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Abstract

Magnetic Resonance Imaging (MRI) is a non-ionizing modality providing superior soft
tissue contrast and high-resolution cross-sectional images, which is beneficial for image
guidance in minimally invasive interventions. Dynamic MRI is a fast MR imaging technique
used for assessing physiological changes during interventions. Nevertheless, to obtain
high temporal resolution for dynamic MRI, the compromise between spatial resolution
and temporal resolution, known as a spatio-temporal trade-off, is unavoidable. State-of-
the-art fast imaging employs various methods. However, most available methods utilize
iterative computations, making them unsuitable for interventions. Along with the advanced
deep-learning techniques, super-resolution (SR) algorithms are promising for restoring
high-resolution images with a fast inference speed. Moreover, prior knowledge, which refers
to the information available before the current study, such as high-resolution planning
scans or temporal redundancy in dynamic images, could help achieve MR high-resolution
images but are typically neglected.

Therefore, this thesis presents a method to alleviate the trade-off by incorporating prior
knowledge with SR into dynamic MRI reconstruction to generate high spatial and high
temporal resolution with less-than-complete data. The study investigates the incorporation
of prior information into two deep learning based SR frameworks: Fine-tuned SR DynMRI
and DDoS-UNet DynMRI. The Fine-tuned SR DynMRI makes use of a high-resolution
planning scan as prior-knowledge for fine-tuning the patched-based SR reconstruction.
Furthermore, the DDoS-UNet DynMRI adds additional temporal information to the
SR network by employing dual-channel training of static and dynamic abdominal MR
images at different time-points. The performance of both proposed methods was evaluated
with different in-plane undersampled levels. The investigated results show that the Fine-
tuned SR DynMRI approach achieve the average SSIM value of the highest undersampling
(6.25% of the k-space) before and after fine-tuning, which are 0.939±0.008 and 0.957±0.006,
respectively. The DDoS-UNet DynMRI approach shows the ability to reconstruct even
higher undersampling of 4% of the k- space with the average SSIM of 0.951±0.017. Finally,
this thesis demonstrates the utilization of prior knowledge for reconstructing dynamic
MRI using the proposed SR frameworks, which can tackle the spatio-temporal trade-off in
MRI.
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Zusammenfassung

Magnetresonanztomographie (MRT) ist eine nichtionisierende Modalität, die einen über-
legenen Weichteilkontrast und hochauflösende Schnittbilder liefert, was für die Bildführung
bei minimal-invasiven Eingriffen von Vorteil ist. Dynamische MRT ist eine schnelle
MR-Bildgebungstechnik, die zur Beurteilung physiologischer Veränderungen während in-
terventioneller Eingriffe verwendet wird. Um eine hohe zeitliche Auflösung in dynamischen
MRT-Aufnahmen zu erhalten, ist der Zielkonflikt zwischen räumlicher Auflösung und
zeitlicher Auflösung, der als räumlich-zeitlicher Kompromiss bekannt ist, unvermeidlich.
Die moderne schnelle Bildgebung umfasst verschiedene Methoden, von denen die meisten je-
doch iterative Berechnungen verwenden, was sie daher für Interventionen ungeeignet macht.
Zusammen mit fortschrittlichen Deep-Learning-Techniken sind Superauflösungsalgorith-
men (SR) vielversprechend für die Rekonstruktion hochauflösender Bilder mit schneller
Inferenzgeschwindigkeit. Zudem kann Vorwissen wie etwa hochauflösende Planungsscans
oder zeitliche Redundanz in dynamischen Bildern in der Rekonstruktion berücksichtigt
werden.

Ziel diese Dissertation ist, den Zielkonflikt zu mildern, indem Vorwissen zusammen mit SR
in die dynamische MRT-Rekonstruktion integriert wird, um eine hohe räumliche und hohe
zeitliche Auflösung mit unter-abgetasteten Daten zu erzeugen. Die Arbeit untersucht die
Einbeziehung von Vorinformationen in zwei auf Deep Learning basierende SR-Frameworks:
Fine-tuned SR DynMRI und DDoS-UNet DynMRI. Das Fine-tuned SR DynMRI nutzt
einen hochauflösenden Planungsscan als Vorwissen zum Feintuning der Patch-basierten SR-
Rekonstruktion. Darüber hinaus zielt das DDoS-UNet DynMRI darauf ab, die zusätzlichen
zeitlichen Informationen in das SR-Netzwerk einzubeziehen, indem es ein zweikanaliges
Training von statischen und dynamischen Bildern der verschiedenen Zeitpunkte einsetzt.
Die Leistung beider vorgeschlagenen Verfahren wurde mit unterschiedlichen dem Feintuning
bewertet. Die untersuchten Ergebnisse zeigten, dass der Fine-tuned SR DynMRI-Ansatz
den durchschnittlichen SSIM-Wert der höchsten Unterabtastung (6,25% des k-Raums)
vor und nach der Feinabstimmung von 0,939±0,008 bzw. 0,957±0,006 erreichte. Der
DDoS-UNet DynMRI-Ansatz zeigte die Fähigkeit, noch höheres Undersampling von 4%
des k-Raums mit der durchschnittlichen SSIM von 0,951±0,017 zu rekonstruieren. Zusam-
menfassend demonstriert diese Dissertation die Nutzung von Vorwissen zur Rekonstruktion
dynamischer MRT unter Verwendung der vorgeschlagenen SR-Frameworks, welches eine
Erhöhung der räumlichen und zeitlichen Auflösung erlaubt.
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1 Introduction

“I have not failed. I’ve just found 10,000 ways that won’t work.”

– Thomas Alva Edison

Magnetic Resonance Imaging (MRI) is an application of Nuclear Magnetic Resonance
(NMR) which has several clinical applications. Unlike other medical imaging modalities,
MRI has the advantages of multi-contrast imaging, non-ionizing radiation, and being
non-invasive, making it a preferred imaging modality. MR-guided interventions, such
as liver biopsy or radiofrequency ablation (RFA), allow physicians to examine internal
organs with high spatial resolution in real-time or near real-time. In fact, the advance
of live-guided intervention has evolved over the past few decades. The accuracy of its
diagnostic or therapeutic use specifically depends on the image resolution during each
examination, thus, achieving a clear visualization between target lesions and adjacent
tissues is crucial.

The dynamic imaging technique is essential for interventions. It is typically obtained
by acquiring the k-space data (in the frequency domain) and reconstructing a sequence
of images over time, which obey the Nyquist theorem [1]. Acceleration of the imaging
process results in less data being acquired. A trade-off between high spatial resolution and
temporal resolution is the consequence. The commonly used technique to accelerate the
data acquisition of MR images is compressed sensing (CS) [2–4]. CS technique utilizes the
concept of sparsity by using fewer data to reconstruct the fully sampled image. Typically, it
is assumed that the image is sparse in a transform domain; nonetheless, the corresponding
iterative reconstruction is relatively slow and cannot be applied to real-time applications
such as intervention MRI. Parallel imaging (PI) [5, 6] techniques, such as generalized
simultaneous acquisition of spatial harmonics (SMASH) [7], sensitivity encoding (SENSE)
[8], or generalized autocalibrating partial parallel acquisitions (GRAPPA) [9] are also
promising techniques used to speed up image acquisition. PI technique can reduce the
acquisition time by combining additional spatial information from multiple receiver coils.
However, regarding the limitation of devices and accessibility during interventions, PI may
not be suitable for this application.

Deep learning based super-resolution reconstruction has been shown to be a valuable
tool for super-resolution of MRI [10,11], including for dynamic MRI [12,13]. Moreover,
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some literature [14–16] have investigated the use of temporal information incorporation
and reported the possibility to improve the reconstruction quality of dynamic MRI. To
strengthen the quality of super-resolved images, prior-knowledge has been included in
super-resolution methods [17, 18]. Moreover, the advantage of multi-channel learning
allows the neural network to learn more from feature extractions by using multiple types of
data [19]. Harnessing different information in combined training, multi-channel training
has been used across numerous applications, including image recognition [20], speech
recognition [21, 22], and natural language processing [23]. Therefore, the focus of this
thesis is the reconstruction of high spatial and temporal resolution images for sparse or
undersampled (less-than-complete) data tackling the spatio-temporal trade-off in MRI.
The incomplete reconstruction problem is dealt with by the inclusion of prior-knowledge
about the object into the proposed frameworks. The application to abdominal MRI is
presented in this work. The motivations behind the research investigation are described in
section 1.1, the scientific contributions are explained in section 1.2, and the thesis outline
is located in section 1.3.

1.1 Motivation

MR data acquisition is relatively slow in nature. Typically, the k-space data (in the
Fourier domain) is spatially encoded line by line in the readout direction for all phase
coding directions. This process results in a long scan-time and has to be compromised
with image spatial resolution. Thus, the primary motivation of this research is to develop
approaches for alleviating the trade-off between spatial and temporal resolution in dynamic
MRI by incorporating prior-knowledge. The examinations are designed to answer the
following research questions: How can we mitigate this trade-off? How can undersampled
(less-than-complete) data be used or how fast can we speed up the image acquisition? Can
any prior-knowledge be incorporated into this approach? In this work, the potential for
incorporating prior-knowledge into deep learning based super-resolution and its application
in abdominal dynamic MRI is explored. With the fast inference speed of deep learning based
super-resolution predictions, the proposed approaches are hypothesized to be extended
for application in real-time or near real-time interventions. Prior-knowledge was derived
from two different sources: The Fine-tuned SR DynMRI (which makes use of a
high-resolution planning scan) and the DDoS-UNet DynMRI (which harnesses the
dual static high-resolution image and the low-resolution dynamic scan) approaches. The
contributions of these approaches are summarized in subsections 1.2, and the details of
each method are discussed in chapter 3 and 4 accordingly.
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1.2 Scientific Contributions

The contributions of this research to address the spatio-temporal trade-off are reducing
the required scan-time (highly undersampled data), while maximizing the spatial and
temporal resolution. The two approaches are as follows:

Fine-tuned SR DynMRI: Improved Deep Learning Based Super-resolution
Reconstruction of Dynamic MRI by Fine-tuning with a Subject-specific Scan

This approach tackles the spatio-temporal trade-off of dynamic MRI by fine-tuning the
model parameters with a static high-resolution scan as prior-knowledge. This framework
could enhance the spatial resolution of super-resolution reconstruction (from main training),
while reducing the required scan-time per volume efficiently. The key contributions of this
work are outlined below:

• The proposed Fine-tuned SR DynMRI framework shows that the super-resolution
reconstruction of the dynamic MRI could be improved by fine-tuning with a subject-
specific scan for only one epoch. Moreover, the proposed method demonstrates
promising results, even when reconstructing from the 6.25% of the k-space center.

• A 3D modified U-Net combined with the perceptual loss was utilized, with the help
of a perceptual loss network pre-trained on MRI, in order to promote realistic results
close to human visual perception.

• Two approaches deliver promising results for overcoming the lack of a large training
dataset in dynamic MRI. The first approach utilizes a pre-trained network on a
benchmark dataset and follows by fine-tuning using a subject-specific planning scan.
The second approach uses a patch-based super-resolution technique to increase the
size of training data by splitting volumetric data into smaller patches.

DDoS-UNet DynMRI: Improved Deep Learning Based Super-resolution
Reconstruction of Dynamic MRI by Incorporating Temporal Information in a
Dynamic Dual-channel UNet

This method presents the incorporation of both spatial information from a high-resolution
planning scan, and also temporal redundancy of dynamic MRI as prior-knowledge.
The DDoS-UNet DynMRI approach extends the single-image super-resolution by super-
resolving the outputs recursively, which does not reconstruct each time-point separately.
The main contributions of this study are summarized as follows:

• The proposed DDoS-UNet DynMRI framework makes use of dual-channel (static
and dynamic) inputs with deep learning based super-resolution, which can mitigate
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the spatio-temporal issue.

• The reconstructed results of DDoS-UNet DynMRI framework, even super-resolving
from highly undersampling 4% of the k-space center, indicate the high similarity to
the ground-truth qualitatively and quantitatively.

• The incorporation of temporal information could improve the quality of reconstructed
images better than methods that include only spatial information. Moreover, the
temporal information inherent in dynamic images has the benefit of overcoming the
accumulation error caused by continuously reconstructing the super-resolved images.

1.3 Thesis Outline

The thesis is divided into the following chapters: chapter 1 - introduction; chapter 2 -
scientific background of MRI, the neural network, dynamic MRI and reviews of current
technological state of dynamic MRI; chapter 3 and 4 are the contribution works based
on the author’s publications; and chapter 5 provides a summary of the thesis and
recommendations for future research. Figure 1.1 provides an outline of the thesis.

In chapter 2, section 2.1 describes nuclear magnetic resonance (NMR) phenomenon;
MR image contrast; MR hardware components; MR image production (including data
acquisition techniques; k-space; and image reconstruction); along with an overview of MR
image quality. Section 2.2 outlines the concept of neural networks, including the neural
network terminologies, basic structures of convolutional neural networks (CNNs), and
applications of deep learning. In section 2.3, an overview of dynamic MRI in interventional
radiology, common imaging sequences in abdominal imaging, the explanation of the spatio-
temporal trade-off, and state-of-the-art dynamic MRI reconstruction are presented in
this chapter. Chapter 3 and chapter 4 include the contribution frameworks using
prior-knowledge. Both sections include a synopsis, background, methodology, results,
discussion, and conclusions. Lastly, a summary and outlook of the key contributions are
summarized in chapter 5.
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Figure 1.1: An outline of the thesis.
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2 Background

“To change the world, we need to combine Ancient wisdom with new technologies.”

– Paulo Coelho

This chapter explains the background regarding the principle of Magnetic Resonance
Imaging (MRI), neural networks, dynamic MRI and its state-of-the-art.

2.1 Principles of Magnetic Resonance Imaging

MRI was developed in the 1970s, and applications of MRI have been used in clinical
practice for around 40 years. MR images have advantages over other imaging modalities
because they are non-invasive, provide high-quality cross-sectional images, and portray
superb soft tissue contrast without ionizing radiation. The cross-sectional image is also
called a tomographic image, a term derived from the Greek word "Tomos", which means a
cut [24]. In radiology, anatomical planes describing the orientation of the cross-section
are commonly referred to as transverse or axial (dividing upper and lower parts), coronal
(spitting front and back), and sagittal (separating left and right) planes, as depicted in
figure 2.1. When it comes to MRI, internal structures are reconstructed in different shades
of gray based on the signal intensities of body tissue or fluid such as water and fat [25].
Figure 2.2 compares cross-sectional images in the transverse plane of human abdominal
dissection and a MRI. The grayscale of MR images can be represented differently depending
on the MR sequences.

2.1.1 Proton Nuclei

Nuclear magnetic resonance (NMR) was early defined by Bloch and later by Purcell and
Pound [25]. NMR imaging can be called imaging of protons based on the interaction
between hydrogen nuclei in the body and the strong magnetic field of the MR scanner.
The human body is composed of approximately 70 percent of water, which means we have
abundant hydrogen nuclei in the body. The hydrogen atom (1H) has only one proton in
each atom. A single proton can produce a small NMR signal and generally aligns randomly
with the other nuclei in the normal state. The net magnetization in this state is therefore
equal to zero.
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Figure 2.1: A graphic of anatomical planes: (a) transverse, (b) coronal and (c)sagittal
planes.

Figure 2.2: A cross-section abdominal dissection [26] and a MRI; T1-weighted image.
For a MRI, different internal organs are illustrated in different shades of gray.
As can be seen in the image, liver is brighter than kidneys because of the
higher signal intensity. Abdominal fat is the most brightest and air is the most
darkest in the image.
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When the body tissue is exposed to an external magnetic field B0 along the z-axis, the
net magnetization of protons is no longer zero. The proton energy levels will be split into
high and low energy states. This interaction is called the Zeeman effect. The protons will
be aligned or anti-aligned to the external magnetic field corresponding to its energy. The
protons are aligned to B0 in the lower energy state and align the opposite direction of B0

in the lower energy state and anti-aligned in the opposite direction of B0 in the higher
energy state. Figure 2.3 shows the alignment of proton nuclei in the absence of an external
magnetic field B0, in the presence of B0, and the energy differences according to Zeeman
effect in the B0 field. The energy differences between the higher and lower energy states
are given by equation 2.1.

Figure 2.3: Graphic description of Proton alignment. (a) Normal state (b) With a presence
of external magnetic field B0, and (c) Energy differences (Zeeman diagram)
[27].

∆E = γ · ℏ · B0 = h · v, (2.1)

where v is the frequency of the magnetic field and ℏ is the Planck constant. The energy
difference is in proportional to the magnetic field B0.

