
Analysis and Removal of Code Clones
in Software Product Lines

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: Diplom Informatiker Sandro Schulze

geb. am 04.06.1980 in Osterburg (Altmark)

Gutachter:

Prof. Dr. Gunter Saake,
Prof. Dr. Ina Schaefer,
Prof. Dr. Michael W. Godfrey

Ort und Datum des Promotionskolloquiums: Magdeburg, 18.01.2013

ii

University of Magdeburg

School of Computer Science

Dissertation

Analysis and Removal of Code Clones in Software

Product Lines

Author:

Sandro Schulze

October 22, 2012

Advisors:

Prof. Gunter Saake

Otto-von-Guericke University of Magdeburg

Prof. Ina Schaefer

TU Braunschweig

Prof. Michael W. Godfrey

University of Waterloo (Ontario, Canada)

Schulze, Sandro:
Analysis and Removal of Code Clones in Software Product Lines
Dissertation, University of Magdeburg, 2012.

Abstract

Software maintenance is the main driver of total costs in the lifecycle of long-living
software systems. Code clones, that is, the replication of code fragments across the
system, decrease maintainability: It increases the code size and hinders manual code
change, inspection, and analysis. Intensive research has been spent in the last two
decades to determine the nature of clones, specifically why and where they occur as
well as whether they impair the maintenance of software systems. While recent studies
expressed doubt on the general harmfulness of clones, it is commonly accepted that the
awareness of existing code clones in software system is indispensable in any case.

Recently, software product line engineering gained momentum since it provides a sys-
tematic approach for reuse amongst a set of similar programs, commonly referred to as
software product lines (SPL). An SPL allows the programmer to manage a set of pro-
grams by describing variabilities and commonalities between them in terms of features.
In this context, a feature is an increment in end-user visible functionality. As a result,
a particular program can be derived by selecting the desired features and subsequently
composing all corresponding assets.

The goal of this thesis is to bridge the gap between both research areas, reengineer-
ing & maintenance (where code cloning belongs to) and software product lines. We
argue, that SPLs evolve even more than single software systems and thus, maintenance
becomes even more complex. Hence, it is important to figure out specialities of SPLs
regarding software reengineering. In this thesis, we focus mainly on code clone analysis
and removal.

First, we present results from empirical studies that emphasize the existence of clones
in SPLs. More specifically, we provide insights why clones occur in SPLs and point out
differences between compositional and annotative SPLs.

Second, we propose variant-preserving refactorings for compositional software product
lines as mean for code clone removal. We present particular refactorings in a catalogue-
like manner and demonstrate their applicability by means of a case study.

Acknowledgements

Writing a dissertation is a long road to go with many dead-ends and junctions. Hence, it
is not easy to follow the right way straight to the final destination and more than once,
this way is characterized by throwbacks and privations. But it also means a development
of scientific and social skills in a way only few professions provide. However, I would
have been never able to follow this path and making this invaluable experiences without
many people that accompanied and supported me in different ways. First and foremost,
I want to thank Thekla and my lovely son Richard. Their support, love, and sympathy
gave me the power to make my way and overcome times of uncertainty and doubts.
Furthermore, I want to thank my parents for believing in me and granting me an
invaluable independence already in young years.

During my life as a researcher, many people supported me as teacher, mentor, or friend.
First, I want to thank Sven Apel, for both, being a friend and a mentor. He actually
draw my interest in scientific research, back in 2006, and accompanied me all the way.
He helped me to understand research in its entirety, by controversial discussions, con-
structive criticism, and by showing me different perspectives on certain research topics.
In that, he made me a lot the researcher that I am today.

Second, I want to thank my advisor Gunter Saake, who gave me the opportunity of
pursuing an academic career. During the time in his research group, he supported me
with guidance but also with high degree of freedom, which essentially contributed to
my development as a researcher.

I further want to thank my external advisors Ina Schaefer and Mike Godfrey. Especially
in the final stage of my thesis, Ina provided me with valuable feedback and a different
perspective on my research. Furthermore, I am grateful to her for the chance of being a
researcher in future and for taking off the load in the crucial phase of my dissertation.
Mike not only agreed to be part of my committee and took the long journey from
Canada to attend the PhD defense, which is a great honor for me. He also provided
useful feedback and tips for improving the final version of this dissertation.

Furthermore, I want to express my gratitude to the (current and former) members of
the Database Research Group at the University of Magdeburg, in particular, Christian
Kästner, Marko Rosenmüller, Martin Kuhlemann, Norbert Siegmund, Janet Siegmund,
Thomas Thüm, Mario Pukall, Andreas Lübcke, and Martin Schäler. It was always a
pleasure to work in such a creative, productive and friendly atmosphere.

vi

A special thank goes to the Metop research institute, namely Thomas Leich and Dan
Klingenberg, who not only showed me the industrial side of life but also accompanied
me in my very early days as a researcher.

Finally, I want to thank a couple of colleagues for collaborations and discussing a broad
range of research topics. In particular, I like to thank Elmar Juergens, Mike Godfrey,
Jan Harder, Nils Göde, the PASED gang (namely, Miguel Ferreira, Mauricio Aniche,
Dimitris Athanasiou, Daniele Romano, and Martin Beck), and Jörg Liebig.

Contents

List of Figures

x List of Figures

List of Tables

xii List of Tables

1. Introduction

Code clones have been recognized to be the most intrinsic and worst code smell in
software systems [?]. Indeed, a multitude of studies account for the existence of code
clones in such systems (e.g., [? ? ?]). Generally, they are used in a copy,paste&adapt
fashion to reuse existing part of the source code. Recently, Software Product Lines
(SPLs) have been proposed as a more structured approach for reusing source code
artifacts (as well as non-code) amongst similar, variable software systems. To this end,
different languages, paradigms, and implementation approaches have been proposed
that partially overcome problems of current approaches for implementing highly variable
and customized software systems. This thesis focuses on analysis of software product
lines with respect to code clones. In particular, we investigate whether clones exist
and how to characterize them in software product lines, depending on the respective
implementation approach. Furthermore, we propose a first approach for code clone
removal in SPLs by means of refactoring.

1.1 Overview

Replicated code fragments, commonly referred to as code clones, have been subject to
intensive research for over two decades. Since they play a pivotal role in the process of
software maintenance, considerable effort has been expended to analyze when and how
code clones negatively influence software quality and maintenance. Most commonly,
researchers report about inconsistent changes and propagating and introducing errors
as the main drawbacks of code clones for software quality (e.g., [?]). Additionally,
increased code size and multiple modifications for one change request impede mainte-
nance of the software systems as well. In contrast, recent studies express doubt on the
longstanding sentiments about the harmfulness of clones. In particular, they show that
code cloning is used as kind of implementation concept such as templating or forking
and that clones are relatively stable with respect to changes [? ?].

2 1. Introduction

class Stack {

int pop() {/*...*/}

#ifdef Undo

int backup;

void undo() {/*...*/}

#endif
#ifdef Peak

int peak() {/*...*/}

#endif
void push(int v) {

#ifdef Undo

backup=peak();

#endif
/*Common Code*/

}

}

(a) annotative

Feature BaseStack

class Stack { ...

void push(int v) {/*...*/}

int pop() {/*...*/}

}

Feature Peak

refines class Stack {

int peak() {/*...*/}

}

Feature Undo

refines class Stack { ...

int backup;

void undo() {/*...*/}

void push(int v) {

backup=peak();

original(v);
}

}

(b) compositional

Figure 1.1: Examples for (a) annotative and (b) compositional implementation ap-
proach for software product lines

However, while code clone research mainly focuses on general purpose (monolithic) soft-
ware systems, software development changed from single programs to program families
in recent past. To this end, software product line engineering provides means to develop
a set of related systems from a common code base. The different programs (also called
variants) that are part of the resulting SPL can be described by their commonalities
and variabilities in terms of features. Consequently, a particular variant of a software
product line can be derived by selecting the respective features. Although it is still
a quite new way of developing software systems, the product line approach has been
adopted by industrial as well as open source systems and it is expected to increase in
the future [? ?].

Different approaches exist for implementing software product lines that go beyond the
often used copy-and-branch approach. In this thesis, we mainly focus on two categories:
annotative and compositional implementation techniques. A prominent example for the
annotative approach is the C preprocessor (cpp). The cpp is widely adopted in industry
to express variability in source code. To this end, the respective code fragments are
annotated with constructs such as #ifdef or #endif. In ??a, we show an example of
cpp usage for introducing variability in a simple stack implementation for features Undo
and Top. For generating a concrete stack program, the desired features can be selected,
usually specified as a configuration file or command line parameter. Afterwards, the
preprocessor includes the code belonging to the selected features for compiling the final
program (while excluding all other features).

Although the cpp provides a simple but powerful and language-independent way of
introducing variability in software systems, it has received a lot of criticism in the
literature, culminating in terms such as ”#ifdef hell” and ”#ifdef considered harmful” [?

1.1. Overview 3

?]. This criticism mainly relies on several studies that claim negative effects of the cpp
on code quality, maintainability, and readability [? ? ? ? ?]. In fact, the preprocessor
breaks with the fundamental and widely accepted concept of separation of concerns.

Despite this heavy and contiguous criticism, the cpp is the mechanism of choice in
practice for expressing variability in software systems. For instance, HP implemented
the software for their printers as a software product line with approximately 2 000
features using the C preprocessor [? ?]. Another example from the open source domain
is the Linux kernel that is under continuous development since three decades and make
use of the cpp for variability, meanwhile consisting of more than 5 000 features [? ?].
Besides the widely used C preprocessor, proprietary tools for product line development
such as pure::variants or Gears even provide their own preprocessor [? ?].

However, in academia not much attention is given to annotative approaches (and the
C preprocessor in particular). Instead, academic research focusses on compositional
approaches to implement software product lines. A prominent approach is Feature-
Oriented Software Development (FOSD) that aims at modularizing features for efficient
composition and reuse [?]. Different implementation techniques for FOSD exist such
as components [? ?], collaboration-based design [?], Aspect-Oriented Programming
(AOP) [?], Feature-Oriented Programming (FOP) [?], or generative programming [?
]. In this thesis, we mainly focus on FOP as compositional approach of our choice.
The pivotal idea of FOP is to modularize a feature into a cohesive unit called feature
module1. Then, a concrete program can be generated by composing these features,
based on a user-specific feature selection (i.e., configuration). In ?? b, we show an
example for feature-oriented software product lines using FeatureHouse, a compo-
sitional approach based on superimposition [?]. As with the annotations, we use
the Stack SPL example, encompassing two features Peak and Undo. Furthermore, we
added the feature BaseStack, representing the least common code between all variants
of the SPL (equivalent to the code that is not annotated in ?? a. For each feature,
we can add classes, methods, or fields but also extend existing ones. To generate a
variant, a stakeholder selects the features of interest, which are then composed to the
final program.

However, independent of the chosen implementation approach, software product lines
exhibit certain characteristics that are similar to those of standalone systems. First and
foremost, even SPLs undergo the process of software evolution. Hence, a continuous
process of change takes place, indicated by adding, deleting, and changing source code.
Unfortunately, only little is known how this process influences maintainability or quality
of product lines and how does this diverge compared to standalone software systems.
In particular, and most of our interest, no work exists that investigates the role of
code clones in software product lines. We argue, that analyzing software product lines
regarding its maintenance and reengineering opportunities and requirements is crucial
for their durability and efficiency (regarding further development) in the same way as

1More precisely, every artifact that belongs to a certain feature (code and non-code artifacts) is
encapsulated by this feature module.

4 1. Introduction

for single software systems. Since code clones are a very well-known phenomenon that
is widely considered to potentially hamper the maintainability of software systems, we
think that this is a good starting point to put a stronger emphasis on reengineering in
software product lines.

1.2 Contribution

The goal of this thesis is twofold. First, we provide insights on code cloning in software
product lines. In particular, we emphasize to what extent code clones occur in SPLs and
whether differences exist regarding the implementation approach of SPLs. Furthermore,
we provide some characteristics of these clones as a first step towards managing such
clones proactively or even avoiding them in future. Second, we present a first approach
of how to remove code clones in software product lines by applying refactorings. While
this is a common and well-explored approach in standalone programs, refactoring is a
non-trivial task in the presence of variability. In particular, we present how to find clone
refactoring candidates and how to take variability into account during the refactoring
process.

Characterization of Code Clones in SPLs

We present empirical studies to show that code clones occur quite frequently in soft-
ware product lines, independent of the actual implementation approach. Based on our
analysis, we specifically show that code clones in feature-oriented SPLs mainly occur
between alternative features. Moreover, our study reveals that these clones encompass
complete syntactical units such as conditional branches or even methods. Both charac-
teristics indicate a certain potential for code clone removal, though we can say nothing
about the harmfulness of these clones.

Afterwards, we show code clones exist in annotated SPLs as well, though less frequent
and with different characteristics. In particular, our case study partly confirms that
the occurrence of such clones is a matter of granularity regarding the preprocessor
annotations used to express variability. Beyond that, we observed that these clones
mainly occur within one feature.

Code Clone Removal in FOP

Refactoring software product lines is different, because we have to ensure the unchanged
behavior of all variants instead of only one single program. To this end, we propose the
notion of variant-preserving refactoring, which takes the dimension of features explicitly
into account and propose exemplary refactorings in a catalogue-like manner. Further-
more, we suggest which information can and must be used to identify candidates for
code clone removal amongst all detected clones. To demonstrate the applicability, we
present a small case study, where we apply the proposed refactorings to remove code
clones in feature-oriented software product lines.

1.2. Contribution 5

Research Questions

Since research on code clones is a very broad area with many different facets, there is a
non-negligible risk to get lost in space. To stay focused, we guide this thesis, especially
the sections encompassing our empirical studies, by four research questions. These
questions are of special importance to guide forthcoming research on clones in SPLs
in future and thus serve as a common basis for furture research activities. We present
these research questions in the following.

RQ 1: Do code clones exist in software product lines?
Although there is a large body of knowledge on code clones in software systems, no work
exists that investigates clones from a product line perspective. Hence, with this first
question we put emphasis on whether clones even exist in software product lines. In
particular, we are interested whether new mechanisms and concepts such as refinements
in FOP may overcome certain limitations and thus render code clone occurrences to be
meaningless. In case of the C preprocessor, it is of special interest for us to what extent
code clones exist within preprocessor annotations, which is a different view compared
to former studies on code clones in C systems (e.g., [?]).

RQ 2: Can we observe certain patterns of cloning that are specific to software product
lines?
Previous research on ode clones investigated certain patterns for both, relevant as well
as incidental code clones. For instance, an example for the latter are getter and setter
methods or blocks of initializing variables, which are common in software systems but
do not represent interesting or harmful clones. In contrast, a pattern for relevant code
clones could be similar code fragments in sibling classes that have a common superclass.
In software product lines, we have an additional dimension, that is, features. Taking
this dimension into account, we aim at investigating whether there are certain, recurring
patterns how clones disseminate between features. In particular, we are interested in
the relation between features that share code clones. This gives us a first idea where
clones occur, whether certain feature groups (i.e., features that are related to each
other) are more prone to clones and maybe whether we can abstract these clones away.
Additionally, we aim at investigating on which granularity clones mainly exist, that is,
do they occur on arbitrary level or rather on block level such as loops, methods, or even
whole classes or features.

RQ 3: Is it possible to judge on the harmfulness of code clones in software product
lines? And if so, how?
The harmfulness of clones is a topic that gained momentum in the recent past and that is
controversially discussed amongst researchers. Furthermore, it is a very important and
central issue in code clone research, because it has a direct effect how to manage detected
code clones. Numerous studies exist that argue in favor and against the harmfulness
of clones and which take different information such as evolution or the occurrence of
bugs into account. While we take only limited information into account for answering
this question, we primarily want to know at least whether detected clones in software
product lines are avoidable and thus a result of bad design or missing abstraction.

6 1. Introduction

Although we know that this will not answer the research question in its entirety, we
argue that this could be a first step on reason about detected clones in software product
lines.

RQ 4: Is it possible to remove code clones from a product line point of view? Refac-
toring in software product lines is a non-trivial task due to the presence of variability.
Furthermore, it is open whether and how code clones occur in software product lines.
So, what can we say about their removal? With this question we aim at analyzing un-
der which circumstances code clones can be removed (which is different to the question
whether they should be removed). Moreover, we want to figure out whether there are
criteria that allow for code clone removal, independent of the implementation approach.

1.3 Outline

In the following, we present the overall structure of this thesis

In ??, we provide the background on code clone research, encompassing detection, anal-
ysis, and management of clones. Hence, the reader is familiar with the main concepts
and terminology of code clone research, which is important for further chapters of this
thesis.

Beside code clones, software product lines are an important aspect of this thesis. We
introduce the main concepts such as Software Product Line Engineering (SPLE), vari-
ability modeling or implementation approaches for SPLs in ??. For the latter, we
introduce FOP and the C preprocessor in more detail.

After laying the foundations for this thesis, we present theoretical thoughts on clones in
SPLs in ??. To this end, we address four criteria, that are important in the context of
software product lines and provide reasoning on code clones (and their occurrence) with
respect to these criteria. Specifically, we aim at discussing how these criteria influence
code clones and how this may differ between compositional and annotative approaches.

The next two chapters encompass our case studies on code clones in the SPLs. In ??,
we present a case study on clones in feature-oriented SPLs. Particularly, we point out
to what extent clones occur in such SPLs, whether they are specific to FOP, and how
such clones are related to features. Additionally, we focus on differences regarding the
development process, that is, whether the analyzed SPLs are developed from scratch
or refactored from legacy applications. In ??, we analyze code clones in cpp-based
product lines, especially regarding their occurrences within preprocessor annotations.
Within this analysis, we investigate whether the discipline of annotations effects the
amount of code clones.

?? complements the two previous chapters by providing insights on code clone removal
in software product lines using refactoring. Initially, we discuss refactoring in software
product lines in general and why and how it is different from refactoring single software
systems. Subsequently, we propose exemplary refactorings for feature-oriented software
product lines in the fashion of Fowler et al. [?]. Next, we present a case study, where

1.3. Outline 7

we apply these refactorings to remove code clones in an exemplary product line. Finally,
we discuss our results and the generalizability of our approach for cpp-based SPLs.

In ??, we summarize this thesis and point out our contributions along with the research
questions, we posed in ??. In ??, we list ideas and suggestions for future work, based
on the results of this thesis.

Parts of this thesis are based on previous work, published in [? ? ?].

8 1. Introduction

2. Software Clones – Detection,
Analysis, and Management

Software clones, that is, the replication of code fragments also known as code clones,
have been subject of intensive research since over two decades. Originally, the aim was
to detect plagiarism in student projects [? ?]. Since then, a lot of research has been
done to investigate how and why code clones occur. However, there are still open issues
in code clone research. First and foremost, there is not even yet a clear definition of
what a clone actually is. The most common definition is given by Ira Baxter, who
defined code clones as follows [?]:

Clones are segments of code that are similar according to some definition
of similarity.

To get an idea of what is a clone, we introduce different types of clones, as detected by
current tools, in ??. In this context, clone detection is the process of finding code frag-
ments that are similar to each other. Within this thesis, we mainly focus on syntactical
similarity. We give an overview of existing clone detection techniques and their respec-
tive notion of similarity in ??. Since the sheer detection of clones provides only little
information, they are usually analyzed further. This process is called clone analysis
and aims at a deeper understanding of clones. Amongst others, questions such as how
clones are used, how they evolve, or how they can be removed are of interest during
the analysis phase. We describe the current state in clone analysis together with clone
detection in ??.

Finally, the treatment of clones, called clone management, is an important aspect in
code clone research. Basically, we distinguish between two approaches for clone manage-
ment: First, code clone removal, which aims at removing the clones, usually by means
of refactoring. Second, code clone controlling, which leaves the clones in the system but

10 2. Software Clones – Detection, Analysis, and Management

provides means to developers and managers to keep track of them. To decide which
approach is appropriate for particular clones, the harmfullness of clones plays a pivotal
role. However, this topic is discussed controversially amongst researchers and not yet
solved. In ??, we describe the current state of clone management.

2.1 Types of Clones

As already mentioned, the definition of code clones is somewhat vague regarding the
similarity between two or more code fragments. As a result, a categorization, which is
widely accepted, has been proposed in the literature [? ?] that distinguishes between
different types of clones, according to their similarity. In the following, we explain these
different clone types by means of a taxonomy, which summarizes similar approaches of
other researchers [? ? ? ? ?].� �

1 class ... {

2

3 public void search() {

4 /*...*/

5 for(int j=0;j<(urep.members).size();j++) {

6 vaux=(Vertex) (urep.members).get(j);

7 vaux.representative=vrep;

8 (vrep.members).add(vaux);

9 }

10 }

11 /* more source code...*/

12 }� �� �
1 class ... {

2

3 public void search() {

4

5 for(int j=0;j<(urep.members).size();j++) {

6 vaux=(Vertex) (urep.members).get(j);

7 vaux.representative=vrep;

8 (vrep.members).add(vaux);

9 }

10 }

11 /* more source code...*/

12 }� �
Figure 2.1: Example of Type-I clones, taken from the Graph Prod-
uct Line (GPL) [?]

2.1.1 Type-I Clones

Code fragments that are (almost) identical are called Type-I clones. Only minor differ-
ences regarding formatting such as comments or whitespaces are allowed. As a conse-
quence, such clones can be detected by simple text processing tools such as the Unix
diff tool or even String comparison. For instance, in ?? we show two code fragments,
which are identical except for a missing comment in Line 4 of the second fragment.
Using the diff tool for detecting clones results in the following output:

2.1. Types of Clones 11

� �
1 protected void createTank(){

2 Super().createTank();

3 int x, y;

4 x = GAME_WIDTH * 2 / 3 / 3;

5 y = (int) (2.5 * x);

6 menu.add(Sprach.TANKB,

7 loadImage("choice22.png",x,y),

8 loadImage("choice02.png",x,y),

9 2);

10 }� �

� �
1 protected void createTank()

2 {

3 Super().createTank();

4 int x, y;

5 x = GAME_WIDTH * 2 / 3 / 3;

6 y = (int) (2.5 * x);

7 menu.add(Sprach.TANKA,

8 loadImage("choice11.png",x,y),

9 loadImage("choice01.png",x,y),

10 0);

11 }� �
Figure 2.2: Example of Type-II clones, taken from the TankWar SPL

4c4

<

--

> /*...*/

The result indicates that there was only a change in Line 4 (4c4), which is an comment
that has been added (or removed, respectively).

2.1.2 Type-II Clones

While Type-I clones are easy to detect with simple tools, they are not very common.
Instead, a common pattern of cloning is Copy&Paste-and-Modification, which leads to
Type-II clones. These clones diverge more than Type-I clones so that even differences
in names of identifiers, literals, types, layout, or comments are included in this type
of clones. In ??, we show two code fragments that are Type-II clones due to different
modifications. First, there are differences regarding the formatting of the code, because
the code fragment on the right-hand side has the opening bracket of method create-

Tank on a new line. This may be due to programmer preferences, but also due to
programming guidelines. Second, both code fragments differ in a constant (Line 6) and
two literals (Line 7 and 8). This is a typical example for reusing code by Copy&Paste-
and-Modification, for example, because similar or even the same functionality is needed
in a different context. (e.g., a different class). For detecting Type-II clones, parameter-
ized string matching algorithms can be used, which is why these clones are also called
parameterized or p-match clones [? ?].

2.1.3 Type-III Clones

Type-III clones go even one step further than Type-II clones in the way that they
additionally allow changing, adding, or deleting statements. Since deleting a statement
from one code fragment can be also interpreted as adding to the corresponding (cloned)
statement1, we treat both terms (deleting and adding statements) synonymously. In ??,
we show a Type-III clone with both, a deleted as well as a changed statement. In detail,

1Because the information, which code fragment is a copy of the other, is usually not available.

12 2. Software Clones – Detection, Analysis, and Management

the top code fragment in ?? contains a method call in Line 7, which is deleted in the
bottom code fragment. Furthermore, the top code fragment contains a method call of
the variable textField in Line 8, whereas the bottom code fragment contains a value
assignment of variable textField (Line 7). Since deleting statements results into gaps
(when comparing two similar code fragments), Type-III clones are also referred to as
gapped clones, where the missing statements are called gaps [? ? ?].� �

1 class PC {

2 /*...*/

3 if (option.equals(Sprach.Name)) {

4 this.setStatus(GameManager.TANK_SELECTED);

5 this.gameManager.setStatus(GameManager.TANK_SELECTED);

6 this.name = textField.getText();

7 this.requestFocus();

8 textField.setVisible(false);

9 menu = null;

10 }

11 }� �� �
1 class Handy {

2 /*...*/

3 if (option.equals(Sprach.Name)) {

4 this.setStatus(GameManager.TANK_SELECTED);

5 this.gameManager.setStatus(GameManager.TANK_SELECTED);

6 this.name = textField.getText();

7 textField=null;

8 menu = null;

9 }

10 }� �
Figure 2.3: Example of Type-III clones, taken from the TankWar SPL

In contrast to the previously presented clone types, for Type-III clones no clear definition
of similarity exists. The reason is that there is no precise borderline to what extent two
code fragments are allowed to diverge (or overlap, from an inverse point of view) and
still can be considered as clones. In practice, users of clone detection tools can usually
specify a similarity threshold to determine this borderline [? ? ? ?]. However, this
threshold has a huge impact on the detection result (especially regarding meaningless
clones) and has to be chosen carefully.

2.1.4 Type-IV Clones

We introduce this category just for completeness, though this type of clones does not
fall into the category of syntactical clones, which we focus on. Indeed, Type-IV clones
can be syntactically different: The cloning relation for his clone type is based on the
semantic similarity between two or more code fragments and thus they are also called
semantic clones. While some approaches assume that Type-IV clones still exhibit a
certain syntactical similarity [?], we rely on the notion of Juergens et al., where two
(semantic) clones must be behaviorally equivalent [?]. Hence, for the same initial values
(i.e., input), two code fragments have to compute the same result (i.e., output) to be
Type-IV clones.

2.1. Types of Clones 13

� �
1 int a, b, c;

2

3 c = a * b;� �

� �
1 int x, y, z;

2

3 int temp = x;

4 z=0;

5 while (temp > 0) {

6 z = z + y;

7 temp = temp - 1;

8 }

9 while (temp < 0) {

10 z = z - y;

11 temp = temp + 1;

12 }� �
Figure 2.4: Example of Type-IV clones, taken from [?]

In ??, we show two code fragments that are behaviorally but not syntactically equal
and thus Type-IV clones by our definition. There is an ongoing debate on whether it is
useful to detect semantic clones. On the one hand, semantic clones could be the result
of intentional obfuscation of pieces of code, which have been copied. By obfuscating
the copied code, the clone producer (e.g., a developer) can hide the fact of cloning,
for example, for plagiarism or licensing issues. On the other hand, it is discussed
controversially whether semantic clones have an effect on software maintenance.

The previously defined clone types do not exist in isolation. Rather, they are inter-
related, based on their (sometimes vague) definition. For instance, a Type-I clone is
always a Type-II clone, but not vice versa. In ?? we show the relation amongst all four
clone types using a Venn diagram.

������ �������������� ������ ��������������������������

Figure 2.5: A Venn diagram, illustrating the relation between the different clone types

2.1.5 Beyond Code Clones

Recently, clone researcher put their focus on other artifacts that are different from source
code. Nevertheless, all of these non-code artifacts are related to source code or to the
overall software development process. Although this topic is beyond the scope of this
thesis, we give a short overview about existing work within this field of research. For
instance, Juergens et al. analyzed cloning in requirements specifications [?]. Since these
specifications are often a starting point for the implementation of a software system,

14 2. Software Clones – Detection, Analysis, and Management

code clones in such specifications could lead to code clones in the software systems later
on. Another use case are models used for software development. For instance, in model
driven development (MDD), these models are used to generate the final source code.
Hence, it is more useful to detect the clones on the model itself instead of the generated
code. Examples for this use case are clones in formal models or in graph-based models
such as Matlab/Simulink [? ?]. Finally, some approaches exist that address code
clones in UML sequence diagrams and domain models [? ?].

2.2 Detection and Analysis of Clones

Clone detection and analysis, though two distinct steps, are tightly coupled regarding
clone processing in its entirety. First, clone detection is obviously the most fundamental
step, because it produces a vast amount of data, indicating code clone occurrences. The
user (i.e., a developer) has only few possibilities for configuration of this step, mainly
targeting clone length, clone type, or similarity threshold. However, for assessing and
managing clones, the information of the clone detection step is too coarse-grained.
Hence, a more specific and detailed view on the data, produced by clone detection, is
necessary, which is the main purpose of code clone analysis. Amongst others, filter-
ing out accidental or uninteresting clones, focussing on specific clone types or making
statistical analyses regarding clone granularity are possible points of interest during
code clone analysis. Based on the result of the analysis, further steps, associated with
clone management, can be performed such as code clone visualization or removal. We
illustrate the whole process of clone detection, analysis, and management in ??.

Source Code
Transformation

Detection
Algorithm

Detection
Data/Report

Clone Detection Clone Analysis

Clone Filtering/
Querying

Clone
Classification

Further
Analysis

Clone Management

Clone Removal

Clone
Controlling

Clone
Visualization

Figure 2.6: Overview of the whole clone detection process

In the following, we will give a detailed overview of the particular steps, performed
during clone detection as well as clone analysis, indicated by the diamonds in ??. In
the same way, we elaborate on clone management steps in ??.

First, we provide information on how to build a clone relationship and how the accu-
racy of clone detection can be determined, because we rely on this information in the
remaining parts of this section.

2.2. Detection and Analysis of Clones 15

2.2.1 When is a Clone a Clone?

For each clone detection tool, it is inevitable to reliably build a clone relationship to
decide whether code fragments are code clones or not. Determining such a relation
between two code fragments is straightforward by using the definition of similarity,
described in the previous section. However, often multiple copies of a code fragment
exist and have to be detected as corresponding code clones. Such corresponding clones
are often encompassed as clone class (and sometimes referred to as clone group or clone
set). While each clone detection tool may have a slightly different definition for such a
relationship, all of these relations are binary and require some relational properties to
be fulfilled. In the remainder of this thesis, we rely on the clone relationship defined
of Kamiya et al., which is defined as an equivalence relation [?]. Hence, a clone
relationship between two code fragments must fulfill the following properties:

• Reflexivity: Given a code fragment A, a clone relationship must exist to itself,
denoted as A ∼ A.

• Symmetry: Given two code fragments A and B, a clone relation must exist bi-
directional, i.e., if A is a clone of B then B is a clone of A: A ∼ B → B ∼ A.

• Transitivity: Given three code fragments A, B, and C. If a clone relation between
A and B as well as between B and C exists, then a clone relation must exist
between A and C as well: A ∼ B ∧B ∼ C → A ∼ C.

As a result of this definition, a clone class is an equivalence class where a clone relation
exists between any code fragments that belong to this class. Furthermore, the properties
reflexivity and symmetry exist for each type of code clones (i.e., Type-I to Type-IV),
while transitivity only holds for Type-I and Type-II clones. We want to illustrate this
fact by a small example, which we show in ??.� �
1 int x, y, z;

2

3 int temp = x;

4 z=0;

5 while (temp > 0) {

6 z = z + y;

7 temp = temp - 1;

8 }

9 while (temp < 0) {

10 z = z - y;

11 temp = temp + 1;

12 }� �
(a) code fragment
A

� �
1 int w, x, y, z;

2

3 int temp = x;

4 z=0, w=0;

5 while (temp > 0) {

6 w++;

7 z = z + y;

8 temp = temp - 1;

9 }

10 while (temp < 0) {

11 w--;

12 z = z - y;

13 temp = temp + 1;

14 }� �
(b) code fragment
B

� �
1 int w, x, y, z;

2

3 int temp = x;

4 z=0, w=0;

5 while (temp > 0) {

6 w++;

7 z = z + y;

8 temp = temp - 1;

9 printNumbers(w,z);

10 }

11 while (temp < 0) {

12 w--;

13 z = z - y;

14 temp = temp + 1;

15 printNumbers(w,z);

16 }� �
(c) code fragment C

Figure 2.7: Example for non-transitivity of Type-III clones

16 2. Software Clones – Detection, Analysis, and Management

Within our example, the code fragments A and B form a Type-III clone pair, because
two lines have been added to code fragment B (in Line 6 and 11, respectively). In the
same way, the code fragments B and C form a clone pair of the same type. However, if
we consider code fragments A and C, we observe that they differ in four lines (Lines 6,
9, 12, 15 have been added to C), which corresponds to a similarity of 75%. Depending
on the specified similarity threshold, it is absolutely possible that these fragments are
not detected as clones. Hence, the three code fragments do not form one clone class,
but two different clone classes (A,B) and (B,C). This observation basically results into
two implications: First, transitivity is not considered for Type-III and Type-IV clones,
because this property can not be guaranteed by these clone types. Second, the code
fragment B occurs in two clone classes. Hence, if we measure the amount of clones, we
have to take this into account by considering this code fragment once only (if not done
by the detection tool).

Precision/Recall

Besides the demand for a clone relation between code fragments, it is also important
to determine the quality of the clone detection. That is, given a set of detected clones,
how much of them are really clones and how much have been detected by mistake? To
this end, precision and recall, originally established in information retrieval, are used as
measurements to determine the accuracy of a clone detection tool. Both measurements
are defined as follows:

Definition 1. Given a set of candidate clones CCdetected, detected by an arbitrary clone
detection tool. Furthermore, the set of code clones, which really exist, is denoted as
CCexist. Then, precision and recall are defined as:

Precision =
CCexist ∩ CCdetected

CCdetected

(2.1) Recall =
CCexist ∩ CCdetected

CCexist

(2.2)

Precision can be considered as a measure for the quality of the clone detection. By
the given definition in ??, it decreases the more false positive candidate clones (i.e.,
spuriously detected clones) are within CCdetected . In contrast, recall is a measure that
refers to the completeness of the clone detection result. By definition (cf. ??), the more
candidate clones are detected that truly exist in a software system (i.e., true positives),
the higher is the recall and vice versa.

