)

}
Gc− = {

Xi ∈ X where pr ed(Xi) = c ̸= l bl (Xi)
}

Ger r,bi nar y = {Gc+,Gc−}c∈C

(5.8)

Further, this type of error subgrouping can be extended to every type of

possible combination of predicted and annotated class. This creates groups

that do not only represent whether an error was made but also which class

the contained examples are misclassified as. Such grouping can intuitively

be understood as creating one group for each position of a confusion ma-

trix.

Gcp,cl =
{

Xi ∈ X where pr ed(Xi) = cp ∧ lbl (Xi) = cl
}

Ger r,pai r s =
{

Gcp,cl
}

cp∈C,cl∈C

(5.9)

Automatic Subgrouping with Clustering

A group is most useful if it comprises examples that share common fea-

tures. This is not necessarily the case for examples that are conceptually

related. For example, consider the group of musical instrument images.

There are various different types of musical instruments that cannot be

characterized by a common feature. Computing a NAP for such a high-

variance group will suffer from averaging out not only example variation

but characteristic features, as well. In fact, many models categorize their

inputs into conceptually broad categories. For example, consider a group

5.1. METHOD 89

of dog images without information about the breed of the dog. If there is

no available annotation to automatically create fine-grained groups, au-

tomatic subgrouping can be performed. The idea of this approach is to

use clustering algorithms to subdivide the high-level group into smaller

(disjunct) subsets in which the examples are similar to each other and,

hence, obtain subgroups with less variation. It is not trivial to obtain good

subgroupings through clustering, though. Clustering in the input space is

not representative because input value similarity does not properly repre-

sent conceptual similarity. A more concept-based approach is to use the

activations in some deeper layer for the clustering. However, this relies

on the model having learned meaningful concepts. Furthermore, it is not

clear which layer yields the most useful information for clustering. Shallow

layers only represent simple patterns and are no high-level concepts. Deep

layers, on the other hand, might represent the data already similarly to

the annotated classes such that clustering mainly distinguishes the classes

instead of subconcepts.

Incomplete Groupings

In Equation (5.1), we defined groupings as a split of the entire data set.

However, NAPs can be computed for sets of groups that do not encompass

all data examples, as well. Using incomplete groupings has several use

cases. Firstly, it can speed up the computation process. If there are classes

with a lot of redundancy in terms of highly similar examples, only choosing

a random subset of each group can be sufficient to estimate the NAP, while

decreasing the computation time substantially. Secondly, it is useful to

address specific questions about groups of interest. For example, consider

a grouping in which a subset of groups shows similar activation patterns.

NAPs based on a complete grouping capture the differences between the

groups but they are overshadowed by the higher differences to other classes.

Using only the similar groups for computing the NAPs emphasizes the

differences between them. The group averages do not change by using only

a subset of the groups, only the differences between them is emphasized

due to computing the normalizer from the similar groups only. Therefore,

this improved contrasting is only possible with using the normalization

step. Lastly, incomplete groupings can also be useful to compare small

subsets of examples with each other. This can help in answering highly-

90 CHAPTER 5. NEURON ACTIVATION PROFILES

specific questions about the representational similarity of concepts defined

by the user through manual selection of examples.

Overlapping Subgroups

Until now, we considered groupings to comprise disjunct sets of examples.

However, NAPs can equivalently be computed for overlapping groups. This

is particularly useful for data whose annotations follow a hierarchy. For

example, one can investigate the group of dog images and the groups of

images from the individual breeds at the same time. Overlapping groups

are also useful, if data examples belong to multiple categories in multi-label

classification tasks. The results of NAPs of overlapping groups are more

likely similar to each other because they are computed from some identical

examples. While this intuitively appears to be biasing the similarity analysis,

if the examples really belong to the different groups the similarity of them

is still a correct information.

5.1.8 Visualization and Similarity Analysis

Visualizing NAPs directly is only useful for layers whose activations are

interpretable themselves. This particularly applies to input layers of models

that process visually interpretable data. In Chapter 6, we address this issue

and present topographic maps as a way to intuitively visualize the NAPs of

any layer.

Here, we perform similarity analyses of NAPs with hierarchical clustering

(see Section 2.1.2). We compute the pairwise Euclidean similarities between

the NAPs. These can be visualized in a |G|× |G| heat map that represent the

similarities as colors. Further, we apply hierarchical clustering with com-

plete linkage to obtain a group hierarchy based on NAP similarities. Using

the clustering information to sort the rows and columns of the heat map,

we obtain a visualization as cluster map. A dendrogram which represents

the clustering result is attached to both axes of the cluster map to better

visualize the relations between the groups. An exemplary cluster map of

MNIST classes based on the similarities of their NAP values in a CNN is

shown in Figure 5.5.

5.1. METHOD 91

Figure 5.5: Visualizing relations of groups by creating a cluster map based on
their activations for the classes of an MNIST CNN. Here, average activations over
all examples from the same class are computed and their similarity is computed
with a hierarchical clustering using Euclidean distance. White indicates identity
and darker shades of red indicate less similarity.

For fully-connected layers or if using aggregated feature maps, we can cre-

ate an overview of the NAP values. To this end, we visualize the NAP values

of all groups G ∈ G and neurons N ∈ N as a |G|× |N| heat map. Again, the

neurons and groups can be sorted according to their similarity by a hier-

archical clustering, respectively. Examples for visualizing NAPs of groups

and neurons as heat map and as cluster map, that means, in original order

and with ordering by similarity, are shown in Figure 5.6. While the heat

map (top) appears scattered and is difficult to interpret, the cluster map

(bottom) with rows and columns ordered by similarity allows to visually

identify similar groups and neurons. For this visual comparison, it is not

necessary that the values are interpretable themselves.

92 CHAPTER 5. NEURON ACTIVATION PROFILES

7
9
2
4
5
2
4
2

1
1
6

1
1
3 7
7
1
4
6
6
8
7
5

1
2
6
6
0
8
1

1
0
5
9
9

1
1
5
6
7
8
8
6
3
3
1
1
6
2
7
3
6 2

1
0
7
2
2
2
3
4
8
4
3
6
5 9

2
0

6
1

8
9

3
5

4
7

0 4 8
1
2
1
6
2
0
2
4
2
8
3
2
3
6
4
0
4
4
4
8
5
2
5
6
6
0
6
4
6
8
7
2
7
6
8
0
8
4
8
8
9
2
9
6

1
0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

0
1

2
3

4
5

6
7

8
9

0.4

0.2

0.0

0.2

0.4

N
A

P
 v

al
ue

or
ig

in
al

 o
rd

er
si

m
ila

rit
y-

ba
se

d
or

de
r

Figure 5.6: Heat map and cluster map visualization for normalized NAPs with
applied saliency mask of the MNIST MLP model. Both plots show the same values
but with a different ordering of the rows and columns. The cluster map allows to
see similarity patterns between groups and neurons more easily.

5.1.9 Pipeline

Finally, we present in which order the described steps are applied when

computing NAPs. Figure 5.7 shows the entire pipeline and refers to the

individual sections that describe the step in more detail.

First, we start with the data set and the layers of interest as inputs. For each

data example, we obtain the activations in the chosen layers. If alignment

is desired or prediction-irrelevant information shall be masked, we also

compute saliency values for each activation. If using alignment, we use

the saliency values to align both the activations and saliencies. Before

applying the next steps, we need the grouping of interest as additional

input. This can be supplied directly from, for example, the annotated

5.1. METHOD 93

layers of interest
Section 5.1.1

data set

obtain activations
Section 5.1.1

use alignment or
saliency mask

compute saliency
values

Section 5.1.5

yes

use alignment

align activations
and saliencies
Section 5.1.5

yes

averaging over
groups

Section 5.1.3

no

no

grouping
Section 5.1.2

further subgroup

subgrouping
Section 5.1.7

yes

no

use normalization
normalization
Section 5.1.4

yes

use saliency mask

no

saliency mask
Section 5.1.6

yes

NAPs

no

similarity analysis
Section 5.1.8

visualization
Section 5.1.8

topographic maps
Chapter 6

Figure 5.7: Computation pipeline for computing NAP and further use them to
gain insights into the model. Inputs and outputs to the pipeline are represented
in blue color, processing steps are orange and decisions about whether variations
are used are highlighted in green.

class, or optionally from a further manual or automatic subgrouping. We

then average the extracted (potentially aligned) activations of each of the

desired groups. The averaged activations can then first be normalized.

Next, the saliency mask for removing prediction-irrelevant information

94 CHAPTER 5. NEURON ACTIVATION PROFILES

can be applied. Finally, we obtain the NAP for all groups in each layer of

interest.

Following the path when deciding against each variation corresponds to the

minimally required steps for computing NAPs: Obtaining activations and

averaging them for each group. These steps are need to be applied in every

other variation of the computation pipeline. The resulting NAPs can then

be used in different ways to gain insight into the model. In particular, in

this thesis, we demonstrate inspecting them directly, performing similarity

analyses and visualizing them intuitively as topographic maps.

In Figure 5.8, we visually demonstrate the process of creating NAPs with

alignment and masking prediction-irrelevant information for a hidden

layer NAP of an exemplary ASR model.

0

50

100

150

200

250

n
eu

ro
n
n
 (

fe
at

u
re

 m
ap

)

0 +0.2-0.2
time (s)

0 +0.2-0.2
time (s)

0 +0.2-0.2
time (s)

- =

0 +0.2-0.2
time (s)

0 +0.2-0.2
time (s)

average of
aligned gradients

(same group)

.

averaging and normalization apply saliency mask
Neuron Activation

Profile with
normalization,
alignment and
saliency mask

same group complete
data set

average of aligned activations

=

Figure 5.8: Averaging with normalization and saliency masking to obtain a NAP
suitable for speech data.

5.2 Averaging and Normalization

In this section, we investigate the effect of applying normalization to the

averaging results. We expect this step to improve the interpretability of the

activation values and to lead to a better representation for similarity analy-

ses. We investigate the normalization for three cases. First, we demonstrate

5.2. AVERAGING AND NORMALIZATION 95

how the normalization affects the activation values and their distances for a

two-dimensional toy example. Then, we will investigate the practical effect

on a simple MLP and a 1D CNN.

5.2.1 Investigated Distance Metrics

In particular, we investigate Euclidean distance (Equation (5.10)) and Co-

sine distance (Equation (5.11)). We compute Cosine distance as 1− Cosine

similarity.

For two n-dimensional data points p and q ,

di stEucl i dean =
√

n∑
i=1

(
pi −qi

)2 (5.10)

and

di stCosi ne = 1−

n∑
i=1

pi qi√
n∑

i=1
p2

i ·
n∑

i=1
q2

i

(5.11)

Euclidean distance can be any positive number while Cosine distance is in

the range of [0,2].

5.2.2 Two-Dimensional Toy Example

For this example, we create a two-dimensional data set that comprises

three data points. They represent the average activation of three imagi-

nary groups and we manually assign them the two-dimensional values

[1.0,1.2], [2.0,1.0], [1.4,2.0]. Normalizing these values by subtracting the

global average leads to the normalized values [−0.47,−0.20], [0.53,−0.40],

[−0.07,0.60]. Comparing the values before and after normalization, it is

clear that the normalized values help to understand which values are small

or large compared to the entire data set. Moreover, the normalization has

beneficial effects on some distance metrics, as demonstrated in Figure 5.9.

The linear shift of all data points does not affect the Euclidean distance,

hence they are identical for the original and normalized values. However,

there is a beneficial effect on metrics that are based on angles between vec-

tors, like the Cosine distance. Particularly for values that are non-negative,

96 CHAPTER 5. NEURON ACTIVATION PROFILES

0 1
0

1 0.004 0.084

0.121

0

0
1.290

1.499

1.685

0 1
0

1 1.020

1.166
0.894

0

0

1.020

1.166
0.894Euclidean

distance

Cosine
distance

without
normalization

with
normalization

Figure 5.9: Effects of the normalization procedure on distance measures demon-
strated for a two-dimensional toy example. Values on the edges and angles show
the Euclidean and Cosine distances, respectively. Euclidean distances are not af-
fected by the normalization but Cosine distances become better distinguishable.

for example ReLU activations, the possible value range of Cosine distances

is restricted to [0,1]. By applying the normalization, the values are dis-

tributed around the center of origin and therefore, the full range of values

[0,2] is possible. In the toy example, we clearly observe that the Cosine dis-

tances between the data points are small and similar to each other for the

original values, but are larger and better distinguishable after normalizing

the data points.

In fact, computing the Cosine distance for values that are normalized by

subtracting their mean value in each dimension is equal to computing the

Pearson Correlation distance:

5.2. AVERAGING AND NORMALIZATION 97

di stCor r el ati on = 1−

n∑
i=1

(pi −p) · (qi −q)√
n∑

i=1
(pi −p)2 ·

n∑
i=1

(qi −q)2

= 1−

n∑
i=1

(pi −0) · (qi −0)√
n∑

i=1
(pi −0)2 ·

n∑
i=1

(qi −0)2

= 1−

n∑
i=1

pi qi√
n∑

i=1
p2

i ·
n∑

i=1
q2

i

= di stCosi ne

5.2.3 Hidden Layer NAPs

Figure 5.10a shows the activation averages for a hidden layer in a MLP

trained on MNIST before (top) and after (middle) applying the normaliza-

tion approach. We artificially altered some neuron activations to demon-

strate the normalization effect. The left 20 neurons are highly active for all

classes as can it be seen in the top subfigure. After the normalization, the

activation differences of these neurons become more clear that they are

comparably less active for classes ‘4’ and ‘9’ and more active for classes

‘3’ and ‘5’. The violin plot in the bottom of Figure 5.10a further shows the

distribution of pairwise Cosine distance values between the groups. As

in the previously shown toy examples, normalization leads to the Cosine

distance values being spread out in a wider range of values making the

groups easier to distinguish based on their distances.

Further, we demonstrate the effect for a hidden layer in a 1D-convolutional

model trained on the TIMIT data set in Figure 5.10b. It shows the NAPs

without and with normalization for two exemplary phonemes. The normal-

ization leads to easier distinguishable feature maps between the groups.

Moreover, it scales the activations such that feature maps which have simi-

larly high or low activation across all groups do not appear as significantly

active anymore.

98 CHAPTER 5. NEURON ACTIVATION PROFILES

0.0

0.5

1.0

1.5

a
ct

iv
a
ti
o
n

1.0

0.5

0.0

0.5

1.0

n
o
rm

a
liz

e
d

a
ct

iv
a
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Cosine distance

with
normalization

without
normalization

(a) NAPs for a hidden layer in an MLP trained on the MNIST data set. Top: Activations
averaged over the respective class. Bottom: Applying normalization by subtracting the
global activation average. Both plots use the same row and column orders, which are
based on the group and neuron similarities, respectively (compare Section 5.1.8).

time

fe
at

ur
e

m
ap

s

/aa/
without

normalization

time

fe
at

ur
e

m
ap

s

/aa/
with

normalization

0.0 0.5 1.0 1.5
Cosine distance

with
normalization

without
normalization

time

fe
at

ur
e

m
ap

s

/t/
without

normalization

time

fe
at

ur
e

m
ap

s

/t/
with

normalization

0.0 0.5 1.0 1.5
Cosine distance

(b) NAPs for a 1D-convolutional hidden layer in a CNN trained on the TIMIT data set for
two exemplary phonemes. The feature maps are sorted by their average activation across
the entire data set.

Figure 5.10: Activation normalization effects for an MLP and a CNN hidden layer.

5.3. ALIGNING DATA 99

5.3 Aligning Data

To evaluate the alignment step, we perform the following experiments. In

the first experiment, we alter the MNIST data set such that the inputs are not

aligned anymore and investigate whether our sensitivity-based alignment

approach retrieves useful class-characteristic input patterns. After that, we

continue to investigate the usefulness of the alignment for a convolutional

ASR model as a more realistic application. First, we qualitatively evaluate

whether the alignment improves the group-characterization for exemplary

input layer NAPs. The, we perform an extensive quantitative evaluation

by comparing the alignment results to ground truth annotations obtained

from the TIMIT data set.

5.3.1 MNIST Variations

First, we demonstrate the efficacy of the alignment for a simple data set. To

this end, we use shifted MNIST – a version of the MNIST data set in which

we randomly position each 28×28 MNIST image in a 56×56 empty image.

This way, we obtain a data set in which the images of the written digits are

not aligned at the center of the image anymore (compare Section 4.1.1).

Our alignment procedure is supposed to retrieve a useful alignment of the

images again.

Figure 5.11 shows the obtained input layer NAPs with and without using

the alignment step, both with only averaging the (aligned) inputs and with

additionally applying the normalization. Without alignment (middle rows),

we clearly observe that no useful information about the digit classes is

characterized by the input layer NAPs, neither with averaging (grayscale)

nor with normalized averaging (colored). This demonstrates how apply-

ing averaging unaligned data leads to severe information loss due to the

different location of the objects in the data. After applying our saliency-

based alignment procedure to all inputs, the input layer NAPs show much

more class-characteristic patterns, as can be seen in the bottom rows of Fig-

ure 5.11. In the simple input averages that are shown in grayscale, we can

already identify the typical shapes of many digits, for example, the round

shape of ‘0’ or the characteristic single stroke of class ‘1’. Other classes

are difficult to identify from the input averages, but become clearer when

applying the normalization for achieving better contrast, as shown in the

100 CHAPTER 5. NEURON ACTIVATION PROFILES

exemplary
inputs

input NAPs
without

alignment

input NAPs
with

alignment

Figure 5.11: Input layer NAPs for a DNN trained on the shifted MNIST training
data. NAPs are computed with and without normalization and alignment, re-
spectively. Averaged inputs are shown in grayscale, using the original color range
from pixel value 0 (white) to 255 (black). Normalized NAPs use a 0-symmetric
color map from blue over white to red.

5.3. ALIGNING DATA 101

colored images. For example, the characteristic shapes of digits ‘3’ and ‘4’

are clearly visible in the normalized NAPs although the grayscale averages

only show a round black spot. This is due to the higher contrast which

emphasizes the gaps between the strokes as they have a comparably lower

value. Note that the alignment is not always positioning the digits in the

center of the images if the most prediction-relevant position is not in the

center of the digits. Digit ‘2’, for example, is typically aligned at its bottom

right. This is reasonable because the bottom horizontal stroke that ends

at the bottom right is specific for this class and the network can use this

feature to identify it. Further, we observe that the examples of some classes

are not aligned to the same position for all examples. This is particularly

clear for class ‘7’ where there appear to be two different alignment modes.

Either they are aligned at the lower end of their diagonal stroke or at the

horizontal stroke close to the junction of the two strokes. This leads to a

pattern which mixes the typical shape of a 7 in the upper and the lower

half of the NAP. Finally, digit ‘9’ is not recognizable from the NAP. One

potential reason is that the DNN uses various different features to classify

examples of this class due to a high variation of how the digits are written.

We rather suspect that the network might have learned a strategy to only

classify classes ‘0’–‘8’ based on their features and putting everything else in

category ‘9’. In this case, it is reasonable that the alignment fails because

the model does not use the actual class features for the prediction.

5.3.2 ASR – Qualitative Alignment Evaluation

While the MNIST variations are relatively simple data sets, we now investi-

gate the alignment for the more complex TIMIT data and using alignment

based on different ASR models. Again, as hidden layer NAPs are not visually

interpretable, we use input layer NAPs to demonstrate how the alignment

improves the description of the group-characteristic patterns in speech.

Figure 5.12 shows exemplary input layer NAPs for the models W2L and

W2P.

In the W2L model, we clearly observe that the alignment leads to better

characterization of the input patterns for the letters ‘a’ and ‘t’. While without

alignment both patterns almost look the same, after alignment we see clear

differences. The vowel letter ‘a’ shows typical higher frequency intensity at

102 CHAPTER 5. NEURON ACTIVATION PROFILES

with alignmentwithout alignment
W2P

p
h
o
n
em
e

/aa/

/t/

le
tt
er

'a'

't'

with alignmentwithout alignment
W2L

Figure 5.12: Input layers NAPs in models W2L and W2P with and without align-
ment for two exemplary phonemes and letters, respectively. Patterns in W2L
become clearly more distinct through alignment while W2P patterns are only
shifted. This indicates that our alignment technique is useful for data that are
not aligned (W2L) as well as for data that are aligned but not at the center (W2P).

5.3. ALIGNING DATA 103

formants and the plosive letter ‘t’ has a high intensity of high frequencies

and a fast change of power across all frequencies. However, the alignment

does not always improve the patterns, as it can be seen in the patterns for

the W2P model in Figure 5.12. The input layer NAPs for this model show a

strongly pronounced padding on the right side of the NAPs, which indicates

that the model only has a systematic shift of where it predicts the phonemes.

Therefore, although the data is not aligned in the center, it is still aligned at

some position. Hence, by applying the alignment, the resulting patterns

do not change qualitatively but only regarding their location. It is not

surprising that aligning already aligned data does not improve the results.

However, we like to positively highlight that our alignment procedure does

not un-align the data again.

5.3.3 ASR – Quantitative Alignment Evaluation

To further evaluate the alignment step of the NAP computation procedure,

particularly for the case of speech data, we use the two models that predict

phonemes: W2P and W2P_shallow. We expect our method to align at the

time steps in the input spectrogram frame which are the actual occurrences

of the predicted phonemes. Therefore, for each prediction, we additionally

obtain the annotated phoneme at the center and at the alignment position.

Moreover, we compute the time difference of the alignment position to the

real occurrence of the predicted phoneme according to the annotation. We

then use this distance to quantify the alignment error and refer to this mea-

sure as “alignment offset”. For instances that are predicted as a phoneme

which is not contained in the annotation of the input spectrogram frame,

we define the alignment offset to be -1. Because the alignment cannot be

correct in these cases, the maximum possible alignment quality for our

data set and both phoneme prediction models is to align 93.6 % of the

instances correctly.

Alignment Quality – Model Average

W2P_shallow: Initially, only 3.7 % of the frames are annotated with the

predicted phoneme in the center. Through alignment, we achieve 59.3 %

of the frames for which the phoneme at the alignment position are equal

to the annotation. Allowing an alignment offset of up to two time steps

104 CHAPTER 5. NEURON ACTIVATION PROFILES

(16 ms), the predicted phoneme is equal to the annotated one for 80.3 % of

the frames. For the W2P_shallow model, we observe an average alignment

offset of 26 ms.

W2P: Only 3.6 % of the frames show matching prediction and annotation at

the center time step initially. Alignment increases this number to 38.8 %.

Considering also the annotated phonemes in a time frame around the

alignment point, 58.6 % of the frames are correctly aligned. Corresponding

to the smaller alignment accuracy compared to the W2P_shallow model,

we also observe a higher average offset of 37 ms in the W2P model.

For the two phoneme prediction models, we conclude that our alignment

method works as expected in a large number of frames. Because the aver-

aging takes all instances into account, it is sufficient to align the majority of

the frames correctly. Notably, the deeper model for phoneme prediction

has a significantly worse alignment accuracy than the shallow model. We

suspect that this is related to an overfitting of the deep model. An overfitted

model does not learn meaningful features but memorizes information,

such that it can perform correct predictions without focusing on the actual

occurrence of the sound. Hence, for the W2P model, we argue that the align-

ment works properly despite the lower accuracy. The provided alignment

accuracy metric for the phoneme models is computed as average over all

phonemes, yet there are substantial differences between them. Therefore,

we further investigate the alignment accuracy and offset for each individual

phoneme.

Alignment Quality – Per Phoneme

Figure 5.13a shows distributions offsets across all phonemes as an overview.

In W2P_shallow, clearly more examples are aligned with no or only

small offset. Correspondingly, we observe larger offsets for W2P than

for W2P_shallow, supported by the higher average alignment offset of W2P.

Figure 5.13b shows the per-phoneme alignment offset distributions for

the two investigated models. The rows are sorted by the average align-

ment offset of the corresponding phoneme in the W2P model. For W2P,

25 out of 60 phonemes are aligned without offset in the majority of in-

stances. Six out of the seven phonemes of highest alignment offset are

closure symbols (pcl, kcl, dcl, gcl, bcl, tcl), describing the closure of

5.3. ALIGNING DATA 105

the respective plosives. For example, pcl represents the closure of p. Be-

cause the W2P model has a higher capacity and a larger receptive field than

the W2P_shallow model, it might predict phonemes by finding correlations

to other phonemes. Especially for the closure symbols, we intuitively expect

that the model might facilitate that they always preceed the corresponding

plosive. However, by manually inspecting the most frequent phonemes at

the alignment point, we do not observe this behavior. Also, we so not find

any other intuitively interpretable correlation which the model grasped.

0 40 80 120 160
alignment offset (ms)

ph
on

em
e

W2P

0 40 80 120 160
alignment offset (ms)

W2P_shallow

0.0

0.2

0.4

0.6

0.8

1.0

co
un

t
/
m

ax
(c

ou
nt

)

oy
er
el
ux
iy
ey
uw
axr

t
aw
ow
ih
k

hvpau
hh
ae
ehy
uh

r
ay
aheng
en
p

aa
w

ao
q

em
l

ax
ix
g

ng
d

dh
jh
ch
m
nx
zh

f
epi
axh

b
th
v

sh
n

dx
s

tcl
bcl

z
gcl
dcl
kcl
pcl

0.00 0.25 0.50
relative count

1
0
8

16
24
32
40
48
56
64
72
80
88

96

of
fs

et
 (

m
s)

offset
per example

W2P
W2P_shallow

0 5 10
count

0

8

16

24

32

40

48

56

64

72

av
er

ag
e

of
fs

et
 (

m
s)

offset average
per phoneme

(a) Offset distributions.

0 40 80 120 160
alignment offset (ms)

ph
on

em
e

W2P

0 40 80 120 160
alignment offset (ms)

W2P_shallow

0.0

0.2

0.4

0.6

0.8

1.0

co
un

t
/
m

ax
(c

ou
nt

)

oy
er
el
ux
iy
ey
uw
axr

t
aw
ow
ih
k

hvpau
hh
ae
ehy
uh

r
ay
aheng
en
p

aa
w

ao
q

em
l

ax
ix
g

ng
d

dh
jh
ch
m
nx
zh

f
epi
axh

b
th
v

sh
n

dx
s

tcl
bcl

z
gcl
dcl
kcl
pcl

0.00 0.25 0.50
relative count

1
0
8

16
24
32
40
48
56
64
72
80
88

96

of
fs

et
 (

m
s)

offset
per example

W2P
W2P_shallow

0 5 10
count

0

8

16

24

32

40

48

56

64

72

av
er

ag
e

of
fs

et
 (

m
s)

offset average
per phoneme

(b) Offset distribution heat maps for each phoneme.

Figure 5.13: Alignment offset overview in phoneme prediction models. Distri-
bution of offsets for all examples ((a) top) and of the average alignment offset
per phoneme ((a) bottom). (b) Offset distributions per phoneme in models W2P
and W2P_shallow. Counts in the heat map plots are scaled to the range [0,1] for
each phoneme, respectively. An offset value of −1 indicates that the predicted
phoneme is not in the annotation of the example. The highest 5 % of the align-
ment offset values are excluded for plotting as their frequency is too low to be
visible.

106 CHAPTER 5. NEURON ACTIVATION PROFILES

In the smaller W2P_shallow model, 44 phonemes are correctly aligned

in the majority of instances. Also, a smaller alignment offset is observed

for all closure symbols. More specifically, all closure symbols except for

gcl and tcl are aligned without error in most of the instances. These

observations support further that the decreased alignment performance

for the W2P model is not attributed to our alignment technique but to the

worse generalization capabilities of the model. Moreover, this contributes

to considering the W2P_shallow model as being easier interpretable than

the W2P model.

oy ey iy eh
t ae en ax
r ux ch el hv ay m uh pa
u s er aw hh p ih z q w ah ao r

em ix ax k
ow uw en

g jh y aa
l g n sh bc
l f th zh dh dx nx v

pc
l d dc
l

ep
i

kc
l

ng tc
l

ax
h b gc
l

alignment point annotation

oy
ey
iy

eh
t

ae
en

axr
ux
ch
el

hv
ay
m
uh

pau
s

er
aw
hh
p
ih
z
q
w

ah
ao

r
em

ix
ax
k

ow
uw

eng
jh
y

aa
l

g
n

sh
bcl

f
th
zh
dh
dx
nx
v

pcl
d

dcl
epi
kcl
ng
tcl

axh
b

gcl

ce
nt

er
 p

re
di

ct
io

n

Figure 5.14: Alignment evaluation overview W2P_shallow. For each predicted
class on the y-axis the relative frequency of the corresponding phoneme an-
notation on the x-axis after alignment is shown, with phonemes sorted by the
maximum relative frequency. The color scale is [0,1] from white to black.

