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Abstract
OR-1896 ((R)-N-(4-(4-methyl-6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)phenyl)acetamide) is the main active metabolite of 
levosimendan. However, nobody has reported a positive inotropic effect of OR-1896 in isolated human cardiac preparations. 
The mechanism of action of OR-1896 remains controversial. Hence, we wanted to know whether OR-1896 exerts a positive 
inotropic effect in humans and what might be the underlying mechanism. Therefore, we measured the contractile effects of 
OR-1896 (0.01–10 µM cumulatively applied) in isolated electrically stimulated (1 Hz) human right atrial preparations (HAP) 
obtained during cardiac surgery. OR-1896, given alone, exerted time- and concentration-dependent positive inotropic effects; 
1-µM OR-1896 increased force by 72 ± 14.7% (p < 0.05, n = 6) and shortened the time of relaxation by 10.6 ± 3.6% (p < 0.05, 
n = 11) in HAP started at 0.1 µM, plateaued at 1-µM OR-1896, and was antagonized by 1-µM propranolol. The maximum 
positive inotropic effect of OR-1896 in human right atrial preparations was less than that of 10-µM isoprenaline. EMD 57033 
(10 µM), a calcium sensitizer, enhanced the force of contraction further in the additional presence of 1-µM OR-1896 by 
109 ± 19% (p < 0.05, n = 4). Cilostamide (10 µM), an inhibitor of phosphodiesterase III given before OR-1896 (1 µM), blocked 
the positive inotropic effect of OR-1896 in HAP. Our data suggest that OR-1896 is, indeed, a positive inotropic agent in the 
human heart. OR-1896 acts as a PDE III inhibitor. OR-1896 is unlikely to act as a calcium sensitizer in the human heart.
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Introduction

In the heart, positive inotropic effects can be achieved with 
phosphodiesterase inhibitors (PDE, scheme in Fig. 1A). 
PDE III inhibitors like milrinone exerted positive inotropic, 
lusitropic, and positive chronotropic effects (reviews: Scholz 
and Meyer 1986; Schmitz et al. 1989, 1992). However, more 
heart failure patients died in the milrinone group than in the 
placebo group (Packer et al. 1991).

Hence, new mechanisms of inotropic action, independ-
ent of an elevation of Ca2+ levels in the cytosol of car-
diomyocytes (Fig. 1A), have thereafter been sought. For 
instance, so-called calcium sensitizers (Rüegg et al. 1984, 
Ventura et al. 1992), like levosimendan, OR-1896 (Hai-
kala et al. 1995, 1997, structural formula in Fig. 1B), CGP 
48506 (Neumann et al. 1996, Zimmermann et al. 1996), or 
EMD 57033 (Neumann et al. 1995; Uhlmann et al. 1995), 
were studied. These calcium sensitizers raise the affinity of 
myofilaments for calcium cations, but some of these drugs 
retained PDE-inhibitory activity.

Levosimendan was marketed as a pure calcium sensitizer 
(Haikala et al. 1995). In contrast to this view, in guinea pig 
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cardiac preparations, (i) levosimendan accelerated cardiac 
relaxation in the guinea pig heart (Boknik et al. 1997), (ii) 
levosimendan exerted a positive chronotropic effect in spon-
taneously beating right atrial preparations from guinea pig 
hearts (Boknik et al. 1997), and (iii) levosimendan elevated 
cAMP concentrations, increased the phosphorylation state 
of phospholamban, the inhibitory subunit of troponin and 
C-protein, and enhanced the current through the L-type cal-
cium channel in cardiomyocytes from guinea pig ventricles 
(Boknik et al. 1997, Virag et al. 1996). In contrast to levosi-
mendan, a pure calcium sensitizer, namely CGP 48506, pro-
longed cardiac relaxation time and did not increase cAMP 
content nor phospholamban phosphorylation in guinea pig 
cardiac preparations (Zimmermann et al. 1996, 1998).

Consistent with the findings in guinea pig cardiac 
preparations, the phosphodiesterase III inhibitor cilos-
tamide (Fig. 1B) blocked any positive inotropic effect of 

levosimendan in ventricular muscle strips from failing 
human hearts (Ørstavik et  al. 2014). Thus, the positive 
inotropic effect of levosimendan seems to result from the 
inhibition of phosphodiesterase III in the failing human ven-
tricle (Ørstavik et al. 2014). Their conclusion was supported 
by their finding that the β-adrenoceptor antagonist timo-
lol reversed the positive inotropic effect of levosimendan 
in human ventricular preparations (Ørstavik et al. 2014). 
More recently, we could confirm these data in human atrial 
preparations (Rayo Abella et al. 2022a, b): Levosimendan 
increased force of contraction in human atrial preparations; 
this increase was accompanied by an elevation in the phos-
phorylation state of phospholamban, and both effects were 
abrogated by propranolol. Moreover, cilostamide pretreat-
ment hindered levosimendan to increase the force of con-
traction in isolated human atrial preparations (Rayo Abella 
et al. 2022a, b).