Different studies exist that use these two measures for comparison and evaluation of
clone detection techniques and tools [? ? ? ?]. However, such studies suffer al-
ways from the limitation that it is nearly impossible (and usually subjective) to decide
whether a code clone has been detected correctly or not. For instance, Bellon et al. use
a sampling approach across all clone detection techniques they investigate [?]. As a re-
sult, they obtain a reference data set about existing code clones, which are subsequently
compared with the result of each tool under investigation [?]. Similar approaches are
suggested by Uddin [?] and Zibran [?]. Nevertheless, with the aforementioned ap-
proach, it is still possible that certain clones are missing or false positives are included in

2.2. Detection and Analysis of Clones 17

the reference data set. A possible solution to overcome this problem has been proposed
by Roy et al., who creates and injects artificial code clones into existing source code
using a mutation-based approach [?]. Alternatively, humans have to review and assess
clones (as kind of an oracle) and agree on them via majority vote, which is tedious and
very likely to be subjective as well.

Finally, it is worth to mention that there is usually a trade-off between precision and
recall, meaning that if you increase the one measure it is likely that the other measure
decreases. For instance, increasing precision usually means to allow less parameteriza-
tion of clones and thus, only identical or almost identical (i.e., only minor differences)
code clones are detected, which holds for Type-I and to some extent for Type-II clones.
Hence, code clones with more profound differences are not detected and thus recall de-
creases. In contrast, if we allow a more flexible parameterization to increase the recall,
we may detect code clones that are false negative and thus precision decreases.

2.2.2 Clone Detection Techniques

For more than two decades, clone detection is an active field of research. During this
time, numerous techniques have been proposed to detect clones. While at the beginning
the techniques were rather simple yet sufficient such as text-based comparison of code
fragments, recent techniques are more sophisticated by exploiting different represen-
tations of source code to gather as much information as possible to detect clones. In
the following, we give an overview of existing clone detection techniques and emphasize
their main characteristics, categorized by the type of information they use to detect.
For a more comprehensive overview and comparison, we refer to existing work on that
topic [? ?].

Text-Based Clone Detection

Text-based clone detection techniques are probably the most simplistic ones, because
they do not use any specific language mechanisms. In fact, a simple text-processing
tool such as the Unix diff tool can be used to detect code clones in software systems.
As a result, these techniques are language-independent and thus provide a flexible and
lightweight approach to detect code clones across programming language boundaries.
On the contrary, this technique is limited to detect only identical clones (Type-I) and
clones with minor changes such as different formatting style or comments (Type-II, in
parts).

Basically, this technique compares the source code under investigation line-by-line. Ad-
ditionally, a normalization is performed on the source code before comparison. During
this normalization step, formatting such as white spaces or line breaks but also com-
ments are removed so that the code fragments have the same textual representation for
the actual comparison. No further transformations are applied to the source code. For
instance, the statement

if (he_says_yes == true && she_says_yes == true) married = 1;

18 2. Software Clones – Detection, Analysis, and Management

is normalized as follows:

if(he_says_yes==true&&she_says_yes==true)married=1;

Although the aforementioned steps are similar for all existing text-based approaches,
there are differences in the concrete realization and algorithms used for the actual
detection of clones. For instance, Johnson, who did early research on text-based clone
detection, proposed to use fingerprints on strings of the underlying source code [? ?].
To this end, he specifies the number of lines that are considered as one entity (window
range) and afterwards, a hash is computed over these lines. To cover the whole source
code, a sliding window technique is used with the specified window range. Finally, the
hash values are compared to find identical code fragments (i.e., substrings).

Another approach of Ducasse et al. uses dot plots (or scatterplots) for detecting areas
of cloned code in a software system. [?]. A dot plot is a two-dimensional visualization
of source code with both axes (x and y) containing the source code entities under
comparison. Here, lines are used as entities for comparison and in the case that two lines
are similar, a dot is drawn at the intersection of bot lines (i.e., the (x, y)-coordinate).
Finally, Ducasse uses a pattern matching algorithm to detect the actual clones.

A complementary approach is introduced by Marcus and Maletic, who use latent se-
mantic indexing to find duplicated code [?]. In contrast to other text-based techniques,
they do not normalize identifiers and comments but rather use these syntactical units
to identify higher level clones such as Abstract Data Types (ADT).

Finally, recent approaches even extend the original text-based techniques by more so-
phisticated transformations such as syntactic pretty printing [? ? ?]. The main
extension of these approaches is that they use lightweight parsing mechanisms to im-
plement pretty printing and other source code transformations. Hence, these approaches
are in the tension between token-based and text-based techniques rather than purely
text-based.

Token-Based Clone Detection

Compared to the text-based technique, in token-based clone detection the whole pro-
gram (i.e., the source code) is transformed into a token stream. To this end, lexical
analysis is applied to the original source code. Afterwards, the token stream is searched
for similar (sub)sequences of tokens of maximum length. Then, by mapping such token
sequences to their corresponding fragments in the source code, the actual code clones
can be identified.

Similar to the text-based technique, the transformation is similar across all token-based
approaches, whereas the algorithms used for searching the token sequence are different.
Initially, Baker proposed an approach, complemented by the tool Dup, where the tokens
are categorized in parameter tokens (e.g., identifiers) and non-parameter tokens [? ? ?
]. Then, for non-parameter tokens a hash function is computed for each line, whereas

2.2. Detection and Analysis of Clones 19

Root

xyz

yz

%

z

xyz

xyzyzxyz$

xyz$

yz

$

z

yz$

yzyzxyz$

yzxyz$

$

yzxyz$

xyz$

zxyz$

z$

zyzxyz$
$

yzxyz$

xyz$

Figure 2.8: Suffix tree for the string xyzyzxyz$

the parameter tokens are generalized. The latter means, that, for instance, all identifiers
are encoded in the same way (within the token sequence) and thus differences between
identifiers are omitted while searching for identical subsequences. For example a simple
expression such as x=y*z is encoded as P=P*P, where the same placeholder (P) is used
for all identifiers. Afterwards, a suffix tree, that is a tree structure where suffixes with
a common prefix share the same set of edges, is built from the parameterized token
sequence. Finally, clone detection is performed by searching for two (or more) suffixes
in the tree that have a common prefix, which is obviously a clone. In ??, we show an
exemplary suffix tree for the string xyzyzxyz$.

Other approaches even extend Baker’s technique by providing more source code nor-
malization facilities or by using suffix arrays instead of trees to optimize memory con-
sumption [? ? ?]. For instance, Kamiya et al. present the prominent clone detection
tool CCFinder, which can handle different normalizations that go beyond identifiers
and literals [?].

Finally, Li et al. use a data mining technique called frequent (sub)sequence mining to
detect similar sequences within the token stream [?].

Overall, token-based clone detection is more powerful than text-based in terms of clones
that can be detected. Besides detection of Type-I and Type-II clones, it is possible to

20 2. Software Clones – Detection, Analysis, and Management

detect even some kind of Type-III clones. To this end, detected clones of the first
two types have to be concatenated in case that the gap between these clones does not
exceed a specified threshold such as a certain number of lines between both. However,
the downside of this technique is that it is no longer language-independent, because
lexical analysis and tokenization requires language-specific information.

Tree-Based Clone Detection

This kind of clone detection is mainly characterized by the fact, that a tree-based
representation, which contains detailed syntactical information, is exploited for search-
ing for similar code fragments. In the following, we distinguish between two kinds
of source code representation: Abstract Syntax Tree (AST) and Program Dependence
Graph (PDG).

AST-based Clone Detection

For this kind of clone detection, the program under investigation is parsed and a syntax
tree is created that contains all syntactical information of this program. Afterwards,
different algorithms can be implemented to search for similar structures (i.e., subtrees)
in the AST, which indicate the occurrence of code clones in the corresponding code
fragments. In the AST, concrete names or values of identifies, variables, methods and
more are abstracted away and thus even more code clones (specifically with similar
structure) can be detected, compared to the techniques we introduced before.

Early work on this technique has been done by Baxter et al. [?]. Within their approach,
encompassed in the tool CloneDr, they have a compiler generator for producing the
AST. Afterwards, subtrees of the AST are assigned to hash buckets (based on a hash
function) and only subtrees in the same bucket are compared using a tree matching
algorithm.

Yang et al. proposed the tool cdiff that uses a dynamic programming approach to find
syntactical differences in subtrees [?]. Furthermore, Wahler et al. use data mining
techniques to find exact as well as parametrized clones [?]. In particular, they convert
the AST to XML, enriched with all meta information about the program structure.
Afterwards, they apply frequent itemset mining, a data mining technique to detect
recurring patterns in a large amount of data (items). In this case, an itemset is a
subtree of the AST and finding two or more similar itemsets indicates the occurrence
of code clones in the corresponding source code.

An approach to detect clones on a higher level of abstraction is proposed by Evans
et al. [?]. His approach, called structural abstraction, allows even for variations
of complete subtrees of the AST instead only considering variations of single tokens.
Hence, more clones, including Type-III clones, can be detected with this approach.

Finally, different approaches exist that combine syntax trees and suffix trees. For in-
stance, Koschke et al. propose an approach, where the subtrees of an AST are serial-
ized [? ?]. Afterwards, a suffix tree of this serialized stream of AST nodes is created

2.2. Detection and Analysis of Clones 21

and used for clone detection. Furthermore, Jiang et al. proposed anti-unification to
detect similar code fragments in Erlang programs [?].

PDG-based Clone Detection

A PDG is a graph-based program representation, where the nodes represent expressions
and statements while the edges represent the control and data flow of the corresponding
program [?]. Hence, this representation provides a more abstract view on a certain pro-
gram that an AST (e.g., lexical order of statement/expressions is not considered). For
clone detection, algorithms are applied to a PDG in order to find isomorphic subgraphs,
which indicate similar code fragments in the corresponding program.

For instance, Komondoor et al. propose to use program slicing to find isomorphic sub-
graphs within a PDG [?]. Another approach has been proposed by Krinke, who uses
a matching path algorithm to find similar subgraphs of maximum length [?]. Fur-
ther approaches for PDG-based clone detection have been proposed by Gabel [?] and
Higo [? ?].

Metric-Based Clone Detection

The idea behind metric-based clone detection is to compute and compare certain soft-
ware metrics such as cyclomatic complexity to find similar code fragments. The metrics
can be computed on the actual source code but also on other representations of the
underlying program such as the AST or PDG. To compare metrics of different code
fragments, the corresponding metrics are structured into vectors and then compared
using a specified distance measure such as Euclidean Distance.

Mayrand et al. proposed a metric-based technique to detect clones on function level [?
]. To this end, they collect different metrics such as from expressions or layout (e.g.,
comments, blank lines) but also of the control flow of functions. These metrics are
computed for each function of the analyzed program and afterwards compared with
each other. Based on the comparison, Mayrand et al. propose an 8-point scale for code
clone assessment, ranging from exact copy to distinct control flow.

Furthermore, Kontogiannis proposed two approaches for metric-based clone detection
[? ?]. The first approach directly compares metrics, computed for begin – end blocks.
For each of these blocks, five widely accepted metrics (e.g., fanout, cyclomatic com-
plexity) are computed and stored in 5-dimensional vectors. Afterwards these vectors
are compared to identify similar code fragments. The second approach uses Dynamic
Programming techniques to compare begin – end blocks. To this end, a feature set (e.g.,
use and define relations of variables) is created for each statement of a block. Then,
the feature sets are compared to identify similar begin – end blocks.

A novel approach of Jiang et al., implemented within the tool DECKARD, compute
characteristic vectors on ASTs [?]. Afterwards, they apply Locality Sensitive Hashing
(LSH) to build cluster of similar characteristics vector. To this end, they use the
Euclidean Distance as distance measure. Recently, Ngyuen at all presented the tool

22 2. Software Clones – Detection, Analysis, and Management

JSync for clone evolution and management [?]. Within this tool, they use a metric-
based technique that computes structural characteristics vectors on subtrees of the AST,
which are compared to find similar code fragments.

Finally, some approaches exist that detect duplicated web pages or clones in web doc-
uments with metric-based techniques [? ?].

2.2.3 Clone Analysis

Clone detection is fundamental but only limited regarding the information it provides.
In fact, the main contribution of clone detection, regarding the overall process (de-
tection, analysis, management), is documenting or reporting the existence of clones.
However, for making decisions whether clones are intentional or accidental, for finding
common patterns, for characterizing and classifying clones or even to judge on their
harmfulness, clone analysis is an important and inevitable step.

Many approaches for the analysis of clones exist, each with different purposes such as
analyzing the evolution or harmfulness of detected clones, e.g., [? ? ?]. Since some
of these analyses are beyond the scope of this thesis, we only provide details about
analyses that focus on reengineering opportunities (or necessities), because this is of
special interest of this thesis. In particular, we present analysis approaches that use
visualization techniques or propose a classification/categorization of clones.

Code Clone Visualization

When a stakeholder (e.g., developer or project leader) has to manage the huge amount
of data, produced by clone detection, she feels ”lost in space”, because handling large
amount of textual data is impractical. As a solution, applying different visualization
techniques to the clone detection results can aid stakeholders to get a more intuitive
overview of the detected clones. As a result, the post-processing of clones such as making
decisions about code clone removal are supported. However, different visualizations
support different tasks such as quality assessment/improvement or compliance checking.
In the following, we present visualization techniques commonly used for code clone
analysis.

A common visualization technique for code clones are scatterplots [? ? ? ? ?].
Basically, scatterplots are derived from dotplots, proposed by Church and Helfman to
visualize self-similarity and design patterns [? ?]. A scatterplot is a two-dimensional
matrix where the axes contain the entities that are visualized such as tokens, files, or
sub systems. If a similarity between two entities exists, a dot is made on the intersection
of these entities. In ?? a) we show a simplified example of a scatterplot for a prominent
phrase of Shakespeare. The phrase is shown on both axes/dimensions in a word-by-
word fashion. Afterwards, dots are made at each intersection of identical words. In
particular, scatterplots provide a good overview of hot spots, that is, regions where the
amount of clones is high, but also of other clone patterns. Cordy even provide zooming
facilities to switch between the visualized entities [?]. Hence, it is possible to obtain an

2.2. Detection and Analysis of Clones 23

to

be

or

not

to

be

•

•

•

•

•

•

•

•

•

•

to be or not to be

(a) Simple example for scatter-
plot creation

(b) Scatterplot for large-scale system

Figure 2.9: Two examples of a dotplot/scatterplot taken from [?]: a) for a famous
phrase of Shakespeare and b) for a large system with million lines of code

overview of the whole system, but also to zoom into particular files that contain a high
amount of clones. For instance, with such a zooming functionality, it is possible to detect
higher-level clone patterns such as a clone relation between certain files or subsystems.
However, this technique can only give an overview about existence of clones and partly,
about their types, but not on reengineering opportunities. Furthermore, for large-scale
systems this visualization may be inappropriate, because it is tedious or impractical to
focus on certain regions of clones, which we illustrate with ?? (b).

Johnson proposed to use Hasse Diagrams to visualize redundancy in source code files
[?]. With such a diagram, the relation between code clones of one clone class and
their corresponding files is visualized explicitly. Furthermore, information about file
size is given implicitly by the size of the nodes. Additionally, he presented an approach
for navigating through code clones using web pages [?]. However, both approaches
provide information on clone class level, while higher level information, such as about
architectural or hierarchical characteristics, is missing.

Another prominent technique are TreeMaps [? ? ?], which can be used to encode
different information about code clones and the related source code. In ??, we show
an exemplary TreeMap taken from the ConQAT tool. Each rectangle represents a file
of the analyzed program together with information on its position, relatively to the
whole system. Furthermore, the size of each rectangle can provide information on the
size of the file [? ?] or on detailed information about the code clones itself [?].
Additionally, coloring the rectangles can be used to indicate whether a file contains
many clones or not, which enables an easy detection of hot spots [? ?]. Beyond that,

24 2. Software Clones – Detection, Analysis, and Management

bcfg

cg

bf

be

e

b

bdfh

bdh

ae

a

c
g

f

bd bh

dh

d h

Figure 2.10: Exemplary Hasse Diagram taken from [?]

in the tool Cyclone it is possible to switch between different levels of granularity such
as subsystems or files [?]. Nevertheless, this technique is limited in that it provides
a good overview about code clones in systems, but not about the relationship between
clone classes or cloned files.

Finally, a SeeSoft view is a visualization techniques that reveals the relation between
clones and source files. In ??, we show an example of such a view from the ConQAT
clone inspection view. Within this view, each file is represented as rectangle and each
clone as a bar within this rectangle, indicating its size and position [?]. Additionally,
code clones that belong to the same clone set have the same color. As a result, the
stakeholder receives an overview of clones and how they are scattered throughout the
system.

Reengineering-Based Code Clone Analysis

While clone visualization aids stakeholders to get an overview of the actual clone sit-
uation in their systems and derive follow-up tasks such as clone removal, it can not
provide detailed information how to fulfill these tasks. Hence, a more detailed analy-
sis is necessary to investigate the detected clones and to expose useful information to
manage them. In the following, we give an overview of existing approaches for clone
analysis with a specific focus on reengineering opportunities.

First, Mayrand [?] and Balazinska [?] independently introduced approaches for the
classification of function clones. Mayrand et al. propose to classify clones regarding
their types of differences between the particular code fragments and to what extent
they diverge. To this end, they take function names, layout, expressions and control
flow into account to classify the function clones. This classification results into eight
categories that are not necessarily focussed on reengineering but can be used for this

2.2. Detection and Analysis of Clones 25

Figure 2.11: Example for a TreeMap as created by ConQAT

Figure 2.12: Example for a SeeSoft view, taken from ConQAT’s clone inspection view

purpose to some extent. Balazinska provides a fine-grained code clone schema with an
explicit focus on reengineering opportunities. The core idea is to classify function clones
by the differences between corresponding method copies. First, she provides a schema
of 17 categories, representing different reengineering opportunities such as source code
transformation or source code restructuring. Additionally, these categories can be clas-

26 2. Software Clones – Detection, Analysis, and Management

sified into four groups with respect to the observed differences: identical, differences in
only one token, differences in a sequence of tokens, and differences regarding attributes
of a method (e.g., modifiers, list of thrown exceptions). In subsequent work, she used
this classification for redesigning programs and to build reengineering systems for code
clone removal [? ?]. However, both approaches are limited in that they analyze clones
only on method/function level.

A more comprehensive taxonomy of clones is proposed by Kapser, who applies filtering
as a special case of code clone classification [?]. Compared to the aforementioned
approaches, this one goes beyond simple function clones. More precisely, Kapser also
considers partial function clones and other syntactical blocks such as enumerations or
macros for this classification. To this end, eight types of regions (in files) are defined
and extracted for each source file. Afterwards, detected clone pairs are mapped to
these regions. Although this approach aims at the comprehension of code clones and
is focussed on reasoning about clones, the information provided by this analysis can be
used for reengineering as well.

Basit et al. detects higher level clones to unify the resulting clone classes by generic
design solutions such as Template Meta-Programming [?]. To this end, they apply
a data mining technique called market basket analysis. Basically, they consider each
file to be a basket and assign code clones and clone classes to a corresponding file. By
applying their analysis technique they can detect clone patterns such as files that share
a huge amount of clones, indicating that these files are possible targets for unification.

Koni-N’Sapu proposed a classification based on the inheritance hierarchy [?]. To
this end, they define different scenarios in which code clones can occur such as between
sibling classes or between a class and its direct superclass. Then, they assign refactorings
to each scenario, which are suitable to remove the detected clones. However, they do
not classify the clones themselves such as type or level of granularity (e.g., function
clone, conditional clone) for a cloned fragment.

Higo et al. propose a metric-based approach to analyze whether clones can be refac-
tored or not [?]. First, they extract clones, from the detection result, that form
a certain syntactical block such as methods, loops, or try-catch blocks. Then, they
compute different metrics for these extracted clones to determine whether these clones
can be unified or not. The metrics reflect different information of the clones such as
their position regarding the class hierarchy or the coupling between the code clone and
its surrounding code (i.e., its context). Finally, they relate these metrics to possible
refactoring patterns.

Finally, we also proposed an approach for clone classification to guide refactoring of
clones, based on location and granularity [?]. For the location, we defined a metric
that takes the distance of the files, containing the clones of a clone class, into account.
Additionally, we classified the code clones by their syntactical structure such as methods
or loops. Based on these two dimensions we assess the possibility of removing these
clones by application of certain refactorings such as Extract Method [?].

2.3. Clone Management 27

Basically, the classification approaches above provide only information on whether
reengineering opportunities for clones exist (and why). However, these approaches do
not provide information that indicate whether code clones should be removed or not.
This topic is covered in the next section.

2.3 Clone Management
As third and last part of a holistic clone detection process (cf. ??), clone management
is the phase, where the information of clone analysis is used to perform certain actions
on detected clones (or not). While the term clone management is often used to describe
the fact that clones are reactively managed without removing them, we use a slightly
different terminology. For us, clone management encompasses any activity that takes
place on clones after they have been analyzed. In particular, we distinguish between code
clone removal, which encompasses reengineering activities, and code clone controlling,
which encompasses conservative activities such as clone tracking. Before we explain
these two approaches of clone management, we first discuss the harmfulness of clones,
because this is essential for the decision how to treat detected clones.

2.3.1 Software Clones – Friend or Foe?

Ironically, code clones are both, blamed for the drawbacks they come along with but
also referred to as useful technique for developing software. Hence, it is far away from
trivial to judge on the harmfulness on clones. In the following, we give an overview of
potential drawbacks associated with clones, mainly addressed by empirical studies. We
also acknowledge work that argues in favor of clones as reliable engineering technique.

Maintainability

Software maintenance is a pivotal part of the software lifecycle since it causes up to
80% of the total costs for software development. Hence, keeping a software system
maintainable is crucial. However, since the early days of code clone research, it is a
common assumption that clones have a negative effect on different aspects of software
maintainability. First, code clones can lead to bloated code, which hinders software
maintenance due to increased code size [? ?]. Additionally, the copied code is maybe
not needed in its entirety and thus cloning contributes to ”dead” code. For instance, a
cloned fragment contains different conditional branches, but not all of them are needed
in the new context. Hence, this unused code may lead to less optimized code (regarding
data or control flow) or even cause wrong behavior in case that a branch is executed by
accident. Another drawback is the increased maintenance effort due to code cloning.
If a code fragment is copied multiple times across the code base and changed later
on, all corresponding clones probably have to be changed as well. Obviously, this is
an increase in maintenance effort, because all clone have to be detected and checked
whether the change has to be propagated or not. In case that several clones have to be
changed synchronously, it is even possible that each change differs, for example, due to
different naming schemes. Hence, also if the corresponding copies have been created by
copy-and-paste, they can not be maintained in the same way, which increases the effort
further.

28 2. Software Clones – Detection, Analysis, and Management

Inconsistent Changes

As software evolves over time, code clones do so as well. A potential risk that arises from
this evolution is that in case of maintenance activities (i.e., adding/modifying/removing
code) not all corresponding clones are known or detected. As a result, the code is
modified inconsistently, which may cause (semantic) errors such as unwanted or wrong
behavior. However, most studies, which investigated the evolution and co-change of
code clones, reveal that inconsistent changes only rarely occur. Initially, Kim et al.
introduced code clone genealogies, which are clone classes with the evolution as an
additional dimension [?]. Their study reveals that long-living clones that have been
changed consistently are hard to refactor. Saha et al. extended this study (more systems,
advanced clone detection) and observed that approximately 70% of the clone groups
never change at all [?]. Furthermore, numerous studies state that clones, in case that
they are not changed consistently, evolve independently rather than inconsistently [?
? ? ? ?]. A common pattern that has been observed for such evolution is the
replicate-and-specialize pattern of Kapser and Godfrey [?]. In contrast, Krinke [?]
partially rejected the aforementioned results by replicating and extending the study
of Kim et al. [?]. In particular, he observed that only half of the clone genealogies
changed consistently and that mostly no late propagation is performed for inconsistently
changed clones.

Hence, in contrast to the common assumption, the evolution (and corresponding main-
tenance activities) of clones is mostly consistent and thus does not necessarily contribute
to their harmfulness.

Clone Stability

Clone stability describes how often code clones change over time. The assumption is
that if code clones change only occasionally during the evolution of a system, they are
less harmful and not much effort has to be spent on their management. So far, different
studies exist that aim at investigating how stable code clones are. Hotta et al. pro-
posed a measure called modification frequency that is used to determine how frequently
duplicated code is changed over time compared to non-duplicated code [?]. Basically,
this measure counts the number of modifications of duplicated/non-duplicated code
between consecutive revisions. Afterwards, the values can be compared to investigate
which kind of code is more prone to changes. As a result of a case study, Hotta et al.
conducted, they neither could observe that copied code is more prone to changes nor
that this code requires more effort of maintain, as often argued in the literature. In a
follow-up study, Göde and Harder [?] partially replicated and extended the study of
Hotta et al [?]. They not only confirmed the findings of Krinke but also presented some
reasons for the fact, that cloned code is more stable than non-cloned code. Essentially,
the quite frequently observed deletion of clones (without the clear intent of code clone
removal) is the main reason, which makes cloned code more stable. Recently, Mondal et
al. performed a comprehensive study on clone stability [?]. They state that clone sta-
bility depends on the type of clones and the used programming language. For instance,
Type-I/II clones are rather unstable compared two Type-III clones. Furthermore, their

2.3. Clone Management 29

study reveals that clones in C# are more stable than in Java or C systems. While
the last mentioned study raises doubt on the stability of clones, most studies confirm
that clones are not likely to change much over time and thus are not harmful from an
evolutionary or maintainability point of view.

Error Propagation and Introduction

Another drawback, often referred to in connection with the harmfulness of clones, is the
probability of error introduction or propagation due to copying code. While introducing
an error may occur due to inconsistent changes, the propagation of errors takes place, if
a code fragment, containing an error is replicated and thus, the error is spread over the
system. During a study on clone stability, Bakota et al. investigated different version
of Mozilla Firefox [?]. As one result of their study, they found different evolution
patterns and related them to several errors, indicating that code clones (and their
evolution, respectively) have an effect on errors. Barbour et al. investigated the relation
between late propagation and harmfulness of clones [?]. To this end, they defined eight
different types of late propagation and compare them with other common evolution
patterns. The analysis data reveal, that late propagation of clones (i.e., inconsistently
changed clones are re-synchronized in a later version) is more fault-prone than consistent
clone evolution and that certain types of late propagation are particularly harmful. In
contrast, Göde and Koschke state that code clones change only rarely and only few
of these clones undergo unintentional inconsistent changes [?]. They prove their
hypothesis by an analysis of the frequency and risks of code clone changes in long-living
and well-managed software systems.

In conclusion, we argue that although particular studies show evident for harmfulness
of clones regarding errors, these studies do not allow for an generalization of this harm-
fulness. Rather, each system is specific on its own and thus the contained code clones
are so as well.

Code Reliability

While the aforementioned aspects cover a rather negative point of view on code clones,
there is also recent work that argues in favor of clones by means of code reliability and
trust. In other words, by copy&paste code, the developer reuses functionality that has
been tested and used before without any bugs. Hence, the assumption is, that this code
is less error-prone and thus more reliable to use than implementing everything from
scratch. Kapser and Godfrey revisited the common belief that code clones are harmful
by default [?]. Furthermore, they provided substantial work on different patterns,
which give insights why and how cloning takes place [?]. For instance, the forking
pattern indicates that cloning is used as a starting point for developing functionality
that is assumed to evolve independently in future. As a reason for that pattern, Kapser
and Godfrey mention hardware or platform variation and provide examples such as the
Linus SCSI driver subsystem [?]. Another pattern is templating, which supports the
reuse of code if technical limitations hinder an appropriate abstraction. For instance, in
COBOL this kind of cloning is an accepted and well-understood development practice,

30 2. Software Clones – Detection, Analysis, and Management

createTank()

Leopard

createTank()

Abrams

AbstractTank

Leopard Abrams

createTank(...)

AbstractTank

Figure 2.13: Class diagram for exemplary Pull Up Method refactoring

which is also confirmed by Cordy’s work on practical barriers [?]. Overall, there may
be different situations where code cloning is the only solution for a certain problem and
thus should be evaluated by keeping different concerns in mind.

2.3.2 Code Clone Removal

One possibility to deal with detected (and analyzed) clones is code clone removal, which
can be seen as corrective clone management approach. The core idea is to remove as
many clones as possible persistently by applying different techniques such as generics
or program transformations. One approach that is widely referred to in relation with
code clone removal is program refactoring [? ?]. Such program refactorings enable
developers to change (ideally to improve) the structure of a system while its external,
visible behavior remains untouched. Hence, for a given, predefined and stable input, a
program produces the same output, before and after applying refactorings.

Generally, refactorings come into play if a decay in a system’s design is observable,
usually due to software evolution. To this end, several code smells have been proposed
in the past, indicating an indispensable need for applying certain refactorings [?].
Amongst those code smells, code clones have been voted to be ”number one of the stink
parade” [?]. Although recent studies demand for a more diversified treatment of code
clones as bad smells, refactoring is still a popular mean for removing clones. We want
to illustrate that with an example, where the Pull Up Method refactoring is applied
to remove. In ??, we show a class diagram, indicating that the two classes Leopard

and Abrams have a common superclass, AbtractTank, and a method createTank, re-
spectively. Furthermore, in ??, we show the code for the method createTank for both
classes.

The idea behind the Pull Up Method refactoring is to move a method that is similar
or identical in two or more subclasses to their common superclass. In our example,
the method createTank in the two subclasses are Type-II clones and thus a potential
target for the refactoring. As a result, we can remove these clones by pulling (and
unifying) the method createTank to class AbstractTank, following the steps proposed
by Fowler [?]. Because the original methods differ in some constants, we have to take

2.3. Clone Management 31

! "
1 protected void createTank (){
2 Super (). createTank ();
3 int x, y;
4 x = GAME_WIDTH * 2 / 3 / 3;
5 y = (int) (2.5 * x);
6 menu.add(Sprach.TANKB ,
7 loadImage("choice22.png",x,y),
8 loadImage("choice02.png",x,y),
9 2);

10 }# $

! "
1 protected void createTank () {
2 Super (). createTank ();
3 int x, y;
4 x = GAME_WIDTH * 2 / 3 / 3;
5 y = (int) (2.5 * x);
6 menu.add(Sprach.TANKA ,
7 loadImage("choice11.png",x,y),
8 loadImage("choice01.png",x,y),
9 0);

10 }# $

! "
1 protected void createTank(int type ,
2 String img01 , String img02 , int pos) {
3 Super (). createTank ();
4 int x, y;
5 x = GAME_WIDTH * 2 / 3 / 3;
6 y = (int) (2.5 * x);
7 menu.add(type , loadImage(img01 ,x,y),
8 loadImage(img02 ,x,y), pos);
9 }# $

class Leopard class Abrams

class AbstractTank

Pull Up Method
before refactoring

after refactoring

Figure 2.14: Code example for Pull Up Method refactoring

this into account during refactoring. Consequently, these constants become parameters
in the ”new” method createTank in class AbstractTank (cf. ??).

In the context of code clone research, early work on refactoring for clone removal has
been done by Baker [?] and Baxter [?], respectively. They proposed (different)
approaches for macro extraction to remove clones in procedural languages. However,
with the rise of the object-oriented paradigm, advanced approaches where needed and
have been developed. For instance, Ducasse et al. proposed to use clone analysis to
guide clone removal using refactorings, resulting into two variants of the well-known
Extract Method refactoring [?]. Substantial work on object-oriented refactoring for
code clone removal has also been done by Balazinska [? ?]. In particular, she pro-
posed an in-depth analysis of clones to figure out similarities and differences between
them and how this information can be used to automate the refactoring process [?].
Specifically in the last decade, numerous approaches (and tools) have been proposed
that focus on code clone removal by applying certain refactoring patterns, depending on
the granularity, localization and type of detected clones. In the following, we introduce
the most common refactoring patterns for code clone removal.

Pull Up Method (PUM): This refactoring, as already explained in our example, can be
applied to replace similar methods in different subclasses by a more generalized method
in the common superclass. Hence, it is especially appropriate for removing Type-I/II
clones on method level [? ? ? ? ?].

Extract Method (EM): With this refactoring, we can extract a certain piece of func-
tionality (e.g., a for-loop) into a new method. Afterwards, the extracted code fragment
is replaced by a call to the newly created method. Hence, if different similar code

32 2. Software Clones – Detection, Analysis, and Management

fragments on block level exist, this refactoring can be used to extracting them into one
method and thus to remove all clones [? ? ?].

Move Method (MM): This refactoring is eligible, if a developer wants to move a method
from one class to another, e.g., to increase cohesion. Afterwards, all calls to the relocated
method have to be delegated to the class containing the method. In special cases, this
refactoring is of interest for code clone removal. For instance, if two (or more) classes
A and B contain a similar method, these two methods could be merged within one class
(A or B) to eliminate redundancy [?].

Form Template Method (FTM): In the presence of Type-III clones, clone removal be-
comes difficult due to the gaps. For instance, for applying PUM or MM refactoring to
remove Type-III clones on method level, a developer probably has to handle different
method calls or missing statements. Hence, unification becomes cumbersome or even
impossible. As a solution, the Form Template Method refactoring can be applied to
encapsulate these differences in methods with the same signature. As a result, the orig-
inal methods become even more similar (Type-I/II) and it is possible to apply other
refactorings such as PUM or MM to remove redundancy [? ?].

Extract Superclass (ES): If two or more classes share common functionality (e.g., meth-
ods, fields), this refactoring can be applied to create a superclass to merge this common
functionality. In the context of clone removal, this is especially useful in the presence
of conceptual clones on class level.

Extract Class (EC): Sometimes, two or more classes share a similar method, but are
conceptually totally different so that the Extract Superclass refactoring is not applicable.
Yet to remove the cloned methods, with this refactoring the developer creates a new
class and moves the similar method to this class (only one of the similar methods).
Afterwards each of the original methods is replaced by a delegation to the new class
(and the respective method) [?].

Although refactoring is a well-established technique for code clone removal, it is not
always possible to apply refactoring for different reasons such as limitations of the
host language. To this end, other approaches such as generative programming, design
patterns or a change of the programming paradigm have been proposed in the past [?
? ? ?].