5.3. ALIGNING DATA 107

In addition to the alignment offset, we also investigate in more detail,

which annotated phonemes the predicted phonemes are aligned to. In

this section, we only provide a detailed plot for W2P_shallow because it

generalizes better than the W2P model. Figure 5.14 shows the complete

contingency table, for the predicted phoneme and the annotated phoneme

after alignment. To get a better impression of how consistently which

phonemes are aligned to a specific phoneme, we sort the table by the

maximum value per row. We do not observe a clear tendency of a specific

type of phoneme being aligned better than others. Moreover, the closure

symbols are still aligned to various other phonemes, although the effect is

not as pronounced as in W2P and vanishes when allowing a small alignment

offset.

An overview of the evaluation plots for both models using alphabetical

ordering of phonemes is provided in Appendix Figures A.1 and A.2.

Applicability to Letter Prediction Models

As discussed before, performing the same quantitative analysis for a let-

ter prediction model is not possible. There is no unique mapping from

letters to the phonemes, so we cannot test for equality of prediction and

annotation. Moreover, a predicted letter can be correctly aligned to differ-

ent phonemes, which leads to less specific alignment results than in the

phoneme prediction models. Still, we can use the phoneme annotation

to investigate which phonemes the predicted letters are aligned to. The

contingency tables for W2L are shown in Appendix Figure A.3. Qualitatively,

the alignment improves how well the annotated phoneme at the center po-

sition corresponds to the predicted letter. For example, without alignment,

spectrogram frames that are predicted as letter b are very rarely annotated

with the phonemes b or bcl at the center time step. After alignment, the

majority of the frames predicted as letter b is centered at these phonemes.

5.3.4 Aligning Data – Summary

Using saliency maps based on sensitivity analysis is suitable for aligning

data such that the relevant features of the individual examples are at a

very similar locations. Therefore, our proposed alignment procedure en-

ables us to average initially unaligned data. However, the sensitivity-based

108 CHAPTER 5. NEURON ACTIVATION PROFILES

alignment is not a perfect substitute for an informed alignment of the data

because it is dependent on the decision processes within the model. If the

model uses different features to predict the object of interest, the alignment

aligns the data at different features and consequently leads to inconsistent

results in the averaging (like digit ‘9’ in Figure 5.11). Typically, if there are

only few different modes of features associated with the same prediction,

there are still enough examples to obtain group-characteristic patterns.

However, they then appear multiple times at different positions and their

values are downweighted due to the averaging (like digit ‘7’ in Figure 5.11).

Moreover, the dependence on the model performance causes the alignment

to be sensitive to the generalization of the model. If the model relies too

strongly on patterns that are specific to individual examples, the alignment

will align at them instead of at general group-characteristic features. This

leads to higher loss of information when averaging data. In summary, we

recommend to use pre-aligned data, either by design or by applying an in-

formed alignment procedure, to obtain the most reliable results using NAPs.

In cases where an informed alignment is not applicable, we suggest to use

our proposed sensitivity-based alignment as it significantly improves the

characterization of the network responses compared to simple averaging,

especially for well-generalized models.

5.4 Improve Efficiency

Computing NAPs for entire data sets is computationally very expensive

because it involves processing each individual example and computing

averages over huge sets of high-dimensional activations. For large data sets

and models, processing the entire data set is not computationally feasible.

Therefore, we investigate how to improve the NAP computation efficiency

by approximating the NAPs. In typical data sets for training DNNs, there

are many similar examples that belong to the same group. However, small

variations in the data do not affect the resulting NAP of this group due to

the averaging. Therefore, approximating NAPs is possible by taking random

subsets of the data. Randomly drawing examples from the data can miss

out rare variants of particular groups, however, omitting them does not

affect the NAP computation. Due to averaging over groups, activity related

to rare examples is already underrepresented in the full NAP.

5.4. IMPROVE EFFICIENCY 109

In this section, we investigate whether using random subsets of each group

are sufficient to characterize the group-specific responses of the DNN.

First, we perform a qualitative evaluation by visually inspecting input layer

NAPs for different subset sizes and comparing the results between pre-

aligned, unaligned and sensitivity-aligned data. Secondly, we quantify the

precision and robustness of the approximations for subsets of different

sizes according to their difference to the original NAP and how well the

group-similarities are retained. Finally, we investigate whether the number

of examples within a group influences how large the random subset needs

to be to obtain a good NAP approximation. To this end, we compare full

and approximated NAPs using relative and absolute subset sizes for a data

set with highly unbalanced class sizes.

5.4.1 Visual Inspection of Approximated NAPs

We first visually inspect approximated input layer NAPs using different

subset sizes. To investigate whether the approximation quality is dependent

on the variation within the group, we compare the classes of padded and

shifted MNIST data sets. For the latter, we further compare the NAPs with or

without sensitivity-based alignment. The padded MNIST data set has only

little variation within the groups because all examples are aligned. Only the

image size is enlarged by padding to fit the image size of the shifted MNIST

data set. In contrast, the shifted MNIST has higher variation as the digits

are positioned randomly in the larger image. Computing the NAPs using

alignment is expected to reduce the variation introduced by the random

positioning. However, we do not expect it to achieve the low variation of the

padded MNIST data set. Corresponding to the variation within the groups,

we expect that the padded MNIST NAPs can be approximated with fewer

examples than shifted MNIST. Moreover, with using aligned activations for

computing NAPs for shifted MNIST, we expect to need fewer examples to

approximate the original NAP than without alignment.

The MNIST training data set has 60,000 examples, with on average 6,000

examples per class. The number of examples is similar between the classes,

ranging from 5,421 to 6,742. Due to the good class balance and the high

similarity of the instances within each class, we use the same subset sizes

for each of the classes. For comparability with a later experiment, we

110 CHAPTER 5. NEURON ACTIVATION PROFILES

use relative values to define subset sizes. We investigate different sub-

set sizes from using only a single random example to using all examples.

Because increasing the subset size by a fixed number of examples has

a larger effect for smaller subsets, we increase the investigated subset

sizes exponentially. Specifically, we use subset size 1 as well as 10k % for

k ∈ [−1,−0.75, ...,1.5,1.75], leading to 12 exponentially increasing subset

sizes from 0.1 % to 56.2 %. Applied to the average amount of 6,000 examples

per class, this corresponds to 1 to 3,374 examples as subset sizes. Further,

we use 100 % as the reference, which, with 102 % examples, also represents

the next value in the series of exponentially increasing subset sizes.

Figure 5.15 shows input layer NAPs for class ‘0’ of the respective MNIST

data set using different subset sizes using one randomly drawn set of inputs

per subset size. The 100 % NAPs are the references that use all examples

from the class. From visual inspection, it is clear that a very small random

subset is necessary to approximate the reference NAP for padded MNIST.

From around using only 1 % of the examples, the approximated NAP is

visually not distinguishable from the reference. In contrast, approximated

input layer NAPs for shifted MNIST without aligning the data need sig-

nificantly larger subset sizes to be visually similar to the reference. Only

the largest investigated subset size of 56.2 % yields a visually similar NAP.

When computing the shifted MNIST NAPs with alignment, the required

subset size to obtain visually well-approximated NAPs becomes smaller.

The shown NAP with 1.8 % of the examples is already highly similar to the

reference and from 10 %, it is visually not distinguishable anymore. This

confirms our expectation that the required subset size for approximating

a NAP depends on how much variation is in the group. Consequently, the

required subset sizes also differ between the classes, for example, approxi-

mating class ‘2’ NAPs requires more examples because the class has higher

intra-class variance than ‘0’. Input layer NAP approximations for all ten

MNIST classes are shown in Appendix Figures A.4 and A.5.

5.4.2 Quality and Robustness of Approximated NAPs

Using the same MNIST data sets and random subset sizes as in the previ-

ous subsection, we perform a quantitative evaluation of the quality and

robustness of the approximated NAPs across all classes. First, we compute

5.4. IMPROVE EFFICIENCY 111

re
la

tiv
e

 s
ub

se
t s

iz
e

shifted MNIST
no alignment

padded MNIST
no alignment

shifted MNIST
with alignment

1 example

0.1 %

0.2 %

0.3 %

0.6 %

1.0 %

1.8 %

10.0 %

3.2 %

5.6 %

17.8 %

31.6 %

56.2 %

100.0 %

1 example

0.1 %

0.2 %

0.3 %

0.6 %

1.0 %

1.8 %

10.0 %

3.2 %

5.6 %

17.8 %

31.6 %

56.2 %

100.0 %

1 example

0.1 %

0.2 %

0.3 %

0.6 %

1.0 %

1.8 %

10.0 %

3.2 %

5.6 %

17.8 %

31.6 %

56.2 %

100.0 %

Figure 5.15: Approximated input layer NAPs using random subsets of different
sizes relative to the number of examples of the respective group. Here, the exem-
plary class ‘0’ is shown. All groups are provided in Appendix Figures A.4 and A.5.

112 CHAPTER 5. NEURON ACTIVATION PROFILES

NAPs using 100 random subsets of each investigated size. For each of them,

we compute the mean absolute difference to the respective reference NAP

and average the value across the ten classes. In addition, we investigate

how the group similarities are retained when using approximated NAPs.

To this end, we obtain reference group distance matrices by computing

pairwise Euclidean and Cosine distances between the reference NAPs. We

then compute the mean absolute difference between the group distance

matrices using the random subsets with the reference distances.

The distributions of differences between NAPs and and between group

similarities and their respective approximations for the random subset

sizes for the input layer is shown in Figure 5.16. In general, larger subset

sizes yield better approximations and show less variation between the

random samples, which is not surprising. We again consistently observe

that the approximation quality is best for the NAPs for the pre-aligned

padded MNIST data and worst for the shifted MNIST data set. Still, the

aligned shifted MNIST data has better approximation quality at the same

subset size compared to not aligning the shifted MNIST examples. The

absolute and relative differences show the same qualitative results but

shifted MNIST without alignment has a substantially larger approximation

error in relation to the values of the 100 % NAP or its group distances.

Notably, in Figure 5.15, shifted MNIST without alignment appears to need

clearly more examples to approximate the reference NAPs. However, the

quantitative evaluation does not show this large discrepancy to the aligned

NAPs. This is likely due to the different color scales that we used in the

input layer NAP plots. We scaled the colors such that white is the smallest

value and black is the largest value across all classes in each respective

configuration (data, alignment and subset size). A common color scale

for all three experiments would have caused the NAPs for shifted MNIST

without alignment to be visually almost white because of the strong aver-

aging out effect. This means, that the actual values of the NAPs of shifted

MNIST without alignment have comparably smaller values which in turn

also decreases the mean absolute differences of the approximations to the

reference.

The effect of subset size on the Euclidean group distance differences is sim-

ilar to the differences between NAP values themselves, both with respect

to how well the differences are retained and with respect to the relation

5.4. IMPROVE EFFICIENCY 113

approximation of Euclidean distance matrix of 100% NAP

13.41 10.06 6.7 3.35 0.0
mean absolute difference

shifted MNIST
no alignment
shifted MNIST
with alignment
padded MNIST
no alignment

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f
us

ed
 e

xa
m

pl
es

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f
us

ed
 e

xa
m

pl
es

0.07 0.05 0.03 0.02 0.0
mean absolute difference

approximation of 100% NAP

11.95% 8.97% 5.98% 2.99% 0.0%
mean relative difference

17.93%13.45% 8.97% 4.48% 0.0%
mean relative difference

0.62 0.46 0.31 0.15 0.0
mean absolute difference

0.56% 0.42% 0.28% 0.14% 0.0%
mean relative difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f
us

ed
 e

xa
m

pl
es

approximation of Cosine distance matrix of 100% NAP

Figure 5.16: Difference of approximated NAPs to the NAPs computed on the
entire data set. Differences are computed between the values (top) and the group
distance matrices using Euclidean (middle) and Cosine (bottom) distance, as
absolute (left) and relative (right) values. Distributions are computed over 100
different random subsets per investigated subset size.

114 CHAPTER 5. NEURON ACTIVATION PROFILES

between the different data sets. However, for Cosine group distance differ-

ences, we observe a distinct pattern. The approximation quality for shifted

MNIST with alignment and padded MNIST behaves similar to the other

measures, only with less improvement between smaller subset sizes and a

slower convergence. Shifted MNIST without alignment, in contrast, needs

significantly more examples to approximate the Cosine group distances

adequately and small subset sizes do not substantially improve the ap-

proximation. This distinct pattern especially for shifted MNIST without

alignment is likely due to the bad representativeness of the NAPs because

of the high variation in the groups. Each NAP is highly similar, except

for the magnitude of the values, leading to very small and similar Cosine

distances between the groups. Euclidean distance, on the other hand, bet-

ter distinguishes the classes based on the magnitude of the values and

hence represents group distances that are closer related to the NAP value

differences.

In the Appendix Figures A.6 to A.8, we show the approximation error plots

for the three convolutional layers of the CNNs trained on shifted and

padded MNIST. In deeper layers, the approximation errors become more

similar comparing the different MNIST and alignment variants according

to the absolute difference values. The relative values, however, show more

similar patterns to those in the input layer.

In summary, we observe that it is possible to approximate NAPs with ran-

dom subsets of the data. As expected, the higher the variation within the

group, the fewer examples are necessary to obtain well approximated NAPs.

This raises the question which metric is suitable to estimate in advance

how large a subset needs to be in order to obtain a good approximation.

One straight-forward approach is to explicitly investigate whether there is

a relation between the variance within a group and the necessary subset

size. However, the variance is also related to the number of examples in the

groups. Therefore, in the following section, we investigate both the influ-

ence of group size and variance on different absolute and relative subset

sizes.

5.4.3 Relation of Class Size and Variance with Subset Size

In this section, we investigate whether relative or absolute subset sizes are

better suitable for approximating NAPs using TIMIT, which has an unbal-

5.4. IMPROVE EFFICIENCY 115

anced size of the groups regarding the number of examples for different

phonemes.

Experimental Setup

We compute normalized NAPs with alignment and saliency-masking based

on the W2P_shallow model.

As relative subset sizes, we use the same values as in the previous exper-

iments on MNIST. That means, we use subset size 1 as well as 10k % for

k ∈ [−1,−0.75, ...,1.5,1.75], leading to 12 exponentially increasing subset

sizes from 0.1 % to 56.2 %. Further, we use 100 % as the reference. The ab-

solute subset sizes follow an exponential increase ranging from 1 to 12,302,

oriented at the largest group which contains 23,556 examples. If a group

comprises fewer examples than the subset size, we use the complete group.

We consider both the number of examples within the groups and their vari-

ation as potential contributing factors to how many examples are necessary

to approximate the NAP of the respective group. To obtain the variance

within a group, we compute the the median variance of each input value

across the examples.

TIMIT contains 61 phoneme classes of different sizes of which we inves-

tigate three sets of phonemes in this experiment. Two sets contain four

phonemes that are of similar size, respectively. The first set comprises

phonemes between 1,238 and 1,384 examples and the groups in the sec-

ond set are substantially larger phoneme classes with between 5,330 and

5,376 examples. With these two sets, we investigate whether similarly sized

groups are similar in how many examples are necessary to approximate

their NAPs and whether this is influenced by the intra-group variance. The

third set of phonemes contains four groups of different sizes ranging from

the smallest to the largest group and we use it to investigate how the group

size influences the required subset size for approximating the NAPs.

Results

Figure 5.17 shows the NAP approximation qualities as the mean absolute

NAP value differences to the reference NAPs for the three subsets (top to

bottom), either using absolute (left) or relative (right) subset sizes.

116 CHAPTER 5. NEURON ACTIVATION PROFILES

Using absolute subset sizes, the approximated NAPs become almost identi-

cal to the reference when the subset size is at least as large as the size of the

group, which results in the curves becoming vertical at this point. Small dif-

ferences to the reference still occur due to normalizing by the global average

of all random subsets. Apart from that, we observe only small differences of

the approximation quality compared between the phonemes of any num-

0.12 0.09 0.06 0.03 0.0
12302

2818
645
147

33
7
1

nu
m

be
r o

f e
xa

m
pl

es

y (n=1238, 2=12.37)
hv (n=1316, 2=11.99)
hh (n=1352, 2=12.13)
ch (n=1384, 2=12.36)

0.12 0.09 0.06 0.03 0.0
12302

2818
645
147

33
7
1

nu
m

be
r o

f e
xa

m
pl

es

ow (n=5330, 2=11.89)
oy (n=5333, 2=11.09)
axr (n=5369, 2=12.03)
dcl (n=5376, 2=12.86)

0.12 0.09 0.06 0.03 0.0
56.2%
17.8%

5.6%
1.8%
0.6%
0.2%
0.0%

pe
rc

en
ta

ge
 o

f e
xa

m
pl

es

0.12 0.09 0.06 0.03 0.0
56.2%
17.8%

5.6%
1.8%
0.6%
0.2%
0.0%

pe
rc

en
ta

ge
 o

f e
xa

m
pl

es

0.12 0.09 0.06 0.03 0.0
mean absolute difference
to NAP using all examples

12302
2818

645
147

33
7
1

nu
m

be
r o

f e
xa

m
pl

es

eng (n=99, 2=10.83)
g (n=2125, 2=11.28)
f (n=6670, 2=11.70)
s (n=23556, 2=12.19)

0.12 0.09 0.06 0.03 0.0
mean absolute difference
to NAP using all examples

56.2%
17.8%

5.6%
1.8%
0.6%
0.2%
0.0%

pe
rc

en
ta

ge
 o

f e
xa

m
pl

es

Figure 5.17: Difference of approximated NAPs to the NAP computed on the entire
data set. Measurements are average values over 100 different random subsets per
investigated subset size. Legends show the phoneme class, number of examples
within this class (n) and the median value of the input values variances across
the examples of the respective class (σ2). Absolute and relative subset sizes are
shown left and right, respectively. Top and middle rows show sets of classes of
similar numbers of examples and the bottom row shows classes of different size,
ranging from the smallest to the largest class. Note that approximated NAP of
small groups like eng have slight difference to the reference for the complete
group due to normalizing by the global average of all random subsets.

5.5. CHAPTER SUMMARY 117

ber of examples. It seems that smaller groups can be approximated with

smaller subsets, however, this pattern is not clearly pronounced. Moreover,

we do not observe a relation between the variance within a group and how

many examples it requires for approximating its NAP. The low-variance oy
(middle left, orange) obtains better approximated NAPs with fewer exam-

ples than others of similar size. However, other phonemes of small variance,

for example, eng (bottom left, blue), need more examples to obtain good

approximations. There are also phonemes of higher variance, like y (top

left, blue), which do not require more examples for good approximations.

For relative subset sizes, we observe an ordering by the class sizes both

for large group size difference (bottom right) and similarly sized groups

(top and middle right), although it is less clear for the latter. Larger groups

mostly need smaller fractions of their examples to approximate the refer-

ence NAP. This is in agreement with the absolute subset sizes. As all groups

need a similar number of examples to approximate their reference NAP,

these subsets correspond to larger relative subsets for groups with fewer

examples. However, there are exceptions like oy (middle right, orange)

which needs relatively smaller subsets than most larger groups.

Our experiments show that the group size does not substantially affect

how many examples are needed to approximate a NAP. This indicates

that the averaging has an intrinsic upper bound where including more

examples in the averaging does not change the average anymore. Hence,

our results suggest that a fixed subset size is most suitable for computing

approximated NAPs. Similarly, the intra-group variance appears to not

affect the necessary subset sizes, however, for TIMIT, these variances are

very similar to each other between the groups. This observation might not

be reproducible in data sets with more diverse groups in terms of their

variance.

5.5 Chapter Summary

This chapter introduced NAPs as a way to characterize DNN responses

to groups of inputs in particular layers of the network. We presented our

method and evaluated its individual steps.

118 CHAPTER 5. NEURON ACTIVATION PROFILES

Characterizing groups by averaging their activations is a suitable approach

under several conditions. The first condition is that the data need to be

aligned such that either the objects or the relevant features are at the same

location in all inputs. Our approach works best for data that is pre-aligned

or can be aligned by provided ground-truth annotations. If this is not

possible, our sensitivity-based alignment procedure provides a convincing

means to align the data such that the averaging yields group-characteristic

patterns. As second condition, there should not be too large intra-group

variance as this blurs the averages too strongly. In particular, the groups

need to be really related in terms of which features characterize them to

obtain the most useful results.

Normalizing the averages by subtracting the global average is recom-

mended because it increases the contrast and improves the comparability

between the groups, especially when using Cosine distance. For visually

interpretable data, however, normalization can be detrimental in the input

layer, as input layer NAPs are more intuitive to interpret in the same value

range as the original data.

While computing NAPs over the entire data set is computationally expen-

sive, they can be approximated by using random subsets. We empirically

found that the same subset size can be used for groups of different size, but

the optimal subset size is dependent on the data set and how exact the NAP

approximation needs to be.

An in-depth exemplary application of using NAPs to interpret a DNN for

ASR is provided in Section 7.2.

6
Topographic Activation Maps

In this chapter, we address our second research aim (RA2, Section 1.1)

of creating visualizations of the NAPs to visually compare activity of a

DNN between the different groups. To this end, we introduce topographic

activation maps which are inspired by how brain activity is commonly

displayed.

The methodology and experiments presented in this chapter are based

on one of our publications [92]. In this thesis, we provide more detailed

explanations and extend the evaluation of the results.

The chapter begins with a description of the methodology, followed by

experiments to evaluate our novel visualization technique qualitatively

and quantitatively. Application examples are provided in the following

Chapters 7 and 8.

6.1 Method

In this section, we describe our proposed pipeline to compute the topo-

graphic activation maps. This includes obtaining the hidden layer repre-

sentations of groups of examples, computing the layout of the topographic

maps and visualizing the activations according to the layout. A visual ab-

stract of the pipeline is shown in Figure 6.1.

6.1.1 Quantify Activation

For the layout computation, we use NAPs (Chapter 5) to characterize the

activations for each group. Figure 6.1A summarizes computing normalized

NAPG for two groups (compare Section 5.1.4), but without saliency align-

119

120 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

low NAP similarity across groups
→ high distance in layout

high NAP similarity across groups
→ small distance in layout

colored by NAP
values of ‘0’

B: compute a topographic layout

A: Neuron Activation Profiles (NAPs)

0
0

1

1

D: interpolation

C: coordinate
scaling

topographic
layout

…

average group activation

normalize by subtracting the global average

obtain NAP values for each group

neuron activations neuron activations

‘1
’ e

xa
m

pl
es

‘0
’ e

xa
m

pl
es

−

Figure 6.1: Visual summary of the computation of topographic activation maps.
A: Obtain NAPs to characterize the DNN activations for the groups of interest,
represented by two exemplary MNIST classes ‘0’ and ‘1’. As described in Chapter 5
the average activation of each group is computed and normalized by the average
activation of all examples to obtain a NAP, in the figure without alignment and
masking. B: Compute a layout in which similarly activated neurons are in the
vicinity of each other. The layout can be considered a dimensionality reduction
of the NAPs to two dimensions. Then, the layout can be colored by the NAP
values of the respective group. C: Scale the coordinates in both dimensions to a
range from 0 to 1 for comparability of different layouts. D: Apply interpolation to
achieve a continuous coloring which is visually more appealing than the scatter
plot and resembles the neuroscience inspiration better.

6.1. METHOD 121

ment or masking. However, in some experiments in this chapter, we also

use normalized NAPs with saliency-alignment (compare Section 5.1.5).

6.1.2 Topographic Map Layout

To compute the layout of the topographic maps, we distribute the neu-

rons of a hidden layer in a two-dimensional space. In general, we aim to

compute a layout in which neurons of similar activity are in the vicinity of

each other (Figure 6.1B). While using the same layout for all groups, we aim

for activation similarity of nearby neurons for each individual group. We

explore different techniques to compute such layout and describe them in

the following paragraphs.

Self-Organizing Map (SOM)

We investigate SOMs because they are neural networks in which the neu-

rons are arranged in a two-dimensional layout and trained such that neigh-

bors are similar to each other [81] (compare Section 2.1.2). That means,

SOMs are designed to obtain a topographic layout of their neurons. We use

the MiniSom package [67] for Python to compute a SOM layout of the neu-

rons based on their NAP values. For a layer with neurons N, we compute

a square SOM with shape d ×d with d = ⌊p|N|+1
⌋

, such that there can

potentially be one SOM position per DNN neuron. We train the SOM for

10 epochs with the NAPs as training data and use the default parameters

of the MiniSom package. Then, we assign each neuron the coordinate of

the SOM position whose weights are most similar to the NAP values of the

neuron. However, multiple neurons can match best to the same position in

the trained SOM and hence are indistinguishable in the layout. Therefore,

for each set of neurons that share the same coordinate, we distribute the

neurons uniformly on a circle centered at the coordinate assigned to the

neurons. To ensure that the redistributed neurons are still closer to each

other than to other neurons, considering that the SOM coordinates are

integer-valued, we choose a circle radius of 0.2.

Co-Activation Graph

Further, we use a layouting method that considers the most similar pairs

of neurons but not their exact similarity values. To this end, we use a

122 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

co-activation graph approach which follows the idea of layouting a graph

structure in which nodes and edges represent neurons and their activation

similarity, respectively. We first compute the pairwise Cosine similarity of

neurons according to their NAP values. We then create a graph with one

node corresponding to each neuron. For each of the 7.5 % most similar

pairs of neurons, we draw an edge between the corresponding nodes in

the graph. We empirically choose the distance threshold based on the con-

nectedness of the graphs for several MLP models and layers. The resulting

graph can have separated subsets of nodes, which leads to large gaps in

the layout. To avoid these gaps, we further ensure that the entire graph is

connected. To this end, we first identify all maximal subsets of nodes where

a path exists between all nodes, called connected components. Then, we

link each smaller connected component to the largest one by drawing an

edge between the most similar pair of neurons out of the two components.

Finally, we layout the connected graph with the force-directed Fruchter-

man Reingold algorithm [40] using the NetworkX package [159]. From the

obtained graph, we use the node coordinates as the topographic layout of

the neurons. For brevity, we refer to the co-activation graph technique as

the “graph” method.

Dimensionality Reduction

We test the popular dimensionality reduction methods PCA [60], tSNE [185]

and UMAP [116] (compare Section 2.3) to project the high-dimensional

neuron activation data into a lower-dimensional space while preserving

most information.

Principal Component Analysis (PCA) [146, 60, 66] is a traditional unsuper-

vised technique for linear dimensionality reduction. We use the first two

principal components of a PCA obtained using the decomposition module

of Scikit-learn (sklearn) [148]. UMAP [116] and tSNE [185] are more recent

non-linear dimensionality reduction algorithms. We use the tSNE imple-

mentation from the sklearn manifold module. For stability of the tSNE

algorithm, we initialize the learned embedding with PCA. To create two-

dimensional UMAP projections, we use the python module umap-learn

[115].

6.1. METHOD 123

Particle Swarm Optimization (PSO)

For our PSO approach (compare Section 2.1.4), we initialize a swarm of par-

ticles in a two-dimensional solution space, where each particle corresponds

to a neuron. With the PSO, we aim to optimize two aspects that we encour-

age with designated update rules. First, similarly active neurons shall be in

the vicinity of each other. Second, the neurons shall be evenly distributed in

the layout without gaps or dense clusters of neurons. The second objective

makes the PSO approach different than the aforementioned approaches

which focus on optimizing the layout based on activation similarity.

To achieve activation similarity of neighboring particles, we introduce a

global force which is computed based on the actual NAP values. The global

force encourages particles of similar neurons to attract each other while

activation dissimilarity repels the corresponding particles: For the set of

particles P , we compute a force for each particle i ∈ P :

fg l ob(i) = 1

|P \ i | ·
∑

j∈P\i

(
at trg l ob(i , j)− r epg l ob(i , j)

)
at trg l ob(i , j) = a ·

(
1− di stN AP (i , j)

max(di stN AP)3

)
r epg l ob(i , j) = b ·e−

1
c ·di stN AP (i , j)

(6.1)

In Equation (6.1), fg l ob = global force, at trg l ob = global attraction, r epg l ob

= global repulsion, di stN AP = Cosine distance matrix of the NAPs. For the

global force, we set the weight parameters to a = 1.5,b = 0.5,c = 2.