Rolipram Cilostamide Levosimendan OR-1896

A

B

Fig. 1   Scheme: Potential mechanism(s) of action of OR-1896 in the 
human and mouse cardiomyocytes. Stimulation of the activity of 
β-adrenoceptors (β-AR) by endogenous noradrenaline or exogenous 
isoprenaline leads via stimulatory GTP-binding proteins (Gs) to an 
increase of adenylyl cyclase (AC) activity. Adenylyl cyclase increases 
the formation of 3´,5´-cyclic-adenosine-mono-phosphate (cAMP) 
that stimulates cAMP-protein kinase (PKA). PKA phosphorylates 
and thus activates phospholamban (PLB) at the amino acid serine 
16, the inhibitory subunit of troponin (TnI), the ryanodine receptor 
(RYR), and the L-type calcium channel (LTCC). The formed cAMP 
can be degraded to inactive 5´-AMP and pyrophosphate by isoen-
zymes of the phosphodiesterase family of proteins (PDE). Cilosta-
mide and rolipram (bottom: structural formulae) inactivate phospho-
diesterase 3 and 4, respectively. The β-adrenoceptor is blocked by 

β-adrenoceptor blockers like timolol or propranolol. Calcium cations 
(Ca2+) are stored on calsequestrin (CSQ) in the sarcoplasmic reticu-
lum and are released via RYR from the sarcoplasmic reticulum (SR). 
These released calcium cations bind to troponin C on thin myofila-
ments, and as a result, systolic force is augmented. Typical calcium 
sensitizers like EMD 57033 act by generating at a given level of free 
Ca2 + more force of contraction. In cardiac diastole, calcium cation 
concentrations fall because calcium cations are pumped into the SR 
via the SR-calcium ATPase (SERCA). The activity of SERCA is 
increased when phospholamban is phosphorylated on amino acid ser-
ine 16. OR-1896 (bottom: structural formula) might act by increasing 
the sensitivity for calcium cations of troponin C in the thin myofila-
ments or might inhibit phosphodiesterases in the heart
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OR-1896, the main metabolite of levosimendan, when 
given alone, increased the force of contraction in rat papil-
lary muscles (Ørstavik et al. 2015). One noted that OR-1896 
induced a positive inotropic effect starting at 0.1-µM 
OR-1896 that plateaued at 1 µM (Ørstavik et al. 2015). This 
effect, the positive inotropic effect of OR-1896, was aug-
mented by rolipram (10 µM, a phosphodiesterase IV inhibi-
tor) but blocked by the PDE III inhibitors milrinone (1 µM) 
or cilostamide (1 µM, Ørstavik et al. 2015). The positive 
inotropic effect of OR-1896 could not be augmented by addi-
tionally applied EMD57033 (3 µM, a calcium sensitizer). 
OR-1896 was less effective than isoprenaline (100 µM, 
Ørstavik et al. 2015). OR-1896, alone, exerted a lusitropic 
effect that was potentiated by rolipram (Ørstavik et al. 2015). 
In the presence of a β-adrenoceptor antagonist, OR failed 
to increase the force of contraction in rat papillary muscles 
(Ørstavik et al. 2015). OR-1896 did not alter the potency of 
Ca2+ to raise the force of contraction of rat papillary mus-
cles (Ørstavik et al. 2015). OR-1896 inhibited PDE activ-
ity in the rat heart with a similar efficacy as cilostamide 
(Ørstavik et al. 2015). Consistent with a PDE inhibition, the 
authors noted that cAMP was increased after the addition of 
OR-1896 to rat ventricular cardiomyocytes (Ørstavik et al. 
2015). The authors concluded that in rat papillary muscles, 
OR-1896 increased the force of contraction by inhibition of 
PDE III (Ørstavik et al. 2015). However, they did not test 
human tissue.

