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Abstract

Background: Although male factor accounts for 40%–50% of unintended childless-

ness, we are far from fully understanding the detailed causes. Usually, affected men

cannot even be providedwith amolecular diagnosis.

Objectives:We aimed at a higher resolution of the human sperm proteome for better

understanding of the molecular causes of male infertility. We were particularly inter-

ested in why reduced sperm count decreases fertility despite many normal-looking

spermatozoa andwhich proteins might be involved.

Material and methods: Applying mass spectrometry analysis, we qualitatively and

quantitatively examined the proteomic profiles of spermatozoa from 76men differing

in fertility. Infertile men had abnormal semen parameters andwere involuntarily child-

less. Fertile subjects exhibited normozoospermia and had fathered children without

medical assistance.

Results: We discovered proteins from about 7000 coding genes in the human sperm

proteome. These were mainly known for involvements in cellular motility, response

to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least

threefolddeviating abundances increased fromoligozoospermia (N=153) andoligoas-

thenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated

sperm proteins primarily engaged in flagellar assembly and sperm motility, fertiliza-

tion, and male gametogenesis. Most of these participated in a larger network of male

infertility genes and proteins.

Discussion: We expose 31 sperm proteins displaying deviant abundances under

infertility, which already were known before to have fertility relevance, including

ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We pro-

pose 18 additional sperm proteins with at least eightfold differential abundance for

further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1,

SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A.
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Conclusion:Our results shed light on the molecular background of the dysfunctional-

ity of the fewer spermatozoa produced in oligozoospermia and syndromes including

it. The male infertility network presented may prove useful in further elucidating the

molecular mechanism of male infertility.
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1 INTRODUCTION

Anestimated8%–15%of couples are involuntarily childlessworldwide,

with male factor infertility accounting for 40%–50% of the cases.1–3

Although the causes of the disorder are often suspected in reduced

sperm quantity and/or quality, the proteome of the spermatozoon

has not yet been conclusively elucidated. Instead of giving the full

picture, the available data appear to mainly reflect the rising reso-

lution of the analytical pipelines employed. For example, while the

liquid chromatography–mass spectrometry (MS) study by Baker et al.4

detected 1056 gene products in human spermatozoa, the pipeline

employed by Wang et al.5 enabled the determination of 4675 sperm

proteins. Larger numbers of 6198 and 6238 human sperm proteins

were gathered in subsequent reviews based on proteomics studies.6,7

The recent compilation by Castillo et al.8 even contained 6871 human

sperm proteins. However, such a scale has not been confirmed in single

MS analysis so far.

As with the sperm proteome, the molecular causes of male fer-

tility impairment are only partially understood. Previous studies

in this area were based on transcript abundances in testes and

spermatozoa9,10,11 or consulted a methodologically broad range of

published data.12,13 In addition, mutations, copy-number variations,

and polymorphisms in the genome have been checked for associations

with infertility.14,15 Also, epigenetic deviations may be associated with

fertility impairment16; however, this is still debated.17 Others derived

fertility relevance fromparameters such as sequence conservation and

phenotypes of murine knockouts,18,19 and quantitative proteomics of

spermatozoa is increasingly being incorporated.20–22 Yet, the diversity

of approaches has notmade it easier to define a standard panel ofmale

fertility markers for routine diagnostics. Rather, the corner stone of

male fertility diagnostics remains to be the recording of spermiogram

parameters.7,23

For obvious reasons, the absence of any spermatozoa in ejaculates

or azoospermia causes infertility, whereas the presence of a certain

amount of fully functional spermatozoa (normozoospermia) suggests

fertility. But the question is as to why a reduction in sperm count can

be critical to fertilization success, if there are still many motile and

morphologically normal spermatozoa.24 In fact, the criteria of oligo-

zoospermia (O) (i.e., less than 39million spermatozoa per ejaculate and

less than 16 million spermatozoa per milliliter) still allow for the thou-

sands of seemingly unimpaired spermatozoa per ejaculate. The same

may be asked for asthenozoospermia, that is, a decrease in the pro-

portion of progressively moving spermatozoa to less than 30%, and

teratozoospermia, that is, a decline in the percentage of spermato-

zoa with normal morphology to less than 4%.3,25,26 This is contrasted

by only 100–1000 functional sperm cells, which assumedly reach the

egg cell in natural fertilization.27 A possible explanation is that sper-

matozoa that appear to be fully functional are actually dysfunctional.

Consistent with this, poorer semen parameters are accompanied by

reduced success rates of assisted reproduction techniques (ARTs)

despite the use of spermatozoa considered promising.24 The cause of

such a dysfunctionwould then have to be sought in themolecular field,

which would blur the boundaries to idiopathic infertility or infertility

without phenotypic evidence.1,12,23,28 In fact, about 40% of the infer-

tile men are idiopathic infertile,14 which underlines the high need for

progress in this field of diagnostics.

The present study aims at an in-depth reconstruction of the human

sperm proteome and an elucidation of the molecular causes of male

fertility losses. We were especially interested as to why fecundity is

reduced in O and syndromes including it, and which proteins might

be useful biomarkers for assessing the fertility status of respective

men. To address these points, we carried out MS analysis of sperma-

tozoa in an unprecedented sample of 76 men. Donors were either

fertile andpresentedwith normozoospermia or infertile anddiagnosed

with O, oligoasthenozoospermia (OA), or oligoasthenoteratozoosper-

mia (OAT). In contrast to previous proteomic studies based on pools

of sperm samples,21,28–30 spermatozoa of single subjects were ana-

lyzed separately. Fromthedifferentially abundantproteins,wedistilled

out those, which should have elevated diagnostic potential. Finally, we

demonstrate that non-overlapping sets of (candidate) markers of male

fertility together establish themale infertility network.

2 MATERIALS AND METHODS

2.1 Study cohorts

Permission for sample collection was granted by the Ethics Commit-

tee of the Medical Faculty at the Martin Luther University Halle/Saale

(approval number 218/14.04.10/2; date of decision: April 19, 2010;

date of approved amendment: March 14, 2013). All participants were

recruited from the fertility outpatient care of the University Hospital

Halle (Saale) and gave written informed consent. Ejaculates were pro-

videdby76men (Table S1). Spermiogramparameterswere re-assessed

according to the updated version of the World Health Organiza-

tion (WHO) laboratory manual for the examination and processing of
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human semen (6th edition, 2021),26 with no changes in the diagnoses

of the study participants. For clarity reasons, we use descriptive terms

for abnormal spermiograms (O, asthenozoospermia, teratozoospermia,

and mixed forms) as proposed in previous WHO laboratory manu-

als (5th edition and earlier). Nonetheless, the authors acknowledge

the fact that the cut-off values used for defining these terms do

not necessarily determine the fertility status of an individual male.

Thirty-eight infertile men (mean and median age = 32 years, each)

presented with O (21), OA (7), or OAT (10), and were unintention-

ally childless, that is, their partners did not conceive despite regular

unprotected intercourse within at least 12 months. In the 38 infer-

tile patients, median sperm count per ejaculate was 36.5 mio (mean =

41.4 mio). The control cohort included 38 men (mean and median age

= 30 years, each) presenting with normozoospermia, who already had

fathered offspring without medical assistance. Median sperm count

of the corresponding ejaculates was 155.0 mio (mean = 205.7 mio)

(Table S1).