2.1.2 Resonance and Relaxation

Since most protons align parallel to static magnetic field B0, the net magnetization
M (macroscopic) has the same direction as B0. Each proton has intrinsic magnetic
momentum, which behaves like a tiny bar magnet. A proton will spin or process around
the B0 axis at a specific rate according to the different tissues. This precession frequency
is known as Larmor frequency (ω0) [28] which can be formulated in equation 2.2.
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ω0 = γB0, (2.2)

where B0 is the static magnetic field and γ is called gyromagnetic ratio, which is propor-
tional to magnetic field strength (γ = 42.58 MHz/T - close to radio frequency range).As
typical magnetic fields used in the clinical range from 1.5T to 3T, the Larmor frequencies
would approximately be 63.87 MHz and 127.74 MHz, respectively. The resonance is an
important phenomenon in the MR Imaging process. Only the energy at the specific
frequency (0) can stimulate (excitation) the protons to spin up (align the B0) and down
(anti-align the B0). The protons then absorb the energy and re-transmit (relaxation) after
some time. The frequency for the energy absorption interaction is known as resonant
frequency, or in NMR phenomena, it is Larmor frequency.

Normally, the net magnetization of proton spins in the static magnetic field is at equilibrium
and cannot be detected. Therefore, the radio frequency (RF) pulse, or B1, is applied
to excite the protons perpendicular to B0 (z-axis) to image these protons. In this way,
the net magnetization of the proton flips to the x-y axis (in-phase). The protons start
precessing around the z-axis, absorbing the energy, and then moving to a higher energy
state. The applied RF pulse is known as RF excitation or 90◦ pulse.

When switching off the RF field, the protons will spin to the original direction of B0 to
the equilibrium state (dephase). The MR signal is then produced and can be detected
using the receiver coils. Owning to the analog nature of the MR signal, it is necessary to
use an analog-to-digital converter (ADC) to digitize the signal to form the MR image.

The dephasing or decaying of MR signal occurs because of the interaction among protons
and the protons with the environment. This phenomenon was introduced by Felix Bloch in
1946 [29]. Bloch explained about the NMR induction phenomena that the decays of NMR
signal arise from the interactions among nuclei and the nuclei with their environment. The
process of net magnetization M returning to the equilibrium is referred to as relaxation,
consisting of longitudinal Mz and transverse components Mxy.

The longitudinal magnetization is caused by the interaction between proton spins and the
environment. The recovery time is referred to as spin-lattice relaxation time T1, which
can be explained by [30]:

Mz(τ) = M0(1 − e(−τ/T 1)), (2.3)

where τ is the time after the 90◦ pulse and T1 means the time required time for Mz to
recover from 0 to about 63% of their original value M0. Figure 2.4 illustrates proton spins
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in the rotating frame and the recovery graph of longitudinal magnetization during the T1
relaxation process.

The transverse magnetization resulted from the interaction between each proton spin. The
decay time is referred to as spin-spin relaxation time T2. Proton spins in the rotating
frame and the decay curve of transverse magnetization during the T2 relaxation process
are shown in figure 2.5. In reality, transverse magnetization decays faster than expected
due to magnetic field inhomogeneity [31]. These inhomogeneities may result from intrinsic
defects in the magnet itself or susceptibility-induced field distortions produced by the
tissue or other materials placed within the field. The actual MR signal is also called the
free-induction-decay (FID) signal, where the actual decay time T2∗ is expressed by:

1/T2∗ = 1/T2 + 1/T2M + 1/T2MS, (2.4)

Which T2M denotes the relaxation time due to the magnetic field inhomogeneity and
T2MS indicates the relaxation time due to the magnetic susceptibility. The ideal T2 is
considered a natural T2, and T2∗ is always shorter than or equal to T2. Thus, the the
transverse magnetization according to time constant T2∗ can be described by:

Mxy(t) = Mxy(0)e(−t/T 2∗), (2.5)

where Mxy(0) is the transverse magnetization directly after the 90 pulse and T2 represents
the required time for Mxy to decay to about 37% of their original maximum value M0.

For different body tissues, the recovery and decay times are different. For example, a
proton of fat recovers to an equilibrium state faster than cerebrospinal fluid (CSF), the
fluid surrounding the brain and spinal cord; thus, the fat appears to be brighter than CSF
in the T1w image. This characterization of different tissues allows the manipulation of
the MR signal for representing the MR contrasts, which will be explained in section 2.1.3.

2.1.3 MR Image contrast: Tissue Characterization

One of the advantages of MRI is the ability to manipulate the signal from the characteristics
of the tissues by adjusting the specific imaging parameters. There are three main types
of contrast: T1-weighted, T2-weighted and proton density. The key to generating the
different contrasts depends on the time between detecting the proton signals (echo) after
90◦ pulse, so-called echo time (TE); and the time between the successive FR pulses
(repetition time; TR). TheThe same soft tissue is represented in different shades of gray
in the different MRI contrasts, as seen in figure 2.6. In clinical routine, it is common to
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Figure 2.4: Graphical abstract of T1 relaxation. The figure portrays the T1 magnetization
recovery after 90◦ pulse applying at the equilibrium. The magnetization Mz is
initially dropped to zero and is then recovered to the equilibrium exponentially
over time. The time constant of magnetization recovery to 63% of the original
value M0 denotes as T1.

Figure 2.5: Graphical abstract of T2 relaxation time. The figure shows the FID signal
decaying after 90◦ pulse applying at the equilibrium. Then, the magnetization
decays to 37% of the original value M0 and continue decaying over time. The
time constant of magnetization decaying to 37%M0 denotes as T2. T2∗ time
is shorter than T2 time due to the effect of magnetic field inhomogeneity.
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have mixed MRI contrast.

Figure 2.6: An example of MR image contrasts. From left to right: T1w, T2w and PD
images or brain MRIs [32].

T1-weighting

A T1-weighted (T1w) image provides excellent tissue contrast for differentiating various
lesions and has been primarily used for diverse types of examinations. T1w image is
emphasized by short TR and short TE. Figure 2.7 shows various T1 relaxation times of
different tissues.

Figure 2.7: T1 relaxation time of the different tissue.

T2-weighting

The second basic contrast is called a T2-weighted (T2w) image, which is based on transverse
magnetization decay. A T2w image, in comparison to T1w, is emphasized by long TR

and long TE. Figure 2.8 depicts the various T2 relaxation times of different tissues.
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Figure 2.8: T2 relaxation time of the different tissue.

Proton density

A proton density image (PD) refers to the concentration or density of protons in the
tissue. The PD-weighted (PDw) image is produced by minimizing the effect of T1 and
T2, where it has long TR and short TE. There is a strong signal in PDw over T1w and
T2w, representing a strong appearance of soft tissue.

2.1.4 MR Hardware Components

The hardware components of an MRI scanner consist of a computer processor system, a
magnetic system, a gradient system, a radio frequency system, and a console for acquiring
the signal and adjusting the scan parameters. Figure 2.9 illustrates the outside and inside
of a MR scanner.

Figure 2.9: An illustration of the main parts of MR hardware components. Left: MRI
machine outside, and right: inside components of system

14



2 Background

To prevent unnecessary frequency interfering with the imaging process, the MR room is
designed to block external signals with conductive material (known as a Faraday cage).
The three main parts of magnetic fields are the static magnetic field B0, a gradient system;
Gx, Gy, Gz, and a radio frequency system.

Static Magnetic Field: ≈ (T )

The static magnetic field B0 points in the z-direction (longitudinal plane) as a reference
for the direction of tissue magnetization. The net magnetization and resonance frequency
depend on the B0 field strength. The higher field strengths enable the higher signal-to-
noise ratio (SNR). The 1.5T to 3T MRI scans are most widely available, while MRIs
reaching up toe 7T are for clinical examinations [33].

Gradient System (Gx, Gy, Gz): ≈ mTm−1

The gradient system consists of Gx, Gy, and Gz coils for producing gradients in the three
orthogonal directions: x, y, and z. The gradient coils are used to spatially localize the
object’s signal.

Radio Frequency System: ≈ µT

The radio frequency (RF) system consists of transmitter, coil, and receiver. The transmitter
is used to produce the desired RF pulse, or B1, (in terms of frequencies, bandwidths,
amplitudes, and phases) at the Larmor frequency. This B1 is generated from the coil and
is responsible for the excitation of proton nuclei. The RF coil is also used for receiving the
produced MR signal.

2.1.5 Data Acquisition Techniques, k-space, and Image Reconstruction

The production of MRI is achieved by data acquisition and image reconstruction. The
data acquisition commences by acquiring the proton signal intensity of the object. To
spatially localize the signal, slice selection is the first step, followed by frequency encoding
and phase encoding steps. The raw data matrix obtained from the MR scanner is known
as k-space, which can be reconstructed to image space using Fourier transform. Figure
2.10 summarizes the main two steps of MR image production: data acquisition and image
reconstruction through the k-space.
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Figure 2.10: The production of MRI includes the step of image acquisition and image
reconstruction through k-space.

2.1.6 Data Acquisition Technique

To acquire the data of the entire volume, the MR scanner needs to acquire many slices by
looping multiple iterations of pulse sequences. Data acquisition techniques of these loops
are categorized into 2D and 3D-volume acquisitions. During 2D-multislice acquisition
technique, the data is acquired line by line ftor each slice and continuously acquired for
the entire tissue volume. Thus, the total scan time is relevant to the number of acquired
line data (NAQ), repetition time ), and the number of phase encoding steps (NP E). Each
phase encoding step acquires one echo. The total scan time is [30]:

Scan time2D Multislice = NAQ × TR × NP E. (2.6)

For 3D volume acquisition, it is advantageous to have small voxels with thin and continuous
slices, which is good for vascular imaging applications. Although 3D imaging provides
higher SNR than multi-slice, the scan time may take longer. Basically, 3D volume
acquisition technique is a double phase encoding technique, where the second phase
encoding gradient is applied in the slice selection direction to divide the volume into
individual slices. So, the number of divided partitions (NP ART ) affects the number of slices
and scan time. The total scan time is given as:

Scan time3D volume = NAQ × TR × NP E × NP ART . (2.7)

2.1.7 k-space

The concept of k-space was introduced in 1983 [34]. The letter "k", originated in honor
of Heinrich Kayser, represented a wavenumber in physics [35]. For MRI, k-space data is
simply described as the array of data in the frequency domain. The k-space data obtained
from the MR signal is stored as complex data with real and imaginary components (see
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figure 2.11). The MR signal can also be represented as magnitude (Mag) and phase (Φ)
alternatively. For clinical routine, magnitude images are generally used for diagnosis, while
phase-images are used only for particular exams such as a CSF flow study.

Figure 2.11: An illustration of each k-space data as a complex number in real and imaginary
planes or magnitude and phase components as an alternative. Note that
Mag =

√
Re2 + Im2 and Φ = tan−1[Im/Re].

The traditional method of MR image acquisition is performed by collecting k-space data
line by line in a Cartesian grid. The k-space data is treated as a kx and ky grid of
data points, in which each kx refers to the data in frequency (readout) direction and ky

represents to the data in phase encoding direction. The transformation of the data from
the frequency domain to the image domain can be performed by Fourier transform (FT).
Therefore, the MR image is actually a frequency map of proton signal obtained from a
specific location of the tissue. And vice versa, the image data can be mapped into k-space
data using inverse Fourier transform.

In addition, each point of the k-space data does not map directly to the point in image
data; however, it is contributed to a specific spatial frequency. The central part of the
k-space contains a strong signal and low frequency, giving contrast information and general
shapes of the object, whereas the outer part contains high spatial frequency providing
edge information and contours of the object. Figure 2.12 illustrates the k-space data and
the corresponding reconstructed images for collecting different parts of the k-space. It can
be observed in figure 2.12(b) that the reconstructed image has the general information
about contrast but loses the details when collecting only the k-space center.

2.1.8 Image Reconstruction

Given the raw data matrix as a function of time S(t), the MR signal can be described as:
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Figure 2.12: k-space and the corresponding reconstructed images. (a) Fully-sampled k-
space, (b) Only low spatial frequency of the k-space data is acquired, as
a results, the reconstructed image has contrast information but no details,
and (c) Only high spatial frequency of the k-space data is acquired, the
reconstructed image depicts only the edge of anatomical structures [25].

S(t) ∝
∫ ∫

M(r)e−2πik(t)·r dr, (2.8)

denoted that S(t) is the raw data at the particular time t, M(r) is the net magnetization
at the position r, and e−2πik(t)·r is the Fourier basis. It can be seen that the MR signal
equation is the Fourier transform (FT ) of the spin density of the object. For a given
k-space data point k(kx, ky), equation 2.8 can be written for 2D imaging as:

S(kx, ky) ∝
∫

x

∫
y

ρ(x, y)e−2πi(kxx+kyy) dx dy

∝ FT{ρ(x, y)},
(2.9)

where S(kx, ky) is the MR signal at k(kx, ky), ρ(x, y) is the spin density composed from
M0 and Mxy of the object at the position kx and ky, e−2πi(kxx+kyy) is the Fourier basis,
and FT{ρ(x, y)} is the Fourier operation of the object signal. From 2D extended to 3D
imaging, the k-space data is encoded step-wise for each combination of kx, ky, and kz

which can be modeled as:
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S(kx, ky, kz) ∝
∫

x

∫
y

∫
z

ρ(x, y, z)e−2πi(kxx+kyy+kzz) dx dy dz

∝ FT{ρ(x, y, z)}.
(2.10)

Therefore, the proton density of the object can be reconstructed in the reverse direction
by performing the inverse Fourier transform FT −1 on the detected signal.

FT −1[S(kx, ky, kz)] ∝ ρ(x, y, z). (2.11)

2.1.9 Spatial Encoding and Gradient Echo Pulse Sequence

To localize and encode the spatial information of the object, the three main mechanisms
are processed, namely slice selection, phase encoding, and frequency encoding. These
mechanisms can be defined to manipulate the FID or MR signal using a pulse sequence.
A pulse sequence consisting of RF pulse and gradients is repeated many times during the
scan. The basic pulse sequence, namely gradient echo or gradient-recalled echo (GRE), is
explained briefly in this section. A GRE-based pulse sequence such as spoiled gradient
echo is commonly employed for fast imaging as the low flip angle of RF pulse allows the
reduction of repetition time (TR). The steps of GRE technique are shown in figure 2.13
and can be summarized as follow:

1. The RF pulse with the flip angle α excites a selected slice.

2. Phase encoding with opposite polarity is performed.

3. Frequency (readout) gradient recalls the echo. The time between RF pulse and echo
is called echo time (TE).

4. The gradient is spoiled or de-phased by the remain transverse magnetization.

5. The next RF pulse is repeated at the interval time of repetition time (TR: time
between the sequential excitation pulses to a given slice).

2.1.10 Image Quality Overview

Since this thesis is relevant to the trade-off between spatial and temporal resolution, the
overview of image quality, including the signal-to-noise ratio (SNR), trade-off, and spatial
and temporal resolution, is given in this subsection.
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Figure 2.13: A diagram of gradient echo pulse sequence.

SNR and the trade-off

The image quality of MRI can be influenced by several factors such as image resolution,
contrast-to-noise ratio (CNR), artifacts, and signal-to-noise ratio (SNR). The SNR is an
essential parameter for MRI. It corresponds to the level of the signal and presented noise,
and there are many factors that can contribute to the SNR level including magnetic field
strength, field inhomogeneity, receive coil sensitivity, voxel size or tissue characteristic, and
the selected pulse sequences. The desired MR image should typically have an adequate
spatial resolution, an acceptable signal-difference-to-noise ratio, and a reasonable scan
time [30]. These parameters are compromised by one another, which is called a trade-off
in MRI.

An optimization parameter is varied in different areas of examination. For instance, when
an abdominal MRI is done using a breath-hold technique, a short scan time is preferable
to reduce motion artifacts even though spatial resolution might be reduced. For dynamic
imaging, temporal resolution is significant and needs to be optimized with spatial resolution.
Inadequate image resolution might lead to inaccurate diagnosis of small lesions. Figure
2.14 shows an example of good and poor MR image quality.
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Figure 2.14: An example of good and poor MR image quality. A good quality of MRI is
in the acceptable range which has a good SNR. In contrast, a poor quality
of MRI as a result of low basic resolution (blurry image) or too high basic
resolution (grainy image).

Spatial and temporal resolution

Image spatial resolution in general refers to the ability to differentiate between two adjacent
objects, which can be estimated in several ways such as the number of dots, lines, or pixels.
Spatial resolution in MRI is determined by pixel size in a specific field of view [36]. Pixel
size can be calculated as follows:

Pixel size = Field of view (FOV) ÷ Matrix size, (2.12)

e.g., for a given matrix size of 256x256mm in FOV of 256mm, the pixel size is equal to
1mm. A high number of pixels results in a high spatial resolution of the image. As MRI is
often obtained as a three-dimension image, so, the image resolution is represented as voxel
size (mm/pixel) from pixel size and the slice thickness.