In patients, OR-1896 has a longer half-life than levosi-
mendan, which amounts to about 1 h; in contrast, the half-
life of OR-1896 is about 70–80 h (Koskinen et al. 2008, 
Grześk et al. 2022). Plasma levels of OR-1896 are higher 
in rapid acetylators of OR-1896 than in slow acetylators 
of OR-1896 (Antila et al. 2004). Hence, in some patients, 
OR-1896 might be clinically especially relevant in their 
response to levosimendan treatment. There are data from 
skinned fibers that OR-1896 is a calcium sensitizer also in a 
human ventricle (Papp et al. 2004). Usually, OR-1896, on a 
molar basis, is less potent than levosimendan. For instance, 
levosimendan was more potent to increase the rate of force 
development in living rats (Segreti et al. 2008). Likewise, 
OR-1896 was less potent than levosimendan to inhibit PDE 
III (levosimendan: 2.5 nM, OR-1896: 94 nM) and PDE IV 
(levosimendan: 25 µM, OR-1896: 286 µM) in the guinea 
pig heart. However, levosimendan and OR-1896 were about 
equipotent (levosimendan 15 nM, OR-1896: 25 nM) to raise 
intraventricular developed pressure in Langendorff perfused 
guinea pig hearts (Szilágyi et al. 2004). Both levosimendan 
and OR-1896 raised the rate of pressure development by 
about 25% and were thus equieffective (Szilagyi et al. 2004). 
OR-1896 is assumed to contribute to the clinical effect of 
levosimendan in heart failure patients. OR-1896 also has 
vasodilatory properties that are explained in part by the 
opening of the potassium channel and a cAMP increase in 

the vasculature (review: Burkhoff et al. 2021). These vaso-
dilatory and ancillatory effects are thought to be beneficial 
in patients with heart failure.

The group of Masao Endoh generated data that OR-1896 
in dog papillary muscles OR-1896 increased the force of 
contraction at least in part by elevating cytosolic-free cal-
cium ions (Takahashi et al. 2000). Moreover, the positive 
inotropic effect of OR-1896 was antagonized in dog papil-
lary muscles by carbachol, suggesting to the authors that 
also a cAMP-dependent component contributes to the posi-
tive inotropic effect of OR-1896 in the dog heart (Takahashi 
et al. 2000).

We find it important to understand better the mechanism 
of action of the active metabolite of levosimendan, namely 
OR-1896, in order to better understand how the long-term 
actions of levosimendan on the human heart come about 
mechanistically. However, prior to the present study, the 
effects of OR-1896 in isolated human atrium or human 
ventricular preparations on the force of contraction were 
unknown. For comparison, we performed similar experi-
ments on cardiac atrial preparations from mice. These mouse 
data have the potential benefit to study the effect of OR-1896 
on sinus node function in isolated preparations which are 
not readily feasible in human hearts. Thence, we studied the 
hypothesis that OR-1896 increased contractile function in 
isolated electrically paced human right atrial muscle strips. 
Furthermore, we asked whether this effect is altered by the 
concomitant application of a PDE III inhibitor and is accom-
panied by increased phospholamban phosphorylation.

Methods

Contractile studies in mice

In brief, wild-type mice were sacrificed, the thorax was 
opened, and the heart was mobilized and cut from the 
ascending aorta to make sure the right atrium was not dam-
aged. Then, the whole heart was transferred to a dissec-
tion chamber filled with gassed Tyrode’s solution at room 
temperature. Right or left atrial preparations were isolated 
and mounted in organ baths, as described by Gergs et al. 
(2013, 2017, 2019a, b) and Neumann et al. (2003). Force 
was detected under isometric conditions, amplified and fed 
into a digitizer, and quantified by commercial software (Lab-
Chart 8, AD Instruments, Spechbach, Germany).

Contraction studies in the human atrium

These experiments were performed as reported repeatedly 
(e.g., Gergs et al. 2009; Neumann et al. 2021a, b). In brief, 
during cardiac surgery, at the site where the cannula for 
extracorporeal circulation entered the heart, small muscle 
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strips were obtained from the right atrium. Patients were 
aged between 48 and 72 years. Medication included acetyl-
salicylic acid, nitrates, diuretics, β-adrenoceptor blockers, 
and anticoagulants. Atrial trabeculae were dissected and 
mounted in an organ bath and electrically stimulated (1 Hz) 
and processed like mouse preparations (see above).