2.2 Sample preparation for MS

Upon swim-up, spermatozoa were separated from seminal plasma by

centrifugation for 5 min at 1000 g. After discarding the plasma, cells

were resuspended twice in phosphate-buffered saline and re-pelleted

by centrifugation at 2000 g for 5 min, each time succeeded by discard

of the supernatant. Washed spermatozoa were shock-frosted in liquid

nitrogen and stored at –80◦C. Following thawing on ice, samples

were boiled in 1× lithium dodecyl sulfate buffer and separated by

polyacrylamide gel electrophoresis on a 4%–12% gradient NOVEX gel

(Thermo Scientific) for 10min at 180V. The gel was fixated and stained

with Coomassie blue for 30 min and subsequently washed with water

overnight. In-gel digestion was performed as previously described.31

In short, each sample was cut from the gel, minced, and transferred

to a reaction tube. The gel pieces were destained with 50% EtOH/25

mM ammonium bicarbonate (ABC) buffer (pH 8.0). After dehydration

of the gel pieces with pure acetonitrile (ACN), samples were dried for

5 min in a concentrator (Eppendorf) and afterward incubated with

reduction buffer (10 mM dithiothreitol in 50 mM ABC) for 30 min at

56◦C. The reduction buffer was removed, substituted with alkylation

buffer (50mM iodoacetamide in 50mMABC), and then subjected to 30

min incubation at room temperature in the dark. Gel pieces were com-

pletely dehydratedwith pureACNand covered in trypsin solution (1 µg

trypsin in 50 mM ABC per sample). Proteins were digested overnight

at 37◦C. Tryptic peptides were extracted twice by incubation with

extraction buffer (3% trifluoroacetic acid and 30%ACN) for 15min and

afterward with pure ACN. After concentration of the elution fraction

to about 10%–20% in a concentrator (Eppendorf), the peptides were

passed through a StageTip.32 StageTips were prepared using two

layers of C18 material (Empore), which was activated with methanol,

washed with solution B (80% ACN, 0.1% formic acid), and equilibrated

once with solution A (50 mM ABC, 0.1% formic acid). Extracted

peptides were loaded on the StageTips and washed with solution A.

Peptides were eluted with 30 µL solution B, ACN was removed by use

of a concentrator (Eppendorf), and samples were diluted with 6 µL

solution A.

2.3 MS measurement

The samples were injected via an autosampler into an uHPLC (EASY-

nLC 1000, Thermo Scientific). Peptides were loaded on a 25 cm

capillary (75 µm inner diameter; New Objective) packed in-house with

Reprosil C18-AQ 1.9 µm resin (Dr. Maisch) for reverse-phase chro-

matography. The EASY-nLC 1000 HPLC system was directly mounted

to a Q Exactive Plus mass spectrometer (Thermo Scientific). Peptides

were eluted from the column with a 208 min optimized gradient from

2% to 40% ACN with 0.1% formic acid at a flow rate of 225 nL/min

with a column oven set-up operating at 40◦C (Sonation). The heated

capillary temperature was set to 250◦C. Spray voltage ranged from

2.2 to 2.4 kV. The mass spectrometer was operated in data-dependent

acquisition mode with one MS full scan and up to 10 triggered MS/MS

scans using higher energy collisional dissociation. MS full scans were

obtained in the orbitrap at 70,000 resolution with a maximal injection

timeof 20ms,whileMS/MSscan resolutionwas set to17,500andmax-

imal injection for 120ms.Unassigned and charge state 1were excluded

from MS/MS selection and peptide match was preferred. Detailed

information can be obtained from the measurement files available on

the public ProteomeXchange repository (PXD037531).

2.4 MS data analysis

Raw data analysis was performed with MaxQuant v1.5.2.833 with

standard settings except label-free quantification (LFQ) and match

between runs were activated. Time windows for matching and align-

ing were 0.7 and 20 min, respectively. MaxQuant analysis including

detailed settings has been deposited at ProteomeXchange under

the above accession number. After MaxQuant, potential contami-

nants, reverse database hits and proteins only identified by site

were removed. Further, we filtered for a minimum of two identified

peptides (minimum 1 unique). For quantitative proteome analyses,

lacking values were imputed assuming a beta distribution within 0.2

and 2.5 percentiles of measured LFQ intensities per sample. Down-

stream comparisons of protein abundances focused on spermatozoa

of infertile men diagnosed with reduced sperm count and fertile men

with normal semen parameters. Differentially abundant sperm pro-

teins were grouped according to infertility diagnoses, thus generating

O list (O vs. normozoospermia), OA list (OA vs. normozoospermia),

and OAT list (OAT vs. normozoospermia). For being contained in a

list, a protein needed to be detected in at least two samples of a

diagnosis, and abundances had to vary by a factor of three at min-

imum (false discovery rate [FDR] corrected p-value ≤ 0.05, Welch

two sample t-test). This corresponds to a minimum difference of

log2-transformed values of 1.585. We additionally highlight sperm

proteins showing at least eightfold differential abundances, corre-

sponding to a minimum difference of log2-transformed values of

3.000.
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2.5 Further analyses

We ran ShinyGO v0.7634 on ENSEMBL stable IDs of the genes encod-

ing MS-determined sperm proteins for deriving the lengths of coding

sequences and transcripts. We also adopted from the ShinyGO out-

put the grouping of genes according to higher level biological process

gene ontologies (GOs). Moreover, we matched ENSEMBL stable gene

IDs from presentMS analysis with the genes to the sperm proteins col-

lected by Castillo et al.8 For the latter compilation, UniProt/SwissProt

IDs had been converted into ENSEMBL IDs using BioMart (Ensembl

Genes 106, Human genes, GRCh38.p13).

Overlaps between above O-associated lists of genes/proteins

were rendered in a Venn diagram (https://bioinformatics.psb.ugent.be/

webtools/Venn/). We tested for the overrepresentation of biological

process GOs in O, OA, and OAT lists using ClueGO v2.5.935 within

Cytoscape v3.9.1.36 In addition, we matched the list for the most com-

prehensive infertility diagnosis, that is, the OAT list, with entries in

NCBI’s Online Mendelian Inheritance in Men (OMIM) database (state

February 1, 2022) referencing male fertility impairment. Correspond-

ing OMIM entries were related to O and non-obstructive azoosper-

mia using all possible forms of spermatogenetic failure (SPGF) as

search items: SPGF1, SPGF2, . . . , SPGF65, SPGFX1, SPGFX2, SPGFX3,

SPGFY1, and SPGFY2.We further collectedOMIMentries on astheno-

zoospermia, teratozoospermia, and male infertility. We screened the

WWW for publications using the combination of symbol and infertil*

as initial search items (e.g., APAF1 infertil*). We additionally queried

The Human Protein Atlas v22 (http://proteinatlas.org/; accessed on

January 10, 2023) for the expressional landscape of the genes behind

differentially abundant sperm proteins.