For any MRI examination, temporal resolution is also a parameter that is commonly taken
into consideration with spatial resolution. Temporal resolution refers to how often the set
of images is acquired in a specific time frame, which can be determined using this formula
[37]:

Temporal resolution (cine) = NVS × TR, (2.13)

where NVS denotes the number of views per segment and TR is the minimum TR from
pulse sequence.
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2.2 Principles of Neural Networks

2.2.1 Modeling the Artificial Neurons

The principle of modeling an artificial neural unit from a biological neuron is meant for a
better understanding of a conceptual model, which is derived from a simplified function of
known physical properties, so as to build a computational model, which is more accurate
in terms of mathematics [38].

In fact, a neuron can be simply considered as a small unit of computation. The first
formal approaches of computing models studied during the 1930s to 1940s, known as
the five models of computations, comprise the mathematical model [39–42], the logical
operation model [43], the computer model from Z1 to ENIAC von Neumann architecture
[44], cellular automata [45], and the biological model [46, 47]. The last approach was
the first conception of artificial neurons, proposed in 1943 based on the McCulloch and
Pitts model. Since then, the amount of research dealing with neural networks has been
increasing dramatically, opening up a diverse range of research questions.

The scientific questions inspired by human neurons are relevant to synaptic, or connection,
efficiency and postsynaptic cell properties regarding anatomy and physiology. A neuron,
or nerve cell, is a complex system that can be more complicated than computers. The
three main classes of neurons based on their functions can be categorized into neurons,
motor neurons, and interneurons [48]. AAlthough each of those types of neurons function
differently in the body, the general structures are similar. Each neuron consists of multi
branches of dendrites, a cell body (soma), and only one axon. As the nervous system is a
huge network, several neurons are connected via synapses to conduct nerve impulses. This
is where information, electrical and chemical, is transmitted.

To understand how artificial neurons work, a simplified explanation of a biological neuron
(2.15 - upper) compared with an artificial neuron (2.15 - lower) is listed in the following
points:

• Dendrites - Input of the network

• A cell body (soma) - Network node

• An axon - Output of the network

• Synapses - Interconnections with weights
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Figure 2.15: An illustration of physical structures of neurons. Upper: Biological neuron
and lower: Artificial neuron.

2.2.2 A Perceptron

A single layer of artificial neuron is called a perceptron. It is comprised of inputs (x1, ..., xn),
weights (w1, ..., wn) and bias b, a net summation (∑n

i=1), and an activation function (ϕ).
The learning process of the neural networks is associated with synapses that are connected
to the cell body. It is operated by adjusting weights at these contact points. These
weighted inputs are then accumulated and passed through the activation function. The
net inputs can be calculated as:

yin = ϕ(x1 · w1 + x2 · w2 + ... + xn · wn) + b

= ϕ(
n∑

i=1
xi · wn + b)

(2.14)

To minimize the error function c, the obtained output (ŷ) is compared with the actual
value (y) as described in equation 2.15.

c = 1/2(ŷ − y)2 (2.15)
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2.2.3 Multi-layer Perceptrons

Multi-layer perceptrons (MLPs) or feed-forward neural networks are a stack of perceptrons
that have multiple hidden layers. portrays a diagram of MLPs. Each neuron from the
input layers goes into hidden layers to make decisions for the output layers. These neural
layers are connected to perform forward and backward operations (backpropagation).

Figure 2.16: Multi-layer Perceptrons.

The learning process of a neural network can be defined into two main processes: forward
and backpropagation. The first step in forward propagation is initializing parameters
(weights and biases) randomly and feeding input data into the network. Then, the predicted
output will be compared with the expected value to calculate the error or loss. The next
step is to process the backpropagation and update the parameters based on the loss with
the help of the gradient descent algorithm. These steps will then be iterated until the loss
is minimized and good predictions are achieved. The explanations of important terms for
each step will be clarified in the following subsections.

2.2.4 Forward Propagation

Forward propagation, or forward pass, is the process of propagating the information from
the input to the output layer. These neurons are connected to the next layers through
weights, which are the numerical values assigning their importance to the inputs. These
weights are initialized randomly and multiplied to the inputs, then summed up and sent
as inputs to the next adjacent layers in the hidden layers. The weighted summation is
passed through an activation function which determines the contribution of each neuron
to the next layers. The obtained output is simply a probability from 0 to 1.
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2.2.5 Backpropagation

Backpropagation, or backward propagation, is a method to compute the gradient of the
loss, which corresponds to their weights, and propagate the information in the opposite
direction of forward propagation. The term gradient is the first derivative of a function
at a given point. Backpropagation starts by calculating the loss, then the weights are
adjusted in the reverse direction with the optimizer corresponding to the measured loss.
The reason why the neural network can learn by itself is that the backpropagation enables
the minimum of the loss function and properly weighs every iteration of the learning
process.

2.2.6 Loss Function

The solution to the learning process is to iterate all steps involving forward propagation
and backpropagation until the loss, or error, of the objective function is minimized [49]. To
estimate the error of the actual output and prediction, several lost functions are available.
For example, mean square error (MSE or L1) is commonly employed as a lost function by
summation of squaring the error before averaging it.

2.2.7 Gradient Descent

Gradient Descent is a mathematical algorithm for minimizing the error function. The
method of gradient descent is a more realistic error function that can tackle the issue of
not converting to the global minimum [49]. The graphical illustration of the gradient
descent algorithms is shown in figure 2.17. The equation of minimization or maximization
of a function Fx can be defined as:

x∗ = argminF (x) (2.16)

2.2.8 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an extension of the gradient descent optimization
algorithm used for overcoming the local minima error, as illustrated in figure 2.18. SGD
estimates the gradient randomly by using a small set of samples. As this approach
approximates the data after each example of the training, it is faster than algorithms that
need to load the whole data into the memory.
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Figure 2.17: A graphical representation of how gradient descent works [49].

Figure 2.18: An illustration of stochastic gradient descent with global and local minima
errors.
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2.2.9 Convolutional Neural Networks

In neuroscience, there are studies investigating the response of the human brain to
perceptual ambiguity from ambiguous figures [50–52]. The research results showed that
the interpretation of the brain depends on the a certain feature. The neurons in human
nervous system are only stimulated in the receptive field in visual system. The ambiguous
figure, such as figure 2.19, can be interpreted in multiple ways with respect to the region
of the visual field, which in this case it can be defined as both rabbit and duck.

Figure 2.19: The original duck-and-rabbit illusion from Fliegende Blätter 1982, captioned
"Welche Thiere gleichen einander am meisten?" [53]

Similar to how a human classifies an object, the process of convolutional neural networks
(Convolutional Neural Networkss (CNNss)) data responds to its receptive field or so-called
feature maps. CNNss is nothing but a class of Artificial Neural Networkss (ANNs) where
each unit in each layer is structured to a grid-like topology called feature maps [49].
Given an example of a classic classification problem using neural networks, the feature
representations can be ears, mouth or tail (see figure 2.20) that use to identify whether
the image is a cat or not.

[!htbp]

CNNs widely utilized for the applications such as image classification, hand written
text recognition and natural language processing. This class of neural networks employs
convolution as a replacement for matrix multiplication in at least one of their layers. The
convolution is a special type of linear operation that can be formulated as:
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Figure 2.20: A simple example of feature representations of a cat.

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t − τ)dτ (2.17)

Whereby the input g is convolved with a kernel f . The convolutional function is a
combination of two functions where each one can modify the other. The convolutional
neural network was introduced by Lecun [53] in 1998. The architecture of CNNs generally
comprises of two parts: feature detection, including convolutional layers and pooling, and
classification layers involving flattening and full connection steps, see figure ??.

Figure 2.21: An example of CNNs [54]. The CNN architecture is built with several neural
network layers, feature learning, and classification parts.

2.2.10 Feature Detection

This part is the main building block of the CNNs, performing convolution and pooling
operations. The convolution is calculated on the input by a dot product between the filter
(or kernel) and the receptive field (a region of patches in the input). Figure 2.22 displays
an example of a simple 2D convolution. As one can see in the figure, the input is initially
divided into smaller patches. Then a filter or kernel sliding convolves around each patch
one by one until the whole input is complete. The results of this convolution are called
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activation maps or feature maps.

Figure 2.22: An example of a 2D convolution operation [49].

An activation function is then applied to the convolution output. The activation function
serves as a non-linearity introduction enabling the model to learn more complex repre-
sentations in the data. The most frequently used activation functions are Sigmoid, Tanh,
Softmax, and Rectified Linear Unit (ReLU).

Stride is the hyperparameter to determine the step the convolution filter moves from one
to another. The typical size of stride is one. Specifying the proper stride size allows
the CNNs to learn to capture the important features of the input. However, increasing
the stride size results in patch overlapping which in turn increases the computational
complexity.

Furthermore, after convolving the input, the dimension of the output will be smaller than
the input and the convolution operation could lead to the loss of information at the image’s
corner. To prevent this, padding is an essential process to consider. Padding in CNNs is
simply the process of adding the zero values to the outer part of the input so that the
activation map will not shrink.

The last step of feature detection is the pooling function. Normally, a pooling layer is added
in between each convolution layer. The pooling layer is used for consolidating the feature
extracted by the filters, to reduce the size of feature representations and computations
before generating the output. The well-known pooling function is called maximum pooling,
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or max pooling, which considers the maximum value in each feature map.

2.2.11 Classification

The components of classification combine flattening and full connection functions as the
last steps in CNNs. After finishing the earlier steps, multiple pooled feature map are
produced. Then, flattening is employed to convert the high dimensional pooled feature
maps (2D or 3D) into a one-dimensional vector, as can be seen in figure ??. In this vector
of input, the features or attributes were extracted and encoded which make it able to
classify the tasks.

Figure 2.23: Flattening step.

Following flattening, a long vector of input data will be passed through the full connection
step for further processing. Basically, there are at least three layers in the full connection -
input, fully-connected and output layers. At the end, the prediction from convolutional
neural networks will be given. Figure 2.24 shows an exampled of cat or dog classification
with an input image. The given image was predicted to be a dog and cat classes with
probability of 0.95 and 0.05 respectively, based on the feature information such as ears or
nose detected from the image.

2.2.12 Deep Learning and Applications

Deep learning (DL) was introduced by [55] through deep belief networks for fast learning
algorithm in 2006. DL model is derived from ANN, comprising multiple layers of non-linear
information for extracting high levels of features [56]. Basically, deep learning is a form of
machine learning, which has turn into a sub-field of artificial intelligence (see the divisions
illustration in figure 2.25). Machine learning is more specific to a particular domain as
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Figure 2.24: An example of cat or dog classification task after full connection layer.

it requires complex features defined by humans, whereas deep learning involves feature
representations directly from the data, making it flexible for adapting to different domains.

Figure 2.25: The divisions of artificial intelligence, machine learning and deep learning.

Deep learning is not a new concept but has a long history since the 1940s. Due to the
development of hardware, algorithmic advances, and increasing datasets, deep learning
has gained extreme popularity after the 2010s and has been applied to a variety of fields,
from industry to research (such as computer vision [57–60], national language processing
[61–65], bioinformatics [66,67], and medical imaging [10,68–71]).

Particularly in the medical imaging research, deep learning has become the driven-
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mainstream approach for clinical support owning to the increasing of the data in this field
and the advantage of high accelerated reconstruction speed. Applications of deep learning
have been broadly utilized in various types of medical images. For instance, a hybrid
deep neural network was developed to classify the immunofluorescence image of Human
Epithelial-2 (HEp-2) cells for autoimmune disease detection [72]. Based on chest x-ray
images, the classification and interpretability of the recent global pandemic COVID-19
(SAR-CoV-2) [73] were also investigated using deep learning methods [69,74,75]. For CT
images, deep neural networks was used for automatic segmentation for radiation therapy
[68,76]. Furthermore, deep learning has also been widely applied to MRI reconstruction
with the high performance achievement [10–12,77,78].

2.2.13 Types of Learning Paradigms

Traditional deep learning based method solves the problem by learning featured transforms
from the training data (labeled data) to predict the transform for the test data (unseen
data). This is known as supervised learning with respect to influence of training labeled
data to the test set in its learning paradigm [79, 80]. The other learning paradigms
to extract featured transforms without the help of labeled data (unsupervised learning
[81–83]) or combining data between labeled and unlabeled data (semi-supervised learning
[84,85]) can address the issue of insufficient labeled data. However, the non-supervised
learning paradigms cannot assure the successful of any data distributions [86] and this
learning paradigm could lead to deterioration the model performance [87]. Thus, to
cope with unavailable or insufficient labeled data problem with supervised learning, the
techniques such as transfer learning and data augmentation have been proven to be useful
for this scenarios []. The applications of both transfer learning and data augmentation
were also applied in this research and will be explained in chapter 3 and 4, accordingly.

In conclusion, the principle of the neural networks is summarized in this chapter. The
understanding of the model parameters and network architecture benefit for choosing the
proper network with a specific application. There is notwithstanding no best network
architecture. Due to the constantly advancing in the field, a number of deep neural network
architectures have been developed exponentially. A point of focusing in this thesis is to
utilize prior knowledge to dynamic MRI with the help of fast inference speed of deep
learning. Therefore, an overview of dynamic MR imaging is introduced in chapter ?? and
a review of deep learning based approaches, particular with super-resolution for medical
imaging, will be described in section 2.3.4.
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2.3 Dynamic MRI and State-of-the-art

2.3.1 Dynamic MRI

Dynamic MRI is a valuable technique used in a wide range of applications in diagnosis,
therapy and medical research. Dynamic MRI does not only acquire the data at one specific
time-point but entails multiple image acquisitions and reconstructions. This is in contrast
to regular MRI, which images the internal organs at one specific time. In addition, a regular
diagnosed MR image can be considered as static, representing a photo; whereas a dynamic
MR image is like a video recording of the internal organs.Some examples of common
dynamic MRI procedures include Blood oxygenation level dependent (BOLD) - used for
monitoring brain activity from oxygen concentration level [25], dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) - a collection of multiple breath hold images
acquired for sequential images from multiple blood flow phases; arterial, venous, and
delayed phases [88], dynamic chemical exchange saturation transfer (CEST) - detecting
molecular changes based on chemical metabolic properties [89].

In interventional radiology (IR), which is an advanced procedure used for minimally
invasive operations and image guidance for diagnosis and treatment [90], most common
procedures includes angiography (arterial and venous), catheters insertions, percutaneous
tumor treatment and needle biopsy. Due to these procedures demanding fast visualization
speed of the target along with IR devices, such as needle, the imaging modalities typically
used in interventions is fluoroscopy or C-arm Cone-beam CT (CBCT) - which are mobile
imaging units able for real-time or near real-time interventions (e.g., 30 frames per second
(fps) in available commercial C-arm systems [91]).

Nevertheless, fluoroscopy and other CT-like modality use ionizing radiation, which is
harmful to patients and medical professionals. On the other hand, MRI is radiation-free
ionizing, which offer an excellent soft tissue contrast. MR images are remarkable for
specific lesions such as hepatocellular carcinoma (HCC) - a common type of liver cancer.
MRI can be considered a main tool for IR operations in the case that other imaging
modalities have poorer detection. Figure 2.26 is an example showing the superb lesion
visibility of MRI compared to ultrasound and CT.

Among common usages of MRI includes liver, kidney, intestine, prostate, one fascinating
use for MRI guidance is for liver lesions, where it is used to treat hepatic cancers or to
classify liver metastases [93]. An illustration of interventional MRI (iMRI) is portrayed
in figure 2.27. The procedures performed during dynamic imaging, such as MR-guided
liver biopsy or MR thermometry, are highly dependent on the speed of real-time or near
real-time supervision. Therefore, these procedures have certain demands for high spatial
resolution and imaging speed. Nevertheless, a high spatial resolution image can be obtained
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Figure 2.26: A comparison of the lesion visibility on MRI to ultrasound and CT, in different
wash-in and wash-out phases. a-d: ultrasound, e-i: MRI and j-m: CT images.
The arrows were marked the liver lesion at the same locations, together with
(h) the specimen after operation [92].

Figure 2.27: An example of MR-guided puncture in interventional radiology.
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at the expense of temporal resolution.

2.3.2 Common Imaging Sequence in Abdomen

There is a need for particular imaging sequences for dynamic MRI. Several imaging
sequences, such as T1-weighted fast spin echo (FSE), T2 FSE, contrast-enhanced T1W
sequences or magnetic resonance cholangiopancreatography (MRCP), are commonly used
for abdominal imaging in clinical. The reader can explore more in [27,90,94]. This section
mentions only the techniques that are relevant to this thesis.

Fast T1w Imaging

This popular imaging technique is gradient echo based, in which the short TE minimizes
the magnetic susceptibility effects. Example sequences of this fast T1-weighted imaging
are Spoiled Gradient Recalled Echo (SPGR), T1-weighted Fast Field Echo (T1-FFE), Fast
Low Angle Shot (FLASH), Volumetric Interpolated Breath-hold Examination (VIBE),
and T1-weighted High-resolution Isotropic volume Examination (THRIVE). Their names
correspond to specific MR vendors. Moreover, fat saturation is usually used in association
with partial flip angle (less than 90◦) technique to suppress the fat signal for a better
visualization.