Western blotting

The process of sample homogenization, protein concen-
tration measurement, electrophoresis, antibodies incuba-
tion, and signal quantification were performed following 
our previously published protocols with slight modifica-
tions (Boknik et al. 2018; Gergs et al. 2009; Gergs et al. 
2019a). Electrophoresis was performed in Novex™ 4–20% 
“Tris–Glycine Plus Midi Protein Gels” (Invitrogen, Thermo 
Fisher Scientific, Waltham, Massachusetts, USA). The run 
was performed at 4 °C for approximately 1 h at 120 V in 
the “NuPAGE MES SDS Running Buffer” (Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) using an XCell4 
SureLock™ Midi-Cell chamber (Life Technologies by 
Thermo Fisher Scientific, Waltham, Massachusetts, USA). 
Protein transfer into membranes (Amersham™ Protran, GE 
Healthcare, Chicago, Illinois, USA) was performed at 2 A 
for 2 h at 4 °C. Membrane blocking for 1 h at room tempera-
ture was followed by overnight incubation at 4 °C with the 
primary antibody for serine 16-phosphorylated phospholam-
ban (1:5000; catalog number: A010-12AP; PLB Ser16; 
Badrilla, Leeds, UK), SERCA2 ATPase (1:20.000; catalog 
number: ab2861; abcam, Cambridge, UK), and phospho-
troponin I (1:5000; catalog number: 4004; Ser23/24; cell 
signaling technology, Leiden, the Netherlands). While calse-
questrin antibody was used as a loading control (1:20.000; 
product number: ab3516; abcam, Cambridge, UK). Visu-
alization of the signals was performed by using a chemi-
luminescent HRP substrate (Immobilon™ Western, Milli-
pore, Merck; Darmstadt, Germany) and a digital imaging 
system (Amersham ImageQuant 800; Cytiva Europe GmbH, 
Freiburg im Breisgau, Germany).

Data analysis

Data were treated as in most of our previous studies (e.g., 
Gergs et al. 2019, Neumann et al. 2021a, b). Shown are the 
means ± standard error of the mean. Statistical significance 
was estimated using the analysis of variance (ANOVA), fol-
lowed by Bonferroni’s t-test or Student’s t-test as appropri-
ate. A P-value of less than 0.05 was considered significant. 
Experimental data for agonist-induced positive inotropic 
and chronotropic effects were analyzed by fitting sigmoidal 
curves to the experimental data with GraphPad Prism 5.0. 
All other statistical analyses were performed as indicated in 
the figures and tables.

Drugs and materials

(-)-Isoprenaline ( +)-bitartrate, rolipram, propranolol, and 
cilostamide were purchased from Sigma-Aldrich (Deisen-
hofen, Germany). OR-1896 ((R)-N-(4-(4-methyl-6-oxo-
1,4,5,6-tetrahydropyridazin-3-yl)phenyl)acetamide) was 
from Biozol (Munich, Germany). All other chemicals were 
of the highest purity grade commercially available. Deion-
ized water was used throughout the experiments. Stock solu-
tions were freshly prepared daily.

Results

Mouse

Force of contraction in left atrial preparations

OR-1896 cumulatively applied, when given alone, from 
10 nM to 10 µM (the highest concentration tested in this 
study), did not raise contractility in electrically driven (1 Hz) 
left atrial preparations of mouse hearts compared to control 
conditions (OR-1896 alone: original recording; Fig. 2A). 
However, when first 0.1-µM rolipram (a phosphodiester-
ase IV inhibitor, Fig. 1A,B) was applied, rolipram itself an 
increased force of contraction to some extent (Fig. 2A) and 
additionally applied OR-1896 augmented force of contrac-
tion further (Fig. 2A), in left atrial (LA) preparations from 
mice. The positive inotropic effects of OR-1896 in the pres-
ence of rolipram were diminished by 10-µM propranolol 
(Fig. 2A). The effects of OR-1896 were time-dependent 
and concentration (10 nM to 10 µM)-dependent (Fig. 2A). 
The positive inotropic effect reached its maximum at 1-µM 
OR-1896 (Fig. 2A). However, subsequently applying 10-µM 
isoprenaline increased force of contraction in LA, further 
indicating that OR-1896 under our experimental conditions 
was less effective than isoprenaline to raise a force of con-
traction (Fig. 2A). In several initial experiments, we gave 
rolipram and then non-cumulatively only one concentration 
of OR-1896 (Fig. 2B). An effect of rolipram was apparent, 
but OR-1896 did not increase force further. We decided to 
construct concentration–response curves for OR-1896, hop-
ing to detect at least a small positive inotropic effect. But 
as seen in Fig. 2C, the effects were too small to gain sig-
nificance even under these more favorite conditions. Several 
such experiments are summarized in Fig. 2B.