To obtain a well-distributed layout, we use a local force that only depends

on the particle coordinates. Like the global force, it consists of an attraction

and a repulsion term. However, in the local force, attraction closes gaps

in the layout by penalizing large distances between pairs of particles and

repulsion avoids that two particles occupy the same position. For the set of

particles P , we compute a force for each particle i ∈ P :

floc (i) = 1

|P \ i | ·
∑

j∈P\i

(
at trloc (i , j)− r eploc (i , j)

)
at trloc (i , j) = a · (di stcoor d (i , j)+1

)−3

r eploc (i , j) = b ·e−
1
c ·di stcoor d (i , j)

(6.2)

124 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

In Equation (6.2), fl oc = local force, at trl oc = local attraction, r eploc =

local repulsion, di stcoor d = pairwise Euclidean distances between particle

coordinates. The values that we use for the weight parameters of the local

force are a = 1.5,b = 15,c = 2.

We optimize the PSO for T = 1000 steps by updating the coordinates ac-

cording to the weighted average of global and local force (Equation (6.3)).

In early steps t , we use a high global force weight wg to encourage the

activation similarity of neighboring particles and then gradually increase

the local force weight wl to better distribute the particles in the space.

f = wg · fg l ob +wl · floc

2

wl (t) = 1

2
·
(

e s(t) −e−s(t)

e s(t) +e−s(t)
+1

)
= 1−wg (t) with s(t) = 9 · t

1000
−3

(6.3)

PSO with Non-Random Initialization

The PSO method with random initialization needs careful balancing of the

weight parameters of global and local attraction and repulsion. To require

less fine-tuning of parameters, we investigate a variant of the PSO. Instead

of optimizing the activation similarity with the global force, we compute an

initial similarity-based layout with one of the aforementioned methods. We

then only use the local force to further optimize the resulting layout with

PSO. As the local force is independent of the activation similarities, the PSO

is only used to equally distribute the neurons in the two-dimensional space.

We use the same parameters as for the PSO method with random initial-

ization except for setting wg = 0 (Equation (6.3)) in all optimization steps.

Using either the UMAP, TSNE, graph, SOM or PCA method to initialize

the PSO, we call the hybrid methods UMAP_PSO, TSNE_PSO, graph_PSO,

SOM_PSO and PCA_PSO.

6.1.3 Visualization

Finally, we use the NAP values (Section 6.1.1) and the layout coordinates

(Section 6.1.2) to create topographic map images. To be able to compare

different layouts, we first scale the layout coordinates such that in both

dimensions the minimum value is 0 and the maximum value is 1 (Fig-

6.1. METHOD 125

ure 6.1C). Then, we assign each layout coordinate a color according to the

NAP value of the corresponding neuron for one group. We choose this color

by mapping the NAP values to a symmetric continuous color scale, where

−absmax(NAPG) is blue

0 is white

+absmax(NAPG) is red,

with absmax(NAPG) = max
(−min(NAPG),max(NAPG)

)
.

Then, we linearly interpolate the colors between the points with a resolu-

tion of 100×100 px (Figure 6.1D). We use the same interpolation resolution

for all methods because of the applied coordinate scaling. Equal colors in

topographic maps of different groups represent the same NAP value, but

the colors can correspond to different values in each experiment or layer.

Colors of CNN Feature Maps For CNNs, we use the complete feature map

NAPs to compute the topographic map layouts but we need to aggregate the

activation values per feature map to obtain a color for the topographic map.

We investigate four different aggregation techniques in our experiments.

Commonly used aggregation techniques are global average pooling and

global max pooling. The average value indicates how well the filter that

corresponds to the feature map matches across the entire input. It can show

both high and low activity but highly specific patterns that are detected

in only small regions might not be reflected well. Global max pooling

identifies the activity at the position where the input is most similar to

the feature represented by the respective filter. Therefore, it is expected to

reflect activity of highly-specific filters better than global average pooling.

However, pattern mismatches (negative activations) are not considered

and the range of expected values is strongly biased towards highly positive

values which might lead to worse distinguishable feature maps with respect

to their aggregated value. We investigate these two aggregation techniques,

referring to them as “mean” and “max”, respectively.

Specific to our NAP technique, we investigate the center value as an ad-

ditional aggregation. When applying the saliency-based alignment (see

Section 5.1.5), we relocate the most relevant position in a feature map to

126 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

the center position. Therefore, we expect that using the NAP value at this

position can be a good representation of the activation of a feature map.

We refer to the center value aggregation as “center”.

In addition, as a random baseline, we investigate a random aggregation

technique. To this end, we use the value from each feature map at a com-

mon randomly drawn position to obtain a color value. For the quality

computation, we perform 10 random aggregations, of which we compute

the average quality. The aggregation method “random” refers to this average

value.

6.2 Experimental Plan

6.2.1 Evaluation Measures

Qualitative Criteria

Our technique aims to provide a comparative visual overview of the rep-

resentations of groups in a DNN. The topographic maps are supposed

to be easy to visually compare and they shall be perceived as similar to

topographic maps in neuroscience. We consider the topographic maps to

be visually similar to their neuroscientific inspiration if they have a round

shape, contain no regions without neurons and show distinguishable re-

gions in all groups. To achieve comparability between topographic maps,

they shall have a similar shape and size and they need to be discriminable

for dissimilar groups. We qualitatively evaluate these expectations by visual

inspection.

Quantitative Evaluation Measures

In addition to the visually inspecting the topographic mas, we quantify

their visual quality. To this end, we investigate different measures which

aim to quantify aspects of the aforementioned visual quality criteria.

Perturbation-Based Measures To test whether each position in a topo-

graphic map is similar to its neighborhood, we apply a Gaussian blur to

the topographic map image and compute the MSE between the original

6.2. EXPERIMENTAL PLAN 127

and the blurred image. However, this metric penalizes boundaries between

regions strongly, but clear boundaries can be beneficial to distinguish dif-

ferent regions from each other. Therefore, we use a second metric based

on image resizing with bicubic interpolation because it preserves edges

better than using Gaussian blur. For this metric, we downscale the images,

upscale them to the original size again and compute the MSE between the

upscaled and the original image.

To not bias the quality metric based on the choice of a specific blur or

resize strength, we compute the quality with different parameters for the

the radius of the Gaussian blur and the downscaling size. We use Gaussian

blur with ten different radii, ranging from 2 px to 20 px in steps of 2 px and

investigate ten different downscaling sizes for the original topomap image

of size 100×100 px from 55×55 px down to 10×10 px in steps of 5 px (see

an example in Figure 6.2A).

To aggregate the results for the different parameter choices while interpolat-

ing the values for parameters in between, we use an estimated area under

the curve (AUC) value. Using the parameters in the order of increasing

effect of image alteration, we consider the resulting MSE values as function

values and apply the trapezoidal rule with width 1 to estimate the AUC.

Figure 6.2: Pre-processing of topographic activation map images for quality
measure computation. A: Blur and resizing effects on the original image when
computing MSE AUC values. B: Connected component detection in the red and
blue channel and obtaining perimeter and convex hull, specifically shown for
detecting blue components in the red channel.

Component-Based Measures We further use two metrics that quantify to-

pographic map quality based on the number and size of connected compo-

128 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

nents in the images. The procedure can be followed in Figure 6.2B. First, we

separate the image of the topographic map into the red and blue channel.

For both channels, we apply a binary threshold at pixel value of 230 to sepa-

rate blue or red regions (value 1) from the background (value 0), respectively.

We empirically choose the threshold such that components agree with our

subjective perception of regions in the topographic maps. Note that small

values in the red channel indicate a blue region and vice versa. In the bi-

narized channel images, we detect connected components using OpenCV

[138]. We omit every component of size less than 10 px in a topographic

map image of size 100×100 px by assigning it to the background component

because they are not perceived as distinct regions. Finally, we compute two

quality metrics. The first is the number of components, excluding the back-

ground, where fewer components indicate better distinguishable regions.

In cases, where large parts of the topographic maps are white, the number

of components alone can be an insufficient quality criterion. Therefore, we

additionally compute the average size of these components as the second

component-based metric. For more interpretable size values, we use the

size relative to the largest possible circle area in a 100×100 px topographic

map, which is π ·502 = 7854 px.

Generally, the average component size decreases with the number of com-

ponents. However, in the aforementioned case of largely white topographic

maps with few components, a small component size indicates worse qual-

ity of the topographic map. Moreover, number and size do not account

for whether the components are large but interwoven with others, which

would make them more difficult to distinguish and compare. Therefore, we

further compute the convexity of each connected component as the ratio

of the length of its convex hull and its perimeter. In Figure 6.2B on the right,

hull and perimeter are shown for multiple components. Using OpenCV, we

compute the contour of each connected component with findContours()
and the respective convex hull with convexHull(). We then compute the

length of the contour (the perimeter) and the length of the hull with the

OpenCV function arcLength(). We compute a size-weighted convexity

swc for the red and blue channel, with Cchannel as the set of connected

components in the respective color channel as

swcchannel =
1

|Cchannel |
· ∑

C∈Cchannel

(
si ze(C)

π ·502 · hull (C)

per i meter (C)

)
.

6.2. EXPERIMENTAL PLAN 129

This means, we compute convexity as the fraction of the length of the

convex hull and the perimeter of the connected component. Then, we

aggregate convexity values of the components and reward larger convex

components. To this end, we compute the fraction of total circle area (in

a 100×100 px topographic map) occupied by each component and use

these as weights for a weighted sum of convexity values. Lastly, we compute

the average size-weighted convexity of the components in the respective

channel.

Finally, we combine the two swcchannel to a swc value depending on which

channels contain connected components.

swc = swcr ed if Cbl ue =;
swc = swcblue if Cr ed =;
swc = swcr ed + swcbl ue

2
else

This results in a quality measure in the range of [0,1] and is optimal for two

perfectly convex components in the red and blue color channel that jointly

span the entire topographic map, including the possibility of a component

in only one channel. We refer to this quality measure as “size-weighted

convexity” in the following evaluation.

All Measures In total, we investigate five different measures: blur MSE

AUC, resize MSE AUC, component count, average relative component area

and size-weighted convexity.

Furthermore, we investigate the robustness of the quality of the topo-

graphic maps. To this end, we repeat each topographic map computation

100 times given the same input.

6.2.2 Topographic Map Quality for MLPs

For our simplest data set and model, MNIST and MLP, we compute NAPs

in the first fully-connected layer, using the 10 classes as grouping. We then

use the resulting NAPs to compute topographic maps with each of our 11

proposed layouting methods.

130 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

Pre-Selecting Layouting Methods First, we pre-select a subset of techniques

that satisfy the qualitative expectations of the visualization described in

Section 6.2.1. For the exemplary class “0”, we compare the methods with re-

spect to the formation of regions of similar activations, the visual similarity

to a topographic map in neuroscience and the ease of comparability.

Representativeness of Quality Measures Based on the pre-selected methods,

we investigate which quality measure is best suitable to quantify the visual

quality of topographic activation maps. To this end, we use a set of manually

created topographic activation maps to evaluate whether the measures

represent the perceived visual quality under different conditions. We then

focus our evaluation on the most promising measure.

Quantitative Topographic Map Evaluation For the pre-selected methods,

we investigate the quality of the resulting topographic maps in further detail.

For each of the methods, we compute the quantitative evaluation measures

described in Section 6.2.1. We include a random baseline layout to obtain

an expected lower bound on the quality of the topographic maps. This

random layout is a local force-only PSO which we initialize with random

uniform values. For the most promising quality measure, we report the

evaluation in the main part of the thesis. Results using all measures are

provided in Appendix B.1.

6.2.3 Topographic Map Quality for CNNs

Topographic maps of CNNs represent feature maps, therefore, the color

values are aggregated feature map NAPs. This difference to MLPs might

affect which layouting method produces the best topographic maps. As

for the MLP, we investigate visual quality of topographic maps for CNNs

using the pre-selected layouting methods as well as a random layout. In

addition, because of the need for aggregating feature map NAPs, we further

investigate the four aggregation techniques “mean”, “max”, “center” and

“random”. We perform our evaluation with CNNs trained on our MNIST

variations shifted and padded MNIST, which are described in Section 4.1.1.

6.3. RESULTS AND DISCUSSION 131

Layouting Methods As discussed in the NAP alignment evaluation (Sec-

tion 5.3), pre-aligned data leads to the most descriptive NAPs. Therefore,

as an initial quantitative evaluation, we compare the different layouting

methods for the CNN trained on padded MNIST. This comparison involves

4 aggregation techniques, 4 quality metrics and 7 layouting methods across

100 repetitions of the layout computation. To reduce this large amount,

we first create an overview comparison. In this overview, we only observe

the mean qualities across the 100 repetitions. Further, we compute the

average rank (1–7, best to worst) of the quality values of the layouting meth-

ods across the aggregation techniques. For example, if a method has the

highest quality in all aggregation techniques, its average rank is 1. After this

summary, we investigate the qualities in a detailed comparison. From this

evaluation, we obtain the highest-quality layouting method which we use

in the following evaluation steps.

MNIST Variations and Alignment Using the identified best layouting

method, we compare the topographic map quality between the three

different alignment variations of MNIST. With this comparison we investi-

gate how the data alignment affects the topographic map qualities.

Aggregation Methods Again using the highest-quality layouting method,

we compare the topographic map quality between the different aggrega-

tion techniques for each model, respectively. With this comparison, we

investigate how strongly the choice of aggregation technique affects the

topographic map quality. Also, we use this comparison to evaluate our

expectation that the saliency-based alignment is particularly suitable for

using a center value aggregation.

6.3 Results and Discussion

6.3.1 Pre-Selecting Layouting Methods

We first pre-select layouting methods that produce topographic maps

which satisfy the qualitative criteria of Section 6.2.1. Topographic maps gen-

erated with each of the 11 methods for the MNIST MLP and the exemplary

class “0” are shown in Figure 6.3. The figure shows the topographic maps

132 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

as scatter plots to see the positions of the neurons and potential gaps in

the layout as well as the interpolated visualization as the final topographic

maps.

Figure 6.3: Topographic maps for one exemplary class for all proposed layouting
methods. The scatter plots show the layouted neurons with NAP value-based
coloring. Below are the resulting interpolated topographic maps. Left-most are
examples of an electrode layout (top) and a topographic map (bottom) in neuro-
science which we use as inspiration and qualitative target for our visualization.
All layouts and colorings use the same class-based NAPs for an MNIST MLP
model as input.

All methods can distribute the neurons to form regions of similar activa-

tions. Only the SOM technique splits up sets of co-activated neurons into

multiple regions in the layout. This can happen because a SOM does not

penalize the similarity of distant coordinates, for example, when initializing

two distant positions with similar neurons.

Another criterion is that the neurons are well-distributed in the two-

dimensional space. One reason for this criterion is that there are no empty

regions in a topographic map of a brain either. In addition, a layout with

varying neuron density leads to disproportionated regions in the interpo-

lated topographic maps. This effect can, for example, be observed in the

TSNE topographic map. The region of highly active neurons in the center is

surrounded by areas without assigned neurons. In the interpolated image,

the gaps cause the red region to be enlarged, which wrongly suggests that

the highly active neurons are in the majority for this class. We observe the

6.3. RESULTS AND DISCUSSION 133

strongest neuron density variation for UMAP and TSNE, and the graph

method leads to high density for groups of co-activated neurons. With the

SOM and PCA methods, the neurons are well-distributed in the shown

example but a higher variation of the neuron density can happen for dif-

ferent data, models or parameters, too. The best distribution is achieved

with the PSO method, which is almost free of gaps in the layout and the

density of neurons is similar across the whole layout. This observation

is not surprising because the PSO method optimizes this property of the

layout with the local force component.

For the images to be visually similar to topographic maps in neuroscience,

we expect them to have a round shape. This property is particularly well sat-

isfied with the PSO method, regardless of the initialization, which is again

achieved by the local force. However, when initializing the PSO randomly,

the quality of the topographic map is unreliable. In the shown example of a

PSO topographic map, we observe several neurons of low activity within

regions of high activity. This effect is likely related to the simultaneous

optimization of activation similarity and neuron distribution that can inter-

fere with each other. This supports our idea of first layouting the neurons

by activation similarity, followed by distributing the neurons with a PSO

using the local force only. Therefore, we conclude that the PSO methods

with non-random initialization are the most promising techniques. We will

use these methods for the quantitative evaluation and keep the randomly

initialized PSO for comparison, as well.

6.3.2 Representativeness of Quality Measures

We manually created the topographic activation maps shown in Figure 6.4

as representative cases to see which quality measure most closely aligns

with our expectations. Maps A and B represent ideal topographic activation

maps, for which we expect the highest quality. With C, we represent a

poor activation map that is difficult to interpret by visual inspection, so

its quality should be correspondingly low. D is an example with few large

components, however they are interwoven with each other and, therefore,

we expect them to have less visual quality. E1 and E2 are more realistic

examples of visually high-quality topographic maps, which differ in that

the blue region is split by a small gap. Both should obtain good visual

134 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

Figure 6.4: Comparison of different quality measurements on manually created
topographic activation maps. Better scores for each quality measure are indicated
by darker shades of green. Note that average relative component size and size-
weighted are not 1 or 0.5 for the ideal examples A and B due to the pixel grid and
approximations when obtaining connected components.

quality and the small gap should not strongly affect the value. F1 and F2

are examples to test whether the component-based scores can separate

nested components correctly. For our last example G, which represents

sparse regions in the topographic map, we expect a low quality that should

be higher than that of C, as it contains more information.

Size-weighted convexity is most consistent with our expectations as it

gives the highest quality to A and B, the lowest to C and G, and a higher

quality to E1,2 and F1,2 than to the more convoluted activation map D. It

does, however, not completely satisfy our expectations as there is little

difference between the interwoven components in example D and the

visually appealing topographic maps E1,2. We suspect that this is due to

a larger proportion of white areas in E1,2 compared to D. Nonetheless, we

consider the size-weighted convexity as the most suitable visual quality

measure and use it for the following evaluation.

6.3.3 Quantitative Evaluation

In this section, we report the quantitative evaluation of visual quality of

topographic activation maps using the size-weighted convexity measure.

MLP

We quantify the visual topographic map quality for the different PSO-based

layouting techniques, The results for the first fully-connected layer of the

MLP model trained on MNIST are shown in Figure 6.5.

6.3. RESULTS AND DISCUSSION 135

0.1 0.2
size-weighted convexity

baseline

PSO

graph_PSO

PCA_PSO

SOM_PSO

TSNE_PSO

UMAP_PSO

Figure 6.5: Quantification of the topographic map quality for MNIST MLP mea-
sured by size-weighted convexity. Each layout is computed 100 times and the
plot shows the respective quality value distributions and their minimum, mean
and maximum value.

We observe that all layouting techniques outperform the random baseline

in the MLP. However, the default PSO is not significantly better than the

baseline. SOM_PSO, PCA_PSO and graph_PSO are in the medium visual

quality range. The best quality scores are obtained with TSNE_PSO and

UMAP_PSO. UMAP_PSO performs better than TSNE_PSO on average and

has higher variation between the runs, leading to both higher and lower

qualities in individual layouts. Generally, the variation of the visual qual-

ity when computing the layout multiple times is surprisingly high for all

methods. Especially for PCA_PSO which uses initial coordinates from the

deterministic PCA, we expected more similar quality between the runs. We

therefore suspect that a large part of the variation is attributed to the distri-

bution of points after the initial layout. Likely, this is related to instabilities

in the optimization if two particles get too close in an update and then

repel each other too strongly due to the cubic influence of the distance

in the repulsion force component. Because UMAP_PSO has the highest

mean visual quality and its lowest-quality runs are better than all other

techniques except TSNE_PSO, we find UMAP_PSO to be the most suitable

layouting technique for MLPs.

The high visual quality of TSNE_PSO and UMAP_PSO also comes with

a significantly longer computation time. Comparing the computation

time to the PSO with random initialization, UMAP_PSO has around 27

times longer computation time and TSNE_PSO is 183 times slower than

the regular PSO. For computing individual layouts, this time difference is

136 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

negligible, but can accumulate. For our experiments with 100 repetitions,

PSO needed 2 min, UMAP_PSO 43 min and TSNE_PSO almost 5 h. In

practice, recomputing the same layout multiple times is unlikely. However,

for example, computing layouts for several layers in a network multiplies

the absolute time difference by the number of investigated layers.

CNN

First, we perform a quality comparison when using different layouting

methods. In CNNs, the quality of the topographic maps can further be

influenced by how the feature maps are aggregated to obtain color values,

therefore, we also investigate different aggregation approaches. For some

methods, random aggregation leads to extreme values such that differences

between mean, max and center aggregation are not visible from the plots

anymore. Therefore, we omit random aggregation for the comparison of

layouting methods. Figure 6.6 shows the results of the quality comparison.

0.25 0.50 0.75
baseline

PSO
graph_PSO
TSNE_PSO
SOM_PSO
UMAP_PSO
PCA_PSO

mean

max

0.25 0.50 0.75
PSO

TSNE_PSO
baseline

UMAP_PSO
PCA_PSO
SOM_PSO
graph_PSO

0.25 0.50
baseline

PSO
graph_PSO
SOM_PSO
TSNE_PSO
UMAP_PSO
PCA_PSO

center

0.75
size-weighted
convexity

Figure 6.6: Topographic map qualities for padded MNIST for different layouting
techniques using different aggregation functions. The plots show visual quality
distributions over 100 repeated layout computations.

6.3. RESULTS AND DISCUSSION 137

The maximum value of a feature map is typically a highly positive value,

therefore, the topographic maps become large red regions. These lead to

high visual quality values for every layouting technique. However, despite

the high quality, the information content is low. Especially, the baseline

layout can also lead to high quality in many cases, which indicates that

maximum aggregation is not suitable. Mean and center aggregation, in

contrast, yield more informative topographic maps, where the baseline is

less qualitative than the layouts that are based on activation similarities.

As for MLPs, PSO with random initialization produces the lowest-quality

topographic maps that are not significantly better than the baseline,

and SOM_PSO and graph_PSO are in the medium quality range. How-

ever, in CNNs, PCA_PSO produces on average the highest quality values

and TSNE_PSO only has medium quality for mean value aggregation.

UMAP_PSO is second-highest average quality and it produces the individ-

ual layouts of highest quality.

Despite PCA_PSO performing best on average for CNNs, we still consider

UMAP_PSO as the better technique in general because it produces high-

quality topographic maps for both MLPs and CNNs.

Alignment and Aggregation

Creating topographic activation maps for CNNs differs from MLPs mainly

in that feature map NAP values need to be aggregated to obtain colors.

Here, we investigate whether there are differences in topographic map

quality when using aligned or unaligned data and how suitable the differ-

ent aggregation methods are in dependence of the alignment of the data. In

the previous quality comparison of the methods, we found that maximum

value aggregation is not informative for comparing different layouts. Nev-

ertheless, we include it here in case that maximum aggregation performs

better in certain alignment scenarios.

The topographic map qualities using UMAP_PSO as layouting technique

are shown in Figure 6.7, from the perspective of alignment differences in

Figure 6.7a and of aggregation method differences in Figure 6.7b.

Comparing the different MNIST alignment variations, we observe only

small differences of qualities. Surprisingly, the pre-aligned data (padded

MNIST) yields the lowest qualities and shifted MNIST without alignment

138 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

mean max center

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
size-weighted

convexity
size-weighted

convexity
size-weighted

convexity

(a) Comparison of MNIST alignment variations.

padded MNIST
without alignment

shifted MNIST
with alignment

shifted MNIST
without alignment

0.25 0.50 0.75 0.25 0.50 0.75

random

center

max

mean

size-weighted
convexity

0.25 0.50 0.75
size-weighted

convexity
size-weighted

convexity

(b) Comparison of aggregation methods.

Figure 6.7: Topographic map qualities using UMAP_PSO.

the highest. We suspect that the visual quality benefits from less infor-

mative values to show. Shifted MNIST without alignment produces more

homogeneous NAP values due to stronger averaging out effects (compare

Section 5.3). This in turn leads to regions that are less group-specific but

satisfy the visual quality measure better.

All three tested aggregation functions outperform the baseline of picking a

random feature map positions. As before, there is little difference between

mean and center aggregation. Only for shifted MNIST without alignment,

using mean value performs slightly better than center aggregation. Maxi-

mum aggregation again yields artificially high quality due to the large red

regions, which are difficult to distinguish between the classes. Contrary to

our expectation, there is no benefit of using center value aggregation when

using our sensitivity-based alignment technique.

We conclude that maximum value aggregation is not suitable for producing

color values for topographic activation maps. Both mean and center value

appear similarly suitable, therefore, we decide to using mean aggregation

6.3. RESULTS AND DISCUSSION 139

in the following as it is the more common approach in literature. Further,

we found that it is difficult to make a fair comparison because alignment

variations and aggregation techniques influence the scale of the NAP values

and how distinguishable the topographic maps are between the groups.

Therefore, we expect similar issues in the following comparison of topo-

graphic maps in different layers due to value scale differences between

layers.

Layer Comparison

Using the most promising layouting technique (UMAP_PSO) and mean

aggregation, we further compare visual quality of topographic activation

maps in different layers of the network. Results are shown in Figure 6.8a.

padded MNIST
without alignment

layer 3

layer 2

layer 1

0.2 0.4

shifted MNIST
with alignment

0.2 0.4

shifted MNIST
without alignment

size-weighted
convexity

0.2 0.4
size-weighted

convexity
size-weighted

convexity

(a) Size-weighted convexity in different layers.

(b) Topographic maps for exemplary classes 0–4 in different layers. In the same layer and
MNIST variation, topographic maps use the same color map.

Figure 6.8: Topographic maps and their visual qualities using UMAP_PSO and
mean aggregation comparing the three convolutional layers in the CNNs for
predicting padded and shifted MNIST classes.

For padded MNIST, quality values decrease with the depth of the layer.

For shifted MNIST, both with and without alignment, the second layer

140 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

decreases in quality but the third layer has higher quality than the second

one. From visually inspecting the corresponding topographic maps (see

Figure 6.8b), the qualitative difference between padded and shifted MNIST

is difficult to detect. In layer 1, padded MNIST has larger white regions than

shifted MNIST, that means, more unspecific neurons, which leads to lower

visual quality according to our measure. In layer 3, the differences are not

as obvious but it appears as if regions in shifted MNIST are of slightly higher

contrast between under- and over-active neurons than for padded MNIST.

We suspect that the higher visual quality is related to that the shifted MNIST

data influence on the learned patterns by the model. The differently located

MNIST digits in shifted MNIST provide richer training information than

padded MNIST where all digits are exactly in the center such that the model

learns more representative features.

6.3.4 Comparison to Other Visual Quality Measures

We decided to use size-weighted convexity based on only a few manually

created examples. In the case that these examples are not representative

enough, we also perform the quantitative evaluation for all other investi-

gated visual quality measures, as well. Here, we only summarize the results

and provide the detailed results and discussion in Appendix B.1.

Comparing the layouting techniques, the component measures (count and

average relative size) agree with size-weighted convexity that UMAP_PSO

is the highest-quality technique. Both MSE AUC quality measures con-

sider UMAP_PSO and TSNE_PSO as similarly high quality. Consequently,

UMAP_PSO yields topographic activation maps of high visual quality ac-

cording to all investigated measures, both for MLPs and CNNs.

Regarding the influence of alignment and aggregation techniques, we ob-

serve similar qualities according to the number and size of connected

components. For the blur and resize MSE, however, the quality is generally

low for shifted MNIST with alignment. Another clear difference for blur and

resize MSE quality is that the aggregation function does not substantially

affect the quality for shifted MNIST without alignment. There is, however,

a change in visual quality, which supports that the blur and resize MSE

qualities do not represent visual quality well. Similarly, the findings for the

6.4. CHAPTER SUMMARY 141

layer comparison are supported by the connected component count and

size but not by the blur and resize MSE.

In conclusion, we find that the image perturbation quality measures do

not reflect subjective visual quality well and disagree with the connected

component-based measures in several cases. The combination of com-

ponent size and number agrees with the findings of the size-weighted

convexity. Therefore, we still consider the size-weighted convexity as the

most suitable quality measure.

6.4 Chapter Summary

In this chapter, we presented topographic activation maps to visualize

high-dimensional NAPs as a two-dimensional representation.