Dixon Method

A particular technique for fat and water differentiation in abdomen is called Dixon method
[95]. Originally, a set of spin echo images were acquired for this method, while various
imaging sequences such as gradient echo or steady state free procession can be used
nowadays. The Dixon method is based on the fact that protons process slightly slower in
fat than in the water, resulting in the difference in resonance frequency, known as chemical
shift. Practically, the in-phase and the oppose-phase (out-phase) images are acquired in
the same acquisition and co-registered. Given Sip and Sopp are the signal intensity of the
in-phase and oppose-phase images respectively, the in-phase and oppose-phase can be
defined by:

In-phase:
Sip = Sw + Sf , (2.18)

Oppose-phase:
Sopp = Sw − Sf , (2.19)

where Sw and Sf denote the signal contributions of water and fat, respectively. Additionally,
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water-only and fat-only images can be reconstructed by averaging the combination and
differences of fat and water signals from each point. Figure 2.28 illustrates an example of
gradient echo images based on the Dixon method.

Figure 2.28: An example of gradient echo images based on the Dixon method: in-phase,
oppose-phase (out-phase), water-only and fat-only images.

2.3.3 Spatio-Temporal Trade-off

Although MRI has the advantage of non-ionizing radiation and offering a unique tissue
contrast, major challenges arise from its inherently slow acquisition. Furthermore, the
long scan-time makes MR images susceptible to motion artifacts. Concerning the time
constraint, the potential data to be acquired is restricted, leading to a trade-off between
spatial and temporal resolution.

The optimization of the acquisition technique is necessary for capturing the kinetic property
of the target lesions or organs. While the temporal resolution is crucial for fast imaging,
sufficient SNR also needs to be maintained. The inadequate spatio-temporal resolution
would compromise the image quality and could lead to poor diagnosis or treatment quality.
Therefore, it is preferable to have a high temporal resolution for real-time applications
[93].

Currently, general methods to deal with this trade-off include partial Fourier reconstruc-
tion, view-sharing technique, compressed sensing, and parallel imaging, all of which are
considered state-of-the-art dynamic MRI and will be described in the following section.
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2.3.4 State-of-the-Art Dynamic MRI Reconstruction

Partial Fourier Reconstruction

Partial Fourier reconstruction, also known-as half-Fourier reconstruction or ½ NEX, only
samples half of the k-space and then generate the other half during image reconstruction
process. Examples of partial Fourier algorithms include phase-conjugate synthesis [96],
Margosian [97], Homodyne [98], Cuppen [99], and projection onto convex set (POCS)
[100]. Though half-Fourier imaging techniques take the advantage of not complicated and
straightforward argument, the acceleration is limited and the SNR is compromised from
reducing the scan-time while maintaining spatial resolution.

View-sharing Technique

View-sharing (VS) technique make use of repeated imaging data in multiple time frames
by sharing a part of k-space over temporal phases. It is the commonly used techniques
for DCE-MRI. The examples of VS techniques are Time-Resolved Imaging of Contrast
KineticS (TRICKS, GE) [101], Time-resolved angiography With Stochastic Trajectories
(TWIST, SIEMENS) [102], and differential subsampling with Cartesian ordering (DISCO)
[103], for Cartesian sampling and k-Space weighted image contrast (KWIC) [104] for
radial acquisition.

Nevertheless, the drawback of view-sharing is that it is prone to temporal blurring from
motion across the shared phases. To deal with this issue, compressed sensing (CS)
can eliminate the need for VS by recovering missing k-space data from pseudo-random
undersampling, reducing temporal blurring while maintaining spatial resolution.

Compressed Sensing

Compressed sensing (CS) is a well-known technique that utilizes a sparsity or compressibility
concept for reconstructing a signal sampled below Nyquist rate [4,105]. CS plays a vital role
and emerges in several applications such as signal processing [106–108], acoustics [109–111]
and video processing [112–114]. Compressed sensing MRI (CS-MRI) can substantially
reduce the acquisition time and has been applied in various MR applications, including
dynamic imaging [3, 115–119]. The main components to recover the missing k-space from
undersampled data (violating Shannon-Nyquist theorem [120,121]) are sparse transform
(e.g., wavelet of Fourier), incoherent measurement, and non-linear reconstruction. The
reconstructed image can be obtained by solving the constrained optimization in equation
2.20 [122].
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min
X

= 1
2 ||y − Ax||2 + λ||Ψx||1, (2.20)

where y denotes the measurement data from MR scanner, A refers to the imaging model,
x is the reconstructed image, λ is the regularization parameter, and Ψ is an operator that
transforms Ψx to be sparse.

Furthermore, by using random sampling, CS could overcome the blurry image issue raised
by sharing the data over temporal phases in VS. However, CS has some restrictions that
should be considered. For example, the efficiency of compressed sensing depends on the
selected sparsifying transform and iterative regularization, the iterative computing requires
an expensive computation, and the optimal parameters tuning for each case is time-
consuming. Therefore, these reasons could hamper the workflow in clinical interventions.

Parallel Imaging

Parallel imaging (PI) is another technique to shorten the acquisition time by using phased
array coils, which have multiple receiver channels, to reconstruct the missing part of
k-space data [9].

The signal near the receiver coil has a strong signal and will decrease for faraway locations.
The image formation can be performed via image space or frequency domain (k-space).
The general equation of parallel imaging in MRI can be given by:

FT (fcl) = F ∗ Cl, (2.21)

where FT is Fourier transform operation, f is the object, cl is the coil sensitivity, and F

and Cl are the parameter represented in the k-space for the object and coil sensitivity
for each individual coils respectively. The examples of parallel imaging techniques are
sensitivity encoding (SENSE) [8], generalized simultaneous acquisition of spatial harmonics
(SMASH) [7], generalized autocalibrating partial parallel acquisitions (GRAPPA) [9],
CAIPIRINHA [123, 124], k-t BLAST and k-t SENSE [125], k-t GRAPPA [126] and
SPEAR [127]. Additionally, to further obtain a higher acceleration, parallel imaging is
combined with compressed sensing such as CS-SENSE [128–130].

Although parallel imaging can reduce the scan-time significantly by using multiple coils,
the imaging speed has to compensate for the signal-to-noise ratio (SNR). For example,
given the acceleration factor - the ratio of the amount of data for fully sampled to the
amount of acquired data - of 2 (i.e. every other line of k-space is acquired), the SNR is
reduced by

√
2 or about 40%. However, with the limitation of devices and accessibility
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during interventions - that require space for interventional equipment to perform delicate
surgical procedures - PI may not be optimal for interventions.

Super-resolution with Deep Learning

Super-resolution (SR) a signal processing technique in computer vision broadly used in
several different applications, such as face recognition [131,132], satellite imaging [133],
and medical imaging [134,135]. SR allows the restoration of a high-resolution image from
the corresponding low-resolution image. Such resolution enhancement techniques were
developed to address the physical limitation of imaging sensors [136,137]. Traditionally,
interpolation methods, such as the nearest neighbor or known as round interpolation, are
used to upsample the pixel data by approximating the pixel values from its neighbors. A
pictorial illustration in figure 2.29 shows an example of nearest neighbor interpolation.

Figure 2.29: A pictorial illustration of nearest neighbor interpolation from 2x2 matrix
to 4x4 matrix. This interpolation method is the simplest interpolation that
upsample the missing data from the neighbor’s pixel values without adding
new values.

In the last few years, deep learning methods has revolutionized the research community
with the advantage of fast learning and inference. Super-resolution algorithms using
deep learning have been developed and successfully applied in a variety of fields [138–
148], including medical imaging such as MRIs [149–151]. The well-known SRCNN
framework [152], presented in figure 2.30), is originally the first few works on applying
convolutional neural networks in super-resolution reconstruction. On the contrary to
traditional interpolation based methods, deep learning based methods could overcoming
blurring and noisy image issues that often appear from performing image interpolation
[153–156].
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Figure 2.30: A graphical illustration of SRCNN architecture, consisting only three parts:
patch extraction, nonlinear mapping and reconstructions [152].

Challenges of Super-resolution in MRI
Existing super-resolution techniques can be classified into single image super-resolution
(SISR) and video super-resolution (VSR). Several studies have demonstrated the ability
of deep learning based super-resolution to improve the time-series images (e.g., dynamic
imaging) by incorporating temporal information [14–16]. Nevertheless, such a VSR
approach, which could exploit the temporal information from a sequence of images to
enhance the spatial resolution and frame rate [157–159], still has a gap in applying it to
MRI applications, particular dynamic MRI. Moreover, one of the main challenges for deep
learning based method lies in the need for a large training dataset, and available dynamic
MRI datasets are limited. Such artificial data generations [160–162] and patch-based
methods [163–166] are commonly used for addressing the training data limitation issues.
Our studies also applied these techniques to cope with this challenge; the methodological
details are described in chapters 5 and 6.

Loss Functions in SR reconstruction
The SR image reconstruction is generally considered as ill-posed problem according to
the ill-conditioned of blur operator and the lack of low-resolution images. To solve this
inverse ill-posed problem, typical SR models are trained to super-resolve the missing
image information by optimizing the loss between super-resolved image (the reconstructed
high-resolution image) and its ground-truth. The loss function is crucial and can affect
the network performance. However, the commonly loss function used in neural network
for image processing is based on pixel-based losses, such as L1 (absolute loss) [] or L2
(squared loss) [], which has poor correlation to human perception [167]. The challenge in
selecting the loss function for medical image application is to choose the loss metric that
can generate diagnostic quality results. Therefore, a number of research on investigating
loss functions has increasing, particularly for loss in terms of human perspective [167–170].
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In this dissertation, the combination of perceptual loss with a modified U-Net architecture
has been investigated and will be explained in section 3.3.5 in chapter 3. The similar
architecture of this network and perceptual loss is also described in section 4.3.5 in chapter
4.
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3 Improved Deep Learning Based Super-resolution
Reconstruction of Dynamic MRI by Fine-tuning with a
Subject-specific Scan

“Discoveries are made by pursuing possibilities suggested by existing knowledge.”

– Michael Polanyi

This chapter is based on the following published journal:

• Sarasaen, C., Chatterjee, S., Breitkopf, M., Rose, G., Nürnberger, A. and Speck,
O. "Fine-tuning deep learning model parameters for improved super-resolution of
dynamic MRI with prior-knowledge." Artificial Intelligence in Medicine, 121, 2021:
102196 [70].

The preliminary results for the following publications were presented at conferences:

• Sarasaen, C., Chatterjee, S., Nürnberger, A., and Speck, O. "Super resolution of
dynamic mri using deep learning, enhanced by prior-knowledge." In 37th Annual
Scientific Meeting Congress of the European Society for Magnetic Resonance in
Medicine and Biology (ESMRMB), 33(Supplement 1): S03.04, S28-S29. Springer,
10 2020 [147].

• Sarasaen, C., Chatterjee, S., Saad, F., Breitkopf, M., Nürnberger, A., and Speck,
O. "Fine-tuning deep learning model parameters for improved super-resolution
of dynamic mri with prior-knowledge." In Proc. The Annual Meeting of The
International Society for Magnetic Resonance in Medicine (ISMRM), 5 2021 [148].

3.1 Synopsis

Deep learning based super-resolution (SR) demonstrates the ability to enhance spatial
image resolution from relatively low-resolution images. SR can be useful for dynamic
MRI reconstruction, which suffers from a spatial and temporal trade-off. Moreover, before
dynamic scans for interventional procedures, a set of static high-resolution planning scans
is typically acquired. This planning scan is utilized in this work as prior knowledge
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by incorporating it into the proposed Fine-tuned SR DynMRI framework to tackle the
spatio-temporal trade-off. A 3D UNet model with a perceptual loss network was used for
main training on a benchmark dataset and fine-tuned with a subject-specific planning scan
for only one epoch. The inference step was tested with 3D dynamic scans (n=3), acquired
with different imaging parameters. The performance of the framework was evaluated using
low-resolution dynamic images obtained from different in-plane undersamplings (25%, 10%
and 6.25% of the k-space center). Results show that SR main training reconstructs the
images sharper than the baseline methods. Furthermore, the Fine-tuned SR DynMRI
(after fine-tuning the SR main training) achieved better performance surpassing the SR
main training, even for relatively low-resolution images. The SSIM values of low-resolution
images from 6.25% of the k-space, which is the lowest resolution investigated in this
study, before and after fine-tuning were 0.939±0.008 and 0.957±0.006 (average value±SD),
respectively. Therefore, the proposed Fine-tuned SR DynMRI framework illustrated the
potential to improve the SR reconstruction of dynamic MRI, and might be beneficial for
fast imaging applications such as interventions.

3.2 Related Work

Spatial and temporal trade-off in for deep learning based-approaches

In MR-guided interventions, such as liver biopsy, the dynamic imaging technique is crucial
for monitoring the dynamic movements of target organs. However, as discussed above in
2.3.3, the challenge imposed by spatial and temporal resolution trade-off is derived from
the inherently slow speed of MR image acquisition. To achieve a high temporal resolution,
the amount of data to be acquired has to be reduced, which could lead to the loss of
spatial resolution. Although several techniques dealing with this spatio-temporal trade-off
[3,4,119,125] are available, their reconstruction speed could still create a hindrance for
real-time or near real-time imaging. With the fast inference of deep neural networks in
recent works [140,147, 152, 158,159], the reduction of reconstruction time, while restoring
image resolution, could be expected from deep learning based super-resolution.

Patch-based super-resolution

Recent research indicates that deep learning-based approaches are valuable tools for
MR image reconstruction, including for dynamic MRI [10–12,78]. However, most deep
learning based techniques have challenges such as a requirement for large amount of
training datasets. Moreover, it is crucial to keep in mind that when using a training set
that is different from the test set, poor quality results can arise [171,172]. The problem of
small datasets in deep learning can be addressed using different methods, including data
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augmentation and synthetic data generation [160–162].

The problem with these methods is that they involve manipulating the data artificially in
order to enlarge the dataset’s size. The small dataset problem can also be addressed through
patch-based training by dividing data into smaller patches. Therefore, the patch-based
technique allows the increasing of the number of samples in the dataset effectively without
modifying the data artificially. The patch-based super-resolution (PBSR) algorithms
[163–166,173–176] are able to map the function of a given pair of patches between low-
resolution image and the corresponding high-resolution image without modifying the data
artificially. Thus, PBSR is able to handling the issue of lacking abdominal MRI for training
in this study [149,150,177].

U-Net and perceptual loss

After the U-Net model [178] for medical image segmentation in the 1980s was introduced,
it was employed in many applications, and shown to be a valuable tool in solving inverse
problems [179–182]. Moreover, the U-Net based models were developed for super-
resolution (SR) reconstruction [143–145, 183–185]. Furthermore, for training a deep
learning model, the choice of a loss function is important for reconstruction error calculation
between the predicted and the ground-truth image. It is common to use pixel-based loss
functions for SR. However, in terms of perceptual quality, these functions generate over-
smooth results, because they are incapable of recovering the high-frequency information
[168,186–188]. Since the human visual system can recognize details and specifically identify
differences in structures, a perceptual loss function that is known to be related to human
perception, has been applied in deep learning tasks, such as in style transfer and super-
resolution applications [168, 189, 190] to achieve high perceptual images. Additionally,
some research has demonstrated the efficiency of perceptual loss in reconstructing MRI
as well [170,191,192]. Hence, this work combines the 3D U-Net and perceptual loss for
dynamic MRI to gain high quality results perceptually.

Transfer learning and prior knowledge

In deep learning, the transfer learning process involves re-proposing a pre-trained model
with fine-tuning [193]. Transfer learning uses the pre-trained network weights learning
from one task to train the network for a new task. In this way, the network is fine-
tuned and ready for another similar task. Transfer learning has been broadly applied in
computer vision [194–198] and natural language processing [199–202] to address the issue
of insufficient training data [203, 204]. It has been shown that fine-tuning significantly
improves the neural network performance and allows it to converge in fewer epochs with a
small dataset [151,205,206]. Prior knowledge refers to information that is accessible or
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was available prior to a given task. For example, there is accessible MR data obtained
prior to a specific examination, such as static high-resolution planning scans or so-called
preinterventional scans [90]. Therefore, the prior knowledge from a subject-specific
planning scan is incorporated into transfer learning. This research intends to improve
spatial image resolution on the super-resolved images by fine-tuning the deep learning
model parameters.

3.3 Methodology

In this research, the proposed Fine-tuned SR DynMRI framework is applied for re-
constructing the abdominal dynamic MRI. The problem statement of super-resolution
reconstruction and fine-tuning are discussed in this section.