Beating rate in right atrial preparations

One could argue that our concentrations of OR-1896 or rolipram 
were too low to detect functional alterations in the mouse atrium. 
However, this does not seem to be an acceptable generalization: 
Indeed, OR-1896 alone does not affect spontaneously beating 
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right atrial preparations (Fig. 2E). A concentration of 0.1-µM 
rolipram by itself exercised a positive chronotropic effect of its 
own (Fig. 2E). When one applied OR-1896 (non-cumulatively: 

Fig. 2D; cumulatively: Fig. 2E) in addition or rolipram, OR-1896 
increased the beating rate in spontaneously beating mouse right 
atrial preparations.
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Fig. 2   Positive inotropic and chronotropic effects of OR-1896 in the 
mouse left and right atrium, respectively, only in the presence of 
rolipram. (A) Original recordings: OR-1896 ((-)-(R)-[[4-(1,4,5,6-
tetrahydro-4-methyl-6-oxo-3-pyridazinyl)phenyl]hydrazono]propane-
dinitrile) (1 µM to 10 µM) was cumulative applied alone or the pres-
ence 0.1-µM rolipram ((RS)-4-(3-cyclopentyloxy-4-methoxy-phenyl)
pyrrolidin-2-on). Rolipram was used to inhibit the activity of phos-
phodiesterase IV. The positive inotropic effect of OR-1896 in the 
presence of rolipram was abrogated by the subsequent application of 
10-µM propranolol, and the maximal effect on inotropy was reached 
after the application of 100-µM isoprenaline. Vertical bars indicate 
force in milli Newton (mN). Horizontal bars indicate time in minutes 
(min). (B) Bar graph showing the force of contraction by not cumu-
latively applied Rolipram (0.1 µM) alone and by OR-1896 (10 µM) 
in the presence of Rolipram (0.1  µM) in electrically stimulated left 
atrial preparations from mouse hearts. The positive inotropic effects 
of rolipram and rolipram in an additional supply of OR-1896 are sig-
nificant (p < 0.05, Student’s t-test) in relation to the point prior to the 
administration of any substance (CTR). The number of individual 
experiments is represented by the value of n. Ordinates indicate the 
effect of rolipram and OR-1896 in the presence of rolipram on the 
force of contraction in milli Newton (mN). (C) Summarized concen-
tration–response curves for increasing concentrations of OR-1896 on 
the force of contraction alone (circles) after the addition of 0.1-µM 
rolipram (squares) to the organ bath in isolated electrically stimulated 

left atrial preparations from mouse hearts. The ordinates indicate the 
effects of OR-1896 and rolipram on contraction force as a percentage 
of the pre-drug value (% of CTR). Abscissae: negative decadic loga-
rithm of the concentrations of rolipram and OR-1896. # indicates first 
concentration with p < 0.05 versus CTR, and * indicates first con-
centration with p < 0.05 versus OR-1896 without rolipram (Student’s 
t-test). The number in brackets indicates the number of experiments. 
(D) Bar chart indicating the increase in the beating rate (BPM: beats 
per minute) in isolated spontaneously beating right atrial prepara-
tions from mouse hearts. This increase can be seen by the symbol * 
(p < 0.05, Student’s t-test) compared to control conditions (pre-drug 
point: CTR) for rolipram (0.1 µM) and the combination of rolipram 
(0.1 µM) and OR-1896 (10 µM). Similarly, there is a difference in the 
beating rate between rolipram (0.1 µM) alone and rolipram with a late 
addition of 10-µM OR-1896 to the organ bath (#p < 0.05, Student’s 
t-test). The number of experiments is represented by the value of n. 
(D) Summary data of the positive chronotropic effect of a cumulative 
dose of OR-1896 (0.01 µM–10 µM) only in the presence of 0.1-µM 
rolipram in isolated right atrial preparation of spontaneously beating 
mouse heart. The ordinates indicate the effect of OR-1896 with or 
without rolipram as a percentage of the pre-drug value (% of CTR). 
Abscissae: negative decadic logarithm of rolipram and OR-1896 con-
centrations. *p < 0.05 versus CTR (Student’s t-test). The number in 
brackets indicates the number of individual experiments
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Human studies

Force of contraction in isolated human atrial preparations

In contrast to the findings in mouse atrial preparations 
(Fig. 2C), cumulatively applied OR-1896 alone exerted a 
concentration-dependent positive inotropic effect in human 
atrial preparations (Fig. 3A). In these human atrial prepa-
rations, OR-1896 concentration-dependently reduced time 
to peak tension (Fig. 3B) and time of relaxation (Fig. 3B). 
Moreover, OR-1896 concentration-dependently increased 
the rate of tension development and the rate of tension 
relaxation (Fig. 3C). In addition, we detected no significant 

calcium sensitizing properties: When we raised Ca2+ con-
centrations in the organ bath, we elevated thereby force of 
contraction. However, these effects of Ca2+ were not potenti-
ated by OR-1896 (Fig. 3D).

