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Abstract

The objective of the present work is to study the particle motion behavior in rotary drums

operated with rectangular type flights. As the earlier works made less contribution to

determine the optimal gas-solid contact area (curtains), the present study was focused

towards maximizing the total particle surface area for a given flight shape at a constant

drum loading. A theoretical model has been developed for this purpose, to provide

optimum flight design by maximizing the amount of material in the airborne phase of the

drum. Initially a model to determine the holdup and the cascading rate of the particles

discharging from the flight surface was developed. Further using the unloading studies of

the flight, the amount of material distributed into the airborne phase and the rolling bed

can be estimated. An iterative scheme is developed to determine the filling degree of the

rolling bed. Moreover the height of the curtain was also formulated from the geometrical

approach for a over-loaded drum dividing the region of impact into two sectors.

A novel theoretical model for kinetic angle of repose is presented by considering a

flowing layer at the flight surface, while the model of Schofield and Glikin neglected

the inertial forces in the active layer. Further, an extended model is also proposed

to determine the final discharge angle, as the comparison of the old models with the

measurements showed a different tendency. The reason for this tendency of the old

models are due to neglecting the inertial effects involved during the final flight discharge

and approximated Final discharge angle as constant. Whereas it is incorporated in the

extended model in order to trace the position of the last particle leaving from the flight

by considering a particle layer when the surface of the flight sheet is opposite and parallel

to the bed surface.

Experiments were performed with two drum sizes of 500 mm, 1000 mm in diameter

and 150 mm, 300 mm in length respectively, which was furnished with rectangular flights

around the inner shell of the drum. The flight numbers were operated at 12 and 18,

while varying the flight length ratio (l2/l1) between 0 and 1.0 by maintaining l1/R at 0.2.

vii



viii

The experiments were carried out with test materials (quartz sand, glass beads) having

good flowability, and bulk material (limestone) having properties close to real materials.

The action of the flights were recorded with high definition camera. Kinetic angle at

various flight positions were determined by collecting the images from the recorded videos

of the experiments. The model predictions depicted that the carrying capacity of the

flight was increased while increasing the flight length ratio, but the discharge rate was

decreased during the initial discharge. The validation of the model was carried out with

different profiles of the flight by varying the tangential length (l2). Good agreement has

been observed between the model predictions and the experiments, for the test materials

quartz sand and glass beads.

An example of an industrial dryer of length 6.1 m with a diameter of 3.35 m is

considered to determine the influence of operating parameters such as Froude number,

drum filling degree, flight length ratio, and number of flights. Influence of each of these

parameters on holdup, cascading rate of the flight, and the total particle surface area was

examined and presented in detail. This analysis can be used as a bench mark to the field

experience during scale up of the drum.

Keywords: Rotary drum, Drying, Flights, Flight length ratio, Discharge rate, Number

of flights.



Zussamenfassung

Ziel der vorliegenden Arbeit ist die Untersuchung des Verhaltens der Partikelbe-

wegung in Drehrohren mit rechteckigen Hubschaufeln. Die für den Wärme- und

Stoffübergang bedeutende Kontaktfläche zwischen Gas- und Feststoffphase wurde in

bisherigen Veröffentlichungen nur unzureichend betrachtet. Diese Arbeit konzentriert sich

auf die Optimierung der Gesamtoberfläche der Partikel für eine definierte Hubschaufel-

geometrie bei konstanter Beladung. Hierzu wurde ein theoretisches Modell entwickelt, das

zur Vorhersage der optimalen Hubschaufel-geometrie und Anordnung unter Maximierung

der in der Flugphase befindlichen Menge an Partikeln verwendet werden kann. Zunächst

wurde ein Modell zur Bestimmung des Hold-up und der Entleerungscharakteristik der

Schaufel entwickelt. Auf Grundlage dieser Untersuchungen konnte die Partikelverteilung

in der Gasphase und im unteren Schüttbett ermittelt werden. Zudem wurde die Höhe

der Partikelschleier über die geometrischen Bedingungen und die Unterteilung des Quer-

schnitts in zwei Bereiche bestimmt.

Es wird ein neues theoretisches Modell zur Bestimmung des kinetischen

Böschungswinkels unter Betrachtung einer Fließschicht an der Schaufeloberfläche

präsentiert. Das Modell von Schofield and Glikin vernachlässigt die Trägheitskräfte

in der aktiven Schicht. Zur Bestimmung des maximalen Entleerungspunktes wurde

ein neuer Modellansatz hergeleitet, der im Vergleich zu vorherigen Modellen eine

bessere übereinstimmung zu den Ergebnissen der durchgeführten Experimente liefert.

Ein Grund für die Modellunterschiede kann die Vernachlässigung der wirkenden

Trägheitskräfte während der letzten Phase des Entleerungsvorgangs sein. Wohingegen

die Berücksichtigung der Trägheitskräfte im Modell die Verfolgung des letzten Partikels

beim Verlassen der Hubschaufel ermöglicht. Hierbei wird eine Partikelschicht betrachtet,

wenn sich die Oberfläche des tangentialen Schaufelblatts parallel zur Schüttgutoberfläche

befindet.

Es wurden experimentelle Untersuchungen in Drehrohren mit einem Durchmesser von

ix



x

500 und 1000 mm sowie einer Länge von 150 und 300 mm durchgeführt. Dabei waren

die Drehrohre mit 12 bzw. 18 rechteckigen Hubschaufeln bei gleichmäßiger Verteilung

auf den inneren Umfang ausgestattet. Das Längenverhältnis der Hubschaufeln (l2/l1)

wurde zwischen 0 und 1 bei konstantem l1/R von 0,2 variiert. Die Versuche wurden

mit Modellsubstanzen (Quarzsand, Glaskugeln) und realen Schüttgütern (Kalkstein)

durchgeführt. Die Schüttgutbewegung wurde dabei mit einer hochauflösenden Kamera

aufgezeichnet. Der kinetische Böschungswinkel wurde für verschiedene Positionen der

Hubschaufeln aus dem Bildmaterial entnommen. Anhand des Modells wurde mit Zu-

nahme des Längenverhältnisses eine höhere Fördermenge der Hubschaufeln vorhergesagt,

allerdings verringerte sich dabei die Ausflussrate. Das Modell wurde mit unterschiedlichen

Profilen der Hubschaufeln unter Variation der tangentialen Länge (l2) validiert. Es konnte

eine gute übereinstimmung zwischen experimentellen Ergebnissen und Modellvorhersage

für die Modellschüttgüter Quarzsand und Glaskugeln beobachtet werden.

Am Beispiel eines industriellen Trockners mit 6,1 m Länge und einem Durchmesser

von 3,35 m wurde die Wirkung verschiedener Einflussgrößen wie Froudezahl, Füllgrad,

Anzahl und Längenverhältnis der Hubschaufeln in einer Parameterstudie analysiert. Der

Einfluss dieser Parameter auf das Hold-up, die Ausflussrate, und die Gesamtoberfläche

der Partikel wurde untersucht und ausführlich dargestellt. Anhand dieser Analyse wurden

die Praxistauglichkeit und die Genauigkeit des Modells für ein Scale-up nachgewiesen.

Letztlich wurde ein Ansatz zur Bestimmung des maximalen Ausflusspunktes hergeleitet.

Der Vergleich zwischen den experimentellen Ergebnissen und Modellberechnungen bei

Variation der Froudezahl wurde ebenfalls ausführlich diskutiert.

Schlüsselwörter: Drehrohre, Trocknung, Hubschaufeln, Schaufellängenverhältnis, An-

zahl an Hubschaufeln, Ausflussrate



Nomenclature

a, b, c constants given in Eqs. (4.31a) to (4.31c) [-]

A11 area of △FDC in Fig. 3.5(a), see Eq. (3.21) [m2]

A12 area of △OAF in Fig. 3.5(a), see Eq. (3.21) [m2]

A2k area of the sections given in Fig. 3.5(b) [m2]

Acs total particle surface area of all curtains [m2]

Acs,i total surface area of the particles in ith curtain [m2]

AC overall contact area between gas and solid [m2/m3]

A∗

f area of the circular segment BA
_

in Fig. 3.5(b) [m2]

AF,i cross sectional area occupied by the material in the ith flight [m2]

AW area of the wedge ∧OAE in Fig. 3.5(a), see Eq. (3.21) [m2]

dp particle diameter [m]

D drum diameter [m]

fB filling degree of the solid bed [-]

fcs,∑ total filling degree of the airborne phase [-]

f̄cs,i mean filling degree of one curtain [-]

fcs,i filling degree of a single curtain [-]

fD total filling degree of the drum [-]

fF,∑ total filling degree of the active flights [-]
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fF,i filling degree of the material in the ith flight [-]

Fr Froude number [-]

g acceleration due to gravity [m/s2]

G gas flow rate [kg/s]

h̄F mean curtain height [m]

H Drum hold up [kg]

H0 hold up of the flight at horizontal position [kg]

HD hold up of the dense phase [kg]

hF height of the curtain [m]

l1 radial length of the flight [m]

l2 tangential length of the flight [m]

l2/l1 flight length ratio [-]

L length of the drum [m]

9mF,i discharge rate of one flight [kg/s]

9Ma mass flow rate in the active layer [kg/s]

9Ms mass flow rate in the plug flow [kg/s]

mcs,i total mass of the particles in ith curtain [kg]

mp mass of the particle [kg]

mF,i holdup of one flight [kg]

N Drum rotational speed [rps]

nF number of theoretical flights [-]

nF,a number of active flights [-]

r position vector of the particle given by Eq. (3.52)



xiii

rH distance from the center to l1 [m]

rp radius of the particle [m]

rHS distance from center to the tip of the flight [m]

R drum radius [m]

t∗ dimension less thickness of cascade layer as in Eq. (4.4) [-]

t∗E dimension less thickness of cascade layer at flight tip E [-]

t time [s]

tF time of fall [s]

U overall heat transfer coefficient between gas and solid [W/m2/K]

v̄x mean particle velocity in the cascading layer [m/s]

vϕ particle velocity in plug flow region [m/s]

vx particle velocity in the cascading layer [m/s]

VF,i volume occupied by the material in the ith flight [m3]

x Cartesian x-coordinate [m]

y Cartesian y-coordinate [m]

Greek letters

α flight angle, see Fig. 3.1 [rad]

αs drum inclination to horizontal [rad]

β angle in Fig. 3.1 [rad]

βn modified flight angle, see Eq. (4.1) [rad]

γ kinetic angle of repose [rad]

γL kinetic angle at the final discharge [rad]

δ discharge angle [rad]
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δBE angle given in Eq. (3.86) and Eq. (3.87) [rad]

δL final discharge angle of the flight [rad]

εA characteristic angle given by Eq. (3.84) [rad]

εB filling angle of the bed [rad]

ε∗ auxialiary filling angle, see Eq. (3.23) [rad]

ζA disengaging tip angle of the bed (Fig. 3.1) [rad]

η inclination of the boundary line [rad]

ΘA dynamic angle of repose [rad]

κ auxiliary coordinate [rad]

µ coefficient of friction [-]

µm modified coefficient of friction according to Eq. (4.32) [-]

υ inclination angle between boundary line and bed surface [rad]

υ0 angle defined by equation (3.81) [rad]

ρ dimension less radial position of the boundary line [-]

ρb bulk density of the material [kg/m3]

ρs density of the particle [kg/m3]

τ mean residence time [s]

ϕ angular coordinate [rad]

ϕ auxiliary coordinate [rad]

ϕA angular coordinate at point A see Fig. 4.3 [rad]

ϕE angular coordinate at point E see Fig. 4.3 [rad]

ϕw wall friction angle [rad]

ω angular velocity [rad/s]
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Chapter 1

Introduction

1.1 Granular matter and flow patterns

Granular matter is referred as the collection of particulate material categorized as grain

sizes larger than 1 µm [1, 2]. In day to day life we observe numerous granular products,

for example, sand in hourglass, sugar, cereals, salt, cement, flour etc. Solid like behavior

can be observed when these granules form piles, or they can behave like liquid during the

flow from silos, and like gas when agitated [3, 4]. The subject of flow of these dry or wet

granular materials having wide range of applications (see Fig. 1.1) in industrial processes

is not simple to describe. The current knowledge of the granular flow studies is still not

perfect when compared with the developed studies in the field of fluid flows [5]. The flow

of granular matter can be classified into two categories: the flow confined between two

surfaces (Fig. 1.1(a)-(c)) and the free surface flows (Fig. 1.1(d)-(f)) [6]. Free surface flows

develop a flowing layer on top of a static bed which is slightly inclined to the horizontal.

They have diverse applications in various industries as well as in the geological practice

[7]. The applications include the transportation of dry/wet granules, processing in the

rotary cylinders such as kilns/dryers, discharge from silos or land slides etc.

The heaps or piles formed by the granular material are stationary until the slope

of the bed is less than the angle of repose [8, 9]. A flowing layer will be developed

when the bed inclination exceeds this angle. In case of rotating cylinders the material

is stable till the inclination of the free surface is less than the dynamic angle of repose

(ΘA) (see Fig. 1.2). Increasing beyond this angle leads to change the stability of the

system and a continuous flow of the material is possible only after the maximum angle of

stability. Distinct motion behaviors were identified for the granular matter with in the

1
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Figure 4: Different flow configurations: (a) plane shear ; (b) Couette Cell ; (c)

silo ; (d) flows down inclined plane ; (e) flows on a pile ; (f) rotating drum.

3 Rheology of dense granular flows

3.1 Dimensional analysis: plane shear

We first consider the simplest flow configuration consisting in spherical grains of

diameter d and density ρp sheared inbetween two rough plates at a shear rate γ̇

in the absence of gravity (Figure 4a). A shear stress τ then develops on the top

plate. An important remark to keep in mind is that there are two ways of shearing

the material. The first is by imposing the pressure P on the top plate. In this

case the upper plate is free to move vertically and the volume fraction Φ typically

decreases with increasing shear rate. The second consists in imposing the volume

fraction by fixing the distance between the plates. In this case, the pressure

on the top plate typically increases with shear rate. These configurations give

different results for the shear stress as a function of shear rate, but both are fully

Figure 1.1: Applications of the granular flows: (a) plane shear, (b) annular shear, (c)
vertical-chute flows, (d) inclined plane, (e) heap flow, (f) rotating drum [6]

transverse section of a rotating drum: slipping, slumping, rolling, cascading, cataracting,

and centrifuging [10–12]. The kind of motion depends on the nature of the material,

drum speed, filling degree, and roughness of the drum walls. The most common modes of

motion behaviors occur for the industrial kilns are slumping and rolling [13, 14]. During

the slumping mode the material oscillates between two angles, upper and lower angles of

repose for every avalanche [15]. However, the avalanches are not continuous in this case.

Increasing the drum speed progressively, increases the frequency of avalanches, which

then leads to rolling motion by rolling down the particles continuously. The surface of

the material becomes nearly flat for such motion behavior. This is the desired mode of

operation in the industries for a better performance of the kilns, due to the fast renewal

of the surface improves the mixing behavior. In rotary kilns the filling degree, and the

characteristics of the material changes along the length of the drum. As a result, the

rolling and slumping modes occur at different sections of the kiln depending on the filling

degree. On the other side the rotating drums can also be used as dryers in order to

dry the wet particulates in large quantities. The present study is confined to the design

studies of rotary drums as dryers having wide range of applications in the industries.
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Figure 1.2: Solids motion in a rotating drum

1.2 Industrial drying methods

1.2.1 Background of drying operations

Drying of particulates is an energy intensive operation having a major industrial signif-

icance. Some reports suggested that 7-15% of the industrial energy is concentrated in

drying operations for countries like United States, UK, Canada, and France, whereas

countries like Germany, Denmark is further extended to 15-20% [16, 17]. Since the sig-

nificance of energy has been rising, it is necessary to develop the optimal solutions by

providing minimum energy requirements. Most of the times, the particulates needs to

be dried either during the initial or final stage of operations in the processing industries.

The source of the wet particulates may be crystallizers, reactors, filters, or the material

collected from mining etc. These particulates are wet up to 20-30% in weight, which must

be often removed to a considerable extent before it is suitable for further use. In general,

they are cohesive in nature and becomes difficult to handle them during the operation.

They become free flowing again when being dried. Mostly the wet particulates needs to

be dried to remove water, however in some cases valuable solvents has to be recovered

from these particulates carefully.

Various methods are available for removing the moisture from the particulates. The

common methods of drying are dewatering techniques like natural drying operations by
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exposing the material to the atmosphere in a closed or open chamber for several days

or drying the material continuously by supplying the external heat source. There are

variety of feedstocks available for drying operations that varies from slurries, pastes to free

flowing granular materials. Drying of these materials is important for easy transportation,

to attain the desired quality of the product or storage for longer durations. As a result

a number of drying equipments had been developed during the past century depending

on several factors. The decision of selection of a dryer for a specific operations is very

critical and necessary precautions needs to be made carefully which is discussed in the

following section.

1.2.2 Selection of dryers

If the material to be dried is new then the designer does not have any prior experience

about the behavior of the product in the drying equipments. In such cases, by making

simple tests in the lab to understand the drying characteristics and the small scale

tests would become bench mark to scale up for the industrial operations. A preliminary

selection of the kind of dryer is usually made on the basis of production capacity and

the properties of the drying material. The selection of the dryer for a given material is

a difficult task in the industry which needs to be analyzed carefully from the following

points [18]

� Production capacity

� Initial moisture content

� Particle size distribution

� Drying curve

� Maximum allowable product temperature

� Corrosion aspects

� Thermal/mechanical sensitivity

� Toxicological properties.

Van’t Land [18] provided an outline for the selection of batch or continuous dryers.

Batch dryers are more suitable when the production capacities are small (<200 kg/hr) [19].

It can handle variety of materials with different drying characteristics in the same system.
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The choice between the batch dryers and the continuous dryers primarily depends on

the kind of feedstock. The most commonly used batch type dryers are fixed bed dryer,

tray dryer, agitated pan dryer, vacuum tray dryer, and agitated vacuum dryer. Vacuum

dryers are more suitable when the product temperatures are not allowed to exceed 30oC,

or when the recovered solvent is toxic. Tray dryers are more applicable for very fine and

dusty materials with particle sizes smaller than 100 µm.

Solvent	  to	  be	  evaporated	  ?	  

Par0cle	  size	  decrease	  required	  

Par0cle	  size	  >	  5-‐10	  mm	  ?	  

Maximum	  product	  temperature	  ≥	  75°C	  

Par0cle	  size	  
increased	  required?	  

Drying	  0me	  ≤	  10	  s	  ?	  

Par0cle	  size	  	  
>	  0.1mm	  ?	  

Fluid-‐bed	  	  
drying	  possible	  ?	  

Re-‐slurrying	  
addi0ves	  

Conduc0on	  
dryer	  with	  inert	  
stripping	  gas,	  
e.g.	  Plate	  dryer	  

Milling/flash	  
drying	  

Band	  
dryer	  

Flash	  dryer	  

Convec0on/
conduc0on	  with	  
rota0ng	  shell,	  e.g.	  

rotary	  dryer	  

Fluid-‐bed	  
dryer	  

Fluid-‐bed	  
dryer	  

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

No 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

Figure 1.3: Decision tree for the selection of continuous dryers [18]

In general, the continuous dryers are easy to integrate into the process with minimum

cost and less handling than batch dryers. The continuous dryers that are more important

to the industry are rotary, fluid bed, flash, and spray dryers. Fluidized bed dryers can

be used to treat for heat sensitive materials due to its ability to accomplish high heat

transfer rates. Flash dryers are used to treat nonporous particulate feeds. Rotary dryer

is probably the workhorse of mineral processing industries where large and broken solids

have to be processed. Figure 1.3 describes the flow sheet for selection of these dryers

based on feedstock and drying characteristics. In the following section we describe about

the rotary dryers and their applications. The objective of the present thesis is to provide
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detail understanding of the material distribution in rotary dryers which can be coupled

with the field experience to design the dryer.

1.3 Rotary dryers

1.3.1 Construction and operation

Rotary dryers are one of the most commonly used devices to dry granular or particulate

material due to its ability to handle wide range of feed stocks providing large throughputs.

They are often used in mineral, food, sugar, fertilizer, and metallurgical industries to

remove the moisture from the humid material and raise its temperature [20–26]. Especially

in mineral industries such as nickel, the ore collected from the mining approximately

contains 15-20% of moisture which has to be dried before passing as feed to the kiln

where the reduction of nickel takes place. The unit can also accept sticky and the heat

sensitive materials. These dryers are long cylinders rotated axially and slightly inclined

(approx. 0-5o) to the horizontal [27–29]. The size of these dryers vary from 2 m in length

and 0.3 m in diameter in pharmaceutical industires to 120 m long and diameters of 6 m

in mineral ore industries. One such dryer during the manufacture is shown in Fig. 1.4.