3.3.1 Super-resolution Reconstruction

With regards to a simple from of single image super-resolution (SISR), a low-resolution and
a corresponding high-resolution image can be denoted as ILR and IHR. The reconstructed
high-resolution image ÎHR, or the so-called super-resolved image, can be recovered from a
super-resolution reconstruction using the following equation [207]:

ÎHR = 𭟋(ILR; θ), (3.1)

where 𭟋 denotes the super-resolution model that maps the image counterparts, and θ

denotes the parameters of 𭟋. For the patch-based super-resolution, ILR can be obtained
by modifying the equation 3.1 with:

ILR = ILRM
× N, (3.2)

where ILRM
is a patch of low-resolution image and N is the number of patches used in

the reconstruction model. The problem of super-resolution reconstruction is an ill-posed
problem, thus, a network model aims to solve the loss function:

θ̂ = arg min
θ

L(ÎHR, IHR) + λR(θ), (3.3)

where the former term is the data term, and the latter is the optimization term. L(ÎHR, IHR)
denotes the loss function between the approximated HR image ÎHR and ground-truth
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image IHR, R(θ) is a regularization term and λ denotes the trade-off parameter.

3.3.2 Problem Statement of Fine-tuning

The SR model in this study is not only trained with the training data but also fine-tuned
with a static high-resolution image as prior-knowledge. This strategy attempts to transfer
the knowledge of the learned weights and fine-tune the trained model through shared
parameters.

Let Xa is the feature space of Dixon images from main training domain A and Xb is the
feature space of T1w image from 3D dynamic MRI domain B, which will be fine-tuned.
P (xa) and P (xb) are marginal probability distribution of domain A and B according. As
the two domains are similar, it can be assumed [205] that

Xa ≈ Xb but P (xa) ̸= P (xb). (3.4)

Therefore, fine-tuning meant to fill the gap between the two domains by optimizing the
distributions of both marginal probabilities:

P (xa) = P (xb). (3.5)

3.3.3 Experimental Datasets

In this work, three sets of abdominal MRI were employed for main training, fine-tuning and
inference. The MR volumes were used as high-resolution ground-truth images IHR. The
generation of their corresponding low-resolution images ILR was performed by artificially
undersampled in-plane for different undersampling levels, see section 3.3.4.

Main Training Data

The CHAOS dataset [208], consisting of T1-Dual images for 40 subjects, in- and opposed-
phase images for each subject, was used for the main training (see figure 3.1). Accordingly,
the total 80 volumes were separated with a 70:30 ratio for training and validation data.

Fine-tuning Data

Three healthy subjects were scanned on a 3T MRI (Siemens Magnetom Skyra). The
high-resolution 3D static images during breath-hold (for one time-point) were acquired
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Figure 3.1: CHAOS dataset T1-dual images. (a) T1w in-phase image and (b) T1w
opposed-phase image.
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Figure 3.2: Fine-tuning data. An example of subject-specific high-resolution image
(breath-hold) for different slices.

using the T1w FLASH sequence to fine-tune the trained model subject-specifically. Figure
3.2 illustrates an example of fine-tuning data.

Inference Data

The model was evaluated using 3D dynamic images of three subjects to simulate the low-
resolution dynamic images in the section 3.3.4. For each subject, the dynamic acquisitions
were acquired during free-breathing for ten time-points (TPs) and were handled as an
individual 3D Volume for feeding to the network. Although all subjects were acquired
using the same T1w FLASH sequence, some imaging parameters, such as FOV, iPAT
[209] or fat suppression, were adjusted differently for each subject to test the network’s
generalization. It is worth mentioning that the dynamic and static scans were obtained
at a different scan session, similar to a planning scan in actual clinical practice. The
acquisition protocols of CHAOS, 3D subject-wise dynamic and static datasets can be
found in Table 3.1.

3.3.4 Undersampled Data Generation

All datasets, the CHAOS dataset (for main training), the static 3D scans (for fine-tuning),
as well as the dynamic 3D scans (for inference), were artificially undersampled in-plane
for three different levels. These low-resolution images were considered as the input to the
network, and its high-resolution images were used as ground-truth images for comparison.
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Table 3.1: The acquisition protocols of the experimental dataset including CHAOS dataset
of 40 subjects (total 80 volumes of in- and opposed-phase images), and subject-
wise 3D dynamic scans of three subjects for ten time-points (TPs). Note that the
dynamic and static scans were acquired using the same sequence at a different
scan session but the latter was acquired for one TP.

CHAOS
(40 Subjects) Subject 1 Subject 2 Subject 3

Sequence T1 Dual In-Phase
& Opposed-Phase T1w Flash 3D T1w Flash 3D T1w Flash 3D

Resolution 1.44 x 1.44 x 5 -
2.03 x 2.03 x 8 mm3 1.09 x 1.09 x 4 mm3 1.09 x 1.09 x 4 mm3 1.36 x 1.36 x 4 mm3

FOV x, y, z 315 x 315 x 240 -
520 x 520 x 280 mm3 280 x 210 x 160 mm3 280 x 210 x 160 mm3 350 x 262 x 176 mm3

Encoding matrix 256 x 256 x 26 -
400 x 400 x 50 256 x 192 x 40 256 x 192 x 40 256 x 192 x 44

Phase/Slice oversampling N/A 10/0 % 10/0 % 10/0 %

TR/TE
110.17 - 255.54 ms /
4.60 - 4.64 ms (In-Phase)
2.30 ms (Opposed-Phase)

2.34/0.93 ms 2.34/0.93 ms 2.23/0.93 ms

Flip angle 80° 8° 8° 8°
Bandwidth N/A 975 Hz/Px 975 Hz/Px 975 Hz/Px
iPAT (GRAPPA factor) None 2 None None
Phase/Slice partial Fourier N/A Off/Off Off/Off Off/Off
Phase/Slice resolution N/A 75/65 % 75/65 % 50/64 %
Fat suppression N/A None On On
Time per TP N/A 5.53 sec 11.76 sec 8.01 sec

Table 3.2: Effective resolutions and estimated acquisition times (per time-point) for differ-
ent levels of undersampling (25%, 10% and 6.25% of the k-space).

Subject 1 Subject 2 Subject 3
Resolution

(mm3)
Acq. Time

(sec)
Resolution

(mm3)
Acq. Time

(sec)
Resolution

(mm3)
Acq. Time

(sec)
High-resolution (Ground-truth) 1.09 x 1.09 x 4 4.81 1.09 x 1.09 x 4 9.61 1.36 x 1.36 x 4 6.62
25% of k-space 2.19 x 2.19 x 4 1.22 2.19 x 2.19 x 4 2.43 2.73 x 2.73 x 4 1.65
10% of k-space 3.50 x 3.50 x 4 0.47 3.50 x 3.50 x 4 0.94 4.38 x 4.38 x 4 0.66
6.25% of k-space 4.38 x 4.38 x 4 0.28 4.38 x 4.38 x 4 0.56 5.47 x 5.47 x 4 0.42
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Figure 3.3: Graphical representation of masks and the corresponding reconstructed images.
The undersampled (us) masks were generated by taking only 25%, 10% and
6.25% of the k-space center. The data points in black denote the sampled
point, and the white dots denote the undersampled data.

A representation of the undersampling masks and the reconstructed images can be seen in
figure 3.3. A low-resolution data set has been generated by undersampling the k-space
center without zero padding and taking 25%, 10% and 6.25% of it, but the data is not
padded in the phase-encoding and read-out directions. Considering the amount of data
used for the SR reconstruction, this could theoretically equals to an acceleration factor
(2.3.4) of 4, 9 and 16, respectively, depending on the amount of data used.

Table 3.2 provides the effective resolutions and estimated acquisition times of different
undersampled levels based on their corresponding high-resolution images. The estimation
of the scan times can be calculated as [30]:

Scan time3D volume = NAQ × TR × NP E × NP ART , (3.6)

which NAQ is the number of acquired line data, TR is the repetition time, NP E is the
number of phase encoding lines - which equals to the matrix dimension in this direction,
and NP ART is the number of divided partitions (see section 2.1.6 for further explanations).

3.3.5 Fine-tuned SR DynMRI Framework and Network Architecture

Figure 3.4 portrays the framework overview, which consists of main training, fine-tuning
and inference. The network architecture in this work is shown in figure 3.5. The network is
based on a 3D version of U-Net [147,178,210] with a combination of perceptual loss network
[211]. To reconstruct a super-resolved image ÎHR, the network takes a low-resolution
image patch ILRM

as an input. It is worth mentioning that the input and output needs to
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Figure 3.4: Method Overview. The main steps in Fine-tuned SR DynMRI Framework:
Main training, fine-tuning and inference.

Figure 3.5: The proposed network architecture based on 3D U-Net combined with
perceptual loss network. The super-resolution training was performed using
3D patches (243 size) as the input. The size of patch is provided on the left
side to each block (feature map) of each layer. The perceptual loss network

consists of three levels of the contraction path that was pre-trained on MRA.

have the same size before feeding to a U-Net model. Therefore, trilinear interpolation was
applied on a low-resolution image patch before feeding it to the network.

Basically, U-Net architecture contains two main parts concatenated by skip connections at
each equivalent level. The first path (on the left) is a contracting path, which encodes the
features and down-samples the input size by half. The contracting path consists of two
convolutions, each followed by a rectified linear unit (ReLU) activation function and a max
pooling. The second path (on the right) is an expanding path, which decodes the features
from the network and up-samples the input size by a factor of 2. The expanding path
consists of two up convolutions with ReLU activation functions. Only at the last layer
was a convolution without an activation function used to reduce the number of feature
channels and generate the final output. In this work, the modified 3D U-Net has three
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levels of feature contraction and expansion, and average pooling operations were used.
Instead of using convolutional layers in the original U-Net architecture, the convolutional
transpose layers were applied in the expanding path.

To super-resolve image with patch-based techniques, this framework was implemented
using 3D patches of the volumes. CHAOS patches were used for the main training, with a
3D patch size of 243 for slice dimensions and strides of 6 for other dimensions. Following
that, the network was fine-tuned using a static 3D scan of the same subject from an earlier
session, see figure 3.4. Furthermore, a patch size of 24 and a stride of one were applied for
fine-tuning and evaluation. When inference is performed using patch-based training, there
is a possibility to have patching artifacts. Therefore, a stride of one is set in the inference
stage, and the overlapped parts are averaged after reconstruction to remove these artifacts.

Perceptual loss is a term of error calculation between output and ground-truth that focuses
on perceptual differences. In this work, the perceptual loss was determined for calculating
the loss during training and fine-tuning. The first three blocks of a frozen pre-trained
U-Net MSS model, on 7T MR angiography (MRA) for vessel segmentation [211], was
used as the perceptual loss network (PLN) for extracting tiny feature abstractions from
the final super-resolved output of the model and the ground-truth images. According to
[170], perceptual loss networks such as VGG-16 can also be trained on three-channel RGB
(ImageNet dataset - non medical images), even for medical imaging tasks. This work used
this pre-trained network as it was previously trained on single-channel medical images.
Although these MRA images were acquired for the brain, not the abdomen, and have
different contrasts from the data experimented on in this research, they had better usage
potential than the one trained on three-channel RGB images. L1 loss (mean absolute
error) was computed to compare the extracted features from the network’s output and the
ground-truth images. Finally, after adding up the losses for each feature, the total losses
were back propagated. This perceptual loss L between a ground-truth image ys,t and the
corresponding predicted image ŷs,t can be formulated as:

Lys,t,ŷs,t =
B∑

b=1

Fb∑
f=1

|fys,t − fŷs,t |, (3.7)

where B is the number of blocks of the PLN to be used for loss calculation, Fb is the
number of features block b can generate (depending upon the network architecture), fyt is a
particular feature generated feature from the ground-truth yt, and fŷt is the corresponding
feature generated from the prediction ŷt.
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3.3.6 Implementation Details

A 3D patch from the CHAOS dataset was used to train the model (main training) with a
patch size of 243 and a stride of 6 for the slice dimension and 12 for the other dimensions.
The network was subsequently fine-tuned using a 3D static scan for each subject, see
figure 3.4. A patch size of 243 and a stride of 1 were used for fine-tuning and evaluation.
The implementation using PyTorch was done using Nvidia Tesla V100 GPUs. During the
training, Adam optimizer [212] was used, the learning rate was 0.0001, and the predefined
epochs was 200. After the main training converged, the fine-tuning was performed on
only one epoch using a subject-specific scan and a smaller learning rate of 0.000001. In
addition to being high-resolution, the subject-specific static scans have the same resolution,
contrast, and volume coverage as high-resolution dynamic scans. In order to keep the
simulation similar to a real-life scenario and to keep inference speed high, the static and
dynamic scanning were not co-registered. The code of this implementation is publicly
available on GitHub 1. The tutorial of the code is accessible on Google Colab Notebook
(see appendix C)).

3.3.7 Image Reconstruction Evaluation

For the purpose of evaluating the quality of reconstructed images relative to ground-truth
HR images, two of the most widely used metrics were chosen - the structural similarity
index (SSIM) and the peak signal-to-noise ratio (PSNR). The standard deviation of the
different images (diff SD) was also calculated. The high SSIM and PSNR values with
minimal diff SD indicate the high performance of the reconstruction quality. The formulas
of evaluation metrics used in this study can be found in appendix B. Finally, a statistical
test was calculated using the paired t-test and the Wilcoxon signed-rank test.

3.4 Results

The performance and limitation of the proposed framework were validated using three
levels of low-resolution images obtained from different undersampled levels (25%, 10%
and 6.25% of the k-space center). The improvement of the reconstructed dynamic MRI
was evaluated by comparing SR results before and after fine-tuning. The evaluation was
performed on the dynamic abdominal dataset of three subjects, consisting of 10 TPs for
each subject. The proposed method was compared against the baseline methods, including
traditional trilinear interpolation, area interpolation (based on adaptive average pooling,
as implemented in PyTorch), and Fourier interpolation (zero-padded k-space, or so-called
sinc interpolation), which is a widely used technique in MRI.

1https://github.com/soumickmj/FTSuperResDynMRI
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The results show that the proposed Fine-tuned SR DynMRI improved both qualitative and
quantitative data, even for reconstructing the relatively low-resolution image - taking only
6.25% of the k-space. A qualitative comparison of the SR results after fine-tuning against
the baseline methods for all undersampling levels is illustrated in Figure 3.6. Another
qualitative result of the proposed method was evaluated by comparing the SSIM Maps
of the low-resolution input of the lowest resolution investigated in this work (6.25% of
the k-space) with super-resolution (SR) results after fine-tuning. The SSIM maps were
calculated against the high-resolution ground-truth - the respective SSIM outputs can be
found on top right of the image in Figure 3.7. These SSIM maps show in which part of
the image the difference between the images is higher or lower locally. Large values of
local SSIM values appear as bright pixels in the local SSIM map, portraying the better
quality according to the given measurement [213]. Moreover, to provide a more precise
visualization, Figure 3.8 portrays example results from one subject in two regions of
interest (ROIs). The reconstructed SR results of main training, Fine-tuned SR DynMRI,
and trilinear interpolation were compared against its corresponding ground-truth. It was
also found that the undersampling artifacts presented in the SR results of main training
were mitigated in the SR results after fine-tuning, resulting in edge enhancement even for
small structures.

For the purpose of quantitative analysis, Table 3.3 shows the comparison of the proposed
framework with the baseline methods using SSIM, PSNR and standard deviation of the
difference images with ground-truth (average values±SD) of all subjects for all time-points.
Figure 3.9 shows the distribution of the resultant metrics over the different time-points
at each subject. The error bands denote a 95% confidence interval of resultant values
over time-points. The first row depicts the SSIM values, and the second shows the PSNR
values. The columns are the results of 25%, 10%, and 6.25% of the k-space, respectively.
These plots show that the proposed method (SR after fine-tuning) noticeably outperforms
all of the baseline methods investigated in this study.
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Table 3.3: Quantitative results of the proposed framework compared with baseline methods
in terms of SSIM, PSNR and standard deviation of the difference images with
ground-truth (average values ± SD). The p-values < 0.001 for all subjects,
resolution-wise and for all resolution with subject-wise.