In contrast, while 1-µM cilostamide increased the 
force of contraction in human atrial preparations to some 
extent and OR-1896 exerted a small additional positive 
inotropic effect (Fig. 4C), 10-µM cilostamide impaired 
any positive inotropic effect of subsequently added 1-µM 
OR-1896 (Fig. 4B). This is in line with findings by oth-
ers in rat ventricular strips (Ørstavik et al. 2015). The 
positive inotropic effects of OR-1896 (1 µM) were abro-
gated by 1-µM propranolol in human atrial preparations 
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Fig. 3   Inotropic effects of OR-1896 in human atrium. Concentra-
tion-dependent effects of increasing concentrations of OR-1896 
(0.01  µM–10  µM) on the force of contraction, times of contraction 
or rate of tension, in electrically stimulated muscle strips from the 
human right atrium are summarized in A, B, or C. OR-1896 was 
cumulatively applied. Ordinates indicate the effect of OR-1896 on the 
force of contraction in milli Newton (mN: A), on time to peak ten-
sion in milliseconds (ms: E), on time of relaxation (ms: E), on rate 
of tension development (in mN/s: C), and on rate tension of relaxa-

tion (mN/s: C). Abscissae: negative decadic logarithm of the concen-
trations of OR-1896. *p < 0.05 versus control conditions (pre-drug 
point: CTR; Student’s t-test). The number in brackets indicates the 
number of individual experiments. (D) The positive inotropic effects 
of increasing Ca2+ concentrations were not potentiated by 1-µM 
OR-1896. Ordinates indicate the effect of Ca2+ on the force of con-
traction in milli Newton (mN), and the abscissae show the molar con-
centrations of Ca2+. The number in brackets indicates the number of 
experiments
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consistent with the action OR-1896 as a PDE III inhibitor 
in human atrial tissue (Fig. 1A). After maximal stimula-
tion by 1-µM OR-1896, the force of contraction was aug-
mented by additionally applying EMD 57033 (Fig. 4B,C), 
a calcium sensitizer, suggesting that in the human atrium, 
EMD 57033 and OR-1896 have different mechanisms of 
action (Fig. 1A). These data combined argue against a 
calcium sensitizing effect of OR-1896, at least under our 
experimental conditions in human atrium. Moreover, the 
maximum inotropic effect of OR-1896 was lower than that 
of 10-µM isoprenaline (Fig. 4A), in line with reports for 
levosimendan in human ventricular preparations (Ørstavik 
et al. 2014) and in human atrial preparation (Rayo Abella 
et al. 2022a, b).

Phospholamban phosphorylation in the human atrium

1-µM OR1896 alone (that is, non-cumulatively applied) 
increased the phosphorylation state of phospholamban at 
serine 16 in contracting human atrial strips that were freeze-
clamped at the maximum of the positive inotropic effect 
(Fig. 5). The positive inotropic effects of OR1896 in human 
atrial strips were completely reversed by 1-µM propranolol 
(Fig. 4A). In the same atrial preparations where force was 
recorded and that were freeze-clamped, 1-µM propranolol 
reduced the increase in the phosphorylation state of phos-
pholamban induced by 1-µM OR1896 (Fig. 5), arguing 
against the action of OR-1896 as a pure calcium sensitizer 
in the human atrium.
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Fig. 4   The positive inotropic effect of OR-1896 in the human atrium 
does not necessitate the concomitant inhibition of phosphodiester-
ase IV and is abrogated in the concomitant inhibition of phosphodi-
esterase III. (A) Original recordings: in electrically stimulated mus-
cle strips from the human right atrium. Effects of 1-µM OR-1896 
in the additional presence of 10-µM cilostamide. The effect was 
increased by 10  µM of EMD 57003 and abrogated by 1-µM pro-
pranolol. Subsequent application of a very high concentration of 
isoprenaline (10  µM) surmounted the effect of propranolol, indicat-
ing that the sample was properly contracting and that the efficacy of 
10-µM isoprenaline was superior to that of 1-µM OR-1896. Vertical 
bars indicate force in milli Newton (mN). Horizontal bars indicate 

time in minutes (min). Samples were incubated with 10  µM (B) or 
1 µM (C) cilostamide (Cilo) and in the additional presence of 1-µM 
OR-1896, EMD 57003 (10 µM) and isoprenaline (10 µM). Combin-
ing several such experiments, the mean values and SEM are seen in 
Fig.  5B,C, respectively. While 1-µM cilostamide (C) increased the 
force of contraction in human atrial preparations to some extent and 
OR-1896 exerted a small addition positive inotropic effect, 10-µM 
cilostamide (B) impaired any positive inotropic effect of subsequently 
added 1-µM OR-1896. Vertical bars indicate force in milli Newton 
(mN). #p < 0.05 versus control conditions (pre-drug point: CTR) and 
*p < 0.05 (ANOVA and Bonferroni’s multiple comparison test). The 
number in brackets indicates the number of individual experiments
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Discussion