Subsequently, we assessed if the candidate markers presented

herein and additional ones emerging from external sources might

be connected at a higher level. For this purpose, we reconstructed

three protein–protein interaction (PPI) networks of growing com-

plexity. Using standard settings in STRING v11.5,37 the first network

was confined to the biomarkers as inferred from present empirical

data. The second network additionally considered candidate markers

as emerging from a previous computational approach. Corresponding

genes/proteins were calculated to have elevated fertility probability

(≥0.35) given enhanced sequence conservation, heightened testicular

transcript abundance, and increased connectivity in a body-wide PPI

network. Furthermore, knockouts of theirmurine orthologs associated

with male fertility impairment.19 We extracted the aforementioned

proteins from Dataset M at the PreFer Genes website (https://prefer-

genes.uni-mainz.de/). A third network was reconstructed after further

expansion of the sample by all proteins with previous mention in the

context ofmale infertility inOMIMdatabase (see above). Thenetworks

were compared by their overall coherence and average node degree,

that is, themeannumberofPPIs per protein or node. Eachnetworkwas

tested for PPI enrichment.

Raw p-values from chi-square tests, GO enrichment tests, and PPI

enrichment tests were transformed into FDRs.38 Further considera-

tion of test results required an FDR of 0.001 or lower.

3 RESULTS

3.1 Fine-scale reconstruction of the human sperm
proteome

Present MS analysis identified 5778 protein groups (q ≤ 0.05, each)

across sperm samples provided by 76 men and purified by swim-

up (Table S1). These contained 33,191 gene products to which 6981

ENSEMBL stable gene IDswere available.Of the latter, 4545had coun-

terparts in the compilation of sperm proteins by Castillo et al.8 Thus,

65%of the spermproteins forwhichwe found evidence in human sper-

matozoa can be regarded as reproduced (Table S2). The 6939 genes

mapped by ShinyGO significantly differed from the rest in the human

genome by having shorter coding sequences (FDR = 6E-15) and tran-

scripts (FDR = 1.7E-20; t-test, each) (Figure 1). A closer look for the

50 biological process GOs occurringwith highest frequencies corrobo-

rated the importance of spermmotility for fertilization. Processes such

as cell proliferation and reproduction, adhesion, and responsiveness

to stimuli were also represented, as were involvements in develop-

mental processes and the immune system. The latter included genes

coding for spermatogenesis-associated protein 20 (SPATA20), zona

pellucida-binding protein 1 (ZPBP), and sperm-associated antigen 4

(SPAG4) (Table S3). Additional higher ranking terms were of more gen-

eral nature such as “catabolic process” (Figure 2). The GOs of the

remaining 50 smaller protein groups partially confirmed roles in male

gametogenesis (meiotic cell cycle process, spermatid nucleus differen-

tiation) and fertilization (acrosome reaction), while others referred to

additional entanglements (Table S3).

3.2 Exactness of MS analysis

For being considered, a protein had to be determined in at least one

unique and one razor peptide across the 76 samples analyzed. How-

ever, much higher values were achieved in the validated and novel

candidate markers detailed below (Tables 1–4 and S2). In case of the

validated marker candidates, we had 4–246 (mean = 51, median =

32) determinations of unique and razor peptides. These were mostly

unique peptides, as illustrated by corresponding mean and median

numbers of 47 and29, respectively. In the novel candidatemarkers, the

span of unique and razor peptides ranged from 7 to 177 (mean = 33,

median= 21). Again, these were mostly specific to a particular protein

group, as indicated bymean (32) andmedian (21) values of unique pep-

tides. We consider these counts as a confirmation of the reliability of

the detections.

3.3 Quantitative MS analysis

The pipeline applied unveiled numerous protein groups with at least

threefold differential, mostly lowered, abundances (FDR ≤ 0.05, each;

t-test) in spermatozoa of infertile men diagnosed with O, OA, andOAT,
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TABLE 1 Validated candidatemarkers: sperm proteins exhibiting differential abundances that have previousmention in the context of male
fertility impairment.

Symbol ID OAT O OA Functional annotation (UniProt) THPA

ACTL9* Q8TC94 0.173 ↓ ↓ Acrosome biogenesis and perinuclear theca formation I

CCIN* Q13939 0.256 ↓ ↓ Cytoskeletal element in spermiogenesis I

CFAP47* Q6ZTR5 0.128 ↓ ↓ Flagellar formation and spermmotility III

CFAP65* Q6ZU64 0.236 ↓ ↓ Flagellar formation and spermmotility III

WDR66* Q8TBY9 0.254 ↓ ↓ Spermatozoamotility III

DNAH1* Q9P2D7 0.193 ↓ ↓ ATPase activity; sperm flagellummotility; formation of the inner dynein arms

and biogenesis of the axoneme

III

SPEM1* Q5F289 0.261 ↓ ↓ Cytoplasm removal during spermatogenesis I

ACTL7A* Q9Y615 0.238 ↓ Acrosome biogenesis I

MNS1* Q9C512 0.133 ↓ Control of meiotic division and germ cell differentiation (. . . ) duringmeiosis;

sperm flagellum assembly

II

PLCZ1* Q86YW0 0.182 ↓ Initiates embryonic development I

PMFBP1* Q8TBY8 0.270 ↓ Spermatogenesis (. . . ); maintenance of sperm head and tail integrity II

QRICH2* Q9H0J4 0.204 ↓ Scaffold protein (. . . ); maintenance of sperm head and tail integrity II

SPAG17* Q6Q759 0.184 ↓ Component of the central pair apparatus of axonemes; function and structure of

motile cilia; spermatogenesis; formation of sperm head and flagellum

III

TCTE1* Q5JU00 0.199 ↓ Nexin–dynein regulatory complex component; key regulator of ciliary/flagellar

motility; microtubule sliding in motile axonemes; spermmotility

II

CFAP43* Q8NDM7 0.208 ↓ Sperm flagellum axoneme organization and function III

AK7* Q96M32 0.258 Ciliary structure and function III

APAF1* O14727 3.578 Apoptosis trigger IV

CATIP* Q7Z7H3 0.293 Ciliogenesis IV

CATSPER2* Q96P56 0.186 Voltage-gated channel essential for sperm hyperactivation, acrosome reaction,

and chemotaxis toward the oocyte

III

CFAP44* Q96MT7 0.224 Sperm flagellum axoneme organization and function III

CFAP52* Q8N1V2 0.283 Ciliary and flagellar beating III

CFAP58* Q5T655 0.291 Assembly and organization of the sperm flagellar axoneme III

CFAP69* A5D8W1 0.215 Sperm flagellum assembly and stability IV

CFAP70* Q5T0N1 0.232 Axoneme-binding protein; regulation of ciliarymotility and cilium length III

DNAH10* Q8IVF4 0.268 ATPase activity; spermmotility; sperm flagellar assembly III