Finally, it is important to point out that code clone removal is a double-edged sword.
This means, that there is a trade-off between whether code clone removal is possible and
whether it makes sense. Especially the latter is influenced by different criteria. Besides
the already mentioned harmfulness of clones, business, monetary or legacy issues may
influence the decision in favor or against code clone removal. For instance, Cordy states
that practical barriers may outweigh maintenance costs during the decision process of
software maintenance activities [?]. For example, in the financial industry the risk of
introducing errors due to code clone removal outweighs the potential savings of having
less redundancy. Consequently, code clone removal approaches are far from industrial
adoption in certain domains. Furthermore, estimating the costs of code clone removal

2.3. Clone Management 33

compared to the (maybe decreased) maintenance costs is not a trivial task. We conclude,
that the decision on whether to remove clones or not can only be made for each system
separately. Additionally, approaches for evaluating the usefulness of clone removal have
to be developed, which take all criteria into account.

2.3.3 Code Clone Controlling

For one reason or another, code clone removal is not always possible. Nevertheless, it
is important to raise awareness that code clones actually exist in a system. To this
end, different approaches exist, which support developers but also managers to trace,
manage, or assess existing clones. We denote these activities as code clone controlling
and present an overview on different approaches in the following.

Toomim et al. proposed an approach called linked editing that aims at editing cor-
responding clones simultaneously to guarantee consistent changes, implemented as an
extension of the XEmacs editor [?]. Basically, the developer has to link code frag-
ments manually. Then, an algorithm is applied in order to detect commonalities and
differences between these code fragments. Hence, if later one of these code fragments is
changed, the developer is asked whether to change the linked code fragment as well or
not. Similar approaches for other Integrated Development Environments (IDEs) such
as Eclipse exist as well(e.g., [?]).

While the linked editing approach has to be considered as reactive, it is more useful to
pursuit a proactive approach by integrating code clone controlling facilities directly in
the IDE. As a result, it would be possible to manage clones over their whole lifecycle.
Furthermore, with such an integration, clone managing becomes part of the overall
development process and thus raises the awareness of clones. Unfortunately, only few
approaches exist that partly support this vision. Hou et al. sketch an initial design space
for such an approach [?]. Amongst others, they point out that a common clone model
is inevitable to provide important functionalities such as clone capturing, visualization,
and (simultaneous) editing. Furthermore, they report about the endeavor to initiate
such an integrated clone management process based on their tool CnP, which aims at
capturing copy&paste activities during the development process [?].

Furthermore, feedback on clones by the developer is a viable approach, providing other
developers with information such as why this code clone has been created and whether
it should be considered harmful or not. One possibility to provide such feedback im-
mediately are annotations. In modern IDEs, such as Eclipse, support exists for parsing
such annotations and presenting them to the developer. Up to now, such annotations
are only provided byJSync, where the developer can annotate code clones that should
be ignored in future [?].

Finally, certain approaches for code clone visualization (cf. ??) are useful for clone con-
trolling. For instance, visualizations can aid programmers and managers to determine
certain regions with a high clone ratio or subsystems that share a superior amount of
clones.

34 2. Software Clones – Detection, Analysis, and Management

3. Software Product Lines

Within this thesis, we investigate code clones in SPLs, with a particular focus on certain
patterns, on the amount of clones and reengineering opportunities. Hence, it is crucial
to know the fundamentals about SPLs. In this section, we introduce fundamental terms
and concepts, which are important in the context of software product lines. Particu-
larly, we introduce software product lines engineering, provide details on domain and
application engineering, and introduce variability modeling. Furthermore, we outline
two different implementation approaches for software product lines, because this is a
recurring topic in subsequent sections of this thesis.

3.1 Software Product Line Engineering

Originally, software has been developed individually, meaning that one software system
is implemented to solve a certain problem or satisfy the requirements of a particular
stakeholder. However, in the recent past, the importance of software as well as the
demand for customization increased, specifically due to the pervasiveness of software1.
Consequently, developing each piece of software from scratch is not efficient anymore,
specifically with respect to the development costs or time-to-market. As in other in-
dustries, a shift from developing a single software system to developing a whole family
of software systems (or products) began, resulting into software product lines .

As defined by Clements and Northrop, a software product line is ”a set of software-
intensive systems that share a common, managed set of features” [?]. A feature, in
this context, is an increment in functionality that is visible to the end-user. Further-
more, features can be used to distinguish between the different programs, also called
variants, of a software product line [?]. Finally, the products of a software product
line share commonalities (i.e., features that are common in all variants) but also ex-
hibit variabilities (i.e., features that are only part of particular variants). Especially by

1With this term, we acknowledge the fact, that meanwhile, software is an integral part of our
day-to-day life, because it is almost everywhere.

36 3. Software Product Lines

sharing common features, a software product line provides reuse opportunities and thus
fulfills the demands for a efficient software development process for the mass market. To
meet these new requirements, the development process has to be also adapted so that
it efficiently supports the reuse of assets. Furthermore, this process has to tackle the
problem of developing multiple systems in parallel, each tailored to the requirements of
a specific stakeholder or problem. Hence, a dedicated development process for software
product lines has been created, which is called SPLE [?]. A key concept of SPLE is
the distinction between Domain Engineering (DE) and Application Engineering (AE),
which we introduce in the following subsection.

3.2 Domain vs. Application Engineering

To get the most and best out of an software product line approach, it is inevitable to
focus on a certain domain, for which the particular systems of an SPL should be created.
Hence, the respective domain has to be analyzed and the common and variable assets
have to be defined. The process, encompassing these steps, is called domain engineering.

As a first step, during domain analysis, the requirements for products of the respective
domain are analyzed. To this end, requirements that currently exist but also those
that may be important in the future are taken into account. Based on the require-
ments, commonalities and differences amongst products of the software product line
are determined and described by means of features [?].

Based on this domain analysis, the software product line is designed, which means
that an architecture for the whole SPL is defined. A specific characteristic of such an
architecture is that it must reflect all intended products as well as commonalities and
differences amongst them. Hence, relations between particular features must be made
explicit. As a result, the design of an software product line must be variable to some
extent so that different products can have a different realization.

As a last step, the reusable assets of the software product line have to be implemented
according to the previously defined design. In particular, this implementation must also
reflect the distinction between the reusable assets (e.g., features). Different approaches
for product lines implementation exist such as components, C preprocessor or FOP
(cf. ??).

While domain engineering focusses on the analysis, design, and implementation of the
whole domain, encompassed by an software product line, application engineering mainly
concerns about product derivation. The first step consists of a requirements analysis
as known from traditional software development processes. Additionally, it is checked
whether the requirements align with existing features in the software product line,
defined during domain analysis. If certain requirements are not covered by any feature,
a new one is introduced and can be even integrated into the SPL to increase reusability
of the software product line for future products.

If the features of the software product line meet the requirements, the variant configura-
tion stage is entered. The features, meeting the requirements, are selected and mapped

3.3. Variability Modeling 37

to the corresponding (reusable) assets, defined during domain engineering. Again, if
certain assets have not been designed and implemented during the initial domain en-
gineering process (i.e., because of missing or unknown requirements), this can be done
during this step and also be added to the SPL. Finally, the selected assets are used to
generate the final variant/product.

3.3 Variability Modeling

During the process of domain analysis (cf. ??), the scope of the software product line is
determined in terms of features. Furthermore, commonalities and differences between
the particular variants are identified. To specify the dependencies between features in
a software product line and to model commonalities and differences between variants, a
developer usually uses a variability model. Different approaches exist how to model the
variability in SPLs such as Feature Models (FMs) [?], grammars [?], or propositional
formulas [?].

With feature models (and grammars), we distinguish between two types of features:
compound features and primitive features. Compound features serve the purpose to
group other (sub)features that are related to a common concept. For instance, a fea-
ture Operating System could be used to group the sub features Mac OS, Linux, and
Windows. Furthermore, sub features can be compound features, primitive features, or
a mix of both kind of features. In contrast to compound features, primitive features
do not contain any sub features. Additionally, we can define different constraints on
sub features, for both, compound and primitive features. In particular, a single feature
can be optional or mandatory. Furthermore, feature groups (e.g., sub features of a
compound feature) can be either in an Or-group or in an Alternative-group [?].

In the following, we explain feature models more detailed, because these models are
of special interest for further chapters of this thesis and thus detailed knowledge is
inevitable.

Feature Model

A feature model is a specific type of a variability model, used to specify valid combi-
nations of features. Due to its hierarchical, tree-like structure, we refer to compound
features as parent features and analogously, to primitive features was child features.
In ??, we show an exemplary feature model for a simple stack product line (Stack
SPL).

The feature DataStructure is the only mandatory feature, which means that a stake-
holder must select this feature for each variant. Furthermore, this feature is a compound
feature that is used to group the two primitive features Array and LinkedList. These
primitive features form an Alternative-group, that is, they are mutually exclusive and
thus only one of these features can be selected for a certain variant. The semantics
of this restriction is obvious; for a certain stack implementation (i.e., a variant of this
SPL), either an array or a linked list can be used as underlying data structure, but not

38 3. Software Product Lines

Legend:

Mandatory

Optional

Or

Alternative

And

Figure 3.1: A feature model for a Stack product line (Stack SPL)

both at the same time. All other features are optional and thus may or may not be
selected for a particular stack variant. Additionally, the features Shell and File form
an Or-group, indicating that zero, one, or both features can be selected.

Beside these “simple” constraints, a feature model may contain cross-tree constraints,
usually specified by arbitrary propositional formulas [?]. Developer can use these
constraints to specify more complex dependencies, especially between more than two
features or features that do not exhibit a parent-child relationship. For instance, our
exemplary feature model in ?? contains an ”implies” cross-tree constraint (Undo ⇒
Peak), indicating that a stakeholder can only select feature Undo if she selects feature
Peak.

To generate a certain variant of the SPL, a stakeholder selects the desired features that
should be contained in th final program (called configuration). Afterwards, the corre-
sponding assets such as source code files are used to generate the program. How this
generation takes place depend on the implementation approach that has been chosen
for the software product line such as composition or preprocessor compilation (cf. ??).

As already stated, compound features are mostly used for the purpose of grouping
sub-features. Consequently, they have rather an auxiliary role and do not represent a
“feature”, that is, they do not provide an increment in functionality. Nevertheless, no
policy exist that prohibits compound features to add an increment in functionality to
a software product line. To this end, Thüm et al. introduced the notion of abstract
features [?]. By definition, an abstract feature is a feature that does not contribute
to any program variant in terms of functionality. In contrast, a compound feature
that contains source code may add functionality to particular variants and thus is not
an abstract feature. The necessity as well as advantages and disadvantages of this
distinction is widely discussed, but out of the scope of this thesis. However, we rely
on the notion of abstract features within this thesis to indicate that a feature does not
contain any reusable assets such as source code files and serves for grouping purposes
exclusively.

3.4. Implementation Approaches for SPLs 39

3.4 Implementation Approaches for SPLs

While variability modeling defines the scope of an SPL during the domain analysis
phase, the main concern of the domain implementation phase is the actual develop-
ment of the reusable assets, defined in the previous phase. To this end, numerous
approaches exist that we distinguish into two categories: compositional and annotative
implementation approaches [?].

The core idea of compositional approaches is to separate and modularize the particular,
reusable assets such as source code artifacts. The assets that are part of each variant
of an software product line are considered as the common code base, which provides
the core functionality of the SPL. In contrast, the variable assets are encapsulated in
distinct modules (following the rules that are defined by the variability model) and
each module provides an extension of the core functionality. By this modularization,
compositional approaches are considered to improve certain quality aspects of software
development such as program comprehension, reusability, or maintenance [? ? ? ?].
Furthermore, this modularization allows the creation of products by simply composing
these modules, where the composition mechanism depends on the concrete language or
tool used for compositional implementation of SPLs. Amongst others, frameworks [?],
components [?], C++ templates [?], collaboration-based design [?], mixins [? ?],
AOP [?], FOP [? ? ?], Delta-Oriented Programming (DOP) [? ?], or traits [? ?]
are concepts and languages to achieve the aforementioned modularization.

In contrast, annotative approaches do not focus on separation and modularization of
reusable assets. Instead, source code that belongs to a certain feature is marked just-
in-place by annotations. Additionally, specific configuration files such as makefiles in
C/C++ can be used to express variability on file level. Examples for annotative ap-
proaches are the C preprocessor cpp [? ?] and CIDE, which uses colors to annotate
code fragments that belong to a certain feature [?].

Although both approaches are used with the same goal in mind, they represent two
opposite sides of the same idea. As a result, there is an ongoing debate which ap-
proach to use for product line implementation. While annotative approaches, espe-
cially preprocessor-based ones, are mainly used in industry, compositional approaches
gain momentum in academia. However, both approaches have advantages and disad-
vantages with respect to different criteria such as granularity, language independence,
or separation of concern. While it is out of scope of this thesis to compare and assess
both approaches in general, we reflect some of these criteria in the tension of code
clones in ??. Moreover, we provide a closer look on feature-oriented programming and
cpp-based software product lines, since we mainly focus on these approaches and their
relation to code clones within this thesis.

3.4.1 Feature-Oriented Programming

FOP is a compositional approach, which gained momentum in the recent past. The
fundamental idea of FOP is to decompose a program into its common and variable

40 3. Software Product Lines

parts, called features [? ?]. To this end, all assets that belong to a certain feature
are modularized into cohesive units called feature modules. As a result, FOP provides a
clear separation of features and thus improves maintainability and traceability in terms
of source code provenance (i.e., which code fragment belongs to which feature) [? ?].

While a feature is a visible increment in functionality within the domain model, a fea-
ture module is the counterpart on implementation level. Basically, a feature-oriented
program consists of a base program, encapsulating the commonalities of an SPL, and
each feature module extends this base program by adding some functionality, similar
to what has been proposed for the development of program families [?]. Furthermore,
FOP follows the fundamental concept of Separation of Concerns (SoC), because each
feature module is a cohesive unit and can be considered and implemented independent
of other feature modules [?]. To generate a certain program, also called variant, of the
SPL, the user first of all selects the respective features. Afterwards, the corresponding
feature modules are composed in a step-wise manner [?]. In ??, we show an example
of the abstract composition process for two variants of the Stack SPL. For the vari-
ant Stack-arr, the feature Array refines the base program (i.e., BaseStack) in a first
step, resulting into a modified (intermediate) program. Then, the feature Peak refines
the modified program in a second step, which results into the final program. In the
same way, we can generate the variant Stack-list by stepwise composing the respective
features.

BaseStack

Array

Peak

BaseStack

LinkedList

!"#$%&"'(

)"&"%&*+'&+*$

,**"- ./0($1./#&

2$"(3014 .455/05

%6$77 8/7$

30149:92$"(

Stack-arr Stack-list

Figure 3.2: Two possible variants of the Stack SPL, generated by composing the feature
modules BaseStack,Array,Peak and BaseStack, LinkedList, respectively.

3.4. Implementation Approaches for SPLs 41

Although the general process of composing feature modules is similar for all feature-
oriented languages and tools, the concrete composition mechanisms is distinct for each
approach. For instance, FeatureHouse is a tool that uses superimposition to compose
feature modules [?]. In ??, we show a code snippet from our Stack SPL implemented
with FeatureHouse. In feature BaseStack, the methods push and pop are initially
declared. Furthermore, in feature Peak, the method peak is added. Finally, feature
Undo adds the field undoStore and the method undo. Additionally, this feature refines
the already defined method pop, which is indicated by the keyword original.

Feature BaseStack� �
1 class Stack { ...

2 void push(int v) {/*...*/}

3 int pop() {/*...*/}

4 }� �
Feature Peak� �

1 class Stack {

2 int peak() {/*...*/}

3 }� �

Feature Undo� �
1 class Stack { ...

2 int undoStore;

3 void undo() {/*...*/}

4 int pop() {

5 undoStore = peak();

6 original();

7 }

8 }� �
Figure 3.3: Feature-oriented implementation of the Stack product line features Peak
and Undo using FeatureHouse.

All the aforementioned fields and methods are implemented within the same class,
though for different features. This reflects a main characteristic of feature-oriented
programming: the decomposition of classes. The reason is that a feature is usually
scattered across different classes. To realize this interaction between classes and features
on implementation level and to decompose classes across features, FOP relies on the
concepts of collaboration-based design and mixins [? ? ?]. With collaboration-based
design, an object (or class) can have different roles in different collaborations. In the
context of FOP, a collaboration is the implementation of a feature.

For better illustration, we show an exemplary collaboration diagram of our Stack SPL
in ??. The diagram consists of three different classes (Stack, Node, Element) and
features (DataStructure, Array, LinkedList). Each class can play a role with respect to
a certain feature. In FOP, a role is characterized as an increment in functionality such
as extending or adding a method. For instance, class Stack has a role for each feature of
the diagram (DSStack, AStack, LLStack). In contrast, class Element has only two roles
(AElem, LLElem) because it does not participate in feature DataStructure. Likewise,
in the exemplary implementation of our Stack SPL, class Stack has a role in feature
Peak, where it implements a new method peak() and thus, extends the functionality
(cf. Figure ??).

3.4.2 The C Preprocessor

The C preprocessor cpp is probably the most common annotative approach to imple-
ment variability in software systems. Originally, the cpp tool has been designed to

42 3. Software Product Lines

Classes

F
e
a
tu
re
s D
a
ta
S
tr
u
c
tu
re

A
rr
a
y

L
in
k
e
d
L
is
t

Stack

DSStack

Node Element

AStack

LLStack

AElem

LLNode LLElem

Figure 3.4: Collaboration diagram of the Stack SPL with three classes (dashed rectan-
gles) and three features (horizontal rectangles).

support meta programming. It consists mainly of three different mechanisms: file in-
clusion (#include), macro definition (#define), and conditional compilation (#ifdef).
In this thesis, we only focus on conditional compilation, because this is the mechanism
actually used to express variability in programs. Generally, expressing variability using
conditional compilation is very flexible, because it allows annotations on every level of
granularity and provides a high expressiveness [?]. Furthermore, the cpp is just a
simple text processing tool and thus independent of the programming language which
it is used with. Both, flexibility and expressiveness and the language-independence are
mainly responsible for the predominant usage of the cpp tool for implementing vari-
ability, especially in industry. Another reason for its success is the fact that the cpp
can easily be integrated into existing processes and implementations, even a posteri-
ori. Nevertheless, researcher criticize the cpp for its negative effects on maintainability,
readability, and code quality [? ? ?], which is reflected by terms such as “#ifdef
considered harmful” or “#ifdef hell” [? ?].

In contrast to compositional approaches, the source code that belongs to a certain
feature is not modularized into one cohesive unit. Instead, the corresponding code is
annotated just-in-place using #ifdef. In ??, we show this for three features of our Stack
SPL. For each of the features, different code fragments are annotated, all contained
in class Stack. For instance, the code for the feature BaseStack is scattered across
the whole class. Furthermore, code can even belong to more than one feature. In
our example, the statement in Line 12 is part of feature Peak and Undo, which is also
reflected by the expression Undo && Peak.

To decide whether such an annotated code fragment belongs to a certain variant, each
annotation contains a boolean expression, which is evaluated. In case that this expres-
sion is true, the corresponding code is part of the final program. This evaluation takes
place in a preprocessing step before the actual compilation.

3.4. Implementation Approaches for SPLs 43

!"#$%&"'(

)"&"%&*+'&+*$

,**"- ./0($1./#&

2$"(3014 .455/05

%6$77 8/7$

30149:92$"(

! "
1class Stack {
2int pop() {/*...*/}
3#ifdef Undo
4int backup;
5void undo() {/*...*/}
6#endif
7#ifdef Peak
8int peak() {/*...*/}
9#endif
10void push(int v) {
11#ifdef Undo && Peak
12backup=peak();
13#endif
14/*
15Common code, belonging
16to feature BaseStack
17*/
18}
19}# $

Figure 3.5: Exemplary Mapping between feature model and annotations using the C
preprocessor for features BaseStack,Peak, and Undo of the Stack SPL

44 3. Software Product Lines

4. Reasoning About Code Clones in
Software Product Lines

In ??, we discussed different reasons for the occurrence of code clones. Beside external
reasons such as ad-hoc code reuse or time constraints, limitations of the programming
paradigm itself may be a source of code clones. For instance, procedural program-
ming languages may cause clones due to a lack of appropriate reuse mechanisms such
as inheritance. Furthermore, in some languages such as COBOL, code replication is
an accepted concept for templating. But even in object-oriented languages, existing
mechanisms for abstraction such as inheritance or generics are not always sufficient for
expressing variability in programs and thus contribute to code cloning. We illustrate
how expressing variability may cause code clones by means of our Stack product line
example in ??.

Composing the three features of this example, we generally can create four different
variants: Stack, Peak •Stack, Undo •Stack, and Undo •Peak •Stack, where • denotes
feature composition. While we used feature-oriented programming for implementing the
example in ??, we can express the same variability with object-oriented programming
as well. We show the respective listings in ??, consisting of four separate classes, one
for each variant.

For an object-oriented implementation, we use simple inheritance without any code
clone activity to generate the first three variants (cf. ??, a) – c)). However, implementing
the fourth variant, UndoPeakStack, requires to inherit from two classes, PeakStack and
UndoStack. Unfortunately, multiple class inheritance is not supported in many OOP
languages such as Java. Moreover, even if it is supported, multiple inheritance often
suffers from the diamond problem, which makes multiple inheritance complex and error-
prone [? ?]. Hence, code cloning occurs in order to reuse functionality without multiple
inheritance in class UndoPeakStack.

46 4. Reasoning About Code Clones in Software Product Lines

� �
1 class Stack { ...

2 void push(int v) {/*...*/}

3 int pop() {/*...*/}

4 }� �
a) Stack� �

1 class UndoStack extends Stack { ...

2 int undoStore;

3 void undo() {/*...*/}

4 void pop(int v) {

5 undoStore=v;

6 /* */

7 }

8 }� �
c) Undo • Stack

� �
1 class PeakStack extends Stack{

2 int peak() {/*...*/}

3 }� �
b) Peak • Stack� �

1 class UndoPeakStack extends PeakStack { ...

2 int undoStore;

3 int peak() {/*...*/}

4 void undo() {/*...*/}

5 void pop(int v) {

6 undoStore=v;

7 /* */

8 }

9 }� �
d) Undo • Peak Stack

Figure 4.1: Object-oriented implementation of Stack with features Peak and Undo

With approaches that explicitly support product-line development and thus expressing
variability at the implementation level, we can particularly overcome such limitations.
For instance, with our feature-oriented implementation in Figure ?? or its annotative
counterparts (cf. ??, ?? a), we overcome the aforementioned limitations of multiple
inheritance due to class refinement, thus avoiding code replication.

However, even compositional and annotative approaches, which support the program-
mer in expressing variability, have limitations that may contribute to code cloning as
well. To evaluate the existence and effect of code clones in software product lines, we
discuss the key mechanisms these approaches by example of FOP and the C prepro-
cessor. In particular, we analyze how they possibly foster code cloning. Moreover, we
provide a conceptual analysis that is independent of a particular language, and identify
(conceptual) limitations of FOP and the cpp that may tempt the programmer to intro-
duce code clones. To this end, we focus on four criteria related to modularization and
expressiveness, how they are supported by both approaches and how this relates to code
cloning. The criteria are separation of concerns, granularity of extensions, alternative
features, and restructuring features.

Having knowledge on limitations regarding the criteria and its effect on code cloning
can help to deal with clones once they occur or even to avoid code clones in advance,
e.g., by rethinking the design or coding practices of languages for both, compositional
and annotative approaches.

4.1 Separation of Concerns

Separation of Concerns (SoC) is a fundamental concept in software engineering that
goes back to the times of Parnas and Dijkstra [? ?]. The idea of this concept is
to divide a software system into small and preferably cohesive parts. These parts, in
turn, have to be semantically meaningful to a certain stakeholder, meaning that they

4.1. Separation of Concerns 47

encompass a certain concern of the domain. In the context of software product lines,
features represent concerns that are important in software product line engineering.

Feature-oriented programming supports the separation of concerns by decomposing a
program into its (end-user visible) features. As a result, a feature-oriented program
consist of multiple cohesive units, each representing a certain feature, which also in-
creases the overall traceability of features in the program. However, not all concerns
can be decomposed and treated in a modular fashion at the implementation level. In
particular, crosscutting concerns are inherently tangled with and scattered across other
concerns and thus hard to modularize [?]. Basically, we distinguish between two kinds
of crosscutting concerns (or crosscuts): homogeneous and heterogeneous [?].! "

1 package BasicGraph;
2 class Graph {
3 Vector nv = new Vector (); Vector ev = new Vector ();
4 Edge add(Node n, Node m) {
5 Edge e = new Edge(n, m);
6 nv.add(n); nv.add(m); ev.add(e);
7 e.weight = new Weight ();
8 return e;
9 }

10 Edge add(Node n, Node m, Weight w) {
11 Edge e = new Edge(n, m);
12 nv.add(n); nv.add(m); ev.add(e);
13 e.weight = w;
14 return e;
15 }
16 void print () {
17 for(Edge edge : ev) { edge.print (); }
18 }
19 }
20 class Edge {
21 Node a, b;
22 Color color = new Color ();
23 Weight weight;
24 Edge(Node _a, Node _b) { a = _a; b = _b; }
25 void print () {
26 Color.setDisplayColor(color);
27 a.print (); b.print ();
28 weight.print ();
29 }
30 }
31 class Node {
32 int id = 0;
33 Color color = new Color ();
34 void print () {
35 Color.setDisplayColor(color);
36 System.out.print(id);
37 }
38 }
39 class Color { static void setDisplayColor(Color c) { ... } }
40 class Weight { void print() { ... } }# $

Figure 4.2: Excerpts of the Graph Product Line implementation with homogeneous and
heterogeneous crosscutting concerns highlighted.

In ??, we explain both categories by means of a program, implementing a simple graph
structure. The program consists of the core program, Graph, and two features Weight
and Color. The code fragments, belonging to both additional features are highlighted
with light red (feature Weight) and light blue (feature Color). In our example, the
implementation of Color represents a homogeneous crosscut, because the same piece
of code extends the basic functionality of Graph at multiple places. In particular, the
classes Edge (Line 22 and 26) and Node (Line 33 and 35) are extended with identical

48 4. Reasoning About Code Clones in Software Product Lines

code fragments. Obviously, such kind of clones inevitably lead to code clones [?]. In
contrast, a heterogeneous crosscut extends a program with different pieces of code in
multiple places. In our example in ??, feature Weight represents such kind of concern,
because it extends the base program with different code fragments at different places
(Line 7, 10-15, 23, 28). Other common examples for crosscutting concerns is logging func-
tionality (homogeneous), usually scattered across the whole program or the transaction
functionality (heterogeneous) in database management systems that is tangled with
other concerns such as query facilities or index structures.

It is always difficult to separate crosscutting concerns. Different studies indicate that
FOP is good for heterogeneous crosscuts [?]. In contrast, encapsulating homogeneous
crosscuts into feature modules is impossible or at least cumbersome. Especially, if these
crosscuts are wrapped around by code, belonging to other concerns, only complicated
workarounds, such as hook methods, have to be used for decomposition [? ?]. While
this may reduce redundancy (which is inherent to homogeneous crosscuts), it decreases
understandability and thus decreases maintainability likewise. Hence, we argue, that
FOP, though providing good mechanisms for separation of concerns, could be prone to
code clones in the presence of homogeneous crosscutting concerns.

But what about annotative approaches, first and foremost the C preprocessor? Inher-
ently, the cpp does not support separation of concerns, but is known to even break with
this concept, which is commonly referred to as a drawback of the cpp [?]. For instance,
with the cpp, a programmer can annotate a code fragment with different feature vari-
ables (e.g. #ifdef (A || B) && C) and thus a distinct assignment of source code and
features does not exist. Usually, variable code fragments are marked just-in-place by
annotating them with #ifdef and #endif directives. Hence, code related to a feature
(or concern) is scattered across the whole code base and tangled with other feature
code. From this perspective, the cpp even contributes to crosscutting and thus could
be prone to clones as well, much like feature-oriented programming. However, in cer-
tain situations, the cpp could yet avoid clones due to its high flexibility. For instance,
assume that two features Foo and Bar add the same code fragment to the base code.
With FOP, this code would exist separately in the respective feature modules and thus,
per definition, it would be a code clone. In contrast, with cpp we can annotate the
respective code fragment with the following boolean expression: #ifdef Foo || Bar.
As a result, the annotated code fragment is selected for all variants that contain feature
Foo or Bar or both features.

4.2 Granularity of Extensions

A feature extends existing program structures introduced by other features. Extensions
can be carried out at different levels of granularity [?]. For instance, in our Stack
product line in ??, we extend method pop in feature Undo by a statement at the
beginning of the method. Furthermore, we extend class Stack by method peak in
feature Peak in the same example. While FOP (and other compositional approaches)
works fine for coarse-grained extensions, it has limitations when realizing fine-grained

4.2. Granularity of Extensions 49

extensions such as extensions at statement level [? ?]. For instance, extending a
program by adding statements in the middle of an existing method is not possible
with FOP without cumbersome boilerplate code. Furthermore, extending a program
by adding a parameter to a method’s signature is only possible with workarounds as
well with FOP [?].

Feature BaseStack� �
1 class Stack { ...

2 void push(Object elem) {

3 if (elem == null)

4 return;

5 elemData[size++] = elem;

6 }

7 }� �
a) Original declaration of method push

Feature Synchronized� �
1 class Stack { ...

2 void push(Object elem, Transaction txn) {

3 if (elem == null || txn == null)

4 return;

5 Lock l = txn.lock(elem);

6 elemData[size++] = elem;

7 l.unlock;

8 fireStackChanged();

9 }

10 }� �
b) Fine-grained extension by
introducing redundancy using

FeatureHouse

Feature BaseStack� �
1 class Stack { ...

2 void push(Object elem) {

3 if (elem == null || h1())

4 return;

5 h2();

6 }

7 boolean h1() {

8 return false;

9 }

10 void h2() {

11 elemData[size++] = elem;

12 }

13 }� �
Feature Synchronized� �

1 class Stack {

2 Transaction txn = new Transaction();

3

4 boolean h1() {

5 return txn == null;

6 }

7

8 void h2(Object elem) {

9 Lock l = txn.lock(elem);

10 original();

11 l.unlock;

12 }

13 }� �
c) Fine-grained extension with hook

methods using FeatureHouse

Figure 4.3: Two implementation approaches for fine-grained extensions in Stack SPL.

We illustrate this dilemma whether to introduce clones or use workarounds instead
by means of an example. Suppose we want to extend our Stack product line by the
feature Synchronized to manage concurrent access on the data structure. In ?? a we
show the initial implementation of method push in the feature BaseStack. For the
the support of concurrent access, we have to introduce several fine-grained extensions,
which affect the implementation of method push, initially declared in feature BaseStack.
In particular, this method has to be refined by an additional parameter (Line 2), an
additional condition (Line 3), and additional statements that wrap around an existing
statement (Line 5–7) (cf. ?? b; highlighted code).

With the implementation in ?? b, the additional functionality of feature Synchronized
is realized by completely rewriting the initially declared method push. While this is a
viable solution, it inherently introduces code clones compared to ?? a. Of course, this
is only a minor problem in our example regarding the amount of cloned code. How-

50 4. Reasoning About Code Clones in Software Product Lines

ever, it may become a severe problem if hundreds lines of code have to be copied (and
maintained synchronously afterwards). In ?? c, we show an alternative implementa-
tion strategy that avoids code cloning. To this end, the hook methods h1 and h2 are
introduced in the implementation of feature BaseStack. These hook methods serve as
placeholder for the fine-grained extensions, introduced by feature Synchronized. While
this approach prevents code clones, it has other drawbacks. First, for introducing the
new feature Synchronized, we have to change the implementation of feature BaseStack
and thus separation of concerns is compromised. Second, we introduce a structured
overhead, which may obfuscate the source code and make it difficult to understand [?
]. Hence, practitioners may be reasonable to use the first implementation strategy that
introduces code clones but retain modularity and understandability of the source code.

With the cpp, the aforementioned problems of realizing fine-grained extension do not
exist. The reason is that the cpp enables a developer to mark arbitrary code fragments
with preprocessor annotations. In ?? a, we show an example of how to realize the
feature Synchronized with preprocessor annotations. In this example, all code frag-
ments belonging to feature Synchronized are annotated by #ifdefs, independent of
their granularity. For instance, in Lines 3–5, we annotate a single parameter in the
signature of method push that belongs to feature Synchronized. Similarly, we anno-
tate a particular condition of an if statement in Line 8–10. According to Liebig et
al., we call such fine-grained extensions undisciplined annotations [?]. While such an-
notations provide flexibility and expressiveness for implementing variability, they have
several drawbacks [? ? ?]. First, undisciplined annotations obfuscate source code, as
indicated by our example in ?? a. Second, such annotations hinder automated analysis
and transformation of the program they are used with. The reason is that undisciplined
annotations can not be mapped to elements of the AST, which is often necessary for
such automated tasks. Finally, fine-grained annotations are prone to introduce syntax
errors. For instance, a developer annotates a single parameter but forgets to annotate
the corresponding comma that is used to separate this parameter from the other one.
Another source of error is the case where an opening and a closing bracket are part of
different annotations, which is hard to capture with undisciplined annotations.

Alternatively, a developer can use disciplined annotations, which is even recommended
in coding guidelines such as for Linux. Disciplined annotations align with the underlying
program structure and thus overcome the aforementioned problems of undisciplined
annotations. In ?? b, we show an implementation of the Synchronized feature with
disciplined annotations. In contrast to the undisciplined implementation, the respective
code is annotated on method level and thus aligns with the underlying structure of the
program. As a result, two alternative methods push exist, one method with support for
concurrent access and one method without. Unfortunately, the code that is common
for both methods is not encapsulated separately. Hence, the addressing fine-grained
extensions with disciplined annotations inherently introduces code clones.