The first new finding of the present paper is that OR-1896 
has a positive inotropic effect in the human heart, in this 
case, the isolated human atrium. This is important because 
OR-1896 is the main active metabolite of levosimendan. 
Levosimendan is currently recommended in guidelines for 
some patients with heart failure (Papp et al. 2020). A sec-
ond new finding is that the mechanism in the human heart 
of OR-1896 can be attributed mainly to the inhibition of 
phosphodiesterase III. This is important clinically because 
this kind of mechanism may explain any arrhythmias seen 
in patients treated with levosimendan (Papp et al. 2020).

Contractile data in mouse left atrium

The present data on mouse left atrium are somewhat 
divergent from those in rat ventricular preparations by 
others (Ørstaviket al. 2015). These authors, unlike our-
selves, noted that OR-1896, when given alone, was effec-
tive to raise the force of contraction in rat ventricular 
muscle strips (Ørstavik et al. 2015). We would argue that 
our observations are in line with the interpretation that 
OR-1896 heightens the force of contraction in the mouse 
heart through inhibition of phosphodiesterase III, keeping 

in mind that PDE III is relatively unimportant for force 
regulation in the mouse heart. While the human heart 
mainly expresses (detected as protein in Western blots and 
in PDE activity assays) PDE III, the mouse heart expresses 
mainly PDE IV (Abi-Gerges et al. 2009). In accordance 
with these biochemical data, typical PDE III inhibitors 
like cilostamide are very potent and effective in raising the 
force in human cardiac muscle preparations, whereas typi-
cal PDE IV inhibitors like rolipram alone do not raise the 
force of contraction in human cardiac preparations (dis-
cussed in Neumann et al. 2021a). In the mouse, we find 
the opposite pattern. Cilostamide does not increase the 
force of contraction in mouse atrial preparations, whereas 
rolipram is very potent and efficient in raising the force 
of contraction in the mouse atrium (Neumann et al. 2019, 
2021a). OR-1896 alone in rat ventricular cardiomyocytes 
has been shown to increase cAMP levels (Ørstavik et al. 
2015); thus, it is plausible that they observed a small 
positive inotropic effect with OR-1896 alone. Interest-
ingly (in isolated rat ventricular cardiomyocytes), after 
pre-incubation with cilostamide, OR-1896 did not increase 
cAMP levels any further, supporting the assumption that 
OR-1896 increased cAMP levels already via PDE III inhi-
bition in rat ventricle (Ørstavik et al. 2015). Moreover, 
the authors failed to detect Ca2+ sensitizing properties of 
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Fig. 5   OR-1896 alone increases the phosphorylation of phospholam-
ban in the human heart. Western blot of phosphorylated phospholam-
ban at serine 16 and the phosphorylated inhibitory subunit of tro-
ponin (TnI) in contracting human atrium. Horizontal arrows indicate 
the apparent molecular weight of phospholamban phosphorylated 
at serine 16 (PS16-PLB) or phosphorylated inhibitory subunit of 
troponin (P-TnI), calsequestrin (CSQ), and SERCA were used as a 
loading control. OR-1896 1 µM or additional 1-µM propranolol was 
added to contracting human right atrial muscle strips, as indicated 
and freeze-clamped at the plateau of the positive inotropic effect. 
Human atrial samples were homogenized, subjected to gel electro-
phoresis, and transferred to nitrocellulose membranes. Membranes 

were cut horizontally as indicated and were incubated with primary 
and secondary antibodies (see Methods), and signals were scanned, 
and a typical blot is presented here. Apparent molecular weight stand-
ards are depicted in the left-hand first lane. Samples treated only with 
propranolol (10 µM) were included in the blot for time control pur-
poses in the experiment. As a positive control, samples treated with 
10-µM isoprenaline are shown at the ends, and as a negative control, 
an untreated sample (Control) was included in the blot. Boiled means 
that the isoprenaline-treated sample was brought to the temperature of 
95 °C for 10 min. Please note the mobility shift in the boiled sample, 
confirming that we really detected phospholamban
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OR 1896 in rat ventricles, but noted that OR-1896 could 
inhibit the activity of PDE III in rat ventricular prepara-
tions (Ørstavik et al. 2015).