Data 25% of k-space
SSIM PSNR diff SD

Area Interpolation 0.911±0.011 29.721±1.948 0.068±0.011
Trilinear Interpolation 0.964±0.005 37.680±1.770 0.013±0.002
Zero-padded 0.977±0.013 37.980±4.078 0.064±0.011
SR Main Training 0.986±0.007 42.781±2.424 0.009±0.002
Fine-tuned SR DynMRI 0.993±0.004 45.706±2.169 0.005±0.002

Data 10% of k-space
SSIM PSNR diff SD

Area Interpolation 0.814±0.018 26.250±1.867 0.071±0.013
Trilinear Interpolation 0.906±0.007 33.148±1.780 0.022±0.004
Zero-padded 0.926±0.009 31.844±2.260 0.067±0.013
SR Main Training 0.961±0.009 36.710±1.086 0.014±0.002
Fine-tuned SR DynMRI 0.973±0.005 39.433±2.144 0.007±0.001

Data 6.25% of k-space
SSIM PSNR diff SD

Area Interpolation 0.723±0.031 24.092±1.964 0.080±0.013
Trilinear Interpolation 0.872±0.011 31.504±1.786 0.026±0.005
Zero-padded 0.888±0.012 29.803±2.147 0.069±0.015
SR Main Training 0.939±0.008 35.377±1.653 0.0174±0.003
Fine-tuned SR DynMRI 0.957±0.006 37.306±2.357 0.014±0.004
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Figure 3.7: Another qualitative comparison using SSIM Maps of the lowest resolution
input investigated in this work (6.25% of k-space) with the reconstructed

results of Fine-tuned SR DynMRI over different time-points. The
corresponding SSIM outputs are shown on the top right of the image.
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Figure 3.8: An example from the reconstructed results compared against its ground-truth
of low-resolution images from 6.25% of k-space. Upper figure from left to

right: ground-truth, trilinear interpolation (input of the network), SR main
training, and Fine-tuned SR DynMRI. Lower figures show the yellow and red
and ROIs of reconstructed results and the corresponding difference images
from ground-truth of (a and b) trilinear interpolation, (c and d) SR main

training, and (e and f) Fine-tuned SR DynMRI.
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(a) 25% of the k-space

(b) 10% of the k-space

(c) 6.25% of the k-space

Figure 3.9: Line plot showing the mean and 95% confidence interval of the resultant SSIM
and PSNR over the different time-points at each subject. The upper row shows
the SSIM values and the lower row shows the PSNR values. The blue, orange,
green, red and lilac colors represent the reconstruction results of trilinear
interpolation, area interpolation, zero-padding (sinc interpolation), SR main
training, and SR after fine-tuning respectively.
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3.5 Discussion

It can be seen that after fine-tuning the model using a static planning scan, the overall
results improved from SR main training with sharper images and better edge enhancement.
The statistical significance of the model’s performance in terms of SSIM was estimated using
the paired t-test and the Wilcoxon signed-rank test. It was found that the improvement
of the proposed Fine-tuned SR DynMRI was statistically significant, with p-values less
than 0.001, for every investigated scenario (for all subjects with different resolutions and
all resolutions with different subjects).

In this investigation, the acquisition time of high-resolution 3D "pseudo"-dynamic reference
data was ten seconds without parallel acquisition, and five seconds with GRAPPA factor
two (see Table 3.2). These might be insufficient for real-time applications, and may induce
blurring as a result of the subject’s breathing. This study, therefore, demonstrates the
possibility of acquiring such volume in less than half a second with minimum loss of spatial
information.

Each subject’s fine-tuning procedure took approximately eight hours using the mentioned
setup in section 3.3.6. Each time-point was super-resolved in a matter of seconds. Reducing
the patch overlap (stride) can further shorten the time needed for fine-tuning and inference,
but doing so may degrade the quality of the resulting super-resolved images. It can also
be demonstrated that the network can generate findings that are very close to the ground
truth (SSIM of 0.957) even while super-resolving 6.25% of k-space, which can accelerate
acquisition times by 16 times. This work may be expanded to be utilized for real-time or
near real-time MRI during interventions by combining this rapid acquisition speed with
the fast inference speed of the proposed method.

It is important to take note that the static planning scans and the actual dynamic scans
during intervention are typically acquired using different sequences, with the planning scans
typically having a higher resolution than the dynamic scans. Static and dynamic scans in
this study were conducted with the same sequence, but at different resolutions and positions
(mimicking different scanning sessions in the actual scenarios). A volumetric interpolated
breath-hold examination (VIBE) sequence was used as a planning scan for fine-tuning a
subject-specific in an additional investigation. This resulted in a reconstructed image with
a 0.032 lower SSIM than from fine-tuning with the same sequence for undersampled 6.25
percent of the k-space. However, an additional study would be essential before determining
whether this is a drawback of the current approach.

Moreover, this research investigates only undersampled masks from the k-space center,
resulting in a loss of resolution without explicit image artifacts. Future research may
include variable density undersampling or GRAPPA-like uniform undersampling of higher
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spatial frequencies. In addition, clinical interventional radiology usually involves devices,
such as a needle or catheter, which are not included in the planning scan. Therefore, the
proposed framework could be conducted by evaluating these devices further.

3.6 Conclusions

The proposed Fine-tuned SR DynMRI framework demonstrates the capability to re-
construct the dynamic MRI from relatively low-resolution images. Deep learning-based
super-resolution reconstruction results can be noticeably improved by fine-tuning with a
subject-specific planning scan for only one epoch. Although the network was trained on
the benchmark dataset using MRI sequences that differed from the test set of dynamic
MRI, the SR results in this study (both main training and fine-tuning) showed a high
similarity to the high-resolution ground-truth images. In brief, this work indicates that
the proposed framework could reduce spatio-temporal trade-off by enhancing the spatial
image resolution without slowing the acquisition speed. The rapid inference speed of the
deep learning network could make this framework viable for real-time dynamic acquisitions
such as interventional MRI.
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4 Improved Deep Learning Based Super-resolution
Reconstruction of Dynamic MRI by Incorporating
Temporal Information in a Dynamic Dual-channel UNet

“Nothing we learn in this world is ever wasted.”

– Eleanor Roosevelt

This chapter is based on the following publications (as the first author and the co-first
author):

• Sarasaen, C., Chatterjee, S., Nürnberger, A., and Speck, O. "DDoS: Dynamic
dual-channel u-net for improving deep learning based super-resolution of abdominal
dynamic mri." In 38th Annual Scientific Meeting Congress of the European Society
for Magnetic Resonance in Medicine and Biology (ESMRMB), 34(Supplement 1):
S6.O3., S44. Springer, 10 2021 [214].

• Chatterjee, S., Sarasaen, C., Rose, G., Andreas Nürnberger, and Speck, O. "DDoS-
UNet: Incorporating temporal information using dynamic dual-channel unet for
enhancing super-resolution of dynamic mri." In Medical Imaging with Deep Learning
(MIDL), Zürich, Switzerland, 7 2022 [71].

• Chatterjee, S., Sarasaen, C., Rose, G., Andreas Nürnberger, and Speck, O. "DDoS-
UNet: Incorporating temporal information using dynamic dual-channel unet for
enhancing super-resolution of dynamic mri." arXiv preprint arXiv:2202.05355, 2022
[215].

4.1 Synopsis

From the previous work [70], deep learning based super-resolution (SR) has shown
promising results in dealing with sparse data. Moreover, the available temporal information
of dynamic MRI has not been exploited in this prior work. The proposed DDoS-UNet
DynMRI (Dynamic Dual-channel training of Super-Resolution U-Net of Dynamic MRI)
framework attempts to learn both spatial and temporal resolution relationship. A dual-
channel input consisting of a static image from the available planning scan and dynamic
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images was used to super-resolves the first time point with deep learning based super-
resolution and U-Net model. After that, it continues by feeding the super-resolved of the
first time point along with the dynamic low-resolution image of the next following time
point. Generally, the high-resolution images were super-resolved from each time-point
separately, treating them as individual volumes. In this approach, the reconstructed results
were super-resolved recursively, and the network was fed with the high-resolution static
scans as the starting time-point. This work obtained the average SSIM of 0.951±0.017
while reconstructing the highest undersampling level of 4% of the k-space center, which
could theoretically result in an acceleration factor of 25.

4.2 Related Work

Deep learning based super-resolution and utilization of temporal information

Several deep learning based super-resolution models have been proposed drastically and
achieved remarkable results for improving low-resolution images [10, 11, 188, 216, 217].
The SR techniques of restoring a single high-resolution image from a single low-resolution
counterpart are called single image super-resolution (SISR). In contrast to SISR, video
super-resolution (VSR) exploits the temporal information in a sequence of images to
enhance the spatial resolution and frame rate [157–159]. The temporal information
has been investigated in many works of literature and demonstrated the potential for
improving the image quality of dynamic MRI reconstruction [14–16]. Previous work
[70] attempting to super-resolve 3D dynamic MRI treats each time-point as a single 3D
volume and then super-resolves them individually (SISR technique). Nonetheless, the
inherent relationship between the different time-points of the dynamic MRI is not utilized
yet, which might be helpful for improving the super-resolution performance. Dynamic
MRI can also be considered a three-dimensional (3D) video. For super-resolving a two-
dimensional (2D) video, recurrent networks [218–220] are commonly employed, which
utilize the aforementioned relationship [221–223]. However, these networks are typically
more computationally expensive during training, making them difficult to employ for a
3D volumetric scenario.

Several deep learning based super-resolution (SR) models have been proposed, which
achieved remarkable results for improving low-resolution images [10, 11, 188, 216, 217].
The SR techniques of restoring a single high-resolution image from a single low-resolution
counterpart are called single image super-resolution (SISR). In contrast to SISR, video
super-resolution (VSR) exploits the temporal information in a sequence of images to
enhance the spatial resolution and frame rate [157–159]. The temporal information has
been investigated in many research papers, and demonstrated the potential for improving
the image quality of dynamic MRI reconstruction [14–16]. Previous work [70] attempting
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to super-resolve 3D dynamic MRI treats each time-point as a single 3D volume and then
super-resolves them individually (SISR technique). Nonetheless, the inherent relationship
between the different time-points of the dynamic MRI is not utilized yet, which might
be helpful for improving the super-resolution performance. Recurrent neural networks
(RNNs) [218–220] are a class of artificial neural networks with closed-loop connections,
allowing the use of the previous information from the input sequences. RNNs are often
used for temporal-related tasks, including VSR [221–223]. However, RNNs require more
computationally expensive during training than traditional deep learning models. This
restriction makes them difficult to employ for a 3D volumetric scenario such as the 3D
dynamic MRI.

Prior-knowledge and multi-channel technique

Prior-knowledge is shown to be helpful for an inverse problem such as super-resolution
[17,70,224]. The prior-information has been investigated and incorporated into a multi-
channel technique to enhance the super-resolution reconstruction [18,225]. A multi-channel
network allows better feature extractions when learning with multiple types of channels
[19]. Multi-channel training has been used across numerous applications, including image
recognition [20], speech recognition [21, 22], audio classification [226], and natural
language processing [23]. Thus, prior knowledge of a pair of high- and low-resolution,
acquired from different scan sessions, has been incorporated as a dual-channel input to
reconstruct super-resolved images in this work. Furthermore, the temporal relationship
inherited between time-points has been hypothesized to support the network in learning
both temporal and spatial resolution using the proposed DDoS-UNet DynMRI framework.

4.3 Methodology

In this section, the proposed DDoS-UNet DynMRI framework is introduced. The detail of
datasets and pre-processing steps are included. Then, network architecture and perceptual
loss network, along with the model implementations are discussed.

4.3.1 Experimental Dataset

For training, the proposed framework was trained on the artificial dynamic data generated
from the benchmark CHAOS dataset [227]. This dataset contains T1-Dual images for 40
subjects (in- and opposed phases for each subject). The details of dynamic data generation
is described in section 4.3.2. A ratio of 70:30 was used for dividing training and validation
sets.
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For inference, 3D dynamic images of five healthy subjects were scanned on a 3T MRI
(Siemens Magnetom Skyra), and each subject has 25 time-points (TPs). Since DDoS-UNet
DynMRI requires a dual-channel input, a high-resolution 3D static scan (breath-hold) of
each subject was acquired using the same acquisition protocols, but in different sessions,
miming a planning scan in the actual clinical workflow. The acquisition parameters of
the data used in this work are listed in Table 4.1. It is worth mentioning that these 3D
dynamic scans can be considered as "pseudo-dynamic" scans as they are not available in
real-life scenarios. Moreover, to evaluate the reconstruction performance of the model,
the 3D dynamic scans were artificially undersampled for different levels, as discussed in
section 4.3.3.

Table 4.1: The acquisition protocol of the experimented datasets: CHAOS dataset of 40
subjects and subject-wise 3D dynamic scans of five subjects for 25 time-points
(TPs). It should be noted that the static scans were acquired using the same
sequence as the dynamic scans, but only for one TP, acquired in a different
session.

CHAOS
(40 Subjects)

Protocol 1
(2 Subjects)

Protocol 2
(1 Subject)

Protocol 3
(1 Subject)

Protocol 4
(1 Subject)

Sequence T1 Dual In-Phase
& Opposed-Phase T1w Flash 3D T1w Flash 3D T1w Flash 3D T1w Flash 3D

Resolution 1.44 x 1.44 x 5 -
2.03 x 2.03 x 8 mm3 0.90 x 0.90 x 4 mm3 0.90 x 0.90 x 4 mm3 0.90 x 0.90 x 4 mm3 1.00 x 1.00 x 4 mm3

FOV x, y, z 315 x 315 x 240 -
520 x 520 x 280 mm3 300 x 225 x 176 mm3 350 x 262 x 176 mm3 350 x 262 x 192 mm3 350 x 262 x 176 mm3

Encoding matrix 256 x 256 x 26 -
400 x 400 x 50 320 x 240 x 44 384 x 288 x 44 384 x 288 x 48 352 x 264 x 44

Phase/Slice oversampling N/A 10/0 % 10/0 % 10/0 % 10/0 %
TR 110.17 - 255.54 ms 2.37 ms 2.40 ms 2.40 ms 2.31 ms

TE 4.60 - 4.64 ms (In-Phase)
2.30 ms (Opposed-Phase) 1.00 ms 1.02 ms 1.02 ms 0.97 ms

Flip angle 80° 8° 8° 8° 8°
Bandwidth N/A 920 Hz/Px 930 Hz/Px 930 Hz/Px 950 Hz/Px
GRAPPA factor None None None None None
Phase/Slice partial Fourier N/A Off/Off Off/Off Off/Off Off/Off
Phase/Slice resolution N/A 50/64 % 50/64 % 50/64 % 50/64 %
Fat saturation N/A On On On On
Time per TP N/A 10.52 sec 12.80 sec 13.96 sec 11.36 sec
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Figure 4.1: Flowchart of dynamic data generation. In this work, n = 24 and the total
number of TP is 25 time-points.

4.3.2 Dynamic Data Generation

Due to the lack of large training datasets of dynamic MRI, in this work, the dynamic
MRI dataset was created artificially using random elastic deformation of TorchIO [228],
applied to the volumes from the CHAOS dataset. The deformation fields were created
randomly using five control points, maximum displacements along x-y-z dimensions of
5-20-20 mm, and two locked borders. The first deformation field was interpolated to
the coarse grid of control points of the CHAOS data using cubic B-spline interpolation.
The original CHAOS volume is referred to as TP0, and the generated volume is TP1. To
imitate the breathing pattern that moves continuously, the next adjacent time-point TP2

was generated by applying the deformation field on TP1. Then, repeatedly applying to
the current time-point TPn to create the next time-points TPn+1 until having totally 25
time-points (TP0 - TP24). The flowchart of dynamic data generation is shown in figure
4.1.

The quality of the artificial dynamic MRI dataset was verified by manually inspecting the
data (e.g., no image folding) and setting up the similarity metric of less than 80% of the
previous time-points. Although the dynamic dataset is not generated from the human
breathing motion, it contains different motion patterns as the deformation fields were
created randomly. Therefore, this should be adequate for the network to learn the generic
relationship between time-points.

4.3.3 Undersampled Data Generation

The artificial dynamic MRI dataset (for training) and 3D dynamic images (for testing)
were undersampled in-plane for three different levels. These low-resolution images were
fed to the network as one of dual-channel input, and its high-resolution images served
as the corresponding ground-truth images. The undersampling masks were generated by
taking only 10%, 6.25%, and 4% of the k-space center without zero-padding, resulting in
MR acceleration factors (2.3.4) of 3, 4, and 5 when considering only the phase-encoding
direction. However, concerning the actual amount of data used for reconstruction (reducing
both phase-encoding and read-out directions), this could be considered theoretically as
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Table 4.2: Effective resolutions and estimated acquisition times (per time-point) of the
dynamic and static datasets after performing different levels of artificial under-
sampling.

Protocol 1 Protocol 2 Protocol 3 Protocol 4
Resolution

(mm3)
Acq. Time

(sec)
Resolution

(mm3)
Acq. Time

(sec)
Resolution

(mm3)
Acq. Time

(sec)
Resolution

(mm3)
Acq. Time

(sec)
High-Resolution
(Ground-truth) 0.90 x 0.90 x 4 8.76 0.90 x 0.90 x 4 10.68 0.90 x 0.90 x 4 11.76 1.00 x 1.00 x 4 9.38

10% of k-space 2.70 x 2.70 x 4 0.88 2.70 x 2.70 x 4 1.07 2.70 x 2.70 x 4 1.18 3.00 x 3.00 x 4 0.94
6.25% of k-space 3.60 x 3.60 x 4 0.55 3.60 x 3.60 x 4 0.67 3.60 x 3.60 x 4 0.74 4.00 x 4.00 x 4 0.59
4% of k-space 4.50 x 4.50 x 4 0.35 4.47 x 4.47 x 4 0.43 4.47 x 4.47 x 4 0.47 4.99 x 4.99 x 4 0.38

acceleration factors of 10, 16, and 25, respectively. The effective resolutions and estimated
acquisition times of different undersampled levels for each of the dynamic test datasets
and listed in Table 4.2. The estimation of the scan times can be calculated as follow [30]:

Scan time3D volume = NAQ × TR × NP E × NP ART , (4.1)

which NAQ denotes the number of acquired line data within the given number of phase-
encoding lines NP E and the number of divided partitions NP ART , and TR is the repetition
time.