In summary, we argue that for both implementation approaches, FOP and cpp, fine-
grained extensions can be expressed without code clones. However, since these non-
redundant implementations have several drawbacks, it may be reasonable to introduce

4.3. Alternative Features 51

� �
1 class Stack {

2 void push(Object elem

3 #ifdef SYNC

4 , Transaction txn

5 #endif

6){

7 if (elem==null

8 #ifdef SYNC

9 || txn==null

10 #endif

11)

12 return;

13 #ifdef SYNC

14 Lock l=txn.lock(elem);

15 #endif

16 elementData[size++] = elem;

17 #ifdef SYNC

18 l.unlock();

19 #endif

20 fireStackChanged();

21 }

22 }� �
(a) Fine-grained extension using

undisciplined annotations

� �
1 class Stack {

2 #ifdef SYNC

3 void push(Object elem, Transaction txn) {

4 if (elem==null || txn==null)

5 return;

6 Lock l = txn.lock(elem);

7 elementData[size++] = elem;

8 l.unlock();

9 fireStackChanged();

10 }

11 #else

12 void push(Object elem) {

13 if (elem==null)

14 return;

15 elementData[size++] = elem;

16 fireStackChanged();

17 }

18 #endif

19 }� �
(b) Fine-grained extension using

disciplined annotations

Figure 4.4: Two possibilities of fine-grained extension with the C preprocessor, by (a)
using undisciplined and (b) disciplined annotations

code clones to gain other advantages such as automated program analysis or higher
understandability of the source code.

4.3 Alternative Features

To describe the dependencies between features and valid variants within an software
product line, different constraints exist, which we can express within the feature model.
In this context, alternative features (also called Alternative-Group) describe the con-
straint that out of a set of sibling features (in the feature model) only one feature can
and must be selected for a particular variant. It is in the nature of alternative fea-
tures, that they implement functionality that is similar to some extent regarding each
other. This, in turn, may lead to code fragments that are replicated to implement the
common parts between alternative features. We illustrate this fact by means of the
Graph Product Line (GPL). In ??, we show listings of the alternative features BFS and
DFS, implementing the algorithm for breadth-first search and depth-first search, respec-
tively. Apparently, both features share a large, identical portion of code. In fact, they
only differ in Line 18, where a method is called (bfSearch and dfSearch, respectively)
that obviously contains the core functionality in that both features differ. However,
because both features are alternative it is not possible to have this common code in
only one feature and extend it (via refinements) by the other feature. Of course, other
transformations are possible to extract the common code and thus to remove the code
clones. However, this is neither trivial nor always possible. We provide more details on

52 4. Reasoning About Code Clones in Software Product Lines

Feature BFS� �
1 public class Graph

2 {

3 public void search(WorkSpace w)

4 {

5 VertexIter vxiter = getVertices();

6 if (vxiter.hasNext() == false) return;

7 while (vxiter.hasNext())

8 {

9 Vertex v = vxiter.next();

10 v.init_vertex(w);

11 }

12 for (vxiter=getVertices();vxiter.hasNext();)

13 {

14 Vertex v = vxiter.next();

15 if (!v.visited)

16 {

17 w.nextRegionAction(v);

18 v.bfSearch(w);

19 }

20 } //end for bfsSearch

21 }

22 }� �

Feature DFS� �
1 public class Graph

2 {

3 public void search(WorkSpace w)

4 {

5 VertexIter vxiter = getVertices();

6 if (vxiter.hasNext() == false) return;

7 while (vxiter.hasNext())

8 {

9 Vertex v = vxiter.next();

10 v.init_vertex(w);

11 }

12 for (vxiter=getVertices();vxiter.hasNext();)

13 {

14 Vertex v = vxiter.next();

15 if (!v.visited)

16 {

17 w.nextRegionAction(v);

18 v.dfSearch(w);

19 }

20 }

21 }

22 }� �
Figure 4.5: Code clones between features BFS and DFS in GPL

such code clone removal in ??. Although this is a desperate example, implemented by
someone else, it illustrates the problem of alternative features causing code clones very
well.

With cpp, in contrast, we can avoid code clones by exploiting the capability of ex-
pressing fine-grained extensions. Instead of annotating the whole class Graph for each
feature, as done in our feature-oriented implementation in ??, we only annotate the
part of the implementation that differs. In ??, we show the implementation of the
alternative search algorithms in GPL with preprocessor annotations. Instead of repli-
cating the common code for each alternative feature, we only have to annotate the
lines of code that differ between these features. Note that this is similar to FOP used
with hook methods instead of replication. In particular, we annotate the method call
for bfSearch with the preprocessor variable BFS (cf. Line 18–19) and the call for df-

Search with the preprocessor variable DFS (cf. Line 20–21). Furthermore, due to the
possibility of fine-grained extensions, we could even express alternative features that
differ only in partial statements or conditions. Hence, we argue that annotation-based
SPLs are not prone to clones caused by alternative features.

4.4 Feature Evolution

As any software system, SPLs are subject to software evolution. In the context of an
SPL, evolution takes place in different ways: First, existing features are extended or
changed due to new requirements and thus grow over time. Second, features are added
to introduce new functionality or extract and separate existing one from other features.
Third, features can be merged if they contain similar functionality that is reasonable to
encompass within one feature. Alternatively, a feature could be too large (encompassing

4.4. Feature Evolution 53

� �
1 public class Graph

2 {

3 public void search(WorkSpace w)

4 {

5 VertexIter vxiter = getVertices();

6 if (vxiter.hasNext() == false) return;

7 while (vxiter.hasNext())

8 {

9 Vertex v = vxiter.next();

10 v.init_vertex(w);

11 }

12 for (vxiter=getVertices();vxiter.hasNext();)

13 {

14 Vertex v = vxiter.next();

15 if (!v.visited)

16 {

17 w.nextRegionAction(v);

18 \#ifdef BFS

19 v.bfSearch(w);

20 \#elseif DFS

21 v.dfSearch(w);

22 }

23 }

24 }

25 }� �
Figure 4.6: Implementing alternative features BFS and DFS with annotations

to much functionality) and thus has to be split into two or more features. All these
kinds of evolution may lead to code clones.

Although adding/modifying code is not problematic with respect to clones on first sight,
it may suffer from similar problems as in standalone programs. That is, a programmer
extends the code without knowing that similar (or even identical) code already exists,
for instance in a sibling feature. Vice versa, a programmer could be aware of a code
fragment (e.g., a particular algorithm) in another feature that she reuses by copy&paste
in the feature currently under change.

Similar problems may arise when a new feature is introduced. For instance, consider
the search algorithms (BFS and DFS) of our Graph Product Line (cf. ??). Suppose we
want to add our own search algorithm as a new (alternative) feature, reusing as much
as possible of the existing algorithms. Hence, we copy parts of one of existing features
(which already exhibit identical parts) and modify only what is different within our
algorithm. This may be even a common way, because an appropriate abstraction such
as unifying the common code in a distinct feature is not easy to find or even not exists.

Moreover, there may be the point, for example after partly uncontrolled or unorganized
evolution, where an SPL contains features that encapsulate very similar functionality.
Thus, it is worth to unify such features by merging them into one unique feature. During
this process, we expect that most of the corresponding code fragments are merged into
unique code fragments. However, there may be also parts that slightly differ and thus
can only be merged by introducing redundancy. Especially, if the differences are at a
fine grain, redundancy is almost unavoidable (cf. ??). But, also the opposite direction,

54 4. Reasoning About Code Clones in Software Product Lines

that is, a feature encompasses more functionality than it was designed for, may lead to
clones. As a result of its growth, the feature has to be split, and the corresponding code
has to be extracted from the existing feature into the new ones using Cut&Paste.
However, since this code is often tightly coupled with other parts of the original code
(i.e., its context), it might be unavoidable to reuse parts of this code by Copy&Paste,
which may cause code clones.

Overall, we argue that these evolutionary clones are very similar to those in standalone
programs and may occur independent of the implementation approach. However, cur-
rently it is open to what extent such evolutionary changes (or even patterns) occur and
how often they really lead to clones.

4.5 Summary

Although software product lines make use of enhanced reuse facilities amongst similar
software products, there is a certain risk of code clones. In this chapter, we discussed
several criteria related to modularity and flexibility of SPLs that may lead to clones.
Furthermore, we pointed out that the implementation approach makes a difference
regarding the proneness of clones.

Criteria Feature-Oriented
Programming

C Preprocessor Annotations

Separation of
Concerns

good,
moderate risk of clones (→)

no separation of concerns,
moderate risk of clones (→)

Granularity coarse-grained extensions,
high risk of clones (↗)

fine-grained extensions,
low risk of clones (↘)

Alternative
Features

possibly overhead,
high risk of clones (↗)

efficient solution,
low risk of clones (↘)

Feature Evolution not directly supported,
moderate risk of clones (→)

not directly supported,
moderate risk of clones (→)

Table 4.1: Overview of different criteria and their influence on code clone occurrence in
FOP and the cpp.

In ??, we provide an overview of how the discussed criteria may affect clone occurrences,
taking the respective implementation approach into account. Generally, we argue that
preprocessor-based software product lines are less prone to code clones due to their
high flexibility and. Especially, for fine-grained extensions and alternative features,
this makes a huge difference regarding the risk of clones. However, this expressiveness
is a double-edged sword that may affect characteristics of the source code such as
readability or error-proneness. Hence, we also pointed out that it is sometimes even
worth to introduce clones to increase the aforementioned characteristics. While this
chapter contains a conceptual discussion (with some real-world examples) to reason
about clones in SPLs, we present case studies on that topic in the next chapters.

5. Code Clones in Feature-Oriented
Software Product Lines

In the previous chapter, we discussed factors that may influence the occurrence of clones,
depending on the respective implementation approach. However, while this discussion
was at a conceptual level, it is inevitable to investigate practical systems to underpin
the assumptions summarized in ??. Hence, in this chapter, we shed light on the issue of
code cloning in FOP empirically. To this end, we present an empirical analysis on ten
different feature-oriented SPLs. In particular, we describe the setup, the methodology
and results of our analysis. Furthermore, we discuss the results and threats to validity.
Overall, we make the following contributions in this chapter:

• By means of a case study on ten different feature-oriented SPLs, we analyze the
number and characteristics of clones in FOP.

• We explore and discuss whether code clones occur independently of the fact that
an SPL has been developed from scratch or refactored from a legacy application.

• We initiate a discussion on the role of code clones in FOP.

5.1 Experimental Setup

In the following, we present some preliminary considerations and the setup of our em-
pirical analysis.

Research Questions

In ??, we posed four research questions that are of paramount interest in this thesis and
which we want to answer with the help of our empirical analysis. However, to address

56 5. Code Clones in Feature-Oriented Software Product Lines

specific characteristics of FOP, which may also influence the occurrence and nature code
clones, we concretize the aforementioned research questions to gain deeper insights of
code clones in feature-oriented SPLs. As a result, the following research questions arise,
which we want to answer with our case study on clones in FOP:

RQ1 Do code clones exist in feature-oriented SPLs? This question corresponds to the
research question in ??. Answering this question provides information to what
extent code clones exist in feature-oriented SPLs at all.

RQ2 Is FOP prone to introduce FOP-specific clones especially in the context of SPLs?

Since FOP partly relies on other language mechanisms such as inheritance, there
may be clones that are either caused by these mechanisms than by those, spe-
cific to FOP. Hence, we have to distinguish between FOP-specific and other code
clones. To this end, we also have to define what actually makes a code clone
FOP-specific.

RQ3 If clones exist, does the development process of the SPL (e.g., from scratch or by
refactoring legacy applications) influence their occurrence?

Generally, two approaches exist for the overall process of product-line develop-
ment: proactive and reactive/extractive. While the former implies that an soft-
ware product line is implemented from scratch, the latter describes the fact that
the initial versions of a certain SPL is refactored from existing legacy applications.
In the case of FOP, the reactive approach can be considered as software migra-
tion, because it includes a shift from one programming paradigm to another (e.g.,
from OOP to FOP). Since this may cause considerable changes of the underlying
source code, we focus on the influence of the development process on code clone
occurrences with this question.

Subject Systems

The subjects of our analysis are ten feature-oriented SPLs of different size ranging from
150 to 45 000 SLOC1. While this is rather small, compared to industrial applications,
the subject systems encompass the largest SPLs available in FOP at the time of the
case study. All SPLs were developed with FOP tools based on Java, namely Feature-
House [?] and AHEAD [?]. Furthermore, the selected feature-oriented SPLs stem
from different domains such as database systems, editors, and games. We list relevant
information in ??. The programs in the upper half of ?? are implemented from scratch,
whereas the others are refactored from legacy applications. Furthermore, we provide
some information on authorship, code size, and the domain. Note that we consider
the whole code base of the feature-oriented product lines for our analysis rather than

1SLOC is an acronym for source lines of code, a common metric that refers to the length of the
source code excluding comments and blank lines.

5.2. Code-Clone Analysis Process 57

Name Programmer # SLOC # FM Description

GPL1 R. Lopez-Herrejon (UT Austin) 1 929 28 graph and algorithm library

GUIDSL2 D. Batory (UT Austin) 11 527 29 graphical configuration tool

Notepad3 A. Quark (UT Austin) 1 012 13 graphical text editor

PKJab4 P. Wendler (U Passau) 3 305 8 instant messaging client

TankWar5 L. Lei et al. (U Magdeburg) 4 933 38 shoot ’em up game

EPL6 R. Lopez-Herrejon (UT Austin) 149 11 arithmetic expression evaluator

Berkeley DB7 C. Kästner (U Magdeburg) 45 000 100 transactional storage engine

MobileMedia8 C. Kästner (U Magdeburg) 4 227 47 multimedia management

Violet9 A. Kampasi (UT Austin) 7 194 88 graphical model editor

Prevayler10 J. Liu (UT Austin) 5 270 6 persistence library

FM: feature modules

Table 5.1: Overview of the analyzed SPLs

certain variants. As a result, we are able to detect code clones across the boundaries of
individual features, which are of interest for our analysis. For information on dependen-
cies and relations amongst features, a feature model exists for each of the considered
SPLs. All SPLs can be downloaded from the Web2 or are contained as examples within
FeatureIDE3.

Clone Detection

We performed clone detection on the selected SPLs using the clone detection tool
CCFinder, which uses the token-based approach [?]. Within the tool, the user can
specify different parameters such as minimum clone length. Guided by a former study
that used CCFinder [?], we set the minimum clone length to 50 tokens, which cor-
responds to five lines of code. This value also corresponds to commonly chosen clone
length of other studies. This way, we omit meaningless code clones such as getter and
setter methods, which occur incidentally and thus have no value for our analysis. Af-
terwards, we merged corresponding code clones to clone classes based on the detection
results, as usual in clone detection (e.g., [? ?]). To this end, we exploited the equiv-
alence relation that exist between corresponding clone pairs, guaranteed by CCFinder.
As a result, we can treat these clones as a unit for further analysis steps or even for
their removal. Finally, we performed some minor transformations on the clone classes4

such as removing comments or white spaces.

5.2 Code-Clone Analysis Process
To analyze our subject systems regarding code clone occurrences, we set up an analy-
sis process that consists of three steps: clone detection, syntactical classification, and
feature-related classification. In the following, we explain each step in detail.

2http://www.fosd.de/fh
3http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/
4Whenever an action is performed on a clone class in the following, this action affects all of its

member clones.

http://www.fosd.de/fh
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

58 5. Code Clones in Feature-Oriented Software Product Lines

5.2.1 Clone Detection

This is the first step of our analysis process and thus provides the initial input for the
further analysis. Hence, the quality of the clone detection result is crucial for the result
overall analysis result. For instance, too many false positive clones make the following
analysis steps a tedious task, because we would have to filter out all the false positives
to improve the results by only considering significant or meaningful clones. In contrast,
a too restrictive clone detection could leave out interesting clones (false negatives) and
thus would lead to a result that is only partially correct.

To achieve a ”good” clone detection result (i.e., a result that is neither at the one nor
at the other end of the aforementioned possibilities of bad results), the tool CCFinder
provides different parameters that can be specified. Besides the minimum clone length,
we already mentioned, we had to set the following parameters:

• p-match: With this parameter, we can specify whether we want to perform a
parameterized match during the clone detection and thus detect Type-II clones
as well. Without p-match, all variables and identifiers are replaced by a special
token and thus differences between these units are neglected. For instance, the
statements return A+B; and return X+Y are both transformed into return $+$,
where $ is the special token that is used to replace identifiers. Hence, the two
statements would be detected as a clone pair. For our case study, we include such
parametrized clones that occur due to copy,paste&adapt. Hence, we performed
clone detection without p-match, which causes parameterization of certain ele-
ments (as described above).

• shaper: During clone detection, meaningless or uninteresting clones such as se-
quences of variable initialization or getter/setter methods are detected as well,
especially, if we allow parameterization to some extent. Furthermore, clones may
be detected that overlap the boundaries of certain syntactical blocks, which is not
desirable either. For instance, similar code fragments that start at the end of a
method and end in the middle of another one usually neither provide no useful
information about the cloning process nor indicate intentional clones. Hence, it
is desirable to detect clones at the block level, which are more significant. The
shaper parameter of CCFinder supports filtering clones at a certain block level
during the preprocessing phase. For instance, with hard shaper, only token se-
quences that are enclosed by a block (e.g., method, loops) are considered as clones.
In contrast, without any shaper, any token sequence is considered as a clone as
long as it is compatible with the other parameters. For our purposes, we used the
soft shaper, which prevents that clones are split by the most outer block. For in-
stance, if a code clone exceeds the boundary of a for loop but not the boundaries
of its enclosing method, it is still considered as clone for further treatment.

• token size: This parameter specifies the minimum number of different token
and thus inherently affects the clone detection result. As an illustrative example,

5.2. Code-Clone Analysis Process 59

considering the following sequence of variable initialization: A = 1; B = 1 + 2;

C = 1 + 2 + 3;. This sequence consists of your different types of token, namely,
identifier, integer literal, ”=”, ”;”. If we choose this parameter to be greater
than four, this sequence would not be considered as code clone, even if multiple
similar or identical sequences exist. In general, less interesting clones such as the
aforementioned sequences of variable initialization consists of only few different
token. Consequently, we used the default value, proposed by CCFinder, which is
12, to reject such code clones beforehand.

As a result of clone detection, we obtain a list of clone pairs. As a kind of post-
processing step, we merge corresponding clone pairs to clone classes. For instance, two
clone pairs cp(A,B) and cp(B,C) are merged to clone class cc(A,B,C) by exploiting
the equivalence relation that is created between corresponding clones by CCFinder.
These clone classes are subject for further treatment within our clone analysis process.

5.2.2 Syntactical Classification

The result of the initial clone detection is the input for further analysis to filter clones
of interest. The first step of this process is syntactical classification, where we classify
the clone classes by their syntactical category. That is, we map the detected clones
to the elements of the underlying AST to determine whether a clone relates to cer-
tain syntactical elements such as statements or methods. Subsequently, we filter those
clone classes that we classified into one of the following categories with the obvious
meanings: IfStatement, ForStatement, WhileStatement, DoStatement, MethodDeclara-
tion, and TypeDeclaration. We do this for two reasons. First, these categories indicate
enclosing blocks (e.g., for loops) that usually encapsulate a coherent piece of function-
ality. For instance, a method may implement a certain algorithm or a loop is used to
iterate over a certain data structure, including some additional actions. Such clones
usually result from explicit cloning activity, either to reuse specific code in another con-
text by copy&paste or for reusing general functionality such as commonly accepted
algorithms (e.g., Fibonacci). Additionally, such clones may be potential candidates for
removal actions, either by introducing abstractions or by extract them into an external
library.

The second reason for this filtering process is that these categories provide good refac-
toring opportunities for code clone removal. Note that this does not address the fact
whether a clone class should be removed (e.g., because it is considered harmful), but
whether it is possible to remove a clone class by means of well-established refactorings.
Code clones that do not fit into enclosing blocks impede such a removal, because a)
they are difficult to extract and b) they rather occur by accident than on purpose.
For instance, considering code clones that partly belong to a loop and partly to its
surrounding method. Removing such clones comes with different pitfalls (e.g., validi-
ty/accessibility of local and global variables) and is only possible, if at all, with cumber-
some workarounds. In contrast, considering clones that are enclosed by the mentioned
blocks, provide a vast amount of refactorings that are possibly applicable. For instance,

60 5. Code Clones in Feature-Oriented Software Product Lines

we could remove them by applying Extract Method or Pull Up Method refactorings [?
], tailored to SPLs.

As a result of this classification, we obtain a set of clone classes that adhere to the
aforementioned syntactical blocks. We investigate these clone classes further within the
final analysis step.

5.2.3 Feature-related Classification

In the last step of our clone analysis process, we investigate whether the detected clones
are FOP-specific or not. In other words, we figure out to what extent existing clones
occur due to the feature-oriented nature of the software product line. To this end, we
need a criterium that enables us to decide whether code clones are FOP-specific or
not. Next, we give a definition for FOP-specific clones, on which we rely during our
feature-related classification.

Definition 2 (FOP-specific clone class). A clone class, that is, a set of corresponding
code clones, is FOP-specific, if and only if, at least two of these corresponding clones
are located in different features.

We argue that it is reasonable to distinguish FOP-specific clones based on their distri-
bution over features, because features are distinct entities in FOP compared to other
programming paradigms. Hence, if code clones occur between different features, they
are presumably caused by limitations of feature-oriented language mechanisms or by the
feature-oriented development process. In the first case, it may be impossible to unify
clones by abstraction (e.g., locate replicated code in a distinct feature), while in the
latter case programmers are not aware of such opportunities for abstraction. Moreover,
if code clones occur only within one feature, either in a single or in different classes,
we can not clearly determine whether these clones are caused by FOP or not. Since
FOP partly relies on OOP, these clones may occur for the same reasons as in usual,
standalone software systems. Hence, we refer to all code clones that do not adhere to
Definition ?? as OOP-specific clones.

Beyond the mere classification of FOP-specific clones, this step also encompasses a
closer look at the features that contain code clones. More precisely, we are interested in
the relation of features that share corresponding clones. This, in turn, provides insights
in the nature of FOP-specific clones, specifically, whether certain patterns (with respect
to the features) exist regarding code clone occurrences. In ??, we already discussed the
possibility of clones between alternative features. However, other relations between
features exist as well, such as parent-child relationship or cross-tree constraints. In
particular, we focus on the following categories during this analysis step:

• Common Parent Feature (CPF): This category encompasses all clone classes,
where the corresponding code clones occur in sibling features that have a common,
direct parent feature.

5.2. Code-Clone Analysis Process 61

C
lo

n
e

 R
a

ti
o

 i
n

 %

0

5

10

15

20

25

30

35

40
A

m
o

u
n

t o
f c

lo
n

e
s
 (S

L
O

C
)

0

100

200

300

400

500

600

700

800

900

1000

1100

Subject systems

GPL GUIDSL Notepad PKJab TankWar EPL BerkeleyDB MobileMedia Violet Prevayler

amount of clones (SLOC)

clone ratio

Figure 5.1: Overall clone ratio and amount of clones.

• Alternatives (A): This category represents a sub-category of the previous category.
All clone classes that are classified into category CPF and, beyond that, where
all sibling features belong to an alternative group are part of this category.

• Common Dependency Feature (CDF): This category encompasses all clone classes,
where the corresponding code clones are located in features that are related with
at least one common feature. This relation could be a parent-child relationship or
a cross-tree constraint. For instance, if two features A and B share corresponding
code clones of clone class CCAB and the cross-tree constraints A ⇒ C and B ⇒
C exist, the clone class is part of this category.

Beside the identification of recurring patterns for code clone occurrences, we use the
aforementioned categorization to identify code clones that are potential refactoring can-
didates. We explain this in detail in ??. Finally, we also investigate how many features
are affected by code clones within this analysis step. As a result, we obtain insights
whether clones disseminate throughout the whole SPL or only in certain features (e.g.,
related to the GUI).

62 5. Code Clones in Feature-Oriented Software Product Lines

c
lo

n
e

 r
a

ti
o

 i
n

 %

0

5

10

15

20

25

30

35

40

subject systems

GPL GUIDSL Notepad PKJab TankWar EPL BerkeleyDB MobileMedia Violet Prevayler

total

conditional blocks

method declaration

type declaration

Figure 5.2: Block clone ratio – overall and separated by syntactical blocks.

5.3 Results

Next, we present the results of our code clone analysis on ten feature-oriented SPLs.
We structure this section according to the analysis steps, presented in the previous
section. Additionally, we examine the differences that may result from the development
process of our SPLs (from scratch or refactoring). For discussion and interpretation of
the results, we refer to ??.

A common measure to determine the amount of clones relative to the whole source code
is the clone ratio. Consequently, we use this measure as well to relate the amount of
clones to the total amount of code (SLOC) for each SPL. Additionally, we calculated
the percentage of the average and the standard deviation (a± s) on the clone ratio of
all considered SPLs.

Amount of code clones.

The results of our initial clone detection reveal that there is a significant amount of
clones in feature-oriented SPLs (cf. ??). Regarding all considered SPLs, 15 ± 10 % of
the overall code are clones. We observed considerable differences regarding the clone
ratio of the particular SPLs that ranges from 2 % to 37 %, which is also reflected by
the relatively high standard deviation. Beyond this, we noticed that two of the smallest
SPLs (GPL and Notepad) exhibit the highest clone ratio values with 37 % and 28 %

5.3. Results 63

respectively. By contrast, the two largest SPLs (BerkelyDB and GUIDSL) are amongst
those with the lowest clone ratio value.

Block-level clones.

With our first analysis step, we aimed at detecting clones that are encompassed by
an enclosing, syntactical block. We show the results in ??, where we summarized
those clones as conditional blocks that map to the following AST nodes: IfStatement,
ForStatement, WhileStatement. Our data reveal that the clone ratio decreases in
comparison to the initial clone detection in almost all SPLs, indicating that we filtered
out uninteresting clones within this step for nearly every product line. Nevertheless,
there is still a huge amount of clones that are enclosed by syntactical blocks, indicated
by a total amount of code clones of 12 ± 9 %. Furthermore, we observed that the
clone classes, filtered out by the syntactical classification, mainly fall into the cate-
gories MethodDeclaration, and TypeDeclaration (cf. ??, green and blue bars), except
for Notepad SPL. Particularly, we noticed the high amount of code clones in category
TypeDeclaration, which means that whole classes have been cloned.

c
lo

n
e

 r
a

ti
o

in

 %

0

5

10

15

20

25

30

35

subject systems

GPL GUIDSL Notepad PKJab TankWar EPL BerkeleyDB MobileMedia Violet Prevayler

total

CDF

Alternatives

CPF

Figure 5.3: Ratio of FOP-specific clones – overall and distinguished by feature relations.

FOP-specific clones.

The data resulting from the last analysis step (cf. ??) reveal that a considerable amount
of code clones exist that are FOP-specific (by our definition). Nevertheless, we observed

64 5. Code Clones in Feature-Oriented Software Product Lines

that four feature-oriented SPLs (GUIDSL, PKJab, Berkeley DB, and Prevayler) contain
(almost) no FOP-specific clones. We assume that this results from the fact, that these
SPLs exhibit the lowest clone ratio even in the initial clone detection (cf. ??) and
that the existing clones are OOP-specific. Generally, we observed that the clone ratio is
considerably lower than the clone ratio after syntactical classification for all SPLs except
of GPL. Regarding all SPLs, the amount of clones is 9± 9 %, which reveal that there is
a high diversity between the clone ratio of the several SPLs. Actually, four SPLs exhibit
a clone ratio greater than 10 %, whereas the clone ratio of the remaining SPLs is less
than 8 %. Finally, our data reveal that FOP-specific clones are mostly distributed over
alternative features with a common parent feature (blue bar in ??). Only the Notepad
SPL exhibit clones in features that have common parent feature but are not alternative,
indicated by the red bar in ??. Finally, in three SPLs (MobileMedia, BerkeleyDB, and
Violet), clones are contained in features that have a common dependency feature instead
of a common parent feature.

a) initial clone detection b) syntactical classification c) FOP-specific classification

c
lo

n
e

 r
a

ti
o

 i
n

 %

0

5

10

15

20

25

30

35

40

.

Figure 5.4: Comparison of SPLs from scratch vs. refactored from legacy for all three
steps of our code clone analysis process.

From scratch vs. Refactoring.

Beside the amount of clones per system, we were also interested whether the devel-
opment process has an influence on code clone occurrences. Hence, we measured the

5.4. Discussion 65

amount of clones for each analysis step by taking the development process into ac-
count. We show the results by means of box plots in ??. The main observation is that
the amount of clones in SPLs developed from scratch is considerably higher than in
SPLs decomposed from legacy applications for all steps of our clone analysis process.
For instance, the amount of clones after the initial clone detection for SPLs developed
from scratch is 19 ± 12 % (cf. ?? a)). Even after the last analysis step, we detected
a considerable amount of clones for these systems (12 ± 12 %, cf. ??). In contrast,
the amount of clones for software product lines refactored from legacy applications is
significantly lower, ranging from 10 ± 5 % after the initial clone detection to 5 ± 4 %
after FOP-specific classification. Beyond the differences, caused by the development
process, our data reveal a high diversity amongst the software product lines developed
from scratch. This diversity (i.e., large differences between the several SPLs regarding
amount of clones) is visually indicated by the relatively large range of the box plots
in ??.

5.4 Discussion

In the following, we interpret and discuss the results of our case study with regard to
the research questions we posed in ??.

Do code clones exist in feature-oriented SPLs?

Based on the results of our analysis, we conclude that a considerable amount of code
clones actually exist in feature-oriented SPLs. Beyond that, we observed that there are
significant differences, regarding the amount of clones between the analyzed SPLs in
general. In a few of them the amount is negligible. In addition, some of the smallest
SPLs exhibit the highest amount of clones. However, considering the overall result of
the clone detection, we can not confirm a correlation between SLOC metric and clone
ratio.

Furthermore, most of the detected clones occur at the block level, meaning that they are
inside a syntactical block such as conditionals or methods. The reason could be that
feature-oriented SPLs have a rather coarse-grained nature due to the decomposition
into modules. More precisely, fine-grained extensions are exposed by cloning at a coarse
grain rather than using workarounds such as hook methods to avoid code replication.
However, while this may explain the occurrence of FOP-specific clones at the block
level, we are not sure, whether OOP-specific clones at this level occur for the same
reason.

Is FOP prone to introduce FOP-specific clones in SPLs?

Our results indicate that there are FOP-specific clones in the analyzed SPLs. An in-
teresting observation is that the majority of these FOP-specific clones occur between
alternative features. As already discussed in ??, such features are often semantically
related, because of similar concepts they implement (e.g., BFS and DFS in the Graph

66 5. Code Clones in Feature-Oriented Software Product Lines

SPL). Thus, alternative features are presumably more prone to clones, which is finally
confirmed by our study. Moreover, we observed that most of the FOP-specific clones, in-
dependent of the feature constraints, occur due to fine-grained extensions. As discussed
likewise in ??, this is a major disadvantage of compositional approaches and bypassing
such extensions inevitably leads to boiler-plate code. Alternatively, code cloning is a
more straightforward and clean solution. Indeed, our case study indicates that code
cloning is a viable approach to handle fine-grained extensions.

Generally, both observations coincide with the limitations of FOP as analyzed by us and
other researchers before (see ??). However, since we also detected a vast of block-level
clones, there may be a considerably high potential for code clone removal, specifically
for clones between alternative features. We put emphasis on this topic in ??.

Nevertheless, we also detected clones that are FOP-specific by our definition, which
do not occur in alternative features. Considering our data, we can not clearly infer
why these clones occur between these features. Different reasons such as idioms or
crosscutting concerns are possible but we can not confirm this entirely. But even without
these clones it is a matter of fact that feature-oriented SPLs contain FOP-specific clones
that follow certain patterns regarding feature relations and granularity.

Is the development process of the SPL crucial for code cloning?

Our results show differences between the analyzed SPLs that can be ascribed to the
development process (from scratch vs. refactoring). In detail, the SPLs developed from
scratch contain a significant higher amount of clones than the SPLs decomposed from
legacy applications. The SPLs decomposed from legacy applications were developed
originally object-oriented and finally, were decomposed (semi-)automatically [?]. For
simplifying this decomposition process, complex group constraints have been avoided,
and thus most of the features are optional. Based on our results, this is a reasonable
explanation for the different amount of clones between SPLs developed from scratch and
refactored from legacy. Furthermore, the fact that the corresponding legacy applications
have not been designed with variability in mind could also influence the amount of
clones.

Finally, the fact that the programmers of the SPLs developed from scratch were may be
not capable to exploit all concepts and mechanisms of FOP (as often observed with new
programming paradigms) could be a reason for the higher amount of clones. Hence,
they may have introduced clones unnecessarily or missed to factor out clones where it
was possible with the mechanisms of FOP.

How to deal with clones in feature-oriented SPLs?

During our analysis, we particularly looked at the refactoring potential of the detected
clones. The corresponding data reveal that a large portion of the overall detected
clones exhibits characteristics that indicate refactoring opportunities. One interesting
observation we made is that a huge amount of clones between alternative features are

5.5. Threats to Validity 67

across method declarations. These clones can be refactored by pulling them up to a
common parent feature. We will have a closer look to concrete refactorings in ??.

Beside refactoring, other possibilities exist for managing clones that we did not consider
in our analysis, such as clone tracking [?] or linked editing [?]. The idea of both
approaches is that the detected clones remain in the code but information on their
existence is used for their management (e.g., for changing code clones simultaneously).

5.5 Threats to Validity

Although we designed and executed our case study carefully, some threats to validity
remain, which we address in the following.

Single FOP language.

Although FOP is a general paradigm, it depends to some extent on the mechanisms of
the underlying language. As a result, different FOP languages exist (e.g., for C++ [?]
and Java [? ?]) that may lead to different implementations for feature-oriented SPLs.
In this paper, we focused only on FOP languages based on Java, so that the results of our
analysis are comparable. However, the classification we made along with our analysis
is also valid for other languages (e.g., C++ or C#). Although no empirical evaluation
for other languages yet exists, we assume that at least our feature-related analysis is
independent of the programming language (or paradigm), because the decomposition
of source code into features is independent of the underlying language.

Selected SPLs.