DNAH17* Q9UFH2 0.300 ATPase activity; outer dynein arms (. . . ) in the sperm flagellum; spermmotility;

sperm flagellar assembly and beating

III

FSIP2* Q5CZC0 0.241 Spermatogenesis II

SMCP* P49901 0.167 Spermmotility I

SPEF2* Q9C093 0.215 Development of sperm axoneme andmanchette; sperm headmorphology;

adapter for dynein-mediated protein transport in spermatogenesis

III

SUN5* Q8TC36 0.258 Anchoring sperm head to the tail; attachment of the coupling apparatus to the

sperm nuclear envelope

I

TTC29* Q8NA56 0.252 Axonemal and/or peri-axonemal assembly and structure; sperm flagellum

assembly and beating

II

Note: Listed are sperm proteins with previous mention in the context of male fertility impairment (NCBI OnlineMendelian Inheritance in Men [OMIM]) that

showed at least threefold deviating abundances in infertile men diagnosed with oligoasthenoteratozoospermia (OAT) (false discovery rate [FDR] ≤ 0.05, t-
test). Arrows indicate the direction of abundance changes in infertile men diagnosed with oligozoospermia (O) or oligoasthenozoospermia (OA). Changes

refer to abundances in normozoospermic spermatozoa of fertile men. WDR66 corresponds to CFAP251. Asterisks highlight proteins included in the largest

connected component shown in Figure 6. Categories on the left refer to transcript abundances reported in The Human Protein Atlas v22 (THPA): male

germline-specific (I), male germline-biased (II), elevated inmale germline and somatic cell types, which unlikely (III) or possibly were contained in the samples

(IV).
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TABLE 2 Validated candidatemarkers: external evidence supportingmale fertility relevance.

Symbol Evidence Panel

ACTL9 Variants: fertilization failure, male infertility39 Yes

CCIN Mutations: teratozoospermia, male infertility40

Sperm head-shaping factor essential for male fertility41

CFAP47 Variants: asthenoteratozoospermia, male infertility42 Yes

CFAP65 Mutation:MMAF, male infertility43

Mutations:MMAF, male infertility44

WDR66

CFAP251

Deletion:MMAF, male infertility45

Loss: immotile spermatozoa, lackingmitochondria, male infertility46
Yes

DNAH1 Mutations:MMAF47

SPEM1 Predictive value for sperm retrieval in azoospermia48

Lack inmice: aberrant cytoplasm rem., sperm deformation, male infertility49

ACTL7A Disruption: acrosomal defects, early embryonic arrest50

Variants: total fertilization failure, male infertility51

MNS1 Mutations: laterality defects, likely male infertility52

Variant: laterality defects, male infertility53

PLCZ1 Mutation: infertility, oocyte activation deficiency54 Yes

PMFBP1 Mutations: ASS55

Mutations: ASS56,57
Yes

QRICH2 Mutations:MMAF58

Mutations:MMAF, male infertility59
Yes

SPAG17 Mutation: asthenozoospermia60

TCTE1 Variants: asthenozoospermia, male infertility61

CFAP43 Mutations:MMAF, male infertility62

Mutations:MMAF63
Yes

AK7 Mutation:MMAF, male infertility64 Yes

APAF1 Raised testicular expression: male subfertility65

CATIP Mutation: oligoasthenoteratozoospermia66 Yes

CATSPER2 Non-syndromicmale infertility67

Copy-number variant, reduced expression: idiopathic male infertility68

CFAP44 Mutations:MMAF, male infertility62

Reduced expression: potential effect on spermmotility andmorphology69

CFAP52 Exon 2 deletion: male infertility70,71

CFAP58 Variants: asthenozoospermia, flagellar axoneme+mitoch. sheath defects72 Yes

CFAP69 Absence:MMAF, male infertility73 Yes

CFAP70 Mutations: asthenoteratozoospermia, male infertility74 Yes

DNAH10 Mutations: asthenoteratozoospermia, male infertility75

Variants: asthenoteratozoospermia, male infertility76
Yes

DNAH17 Mutations: asthenozoospermia, male infertility77

Variant: asthenozoospermia, flagella destabilization78

Intronic deletion: perturbed splicing, defect sperm flagella, male infertility79

Yes

FSIP2 Mutations:MMAF80,81 Yes

SMCP Diff. expression in non-obstructive azoospermia versus oligoasthenozoospermia82

Deletion inmice: asthenozoospermia83

SPEF2 Mutations: defects between flagella and cilia bridge, link ofMMAF and PCD84

Inmice: germ cell differentiation85
Yes

SUN5 Mutations: ASS86,87 Yes

TTC29 Mutations: asthenozoospermia, male infertility88 Yes

Note: Evidence refers tomen if not stated otherwise. “Yes” indicates inclusion in amale fertility panel of 81 genes (ID192.04).

Abbreviations: ASS, acephalic spermatozoa syndrome; Diff., differential; mitoch., mitochondrial; MMAF, multiplemorphological abnormalities of the flagella;

PCD, primary ciliary dyskinesia; rem., removal.
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1424 GREITHER ET AL.

TABLE 3 Novel candidatemarkers: sperm proteins with the greatest decline in abundance.

Symbol UniProt ID OAT O OA Functional annotation THPA

C2orf16 Q68DN1 0.032 ↓ ↓ High-abundance sperm protein in normozoospermic samples that

achieved pregnancy20
II

CYLC1* P35663 0.056 ↓ ↓ Architectural role during spermatogenesis; spermatid differentiation

(UniProt)

I

SPATA31E1* Q6ZUB1 0.061 ↓ ↓ Spermatogenesis (UniProt) II

SPATA31D1 Q6ZQQ2 0.090 ↓ ↓ Spermatogenesis (UniProt) II

SPATA48* A4D263 0.099 ↓ ↓ Essential for normal spermatogenesis (UniProt) II

EFHB Q8N7U6 0.118 ↓ ↓ Cilia- and flagella-associated protein 21 (HGNC) II

FAM161A* Q3B820 0.124 ↓ ↓ Ciliogenesis (UniProt) III

CYLC2* Q14093 0.086 ↓ Architectural role during spermatogenesis; spermatid differentiation

(UniProt)

I

CCDC173 Q0VFZ6 0.087 ↓ Cilia- and flagella-associated protein 210 (UniProt) II

SPEM3 A0A1B0GUW6 0.092 ↓ Abundance varies with fertility differences in boars89 I

CFAP126* Q5VTH2 0.098 ↓ Cilium basal body docking and positioning (UniProt) II

FAM71E2 Q8N5Q1 0.105 ↓ Epigenetic transcriptional repression (UniProt) II

C1orf194* Q5T5A4 0.105 ↓ Downregulated abundance in spermatozoa of patients with testicular

cancer seminoma90
II

C1orf158* Q8N1D5 0.110 ↓ Upregulated testicular expression in non-obstructive azoospermia91 II

DCDC2C A8MYV0 0.120 ↓ Microtubule organization; sperm flagellum (QuickGO) II

EQTN* Q9NQ60 0.123 ↓ Acrosomal membrane-anchored protein involved in (. . . ) fertilization

and in acrosome biogenesis (UniProt)

I

SYPL1 Q16563 0.107 Downregulated testicular expression in non-obstructive azoospermia92 IV