In essence, our visualization approach is a dimensionality reduction tech-

nique. However, in addition to reducing the dimensionality of the data

while retaining as much information from the high-dimensional data space

as possible, we aim to achieve a visual appearance that resembles how

neuroscience visualizes the activity of the brain. We found that neither

common dimensionality reduction techniques (like tSNE or UMAP) nor

designated topography-learning approaches (like SOM or our PSO tech-

nique) satisfy both requirements on the neuroscience-inspired visualiza-

tion of activations. However, first using dimensionality reduction to project

high-dimensional NAPs into a two-dimensional space and then using PSO

to achieve a neuroscience-typical round shape yielded the best results.

Among these two-step methods, we found the UMAP_PSO layouting tech-

nique to be best suitable for producing topographic maps. This method

first applies a UMAP dimensionality reduction and then uses a local-force

only PSO to obtain a round shape of the visualization. We evaluated the

topographic map quality over different model types, ways of aligning data,

and aggregation techniques for reducing feature map NAPs to a single value

for the visualization.

Importantly, the visual quality of topographic maps does not imply that

they represent useful information about the DNN activations. The repre-

sentativeness needs to be provided by meaningful NAPs, which is discussed

in Chapter 5.

142 CHAPTER 6. TOPOGRAPHIC ACTIVATION MAPS

Visualizing NAPs as topographic activation maps works best for layers that

have many neurons or feature maps. Otherwise, the visualization has a

very low resolution, for example, in smaller networks or with toy examples.

Out of this reason, our MNIST classifiers for evaluating topographic maps

use 128 feature maps although fewer would have been sufficient for such

simple data set. Secondly, topographic activation maps are most useful

for visually comparing different groups. However, if the number of groups

is large, it can become difficult to compare the large number of resulting

visualizations. To counteract this problem, when visualizing topographic

activation maps of multiple classes, we recommend to order them by the

class activation similarity. We provide details and examples of this approach

in Chapter 7, particularly Sections 7.3 and 7.4.

Finally, topographic maps are difficult to fairly compare between different

models or different layers within the same model. Both visualization and

the corresponding quality values depend on the number of (active) neurons

and the scale of the NAP values, such that a comparison is usually not

conclusive. Therefore, we recommend to only compare groups in the same

model and layer and only contrast these relations the groups’ relations

when observing different layers and models. For example, in Section 7.4,

we compare topographic maps between groups in different layers and

discuss how the similarities and differences of the groups change compared

between an early and a deep layer.

7
Application

This chapter addresses how NAPs and topographic activation maps can

be applied to get insight into trained DNNs. First, we discuss how well

our technique scales to different architectures and data sets (Section 7.1).

Then, we show exemplary applications on using NAPs (Section 7.2) and

topographic activation maps (Sections 7.3 and 7.4).

7.1 Scalability

7.1.1 Architecture – Deep Models

Computing NAPs and visualizing them as topographic activation maps is

performed layer-wise. Therefore, it is straight-forward to apply it to models

of any depth. However, analyzing all layers becomes computationally

highly expensive for deeper models and it is necessary to only focus on

a subset of layers of interest. Our recommendations about how to select

these layers is given in Section 5.1.1. An example of computing NAPs for

DNNs with many layers is given in Section 7.4, where we analyze a VGG16

model. Further, in Chatterjee et al. [18], we perform a NAP analysis of a set

of five large models, ResNet18, ResNet34, InceptionV3, InceptionResNetV2

and DenseNet161, applied to classify respiratory diseases in chest X-ray

images.

7.1.2 Architecture – Wide Layers

The width of a layer describes its number of neurons or feature maps. The

consequently larger dimensionality of the activations affects the compu-

tation of NAPs because more values need to be processed. However, this

143

144 CHAPTER 7. APPLICATION

increase in computational effort scales linearly with the width and can be

parallelized, therefore, does not impact the applicability of our method.

The memory usage for wide layers is limited by the GPU memory to run

the model in the first place, not the the memory required to run the NAP

analysis. As the width only influences the dimensions of the NAPs, repre-

sentational similarity analyses can also be performed for wide layers.

Computing topographic maps of NAPs, on the other hand, is strongly af-

fected by the layer width because it requires layouting the different neurons

or feature maps in a layer. In particular, there are several operations that

perform pairwise comparisons (by computing similarity matrices) between

the neurons or feature maps. This leads to quadratically growing number

of comparisons with respect to the width of a layer. Especially the non-

linear dimensionality reduction techniques UMAP_PSO and TSNE_PSO

are affected because of their generally longer runtime.

7.1.3 Architecture – Large Feature Maps

Large feature maps typically result from high-resolution input data but can

also occur in models that use transposed convolutional layers to upsample

representations. The computation of NAPs linearly scales with the size of

the feature maps because it adds more values to compute an average of.

As with wide layers, the memory usage increases, but is already limited by

GPU memory during the model training and inference.

The main difficulty of large feature maps is the aggregation of feature map

values when creating topographic maps. For this visualization, feature

maps are reduced to a single value. This can heavily affect how represen-

tative this value is of the feature map NAP content. Commonly, this issue

is addressed by not considering the entire input at once but to observe

patches of it, for example, in [17]. Investigating this option for NAPs is out-

side the scope of this thesis but is an interesting future research direction.

7.1.4 Data – Large Groups

Using groups with many examples is possible with our techniques but

comes with several disadvantages. Firstly, the computation time for ob-

taining the activations and averaging them increases with larger number

7.1. SCALABILITY 145

of examples and potentially needs a memory-efficient implementation to

handle all instances. Secondly, a large set of instances is unlikely to provide

an useful representation of the group. Either there is much redundancy

in the group, leading to wasteful computation, or the variation between

the instances in the group is so high that the averaging removes too much

information. Therefore, using large groups is generally less suitable for our

approach.

7.1.5 Data – Large Number of Groups

Considering the same data set with groupings of different number of groups,

there is almost no difference in how much computation is necessary. In

each case, activations are computed for each instance and are involved in

exactly one averaging operation. Only when normalizing the NAPs with an

average over the NAPs of the groups, computing the normalizer is negligibly

more demanding. Hence, the NAP computation effort does not depend on

the number of groups.

However, comparisons of groups, for example, using a representational sim-

ilarity analysis with clustering, become more computationally expensive

for large numbers of groups because they consider their pairwise relations.

In addition, the visualization of the NAP analysis results of many groups

can become very cluttered. Later in this chapter (Section 7.2.2), we show

an example of 62 groups (phonemes), which is already difficult to visu-

alize without providing close-up views of subsets. Further, comparing

topographic activation maps of many groups is complicated as they are

two-dimensional images that need much space in the visualization.

To work with many groups while still producing visualizations that are

not too cluttered, we recommend to facilitate group similarities. Firstly,

ordering the groups by their similarity with hierarchical clustering helps

to put similar groups in the vicinity of each other. This way, the order of

the groups itself helps to visually identify group similarties. In addition,

similarities of NAPs or topographic maps are easier to detect because the

corresponding groups are close to each other. For very large numbers

of groups, it is further useful to subdivide visualizations, for example, by

splitting it according to branches from the hierarchical clustering result to

obtain subsets of similar groups. Some data sets might provide hierarchical

146 CHAPTER 7. APPLICATION

labels that can be used for subdividing instead of a clustering. For example,

the ImageNet data set [157] uses the WordNet hierarchy to provide labels,

and TIMIT [41] provides information about which high-level category each

phoneme belongs to.

7.2 NAP Analysis of Automatic Speech Recognition Models

In this experiment, we show how to use NAPs to analyze phoneme and letter

representations in fully-convolutional ASR models. The experiment has

been performed as part of one of our publications [89] where we refer to this

version of NAPs as SNAPs. However, for consistency in the thesis, we use

the term NAPs, while noting that it uses saliency information to align the

input and activations and to mask out prediction-irrelevant information.

We perform this experiment for TIMIT because we require the phoneme

annotations for our evaluation. In our previous work Krug et al. [88], which

is not part of this thesis, we also show that the analysis is possible for the

large-scale speech data set LibriSpeech [142].

7.2.1 Experiment

Plotting NAP

For data that are visually interpretable, input layer NAPs are interpretable,

as well. Although understanding spectrograms requires some domain

knowledge, they can be visually interpreted to some extent. However, due to

the normalization, input layer NAPs are not spectrograms but describe how

the intensities of the frequencies of the represented group differ from the

rest of the data. Plots of hidden layer NAPs are interpretable in fewer cases

because it requires that the hidden layer activations can be interpreted

themselves. To a certain extent, this is possible for 2D CNNs applied on

visually interpretable data. In such case, NAPs that correspond to single

feature maps can be plotted and inspected. In the 1D CNN that we use in

this work, feature maps are only one-dimensional and, in contrast to the

frequency dimension in the input, do not have a meaningful order. Hence,

in this experiment, we demonstrate visual inspection of NAPs only for the

input layer.

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 147

We use the W2L model to evaluate visualizations of input layer NAPs. To

this end, we first compare input layer NAPs of letters with simple nor-

malized aligned averages, to show the advantage of using saliency map

information. Secondly, we evaluate whether NAPs of phonemes reveal

representative patterns by qualitatively comparing exemplary input layer

NAPs with expected phoneme-typical patterns.

Representation Power of Layers for Different Groups

In our earlier work [88], we applied hierarchical clustering with Euclidean

distance and complete linkage [126] to NAPs of letters and phonemes, us-

ing a fixed threshold for the emergence of clusters. Here, we investigate the

clustering approach using different distance thresholds at percentiles 87 %

to 96 % in steps of 3 %. We empirically found these thresholds to lead to dif-

ferent numbers of clusters for our model. Applying the clustering algorithm

to other models might need other thresholds if the range or distribution of

distance values are different due to model properties, for example, the used

activation function. For quantifying the quality of the clustering result, we

compute its Silhouette score [155]. The Silhouette score is a measure of how

similar instances in the same cluster are to each other compared to their

similarity to instances of the nearest other cluster. In the context of NAPs, a

high clustering quality in terms of Silhouette score indicates that there are

sets of groups, where groups in the same set activate neurons similarly and

groups of different sets activate neurons differently. The resulting sets of

groups are potential high-level concepts that the network encodes in the

respective layer. However, high clustering quality does not guarantee that

this concept is meaningful to a human. Therefore, evaluating whether the

clusters are interpretable sets of groups still requires to manually inspect

the clusters. In addition to investigating the Silhouette scores at individual

distance thresholds, we further investigate the average Silhouette score

over the four used thresholds in each layer.

We evaluate this approach by contrasting the W2L model with the mod-

els that we train with transfer learning (compare Section 4.2.4). Through

transfer learning, the five bottom layers of the models W2L_TL_frozen and

W2L_TL_finetuned are pre-trained to predict phonemes. Therefore, we

expect the best clustering of phonemes to emerge at this depth of the net-

works and to be better than in the W2L model. This expectation does not

148 CHAPTER 7. APPLICATION

involve that the clusters correspond to interpretable concepts like phone-

mic categories. Further, for the W2L model, we compare the clustering of

NAPs between grouping by predicted letter and annotated phoneme.

7.2.2 Results

Per-layer NAPs

NAPs in the input layer are directly interpretable. They show how the

intensity of frequencies differs from the average over the complete data set,

indicated with red and blue color for higher and lower intensity, respectively.

The sensitivity-based masking causes that the NAPs only show regions

which are important for the prediction. This advantage is demonstrated

comparing the top and middle row in Figure 7.1. While without the mask,

both shown NAPs show a pattern over the whole receptive field size, the

corresponding masked NAPs also identify prediction-relevant parts of the

pattern. In addition to providing more information about what part of the

input the model uses for prediction, padding artifacts that occur as a result

from the alignment procedure are masked as well. An example for these

padding artifacts are the high values at -1 s in the pattern of letter ‘a’ in

Figure 7.1a.

We observe phoneme-typical patterns in the input layer NAPs (Figure 7.1c).

Phonemes aa and ae share a high intensity formant at around 700 Hz. A

second formant is identified at around 1200 Hz and 1900 Hz for aa and ae,

respectively. The input pattern for phoneme t shows a change of high to

low intensities of all frequencies at the alignment time. The patterns for all

three observed phonemes match the expectation well. A main difference

to the expected patterns is that identified formants spread a wider range of

frequencies, which is likely an effect of averaging recordings from different

speakers.

The input layer NAP for letter ‘a’ is more similar to the input layer NAP of

phoneme ae than to the NAP for phoneme aa. This indicates that letter ‘a’

is pronounced as ae more frequently than as aa and that the NAP of letter ‘a’

is dominated by the over-represented pronunciation ae. This dominating

effect can happen for groups with high variation between the instances.

Therefore, it particularly affects unbalanced groups in which a subset of

instances is more homogeneous than the other instances. Because of this,

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 149

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0

2.0
3.0
5.0
8.0

m
e
l-
sc

a
le

d
fr

e
q
u
e
n
cy

 (
kH

z)

'a'

1 0.5 0 0.5 1
time (s)

't'

(a) Input layer NAPs of letters ‘a’ and ‘t’ without saliency mask.

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0

2.0
3.0
5.0
8.0

m
e
l-
sc

a
le

d
fr

e
q
u
e
n
cy

 (
kH

z)

'a'

1 0.5 0 0.5 1
time (s)

't'

(b) Input layer NAPs of letters ‘a’ and ‘t’ with saliency mask.

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0

2.0
3.0
5.0
8.0

m
e
l-
sc

a
le

d
fr

e
q
u
e
n
cy

 (
kH

z)

aa

1 0.5 0 0.5 1
time (s)

ae

1 0.5 0 0.5 1
time (s)

t

(c) Input layer NAPs of phonemes aa, ae and tt with saliency mask.

Figure 7.1: Comparison of input layer NAPs with and without masking prediction-
irrelevant positions in model W2L for letters and phonemes. The plots visualize
the difference of intensity of frequencies between group-average and the average
over the complete data set. White indicates zero difference, red and blue color
indicate higher and lower intensity, respectively. Lighter color also indicates
small importance for the prediction. Colors represent the same values only for
subfigures in the same row.

NAPs are best suitable for groups with small intra-group variance. Conse-

quently, in this work, we compute NAPs for individual phonemes, instead

of using higher-level groups like vowels or fricatives. Input layer NAPs in

the model W2L are shown in the appendix for all annotated phonemes in

Figures A.10 and A.11 and for predicted letters in Figure A.9.

150 CHAPTER 7. APPLICATION

In deeper layers, the order of feature maps is uninformative because there

are no connections between feature maps in the same hidden layer. There-

fore, the corresponding NAPs cannot be interpreted by visual inspection.

In all layers, we observe that NAP values become smaller and drop to 0

the further away they are from the alignment time. This indicates that

the model does not use the complete receptive field for the prediction of

the majority of instances. Thus, it is possible to compress the model, for

example, by choosing fewer layers or filters or by decreasing the kernel

sizes.

Evaluation of the Representational Similarity

We evaluate whether NAP clustering indicates representational quality. To

this end, we first investigate Silhouette score correspondence to a ground

truth obtained through transfer learning and, based on the findings, inspect

the emerged clusters in specific layers. For this evaluation, we compare

the three models W2L, W2L_TL_frozen and W2L_TL_finetuned (compare

Section 4.2.4).

Silhouette Scores Figure 7.2 shows an overview of the Silhouette scores

for clusterings in all layers of the used models at different distance thresh-

olds as well as averaged over all the used distance thresholds. In general,

higher Silhouette scores indicate better clustering quality. By increasing

the distance threshold, the number of clusters decreases.

Regarding the average Silhouette scores, the models do not differ substan-

tially. We observe the highest difference between any two models in the

output layer, where the W2L model has an average Silhouette score of 0.31

and the W2L_TL_frozen model only 0.21. The second largest difference is

in layer 5, where the Silhouette score is higher for the TL models (frozen:

0.15, finetuned: 0.16) than for the W2L model (0.09).

The non-averaged Silhouette score curves are more clearly distinguishable

between the transfer learning models and the W2L model. Using smaller

distance thresholds (87th and 90th percentile), the Silhouette scores are

higher for the W2L model than for the transfer learning models, but the

difference between the clustering qualities of the models varies between

layers. However, for the W2L model, we do not observe a change in clus-

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 151

in 2 4 6 8 10 12
layer

0.0

0.1

0.2

0.3

si
lh

o
u
e
tt

e
 s

co
re

W2L
87
90

93
96

in 2 4 6 8 10 12
layer

W2L_TL_frozen
87
90

93
96

in 2 4 6 8 10 12
layer

W2L_TL_finetuned
87
90

93
96

in 2 4 6 8 10 12
layer

averaged
W2L
W2L_TL_frozen
W2L_TL_finetuned

0.0

0.1

0.2

0.3

si
lh

o
u
e
tt

e
 s

co
re

Figure 7.2: Silhouette scores at different distance thresholds. Through transfer
learning, models W2L_TL_frozen and W2L_TL_finetuned are expected to have
best phoneme encoding in layer 5. Transition from pre-trained layers to added
layers is indicated by a vertical dashed line.

tering quality when increasing the distance threshold. This is different to

the transfer learning models, in which Silhouette scores increase strongly

from layer 4 to 5 when using higher distance thresholds (93th and 96th per-

centile). At the same layer, the W2L model decreases in Silhouette score. We

consider this decrease a random co-occurrence because it is independent

of our choice of the depth of the transfer learning base model.

We expect that phonemes are best represented in the fifth layer of the trans-

fer learning models because it is the deepest layer which is pre-trained on

phoneme prediction. For the higher distance thresholds, the Silhouette

scores correspond to this encoding that is induced through pre-training.

This demonstrates that clustering quality can be used to investigate rep-

resentation of groups. However, the result is sensitive to the choice of

parameters for the clustering algorithm. We therefore recommend to not

rely on a single parameter setting but to perform the clustering evaluation

with different parameters although it multiplies the computation time.

152 CHAPTER 7. APPLICATION

Emerged Clusters In addition to only observing the Silhouette score, we

investigate the emerged clusters in more detail. As described before, there

is a high change in Silhouette score in both the W2L_TL models and the

W2L model from layer 4 to 5, which is the highest for the clustering at the

96th percentile. Therefore, we investigate the clustering result at the 96th

percentile threshold in layers 4 and 5 in more detail. As the frozen and

finetuned model do not differ substantially, we only compare W2L and

W2L_TL_frozen. A visualization of the NAP clustermaps is shown in Fig-

ure 7.3 and an enlarged view of the corresponding clustering assignments

is shown in Figure 7.4. In the following, we will refer to clusters of at least

three groups “main clusters” and focus on them because they indicate

groups of similar representation.

For W2L_TL_frozen, two distinguishable main clusters emerge in layer

4, while in layer 5, there is only a single large cluster. Observing a single

large cluster with high pairwise similarity values indicates good representa-

tion on the level of individual phonemes. Because the model distributes

phonemes evenly in the representation space, it is able to distinguish be-

tween each of the individual phonemes. This is our expected result because

the fifth layer of the W2L_TL_frozen model is the deepest layer that is

pre-trained on phoneme prediction trough the transfer learning approach.

Decreasing the clustering distance threshold in the transfer learning model

forces the clustering to divide the homogeneous cluster, leading to signifi-

cantly smaller Silhouette scores.

The W2L model, in contrast, shows more distinct subclusters in the 4th and

5th layers. The number of clusters is the same in both layers but the sets

of phonemes being assigned to the same cluster is substantially different.

35.4°% of phoneme pairs change from being assigned to the same cluster

to being in different clusters or vice versa. At the same time, distances

between NAPs in the W2L model are much higher and vary stronger than in

the transfer learning model. Phoneme clusters in the W2L model indicate

that the model encodes high-level concepts of similar sounds. For example,

the red cluster in the 5th layer (Figures 7.3c and 7.4c) contains most vowels.

Comparing Letter and Phoneme Representations in W2L To demonstrate an-

other application of NAP clustering, we investigate whether the W2L model

implicitly encodes phonemes as intermediate representation for predicting

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 153

en
g

gdxnxngngc
l

emenixaxuwwuxiheyiyyshzhjhchszpc
l

kc
l

tc
l

bc
l

dc
l

vmhvhhfthdhdqep
i

ax
r

errawayaeehelowlahuhaaaooybpktax
h

pa
u

eng
g

dx
nx
ng
n

gcl
em
en
ix

ax
uw
w

ux
ih
ey
iy
y

sh
zh
jh
ch

s
z

pcl
kcl
tcl
bcl
dcl

v
m
hv
hh

f
th
dh
d
q

epi
axr
er
r

aw
ay
ae
eh
el

ow
l

ah
uh
aa
ao
oy
b
p
k
t

axh
pau

(a) W2L, layer 4, 96th percentile

en
g

shchjhzhuxdxnxehiheyiyyax
r

errfthzsax
h

enngnempa
u

hvhhqlowelahuhixaxdhvmuwaeayawaaaooyggc
l

bc
l

pc
l

kc
l

tc
l

dc
l

pktdbwep
i

eng
sh
ch
jh
zh
ux
dx
nx
eh
ih
ey
iy
y

axr
er
r
f

th
z
s

axh
en
ng
n

em
pau

hv
hh
q
l

ow
el

ah
uh
ix

ax
dh

v
m

uw
ae
ay
aw
aa
ao
oy
g

gcl
bcl
pcl
kcl
tcl
dcl

p
k
t
d
b
w

epi

(b) W2L_TL_frozen, layer 4, 96th percentile

ax
r

errnxdxehaeayawaaaooyleluhahowuwuxiheyiyyhvhhszjhzhshep
i

bc
l

dc
l

kc
l

tc
l

pc
l

thftchax
h

pa
u

wixaxqddhvmemenkpbgngngc
l

en
g

axr
er
r

nx
dx
eh
ae
ay
aw
aa
ao
oy

l
el

uh
ah
ow
uw
ux
ih
ey
iy
y

hv
hh

s
z

jh
zh
sh

epi
bcl
dcl
kcl
tcl
pcl
th

f
t

ch
axh
pau

w
ix

ax
q
d

dh
v

m
em
en

k
p
b
g

ng
n

gcl
eng

(c) W2L, layer 5, 96th percentile

en
g

ggc
l

hvhhqnxdxngnenempa
u

mvdhixaxahuhtc
l

dc
l

dtpkkc
l

pc
l

fthzsax
h

rax
r

eraeehiheyayawaaaoelowlbbc
l

chjhzhyiyuwuxwep
i

shoy

eng
g

gcl
hv
hh
q

nx
dx
ng
n

en
em
pau

m
v

dh
ix

ax
ah
uh
tcl
dcl

d
t
p
k

kcl
pcl

f
th
z
s

axh
r

axr
er
ae
eh
ih
ey
ay
aw
aa
ao
el

ow
l

b
bcl
ch
jh
zh
y
iy

uw
ux
w

epi
sh
oy

(d) W2L_TL_frozen, layer 5, 96th percentile

Figure 7.3: Clustermaps for W2L (left) and W2L_TL_frozen (right) in layer 4 and 5
(top and bottom) at the percentile with highest change of Silhouette score from
layer 4 to layer 5. Darker shades of red indicate higher distance. Heat map colors
do not represent same distance values in different plots. Colors of clusters in
different subfigures do not represent mapping of the clusters. See Figure 7.4 for
an enlarged clustering view.

154 CHAPTER 7. APPLICATION

eng
g
dx
nx
ng
n
gcl
em
en
ix
ax
uw
w
ux
ih
ey
iy
y
sh
zh
jh
ch
s
z
pcl
kcl
tcl
bcl
dcl
v
m
hv
hh
f
th
dh
d
q
epi
axr
er
r

aw
ay
ae
eh
el
ow
l
ah
uh
aa
ao
oy
b
p
k
t

axh
pau

(a) W2L
layer 4

96th percentile

eng
sh
ch
jh
zh
ux
dx
nx
eh
ih
ey
iy
y

axr
er
r
f
th
z
s

axh
en
ng
n
em
pau
hv
hh
q
l

ow
el
ah
uh
ix
ax
dh
v
m
uw
ae
ay
aw
aa
ao
oy
g
gcl
bcl
pcl
kcl
tcl
dcl
p
k
t
d
b
w
epi

(b) W2L_TL_frozen
layer 4

96th percentile

axr
er
r
nx
dx
eh
ae
ay
aw
aa
ao
oy
l
el
uh
ah
ow
uw
ux
ih
ey
iy
y
hv
hh
s
z
jh
zh
sh
epi
bcl
dcl
kcl
tcl
pcl
th
f
t
ch
axh
pau
w
ix
ax
q
d
dh
v
m
em
en
k
p
b
g
ng
n
gcl
eng

(c) W2L
layer 5

96th percentile

eng
g
gcl
hv
hh
q
nx
dx
ng
n
en
em
pau
m
v
dh
ix
ax
ah
uh
tcl
dcl
d
t
p
k
kcl
pcl
f
th
z
s

axh
r

axr
er
ae
eh
ih
ey
ay
aw
aa
ao
el
ow
l
b
bcl
ch
jh
zh
y
iy
uw
ux
w
epi
sh
oy

(d) W2L_TL_frozen
layer 5

96th percentile

Figure 7.4: Clustering result for W2L (a, c) and W2L_TL_frozen (b, d) compared be-
tween layer 4 (a, b) and 5 (c, d) at the percentile with highest change of Silhouette
score from layer 4 to layer 5. Clustering assignment is shown by coloring. Colors
of clusters in different subfigures do not represent mapping of the corresponding
clusters. Pairwise distances are visualized in Figure 7.3.

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 155

letters. First, we compute NAPs for the W2L model using phonemes and

letters as grouping, respectively. Grouping by letter uses the predictions of

the model and phoneme grouping is based on the annotated phonemes at

the center time step of the input spectrogram frame. We then cluster both

sets of NAPs in each layer and compute the Silhouette scores at different

distance thresholds. In the input layer, we cluster the spectrogram frames.

Figure 7.5 shows the result for letters, phonemes and the averages over

distance thresholds for both groupings.

in 2 4 6 8 10 12
layer

letters

in 2 4 6 8 10 12
layer

phonemes
87
90

93
96

87
90

93
96

0.0

0.1

0.2

0.3

0.4

si
lh

o
u
e
tt

e
 s

co
re

0.5

in 2 4 6 8 10 12
layer

averaged
letters
phonemes

0.0

0.1

0.2

0.3

0.4

si
lh

o
u
e
tt

e
 s

co
re

0.5

Figure 7.5: Silhouette scores at different distance thresholds, derived from NAP
clustering in the W2L model comparing grouping by predicted letters and by
phoneme annotation. ‘in’ denotes the input layer.

For letters, the clustering quality strongly depends on the chosen distance

threshold, while the threshold has only minor influence on the phoneme

clustering quality. Particularly, clustering at the 96th percentile of letter

NAPs differs from clustering at smaller distance thresholds. Compared

to the evaluation experiment in the previous Section 7.2.2, the observed

Silhouette score curves are not as conclusive. According to the Silhouette

scores, letters are clustered better than phonemes in all except the two final

156 CHAPTER 7. APPLICATION

layers. This is surprising as we expect a letter prediction model to specifi-

cally cluster letters well in the output layer. Moreover, letter clustering has

the highest Silhouette score in layer 5 (at 96th percentile), while phoneme

clustering has its minimum clustering quality in this layer.

Because layers 5 and 12 stand out in terms of clustering quality, we inves-

tigate clustering in these layers in more detail. We particularly compare

the NAPs for letters and phonemes in the W2L model, using the respective

distance threshold with the highest respective clustering quality. A detailed

visualization of the pairwise distances between the NAPs as clustermaps is

shown in Figure 7.7, while Figure 7.8 shows the corresponding clustering

assignments as enlarged view.

Although the Silhouette scores indicate better clustering for letters in layer 5,

only a single-letter cluster for ‘j’ is distinguishable from all other letters.

In addition, several similarities do not reflect interpretable concepts. For

example, unexpectedly, letter ‘r’ is most similar to letters ‘a’, ‘o’ and ‘u’. We

similarly observe a single large cluster for the transfer learning model in

the previous evaluation experiment (Section 7.2.2, Figure 7.3d). The main

difference is that, here, the distance values between letter NAPs are much

higher than the distances between phoneme NAPs. In this case, we suspect

that the high clustering quality is an artifact from distinguishing the NAP

of ‘j’ as the rarest group (only 160 frames are predicted as ‘j’). Emerging

phoneme clusters in layer 5 represent more meaningful groups, although

having lower Silhouette score. The pink cluster encompasses nasals (ng, n,

eng). Green contains multiple fricatives (s, z, zh, sh). Purple only consists

of plosives (k, p, b, g). Red, orange and yellow are mainly grouping different

similar sets of vowels (and semivowels). See Figure 7.6 for a graphical

overview of which phoneme categories are associated with which cluster.