A major problem with case studies is that the selected programs may be biased. To
address this problem, we selected SPLs from different domains, of different size, and
implemented by different programmers. Nevertheless, one problem remains: all of the
analyzed SPLs are prototypical implementations from academia. Hence, there is a
lack of comparable results of industrial SPLs, which is also caused by the fact that such
systems do not exist for FOP. Nevertheless, the considered SPLs have been implemented
by different authors and for other purposes than analyzing them for code clones.

Classification of FOP-specific clones.

During our analysis, we proposed a classification of FOP-specific clones based on the
relation of the affected features. However, we detected clones for which we can neither
infer why these clones occur nor if they are FOP-specific indeed. One possibility is that
these clones are contained in features that implement homogeneous crosscutting con-
cerns. Since this kind of concerns occurs in OOP programs as well, the respective clones
may be not purely FOP-specific. Beyond that, our condition for FOP-specific clones
may lead to inaccurate results regarding the classification within respective analysis
step. Hence, we should refine this condition to be more restrictive in our classification
of what an FOP-specific clone is. However, we defined a lower bound with our definition
of what an FOP-specific code clone is, which can be used as a base for future work.

68 5. Code Clones in Feature-Oriented Software Product Lines

5.6 Related Work

Many studies exist on code clones in object-oriented software systems. Some of them
focus only on whether code clones exist or not (e.g., [? ? ?]) whereas others analyze
code clones with respect to their effects (e.g., [? ?]), their removal (e.g., [?]) or
other peculiarities such as identifying crosscutting concerns (e.g., [?]). However, all of
these studies are limited to OOP (and, to a minor fraction, functional programming).
By contrast, our work focuses on clone detection and analysis of peculiarities of FOP
and SPLs, which has not been considered so far. We open a new field for code clone
research activity. Additionally, we related the causes for FOP-specific code clones to
the limitations of FOP, which can initiate discussions on FOP language design.

Related work that focusses on general drawbacks of FOP exists as well. Kästner et
al. addressed the problem of fine-grained extensions during SPL development regarding
compositional and annotative implementation approaches [?]. They figure out common
problems of compositional approaches in the presence of fine-grained extensions, which
can only be solved by tricky workarounds. As an alternative, they propose virtual
separation of concerns, which overcomes the problems by supporting both, fine-grained
and coarse-grained extensions.

Another problem that has been analyzed by Kästner et al. is the optional feature prob-
lem [?]. This problem is quite common during SPL development and describes the
mismatch that two features that are optional in the problem space (e.g., in the variabil-
ity model) depend on each other in their implementations (e.g., features Logging and
Transaction in a DBMS). The authors analyzed common solutions, independent of the
underlying programming language or implementation approach. Amongst others, mul-
tiple feature implementations is a solution, which inherently ears to code clones. Hence,
while they not focussed on code cloning in general, they acknowledged that cloning is
a solution to solve this problem. Additionally, they provide two case studies to provide
insights on the impact of the optional feature problem and how it is generally solved.

Regarding clone detection or analysis in software product lines, only few related work
exists. Chiba et al. recently proposed family polymorphism to counter clones in FOP [?
]. In Particular, the reimplemented the MobileMedia SPL, added features and analyzed
it with respect to code clones. Afterwards, they refactored the source code using Su-
perGluonJ, which provides inheritance between features. The main difference to our
work is that we focussed on detailed insights of how and why code is cloned in feature-
oriented SPLs. In contrast, they addressed the problem of how to overcome limitations
of FOP that foster code cloning.

Mende et al. propose clone detection for supporting the evolution of SPLs [?]. How-
ever, in their work they consider SPLs, realized by object-oriented, preprocessor-based
languages such as C++ and thus, the individual features are separated only virtually,
i.e., by textual elements such as #ifdef. In our work, we consider feature-oriented SPLs
where the features are separated into modules and we show that clone detection for
such SPLs is applicable as well.

5.7. Summary 69

5.7 Summary

Code clones are a well-established and investigated field of research in software engi-
neering. Different techniques for their detection and analyses to understand reasons
for and impact of code clones exist. Though, it is far away from obvious how to treat
clones. However, while variable software systems, also referred to as software product
lines, gain more and more momentum, no work exist that investigates the occurrence
of code clones amongst them. We addressed this issue for feature-oriented software
product lines.

To this end, we presented a case study on code clones in feature-oriented software
product lines. First, we formulated research questions regarding the causes and removal
of code clones specific to feature-oriented SPLs. Particularly, we were interested whether
clones occur in FOP, whether they are specific to FOP (and to what extent), and
whether the development process of SPLs has an effect on code clones. Second, we
conducted an empirical analysis on ten different SPLs to answer these questions. We
presented our analysis process, which consists of the initial clone detection and two
analysis steps to identify FOP-specific clones at a coarse-grained level. The results of
our case study give strong evidence that a considerable amount of FOP-specific exist
in our analyzed product lines. Moreover, we investigated that especially alternative
features are a root cause for such clones and that the amount of clones is significantly
higher in SPLs that are developed from scratch.

However, there still some questions we could not answer so far. Hence, we consider our
case study rather as a starting point for a new direction of research for code clones. For
instance, it is totally unclear whether our results are generalizable to other composi-
tional approaches such as AOP. Moreover, we argue that is is worth to quantify more
detailed which causes are crucial for FOP-specific clones and which are not. Finally, it
is open how to asses and manage code clones in feature-oriented (or, more generally,
compositional) software product lines. We pick up this question in ??, where we propose
an approach for removing clones, which is one possible solution to that question.

70 5. Code Clones in Feature-Oriented Software Product Lines

6. Code Clones in CPP-Based
Software Product Lines

In ??, we investigated the role of code clones in compositional software product lines,
more precisely, in feature-oriented SPLs. However, in industrial applications, composi-
tional product-line techniques gain only minor attention. Rather, annotative approaches
are widely used to develop industrial software product lines, where the C preprocessor
(cpp) is probably the most prominent and commonly used tool. The cpp is a powerful
text processing tool tightly coupled with the C programming language [?]. Due to
its token-based nature, the cpp is language-independent and provides easy mechanisms
to express variable source code. To this end, the cpp provides three different mecha-
nisms: macros (#define), file inclusion (#include), and conditional compilation (e.g.,
by #ifdef). In the following, we solely focus on conditional compilation, because this
mechanism is primarily used to express variability on source code level. Note that we
use #ifdef as a placeholder for all possibilities of conditional inclusion (i.e.,#ifndef,
#if, #elif, #else and #endif) and that we refer to all of them as preprocessor di-
rectives or annotations. Preprocessor annotations are discussed controversially due to
the fact that they can be used in two ways: disciplined and undisciplined.

In this chapter, we investigate the effect of preprocessor usage on occurrences of code
clones. Since a C/C++ program with conditional compilation can be considered as
software product line (or variable software system) , we inherently provide insights of
how and why clones occur in such preprocessor-based SPLs and how it may differ com-
pared to feature-oriented SPLs. First, we take a closer look at preprocessor annotations
and their distinction in disciplined and undisciplined ones. We present examples and
possible advantages and disadvantages of both categories. Second, we present a code
clones analysis process, which is the ”skeleton” of our empirical analysis. Third, we
discuss the results of our analysis on clones in cpp-based product lines.

With the results and discussions presented in this chapter, we extend existing studies
by a large empirical study that investigates the relation between code clones and pre-

72 6. Code Clones in CPP-Based Software Product Lines

processor annotations. Hence, we provide a new perspective on clones in C systems,
which has not been considered before. As a result, we provide new insights into why
code clones occur in annotative SPLs. Furthermore, the information of our analysis is
useful to support the decision whether to remove clones or not.

6.1 A Discipline of Annotations

Preprocessor annotations, such as #ifdef, can be used to generate different variants
(with different functionality) of a program [?]. Each annotation consists of a boolean
expression that is evaluated by the cpp tool to determine whether the conditional code
is included in a certain program or not. Usually, such an expression represents a feature,
an increment in user-visible functionality [?].

Because preprocessor annotations can be used at every level of granularity, they provide
a high expressiveness to the programmer in terms of variability. Conversely, this flexi-
bility makes it a root for poor code quality, caused by the missing structure of the cpp
tool. Amongst others, the cpp is considered to be error prone and to impair readability
and maintainability of the code [? ? ? ?]. Especially, if used in a fine-grained manner
that does not align with the underlying program structure, it is commonly accepted
that annotations contribute to unstructured, tangled source code with the mentioned
negative effects [? ? ? ?].

� �
1 class Stack {

2 void push(Object o

3 #ifdef SYNC

4 , Transaction txn

5 #endif

6){

7 if (o==null

8 #ifdef SYNC

9 || txn==null

10 #endif

11)

12 return;

13 #ifdef SYNC

14 Lock l=txn.lock(o);

15 #endif

16 elementData[size++] = o;

17 #ifdef SYNC

18 l.unlock();

19 #endif

20 fireStackChanged();

21 }

22 }� �

� �
1 class Stack {

2 #ifdef SYNC

3 void push(Object o, Transaction txn) {

4 if (o==null || txn==null)

5 return;

6 Lock l = txn.lock(o);

7 elementData[size++] = o;

8 l.unlock();

9 fireStackChanged();

10 }

11 #else

12 void push(Object o) {

13 if (o==null)

14 return;

15 elementData[size++] = o;

16 fireStackChanged();

17 }

18 #endif

19 }� �
(a) undisciplined (b) disciplined

Figure 6.1: Two examples for undisciplined and disciplined annotation usage.

In ??, we show two code fragments containing conditional code that is undisciplined and
disciplined, respectively. Undisciplined annotations (?? a, Lines 3–5 and 8–10) are made

6.2. Experimental Setup 73

on arbitrary syntactical units, such as parameters or branch conditions, and do not align
with the overall code structure. By contrast, disciplined annotations (?? b) are mapped
to corresponding syntactical units such as functions or statements and thus align with
the code structure. As a result, it is commonly accepted that disciplined annotations
alleviate the drawbacks of annotations on source-code quality [? ? ?]. However, we
and others observed that disciplined annotations may lead to code clones [?].

The distinction between disciplined and undisciplined annotations inevitably raises the
question where we have to draw the borderline between both types of annotations.
Distinguishing preprocessor annotations by their discipline has been originally proposed
by Liebig et al., who provide the following definition [?]:

Definition 3. Disciplined Annotations

In C, annotations on one or a sequence of entire functions and type definitions
(e.g., struct) are disciplined. Furthermore, annotations on one or a sequence of entire
statements and annotations on elements inside type definitions are disciplined.
All other annotations are undisciplined.

We use this definition within this paper because it is reasonable and suitable for our
purposes. Furthermore, by this definition it is possible to map preprocessor annotations
to elements of an AST. This, in turn, enables at least semi-automated analyses and
refactoring that take the variability of the software system into account [?]. In ??,
we provide further examples for both kinds of annotations. For instance, the listing
in ?? a contains annotations of alternative function parameter. This is obviously an
undisciplined, both, due to fine granularity and our definition, and even though it is
well-formatted it is obfuscating to some extent. For more details on drawbacks and
advantages of disciplined as well as undisciplined annotations we refer to [?].

6.2 Experimental Setup

In this section, we present the research questions, the overall design, and the subject
systems of our empirical study on code clones in cpp-based SPLs.

Research Questions

Similarly to our empirical study in ??, we want to refine our initial research questions
into more detailed questions, dedicated to the actual implementation techniques and
its characteristics (here: preprocessor annotations). Another point is that beside the
overall research questions, the correlation between the discipline of annotations and the
amount of code clones is of special interest for us. Keeping both issues in mind, we
formulate the following research questions.

RQ 1 To what extent do code clones occur in annotated #ifdef blocks?

74 6. Code Clones in CPP-Based Software Product Lines

� �
1 need_redraw = check_timestamps(

2 #ifdef FEAT_GUI

3 gui.in_use

4 #else

5 FALSE

6 #endif

7);� �

� �
1 int n = NUM2INT(num);

2 #ifndef FEAT_WINDOWS

3 w = curwin;

4 #else

5 for (w = firstwin; w != null;

6 w = w->w_next, --n)

7 #endif

8 if (n == 0)

9 return window_new(w);� �
(a) annotated function parameter (b) annotated head of for-loop

� �
1 void tcl_end() {

2 #ifdef DYNAMIC_TCL

3 if (hTclLib) {

4 FreeLibrary(hTclLib);

5 hTclLib = NULL;

6 }

7 #endif

8 }� �

� �
1 typedef struct {

2 typebuf_T save_typebuf;

3 int typebuf_valid;

4 struct buffheader save_stuffbuff;

5 #if USE_INPUT_BUF

6 char_u *save_inputbuf;

7 #endif

8 } tasave_T;� �
(c) annotated conditional branch (d) annotated statement

Figure 6.2: Examples for undisciplined (a and b) and disciplined (c and d) annotations.

Several studies reveal the existence of code clones in C programs. However, none
of these studies analyzed how much of the detected code clones occur in annotated
code (i.e., code that is enclosed by preprocessor annotations). We aim at answer-
ing this question to better understand to what extent preprocessor usage causes
code clones, independent of their discipline. Furthermore, we aim at investigating
the relations of the variable blocks that contain the code clones such as #ifdef

...#else ... blocks, which correspond to alternative features in FOP.

RQ 2 Are there differences between disciplined and undisciplined annotations regard-
ing code clone occurrence?

This question is motivated by the observation that disciplined annotations may
come at the expense of introducing code clones [?]. Consequently, we evaluate
whether this observation is accidental or may depend on the discipline of anno-
tations. Answering this question may also affect the evaluation of code clones
regarding their harmfulness. For instance, if a code clone is introduced to over-
come undisciplined annotations, should this clone considered harmful? As a direct
consequence, this information may also support refactoring decisions in terms of
code clone removal.

6.2. Experimental Setup 75

Study Design

We perform a code clone analysis supplemented by clone detection and source code
analysis. The detailed process is described in ??. As a result, we collect information
on the amount of code clones, #ifdef code (i.e., code that is annotated by #ifdefs),
and #ifdef clones (i.e., code clones that are enclosed by #ifdefs). Then, we compute
different measures based on these results.

First, we compute the code clone and #ifdef coverage. Coverage denotes the part of
the source code that is covered by code clones or #ifdef blocks, respectively. These
measures provide us with general information on the systems and whether it is worth
to investigate these systems further.

Second, we compute the #ifdef clone coverage to investigate how much of the over-
all code contains #ifdef clones. Additionally, we compute the ratio of #ifdef clones
compared to (a) all detected code clones (#ifdef-clone/clone ratio) and (b) the total
amount of annotated code (#ifdef-clone/#ifdef ratio). With these measures, we can
determine whether there are other factors that are likely to cause #ifdef clones.

Finally, we compute all measures for the subject systems, separated by their actual
discipline of annotations and thus can compare both categories.

undisciplined disciplined

program # SLOC description program # SLOC description

cherokee 47 983 Web server berkeleyDB 160 283 database system

gnuplot 67 854 plotting tool dia 121 117 diagramming software

lynx 111 994 Web browser ghostscript 491 703 postscript interpreter

php 471 604 program interpreter lighttpd 37 380 Web server

privoxy 24 784 proxy server minix 54 627 operating system

sendmail 85 094 mail transfer agent parrot 84 222 virtual machine

tcl 122 460 program interpreter python 331 014 program interpreter

vim 233 426 text editor

Table 6.1: Overview of analyzed C programs.

Subject Systems

For our case study, we use fifteen software systems written in the C programming
language. We selected programs of different size and domains to have a representative
sample. Furthermore, to evaluate our second research question, we split the sample in
two comparable groups: Seven systems are categorized as disciplined and eight systems
undisciplined. The criterium for the separation of our subject systems is the amount of
undisciplined annotations compared to the overall amount of annotations. As a result
of this criterium, the systems that we identified to be ”undisciplined” contain 12 %
undisciplined annotations on average. The classification is based on a recent study of
Liebig et al., who analyzed the discipline of annotations in C programs [?]. Based
on this analysis, we defined a threshold of more than 10 % undisciplined annotations

76 6. Code Clones in CPP-Based Software Product Lines

as inclusion criterion for undisciplined systems. Apart from that, both groups are
comparable regarding size and domains. In ??, we give an overview of the analyzed
programs.

6.3 Code Clone Analysis Process

In this section, we describe the overall process of analyzing the chosen software sys-
tems.The process consists of three steps, as we illustrate in ??: clone detection, source
code analysis, and code clone analysis. The first step provides information on code
clone occurrences in form of a clone report. In the second step, we analyze the source
code for occurrences of preprocessor annotations. Finally, we merge the information of
step one and two to figure out where code clones and annotations overlap. Next, we
provide a more precise description of each step.

Clone detection

ConQAT

Analysis

Source code analysis Code clone analysis

source code
annotation

Mapping of code
clone and #ifdef

information

#ifdef analysis

clone report

#ifdef information

Figure 6.3: Overview of the code clone analysis process.

Clone Detection.

For clone detection, we use ConQAT1, a token-based clone detection tool. We decided
in favor of ConQAT (and against CCFinder) for two reasons. First, ConQAT can de-
tect Type-III clones, which is important for our analysis, because such clones may occur
within disciplined annotations, as indicated by our example in ??. Second, ConQAT
already merges corresponding clones to clone classes and, beyond that, provides visual-
ization to gain first insights after the clone detection. To ensure comparability between
our empirical study in ?? and in this chapter, we selected comparable settings. For in-
stance, for both studies, we defined the same minimum clone length (that is, five lines)

1https://www.conqat.org

https://www.conqat.org

6.3. Code Clone Analysis Process 77

and enabled parameterization of certain syntactical elements. Furthermore, ConQAT
as well as CCFinder use the token-based technique. However, for some parameters
such as gap ratio, which can only be specified in ConQAT, we could not determine a
counterpart.

Initially, the source code is transformed into a token sequence from which comments
and white spaces are removed. Afterwards, ConQAT performs normalization on the
token sequence, which can be divided into two parts. First, statements are created
from the token sequence since it leads to better clone detection results. For instance,
by merging tokens to statements, the detection tool ignores clones that begin or end in
the middle of a statement. In a second normalization step, tokens are normalized by
user-defined rules, which eliminates differences between the specified syntactical units
such as identifiers or constants. For instance, we set up the normalization in such
a way that differences between literals values of the same type (e.g. boolean or int)
are ignored for the actual clone detection. However, we do not normalize differences
between identifiers to preserve high precision.

Finally, the clone detection is performed on the normalized token sequence. In a nut-
shell, a suffix tree is built on the token sequence and then, the algorithm searches for
all identical or similar substrings in the tree. The user can influence the clone detection
result by specifying different parameters such as the minimum clone length. For our
purposes, we selected a minimum clone length of eight statements. Furthermore, we
performed a gapped clone detection, so that gapped clones are detected as well. There-
fore, we have to specify the gap ratio, a measure that determines the maximum number
of gaps between two code clones. We selected a gap ratio of 0.25, which means for a
clone pair of eight statements that two statements of at least one clone may have been
deleted, added, or changed.

The result of the clone detection is subject to post-processing such as filtering out self-
overlapping clone groups. Furthermore, remove clones that we detect in generated code.
Finally, a clone report is generated, containing information on all source files as well
as on all clone groups and its corresponding code clones, which can be used for further
usage. For a more detailed description of the clone detection algorithm, we refer to [?
].

Source Code Analysis.

With this step, we aim at extracting information about code fragments that are enclosed
by preprocessor annotations in the source code. For obtaining this information, we have
to analyze the source code that was subject to clone detection in the previous step. To
this end, we annotate corresponding source files using src2srcml2, a source code markup
language that annotates the source code in an xml-like fashion without breaking its
overall structure [?]. We show an example in ??.

2http://www.sdml.info/projects/srcml/

http://www.sdml.info/projects/srcml/

78 6. Code Clones in CPP-Based Software Product Lines

Figure 6.4: Example for C source code, annotated with src2srcml.

Afterwards, we detect #ifdefs in the annotated code using XPath, an XML language
that can be used to navigate through an XML document. As a result, we obtain all oc-
currences of #ifdef annotations, identified by their absolute position (i.e., line number)
in the source file in form of a preprocessor tree. The tree structure has the advantage
that nested #ifdef blocks occur as child nodes of their surrounding annotations in
the tree. Note that we get this information for complete #ifdef blocks, that is, code
fragments that are enclosed by annotations such as #ifdef and #endif. Finally, the
results of this analysis can be used for code clone analysis.

Code Clone Analysis.

With our final analysis step, we aim at merging the information of the previous steps
to detect clones that occur specifically in preprocessor annotations. Thus, we map
the detected code clones to the detected #ifdef annotations, based on their absolute
position in the source file. We illustrate the mapping algorithm in ??.

proc mapClones(cg, pa)
Input: cg = list of clone groups, pa = list of annotations
for each cgi ∈ cg do

get all code clones from cgi
for each clone do
fa ⊂ pa = all annotations for the file containing the clone
if (a ∈ fa) is within clone then
clone′ = new clone with the position of a
create new ifdef clone group with clone′ (if this is the first clone of cgi)
otherwise add clone′ to existing ifdef clone group (for cgi)

end if
end for

end for
Result: list of #ifdef clone groups

Figure 6.5: Algorithm for mapping annotations to code clones.

Our algorithm has two inputs: A list of all clone groups from the clone report and a
list of preprocessor annotations together with the information where they can be found
(i.e., the file and the line number) from the preprocessor tree. For the mapping, we
consider the code clones of each clone group separately. Then, we compare the position
of each clone with the positions of all preprocessor annotations that have been found
in the file containing the clone. This results into three possible cases:

6.3. Code Clone Analysis Process 79

1. One or more #ifdef blocks are enclosed by the code clone (i.e., the code clone is
larger than the preprocessor annotation).

2. The code clone is enclosed by the #ifdef block (i.e., the preprocessor annotation
is larger than the clone)

3. Both, the code clone and the #ifdef block overlap only in parts.

For our purposes, only the first case represents a match and thus an #ifdef clone. We
omit the second case, because it is possible that only a small part of a preprocessor
annotation is a clone, which can also be caused by some idiomatic code. This poses
the risk, that the code clone is meaningless. For the same reason, we also omit the
third case. In the third case, incomplete clones such as statements at the end of a
conditional branch may occur, which also pose a high risk to be meaningless or even
incidental. For instance, suppose a code clones is identified in Lines 100–120 in File foo.c.
Furthermore, a preprocessor annotation has been detected in Lines 115–123. As a result
of our mapping algorithm, we detect that both, code clone and preprocessor annotation,
overlap in Lines 115–120. However, since this is an arbitrary code fragment of both,
the clone and the annotation, it is unlikely that it has been created intentionally. As a
consequence, taking such partial #ifdef clones into account would lead to less accurate
results.

a) disciplined b) undisciplined

c
o

v
e

ra
g

e
 i
n

 %

0

5

10

15

20

25

30

35

40

45

50

55

60

65

subject systems

berkeleyDB dia ghostscript lighttpd minix parrot python cherokee gnuplot lynx php privoxy sendmail tcl vim

clone coverage

#ifdef coverage

Figure 6.6: Clone and #ifdef coverage of the analyzed systems

80 6. Code Clones in CPP-Based Software Product Lines

Additionally to the aforementioned restrictions, the #ifdef block must have a length of
at least five source lines of code, including the lines containing the annotations. This is
threshold has been used by others [?] and worked well for us, too. In case of a match,
we create a new #ifdef clone. We do this for all clones of a clone group. Finally, all
corresponding ifdef clones are merged to an #ifdef clone group.

6.4 Results

Next, we present the results of our empirical study. Besides presenting the data that we
collected, we also relate different measures to investigate whether factors, other than the
discipline of annotation, bias our results, primarily with regard to our second research
question.

First of all, we present the results of step one (clone detection) and step two (#ifdef
analysis). We observed that, in all systems, annotated code as well as code clones exist.
In undisciplined systems (??, right side), the coverage of annotated code is 32, 7 %,
on average, whereas it is 16, 7 % on average for the disciplined systems (??, left side).
Furthermore, our data reveal that disciplined systems exhibit a considerably higher
clone coverage (10 % on average, 8, 7 % on median), compared to the undisciplined
systems (4, 3 % on average, 2 % on median). Most notably, we observed that six of eight
undisciplined systems have a clone coverage less than 3 %. Nevertheless, all systems
contain code clones as well as #ifdef annotated code in a reasonable amount and thus
are further investigated.

#
if
d

e
f
c
lo

n
e

 c
o

v
e

ra
g

e
 [
in

 %
]

0

0.5

1.0

1.5

2.0

code size [SLOC]

0 100 000 200 000 300 000 400 000 500 000

disciplined systems

undisciplined systems

Figure 6.7: Analysis results for #ifdef clones in relation to code size (correlation coef-
ficient: 0,64)

6.4. Results 81

To evaluate RQ 1, we measured the #ifdef clone coverage for all our subject systems
and show the results in ??. The respective scatter plot indicates that only few code
clones exist in annotated code. In fact, fourteen (out of fifteen) systems have an #ifdef
clone coverage lower than 1 % and only four of them have a coverage greater than 0.5 %.
Only one system (BerkeleyDB) has an #ifdef clone coverage higher than 2 %.

#
if
d

e
f-

c
lo

n
e

/c
lo

n
e

 r
a

ti
o

 [
in

 %
]

0

5

10

15

20

25

code clones [SLOC]

0 20 000 40 000 60 000 80 000 100 000

disciplined systems

undisciplined systems

Figure 6.8: Analysis results for #ifdef clones in relation to total amount of clones
(correlation coefficient: 0,77)

Because we observed considerable differences between disciplined and undisciplined sys-
tem regarding overall code clone and #ifdef coverage (cf. ??), we also computed further
measures to evaluate whether certain correlations exist. First, we computed the #ifdef -
clone/total-clone ratio and related it to the overall amount of code clones for each of the
systems. With this measure, we wanted to know, whether a correlation exists between
the total amount of clones and the actual clones that occur in preprocessor annotations.
We show the result in ??. Our data reveal, that only a minor fraction of all detected
code clones occur within #ifdef blocks, independent of the actual amount of clones.

In the same way, we computed the #ifdef -clone/#ifdef -code ratio and related it to the
total amount of annotated code. Our data, which we show in ??, reveal that, similarly
to the previous measure, only a small fraction of the overall #ifdef code contains
code clones (??). Interestingly, we observed that systems with the highest amount of
#ifdef code contain only few #ifdef clones. By contrast, amongst the systems with a
rather small amount of #ifdef code (< 25K SLOC), in particular, systems #ifdef code
contains up to 14 % #ifdef clones.

82 6. Code Clones in CPP-Based Software Product Lines

#
if
d

e
f-

c
lo

n
e

/#
if
d

e
f-

c
o

d
e

 r
a

ti
o

 [
in

 %
]

0

2

4

6

8

10

12

14

#ifdef code [SLOC]

0 50 000 100 000 150 000

disciplined systems

undisciplined systems

Figure 6.9: Analysis results for #ifdef clones in relation to #ifdef code (correlation
coefficient: 0,34)

With RQ 2, we aim at investigating whether there are differences between disciplined
and undisciplined systems regarding the amount of #ifdef clones. To this end, we com-
pare the amount of #ifdef clones in disciplined and undisciplined systems. Although
#ifdef clone coverage is rather low, the scatter plot in ?? reveals that the amount of
#ifdef clones is considerably higher in disciplined systems. We observed that five of the
eight undisciplined systems have a coverage close to zero and the average #ifdef clone
coverage is 0, 15 %. By contrast, four of the seven disciplined systems have an #ifdef
clone coverage of approximately 0, 5 % or higher (0, 63 % in average). Furthermore, we
observed that annotated code in disciplined systems is more likely to contain clones than
in undisciplined systems (cf. ??). Although the latter systems contain more annotated
code, in six systems this code contains nearly no code clones. In contrast, our data
reveal that out of the six system that contain 2 % or more code clones in #ifdef blocks,
five are disciplined systems. All of these observations are confirmed by a medium or
even high correlation coefficient we computed, using the method of Pearson.

6.5 Discussion

We interpret and discuss the results with respect to the research questions, proposed
in ??. Furthermore, we present and discuss some observations regarding the character-
istics of #ifdef clones.

6.5. Discussion 83

To what extent do code clones occur in annotated #ifdef blocks?

Based on our analysis and the respective results, we found that the amount of code
clones in preprocessor annotation is rather small (with minor exceptions). This espe-
cially holds for the systems with a high amount of undisciplined annotations, where all
measured data indicate that #ifdef clones are negligible. While this may render code
clones in preprocessor annotations to be of minor interest, we found two reasons for
this result.

First, due to our very strict definition of #ifdef clones (only complete annotated blocks
are considered), this result can be interpreted as a lower bound. Consequently, a more
fine-grained investigation of #ifdef clones, where we also consider code clones of the two
cases we omitted so far (partial overlapping clones and annotations and annotations,
which entirely surround detected clones) may lead to an increased amount of clones.
However, we have to take care that we still obtain a good precision and thus define
reasonable thresholds or definitions in which case we consider a code clone to be an
#ifdef clone.

Second, a larger case study with more systems can also support us in investigating the
role and nature of #ifdef clones in cpp-based programs.

Are there differences between disciplined and undisciplined annotations re-
garding code clone occurrence?

Our results indicate that #ifdef clone coverage is considerably higher for disciplined
systems compared to undisciplined systems. This, in turn, confirms the assumption
that disciplined annotations come at cost of code clones. Furthermore, our data reveal
that other factors such as code size and amount of code clones or annotated code do
not correlate with the amount of #ifdef clones.

To evaluate whether the observed differences between disciplined and undisciplined
systems are significant or rather occurred randomly, we conducted a significance test.
We applied an adapted version of the Mann-Whitney-U test: Instead of providing the
significance level of the test, we check whether the calculated U values are significant
according to a table specifically designed for small sample sizes [? ?]. The results of
the Mann-Whitney-U test reveal that the differences for the #ifdef/#ifdef -clone ratio
as well as the #ifdef clone coverage are significant. First, for the #ifdef/#ifdef -clone
ratio, we obtained the following results: U = 6, p < 0.01. Second, for the #ifdef
clone coverage our test produced the following results: U = 12, p < 0.05. Since both
significance levels are smaller than 0.05, we can assume that the differences we observed
are significant and not caused randomly.

Revisiting the overall target of this empirical study, that is, investigating the effect
of preprocessor annotations on code clones, our study results indicate that disciplined
annotations increase the amount of code clones compared to undisciplined one. How-
ever, due to the small #ifdef clone coverage, the effects of these clones may be not as
negative as for undisciplined annotations. Consequently, from our point of view, the

84 6. Code Clones in CPP-Based Software Product Lines

benefits of disciplined annotations such as tool support [?] outweigh the drawbacks of
code cloning, especially considering the rather low amount of clones in annotated code.

Further observations

Beside analyzing clones from a quantitative point of view, we also reviewed the detected
clones to find out more about their characteristics. In particular, we where interested
how #ifdef clones disseminate over files and features and on which granularity they
occur.

Regarding the features, which contain corresponding clones, we observed that nearly
all clones of a clone class occur within the same feature, meaning that the preprocessor
variable of the different #ifdef blocks is identical. This observation holds for both, dis-
ciplined and undisciplined systems. Furthermore, even if clones occur between different
features, they had no obvious dependencies such as alternative relationships. Rather,
we can consider these features as optional without any explicit dependencies regarding
the preprocessor itself.

Beyond features, we also analyzed the dissemination of corresponding clones with re-
spect to the source files. As a result, we made different observations; while clone classes
(i.e., two or more corresponding clones) in undisciplined systems are located mostly in
the same file, in disciplined systems such clones are mostly scattered across multiple
files. Currently, we cannot explain why this is the case. However, together with our
first observation regarding the features, the latter observation implicitly indicates that
features are scattered across multiple files as well, maybe even more than in the undisci-
plined systems. This could be a possible, though not verified, reason for the differences
we observed.

Finally, we observed that the detected #ifdef clones occur at any level of granularity,
instead of at the block level only such as functions. Furthermore, the clones are rather
short, mainly with a length of 5 to 10 lines of code. This may be caused by the fact
that the cpp inherently supports fine granularity, even if used in a disciplined way.
Although this makes it hard to reason about why these clones occur, we assume that
cloning is tightly connected with the respective features (or preprocessor variables).
That is, functionality is reused at different places but within the same feature, even at
fine-grained level.

6.6 Threats to Validity

Single Programming Language.

Although the cpp tool is language-independent and thus used with several programming
languages, we only considered C programs in our study, for three reasons. First, for
the selected systems we had prior knowledge about the discipline of annotations, based
on the study of Liebig et al. [?]. Second, with the decision for one specific language,
we can prevent that certain mechanisms of different languages influence our analysis

6.7. Related Work 85

results such as the amount of (#ifdef) code clones. Finally, the cpp tool has been used
with C programs for a long time and thus the systems are mature and different case
studies exist. Overall, we assume that this decision may limit generalizability, but does
not affect our findings.

Selected Software Systems.

There is a risk that the selected systems bias the study results. To mitigate this effect,
we selected systems of different size and of different domains as far as this was possible.

Clone Detection.

Both initial clone detection as well as #ifdef clone detection have been performed
automatically, based on certain input parameters. Due to the large code amount, it is
infeasible to check each clone regarding the precision of clone detection. However, we
randomly selected samples (for code clones and #ifdef clones) from each subject system
for a manual review process. All of these samples were true code clones, that is, we
detected no false positives. Furthermore, for clone detection, we selected parameters
that are commonly accepted to avoid that meaningless or even false code clones are
detected. Beyond that, our mapping of clones to preprocessor annotations may influence
our results. However, since we used a rather strict mapping, in which we omitted certain
cases, we argue that the precision is quite high. Hence, we obtain a pessimistic yet
reliable result for the amount of #ifdef clones.

Study evaluation.

During the interpretation of our results, we made several observations regarding our re-
search questions. To strengthen our results, we computed statistical measures, namely
Pearson’s correlation coefficient and a significance test. The main problem of the statis-
tical evaluation is the quite small sample set represented by the fifteen subject systems.
Although the statistic results indicate the correctness of the relations we observed, we
have to be careful with the conclusions we draw. Hence, a larger case study with
more systems is necessary. Nevertheless, our study results provide first insights on the
relation between preprocessor annotations and code clones.