FAM205C A6NFA0 0.118 Abundance varies with fertility differences in boars89 II

Note: Listed are sperm proteinswithout previous reference tomale fertility impairment (NCBIOnlineMendelian Inheritance inMen [OMIM]) that showed at

least eightfold decreased abundances in oligoasthenoteratozoospermia (OAT) (false discovery rate [FDR] ≤ 0.05, t-test). Arrows indicate the direction abun-
dance changes in spermatozoa of infertile men diagnosed with oligozoospermia (O) and oligoasthenozoospermia (OA). Changes refer to protein abundances

in normozoospermic sperm proteins of fertile men. Asterisks highlight proteins included in the largest connected component shown in Figure 6. Categories

on the left refer to transcript abundances reported in The Human Protein Atlas v22 (THPA): male germline-specific (I), male germline-biased (II), elevated in

male germline and somatic cell types, which unlikely (III) or possibly were contained in the samples (IV).

relative tonormozoospermic spermatozoaof normal-fertilemen (Table

S4). Thus, 133 of 153 (87%) differentially abundant protein groups

exhibiteddownregulation inOspermatozoa (O list).With154, the total

number of protein groups varying in abundance was almost the same

in the OA versus normozoospermia comparison (OA list), whereby

most of these showed declines in abundance under infertility once

more (N = 110; 71%). The OAT versus normozoospermia compari-

son (OAT list) revealed the highest number of differentially abundant

protein groups (N = 368), with lowered levels predominating in the

infertility cohort again (N = 315; 86%) (Table S4). Fifty-five protein

groups were shared among the three O-associated lists. In addition,

there was an increasing number of unique protein groups with grow-

ing complexity of the diagnosis, and thus from the O via the OA to

the OAT list (Figure 3). Also, the number of overrepresented GOs

(FDR ≤ 0.001, each) was much higher in the OAT list (N = 72) than

in O (N = 26) and OA (N = 20) lists. Nevertheless, cilium-dependent

cell motility yielded the largest fraction of GOs in all three infertil-

ity diagnoses. The three lists also had in common that 75% of the

overrepresentations pertained to the structure and function of cilia or

the sperm flagellum. Additional overrepresentations referred to male

gamete generation and fertilization (O, OA, and OAT lists), cAMP sig-

naling (OA and OAT lists), and sodium–potassium exchange (OAT list)

(Figure 4).

Twelve percent of the altogether 198 genes with OMIM entries

relating tomale fertility impairment had counterparts in themost com-

prehensive of our three lists, the OAT list (Table S5). Broken down

to individual aberrations from normozoospermia, we observed the

following pattern: the gene list compiled from OMIM entries on tera-

tozoospermia matched to 10% (3 of 29) with genes or proteins in our

OAT list. In OMIM lists for asthenozoospermia and teratozoospermia,

17% (12 of 70) and 35% of the genes (23 of 66) had matches in our

OAT list. Thus, the proportion of matching genes in all three OMIM

lists considerably exceeded the random expectation of <1%, as given

by the total number of genes in single OMIM lists (N = 23–70) divided

by 20,471 protein-coding human genes according to ENSEMBL Genes

106: GRCh38.p13.
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GREITHER ET AL. 1425

TABLE 4 Novel candidatemarkers: external evidence supportingmale fertility relevance.

Symbol Samples Evidence Direction

C2orf16 Spermatozoa: 13 teratozoospermia versus 8 normozoospermia Microarray ↓93

178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

CYLC1 Spermatozoa: 13 teratozoospermia versus 8 normozoospermia Microarray ↓93

178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

SPATA31E1 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

SPATA31D1 Spermatozoa: 5 less versus 5more fertilization-competent§ PCR ↓95

SPATA48 Testis: 6 azoospermia versus 6 normal fertile PCR ↓96

EFHB Spermatozoa: 13 teratozoospermia versus 8 normozoospermia Microarray ↓93

178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: pre-meiotic arrest versus three other diagnoses Microarray ↓94

FAM161A 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

CYLC2 Spermatozoa: 13 teratozoospermia versus 8 normozoospermia Microarray ↓93

178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

CCDC173 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

SPEM3 Spermatozoa: 4 less versus 4more fertilization-competent+ Mass

spectrometry

↓89

CFAP126 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

FAM71E2 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

C1orf194 Spermatozoa: 15 testicular cancer seminoma versus 15 control Mass

spectrometry

↓90

Spermatozoa: 20 asthenozoospermia versus 20 normozoospermia Microarray ↓9

C1orf158 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

Spermatozoa: 13 teratozoospermia versus 8 normozoospermia Microarray ↓93

DCDC2C Spermatozoa: 1 low-fertile male versus 1 high-fertile male+ Microarray ↓97

EQTN 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

SYPL1 Spermatozoa: 13 teratozoospermia versus 8 normozoospermia Microarray ↓93

178 x testis: pre-meiotic arrest versus three other diagnoses Microarray ↓94

FAM205C 178 x testis: post-meiotic arrest versus three other diagnoses Microarray ↓94

178 x testis: meiotic arrest versus three other diagnoses Microarray ↓94

Note: Comparisonsmostly refer tomen and exceptionally to domestic pig (+) and horse (§).

Abbreviation: PCR, polymerase chain reaction.

3.4 Candidate markers of male fertility

Thirty-one sperm proteins in our OAT list had entries in the OMIM

database suggestive of an involvement in male fertility impairment

(Table 1). Their GOs related to sperm flagellum assembly, structure and

beating, as well as male gametogenesis. We refer to these proteins as

to validated candidate markers in the following. Out of these, apopto-

sis trigger APAF1 was the only one showing higher abundance in OAT

than normozoospermic spermatozoa (Table 1). The remaining proteins

with previous mention relating to male fertility impairment exhibited
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1426 GREITHER ET AL.

F IGURE 1 Distributions of coding sequence length (A) and
transcript length (B) in human genes encoding sperm proteins, relative
to the genome. Shifts to the left indicate overall lower values in 6939
sperm protein-coding genesmapped by ShinyGO v0.76 (Table S2).
Chi-square tests contrast patterns in sperm protein-coding genes and
all other genes were highly significant (false discovery rate [FDR]
<0.001, each).

reduced levels under OAT. Seven of these displayed decreased abun-

dances across all three O-associated diagnoses: actin-like protein 9

(ACTL9), calicin (CCIN), CFAP47, CFAP65, CFAP251 (WDR66), dynein

axonemal heavy chain 1 (DNAH1), and sperm maturation protein 1

(SPEM1) (Table 1). In-depth search for previous evidence (Table 2)

revealed that most validated candidate markers were previously asso-

ciated with malformed and dysfunctional sperm flagella and impaired

sperm motility. Corresponding terms included multiple morphological

abnormalities of the flagella (MMAF) and asthenozoospermia (N= 20).

This was followed by associations with morphological defects such as

acephalic spermatozoa syndrome (ASS), acrosomal defects, and lacking

mitochondria (N = 10). The least connections were found to reduced

sperm count (N= 3). Notably, 18 of the validated candidate markers of

male fertility were covered by an 81 gene panel and hence are already

in use inmale fertility diagnostics (Table 2).