4.3.4 DDoS-UNet DynMRI Framework

The framework Dynamic Dual-channel of Super-resolution UNet (DDoS-UNet) is pro-
posed for dynamic MRI reconstruction, and is termed as DDoS-UNet DynMRI. The
method overview of training and inference steps are summarized in figure 4.2 and 4.3,
respectively. The network architecture is based on a 3D-UNet, combined with a perceptual
loss network, similar to [70]. The main difference of the DDoS-UNet DynMRI framework
is that the dual-channel input consists of a pair of HR − LR images from different time-
points. Since the inputs are obtained from different time-points and abdominal organs
changes during breathing, the same patch volume of both inputs might not have the same
locations. Therefore, super-resolution reconstruction was carried out using the entire 3D
volumes rather than the 3D patch-based super-resolution.

Let the first channel of the dual-channel input be a high-resolution static scan obtained
from the previous session HRT Pn−1 and the second channel be a patient-specific low-
resolution dynamic MRI of the current time-point LRT Pn , the reconstructed image of the
current time-point ĤRT Pn can be recovered (super-resolved) using the following equation:

ĤRT Pn = 𭟋(LRT Pn ; ĤRT Pn−1 ; θ), (4.2)
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Figure 4.2: Method overview of the training in DDoS-UNet DynMRI framework. Initially,
random elastic deformation is applied to the CHAOS dataset (fully sampled)

to generate the artificial CHAOS dynamic dataset. Then the CHAOS
dynamic dataset was undersampled to generate the final training dataset.
Then the model is trained by providing a low-resolution (undersampled)

current time-point (LRTPn) along with the high-resolution (fully sampled)
previous time-point (HRTPn−1) as input, and the output is compared against

the ground-truth high-resolution current time-point (HRTPn).
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Figure 4.3: Method overview of the inference in DDoS-UNet DynMRI framework. 3D
static subject-specific planning scan (fully sampled) is supplied as the

high-resolution prior image (HRP rior) along with the first low-resolution
(undersampled) time-point (LRT P 0) of the 3D dynamic dataset are supplied

as input to the trained DDoS-UNet model, and the model super-resolves
LRT P 0 to obtain SRT P 0. This initial phase is called the "Antipasto" phase.

SRT P 0 is then supplied as input together with the next low-resolution
time-point LRT P 1 to the same trained DDoS-UNet model to obtain SRT P 1.

This process is continued repeatedly until all the time-points of the
low-resolution (undersampled) 3D dynamic are super-resolved by supplying

pairs of SRT P n−1 and LRT P n to obtain each of the SRT P n.
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This equation is modified from equation 3.1, where 𭟋 denotes the super-resolution model,
mapping the given pair of high- and low-resolution images, and θ is the parameters of
𭟋. The proposed framework tries to solve the super-resolution reconstruction using deep-
learning, by optimizing the loss-function L between the reconstructed image ĤR and its
high-resolution ground-truth HR:

θ̂ = arg min
θ

S∑
s=1

T Pn∑
T P =1

L( ˆHRs,T Pn−1 , HRs,T Pn) + R(θ) (4.3)

Where the first term represents the data term and the second term R(θ) represents a
regularization term, when TPn is the number of time-point, and S is the number of subjects
in the dataset.

For the framework mechanism, it is assumed that the network can learn the spatial
relationship between HR - LR and the temporal relationship between different time-
points TPn. Hence, let the DDoS-UNet DynMRI mechanism be Ψ and the set of network
parameters be (θ̂), the hypothesis of the proposed framework can be modeled as:

Ψ(θ̂) = 𭟋1(LRT Pn ; ĤRT Pn ; θ1) + 𭟋2(ĤRT Pn−1 ; ĤRT P (n); θ2), (4.4)

where 𭟋1 denotes the spatial-relationship operator between LRT Pn and ĤRT Pn . θ1 are
their set of the first parameters. While 𭟋2 denotes the temporal-relationship operator
between ĤRT Pn−1 and ĤRT Pn . θ2 are their set of second parameters.

4.3.5 Network Architecture

The network architecture is based on a 3D UNet-based model combined with a perceptual
loss network, as illustrated in figure 4.4. It was used to solve a super-resolution problem in
previous work by the same author [70] but was extended with two modifications. First, a
dual-channel input was supplied to the network rather than one, and upsampling operators
were used instead of upconvolutions in the expanding path.

The proposed network has three levels, including two main paths: contracting (encodes the
features) and expanding (decodes the generated features). The contracting and expanding
paths are connected with skip connections to concatenate the input and output at the
same level. The contracting path comprises of two convolutions, each block is followed by
a rectified linear unit (ReLU) activation function and an average pooling. The expanding
path consists of two trilinear-upsamplings and convolutions, and each block is followed by
a convolution with ReLU activation function. The final step has only a convolution to
combine all the features and provide the final output.

72



4 DDoS-UNet DynMRI

Figure 4.4: Network architecture of the modified 3D UNet with perceptual loss network.
Unlike the patch-based super-resolution (see figure 3.5), the training was

performed using the whole 3D volumes of IP rior and ILR as dual inputs to the
network.

Unlike the earlier work (patch-based) that applied convolutional transpose, this work
uses the upsampling operation, as it did not generate checkerboard artifacts [229] when
super-resolving the entire volume. Moreover, before supplying the inputs to the network,
the size of low-resolution inputs was increased using trilinear interpolation to be the same
image size as its high-resolution ground-truth. This additional step was derived from the
fact that UNet-like architecture demands the same input and output matrix size.

The perceptual loss was employed for loss calculation, same as [70]. The perceptual loss
network (PLN) was derived from the first three blocks of a frozen pre-trained U-Net MSS
model (for vessel segmentation of MR angiography at 7T) [211]. This PLN intended
to extract the small feature abstractions at different levels between the super-resolved
output of the model and its corresponding high-resolution ground-truth. These extracted
features were also compared against each other using L1 loss (mean absolute error), and
the obtained losses, which were accumulated together before propagating the total losses
back. The formulation of PLN can be found in equation 3.7.

4.3.6 Implementation Details

The proposed model was trained with 3D volumes from the artificially created dynamic
version of a publicly available benchmark dataset, as shown in figure 4.2. The overview of
inference step is shown in figure 4.3. The starting phase, referred here to as "Antipasto", is
the preliminary phase prior to the main reconstruction - by supplying the high-resolution
patient-specific static scan as a prior image on the first channel of the network (as ĤRT P (n−1)

is not yet available), and by supplying LRT P (0) on the second channel of the network. After
the network super-resolves LRT P (0) to ĤRT P (0), the next time-point, ĤRT P (0) and LRT P (1)

are supplied as input to the network and obtain the next super-resolved image ĤRT P (1).
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This process continues until low-resolution images of all time-points are super-resolved.

The training and inference were performed using Nvidia Tesla V100 GPUs. The gradient
updates were estimated using a batch size of one for each iteration. This small batch
size promotes the accuracy of the error gradient computation [230]. The perceptual loss
network [211] was utilized for loss calculation and minimized using Adam optimizer. The
predefined epoch was 100 epochs and a learning of 0.0001. The implementation code using
Pytorch is publicly available 1. The tutorial of this code is available on Google Colab
Notebook (see appendix C).

It should be noted that the static scan has the same resolution, contrast, and volume
coverage as the high-resolution ground-truth dynamic scan. However, to keep the testing
environment similar to the real-life scenario and to keep a fast speed of inference, the static
and dynamic datasets were not co-registered, as registration is typically time-consuming.

4.3.7 Image Reconstruction Evaluation

The quality of super-resolution reconstruction was evaluated using the structural similarity
index (SSIM) [187], the peak signal-to-noise ratio (PSNR) [231], and the normalized root
mean square error (NRMSE). The SSIM metric measures the perceptual difference between
the output of the proposed method and its ground-truth, by comparing the luminance,
contract, and structure terms between two given images. The formulas used in this work
are described in appendix B. The quality of the reconstructed results was also evaluated
statistically using PSNR and NRMSE. These metrics estimate the pixels individually,
based on the mean-square error (MSE) between two images. Lastly, the Mann–Whitney U
test was selected for a statistical test to compare the proposed method against the other
baseline methods.

4.4 Results

The performance and limitation of the DDoS-UNet DynMRI framework were evaluated
using different low-resolution images (simulated by taking 10%, 6.25%, and 4% of the
k-space center). These reconstructed results were compared against the low-resolution
input, traditional trilinear interpolation, and Fourier interpolated input (zero-padded
k-space). In addition, the results were also compared against baseline deep learning
models using the UNet model trained on the artificial dynamic CHAOS. Although the
baseline UNet was trained on the same training dataset as the proposed DDoS-UNet
DynMRI framework, this UNet received only one input, unlike dual-channel input in the

1https://github.com/soumickmj/DDoS
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proposed framework. Finally, the model was tested using the dynamic abdominal MRI of
five subjects, containing 25 TPs for each subject. The DDoS-UNet DynMRI framework
started inferring the data since the Antipasto phase by using the dual-channel input
of the subject-specific high-resolution planning scan (HRP rior) and the first time-point
(TP0) of dynamic low-resolution. Subsequently, the network continued inferring the data
using the inputs of the previous super-resolved image SRT P0 and the current dynamic
low-resolution LRT P1. This mechanism was processed to super-resolve the current TP

until TPn. The inference details of the method can be found in section 4.3.4.

For qualitative comparison, Figure 4.5 portrays the results of different methods for all
experimented undersampling (10%, 6.25% and 4% of the k-space center). As seen in the
figure, the results of the DDoS-UNet DynMRI illustrate the potential to reconstruct the
images similar to its corresponding ground-truth, while achieving better edge delineation
compared to the other baseline methods. Moreover, Figure 4.6 shows the SSIM Maps of
the low-resolution inputs and the results of the DDoS-UNet DynMRI, calculated against
the high-resolution ground-truth. The corresponding SSIM outputs can be found on the
top right of the image. SSIM values typically range from zero to one; thus, the higher
values result in brighter pixels in the local SSIM Map. The reconstructed results during
the Antipasto phase appeared to be inferior to the other time-points - although it was
a considerable improvement compared to the low-resolution input. In addition, Figure
4.7 illustrates the reconstructed results from the undersampled 4% of the k-space center
(the lowest-resolution experimented here) in two regions of interest (ROIs), along with the
subtracted image from the ground-truth. The proposed DDoS-UNet DynMRI framework
managed to reconstruct the results with better details of the delicate structures, such as
hepatic vessels in the liver. Although the deep learning based SR using the UNet model
generated better qualitative results than the traditional trilinear interpolation method, it
failed to preserve the anatomical topology, unlike the DDoS-UNet DynMRI, which could
maintain the organ structures better.

The quantitative analysis can be found in Table 4.3. For all undersampling levels, the
proposed DDoS-UNet DynMRI method outperformed the baseline UNet model in terms
of evaluation metrics (SSIM, PSNR, NRMSE), with statistical significance (p-values less
than 0.001). Moreover, Figure 4.9 portrays the subject-wise line plot of mean values of
SSIM and PSNR over a time-point, not including the Antipasto phase. The error bands
present the 95% confidence interval of the resultant metrics over time-points. As can be
seen in the figure, the proposed framework demonstrated an improvement through the
higher undersampling levels. Finally, Figure 4.10 portrays the TP-wise line plot of the
average SSIM for all subjects over the different time-points. The results obtained during
the Antipasto phase TP0 - the initial phase of reconstruction - yielded the low value of
resultant SSIM. However, after this phase, the proposed DDoS-UNet DynMRI method
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achieved the resultant SSIM values higher than the baseline methods and continued to
reconstruct the results steadily over time-points. During the observation over time-points,
the mean values of SSIM of each subject ranged from 0.988 to 0.975, 0.980 to 0.960,
and 0.970 to 0.945 for 10%, 6.25%, and 4% of k-space, respectively. Therefore, these
quantitative results demonstrate the proposed method’s effectiveness in reconstructing the
images from different subjects with dissimilar anatomical structures, and were acquired
using different acquisition protocols.

Moreover, the proposed method was also compared to the previously-proposed fine- tuning
based super-resolution of dynamic MRI [70], referred to here as "Fine-tuned SR DynMRI".
Figure 4.11 shows a qualitative comparison of these methods to the proposed DDoS-UNet
DynMRI while super-resolving 4% of the center k-space. Although the Fine-tuned SR
DynMRI approach could restore the information from highly undersampled input, the
result is very smooth and fails to recover the details of anatomy and fine structures
compared to the DDoS-UNet DynMRI. However, the Fine-tuned SR DynMRI works with
patches - making it suitable for GPUs with lesser memories (e.g. 12GB Nvidia GeForce
RTX 2080 TI) than the ones required for DDoS-UNet DynMRI (e.g. 32GB Nvidia Tesla
V100). But, working with patches also increases the processing time. During inference,
DDoS-UNet DynMRI took (on average of all subjects) 0.36 seconds for each time-point
(9 secs for 25 TPs). On the other hand, Fine-tuned SR DynMRI took 2 minutes per
time-point (50 minutes for 25 TPs - average over all five subjects), while working with a
batch-size of 1900 on the same GPU. If the same inference is performed using an inferior
GPU (Nvidia GeForce RTX 2080 TI) with a batch-size of 96 (similar to training and
fine-tuning stages), the inference time increases to X for each time-point. This makes
DDoS-UNet DynMRI better suitable for real-time or near real-time applications than
the Fine-tuned SR DynMRI approach. Moreover, the time required for inferring one
time-point using Fine-tuned SR DynMRI depends on the matrix size of the volumes, as a
larger matrix would result in more patches if the same patch size and strides are used. If
Fine-tuned SR DynMRI also works with the whole volume, this difference in inference
time can be resolved. But in that case, there will be only one forward pass using one static
volume for fine-tuning (currently it uses all the possible patches) - making it unsuitable.
Moreover, the Fine-tuned SR DynMRI approach requires an additional step after training
the model - the step of fine-tuning using subject-specific static scans. Depending upon
the available resources, the fine-tuning can take 8-10 hours - which can be avoided using
DDoS-UNet DynMRI as it does not require this step.
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4 DDoS-UNet DynMRI

Figure 4.6: An example comparison of the low-resolution images of the 4% of k-space
with reconstructed results of the DDoS-UNet DynMRI, compared against the
high-resolution ground-truth using SSIM maps. Four different time-points are

shown here, including the Antipasto phase (initial time point TP0). The
corresponding SSIM outputs are displayed on the top right of the image.
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Figure 4.7: An example from the reconstructed results compared against its ground-truth
(GT) of low-resolution images from 4% of k-space. Upper figure from left to
right: ground-truth, trilinear interpolation (interpolated input), SR result of
the UNet baseline trained with CHAOS dynamic (UNet CHAOS Dynamic)
and the DDoS-UNet DynMRI. Lower figures show the yellow and green and
ROIs of reconstructed results and the corresponding difference images from

GT of (a and b) trilinear interpolation, (c and d) SR result of UNet CHAOS
Dynamic, and (e and f) DDoS-UNet DynMRI.
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(a) 10% of the k-space

(b) 6.25% of the k-space

(c) 4% of the k-space

Figure 4.8: Comparison of baseline methods against the proposed DDoS-UNet DynMRI
of all subjects for different undersampling levels. The box plots show SSIM
(left column) and PSNR (right column) values of (a) 10% of the k-space (b)
6.25% of the k-space, and (c) 4% of the k-space.

80



4 DDoS-UNet DynMRI

(a) 10% of the k-space

(b) 6.25% of the k-space

(c) 4% of the k-space

Figure 4.9: Subject-wise line plots show the average SSIM (left column) and PSNR (right
column) values of all time-points for different undersampling levels (a) 10%
of the k-space (b) 6.25% of the k-space, and (c) 4% of the k-space. The
plots also portrays mean and 95% confidence interval of the resultant values
over the different time-points, excluding the initial one from the Antipasto
phase. The red, orange, blue and green lines represent the reconstruction
results of DDoS-UNet DynMRI, UNet trained with CHAOS Dynamic dataset,
zero-padding (sinc interpolation), and trilinear interpolation, respectively.
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(a) 10% of the k-space

(b) 6.25% of the k-space

(c) 4% of the k-space

Figure 4.10: Line plots show the average SSIM (left column) and PSNR (right column)
values over time-points, of all subjects for different undersampling levels (a)
10% of the k-space (b) 6.25% of the k-space, and (c) 4% of the k-space. The
red, orange, blue and green lines represent the reconstruction results of DDoS-
UNet DynMRI, UNet trained with CHAOS Dynamic dataset, zero-padding
(sinc interpolation), and trilinear interpolation, respectively.
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Table 4.3: The resultant values of SSIM, PSNR, and NRMSE (average values ± SD). The
table shows the comparison results for all different resolutions. The p-values
were less than 0.0001 for all scenarios.