6.7 Related Work

Analyzing cpp-based systems has been a major concern research from different per-
spectives, including general drawbacks of the cpp as well as specifically code clones.
For instance, Ernst et al. conducted a large empirical study that investigates the usage
of preprocessor annotations and its implications [?]. In their work, they highlight
advantages of disciplined preprocessor use and why this fails regularly. However, they
mainly focused on the usage of macro definitions such as #define; conditional inclu-
sion is just mentioned partly. Recently, Liebig et al. presented comprehensive results
regarding preprocessor usage, on which we partially base our paper. Particularly, they

86 6. Code Clones in CPP-Based Software Product Lines

analyzed preprocessor annotations in the context of software product lines by means
of a large empirical study. First, they defined several metrics for measuring system
properties such as granularity or types of extensions [?]. Second, they analyzed the
discipline of annotations in cpp-based programs [?]. In this context, they give a def-
inition for disciplined annotations and conducted a case study on how disciplined and
undisciplined annotations are used.

Amongst the several case studies on code clones, some of them specifically focus on
clones in C programs. Initially, Mayrand et al. presented an experiment on function
clones in C programs [?]. Within their work they propose a taxonomy for function
clones as well as different notions of similarity, based on metrics. Recently, Roy et al.
conducted a large case study on code clones in open source systems (C & Java) [?].
They propose different metrics such as clone density, clone location, and clone size for
comprehensive insights on cloned code and verified their results manually. However,
both code clone analyses concentrate only on function blocks (and different metrics
related to them) and thus they do not consider preprocessors, which is a new perspective
of our work.

6.8 Summary

The C preprocessor is criticized to be responsible for different severe problems in cpp-
based softwares systems such as introducing subtle errors, impede automated analysis,
or increased effort for maintenance. Amongst others, the fine-grained usage conditional
inclusion via #ifdef, also known as undisciplined annotations, is considered to be a
main reason for the aforementioned problems. However, this is only the peak in an
ongoing discussion on advantages and disadvantages of the cpp. In this chapter, we
contribute to this discussion by analyzing to what extent the discipline of preprocessor
annotations is responsible for code clones occurrences. To this end, we conducted an
empirical study on fifteen open source C systems. First, we presented a clear distinc-
tion between disciplined and undisciplined annotations, taken from Liebig et al. [?].
We related both kind of annotations to each other and provided examples for both
categories.

Second, we provided information on our case study setup and the actual analysis pro-
cess. Within the study setup, we formulated two research questions to guide our analysis
and presented our subject systems. Next, we proposed an analysis process for our case
study, which consists of three steps: clone detection, source code analysis, and code
clone analysis. We provided detailed information for each of these steps. Particularly,
we presented an algorithm for mapping code clones to preprocessor annotations.

Third, we presented and discussed the results of our analysis. We stated, that prepro-
cessor annotations contain only a minor amount of code clones. Hence, we assume that
preprocessor annotations may have only a minor effect on the amount of code clones.
Beyond that, we observed significant differences between systems with disciplined and

6.8. Summary 87

undisciplined annotations. Our results indicate that systems with disciplined annota-
tions are more prone to code clones than systems with undisciplined annotations. Ad-
ditionally, we observed that the detected clones do not follow a certain pattern, neither
with respect to their granularity nor with respect to the features. Specifically regarding
the affected source files, we investigated differences between undisciplined (mostly in
one file) and disciplined (,mostly between multiple files) systems. Summarizing our
results, we conclude that our study provides sound findings to verify the common belief
that disciplined #ifdefs are prone to code clones.

However, due to the small amount of #ifdef clones, we argue that it is probably more
beneficial to manage these clones instead of remove them (and probably introduce
undisciplined annotations). To evaluate this claim, further studies are necessary to
evaluate the harmfulness of these clones. Besides evaluating the harmfulness of #ifdef
clones, there are more questions that remain unanswered: For what types of annotations
do code clones occur in particular? Is there an overall relation between code clones and
variability in cpp-based systems? How would our results change for different types of
clones (e.g., only type-II clones or partial #ifdef clones) and more subject systems?
In future work, we will focus on these questions to gain more insights on the relation
between code clones and preprocessor annotations. Beyond that, we aim at providing
a bigger picture of clones in the context of systems with high variability.

88 6. Code Clones in CPP-Based Software Product Lines

7. Removing Clones in Software
Product Lines

In the previous two chapters, we presented case studies to analyze code clones in feature-
oriented and preprocessor-based software product lines, respectively. Although we ob-
served differences between the underlying implementation approaches (compositional
vs. annotative) within our analysis, we detected code clones in both of them. Espe-
cially in feature-oriented SPLs, a considerable amount of clones occur. However, it is
still open how to proceed with the detected clones. In ??, we discussed two possibilities:
code clone removal and code clone controlling. In this chapter, we focus on the former.

A common approach to remove code clones is the application of refactorings. Initially,
refactoring has been defined by Opdyke as a maintenance process that changes the
internal structure of a program but does not affect its external behavior [?]. Based
on this work, Fowler presented numerous refactorings in a catalogue-like manner [?].
While these refactorings are mainly designed for object-oriented programming, their
applicability is limited for software product lines. Hence, we and other argue that
refactoring in SPLs goes beyond traditional (object-oriented) refactoring approaches
and thus, has to be revisited for product lines [? ? ?].

In this chapter, we address this gap in research by proposing an extension of existing
refactoring techniques, specifically for feature-oriented programming (FOP), a compo-
sitional approach for product line development. While we mainly focus on code clone
removal as application scenario in this chapter, even more use cases for refactoring
in SPLs exist. Particularly, we argue that SPLs evolve even more than stand-alone
programs, and thus, maintenance of SPLs is an important issue. For instance, new
or changed requirements may induce a change to the feature model or source code of
an SPL. Furthermore, poor code quality caused by improper design decisions may re-
quire changes to the SPL. Commonly, most of these changes require an appropriate
refactoring support.

90 7. Removing Clones in Software Product Lines

Legend:

Mandatory

Optional

Alternative

And

Figure 7.1: A feature model specifying valid feature combinations of the Stack product
line.

Overall, we make the following contributions within this chapter:

• We point out limitations of traditional object-oriented refactorings for SPLs.

• We propose a definition for refactoring of SPLs in a variant-preserving way.

• We provide exemplary refactorings for feature-oriented SPLs in a catalogue-like
manner.

• We provide a case study on the TankWar SPL, where we remove detected clones
by applying our feature-oriented refactorings.

• Additionally, we discuss the generalizability of our definition and the actual refac-
toring towards annotative SPL implementation techniques.

7.1 Limitations of Traditional Refactoring

In this section, we provide information about the limitations of traditional (object-
oriented) refactoring regarding its application in feature-oriented software product lines.
To this end, we review the relation between features and collaborations and point out
how this affects refactoring of SPLs. Moreover, we present the different dimensions
and corresponding challenges that result from feature semantics. To illustrate the main
facts, we provide examples using the Stack SPL. As a reminder, we show the feature
model of this SPL, already known from ??, in ??.

7.1.1 Features and Collaborations

Implementing a software product line with FOP is mainly characterized by decomposing
a program into modular implementation units. The core idea of this decomposition is
that all artifacts (e.g., source files, config files) that belong to a certain feature are

7.1. Limitations of Traditional Refactoring 91

Feature BaseStack� �
1 class Stack { ...

2 void push(Element e) {/*...*/}

3 int pop() {/*...*/}

4 }� �
Feature Array� �

1 class Stack {

2 ArrayList stack = new ArrayList();

3

4 void push(Element e) {

5 stack.add(0,e);

6 }

7 /*...further implementation...*/

8 }

9 class Element {

10 /* initial implementation of class Element*/

11 }� �

Feature LinkedList� �
1 class Stack {

2 LinkedList stack = new LinkedList();

3

4 void push(Element e) {

5 stack.push(e);

6 }

7 }

8

9 class Node {

10 /* ...further implementation...*/

11 }

12 class Element {

13 /* implementation of class Element*/

14 }� �

Figure 7.2: Feature-oriented implementation of the Stack product line containing fea-
tures BaseStack, Array, and LinkedList.

modularized into one cohesive unit. This unit is called a feature module and we can
map this module directly to its corresponding feature in the feature model. Afterwards,
selected features are composed to generate a certain variant of the SPL. In this context,
each features realizes an increment in functionality by adding new structures to the
current program such as classes or extend existing structures such as classes or methods.

In ??, we show an exemplary feature-oriented implementation for our Stack SPL. Fea-
ture BaseStack is the base implementation of the SPL where class Stack is initially
declared. Moreover, features Array and LinkedList realize alternative data structures.
Both features extend the functionality by overriding the original method push and
adding the class Element. Additionally, the class Node is initially declared in feature
LinkedList.

An important characteristic of FOP is the relation between features and classes. Gen-
erally, a set of classes contributes to the implementation of features. These classes
have two interesting attributes: First, they communicate and thus have a collaborating
nature. Second, they can be considered to be orthogonal with respect to feature mod-
ules. Due to this relation(s) between features and classes, FOP is technically similar
to collaboration-based design [? ?]. In fact, we can consider feature modules to be a
specific representation of collaborations.

In the context of collaborations, classes play different roles in different feature modules.
That is, all functionality that a class contributes to a certain feature is encapsulated by
the role in the corresponding feature module. We illustrate this relation by an exem-
plary collaboration diagram of our Stack SPL, which corresponds to the code listings
in ??. The diagram, which we show in ??, consists of three different classes (Stack,
Node, Element) and features (BaseStack, Array, LinkedList). Each class can play a
role with respect to a certain feature or not. In FOP, a role is characterized as an incre-
ment in functionality such as extending or adding a method. For instance, class Stack

92 7. Removing Clones in Software Product Lines

has a role for each feature of the diagram (BStack, AStack, LLStack). In contrast, class
Element has only two roles (AElem, LLElem) in features Array and LinkedList, where
it reimplements the method push, respectively. Likewise, in the exemplary implemen-
tation of our Stack SPL, class Node has a role in feature LinkedList, where the initial
implementation of this class takes place and thus extends the functionality (cf. ??).

Classes

F
e
a
tu
re
s D
a
ta
S
tr
u
c
tu
re

A
rr
a
y

L
in
k
e
d
L
is
t

Stack

DSStack

Node Element

AStack

LLStack

AElem

LLNode LLElem

Figure 7.3: Collaboration diagram of the stack SPL with classes Stack, Element, and
Node features BaseStack, Array, and LinkedList (excerpt).

7.1.2 A New Dimension of Refactoring

Next, we figure out how collaboration-based design affects refactoring of feature-oriented
software product lines. Originally, refactoring is applied for the purpose of improving
the structure of source code. This, in turn, requires at least a vague idea of what
makes source code good or bad. For object-oriented programs, Fowler proposed a
comprehensive overview of code smells (e.g., design flaws, replicated code) and how to
remove these smells by application of refactorings [?]. Although such an overview
of code smells does not exist for FOP, many situations such as evolution or increasing
maintainability require refactoring. Particularly, we argue that we can even adopt code
smells for FOP as in traditional refactoring. For instance, there may be a method in
one feature that is more frequently used by another feature. Hence, it would be useful
to move this method into the latter feature.

Unfortunately, it is not as easy to adopt object-oriented refactoring techniques for
feature-oriented SPLs1. One reason is the aforementioned relation between classes and
features in FOP, which introduces an additional dimension for refactoring. In ??, we
show the resulting dimensions that have to be considered for refactoring. Each dimen-
sion implies certain challenges and risks, which we explain in the following.

1We use the terms feature-oriented program and feature-oriented SPL synonymously throughout
this paper.

7.1. Limitations of Traditional Refactoring 93

Classes

F
e
a
tu
re
s

F
1

F
2

F
3

Class A

Role A1

Class B

Role A2

Role A3

Role B1

Role B2

Role B3
D2

D
3

D
1

Figure 7.4: Different dimensions of refactoring in feature-oriented programming.

D1 – Intra-Class, Inter-Module

For this dimension of refactoring, we have to take different features into account (here:
F1,F2,F3). Furthermore, the class that is involved in refactoring, is decomposed and
represented by different roles, according to the respective features. Both, multiple fea-
tures and roles, have an effect on the refactoring process. First and foremost, we have to
consider feature dependencies and constraints and how they affect certain refactorings.
For instance, in our Stack SPL, the features Array and LinkedList are alternative. If we
would now move a method of class Element from Array to LinkedList, all variants with
the feature LinkedList retain their behavior. However, the method push is not available
in variants that contains feature Array. This, in turn, may change the behavior of these
variants or even lead to serious errors such as dangling references.

Furthermore, we have to deal with the different roles when applying refactorings. For
instance, if we rename a method or field of one role, we have to ensure that we rename
corresponding syntactical element in other roles as well. This, in turn, requires knowl-
edge whether corresponding elements exist between roles. One possibility to obtain
that knowledge is to temporarily compose the affected roles to one class (e.g., roles A1,
A2, A3 to class A, cf. ??), gathering the knowledge from the composed class and use
it on the actual implementation level. While this approach is similar to Refactoring
Feature Modules (RFM) [?], it is tedious and time-consuming and thus not applicable
at all. Recently, a native, feature-oriented compiler called Fuji has been proposed,
which provides an AST for complete features that can be used to obtain the required
information.

D2 – Inter-Class, Intra-Module

This dimension covers refactorings that (physically) take place within one feature, but
may affect different classes (and roles implicitly). Consequently, we don’t have to con-

94 7. Removing Clones in Software Product Lines

sider feature dependencies and constraints necessarily, as in dimension D1. Neverthe-
less, we have to take other features, or more precisely, certain roles in other features,
into account for two cases. First, if a refactoring (e.g., renaming) affects only one class
(and thus one role), we face the same challenges as with dimension D1, mentioned
above. Second, a refactoring may affect different roles in different classes, which is
a more complex and non-trivial task. For instance, assume that we want to move a
method foo from role A3 to role B3. Additionally, this method refines the original
method foo, declared in role A1. As a result of the supposed refactoring, two problems
may occur. First, feature F1 is not part of a certain variant and thus the method foo

is not initially declared and cannot be refined by our refactored method. Second, even
if feature F1 exists, we have to add some kind of delegation to the refactored method
foo in over to point to the original method. Furthermore, other methods that call the
refactored method have to be updated as well. All these problems may cause serious
errors or make such a refactoring even inapplicable.

D3 – Inter-Class, Inter-Module

The refactorings of this dimension are probably the most complex ones, because they
combine the challenges and problems of the aforementioned dimensions. In particular,
we have to consider feature dependencies and constraints, because multiple features
may be affected by the refactoring process. Furthermore, it is possible that different
roles, even across different classes, are involved in a certain refactoring.

According to traditional refactoring, where the preservation of the external behavior is
a mandatory requirement, for refactoring in FOP, preserving the variability as well as
the unchanged behavior of each variant is mandatory. We comprise both aspects within
the term variant-preserving refactoring, which we introduce in the next section.

7.2 A Notion of Variant-Preserving Refactoring

In this section, we give a concrete definition for the term variant-preserving refactor-
ing. Furthermore, we introduce some specific aspects that have to be considered for
refactoring in FOP.

7.2.1 Definition

As indicated in the previous section, refactoring of feature-oriented programs can involve
two parts of the product line. First, the feature model that reflects the domain knowl-
edge (problem space), including feature dependencies, and, second, the source code that
implements the functionality of the SPL (solution space). We define a variant-preserving
refactoring as follows:

Definition 7.1. A change to the feature model or the implementation of features or
both is called variant-preserving refactoring if the following two conditions hold:

7.2. A Notion of Variant-Preserving Refactoring 95

1. Each valid combination of features remains valid after the refactoring, whereas
the validity is specified by the feature model.

2. Each valid combination of features that was compilable before can still be compiled
and has the same external behavior after the refactoring.

With the first condition, we address refactorings that are applied to the feature model.
In particular, this condition ensures that all combinations of features specified as valid
before any refactoring activity (before-edit version) of the feature model are also valid
after one ore more refactorings (after-edit version). Note that by our definition new
variants are allowed as long as they do not affect existing feature combinations. For
instance, assume that we extend our Stack SPL by adding an optional feature Sync,
which manages concurrent access on the stack (cf. ??). AS a result, the number of
possible variants, which we can generate from this SPL, has bee doubled (from 12 to
24). Nevertheless, this refactoring is variant-preserving, because all feature combina-
tions (i.e., variants) that have been valid before the refactoring are still valid after the
refactoring. With the second condition, we address refactorings that operate on the
implementation of features. Following our definition, such refactorings must not lead
to changed behavior of any program of the SPL.

!"#$%&'()*+

,$()$*&-./01 ,$()$*&-./12

Figure 7.5: Example for feature model refactoring by adding an optional feature

In the remainder of this chapter, we focus mainly on the second condition, that is, source
code refactorings. For a more comprehensive overview of feature model refactorings,
we refer to existing work such as [? ?].

7.2.2 Aspects of Refactoring in FOP

Although the definition of variant-preserving refactoring given above is sufficient to cope
with the specific FOP characteristics, we identified three specific aspects that require
additional treatment. In the following, we explain these cases and discuss, how they
affect the application of refactoring in FOP.

Root Feature as a Target.

The first case we consider is the refactoring of a code fragment to the root feature (e.g.,
feature BaseStack in ??) of a feature-oriented SPL. Theoretically, using this feature as

96 7. Removing Clones in Software Product Lines

the target feature for a certain refactoring is often possible, because the root feature
is selected per default for each variant of the product line. However, in practice this
procedure comes at costs of intrinsic implications.

First, using the root feature as target feature decreases the cohesion of the source code
that implements a certain feature. Typically, FOP aims at implementing a certain
feature in a cohesive unit, i.e., the corresponding feature module. However, taking off
code fragments from a feature module (and moving it to the root feature) breaks with
the modular implementation and thus may decrease the cohesion within the feature
module. Specifically, this refactoring is a kind of generalization, because the refactored
code is moved to the most general (and meaningless) feature of the SPL.

Furthermore, preserving the variability can be difficult in certain cases if the root feature
is the target feature for refactoring due to possible conflicts of existing and refactored
code fragments.

Intra- vs. Inter-Feature refactoring.

Another aspect that must be considered thoroughly are the features that are involved in
the actual refactoring process. We differentiate between two kinds of refactoring: First,
if the refactoring affects more than one feature we call this an inter-feature refactoring.
Amongst others, moving a method from one feature to another one is an example for
such a kind of refactoring. Second, if the refactoring affects only one or more classes of
the same feature, we call this an intra-feature refactoring. For that kind of refactoring,
extracting a method (affects one class) or moving a method between classes in one
feature are exemplary refactorings. As a result of this distinction, we can establish
a relation between the different possible dimension of refactoring in ?? and the two
kinds of refactoring mentioned above: While inter-feature refactoring takes place along
the dimensions D1 and D3, intra-feature refactoring takes place along dimension D2
(including refactoring within one class).

This has the following implications: For inter-feature refactoring, the programmer has
to ensure that the actual refactoring does not violate the conditions of Definition ??.
Consequently, if we want to restructure the SPL across feature boundaries, we have to
apply FOP-specific refactorings (as introduced in the following section) to preserve the
variability of the SPL.

For intra-feature refactoring, we can apply the traditional, object-oriented refactorings
and add only additional checks (taking all features into account) after the refactoring
to detect and update incorrect references. We can do this, because intra-feature refac-
toring does not affect the variability directly and thus is inherently variant-preserving.
Nevertheless, we have to take feature semantics into account to some extent. First, if
we check the pre-conditions (i.e., conditions that have to be fulfilled to apply a refactor-
ing), we must take into account the relation between features or roles to decide whether
the refactoring is applicable or not, respectively. Second, after the application of an
intra-feature refactoring (using traditional refactoring techniques), we possibly have to

7.2. A Notion of Variant-Preserving Refactoring 97

update references (to fields or methods) in more features than the target feature. For
instance, assume that we want to move a method foo() from class A to a class B for
Feature F3 in our example in ??. Consequently, we can apply the Move Method refac-
toring proposed by Fowler [?]. In case that the corresponding role B3 does not exist,
we have to introduce it, that is, creating the class B for Feature F3. Additionally, we
may have to update references to the original method in class A to the new class B to
avoid dangling method references.

Combining source code and (feature) model refactoring

One characteristic of FOP is the physical separation of concerns into feature modules
and a concrete mapping of these modules to features of the feature model. Due to this
tight connection, we may face situations, where a refactoring is suitable that affects
both, the source code and the feature model. In such a case, we have to ensure that
both conditions of our definition are fulfilled. In the following we address this aspect
by the example of code clone removal. A general pattern to do this, is that we replace
the replicated code in multiple locations by a single reusable code fragment.

For example, in the simple case that an SPL always requires one of two alternative
features, and both features introduce the same method, then we can remove all cloned
instances of the method and introduce it only once in the root feature. With this
modification, we eliminate cloning and the method is always available from the root
feature. Obviously, we cannot move every cloned code fragment into the root feature. If
it is valid to select none of the features containing cloned code, moving code to the root
feature would bloat the code base of variants in that none of these features is selected.
Additionally, it can be considered as violation of separation of concerns.

A general solution is to move cloned code into a newly created feature that is selected
if and only if at least one of the features containing cloned code is selected. Consider
the feature model in ?? (a) and assume that some code between features C and D is
cloned. In this case, we could create a new parent feature X for C and D and move the
cloned code there as illustrated in ?? (b). Alternatively, we can create a new feature
X somewhere else in the feature model and use a cross-tree constraint (X equals C or
D) to enforce the previous semantics as in ?? (c). Of course, we can also search the
feature model for existing features that would meet the condition, instead of creating
a new one. Note that both transformations of the feature model preserve all existing
variants and do not create new variants (called feature model refactoring) [?].

The pattern of moving cloned code to a single new location works uniformly for different
kind of clones: cloned types, cloned methods... etc. However, sometimes alternative for
refactoring may be available that do not affect the feature model. While it is an open
issue how to decide in such a case, which refactoring is more suitable, we argue, that it
may be less complex if a refactoring affects only one space.

As conclusion, we argue that refactoring feature-oriented SPLs includes both, FOP-
specific as well as traditional refactorings, depending on the features involved in the

98 7. Removing Clones in Software Product Lines

(a) Original

(b) Alterna-
tive #1

(c) Alternative #2

Figure 7.6: Exemplary feature model edits for code clone removal

refactoring process. Furthermore, in specific cases, the solution as well as implemen-
tation space is affected by variant-preserving refactoring. The challenging task is to
identify which refactoring approach to chose in which situation and how to deal with
additional mechanics that go beyond traditional refactorings.

7.3 A Catalogue for FOP Refactoring

In this section, we present four refactorings for feature-oriented software product lines in
a catalog-like manner. Note that we focus on inter-feature refactorings (i.e., dimensions
D1 and D3 in ??) within our catalogue, because these refactorings require considerable
changes with respect to the original object-oriented refactorings. Consequently, the
presented refactorings are rather extensions of the object-oriented ones proposed by
Fowler [?] by taking feature semantic into account. Furthermore, we present the FOP
refactorings in the same way as Fowler so that programmers can easily understand
their mechanics and application (assuming that they have knowledge of the original
refactorings). We are also inspired by Monteiro, who did this in a similar way for
aspect-oriented programming [?]. Finally, we introduce the terminology we use for
the description of refactorings. First, a target feature refers to a feature that is target
of a refactoring, for example, where a method is moved to. Likewise, a source feature
in the context of refactorings is a feature, where the code fragments, which are subject
to refactoring, are originally located. Third, we refer to program elements, that are
subject to refactoring as candidates. For instance, a candidate field is a field that is
subject to refactoring.

The first refactorings we present are an adaptation of the Pull Up Field and Pull
Up Method refactoring of Fowler [? , p. 320 and p. 322, respectively]. Originally, these
refactoring describe how to move methods or fields between subclasses and its superclass
by exploiting the inheritance hierarchy. In contrast, for FOP we consider features
as source and target of the refactoring rather than classes (although the latter are
also taken into account). Consequently, we exploit the refinement hierarchy instead of
inheritance hierarchy for the application of these refactorings.

7.3. A Catalogue for FOP Refactoring 99

D
a
ta
S
tr
u
c
tu
re

A
rr
a
y

L
in
k
e
d
L
is
t

Stack Node

isEmpty()

isEmpty()

topOfStack

topOfStack

element

next

(a) Before refactoring

D
a
ta
S
tr
u
c
tu
re

A
rr
a
y

L
in
k
e
d
L
is
t

Stack Node

isEmpty()

isEmpty()

topOfStack

element

next

(b) After Pull Up Field

D
a
ta
S
tr
u
c
tu
re

A
rr
a
y

L
in
k
e
d
L
is
t

Stack Node

isEmpty()

topOfStack

element

next

(c) After Pull Up Method

Figure 7.7: Collaboration diagram with features DataStructure, Array, and LinkedList
(a) before refactoring, (b) after Pull Up Field refactoring, and (c) after Pull Up Method
refactoring. On the right side, we show excerpts of the implementation of features
Array, LinkedList (before refactoring) and feature DataStructure (after refactoring).
The refactored code fragments are marked by an dotted rectangle.

7.3.1 Pull Up Field to Parent Feature

Typical situation: A feature has sub features, that are similar to some extent. Specif-
ically, certain fields could be duplicates. Hence, the programmer can reduce duplication
by generalizing these fields.

Recommended action: Move fields that are identical (e.g., type and initialization)
across sub features and used in the same way in the respective features (e.g., referenced
by the same methods) to the common parent feature.

Pre-conditions:

• The features, containing the field(s) that are subject to refactoring, must have
the same, direct parent feature.
• The respective fields must reside in the same class (e.g., class Stack in our exam-

ple)

Mechanics:

1. Check whether the candidate fields are used in the same way (e.g., qualifier).
2. Check whether the pre-conditions, mentioned above, are fulfilled.
3. In the case, that the class containing the candidate fields has no role in the target

feature (i.e., is not implemented in the target feature), create the class for the
target feature.

4. If the candidate fields have different names, rename the respective fields so that
they all have the name that should appear after the refactoring in the target
feature.

5. Create a new field in the respective class of the target feature.

100 7. Removing Clones in Software Product Lines

Feature Array

public class Stack {

private Object topOfStack;

public Stack() {}
/* ...additional code... */
public boolean isEmpty() {
return topOfStack == 0;

}
}

Feature LinkedList

public class Stack {

private Object topOfStack;

public Stack() {}
/* ...additional code... */
public boolean isEmpty() {
return topOfStack == 0;

}
}

Feature DataStructure

public class Stack {

private Object topOfStack;

public Stack() {}

public boolean isEmpty() {
return topOfStack == 0;

}
}

Pull Up M
ethod

Pull U
p F

ie
ld

Figure 7.8: Excerpts of the implementation of features Array, LinkedList (before refac-
toring) and feature DataStructure (after refactoring). The refactored code fragments
are marked by an dotted rectangle.

6. If the original fields were private and the refactoring is applied along dimension
D3 (cf. ??), we have to change the access modifier of the new field to protected

so that the sub features can access it.

Example: In ?? and ??, we illustrate this refactoring with a collaboration diagram
and provide an exemplary implementation of our Stack SPL, respectively. The two
alternative features Array and LinkedList each contain a field topOfStack in class
Stack that represents the first element of the stack. Both, the candidate fields as well
as the source features fulfill the (pre-)conditions. Hence, we can apply the pull up field
refactoring as described above with feature DataStructure as the target feature (cf. ??).
First, we have to introduce a role for class Stack in the target feature by creating
this class in the respective feature. Then, we create a new field in this newly created
class. Afterwards, we delete the original fields in feature Array and LinkedList. In ??,
we show the corresponding code fragments for the features involved in the refactoring.
Since the refactoring takes place along dimension D1, we do not have to change the
access modifier of the field. The reason is that we move the field to another feature but
it remains within the same class Stack. Hence, it is accessible within the target feature

7.3. A Catalogue for FOP Refactoring 101

after composition, even though it is private. For a comprehensive overview of access
modifiers in feature-oriented programming, we refer to the work of Apel et al. [?].

7.3.2 Pull Up Method to Parent Feature

Typical situation: Methods that are (semantically or syntactically) identical occur
in different (sibling) features.

Recommended action: Move the candidate method(s) up to the parent feature of
the two source features, which contain the identical method.

Pre-conditions:

• The features, containing the method(s) that are subject to refactoring, must have
the same, direct parent feature.
• The respective methods must be implemented by the same class (e.g., class Stack

in our example)

Mechanics:

1. Identify the identical methods.
2. Check whether the pre-conditions, mentioned above, are fulfilled.
3. If the candidate methods have different signatures, change the signatures so that

they comply with the one you want to have in the target feature.
4. In the case that the class containing the candidate methods has no role in the

target feature create the class for the target feature.
5. Create a new method in the corresponding class in the target feature and copy

the body of one of the candidate methods to it (and adjust the new method if
necessary). If fields are accessed directly within the method (i.e., not passed as
parameter), move the field(s) to the target feature using Pull Up Field to Parent
Feature. Check for dangling references regarding the moved field and update
them.

6. Delete the remaining methods in the sub-features.

Example: Similar to the Pull Up Field refactoring, we illustrate this refactoring by
means of our Stack SPL. The two features Array and LinkedList contain a method
isEmpty() (in class Stack) that checks, whether the current stack is empty or not.
Both methods are identical and the two features have a common parent feature, namely
DataStructure (cf. ??). Hence, the pre-conditions for the refactoring are fulfilled. First,
we have to create class Stack in the target feature. Next, we create a new method in
class Stack of feature DataStructure and copy the body of one of the methods of the
two candidate features. Since the original method(s) reference a field, we also have to
apply Pull Up Field. We show the corresponding collaboration diagrams in ?? and an
exemplary implementation in ??. Finally, we delete the original methods in features
Array and LinkedList, respectively.

102 7. Removing Clones in Software Product Lines

B
a
s
e
S
ta
c
k

P
e
a
k

U
n
d
o

Stack Element

undo()

Stack Element

undo()

B
a
s
e
S
ta
c
k

P
e
a
k

U
n
d
o

a) Before refactoring b) After Move Method/Field refactoring

undoStore

undoStore

Feature Undo

public class Stack {

private int undoStore;

public void undo() {
push(undoStore);

}

int pop() {
/* ...additional code... */
}

}

Feature Peak

public class Stack {

private int undoStore;

public void undo() {
push(undoStore);

}

int peak() {
/* ...additional code... */
}

}

Move

Method

Move

Field

Figure 7.9: On the left side, we depict the corresponding collaboration diagram before
and after the Move Method and Move Field refactoring. On the right side, we show
excerpts of the implementation of features Undo (before refactoring) and feature Peak
(after refactoring).

7.3.3 Move Method Between Features

Next, we present FOP-specific adaptations of the Move Method and Move Field refac-
toring, respectively. Specifically, we focus on moving a method/field along dimension
D1 (cf. ??), because this refactoring affects only one class. For dimension D3, the
refactorings would be more complex, because we have to consider access modifiers and
accessors of fields that are moved across classes. Hence, we limit our considerations to
dimension D1 only and set aside the discussion on how to move units along dimension
D3 for future work.

Typical situation: A method uses or is used by another feature more than by the one
it is currently contained in (e.g., indicated by caller/callee relations). Hence, by moving
this method to the feature where it is referenced more frequently (or even exclusively),
we can increase feature cohesion. Alternatively, we can apply this refactoring to move a
method, which is replicated throughout the source code, to a common feature without
decreasing the overall variability of the SPL. However, for applying this refactoring in
the latter case, we have to check feature constraints to guarantee that the refactoring
is variant-preserving.

Recommended action: Move the method from its current role to the role of the
target feature.

Pre-conditions: The method must be available for all variants as before the refac-
toring. For instance, consider the generic feature model in ?? (a), where feature A
is the parent feature of the optional features B,C,D. Furthermore, we assume that in
feature C a method foo exists that references another method bar in feature B. If we
now, for example, move method bar to feature D, we must ensure, that this method is
still accessible for method foo in feature C for all variants that contain this feature.
Otherwise, this refactoring would violate our definition for variant preservation, and
thus, leads to changed behavior of certain variants.

Mechanics:

7.3. A Catalogue for FOP Refactoring 103

1. Examine the source feature for code fragments (e.g., methods, fields) that are
only used by the source method. Decide whether they are about to be moved as
well.

2. Check whether sub-features or parent features of the source feature exist that
contain other declarations of the source method. If there are such features this
may hinder to move the source method (e.g., if these features occur in variants
without the target feature).

3. If the class that contains the source method has no role in the target feature create
the class for the target feature.

4. Declare the method in the target feature (in the respective class).
5. Move the code from the source method to the target. Adjust it if necessary (e.g.,

references to fields/methods).
6. Decide whether to turn the source method into a delegating method or delete it

at all. The latter is especially useful if you have only few or no references to the
source method.

7. In case that you delete the source method, replace references to this (outdated)
method with references to the target method.

Example: As an example, we apply the refactoring to move a method from the op-
tional feature Undo to the optional feature Peak of our Stack SPL. In ??, we show
the corresponding collaboration diagrams and code fragments that are affected by this
refactoring. In particular, we move the method undo() from feature Undo to feature
Peak. Although this may be questionable from a design point of view, with this ex-
ample we are able to appropriately illustrate the mechanics of the refactoring. The
pre-condition is fulfilled, because feature Undo requires feature Peak (indicated by a
cross-tree constraint in ??). Hence, all variants that contain Undo contain Peak as
well. Furthermore, class Stack has already a role in feature Peak and thus we do not
have to introduce it. Consequently, we declare the method undo in feature Peak and
move the code from the method in the source feature to the target feature. At this
point we have to care about moving local objects from Undo to Peak, namely the field
undoStore (cf. ??). Since we have to move this field as well, we apply Move Field
Between Features refactoring. You find the respective explanation for this refactoring
below. Afterwards, we can proceed by deleting the original method and replace the
references of the method undo(). Note that we do not depict these last steps in ??.