In the output (12th) layer, we observe more meaningful clustering of let-

ters, for example, a cluster containing all vowel letters and a cluster of

sibilant-typical letters (blue and yellow clusters in Figure 7.7c, respectively).

However, other letters that we expected to be close (for example, ‘p’ and

‘b’ or ‘t’ and ‘d’) are far apart from each other. We hypothesize that this

indicates how certain the model is when predicting particular letters. For

example, ‘p’ and ‘b’ might be easy for the model to distinguish, which leads

to output layer activations and corresponding NAPs that are more distant

from each other. In the previous Section 7.2.2, we observe a similar pattern

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 157

axr
er
r
nx
dx
eh
ae
ay
aw
aa
ao
oy
l
el
uh
ah
ow
uw
ux
ih
ey
iy
y
hv
hh
s
z
jh
zh
sh
epi
bcl
dcl
kcl
tcl
pcl
th
f
t
ch
axh
pau
w
ix
ax
q
d
dh
v
m
em
en
k
p
b
g
ng
n
gcl
eng

axr
er
r
nx
dx
eh
ae
ay
aw
aa
ao
oy
l
el
uh
ah
ow
uw
ux
ih
ey
iy
y
hv
hh
s
z
jh
zh
sh
epi
bcl
dcl
kcl
tcl
pcl
th
f
t
ch
axh
pau
w
ix
ax
q
d
dh
v
m
em
en
k
p
b
g
ng
n
gcl
eng

closure symbols
+ various other

nasals
fricatives

plosives

high

vowels &
semivowels

low

mid

mixed cluster

Figure 7.6: Phoneme clusters in layer 5 of the W2L model. We manually inspected
the clusters and identified overrepresented phoneme categories in the respective
clusters. That means, not all clusters exclusively contain phonemes of the shown
categories.

for the phoneme clustering in the fifth layer of the W2L_TL_frozen model

(Figure 7.3d). There, we suspected that the W2L_TL_frozen model can

easily distinguish between the phonemes in the fifth layer and therefore

distributes them more evenly in the representation space. For letter pre-

diction in the W2L model, however, it appears to be harder to distinguish

between some of the letters, which leads to the corresponding output layer

NAPs being more similar to each other. We conclude that this difference of

the clustering results reflects that it is more difficult to distinguish letters

than phonemes, which is reasonable considering the high variability of

how letters are pronounced.

For phonemes in layer 12, emerging clusters are more distinct from each

other, both compared to the letter clustering as well as compared to

phoneme clustering in layer 5. Phoneme pau as pause marker is clearly

distinguishable from the other phonemes. Apart from that, we observe that

the clustering of phoneme NAPs in layer 12 is worse than in the fifth layer.

The emerged clusters do not represent any phonemic category both in

terms of their size and the phoneme similarities. This observation supports

our expectation that phonemes are worse represented in deeper layers of

158 CHAPTER 7. APPLICATION

jqpbwluoarkmvdgyienshtcfzx

j
q
p
b
w
l

u
o
a
r
k

m
v
d
g
y
i

e
n
s
h
t
c
f
z
x

(a) letters, layer 5, 96th percentile

ax
r

errnxdxehaeayawaaaooyleluhahowuwuxiheyiyyhvhhszjhzhshep
i

bc
l

dc
l

kc
l

tc
l

pc
l

thftchax
h

pa
u

wixaxqddhvmemenkpbgngngc
l

en
g

axr
er
r

nx
dx
eh
ae
ay
aw
aa
ao
oy

l
el

uh
ah
ow
uw
ux
ih
ey
iy
y

hv
hh

s
z

jh
zh
sh

epi
bcl
dcl
kcl
tcl
pcl
th

f
t

ch
axh
pau

w
ix

ax
q
d

dh
v

m
em
en

k
p
b
g

ng
n

gcl
eng

(b) phonemes, layer 5, 87th percentile

jtfpcvmbzxswqhykgdlnaiuoer

j
t
f
p
c
v

m
b
z
x
s
w
q
h
y
k
g
d
l

n
a
i

u
o
e
r

(c) letters, layer 12, 87th percentile

pa
u

eyaeaaaygc
l

jhchshszhzkc
l

uxpc
l

bc
l

owahawaoehihnxnngdxdc
l

tc
l

oyiymvluhuwelax
r

erremep
i

dhwen
g

enax
h

thfaxixqhvytdhhkpgb

pau
ey
ae
aa
ay
gcl
jh
ch
sh
s

zh
z

kcl
ux
pcl
bcl
ow
ah
aw
ao
eh
ih
nx
n

ng
dx
dcl
tcl
oy
iy
m
v
l

uh
uw
el

axr
er
r

em
epi
dh
w

eng
en

axh
th

f
ax
ix
q

hv
y
t
d

hh
k
p
g
b

(d) phonemes, layer 12, 96th percentile

Figure 7.7: Clustermaps of NAPs of the W2L model in layers 5 and 12 using
grouping by predicted letter and annotated phoneme. Each subfigure shows the
clustering at the respective percentile of best quality according to Silhouette score.
Darker shades of red indicate higher distance. Equal heat map colors represent
same distance values in the same layer, but are not comparable between layers.
Colors of clusters in different plots do not represent mapping of the clusters. An
enlarged view of the clustering without the heat map of pairwise distances is
shown in Figure 7.8.

7.2. NAP ANALYSIS OF AUTOMATIC SPEECH RECOGNITION MODELS 159

j
q
p
b
w
l
u
o
a
r
k
m
v
d
g
y
i
e
n
s
h
t
c
f
z
x

(a) letters layer 5
96th percentile

axr
er
r
nx
dx
eh
ae
ay
aw
aa
ao
oy
l
el
uh
ah
ow
uw
ux
ih
ey
iy
y
hv
hh
s
z
jh
zh
sh
epi
bcl
dcl
kcl
tcl
pcl
th
f
t
ch
axh
pau
w
ix
ax
q
d
dh
v
m
em
en
k
p
b
g
ng
n
gcl
eng

(b) phonemes layer 5
87th percentile

j
t
f
p
c
v
m
b
z
x
s
w
q
h
y
k
g
d
l
n
a
i
u
o
e
r

(c) letters layer 12
87th percentile

pau
ey
ae
aa
ay
gcl
jh
ch
sh
s
zh
z
kcl
ux
pcl
bcl
ow
ah
aw
ao
eh
ih
nx
n
ng
dx
dcl
tcl
oy
iy
m
v
l
uh
uw
el
axr
er
r

em
epi
dh
w

eng
en
axh
th
f
ax
ix
q
hv
y
t
d
hh
k
p
g
b

(d) phonemes layer 12
96th percentile

Figure 7.8: Clustering result of NAPs of the W2L model in layers 5 and 12 using
grouping by predicted letter and annotated phoneme. Each subfigure shows
the clustering at the respective percentile of best clustering quality according to
Silhouette score. Clustering assignment is shown by coloring. Colors of clusters
in different subfigures do not represent mapping of the corresponding clusters.
Pairwise distances are visualized in Figure 7.7. Overrepresented phoneme cate-
gories in clusters of (b) are shown in Figure 7.6.

160 CHAPTER 7. APPLICATION

the letter prediction model, in particular in the output layer. In addition,

the phoneme NAP clustering result demonstrates that there cannot be a

strong correspondence between phonemes and letters. If there was such

correspondence, a phoneme NAP in the output layer would show high

activations for a particular letter output neuron, hence show clustering

behavior that is similar to the corresponding letter.

7.3 Error Detection with Topographic Maps

Topographic map visualizations can be used to identify whether classifica-

tion errors are caused by wrong target annotations in the data set. Annota-

tion errors can occur either in training data or test data which has different

effects on the topographic maps. We demonstrate these effect using two

toy examples, where we deliberately introduce annotation errors in either

the training or test data. The topographic map visualizations are computed

with the UMAP_PSO method, which we identified as the best layouting

method in Chapter 6.

7.3.1 Toy Examples Design

For our toy examples, we introduce errors in the MNIST and Fashion MNIST

data sets.

In the first example, we introduce a systematic error in the Fashion MNIST

test data by changing the target class of 90 % of the examples of class ‘0’

(“T-shirt/Top”) to class ‘1’ (“trouser”). Using this altered test data, we create

topographic maps for a model that is trained on the original Fashion MNIST

training data. As Fashion MNIST is more complex than MNIST, we use the

CNN model as described in Section 4.2.1.

In the second toy example, we use the MNIST data set and introduce a

systematic error in its training data. Specifically, we change 90 % of the

class ‘0’ examples to class ‘1’ and train a model on this altered training data

set. For this model, we create topographic maps for the original MNIST test

data. As architecture, we use the simple MLP described in Section 4.2.1

We use an unrealistically high amount of mislabeled examples to facilitate

the understanding of the visualization. Nevertheless, both examples repre-

sent real-world scenarios that we discuss in the corresponding sections.

7.3. ERROR DETECTION WITH TOPOGRAPHIC MAPS 161

The groups of interest in both toy examples are the classes according to

the test data annotations. Because we are further interested in the errors,

we separate the examples of each class into whether they are correctly

predicted by the model, resulting in 20 groups of interest. We create topo-

graphic maps for the first fully-connected layer of the MNIST MLP and the

first convolutional layer of the Fashion MNIST CNN model.

7.3.2 Annotation Errors in the Test Data

Figure 7.9a shows the topographic maps of all Fashion MNIST classes,

separated into correctly and wrongly classified groups.

Two characteristics of the topographic maps indicate potential errors in the

annotation of the test data. First, erroneous test data annotations lead to a

high difference of the activity between the topographic maps of correctly

and wrongly classified examples of the same label. Second, the activity of

the wrongly classified group is similar to the activity of another group, that

is, the class which the examples are supposed to be annotated as.

In the shown example, the first criterion is met for several classes, for

example, “bag”, “T-shirt/top” and “trouser”. Only for the wrongly classified

“trouser” group, we observe that the topographic map is similar to the

activation of correctly classified “T-shirt/top” images (highlighted in green).

This matches the error that we injected in the test data, that is, changing

90 % of the “T-shirt/top” labels to “trouser”.

In realistic models, a dissimilarity between the topographic maps of the

correctly and wrongly classified groups of the same annotation indicates

that there is a distribution difference in this class. If no other topographic

map is similar, this low similarity can be related to using non-representative

training data for this class or using test data with a highly different distri-

bution. The model can potentially be improved by including a part of the

out-of-distribution examples in the training data or by introducing a new

class which represents them.

In the upper left of the topographic maps in Figure 7.9a, we observe a white

region in all groups. This region is not empty because the PSO distributes

the neurons in a round shape. Instead, a white region that exists in all

groups corresponds to a larger subset of neurons whose activity is highly

similar across the groups. This indicates that the model does not use its

162 CHAPTER 7. APPLICATION

(a) Test data annotation errors. (b) Training data annotation errors.

Figure 7.9: Topographic maps for correctly and wrongly classified examples
using data sets with annotation errors. (a) Annotation errors in the test data.
(b) Training data with annotation errors. The activation similarity is shown as
a dendrogram and used to sort the classes. The shown example images are
randomly chosen from the respective group. The green and purple annotations
highlight the pairs of topographic maps that indicate the error in the respective
example.

7.3. ERROR DETECTION WITH TOPOGRAPHIC MAPS 163

full capacity, for example, because it is too complex for the given task or

due to training problems like ReLUs that never activate [109]. Considering

that the used Fashion MNIST CNN only has a train accuracy of 84.79 %

and a test accuracy of 83.59 %, overcomplexity is an unlikely reason for this

model.

7.3.3 Annotation Errors in the Training Data

To investigate training data annotation errors, we train a model using an

erroneous MNIST data set. The resulting topographic maps of correctly

and wrongly classified groups when evaluating with the original MNIST

test data set are shown in Figure 7.9b.

Like in the previous example, we visually compare the topographic maps

to identify potential errors in the training data. However, the criteria are

different from the ones for the test data. Annotation errors in the training

data lead to a high similarity of topographic maps for wrongly and correctly

classified examples of the same group. This means that the model detects

similar patterns in both groups but still categorizes the examples differently.

In addition, there is typically no other topographic map that is highly similar

to the potential error candidate.

We observe this pattern for class ‘0’ (purple highlight), which again matches

our injected annotation error of changing 90% of the ‘0’ labels. However, us-

ing the binary split into correctly and wrongly classified examples does not

show which class the training examples are mislabeled as. To identify the

class of the wrong annotations, we can extend the analysis by creating a con-

fusion matrix-like topographic map visualization. There, we can find that

the topographic map at the ‘0’-classified-as-‘1’ position is highly similar to

the correctly classified ‘0’ examples (see purple highlight in Figure 7.10).

Observing similar topographic maps of the correctly and wrongly classified

examples of the same class can also give insight in realistic models. Com-

monly, this pattern occurs if the model cannot discriminate between two

or more classes properly. In this case, there are multiple classes that share

similar topographic maps in the correctly and wrongly classified groups.

One example can be found in the classes “sneaker” and “ankle boot” of

Figure 7.9a. There are no changes in the annotations of these two classes

but the topographic maps of the corresponding groups look similar. This

164 CHAPTER 7. APPLICATION

Figure 7.10: Topographic maps for correctly and wrongly classified examples, with
the misclassification groups further split by the predicted label. The examples
are based on a toy example model trained on data with annotation errors. The
digit images are exemplary inputs of the respective group. Empty topographic
maps indicate that the corresponding wrong classification was not made by the
model. The purple box highlights the pair of topographic maps corresponding to
the introduced data annotation error.

7.4. DETECTING BIAS WITH TOPOGRAPHIC MAPS 165

indicates that the classes are too similar to each other for the model to

discriminate them well. Improvements of the model can be achieved by

merging the classes that are similar to each other or by increasing the model

capacity to strengthen its ability to distinguish similar classes better.

7.4 Detecting Bias with Topographic Maps

DNNs are prone to reproducing or emphasizing biases that are contained

in the data used to train them. Different approaches to detect and miti-

gate bias have been introduced. For example, Sweeney [176] shows racial

discrimination in the online ad delivery by Google and Bolukbasi et al.

[13] debias commonly used word embeddings. More recently, researchers

investigate biases in modern transformer-based models like BERT [30], for

example focusing on gender bias [100] or ethnic bias [5]. Discrimination in

facial recognition algorithms is evaluated by Buolamwini and Gebru [15]

and they introduced the Gender Shades data set with a balanced distribu-

tion of gender and skin type. Similarly, Karkkainen and Joo [68] introduced

the Fair Face data set which is balanced for gender, race and age categories.

In this section, we perform racial bias detection as an exemplary use case

of our novel visualization technique.

Different to Buolamwini and Gebru [15] or Karkkainen and Joo [68], who

investigate bias in the output and the performance of algorithmic decision

systems, we focus on the representations of the individual layers of a DNN.

We demonstrate an exemplary application of detecting representational

bias in a pre-trained model. Mitigating this bias, however, is not within the

scope of this thesis.

7.4.1 Experimental Setup

As a real-world example, we investigate the bias in the representations in

VGG16 [170], which is a pre-trained CNN model that can be used as feature

extractor for downstream applications like image recognition DNNs. We

investigate the representations of a pre-trained VGG16 model, obtained

from the TensorFlow Keras applications1 module, using the second and fifth

1 https://github.com/keras-team/keras

166 CHAPTER 7. APPLICATION

maxpooling layer (layers 6 and 18) as an example. The VGG16 architecture

is shown earlier in Table 4.6.

As test data, we use FairFace [68], a balanced data set of images of people

from different age groups, races and binary genders. Here, we choose the

“race”, “gender” and “age” variables as different groupings to compute the

topographic maps, using 500 randomly drawn examples from each group.

Moreover, as a random baseline to compare with, we add several groups of

randomly picked examples to compare whether the topographic maps of

the sensitive variables are easier to distinguish from each other than the

random groups.

Topographic maps for sensitive variables in layers 6 and 18 of VGG16 are

shown in Figures 7.11 and 7.12. In the appendix, we provide topographic

maps of multiple layers of the network (Appendix Figure A.12).

7.4.2 Results – Sensitive Variables

“race” In layer 6 (see Figure 7.11 left), each “race” category has a specific

activation pattern. We only observe a small common active region for Black

and Indian categories. However, in layer 18, class activations become more

similar between particular groups. Specifically, Black and Indian categories

are highly similar, as well as East Asian, Southeast Asian and Latino His-

panic. The observations indicate that there is a racial bias in deeper layers

and poses the risk that downstream applications perform decision on the

encoded race similarities. Surprisingly, the Middle Eastern and White cate-

gories do not show clear activation patterns, potentially because the model

learns more individual representations for these categories.

“gender” Topographic activation maps of categories Female and Male

(Figure 7.11 right) are almost the inverse of each other, which is expected

for a binary grouping. With only two variables to compare, we focus on the

comparison to the random groups. We observe that, in layer 6, there is little

difference between random groups and sensitive variables in how strong

the activation deviates from the global mean. In layer 18, this difference

becomes larger. Clearly, in layer 18, the Female and Male groups show

stronger over-/under-activation than the random groups, indicating that

the representation in deeper layers distinguishes between these categories.

7.4. DETECTING BIAS WITH TOPOGRAPHIC MAPS 167

Figure 7.11: Topographic activation maps when grouping by “race” and “gender”
variables in layers 6 and 18 of VGG16 and when grouping randomly. Size-weighted
convexity is shown below each topographic map. For “race” and “gender” respec-
tively, topographic maps in the same layer use a common color map.

“age” Groups of similar age (Figure 7.12) are similarly activated, which

is reasonable considering the categories’ fuzzy boundaries. In layer 6, we

observe clusters of high similarity: age groups 0-2, 10-49 and >50. Layer 18

shows more continuous changes with strongest activation differences from

the global mean in the lowest and highest age groups. This indicates that the

representations encode age information without a systematic disadvantage

for any group. Nevertheless, a downstream application would be able to

learn biased decisions.

168 CHAPTER 7. APPLICATION

Figure 7.12: Topographic activation maps when grouping by “age” variable in
layers 6 and 18 of VGG16 and when grouping randomly. Size-weighted convexity
is shown below each topographic map. Topographic maps in the same layer use
a common color map.

7.4.3 Results – Significance

In Figures 7.11 and 7.12, qualitatively, we observe stronger color intensity

for sensitive variables compared to random groups. This stronger deviation

from the global mean activation indicates that the observed activation

patterns are significant and not only a random effect. Further, we observe

more pronounced activation differences between the sensitive variables

compared to between the random groups, which indicates that differences

are really related to the sensitive variables. Both observations are more

clear in deeper layers, which hints that distinction between the sensitive

variables becomes stronger the more complex the learned patterns get.

7.4. DETECTING BIAS WITH TOPOGRAPHIC MAPS 169

Quantitatively, we notice that visual quality according to size-weighted con-

vexity is affected by the number of feature maps. Fewer feature maps might

lead to higher visual quality because the layout can be easier optimized

for them. In our example, fewer feature maps are active simultaneously

leading to smaller highly-active regions and larger white regions, that are,

group-unspecific feature maps. This decreases the visual quality. There-

fore, layer 18, which is wider than layer 6, shows lower visual quality.. The

number of groups, however, is not a critical factor. In general, the size-

weighted convexity of visualizations for sensitive variables is higher than

for the corresponding random groups which supports the significance of

the results.

7.4.4 Diversity of Groups

We appreciate the efforts of the FairFace data set to provide balanced evalu-

ation data. However, the values of the provided sensitive variables still have

potential to be further diversified. For example, “gender” is only consid-

ered as a binary or certain age groups, like “more than 70”, include a larger

range of ages than other groups. We still consider the data set as suitable

to demonstrate our technique but encourage the research community to

conduct studies with more diverse data sets upon availability. In this work,

we only consider the sensitive variables independently. As this does not

consider intersectionality, we also encourage investigating combinations

of sensitive variables in future work.

8
Extensions

In this chapter, we discuss several ways of extending our methodology. This

involves preliminary work as well as discussion of possible future research

directions.

8.1 Multi-Layer Visualization

In the previous chapters, we showed NAP analyses and topographic activa-

tion maps mainly for individual layers. However, for a more comprehensive

overview of the network, our method can be extended to multiple layers, as

well.

The straightforward approach is to simply perform the same type of analy-

sis for several individual layers. One example can be found in Section 7.2,

where we show representational similarity plots of the ASR models in dif-

ferent layers. Another example is Appendix Figure A.12, which shows to-

pographic maps in different layers related to the bias representation ex-

periment of Section 7.4. As there typically is a large amount of layers in

DNNs, it is infeasible to show all layers at once. We recommend to carefully

choose a representative subset of layers in different depths of the network

(compare Sections 5.1.1 and 7.1.1) This approach on visualizing multiple

layers, however, does not relate the layers to each other but only shows the

individual layer results next to each other.

A more advanced approach for achieving a multi-layer analysis is to deter-

mine relations between the layers. For topographic maps, a visual way of

relating layers is to align the layouts with Procrustes superimposition, that

is, translating, rotating and uniformly scaling the topographic maps of one

layer to optimally match those of another layer. In our case, as we already

171

172 CHAPTER 8. EXTENSIONS

scale topographic map layouts to a common size, Procrustes superimposi-

tion reduces to finding the rotation that optimally matches the topographic

maps in two layers, according to the minimum MSE across all groups.

Figure 8.1: Topographic maps of multiple groups in two layers of a DNN. The
original topographic map layout of layer 2 (bottom) is rotated to best match to
the layer of layer 1 (top), resulting in the layout shown in the middle row.

This approach follows the assumption that information gets forwarded in

the network through neurons or feature maps of similar activation. How-

ever, this is not generally true. For example, consider a neuron of high

activation in a layer. This neuron does not functionally relate to a highly ac-

tivated neuron in the following layer if their connecting weight is small. On

the other hand, a lowly active neuron can be connected with a high negative

weight, making it strongly influenced by this particular input neuron.

To also capture functional relations between the regions, it is necessary to

also analyze the weights that connect the corresponding neurons or feature

maps. However, this is a highly-complex problem, both from an analytical

and a visualization perspective. Firstly, there are relations between any

pair of neurons or feature maps from two layers, leading to a large number

of pairs to evaluate. Secondly, while the connection of two neurons in

fully-connected layers is a single value in the corresponding weight matrix,

the connections in convolutional layers are more complex as they apply the

weights as convolution kernels. Finally, even if we can obtain representative

correlation values, including multi-layer constraints complicates the layout

optimization immensely as it requires multiple optimization criteria that

potentially counteract each other. We already made a similar observation

of conflicting optimization targets in our PSO layouting approach. The

PSO algorithm (compare Section 6.1.2) applies attracting forces to simi-

8.2. TRAINING PROCESSES 173

larly active neurons and repelling forces to dissimilar neurons. Due to the

high number of neuron pairs that influence each other simultaneously, the

resulting layout cannot find a satisfying optimum in many cases. Includ-

ing additional factors to this layouting algorithm to encourage functional

relation of similarly located positions would likely amplify this problem.

8.2 Training Processes

In the main thesis, we analyze DNNs at the end of their training. Addition-

ally, it is interesting to perform this analysis for the model at different time

steps during training. This can reveal information about the training pro-

cess of a DNN. For example, it can indicate that some classes are learned

in earlier training stages than others, or that a particular type of error only

occurs after a certain time in training.

8.2.1 Visualization Oriented at the Final Layout

One approach is to orient the layout at the final model state in order to visu-

alize how the regions in the trained model develop over time. For the fully-

trained model, we compute a topographic map layout using UMAP_PSO

and use it for all other training steps. This way, the layout stays the same

and we observe the development of activations during the training.

As an exemplary model training, we train a simple MLP model on MNIST for

one epoch and save the model after each batch resulting in a total of 1,875

model states. Figure 8.2 shows this training process as topographic maps

at exemplary time steps. We observe, that the change of DNN activations

is particularly large in the first 100 batches and gradually changes less as

training continues. Correspondingly, we show a smaller step difference

early in training than towards the end of the epoch. We observe that initial

shapes begin to emerge after approximately 20 batches. These shapes

become more sophisticated after around 120 batches and continue to

become clearer over time. After around 500 batches, we only observe

minimal changes. Further, we observe that the topographic maps of some

classes stabilize earlier than others, which indicates that they are easier

to learn for the model. For example, classes ‘1’ and ‘4’ change little from

batch 500 to the end of the epoch, while some active regions disappear for

174 CHAPTER 8. EXTENSIONS

Figure 8.2: Topographic maps at different stages of training. Classes are ordered
by activation similarity.

8.2. TRAINING PROCESSES 175

classes ‘0’ and “6”. Li et al. [101] found different classes to be learned early

and late by their used CNN model, indicating that these learning dynamics

are model-dependent.

Topographic maps provide a unique perspective on the training process

and help to better understand the dynamics of the neural network training.

However, due to processing many model states, the analysis of training

processes requires more computation than for a trained model only. Addi-

tionally, in this approach that is oriented at the final layout, all model states

have to be saved before creating the topographic maps at the respective

states. Storing the same model for every training step requires a lot of

storage capacities, as well. For example, the 1,875 saved model states in the

shown exemplary MLP trained on MNIST summed up to around 2.4 GB.

8.2.2 Temporal Resolution

In the previous example, we picked exemplary time steps manually based

on how strong the activation changes between them. However, in practice

it is infeasible to manually inspect all training steps to define the steps for

the visualization. A future extension of training visualization is therefore

to determine an automated process of choosing suitable model states.

Generally, we expect to require more steps in earlier stages of training and

less when the model is getting closer to its optimum. However, determining

a generally applicable rule to describe optimal step sizes over training

time is highly challenging. A potential research direction is to use changes

in loss or performance metric as a proxy to determine steps to visualize.

However, the loss is not necessarily correlated with the visual quality change

of topographic maps. Moreover, in many training processes, there are, for

example, plateau phases or temporary decreases in performance which

complicate applying a simple rule to determine suitable steps.

8.2.3 Adapting the Layout over Training Time

Orienting the visualization only on the final layout has the disadvantage

that it follows the assumption that the final function of a neuron is al-

ready pre-determined in the beginning of the training. However, in reality,

neurons might change their functionality over training time. Therefore,

different neurons can co-activate early in training than later. Computing a

176 CHAPTER 8. EXTENSIONS

separate layout for every training step, however, is not useful because the

individual visualizations will not align and make comparisons impossible.

Therefore, it would be necessary to dynamically optimize the layout during

training. This means, starting from a (random) initial layout, the layout

coordinates are optimized for the first step. All succeeding steps will use

the layout from the previous step and only update it slightly to account

for the changes during the respective training step. Such continuous opti-

mization in parallel to training is, however, very challenging to balance. If

the updates are too small, the layout might not represent the step correctly

and if they are too large, it might lead to very different and incomparable

layouts between subsequent steps.

8.3 Relation of Confidence and Activations

In this application example, we investigate how network activations relates

to its confidence. To this end, we group the data by predicted label and

the model’s confidence and visually compare activations for all groups at

the end of the model training and during the training process. Further,

we investigate the relation between activations and overconfidence of the

model, that is, when the confidence is higher than the accuracy. With

this experiment, we like to demonstrate the possibility of using informed

subgrouping (Section 5.1.7), and combine it with training process analysis.

Evaluating confidence of DNNs can be done, for example, by the softmax

output of a model, using deep ensembles or calibrating uncertainty after

model training using temperature scaling [145, 183, 118, 150]. Here, we

focus on activation visualization. With this scope, we decide to use softmax

output confidence, knowing that it is not the most reliable measure [145].

8.3.1 Experimental Setup

We use the MLP architecture trained on MNIST as described in Section 4.2.1.

We perform experiments with different groupings. As an overview of class

activations over training, we group the data set by the predicted label, result-

ing in 10 groups. To investigate the relation of activations and confidence,

we group by class, softmax output value bins [0,0.1], (0.1,0.2], ..., (0.9,1.0]

and whether the prediction is correct, leading to 10 ·10 ·2 = 200 potential

8.3. RELATION OF CONFIDENCE AND ACTIVATIONS 177

groups. Confidence bins [0,0.1], (0.1,0.2] do not contain elements for our

model so we omit 40 groups. Further, we only report results for correct

predictions because there are only few erroneous predictions for MNIST.

To compare experiments, we use the same layout and color map for every

topographic map, obtained from the last training step using the confidence-

and class-separated groups.

8.3.2 Results

Activations over Training Time

Figure 8.3 shows the training of a model on MNIST as topographic ac-

tivation maps at exemplary training steps. Changes in parameters, and

consequently changes in activations, are larger in earlier stages of train-

ing. Therefore, the difference of the chosen steps is larger for later training

stages.