Data 10% of k-space
SSIM PSNR NRMSE

Trilinear Interpolation 0.872±0.014 28.631±1.364 0.192±0.023
Zero-padded 0.949±0.013 36.138±1.753 0.082±0.016
UNet (CHAOS Dynamic) 0.959±0.012 37.376±1.275 0.024±0.003
DDoS-UNet DynMRI 0.980±0.006 41.824±2.070 0.014±0.003

Data 6.25% of k-space
SSIM PSNR NRMSE

Trilinear Interpolation 0.821±0.017 26.770±1.226 0.238±0.024
Zero-padded 0.910±0.018 29.761±1.640 0.124±0.019
UNet (CHAOS Dynamic) 0.941±0.012 35.113±1.566 0.031±0.006
DDoS-UNet DynMRI 0.967±0.011 39.494±2.121 0.019±0.005

Data 4% of k-space
SSIM PSNR NRMSE

Trilinear Interpolation 0.765±0.022 25.248±1.298 0.283±0.025
Zero-padded 0.863±0.021 32.520±1.508 0.170±0.025
UNet (CHAOS Dynamic) 0.914±0.012 33.620±1.035 0.036±0.004
DDoS-UNet DynMRI 0.951±0.017 37.557±2.179 0.024±0.006
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Figure 4.11: A qualitative results, compared the previously-proposed method [70] (Fine-
tuned SR DynMRI) against the proposed DDoS-UNet DynMRI. The recon-
structed results obtained from undersampled 4% of the k-space center.

4.5 Discussion

As shown in the qualitative and quantitative results, the proposed DDoS- UNet DynMRI
framework produced more promising results than the baseline methods. The proposed
method could improve the results further from deep learning based super- resolution using
the 3D modified UNet model. For the highest undersampling investigated in this work
(used only 4% of the k-space center), the proposed method demonstrated the average SSIM
of 0.951±0.017. On the other hand, the baseline UNet model without incorporating the
prior information of spatio-temporal relation resulted in the average SSIM of 0.916±0.015.
In contrast, the proposed DDoS-UNet DynMRI recovered the details of small structures
better than other baseline methods, which obtain only spatial information but not temporal
information.

The fundamental difference between the proposed and the baseline methods is the temporal
prior. The baseline UNet model only receives the low-resolution image as input; however,
the DDoS-UNet DynMRI receives the super-resolved previous time-point (as the temporal
prior) along with the current low-resolution image as input. Hence, the authors attribute
the improvements observed with DDoS-UNet DynMRI to the addition of the prior image.
The authors hypothesize that this prior image could help the network to super-resolve the
current time-point as both time-points are temporally related. The results in this study
support the hypothesis in equation 4.4.

Another observation relates to the Antipasto phase, referred to in Figure 4.3. In this phase,
the reconstructed results were obtained with the help of a prior image from the high-
resolution planning scan, while the remaining time-points were supported by a prior image
from the super-resolved of an earlier time-point. Since the planning scan was acquired
in a different session to the dynamic scan, the big differences of acquisition conditions,
such as subject positioning or respiratory cycle, could result in a poor reconstruction
during the Antipasto phase. Nonetheless, after super-resolving the initial time-point, the
network could reconstruct the images with better performance consistency for rest of the
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time-points. This evidence confirms the assumption of the proposed DDoS-UNet DynMRI
framework, which is discussed in section 4.3.4.

In comparison with our earlier patch-based super-resolution [70], which treated each
low-resolution time-point separately, DDoS-UNet DynMRI could exploit the temporal
information in the dynamic MRI and be able to reconstruct the image from the higher
undersampling levels (6.25% of the k-space in the previous work and 4% of the k-space
data in this work). Furthermore, the fine-tuning done in the previous work requires it to be
fine-tuned for every subject. Therefore, DDoS-UNet DynMRI eliminates this step and can
work directly with different subjects without any additional required time. Nevertheless,
the limitation of the proposed DDoS-UNet DynMRI is the computational complexity.
The DDoS-UNet DynMRI model needs high performance computing to handle the 3D
volumes, unlike the patch-based approach. Although the patch-based solution can be
an alternative way to save memory, it is not possible for DDoS-UNet DynMRI, due to
different time-points having different patches.

It can be noticed that the reconstructed results from undersampled 10% and 6.25% of the
k-space of the UNet trained with CHAOS dynamic (deep learning based) and zero-padded
(non-deep learning based) were not much different quantitatively for some subjects (see
figure 4.9 (a) and (b)). This occurrence could arise from the quality of the dynamic
training dataset. Since the original CHAOS volumetric image was interpolated by the
displacement fields from one volume to another (in total 24 times), the images might be
blurry and lose some anatomical details. Further improvement could be made by applying
realistic human breathing motions in the future.

In addition, the reconstruction (inference) time of DDoS-UNet DynMRI was approximately
0.36 seconds for each time point (in total 9 seconds for 25 TPs) using an Nvidia Tesla
V100 GPU. If the acquisition time (in Table 4.2) is taken into account, this method can
acquire and reconstruct each time point within less than a minute (0.71 seconds for 4% of
k-space with Protocol 1). This rapid scan time facilitates the application of near real-time
or real-time MRI. Moreover, the potential of further shortening the acquisition time could
be done by combining parallel imaging techniques such as GRAPPA (as presented in the
previous work [70]) with the proposed DDoS-UNet DynMRI method.

4.6 Conclusions

The proposed DDoS-UNet DynMRI framework shows that incorporating the spatio-
temporal information existing in time-series imaging could reconstruct the 3D dynamic
MRI so as to be similar to the ground-truth, even for super-resolving from relatively
low-resolution images. The results also show that the proposed framework improved
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qualitatively and quantitatively compared to other methods. With the help of the dual-
channel input, consisting of the temporal information in the time-series images and a
subject-specific high-resolution planning scan, the proposed framework demonstrates the
improvement qualitatively and quantitatively. Considering the highest undersampling
achieved in this work, which is theoretically equivalent to 25 times faster in acquiring the
image, such a fast speed could potentially be applied for real-time procedures, such as
MRI-guided interventions.
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5 Summary and Outlook

“There are no secrets to success. It is the result of preparation, hard work, and
learning from failure.”

– Colin Powell

In this chapter, the details of each investigated phase in the dissertation are summarized.
The contributions of this thesis lie in incorporating prior knowledge into dynamic MRI
reconstruction. The objective to speed up the acquisition process was achieved using deep
learning based super-resolution reconstruction. This approach could maximize the spatial
information of the low-resolution dynamic image while reducing the overall scan-time using
less-than-complete data. Lastly, potential future research is included in the final section.

5.1 Summary

The working steps during the course of research can be divided into the preliminary phase
(subsection 5.1 and 5.1) for identifying the feasible approaches, and the further exploration
of the prior-information phase (subsection 5.1). The work during phase I was commenced
by using image registration without using any machine learning techniques. Thus, this part
of the study is discussed briefly in this chapter, as it is not the main focus of fast dynamic
MRI reconstruction. Afterward, deep learning based methods were examined to speed
up the reconstruction process. The different types of prior information were incorporated
in the proposed methods. At phase II, the proposed super-resolution reconstruction of
dynamic MRI was improved by using fine-tuning the deep learning model parameters.
Finally, the approach during phase III intended to improve the quality of the previous work
with spatial and temporal information inherent in dynamic imaging through dual-channel
training.
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Phase I: Application of the breathing deformation model in image registration

The very first step toward the research goal, by using prior knowledge while using undersam-
pled (less-than-complete) data for accelerating the image reconstruction, was commenced
by applying breathing deformation model in image registration. The deformation model of
different time-points was estimated from undersampled data (low-resolution images) using
the B-Spline SyN deformable model and was applied to static high-resolution images. The
extraction of breathing deformation was performed based on the assumption that breathing
patterns are sparse and smooth. Although this preliminary study was not focused on the
deep learning based techniques, the results of the Phase I approach could be utilized for
highly undersampled data (taking only 0.5% of the k-space center) with high SSIM values
- but at the expense of a long processing time during registration.

This work was published as a conference full-paper at the 41st International Engineering
in Medicine and Biology Conference (EMBC 2019) [232] and the further extension of this
study was accepted as a poster for the 4th Image-Guided Interventions Conference (IGIC
2019) [233].

Phase II: Improved Deep Learning Based Super-resolution Reconstruction of
Dynamic MRI by Fine-tuning with a Subject-specific Scan (Fine-tuned SR DynMRI)

Based on the time-consuming process of traditional registration, the focus of the project
shifted towards the application of deep learning methods. In the second phase of the
research, the reconstruction of high-resolution MRI from the corresponding low-resolution
MRI using a patch-based super-resolution (SR) was proposed. A subject-specific planning
scan was used for fine-tuning the SR reconstruction. The highest acceleration factors with
the high evaluation matrices (SSIM and PSNR) obtained in this work were theoretically
equal to a factor of 16.

The preliminary results of this work were accepted as an oral presentation at the 37th
Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine
and Biology (ESMRMB 2020) [147]. The subsequent results as a conference abstract were
accepted at the 29th Annual Meeting of the International Society for Magnetic Resonance
in Medicine (ISMRM 2021) [148]. The final results of this study have been accepted for
publication in the Journal of Artificial Intelligence in Medicine [70].
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Phase III: Improved Deep Learning Based Super-resolution Reconstruction of
Dynamic MRI by Incorporating Temporal Information in Dynamic Dual-channel
UNet (DDoS-UNet DynMRI)

From phase II, deep learning based super-resolution (SR) has shown promising results in
dealing with sparse data. However, the available temporal information of dynamic MRI
has not been exploited in this prior work. Therefore, phase III extended the previous work
by improving on the previous model [214] using the DDoS-UNet DynMRI. Incorporating
temporal relationships inherently present in dynamic time series also helped to alleviate
the spatio-temporal trade-off in MRI. The proposed method demonstrated more accurate
results both numerically and visually compared with the other baseline methods., In
addition the lowest-resolution image that the proposed framework could achieve with high
accuracy was from taking only 4% of the k-space center.

The preliminary findings of this work were accepted as an oral presentation at the 38th
Annual Meeting of the European Society for Magnetic Resonance in Medicine and Biology
(ESMRMB) 2021, titled – “DDoS: Dynamic Dual-channel U-Net for improving deep
learning based super-resolution of abdominal dynamic MRI” [214]. The additional
experiment for motion-robust application was accepted as an abstract at the Joint Annual
Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting (ISMRM-ESMRMB 2022),
titled - "Motion-robust dynamic abdominal MRI using kt grasp and dynamic dual-channel
training of super-resolution U-Net (DDoS-UNet)" [234]. Eventually, the final results of
this work were accepted as a short paper in MIDL 2022 [71] and the manuscript has been
submitted to the Medical Image Analysis journal and is being reviewed [215].

5.2 Outlook

The proposed approaches in this thesis allow a relatively fast image reconstruction for
dynamic MRI. Therefore, these approaches could be a candidate for near real-time
applications such as interventions. Nonetheless, there are still some suggestions for further
research as follows:

• Generating more realistic human breathing motions and examining more patients to
improve the generalization and robustness of the frameworks.

• Experimenting with the framework with different undersampled k-space masks or
trajectories (e.g., variable density Poisson) to test for higher acceleration factors.

• Simulating an interventional radiology device such as a needle or catheter into the
undersampled images and investigating how the network handles the artifact, such
as magnetic susceptibility, caused from the device.
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• Extending the proposed frameworks to mitigate the spatio-temporal trade-off for
other dynamics applications such as cardiac cine imaging.
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A Additional Data

Extended Results of Baseline UNets: Trained with Dynamic CHAOS
Dataset compared with Trained with CHAOS Dataset (Non-dynamic)

To validate the quality of CHAOS dynamic dataset on the baseline UNet models, which was
artificially created from CHAOS dataset, the super-resolution (SR) results were compared
by UNet trained with dynamic CHAOS and with CHAOS dataset (Non-dynamic). Figure
A.1 portrays a quantitative results and A.2 shows a qualitative example results of one of
the subject.

For visual comparison, the results of the UNet model trained on the CHAOS dynamic
dataset could recover small structures and be less blurry than the UNet model trained on
the original CHAOS dataset. However, for numerical comparison, the UNet model results
that were trained on the original CHAOS dataset slightly outperformed quantitatively the
UNet model trained on the CHAOS dynamic dataset, despite the latter having 25 times
more volumes (24 artificially created time-points over the original one). This might be
caused by the poor quality of the artificial dynamic MRI dataset. As the interpolation
errors increased in the later time points from repeatedly applying the random elastic
deformation to the original data and the previous time-points, the images of the later
time points became blurry and less clear. Therefore, the quality of the dynamic MRI
dataset should be taken care of to improve the performance of the baseline UNet model
for training on the CHAOS dynamic dataset. Consequently, this can also improve the
performance of the DDoS-UNet DynMRI framework.

In addition, a dual-channel input network in the proposed framework manages the dual
inputs by handling them evenly before merging them to the initial layer. While the other
techniques for supplying more than one input, such as a dual-branch, can deal with the
two branches of inputs differently (e.g., different assigning weights). This technique could
be worth experimenting in the future work.
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(a) 10% of the k-space

(b) 6.25% of the k-space

(c) 4% of the k-space

Figure A.1: Box plots of SSIM and PSNR of SR result of UNet baselines trained with
CHAOS dataset compared with CHAOS dynamic dataset while super-resolving
of 4% of the k-space center.
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Figure A.2: A comparison results of UNet baselines trained with CHAOS dataset, compared
against UNet baselines trained with CHAOS dynamic dataset and the proposed
DDoS-UNet DynMRI. The results are reconstructed from 4% of the k-space
center.
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B Image Quality Assessment

The image quality assessment (IQA) is necessary to visualize image reconstruction quality.
IQA can be categorized into full-reference, no-reference, and reduced reference. The full-
reference IQA metrics, including structure similarity index (SSIM), peak signal-to-noise
ratio (PSNR), and normalized root mean square error (NRMSE), were used in this thesis.
The accuracy of the proposed approaches was achieved by comparing the reconstructed
images to the ground truth using the mentioned metrics.

For perceptual quality assessment, the structure Similarity Index (SSIM) was selected as
it can represent human perception. SSIM measures a group of pixels based on luminance,
contrast, and structure terms between images x and y. The values of SSIM typically range
between 0 and 1, and the value of 1 is perfectly identical. The formula of SSIM can be
express as:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

, (B.1)

where µx and µy denotes the local means, σx and σy are standard deviations, and σxy are
cross-covariance for images x and y respectively. By default, c1 = (k1L)2 and c2 = (k2L)2,
where L is the dynamic range of the pixel-values, k1 = 0.01 and k2 = 0.03.

Moreover, the model performance was measured statistically with PSNR and NRMSE.
PSNR is a pixel-based metric, which calculates the pixel individually based on mean-square
error (MSE) by using the equation:

PSNR = 10 log10

(
MAX2

i

MSE

)
, (B.2)

where MAXI is the maximum signal value of the image. Normalized root mean square
error (NRMSE) determines the variance between observed and predicted values, which
can be calculated using:

NRMSE = RMSE ∗
√

N

||y||
, (B.3)
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where || · || represents the Frobenius norm, N is the number of data points, and y is the
ground truth. Additionally, the mean-square error can be determined by:

MSE = 1
2

n∑
i=1

(yi − ŷi)2 (B.4)

where yi and ŷi are observed and predicted values, respectively. Lastly, the standard devia-
tion (s), which used for measuring the differences between ground-truth and reconstructed
images, is calculated using the expression:

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2, (B.5)

where N is the total number of samples, xi and x are individual value and the sample
mean, respectively.
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C GitHub Repository and Colab Notebook

The scripts of this work were written in Python, which can be found on GitHub and
Google Colab Notebook. The implementation of the network was done using Pytorch.
In addition, the scripts to visualize the results from both approaches can be found here
https://github.com/soumickmj/DDoS/visualisation.

Improved Deep Learning Based Super-resolution Reconstruction of
Dynamic MRI by Fine-tuning with a Subject-specific
Scan (Fine-tuned SR DynMRI)

Source

GitHub: https://github.com/soumickmj/FTSuperResDynMRI and
Hands-on Tutorial with Google Colab Notebook: https://colab.research.google.com/
drive/1DMFO3PoUACzGy5OONhaJLGvvUP3W1cYM?usp=sharing

Improved Deep Learning Based Super-resolution Reconstruction of
Dynamic MRI by Incorporating Temporal Information in Dynamic
Dual-channel UNet (DDoS-UNet DynMRI)

Source

GitHub: https://github.com/soumickmj/DDoS and
Hands-on Tutorial with Google Colab Notebook: https://colab.research.google.com/
drive/1s0LzhpiiG0FxEpGcXCk79U4rcG1phkuE?usp=sharing
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