7.3.4 Move Field Between Features

Typical situation: As described above, this refactoring usually supplements the Move
Method refactoring, to move fields (i.e., member variables) that are referenced within a
method that has been moved. In specific cases, this refactoring may also reapplied to
move a field that is used by another feature (or a certain role in it respectively) more
than by the role on which it is defined.

Recommended action: Move the field from its current role to the role of the target
feature.

104 7. Removing Clones in Software Product Lines

Pre-conditions: The field must be available for all variants as before the refactoring.

Mechanics:

1. If the class that contains the source method has no role in the target feature,
create the class for the target feature.

2. Create a field in the target feature (within the respective class) and provide get-
ter/setter methods to access this field (if necessary).

3. Delete the field from the source feature (to say, the respective role).
4. Replace references to the source field with references to the respective accessor

method on the target (e.g., the getter method).

Example: In our example in ??, we have to move the field undoStore from feature
Undo to feature Peak, because the method that uses the field is moved as well (using
the Move Method Between Features refactoring). To this end, we create the field in
class Stack in feature Peak. Since the field is not used outside its new role, we do not
provide a getter method. Consequently, there are no references that we have to replace
either. Finally, we have to delete the original field in the source feature Undo.

Although the presented refactorings encompass only a small subset of possible feature-
oriented refactorings, they provide us with sufficient facilities to remove clones. In the
next section, we present a case study that shows the applicability of these refactorings
for removing clones.

7.4 A Case Study on FOP Refactoring – The TankWar

Experience

In ??, we presented an empirical study on code clones in feature-oriented software prod-
uct lines. However, we omitted the question how to deal with the detected, FOP-specific
clones. In this section, we present a case study, where we apply the proposed feature-
oriented refactorings to remove code clones in the TankWar product line. We provide
details on the SPL subject to refactoring and on the methodology we used for removing
clones. Afterwards we present and interpret the results of our case study. Finally, we
will discuss our results in a broader sense with a specific focus on generalizability and
automation of refactorings.

7.4.1 Case Study Setup and Methodology

The TankWar product line.

TankWar is a shoot ’em up game, running on PC and mobile phone, that has been
developed as SPL by students of the university of Magdeburg. The game was developed
as product line because it must adhere to strong portability requirements [?]. For
instance, TankWar has been developed for PC and mobile phone, which have different
constraints regarding memory or display. Even between mobile phones, there can be
considerable differences, e.g., a modern smartphone has more memory than a five year

7.4. A Case Study on FOP Refactoring – The TankWar Experience 105

old mobile phone. As a result, the developer must be able to tailor the game in order
to achieve the best game quality. In ?? (in the Appendix), we show the feature model
of the TankWar product line where features such as Image and Sound are specific for
different platforms.

Several reasons influenced our decision to select TankWar as subject to our case study.
First, it has a considerable size (approx. 5000 SLOC) and consists of 38 features. Al-
though this is still a toy example, compared to software systems of industrial size, it
is one of the largest SPLs available for FOP. Second, our code clone analysis results
revealed that TankWar contains a considerable amount of code clones (total: ∼ 20%,
FOP-specific: ∼ 14%). Hence, this SPL contains a sufficient amount of potential refac-
toring candidates. Furthermore, we observed that a majority of these clones exist be-
tween alternative features, which inherently have a common parent. Additionally, most
of these clones occur on method or constructor level. Hence, we expect that removing
these clones by refactoring is very promising.

Methodology

In the following, we point out how we got from clone classes to refactoring candidates.
Note that we performed most of the steps manually, because tool support for automating
the refactoring of feature-oriented SPLs is yet not existent.

From clone analysis, we had already the information on size of clone and clone classes
and on the dependencies of the features that contain corresponding clones. Based on
these dependencies, we already could estimate which refactoring may be applicable
to a clone class. For instance, if corresponding clones occurred between alternative
features on method level, the Pull Up Method refactoring could be applicable. However,
to be really sure that a possible refactoring is variant-preserving, we supplemented
our manual analysis with tool support to check the defined pre-condition, especially
regarding feature dependencies. We obtained the information, which we needed to
check this pre-conditions (regarding the features), from FeatureIDE 2, an Eclipse plug-
in for feature-oriented software development. FeatureIDE provides not only an editor
to create feature models but also capabilities to formulate queries to a feature model to
gather knowledge about feature relations and dependencies. The query is implemented
as a method within FeatureIDE and can be expressed in natural language as question
such as Given a Feature X, which features are in all variants that contain feature X?.
Hence, providing the features that contain the candidate methods (for refactoring) as
input for the query, we obtain a list of features that are possible refactoring targets. Due
to these capabilities, we can check the pre-conditions such as common parent feature
automatically by only providing the features that contain the candidates for refactoring.

After this step, we have a set of fourteen clone classes, which are subject to refactoring.
For each of these clone classes, we apply the refactoring manually, according to the
mechanics described in ??. Although this is a tedious task, it is manageable due to the

2http://www.fosd.net/featureide/

http://www.fosd.net/featureide/

106 7. Removing Clones in Software Product Lines

small amount and the small size of the SPL. After each refactoring, we check whether
the variants, that are affected by the refactoring, are still compilable and whether their
behavior changed or not.

7.4.2 Results and Interpretation

Next, we provide details on the refactored clone classes, the refactorings we applied
and discuss the results and observations we made during the refactoring process. As
mentioned above, fourteen clone classes emerged that contain potentially refactorable
clones. We list these clone classes in ??, together with their syntactical category (SC),
the features containing the code clones (CF), the target feature for the refactorings
(RF), and the applied refactorings (if possible). During the actual refactoring process,
we investigated four clone classes (#11 – #14) that are ”not refactorable” for the follow-
ing reasons: Three of them (#11 – #13), consist of type-II clones that are distributed
over different sub features of the feature Tools, which means that refactoring would
be only possible with some workarounds. Since this leads to complicated code and,
in this special case, to increased code size, we excluded these clone classes from the
refactoring process. The fourth clone clone class (#14) consist of type-III clones with
notable differences so that a refactoring is not applicable. Beyond this, the clones are
scattered over features that have neither a common parent nor other dependencies that
are essential for the application of refactorings.

For the remaining ten clone classes that are subject of our refactoring process, we make
the following initial observations. Obviously, most of the clones exist between alter-
native features that separate platform-dependent functionality. In addition, the clone
classes fall only into three different syntactical categories (IfStatement, MethodDeclara-
tion, TypeDeclaration), which coincides with our observation in ?? that almost all clone
classes fall into one of these categories. Moreover, we made the following observations.
First, all member clones, i.e., clones of a single clone class, have a common, direct parent
feature. Second, clone classes with syntactical category TypeDeclaration (TD) in fact
contain replicated methods or constructors as code clones. Hence, we treat them like
clone classes of category MethodDeclaration (MD) for the refactoring process. Third,
we observed that seven clone classes consist of type-I clones and three of type-II clones.

For the actual refactoring process, we applied the proposed refactorings supplemented
by two additional refactorings. The first additional refactoring can be considered as Pull
Up Constructor Body to Parent Feature. In fact, this refactoring can be considered as a
special case of the Pull Up Method to Parent Feature refactoring, where the constructor
method of a class is subject to refactoring. Furthermore, we applied the Extract Method
refactoring in its original form to extract replicated code fragments into methods in
preparation of a Pull Up Method refactoring. We argue that applying this refactoring is
possible, because their is no difference between extracting a method in OOP and FOP.

During the application of the refactorings mentioned above, we made the following
observations. Initially, we could apply the refactorings to all of the ten clone classes
and consequently, remove the code clones. For three clone classes, we had to apply

7.5. Discussion 107

CC SC CF RF Refactorings

1 TD Leopard, Abrahams,. . . Tanks Extract Method, Pull Up Method

2 MD PC, Handy Platform PUM

3 IS PC, Handy Platform EM, PUM

4 MD PC, Handy Platform PUM

5 MD PC, Handy Platform PUM

6 MD PC, Handy Platform PUM

7 TD PC, Handy Platform PUC

8 MD Re PC, Re Handy Record PUM

9 TD Re PC, Re Handy Record PUC

10 IS TankWar, Tools TankWar EM

11 TD Bomb, Freeze, . . . – –

12 TD Bomb, Freeze, . . . – –

13 TD Bomb, Freeze, . . . – –

14 IS Handy, Re Handy – –

CC: clone class; SC: syntactical category; CF: feature(s), containing the clones; RF: feature, the
clones are refactored to; EM: Extract Method refactoring; PUM: Pull Up Method refactoring;
PUC: Pull Up Constructor Body refactoring

Table 7.1: Overview of clone classes removed by refactorings

the Extract Method refactoring in advance, either for extracting the identical part of
the clones (#1) or for extracting if statements into methods (#3, #10). For two clone
classes (#7, #9) we had to replace a value by a variable, which we initialized for each
of the clones separately. Finally, we applied the Pull Up Method refactoring to all clone
classes to remove the clones.

After the code clone removal process, we analyzed the TankWar product line again,
according to the methodology introduced in ??. This lead to the following results. The
amount of code clones has been decreased throughout all analysis steps. Regarding the
initial clone detection, the amount of clones decreased from 20 % (cf. ??) to 12 %. For
the syntactical classification, the amount of code clones is 50 % lower in the refactored
SPL (7 %) compared to the original one (15 %). Finally, we achieved a vast decrease of
the amount of FOP-specific clones. In the refactored SPL, only 4 % FOP-specific clones
exist, which is three times lower than in the original SPL (12 %). Hence, we conclude
that code clone removal through refactorings is a promising approach to remove FOP-
specific clones from feature-oriented SPLs.

7.5 Discussion

In this chapter, we proposed feature-oriented refactorings and presented a case study to
demonstrate their applicability for code clone removal. Nevertheless, two issues remain
that we could not address: supporting the (automated) process of refactorings and
generalizability, especially regarding refactoring in preprocessor-based software product
lines. In the following, we discuss both issues.

108 7. Removing Clones in Software Product Lines

Automating FOP-specific refactorings.

An important aspect for the applicability of the proposed refactorings is to what extent
the refactoring process can be automated. For the refactorings, presented in this paper,
we identified three steps that would benefit from such automation: detecting possible
refactoring candidates, checking the pre-conditions, and changing the source code. In
the following, we mainly focus on step one and three, because we addressed the second
step already in ??.

The first step is of particular interest for the Pull Up refactorings, because it is im-
possible to identify identical or similar code fragments manually. However, different
approaches exist that can be used to guide the user to such code fragments. First of
all, clone detection, that is, the detection of replicated code fragments, can be used to
determine syntactically identical or similar code fragments. Second, with recent ap-
proaches it is even possible to detect semantically identical (but syntactically different)
code fragments [?]. However, for the latter kind of similar code fragments, it is still
open how to automate the syntactical unification of such code fragments.

Automating the actual refactoring, especially the propagation of source code changes,
requires an appropriate representation of the underlying source code such as an ab-
stract syntax tree (AST). Since generating such as AST for each variant of an SPL is
impossible, an AST for the whole SPL, which contains all information on variability, is
required. Recently, Fuji, an extensible compiler for feature-oriented programming in
Java, has been proposed [?]. Amongst others, Fuji provides an AST for each feature
of the product line and thus is promising with regard to automating the refactoring
of feature-oriented SPLs. Beyond that, recent approaches for annotation-based ap-
proaches provide a variability-aware AST that could be used for refactoring (especially
for automating the corresponding step), which is one of our future tasks [?].

Generalizability.

While we focussed on compositional SPL implementation techniques, specifically on
FOP, in this chapter, we are also concerned with code clones in preprocessor-based
software product lines within this thesis.

Regarding our refactoring approach, the question is whether we can apply it to the
annotation-based approach as well. From our point of view the answer is twofold:
First, given our definition for variant-preserving refactoring we argue that it holds
for annotation-based approaches, specifically the cpp, as well. The reason is that we
can also build a feature model for annotative SPLs to determine which combinations
of features are valid and which are not. Since our definition is based on the valid
combination of features, it can be applied to annotation-based SPLs as well.

However, applying the FOP-specific refactorings, that we propose in this chapter, to
annotation-based SPLs may require additional or changed mechanics. For instance, in C
programs, variability is also expressed using configuration files that determine whether

7.6. Related Work 109

certain source files may be compiled together or not. Since this is an additional vari-
ability mechanism, it may influence the actual refactoring process and the preservation
of variants. Furthermore, other preprocessor directives for file inclusion (#include) and
macros (#define) exist that complicate refactorings.

Beside this, the main problem of annotative software product lines is, that the cpp,
used to express variability is not part of the actual host language. Thus, parsing and
building an AST for such product lines does not provide us with information about
variability. However, this information is necessary (beside the information about fea-
ture dependencies) to perform automated analysis in general and to decide whether a
refactoring is applicable or not in particular [?]. Moreover, the actual refactoring is
executed on the AST rather than on the source code representation within an IDE.
Recently, Kästner et al. proposed a variability-aware parser that parses unprocessed
code within the TypeChef project [?]. Amongst others, this parser provides an
AST that contains all variability information by hosting the preprocessor annotations
as special node within the tree. Hence, it is possible to use this AST for different kind
of automated analyses, in particular, for refactoring. Nevertheless, we argue that it is
still a long road to go until sufficient refactoring support, mainly ”out-of-the-box” for
annotative SPLs will be available.

We conclude, that our proposed refactorings are only partly generalizable and that we
more work has to be done to fully generalize variant-preserving refactoring across SPL
implementation techniques. Nevertheless, we argue that our approach can be used as
a starting point.

7.6 Related Work

A variety of work has been done on refactoring software product lines. In this section,
we account for the most important work and figure out how it differs from the approach
we presented in this chapter.

Refactoring of feature models.

Similar to us, Alves et al. identified shortcomings in traditional refactorings when ap-
plied to SPLs due to missing support of configurability [?]. As a solution, they propose
a set of feature model refactorings to improve the feature model of an SPL and, beyond
that, to merge multiple programs into one SPL. Likewise, Thüm et al. present an ap-
proach that supports reasoning about feature model edits [?]. To this end, they classify
changes to a feature model into refactoring, generalization, specialization, and arbitrary
edits. Additionally, they formalize their approach using propositional formulas. All the
aforementioned approaches have in common that they focus on refactoring of feature
models. In contrast, we focus on refactoring the underlying source code of an SPL with
our approach. Although we take feature models into account, we use their information
for evaluating pre-conditions only. Finally, we focus on feature-oriented SPLs while the
work mentioned above is independent of the SPL implementation technique.

110 7. Removing Clones in Software Product Lines

Refactoring of feature-oriented SPLs.

Liu et al. propose a theory for feature-oriented refactoring that relates code to algebraic
refactoring [?]. With their theory, they focus on decomposing programs into features.
Specifically, they address the problem, that features may have different implementations
in different variants of the SPL. In contrast to our work, where we address the refactoring
of source code in existing feature-oriented SPLs, they address how to refactor an object-
oriented legacy application into features. Kuhlemann et al. propose refactoring feature
modules (RFM) for refactoring in feature-oriented SPLs [?]. The core idea of RFM is to
encapsulate information that is necessary for performing an object-oriented refactoring
in a separate feature module and make it explicit in the corresponding feature model.
Additionally, Kuhlemann et al. formalized their approach by means of an algebraic
model [?]. In contrast to their approach, where refactorings are features in a concrete
SPL, we aim at a more interactive approach. In particular, we aim at integrating the
proposed refactoring into an IDE such as Eclipse so that they can be used on any
SPL, depending on the implementation technique only. Finally, Borba et al. recently
proposed a theory that covers both, refactoring of feature models and source code, based
on product line refinement [?]. With their general, language-independent formalization
they provide SPL properties (in terms of refinement) that support evolution of software
product lines. In contrast to their work, we specifically focus on FOP and introduce
first refactorings in a more practical way by describing rather the actual mechanisms
than the underlying theory. However, integrating our ideas with their theory could be
beneficial and is left for future work.

7.7 Summary

Refactoring of source code is a pivotal task regarding the quality and longevity of source
code. While it is well-understood for conventional, stand-alone systems, only few work
exists for SPLs. In this chapter, we presented how existing, object-oriented refactorings
can be extended and applied to feature-oriented SPLs, while preserving all variants of
the SPL. To this end, we introduced the notion of variant-preserving refactoring and
proposed concrete refactorings for feature-oriented SPLs.

To show the applicability of our refactorings, we presented a case study on code clone
removal in one feature-oriented SPL by means of our refactorings. As a result of these
refactorings, we could remove a large portion of FOP-specific clones. However, there
are some limitations that we observed during our case study. As a matter of fact, all
of the removed clones occurred in features with a common, direct parent feature and
most of them where alternative features. Hence, we can make no clear statement on
removing clones caused by fine-grained extensions or crosscutting concerns. Further-
more, we can not estimate how difficult it is to apply our refactorings on features that
have more complex dependencies that go beyond alternatives and parent-child relation-
ships. Moreover, the detected clones where mostly identical (Type-I) or had only slight
differences (Type-II). However, we found FOP-specific clones (Type-II and Type-III)
that where not refactorable at all. In particular, one reason was that the application of

7.7. Summary 111

refactorings implied complicated workarounds that outweigh the benefits of code clone
removal. For instance, in one case the refactoring would have lead to multiple methods
(instead of two) and finally, even more lines of code that introduced by code clones. This
observation lead us to the assumption that there is a border line where the extraction
(of clones) is difficult or not beneficial for maintainability anyway.

Beyond the removal of code clones we also discussed the possible automation of our
refactorings, which highly depends on appropriate tool support. Finally, we discussed
the generalizability of our approach. Specifically, we focussed on annotative SPLs us-
ing the cpp and to what extent variant-preserving refactorings make sense and are
applicable for such software product lines.

As next steps, we suggest to extend this work by more refactorings for feature-oriented
and annotative SPLs. Moreover, we put some effort on providing tool support for these
refactorings so that they can be applied and pre-conditions can be checked automat-
ically. Additionally, merging our ideas with existing theories and formalizations for
feature-oriented refactoring is an important future task, because it allows us to prove
the variant-preserving nature of refactorings. Finally, extending our refactoring ap-
proach to annotative SPLs is a challenging but promising task that we intend to pursue
in the future.

112 7. Removing Clones in Software Product Lines

8. Conclusion

Software Product Lines provide facilities for efficiently managing thousand of (software)
products at once by means of variabilities and commonalities. Such an approach comes
with different advantages such as fast time-to-market and reuse at large-scale. Hence,
it plays a pivotal role for commercial success of software development. Consequently,
SPLs gain momentum in both, academia as well as industry.

In research, major work on product lines encompasses implementing, testing, and ver-
ification. Furthermore, evolution of SPLs, specifically of the problem space (e.g., vari-
ability models) is subject of research. In contrast, reengineering & maintenance (where
clone detection and analysis belongs to) has not been subject of intensive research so
far. However, we argue that software product lines evolve similar to single software
systems or even more. As a result, maintenance and code quality become a problem.
Due to the complexity of industrial SPLs, caused by different variability spaces, feature
semantics etc., it is a challenging task to counter this evolutionary decays with common
approaches. Consequently, new approaches, tailored to the specific characteristics and
mechanisms of SPLs have to be investigated to avoid such problems. With this thesis,
we bridge this gap by tailoring clone analysis and removal to software product lines. In
a broader sense, we aim at encouraging other researcher to put emphasis on this field
of research.

Our main contribution is to provide insights on code clones in SPLs (compositional and
annotative) and how to remove them by the application of refactorings. We guided our
analysis by four research questions, which we presented in ??. To conclude our work,
we go back to this questions and present the main answers in this chapter.

Do code clones exist in software product lines?

Although this question appears to be superfluous, it is of great importance for this
thesis. We posed it to emphasize the fact, that nothing is known about code clones

114 8. Conclusion

in SPLs, even not whether they exist. Furthermore, it is absolutely unclear to what
extent compositional approaches such as FOP may avoid code clones due to new reuse
mechanisms such as refinements. Hence, we aim at provide initial insights on both
issues by answering this question.

To this end, we first provided some theoretical discussion on modularity and expressive-
ness in SPLs and how they may foster code clones. As a result, we not only provided
a structured review of possible advantages and drawbacks of certain implementation
approaches, but also provided an overview why code clones could occur in SPLs.

Then, we provided case studies to complement our theoretical reflection with facts.
As overall result, we detected code clones, specific to product lines (FOP-specific and
#ifdef clones), in both, compositional as well as annotative software product lines.
However, we also observed considerable differences. Comparing both implementation
approaches, it turned out that feature-oriented SPLs contain a considerable higher
amount of clones than the preprocessor-based SPLs. Interestingly, this result confirms
with the assumption, which results from the discussion in ??. Furthermore, with our
case study on the latter SPLs, we provide evidence for the general assumption that the
discipline of annotations is related to the amount of clones. In particular, we detected
more code clones in disciplined systems that is, systems, which contain no or only very
few undisciplined annotations.

Regarding feature-oriented software product lines, we provided a first definition for
what renders a clone to be caused by feature orientation. Based on this definition,
a considerable amount of FOP-specific clones exist, as revealed by our analysis. An-
other interesting observation we made is the fact that the amount of clones depends on
the actual development process. More precisely, our case study clearly indicates that
feature-oriented SPLs developed from scratch contain more code clones than SPLs that
have been refactored form legacy applications.

Eventually, we could confirm the existence of code clones in SPLs and provide reasons,
why these clone occur.

Can we observe certain patterns of cloning that are specific to software
product lines?

By providing patterns of clones, we gain insights on where clones and probably why
they occur. Furthermore, such patterns may be useful to be aware of clones in other
systems and for reasoning about alternative solutions, which avoid code cloning.

Within this thesis, we presented pattern for both, feature-oriented and preprocessor-
based software product lines. The term pattern in this context indicates that code
clones are accompanied by certain, recurring observations with regard to problem and
solution space. For feature-oriented product lines, we found patterns regarding the im-
plementation and the feature model. For the first, we observed that the detected clones
occur mostly on block level, that is, they are encompassed by either loops, conditionals,
methods, or even whole classes. This, in turn, clearly indicates that a coherent piece of

115

functionality has been copied and that there is a relatively high potential for removing
such clones. Additionally, we figured out that code clones occur mainly between sib-
ling features, in particular within an alternative group. This observation has different
implications from our point of view. First, this relation between features may be a rea-
son for corresponding clones, because such features usually implement similar concepts.
Second, programmers can use this pattern to be aware of clones during development
and to think about possible alternative solutions, which avoid code replication. For
instance, as we have demonstrated it is possible to unify such clones in the common
parent feature. Hence, we argue that having knowledge on the aforementioned patterns
is beneficial during implementing and reviewing feature-oriented software product lines.

For preprocessor-based software product lines, we observed different patterns than for
feature-oriented. Regarding variable code blocks (i.e., features), we observed that cor-
responding clones occur nearly always within one feature. In terms of preprocessor
annotations, this means, that the boolean expression such as #ifdef A && B is iden-
tical of the blocks that contain the clones. Interestingly, this observation is contrary
to our observations of FOP. Moreover, we detected a certain pattern regarding files,
which contain clones. For undisciplined systems, corresponding clones occur mainly in
one file. In contrast, for disciplined systems, we observed also a considerable amount
of clones that occur between multiple files.

Overall, we presented some interesting patterns, which provide insights on where and
why clones may occur. Additionally, these patterns are useful to raise the awareness of
clones and to support programmers in reason about certain clones during implementa-
tion.

Is it possible to judge on the harmfulness of code clones in software product
lines? And if so, how?

Usually, different means such as evolution of clones, inconsistent changes or correlations
of clone occurrences with software metrics are used for assessing their harmfulness. In
this thesis we did not address this explicitly for two reasons. First, at least for feature-
oriented software product lines no history information such as code repositories exist
and thus, we had no access to evolutionary information about these systems. While
this information is available for the annotative SPLs, it is a complex task to figure
out changes of #ifdef clones over multiple version. We come back to this topic in ??.
Second, metrics that take the variability into account simply do not exist. Hence, we
even could not relate the detected clones to certain metrics that potentially indicate
their harmfulness.

However, we observed other indicators that may serve as arguments in favor and against
the refactoring of code clones. In our study on feature-oriented software product lines,
we detected a vast amount of clones, which occur in alternative features (and the same
class) and on a rather coarse-grained level (regarding the syntactical elements they
are enclosed by). In our exemplary case study on refactoring, we have shown for the
TankWar SPL, that such clones are good refactoring candidates. The main reason is

116 8. Conclusion

that for alternative features a more abstract feature exist, that is, the parent feature.
Hence, by pulling these cloned fragments up in the feature model, they reside in a
more ”abstract” unit, which can be accessed by each of the original features. Without
any other information for assessing the harmfulness, we argue that in such cases a
refactoring is recommended to make use of abstraction. However, we also observed
borderline cases, where a refactoring is cumbersome, due to certain workarounds, and
may introduce a unnecessarily high amount of very small methods.

For the preprocessor-based software product lines, which we analyzed in ??, we made
different observations. The detected #ifdef clones mainly occur on a fine-grained level
and do not encompass a self-contained piece of functionality. This, in turn, makes it
hard to justify any refactoring, regardless of the fact that refactoring in the presence of
conditional compilation is a difficult task. We argue, that refactoring for removing these
clones is not recommended, also for another reason: Most of the detected clones occur
within one feature. Furthermore, to some extent (at least for all undisciplined systems
we analyzed) these clones even occur in the same file. Hence, these clones exhibit some
kind of locality which is advantageous if we consider controlling such clones instead of
removing them. Finally, in certain cases code clones prevent from undisciplined annota-
tions, which may obfuscate the source code and make it hard to understand. Although
all the aforementioned reasons to not provide tangible information on the harmfulness
of clones, we argue that in the case of annotative SPLs, code clone controlling is the
more preferable solution compared to code clone removal.

Is it possible to remove code clones from a product line point of view?

For removing clones, refactoring is a commonly applied technique. Unfortunately, soft-
ware product lines pose additional challenges for applying refactorings, mainly caused
by the variability (e.g., features) that has to be taken into account. This not only in-
creases the complexity of such refactorings but also limits the reuse of existing (object-
oriented) refactoring in large parts. Within this thesis, we figured out the different
dimensions that can occur during refactoring of feature-oriented software product lines.
Based on these dimensions, we came up with the notion of variant-preserving refactor-
ing, which explicitly takes the variability of SPLs into account. Based on this notion,
we could provide exemplary refactorings, which are based on existing OO refactorings
and tailored specifically to FOP. We applied these refactorings to remove clones for one
exemplary product line. As a result, we could reduce the amount of FOP-specific clones
significantly. Hence, we have shown that code clone removal is a viable approach, at
least for feature-oriented software product lines, to remove clones. Nevertheless, we
argue that our work is just a starting point. We proposed only few refactorings that
were sufficient to remove the clones we detected. But there may be other clones, which
require a different treatment and different refactorings.

Furthermore, we argue that one of the main contributions regarding code clone removal
is the notion of variant-preserving refactoring. Although we address feature-oriented
SPLs with this notion, it is generalizable regarding both, other implementation ap-
proaches such as annotative SPLs but also other compositional approaches such as

117

AOP. By providing this notion, we raised awareness of the challenges of refactoring
software product lines and lay a foundation for further reasoning on refactoring SPLs.
Additionally, based on this notion, we can provide concrete refactorings (even derived
from existing ones), tailored to the specific characteristics of SPLs.

However, we also reached limitations in answering this question, first and foremost,
regarding preprocessor-based software product lines. Thus, we could not provide means
to remove clones from cpp-based SPLs. Although we argue that in our case study, the
detected clones should not be removed anyway, there may be cases where such a removal
is beneficial or even inevitable. We addressed this issue in ??, by provide a discussion
on generalizing our approach for refactoring feature-oriented SPLs. Specifically, we
figured out a possible way to cope with refactoring in annotative SPLs by providing
information on variability directly in the AST.

118 8. Conclusion

9. Future Work

The underlying thesis contains two main contributions: empirical studies and thus first
insights on code clones in software product lines and a variant-preserving refactoring of
product lines. For both areas, we propose suggestions for further work. Additionally,
we propose ideas for work on evolution of software product lines.

The Role of Clones in Compositional and Annotative SPLs

With respect to code clones, we suggest to gain more insights on differences between
code clones in compositional and annotative implementation approaches. Although we
provided first insights for both approaches (by means of FOP and the cpp), a deeper
investigation and a comparison is still open. This not only includes a larger empirical
studies with more SPLs, but also to directly compare the results to assess the role of
clones in the respective approaches, preferably with regard to certain criteria such as
frequency, granularity, or harmfulness.

Especially the latter is a topic on its own, which we want to address in further work.
But how to evaluate the harmfulness of clones in software product lines? Currently,
we pursuit different ideas, commonly used in code clone research before. In particular,
we want to analyze the evolution of clones to find out, whether negative effects such
as inconsistent changes occur. Another idea is to develop measures for the quality and
maintainability of software product lines. In presence of such measures, we then can
explore whether a correlation between the measures (e.g., negative values thereof) and
detected clones exist and thus assess the harmfulness of code clones.

Finally, we suggest to extend our current study to other paradigms and techniques such
as Aspect-Oriented or Delta-Oriented Programming (AOP/DOP). As a result, we can
draw a bigger picture of code clones in SPLs. Furthermore, we can compare different
compositional approaches with regard to code clone occurrences to possibly find out
the most essential reasons for cloning in such SPLs.

120 9. Future Work

Towards Automated Refactoring in SPLs

One of the key results of this thesis is the definition of variant-preserving refactoring
for SPLs. Additionally, we provided concrete refactoring techniques and how and when
we can apply them to remove code clones. We suggest to put considerable effort in
further work on this topic in two directions.

First, the initial idea of refactoring for FOP should be transferred to other compositional
approaches. To this end, the original notion of variant-preserving refactoring must be
defined so that we can abstract from concrete variability mechanisms such as refinements
or aspects. In particular, we suggest to investigate to what extent a more formal
definition, similar to the refinement theory of Borba [?], is suitable for this purpose.

Second, we suggest to extend the existing set of refactorings and provide tool support
for FOP. Usually, refactoring is guided by bad design, also called code smells. It is
inevitable to provide code smells for feature-oriented SPLs as well, either by reviewing
existing SPLs or by defining measures that aid in detecting code smells automatically.
Furthermore, to efficiently apply the proposed refactorings, tool support is crucial to
support the developer. Currently, we and others are working on this issue, by providing
a tool that checks the applicability of a certain refactoring as well as execute the refac-
toring. Nevertheless, this is a challenging task and further work can help to achieve a
broader range of different approaches.

Third, adapting the ideas of variant-preserving refactoring to annotative SPLs is a
challenging, yet, beneficial issue for further work. We suggest to rethink our notion
in the light of preprocessor annotations to provide variability-aware refactoring. Based
on such a notion and current approaches on variability aware analysis of cpp-based
systems [? ?], tool support for (automated) refactoring in the presence of preprocessor
annotations would be the ultimate goal.

Evolution of Variable Software Systems

Software evolution plays a pivotal role in software engineering, because it affects soft-
ware quality and maintainability. While software product lines evolve as well, only few
work exists that analyzes the evolution of SPLs. Specifically, the evolution of systems
that use the C preprocessor such as Linux, have a long history of evolution. We sug-
gest to concentrate on this issue as well in future work. While first approaches exist
that analyze (and understand) the evolution of the variability model of such systems [?
?], it is interesting to gain insights on how variability in the implementation space
(i.e., the source code) evolves. Particularly, we suggest to focus on co-changes between
preprocessor annotations (and their corresponding preprocessor variable) and what this
could indicate with regard to the overall product-line architecture. Additionally, such
an evolution analysis could provide insights to what extent variability evolves over time
and to what extent it is stable.