We clearly observe that the activations gets stronger during training and

saturates when the model is fully trained (high color intensity and contrast).

Moreover, over- and under-activated neurons (red and blue) only form clear

regions later in training. This seems unsurprising considering that we use

the final layout as a reference, especially for the initial step. However, we

still observe changes of regions in late training stages. This indicates that

0 1 2 3 4 5 6 7 8 9
class

1

20

120

500

end

st
ep

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Figure 8.3: Activations evolving over training time, shown as topographic maps at
different stages of training for different predicted labels.

178 CHAPTER 8. EXTENSIONS

neurons still change their function instead of just becoming more specific

to a certain stimulus over training time.

From the final training step in Figure 8.2, we can compare similarity of

classes according to the model activations. We observe similarities between

labels ‘4’ and ‘9’ and partly overlapping active regions, for example, for

classes ‘1’ and ‘7’ or ‘2’ and ‘3’. Subjectively, this fits our expectation of

how classes are visually similar. Some classes do not show clear regions,

for example, ‘8’. This is partly due to using the layout computed from the

confidence-separated groups instead of optimizing the layout for the 10

classes.

Activations and Confidence

Figure 8.4 shows topographic activation maps that contrast activations

for different labels (left) and for class ‘0’ at different training steps (right)

at different confidence levels. The heat map in the background indicates

the prediction accuracy for the corresponding group. Groups with pur-

ple outline are overconfident, that means, the confidence is higher than

0 1 2 3 4 5 6 7 8 9
class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nf

id
en

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

1 20 120 500 end
step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nf

id
en

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Figure 8.4: Topographic maps at different prediction confidences for different
predicted labels (left) and for label ‘0’ at different stages in training (right). Back-
ground heat maps show accuracy and a purple outline indicate overconfidence.
Positions with all-white topographic maps are empty groups or groups without
correct predictions.

8.4. DOWNSTREAM EXPLANATIONS 179

the accuracy. As we use confidence bins, we compare accuracy to the re-

spective bin’s center value. An overview of all time steps can be found in

Appendix A.6.

Generally, we observe that activation strength increases with the confidence

of the prediction. There are exceptions like label ‘7’ in confidence bin

(0.2,0.3] that are due to a small number of examples in the group and hence

smaller averaging effects. As expected, predictions become more accurate

and confident over training time. We almost only observe overconfidence

in the low confidence regions, which is reasonable. An exception is a weak

overconfidence for class ‘6’, however only with confidence of 0.7 to 0.8 at

an accuracy of 0.72. Further, we observe that active regions mostly form for

accurate and confident groups while overconfident groups show different

or scattered patterns. It is noteworthy that we observe this although the

layout is optimized over all groups (in the last training step).

8.3.3 Discussion

Combining DNN activation visualization with confidence analysis can

give insights into how confidence and activations relate and how they

develop over training time. For demonstrative purposes, we only presented

a very simple model and data set. Nevertheless, the methodology can be

applied to other types of DNNs, larger data sets and more complex data

types. However, the results might be more difficult to interpret, for example,

because the visualization becomes cluttered for larger numbers of classes

or deep models would require to investigate activations in multiple layers.

In future work, we will research these limits and improvements to make it

better interpretable for large-scale models. Furthermore, we hypothesize

that longer training leads to higher confidence while not increasing the

accuracy in the same amount, leading to more overconfidence. Testing this

hypothesis will be subject of future work as well.

8.4 Downstream Explanations

NAPs and their visualization as topographic activation maps provide a

high-level overview of activations and how they compare between groups

of inputs. For more detailed explanations, there is the possibility to use

180 CHAPTER 8. EXTENSIONS

our technique to apply other explanation techniques in a more targeted

way. For instance, NAPs value zero indicates neurons that are unspecific

to the groups of interest and are potential candidates for targeted network

pruning, that is, removing irrelevant neurons from the DNN. As another

example, NAPs can be used to identify sets of neurons that are highly or

lowly active for certain groups. These sets can then be used as targets

for feature visualization (Section 3.4) or to create saliency maps for these

neurons (Section 3.5). This way, it is possible to visualize patterns that

are learned jointly by multiple responsive neurons. Using topographic

activation maps, it is further possible to select target neurons interactively.

Figure 8.5 shows a user interface that we currently develop to interact with

topographic activation maps, where regions can be selected for which a

feature visualization can be performed. Regions of neurons can be selected

manually, but we can also use the pre-processing steps of the connected

component quality measures from Section 6.2.1 to automatically select, for

example, the largest active region.

topographic map overview feature visualization

manual region selection

Figure 8.5: Targeted feature visualization using topographic maps. In a graphical
user interface, regions of neurons can be selected (black selection on top of the
topographic map) for which their jointly learned pattern can be visualized (on
the right side).

9
Conclusion

In this thesis, we introduced a novel neuroscience-inspired approach on an-

alyzing and visualizing DNNs activations. As two main components of this

approach, we presented Neuron Activation Profiles (NAPs) for characteriz-

ing DNN activity for groups of inputs and topographic activation maps as a

visualization of NAPs. We evaluated both methods in detail and provided

several application examples and extensions of the methodology. In partic-

ular, we included applications to Automatic Speech Recognition (ASR) to

demonstrate the applicability to data that are not visually interpretable.

To conclude the thesis, we will first discuss whether we were able to meet

our research aims, including stating the main findings for each aim. Further,

we will critically evaluate how closely our approaches resemble their coun-

terpart from neuroscience and whether using the neuroscience-inspired

technique is advantageous. Finally, we will discuss promising future re-

search directions based on our findings.

9.1 Research Aims

We followed three research aims (compare Section 1.1). In this section, we

discuss to which extent we were successful in proposing solutions to these

aims and whether there is potential for improvement. Further, we discuss

how our experiments address topics in addition to the respective research

aims.

9.1.1 RA1: Group-Specific Network Responses

To “Characterize group-specific network responses with minimal informa-

tion loss from aggregation”, we introduced NAPs (Chapter 5). While NAPs

181

182 CHAPTER 9. CONCLUSION

are generally not interpretable themselves, we found them to be useful for

a comparative analysis of groups regarding the network activations. This

particular usefulness for comparisons is further amplified by visualizing

NAPs as topographic activation maps (RA2).

Alignment is a crucial aspect of our averaging approach. To not lose in-

formation when performing the averaging over activations of multiple

examples, we investigated an alignment based on highest saliency. Our

evaluation showed that our saliency-based alignment is suitable to obtain

useful averaging results, in particular for well-generalized models (Sec-

tion 5.3). Nevertheless, NAP computation is best applicable for data that

are aligned based on knowledge about their features.

Another critical aspect for NAPs to yield useful representations of network

activations for a certain group is the choice of the group itself. Averaging

the activations removes variation coming from the data within the group. If

the group, however, has a too high variance and few common features, the

averaging approach cannot determine representative activation patterns

(Section 5.3.1). As of now, we are not able to suggest a measure to evaluate

whether a group is suitable for computing a NAP. However, we recommend

to only choose groups that are expected to share characteristics.

Our evaluation of NAPs for understanding representational similarity in a

DNN included a manually constructed example of ASR models where we

have an expectation about in which layers particular groups are represented

(Section 7.2). While the results are very promising, a general evaluation

of the approach is difficult because there are no benchmark applications

available that provide a ground truth representational similarity to compare

against.

While developing the approach, we found that it requires much computa-

tional effort due to computing averages over many examples and the large

dimensionality of activations. Therefore, we further investigated how to

improve the efficiency by only using random subsets of groups (Section 5.4)

which was not part of the original aim. Approximating NAPs is possible for

groups with much redundancy, however, the difficulty lies in determining

how many examples are required to approximate a NAP.

9.1. RESEARCH AIMS 183

9.1.2 RA2: Summarization through Visualization

To “Summarize complex representations through visualization”, we de-

veloped a visualization of NAPs as topographic maps (Chapter 6). They

leverage the comparative power of NAPs by providing a means to not only

display the similarities but to also visualize the values themselves. This

way, topographic activation maps allow to visually compare group activa-

tions and additionally show which sets of neurons activate similarly and

differently between the groups.

We investigated various methods to compute a topographic layout (Sec-

tion 6.1.2) using different measures of visual quality (Section 6.2.1). Our

results showed that, among the considered layouting techniques for topo-

graphic maps, UMAP_PSO is the most generally applicable (Section 6.3.3).

UMAP_PSO first computes a two-dimensional Uniform Manifold Approxi-

mation and Projection (UMAP) projection and distributes the points evenly

with a local force-only Particle Swarm Optimization (PSO). Further, our in-

troduced size-weighted convexity measure is most suitable for quantifying

the visual quality of the visualization (Section 6.3.2). In CNNs, feature maps

need to be aggregated in order to assign them a single representative NAP

value for visualization in the topographic map. We found that both mean

and center value produce similar results while maximum value aggregation

led to uninformative topographic maps. To be generally applicable, we find

mean aggregation to be most suitable (Section 6.3.3).

Topographic activation maps are similar to dimensionality reduction tech-

niques. However, they focus on the ease of visual inspection and compari-

son and the possibility of visually estimating regions and their sizes. This

requires the distribution using our local-force PSO. Compared to other

dimensionality reduction techniques like tSNE and UMAP, topographic

maps therefore omit information about pairwise similarities. Consequently,

our visualization cannot be used for drawing conclusions about neuron

similarities but only about activation similarities between groups.

We demonstrated a variety of applications using topographic activation

maps. This included error analysis, bias detection, visualizing training

processes and relations of model confidence and activations (Sections 7.3,

7.4, 8.2 and 8.3, respectively). Through these applications, we found that

topographic maps are a very versatile visualization technique for DNN

184 CHAPTER 9. CONCLUSION

responses. In the model confidence experiment, we further demonstrated

that they can be combined with other common visual analyses, in this case

with an accuracy heat map.

We found topographic maps to be a successful solution for RA2, both sub-

jectively and according to our quality measures. Mostly, we focused on

the aspect of visual quality. Still, we considered the faithfulness of the

visualization. To this end, we used toy examples in which we expected

certain topographic map similarities (error detection in Section 7.3.3) and

performed significance analyses to show that information in topographic

maps is not only a random effect (in Section 7.4). In both examples, we

found that topographic maps are not only visually appealing but also show

representative information about the groups.

The usefulness of visualizations is also tied to whether people can get in-

formation from them. In our research aim, we did not specifically aim to

investigate this aspect. However, we gathered unstructured feedback at sev-

eral scientific conferences, trade fairs and through science communication

activities. This way, we got opinions about our visualization from scientists

from different research fields, users from industry and interested lay people,

which covered a wide range of levels of expertise. Generally, we found that

topographic maps are conceptually and visually well perceived by people

across many target groups. However, using them to gain insight into DNN

requires practice and we found that when seeing topographic maps the

first time, an expert is required to guide people how to interpret the results

in detail. Consequently, our visualization technique has potential to be

improved regarding its intuitiveness.

9.1.3 RA3: Applicability to Visually Uninterpretable Data

We aimed to “provide analyses and visualizations that do not rely on visually

interpretable data”. To this end, we particularly evaluated our technique

and demonstrated applications using W2L-based ASR models (Sections 5.3

and 7.2). We found that there is no difference in interpretability of our anal-

ysis comparing image data and speech data (as spectrograms). This is due

to analyzing similarities between NAPs instead of projecting information in

the input space. Therefore, we conclude that we successfully developed a

model analysis technique that does not rely on visually interpretable data.

9.2. NEUROSCIENCE INSPIRATION 185

Note that we did not present topographic map visualization for the ASR

models because of the large number of groups that we investigated. For

example, displaying topographic maps for 62 phonemes along with the

clustering results in Section 7.2 would not have supported comparing the

groups because of the large number of visualizations. Moreover, there are

several subsets of (typically similar) phonemes whose topographic maps

are almost indistinguishable. Nevertheless, creating the visualization is

possible for letter and phoneme groups, too.

While we only showed applications for images and speech, our technique is

generally applicable to any DNN because activations can be obtained and

compared for each model. The interpretability of the results, as discussed,

depends on the specific properties of the DNN and the groups of interest.

9.2 Neuroscience Inspiration

We stated that our methods are inspired by neuroscience. In this section,

we discuss how related the final techniques really are to their neuroscience

counterparts. Generally, we like to emphasize that the connection between

common DNNs and brains is more of narrative nature and less based

on actual equivalent components. Our inspiration primarily arose from

neuroscience’s capabilities of investigating complex opaque system but

for communicative purposes, we also appreciate to be able to draw the

narrative connection from DNNs to the brain.

9.2.1 NAPs as an ERP-Like Analysis

NAPs as an activation averaging approach with alignment is similar to ERP

analysis in EEG. Both are ways of identifying (artificial) neural activity to a

certain stimulus or type of input. However, it is not exclusive to the field of

neuroscience. Averaging approaches are frequently used to obtain informa-

tion that are common to a set of examples, for example, for noise reduction

in images [42]. Similar to ERPs, to obtain proper averaging results, the

examples to average over need to be aligned. In computer vision this align-

ment is commonly called image registration [46, 29, 78]. Therefore, NAPs

are not exclusively a neuroscience-inspired technique but have similarities

to other aligned averaging approaches as well. Nevertheless, focusing on

186 CHAPTER 9. CONCLUSION

the connection to ERPs allows a logical transition to topographic activation

maps because both are applied in EEG data analyses.

9.2.2 Topographic Activation Maps

Different to NAPs, our visualization as topographic map is closely con-

nected to neuroscience. We specifically aim to achieve an activity visual-

ization for DNNs that is visually similar to how brain activity is displayed

in EEG data analysis. Generally, projecting high-dimensional data to a

two-dimensional space is very common. However, the equal distribution

in a round shape and the interpolation to obtain a continuous coloring is

specifically related to the neuroscience inspiration. Arguably, from an infor-

mation visualization perspective, there are more representative techniques.

For example, as discussed, the information about pairwise similarity of

neurons gets lost by avoiding gaps between them in the two-dimensional

layout. However, due to the well-known visualization of brain activity as to-

pographic maps in functional magnetic resonance imaging (fMRI) or EEG,

more people can associate our topographic maps with the neuroscience

counterpart which can support the understanding of the visualization.

Interestingly, the visual similarity to topographic maps in neuroscience can

be detrimental for interpretability if a person has expertise in neuroscience.

During our research, we noticed that neuroscientists (and researchers from

related fields) tend to connect real brain areas to the topographic maps

of DNNs. However, although there is a visual resemblance, there is no

functional relation at all. Therefore, we found that the visualization is more

intuitive for people who only have a high-level idea of brain activity, but

tends to be misleading for domain experts from neuroscience.

9.3 Future Work

We see promising future research directions in three categories: stronger

user orientation, technical improvement and methodological extensions.

User Orientation Currently, our approach provides insight into the DNN

but no explicit explanations of the model behavior. To obtain a more

user-friendly experience, there needs to be better automated guidance on

9.3. FUTURE WORK 187

how to interpret the results of our approach. Furthermore, people usually

prefer explanations that allow to take actions. Therefore, our technique

would benefit from investigating how it can be used to improve models

or to use the results to obtain quality criteria for the DNN. Future work in

these directions would also require to incorporate more structured human

feedback in the development process. Especially, the aspects of intuitive

interpretability and actionability involve structured user studies. Moreover,

these studies should address people from various backgrounds because

background knowledge and personal experiences can strongly affect how

the results are perceived.

Technical Improvements The most critical technical improvements are

related to efficiency and scalability. Methods that analyze entire data sets

are inherently costly in terms of compute resources and can also require

substantial storage capacity if intermediate results need to be saved. In our

approach, this particularly affects the NAP computations, which align all

data and activations and perform averages over them. To reduce compu-

tation time and storage requirements, future work can investigate approx-

imations and more efficient implementations. We showed initial results

on NAP approximation in Section 5.4 but we could not provide a simple

means to decide how to choose a representative subset of data for a group.

For efficiency, we see most potential in parallelizing computation steps

and in finding more efficient ways in obtaining (potentially pre-computed)

activations for examples that belong to a group of interest. This efficiency

improvement is particularly important for future work that applies our

technique to large models or more complex data in terms of dimensionality

or number of groups. More efficient computation of NAPs is also useful for

making the training process visualization more feasible for more difficult

applications.

Methodological Improvements Finally, to extend our methodology, we see

the highest potential in incorporating information between layers, that are,

the weights. At the moment, we only analyze and visualize activity for each

layer independently. However, a major part of the information flow and

functionality of a DNN is controlled by the weights that connect the layers.

Future research is likely to provide substantially more insight into the model

188 CHAPTER 9. CONCLUSION

when considering the connections between neurons and feature maps,

too. For example, activations in a layer could be adjusted based on their

influence on the next layer. This way, it becomes better distinguishable

whether a highly active neuron has a positive or negative impact on a

connected neuron in the next layer. This is, however, a challenging task as

there typically are pairwise connections between any pair of neurons (or

feature maps) in subsequent layers. Moreover, the visualization becomes

difficult because it adds layer depth as a third dimension such that three-

dimensional visualizations on screen or in virtual reality might become

more suitable.

A
Supplemental Figures

189

190 APPENDIX A. SUPPLEMENTAL FIGURES

A.1 Alignment Evaluation

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(a) after alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

center annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(b) before alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation frame

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(c) within alignment frame

Figure A.1: Alignment evaluation overview for model W2P. For each predicted
phoneme on the y-axis the relative frequency of the corresponding phoneme
annotation on the x-axis. Color scale [0,1] from white to black.

A.1. ALIGNMENT EVALUATION 191

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(a) after alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

center annotation

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(b) before alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation frame

aa
ae
ah
ao
aw
ax

axh
axr
ay
b

bcl
ch
d

dcl
dh
dx
eh
el

em
en

eng
epi
er
ey

f
g

gcl
hh
hv
ih
ix
iy
jh
k

kcl
l

m
n

ng
nx
ow
oy
p

pau
pcl

q
r
s

sh
t

tcl
th
uh
uw
ux
v
w
y
z

zh

ce
nt

er
 p

re
di

ct
io

n

(c) within alignment frame

Figure A.2: Alignment evaluation overview for model W2P_shallow. For each
predicted phoneme on the y-axis the relative frequency of the corresponding
phoneme annotation on the x-axis. Color scale [0,1] from white to black.

192 APPENDIX A. SUPPLEMENTAL FIGURES

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

center annotation

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

ce
nt

er
 p

re
di

ct
io

n

(a) before alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

ce
nt

er
 p

re
di

ct
io

n

(b) after alignment

aa ae ah ao aw ax ax
h

ax
r ay b bc
l

ch d dc
l

dh dx eh el em en en
g

ep
i er ey
f g gc
l

hh hv ih ix iy jh k kc
l l m n ng nx ow oy p

pa
u pc
l q r s sh t tc
l th uh uw ux v w y z zh

alignment point annotation frame

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

ce
nt

er
 p

re
di

ct
io

n

(c) within alignment frame

Figure A.3: Alignment evaluation overview for model W2L. For each predicted
letter on the y-axis the relative frequency of the corresponding phoneme annota-
tion on the x-axis. Color scale [0,1] from white to black.

194 APPENDIX A. SUPPLEMENTAL FIGURES

A.2 Approximated NAPs

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

Figure A.4: Approximated input layer NAPs for classes 0–4.

A.2. APPROXIMATED NAPS 195

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

shifted MNIST
no alignment

shifted MNIST
with alignment

padded MNIST
no alignment

0.0
%

0.1
%

0.2
%

0.3
%

0.6
%

1.0
%

1.8
%

3.2
%

5.6
%

10
.0%

17
.8%

31
.6%

56
.2%

10
0.0

%

Figure A.5: Approximated input layer NAPs for classes 5–9.

196 APPENDIX A. SUPPLEMENTAL FIGURES

A.3 NAP Approximation Errors

0.01 0.01 0.0 0.0 0.0
mean absolute difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f u
se

d
ex

am
pl

es

approximation of
100% NAP

14.71 11.03 7.36 3.68 0.0
mean absolute difference

approximation of
Euclidean distance matrix

of 100% NAP

shifted MNIST
no alignment
shifted MNIST
with alignment
padded MNIST
no alignment

0.47 0.35 0.23 0.12 0.0
mean absolute difference

approximation of
Cosine distance matrix

of 100% NAP

9.99% 7.5% 5.0% 2.5% 0.0%
mean relative difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f u
se

d
ex

am
pl

es

18.86%14.15% 9.43% 4.72% 0.0%
mean relative difference

0.42% 0.32% 0.21% 0.11% 0.0%
mean relative difference

Figure A.6: NAP approximation errors in convolutional layer 1.

0.02 0.02 0.01 0.01 0.0
mean absolute difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f u
se

d
ex

am
pl

es

approximation of
100% NAP

15.09 11.32 7.55 3.77 0.0
mean absolute difference

approximation of
Euclidean distance matrix

of 100% NAP

shifted MNIST
no alignment
shifted MNIST
with alignment
padded MNIST
no alignment

0.43 0.32 0.21 0.11 0.0
mean absolute difference

approximation of
Cosine distance matrix

of 100% NAP

6.56% 4.92% 3.28% 1.64% 0.0%
mean relative difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f u
se

d
ex

am
pl

es

11.29% 8.47% 5.64% 2.82% 0.0%
mean relative difference

0.39% 0.29% 0.19% 0.1% 0.0%
mean relative difference

Figure A.7: NAP approximation errors in convolutional layer 2.

A.3. NAP APPROXIMATION ERRORS 197

0.02 0.02 0.01 0.01 0.0
mean absolute difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f u
se

d
ex

am
pl

es

approximation of
100% NAP

7.76 5.82 3.88 1.94 0.0
mean absolute difference

approximation of
Euclidean distance matrix

of 100% NAP

shifted MNIST
no alignment
shifted MNIST
with alignment
padded MNIST
no alignment

0.41 0.31 0.2 0.1 0.0
mean absolute difference

approximation of
Cosine distance matrix

of 100% NAP

3.44% 2.58% 1.72% 0.86% 0.0%
mean relative difference

56.2%

17.8%

5.6%

1.8%

0.6%

0.2%

1 example

pe
rc

en
ta

ge
 o

f u
se

d
ex

am
pl

es

6.38% 4.78% 3.19% 1.59% 0.0%
mean relative difference

0.37% 0.28% 0.18% 0.09% 0.0%
mean relative difference

Figure A.8: NAP approximation errors in convolutional layer 3.

A.4. INPUT LAYER NAPS 199

A.4 Input Layer NAPs

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) a b c

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) d e f

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) g h i

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) j k l

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) m n o

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) p q r

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) s t u

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) v w

1 0.5 0 0.5 1
time (s)

x

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) y

1 0.5 0 0.5 1
time (s)

z

Figure A.9: Input layer SNAPs in model W2L for all letters.

200 APPENDIX A. SUPPLEMENTAL FIGURES

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) aa ae ah

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) ao aw ax

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) axh axr ay

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) b bcl ch

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) d dcl dh

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) dx eh el

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) em en eng

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) epi er ey

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) f g gcl

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) hh

1 0.5 0 0.5 1
time (s)

hv

1 0.5 0 0.5 1
time (s)

ih

Figure A.10: Input layer SNAPs in model W2L for phonemes aa–ih.

A.4. INPUT LAYER NAPS 201

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) ix iy jh

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) k kcl l

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) m n ng

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) nx ow oy

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) p pau pcl

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) q r s

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) sh t tcl

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) th uh uw

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) ux v w

1 0.5 0 0.5 1
time (s)

0.0
0.5
1.0
2.0
3.0
5.0
8.0

m
el

-s
ca

le
d

fre
qu

en
cy

 (k
Hz

) y

1 0.5 0 0.5 1
time (s)

z

1 0.5 0 0.5 1
time (s)

zh

Figure A.11: Input layer SNAPs in model W2L for phonemes ix–zh.

202 APPENDIX A. SUPPLEMENTAL FIGURES

A.5 VGG16 Topographic Maps in Different Layers

Figure A.12: Topographic maps of VGG16 activations in all maxpooling layers
(layers 3,6,10,14,18) and the last fully-connected layer (layer 21) for the FairFace
categories, as well as random groups for comparison. Size-weighted convexity
values are shown for each topographic map.

A.6. CONFIDENCE AND ACTIVATION OVER TRAINING TIME 203

A.6 Confidence and Activation over Training Time

This Appendix section shows topographic maps for confidence- and class-

separated groups at different steps in training. Background heat maps

show accuracy and a purple outline indicate overconfidence. Positions with

all-white topographic maps are empty groups or groups without correct

predictions.

Step 1

0 1 2 3 4 5 6 7 8 9
class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nf

id
en

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Step 20

0 1 2 3 4 5 6 7 8 9
class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nf

id
en

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

204 APPENDIX A. SUPPLEMENTAL FIGURES

Step 120

0 1 2 3 4 5 6 7 8 9
class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nf

id
en

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

Step 500

0 1 2 3 4 5 6 7 8 9
class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
nf

id
en

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

A.6. CONFIDENCE AND ACTIVATION OVER TRAINING TIME 205

Step 1875

0 1 2 3 4 5 6 7 8 9
class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
co

nf
id

en
ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

B
Supplemental Results

207

208 APPENDIX B. SUPPLEMENTAL RESULTS

B.1 Extended Quantitative Topographic Map Evaluation

In this section, we report the quantitative visual quality evaluation of topo-

graphic activation maps from Section 6.3.3 for all investigated measures.

We focus on discussing all but the size-weighted convexity which is already

discussed in the main part but include it in the figures for comparison.

MLP

For the PSO-based layouting techniques, we quantify visual quality of to-

pographic maps with different measures. The results for the first fully-

connected layer of the MLP model trained on MNIST are shown in Fig-

ure B.1.

2.4 2.5 2.6
blur MSE AUC

baseline

PSO

graph_PSO

PCA_PSO

SOM_PSO

TSNE_PSO

UMAP_PSO

2.3 2.4 2.5 2.6
resize MSE AUC

baseline

PSO

PCA_PSO

graph_PSO

SOM_PSO

UMAP_PSO

TSNE_PSO

10 15
#components

baseline

PSO

graph_PSO

PCA_PSO

SOM_PSO

TSNE_PSO

UMAP_PSO

0.050 0.075 0.100 0.125 0.150
average relative component area

baseline

PSO

graph_PSO

SOM_PSO

PCA_PSO

TSNE_PSO

UMAP_PSO

0.1 0.2
size-weighted convexity

baseline

PSO

graph_PSO

PCA_PSO

SOM_PSO

TSNE_PSO

UMAP_PSO

Figure B.1: Quantification of the topographic map quality for MNIST MLP.

The lower end of the quality for all measures is shared by random_PSO

and the PSO with random initialization. With respect to the blur and resize

MSE there is no significant quality difference between these two layouting

techniques. Regarding the number and size of the components, PSO per-

forms slightly better than the random baseline but is still of significantly

worse quality than all PSO with non-random initialization. This supports

our finding from the method pre-selection.

SOM_PSO, graph_PSO, and PCA_PSO are in the medium quality range for

all metrics, while graph_PSO shows the lowest quality among the three

methods. The quality differences of SOM_PSO and PCA_PSO are small

and different quality metrics identify either one or the other as the better

B.1. EXTENDED QUANTITATIVE TOPOGRAPHIC MAP EVALUATION 209

technique. Observing both the number of components and their size,

SOM_PSO results in fewer and smaller components than PCA_PSO. Fewer

components are only advantageous if they are also larger. In addition,

PCA_PSO also has a lower variation than SOM_PSO. Therefore, we consider

PCA_PSO as a higher-quality layouting method than SOM_PSO.

UMAP_PSO and TSNE_PSO obtain the highest quality results for the MLP

according to all metrics. TSNE_PSO shows smaller MSE when blurring or

resizing the topographic map than UMAP_PSO, however not to a significant

amount. Regarding the number and size of the components UMAP_PSO

has a clearly higher quality as it shows fewer components of a larger size

than TSNE_PSO. Note that topographic map quality for UMAP_PSO shows

a high variation, such that individual layouts using this technique might

not perform better than TSNE_PSO.

In conclusion, considering the higher quality regarding the component-

based metrics, we find UMAP_PSO the layouting metric of highest quality.

CNN

First we perform the same quality comparison of using different layouting

method as for the MLP example. In CNNs, the quality of the topographic

maps can further be influenced by how the feature maps are aggregated to

obtain color values, therefore, we also use different aggregation approaches.