Lack of OMIM entries relating to male fertility impairment let us

refer to a group of 18 sperm proteins with extremely deviating abun-

dances under infertility as to novel candidatemarkers. These exhibited

at least eightfold reduced abundances in the OAT–normozoospermia

comparison (Table 3). According to the data available, the novel can-

didate markers engage in spermiogenesis, including ciliogenesis and

acrosome biogenesis. For all novel candidate markers, we found pre-

vious indications of downregulated expression under reduced male

fertility. For example, no SPATA48 transcript was determined in testic-

ular samples of six azoospermic men, while corresponding transcripts

were highly abundant in healthy subjects (Table 4). Furthermore, seven

proteins had significantly reduced abundances in O and OA sperma-

tozoa, and, hence, might elucidate the deeper causes of male fertility

impairment whenever reduced sperm count is suspected to play a role.

Therewere threeprotein groups, each containing twoproteins,with

decreased abundances in spermatozoa under male infertility (Table 5).

Half of these proteins had OMIM entries relating to male fertility.

Until clarification whether one or both group members occur at low-

ered abundances in spermatozoa of infertile men, the corresponding

proteins lend themselves less readily as candidatemarkers.

Downstream, we checked for potential somatic expression of the

genes to the proteins in Tables 1, 3, and 5. According to version 22 of

The Human Protein Atlas, transcripts of most of the genes with val-

idated male fertility relevance (Table 1) were specific to (category I:

seven genes) or much more frequent in male germline (category II:

six genes), or transcript abundance was elevated in male germline and

somatic cell types, which will not have contaminated our samples (cat-

egory III: 15 genes). The latter was exemplified in respiratory ciliated

and endometrial ciliated cells (Figures 5 and S1). Genes of only few

validated candidate markers showed the expected expression in male

germline and additionally displayed elevated transcript abundances in

somatic cell types that could have been contained in the samples ana-

lyzed (category IV: three genes). Prevalence of categories I–III was

reproduced in genes encoding novel candidate markers (Table 3 and

Figure S2). Most of the coding genes displayed exclusive (category I:

four genes) or skewed expression in male germline (category II: 12

genes), and one gene additionally exhibited raised transcript amounts

in somatic cells, which unlikely were contained in the samples (cate-

gory III: one gene). The transcriptional profile of only one of the novel

candidate markers allowed for the possibility that somatic cell types

could have been included in the sample in addition to the targeted

spermatozoa (category IV). The genes underlying protein groups even

spread without exception across categories I–III (Table 5 and Figure

S3). Thus, for only few of the proteins contamination with somatic

cells might have contributed to the finding of differential abundance.

But also, these few ones had OMIM entries indicating male fertility

relevance (Table 1: APAF1, CATIP, CFAP69) or were already found

to be downregulated in spermatozoa under male infertility (Table 3:

SYPL1). We therefore assume that contaminations of our sperm

samples with somatic cells should not have compromised present

results.
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GREITHER ET AL. 1427

F IGURE 2 Representation of higher level biological process gene ontologies (GOs) in the human sperm proteome. Shown are 50GOswith
highest frequencies of occurrence. Included are 6939 sperm protein-coding genesmapped by ShinyGO v0.76. See Table S2 for the full terms of two
GOs abbreviated in the above chart. The same table includes the remaining 50GOs, which occur with lower frequency, and the genes subsumed
under each GO.

TABLE 5 Protein groups exhibiting differential abundances.

Symbol ID OAT O OA Functional annotation (UniProt) THPA

SPATA31D3,

SPATA31D4*

P0C874,

Q6ZUB0

0.091 ↓ ↓ Spermatogenesis I

I

CFAP45*,

SNHG28

Q9UL16,

P0DPA3

0.101 Dynein ATPase-dependent ciliary and flagellar beating III

No entry

DNAH8*,

DNAH14

Q96JB1,

A0A804HLD3

0.318 ATPase activity; outer dynein arms (. . . ) sperm flagellum; sperm

flagellar assembly; spermmotility

II

III

Note: The list contains protein groups showing at least three- or eightfold differential abundances in spermatozoa of infertile men diagnosed with oligoas-

thenoteratozoospermia (OAT) (false discovery rate [FDR]≤ 0.05, t-test). Arrows indicate the direction of abundance changes in spermatozoa of infertilemen

diagnosedwith oligozoospermia (O) and oligoasthenozoospermia (OA). Changes refer to abundances in normozoospermic spermatozoa of fertile men. Com-

mas separate members of single protein groups. Asterisks highlight proteins included in the largest connected component shown in Figure 6. Categories on

the left refer to transcript abundances reported in TheHuman Protein Atlas v22 (THPA): male germline-specific (I), male germline-biased (II), and elevated in

male germline and somatic cell types, which unlikely were contained in the samples (III).

TABLE 6 Network statistics.

Dataset source NNodes NEdges (Nexp) NNodes in LCC %Nodes in LCC Average nd EET (FDR)

Present study 50 75 (2) 33 66 3.00 <0.001

Present study+ FRP 91 208 (13) 75 82 4.57 <0.001

Present study+ FRP+OMIM 225 891 (132) 192 85 7.92 <0.001

Note: Networks were reconstructed from the proteins carved out in the present study (Tables 1, 3, 5), previous inference of fertility relevance probability

(FRP)19, and database screening (NCBI OnlineMendelian Inheritance inMen [OMIM]). Numbers of nodes refer to the proteins mapped by STRING v11.5.

Abbreviations: EET, edge enrichment test; FDR, false discovery rate; LCC, largest connected component;Nexp, expected number of edges; nd, node degree.

3.5 The male infertility network

For all protein samples considered, STRING gathered more PPIs than

to be expected for the proteins mapped (FDR < 0.001, each). In addi-

tion, all network parameters rose with growing number of proteins

included (Tables 6 and S6). Thus, STRING built a network of 50 nodes,

thereof 66% contained in the largest connected component (LCC), and

75 edges when run on the proteins in Tables 1, 3, and 5. Higher coher-

ence was reached upon addition of 41 candidate markers for which

we had previously calculated elevated fertility relevance probability.19

Especially, the number of disconnected nodes decreased, despite an

almost doubled number of proteins mapped (N = 91). With 208, this

network had a disproportionally larger number of edges. Correspond-

ingly, the number of PPIs per nodewas higher in the expanded network

(node degree = 4.57) than in the one restricted to the proteins high-

lighted in the present study (node degree= 3.00). Addition of all other

proteinswithOMIMentries suggestiveofmale fertility relevancemore

than doubled the number of nodes to 225. The total number of PPIs
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1428 GREITHER ET AL.

F IGURE 3 Numbers of shared and unique protein groups showing
differential abundances in mass spectrometry (MS) analyses of
oligozoospermic (O), oligoasthenozoospermic (OA), and
oligoasthenoteratozoospermic spermatozoa (OAT). For consideration,
a protein group had to show at least threefold differential abundance
under infertility compared to levels in normozoospermic spermatozoa
(false discovery rate [FDR]≤ 0.05, t-test). The number of unique
protein groups increasedwith growing complexity of the infertility
diagnosis, and thus fromO via OA toOAT. The Venn diagramwas
drawn using https://bioinformatics.psb.ugent.be/webtools/Venn/.

increased to 891, and the average node degree to 7.92 (Table 6). The

corresponding LCCwas comprised of 192 nodes (Figure 6), thereunder

half of the novel candidate markers and all of the validated candidate

markers. Also included in the LCCwere 37 out of the abovementioned

41 proteins with increased fertility relevance probability,19 and most

of the proteins with OMIM entries pointing to male fertility relevance.