The process and operating parameters of these dryers are presented in the Table. 1.1.

The mechanical construction of these dryers is complicated but easy to understand as

compared to other dryer types, however the maintenance requires more manual effort.

The maintenance cost of these dryers can reach up to 10% of the investment cost per

annum.

The wet feedstock to be treated is introduced at the upstream side of the kiln and

the dried product is collected at the downstream end (Fig. 1.5). In general, the rotary

dryers can be classified based on the method of heating, such as direct and indirect rotary

dryers. In a direct heat dryers the wet feed is in direct contact with the hot air. It can be

further classified based on the direction of flow of solids and the hot gases: (a) cocurrent

(b) countercurrent and (c) cross flow (e.g. Roto-Louvre dryers). In indirect heat rotary

dryer the heat transfer occurs indirectly to the wet solids. The energy source comes

either from a high pressure steam or by the natural gas or oil passing through a series

of tubes surrounded to the circumference of the drum. The construction of this type is

more complicated than the direct contact dryers, however the heat losses to surroundings

can be minimized in this case [18, 34].

Mostly the rotary dryers are equipped with longitudinal fins/flights attached to the
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rö

ll
[3

2
]

G
re

e
n

a
n

d
P

e
rr

y
[3

3
]

(1
9
7
1
)

(1
9
7
5
)

(1
9
7
8
)

(1
9
9
7
)

G
e
o
m

e
tr

ic
a
l

D
ia

m
et

er
D

[m
]

0
.5

..
.

4
0
.3

..
.

5
.5

<0
.3

..
.
>3

D
ru

m
le

n
gt

h
L

[m
]

2
..

.
3
5

L
/D

L
/D

[-
]

4
..

.
1
0

4
..

.
6

4
..

.
8

4
..

.
1
0

l 1
/D

l 1
/D

[-
]

0
.0

8
..

.
0
.1

2
5

0
.0

8
..

.
0
.1

2
5

r H
/R

r H
/R

[-
]

0
.7

5
..

.
0
.8

3
0
.7

5
..

.
0
.8

3

n
F

n
F

[-
]

(6
.5

..
.

1
3
.1

)*
D

(7
.8

..
.

1
0
)*

D

(D
[m

])
(D

[m
])

O
p

e
ra

ti
n

g

R
ot

at
io

n
al

sp
ee

d
n

[r
p

m
]

2
..

.
7

1
..

.
1
5

1
..

.
1
5

0
.2

5
..

.
0
.5

F
ro

u
d

e
n
u

m
b

er
F

r
[-

]
0
.0

0
5

..
.

0
.0

3
0
.0

0
3

..
.

0
.0

4
0
.0

0
4

..
.

0
.0

4

D
ru

m
in

cl
in

at
io

n
β

[o
]

1
.2

..
.

3
.6

0
..

.
4
.6

0
..
.

5
.7

0
..

.
4
.6

F
il

li
n

g
d

eg
re

e
f D

[-
]

0
.0

7
..

.
0
.1

2
0
.1

..
.

0
.1

2
<

0.
1

0
.1

..
.

0
.1

5

R
es

id
en

ce
ti

m
e

τ
[m

in
]

1
0

..
.

1
5
0

G
as

v
el

o
ci

ty
U
G

[m
/s

]
0
.2

2
..

.
1
0
.7

4
..

.
5

G
as

m
as

s
fl

ow
ra

te
m

G
[k

g/
m

2
/s

]
0
.2

7
..

.
1
3
.6



8 CHAP 1. INTRODUCTION

P1: OTA/XYZ P2: ABC
JWBS080-c06 JWBS080-Vant November 1, 2011 9:37 Printer Name: Yet to Come

104 CONTINUOUS DIRECT-HEAT ROTARY DRYING

Figure 6.6 Direct-heat rotary dryer during manufacture. (Courtesy of Swenson Technology,
Inc., Monee, IL.)

Figure 6.7 Direct-heat rotary dryer installed in the user’s plant. (Courtesy of Swenson
Technology, Inc., Monee, IL.)

Figure 1.4: Direct heat rotary dryer during manufacture [18]

Dry product 

Wet feed 

Hot gas 

To cyclones 

Figure 1.5: Direct contact cocurrent rotary dryer

wall of the drum. As the drum rotates the flights lift the solid material up to certain

distance to shower them across the free gas stream [35–38] by developing a series of

curtains. In direct contact dryers hot gas is passed through the drum which provides
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enough heat to vaporize the moisture from the showering solid particles. The material

falling from the flight is advanced to a specific distance in each cascade depending on the

gas flow and various flight actions such as bouncing, and kilning. Due to the inclination

of the drum and the action of the flights, the material is transported to the other end

of the dryer. The material within the drum has been exposed to three different phases

during the drying process as illustrated in Fig. 1.6. The dense phase at the drum bottom,

dense phase or soaking period in the flights, and the airborne phase where the material is

exposed to hot air.

Gas phase 

Solid bed dense phase (fB) 

Air borne phase (fCS,i(δ)) 

Flight dense phase (fF,i(δ)) Rectangular 
flight 

ω 

Figure 1.6: Different phases of the solids in the flighted rotary drum

1.3.2 Influence of flight profiles

The effectiveness of the flighted rotary drum greatly depends on the extent and uniformity

of the gas-solid contact and the residence time of the material in the dryer, which in turn

depends on the number, size and shape of the flights. The selection of the shape of the

flight is largely governed by the behavior of flow of the particulates. The most commonly

used flight profiles are shown in Fig. 1.7. In general, rectangular flights are mostly used

for free flowing bulk materials. Radial flights are used for sticky materials and circular

flights are applicable for developing a uniform distribution of the particulates.
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Figure 1.7: Common flight profiles: (a) radial flights, (b-d) angular flights, (e) rectangular
flight, (f-h) circular flights

Different flight shapes are employed in the standard dryer designs to accommodate

the change in flow properties of the material during the drying along the length of flighted

rotary drum [39]. Radial flights with 0o lip are employed in the first third of the drum

from the feed section, flights with 45o lip are used in the second third of the drum,

whereas the rectangular flights are equipped when the material becomes free flowing at

the discharge end [40]. The uniformity of the flying curtains may be attained by providing

an offset between the flights along the drum length for every 0.6 m to 2 m. The cross

sectional image of an industrial rotary drum with interior flight arrangement is shown

in Fig. 1.8. In some cases, the spiral flights are used for few meters at the feed section

of the drum for a quick forward flow of the feed from the chute or conveyor to prevent

leakage of the material. Long chains are attached under the flights in order to scrape the

sticking solids, however these chains contribute significantly for the heat transfer leads to

use another mechanism. The effective way of removing the solids sticking to the flights

can be done by using external shell knockers. Use of internal flights in the rotary dryers,

increases the difficulties of maintenance due to the less space available for any person to

enter and clean the inner shell of the drum. Sometimes the flights can be omitted before

the discharge of the product in order to avoid the excessive solid entrainment by the gas
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SWENSON DTB crystallizer and 4' diameter x 25' parallel-flow rotary

dryer and cooler

Interior of rotary dryer showing flights

12" diameter by 8' long rotary dryer for laboratory use in pilot testing. 
Convertible to either direct fired or warm air / counter or co-current

operation

SWENSON 5' diameter x 25' CCDH dryer

13'6" diameter x 90' long PCDH dryer for soda ash
Figure 1.8: Cross sectional view of rotary dryer with flights (Swenson, Inc., Harvey,
Illinois)

in cocurrent operation of the gas-solid system [30].

In general, the flight should be occupied to its maximum extent so that the formation

of curtains can occur when the flight is in the upper half of the drum. The flight elevate

the material and cascades into the airborne phase. This happens to be be a periodic

process where each individual particle in the airborne phase is exposed to hot conditions

thus increasing the rate of drying. Therefore, the performance of the drum mainly depends

on the amount of material in this phase which is controlled by the design and the number

of flights. Other parameters that also influence the rate of drying: residence time, drum

speed, gas velocity, and drum inclination. For a proper design of the flight the entire

cross section of the drum should be covered with a shower of material.

1.3.3 Influence of drum loading on drying rate

There are three different states of the drum loading that can be observed within the

rotary dryer, which is characterized based on the first unloading of the flight [27, 41, 42].

If the flight discharge starts when it is in the upper half of the drum, it is said to be

under-loaded. In such conditions, the time spent by the particles in the airborne phase is
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(a) Under loaded

(b) Design loaded

(c) Overloaded

Figure 1.9: Different loading conditions of flighted rotary drum
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minimum, which can lead to smaller residence times than required. This kind of loading

is illustrated in Fig. 1.9(a). As the loading state of the drum is gradually increased, first

unloading position of the flight is ultimately decreased and at some point the unloading

starts when the flight tip is at 0o. At this point the drum is said to be design-loaded

(Fig. 1.9(b)). In this case maximum amount of material is distributed in the airborne

phase, hence the maximum heat transfer can be expected between the solids and the

hot gas stream. Further increasing the feed rate does not increase the airborne solids,

but the flight is completely crowded with the material which is defined as over-loaded

drum (Fig. 1.9(c)). The discharge of the material in this case starts immediately as the

flight tip detaches from the bed surface. Increasing the drum loading further can only

roll the material in the lower half of the drum but the flight can not increase its carrying

capacity. Hence, increase in drum loading increases the bed height thus decreasing the

falling height of the material further reducing the drying rate. Therefore the efficiency

of the dryer depends on the uniformity of the material distribution over the dryer cross

section.

The key design parameters having influence on the material distribution include:

diameter of the drum (D), geometrical parameters of the flight (l1, and l2), total number

of flights (nF ), material properties such as the particle diameter (dp), dynamic angle of

repose (ΘA). All these parameters affect the heat transfer in the dryer. The particles

falling, sliding into the drum space may develop fine fragments after impacting the shell

or flight sheets, since the fall height is almost equal to the drum diameter which results

the dust to escape with the exhaust gas. Therefore these dryers must be operated in

such a way that the excessive dusting should not take place and the material should

stay enough time in the drum for uniform drying otherwise it can result non uniform

drying. Entrainment of fine particles in the system like large drying equipments is a great

challenge for the designers to accomplish a balance between the dryer performance and

economical situations. As increase in the drum diameter or decrease in the particle size

will lead to excessive dust, which must be accounted during the design. In some industrial

dryers the dust can be recovered by employing cyclones or bag collectors at the discharge

end of the drum. The recovered material may be a fine particles or highly expensive

materials which can be introduced into the process by recycling into the feed section again

[40]. On the other side increasing the number of flights increases the number of curtains

which in turn increases the gas-solids contact area. However increasing or decreasing

this number solely depends on the flight geometry. As increasing the tangential length
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of the flight, this number decreases consequently the number of curtains, whereas the

final discharge angle increases. As the final discharge increases the material distribution

in the upper half of the drum increases which in turn also increases the contact area.

Therefore, there exists an optimal solution for the gas-solid contact area which is the

primary objective of the present work.

1.3.4 Design and Scaleup

Design of any dryer for drying of an existing product with the help of the earlier experience

is easy. However, drying of new material in rotary dryers is a challenging task due to

the lack of previous experience in handling the feedstock. Therefore, initially the drying

characteristics of the material needs to understand by performing simple bench scale

tests. The test data collected from the experiments carried out in a pilot plant will serve

as a bench mark with the field experience of the rotary dryers to scale up from the pilot

plant to the production scale.

The pilot plant experiments will be performed to understand the material distribution

for different design parameters, solid transportation, and heat and mass transfer studies.

Since there are many operating parameters that influences the quality of the product,

large number of tests need to perform to know the effect of design parameters. Hence a

mathematical model can be developed by representing the ideal behavior of the dryers

which can be then used to simulate for the production scales after validation of these

models. In order to validate the model, dried materials with ideal flow behavior will be

selected to collect the test data from the bench scale experiments. During the scale up of

the drum, the scaling of flight design should maintain constant and the Froude number

of both the pilot plant and real scale must be same [41].

1.4 Thesis outline

The objective of the present thesis is to study the rectangular flight design to enable

uniform material distribution which can be used as a bench mark to scale up from the

pilot plant to industrial sizes. For this purpose, a mathematical model is developed to

determine the dense phase of the flights which is used to predict the unloading behavior

of the flights. Geometrical approach has been followed for this purpose. As the flight

unloading characteristics primarily depends on the kinetic angle of repose, hence more

attention is devoted to extend the model of Schofield and Glikin [43] by incorporating
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the inertial force at the flight surface. Further, the geometrical model is extended in

order to predict the total surface area of the particles in the airborne phase and different

phases of the drum using the basic principles which is presented in detail in Chapter 3.

Chapter 4 is devoted to obtain the flow behavior of the active layer at the flight surface.

Eulerian approach has been followed by considering the granular flow as continuum. The

mathematical formulation and the solution procedure is presented in detail. In Chapter 5,

the description of the experimental setup and the parameters operated for the experiments

has been discussed.

Validation of the extended model of kinetic angle of repose, and the geometrical model

are addressed in Chapter 6, for different flight designs (rectangular shape) at various

rotational speeds, filling degree and different flight numbers. In Chapter 7, the analysis

of the experiments for different materials and their unloading behavior has been studied

with the aid of images collected for different conditions. The scaling of the drum to the

industrial dimensions along with the parametric study is also discussed.
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Chapter 2

Literature review on flighted

rotating drums

Research on rotary dryers has evolved continuously from past few decades. Many re-

search articles had been published till date on the subject of the flighted rotary drums

involving various applications. Due to its wide range of industrial applications a sig-

nificant contributions had been made understanding these units both theoretically and

experimentally. Simple models to complex physical models are available in the literature

to describe them mathematically. The literature on this subject has been divided into

geometrical models, residence time studies, empirical relations on heat and mass trans-

fer effects. The review of the articles in the context of each subject is presented in this

chapter.

2.1 Geometrical models on transverse particle flow

A large amount of contributions had been devoted to predict the solids transport in

rotary dryers. Various geometrical models were developed to demonstrate the discharge

characteristics of a flight [44–47]. The quantity of material present in the flight at any

given position can be traced if the surface angle of the material over the flight is known.

This angle is named as the kinetic angle of repose (γ). Many researchers attempted to

predict the kinetic angle as a function of the flight position. The angle was first calculated

by Schofield and Glikin [43] by balancing the forces acting at the tip of the flight while

neglecting the thickness of the material flowing over the tip. The resultant force balance

equation had been validated with the experimental drum filled with glass spheres [44]

17
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and pumice granules [45], by taking the photographs of the drum. The angle of repose

is calculated from the resultant images and compared with the theoretical values of

it. It was suggested that the practically operated range of Froude numbers for rotary

dryer is in between 0.0025 to 0.04 [46]. However, the deviations for this equations were

observed only for Fr above 0.4 [44]. The experimental setup of Kelly [48] consists of a

rotary drum which has eight circular flights mounted at an equal angular distance of 45o

around the internal circumference of the drum as shown in Fig. 2.1. The kinetic angle

was calculated from the images for various conditions (particle size and drum speed),

which is used further to compute the kinetic coefficient of friction. It was found that as

the particle size decreases below 500 µm, the friction coefficient also decreases, however

above this range it is constant. Recently Lee and Sheehan [49] proposed that this angle

maintains a linear relation with the rotational speed of the drum which is presented in

empirical form.

Figure •. Apparatus for measurement of kinetic angle of repose. 

Facing page 39 

Figure 2.1: Experimental setup of Kelly [48] to measure kinetic angle

The holdup of a single flight as a continuous function of the tip angle was formu-

lated with geometrical approximations to demonstrate the particle distribution veloci-

ties through the drum [46]. The average approach technique had been followed by Glikin
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[46] to predict the mean height of fall. Baker [37] successfully extended this work to com-

pute the holdup of the angular and extended circular flights. The maximum number of

flights to be installed for a given design of the flights were also investigated in his study.

These studies had shown that the researchers concentrated primarily on the design

of the angular flights with two segments alone. Kelly [50] proposed a method in order to

get the optimal and equal distribution of the particles over the drum cross section with

an idealized flight profile named as Equal Horizontal Distribution flights. The design

of this flight is done on the basis of discharging equal quantity of material between any

two discrete locations. This will improve the efficiency of the dryer, however it was not

practical to implement in the industries for sticky and wet materials. Also the complex

structure of the flight is complicated to manufacture. The design of the flights with three

segments was the study of Revol et al. [51]. A generalized model was developed to find

the holdup and flux of solids, which can also be implemented to two segmented angular

flights. This study had been further used to predict the power required to elevate the

solids. This model showed poor validation with the measurements towards the solid flux,

which the authors opined due to the influence of the flight geometry on the surface angle.

Wang et al. [52] addressed some issues regarding the average value approach which is

insufficient at high deviations over the mean value, and pointed that no model has been

developed to describe the behavior of the flights with arbitrary geometry. A model has

been developed in order to address these issues for particle transport in the flighted rotary

drums using differential approach. The change in cross sectional area of the material in

the flight had been used to predict the discharge rate of the flight. An outline was also

proposed for the optimization problem to achieve the maximum drying efficiency, which

is again an open challenge for the next investigation. The calculated discharge flow rate

was validated with the experiments and it is found that the measurement errors are as

high as 33% which can not be regarded as acceptable. The average porosity and width

of the curtains have been calculated theoretically based on these studies. Wang et al.

believed that the retention time has the influence of bouncing and kilning actions and

needs to be implemented in the model. A normalized model was developed by linearizing

the flight holdup as a function of angular position to depict the discharge characteristics

of particles [53].

Recently Van Puyvelde [54] described a GFRLift model to predict the holdup profile

of the complex geometries. The area occupied by the material in the lifters had been

predicted based on the geometrical analysis by approximating the influence of arc of the
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cylindrical drum as linear. He observed that an inclined flight holds higher amount of

material when compared to the one perpendicular to the drum wall. The radial lifters

attain higher solids flux when compared to any other flights that were presented in

his study. Lee and Sheehan [49] also developed a geometrical model to determine the

holdup and unloading profile of two segmented flights. They pointed that the model was

sensitive to the mean angle of repose and it should be measured accurately in order to

eliminate the experimental errors. The experiments were performed to find the mass flow

rate of the solids discharging from the flight using four 50 kg button load cells. They

found fluctuations in the discharge of the flight from the experimental images which

depict that the unloading of the flight is not a continuous process. These fluctuations

are independent on the drum speed and the flight position.

Image analysis techniques had been followed in order to estimate the optimum loading

of these drums [42]. The authors presented four different approaches to predict the design

loading of the flighted rotary dryers: visual analysis approach, gradient of total flight

dense phase (both in upper half and lower half of the drum), saturation of the air borne

phase, saturation of the total flight dense phase in the upper half of the drum, and

saturation of the first unloading flight. The first approach involves the prediction of first

discharge of the flight while operating at different loadings of the drum. The design

loading is presumed to be the point at which the flight unloading starts when the tip

of the flight meets the horizontal axis. This approach is a time consuming process and

can mislead due to the fluctuating nature of the flight discharge. In the other cases, it

was observed that the saturation of the air borne phase and the flight dense phase in the

upper half of the drum produced similar profiles. However with these approaches more

accurate prediction of these areas is necessary.

2.2 Axial solids transport

Mean residence time (τ) is a promisingly influencing parameter in rotary dryers which

defines the quality of the product. Smaller residence time causes uneven drying of the

feedstock, whereas the higher residence times lead to over drying of the material which

involves huge energy loss to the industry. Therefore it is necessary to investigate the

optimal residence times of the particles which can provide the desired nature of the

product. It can be defined as the average time spent by the particles from the feed

end to the discharge end. It is dependent on the particle flow direction involving the

solid-gas interactions and the movement in the dense phase (in flights and at the drum
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bottom). The forward motion of the particles occurs by the combination of three different

mechanisms [28, 55].

� Flight action

It occurs due to the lifting of material by flight and cascading into the gaseous

stream. During this period the material falls freely under the influence of gravity

to a distance almost equal to the drum diameter. In each cascade the material

moves forward to a certain distance due to the drag by gas and the inclination of

the drum.

� Kiln action

The forward movement occurs at the bottom half of the drum due to the rolling of

the material on the flight surface or over itself. It can be observed more at higher

filling degrees or if the number of flights increases.

� Bouncing

In this case, the forward motion of the particles occur due to the bouncing when

the particles impact on the rolling bed or the flight sheets. This action can be

noticed more in design loaded or under loaded drums.

Most of the earlier research had provided empirical [56] and theoretical models to

describe the axial transport. Saeman and Mitchell [57] developed the following equations

for retention time as a function of the gas velocity (ug) and length of the drum (L).

τ = L

f(H)ND(φ ±mug)
, (2.1)

where, f(H) is a cascade rate of the particles per one revolution of the drum, and it can

vary from 2 for underloaded dryer to π for fully loaded dryer with small flights while H

is flight holdup. Constant m is an empirical coefficient which depends on the nature of

the material, it holds 0.005 for Ammonium nitrate in a 1 ft diameter dryer. N is the

number of revolutions, diameter of the drum (D), and φ is the slope of the dryer (tanαs).

Positive symbol in the equation applies for cocurrent flow and negative symbol stands for

counter current flow of the gas. Later, Matchett and Baker [27] extended this work by

proposing similar kind of expression using a two phase analysis, but providing a relation
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for the empirical constants f(H) and m

τ = L

f(H)ND(φ ±mV ) ,

when, f(H) = a

2Nt∗a + 1
,

m = 2t∗a
anD

,

(2.2)

where, t∗a is the average time of fall under design loaded condition, an dense phase velocity

number, and V is the velocity of the cascading particles. The relation between particle

velocity (V) and gas velocity had been found from the measurements such that V = Cung ,

where 2.65 < n < 3.76. The authors did not accounted the influence of the flight geometry

and flight number.

Matchett and Sheikh [58] improved this two stream model by considering the influence

of number and shape of the flights. The dense phase holdup has been modified by

introducing a new constant Φ

HD = ΦnFH0 ,

where,Φ = ∫
0
H0
δdH

πH0
+ 1

nF
.

(2.3)

The constant Φ is determined from the experiments for the underloaded and design loaded

conditions, nF is number of flights, and H0 is flight holdup when flight angle δ = 0. It

is the function of flight geometry and number of flights. The mean residence time was

determined from the total drum holdup (total dense phase (HD), and airborne phase),

and solids feed rate. Miskell and Marshall [59] found that the residence time is normally

distributed by passing a radioactive tracer into a 140 mm diameter drum. Johnstone and

Singh [60] proposed the following expression in order to show the dependency of drum

characteristics on the average particle residence time

τ = 0.043(LΘA)1/2

NDφ
, (2.4)

where, τ is mean residence time (min), ΘA is dynamic angle of repose of the material (o).

The significance of the constant in the equation includes the influence of the flights in

rotary drums. This equation is only valid for the dryers without any gas flow, since there

is no term included in the equation which can incorporate the effect of gas flow, therefore
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it over predicted the residence times. This model is the extension of the earlier works

of Sullivan et al. [61], where he proposed the similar equation for rotary dryers without

flights. The authors primarily concentrated on the solid transportation but without

considering the effect of gas flow.

Kamke [62] investigated the axial displacement of the particles due to the influence of

the gas flow. Mostly his study had concentrated on the drag force acting on single particle

by the gas stream and these studies over predicted the non-ideal characteristic nature

of the rotary dryer, where the particles are being prevented to be displaced from the

gas stream due to the shielding effect offered by the neighboring particles. Sherritt et al.

[63] performed experiments in a wind tunnel by pouring the particles forming curtains

into a gaseous stream in order to address the shielding effect of the curtains. A velocity

correction factor for gas velocity was introduced to incorporate this effect. Due to the

developing trends of the continuum approaches for the fluid systems focused to apply

for the granular and gas flow systems. Therefore these approaches had been successfully

applied for a single curtain by considering the gas as a continuous fluid phase and the

solid phase as a dispersed phase [64, 65].

Kamke and Wilson [66] proposed a model to predict the retention time also by con-

sidering drag acting on a single particle. The longitudinal advancement of the particle

xl per cascade was given by the following expression

xl = ugtF +
1

K
ln{ cos(tan−1(ug/a1))

cos(−a1KtF + tan−1(ug/a1))
} . (2.5)

where a1,K are constants depending on the drum inclination and drag coefficient respec-

tively. Using the above relation the total residence time can be determined by the total

number of cascades times the sum of time of travel at flight surface and the time of fall.

The model has been validated with an experimental drum of 1.2 m in diameter and 5.5 m

in length, with six centered flights and 12 flights installed to the outer shell of the dryer.

The experiments were performed with wood particles having a sphericity of 0.75 and

exposed to hot gas stream in cocurrent passion. The retention time was measured by in-

jecting a radioactive tracer particles at the inlet along with the feed. They noticed that

within a curtain, the particles may be effected by the other particles and shielding of the

gas flow can also occur. Due to this the model over predicted the data collected, since

the model assumes that the particles are independent to the gas flow. They noted that

the particles may be attributed as a bulk material and the mean diameter can be used
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in order to measure the drag coefficient. It has been found that the root mean square er-

ror was 109.6% in the case of discrete particle size where as, in case of mean diameter it

was around 14.2%.

Friedman and Marshall [28] studied the holdup and dusting in the dryer with various

materials. Higher values of the holdup in the dryer was observed with the materials such

as saw dust and wood chips for a given feed rate due to the higher values of angle of

repose. They also investigated the effect of number of flights against the dryer holdup.

In order to maintain constant dryer holdup, it is suggested that the feed rate should be

decreased when the number of flights are increased.

A two stream model was developed by Matchett and Baker [27] in order to obtain

a relation for the mean residence time of the particles in the drum. This was done by

subdividing the material into two phases: airborne phase and dense phase. The flight

borne solids and the solid bed at the bottom were considered as one single dense phase.

However, this treatment was not sufficient enough to represent the behavior of the drum.

Since, with this approach it is difficult to determine the quantity of material in the

non-discharging flights accurately. Also, the authors neglected the bouncing and kilning

mechanisms which are more dominant in under-loaded and design-loaded drums. Further,

they also obtained a transition point from the experiments between the under-loaded and

over-loaded drums, where this transition region was considered as the condition for design-

loaded drums [67]. Sherritt et al. [38] proposed a model to estimate the contribution of

each phase (dense phase of the solid bed, dense phase of the flights, and air borne phase)

for over-loaded and under-loaded drums based on the surface length of the flight. The

total holdup of the material at any cross section becomes the sum of the holdups of each

phase.

In a recent study, Ajayi and Sheehan [26] proposed a method to estimate the design

load of the flighted rotary drum experimentally using image analysis techniques. The

design load condition was presumed to be the point of loading where the cross sectional

area of initial discharge of the flight was saturated. They also presented an approach to

determine the airborne phase by measuring the cross sectional areas of all the curtains

the voidage of which they obtained from CFD simulations. It was found that the material

in the air borne phase increased as the rotational speed increased.

However, these models were developed by assuming that each particle spend the same

amount of time in the dryers, whereas in reality this is not true. In order to address

these limitations the compartment models had been developed by dividing the dryer into
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number of slices and that each slice is considered as combination of ideal reactors [68–

71]. The solid transport takes place between each slice and this system can be considered

as reactors connected in series. Duchesne et al. [68] proposed two models to represent

the solid transportation within the dryer. The modified Cholette-Cloutier model was

able to reproduce the dynamic nature of the particle transportation that occur in the

real dryer system, which is further used to predict the bed depth and axial profiles.

Sheehan et al. [72] extended this model by considering the material transport between

the dense phase to the current and subsequent active phases. This model was able to

give better predictions for the filling degree variations along the drum length. Recently

a probabilistic approach had been followed by [73] to analyze the particle motion by

combining the transition phase of the particle between the flights and axial movement.

However, this approach had been applied to a very simple case of considering four radial

flights and needs further investigation to employ for the industrial units.

2.3 Heat and mass transfer

Heat transfer in rotary dryers is a complex phenomenon due to the influence of different

modes of transport mechanisms. It includes various transfer surfaces such as covered

drum wall-contact bed surface, gas-exposed surface of the bed, gas-solids at the flight

surface, and gas-solids in the airborne phase. Among all these mechanisms, the most

significant heat transfer surface is the contact area between the gas-solids in the airborne

phase. As in this case each solid particle in the curtain is exposed to the gas stream

leading to rapid drying or cooling rates.

There has been numerous studies available in order to predict the heat transfer be-

tween the hot gas and the curtain of solids [74–80]. The key parameter that mainly

controls the gas to solid heat transfer is the cascading rate of the flight [57]. It involves

predicting the total particle surface area that is chiefly responsible for the heat and mass

transfer. It can be regulated either by varying the Froude number of the drum or the

flight length ratio. In general, industrial rotary drums operate at particular Froude num-

bers, in order to attain required throughput, filling degree and residence time. Therefore,

the other possibility is to vary the flight length ratio in order to achieve the optimal cas-

cading rates to give a better performance. No major predictions were carried out till

now to address the surface area of the particles that is in contact with the hot gas.

Friedman and Marshall [28] developed an empirical relation for the volumetric heat

transfer coefficient (U) and studied the influence of number of flights (nF ), rotational
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speed, and the feed rate for different materials

UAC = 0.477

D
(nF − 1

2
)G0.46 , (2.6)

where AC is the overall contact area between gas and solid, and G is the gas flow rate.

The factor with the number of flights in the equation signifies the number of curtains

[81]. The volumetric coefficient was observed to be smaller when no flights were used,

and a significant improvement had been observed while increasing the number of flights

to two and four. No rapid change was observed when increasing the flight number to

eight.

Saeman and Mitchell [57] developed a relation for the volumetric cascade rate which

was studied against the heat transfer coefficient in order to estimate the performance

of the dryer. The estimated heat transfer factor was observed to be decreased as the

number of rotations increased. This is due to the fact that the air-material entrainment

ratio decreased as the curtain density had increased. However, the variation of cascading

rates due to the change in flight length ratios were not investigated. According to Porter

[44], the concentration of the falling curtains in the gas stream depends on the ratio of

cascade rate to the exposed surface of the series of curtains, however this ratio should not

exceed 1.3 min−1 but it can be increased by experience. The shielding effect of the falling

particles depends on the number of layers formed during the formation of the curtain.

A boundary value for the number of particles falling from the flight was proposed by

Hirosue and Mujumdar [82] based on a single layer assumption. An empirical relation

was determined to estimate the correction factor in order to evaluate the influence of

the surrounding particles in the gas stream. It was found that this factor stands close

to unity when the density of the falling particles was small and becomes smaller than 1

as the curtain concentration increases [83]. According to Blumberg and Schlünder [53],

the performance of the dryer mainly depends on the contact area between the particles

and the hot gas, which depends on the distribution of the material over the drum cross

section. The effective transfer area was calculated based on the mean height of fall and

the number of flights. However, this approach can lead to greater area of heat transfer

than is possible.

In the recent studies, heat transfer analysis of the curtain falling into a duct while

passing a stream of hot gas was studied by Wardjiman and Rhodes [84]. The authors

developed a basic model for the single particle to evaluate the temperature variations of
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the curtain. They assumed uniform gas flow across the curtain, however in practice a

non uniform flow exists under these circumstances.

2.4 Summary

Among all these studies either the geometrical modeling or the studies of gas-solid contact

area are independently existing. Many authors had focused on determining the holdup

of single flight and its unloading characteristics. Using these studies the exposed area

between gas-solid and the material distributed in the drum phases can be determined.

However, very less contribution has been made to model the combination of the gas-solid

contact area and determining each phase of the drum depending on the flight length ratio.

Therefore the present study was focused on determining the optimal contact area for a

rectangular type flights, by developing an independent model for the flight borne solids

which is easy to extend to other flight types. Also no attempt has been made till date

to extend the model of Schofield and Glikin [43] as it assumed a thin/single layer at the

flight surface although there exists an active flowing layer. Therefore, another approach

has been followed in this thesis to determine kinetic angle of repose by considering an

active layer at the flight surface.

After having the detailed description about the rotary dryers and presenting the

contributed literature on this subject, the next chapter presents the development of the

geometrical model for different phases of the drum.
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Chapter 3

Geometric model of transverse

granular flow

3.1 Dimensionless parameters

The study of transverse motion of granular flow is significantly important in flighted

rotating drums to determine the gas-solids contact area. The gas-solids contact area

responsible for heat and mass transfer due to lifting flights is the total surface area of

the particles flowing down with the curtains. In order to predict this parameter, it is

necessary to estimate each phase of the material present in the drum, and the height

of fall of the particles. Therefore, the dense phase of the flights and the height of fall

can be determined from the geometrical approaches. Then from the mass balance and

basic principles the other two phases can be modeled. In order to scale the drum from

laboratory scale to industrial scale, the dimensionless approach has been followed for the

modeling. The dimensionless parameters used in the study for the rotary drum with

rectangular flights are described as follows.

Radial length of the flight (l1) and tangential length (l2) are the typical dimensions

of the flight cross-section as shown in Fig. 3.1. The effective radial distance (rH) of the

flight is given by

rH
R

= 1 − l1
R

, (3.1)

where R is the radius of the drum. The characteristic angle made by the tangential

length of the flight (l2) to the effective radius of the flight (rH) is

29
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R-I:  (δ −α ) ≤ γ

R-III:	   R-II: 	    γ < δ −α ≤ (γ + β )

 ΘA

 ε A

Figure 3.1: Schematic diagram of flighted rotary drum with design parameters

tanα = l2
rH

. (3.2)

The ratio between l2 and l1 is given as

tanβ = l2
l1

. (3.3)

Flight tip radius (rHS) is defined by the following equation

rHS =
rH

cosα
. (3.4)

The Froude number (Fr), which is usually related with the centrifugal force to the grav-

itational force in the rotating drums, is given by

Fr = ω
2R

g
, (3.5)

where ω is the angular velocity of the drum.
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3.2 Model assumptions

� Free flowing and non-cohesive material

� The drum is assumed to be either design or over-loaded

� Uniform axial profile and no gas flow

� Free and vertical fall of the particles from flight tip (vertical drag and axial drag

is neglected)

� All particles in the airborne phase behave independently

� Considered one axial section of the dryer

δ=0

Figure 3.2: Experimental image of the drum with flight unloading at δ = 0

3.3 Granular flow at the flight surface

3.3.1 Model of Schofield and Glikin

The quantity of material available in the flight can be determined as a function of the

discharge angle if the free surface of the material flowing over the flight surface is known

which is called as kinetic angle of repose. The free surface of the material in a rotary drum

operated under rolling motion with no internal flights, forms an angle with the horizontal
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known as dynamic angle of repose. Initially, the bed surface remains stable till the slope of

the material is increased to the upper angle of repose or the maximum angle of stability

[11, 15] and the avalanche occurs when the surface angle exceeds this angle. Further

increasing the speed of the drum leads to rolling motion due to increase in the frequency

of avalanches. Whereas in a flighted rotating drum, the material resting on the flight

surface is being tilted due to the rotation of the drum, and the avalanches will start when

the tilting surface of the material exceeds the maximum angle of stability [85–87]. At this

point, the material organizes itself to reach the angle of repose by transmitting the extra

material through avalanche and try to achieve the stable position. However, the change

in the flight position imposes to exceed the maximum angle of stability again and further

cascades a discrete amount of material. Therefore, the avalanche formation depends

on the frequency of material surface reaching the upper angle of repose, rather than

change in the flight position. Increasing the frequency leads to roll down the particles

continuously over the surface of the static material in the flight which depends on the

drum speed.

As the particles at the flight surface already at the maximum angle of stability, the

flight starts cascading immediately while the tip of the flight is at horizontal position

(δ = 0) (see Fig. 3.2). This will continue till the material in the flight is being emptied at

certain angle less than 180o. Since, it is unsure that when the avalanches will occur, a

mean surface angle or kinetic angle of repose (γ) can be considered by assuming only a

layer of particles flowing over flight surface and the surface to be flat. It is the material

property that depends on the position of the flight (δ), Froude number (Fr), the geomet-

rical properties, cohesion of the material, and also on the coefficient of dynamic friction

(µ = tan ΘA). It was first calculated by Schofield and Glikin [43] by balancing the forces

acting at the tip of the flight. The rolling particles on the surface of the flight are being

influenced by the gravitational (FG), centrifugal (FC), and frictional forces (FF). The

Inertial force and the Coriolis forces were neglected. The block diagram of representing

the forces acting at the tip of the flight is shown in Fig. 3.3.

ΣF = FF + FN + FG + FC = 0 (3.6)

Normal force acting perpendicular to the bed surface is given by

FN = FG cosγ − FC sin (δ − γ) . (3.7)
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FC FF sin( )C δ γ−

γ
FF

C FN

F cos( )C δ γ−

F sin( )C δ γ
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F cosG γ

F sinγ
δ

GF sinG γ

Figure 3.3: Force balance diagram of a particle during the time of falling from flight

The resultant force acting parallel to the bed surface is given by

FF = FG sinγ − FC cos (δ − γ) . (3.8)

Gravity acting on the particle of mass mp is given by

FG =mp g . (3.9)

The particles that are ready to fall from the flight will undergo to the centrifugal force

FC =mp ω
2rHS , (3.10)

where, rHS is the radius formed by the tip of the flight From Coulomb’s law of friction,

the resultant force is the coefficient of frictionµ times the normal force

FF = µFN . (3.11)

Rearranging the above equations to get the kinetic angle of repose as a function of Froude
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number, and tip angle (δ) to the center of the drum

tanγ =
µ cosα + Fr(rH

R
)(cos δ − µ. sin δ)

cosα − Fr(rH
R

)(sin δ + µ cos δ)
. (3.12)

The kinetic angle (γ) approaches dynamic angle (ΘA) as the Froude number approaches

to 0, and
dγ

dδ
= 0.5 while Frm=Fr(rHS

R
) = 1. One important limitation of this equation

is, it is applicable only to the free flowing materials but not to highly cohesive solids,

sticky and wet materials [37].

3.3.2 Extended model

The model of Schofield and Glikin [43] assumed only a layer of particles exists at the

flight surface while determining the kinetic angle of repose by including centrifugal force

and neglecting inertial force, although a flowing region exists similar to cascading layer

in the drums without flights. Better prediction of this angle is truly important since this

parameter is responsible to determine all phases of the drum. Therefore in the present

study the model of Schofield and Glikin [43] has been extended by assuming a active layer

at the flight (see Fig. 3.4(a)) and also incorporating the inertial term. The modified force

balance diagram for this case is shown in Fig. 3.4(b)

FF + FI = FG sinγ − FC cos(δc − γ) , (3.13)

where δc = γ − θ ± 90, ’-’ is for δ < γ and ’+’ for δ > γ, and tan θ = xE/(−R cos ε∗). The

resultant force acting vertical to the bed surface is given by

FN = FG cosγ − FC sin (δc − γ) . (3.14)

The particles that are ready to fall from the layer over the flight surface will undergo to

the centrifugal force

FC =mp ω
2rdHS , (3.15)

where rdHS is given by

rdHS =
xE

sin θ
. (3.16)
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Figure 3.4: Representation of active layer at the flight surface a) Influencing variables
b) Modified force balance diagram
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The flow motion at the flight surface induces inertial force which can be expressed as [88]

FI = mpv̄x
dv̄x
dx

, (3.17)

v̄x is the average velocity of the particles in the active layer. After simplifications of the

above equations and rearranging, the final form of the kinetic angle is given by

tanγ =
µ + Fr(rdHS

R
)(cos δc − µ sin δc) + Fr

v̄∗x
cosγ

dv̄∗x
dx∗

1 − Fr(rdHS
R

)(sin δc + µ cos δc)
. (3.18)

here v̄∗x =
v̄x
Rω

and
dv̄∗x
dx∗

= v̄
∗

x ∣A − v̄∗x ∣E
x∗A − x∗E

. From the above equation, at Fr=0 i.e. when the

drum is at rest, γ = tan−1 (µ). The detailed description of the velocity gradient term has

been presented in Chapter 4.

3.4 Flight holdup

The discharge characteristics of a flight (i) depends on the geometrical lengths of the

flight, kinetic angle of repose, and the discharge point of the flight (δ) at a given Froude

number. The bulk mass occupied by the flight mF,i(δ) can be calculated from the bulk

density (ρb), and the volume occupied by the material in the flight VF,i(δ) at a given tip

position as

mF,i(δ) = ρbVF,i(δ) = ρb ⋅L ⋅AF,i , (3.19)

where, AF,i is the cross sectional area of material occupied by the flight, and L is the

length of the drum. Divide above equation with the total volume of the cylinder in order

to scale the drum at higher size ratios. Most of the earlier works include empirical models

and non dimensional analysis of the rotary dryers. The scaling methodologies published

in this area are very limited including drum without flights [89]

mF,i(δ)
ρb πR2L

= AF,i(δ)
πR2

= fF,i(δ) . (3.20)

The filling degree of the flight fF,i(δ), is the volume of the material occupied by the

flight per unit volume of the cylinder. According to Glikin [46], it is difficult to develop

a single relation for the flight holdup during the period of discharge, hence each region is
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considered individually in order to represent it as a continuous function of the discharge

point.

Three different regions (R-I, R-II, and R-III) can be identified along the discharge of

the rectangular flight such as shown in Fig. 3.3. In the region-I, the material will have

the influence of drum wall and mostly supported by the radial length of the flight. The

transition to the region-II occurs when the flight tip exceeds the kinetic angle γ. Here,

the tangential length of the flight influences the material discharge, whereas in region-III

the material has been influenced by the flight surface alone. Since the material expose

to different transitions during the discharge, it is difficult to derive a single expression

to describe the complete unloading profile of the flight. Therefore, each transition can

be represented by an independent equation for the holdup of the flight [88, 90], which is

clearly described in the following.

Region I (δ ≤ γ): The formation of the regions is categorized based on the discharge

angle. The first region can be observed between the points, where the flight comes out of

the bed and the position of the flight tip is lower than the kinetic angle of repose. Area

of the material occupied (AF,i) by the flight in this region can be found by the following

expression (from Fig. 3.5(a))

AF,i = AW −A11 −A12 . (3.21)

The individual areas of this expression are given by

AW(∧OAE) = (γ + ε∗ − ϕ) ⋅ πR
2

3600

,

A11(△FDC) = 1

2
⋅ FD ⋅ l2 ,

A12(△OAF) = 1

2
⋅ h ⋅R ,

(3.22)

ε∗ is the auxiliary filling angle formed by the surface of the material in the flight, and

can be expressed as

ε∗ = arccos [(rH
R

) ⋅ cos(κ − γ)
cosα

] . (3.23)

The length FD can be found from

FD = l2 ⋅ tan (ϕ − γ) , (3.24)
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process
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From Fig. 3.6 h is given by

A

F

Oγ + ε∗−ϕ

ϕ−γ 
γ 

 r*

 h

 A12

 R

 0

Figure 3.6: Calculation of area A12

h = OF ⋅ sin (γ + ε∗ − ϕ) ,

OF = r∗0
cos (ϕ − γ) ,

r∗0 = rHS ⋅ cos (κ − γ) = R cos ε∗ ,

(3.25)

κ,ϕ are the auxiliary coordinates represented as κ = 900 + δ, and ϕ = κ − α. Finally,

the filling degree of the material in this region can be calculated by substituting the

equations Eq. (3.21) to Eq. (3.25) in Eq. (3.20)

fF,i(δ) = 1

2π
[π(γ + ε

∗ − ϕ)
1800

− (rH
R

) ⋅ cos (κ − γ)
cos α

⋅

sin (γ + ε∗ − ϕ)
cos (ϕ − γ) − ( l2

R
)

2

tan (ϕ − γ)] . (3.26)

Region II (γ < δ ≤ (γ + α + β)): The transition into the second region occurs when

the position of the flight exceeds the value of the kinetic angle. The material occupied

by the flight in this region is less than the volume of the flight’s ideal capacity, unlike

in the first phase of unloading where the flight holds more than its capacity. The cross

sectional area occupied by the material (AF,i) during this phase (see Fig. 3.5(b)) can be
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calculated from the following equation

AT =
3

∑
k=1

A2k +A∗

f +AF,i . (3.27)

AT is the total area of the sector (∧OEB)

AT = R
2

2
⋅ π

1800

⋅�EOB . (3.28)

The angle subtended by the arc at the center can be given by the following relation

�EOB = 2 ⋅ φ∗ +∆φ ,

where, φ∗ is the angle subtended at center ∠FOB given by φ∗ = 1800 − ε∗, and ∆φ from

Fig. 3.7 becomes (900 + γ + α − φ∗ − δ). A∗

f is the area of the circular segment (BA
_

) in

o

E

B

γ

ε∗

γ +
90

0 − δ

φ∗
γ + ε∗ − 900

α

l1
l2

F

C

A

D

r∗0

δ −
γ

Figure 3.7: Calculation of area A21, A22, and A23

Fig. 3.5(b), which can be calculated from

A∗

f = R2 ⋅ ( πφ
∗

1800

− sinφ∗ ⋅ cosφ∗) . (3.29)

The subscript ’2’ in Eq. (3.27) indicates Region II and ’i’ stands for the areas of triangles

depicted in the Fig. 3.5(b) and the respective angles to calculate these areas are shown

in Fig. 3.7. A21 from △OBF can be given by

A21 =
R2

2
⋅ cosφ∗ ⋅ sinφ∗ . (3.30)



3.4. FLIGHT HOLDUP 41

A22 from △OFC

A22 =
1

2
⋅ r∗0 ⋅ FC , (3.31)

where, FC = r∗0
tan (δ − γ) , and r∗0 = R cosφ∗. From △ODC, area A23 can be given by

A23 = (R
2

2
) ⋅ ( l2

R
) ⋅ (rH

R
) . (3.32)

By substituting the above equations in Eq. (3.27), results the cross sectional area occupied

by the material in region-II. Using this area, the filling degree of the flight valid in this

region can be calculated as

fF,i(δ) =
1

2π
[π(γ + ε

∗ − ϕ)
180o

− sin ε∗ cos ε∗ − cos 2ε∗

tan (δ − γ) − (rH
R

) ⋅ ( l2
R

)] . (3.33)

Region III ((γ +α+ β)< δ ≤ δL): Along the way, the material crosses the two regions

discussed above and enters into the third region, where the solid particles detach from

the drum wall and touch the flight surface alone as shown in Fig. 3.5(c). Sliding behavior

can be observed when the last layer of the solids are about to discharge, and the flight

will be emptied at final discharge angle (δL = 90o + α + γL). The cross sectional area

occupied by the material in this region can be found from △ADC

AF,i =
1

2
⋅ h ⋅ l2 , (3.34)

where h = l2
tan (δ − α − γ) .

The filling degree of the flight in the final region is given by the following equa-

tion

fF,i(δ) =
1

2π
⋅ ( l2
R

)
2 1

tan (δ − γ − α) . (3.35)

The total filling degree or the total dense phase of the active flights can be predicted

based on the average approach, as a function of the individual flight holdup and the total

number of active flights

fF,∑ = nF,a ⋅ f̄F,i(δ) , (3.36)
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where nF,a is the number of active flights depending on the theoretical number of flights

(nF ) given by

nF,a =
δL

3600

⋅ nF , (3.37)

and f̄F,i(δ) is the mean filling degree of the flights

f̄F,i(δ) =
1

δL
⋅ ∫

δL

0
fF,i(δ)dδ . (3.38)

here, δL is the final discharge angle.

3.5 Cascading rate of the flight

The material cascades out of the flight due to the formation of continuous avalanches at

the surface. The flow cannot be developed fully, but breaks at the tip of the flight by

cascading the material into the free space where it encounters the hot gaseous stream.

The unloading of the flight, thus measures the amount of material to be in contact with

the gaseous phase which becomes an important parameter to study. The material in the

flight reduces by certain amount per unit time which primarily depends on its material

properties such as kinetic angle, bulk density of the material (ρb), and rotational speed

of the drum. The rate of change of the flight holdup is given by the following equation

9mF,i = −
dmF,i(δ)

dt
(3.39)

= ρb ⋅ πR2L ⋅ (−dfF,i(δ)
dt

) . (3.40)

The negative sign in the equation indicates the decrease in the holdup of the flight. The

rate of change of filling fraction is written as

(−dfF,i(δ)
dt

) = (−dfF,i(δ)
dδ

) ⋅ dδ

dt
. (3.41)

Since
dδ

dt
= ω, the discharge rate of the flight can be estimated from the following equation

9mF,i

ρb ⋅ ω ⋅ πR2L
= (−dfF,i(δ)

dδ
) . (3.42)
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Differentiating the eqs. (3.26), (3.33), and (3.35) for all the three regions

Region-I

dfF,i

dδ
= 1

2π
⋅ {dγ

dδ
+ dε∗

dδ
− 1 − (1 − dγ

dδ
) ⋅

[( l2
R

)
2

⋅ (1 + tan2 (ϕ − γ)) − (rH
R

⋅ sin (κ − γ) ⋅ sin (γ + ε∗ − ϕ)
cosα ⋅ cos (ϕ − γ) )]−

(rH
R

) ⋅ cos (κ − γ)
cosα ⋅ cos (ϕ − γ) ⋅ (3.43)

[(dγ

dδ
+ dε∗

dδ
− 1) cos (γ + ε∗ − ϕ) + (1 − dγ

dδ
) tan (ϕ − γ) sin (γ + ε∗ − ϕ)]} .

Region-II

dfF,i

dδ
= 1

2π
⋅{2 sin ε∗ ⋅ dε∗

dδ
[sin ε∗ + cos ε∗

tan (δ − γ)] + (1 − dγ

dδ
) ⋅ [ cos2 ε∗

sin2 (δ − γ)
− 1]} . (3.44)

Region-III

dfF,i

dδ
= 1

2π
⋅ ( l2
R

)
2

⋅ (dγ

dδ
− 1) ⋅ 1

sin2 (δ − α − γ)
. (3.45)

The unknown quantities of the eqs. (3.43), (3.44), and (3.45) are subsequently calculated.

The first derivative of the kinetic angle is given from the following equation

dγ

dδ
=

Fr2(rH
R

)
2

⋅ [(sin δ + µ cos δ)2 + (cos δ − µ sin δ)2] − Fr(rH
R

) (1 + µ2) cosα ⋅ sin δ

[µ cosα + Fr(rH
R

)(cos δ − µ sin δ)]
2

+ [cosα − Fr(rH
R

)(sin δ + µ cos δ)]
2

.

(3.46)

The first derivative of the auxiliary filling angle is given by

dε∗

dδ
=

(rH
R

) sin(κ − γ) ⋅ (1 − dγ
dδ

)
√

cos2 α − (rH
R

)
2

cos2 (κ − γ)
. (3.47)
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3.6 Model of the final flight discharge

3.6.1 Mellmann’s Final discharge angle model

The angle at which the material completely discharges from the flight is the Final dis-

charge angle. The feeding of the flight starts in the lower half of the drum. However,

the discharge of the solids happens at tip angles of above 00 under design loaded condi-

tions, it continue until the flight is completely emptied at certain angle less than 1800.

At the point of final discharge, the amount of material in the flight is relatively small

and is subjected to only the friction between the particles and the wall, and also colli-

sional stresses between the particles. The particles roll/slide over the wall surface under

such conditions. Principally the flight empties at a point given by the following equation

[37, 46, 53, 54]

δL = 900+α +γL . (3.48)

The kinetic angle at empty point (γL) can be calculated by applying the above equation

in Eq. (3.12), which leads to the following equation. The equation can be solved by

iteration procedure, to get the final discharge angle [88]

tan γL =
µ ⋅ cos α + Fr ⋅ (rH

R
) ⋅ [cos (900+α +γL) − µ. sin (900+α +γL)]

cos α − Fr.(rH
R

) ⋅ [sin (900+α +γL) + µ. cos (900+α +γL)]
. (3.49)

Final discharge angle is one of the major influencing parameter on the quality of the

product. It depends on various profiles of the flights as shown in Fig. 1.7, and special

profiles like EAD and EHD [50] and the dimensions of the flights. The more is this angle,

more is the contact time of the hot gas with the material. In general, this angle will be

higher at higher tangential lengths of the flight at a given rotational speed of the drum.

However, as we increase this length the number of flights to be occupied will become

smaller, in turn there is a possibility to decrease the exposed area for heat and mass

transfer which tells that the necessity to develop an optimal solution for such behavior.

3.6.2 Extended Final discharge angle model

During the period of final discharge, the bed height at the flight decreases as the holdup of

the flight tends to zero. As a result the material flowing from the static bed to the active
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layer decreases, which then leads to small cascading rates. The granular flow behavior

at this stage can be expected different as compared to the earlier stages, since the layer

of solids flowing in this region is a diluted phase. Hence the motion of solids changes

from bulk motion to sliding or slipping at the flight sheet. As the solids in the flight

become diluted, the Froude number influences on the final discharge angle. Therefore, to

determine this phenomenon only one layer of particles is considered in order to evaluate

the position of last particle leaving from the flight. However the transition point to this

phase is still unpredictable, but it can be presumed that this transition occurs while the

thickness of the flowing layer at the flight tends to close to the total height of the bed at

the flight. Previous models does not accounted the diluted phase by assuming that the

flight empties when the surface of the flight sheet is parallel to the bed surface.

X 

Y 

x 

y 

€ 

l1

€ 

l2
€ 

P

€ 

l1
€ 

P x 

y 

a) 

b) l2 > 0 
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Figure 3.8: Schematic of rotating frame of flight

3.6.2.1 Assumptions

� Single layer of particles is assumed

� Initial condition for the system is considered from the previous model
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� No rolling friction between the particle and the flight surface is considered

3.6.2.2 Rotating flight frame of reference

Consider a layer of particles on the flight surface that are ready to slide downwards from

the flight tip as shown in Fig. 3.8. Therefore, Final discharge angle of the flight can be

determined by predicting the position of the last particle (P) that leaves from the flight

surface. Consider oxy be a rotating frame of flight which is moving about a fixed frame

OXY . Here ’o’ is the intersection of the radial length (l1) and tangential length (l2) of

the flight and ’O’ is fixed at the center of the drum. Let I and J are the unit vectors

along XY axis, and i and j are the unit vectors of xy axis. r be the position vector of

the particle (P) and χ representing the position of the flight.

The unit vectors of the rotating frame (i, j) can be expressed in terms of fixed frame

of reference (I, J) from the triangle law of addition of vectors as

i = sinχ ⋅ I + cosχ ⋅ J ,

j = − cosχ ⋅ I + sinχ ⋅ J .
(3.50)

It is to be noted that the vectors i, j are time dependent, therefore

9i = di

dt
= −j 9χ ,

9j = dj

dt
= i 9χ .

(3.51)

The position vector of the particle can be expressed as

r =XI + Y J , (3.52)

where X,Y are the coordinates of the particle with respect to fixed frame. Similarly, the

position vector can also be expressed as a function of the rotating frame

r = rH + (xi + yj) , (3.53)

where rH is the position of the origin (o)

rH = rH (− cosχ I + sinχJ) ,

= rH j ,
(3.54)
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substituting the above relation in Eq. (3.53)

r = x i + (y + rH) j , (3.55)

Hence, from this relation the velocity of the particle to an observer in the fixed frame of

reference can be obtained by differentiating Eq. (3.52) with time

dr

dt
= 9XI + 9Y J , (3.56)

However to an observer in the rotating frame, the velocity of the particle can be written

as

∆ r

∆ t
= 9xi + 9yj , (3.57)

here, ∆/∆ t is represented as differential term for the rotating frame of flight [91]. Further

a relation can be developed for both the frames by differentiating Eq. (3.55)

dr

dt
= ( 9x i + 9y j) + (x9i + (y + rH)9j) . (3.58)

Substituting Eqs. (3.51), (3.55) and (3.57) and 9χ = ω yields the following relation

dr

dt
= ∆ r

∆ t
+ ((y + rH)ω i − xω j) ,

= (∆ r

∆ t
+ ω × r) ,

(3.59)

where ω = ω k, k is the unit vector orthogonal to i, j.

dr

dt
= ( ∆

∆ t
+ ω×) r . (3.60)

Finally the relation between the fixed frame of reference and rotating frame can be

written as

d

dt
= ( ∆

∆ t
+ ω×) . (3.61)

According to Newton’s second law of motion, the sum of the forces acting on a body

is

∑ F =mp
..
r . (3.62)
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Figure 3.9: Force balance diagram of the particle sliding over the rotating flight

Using Eqs. (3.60) and (3.61) in the above relation

∑ F =mp ⋅ (
∆

∆ t
+ ω×)( ∆

∆ t
+ ω×) r ,

=mp ⋅ (
∆

∆ t
+ ω×)(∆ r

∆ t
+ ω × r) ,

=mp ⋅ (
∆2 r

∆ t2
− (ω × ∆ r

∆ t
) − ∆

∆ t
(ω × r) + (ω × (ω × r))) ,

=mp ⋅ (
∆2 r

∆ t2
− (ω × ∆ r

∆ t
) − (ω × ∆ r

∆ t
) − (∆ω

∆ t
× r) + (ω × (ω × r))) .

(3.63)

Expanding the fourth term in the equation

ω × (ω × r) = (ω ⋅ r)ω − (ω ⋅ω)r

= −ω2r (∵ ω ⋅ r = 0).

By substituting the above equation and
∆ω

∆t
= 9ω in Eq. (3.63), the final form of the force
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balance equation becomes

∑ F =mp ⋅ (
∆2 r

∆ t2
− 2 (ω × ∆ r

∆ t
) − ( 9ω × r) − ω2r) . (3.64)

The second and fourth terms in the right hand side of the equation represent apparent

forces, where −2mp (ω ×∆ r/∆ t) is called Coriolis force and −mp ω
2r represent Centrifu-

gal force [91, 92]. To an observer at the moving frame the Coriolis force act perpendic-

ularly to the direction of the moving object. Whereas the third term in the equation

becomes ( 9ω = 0) since, the rotating frame of flight is moving at a constant angular ve-

locity. Therefore finally the force balance equation can be written as

∑ F =mp ⋅ (
∆2 r

∆ t2
− 2 (ω × ∆ r

∆ t
) − ω2r) . (3.65)

Now apply the equations to the problem of particle sliding over the rotating flight. Let

xp, yp represent the position of the particle relative to moving frame of flight. Assuming

that the particle always contacts the wall surface, yp = rp, where rp is the radius of the

particle. The terms in Eq. (3.55) has been reduced to

r = xp i + (yp + rH) j ,

∆ r

∆ t
= 9xp i + 9yp j = 9xp i ,

∆2 r

∆ t2
= :xp i .

(3.66)

The sum of forces acting on the particle sliding over the flat surface inclined to horizontal

can be represented as,

∑ F =∑ Fx i +∑ Fy j . (3.67)

Therefore, by resolving the component of forces from Fig. 3.9, acting on the particle

while sliding over the flight surface is given by

∑ Fx = −(FG cosχ + FF) ,

∑ Fy = (FN − FG sinχ) ,
(3.68)

where, FG is the gravitational force acting on the particle given by

FG =mpg , (3.69)
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FF and FN are the frictional and normal forces respectively acting on the particle. From

the coulomb’s law the frictional and normal forces can be related as

FF = µw FN , (3.70)

where µw is the wall friction coefficient (µw = tan Θw). Simplifying Eqs. (3.65) to (3.67)

∑Fx i +∑Fy j =m (:xp i − 2ω 9xp (k × i) − ω2 (xp i + (rp + rH) j)) . (3.71)

After resolving the above equation into the respective components

∑Fx =mp (:xp − ω2xp) ,

∑Fy =mp (−2ω 9xp − ω2 (rp + rH)) .
(3.72)

Substituting Eq. (3.68) in Eq. (3.72) and rearranging the terms

FF = −m :xp +mω2 xp − FG cosχ

FN = FG sinχ − 2mω 9xp −mω2 (rp + rH)
(3.73)

Using Eqs. (3.69) and (3.73) in Eq. (3.70) and after simplification

:xp − 2µwω 9xp − ω2xp = µwω2(rp + rH) − µwg sinχ − g cosχ (3.74)

where :xp =
∆2xp

∆t2
, 9xp =

∆xp

∆t
. Since ∆t = ∆χ/ω, substituting in Eq. (3.74) we get

ω2 ∆2xp

∆χ2
− 2µwω

2 ∆xp

∆χ
− ω2xp = µwω2(rp + rH) − µwg sinχ − g cosχ . (3.75)

Divide the above equation with (ω2R) to convert into dimension less form and finally

∆2x∗p

∆χ2
− 2µw

∆x∗p

∆χ
− x∗p = µw (rp + rH

R
) − 1

Fr
(µw sinχ + cosχ) . (3.76)

where x∗p =
xp

R
, Fr = ω

2R

g
.

Equation (3.76) is valid when l2 > 0, however for the case of radial flights when (l2 = 0)

similar equation can be developed while in this case xp is constant but yp varies with
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time. Hence Eq. (3.66) is transformed to

r = xp i + (yp + rH) j ,

∆ r

∆ t
= 9xp i + 9yp j = 9yp j ,

∆2 r

∆ t2
= :yp j .

(3.77)

The force components had been modified to

∑ Fx = FN − FG cosχ ,

∑ Fy = FF − FG sinχ ,
(3.78)

Now following the similar procedure as discussed above the final form for the particle

position in radial flights can be written as

∆2y∗p

∆χ2
− 2µw

∆y∗p

∆χ
− y∗p = (rH − µwrp

R
) + 1

Fr
(µw cosχ − sinχ) . (3.79)

where y∗p =
yp

R
.

In order to solve Eq. (3.76), it has been transformed to two simultaneous differential

equations by considering

x∗p = x1,
∆x∗p

∆χ
= x2, and

∆2x∗p

∆χ2
= ∆x2

∆χ
.

Substituting these terms in Eq. (3.76) to get the following equations

∆x1

∆χ
= x2 ,

∆x2

∆χ
= (2µwx2 + x1) + µw (rp + rH

R
) − 1

Fr
(µw sinχ + cosχ) .

(3.80)

Initial conditions to solve the above equations are

χinit = γL + 90○ = δL − α ,

where δL is the Final discharge angle considered from the previous model. x1∣χinit
= (rp

R
)

and x2∣χinit
= 0, since the velocity of the particle for an observer in the rotating frame



52 CHAP 3. GEOMETRICAL MODEL

is zero before sliding occurs. These equations can be solved in MATLAB using Runge-

Kutta (ODE 45) method.

3.7 Theoretical number of flights

Selection of number of flights is the crucial step in the design of FRD, since this number

defines the amount of material responsible for the heat and mass transfer. As this

number increases, more flights can accommodate maximum quantity of material that

results higher number of curtains, hence the higher contact between the gas stream and

the material. This number mainly depends on the dimensions of the flight and the

kinetic angle of repose. Theoretically it is maximum at minimum flight length ratio and

minimum at maximum flight length ratio. However, at minimum flight length ratio the

final discharge angle is very small that the number of curtains formed also become less

as a result small area of contact between the solids and gas. The optimal situation for

number of flights could be when the flights at the bottom of the drum must feed by the

material from the cascading flights alone and there should not be any overflow of solids to

the immediate flight. However, sometimes too many curtains develop negative effect due

to decrease in the gap between the curtains does not allow the gas to pass through, hence

poor contact can happen between the falling particles and the gas stream. Hence the

prediction of the number of flights is not an easy task to accomplish, therefore a simple

model can be developed by allowing a minimum angular space (∆ϕ ≥ α+υ0) between two

adjacent flights as shown in Fig. 3.10 [37]. Where, υ0 is given by the following expression

tanυ0 =
⎛
⎜⎜⎜
⎝

1 −
(rH
R

)

cosα

⎞
⎟⎟⎟
⎠
⋅ tanγ∣δ=00 . (3.81)

It is assumed that the flight holds maximum amount of material when δ = 00 (see

Fig. 3.10). Even though it retains more when the flight tip disengages from the bed, it

can be considered ineffective, since the material overflows over the flight surface alone

but cannot develop any curtain. Therefore, the expression for the theoretical number of

flights allowed in the drum is given by

nF = 3600

α + υ0
. (3.82)
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Figure 3.10: Schematic diagram to estimate the theoretical number of flights

The number of active flights can be predicted from the above relation.

3.8 Maximum flight length ratio

The geometrical parameters of the flight have great influence in the performance of the

dryer. One must know that, what are the specific values to be given for the better design.

With the increase of the flight length ratio ratio l2/l1, the emptying point of the flight

increases, which then increases the average fall time and average height. However, it

is not good practice to vary this ratio arbitrarily, because at higher tangential lengths

(l2), the filling of the flight becomes more difficult which can lead to under-crowded

conditions and in turn the dryer efficiency decreases. The condition to get maximum

allowable tangential length can be said to be when it is equal to half of the length of the

free surface of the bed (see Fig. 3.11). Therefore, the extreme value of this length can

be given by

( l2
l1
)
max

=

√
1 − (rH

R
)

2

( l1
R

)
. (3.83)
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Figure 3.11: Maximum possible geometrical lengths of the flight

3.9 Height and time of fall

3.9.1 Height of curtains calculation

Height of fall determines the amount of time the particles reside in the airborne phase

where they are exposed to the gas flow. It mainly depends on the filling angle of the

bed (εB) at the bottom of the drum and the position of the flight. The particles are

accelerated during the path of the travel over the flight surface, and a trajectory of

particles can be observed after detaching from the flight tip. The path of the trajectories

and the time of fall can be calculated from the momentum balance when the drag by gas

is neglected [93, 94] or considered [95, 96]. A geometrical model has been developed in

the current study to predict this height by assuming that the particles are in vertical free

fall. However, in the non-vertical case the fall height increases very slightly. Blumberg

and Schlünder [53] proposed a model to estimate the height of the cascading particles as

a function of the discharge angle, which is only applicable for higher drum loadings. The

impact of the particles on the flight sheets and on the shell wall has been neglected while

calculating this height, which is considered in the present study. The curtain formation

starts at that moment when the flight arises from the solid bed located at the bottom of

the drum. The flight tip disengages from the bed at a certain angle (δ = −ζA) depending

on the filling degree given by ζA = 90o − εA −ΘA (ref. Fig. 3.1) [88]

εA = arccos

⎛
⎜⎜⎜
⎝

cosα ⋅ cos εB

(rH
R

)

⎞
⎟⎟⎟
⎠

. (3.84)
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The flight cannot hold the excess volume of the bed material that has been carried

from the solid bed which is a measure for the over-crowded flight. At the moment when

it comes out of the bed (ζA), the extra material i.e. higher than the angle of repose will

be trickled down from the flight in the form of a big avalanche. However, this behavior

can be observed only in the region −ζA < δ < 0. Until this point (δ = 0) mostly slipping

and rolling can be observed over the bed surface at the flight. The bulk motion of such

behavior at the flight is said to be the kiln action. The free fall of the particles can be

observed at tip angles above 0o. In earlier studies of Kelly and Ó Donnell [45] and Baker

[97], the operating range of the flight tip has been considered in between 0o < δ < 180o

to calculate the height of fall. This range can be further divided into two sectors in our

calculations.

Sector 1- Impact of particles on the bed surface (0 ≤ δ < δBE): The particles falling

from the flight will have the influence of gravity alone under no gas flow conditions.

Under these circumstances, the particles hit the bed surface at the bottom of the drum

until the flight tip angle is equal to δBE . This is the case when the flight tip is located

vertically over the lower end of the bed as shown in Fig. 3.12(a). The scaled height of

fall during this period can be given by the following equation, which is derived purely

based on the geometrical considerations

hF
R

= cos εB
cos ΘA

+ (rH
R

) ⋅ sin δ − tan ΘA ⋅ cos δ

cosα
. (3.85)

Sector 2- Impact of particles on the metal surface (δBE ≤ δ < δL): In most cases, the

dryers are operated in design loaded conditions, where the dense phase at the bottom

is small. Hence, the cascading material does not only impacts on the bed surface but

also impacts either the rotating wall or the flight sheets. The particles that are hitting

the wall can become feed to the nearest flight. Various actions can be observed in this

case such as bouncing, rolling or sliding. Determination of the height in this sector is

rather complex than in sector 1, since the falling particles possess different components

of velocity magnitudes. It is difficult to know whether if they hit the wall or flight in

such cases (ref. Fig. 3.12(b)). It can be addressed depending on the number of flights

equipped to the circumference of the drum. If the number of flights is small then the

particles hit preferably on the wall surface, whereas in the other case the flight sheets

almost form a closed circle, so that the particles strike regularly on the flight as is the

case in Fig. 3.13. The latter case has been considered in the current study, since we used

the theoretical number of flights for the predictions [90]. The falling height for both cases
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(a) Sector 1: Impact on bed surface (b) Sector 2: Impact on metal surface

Figure 3.12: Schematic diagram of the curtain height for the two sectors

Figure 3.13: Experimental drum showing the sectors considered in the model
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is given in the following.

a) Impact on inner shell of the rotating drum

hF
R

= (rH
R

) ⋅ sin δ

cosα
+

¿
ÁÁÀ1 − (rH

R
)

2

⋅ ( cos δ

cosα
)

2

. (3.86)

The point of impact starts when

δBE = 1800 − arccos

⎛
⎜⎜⎜
⎝

cosα ⋅ sin (εB −ΘA)

(rH
R

)

⎞
⎟⎟⎟
⎠

.

b) Impact on flight sheets [27]

hF
R

= 2 ⋅ (rH
R

) ⋅ sin δ

cosα
, (3.87)

when, δBE = 900 + εA −ΘA.

3.9.2 Mean height of fall

The mean height (h̄F ) of the curtains can be determined by integrating the local height

over the cascading region of the flight (0 ≤ δ ≤ δL) as

h̄F
R

= 1

δL
⋅ ∫

δL

0

hF (δ)
R

dδ . (3.88)

The above equation can be solved numerically. Blumberg and Schlünder [53] proposed a

semi empirical relation for the mean height of fall as a function of the drum filling degree

(fD), dynamic angle of repose (ΘA) and flight length ratio.

h̄F
R

= 0.85 ⋅ (1 − fD) ⋅ (1.3 +ΘA
2) ⋅ ( l2

l1
)

0.13

. (3.89)

However, the valid range of the filling degree was observed to be too high to use for the

industrial application

0.2 ≤ fD ≤ 0.4 ,
π

8
≤ ΘA ≤ π

4
,

0.75 ≤ l2
l1
≤ 1.0 .

(3.90)
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3.9.3 Falling time

The time of fall of the particles (tF ) is the time of travel of the particles in the gas zone

from the flight tip to the point of impact, which can be calculated based on the vertical

free fall [38, 98]. Therefore, we write tF as a function of Froude number

tF = 1

ω
⋅
√

2 ⋅ Fr ⋅ hF (δ)
R

. (3.91)

Average time of fall is given based on the average height of fall

t̄F =

¿
ÁÁÀ2 ⋅ h̄F

g
. (3.92)

Dimensionless form is given by

t̄F = 1

ω
⋅
√

2 ⋅ Fr ⋅ h̄F
R

. (3.93)

3.10 Gas-solid contact area

3.10.1 Effective particle surface area

The transfer coefficients and the area of transfer are the necessary parameters to be

known to predict the amount of heat and mass transfer. In general, various heat transfer

surfaces can be observed in rotary dryers similar to kilns [99]. They include the transfer

surface between the drum wall to the solid bed, gas to the exposed surface of the bed,

gas to wall, and gas to the solids in the curtain. Among all, the heat transfer is mainly

influenced by the gas to solids contact area. This is because individual particles are

exposed to hot gas during the time of fall while the rest of the time they spend in the

dense phase. This happens to be a periodic process, since an individual particle is exposed

to hot conditions in regular intervals, whereas the material in the dense phase has less

possibility of exposure to the hot conditions. Therefore, the rate of exposure to the hot

gas is higher for the particles in the air borne phase. Since the measurements of this

subject are limited, the importance of the model development increases. In this study,

the total surface area of the falling particles is calculated by assuming that all particles

are spherical in shape and no shielding of the neighboring particles are considered. It is

also assumed that the curtain porosity is higher (close to unity), as compared to the bulk
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bed porosity, hence neglected. The local transfer area of the ith curtain can be defined

as

Acs,i(δ) =
6 ⋅mcs,i(δ)
dp ⋅ ρs

. (3.94)

where mcs,i(δ) is the amount of material presented in the form of curtain given by

mcs,i(δ)
ρb ⋅ πR2L

=
√

2 ⋅ Fr ⋅ (hF
R

) ⋅ (−dfF,i(δ)
dδ

) (3.95)

= fcs,i(δ) . (3.96)

The total surface area of the particles in the curtain then results from Eq. (3.94) to

Acs,i

L ⋅R = 3π ⋅ (ρb
ρs

) ⋅ (D
dp

) ⋅ fcs,i(δ) . (3.97)

The area responsible for the heat transfer due to the lifting flights in rotating drums

is the total particle surface area of all the curtains [53, 74], estimated based on the

average value approach. The particles in every curtain are subjected to different time of

exposures due to varying height of fall. This is a function of the current position of the

flight and curtain filling degree described by

Acs = nF,a ⋅ Ācs,i , (3.98)

where nF,a is the active number of flights given by

nF,a =
δL

3600

⋅ nF , (3.99)

nF is the theoretical number of flights, and δL is the point at which flight becomes empty,

δL = 90o + α + γL. Ācs,i is the mean particle surface area of the curtains expressed as

Ācs,i

L ⋅R = 3π ⋅ (ρb
ρs

) ⋅ (D
dp

) ⋅ f̄cs,i , (3.100)

where f̄cs,i =
1

δL
⋅ ∫

δL

0
fcs,i(δ)dδ.
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3.10.2 Calculation of individual phases of drum

In flighted rotary dryers, the loading of the drum play essential role to determine the

mean residence time of the material. It varies along the axial direction from the feed

end to dryer end. However, in a given section of the drum this can be attributed to be

constant, from which the distribution of solids in each phase can be obtained. Kelly and

Ó Donnell [45] formulated an approach to determine the design load condition for the

drum filling ratio based on the assumption that the flight loading in the lower half of the

drum is the mirror image of that flight unloading process in the upper half of the drum

[46]

fD = nF + 1

2
⋅ fH,i∣(δ=00) . (3.101)

However, this treatment was not sufficient enough to determine each phase of the drum

accurately, as it can over predict these phases due to the assumption.

Filling degree of the rotary drum with flights can be estimated from the sum of the

filling degree of the dense phase of the drum at the bottom (fB), total hold up of the

active flights (fF,∑), and total hold up of the curtains (fcs,∑) [88, 100]

fD = fB + fF,∑ + fcs,∑ , (3.102)

where

fB = 1

π
⋅ (εB − sin εB ⋅ cos εB) ,

fF,∑ = nF,a
δL

⋅ ∫
δL

0
fF,i(δ)dδ ,

fcs,∑ = nF,a ⋅ f̄cs,i(δ) .

The particles in a dense phase slides down the surface in the flights as well as in the

rolling bed. The particles advance to a specific distance, if the drum is inclined to the

horizontal, otherwise no axial displacement of the particles can be observed. However,

in the present study no axial displacement or bouncing of the particles is considered.

The above equations can be applied for both design-loaded and over-loaded drums, for

a given drum filling degree (fD). In the former case the curtain height can be predicted

according to Eq. (3.87) for all flight positions. Since in this case no rolling bed can be

observed at the bottom of the drum, hence it can be assumed that the particles strike
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only on the flight sheets during the entire period of discharge which is usual in flighted

rotary drums [27]. Whereas in the later case, using the same equation over the discharge

period will be subjected to large errors, since the curtain height strictly depends on the

filling angle of the bed (εB). It can be estimated using Eq. (3.102) from the iterative

procedure, to determine the filling degree of the rolling bed for a proper convergence of

the solution. Earlier works on this subject neglected the influence of bed filling degree

on the time of fall [53, 63]. The major assumption to solve the above relations is that

the flight is filled to its maximum extent and unloading should start when the flight tip

is at or below 0o.
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Chapter 4

Modeling of granular transverse

flow at flight surface

4.1 Analysis of transverse flow

As discussed in the previous chapter, a flowing layer develops as the material cascades

over the flight surface. Continuous rolling of the particles can be observed on the flight

surface, while the material is being supplied continuously by the static bed which is

resting in the flight. This phenomenon can be expected similar to the transverse motion

of material in rotating cylinders without flights, where a larger part of the bulk bed

moving with the wall (plug flow) is transported into a flowing cascading layer on the

surface of the bed [13, 101]. However a interfacial boundary exists between these two

regions having few particles thickness (see Fig. 4.1). The interchange of material between

the two layers occur above and below the vortex point (W). The bed surface is considered

to be flat and equal to dynamic angle of repose in this case. Similarly the material surface

in the flight is assumed to be flat and inclined towards the horizontal at an angle equal to

kinetic angle of repose (γ). However in this case the developing cascading layer breaks at

the intermediate region at the flight tip to cascade the material into the airborne phase.

Various authors studied the rolling motion behavior theoretically and modeled it

successfully [13, 89, 101, 103–105] in the drums without flights. Perron and Bui [103]

proposed a model by considering the material to be a non-Newtonian and the resulted

mass and momentum equations were solved using FLUENT. The model of Khakhar

et al. [104] described the flow motion in the active layer by considering the collisional

63
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Figure 4.1: Granular motion of rolling bed in drum without flights [102]

interactions between the particles. However this model needs a fitting parameter to

determine the layer thickness in order to agree with the experimental data. Mellmann

et al. [101] developed a model for the rolling motion without the necessity of these fitting

parameters. However, all these models regarded granular flow motion as continuum and

followed Eulerian approach to model the solids motion in the cascading layer. Usually

in the Eulerian approach the continuity and momentum based equations are coupled

together to solve for the flow properties. In which, it is assumed that the particles

are cohesionless, thin active layer when compared to the height of the bed, and the

transverse velocity is several times greater than the axial velocity. Similar approach has

been followed in the present study to track the developing layer at the flight surface

by considering a rolling mode at the flight surface. The main objective of this work

is to determine the velocity profile along the surface layer of the flight over the flight

discharge which can be used in Eq. (3.18). For this purpose, a mathematical model has

been developed to study the transverse motion at the flight surface based on the earlier

works of Mellmann et al. [101], and Khakhar et al. [104]. In the present study these

models were applied to the drum equipped with flights to determine the flow properties

at the flight surface.

The schematic of the rolling bed at the flight surface for a given flight position is

shown in Fig. 4.2. The surface of the layer always intersects with the drum wall at point

A in region I, whereas in region II it intersects with the flight wall as shown in Fig. 4.2(b).
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Figure 4.2: Flow motion at the flight surface in a flighted rotating drum (a) Region I: 0 ≤
δ ≤ (γ + α + βn)), b) Region II: (γ + α + βn) < δ ≤ δL)

The transition between these two regions occurs when OA = l1 i.e. at δ = (γ + α + βn),
where βn is given by

tanβn =
l2 + p
l1

. (4.1)
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The expression for p is given later in the chapter. The particles moving with the wall

detach from the rigid bed at the boundary line to start flowing into the active layer.

These particles are accelerated along the flow until the tip of the flight before cascading

into the air borne phase while forming a thin layer at the surface. The maximum layer

thickness (tE) occurs at the flight tip E.

4.2 Mathematical modeling

4.2.1 Coordinate system and variables definition

At a given position of the flight (δ), the transverse motion can be assumed to be uniform

in the axial direction, hence only two dimensional case is considered. The origin of the

coordinate system is always fixed at the center of the drum whose x-axis is parallel to

the bed surface and y-axis is perpendicular to it. The coordinate system always changes

with respect to the change in flight position. The position of the differential element in

Cartesian coordinates (x, y) can be determined from the polar coordinates of position (r)

and the angular coordinate (ϕ)

x = −r cosϕ ,

y = −r sinϕ .
(4.2)

The coordinate system and the influencing variables of the problem were illustrated in

the Fig. 4.3(a). Defining the dimension less variables as follows

x∗ = x

R
, y∗ = y

R
, ρ = r

R
, t∗ = t

R
, rE = rH

cosα
.

The local thickness of the active layer at the flight surface t(x) is written as

t = r sinϕ −R cos ε∗ . (4.3)

Transforming this equation into dimensionless form as

t∗ = ρ sinϕ − cos ε∗ . (4.4)

The auxiliary filling angle (ε∗) can be calculated by applying this equation at point E

cos ε∗ = ρE sinϕE − t∗E . (4.5)
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(a) Schematic of the flight with model parameters

(b) Force balance diagram for the differential element

Figure 4.3: Schematic of the flighted rotary drum to model the cascading layer profile



68 CHAP 4. GRANULAR TRANSVERSE FLOW AT FLIGHT SURFACE

4.2.2 Velocity and Mass flow

Since the particles in the rigid bed move along with the wall, hence no slip condition

can be assumed within the plug flow at the boundary [13]. Therefore, the velocity of the

particles in the static bed of the flight is only a linear function of the radius at constant

angular velocity (ω)

vϕ(r) = ω r . (4.6)

Mass flow of the particles from the bulk static bed to the thin active layer in the differ-

ential element of length d r is given by

d 9Ms = ρb,s vϕ(r)dr L . (4.7)

Integrate from r to R after substituting Eq. (4.6) in the above equation

9Ms

L
= ρb,s ω ⋅

R

∫
r

r dr ,

= ρb,s ω ⋅
(R2 − r2)

2
.

(4.8)

Mass flow in the active layer

9Ma

L
= ρb,a ⋅

t

∫
0

vx(y)dy , (4.9)

here vx is the velocity of the particles along the active layer. However it varies across

with the layer which can be assumed to be a simple shear [89, 101, 104, 105]. Therefore

the velocity profile in the transverse motion distributed in linear profile with the layer

thickness given by

vx(y) = 2v̄x ⋅
y

t
, (4.10)

where, v̄x is the average velocity of the particles in the active layer. By substituting for

vx(y) in eq. (4.9) results

9Ma

L
= ρb,a ⋅ v̄x t . (4.11)
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By defining the dimensionless mass flow as M∗ =
9Ms

ρb,sωR2L
=

9Ma

ρa,sωR2L
. From the prin-

ciple of continuity, Eq. (4.8) and (4.11) become equal ( 9Ma = 9Ms). Although the density

of the cascading layer is different from the density of bulk static bed the change is ne-

glected by considering ρb,s = ρb,a = ρb. Applying these conditions and transform into

dimension less form for the mass flow

M∗ = (1 − ρ2)
2

, (4.12a)

= v̄∗x t∗ . (4.12b)

Finally from the above relation we obtain

v̄∗x =
(1 − ρ2)

2t∗
. (4.13)

4.2.3 Force balance in the active layer

Figure 4.3(a) shows a differential element of the layer of length dx, and radial length of

d r, the thickness of which increased by d t. The element is inclined to horizontal about

an angle η, and υ is the angle between the surface line and boundary line. The varying

gradient of the layer is expressed as

tanυ = −dy

dx
= dt

dx
= dt∗

dx∗
. (4.14)

The relation between the increase in the radial length and transverse length is written

as [14]

dr

dx
= −cos (ϕ + υ)

cosυ
. (4.15)

The particles in the flowing layer have been subjected to frictional, gravitational, and

inertial forces along the transverse direction. Since the flowing particles are less subjected

to centrifugal force hence it can be neglected. The length related force balance for the

differential element as shown in Fig. 4.3(b) is written as

ΣF = FF + FN + FG + FI = 0 (4.16)
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The component of the forces are given by

FN = FG cosη + FI sinυ ,

FF = FG sinη − FI cosυ ,
(4.17)

where, η = γ + υ.

Gravity acting on the particle of mass of the element dmp is given by

FG = ρb tdx ⋅ g , (4.18)

The rolling particles undergoes to inertial force along the layer given by

FI = ρb tdx ⋅ v̄x
dv̄x
dx

. (4.19)

From Coulomb’s law of friction, the resultant force is (µm) times the normal force at the

boundary.

FF = µm ⋅ FN . (4.20)

The coefficient of friction (µm) varies at each location of the boundary, the calculation

of which is discussed later in the chapter. Substituting for FF and FN from Eq. (4.17)

in the above equation, we obtain the following equation for the motion of particles after

dividing with ρb tdx and rearranging

v̄x
dv̄x
dx

+ g[µm cosη − sinη]
µm sinυ + cosυ

= 0 . (4.21)

Transform the above equation into dimensionless form by defining, v̄∗x =
v̄x
Rω

,Fr = ω
2R

g

v̄∗x
dv̄∗x
dx∗

+ 1

Fr
⋅ µm cosη − sinη

µm sinυ + cosυ
= 0 . (4.22)

Differentiate eq. (4.12b), to derive a relation for the mass flow gradient

tanυ = (dM∗

dx∗
− t∗ ⋅ dv̄∗x

dx∗
) ⋅ 1

v̄∗x
. (4.23)
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Further the mass flow gradient can be expressed as
dM∗

dx∗
= dM∗

dρ
⋅ dρ

dx∗
.

Taking the differential terms as

dv̄∗x
dx∗

= v′x,
dM∗

dx∗
=M ′,

dt∗

dx∗
= t′ .

Then using eq. (4.12a) and Eq. (4.15)

M ′ = ρ ⋅ cos (ϕ + υ)
cosυ

,

= (ρ cosϕ − ρ sinϕ ⋅ tanυ) ,

= (−x∗ + y∗t′) . (4.24)

Substitute eq. (4.23) in eq. (4.24).

M ′ = {−x∗ + y
∗

v̄∗x
⋅ (M ′ − t∗v′x)} . (4.25)

After simplification of the above equation we obtain the equation of the following form

M ′ = −(x∗v̄∗x + y∗t∗v′x)
v̄∗x − y∗

. (4.26)

Substituting for η in eq. (4.22) and rearranging yields the following relation

v̄∗x
dv̄∗x
dx∗

(1 + µm tanυ) = 1

Fr
⋅ (a2 + a1 tanυ) , (4.27a)

v̄∗xv
′

x(1 + µm t′) =
1

Fr
⋅ (a2 + a1t

′) , (4.27b)

where

a1 = cosγ + µm sinγ ,

a2 = sinγ − µm cosγ .

To represent t′ in terms of v′x, substitute M ′ from eq. (4.26) in eq. (4.23) after simplifi-

cation

t′ = (x∗ + t∗v′x)
y∗ − v̄∗x

. (4.28)
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To evaluate v′x, substitute t′ from eq. (4.28) in eq. (4.27b) we obtain a quadratic equation

a (v′x)2 + b v′x + c = 0 . (4.29)

The solution of this equation becomes

v′x =
(−b −

√
b2 − 4ac)

2a
, (4.30)

where a, b, and c can be written as

a = µmv̄
∗

xt
∗

y∗ − v̄∗x
, (4.31a)

b = [µmv̄
∗

xx
∗

y∗ − v̄∗x
+ v̄∗x −

a1t
∗

Fr(y∗ − v̄∗x)
] , (4.31b)

c = − [a2 +
a1 x

∗

y∗ − v̄∗x
] 1

Fr
. (4.31c)

4.2.4 Coefficient of friction

To determine the motion behavior at the flight surface, it is important to predict the

coefficient of friction at each position of the layer at a given position of the flight. Ac-

cording to Mellmann et al. [101], the frictional coefficient is considered to vary with the

local position of the boundary line between the static bed and the cascading layer. Since

the boundary profile does not vary linearly, the coulombic friction is not constant along

the boundary line. Generally, in drums without flights, the coefficient of friction is re-

ferred to the coulombic form as the tangent of dynamic angle of repose at the vortex

position (W), where there is no interchange of material between the two layers [102]

µm∣x=0 = tan ΘA .

Similarly in the case of rotary drum with flights assuming an auxiliary vortex point, the

coefficient of friction can be written as

µm∣x=0 = tanγ .
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Above this point, the friction at the boundary line increases from the vortex point where

it is maximum at the apex position (point A), hence the angle at the boundary line

should also increase. Therefore the friction coefficient at point A is characterized with

µm∣x=xA = tanηA = tan (γ + υA) .

By taking these points as reference the friction coefficient is considered to vary linearly

at the boundary line along the transverse motion which can be expressed as

µm = tanγ + [tan (γ + υA) − tanγ] x

xA
, (4.32)

where υA is the angle between the surface line and boundary line. To predict the coeffi-

cient of friction the characteristics of the material υA and γ should be known. Here, υA

is the material property which can be measured with the aid of photos collected from

the experiments. In the present study the empirical equation developed by Liu [102] has

been used, which is assumed to be independent of flight position until δ ≤ γ

υA = 0.32ΘA (1 + fD) + 1800

√
dp

D
Fr , (4.33)

here ΘA in [o], υA also in [o]. When δ > γ, it is assumed that υA decreases linearly with

the flight position by a factor of

υA = δL − δ
δL − γ

⎡⎢⎢⎢⎢⎣
0.32ΘA (1 + fD) + 1800

√
dp

D
Fr

⎤⎥⎥⎥⎥⎦
. (4.34)

4.3 Simulation methodology

4.3.1 Initial conditions

The initial positions (x∗A, y
∗

A) to solve the system of equations (eqs. (4.26) and (4.30))

varies for the two regions. Therefore they are described separately for each case in the

following. However, the exit points (x∗E , y
∗

E) are unique in both the cases

x∗E = −ρE cosϕE ,

y∗E = −ρE sinϕE .
(4.35)

where ϕE = (γ − δ).
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4.3.1.1 Region-I: 0 ≤ δ ≤ (γ + α + βn)

The position of the point A is initially unknown, since the thickness of the layer is

unknown. The initial point depending on the layer thickness at flight tip (δE) is given

by

x∗A = − sin ε∗ ,

y∗A = − sinϕA .
(4.36)

where

ϕA = arcsin (cos ε∗) . (4.37)

4.3.1.2 Region-II: (γ + α + βn) < δ ≤ δL

The schematic for the second region is shown in Fig. 4.4(a). It is clear from the figure that

the boundary points are different from the first region. Since in the first case the surface

line intersects the cylinder wall (see Fig. 4.4(a)), whereas in the second region it intersects

the flight. Therefore ρA varies for each flight position as it continuously discharges the

material from the flight, which can be calculated as follows from Fig. 4.4(b)

φ=0 +

-

x

y
φA

xA

A

E

γ

α

ρA

ρH

(a)

90-φA

φA=δ-α-γ

h

l2 p

γ

A

E

tE

(b)

Figure 4.4: Schematic of the flighted rotary drum to model the cascading layer profile in
region-II
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Figure 4.5: Simulation flow sheet for the motion equations
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ρA = ρH + (h/R) ,

h = l2 + p
tanϕA

,

p = t∗E
sin (90 − ϕA)

= t∗E
cosϕA

.

where ϕA in this case is given by ϕA = δ − γ − α.

Initial conditions for the two dependent variables from eqs. (4.30) and (4.26) are

v̄∗x ∣x∗A = ρA ,

M ′∣x∗A = v̄∗x ∣x∗A ⋅ t
∗∣x∗A .

(4.38)

In order to get proper numerical solution, t∗∣x∗A is assumed to be a thickness equal to half

of one particle diameter [101]. Therefore t∗∣x∗A = dp/D, where dp is the particle diameter

and D is the drum diameter.

4.3.2 Solution procedure

The motion equations for v̄∗x, M
∗ (Eqs. (4.26) and (4.30)) were solved in MATLAB.

After including the friction coefficient (Eq. (4.32)) in the motion equations the differential

equations become more complex. It becomes substantially difficult to solve explicitly for

γ and t∗. One would start by taking some initial guess for both γ and t∗. The flow sheet

to solve these expressions is shown in Fig. 4.5. For each γ a local convergence for the

layer thickness at flight tip (tE) must be accomplished and then using this converged

profiles for velocity a new γ can be obtained using Eq. (3.18). The motion profiles are

calculated until a converged solution for both γ and tE is attained.



Chapter 5

Experimental Setup and

Description

5.1 Experimental Setup and Procedure

The experimental setup employed for the present study is shown in Fig. 5.1. Experiments

were performed with two drum sizes of diameter 500 mm and 1000 mm (see Fig. 5.2)

by maintaining L/D=0.3. The drum was directly fixed at the shaft of a gear motor

(0.18kW IP 55, 300Nm B3i=252.75, 230/400V 50Hz 1.16/0.67A) attached to a base

frame standing on a table. The drum was aligned horizontally with no inclination to

maintain uniform axial profiles. The front end of the drum was covered with a circular

glass plate and the rear end with a metal wall. The provision of the glass provides to

enable high quality images from the videos of the experiments. The inner part of the

drum was painted with red color in order to observe the showering particles clearly in

the recorded videos. High definition camera (1080p, 30 fps, JVC GZ-HD7E) had been

arranged perpendicular to the plane of the glass and focusing always to the center of the

drum. The usage of the camera enables to record the videos of the experiments, which

later can be processed to analyze the images. Enough care must be taken to position the

camera in order to avoid parallax errors. The drum was equipped with rectangular flights

separated by equal angular distance. The experiments were carried out in a dark room

to avoid the light reflections on the glass plate. A plumb bob was suspended vertically

with the help of a stand at the center of the drum to locate the drum center position

and to measure the dynamic and kinetic angles of repose.

At the beginning of the experiment, the drum was filled with the granular material

77
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(1) 
(7) 

(8) 

(3) 

(4) 

(2) 

(5) 

(6) 

Figure 5.1: Experimental setup of the flighted drum: 1) experimental drum 2) rectangular
flights 3) gear motor 4) table 5) stand 6) plumb bob 7) light 8) camera

(a) 500 mm (b) 1000 mm

Figure 5.2: Experimental drums

to the desired filling degree. Enough care had to be taken to position the camera perpen-

dicular to the drum. Then the drum was adjusted to the desired rotational speed. The

action of the flights that shower the material in the free space was captured with a high

definition camera that has the strength of recording 30 frames per second. Later the im-
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ages were collected from these videos to estimate the kinetic angle of repose of a single

flight and the height of the curtains at various positions of the flight tip. This angle was

given as input to the model to predict the flight cascading rate. In order to reduce the

errors, more data was collected from different flights and the procedure was repeated.

The standard deviation of the kinetic angle of repose was about ±0.6o.

Table 5.1: Bed material properties used for the experiments

Material dp ρb (consolidated) Moisture ΘA

(mm) (kg/m3) (%) (o)

quartz sand 0.2 1570 0 32.4
glass beads 0.7 1560 0 28.0
limestone(Y14) 6.1 1200 14 48.6
limestone(Y0) 6.1 1293 0 31.4
limestone(G2.5) 2.5 1380 0 37.5
limestone(G5) 3.0 1460 1-3 36.5
limestone(G25) 8.8 1654 1-3 35

5.2 Materials and conditions

Two different materials such as quartz sand (0.2 mm) and glass beads (0.7 mm) were

used in the study for the model validation. These test materials are free flowing and non-

cohesive in nature. However, the experiments were also performed with other cohesive

materials (see Fig. 5.3) to observe their motion behavior for the same set of conditions.

The properties of which are given in Table 5.1. The consolidated bulk density of the

material is the mean density of the material evaluated for different samples at room

Table 5.2: Parameters operated for the experiments

S.No Parameter Value

1. Diameter, D 0.5 m, 1 m
1. L/D 0.3
2. l1/R 0.2
3. l2/l1 1.0, 0.75, 0.375,0
4. n 2-12 rpm
5. fD 0.05-0.3
6. nF 12, 18



80 CHAP 5. EXPERIMENTAL SETUP

Q
uartz sand  

(d
p =0.2 m

m
) 

G
lass beads  

(d
p =0.7 m

m
) 

Lim
e stone(Y

14)  
(m

oisture=14%
) 

Lim
e stone(Y

0)  
(m

oisture=0%
) 

Lim
e stone(G

2.5) 
(d

p  = 2.5 m
m

) 
Lim

e stone(G
5) 

(d
p  = 5 m

m
) 

Lim
e stone(G

25) 
(d

p  = 25 m
m

) 
Lim

e stone(G
5+Y

14) 

F
ig

u
re

5.3:
Im

a
ges

of
th

e
m

aterials
u

sed
to

p
erform

ex
p

erim
en

ts



5.2. MATERIALS AND CONDITIONS 81

(a) l2/l1 = 1.0 (b) l2/l1 = 0.75

(c) l2/l1 = 0.375 (d) l2/l1 = 0

Figure 5.4: Flight profiles used in the experiments

temperature. The dynamic angle of repose of the test materials was measured from the

images of the flat surface of the bed when the material was rotated in a drum without

flights (fD =10%; Fr=0.0007). Experiments were performed with four different profiles of

the rectangular flight by operating the flight length ratio at 1.0, 0.75, 0.375, and 0 such

as shown in Fig. 5.4. The tangential length of the flight has been systematically reduced

to maintain the given ratio. Whereas l1/R is maintained at 0.2 for all the experiments.

The number of flights were operated at 12 and 18. The experiments were performed for

all combinations at various rotational speeds up to 12 rpm. The experimental settings

are listed in Table 5.2.
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Chapter 6

Experimental measurements and

model validation

6.1 Kinetic angle of repose

The kinetic angle of repose was calculated from Eq. (3.12) and plotted against the dis-

charge point of the flight for quartz sand at different Frm (0-1.0) as shown in Fig. 6.1.

The dimensions of the flight include l1/R = 0.2, l2/l1 = 1.0. It depicts that the discharge

point has no significant effect on kinetic angle at low Froude numbers, but it is increas-

ingly dependent at higher values. The extreme value of the kinetic angle at a given Fr

can be found at δ = sin−1 Frm. At Frm = 1 dγ/dδ = 0.5 at all discharge angles (δ). Ear-

lier authors studied the validity of the model at (Fr > 0.1) [44], but the practical range

of Froude number is much lower than 0.1. Hence in the present study the predictions

and the measurements were carried out at Fr=0.0011.

Experiments were performed at different flight length ratios in order to validate the

model. The data points of kinetic angle of repose were calculated for a series of frames

extracted from the videos of the experiments at different intervals by focusing on one

single flight until the emptying point. The calculation of the kinetic angle from one such

image is exemplified in Fig. 6.2(a)-(d) at different flight length ratios. The center of

the drum can be located with the use of the plumb line as shown in the figure, which

is used to measure the position of the flight. This procedure was repeated for several

other images to measure the surface angle at the other positions of the same flight. In

order to reduce the errors, more data was collected from another flight, which is selected

randomly and the procedure was repeated for the same experiment.

83



84 CHAP 6. RESULTS AND DISCUSSION

100

140

Frm =1 Frm = Fr (rHs/R)

°]

1
2

d
d
γ
δ
=

60
Frm = 00.3

0.6

0.8

f r
ep

os
e 
γ

[

-20

20 γ = ΘA=32.4o

et
ic

 a
ng

le
 o

f

100

-60Ki
ne

Porter (1963)
-100

270 360 450 540 6300 90 180 270

Discharge angle δ [o]

32

Figure 6.1: Kinetic angle of repose versus discharge angle and Froude number, calculated
for quartz sand

The experimental findings are compared against the model predictions for quartz

sand at Fr=0.0011 as shown in Fig. 6.3. Figure 6.3(a) - (d) represent the effect of the

discharge angle on the kinetic angle of repose at different l2/l1 values 1.0, 0.75, 0.375,

and 0 respectively. The model predictions in the figure are represented with solid lines

and the measured data is denoted with the symbol (○). Each data point in the figure

corresponds to one single image that was collected for one flight at that specific position.

From the figure, it is clear that the KAR is observed to be constant for Schofield and

Glikin [43] model. Since, it was assumed only a single particle layer by neglecting the

flowing layer at the flight surface. The experimental measurements noticed ≈5o increase

in KAR during the initial period of discharge and then decreases in later stages. Due to

considerable difference is observed between the measured data and the model of Schofield

and Glikin, the model was extended by considering the inertial force at the flight surface

as given by Eq. (3.18) which is solved numerically and the predictions were represented

with red color in the figure. This extended model depicted the similar tendency as it was

observed with the measured data. However, the slight shift of the experimental data can

be attributed to measurement errors, effect of glass front wall, and the angle of flight to

the camera position. The percentage error is approximately 5-10%, which falls under the
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(a) l2/l1 = 1.0 (b) l2/l1 = 0.75

(c) l2/l1 = 0.375 (d) l2/l1 = 0

Figure 6.2: Images of the experimental drum showing the calculation of kinetic angle at
different flight length ratios: Quartz sand (0.2 mm), Fr=0.0011, nF=12
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Figure 6.3: Experimental validation of Eqs. (3.12) and (3.18): Kinetic angle of repose ver-
sus discharge angle at different length ratio’s for quartz sand (Fr = 0.0011) a) l2/l1 = 1.0,
b) l2/l1 = 0.75, c) l2/l1 = 0.375, d) l2/l1 = 0

practical range. Similar behavior is observed for glass beads under the similar operating

conditions which is shown in Fig. 6.4.

The validity of the extended model needs thorough investigation, since this equation

depends on the velocity gradient at the layer surface. Again this gradient depends on the

parameter υA, which was determined based on an empirical equation. Hence, the velocity

and layer thickness profiles also need to be validated before using this extended model

in the geometrical modeling of flight which is out of scope of this thesis. Therefore, the

model of Schofield and Glikin [43] has been considered to determine the different phases

of the drum for flight design. According to Kelly and Ó Donnell [45] this equation
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Figure 6.4: Experimental validation of Eqs. (3.12) and (3.18): Kinetic angle of re-
pose versus discharge angle at different length ratio’s for glass beads a) l2/l1 = 1.0, b)
l2/l1 = 0.75, c) l2/l1 = 0.375, d) l2/l1 = 0. Symbols denote measurement values (○ for
ΘA = 280, dp = 0.7 mm, ◇ for ΘA = 25.10, dp = 1.2 mm) and solid lines represent model
predictions

(Eq. (3.12)) is valid for Froude numbers less than 0.4.

6.2 Flight holdup

The holdup of the rectangular flight along the discharge point is given by Eqs. (3.26),

(3.33), and (3.35) for all the three regions. Figure 6.5 shows the dependency of the flight

position on the flight filling degree for different flight length ratios varying between 0 and
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2.5. It depicts that as the discharge point rises; the mass of the material in the flight

diminishes, and finally empties at a certain angle (δL) less than 180o. Increasing the

tangential length of the flight leads to lift more material and shifts the final discharge

angle to right, i.e. more close to 180o, which is clearly observed in the figure. At higher

l2/l1 the change in filling degree is observed to be flat in the first two regions, however the

bulk movement of the solids is observed in the third region, which designates nonuniform

distribution of the solids. The radial flight with l2/l1 = 0 empties at an angle when the

final discharge angle is equal to the kinetic angle of repose (δL = γL = 32.4o). The most

suitable discharge characteristic can be expected from the flight length ratio of l2/l1 =
1.0 where the flight filling degree decreases almost linearly resulting in a homogeneous

material distribution over the cross-section.
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Figure 6.5: Flight filling degree in dependence on discharge angle for different flight
length ratios, predicted for quartz sand

The total holdup of the active flights can be determined by studying the average dense

phase holdup of the flights and the total number of active flights (see Eq. (3.36)). The

influence of the flight length ratio was studied against the total holdup of the material

in the active flights as shown in Fig. 6.6. As seen from the figure, the total dense phase

of the flights increases as the ratio of the flight length increases. As expected the holdup

also increases with increase in l1/R.

The validation of the flight holdup at various flight length ratios for quartz sand has

been shown in Fig. 6.7. The symbols in the figure represent the measured values and the
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Figure 6.6: Total holdup (fF,Σ) of the active flights in dependence on the flight length
ratio, calculated for quartz sand

lines represent the predicted values of the corresponding l2/l1. The measured values of

the holdup were estimated by providing the measured kinetic angle to the model. This

method had been chosen due to the complication involving the estimation of flight holdup

along the discharge, when the drum is under operation. However, the measurements

for all lifter types are above the predictions due to the higher measured values of angle of

repose. At small l2/l1, the flight holdup profile can be approximated to linear behavior.

A single flight holds approximately 1.6% of the total volume when l2/l1 is 1.0, which is

the maximum amount of material when the tip is at 9’o clock position (δ = 0o). Similar

act is observed for glass beads when the experiments were performed by varying the

drum size at 500 mm and 1000 mm which are presented in Figs. 6.8 and 6.9 respectively.

6.3 Flight cascading rate

The influence of the flight length ratio has been studied against the rate of material

lost from the flight as a function of the flight position, which is illustrated in Fig. 6.10.

It was calculated as the change in filling degree of the flight over the change in flight

position which can be directly related to the cascading rate according to Eq. (3.42).
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It assumes that the flight is occupied to its maximum extent and starts discharging

when the flight leaves the bed. As the figure depicts, the trend is not uniform over
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the discharge plotted for different flight profiles. The area under this curve depicts the

amount of material distributed over the cross section of the drum. Local minima and

maxima can be observed at the interfaces between 1st and 2nd region as well as 2nd and

3rd region respectively. The material from the flight initially trickles from large bulk

quantities; therefore, the unloading rate is relatively high during the initial discharge.

The cascading rate decreases until it attains a minimum at (δ = γ). After that, as the

flight is elevated to higher discharge angles, the cascading rate increases and attains its

maximum at δ = γ+α+β. This increase is caused by the phenomenon that the portion of

bed material which is transferred from the static layer at the flight into the active flowing

layer at the bed surface continuously increases. The mass flow rate is approximately

proportional to the length of the bed surface line AE at the flight, see Fig. 3.5(a)-(c).
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The length of the line AE reaches its maximum at the same position (δ = γ +α+β) when

point A has approached point C [54, 90]. This is the transition between the second and

the third zone. Later the cascading rate declines sharply until the emptying point of the

flight. As the flight length ratio l2/l1 increases the flow rate also increases, but the rate

of material loss during the initial discharge is observed to be poor. The sharp increase in

the second region leads to poor performance of the dryers, due to the bulk movement of

the solids developing a shielding effect of the neighboring particles. However, the initial

rate of discharge is observed to be higher in case of the lower tangential lengths of the

flight due to the less resistance offered by the tangential length.

The measured values of the holdup were used to evaluate the rate of change in filling

degree. It is the change in the filling degree over the corresponding change in the discharge

angle. The results are plotted against the discharge points of the flight as shown in

Fig. 6.11. The lines in the plot represent the model predictions and the experimental

values are depicted with symbols for quartz sand at different profiles of the flight. The

trend of the measured points show good agreement with the model predictions. The

three zones defined for the flight discharge can be clearly differentiated in the figure.

Similar manner is observed for the glass beads as shown in Fig. 6.12.

6.4 Final discharge angle

The performance of the dryer mainly depends on the contact area and contact time

between the gas and the solids. If the flight is under-loaded then the cascading of the

flight starts at some angle much greater than zero and ends at some angle less than 1800.

In addition to that, if the flight length ratio is small, then the final discharge occurs much

lower than 1800. Under these conditions the drying operation can not be uniform, thus

results the poor quality of the product. These aspects has motivated us to investigate

the final discharge angle.

From Eq. (3.49) it is known that FDP is a direct function of Fr and flight dimensions

and the kind of material. Figure 6.13 shows how the FDP varies with the Fr at different

l1/R values. It is almost constant until Fr = 0.1 but later a steep decrease in the curve

has been observed at all l1/R. It is also observed that increase in l1/R, the final discharge

angle switched towards right part of the drum. The plot depicts that the emptying angle

falls as the Froude number increases. The curves for all l1/R, asymptotically approach a

value of 1.6 which is a critical Froude number (Frc = 1/ sin (ΘA + α)) for the centrifugation

of a single particle [11, 14].
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Figure 6.13: Influence of Froude number on final discharge angle

Figures 6.14 and 6.15 depict the validation of FDP of the flight as a function of

Froude number at different flight length ratios. They illustrate the comparison between

experimental data and the model predictions for glass beads. The experimental data

had been measured by calculating the mean angle of last discharge of the flight from

the images of several flights. The measured data illustrated late discharge of the flight

while increasing the Froude number, whereas the Mellmann’s FDP model depicted fast

discharge on the other hand. Therefore, an attempt has been made in the present study

such as presented in Section 3.6.2, to improve the model in order to understand the

conflicting tendency of the measurements with Mellmann’s FDP model. The simulations

of the new model depicted similar tendency as compared to the experiments. Since µw

is not available for these materials, as a initial study it was assumed to be equal to the

coefficient of friction (µw = µ = tan ΘA). The deviation between the predictions and the

model increases while changing the wall friction angle to half of the dynamic angle as

illustrated in Fig. 6.14(a). But in most cases the experimental data fall in the range of

5% error to the predicted data. However in the case of quartz sand as shown in Fig. 6.16,

it takes little longer duration than that occured for glass beads. Since glass beads are

more uniform and slightly bigger in size than quartz sand, they become less cohesive as
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Figure 6.16: Variation of final discharge angle with Froude number for quartz sand
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compared to quartz sand, which results in free flow of glass beads.

As could be demonstrated, the new model for FDP can now predict the similar

tendency that has been observed from the measurements. This demonstrates that the

bulk material at the flight should be considered as a diluted phase from a certain point of

discharge, where the bed height has decreased to a certain value. Hence, it is necessary

to consider the transition from the dense phase to diluted phase in the geometrical model.

However, this transition point is still unknown and needs further investigation. Therefore,

in the present study we used the old model to determine FDP for predicting the particle

surface area.

6.5 Theoretical number of flights

The influence of the flight length ratio on the number of flights is presented in Fig. 6.17.

It depicts that as increasing this ratio the theoretical number of flights allowed in a given

drum dimensions decreases. The rate of decrease is observed to be high during the small

ratios and low at higher ratios. One needs more theoretical number of flights at small

l1/R ratio for a given flight length ratio.

The comparison between the active flights and the theoretical number of flights are
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(ΘA = 32.4o)

presented in Fig. 6.18. Primary axis in the figure represent the number of curtains to be

formed in the drum for a known number of theoretical number of flights which is shown in

secondary axis. As an example, the theoretical number of flights predicted for the drum

are approximately 18 and the corresponding number of active flights are in between 6

or 7, when the length ratios of the flight is equal to 1.0. Experiments were performed

Table 6.1: Comparison of the active flights between model and the measurements

l2/l1 Model Measurements
nF,a(nF ) nF,a(nF=12) nF,a(nF=18)

1.0 6-7 (18) 5 -
0.75 7-8 (21) 5 7
0.375 9-10 (28) 4-5 5-6
0 4-5 (50) 2 2

by operating the number of flights at 12 and 18 and the number of curtains formed



100 CHAP 6. RESULTS AND DISCUSSION

50

60

15

18

nH_active-] nF_active

30

40

9

12

_

nH

fli
gh

ts
, n

F
[-]

ct
iv

e 
fli

gh
ts

  [

F

nF

20

30

6

9

N
um

be
r o

f f

N
um

be
r o

f a
c

0

10

0

3

0 0.5 1 1.5 2 2.5 3

N

[ ]−
1

2

l
l

Figure 6.18: Comparison between active flights and the theoretical number of flights

during both the cases were presented in Table 6.1. The data had been presented for four

different flight length ratios. For example, theoretically close to 6 flights are active out

of 18 flights in the case of l2/l1 = 1.0 (Fig. 6.18). Whereas the measured data noticed 5

active flights when 12 flights were equipped to the drum. In case of l2/l1 = 0.75, both

the model predictions and the measurements are approximately similar. In this case,

the experiments were performed with 18 flights whereas the model predictions observed

were 21 flights. It states that the drum can still be operated at less number of flights

in order to produce the similar number of curtains. We still require more data from

the experiments, in order to understand about the factor that can be reduced from the

theoretical number to get same number of curtains.

6.6 Height of fall

Figure 6.19 shows the dimensionless height of the particles falling from the flight tip to

the bottom of the drum as a function of the discharge angle. The present model was

compared with the model from Blumberg and Schlünder [53], which does not account for

the impact of the particles on the metal surface. The curtain height has been predicted

for both the sectors of impact of the particles according to Eqs. (3.85) to (3.87). The

model from Blumberg clearly over-predicted the real scenario as compared to our model
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ison between the present model (Eqs. (3.85) to (3.87)) with the model from Blumberg
and Schlünder [53]

under over-loaded conditions. This over prediction of the curtain height by Blumberg’s

model is significant, since it suggests a greater heat transfer than is possible. The fall

height increases until the end of the bed where the material has more time of exposure

and then drops again. The smaller the bed filling degree the greater will be the height

of the curtains.

The model was validated with the experiments at two different Froude numbers as

illustrated in Fig. 6.20 for quartz sand. The symbols represent the measurements and the

solid lines represent the model predictions. The measured values of the curtain height

were calculated from the images of the recorded videos. They are in good agreement

with the model in both sectors at small Froude numbers. As the drum speed and Froude

number increased (Fig. 6.20(b)), the end point of the bed shifted to the left due to the

decrease in bed filling degree. This is caused by more material carried away by the

flights. The deviation can be attributed only for the fine material due to the change

in trajectories of the curtains at high discharge rates (see Fig. 6.20(b)), which is not

accounted in the model. However this deviation is not observed for glass beads even at
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Figure 6.21: Comparison between the model predictions and the experimental results of
the dimensionless height of the curtain for glass beads (D = 1000 mm, l2/l1 = 0.75, l1/R =
0.2, fD = 0.2, nF = 18)
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higher Froude numbers which is shown in Fig. 6.21.

6.7 Surface area of the falling particles

The exposed area of the particles is a strong function of the particle diameter and the

bulk density of the particles as given in Eq. (3.97). The influence of Fr, and l1/R on the

contact area as a function of the flight length ratio (l2/l1) has been presented in Fig. 6.22.

The total exposed area was found to be very small at small l1/R ratios. For example,

the maximum contact area was observed at l2/l1 = 2.2 in case of l1/R = 0.1 and Fr=0.001,

which is approximately 221 m2. Whereas, it was increased by four times when l1/R is

doubled at the same Froude number. This maximum area for this case was observed at

l2/l1 = 1.5. Besides to that the contact area was increased only by 1.5 times although

the Froude number has been increased to 0.01.
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Figure 6.22: Influence of Froude number and flight length ratio on the surface area of
the falling particles

Figure 6.23 illustrates the dependence of total contact area of the particles in the air-

borne phase on the flight length ratio. The total surface area of the particles increases

until l2/l1 = 1.5 where it becomes maximum. Further increase in l2/l1 leads to increase

in the mean cascading rates such as depicted in Fig. 6.10, but also decreases the num-
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ber of curtains formed. The product of these two parameters attain local maximum

at a particular flight length ratio as seen in the figure. However, during the low flight

length ratios the slope of the curve is higher, but at higher flight length ratios (1-1.5) the

change is almost insignificant. The figure also illustrates the experimental validation of

the Eq. (3.98), at two different Froude numbers of three different flight profiles (l2/l1 at

1.0, 0.75, and 0.375). The solid symbols denote the data when the drum was allocated

with 18 flights, the open symbols denote for 12 flights, whereas the corresponding model

predictions were calculated for the theoretical number of flights. The data points were

obtained by supplying the experimental data of the cascading rate and the height of the

curtains to Eq. (3.95). Figure 6.23 clearly depicts that the total particle area increases

by increasing l2/l1 with a small deviation between the experiments and the model pre-

dictions. However, the deviation becomes smaller when the number of flights approaches

the theoretical number of flights. As the figure illustrates, the increase in Froude num-

ber also increases this area, due to increase in the holdup of the airborne phase whereas

this will not be the case with the industrial drums. The increase in Fr or flight length

ratio also increases the curtain density which leads to increase the shielding effect of the

surrounding particles. This in turn results in poor contact between the solids and the

hot gases, which is not considered in the model. Therefore, the influence of the gas flow

further affects the optimal design of the flights which brings further down the estimated
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factor of l2/l1 from 1.5.

6.8 Estimation of fractional filling degrees

For a given drum filling load, the fractional filling degrees of the different phases were

predicted based on the model. The results for an over-loaded drum (fD = 0.2) are shown

in Fig. 6.24(a) where the fractional filling degrees are depicted over the flight length

ratio. As can be seen from the graphs, the filling degree of the rolling bed fB decreases

as the flight length ratio increases. At the same time, the filling degree in the flights fF,∑

increases. For example at l2/l1 = 1.0, 68.6% of total material reside in the dense phase of

the rolling bed, 30.2% in the active flights and the remaining 1.2% in the airborne phase.

As the drum filling degree is reduced to half (Fig. 6.24(b)), the fraction of the airborne

phase increased by approximately two times, while the fraction of the flight borne phase

increased to about 60.4% and the fraction of the rolling bed was decreased to about

37%. However in this case, no change in the absolute amount of material in the flight

borne phase is observed. This is due to the assumption that the flight is already crowded

with enough material for unloading while it is in the upper half of the drum. The main

limitation of the model is that it assumes the first unloading of the flight should start

when the flight tip is at or below the horizontal axis, hence it can not be applied for

under-loaded drums.

Table 6.2: Fractional filling degrees measured for fD = 0.2 (see Fig. 6.24a)

l2/l1 nF Rolling bed Active flights Airborne phase
fB/fD in [%] fF,Σ/fD in [%] fcs,Σ/fD in [%]

0.75 18 70.0±1.4 26.4±1.1 3.6±0.83
0.375 18 82.3±1.6 14.9±1.8 2.8±1.02
0 18 96.1±0.4 3.6±0.4 0.3±0.1

The symbols shown in Fig. 6.24(a) corresponds to the filling degrees calculated from

the cross sectional areas of the respective phases obtained from the images. For each

flight length ratio, 10 images were collected and analyzed. The cross sectional areas

of each phase were measured for all images except for the airborne phase. The filling

degree was calculated by scaling this mean area with the drum cross sectional area. Using

these measured data, the filling degree of the total airborne phase was calculated from
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Eq. (3.102) for a known drum filling degree. For a drum filling degree of fD = 0.2, the

measured data of the fractional filling degrees are given in Table 6.2. It denotes that as

the flight length ratio increases the bed filling degree decreases whereas the fractional

filling degree of the airborne phase increases.
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Figure 6.24: Effect of flight length ratio on fractional filling degrees (l1/R = 0.2,
Fr=0.0011, ΘA = 32.4o). a) fD=0.2, b) fD=0.1



108 CHAP 6. RESULTS AND DISCUSSION



Chapter 7

Analysis and scale up

7.1 Analysis of experimental images

Influence of different parameters has been analyzed from the digital images of the exper-

iments performed for different materials. The properties of these materials are listed in

the Table 5.1. Experiments were performed at different filling degrees varying between

5-30% and the Froude number in between 0.0014 to 0.018. Each of these experiments

were carried out by varying the number of flights at 12 and 18.

7.1.1 Number of rotations

Figure 7.1 shows the digital images collected from the recorded videos of the high defini-

tion camera. It illustrates the images of the drum filled up to 20% with glass beads and

operated at different rotational speeds. The formation of the curtains and the unload-

ing behavior of the flights can be clearly seen in this figure. A very thin layer of curtains

were observed at very small Froude numbers as shown in Fig. 7.1 (a). This nature of

the curtains is because of the small cascading rates at relatively small Froude numbers.

This unwanted nature of the curtain can lead to higher particle entrainment. Since un-

der practical applications, the drag applied by the gas on such curtains becomes more

significant, as the drum is operated at relatively higher gas velocities. Further increas-

ing the Froude number, the density of the curtains also increased simultaneously, which

then reduces the entrainment of the solids. However, much higher Froude number leads

to shielding of the particles due to higher curtain densities. Hence it is more important

to operate the drum at optimal speeds in order to give better performance. Another

important observation is that the emptying point of the flight was increased while the

109
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(a) (b) 

(c) (d) 

Figure 7.1: Experimental images of a 500 mm drum at different Froude numbers a)
0.000011 b) 0.0011 c) 0.00447 d) 0.0179. The drum is 20% filled with 0.7 mm glass beads
and l2/l1 = 1.0

Froude number has been increased. Further the material at the end of the discharge, cas-

cades on the neighboring flight sheet leading to form a secondary curtain as shown in

Fig. 7.1 (c)-(d).

7.1.2 Filling degree

The rotary dryers operating at higher filling degrees offer poor performance due to less

contact time between the gas and the solids. Figure 7.2 depicts the influence of filling

degree by varying the amount of glass beads from 5% to 30% of the drum volume at

a given Froude number. Figure 7.2 (a) clearly indicates that the filling degree of 5% is

definitely under-crowded, since the unloading of the flight started at discharge angles
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(a) (b) 

(c) (d) 

Figure 7.2: Experimental images of a 500 mm drum at different filling degrees filled with
0.7 mm glass beads a) 5% b) 10% c) 20% d) 30%. The drum is operated at Fr=0.0011
and l2/l1 = 1.0

above 900 yielding only one curtain. In Fig. 7.2 (b) the filling degree of the drum is

doubled at the same Froude number, which then increased the series of curtains to be

formed, however the starting point of discharge for this case is close to 00. The particles

in such curtains have higher exposure times to the hot gas due to lower bed heights and

longer times of fall. Further increasing the filling degree to 20% (Fig. 7.2 (c)), the drum

has become completely over-crowded, where the flight is being completely covered by

the bed surface at the bottom. In this particular case, although the number of curtains

increased by one than earlier, the total height of the curtains may have negative impact
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on the contact time due to increase in the bed height. This can be more clearly observed

in Fig. 7.2 (d), where the drum is 30% filled. The total height of all curtains formed

in this case is definitely less than the previous case, hence leads to poor performance.

Whence, the operating range of the filling degree for free flow materials should fall in the

range of 10% and 15% to provide a better performance.

7.1.3 Number of flights

The influence of number of flights has been studied by varying the flight numbers at

12 and 18. Figure 7.3 illustrates the number of curtains formed when the drum was

filled with quartz sand. It can be seen that only 5 curtains were noticed when 12 flights

were fitted in the drum, whereas 7 curtains were observed for 18 flights. The increase

in number of curtains increase the amount of material exposed to the hot gas, but also

increases the flight borne phase simultaneously. Hence it results in a decrease of the filling

degree of the rolling bed at the bottom which can lead to under-loaded case. Therefore

enough care must be taken while operating the drum at higher flight number.

(a) (b) 

Figure 7.3: Experimental images comparing the formation of curtains operating at dif-
ferent number of flights (nF ) a) 12 b) 18. The drum is operated with 0.2 mm quartz
sand at Fr=0.0011, fD=20%, and l2/l1 = 0.75

7.1.4 Flight length ratio

The experimental images of the series of curtain formation for quartz sand at different

flight length ratios and two different Froude numbers were presented in Fig. 7.4. Fig-



7.1. ANALYSIS OF EXPERIMENTAL IMAGES 113

l2/l1=1.0 
nF = 12 

l2/l1= 0.75 
nF = 18 

(a) (b) 

(c) (d) 

l2/l1= 0.375 
nF = 18 

(e) (f) 

Fr = 0.0011 Fr = 0.0045 

Figure 7.4: Experimental images of the drum at different flight length ratios (fD=20%)
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ure 7.4 (a)-(b) depict the flight unloading process when 12 flights were equipped to the

drum. The other images represent experiments with 18 flights. At a higher flight length

ratio of l2/l1 = 1.0, the increase in Froude number did not show much influence on the

uniformity of the curtains for a fine material. As the number of flights were elevated

from 12 to 18, the number of falling curtains appropriately increased which were then

increasingly influenced by the up-flowing air stream in the closed drum. This is due to

the phenomenon that the more particles are falling down, the more gas is entrained by

the solids flowing down with the curtains. As a result, the entrained air is recirculated

upwards in counter current direction, thus influencing the falling curtains in turn. As

can be seen from Figs. 7.4 (c)-(d), the up-flowing air cleaved through the falling curtains

pushing them aside. Hence, individual air channels were formed between two certain cur-

tains. From the experimental video it was observed that this happened after every third

or fourth curtain. After the flight length ratio has been halved to 0.375, the up-flowing

behavior of the entrained air changed, see Figs. 7.4 (e)-(f). Due to the lower flight length

ratio, the emptying point of the flight is declined, in addition to that the cascading rates

considerably reduced (Fig. 6.11). As a result, the up-flowing air stream was shifted to

the right side of the drum where the particle concentration in the airborne phase was

low. Similar manner as in Figs. 7.4 (c)-(d) can be observed as the drum size is increased

to 1000 mm by operating at double the Froude number which is shown in Fig. 7.5. As

can be expected, under practical conditions this vertical entrainment effect will inter-

fere with the axial flow of the dry air, which has to be considered while designing the

industrial dryer.

7.1.5 Influence of type of material

The formation of uniform curtains is mainly regulated by the behavior of the material,

hardly no curtains can be observed when the material is highly cohesive. The granular

nature of the material is controlled by the cohesive and adhesive forces. The influence of

these forces becomes more significant when the moisture content of the material increases.

Hence the formation of the curtains becomes difficult when the dryer is operated under

these conditions, especially during the initial stage of drying.

In order to study the better design of the flights for such materials, experiments were

performed with the drum filled up to 25% with limestone(Y14) at different flight profiles

as shown in Fig. 7.6. Figure 7.6 (a) illustrates the behavior of the wet limestone when

l2/l1 = 1.0. It was observed that this material does not have good flow behavior, hence
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(a) Fr=0.0022 (b) Fr=0.009

Figure 7.5: Experimental images of 1000 mm drum for quartz sand at different Froude
numbers (l2/l1 = 0.75, l1/R = 0.2, fD = 0.2, nF = 18)

no downfall of material was noticed in the free space of the drum and only clear deposits

were observed at the adjacent flight sheets. As this study did not provide acceptable

distribution of the material, the tangential length of the flight had been reduced to 0.75

of the radial length as shown in Fig. 7.6 (b). According to the model predictions, when the

flight length ratio was decreased, the unloading rate of the flight was increased during

the first two regions and emptied faster. However for a highly cohesive material, the

emptying point is higher than for free flowing material. Fig. 7.6 (b) depicts the similar

response showing a little improvement in flight unloading than the earlier case by forming

partial curtains. Further reducing the tangential length, the frequency of formation of

these discontinuous curtains had been improved, which is shown in Fig. 7.6 (c). In case

of l2/l1 = 0, the material which is being carried from the solid bed into the flight cascades

into the free space as a bulk. The contact time for this case is presumed to be small due

to very small height of fall, hence this kind of profile is not a good suggestion for drying

this type of material.

Figure 7.7 illustrates for the same material and similar conditions except the number

of flights were operated in this case at 18. Figure 7.7 (a) indicates that no curtain

formation was observed in case of l2/l1 = 0.75, and it was entirely sticking around the

drum. However, a different behavior was noticed in Fig. 7.7 (b), where the frequency of

material fall has been observed to be improved slightly. On the other hand, the material
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(a) (b) 

(c) (d) 

Figure 7.6: Digital images of the experiments representing the limestone(Y14) at different
(l2/l1) flight profiles a) 1.0 b) 0.75 c) 0.375 d) 0. The drum (D=500 mm) is operated at
Fr=0.0011, fD=25%, and nF=12

was completely blocked between the flights and no downfall of the material from the

flights was noticed in case of using radial flights (Fig. 7.7 (c)).

As this study did not provide any insight to define a proper design of the flight for

the selected material (limestone(Y14)), which is due to the reason that the flowability

index of this material is very poor. Therefore, in order to improve the flowability of

this material, it was mixed with limestone(G5) in equal portions. Figure 7.8 depicts the

motion behavior of this mixed probe filled up to 20%. The flow behavior of this material

is improved slightly when compared with the earlier studies of limestone(Y14). However

operating at higher number of flights as in Fig. 7.8 (b), the initial flight unloading was

observed at higher discharge points as compared to the lower number of flights (see



7.1. ANALYSIS OF EXPERIMENTAL IMAGES 117

(a) 

(b) (c) 

Figure 7.7: Digital images of the experiments representing the limestone(Y14) at differ-
ent (l2/l1) flight profiles a) 0.75 b) 0.375 c) 0. The drum (D=500 mm) is operated at
Fr=0.0011, fD=25%, and nF=18

Fig. 7.8 (a)).

In order to study the influence of moisture content, now limestone(Y14) was com-

pletely dried and investigated the influence of flight length ratio as presented in Fig. 7.9.

It is easy to understand from the figure that after complete drying, the flowability of

the material had been increased drastically. Although it has better flowability, the flight

unloading is not as continuous as for the glass beads and quartz sand. Further, the recir-

culation and fluidization behavior of the particles is even more pronounced in this case

and hence more dust formation can be clearly observed. As the drum size was doubled

and the flight number was increased (Fig. 7.9(d)-(f)) this entrainment action was further

increased, hence it would become more complex for the gas to pass through the curtains.
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(a) (b) 

Figure 7.8: Digital images representing the motion behavior of limestone (G5+Y14). The
drum is operated at Fr=0.0014, fD=20%, l2/l1 = 0.375. a) nF = 12 b) nF = 18

Therefore it is not a good advice to operate the drum always at higher flight number as it

can lead to higher entrainment with this type of material. For such materials it is usual

in the industries to operate the drum in counter current mode to avoid huge material

loss with the gas stream.

Figure 7.10 illustrates the flow behavior of limestone(G2.5) filled up to 15% of total

volume of the drum. The figure depicts the unloading process of the flight when number

of flights were operated at 12 and 18. The flights are crowded with the material in

case of Fig. 7.10 (a). Whereas it is noticed that the flight becomes under-loaded after

increasing the number of flights at the same filling degree as shown in Fig. 7.10 (b). Due

to more material resides in the active flights thereby reducing the bed filling fraction

at the bottom. Consequently the flight unloading starts at discharge angles above 00,

due to insufficient amount of solids carried by the flight from the bottom of the drum.

Small deposits of the material were also observed during the emptying of the flight on

the adjacent flight sheets. Figure 7.10 (c)-(d) represent the same conditions except the

flight length ratio is at 0.375. The flight becomes over crowded for the case shown in

Fig. 7.10 (c) and becomes optimal loaded when the number of flights were increased

(Fig. 7.10 (d)). The number of curtains formed in this case are 7 where as in Fig. 7.10 (b)

only 6 curtains had been observed.
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(a) (b) 

(c) (d) 

Figure 7.10: Comparison of limestone(G2.5) distribution at different (l2/l1) flight profiles
a) l2/l1 =0.75, nF = 12 b) l2/l1 =0.75, nF = 18 c) l2/l1 =0.375, nF = 12 d) l2/l1 =0.375,
nF = 18. The drum is operated at dp = 2.5 mm, Fr=0.0014, fD=15%
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(a) (b) 

(c) (d) 

Figure 7.11: Digital images of the experiments representing the influence of moisture
a) 14%, b) 7%, c) 3.5%, d) 0%. The drum (D=500 mm) is operated at Fr=0.00147,
fD=25%, and nF=18

7.1.6 Influence of moisture

The moisture levels change in the drum during the axial transportation of the material

from the feed end to the discharge end. Therefore it is necessary to investigate the

material distribution at different moisture levels. Figure 7.11(a)-(d) depicts the unloading

process of radial flights at different moistures 14, 7, 3, and 0% respectively. According to

the figure, as the moisture level decreases, the flowablity of the material increases. The

material has good free flowing conditions when it is completely dried. As the material
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being dried, the angle of repose of the material varies along the drum length. Fine

particles become more fluidized which can easily escape with the hot gas. This material

can be recylced to the feed section again in order to improve the flowability of the bed

material to be processed. With this approach the performance of the dryer can be

enhanced.

7.2 Scale up to real dimensions

The experimental drum of 0.5 m is now scaled up to the industrial drum of 3.35 m

in diameter and 6.1 m in length. In the industrial dryers the flights can be offset for

some specific distance. The l1/R ratio is maintained approximately around 0.2. In the

present study the length of the flight is considered to be same as the length of the dryer.

The effect of parameters such as Froude number, filling degree, dynamic angle of repose,

and the length ratio of the flights has been investigated and presented in the following

sections.

7.2.1 Froude number

The effect of Froude number has been studied for flight holdup, unloading rate, and

the total contact area by varying it between 0.0018 - 0.0075, while keeping the other

parameters constant. Figure 7.12 represents the influence of Froude number on the

holdup of flight as a function of discharge angle. It shows that no significant variation

has been observed in the quantity of material carried by the flight while changing the

Froude number. The figure shows that a single flight carries an amount of approximately

1.23 tons of material. Therefore the thickness of the drum and the flight has to be

considered while designing the drum that can handle the strain developed due to handling

such bulk quantity of the material. The dependency of discharge rate of the flight

over the discharge angle at various Froude numbers has been presented in Fig. 7.13. It

represents that the amount of discharge per unit time increases as the Froude number

increases. Since, the flight navigates farther in the same interval as the flight with lower

speed travels, hence higher cascading rates and higher curtain densities can occur. The

discharge rate increased by two folds when the Froude number increased by 4 times.

However, the behavior of the curves has been observed similar in all the cases and also

the maximum cascading rate occurs at the same discharge point.

To understand the influence of Froude number on the total surface area of the particles
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Figure 7.13: Influence of Froude number on flight discharge rate
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Figure 7.14: Influence of Froude number on total surface area of the particles in airborne
phase

in the curtains, Fig. 7.14 is plotted at various flight length ratios. It can be observed

that as the Froude number increases, the total particle surface area also increases due

to increase in cascade rate and height of the curtain. The area increases steadily from

1181 m2 at Fr=0.0018 to 2368 m2 at Fr=0.0075 when l2/l1 = 0.64. However the increase

at lower Froude number is not rapid as it is at higher Froude values. The figure also

shows that as increasing the flight length ratio between 0.64 and 1.0 the surface area

increases rapidly, where as the rate of increase decreases between 1.0 and 1.5. Further,

the influence of flight number is also shown in the figure. The solid lines represent the

model predictions when the number of flights are operated at theoretical number and

the dashed lines represent when the number of flights are fixed at 16. In all the cases the

surface area is always greater for the case of the theoretical number as compared to the

fixed flight number. This is due to the fact that the active flights calculated during both

the cases is greater for the theoretical number of flights as related to 16 flights case.

7.2.2 Dynamic angle of repose

Dynamic angle of repose is a material property, which depends on the moisture of the

material. Highly cohesive solids expose higher dynamic angles, which is the case of high

moistures material in dryers at the feed section. Therefore, the influence of this angle
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on the contact area of gas to solids has to be studied thoroughly. The influence of this

parameter over flight holdup, cascade rate, and the particles surface area of the airborne

phase by fixing the particle diameter has been discussed in the following.
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Figure 7.15: Influence of dynamic angle of repose on flight holdup

Figure 7.15 depicts the amount of material carried away by the flight at various

dynamic angles. It indicates that the increase in the dynamic angle also increases the

initial holdup of the flight at a constant drum filling degree and Froude number. The

flight holdup is witnessed to be maximum for the material having high angle of repose

at any discharge point. It is also observed that the flight is being emptied at higher

discharge points at higher repose angles.

The influence of dynamic angle on the flight discharge rate has been shown in Fig. 7.16.

As can be seen from the graph, the maximum discharge rate is not affected by the dynamic

angle of repose. However, higher cascading rates were observed at higher dynamic angles

during the initial period of discharge. The period of flight unloading is noticed longer

for higher dynamic angles when compared to the smaller angles of repose. The surface

area of particles in the curtains as a function of angle of repose is presented in Fig. 7.17

at l2/l1 = 1.0 and 0.64. Two cases for the flight number had been shown for this purpose.

Firstly the number of flights are calculated using the theoretical model shown with the

solid lines, and secondly a constant number of flights are considered at 16 which is
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Figure 7.16: Influence of dynamic angle of repose on cascading rate of the flight
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represented with dashed lines. It shows that increase in dynamic angle decreases the

total surface area of the particles in the first case at any flight length ratio. It can

be regarded due to the fact that increasing the dynamic angle decreases the number of

active flights. As a result the number of curtains decreases. Whereas, in the second case

increasing the angle of repose resulted an increase in the surface area at any flight length

ratio, but this is not true in practice. Since, the flight holdup increases for an increase in

dynamic angle, which then it should increase the allowed angular distance (see Fig. 3.10)

between the two adjacent flights and results in decrease in number of flights. But while

operating at fixed number of flights, this angular distance is kept constant and allowed to

determine the flight holdup theoretically. Which then resulted an over predicted holdup

according to the assumption that the flight is crowded with enough material at δ = 0o.

This over prediction of flight holdup resulted in an increase in the surface area. Indeed at

fixed flight number, and higher DAR the initial holdup (at δ = 0o) may be much smaller

than the predicted.

7.2.3 Filling degree

Filling degree in rotary dryers is an important parameter which has to be studied thor-

oughly. It varies along the axial direction, due to the inclination of the drum and varying

moisture levels of the material. Initially at the feed end section of the drum, the filling

degree must be high enough to control the filling degree at the discharge end. During the

transport from upstream end to downstream end the moisture from the material will be

evaporated and hence the filling degree decreases. However, the filling degree does not

vary much by considering a small section of the drum. Therefore in the current study

the total filling degree was held constant and the influence of the filling degree on the

curtain height and the contact area has been presented in this section.

Figure 7.18 represents the variation of the height of the curtains at different filling

degrees operating in between 11-25%. As expected, the height of the curtain is always

higher for the lower filling degrees due to small bed height present at the bottom of the

drum, and the maximum point of curtain is observed at higher discharge points in case

of higher filling degrees. Therefore, smaller filling degrees prevail better area of heat

transfer due to larger contact times. Following this study, the influence of filling degree

on the particle surface area is presented in Fig. 7.19. The figure depicts the influence of

the flight length ratio and number of flights. From the figure, it is easy to understand

that as less is the filling degree the higher is the particle surface area. However the filling
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Figure 7.18: Influence of filling degree on the height of curtain
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Figure 7.19: Influence of filling degree on total particle surface area of curtains

degree cannot decrease beyond the design loaded conditions, since further decrease in

filling degree can lead to late discharge of the flight thus reducing the total surface area.
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7.2.4 Flight length ratio
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Figure 7.20: Influence of length ratio on total particle surface area in airborne phase

The influence of the tangential length on the total surface area of particles in the

airborne phase has been investigated for two cases as shown in Fig. 7.20. In the first

case theoretical number of flights are considered which is represented with the solid line.

In the second case the number of flights are fixed at 16 depicted with (o) symbol. As

the figure illustrates for l2/l1 = 0.64, the total area in the first case is 1.5 times higher

than the second case. However, the area is almost equal when l2/l1 = 1, since the number

of flights in the first case is almost close to 16. In the first case, the maximum area

(2769 m2) occurred at l2/l1 = 1.4, i.e. the area increased only by 1.4 times when the

flight length ratio increased by 2.2. Therefore while designing the drum, this factor can

be considered, since the higher ratios increases the cascading rates which then increases

the shielding of the particles. In the second case this area increased linearly while fixing

the flight number, the data is shown only until the flight length ratio of 1.5.
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Chapter 8

Conclusions and Outlook

8.1 Conclusions

With the developed model it is possible to simulate the influence of process and operating

parameters on the material distribution which include: a) drum diameter, b) flight length

ratio (l2/l1), c) number of flights (nF ), d) filling degree, e) rotational speed, and f)

dynamic angle of repose (ΘA).

High initial unloading rates were observed at small l2/l1, but the range of discharge

was short when compared to higher l2/l1. The use of higher flight length ratios revealed

bulk movement of solids during the final stage of discharge, which can lead to poor

performance.

The maximum contact area for heat and mass transfer was obtained at a flight length

ratio of 1.5 presuming no gas flow conditions, and neglecting the particle shielding effect.

Not much variation was observed for the contact area between the flight length ratio

1-1.5. Moreover, operating the drum at l2/l1 > 1 can lead to higher particle shielding

effects due to higher curtain densities. Hence, the optimal design of the drum can be

expected at flight length ratio close to 1 and the number of flights equal or slightly less

than the theoretical number (nF ≈ 18). However, further investigation is necessary to

confirm this tendency, as it was also dependent on the loading state of the drum.

Increasing the number of flights increases the contact area, while the drum was op-

erated at flight number less than the theoretical number. In contrast to that, the ex-

perimental observations witnessed a vertical entrainment effect for quartz sand at higher

flight number. At higher Froude numbers this effect further increases under the same

operating conditions. It disturbs the uniformity of the curtains and can interfere with
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the axial flow of dry air under practical conditions, which has to be addressed carefully

while designing the drum. Therefore for very fine material a possible suggestion is to

operate the drum at less number of flights (i.e. at higher flight length ratio’s l2/l1 ≈ 1)

rather than at higher flight number.

The angle of repose of the material changes during the drying process due to varying

levels of moisture along the axial transportation. The material behavior can be simu-

lated with the developed model by accommodating the change in angle of repose. The

experimental observations discussed in the thesis and the results presented from the geo-

metrical model will serve as a bench mark to the field experience while scaling the drum

to the industrial units.

Mellmann’s final discharge angle model depicted fast discharges at higher Froude

number, while the experimental observations showed late discharges indeed. This unde-

sirable nature is addressed by the extended model in the present work. However, this

approach suggested that there still exists an another region (4th) of the unloading flight

which can be regarded as a diluted phase that has to be incorporated further in the

geometrical model.

8.2 Outlook

1. This study was focused only on the transverse distribution of material by considering

constant filling degree of the drum in a given section. However, in flighted rotary

drums the filling degree changes due to varying moisture levels of the solids along the

length of the dryer. It is recommended that the geometrical transverse model can be

coupled with the model of axial transport.

2. In this work no heat transfer studies were developed. As a next step it is recommended

to study the heat and mass transfer effects both experimentally and theoretically. The

predicted contact area from the geometrical model can be used as a basis for this work.

3. The extended model for kinetic angle of repose was in good agreement with the exper-

iments as compared to Schofield and Glikin model. However before using this model

completely, it is necessary to validate it further as it depends on the mean velocity and

layer thickness. Since the mean velocity at the flight surface was formulated based on

the Eulerian approach by assuming a linear velocity profile in the active layer. Fur-

ther, it was also assumed that the coefficient of friction vary along the boundary line
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with linear profile at each flight position. Therefore, the validation of this model is cer-

tainly necessary which was rather difficult to perform with the available experimental

setup.

4. Angular flights are used in some sections of flighted rotary drums depending on the

material behavior. The geometrical model presented in this work is easy to extend

when compared to the models from other authors for studying the behavior of angular

flights.
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