A. Appendix

122 A. Appendix

Figure A.1: Feature model of the TankWar product line

Bibliography

[] L. Aversano, L. Cerulo, and M. Di Penta. How Clones are Maintained: An
Empirical Study. In Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR), pages 81–90. IEEE Computer
Society, 2007. (cited on Page)

[] T. Anderson and J. Finn. The New Statistical Analysis of Data. Springer-
Verlag, 1996. (cited on Page)

[] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena.
Refactoring Product Lines. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE), pages
201–210. ACM Press, 2006. (cited on Page)

[] S. Apel and C. Kästner. An Overview of Feature-Oriented Software De-
velopment. Journal of Object Technology (JOT), 8(5):49–84, 2009. (cited

on Page)

[] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 221–231.
IEEE Computer Society, 2009. (cited on Page)

[] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner, M. Kuhlemann, and T. Leich.
Access Control in Feature-Oriented Programming. Science of Computer
Programming, 77(3):174–187, 2012. Feature-Oriented Software Develop-
ment (FOSD 2009). (cited on Page)

[] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the
Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In Pro-
ceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), pages 125–140. Springer-Verlag, 2005.
(cited on Page)

[] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE
Transactions on Software Engineering (TSE), 34(2):162–180, 2008. (cited

on Page)

124 Bibliography

[] V. Alves, P. Matos, L. Cole, P. Borba, and G. Ramalho. Extracting and
Evolving Mobile Games Product Lines. In Proceedings of the International
Software Product Line Conference (SPLC), pages 70–81. Springer-Verlag,
2005. (cited on Page)

[] G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and H. Sahraoui. On Feature
Traceability in Object Oriented Programs. In Proceedings of the Interna-
tional Workshop on Traceability in Emerging Forms of Software Engineer-
ing (TEFSE), pages 73–78. ACM Press, 2005. (cited on Page)

[] S. Apel. How AspectJ is Used: An Analysis of Eleven AspectJ Programs.
Journal of Object Technology (JOT), 9(1):117–142, 2010. (cited on Page)

[] B. Adams, B. Van Rompaey, C. Gibbs, and Y. Coady. Aspect Mining in
the Presence of the C Preprocessor. In Proceedings of the AOSD Workshop
on Linking Aspect Technology and Evolution (LATE), pages 1:1–1:6. ACM
Press, 2008. (cited on Page)

[] B. Baker. A Program for Identifying Duplicated Code. Computing Science
and Statistics, 24:49–57, 1992. (cited on Page)

[] B. Baker. On Finding Duplication and Near-Duplication in Large Software
Systems. In Proceedings of the Working Conference on Reverse Engineer-
ing (WCRE), pages 86–95. IEEE Computer Society, 1995. (cited on Page)

[] B. Baker. Parameterized Pattern Matching: Algorithms and Applications.
Journal of Computer and System Sciences, 52(1):28–42, 1996. (cited on

Page)

[] D. Batory. Feature Models, Grammars, and Propositional Formulas. In
H. Obbink and K. Pohl, editors, Software Product Lines, volume 3714 of
Lecture Notes in Computer Science, pages 7–20. Springer, 2005. (cited on

Page)

[] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), pages
303–311. ACM Press, 1990. (cited on Page)

[] M. Bruntink, A. Deursen, R. Engelen, and T. Tourwe. On the Use of Clone
Detection for Identifying Crosscutting Concern Code. IEEE Transactions
on Software Engineering (TSE), 31(10):804–818, 2005. (cited on Page)

[] L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Product
Lines Using Traits. In Proceedings of the ACM Symposium on Applied
Computing (SAC), pages 2096–2102. ACM Press, 2010. (cited on Page)

Bibliography 125

[] T. Bakota, R. Ferenc, and T. Gyimothy. Clone Smells in Software Evo-
lution. In Proceedings of the International Conference on Software Main-
tenance (ICSM), pages 24–33. IEEE Computer Society, 2007. (cited on

Page)

[] T. Biggerstaff. A Perspective of Generative Reuse. Annals of Software
Engineering, 5:169–226, 1998. (cited on Page)

[] H. A. Basit and S. Jarzabek. Efficient Token Based Clone Detection with
Flexible Tokenization. In Proceedings of the European Software Engineer-
ing Conference/Foundations of Software Engineering (ESEC/FSE), pages
513–516. ACM Press, 2007. (cited on Page)

[] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison
and Evaluation of Clone Detection Tools. IEEE Transactions on Software
Engineering (TSE), 33(9):577–591, sept. 2007. (cited on Page)

[] L. Barbour, F. Khomh, and Y. Zou. Late Propagation in Software Clones.
In Proceedings of the International Conference on Software Maintenance
(ICSM), pages 273–282. IEEE Computer Society, 2011. (cited on Page)

[] I. Baxter and M. Mehlich. Preprocessor Conditional Removal by Sim-
ple Partial Evaluation. In Proceedings of the Working Conference on Re-
verse Engineering (WCRE), pages 281–290. IEEE Computer Society, 2001.
(cited on Page)

[] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Measuring Clone based Reengineering Opportunities. In International
Software Metrics Symposium (METRICS), pages 292–303. IEEE Com-
puter Society, 1999. (cited on Page)

[] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Partial Redesign of Java Software Systems Based on Clone Analysis . In
Proceedings of the Working Conference on Reverse Engineering (WCRE),
pages 326–336. IEEE Computer Society, 1999. (cited on Page)

[] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Advanced Clone Analysis to Support Object-Oriented System Refactor-
ing. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 98–107. IEEE Computer Society, 2000. (cited on Page)

[] D. Beuche, H. Papajewski, and W. Schroder-Preikschat. Variability
Management with Feature Models. Science of Computer Programming,
53(3):333–352, 2004. (cited on Page)

[] H. Basit, D. Rajapakse, and S. Jarzabek. An Empirical Study on Limits
of Clone Unification Using Generics. In Proceedings of the International

126 Bibliography

Conference on Software Engineering and Knowledge Engineering (SEKE),
pages 109–114, 2005. (cited on Page)

[] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan.
An Empirical Study on Inconsistent Changes to Code Clones at Release
Level. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 85–94. IEEE Computer Society, 2009. (cited on Page)

[] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering (TSE), 30(6):355–371, 2004.
(cited on Page)

[] P. Borba, L. Teixeira, and R. Gheyi. A Theory of Software Product Line
Refinement. In Proceedings of the International Colloquium on Theoretical
Aspects of Computing (ICTAC), pages 15–43. Springer-Verlag, 2010. (cited

on Page)

[] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection
Using Abstract Syntax Trees. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM), pages 368–377. IEEE Computer
Society, 1998. (cited on Page)

[] A. Colyer, R. A., and G. Blair. On the Separation of Concerns in Program
Families. Technical Report Technical Report COMP-001-2004, Computing
Department, Lancaster University, 2004. (cited on Page)

[] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley, 2000. (cited on

Page)

[] K. W. Church and J. I. Helfman. Dotplot: A Program for Exploring Self-
Similarity in Millions of Lines of Text and Code. Journal of Computational
and Graphical Statistics, 2(2):153–174, 1993. (cited on Page)

[] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-Based
Feature Models and Their Specialization. Software Process: Improvement
and Practice, 10(1):7–29, 2005. (cited on Page)

[] P. Clements and L. Northrop. Software Product Lines – Practices and
Patterns. Addison-Wesley, 2001. (cited on Page)

[] J. Cordy. Comprehending Reality - Practical Barriers to Industrial Adop-
tion of Software Maintenance Automation. In Proceedings of the Inter-
national Workshop on Program Comprehension (IWPC), pages 196–205.
IEEE Computer Society, 2003. (cited on Page)

Bibliography 127

[] J. Cordy. Exploring Large-Scale System Similarity Using Incremental
Clone Detection and Live Scatterplots. In Proceedings of the Interna-
tional Conference on Program Comprehension (ICPC), pages 151–160.
IEEE Computer Society, 2011. (cited on Page)

[] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley. The Development
of a Software Clone Detector. International Journal of Applied Software
Technology, 1(3/4):219–236, 1995. (cited on Page)

[] E. Duala-Ekoko and M. Robillard. Tracking Code Clones in Evolving
Software. In Proceedings of the International Conference on Software En-
gineering (ICSE), pages 158–167. IEEE Computer Society, 2007. (cited

on Page)

[] E. Duala-Ekoko and M. P. Robillard. Clonetracker: Tool Support for
Code Clone Management. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 843–846. ACM Press, 2008. (cited

on Page)

[] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wagner, J.-F.
Girard, and S. Teuchert. Clone Detection in Automotive Model-based
Development. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 603–612. IEEE Computer Society, 2008. (cited

on Page)

[] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. (cited on

Page)

[] G. Di Lucca, M. Di Penta, and A. Fasolino. An Approach to Identify Dupli-
cated Web Pages. In Proceedings of the International Computer Software
and Applications Conference (COMPSAC), pages 481–486. IEEE Com-
puter Society, 2002. (cited on Page)

[] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black. Traits: A
Mechanism for Fine-Grained Reuse. ACM Transactions on Programming
Languages and Systems (TOPLAS), 28(2):331–388, 2006. (cited on Page)

[] S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent Ap-
proach for Detecting Duplicated Code. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 109–118. IEEE Com-
puter Society, 1999. (cited on Page)

[] M. Ernst, G. Badros, and D. Notkin. An Empirical Analysis of C
Preprocessor Use. IEEE Transactions on Software Engineering (TSE),
28(12):1146–1170, 2002. (cited on Page)

128 Bibliography

[] W. Evans, C. Fraser, and F. Ma. Clone Detection via Structural Abstrac-
tion. Software Quality Journal, 17:309–330, 2009. (cited on Page)

[] J. Favre. The CPP Paradox. In Proceedings of the European Workshop on
Software Maintenance, 1995. (cited on Page)

[] J. Favre. Understanding-In-The-Large. In Proceedings of the International
Workshop on Program Comprehension (IWPC), pages 29–38. IEEE Com-
puter Society, 1997. (cited on Page)

[] R. Falke, P. Frenzel, and R. Koschke. Empirical Evaluation of Clone
Detection Using Syntax Suffix Trees. Empirical Software Engineering,
13(6):601–643, 2008. (cited on Page)

[] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence
Graph and its Use in Optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9(3):319–349, July 1987. (cited on

Page)

[] R. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 2000. (cited on Page)

[] N. Göde and J. Harder. Clone Stability. In Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pages
65–74. IEEE Computer Society, 2011. (cited on Page)

[] L. Giventer. Statistical Analysis for Public Administration. Jones and
Bartlett Publishing, second edition, 2008. (cited on Page)

[] M. Gabel, L. Jiang, and Z. Su. Scalable Detection of Semantic Clones.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 321–330. IEEE Computer Society, 2008. (cited on Page)

[] N. Göde and R. Koschke. Frequency and Risks of Changes to Clones.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 311–320. IEEE Computer Society, 2011. (cited on Page)

[] D. Ganesan, M. Lindvall, C. Ackermann, D. McComas, and
M. Bartholomew. Verifying Architectural Design Rules of the Flight Soft-
ware Product Line. In Proceedings of the International Software Prod-
uct Line Conference (SPLC), pages 161–170. Carnegie Mellon University,
2009. (cited on Page)

[] S. Grier. A Tool that detects Plagiarism in Pascal Programs. In Proceed-
ings of the SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’81, pages 15–20. ACM Press, 1981. (cited on Page)

Bibliography 129

[] G. Heineman and W. Council. Component-Based Software Engineering.
Addison-Wesley, 2001. (cited on Page)

[] J. Helfman. Dotplot Patterns: A Literal Look at Pattern Languages.
Theory and Practice of Object Systems, 2(1):31–41, 1996. (cited on Page)

[] J. Harder and N. Göde. Efficiently Handling Clone Data: RCF and Cy-
clone. In Proceedings of the International Workshop on Software Clones
(IWSC), pages 81–82. ACM Press, 2011. (cited on Page)

[] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an Environment for the
Proactive Management of Copy-and-Paste Programming. In Proceedings of
the International Conference on Program Comprehension (ICPC), pages
238–242. IEEE Computer Society, 2009. (cited on Page)

[] D. Hou, F. Jacob, and P. Jablonski. Exploring the Design Space of Proac-
tive Tool Support for Copy-and-Paste Programming. In Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON), pages 188–202. ACM Press, 2009. (cited on Page)

[] Y. Higo and S. Kusumoto. Enhancing Quality of Code Clone Detection
with Program Dependency Graph. In Proceedings of the Working Confer-
ence on Reverse Engineering (WCRE), pages 315–316. IEEE Computer
Society, 2009. (cited on Page)

[] Y. Higo, S. Kusumoto, and K. Inoue. A Metric-Based Approach to Identi-
fying Refactoring Opportunities for Merging Code Clones in a Java Soft-
ware System. Journal of Software Maintenance and Evolution, 20(6):435–
461, 2008. (cited on Page)

[] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries: Refactoring
Support Environment Based on Code Clone Analysis. In Proceedings of
the International Conference on Software Engineering and Applications
(SEA), pages 222–229, 2004. (cited on Page)

[] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring Support
Based on Code Clone Analysis. In F. Bomarius and H. Iida, editors, Prod-
uct Focused Software Process Improvement (PROFES), volume 3009 of
Lecture Notes in Computer Science, pages 220–233. Springer, 2004. (cited

on Page)

[] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is Duplicate Code More
Frequently Modified Than Non-Duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software. In Proceedings of the Pro-
ceedings of the Joint Workshop on Software Evolution and International
Workshop on Principles of Software Evolution (IWPSE-EVOL), pages 73–
82. ACM Press, 2010. (cited on Page)

130 Bibliography

[] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto. Incremental Code
Clone Detection: A PDG-based Approach. In Proceedings of the Work-
ing Conference on Reverse Engineering (WCRE), pages 3 –12, oct. 2011.
(cited on Page)

[] H. Jankowitz. Detecting Plagiarism in Student Pascal Programs. The
Computer Journal, 31(1):1–8, 1988. (cited on Page)

[] H. P. Jepsen and D. Beuche. Running a Software Product Line: Stand-
ing Still is Going Backwards. In Proceedings of the International Software
Product Line Conference (SPLC), pages 101–110. Carnegie Mellon Uni-
versity, 2009. (cited on Page)

[] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wag-
ner, C. Domann, and J. Streit. Can Clone Detection Support Quality
Assessments of Requirements Specifications? In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 79–88. ACM
Press, 2010. (cited on Page)

[] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective - A Work-
bench for Clone Detection Research. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 603–606. IEEE Com-
puter Society, 2009. (cited on Page)

[] E. Juergens, F. Deissenboeck, and B. Hummel. Code Similarities Beyond
Copy amp; Paste. In Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR), pages 78–87. IEEE Computer
Society, 2010. (cited on Page)

[] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do Code Clones
Matter? In Proceedings of the 31st International Conference on Software
Engineering, pages 485–495. IEEE Computer Society, 2009. (cited on Page)

[] R. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming, 1(2):22–35, 1988. (cited on Page)

[] N. Juillerat and B. Hirsbrunner. An Algorithm for Detecting and Remov-
ing Clones in Java Code. In Proceedings of the International Workshop on
Software Evolution through Transformations (SeTra), pages 63–74, 2006.
(cited on Page)

[] S. Jarzabek and S. Li. Unifying Clones with a Generative Programming
Technique: A Case Study. Journal of Software Maintenance and Evolu-
tion, 18(4):267–292, 2006. (cited on Page)

Bibliography 131

[] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and
Accurate Tree-based Detection of Code Clones. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 96–105. IEEE
Computer Society, 2007. (cited on Page)

[] J. H. Johnson. Identifying Redundancy in Source Code Using Finger-
prints. In Proceedings of the Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON), pages 171–183. IBM Press, 1993.
(cited on Page)

[] J. Johnson. Substring Matching for Clone Detection and Change Tracking.
In Proceedings of the International Conference on Software Maintenance
(ICSM), pages 120–126. IEEE Computer Society, 1994. (cited on Page)

[] J. H. Johnson. Visualizing Textual Redundancy in Legacy Source. In
Proceedings of the Conference of the Centre for Advanced Studies on Col-
laborative Research (CASCON), pages 32–41. IBM Press, 1994. (cited on

Page)

[] J. H. Johnson. Navigating the Textual Redundancy Web in Legacy Source.
In Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON), page 16. IBM Press, 1996. (cited on

Page)

[] C. Kästner and S. Apel. Virtual Separation of Concerns – A Second Chance
for Preprocessors. Journal of Object Technology (JOT), 8(6):59–78, 2009.
(cited on Page)

[] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features
Using AspectJ. In Proceedings of the International Software Product Line
Conference (SPLC), pages 223–232. IEEE Computer Society, 2007. (cited

on Page)

[] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product
Lines. In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 311–320. ACM Press, 2008. (cited on Page)

[] C. Kästner, S. Apel, and M. Kuhlemann. A Model of Refactoring Phys-
ically and Virtually Separated Features. In Proceedings of the Interna-
tional Conference on Generative Programming and Component Engineer-
ing (GPCE), pages 157–166. ACM Press, 2009. (cited on Page)

[] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Guaran-
teeing Syntactic Correctness for All Product Line Variants: A Language-
Independent Approach. In Proceedings of the International Conference
on Objects, Models, Components and Patterns (TOOLS), pages 175–194.
Springer-Verlag, 2009. (cited on Page)

132 Bibliography

[] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type Checking Annotation-
Based Product Lines. ACM Transactions on Software Engineering and
Methodology (TOSEM), 21(3), 2012. to appear; submitted 8 Jun 2010,
accepted 4 Jan 2011. (cited on Page)

[] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and
G. Saake. On the Impact of the Optional Feature Problem: Analysis and
Case Studies. In Proceedings of the International Software Product Line
Conference (SPLC), pages 181–190, 2009. (cited on Page)

[] M. Kuhlemann, D. Batory, and S. Apel. Refactoring Feature Modules.
In Proceedings of the International Conference on Software Reuse (ICSR),
pages 106–115. Springer-Verlag, 2009. (cited on Page)

[] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, 1990. (cited

on Page)

[] K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo.
Pattern Matching for Design Concept Localization. In Proceedings of
the Working Conference on Reverse Engineering (WCRE), pages 96–103.
IEEE Computer Society, 1995. (cited on Page)

[] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein. Pat-
tern Matching for Clone and Concept Detection. Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE), 3:77–108,
1996. (cited on Page)

[] B. W. Kernighan. The C Programming Language. Prentice Hall, 2nd
edition, 1988. (cited on Page)

[] R. Koschke, R. Falke, and P. Frenzel. Clone Detection Using Abstract Syn-
tax Suffix Trees. In Proceedings of the Working Conference on Reverse En-
gineering (WCRE), pages 253–262. IEEE Computer Society, 2006. (cited

on Page)

[] C. Kapser and M. Godfrey. Improved Tool Support for the Investigation of
Duplication in Software. In Proceedings of the International Conference on
Software Maintenance (ICSM), pages 305–314. IEEE Computer Society,
2005. (cited on Page)

[] C. Kapser and M. W. Godfrey. ”Cloning Considered Harmful” Considered
Harmful. In Proceedings of the Working Conference on Reverse Engineer-
ing (WCRE), pages 19–28. IEEE Computer Society, 2006. (cited on Page)

Bibliography 133

[] C. Kapser and M. Godfrey. ”Cloning Considered Harmful” Considered
Harmful: Patterns of Cloning in Software. Empirical Software Engineering,
13:645–692, 2008. (cited on Page)

[] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-Aware Parsing in the Presence of Lexical Macros
and Conditional Compilation. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 805–824. ACM Press, 2011. (cited on Page)

[] R. Komondoor and S. Horwitz. Using Slicing to Identify Duplication in
Source Code. In P. Cousot, editor, Static Analysis, volume 2126 of Lecture
Notes in Computer Science, pages 40–56. Springer, 2001. (cited on Page)

[] M. Kuhlemann, C. Kästner, S. Apel, and G. Saake. An Algebra for Refac-
toring and Feature-Oriented Programming. Technical Report FIN-006-
2011, Otto-von-Guericke University Magdeburg, 2011. (cited on Page)

[] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic
Token-based Code Clone Detection System for Large Scale Source Code.
IEEE Transactions on Software Engineering (TSE), 28(7):654–670, 2002.
(cited on Page)

[] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), volume 1241 of Lecture Notes in Com-
puter Science, pages 220–242. Springer, 1997. (cited on Page)

[] G. G. Koni-N’Sapu. A Scenario Based Approach for Refactoring Dupli-
cated Code in Object Oriented Systems. Diploma thesis, University of
Bern, Switzerland, 2001. (cited on Page)

[] K. Kontogiannis. Evaluation Experiments on the Detection of Program-
ming Patterns Using Software Metrics. In Proceedings of the Working
Conference on Reverse Engineering (WCRE), pages 44–54. IEEE Com-
puter Society, 1997. (cited on Page)

[] R. Koschke. Survey of Research on Software Clones. In R. Koschke,
E. Merlo, and A. Walenstein, editors, Duplication, Redundancy, and
Similarity in Software, number 06301 in Dagstuhl Seminar Pro-
ceedings, Dagstuhl, Germany, 2007. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.
(cited on Page)

134 Bibliography

[] J. Krinke. Identifying Similar Code with Program Dependence Graphs. In
Proceedings of the Working Conference on Reverse Engineering (WCRE),
pages 301–309. IEEE Computer Society, 2001. (cited on Page)

[] J. Krinke. A Study of Consistent and Inconsistent Changes to Code
Clones. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 170–178. IEEE Computer Society, 2007. (cited on Page)

[] C. W. Krueger. Easing the Transition to Software Mass Customization.
In Proceedings of the International Workshop on Software Product-Family
Engineering (PFE), volume 2290 of Lecture Notes in Computer Science,
pages 178–184. Springer-Verlag, 2002. (cited on Page)

[] M. Krone and G. Snelting. On the Inference of Configuration Structures
from Source Code. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 49–57, 1994. (cited on Page)

[] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An Empirical Study
of Code Clone Genealogies. In Proceedings of the European Software En-
gineering Conference/Foundations of Software Engineering (ESEC/FSE),
pages 187–196. ACM Press, 2005. (cited on Page)

[] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei,
M. Nagura, and H. Iida. SHINOBI: A Tool for Automatic Code Clone
Detection in the IDE. In Proceedings of the Working Conference on Re-
verse Engineering (WCRE), pages 313–314. IEEE Computer Society, 2009.
(cited on Page)

[] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An Analysis
of the Variability in Forty Preprocessor-Based Software Product Lines.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 105–114. ACM Press, 2010. (cited on Page)

[] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon. Automated
Scheduling for Clone-Based Refactoring Using a Competent GA. Software:
Practice and Experiences, 41(5):521–550, 2011. (cited on Page)

[] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of
Legacy Applications. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 112–121. ACM Press, 2006. (cited on

Page)

[] R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating
Product-Line Methodologies. In Proceedings of the International Confer-
ence on Generative and Component-Based Software Engineering (GCSE),
pages 10–24. Springer, 2001. (cited on Page)

Bibliography 135

[] J. Liebig, C. Kästner, and S. Apel. Analyzing the Discipline of Prepro-
cessor Annotations in 30 Millions Lines of C Code. In Proceedings of
the International Conference on Aspect-Oriented Software Development
(AOSD), pages 191–202. ACM Press, 2011. (cited on Page)

[] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code. IEEE Transactions on
Software Engineering (TSE), 32(3):176–192, march 2006. (cited on Page)

[] F. Lanubile and T. Mallardo. Finding Function Clones in Web Applica-
tions. In Proceedings of the European Conference on Software Maintenance
and Reengineering (CSMR), pages 379–386. IEEE Computer Society, 2003.
(cited on Page)

[] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting Duplications in Sequence
Diagrams Based on Suffix Trees. In Proceedings of the Asia-Pacific Soft-
ware Engineering Conference (APSEC), pages 269–276. IEEE Computer
Society, 2006. (cited on Page)

[] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. W ↪asowski. Evolution
of the Linux kernel variability model. In Proceedings of the International
Software Product Line Conference (SPLC), pages 136–150. Springer, 2010.
(cited on Page)

[] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-
Preikschat. A Quantitative Analysis of Aspects in the eCos Kernel.
SIGOPS Operating Systems Review, 40(4):191–204, April 2006. (cited

on Page)

[] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-
Preikschat. A Quantitative Analysis of Aspects in the eCos Kernel. In
Proceedings of the SIGOPS European Conference on Computer Systems,
pages 191–204. ACM Press, 2006. (cited on Page)

[] H. Li and S. Thompson. Similar Code Detection and Elimination for
Erlang Programs. In M. Carro and R. Peña, editors, Practical Aspects of
Declarative Languages, volume 5937 of Lecture Notes in Computer Science,
pages 104–118. Springer, 2010. (cited on Page)

[] A. Lozano and M. Wermelinger. Tracking Clones’ Imprint. In Proceedings
of the International Workshop on Software Clones (IWSC), pages 65–72.
ACM Press, 2010. (cited on Page)

[] D. Malayeri and J. Aldrich. CZ: Multiple Inheritance Without Diamonds.
In Proceedings of the Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 21–40. ACM Press,
2009. (cited on Page)

136 Bibliography

[] T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the
Grow-and-Prune Model in Software Product Lines Evolution Using Clone
Detection. In Proceedings of the European Conference on Software Main-
tenance and Reengineering (CSMR), pages 163–172. IEEE Computer So-
ciety, 2008. (cited on Page)

[] J. Maletic, M. Collard, and A. Marcus. Source Code Files as Structured
Documents. In Proceedings of the International Workshop on Program
Comprehension (IWPC), pages 289–292. IEEE Computer Society, 2002.
(cited on Page)

[] M. P. Monteiro and J. M. Fernandes. Towards a Catalog of Aspect-
oriented Refactorings. In Proceedings of the International Conference
on Aspect-Oriented Software Development (AOSD), pages 111–122. ACM
Press, 2005. (cited on Page)

[] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. Removing Duplication
From java.io: A Case Study Using Traits. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 282–291. ACM Press, 2005. (cited on Page)

[] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the Automatic De-
tection of Function Clones in a Software System Using Metrics. In Proceed-
ings of the International Conference on Software Maintenance (ICSM),
pages 244–253. IEEE Computer Society, 1996. (cited on Page)

[] G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating Features
in Source Code: An Exploratory Study. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), pages 275–284. IEEE
Computer Society, 2001. (cited on Page)

[] A. Marcus and J. Maletic. Identification of High-Level Concept Clones
in Source Code. In Proceedings of the International Conference on Auto-
mated Software Engineering (ASE), pages 107–114. IEEE Computer Soci-
ety, 2001. (cited on Page)

[] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Soft-
ware Quality Analysis by Code Clones in Industrial Legacy Software. In
Proceedings of the International Symposium on Software Metrics, pages
87–96. IEEE Computer Society, 2002. (cited on Page)

[] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke, and K. Schnei-
der. Comparative Stability of Cloned and Non-cloned Code: An Empiri-
cal Study. In Proceedings of the ACM Symposium on Applied Computing
(SAC), pages 1–8. ACM Press, 2012. (cited on Page)

Bibliography 137

[] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone
Management for Evolving Software. IEEE Transactions on Software En-
gineering (TSE), PP(99):1–19, 2011. accepted for publication. (cited on

Page)

[] W. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois, 1992. (cited on Page)

[] D. L. Parnas. On the Criteria to be used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, 1972. (cited

on Page)

[] D. Parnas. On the Design and Development of Program Families. IEEE
Transactions on Software Engineering (TSE), SE-2(1):1– 9, 1976. (cited

on Page)

[] D. Parnas. Designing Software for Ease of Extension and Contrac-
tion. IEEE Transactions on Software Engineering (TSE), SE-5(2):128–
138, 1979. (cited on Page)

[] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engi-
neering: Foundations, Principles, and Techniques. Springer, 2005. (cited

on Page)

[] L. Passos, K. Czarnecki, and A. Wasowski. Towards a Catalog of Vari-
ability Evolution Patterns: The Linux Kernel Case. In Proceedings of
the International Workshop on Feature-Oriented Software Development
(FOSD), pages 62–69. ACM Press, 2012. (cited on Page)

[] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen. Complete and Accurate Clone Detection in Graph-based Models.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 276–286. IEEE Computer Society, 2009. (cited on Page)

[] T. Pearse and P. Oman. Experiences Developing and Maintaining Soft-
ware in a Multi-Platform Environment. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 270–277. IEEE Com-
puter Science, 1997. (cited on Page)

[] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
M. Aksit and S. Matsuoka, editors, Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes
in Computer Science, pages 419–443. Springer, 1997. (cited on Page)

[] C. Roy and J. Cordy. A Survey on Software Clone Detection Research.
Technical Report 2007-541, Queen’s University at Kingston, 2007. (cited

on Page)

138 Bibliography

[] C. Roy and J. Cordy. NICAD: Accurate Detection of Near-Miss Inten-
tional Clones Using Flexible Pretty-Printing and Code Normalization. In
Proceedings of the International Conference on Program Comprehension
(ICPC), pages 172–181. IEEE Computer Society, 2008. (cited on Page)

[] C. Roy and J. Cordy. A Mutation/Injection-Based Automatic Framework
for Evaluating Code Clone Detection Tools. In Proceedings of the Interna-
tional Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 157–166. IEEE Computer Society, 2009. (cited on

Page)

[] C. Roy and J. Cordy. Near-miss Function Clones in Open Source Software:
An Empirical Study. Journal of Software Maintenance and Evolution,
22(3):165–189, 2010. (cited on Page)

[] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and Evaluation
of Code Clone Detection Techniques and Tools: A Qualitative Approach.
Science of Computer Programming, 74(7):470–495, 2009. Special Issue on
Program Comprehension (ICPC 2008). (cited on Page)

[] M. Rieger, S. Ducasse, and G. Golomingi. Tool Support for Refactoring
Duplicated OO Code. In ECOOP Workshops, pages 177–178. Springer,
1999. (cited on Page)

[] M. Rieger, S. Ducasse, and M. Lanza. Insights Into System-Wide Code
Duplication. In Proceedings of the Working Conference on Reverse Engi-
neering (WCRE), pages 100–109. IEEE Computer Society, 2004. (cited

on Page)

[] J. Refstrup. Adapting to Change: Architecture, Processes and Tools: A
Closer Look at HP’s Experience in Evolving the Owen Software Product
Line. In Proceedings of the International Software Product Line Conference
(SPLC), 2009. keynote presentation. (cited on Page)

[] S. Schulze, S. Apel, and C. Kästner. Code Clones in Feature-Oriented
Software Product Lines. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE), pages
103–112. ACM Press, 2010. (cited on Page)

[] J. Sametinger. Software Engineering with Reusable Components. Springer-
Verlag, 1997. (cited on Page)

[] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and K. Schneider. Evalu-
ating Code Clone Genealogies at Release Level: An Empirical Study. In
Proceedings of the Working Conference on Source Code Manipulation and
Analysis (SCAM), pages 87–96. IEEE Computer Society, 2010. (cited on

Page)

Bibliography 139

[] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Im-
plementation Technique for Refinements and Collaboration-based Designs.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11:215–255, 2002. (cited on Page)

[] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-
oriented Programming of Software Product Lines. In Proceedings of the
International Software Product Line Conference (SPLC), pages 77–91.
Springer, 2010. (cited on Page)

[] G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan, and Y. Zou.
Studying the Impact of Clones on Software Defects. In Proceedings of the
Working Conference on Reverse Engineering (WCRE), pages 13–21. IEEE
Computer Society, 2010. (cited on Page)

[] H. Spencer and G. Collyer. #ifdef Considered Harmful, or Portability
Experience with C News. In Proceedings of the USENIX Technical Con-
ference, pages 185–197. USENIX Association Berkeley, 1992. (cited on

Page)

[] I. Schaefer and F. Damiani. Pure Delta-Oriented Programming. In Pro-
ceedings of the International Workshop on Feature-Oriented Software De-
velopment (FOSD), pages 49–56. ACM Press, 2010. (cited on Page)

[] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2nd edition, 2002. (cited

on Page)

[] G. B. Singh. Single versus Multiple Inheritance in Object Oriented Pro-
gramming. SIGPLAN OOPS Messenger, 5(1):34–43, 1994. (cited on Page)

[] S. Schulze, E. Juergens, and J. Feigenspan. Analyzing the Effect of Pre-
processor Annotations on Code Clones. In Proceedings of the Working
Conference on Source Code Manipulation and Analysis (SCAM), pages
115–124. IEEE Computer Society, 2011. (cited on Page)

[] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a Refactoring
Guideline Using Code Clone Classification. In Proceedings of the Interna-
tional Workshop on Refactoring Tools (WRT), pages 6:1–6:4. ACM Press,
2008. (cited on Page)

[] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Variability
Model of the Linux Kernel. In Proceedings of the International Workshop
on Variability Modeling in Software-intensive Systems (VaMoS), pages 45–
51. University of Duisburg-Essen, 2010. (cited on Page)

140 Bibliography

[] S. Schulze, T. Thüm, M. Kuhlemann, and G. Saake. Variant-Preserving
Refactoring in Feature-Oriented Software Product Lines. In Proceedings of
the International Workshop on Variability Modeling in Software-intensive
Systems (VaMoS), pages 73–81. ACM Press, 2012. (cited on Page)

[] H. Stoerrle. Towards Clone Detection in UML Domain Models. In Proceed-
ings of the European Conference on Software Architecture (ECSA), pages
285–293. ACM Press, 2010. (cited on Page)

[] B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, New
York, NY, USA, 1995. (cited on Page)

[] M. Toomim, A. Begel, and S. Graham. Managing Duplicated Code with
Linked Editing. In Proceedings of the IEEE Symposium on Visual Lan-
guages and Human Centric Computing (VL/HCC), pages 173–180. IEEE
Computer Society, 2004. (cited on Page)

[] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to Feature
Models. In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 254–264. IEEE Computer Society, 2009. (cited on

Page)

[] F. Takeyama and S. Chiba. Feature-Oriented Programming with Family
Polymorphism. In Proceedings of the International Workshop on Variabil-
ity & Composition (VariComp), pages 1–6. ACM Press, 2012. (cited on

Page)

[] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An Empir-
ical Study on the Maintenance of Source Code Clones. Empirical Software
Engineering, 15:1–34, 2010. (cited on Page)

[] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund. Abstract Features
in Feature Modeling. In Proceedings of the International Software Product
Line Conference (SPLC), pages 191–200. IEEE Computer Society, 2011.
(cited on Page)

[] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In Proceedings
of the International Conference on Software Engineering (ICSE), pages
107–119. ACM Press, 1999. (cited on Page)

[] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann. Dead
or Alive: Finding Zombie Features in the Linux Kernel. In Proceedings
of the International Workshop on Feature-Oriented Software Development
(FOSD), pages 81–86, 2009. (cited on Page)

Bibliography 141

[] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance
Support Environment Based on Code Clone Analysis. In International
Software Metrics Symposium (METRICS), pages 67–76. IEEE Computer
Society, 2002. (cited on Page)

[] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On Detection of Gapped
Code Clones Using Gap Locations. In Proceedings of the Asia-Pacific Soft-
ware Engineering Conference (APSEC), pages 327 – 336. IEEE Computer
Society, 2002. (cited on Page)

[] M. Uddin, C. Roy, K. Schneider, and A. Hindle. On the Effectiveness
of Simhash for Detecting Near-Miss Clones in Large Scale Software Sys-
tems. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 13–22. IEEE Computer Society, 2011. (cited on Page)

[] M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-Based Designs. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA),
pages 359–369. ACM Press, 1996. (cited on Page)

[] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone Detection in Source
Code by Frequent Itemset Techniques. In Proceedings of the Working
Conference on Source Code Manipulation and Analysis (SCAM), pages
128–135. IEEE Computer Society, 2004. (cited on Page)

[] W. Yang. Identifying Syntactic Differences Between Two Programs. Soft-
ware: Practice and Experiences, 21(7):739–755, 1991. (cited on Page)

[] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On Refactor-
ing Support Based on Code Clone Dependency Relation. In International
Software Metrics Symposium (METRICS), pages 10–16. IEEE Computer
Society, 2005. (cited on Page)

[] M. Zibran and C. Roy. A Constraint Programming Approach to Conflict-
Aware Optimal Scheduling of Prioritized Code Clone Refactoring. In Pro-
ceedings of the Working Conference on Source Code Manipulation and
Analysis (SCAM), pages 105–114. IEEE Computer Society, 2011. (cited

on Page)

[] M. Zibran and C. Roy. IDE-based Real-Time Focused Search for Near-
Miss Clones. In Proceedings of the ACM Symposium on Applied Computing
(SAC), pages 1–8. ACM Press, 2012. (cited on Page)

142 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den