We refer to this LCC as to themale infertility network.

4 DISCUSSION

4.1 The human sperm proteome and its coding
genes

According to present MS analysis, about 6981 genes participate in

the human sperm proteome (Tables S1 and S2). This represents a

considerable increase compared with previous estimates from MS

studies, which had determined 344421 and 471822 sperm proteins.

The current number also exceeds the 6871 sperm proteins as gath-

ered in a recent survey.8 Merging the compilation from the latter

study with present MS results, about 9300 genes might participate in

the human sperm proteome. This would be ca. 45% of the approxi-

mately 20,500 coding human genes according to genome annotation

ENSEMBL Gene 106: GRCh38.p13. The complexity of the sperm pro-

teome will be higher, considering diversification by alternative splicing

and post-translational modification.29,98,99

Overall shorter cDNAs, as observed in this study, could reflect

adaptation to better swimming performance. In line with such pos-

sibility, there is previous evidence that selection for increased motil-

F IGURE 4 Representation of biological process gene ontologies
(GOs) in sperm proteins exhibiting deviant abundances in
oligozoospermia (A), oligoasthenozoospermia (B), and
oligoasthenoteratozoospermia (C). Only highly significant results from
overrepresentation test were considered (false discovery rate [FDR]≤

0.001). Highest diversity of overrepresented GOswas found in the
most complex diagnosis, oligoasthenoteratozoospermia. GOs relating
to sperm flagellum andmotility made upmore than two-thirds of the
annotations in all diagnoses (red fill). Additional GOs overrepresented
were relatable tomale gametogenesis (turquoise), cAMPmetabolism
(light green), fertilization (olive green), and ion exchange (yellow). The
lists tested were compiled from protein groups showing at least
threefold differential abundances in spermatozoa of infertile menwith
respective diagnoses, relative to normozoospermic spermatozoa of
fertile men (FDR≤ 0.05, t-test). Analyses used ClueGO v2.5.9 within
Cytoscape v3.9.1.

ity might drive changes in sperm morphology.100,101 This might

involve remodeling of protamines which are well-known for evolv-

ing under sexual selection.102 In the present reconstruction of the

human sperm proteome, importance of sperm motility was reflected

in implications of numerous coding genes in cilium assembly and

function (Figure 2). GOs referring to cellular responsiveness and

adhesion were also conclusive considering the challenges sperma-

tozoa have to cope with.103,104 This might also be true for anno-

tations referencing the immune system. In fact, male fertility and

fertilization require evasion from the own immune response and

the one of the partner.99,105 Still, corresponding GO groups con-

tained genes encoding proteins with clear fertility relevance, such as
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GREITHER ET AL. 1429

F IGURE 5 Examples for categorization of genes according to their transcriptional topology. Transcription was considered either specific to
(category I), or strongly skewed towardmale germ cells (II) or elevated inmale germ cells in addition to somatic cell types which improbably (III) or
possibly were contained in the samples analyzed (IV). The plots shown (A–D) aremodified snapshots from TheHuman Protein Atlas v22. For
expressional topologies of all genes with proteins in Tables 1, 3, and 5, see Figures S1–S3.

SPATA20,11,106 ZPBP,107 and SPAG4108 (Table S3). Thus, reference

to the immune system should not be overestimated in our opinion.

Not least, present GO analyses (Figure 2) confirmed that spermato-

zoa contain proteins that are known primarily for their roles in male

gametogenesis.109

4.2 Molecular causes of male fertility impairment

Results of present overrepresentation tests revealed that the fewer

spermatozoa produced under O, OA, and OAT carry signatures of

disturbed gametogenesis. Functional annotations overrepresented in
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1430 GREITHER ET AL.

F IGURE 6 Male infertility network. Shown is the largest connected component from network reconstruction using standard settings in
STRING v11.5. Balls give proteins and lines interactions. Thickness of lines corresponds to confidence levels. The reconstruction is based on a list
merged from validated (blue dots) and novel candidatemarkers (red dots) according to the present study, proteins with elevated fertility relevance
probability (black dots) according to previous calculations,19 and further proteins with prior mention in themale fertility context (Online
Mendelian Inheritance inMen [OMIM]).White circles surrounding colored filling highlight members of protein groups as specified in Table 5. In its
current state, themale infertility network contains 192 proteins connected by 891 edges. For more network statistics, see Table 6.

differentially abundant proteins were further consistent with impair-

ment of sperm motility and fertilization competence in infertile men

(Figure 4). This includes proteins involved in cAMP signaling and

sodium–potassium exchange. The first is crucial for all steps of sperm

function in mammals,110 and importance for motility and fertilization

has been assigned to the latter.111Significance of proper spermmotility

for reproduction112 was additionally reflected in frequent references

to the structure and function of the cilium or flagellum (Figure 4). The

pattern was even more strongly reflected in the data on the individual

proteins and coding genes. Thus, for the validated and novel candi-

date markers, there was evidence of involvements in malformations

such as ASS and MMAF and, related to the latter, impaired motility

or asthenozoospermia (Tables 1–4). This suggests that reduced sperm

count could be less decisive in O and syndromes including it. The ulti-

mate reason might rather be that the fewer spermatozoa produced

are dysfunctional to an increased proportion. This seems particularly

noteworthy given that the samples analyzed hadundergone a swim-up,

meaning that the spermatozoa represented a selection of spermatozoa

with increased fertilization competence. Even thesewouldbe function-

ally compromised according to our results, to an increased proportion

at least. This could also explain why lowered spermiogram parameters

can reduce success rates in ARTs.113,114
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4.3 Toward a marker panel of male fertility
assessment

Quantitative MS analysis of the entire sperm proteomemight comple-

ment diagnostics of the male fertility status in the future. If it comes to

this point, special attentionmaybepaid to the abundancesof particular

sperm proteins. Estimating the fertility status from differential abun-

dances of spermproteins on scales as foundhere (N=153–368) should

then be more feasible than based on numbers in the range of 1000

or higher as previously reported.21,22 This was achieved by applying a

more conservative threshold of differential abundance in the present

study (at least 3×) than was the case in both referenced investigations

(at least 1.5×).21,22 Still, the definition of a further reduced number of

male fertilitymarkers remains to be aworthwhile goal for standardized

fertility testing.19,28,115 The proteins summarized in Tables 1 and3, and

to a lesser extent in Table 5,may contribute to this. It will be interesting

to validate in future independent studies the corresponding proteins

using alternativemethods such as western blot.