For some methods, random aggregation leads to extreme values such that

differences between mean, max and center aggregation are not visible from

the plots anymore. Therefore, we omitted random aggregation for the

comparison of all layouting methods. Figures B.2 and B.3 show the results

of the quality comparison as an overview of average quality rank across

the aggregation methods (Figure B.2) and as the detailed quality metric

distributions (Figure B.3).

On average across all aggregations, UMAP_PSO shows the best rank accord-

ing to all quality metrics. This indicates that UMAP_PSO is most suitable

as layouting technique for both MLPs and CNNs. Different to our findings

for MLPs, TSNE_PSO is not as high-quality as UMAP_PSO anymore and

even is lower-quality than SOM_PSO or PCA_PSO in many cases. PSO with

random initialization leads to low-quality topographic maps as in the MLP.

However, for CNNs, graph_PSO now is not producing significantly better

results than PSO with random initialization.

210 APPENDIX B. SUPPLEMENTAL RESULTS

blur MSE AUC resize MSE AUC

7

6

5

4

3

2

1

a
ve

ra
g
e
 q

u
a
lit

y
ra

n
k

UMAP_PSO
SOM_PSO
PCA_PSO
TSNE_PSO
graph_PSO
PSO
baseline

#components average relative
component area

7

6

5

4

3

2

1

a
ve

ra
g
e
 q

u
a
lit

y
ra

n
k

size-weighted
convexity

Figure B.2: Overview of quality values for padded MNIST topographic maps for
different layouting techniques as average rank over the aggregation techniques
using the average quality values over the 100 repetitions.

In the detailed view of Figure B.3, we focus on cases where individual ob-

servations deviate from the trend observed in the overview of Figure B.2.

Firstly the rank does not always reflect whether the qualities of layout-

ing techniques differ significantly. For example, while UMAP_PSO has a

higher quality than PCA_PSO according to the rank, their quality is not

significantly different according to the component count and size (using

mean and center aggregation). Secondly, it is prominent that there is a high

similarity between the results for mean and center aggregation but not for

max aggregation. Comparing mean and center aggregation, we observe

a similar quality order of the layouting techniques, only the range of the

quality values differs. In contrast, using the maximum for aggregating the

feature maps only leads to similar order according to the blur and resize

MSE, but to highly different quality order in the component metrics. For

example, using max aggregation, the random layout appears to perform

well as it shows large and few components. However, this indicates a weak-

ness of this aggregation technique. Due to only aggregating to the highest

activation value in a feature map, all obtained color values are in the red

(positive) range. Consequently, it is very prone to only producing a large

B.1. EXTENDED QUANTITATIVE TOPOGRAPHIC MAP EVALUATION 211

m
e
a
n

m
a
x

ce
n
te

r

1.5 2.0 2.5
baseline

graph_PSO
PSO

TSNE_PSO
SOM_PSO
PCA_PSO

UMAP_PSO

1.5 2.0 2.5
baseline

graph_PSO
TSNE_PSO

PSO
SOM_PSO
PCA_PSO

UMAP_PSO

1.5 2.0 2.5
blur MSE AUC

baseline
graph_PSO

PSO
TSNE_PSO
SOM_PSO
PCA_PSO

UMAP_PSO

1.5 2.0 2.5
baseline

graph_PSO
PSO

TSNE_PSO
SOM_PSO
PCA_PSO

UMAP_PSO

1.5 2.0 2.5
baseline

graph_PSO
PSO

TSNE_PSO
SOM_PSO
PCA_PSO

UMAP_PSO

1.5 2.0 2.5
resize MSE AUC

baseline
graph_PSO

PSO
SOM_PSO
TSNE_PSO
PCA_PSO

UMAP_PSO

0 10 20
baseline

PSO
graph_PSO
SOM_PSO
TSNE_PSO
UMAP_PSO

PCA_PSO

0 10 20
PSO

baseline
UMAP_PSO
TSNE_PSO
SOM_PSO

graph_PSO
PCA_PSO

0 10 20
#components

baseline
PSO

graph_PSO
SOM_PSO
PCA_PSO

TSNE_PSO
UMAP_PSO

0.25 0.50 0.75
PSO

baseline
TSNE_PSO
graph_PSO
UMAP_PSO
SOM_PSO
PCA_PSO

0.25 0.50 0.75
PSO

UMAP_PSO
SOM_PSO
TSNE_PSO
PCA_PSO

graph_PSO
baseline

0.25 0.50 0.75
average relative
component area

baseline
PSO

TSNE_PSO
SOM_PSO

graph_PSO
UMAP_PSO

PCA_PSO

0.25 0.50 0.75
baseline

PSO
graph_PSO
TSNE_PSO
SOM_PSO

UMAP_PSO
PCA_PSO

0.25 0.50 0.75
PSO

TSNE_PSO
baseline

UMAP_PSO
PCA_PSO
SOM_PSO

graph_PSO

0.25 0.50 0.75
size-weighted

convexity

baseline
PSO

graph_PSO
SOM_PSO
TSNE_PSO
UMAP_PSO

PCA_PSO

Figure B.3: Detailed quality metric distributions for padded MNIST topographic
maps for different layouting techniques over all repetitions for all aggregations.

red component. While this leads to good component-based quality values,

the actual topographic maps are useless as there are no distinguishable re-

gions and differences between groups are less pronounced. This is a strong

indication that a global max pooling of feature maps is not suitable for ob-

taining useful aggregated activation values. Excluding the max aggregation

UMAP_PSO produces the highest-quality topographic maps according to

all metrics and both mean and center aggregation, with only insignificantly

better quality values for other techniques.

212 APPENDIX B. SUPPLEMENTAL RESULTS

Because UMAP_PSO is shown to produce the highest-quality topographic

maps according to the different metrics, we continue to use it in the follow-

ing comparisons and experiments.

Alignment and Aggregation

Creating topographic activation maps for CNNs differs from MLPs mainly

in in that feature map NAPs values need to be aggregated to obtain colors.

How well this works might depend on whether the inputs or feature maps

are aligned and which aggregation function is used. Here, we first investi-

gate whether there are differences using aligned or unaligned data. Second,

we test the suitability of different aggregation methods in dependence of

the alignment of the data.

MNIST Variations and Alignment In this section, we investigate how the

quality is affected by whether the used data is pre-aligned, not aligned or

aligned using our gradient-based technique. The topographic map qualities

for the three alignment types, using UMAP_PSO as layouting technique,

are shown in Figure B.4.

In general, there is no clear trend of one alignment variation produc-

ing generally better topographic maps than others. For MNIST with our

gradient-based alignment, we observe better topographic maps than with

pre-aligned data according to component-based metrics and center and

max aggregation. In other cases, using qualities of topographic maps us-

ing our alignment technique are either similar or slightly worse than with

pre-aligned data. Surprisingly, only for mean aggregation and according to

MSE-based quality measure, the shifted MNIST version without alignment

performs worse than than the pre-aligned data. In all other cases it either

produces similar or better quality topographic maps than with padded

MNIST. From these results, we conclude that the topographic map quality

does not strongly depend on whether the data are aligned or not. The align-

ment rather affects the representativeness of the NAPs but the topographic

maps are still of good quality. Consequently, of course, the topographic

maps based on NAPs of not aligned data can be less representative, as well.

Aggregation Methods Here, we compare whether the choice of aggregation

technique has an influence on the topographic map quality, in dependence

of how the data are aligned. We include the random aggregation technique

B.1. EXTENDED QUANTITATIVE TOPOGRAPHIC MAP EVALUATION 213

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

m
e
a
n

1.5 2.0 1.5 2.0

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

m
a
x

1.5 2.0 1.5 2.0

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

ce
n
te

r

1.5 2.0
blur MSE AUC

1.5 2.0
resize MSE AUC

0.0 2.5 5.0 0.25 0.50 0.75 0.25 0.50 0.75

0.0 2.5 5.0 0.25 0.50 0.75 0.25 0.50 0.75

0.0 2.5 5.0
#components

0.25 0.50 0.75
average relative
component area

0.25 0.50 0.75
size-weighted

convexity

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

m
e
a
n

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

m
a
x

shifted MNIST
without alignment

shifted MNIST
with alignment

padded MNIST
without alignment

ce
n
te

r

Figure B.4: Topographic map qualities using UMAP_PSO comparing MNIST
alignment variations.

as it does not produce very strong outlier values for UMAP_PSO. The quality

value distributions are shown in Figure B.5.

First, we investigate the shifted MNIST without alignment (bottom row)

as it showed surprisingly high quality in the previous section. We observe

that there is little influence of which aggregation technique is used for this

data. According to the MSE-based quality measures, either aggregation

leads so similarly well results, including the random aggregation. Regard-

ing the component-based measures, we can observe some differences.

214 APPENDIX B. SUPPLEMENTAL RESULTS

1 2

random

center

max

mean

p
a
d
d
e
d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t blur MSE AUC

1 2

random

center

max

mean

sh
if
te

d
 M

N
IS

T
w

it
h
 a

lig
n
m

e
n
t

1 2
blur MSE AUC

random

center

max

mean

sh
if
te

d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t

1 2

resize MSE AUC

1 2

1 2
resize MSE AUC

0 10

random

center

max

mean

p
a
d
d
e
d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t #components

0 10

random

center

max

mean

sh
if
te

d
 M

N
IS

T
w

it
h
 a

lig
n
m

e
n
t

0 10
#components

random

center

max

mean

sh
if
te

d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t

0.25 0.50 0.75

average relative
component area

0.25 0.50 0.75

0.25 0.50 0.75
average relative
component area

0.25 0.50 0.75

size-weighted
convexity

0.25 0.50 0.75

0.25 0.50 0.75
size-weighted

convexity

Figure B.5: Topographic map qualities using UMAP_PSO comparing aggregation
methods.

B.1. EXTENDED QUANTITATIVE TOPOGRAPHIC MAP EVALUATION 215

While the number of components is similar for all aggregations except ran-

dom, max aggregation shows significantly larger components. As discussed

above, this is due to max aggregation implies that there are only few large

components in the positive NAP values. The small difference between

the aggregation techniques for this data supports that the underlying NAP

values are not informative.

For the aligned data (pre-aligned and with our gradiend-based alignment),

there are clearer differences between the aggregation techniques. Both data

sets show low MSE-based quality for max aggregation, but high component-

based quality. This is again the effect of the large positive-value compo-

nents that max aggregation produced by design. However there is no clear

variation between the groups which makes the topographic maps less use-

ful. Therefore, we consider max aggregation to be not suitable despite the

good quality values. Moreover, for the two aligned data sets, there is also

a clear difference between the intelligent aggregation techniques and the

random one. This indicates, in contrast to the not aligned data, that the

NAP values are more informative for both aligned data sets.

We expected that center aggregation is well-suitable for our alignment

technique because it aligns the most important feature map position to

the center. If this was the case, center aggregation would show a rela-

tively better performance for shifted MNIST with alignment compared

to padded MNIST which is pre-aligned. Padded MNIST shows slightly

better topographic maps for mean than for center aggregation but the

differences are insignificant for MSE-based quality measures and only

small for the component-based qualities. For shifted MNIST that is aligned

with our technique, center aggregation leads to clearly lower-quality topo-

graphic maps than center aggregation for the MSE-based qualities, while

the component-based metrics indicate more similar quality. In summary,

there is a difference in using mean or center aggregation when using pre-

aligned data or applying our alignment technique. However, from the

results, it is not evident that using center aggregation brings a significant

improvement of quality when using our gradient-based alignment.

Based on the results, we conclude that using the mean value is the most

suitable and generally applicable aggregation technique as it performs

similarly well regardless of how and whether the data are aligned.

216 APPENDIX B. SUPPLEMENTAL RESULTS

Layer Comparison

Using the most promising layouting technique (UMAP_PSO) and the most

suitable aggregation function (mean), we further compare visual quality of

topographic activation maps in different layers of the network. Results are

shown in Figure B.6.
p
a
d
d
e
d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t

layer 3

layer 2

layer 1

1.5 2.0 2.5 1.5 2.0 2.5

sh
if
te

d
 M

N
IS

T
w

it
h
 a

lig
n
m

e
n
t

layer 3

layer 2

layer 1

1.5 2.0 2.5 1.5 2.0 2.5

sh
if
te

d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t

layer 3

layer 2

layer 1

1.5 2.0 2.5 1.5 2.0 2.5
resize MSE AUCblur MSE AUC

0 5 10 0.2 0.4 0.2 0.4

0 5 10 0.2 0.4 0.2 0.4

size-weighted
convexity

0 5 10 0.2 0.4 0.2 0.4
average relative
component area

#components

p
a
d
d
e
d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t

layer 3

layer 2

layer 1

sh
if
te

d
 M

N
IS

T
w

it
h
 a

lig
n
m

e
n
t

layer 3

layer 2

layer 1

sh
if
te

d
 M

N
IS

T
w

it
h
o
u
t

a
lig

n
m

e
n
t

layer 3

layer 2

layer 1

Figure B.6: Topographic map qualities using UMAP_PSO and mean aggregation
comparing layers.

B.1. EXTENDED QUANTITATIVE TOPOGRAPHIC MAP EVALUATION 217

We observe that visual quality is generally lower in deeper layers. Especially,

the third layer quality drops for all measures except the size-weighted

convexity. For both shifted MNIST, the second layer appears visually worse

than the first layer but better for padded MNIST. In the particular model,

we used layers with the same number of feature maps but they decrease in

size due to the used stride of 2. Likely, aggregating the smaller feature maps

in deeper layers yield more class-specific information about the activations

and therefore lead to more diverse topographic maps. This higher diversity

of the regions might lead to more separated regions which our measures

consider lower visual quality.

C
List of Abbreviations

AE Autoencoder

ANN Artificial Neural Network

ASR Automatic Speech Recognition

AUC area under the curve

BM Boltzmann Machine

CAM Class Activation Mapping

CCA Canonical Correlation Analysis

CNN Convolutional Neural Network

CTC Connectionist Temporal Classification

DL Deep Learning

DNN Deep Neural Network

EEG Electroencephalography

ERP Event-Related Potential

GAN Generative Adversarial Network

Grad-CAM Gradient-weighted Class Activation Mapping

GradNAP Gradient-Adjusted Neuron Activation Profile

GRU Gated Recurrent Unit

IPA International Phonetic Alphabet

219

220 APPENDIX C. LIST OF ABBREVIATIONS

LIME Local Interpretable Model-agnostic Explanations

LRP layer-wise relevance propagation

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NAP Neuron Activation Profile

PCA Principal Component Analysis

PSO Particle Swarm Optimization

RA Research Aim

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrrent Neural Network

SHAP SHapley Additive exPlanation

SNAP Saliency-Adjusted Neuron Activation Profile

SOM Self-Organizing Map

STFT Short-time Fourier transform

SVD Singular Value Decomposition

tSNE t-Distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

W2L Wav2Letter

XAI explainable Artificial Intelligence

D
List of Figures

2.1 Deterministic and Variational Autoencoder. 13

2.2 Illustration of a SOM training. 14

2.3 A simple Multi-Layer Perceptron. 16

2.4 Illustrations of training and validation accuracy curves. 21

2.5 Illustration of convolution. 24

2.6 Illustration of RNNs. 25

2.7 Illustration of pooling. 27

2.8 Dimensionality reduction techniques. 30

2.9 Audio data formats. 33

2.10 Mel spectrogram with annotations. 35

2.11 Brain activity visualization with EEG. 37

2.12 The Event-Related Potentials technique. 38

3.1 Weight visualization for different models. 41

3.2 Activation visualization for different models. 43

3.3 Feature visualization results. 44

3.4 Saliency map for showing prediction-relevant parts of the input. 47

3.5 Saliency maps for a image classification created with different

methods. 50

3.6 Saliency maps for spectrograms 52

3.7 Activation-based clustering. 54

3.8 Datapoint editor in the What-If Tool. 55

221

222 APPENDIX D. LIST OF FIGURES

3.9 Activation atlas. 55

3.10 Summit tool. 57

3.11 Neurocartography tool. 57

4.1 Exemplary inputs for each class of MNIST and of our padded

and shifted variations. 60

4.2 Exemplary inputs for each class of Fashion MNIST. 61

4.3 Exemplary inputs for each class of Cifar10. 62

4.4 Exemplary inputs for each class of FairFace 64

4.5 Illustration of the W2P to W2L transfer learning approach. . . 72

5.1 Activations for different data and model types. 79

5.2 Normalization Effect on NAPs 83

5.3 Aligning inputs and activations. 85

5.4 Masking effect on NAPs and normalized NAPs 87

5.5 Activation-based clustering. 91

5.6 Heat map and cluster map visualization of a NAP 92

5.7 NAP computation pipeline. 93

5.8 Speech NAP computation . 94

5.9 Activation normalization effects for a toy example. 96

5.10 Activation normalization effects for an MLP and a CNN hid-

den layer. 98

5.11 Alignment effects shown for shifted MNIST. 100

5.12 Alignment effects shown for W2L-based models. 102

5.13 Alignment offset results. 105

5.14 Alignment evaluation for phonemes. 106

5.15 Visual inspection of approximated input layer NAPs. 111

5.16 Quantitative analysis of approximated input layer NAPs. . . . 113

5.17 NAP approximation quality for different phonemes. 116

223

6.1 Visual summary of the computation of topographic activation

maps. 120

6.2 Pre-processing of topographic activation map images for qual-

ity measure computation. 127

6.3 Topographic maps for the exemplary class ‘0’ for all proposed

layouting methods. 132

6.4 Comparison of different quality measurements on manually

created topographic activation maps. 134

6.5 Quantification of the topographic map quality for MNIST MLP.135

6.6 Topographic map qualities for padded MNIST for different

layouting techniques using different aggregation functions. . 136

6.7 Topographic map qualities using UMAP_PSO. 138

6.8 Topographic maps and their visual qualities using UMAP_PSO

and mean aggregation compared between layers 139

7.1 Comparison of input layer NAPs with and without masking

prediction-irrelevant positions in model W2L for letters and

phonemes. 149

7.2 Silhouette scores at different distance thresholds. 151

7.3 Clustermaps for W2L and W2L_TL_frozen in layer 4 and 5 . . 153

7.4 Clustering result for W2L and W2L_TL_frozen compared be-

tween layer 4 and 5 . 154

7.5 Silhouette scores at different distance thresholds, comparing

grouping by predicted letters and by phoneme annotation. . 155

7.6 Phoneme clusters in layer 5 of the W2L model. 157

7.7 Clustermaps of NAPs of the W2L model in layers 5 and 12

using grouping by predicted letter and annotated phoneme. . 158

7.8 Clustering result of NAPs of the W2L model in layers 5 and 12

using grouping by predicted letter and annotated phoneme. . 159

7.9 Topographic maps for correctly and wrongly classified exam-

ples using data sets with annotation errors. 162

224 APPENDIX D. LIST OF FIGURES

7.10 Topographic maps for correctly and wrongly classified exam-

ples as confusion matrix . 164

7.11 Topographic activation maps when grouping by “race” and

“gender” variables in layers 6 and 18 of VGG16 167

7.12 Topographic activation maps when grouping by “age” variable

in layers 6 and 18 of VGG16 . 168

8.1 Topographic maps of multiple groups in two layers of a DNN. 172

8.2 Topographic maps at different stages of training. 174

8.3 Activations evolving over training time, shown as topographic

maps. 177

8.4 Topographic maps at different prediction confidences. 178

8.5 Targeted feature visualization using topographic maps. 180

A.1 Alignment evaluation overview for model W2P. 190

A.2 Alignment evaluation overview for model W2P_shallow. . . . 191

A.3 Alignment evaluation overview for model W2L. 192

A.4 Approximated input layer NAPs for classes 0–4. 194

A.5 Approximated input layer NAPs for classes 5–9. 195

A.6 NAP approximation errors in convolutional layer 1. 196

A.7 NAP approximation errors in convolutional layer 2. 196

A.8 NAP approximation errors in convolutional layer 3. 197

A.9 Input layer SNAPs in model W2L for all letters. 199

A.10Input layer SNAPs in model W2L for phonemes aa–ih. 200

A.11Input layer SNAPs in model W2L for phonemes ix–zh. 201

A.12Topographic maps of VGG16 activations in multiple layers. . . 202

B.1 Quantification of the topographic map quality for MNIST MLP.208

B.2 Overview of quality values for padded MNIST topographic

maps. 210

225

B.3 Detailed quality metric distributions for padded MNIST topo-

graphic maps. 211

B.4 Topographic map qualities using UMAP_PSO comparing

MNIST alignment variations. 213

B.5 Topographic map qualities using UMAP_PSO comparing ag-

gregation methods. 214

B.6 Topographic map qualities using UMAP_PSO and mean ag-

gregation comparing layers. 216

E
List of Tables

4.1 Data overview. 65

4.2 MNIST and Fashion MNIST architecture details 66

4.3 MNIST and Fashion MNIST model performance. 67

4.4 shifted and padded MNIST architecture details 68

4.5 shifted and padded MNIST model performance. 68

4.6 VGG16 architecture details . 69

4.7 Details of the W2L architecture and our variations 71

4.8 W2L model usage overview . 72

4.9 W2L-based model performances. 73

4.10 Model usage overview . 75

227

F
Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfel-

low, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. URL

https://www.tensorflow.org/.

[2] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and

D. Yu. Convolutional neural networks for speech recognition.

IEEE/ACM Transactions on audio, speech, and language processing,

22(10):1533–1545, 2014.

[3] D. M. Abdullah and N. S. Ahmed. A review of most recent lung cancer

detection techniques using machine learning. International Journal

of Science and Business, 5(3):159–173, 2021.

[4] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim.

Sanity checks for saliency maps. In Advances in Neural Information

Processing Systems, pages 9525–9536, 2018.

[5] J. Ahn and A. Oh. Mitigating language-dependent ethnic bias in

BERT. In Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 533–549, Online

and Punta Cana, Dominican Republic, Nov. 2021. Association for

Computational Linguistics.

229

https://www.tensorflow.org/

230

[6] G. Alain and Y. Bengio. Understanding intermediate layers using

linear classifier probes. In International Conference on Learning

Representations (ICLR), Workshop Track Proceedings, 2017.

[7] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath.

Deep reinforcement learning: A brief survey. IEEE Signal Processing

Magazine, 34(6):26–38, 2017.

[8] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare. Credit card

fraud detection using machine learning techniques: A comparative

analysis. In 2017 International Conference on Computing Networking

and Informatics (ICCNI), pages 1–9. IEEE, 2017.

[9] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and

W. Samek. On pixel-wise explanations for non-linear classifier deci-

sions by layer-wise relevance propagation. PloS one, 10(7):e0130140,

2015.

[10] A. M. Badshah, J. Ahmad, N. Rahim, and S. W. Baik. Speech emotion

recognition from spectrograms with deep convolutional neural net-

work. In IEEE International Conference on Platform Technology and

Service (PlatCon), pages 1–5, 2017.

[11] S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Müller, and W. Samek.

Interpreting and explaining deep neural networks for classification

of audio signals. arXiv preprint arXiv:1807.03418, 2018.

[12] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis

and machine intelligence, 35(8):1798–1828, 2013.

[13] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man

is to computer programmer as woman is to homemaker? Debiasing

Word Embeddings. In Advances in Neural Information Processing

Systems, volume 29, pages 4349–4357, 2016.

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models

are few-shot learners. In Advances in Neural Information Processing

Systems, volume 33, pages 1877–1901, 2020.

231

[15] J. Buolamwini and T. Gebru. Gender shades: Intersectional accu-

racy disparities in commercial gender classification. In Proceedings

of the 1st Conference on Fairness, Accountability and Transparency,

volume 81, pages 77–91. PMLR, 23–24 Feb 2018.

[16] A. Byerly, T. Kalganova, and R. Ott. The current state of the art in deep

learning for image classification: A review. In Science and Information

Conference, pages 88–105. Springer, 2022.

[17] S. Carter, Z. Armstrong, L. Schubert, I. Johnson, and C. Olah. Activa-

tion atlas. Distill, 4(3):e15, 2019.

[18] S. Chatterjee, F. Saad, C. Sarasaen, S. Ghosh, V. Krug, R. Khatun,

R. Mishra, N. Desai, P. Radeva, G. Rose, S. Stober, O. Speck, and

A. Nürnberger. Exploration of Interpretability Techniques for Deep

COVID-19 Classification using Chest X-ray Images. arXiv preprint

arXiv:2006.02570, 2020.

[19] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian.

Grad-CAM++: Generalized gradient-based visual explanations for

deep convolutional networks. In 2018 IEEE winter conference on

applications of computer vision (WACV), pages 839–847. IEEE, 2018.

[20] G. Chen, X. Na, Y. Wang, Z. Yan, J. Zhang, S. Ma, and Y. Wang. Data

Augmentation For Children’s Speech Recognition – The “Ethiopian”

System For The SLT 2021 Children Speech Recognition Challenge.

arXiv preprint arXiv:2011.04547, 2020.

[21] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using

RNN encoder–decoder for statistical machine translation. In Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, Oct.

2014. Association for Computational Linguistics. doi: 10.3115/v1/

D14-1179.

[22] F. Chollet. Deep learning with Python. Simon and Schuster, 2021.

[23] CMUdict. Carnegie mellon pronouncing dictionary, 2014.

232

[24] R. Collobert, C. Puhrsch, and G. Synnaeve. Wav2Letter: an End-

to-End ConvNet-based Speech Recognition System. arXiv preprint

arXiv:1609.03193, 2016.

[25] N. Cummins, S. Amiriparian, G. Hagerer, A. Batliner, S. Steidl, and

B. W. Schuller. An image-based deep spectrum feature representa-

tion for the recognition of emotional speech. In ACM International

Conference on Multimedia, pages 478–484, 2017.

[26] T. Czimmermann, G. Ciuti, M. Milazzo, M. Chiurazzi, S. Roccella,

C. M. Oddo, and P. Dario. Visual-based defect detection and classi-

fication approaches for industrial applications — a survey. MDPI

Sensors, 20(5):1459, 2020.

[27] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar. A survey of deep

learning and its applications: A new paradigm to machine learning.

Archives of Computational Methods in Engineering, pages 1–22, 2019.

[28] K. Deng, S. Cao, Y. Zhang, L. Ma, G. Cheng, J. Xu, and P. Zhang. Im-

proving CTC-based speech recognition via knowledge transferring

from pre-trained language models. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 8517–8521.

IEEE, 2022.

[29] M. Deshmukh and U. Bhosle. A survey of image registration. Inter-

national Journal of Image Processing (IJIP), 5(3):245, 2011.

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding.

arXiv preprint arXiv:1810.04805, 2019.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An

image is worth 16x16 words: Transformers for image recognition at

scale. arXiv preprint arXiv:2010.11929, 2020.

[32] R. Eberhart and Y. Shi. Comparing inertia weights and constriction

factors in particle swarm optimization. In Proceedings of the Congress

on Evolutionary Computation, volume 1, pages 84–88 vol.1, 2000.

233

[33] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-

layer features of a deep network. University of Montreal, 1341(3):1,

2009.

[34] D. Erhan, A. Courville, Y. Bengio, and P. Vincent. Why does unsu-

pervised pre-training help deep learning? In Proceedings of the 13th

International Conference on Artificial Intelligence and Statistics, pages

201–208. JMLR Workshop and Conference Proceedings, 2010.

[35] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales. Self-supervised

representation learning: Introduction, advances, and challenges.

IEEE Signal Processing Magazine, 39(3):42–62, 2022.

[36] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algo-

rithm for discovering clusters in large spatial databases with noise.

kdd, 96(34):226–231, 1996.

[37] R. Fan, W. Chu, P. Chang, and A. Alwan. Transformer for end-to-end

automatic speech recognition. IEEE Transactions on Audio, Speech,

nd Language Processing, page 1, 2023.

[38] J. Fiacco, S. Choudhary, and C. Rose. Deep neural model inspection

and comparison via functional neuron pathways. In Annual Meeting

of the Association for Computational Linguistics (ACL), pages 5754–

5764, 2019.

[39] A. Fisher, C. Rudin, and F. Dominici. All models are wrong, but many

are useful: Learning a variable’s importance by studying an entire

class of prediction models simultaneously. J. Mach. Learn. Res., 20,

177:1–81, 2019.

[40] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-

directed placement. Software: Practice and experience, 21(11):1129–

1164, 1991.

[41] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett.

Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist

speech disc 1-1.1. NASA STI/Recon technical report n, 93:27403, 1993.