Chronotropic effects of OR‑1896 in mouse right 
atrium

The present work clearly shows that OR-1896 increased 
the beating rate in the mouse’s right atrium. These positive 
chronotropic effects in mouse strongly argue against an ino-
tropic action of OR-1896 as a calcium sensitizer. This is so 
because, typically, calcium sensitizers neither increase nor 
decrease the beating rate (e.g., Zimmermann et al. 1996), 
presumably because they do not increase cAMP in any com-
partment of the heart, because they do not stimulate cAMP 
production and do not inhibit cAMP degradation. Moreover, 
the effect in the sinus node also seemed to result from the 
amplification of cAMP levels. Endogenously produced or at 
least present noradrenaline may activate the β-adrenoceptor 
in the mouse sinus node to a certain extent, and this effect 
was amplified by the PDE-inhibitory properties of OR-1896. 
Indeed, our findings on the beating rate in mouse right atrial 
preparations are consistent with the view that OR-1896 acts 
via elevation of cAMP also in sinus node cells. This observa-
tion concurs with the hypothesis that also, in the mouse sinus 
node, OR-1896 operates as a phosphodiesterase III inhibitor: 
Fittingly, pre-incubation with rolipram amplified the positive 
chronotropic effect of OR-1896 because now PDE III and 
PDE IV are inhibited and only then a functional effect on 
the mouse sinus node can occur.

Effects of OR‑1896 on the human atrium

In contrast to mouse atrial preparations, in isolated electrically 
stimulated human atrial preparations, OR-1896 alone elevated 
the force of contraction and shortened, for instance, relaxation 
time. We assume this is probably due to a surge in the phos-
phorylation state of phospholamban that we reported in Fig. 5. 
Cardiac relaxation is thought to be enhanced by phosphorylation 
of phospholamban (Hamstra et al. 2020) and phosphorylation 
of the inhibitory subunit of troponin (Vetter et al. 2018). Un-
phosphorylated phospholamban inhibits the activity of SERCA 
(Ca2+-pump of the sarcoplasmic reticulum (SR): Fig. 1). When 
cAMP is increased, cAMP-dependent protein kinase phospho-
rylates phospholamban at the amino acid serine 16 (Hamstra 
et al. 2020). From mutational studies in vitro and in knock-in 
mice, we know that this phosphorylation disinhibits SERCA 
activity (Hamstra et al. 2020). This increased activity of SERCA 
has at least two consequences: On the one hand, SERCA pumps 
calcium ions faster out of the cytosol, and thus, the calcium ions 
leave the vicinity of myofilaments and myofilaments relax faster. 
On the other hand, because more calcium ions were pumped 
by SERCA into the SR, more calcium ions are now stored in 

the SR. When the next heartbeat occurs, more calcium ions are 
present in the SR, and therefore, more calcium ions are released 
(Hamstra et al. 2020). This contributes to the subsequent rise in 
the force of contraction and leads to a positive inotropic effect. 
Phosphorylation of TnI can reduce the affinity of myofilament to 
cytosolic calcium ions: This can contribute to faster heart muscle 
relaxation (Vetter et al. 2018).

Pure calcium sensitizers do not increase the phosphoryla-
tion state of phospholamban at serine 16 (Zimmermann et al. 
1996). Likewise, pure calcium sensitizers do not increase 
the rate of relaxation, and they do not shorten the time of 
relaxation: In contrast, pure calcium sensitizers even pro-
long the duration of contraction in the guinea pig ventricle 
(Zimmermann et al. 1996) but also in the human ventricle 
(Neumann et al. 1996).

Positive inotropic effects of OR-1896 in human atrial 
preparations have, to the best of our knowledge, not been 
reported before. On the other hand, our interpretation is 
supported by the fact that OR-1896 shortened the time 
of relaxation in rat ventricular muscle strips (Ørstavik 
et al. 2015).

Finally, our observations that propranolol attenuated the 
positive inotropic effect of OR-1896 and reduced the OR-
1896-induced increase in phospholamban phosphorylation 
in human atrial preparations also contradict the view that 
OR-1896 is a calcium sensitizer in the human heart.

Conclusion

The present data strongly suggest that the positive inotropic and 
relaxant effects of OR-1896 in the isolated human right atrium 
result from the lowered activity of phosphodiesterase III.
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