Diagnostic potential should especially have the 31 sperm proteins

with previous mention in the OMIM database hinting to roles in the

etiology ofmale infertility (Table 1). Increased importance of these vali-

dated candidatemarkers for reproduction is underscored by transcript

data. Indeed,we found expression ofmost of the coding genes to be tai-

lored to male germline (Figure S1). Numerous associations with male

fertility impairment lend additional support for their marker poten-

tial, as did their already-mentioned involvements in sperm flagellum

structure and functioning, sperm head formation, and spermiogene-

sis (Tables 1 and 2). Against this background, it also seems plausible

for most validated candidate markers that a decrease in abundance

should be detrimental for male fertility maintenance. There were

only two exceptions from the pattern. Exceptional in terms of func-

tion was 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase

zeta-1 (PLCZ1). The protein proposedly belongs to the sperm factors

transferred to the zygote and as such is likely to initiate the develop-

ment of the zygote into the blastocyst.116–118 Consistently, a PLCZ1

variant in an infertile man was found to associate with oocyte acti-

vation deficiency.54 Thus, infertility at PLCZ1 shortage could hint to

disturbed development following fertilization of the ovum. Still, PLCZ1

seems to be also important for spermiogenesis considering spermato-

genic defect in male Plcz1 knockout mice.119 The second exception

from the above pattern refers to the direction of abundance change

in reduced-relative to normal-fertile men. In fact, apoptotic protease-

activating factor 1 (APAF1) was the only validated candidate marker

showing increased abundanceunder infertility. Althoughexceptional in

the present study, the present finding fits previous evidence of raised

testicular abundance of APAF1 transcript in men with impaired versus

normal spermiogenesis.65 It appears to be plausible for an apopto-

sis trigger120 that oversupply negatively affects sperm number and

viability.20

Seven of the proteins, to which we here refer to as validated

candidate markers, displayed deviant abundances under O, OA, and

OAT (Table 1): ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66),

DNAH1, and SPEM1. Functional data would be in line with a predic-

tive value of corresponding protein abundances whenever a reduction

in sperm count is observed. Thus, SPEM1 should have importance for

proper sperm formation including cytoplasm removal as suggested

by deformed spermatozoa and infertility in male knockout mice.49

Furthermore, ACTL9 plays a significant role in the fusion of proacro-

somal vesicles and the anchoring of the acrosome to the perinuclear

theca during spermiogenesis. Correspondingly, there are variants that

associate with fertilization disorders and male infertility.39 CCIN

also localizes to the acrosomal area, thereby showing affinity to F-

actin.121 As a basic cytoskeleton protein of the mammalian sperm

head, absence or dysregulation of CCIN is known to cause sperm

malformation.122 Relevance for proper flagellum formation and func-

tioning is further inherent to three cilia and flagella-associatedproteins

(CFAP47, CFAP65, CFAP251/WDR66) andDNAH1.42,43,45,46,91,123,124

Nevertheless, all sperm proteins in Table 1 could be implicated in the

development of male fertility disorders, and hence might be further

evaluated for their potential as male fertility markers. In support of

such utilization, the coding genes of 18 out of the 31 validated candi-

date markers are already included in an 81 gene panel (ID192.04) for

male fertility testing (e.g., www.zhma.de).

Diagnostic potential might also have 18 proteins displaying at

least eightfold and thus extreme deregulation of abundance (Table 3).

We refer to these proteins as novel candidate markers because

OMIM search did not uncover respective previous entries. Neverthe-

less, downregulation of testicular and spermatozoic expression under

reduced male fertility was documented for the coding genes to all

novel candidate markers (Table 4). Predictive power of correspond-

ing protein levels would also be consistent with the functional and

transcriptional data available, as will be detailed below in the ones

showing reduced levels in all three diagnoses including reduced sperm

count. In case of SPATA31E1, SPATA31D1, and SPATA48, relevance

for male fertility is reflected by transcript enrichment in the male

germline (Figure S2). Transcriptional data additionally suggest that

EF-hand domain family member B (EFHB, alias CFAP21), chromo-

some 2 open reading frame 16 (C2orf16, alias CB016), and family

with sequence similarity 161 member A (FAM161A) participate in

male fertility maintenance (Figure S2). Indeed, EFHB is a regulator of

store-operated Ca2+ entry (SOCE) impairment of which causes male

infertility in the murine model.125,126 Furthermore, FAM161A is a

component of the cilia–basal body complex127 modulating mammalian

sperm movement.127,128 Another protein with strongly deregulated

abundance in association with O, cylicin 1 (CYLC1), is involved in the

formation of the sperm head.129 As in several other novel candidate

markers, CYLC1 transcription is highly enriched in male germ line,

suggestive of special importance for male fertility (Figure S2).

5 CONCLUSIONS

Present high-resolutionmass spectrometry analyses of sperm samples

from 38 reduced- and 38 normal-fertile men uncovered proteins of
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about 7000 genes (Table S2). The functional data available for differen-

tially abundant proteins suggests that spermatozoa of infertile donors

diagnosed with oligoasthenoteratozoospermia, oligoasthenozoosper-

mia, and oligozoospermia carry proteomic signatures of disturbed

gametogenesis. Our results further imply that the fewer spermatozoa

in these diagnoses are dysfunctional to an increased proportion, with

motility and fertilization ability being compromised. Thus, a reduction

in sperm count might have been less decisive for the development of

infertility in the corresponding subjects than the fact that the sper-

matozoa produced were dysfunctional to an increased proportion.

While this was to be expected for both syndromes it was not for cases

in which pure oligozoospermia was diagnosed. This sheds new light

on the challenges in selecting proper spermatozoa for in vitro fer-

tilization and intracytoplasmic sperm injection based on microscopic

examination.113,114

Quantitative analysis led to the identification of sperm proteins the

abundances of which might have predictive value in fertility diagnos-

tics. As detailed above, the respective proteins had been determined

in considerably high numbers of peptides, suggestive of highly confi-

dent identifications. Marker potential should especially have the ones

forwhich the coding genes already had entries in theOnlineMendelian

Inheritance in Men (OMIM) database relating to roles in male fertil-

ity impairment (Tables 1 and 2 and Figure S1). Such applied prospect

is matched by the fact that the coding genes of about two-thirds of

the proteins are included in a genotyping panel used in fertility test-

ing (ID192.04). Yet proteins for which we observed extremely reduced

levels under infertility (Table 3) might also be considered for their

potential in fertility diagnostics. In support of such usability, expres-

sion of the coding genes was previously found to be reduced in testes

and spermatozoaofmenwith impaired fertility (Table 4; see also Figure

S2). Members of deregulated protein groups might be evaluated for

utilization in fertility testing too (Table 5 and Figure S3).

Our results further illustrate that most of the proteins highlighted

above are interconnected with other players in the development of

male infertility. Indeed, we observed a growing connectivity with

increasing number of prospective male fertility markers included in

network reconstructions (Figure 6 and Table 6). We expect the male

infertility network to grow with the addition of further (candidate)

markers.9,21,130 For example, future network analyses may include

male fertility markers in the seminal plasma proteome.9,21,131,132 With

the completion of the network, we should increasingly become able

to comprehend the molecular mechanisms behind the development of

male infertility. This may open new perspectives in the diagnosis and

treatment of male infertility.133
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