[42] J. M. Gauch. Noise removal and contrast enhancement. In The Colour

Image Processing Handbook, pages 149–162. Springer, 1998.

234

[43] S. Gollapudi. Practical Machine Learning. Packt Publishing Ltd, 2016.

[44] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harness-

ing adversarial examples. In International Conference on Learning

Representations (ICLR), 2015.

[45] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,

volume 1. MIT press Cambridge, 2016.

[46] J. C. Gower. Generalized procrustes analysis. Psychometrika, 40:

33–51, 1975.

[47] A. Graikos, N. Malkin, N. Jojic, and D. Samaras. Diffusion models as

plug-and-play priors. In Advances in Neural Information Processing

Systems, volume 35, pages 14715–14728, 2022.

[48] M. F. A. Hady and F. Schwenker. Semi-supervised learning. Handbook

on Neural Information Processing, pages 215–239, 2013.

[49] R. M. Hanifa, K. Isa, and S. Mohamad. A review on speaker recogni-

tion: Technology and challenges. Computers & Electrical Engineering,

90:107005, 2021.

[50] G. Harshvardhan, M. K. Gourisaria, M. Pandey, and S. S. Rautaray. A

comprehensive survey and analysis of generative models in machine

learning. Computer Science Review, 38:100285, 2020.

[51] S. Hart. Shapley value. In Game theory, pages 210–216. Springer,

1989.

[52] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering

algorithm. Journal of the Royal Statistical Society. Series C (Applied

Statistics), 28(1):100–108, 1979.

[53] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[54] G. Hinton, N. Srivastava, and K. Swersky. Neural networks for ma-

chine learning. Lecture 6a. Overview of mini-batch gradient descent,

2012.

235

[55] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780, 1997. ISSN 0899-7667.

[56] F. Hohman, H. Park, C. Robinson, and D. H. P. Chau. Summit: Scal-

ing deep learning interpretability by visualizing activation and at-

tribution summarizations. IEEE Transactions on Visualization and

Computer Graphics, 26(1):1096–1106, 2019.

[57] F. Hohman, H. Park, C. Robinson, and D. H. P. Chau. Summit tool,

2019. URL https://fredhohman.com/summit/.

[58] M. Holmstrom, D. Liu, and C. Vo. Machine learning applied to

weather forecasting. Meteorol. Appl, 10:1–5, 2016.

[59] A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek. Explain-

able AI methods - a brief overview. In International Workshop on

Extending Explainable AI Beyond Deep Models and Classifiers, pages

13–38. Springer, 2020.

[60] H. Hotelling. Analysis of a complex of statistical variables into prin-

cipal components. Journal of Educational Psychology, 24:498–520,

1933.

[61] M. B. Hoy. Alexa, Siri, Cortana, and more: an introduction to voice

assistants. Medical Reference Services Quarterly, 37(1):81–88, 2018.

[62] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pages

4700–4708, 2017.

[63] C. J. Hughes. Single-instruction multiple-data execution. Synthesis

Lectures on Computer Architecture, 10(1):1–121, 2015.

[64] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Computing Surveys (CSUR), 31(3):264–323, 1999.

[65] P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng, and Y. Wei. Layercam:

Exploring hierarchical class activation maps for localization. IEEE

Transactions on Image Processing, 30:5875–5888, 2021.

https://fredhohman.com/summit/

236

[66] I. Jolliffe. Principal Component Analysis. Springer Verlag, New York,

2002.

[67] JustGlowing. MiniSom Package, 2021. URL https://github.com/
JustGlowing/minisom.

[68] K. Karkkainen and J. Joo. Fairface: Face attribute dataset for bal-

anced race, gender, and age for bias measurement and mitigation.

In Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, pages 1548–1558, 2021.

[69] J. Kennedy and R. Eberhart. Particle swarm optimization. In Pro-

ceedings of International Conference on Neural Networks (ICCN), vol-

ume 4, pages 1942–1948 vol.4, 1995.

[70] M. A. Khan and J. Kim. Toward Developing Efficient Conv-AE-Based

Intrusion Detection System Using Heterogeneous Dataset. MDPI

Electronics, 9(11):1771, 2020.

[71] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. In-

terpretability Beyond Feature Attribution: Quantitative Testing with

Concept Activation Vectors (TCAV). In Proceedings of the Interna-

tional Conference on Machine Learning (ICML), pages 2668–2677,

2018.

[72] S. Kim, A. Gholami, A. Shaw, N. Lee, K. Mangalam, J. Malik, M. W.

Mahoney, and K. Keutzer. Squeezeformer: An efficient transformer

for automatic speech recognition. In Advances in Neural Information

Processing Systems, volume 35, pages 9361–9373, 2022.

[73] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim,

and S. Dähne. Learning how to explain neural networks: PatternNet

and PatternAttribution. In International Conference on Learning

Representations (ICLR), 2018.

[74] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[75] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

https://github.com/JustGlowing/minisom
https://github.com/JustGlowing/minisom

237

[76] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, and M. Gabbouj. 1-D

Convolutional Neural Networks for Signal Processing Applications.

In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 8360–8364, 2019.

[77] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J.

Inman. 1D convolutional neural networks and applications: A survey.

Mechanical Systems and Signal Processing, 151:107398, 2021.

[78] H. Kirchhoff and A. Lerch. Evaluation of features for audio-to-audio

alignment. Journal of New Music Research, 40(1):27–41, 2011.

[79] A. Klautau. ARPABET and the TIMIT alphabet. An archived file.

(Accessed Mar. 12, 2020), 2001. URL https://web.archive.org/
web/20160603180727/http://www.laps.ufpa.br/aldebaro/
papers/ak_arpabet01.pdf.

[80] D. Kobak and G. C. Linderman. UMAP does not preserve global

structure any better than t-SNE when using the same initialization.

bioRxiv, 2019.

[81] T. Kohonen. Self-Organizing Feature Maps, pages 119–157. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1988. ISBN 978-3-662-00784-6.

[82] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin,

R. Leary, J. Li, and Y. Zhang. Quartznet: Deep Automatic Speech

Recognition with 1D Time-Channel Separable Convolutions. In IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6124–6128, 2020.

[83] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute

for Advanced Research), 2009. URL http://www.cs.toronto.edu/
~kriz/cifar.html.

[84] A. Krug and S. Stober. Adaptation of the event-related potential

technique for analyzing artificial neural networks. In Cognitive Com-

putational Neuroscience (CCN), 2017.

[85] A. Krug and S. Stober. Introspection for convolutional automatic

speech recognition. In EMNLP Workshop BlackboxNLP: Analyzing

and Interpreting Neural Networks for NLP, pages 187–199, 2018.

https://web.archive.org/web/20160603180727/http://www.laps.ufpa.br/aldebaro/papers/ak_arpabet01.pdf
https://web.archive.org/web/20160603180727/http://www.laps.ufpa.br/aldebaro/papers/ak_arpabet01.pdf
https://web.archive.org/web/20160603180727/http://www.laps.ufpa.br/aldebaro/papers/ak_arpabet01.pdf
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

238

[86] A. Krug and S. Stober. Visualizing deep neural networks for speech

recognition with learned topographic filter maps. arXiv preprint

arXiv:1912.04067, 2019. Accepted at ACL Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP.

[87] A. Krug and S. Stober. Gradient-Adjusted Neuron Activation Profiles

for Comprehensive Introspection of Convolutional Speech Recogni-

tion Models. arXiv preprint arXiv:2002.08125, 2020.

[88] A. Krug, R. Knaebel, and S. Stober. Neuron activation profiles for

interpreting convolutional speech recognition models. In NeurIPS

Workshop IRASL: Interpretability and Robustness for Audio, Speech,

and Language, 2018.

[89] A. Krug, M. Ebrahimzadeh, J. Alemann, J. Johannsmeier, and S. Sto-

ber. Analyzing and visualizing deep neural networks for speech

recognition with saliency-adjusted neuron activation profiles. MDPI

Electronics, 10(11):1350, 2021.

[90] V. Krug, C. Olson, and S. Stober. Visualizing bias in activations of deep

neural networks as topographic maps. In Proceedings of the 1st Work-

shop on Fairness and Bias in AI (AEQUITAS 2023) co-located with 26th

European Conference on Artificial Intelligence (ECAI 2023) Kraków,

Poland. CEUR-WS, 2023. URL http://ceur-ws.org/Vol-3523/.

[91] V. Krug, C. Olson, and S. Stober. Relation of activity and confidence

when training deep neural networks. (To appear in) Uncertainty

meets Explainability, Workshop at ECML-PKDD 2023, Torino, Italy,

2023.

[92] V. Krug, R. K. Ratul, C. Olson, and S. Stober. Visualizing deep neural

networks with topographic activation maps. In HHAI 2023: Augment-

ing Human Intellect, pages 138–152. IOS Press, 2023.

[93] Y. Kubo, S. Karita, and M. Bacchiani. Knowledge transfer from large-

scale pretrained language models to end-to-end speech recognizers.

In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 8512–8516. IEEE, 2022.

[94] P. Ladefoged. The revised international phonetic alphabet. Language,

66(3):550–552, 1990.

http://ceur-ws.org/Vol-3523/

239

[95] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and

K.-R. Müller. Unmasking clever hans predictors and assessing what

machines really learn. Nature communications, 10(1):1096, 2019.

[96] N. Le Roux and Y. Bengio. Representational power of restricted Boltz-

mann machines and deep belief networks. Neural computation, 20

(6):1631–1649, 2008.

[97] Y. LeCun and C. Cortes. MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/, 2010.

[98] V. I. Levenshtein et al. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, volume 10, pages

707–710. Soviet Union, 1966.

[99] C. Lewis-Beck and M. Lewis-Beck. Applied regression: An introduc-

tion, volume 22. Sage publications, 2015.

[100] B. Li, H. Peng, R. Sainju, J. Yang, L. Yang, Y. Liang, W. Jiang, B. Wang,

H. Liu, and C. Ding. Detecting gender bias in transformer-based

models: A case study on bert. arXiv preprint arXiv:2110.15733, 2021.

[101] M. Li, Z. Zhao, and C. Scheidegger. Visualizing neural networks with

the grand tour. Distill, 5(3):e25, 2020.

[102] N. Liu, J. Wang, and Y. Gong. Deep self-organizing map for visual

classification. In International Joint Conference on Neural Networks

(IJCNN), pages 1–6. IEEE, 2015.

[103] S. M. Liu and J.-H. Chen. A multi-label classification based approach

for sentiment classification. Expert Systems with Applications, 42(3):

1083–1093, 2015.

[104] I. Loshchilov and F. Hutter. Decoupled weight decay regularization.

In International Conference on Learning Representations, 2018.

[105] D. Lu and Q. Weng. A survey of image classification methods and

techniques for improving classification performance. International

journal of Remote sensing, 28(5):823–870, 2007.

[106] S. J. Luck. An Introduction to the Event-Related Potential Technique,

volume 78, 3. MIT press, 2005. ISBN 0262122774.

240

[107] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting

model predictions. In Advances in Neural Information Processing

Systems, volume 30, 2017.

[108] A. Maas, Q. V. Le, T. M. O’neil, O. Vinyals, P. Nguyen, and A. Y. Ng.

Recurrent neural networks for noise reduction in robust asr. In Con-

ference of the International Speech Communication Association (In-

terspeech), 2012.

[109] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier nonlinearities

improve neural network acoustic models. In Proceedings of the Inter-

national Conference on Machine Learning (ICML), volume 30, page 3.

Citeseer, 2013.

[110] C. R. Madhuri, G. Anuradha, and M. V. Pujitha. House price prediction

using regression techniques: A comparative study. In International

Conference on Smart Structures and Systems (ICSSS), pages 1–5. IEEE,

2019.

[111] A. Mahendran and A. Vedaldi. Understanding deep image represen-

tations by inverting them. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5188–5196,

2015.

[112] S. Makeig, J. Onton, et al. ERP features and EEG dynamics: an ICA

perspective. In Oxford Handbook of Event-Related Potential Compo-

nents, pages 51–87. Oxford, 2011.

[113] K. Maurer and T. Dierks. Atlas of Brain Mapping: Topographic Map-

ping of EEG and Evoked Potentials. Springer Science & Business

Media, 2012.

[114] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and

O. Nieto. librosa: Audio and music signal analysis in python. In Pro-

ceedings of the 14th Python in Science Conference (SciPy), volume 8,

pages 18–25. Citeseer, 2015.

[115] L. McInnes, J. Healy, N. Saul, and L. Grossberger. UMAP: Uniform

manifold approximation and projection. The Journal of Open Source

Software, 3(29):861, 2018. URL https://github.com/lmcinnes/
umap.

https://github.com/lmcinnes/umap
https://github.com/lmcinnes/umap

241

[116] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold ap-

proximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2020.

[117] R. Meudec. tf-explain, 2021. URL https://github.com/sicara/
tf-explain.

[118] A. Meyer, S. Ghosh, D. Schindele, M. Schostak, S. Stober, C. Hansen,

and M. Rak. Uncertainty-aware temporal self-learning (UATS): Semi-

supervised learning for segmentation of prostate zones and beyond.

Artificial Intelligence in Medicine, 116:102073, 2021.

[119] S. A. Mohammed, S. Darrab, S. A. Noaman, and G. Saake. Analysis

of breast cancer detection using different machine learning tech-

niques. In 5th International Conference on Data Mining and Big Data

(DMBD), Belgrade, Serbia, July 14–20, pages 108–117. Springer, 2020.

[120] C. Molnar. Interpretable Machine Learning. Independently pub-

lished, 2nd edition, 2022. URL https://christophm.github.io/
interpretable-ml-book.

[121] G. Montavon. LRP tutorial, 2021. URL https://git.tu-berlin.
de/gmontavon/lrp-tutorial.

[122] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller.

Explaining nonlinear classification decisions with deep taylor de-

composition. Pattern Recognition, 65:211–222, 2017.

[123] A. S. Morcos, M. Raghu, and S. Bengio. Insights on representa-

tional similarity in neural networks with canonical correlation. arXiv

preprint arXiv:1806.05759, 2018.

[124] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper

into neural networks. Google Research Blog. Retrieved June, 20(14):5,

2015.

[125] M. Müller. Fundamentals of music processing: Audio, analysis, algo-

rithms, applications, volume 5. Springer, 2015.

[126] F. Murtagh and P. Contreras. Algorithms for hierarchical cluster-

ing: an overview. Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 2(1):86–97, 2012.

https://github.com/sicara/tf-explain
https://github.com/sicara/tf-explain
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://git.tu-berlin.de/gmontavon/lrp-tutorial
https://git.tu-berlin.de/gmontavon/lrp-tutorial

242

[127] T. Nagamine and N. Mesgarani. Understanding the representation

and computation of multilayer perceptrons: A case study in speech

recognition. In Proceedings of the International Conference on Ma-

chine Learning (ICML), pages 2564–2573, 2017.

[128] T. Nagamine, M. L. Seltzer, and N. Mesgarani. Exploring how deep

neural networks form phonemic categories. In Conference of the

International Speech Communication Association (Interspeech), 2015.

[129] T. Nagamine, M. L. Seltzer, and N. Mesgarani. On the role of non-

linear transformations in deep neural network acoustic models. In

Conference of the International Speech Communication Association

(Interspeech), pages 803–807, 2016.

[130] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted

Boltzmann Machines. In Proceedings of the International Conference

on Machine Learning (ICML), pages 807–814, 2010.

[131] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab. Machine

learning for anomaly detection: A systematic review. IEEE Access, 9:

78658–78700, 2021.

[132] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 427–436, 2015.

[133] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthe-

sizing the preferred inputs for neurons in neural networks via deep

generator networks. In Advances in Neural Information Processing

Systems, pages 3387–3395, 2016.

[134] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski. Plug &

play generative networks: Conditional iterative generation of images

in latent space. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4467–4477, 2017.

[135] W. Nie, Y. Zhang, and A. Patel. A theoretical explanation for perplexing

behaviors of backpropagation-based visualizations. In Proceedings

of the International Conference on Machine Learning (ICML), pages

3809–3818, 2018.

243

[136] H. J. Nussbaumer and H. J. Nussbaumer. The fast Fourier transform.

Springer, 1981.

[137] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Dis-

till, 2017.

[138] OpenCV. Open Source Computer Vision Library, 2015. URL https:
//github.com/opencv/opencv-python.

[139] J. Oruh, S. Viriri, and A. Adegun. Long short-term memory recurrent

neural network for automatic speech recognition. IEEE Access, 10:

30069–30079, 2022.

[140] S. Osindero and G. E. Hinton. Modeling image patches with a di-

rected hierarchy of markov random fields. In Advances in Neural

Information Processing Systems, pages 1121–1128, 2008.

[141] PAIR-code. What-If tool, 2019. URL https://pair-code.github.
io/what-if-tool/.

[142] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech:

an ASR corpus based on public domain audio books. In IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 5206–5210, 2015.

[143] H. Park, N. Das, R. Duggal, A. P. Wright, O. Shaikh, F. Hohman, and

D. H. P. Chau. Neurocartography tool, 2021. URL https://poloclub.
github.io/neuro-cartography/.

[144] H. Park, N. Das, R. Duggal, A. P. Wright, O. Shaikh, F. Hohman, and

D. H. P. Chau. Neurocartography: Scalable automatic visual summa-

rization of concepts in deep neural networks. IEEE Transactions on

Visualization and Computer Graphics, 28(1):813–823, 2021.

[145] T. Pearce, A. Brintrup, and J. Zhu. Understanding softmax confidence

and uncertainty. arXiv preprint arXiv:2106.04972, 2021.

[146] K. Pearson. On lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine

and Journal of Science, 2(11):559–572, 1901.

https://github.com/opencv/opencv-python
https://github.com/opencv/opencv-python
https://pair-code.github.io/what-if-tool/
https://pair-code.github.io/what-if-tool/
https://poloclub.github.io/neuro-cartography/
https://poloclub.github.io/neuro-cartography/

244

[147] P. Pedersen. The mel scale. Journal of Music Theory, 9(2):295–308,

1965.

[148] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.

Scikit-learn: Machine learning in python. The Journal of Machine

Learning Research, 12:2825–2830, 2011.

[149] L. Perotin, R. Serizel, E. Vincent, and A. Guérin. CRNN-based multiple

DoA estimation using acoustic intensity features for Ambisonics

recordings. IEEE Journal of Selected Topics in Signal Processing, 13(1):

22–33, 2019.

[150] R. Rahaman et al. Uncertainty quantification and deep ensembles.

In Advances in Neural Information Processing Systems, volume 34,

pages 20063–20075, 2021.

[151] K. Rao, F. Peng, H. Sak, and F. Beaufays. Grapheme-to-phoneme

conversion using long short-term memory recurrent neural networks.

In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4225–4229, 2015.

[152] A. D. Rasamoelina, F. Adjailia, and P. Sinčák. A review of activation

function for artificial neural network. In 2020 IEEE 18th World Sympo-

sium on Applied Machine Intelligence and Informatics (SAMI), pages

281–286. IEEE, 2020.

[153] M. T. Ribeiro, S. Singh, and C. Guestrin. “Why should I trust you?”

explaining the predictions of any classifier. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 1135–1144, 2016.

[154] J. Riget and J. S. Vesterstrøm. A diversity-guided particle swarm

optimizer - the ARPSO. Dept. Comput. Sci., Univ. of Aarhus, Aarhus,

Denmark, Tech. Rep, 2:2002, 2002.

[155] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics, 20:53–65, 1987.

245

[156] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323(6088):533–536,

1986.

[157] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, et al. ImageNet large scale visual

recognition challenge. International Journal of Computer Vision, 115

(3):211–252, 2015.

[158] L. Schubert, C. Olah, A. Mordvintsev, I. Johnson, A. Satyanarayan, et al.

Tensorflow lucid., 2019. URL https://github.com/tensorflow/
lucid.

[159] D. A. Schult. Exploring network structure, dynamics, and function us-

ing networkx. In Proceedings of the 7th Python in Science Conference

(SciPy). Citeseer, 2008.

[160] K. Schulz, L. Sixt, F. Tombari, and T. Landgraf. Restricting the flow:

Information bottlenecks for attribution. In International Conference

on Learning Representations (ICLR), 2019.

[161] E. Sejdić, I. Djurović, and J. Jiang. Time–frequency feature represen-

tation using energy concentration: An overview of recent advances.

Digital signal processing, 19(1):153–183, 2009.

[162] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and

D. Batra. Grad-CAM: Visual Explanations From Deep Networks via

Gradient-Based Localization. In IEEE International Conference on

Computer Vision (ICCV), pages 618–626, 2017.

[163] J. L. Semmlow and B. Griffel. Biosignal and medical image processing.

CRC press, 2021.

[164] A. Senior, G. Heigold, M. Ranzato, and K. Yang. An empirical study

of learning rates in deep neural networks for speech recognition.

In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6724–6728, 2013.

[165] V. H. Shah. Machine learning techniques for stock prediction. Foun-

dations of Machine Learning, 1(1):6–12, 2007.

https://github.com/tensorflow/lucid
https://github.com/tensorflow/lucid

246

[166] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In IEEE

International Conference on Evolutionary Computation Proceedings,

pages 69–73, 1998.

[167] J. E. Shoup. Phonological aspects of speech recognition. Trends in

speech recognition, pages 125–138, 1980.

[168] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a

black box: Learning important features through propagating activa-

tion differences. arXiv preprint arXiv:1605.01713, 2016.

[169] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important

features through propagating activation differences. In Proceedings

of the International Conference on Machine Learning (ICML), pages

3145–3153. PMLR, 2017.

[170] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556,

2014.

[171] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolu-

tional networks: Visualising image classification models and saliency

maps. arXiv preprint arXiv:1312.6034, 2013.

[172] L. Sixt, M. Granz, and T. Landgraf. When Explanations Lie: Why Many

Modified BP Attributions Fail. In Proceedings of the International

Conference on Machine Learning (ICML), pages 9046–9057, 2020.

[173] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller.

Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014.

[174] F. Stahlberg. Neural machine translation: A review. Journal of Artifi-

cial Intelligence Research, 69:343–418, 2020.

[175] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep

networks. In Proceedings of the International Conference on Machine

Learning (ICML), pages 3319–3328. PMLR, 2017.

[176] L. Sweeney. Discrimination in online ad delivery. arXiv preprint

arXiv:1301.6822, 2013.

247

[177] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, and R. Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[178] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–9, 2015.

[179] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking

the inception architecture for computer vision. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2818–2826, 2016.

[180] H. Tanaka. editdistance, 2013. URL https://github.com/roy-ht/
editdistance.

[181] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,

D. Borth, and L.-J. Li. YFCC100M: The new data in multimedia re-

search. Communications of the ACM, 59(2):64–73, 2016.

[182] E. Thuillier, H. Gamper, and I. J. Tashev. Spatial audio feature discov-

ery with convolutional neural networks. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), pages

6797–6801, 2018.

[183] C. Tomani, D. Cremers, and F. Buettner. Parameterized temperature

scaling for boosting the expressive power in post-hoc uncertainty

calibration. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 555–569. Springer, 2022.

[184] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou,

B. Schuller, and S. Zafeiriou. Adieu features? end-to-end speech

emotion recognition using a deep convolutional recurrent network.

In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5200–5204, 2016.

[185] L. van der Maaten and G. Hinton. Visualizing data using t-SNE.

Journal of Machine Learning Research, 9, 66:2579–2605, 2008.

https://github.com/roy-ht/editdistance
https://github.com/roy-ht/editdistance

248

[186] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in

Neural Information Processing Systems, volume 30, 2017.

[187] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting

and composing robust features with denoising autoencoders. In

Proceedings of the International Conference on Machine Learning

(ICML), pages 1096–1103, 2008.

[188] U. Von Luxburg. A tutorial on spectral clustering. Statistics and

Computing, 17:395–416, 2007.

[189] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and

X. Hu. Score-CAM: Score-weighted visual explanations for convo-

lutional neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) workshops, pages

24–25, 2020.

[190] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and

J. Wilson. The what-if tool: Interactive probing of machine learning

models. IEEE transactions on visualization and computer graphics,

26(1):56–65, 2019.

[191] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv

preprint arXiv:1708.07747, 2017.

[192] M.-S. Yang. A survey of fuzzy clustering. Mathematical and Computer

modelling, 18(11):1–16, 1993.

[193] K. Yao and G. Zweig. Sequence-to-sequence neural net models for

grapheme-to-phoneme conversion. In Conference of the Interna-

tional Speech Communication Association (Interspeech). ISCA, 2015.

[194] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Under-

standing neural networks through deep visualization. arXiv preprint

arXiv:1506.06579, 2015.

[195] D. Yu and L. Deng. Automatic speech recognition, volume 1. Springer,

2016.

249

[196] M. D. Zeiler and R. Fergus. Visualizing and understanding convo-

lutional networks. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 818–833. Springer, 2014.

[197] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning

deep features for discriminative localization. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2921–2929, 2016.

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:
- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
 Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wi dergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als

Magdeburg, den

12.02.2024

Valerie Krug

	Abstract
	Zusammenfassung
	Introduction
	Research Aims
	Structure of the Thesis
	Publications

	Background
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Other Learning Types
	Particle Swarm Optimization

	Deep Learning
	Training
	Evaluation
	Architectures
	Transfer Learning

	Dimensionality Reduction
	Audio Processing
	Speech Annotations
	Automatic Speech Recognition

	Electroencephalography (EEG)

	Related Work
	Terminology
	Inspecting Model Weights
	Inspecting Model Activations
	Feature Visualization
	Saliency Maps
	Analyzing Data Set Representations

	Data and Models
	Data
	MNIST
	Fashion MNIST
	Cifar10
	LibriSpeech
	TIMIT
	FairFace
	Data Overview

	Models
	MNIST and Fashion MNIST Classifiers
	Padded and Shifted MNIST Classifiers
	VGG16
	Wav2Letter-Based Models

	Data and Model Usage Overview

	Neuron Activation Profiles
	Method
	Obtain Activations
	Define Groups
	Group-Averaging
	Averaging with Normalization
	Handling Unaligned Data
	Masking Prediction-Irrelevant Information
	Subgrouping
	Visualization and Similarity Analysis
	Pipeline

	Averaging and Normalization
	Investigated Distance Metrics
	Two-Dimensional Toy Example
	Hidden Layer NAPs

	Aligning Data
	MNIST Variations
	ASR – Qualitative Alignment Evaluation
	ASR – Quantitative Alignment Evaluation
	Aligning Data – Summary

	Improve Efficiency
	Visual Inspection of Approximated NAPs
	Quality and Robustness of Approximated NAPs
	Relation of Class Size and Variance with Subset Size

	Chapter Summary

	Topographic Activation Maps
	Method
	Quantify Activation
	Topographic Map Layout
	Visualization

	Experimental Plan
	Evaluation Measures
	Topographic Map Quality for MLPs
	Topographic Map Quality for CNNs

	Results and Discussion
	Pre-Selecting Layouting Methods
	Representativeness of Quality Measures
	Quantitative Evaluation
	Comparison to Other Visual Quality Measures

	Chapter Summary

	Application
	Scalability
	Architecture – Deep Models
	Architecture – Wide Layers
	Architecture – Large Feature Maps
	Data – Large Groups
	Data – Large Number of Groups

	NAP Analysis of Automatic Speech Recognition Models
	Experiment
	Results

	Error Detection with Topographic Maps
	Toy Examples Design
	Annotation Errors in the Test Data
	Annotation Errors in the Training Data

	Detecting Bias with Topographic Maps
	Experimental Setup
	Results – Sensitive Variables
	Results – Significance
	Diversity of Groups

	Extensions
	Multi-Layer Visualization
	Training Processes
	Visualization Oriented at the Final Layout
	Temporal Resolution
	Adapting the Layout over Training Time

	Relation of Confidence and Activations
	Experimental Setup
	Results
	Discussion

	Downstream Explanations

	Conclusion
	Research Aims
	RA1: Group-Specific Network Responses
	RA2: Summarization through Visualization
	RA3: Applicability to Visually Uninterpretable Data

	Neuroscience Inspiration
	NAPs as an ERP-Like Analysis
	Topographic Activation Maps

	Future Work

	Supplemental Figures
	Alignment Evaluation
	Approximated NAPs
	NAP Approximation Errors
	Input Layer NAPs
	VGG16 Topographic Maps in Different Layers
	Confidence and Activation over Training Time

	Supplemental Results
	Extended Quantitative Topographic Map Evaluation

	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography

